
 

 

 

  

 

 

 

 

 

SCHLAPPA, MARTIN 

 

 

OPTIMIZING PRODUCTION PROCESSES VIA IMPROVED RESILIENCE  

AND STATE-OF-THE-ART AI TECHNOLOGIES 

 

 

 

Dissertation 

 

for obtaining the degree of Doctor of Business and Economics 

(Doctor rerum politicarum – Dr. rer. pol.) 

 

at WHU – Otto Beisheim School of Management 

 

 

June 19, 2023 

 

 

 

 

First Advisor:   Professor Stefan Spinler 

Second Advisor:  Professor Liji Shen  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Martin Schlappa: Optimizing Production Processes via Improved Resilience and State-of-the-

art AI Technologies 

© June 19, 2023  



 

 

 

 

 

To my wife, my parents, and my sister. 

 

 

 



 

iv 

 

ABSTRACT 

 

Disruptions regularly hit economies. Scholars and industry experts suggest many strategies 

to avoid disruptions or handle them effectively. Two things are repeatedly mentioned: 

Increasing resilience and deploying artificial intelligence (AI) technologies. In this dissertation, 

we1 look at both aspects and focus our efforts on production processes. To get a well-rounded 

view, we apply various research methods, i.e., surveys, case studies, and systematic literature 

reviews (SLRs). 

In our first paper (Chapter 2), we investigate the perceived organizational resilience of 

companies in the German manufacturing industry. We perform an SLR to analyze existing 

research on organizational resilience measures. We see that existing (qualitative) resilience 

measures are complex, challenging to interpret, and therefore, hard to scale and apply across 

multiple industries. Based on this, we develop a novel, low-threshold resilience measure 

consisting of six resilience items about the past perceived internal/external resilience, current 

perceived internal/external resilience, and anticipated need for internal/external resilience, 

called the Enterprise Resilience Index (ERI). Finally, we conduct an empirical study with 

~200 German experts across various industries. Our survey shows that the German 

manufacturing industry perceives itself as relatively resilient, with significant differences 

between industries and company sizes. We also see that they anticipate a high need for external 

resilience across industries in the future. Most strikingly, the Machinery industry shows the 

lowest ERI levels while it anticipates a relatively high need for resilience, showing the 

development need for this industry in terms of resilience. 

To explore the aspect of AI, we focus on waste incineration plants (WIP) in Chapter 3. 

WIPs have various levels of automation, but they still rely on manual operations by human 

operators. Consequently, the combustion process is managed rather inefficiently, and steam 

outputs and emission levels are not optimal. Thus, we investigate how reinforcement learning 

(RL) can help enhance process automation and thus optimize the combustion process, e.g., by 

making more frequent and diverse interventions. An RL agent is trained via trial and error with 

a reward function that includes the optimization criteria. Since the actual equipment, i.e., the 

real WIP, cannot be used as the training environment, a digital twin is built using original plant 

data and a neural network. The RL agent is then trained in this offline environment with the 

deep Q-network algorithm (DQN). Our work demonstrates that a digital twin of a WIP can be 

built in a data-driven way. We show that the RL agent outperforms the human operator, 

increasing the steam output by 7.4% and reducing the oxygen level by 3.6%. Thus, applying 

RL might benefit the plant operator financially due to increased output and the environment in 

terms of reduced emission levels. 

Finally, we look at a practical aspect of AI: AI readiness and adoption (Chapter 4). Many 

companies across various sectors have adopted AI technologies. However, the supposedly high 

adoption rates are misleading since many applications are rather experimental and not applied 

in key business areas. We believe that this limited AI adoption arises from a lack of AI 

 
1 The term “we” refers to the authors of the respective chapters, as noted at the beginning of each chapter. 
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readiness. We conduct a case study in the waste incineration industry with over 160 clients and 

investigate which strategies facilitate AI adoption in not-AI-ready industries. Based on these 

interactions, we distill five strategies that counter typical AI readiness barriers, thus increasing 

AI readiness: education, trust, customer centricity, focus, and collaboration. These strategies 

focus on transforming businesses just as much as necessary to prepare them for the AI 

technology that is supposed to be implemented. With increased AI readiness, chances for AI 

adoption rise. We are convinced that these strategies can be applied in various environments. 

In summary, this dissertation gives empirical evidence and expands the literature on 

organizational resilience and benchmarking, reinforcement learning and digital twins, and AI 

readiness and adoption. 
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1 INTRODUCTION 

Disruptions regularly hit economies. Some are known and happen frequently; others are 

unknown and hit seemingly out of nowhere. A very recent and devastating example is the 

outbreak of the war in Ukraine, which has created massive challenges across Europe. For 

instance, the energy market in Germany has come under tremendous pressure. Gasoline prices 

are at all-time highs, and previously unquestioned and stable gas flows are suddenly uncertain. 

Examples like this show that it is vital to investigate strategies to avoid disruptions or 

handle them effectively. Literature and experts suggest many strategies, but two ideas are 

repeatedly mentioned: Increasing resilience and deploying artificial intelligence (AI) 

technologies. 

1.1 Disruptions and resilience  

“Resilience” is one of those words that is frequently used when bad things happen. People, 

companies, supply chains, environments, and many others can be resilient (or not). Resilience 

is a “multidisciplinary concept” (Ponis & Koronis, 2012, p. 921), existing in many realms, 

including ecology, environmental studies, psychology, engineering, and management (Hosseini 

et al., 2016; Kamalahmadi & Parast, 2016). In the management world, many definitions exist 

with slight nuances that distinguish them. For instance, Tukamuhabwa et al. describe resilience 

as “the adaptive capability […] to prepare for and/or respond to disruptions, to make a timely 

and cost effective recovery, and therefore progress to a post-disruption state of 

operations – ideally, a better state than prior to the disruption” (2015, p. 5599). 

The definition highlights the essential aspect of resilience: disruptions. Without 

disruptions, resilience cannot be experienced. Fundamentally, resilience is grounded on the idea 

that some disruptions are inevitable, whether predictable or unpredictable (Fiksel et al., 2015; 

Hohenstein et al., 2015; Pires Ribeiro & Barbosa-Povoa, 2018). The causes of such disruptions 

can be diverse: economic crises, humanitarian crises, medical emergencies, natural disasters, 

political conflicts, or wars (Henry & Ramirez‐Marquez, 2016; Hohenstein et al., 2015; Jüttner 

& Maklan, 2011). The ability to manage disruptions can be an essential success factor for 

companies (Christopher & Lee, 2004). 

Following a “typical” disruption profile (Sheffi & Rice, 2005), resilience management 

involves four phases: preparation, response, recovery, and growth. Within each phase, there 

are various strategies to increase a company’s resilience, for instance, flexibility, collaboration, 

redundancies, visibility, or velocity (Jüttner & Maklan, 2011; Kamalahmadi & Parast, 2016; 

Pettit et al., 2013; Ponomarov & Holcomb, 2009; Singh et al., 2019). Some of these strategies 

are facilitated by AI technologies (Bauer et al., 2021; Hosseini & Ivanov, 2020; Öksüz et al., 

2021; Spieske & Birkel, 2021). 

1.2 Artificial intelligence and reinforcement learning  

Similar to resilience, “AI” is another “hot topic”. “97.2% of executives said their firms 

were investing in Big Data and AI initiatives” (NewVantage Partners, 2019, p. 4). AI 

technologies can be used to optimize operations, enhance customer satisfaction, enable 
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personalization or increase productivity (Chui et al., 2018; Grover et al., 2022). More data, more 

processing power, and better algorithms enable AI technologies (Bughin et al., 2017). 

Many technologies can be described as AI, and AI itself can be distinguished in various 

ways (Benbya et al., 2020; Davenport, 2021). Machine learning is a key area of AI, which can 

be split into supervised, unsupervised, and reinforcement learning (RL). Whereas supervised 

and unsupervised learning have been widely applied, applications of RL are relatively rare. The 

idea behind RL is to train a machine the way humans learn: by trial and error (Sutton & Barto, 

2018). Instead of complicated if-then-relations, in RL, a reward function that rewards “good 

behavior” is defined. An agent can execute one of the pre-defined actions in a digital 

environment and learn from the feedback (i.e., rewards) it receives. In the last decade, 

breakthroughs in RL occurred, such as AlphaGo’s win in the board game Go against the best 

human player in 2016 (Silver et al., 2016). Given the complexity of this approach and the need 

for an environment, most use cases are implemented in games, primarily by big tech firms. 

