@misc{AgarwalWangSchuetteetal., author = {Agarwal, Animesh and Wang, Han and Sch{\"u}tte, Christof and Delle Site, Luigi}, title = {Chemical potential of liquids and mixtures via Adaptive Resolution Simulation}, issn = {1438-0064}, doi = {10.1063/1.4886807}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-50972}, abstract = {We employ the adaptive resolution approach AdResS, in its recently developed Grand Canonicallike version (GC-AdResS) [Wang et al. Phys.Rev.X 3, 011018 (2013)], to calculate the excess chemical potential, \$μ^{ex}\$, of various liquids and mixtures. We compare our results with those obtained from full atomistic simulations using the technique of thermodynamic integration and show a satisfactory agreement. In GC-AdResS the procedure to calculate \$μ^{ex}\$ corresponds to the process of standard initial equilibration of the system; this implies that, independently of the specific aim of the study, \$μ^{ex}\$, for each molecular species, is automatically calculated every time a GC-AdResS simulation is performed.}, language = {en} } @article{AgarwalWangSchuetteetal., author = {Agarwal, Animesh and Wang, Han and Sch{\"u}tte, Christof and Delle Site, Luigi}, title = {Chemical potential of liquids and mixtures via Adaptive Resolution Simulation}, series = {The Journal of Chemical Physics}, volume = {141}, journal = {The Journal of Chemical Physics}, doi = {10.1063/1.4886807}, pages = {034102}, language = {en} } @article{AicheReinertSchuetteetal.2012, author = {Aiche, Stephan and Reinert, Knut and Sch{\"u}tte, Christof and Hildebrand, Diana and Schl{\"u}ter, Hartmut and Conrad, Tim}, title = {Inferring Proteolytic Processes from Mass Spectrometry Time Series Data Using Degradation Graphs}, series = {PLoS ONE}, volume = {7}, journal = {PLoS ONE}, number = {7}, publisher = {Public Library of Science}, doi = {10.1371/journal.pone.0040656}, pages = {e40656}, year = {2012}, language = {en} } @article{AntonySchmidtSchuette2005, author = {Antony, Jens and Schmidt, Burkhard and Sch{\"u}tte, Christof}, title = {Nonadiabatic Effects on Peptide Vibrational Dynamics Induced by Conformational Changes}, series = {J. Chem. Phys.}, volume = {122}, journal = {J. Chem. Phys.}, number = {1}, doi = {10.1063/1.1829057}, pages = {014309}, year = {2005}, language = {en} } @article{BanischDjurdjevacConradSchuette, author = {Banisch, Ralf and Djurdjevac Conrad, Natasa and Sch{\"u}tte, Christof}, title = {Reactive flows and unproductive cycles for random walks on complex networks}, series = {The European Physical Journal Special Topics, vol. 224, iss. 12 (2015) pp. 2369-2387}, journal = {The European Physical Journal Special Topics, vol. 224, iss. 12 (2015) pp. 2369-2387}, doi = {10.1140/epjst/e2015-02417-8}, language = {en} } @misc{BanischDjurdjevacConradSchuette, author = {Banisch, Ralf and Djurdjevac Conrad, Natasa and Sch{\"u}tte, Christof}, title = {Reactive flows and unproductive cycles for random walks on complex networks}, issn = {1438-0064}, doi = {10.1140/epjst/e2015-02417-8}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-54239}, abstract = {We present a comprehensive theory for analysis and understanding of transition events between an initial set A and a target set B for general ergodic finite-state space Markov chains or jump processes, including random walks on networks as they occur, e.g., in Markov State Modelling in molecular dynamics. The theory allows us to decompose the probability flow generated by transition events between the sets A and B into the productive part that directly flows from A to B through reaction pathways and the unproductive part that runs in loops and is supported on cycles of the underlying network. It applies to random walks on directed networks and nonreversible Markov processes and can be seen as an extension of Transition Path Theory. Information on reaction pathways and unproductive cycles results from the stochastic cycle decomposition of the underlying network which also allows to compute their corresponding weight, thus characterizing completely which structure is used how often in transition events. The new theory is illustrated by an application to a Markov State Model resulting from weakly damped Langevin dynamics where the unproductive cycles are associated with periodic orbits of the underlying Hamiltonian dynamics.