TY - GEN A1 - Wang, Han A1 - Schütte, Christof T1 - Building Markov State Models for Periodically Driven Non-Equilibrium Systems N2 - Recent years have seen an increased interest in non-equilibrium molecular dynamics (NEMD) simulations, especially for molecular systems with periodic forcing by external fields, e.g., in the context of studying effects of electromagnetic radiation on the human body tissue. Lately, an NEMD methods with local thermostating has been proposed that allows for studying non-equilibrium processes in a statistically reliable and thermodynamically consistent way. In this article, we demonstrate how to construct Markov State Models (MSMs) for such NEMD simulations. MSM building has been well-established for systems in equilibrium where MSMs with just a few (macro-)states allow for accurate reproduction of the essential kinetics of the molecular system under consideration. Non-equilibrium MSMs have been lacking so far. The article presents how to construct such MSMs and illustrates their validity and usefulness for the case of conformation dynamics of alanine dipeptide in an external electric field. T3 - ZIB-Report - 14-46 KW - Non-equilibrium KW - Markov states model KW - Alanine dipeptide KW - Electric field KW - Floquet theory Y1 - 2014 UR - https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/5316 UR - https://nbn-resolving.org/urn:nbn:de:0297-zib-53167 SN - 1438-0064 N1 - To appear in: Journal of Chemical Theory and Computation ER -