However, this approach is also well suited for many control problems, which tend to occur 

in more traditional, engineering-driven companies. They typically have control problems that 

are hard to automate using conventional methods, thus requiring human assistance. Humans, 

however, are limited in processing large amounts of data and performing at continuously high 

levels, thus causing disruptions. AI can help overcome the issues of conventional automation 

methods as well as human operations. With the support of AI, processes can become not only 

less prone to disruptions but also optimized in terms of various performance characteristics, for 

instance, by identifying patterns or anomalies in processes. This way, processes can become 

more resilient. At the same time, human capacity can be freed for more meaningful tasks such 

as regular management activities, preparation for disruptions, or creative work unsuitable for 

AI (Grover et al., 2022). 

Even though the advantages of AI are evident, full-scale applications are rarely seen in the 

real world. It seems that AI is adopted a lot, but it is usually only experimental, and use cases 

fail to scale (Bughin et al., 2017; Holmström, 2021). Many AI projects fail altogether (Brock 

& von Wangenheim, 2019). Companies try to adopt AI even though they are not ready for AI 

(yet). Unfortunately, organizations need to be ready for AI before adopting AI (AlSheibani et 

al., 2018; Issa et al., 2021; Jöhnk et al., 2021; Pumplun et al., 2019). 

1.3 Contributions of this dissertation 

This dissertation is cumulative and based on three research projects. In the following three 

chapters, we2 present each project separately: 

In Chapter 2, we study the perceived organizational resilience of the German 

manufacturing industry. We survey ~200 professionals to understand better their company’s 

past, current, and future organizational resilience. Moreover, we develop the Enterprise 

Resilience Index (ERI), a novel, low-threshold, survey-based measure for perceived 

organizational resilience. The survey results suggest a medium resilience level across the 

manufacturing industry, with differences between sub-industries: For instance, participants 

from the Chemicals industry perceive their companies as relatively more resilient whereas 

 
2 The term “we” refers to the authors of the respective chapters, as noted at the beginning of each chapter. 
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participants from the Machinery industry think the opposite. We also see that current resilience 

levels are below past (i.e., last year’s) levels, confirming the value-add of continuously 

measuring resilience as a dynamic capability. We also gather a strong anticipated need for 

external resilience, arguably because the German manufacturing industry expects disruption 

from external sources. This need is especially pronounced in large enterprises (LEs) with 

significantly higher levels than small and medium-sized enterprises (SMEs). In the future, our 

survey can regularly benchmark various industries in terms of perceived organizational 

resilience. 

In Chapter 3, we use RL to control and optimize the combustion process of a waste 

incineration plant (WIP). Since the actual equipment, i.e., the real WIP, cannot be used as the 

training environment, a digital twin is built using original plant data and a neural network. The 

RL agent is then trained in this offline environment with the deep Q-network (DQN) algorithm 

via trial and error with a reward function that includes multiple optimization criteria. We show 

that a digital twin of a WIP can be built in a data-driven way with limited expert knowledge. 

The RL agent outperforms the human operator, increasing the steam output by 7.4% (converted 

to electricity and heat) and reducing the oxygen level by 3.6%. Thus, the application of RL 

benefits the plant operator in financial terms due to increased output and the environment in 

terms of reduced emission levels. This work helps bridge the gap between theoretical research 

on control problems and real-life industrial issues. In the future, this research can be expanded 

to other optimization targets, such as total costs or the pollution of the boiler. In a broader sense, 

this application can be seen as a general-purpose framework, showcasing the power of RL to 

control complex processes without the need for very specialized models of the process or expert 

knowledge. 

In Chapter 4, we look at AI readiness and adoption. Using the case study method, we 

investigate which strategies facilitate AI adoption in traditional, i.e., not AI-ready industries. 

We provide empirical evidence to a topic that is usually studied conceptually. More specifically, 

we examine Uniper’s efforts in implementing their AI solution “Operaite” across the waste 

incineration industry and assess interactions and discussions with over 160 clients over two 

years. Based on these interactions, we distill five strategies that counter typical AI readiness 

barriers, thus increasing AI readiness: education, trust, customer centricity, focus, and 

collaboration. These strategies focus on transforming the businesses just as much as necessary 

to prepare them for the AI technology that is supposed to be implemented. With increased AI 

readiness, chances for AI adoption rise. We are convinced that these strategies can be applied 

in various environments. 

In the final chapter, we synthesize our three research projects, highlight the managerial 

implications of our work, and lay out opportunities for future research. 
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2 BENCHMARKING ORGANIZATIONAL RESILIENCE IN THE 

GERMAN MANUFACTURING INDUSTRY 

This chapter is based on Schlappa, Sporkmann, et al. (2022).3 

 

2.1 Introduction 

Companies in the German manufacturing industry are subject to disruptions, which can 

negatively affect their performance, such as productivity or sustainability (Tang & Nurmaya 

Musa, 2011). For example, the recent COVID-19 pandemic and the ongoing war in Ukraine 

have caused significant (unanticipated) disruptions in the industry (Queiroz et al., 2022). The 

ability to manage disruptions can be defined as organizational resilience – a research area with 

substantial advancements in recent years. Organizational resilience is a pivotal capability that 

distinguishes a successful company from others (Christopher & Lee, 2004) and yields 

competitive advantages (Norrman & Jansson, 2004; Sheffi & Rice, 2005). 

In a nutshell, organizational resilience describes the level to which companies can “keep 

the lights on”. After getting hit by a disruption, a resilient company recovers in a timely and 

cost-effective fashion (Christopher & Peck, 2004; Ponomarov & Holcomb, 2009). As a very 

“multidisciplinary concept” (Hosseini, Morshedlou, et al., 2019, p. 125), organizational 

resilience builds on the idea that some disruptions cannot be avoided ex-ante (Hohenstein et al., 

2015; Pires Ribeiro & Barbosa-Povoa, 2018), and it acknowledges that some are even 

“unpredictable or unknowable before the fact” (Fiksel et al., 2015, p. 81). 

Organizational resilience needs to be managed actively in a coordinated management 

approach, which we call resilience management. Managers should act within the individual 

“resilience fitness space” (Pettit et al., 2013, p. 47). They cannot implement all possible 

resilience measures at once, given that (financial) resources are naturally limited. Instead, they 

should analyze the resilience measures relative to the expected disruptions and associated 

benefits and implement the most efficient ones. To do this, managers require reliable 

information on the current resilience level. However, we find no consensus on how 

organizational resilience can be measured. 

Various concepts for measuring organizational resilience have been published, linking 

organizational resilience to existing performance indicators within a company. In the SPAICER 

project4, we tried deploying such a concept with our industry partners. However, we have 

learned firsthand that existing resilience measures are complex, difficult to deploy, challenging 

to interpret, and therefore, hard to scale and apply across multiple industries. If anything, these 

resilience measures are context-specific and tailored only to the individual company. 

 
3 This unpublished working paper with the title “Benchmarking Organizational Resilience in the German 

Manufacturing Industry” was written by Martin Schlappa, Jan Sporkmann, Martin Unterberg, and Sebastian 

Bouschery and has been submitted to “Production Engineering”. It is currently being revised and resubmitted. 

4 The SPAICER project focuses on AI-based resilience optimization (https://www.spaicer.de/en/). Partners from 

academia and industry participate in this applied research. 
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Based on our experience, we developed a novel, low-threshold resilience measure, a 

survey-based index for (perceived) resilience levels, targeted at the German manufacturing 

industry. We transfer the well-established concept of the ifo Business Climate Index (BCI) to 

organizational resilience and query companies about (1) their past perceived internal/external 

resilience, (2) their past perceived internal/external resilience, and (3) their anticipated need for 

internal/external resilience. Moreover, we develop the Enterprise Resilience Index (ERI), an 

easy-to-adapt indicator for the organizational resilience level. It is meant to supplement data 

from company-specific resilience indices and is well-suited for industry-wide benchmarks. 

