TY - JOUR A1 - Buchmann, Jens A1 - Kaplan, Bernhard A1 - Powell, Samuel A1 - Prohaska, Steffen A1 - Laufer, Jan T1 - Quantitative PA tomography of high resolution 3-D images: experimental validation in tissue phantoms T2 - Photoacoustics N2 - Quantitative photoacoustic tomography aims recover the spatial distribution of absolute chromophore concentrations and their ratios from deep tissue, high-resolution images. In this study, a model-based inversion scheme based on a Monte-Carlo light transport model is experimentally validated on 3-D multispectral images of a tissue phantom acquired using an all-optical scanner with a planar detection geometry. A calibrated absorber allowed scaling of the measured data during the inversion, while an acoustic correction method was employed to compensate the effects of limited view detection. Chromophore- and fluence-dependent step sizes and Adam optimization were implemented to achieve rapid convergence. High resolution 3-D maps of absolute concentrations and their ratios were recovered with high accuracy. Potential applications of this method include quantitative functional and molecular photoacoustic tomography of deep tissue in preclinical and clinical studies. Y1 - 2020 UR - https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/7542 VL - 17 SP - 100157 ER -