TY - JOUR A1 - Ernst, Ariane A1 - Falkenhagen, Undine A1 - Winkelmann, Stefanie T1 - Model reduction for calcium-induced vesicle fusion dynamics T2 - Proceedings in Applied Mathematics & Mechanics N2 - In this work, we adapt an established model for the Ca2+-induced fusion dynamics of synaptic vesicles and employ a lumping method to reduce its complexity. In the reduced system, sequential Ca2+-binding steps are merged to a single releasable state, while keeping the important dependence of the reaction rates on the local Ca2+ concentration. We examine the feasibility of this model reduction for a representative stimulus train over the physiologically relevant site-channel distances. Our findings show that the approximation error is generally small and exhibits an interesting nonlinear and non-monotonic behavior where it vanishes for very low distances and is insignificant at intermediary distances. Furthermore, we give expressions for the reduced model’s reaction rates and suggest that our approach may be used to directly compute effective fusion rates for assessing the validity of a fusion model, thereby circumventing expensive simulations. Y1 - 2023 UR - https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/9217 VL - 23 IS - 4 ER -