Our paper makes the following contributions: First, we conduct a systematic literature 

review (SLR) and create transparency about the state-of-the-art qualitative organizational 

resilience measures. We are the first to provide a broad overview of qualitative organizational 

resilience measures for future studies to build on. Second, we analyze and benchmark 

organizational resilience in the German manufacturing industry. Our data analysis is motivated 

by insights gathered from discussions with our industry partners in the SPAICER project: 

among others, we analyze statistical correlations between the past and the current organizational 

resilience, benchmark the organizational resilience of small and medium-sized enterprises 

(SMEs) and large enterprises (LEs), and investigate industry-related differences. Thus, we 

increase the understanding of our resilience measure and help practitioners establish a more 

targeted resilience management in the future. Third, our ERI represents a new resilience 

measure that is easy to implement at scale, providing practitioners with a tool to benchmark 

their (perceived) organizational resilience level in cross-industry benchmarks. The ERI is 

designed to serve in longitudinal analyses in the future. 

The remainder of this paper is organized as follows. First, Chapter 2.2 outlines the SLR 

methodology and presents our literature-related findings. In Chapter 2.3, we describe the survey 

design, the ERI methodology, and the data collection process in detail. In Chapter 2.4, we 

analyze the collected data from 210 industry representatives. Afterward, in Chapter 2.5, we 

discuss the implications derived from our research for both researchers and practitioners. 

Chapter 2.6 summarizes our research and concludes with an outlook on potential future 

research. 

2.2 Literature review 

There is a large body of literature on organizational resilience, especially from the last few 

years, with multiple articles discussing approaches to measuring resilience (e.g., Hillmann & 

Guenther, 2021). Regarding the latter, we note that existing (quantitative) approaches (e.g., 

Hosseini et al., 2016) are quite complex and difficult to interpret. Instead, they require 

significant efforts from the respondents, support from researchers, and large amounts of data. 

Thus, the existing (quantitative) approaches are hard to scale and apply across multiple 

industries. 

To provide a solid foundation for our resilience research, we conduct an SLR, as proposed 

by Denyer and Tranfield (2009) and Tranfield et al. (2003). The SLR ultimately helps us better 

understand the space of qualitative approaches, i.e., surveys, interviews, or case studies, to 

measuring organizational resilience. Hillmann and Guenther (2021) highlight that no standard 



BENCHMARKING ORGANIZATIONAL RESILIENCE IN THE GERMAN MANUFACTURING INDUSTRY 

6 

 

exists. We follow the five-step approach as depicted in Fig. 2.1 to gather and assess all essential 

information from existing research (Rousseau et al., 2008). 

 

 

Fig. 2.1: Five-step systematic literature review (Denyer & Tranfield, 2009) 

2.2.1 Question formulation 

We intend to measure organizational resilience across many companies in the German 

manufacturing industry and, ideally, repeatedly over many years. As mentioned previously, we 

acknowledge that organizational resilience is an abstract attribute, with no consensus on its 

definition among researchers and practitioners. In this paper, we adopt the resilience definition 

of Tukamuhabwa et al. (2015, p. 5599): “the adaptive capability of a supply chain to prepare 

for and/or respond to disruptions, to make a timely and cost-effective recovery, and therefore 

progress to a post-disruption state of operations – ideally, a better state than prior to the 

disruption”. The term resilience level describes the concrete expression of resilience. On top, 

we find that measuring resilience is a complex endeavor. Nonetheless, researchers have tried to 

measure it before, and thus, we focus our efforts for the SLR on the following question: What 

are qualitative organizational resilience measures? 

2.2.2 Locating studies 

We use the Scopus database to gather the literature, which is widely used in research (see, 

e.g., Hosseini, Ivanov, et al., 2019; Kegyes et al., 2021). We collect 3,309 records as of 

April 2022 with the keywords “resilience index” OR “resilience benchmark” OR “resilience 

measurement”. We keep the keywords rather generic and purposefully do not add any further 

restrictions to start with a relatively large sample, which can be analyzed in more detail later. 

We restrict the search to journal articles, book chapters, or books in English, which are in the 

final publication stage. Besides, we limit the time horizon for publications and only focus on 

literature published between 2000 and 2022. 

2.2.3 Study selection and evaluation 

To follow a structured approach in the study selection and evaluation, we apply the well-

established PRISMA 2020 process flow (Page et al., 2021). By defining a set of meaningful 

inclusion/exclusion criteria, we narrow the records successively to only include those most 

relevant to our review question (see Fig. 2.2). 
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Fig. 2.2: Inclusion/exclusion funnel 

First, we apply formal and hygienic criteria to exclude irrelevant records before the 

screening. We check again for English language and journal publications and only consider 

records provided with author and abstract information. Furthermore, we remove all duplicates. 

Second, we screen the remaining 3,187 records in more detail and only include the ones 

that meet the following criteria: We assess, based on the abstract, title, and keywords, whether 

the records indeed (1) measure something (and not just conceptually describe a way to 

measure), (2) focus on resilience, and (3) use a qualitative research approach. This reduces the 

number of records to 880 records.  

Third, we apply our exclusion criteria and remove all records coming from non-

organizational resilience areas irrelevant to our review question, e.g., medical resilience (e.g., 

Grisanzio et al., 2018; Panter-Brick et al., 2018; Robertson et al., 2015; Sarkar & Fletcher, 

2014; Shet et al., 2022; Windle et al., 2011), environmental resilience (e.g., de Moraes Sá et al., 

2014; Gazol et al., 2017; Jones & Tanner, 2017; Owen, 2020; Waters & Adger, 2017), or 

ecological resilience (e.g., Cassidy & Barnes, 2012; Cutter et al., 2016; Fraccascia et al., 2017; 

Sharifi, 2016; Yazdani & Jeffrey, 2012). The application of the exclusion criteria 

yields 185 relevant records. 

Finally, we assess the records’ eligibility by downloading them and reading their abstracts, 

introductions, and conclusions. In this step, we add 59 articles via cross-referencing, a 

Records identified 

from Scopus

(n = 3,309)

Records removed before screening:

No abstract OR author info (n = 18)

Non-English (n = 17)

Not in journal (n = 19)

Duplicate records (n = 68)

Records screened

(n = 3,187)

Records removed due to inclusion criteria:

Does not "measure" (n = 429)

Does not focus on "resilience" (n = 549)

Does not do "qualitative research" (n = 1,329)

Records removed due to exclusion criteria:

Concerns "medical resilience" (n = 501)

Concerns "environmental resilience" (n = 177)

Concerns other irrelevant resilience (n = 17)
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commonly used technique in SLR. These 244 articles are then again analyzed in terms of 

relevance, i.e., if they measure organizational resilience qualitatively. As mentioned before, we 

are only interested in such articles that apply the resilience measure and not just conceptually 

develop it (different to, e.g., Hillmann & Guenther, 2021; Hosseini et al., 2016; Pettit et al., 

2010; Zeng & Yen, 2017). After further inspection, we remove 226 articles that assess resilience 

in other fields or with other methods. Ultimately, we include 18 articles for analysis and 

synthesis. 

2.2.4 Analysis and synthesis 

We read the 18 articles thoroughly to understand better the proposed quantitative method 

and how the respective authors measure organizational resilience. While reading, we categorize 

the articles across multiple dimensions (Table 2.1). To ensure that the categorizations are valid, 

four authors coded each article independently from each other. Discrepancies were discussed 

in the larger group of authors. 

Most importantly, we distinguish the different purposes behind measuring resilience: Some 

articles focus on providing a measure to quantify organizational resilience. We call this 

“Resilience Measurement”. Others focus on the antecedents of resilience, such as flexibility, 

collaboration, or adaptability, and try to measure the predictive power of these on organizational 

resilience (“Antecedent Analysis”). However, these papers fall short of explaining how to 

measure resilience itself. We are primarily interested in articles with the purpose of “Resilience 

Measurement” since this is closely related to the intention of our research. We do not intend to 

assess which antecedents impact the level of resilience and to what extent but instead want to 

determine the actual resilience level of an organization.  

Ten of the 18 relevant articles measured organizational resilience (“Resilience 

Management”), whereas eight focused on the antecedents. In the following, we investigate the 

ten articles concerning “Resilience Measurement” in more detail. 

