TY - JOUR
A1 - Roux, Christophe
A1 - Pokutta, Sebastian
A1 - Wirth, Elias
A1 - Kerdreux, Thomas
T1 - Efficient Online-Bandit Strategies for Minimax Learning Problems
N2 - Several learning problems involve solving min-max problems, e.g., empirical distributional robust learning
[Namkoong and Duchi, 2016, Curi et al., 2020] or learning with non-standard aggregated losses [Shalev-
Shwartz and Wexler, 2016, Fan et al., 2017]. More specifically, these problems are convex-linear problems
where the minimization is carried out over the model parameters w ∈ W and the maximization over the
empirical distribution p ∈ K of the training set indexes, where K is the simplex or a subset of it. To design
efficient methods, we let an online learning algorithm play against a (combinatorial) bandit algorithm.
We argue that the efficiency of such approaches critically depends on the structure of K and propose two
properties of K that facilitate designing efficient algorithms. We focus on a specific family of sets Sn,k
encompassing various learning applications and provide high-probability convergence guarantees to the
minimax values.
Y1 - 2021
UR - https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/8397
ER -