}, language = {en} } @misc{BanischSchuetteDjurdjevacConrad, author = {Banisch, Ralf and Sch{\"u}tte, Christof and Djurdjevac Conrad, Natasa}, title = {Module Detection in Directed Real-World Networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-49849}, abstract = {We investigate the problem of finding modules (or clusters, communities) in directed networks. Until now, most articles on this topic have been oriented towards finding complete network partitions despite the fact that this often is unwanted. We present a novel random walk based approach for non-complete partitions of the directed network into modules in which some nodes do not belong to only one of the modules but to several or to none at all. The new random walk process is reversible even for directed networks but inherits all necessary information about directions and structure of the original network. We demonstrate the performance of the new method in application to a real-world earthquake network.}, language = {en} } @article{BeckerDjurdjevacConradEseretal., author = {Becker, Fabian and Djurdjevac Conrad, Natasa and Eser, Raphael A. and Helfmann, Luzie and Sch{\"u}tt, Brigitta and Sch{\"u}tte, Christof and Zonker, Johannes}, title = {The Furnace and the Goat—A spatio-temporal model of the fuelwood requirement for iron metallurgy on Elba Island, 4th century BCE to 2nd century CE}, series = {PLOS ONE}, volume = {15}, journal = {PLOS ONE}, publisher = {Public Library of Science}, doi = {10.1371/journal.pone.0241133}, pages = {1 -- 37}, language = {en} } @article{BennHiepenOsterlandetal., author = {Benn, Andreas and Hiepen, Christian and Osterland, Marc and Sch{\"u}tte, Christof and Zwijsen, An and Knaus, Petra}, title = {Role of bone morphogenetic proteins in sprouting angiogenesis: differential BMP receptor-dependent signaling pathways balance stalk vs. tip cell competence}, series = {FASEB Journal}, volume = {31}, journal = {FASEB Journal}, number = {11}, doi = {10.1096/fj.201700193RR}, pages = {4720 -- 4733}, abstract = {Before the onset of sprouting angiogenesis, the endothelium is prepatterned for the positioning of tip and stalk cells. Both cell identities are not static, as endothelial cells (ECs) constantly compete for the tip cell position in a dynamic fashion. Here, we show that both bone morphogenetic protein (BMP) 2 and BMP6 are proangiogenic in vitro and ex vivo and that the BMP type I receptors, activin receptor-like kinase (ALK)3 and ALK2, play crucial and distinct roles in this process. BMP2 activates the expression of tip cell-associated genes, such as DLL4 (delta-like ligand 4) and KDR (kinase insert domain receptor), and p38-heat shock protein 27 (HSP27)-dependent cell migration, thereby generating tip cell competence. Whereas BMP6 also triggers collective cell migration via the p38-HSP27 signaling axis, BMP6 induces in addition SMAD1/5 signaling, thereby promoting the expression of stalk cell-associated genes, such as HES1 (hairy and enhancer of split 1) and FLT1 (fms-like tyrosine kinase 1). Specifically, ALK3 is required for sprouting from HUVEC spheroids, whereas ALK2 represses sprout formation. We demonstrate that expression levels and respective complex formation of BMP type I receptors in ECs determine stalk vs. tip cell identity, thus contributing to endothelial plasticity during sprouting angiogenesis. As antiangiogenic monotherapies that target the VEGF or ALK1 pathways have not fulfilled efficacy objectives in clinical trials, the selective targeting of the ALK2/3 pathways may be an attractive new approach.}, language = {en} } @incollection{BernhardZoukraSchuette2010, author = {Bernhard, Stefan and Zoukra, Kristine Al and Sch{\"u}tte, Christof}, title = {From non-invasive hemodynamic measurements towards patient-specific cardiovascular diagnosis}, series = {Quality Assurance in Healthcare Service Delivery, Nursing and Personalized Medicine}, booktitle = {Quality Assurance in Healthcare Service Delivery, Nursing and Personalized Medicine}, editor = {Daskalaki, A. and Lazakidou, A.}, publisher = {Hershey, PA: Medical Information Science Reference}, year = {2010}, language = {en} }