Aleksić et al. (2013) developed a fuzzy mathematical model to assess the organizational 

resilience of SMEs within the process industry, which they tested as a case study in a Serbian 

processing company. They asked the management team, consisting of the top manager or 

owner, the quality manager, and the financial manager, to evaluate eleven resilience factors 

(categorized in internal actors, external factors, and enabling factors) across six central 

organizational processes (management, production, marketing and sales, purchase, design and 

development, and support processes). They find that the sample company has a medium 

resilience level. 

Azevedo et al. (2016) suggested an index that measures not only the resilience but also the 

leanness, agility, and greenness of automotive companies and the corresponding supply chains. 

They use multiple management paradigms for each area (seven paradigms for resilience 

precisely), which are weighted using a Delphi approach. The index is then applied to and 

validated with six companies in the Portuguese automotive industry, showing a moderate 

resilience level of the companies assessed in this case study. This tool can further benchmark 

the companies and the supply chain.  

Omidvar et al. (2017) also measured resilience in a single case study with an Iranian gas 

refinery using a fuzzy analytic hierarchy process. Their resilience assessment framework 
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consists of six indicators with multiple sub-indicators (43 in total) that are evaluated using 

expert pair-wise comparisons. The case study indicates medium to good resilience for the gas 

refinery.  

Through interviews, Usher et al. (2019) assessed the resilience of the tourism industry in a 

coastal city in the United States. They developed a resilience framework based on five 

components (vulnerability, business planning and operations, preparation and recovery 

planning, communication, and workforce) and put it to practice via interviews 

with 32 participants from 42 businesses. Their findings indicate that the businesses do not feel 

vulnerable to natural hazards and demonstrate high levels of resilience, especially larger 

businesses. 

Brown et al. (2019) focused on the hotel sector in disaster-prone regions. They surveyed 

hotel general managers and staff in two tourist regions in New Zealand with 72 questions, 

assessing the resilience level across multiple capitals (economic, social, human, physical, 

natural, and cultural) to understand their current resilience attributes but also focus on areas for 

future resilience-building activities. They received 77 responses from 33 hotels and found that 

the hotels showed positive predictors of resilience across all capitals but also need to work on 

a “more inclusive approach to disaster planning, add[ing] disaster management to the budget, 

and […] improving back-up power generations systems” (N. A. Brown et al., 2019, p. 36). 

Graveline and Grémont (2017) emphasize natural disasters and their impact on individual 

businesses. They propose an operational indicator for the economic resilience of businesses that 

governments can use to identify areas of low resilience. To show the indicator’s relevance, they 

applied it via a survey to the Urban Community of Central Martinique. One hundred eight 

businesses were asked to respond to two hypothetical hazards disrupting the drinking water 

supply or electricity. Their results indicate that the businesses are relatively more resilient to 

disruptions of the drinking water (86%) than to electricity shortages (75%). Moreover, they 

showed that turnover, the flexibility of working hours, and the flexibility of production 

processes are the factors that significantly contribute to economic resilience. 

Brown et al. (2017) assessed the organizational resilience of infrastructure providers with 

their Benchmark Resilience Tool. It uses thirteen indicators of resilience that are evaluated 

using a series of corresponding statements. The survey was shared within a major lifeline utility 

group in New Zealand, and 219 responses were gathered from 18 organizations. Their results 

show that the organizations have effective partnerships but struggle to break silos and conduct 

stress tests, which might improve resilience. Since people of different seniority were surveyed, 

they can also show that senior managers have more positive views than their junior colleagues. 

Utami et al. (2021) researched Indonesia’s micro, small, and medium enterprises 

(MSMEs). They provide a resilience measurement framework consisting of 25 questions. Using 

a mixed-method approach, they apply it as a structured questionnaire to 50 MSMEs from three 

sectors (food, salt farming, and craft) in four regencies of an Indonesian island. Their results 

highlight a low to moderate level of resilience across the three sectors, with salt farming 

showing the lowest level of resilience. 
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Azadeh et al. (2017) Antecedent 

Analysis 

     Iran Aluminum 

factory 

97  Mixed 

method 

30 

Chowdhury and Quaddus 

(2016) 

Antecedent 

Analysis 

     Bangladesh Apparel 272  Survey 46 

Kaviani et al. (2020) Antecedent 

Analysis 

     Iran Automotive 31  Survey 50+ 

Pettit et al. (2013) Antecedent 

Analysis 

     USA Mixed 170  Survey Many 

Rajesh (2019) Antecedent 

Analysis 

     India Electronics 1  Case study 23 

Sambowo and Hidayatno 

(2021) 

Antecedent 

Analysis 

     Indonesia Manufacturing 8  Interviews No info 

Sapeciay et al. (2017) Antecedent 

Analysis 

     New 

Zealand 

Construction 50  Mixed 

method 

No info 

Yazdanparast et al. (2021) Antecedent 

Analysis 

     Iran Automotive 150  Survey 20 

Aleksić et al. (2013) Resilience 

Measurement 

     Serbia Processing 1  Case study No info 

Azevedo et al. (2016) Resilience 

Measurement 

     Portugal Automotive 6  Case study 7 

(Continued on next page) 
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N. A. Brown et al. (2019) Resilience 

Measurement 

     New Zealand Hotels 77  Survey 72 

C. Brown et al. (2017) Resilience 

Measurement 

     New Zealand Infrastructure 219  Survey No info 

Graveline and Grémont 

(2017) 

Resilience 

Measurement 

     Martinique Mixed 108  Survey 44-83 

Omidvar et al. (2017) Resilience 

Measurement 

     Iran Gas refinery 1  Case study No info 

Shirali et al. (2013) Resilience 

Measurement 

     Iran Manufacturing 88  Survey 61 

Usher et al. (2019) Resilience 

Measurement 

     USA Tourism 32  Interviews No info 

Utami et al. (2021) Resilience 

Measurement 

     Indonesia Mixed 50  Mixed  

method 

25 

Wagner and Neshat (2012) Resilience 

Measurement 

     Germany Mixed 760  Survey Many 

Total (where applicable)  6 17 7 1 1    0   

This study Resilience 

Measurement 

     Germany Mixed 199 () Survey 6 
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Shirali et al. (2013) approached the measurement of resilience from the angle of resilience 

engineering. They gathered 88 responses using a questionnaire (with six resilience indicators). 

They used principal component analysis to determine the importance of the indicators on 

resilience and the resilience score of 11 units of a company in the process industry in Iran. This 

way, units with low resilience (e.g., distillation or technical inspection) can be identified to 

enable managers to act and focus their attention. 

Wagner and Neshat (2012) focus their work on supply chain vulnerability for various 

industries. Based on Normal Accident Theory and High Reliability Theory, they provide a 

measure for supply chain vulnerability. They administered their survey to a broad range of 

German firms and collected 760 responses. They can show that larger companies exhibit higher 

vulnerability than smaller ones and that companies with large series productions are more 

vulnerable than small series productions. 

 

Table 2.2: Overview of purpose and research method 

 Research method  

Purpose Case study Survey Interviews Mixed method Total 

Antecedent Analysis 1 4 1 2 8 

Resilience Measurement 3 5 1 1 10 

Total 4 9 2 3 18 

Average sample size 2 208 20 66 118 

 

Table 2.2 shows an overview of the purposes and the methods used in the articles. We see 

that most of the research is conducted via surveys with the intention of “Resilience 

Measurement”, which aligns with our review question. Case studies and interviews are less 

popular since they usually entail smaller sample sizes. 16 of the 18 articles use a sample 

size < 200 for their analysis, while Wagner and Neshat (2012) use a large sample size (Fig. 2.3). 

 

 

Fig. 2.3: Samples sizes of all 18 relevant papers 

Our literature review reveals that only six articles intentionally use their measure as a 

benchmarking tool for organizations, but none in longitudinal studies. This is one of our index’s 

most essential features since we believe organizational resilience should be tracked over time 

and across organizations and industries to identify strengths and weaknesses and facilitate 

learning. Moreover, we believe that organizational resilience is a characteristic that should be 

tracked and monitored over time and be used to compare companies. Out of these six 
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benchmarking articles, only one resilience measurement (Wagner & Neshat, 2012) looks at the 

German economy. However, since it is from 2012, it is outdated and limited in its focus on the 

supply chain and logistics functions – a refreshed resilience measure in the German 

manufacturing industry is utterly needed. 

