TY - GEN A1 - Bittracher, Andreas A1 - Banisch, Ralf A1 - Schütte, Christof T1 - Data-driven Computation of Molecular Reaction Coordinates N2 - The identification of meaningful reaction coordinates plays a key role in the study of complex molecular systems whose essential dynamics is characterized by rare or slow transition events. In a recent publication, the authors identified a condition under which such reaction coordinates exist - the existence of a so-called transition manifold - and proposed a numerical method for their point-wise computation that relies on short bursts of MD simulations. This article represents an extension of the method towards practical applicability in computational chemistry. It describes an alternative computational scheme that instead relies on more commonly available types of simulation data, such as single long molecular trajectories, or the push-forward of arbitrary canonically-distributed point clouds. It is based on a Galerkin approximation of the transition manifold reaction coordinates, that can be tuned to individual requirements by the choice of the Galerkin ansatz functions. Moreover, we propose a ready-to-implement variant of the new scheme, that computes data-fitted, mesh-free ansatz functions directly from the available simulation data. The efficacy of the new method is demonstrated on a realistic peptide system. T3 - ZIB-Report - 17-77 KW - reaction coordinate KW - coarse graining KW - transition manifold KW - transfer operator KW - Galerkin method KW - meshfree basis KW - data-driven Y1 - 2017 UR - https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/6617 UR - https://nbn-resolving.org/urn:nbn:de:0297-zib-66179 SN - 1438-0064 ER -