TY - GEN A1 - Achterberg, Tobias A1 - Berthold, Timo A1 - Koch, Thorsten A1 - Wolter, Kati T1 - Constraint Integer Programming: a New Approach to Integrate CP and MIP N2 - This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques from SAT solving. SCIP is available in source code and free for non-commercial use. We demonstrate the usefulness of CIP on two tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we employ the CIP framework to solve chip design verification problems, which involve some highly non-linear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the non-linear constraints by employing constraint programming techniques. T3 - ZIB-Report - 08-01 KW - Constraint Programming KW - Ganzzahlige Programmierung KW - Branch-And-Cut KW - Optimierungssoftware KW - Chipverifikation KW - constraint programming KW - mixed integer programming KW - branch-and-cut KW - optimization software KW - chip verification Y1 - 2008 UR - https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/1052 UR - https://nbn-resolving.org/urn:nbn:de:0297-zib-10520 SN - 1438-0064 ER -