Moreover, we see that the resilience definitions and the methodology used in the articles 

to compute the resilience levels are not always transparent: Only seven of the 18 articles in total 

and three of the six benchmarking articles provide sufficient information, which allows fellow 

researchers and practitioners to replicate the approach. However, we argue that practitioners 

need this transparency about the resilience definition and the methodology to apply the 

resilience measure in practice and trust the results, especially when comparing themselves to 

others. The practitioners we spoke with in the SPAICER project confirmed this. We also reveal 

that most authors provide industry-agnostic resilience measures, which are generic enough to 

be applied in various industries. Only Brown et al. (2019) present a measure designed 

specifically for the hotel industry; thus, it cannot be easily transferred to other industries such 

as manufacturing. 

In terms of geography, we conclude that most of the research is done outside Europe: Only 

Wagner and Neshat (2012) study organizations in Germany, Azevedo et al. (2016) in Portugal, 

and Aleksić et al. (2013) in Serbia. Most resilience measures are done in Iran (five articles) and 

New Zealand (three articles). 

Finally, we acknowledge that most of the articles (11/18) are more than five years old, 

highlighting the need for new data, given the recent advances in resilience research and events 

affecting organizations’ resilience in the last few years. 

2.2.5 Reporting and using the results 

The results confirm that our research is indeed novel for many reasons: there is a lack of 

short and representative surveys for organizational resilience, especially in Europe. Most 

approaches are complex and require additional resources for data gathering, e.g., on-site 

researchers to support, explain the survey or conduct the interviews. Thus, they also take a long 

time to implement. Moreover, very few studies intentionally perform benchmarks, and none do 

longitudinally. 

To close this gap, we conduct our own empirical study with a survey that can be easily 

repeated to track resilience on a large scale and over time. 

2.3 Methodology 

Given our SLR and our experience from the SPAICER project, we find that many measures 

for organizational resilience are rather complex and based on long and complicated surveys or 

interview protocols, hindering the large-scale implementation of such a measure. Thus, we want 

to tackle both issues and develop a new, easy-to-understand resilience measure based on a 

simple survey that can be implemented at scale while also providing a representative and 

reliable picture of the overall resilience level within an organization and industry5. Furthermore, 

 
5 In our initial evaluation, however, we concentrate on the German manufacturing industry. 
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the simplicity of our approach should enable the collection of longitudinal data to track changes 

more easily over time. 

2.3.1 Survey design 

Resilience has many features, but they all have a common denominator: disruptions and 

the ability to handle them (Tukamuhabwa et al., 2015). After all, without disruptions, there 

would be no need for resilience. In our work, we shed light on two dimensions of disruptions 

and resilience specifically: time and locus of control (Fig. 2.4).  

 

 

Fig. 2.4: Dimensions of resilience 

The time dimension is relevant since resilience is a dynamic capability and changes over 

time (Chowdhury & Quaddus, 2016; Pereira et al., 2014; Ponomarov & Holcomb, 2009). 

Companies most likely actively manage their resilience and adapt their resilience to past 

experiences and expectations for the future. To account for the dynamics, we establish a 

backward- and forward-looking perspective on resilience and differentiate between the past 

level of resilience, the current level of resilience, and the anticipated need for resilience. 

However, the time dimension is overlooked in most research. Only one other research in our 

SLR dataset (Omidvar et al., 2017) has established a backward- and forward-looking 

perspective on resilience. With the time dimension, we can analyze an organization’s ability to 

assess expected resilience levels adequately. Ideally, next year’s current resilience should align 

with this year’s assessment of an organization’s expected resilience.  

On the other hand, the locus of control is also relevant because disruptions and sources of 

uncertainty can be manifold (e.g., internal vs. external (Aleksić et al., 2013)), but they all affect 

organizations. Thus, independent of the source, companies need resilience to manage them. 

Nonetheless, we expect that the type of disruption affects the (perceived) controllability of these 

disruptions. Such differentiation has not been captured in most resilience measures thus far (see 

Table 2.1). 

The survey design has been discussed and validated with our industry partners from the 

German manufacturing industry taking part in the research project SPAICER. From a practical 

standpoint, many managers are concerned with these two resilience dimensions. They need to 

manage their organization’s resilience over time while assessing the right level of future 

resilience to use resources efficiently. At the same time, they understand that the sources of 
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disruption and, thus, its controllability matter, especially in their communication of the 

disruption and their respective actions. 

This focus allows us to keep the survey as short as possible while still getting a nuanced 

picture of the analyzed resilience levels. For each of the six resilience dimensions (i.e., 

resilience items), we ask the survey participants to rate the resilience level on a five-point Likert 

scale. 

Additionally, we collect demographic information on the respondent’s company’s industry, 

the company’s annual revenue, and the number of employees. We use this demographic 

information as control and clustering variables in our detailed data analysis (see Chapter 

2.4 Results). We do not collect any more firm-specific data as we want to keep a maximum 

level of anonymity so that respondents are willing to share an honest evaluation of their 

perceived resilience levels. For the demographic information, respondents must indicate which 

category best fits their respective organization6. 

2.3.2 Enterprise Resilience Index 

We learned from our industry partners that managers ideally aim for a single meaningful 

indicator that is easy to understand and collect. While such an indicator should not be taken as 

the only tool for resilience management, it can prove valuable as one of the multiple tools in a 

resilience manager’s toolkit. Especially in the case of managing resilience, having a simple, 

early indicator that can be obtained relatively quickly and more frequently than highly 

sophisticated resilience measures that might provide a more detailed view of specific resilience 

capabilities can be critical, especially in highly volatile markets and times of great uncertainty. 

Our goal is not to provide the perfect resilience indicator but one that strikes the right balance 

between complexity, predictive power, and practicability. That is why we developed the 

Enterprise Resilience Index (ERI). 

In our quest to develop the ERI, we took inspiration from the ifo BCI. The BCI is one of 

the most important indicators for Germany’s economic development and is published monthly 

(ifo, 2022). It sparked our interest for various reasons: First of all, the underlying survey is 

simple as it only consists of two components that jointly make up the index’s score; Second, 

the index considers the current business situation and the businesses’ expectations of their 

future course of business (Seiler & Wohlrabe, 2013), highlighting the focus on changes and not 

on absolute levels; Finally, it has proven to be an excellent early indicator for Germany’s gross 

domestic product (GDP) (Sinn & Abberger, 2006).  

For the ERI, we determine an overall propensity 𝑝𝑖 for each item, i.e., whether respondents 

evaluate the respective resilience situation as positive or negative. Therefore, we calculate the 

weighted average (response options weighted by a number from 0 (disagree strongly) to 4 

(agree strongly)) of responses and multiply the results by 25 to normalize the weighted average 

to a range from 0 to 100 (see Equation 1). 

  

 
6 The entire survey can be found in the appendices A. 1 & A. 2. 
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Equation 1: Propensity per item 

𝑝𝑖 =
∑ 𝑛𝑖,𝑗 ∙ 𝑗4

𝑗=0

𝑁
∙ 25 

𝑛𝑖,𝑗: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 𝑝𝑒𝑟 𝑖𝑡𝑒𝑚 (𝑖) 𝑎𝑛𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑜𝑝𝑡𝑖𝑜𝑛 (𝑗) 

𝑁: 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 

𝑗: 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒 …  𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑎𝑔𝑟𝑒𝑒 = 0 …  4 

With this propensity, we then calculate an overall score for the past perceived resilience, 

current perceived resilience, and anticipated need for resilience (see Equation 2 to Equation 4), 

considering both the internal and external perspectives. In turn, we use the past and current 

perceived resilience to calculate the ERI (see Equation 5). We base our calculations on the 

geometric rather than the arithmetic mean because extreme values do not influence the 

geometric mean as much as they do the arithmetic mean. We argue that a company (A) that has 

a resilience level of 100 in one year and 10 in the next is less resilient than a company (B) that 

consistently has a resilience level of 55 in both years. If the arithmetic mean were considered, 

both companies would have the same mean resilience level of 55, whereas company A has a 

mean resilience level of 31.6 when using the geometric mean. 

Equation 2: Past perceived resilience 

𝑅𝑝𝑎𝑠𝑡 = √𝑝𝑝𝑎𝑠𝑡 𝑖𝑛𝑡 ∙ 𝑝𝑝𝑎𝑠𝑡 𝑒𝑥𝑡 

Equation 3: Perceived current resilience 

𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = √𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑛𝑡 ∙ 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑥𝑡 

Equation 4: Anticipated need for resilience (NFR) 

𝑁𝐹𝑅 = √𝑝𝑛𝑓𝑟 𝑖𝑛𝑡 ∙ 𝑝𝑛𝑓𝑟 𝑒𝑥𝑡 

Equation 5: Enterprise Resilience Index (ERI) 

𝐸𝑅𝐼 = √𝑅𝑝𝑎𝑠𝑡 ∙ 𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

Our ERI represents a new resilience measure that is easy to implement at scale, providing 

practitioners with a tool to benchmark their (perceived) organizational resilience level in cross-

industry benchmarks. Since it considers both the past and the current resilience level, it can be 

used neatly to track resilience over time and to determine trends, like the BCI. We hope that the 

ERI can be added as another valuable tool to the toolkit of resilience managers. As this is the 

first time we have collected data on the ERI, it will remain unclear how much this index 

correlates with other indicators of economic development like the BCI or GDP. Still, as we 

have seen with the example of the BCI, this approach holds the potential to provide an important 

early indicator of perceived and actual resilience levels. 

2.3.3 Data collection 

We created an online survey. We used various channels to recruit as many relevant 

participants from the German manufacturing companies as possible. Since we developed the 

ERI as part of the SPAICER project, we contacted all consortium members and asked them to 

share the link to our online survey within their company and professional network. Furthermore, 
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we contacted industry experts directly and distributed the survey via mailing lists from industry 

associations involved in the SPAICER project. 

This year’s data collection phase concentrates specifically on the German manufacturing 

industry. Germany has a particularly strong manufacturing industry that is responsible for large 

amounts of Germany’s GDP (World Bank, 2022). Furthermore, this industry has seen major 

disruptions recently, highlighting a need for resilience, which can only be adequately addressed 

if we understand the actual resilience level within an industry. Ultimately, we want to extend 

our evaluation to more industries and potentially other countries. 

2.4 Results 

Following, we lay out our data preprocessing strategy, present descriptive statistics for the 

preprocessed dataset, and perform statistical data analysis. 

2.4.1 Data pre-processing 

In total, 210 industry representatives completed our survey (corresponding to a completion 

rate of 80%). These were checked for response quality and inconsistencies (such as matching 

revenue figures and company sizes), resulting in nine responses being removed. Additionally, 

two responses were removed since the participants do not work in the manufacturing industry, 

our research focus. This resulted in a final dataset consisting of 199 responses, which is, 

compared to other studies, a relatively large sample size (see Literature Review). 

To ensure the analyses are meaningful, i.e., to enable cross-industry cluster analyses, we 

further cluster the industries provided by the participants into six reasonable larger industry 

clusters: Automotive, Chemicals, Food and Consumer Goods, Machinery, Manufacturing, and 

Others. 

2.4.2 Descriptive statistics 

Table 2.3 gives an overview of the distribution of survey responses regarding 

their (1) industry cluster, (2) annual revenue, and (3) number of employees. 

Across all categories, all but one sub-group has a sample size >10, enabling further 

meaningful analyses. We see a relatively balanced distribution regarding industry clusters, 

emphasizing Machinery (55) and Manufacturing (44). Most respondents (109) come from 

“large enterprises” (LEs), defined as companies with > 1 billion EUR in revenues 

or > 5,000 employees (Insee, 2020). Yet, we also gathered a significant number of 

responses (38) from small and medium-sized enterprises (SMEs), defined as companies 

with < 50 million EUR in revenues and < 250 employees (European Commission, 2003). 
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Table 2.3: Survey participants by industry cluster, revenue, and size 

Feature Frequency Percentage 

Industry cluster   

Automotive 35 18 

Chemicals 13 6 

Food and Consumer Goods 18 9 

Machinery 55 28 

Manufacturing 44 22 

Others 34 17 

Total 199 100 

Revenue, in million €   

< 10 16 8 

10 – 50 25 13 

50 – 100 16 8 

100 – 500 16 8 

500 – 1,000 17 8 

1,000 – 5,000 46 23 

> 5,000 63 32 

Total 199 100 

Number of employees   

< 100 23 12 

100 – 250 22 11 

250 – 500 11 5 

500 – 1,000 9 4 

1,000 – 5,000 25 13 

5,000 – 10,000 19 10 

> 10,000 90 45 

Total 199 100 

 

Fig. 2.5 visualizes all survey responses. Outliers in Q3 and Q5 are marked with a diamond 

symbol. Overall, we see high average levels of resilience, whether past or current, and internal 

or external perceived resilience. The boxplot also indicates a relatively large variance within 

the dataset, which we seek to analyze in the following chapter. We can also see that the current 

perceived resilience in both the internal and external dimensions (Q3 & Q4) is below past 

perceived internal and external resilience (Q1 & Q2). Furthermore, there appears to be a strong 

anticipated need for external resilience (Q6). 
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Fig. 2.5: Boxplot visualization of all responses 

Table 2.4 presents a descriptive statistical analysis of the responses, including the median, 

mode, mean, and standard deviation for each survey item. It confirms the “strong”, i.e., median, 

mode, or mean greater than 2 (i.e., neutral), levels of resilience. However, a more nuanced 

picture is possible here: The past perceived internal and external resilience levels are slightly 

higher compared to the current levels in terms of the mean, whereas the median and mode are 

mostly the same (except for Q4). Indeed, the current perceived external resilience (Q4) shows 

the lowest median and mean compared to the items Q1, Q2, and Q3, indicating ongoing 

difficulties in dealing with external disruptions. This is reinforced by Fig. 2.6, which visualizes 

the distribution of the responses to items Q1, Q2, Q3, and Q4. Table 2.4 also shows that the 

anticipated need for external resilience (Q6) far exceeds the anticipated need for internal 

resilience (Q5). Fig. 2.7 shows that the answers to Q5 are almost the flipsides to the answers in 

Q6. 

 

Table 2.4: Descriptive analysis of all responses 

Item Median Mode Mean SD 

Q1: Past perceived internal resilience 3 3 2.77 1.03 

Q2: Past perceived external resilience 3 3 2.91 0.93 

Q3: Current perceived internal resilience 3 3 2.47 1.01 

Q4: Current perceived external resilience 2 3 2.15 0.98 

Q5: Anticipated need for internal resilience 1 1 1.69 1.07 

Q6: Anticipated need for external resilience 3 3 2.90 0.97 

Note: “Disagree strongly” corresponds to a value of 0, “agree strongly” to 4 
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Fig. 2.6: Distribution of responses to items Q1, Q2, Q3, and Q4 

 

 

 

Fig. 2.7: Distribution of responses to items Q5 and Q6 

2.4.3 Data analysis 

The descriptive statistics already suggest some interesting insights. In the following, we 

look deeper into the data using statistical tests such as Spearman’s rank correlation (Spearman, 

1987) or the Mann-Whitney-U test (Mann & Whitney, 1947). First, we analyze the data in 

general, ignoring the demographic information on the respondent’s company’s industry, the 
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company’s annual revenue, and the number of employees. Then, we take these into account and 

look for differences in sub-samples. 

2.4.3.1 General analysis 

Table 2.5 shows the correlation matrix with annotated Spearman’s rank correlation 

coefficients 𝜌𝑖𝑗. First, we look at the dimension locus of control. We see a significantly positive 

correlation between all internal and external items, i.e., between past perceived internal and 

external resilience (𝜌12 = 0.49), current perceived internal and external resilience 

(𝜌34 =  0.34), and the anticipated need for internal and external resilience (𝜌56 = 0.21). 

Companies with lower internal resilience levels tend to show lower external resilience levels 

and vice versa. In other words, the internal resilience level spills over onto the external. This 

may be because both internal and external disruptions need to be managed simultaneously since 

resilience as a capability is holistic: It only works if all potential disruptions and uncertainties 

are addressed. Similarly, external disruptions can impact internal processes and vice versa; thus, 

both aspects must be managed. 

 

Table 2.5: Spearman’s rank correlation matrix 

 Q1 Q2 Q3 Q4 Q5 Q6 

Q1: Past perceived 

internal resilience 

 0.49** 0.63** 0.22** -0.36** 0.02 

Q2: Past perceived 

external resilience 

  0.40** 0.42** -0.19** 0.06 

Q3: Current perceived 

internal resilience 

   0.34** -0.27** 0.08 

Q4: Current perceived 

external resilience 

    -0.01 0.02 

Q5: Anticipated need  

for internal resilience 

     0.21** 

Q6: Anticipated need  

for external resilience 

            

Note: * shows significance at the 5%-level (p < 0.05), ** at the 1%-level (p < 0.01) 

 

Secondly, we compare the time dimension, i.e., the past, current and anticipated levels. 

Here, we see that past perceived internal resilience is significantly positively correlated with 

the current perceived internal resilience (𝜌13 = 0.63), and the same holds for the external view 

(𝜌24 = 0.42). This seems intuitive since the past resilience levels should affect the current ones. 

Looking into the future, we can also determine significant correlations, but this time negative 

ones: the anticipated need for internal resilience is significantly negatively correlated with the 

past perceived internal resilience (𝜌15 = −0.36), and the current perceived internal resilience 

(𝜌35 = −0.27). Arguably, companies that experienced high levels of resilience in the past or 

presence anticipate only a small need for resilience in the future, maybe because they already 

are at such high levels or because they expect to be in control of the disruptions. Conversely, 
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companies with low levels in the past or presence expect higher levels in the future, showing 

their development need. The external perspective shows no correlation. 

Next, we analyze the levels of the six items and compare these using the Mann-Whitney-

U tests (Table 2.6). This test assesses whether the answering behavior for one item differs 

significantly from another. In Table 2.6, the null hypothesis for the test assumes that the 

underlying distributions of the respective items are the same. The alternative hypothesis 

suggests that the underlying distribution of item 1 is different from the underlying distribution 

of item 2. 

Again, starting with the locus of control, we would expect that the internal dimension of 

each resilience item is greater than the external one, thinking that companies focus more on the 

internal level. The results confirm our expectations only partially: Whereas the perceived 

internal resilience is significantly higher than the external one in the presence (Q3 > Q4), we 

do not see significantly different resilience levels in the past (Q1 > Q2). Moreover, companies 

tend to have a higher anticipated need for external than internal resilience (Q6 > Q5). 

Potentially, they expect more external disruptions or believe their resilience levels are high 

enough to withstand internal disruptions already, whereas recent external disruptions have 

shown how vulnerable most companies are. Overall, the statistical analysis suggests that it is 

worthwhile to differentiate between internal and external resilience. 

 

Table 2.6: Mann-Whitney-U test for various hypotheses 

Hypothesis Mean of item 1 Mean of item 2 p-value 

Q1 > Q2 µ = 2.77 µ = 2.91 0.217 

Q3 > Q4 µ = 2.47 µ = 2.15 0.001** 

Q6 > Q5 µ = 2.90 µ = 1.69 0.000** 

Q3 > Q1 µ = 2.47 µ = 2.77 0.002** 

Q4 > Q2 µ = 2.15 µ = 2.91 0.000** 

Note: * shows significance at the 5%-level (p < 0.05), ** at the 1%-level (p < 0.01) 

 

Regarding the time, we assume that companies strive to improve their resilience. Thus, 

current resilience levels should be higher than past ones and future ones higher than current 

ones (Q3 > Q1 and Q4 < Q2). This argument would be in line with resilience being a dynamic 

capability that can change over time. Many authors suggest a growth phase in their resilience 

definitions (e.g., Pettit et al., 2010; Ponis & Koronis, 2012; Ponomarov & Holcomb, 2009; 

Tukamuhabwa et al., 2015) in terms of performance, which might also be applied to the 

underlying resilience capability. In contrast to our assumption, current perceived resilience 

levels fall significantly below past perceived resilience levels, especially for perceived external 

ones. This may be because the ongoing war in Ukraine is putting further pressure on companies 

after already troublesome years of the COVID-19 pandemic, mainly due to supply chain 

disruptions. Thus, companies realize they are not as resilient as they thought they would be. 

This finding further emphasizes the need for a methodology to gather data representing 

resilience levels over time, as suggested in this work. 
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2.4.3.2 Analysis of industry and company size 

After the general analysis of our survey results on the perceived resilience levels across the 

two dimensions of time and locus of control, we now examine the resilience of sub-samples, 

considering the industry and the size of the participating companies. The ERI and NFR can be 

applied to get an aggregated view of multiple resilience items per sub-sample. 

 

Table 2.7: Means of ERI and NFR per industry cluster 

Industry cluster ERI NFR 

Automotive 69.4 61.5 

Chemicals 73.8 56.4 

Food and Consumer Goods 61.4 53.9 

Machinery 54.5 55.7 

Manufacturing 69.2 47.4 

Others 63.8 58.4 

Weighted mean 63.9 55.2 

 

In terms of ERI, Table 2.7 shows higher than average levels of resilience for the 

Automotive, Chemicals, and Manufacturing industries. In contrast, the Machinery industry is 

the only industry that has a lower ERI. The Machinery industry’s low ERI is in line with PWC’s 

most recent “Machinery Barometer” (PWC, 2022), indicating that six out of ten representatives 

from the Machinery industry see the need to increase their resilience as a top priority, which we 

cannot confirm with the Machinery industry’s NFR. 

For the NFR, we only see two outliers: the Automotive industry has a higher NFR than the 

average, whereas the Manufacturing industry has a lower one. This result shows a striking 

difference between the Automotive and the Manufacturing industry and potentially different 

future outlooks: While both have similar ERIs (69.4 vs. 69.2), the Automotive industry has a 

higher-than-average NFR whereas the Manufacturing industry one is lower. This might support 

various arguments: For instance, the Automotive industry might expect even more future 

disruptions and thus, already highlights the need to increase resilience. Perhaps, the appropriate 

level of resilience in the Automotive industry is higher than in the Manufacturing industry, 

justifying the additional need for resilience in the future. While all industry sectors were and 

are affected by severe disruptions (e.g., through the COVID-19 pandemic or the war in 

Ukraine), the Automotive industry was especially affected by these disruptions in recent years. 

On the contrary, the Manufacturing industry might have reached a resilience level that is too 

high and thus, not efficient anymore, thus showing a lower NFR. 

Fig. 2.8 visualizes the ERI’s two components (past and current perceived resilience) for 

each industry cluster. It is noteworthy that all industry clusters report lower current perceived 

resilience levels than past perceived resilience levels, which we already remarked on aggregate 

in Table 2.4. Furthermore, Fig. 2.8 demonstrates that the industry cluster Machinery shows the 

lowest measured levels of both current and past perceived resilience, whereas the Chemicals 

industry has by far the highest current perceived resilience and very high past perceived 

resilience. 
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Fig. 2.8: Visualization of the ERI per industry 

Next, we analyze the difference in perceived resilience regarding the size of the companies. 

First, we use the Mann-Whitney-U test to compare the 109 LEs with the 38 SMEs in our data 

in terms of the six items. 

The null hypothesis for the test assumes that the underlying distribution of the sample 

SMEs is the same as the underlying distribution of sample LEs for each item. The alternative 

hypothesis suggests that the underlying distribution of the sample SMEs is different from the 

underlying distribution of sample LEs. 

 

Table 2.8: Item-wise results for the Mann-Whitney-U tests for SMEs vs. LEs, items Q1, Q2, Q3, and Q4 

Item p-value 

Mean of 

SMEs 

Mean of 

LEs 

SD of 

SMEs 

SD of  

LEs 

Q1: Past perceived internal resilience 0.620 2.79 2.80 0.89 1.07 

Q2: Past perceived external resilience 0.825 3.00 2.92 0.86 0.95 

Q3: Current perceived internal resilience 0.048* 2.29 2.66 1.10 0.93 

Q4: Current perceived external resilience 0.201 2.00 2.26 1.23 0.97 

Q5: Anticipated need for internal resilience 0.033* 1.47 1.90 0.82 1.07 

Q6: Anticipated need for external resilience 0.002** 2.58 3.17 1.02 0.82 

Note: * shows significance at the 5%-level (p < 0.05), ** at the 1%-level (p < 0.01)  

 

Table 2.8 presents the results of the Mann-Whitney-U test. Whereas the current perceived 

internal resilience levels of LEs significantly exceed the perceived resilience levels of SMEs 

(Q3), the same does not hold for past perceived resilience levels (Q3 & Q4) or the current 



BENCHMARKING ORGANIZATIONAL RESILIENCE IN THE GERMAN MANUFACTURING INDUSTRY 

25 

 

perceived external resilience (Q4). We might see higher levels of resilience at LEs because they 

have more resources to dedicate to resilience management, especially in the current period. 

Looking forward, LEs also show a significantly higher NFR than SMEs (Q5 & Q6), which may 

be due to complex and fragile supply chain structures and, thus, more uncertainty. These 

findings support Sapeciay et al. (2017), who find that LEs are more resilient than SMEs. 

Interestingly, Wagner and Neshat (2012) concluded that LEs are more vulnerable to (supply 

chain) disruptions than SMEs. Potentially, this explains our findings in terms of the NFR: 

Despite the LEs’ relatively high levels of resilience, they are also aware of the potential 

disruptions and their vulnerabilities and thus, anticipate a higher NFR. 

2.5 Discussion 

Our results provide first and diverse insights into the perceived organizational resilience of 

companies in the German manufacturing industry. Given our large sample size, especially 

compared to sample sizes of other research contributions, we are confident that the results are 

relevant, reliable, and representative. Regarding the survey design, we received feedback from 

our industry partners in the SPAICER project, mentioning that they would prefer our short and 

easy-to-understand survey to existing concepts. The high number of responses and the 

80% completion rate confirm that our survey design is generally well-accepted. We are 

convinced that the data collection can be reproduced quickly, for instance, for management 

reports or potential longitudinal analyses. Being able to paint a better picture of the state of 

resilience in an industry might be beneficial in itself for increasing resilience over time, 

considering the relevance of information sharing for, e.g., supply chain performance (Baah et 

al., 2022). 

We learn that overall perceived organizational resilience is relatively high in the German 

manufacturing industry. Arguably, resilience has recently been in the media broadly and, thus, 

on top of many managers’ minds (Hillmann & Guenther, 2021; Mena et al., 2020). The German 

manufacturing industry has been shaken by many disruptions in the last few years, be it the 

Covid-19 pandemic, the semiconductor shortage, or the ongoing war in Ukraine. However, past 

resilience levels are higher than current ones across all industries. Potentially, companies were 

in a state of “over-resilience” and thus, reduced or are planning to reduce their resilience levels. 

Alternatively, companies expect more disruptions or the challenges to change; therefore, they 

become aware that they are not as resilient as they thought (Lund et al., 2020). In any case, we 

see that resilience is a dynamic capability worth tracking over time. 

Our work bears several managerial as well as theoretical implications. First, our survey 

enables industry professionals to benchmark themselves against peers. At this stage, the 

industries are still relatively high-level to allow for more granular statistical analysis, but, in the 

future, with larger sample sizes, more nuanced industry codes can be applied, thus facilitating 

the like-for-like comparability of companies. In addition, a cross-industry benchmark could also 

be of high value for practitioners as they could be encouraged to search for best practices in 

other industries. Potential future best practice sharing of “resilience leaders” can also enable 

“resilience laggards” to improve their resilience levels. Second, this work was set up to facilitate 

benchmarking over time with longitudinal studies. Since the survey is easy to understand and 

complete, companies should be able to integrate it easily into their business routines and 
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management reports. For example, the survey could potentially be used within a company to 

continuously and granularly track the perceived organizational resilience and identify issues 

early on. In addition, managers could use it as a valuable learning opportunity: they could 

compare the actual resilience with their assessment in hindsight and thus gradually improve 

their ability to assess their company’s resilience. Furthermore, our and other analyses (e.g., 

OECD, 2021) suggest that demographic information such as industry characteristics (i.e., 

industry cluster) and company sizes (SME vs. LE) are essential in measuring resilience, 

including the past and current resilience levels or the anticipated need for resilience. However, 

we notice that not all research in this field routinely considers demographic information, e.g., 

when investigating the antecedents of resilience. Thus, we argue that demographic information 

should be integrated to create a more nuanced view of resilience in the future. 

The survey design is a good start for future discussions and research efforts – further 

research can be executed to discuss complementary questions. For instance, deep-dive 

interviews with people from the Manufacturing industry might help understand if they feel 

over-resilient. Similarly, other industry professionals could share their detailed insights into 

their resilience journey, explaining if they have actively reduced their resilience levels and, if 

so, why. Since the survey is set up to be used longitudinally, promising results are also expected 

from the following data collection period. Then, we can see if the NFR tracks with the actual 

future resilience levels. The visualization of the ERI (see Fig. 2.8) will help us picture the 

development over time. Furthermore, after several collection rounds, the results can be 

correlated with other economic factors, e.g., the GDP, to check if the ERI and the NFR can be 

used as an early indicator for future disruptions, similar to the ifo BCI (Sinn & Abberger, 2006). 

Finally, this work needs to be replicated in more countries and industries to paint a more 

comprehensive picture of an economy’s resilience. 

This research also comes with its limitations. First, the regular limitations regarding survey 

research also apply here (see, e.g., Almeida et al., 2017; Coughlan et al., 2009). Specific to our 

work, we would like to square our resilience measure with a company’s “actual resilience”, 

measured as the performance development in times of disruption. Ideally, companies with high 

levels of perceived resilience would fare better than those with low levels. Unfortunately, this 

reconciliation with the ground truth requires a disruption in the real world, making this approach 

impractical. Alternatively, we could compare our resilience measure to other resilience 

measures in the field. While there is no standard measure, we believe that such a comparison 

with a small sample might help validate our resilience measure and potentially help the 

community make a step towards a standard measure for resilience. Finally, the strength of our 

survey approach also entails a major drawback: We do not know the underlying reasons for the 

results and can only speculate about them. Thus, further research, e.g., through interviews or 

case studies with focus groups, is needed to establish this link. 

2.6 Conclusion 

Recent events such as the COVID-19 pandemic, the war in Ukraine, or the all-time low 

water levels in the Rhine emphasize the need for resilience. To manage resilience, we need to 

measure it.  
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Our systematic literature review suggests that existing (qualitative) resilience measures are 

complex, challenging to interpret, and therefore hard to scale and apply across multiple 

industries. Thus, we establish a novel resilience measure, a survey-based index for (perceived) 

resilience levels across two dimensions, locus of control (internal, external) and time (past, 

current, future). Moreover, we develop the Enterprise Resilience Index (ERI), an easy-to-adapt 

indicator for the organizational resilience level. 

We also collect empirical data using our newly established survey. Our results show that 

the German manufacturing industry perceives itself as relatively resilient, with significant 

differences between industries and company sizes. We also see that they anticipate a high need 

especially for external resilience across industries in the future. Most strikingly, the Machinery 

industry shows the lowest ERI levels while it anticipates a relatively high need for resilience, 

showing that this industry, in particular, needs to work on improving its resilience. 

This work offers multiple avenues for future research: First, the survey should be repeated 

over time to leverage the longitudinal capability of this approach to track (and manage) 

resilience levels over time, ideally with an even larger sample size similar to the ifo business 

climate index. Second, our survey-based research can be complemented with a mixed-method 

research approach, e.g., by deep-dive interviews and targeted case studies. The mixed-method 

approach can help to explain causes for year-over-year changes in the ERI. Potentially, these 

changes can be linked to specific actions taken by a company. And finally, the perceived 

resilience levels can be compared to the “real” resilience, when another significant disruption 

happens since resilient companies or industries should fare better in times of crisis. This way, 

the measure can be validated to see how well individuals can judge their company’s resilience 

levels. 

 



OPTIMIZING CONTROL OF WASTE INCINERATION PLANTS USING REINFORCEMENT LEARNING AND DIGITAL TWINS 

28 

 

3 OPTIMIZING CONTROL OF WASTE INCINERATION PLANTS 

USING REINFORCEMENT LEARNING AND DIGITAL TWINS 

This chapter is based on Schlappa et al. (2022).7 

 

3.1 Introduction 

As of today, 66 waste incineration plants (WIP) are active across Germany (Flamme et al., 

2018), accounting for 3.7% of Germany’s end energy consumption (Weber et al., 2020). 

Despite the transition to renewable energy sources such as solar and wind, WIPs are here to 

stay for the foreseeable future because they offer predictable energy outputs, help meet 

consumers’ electricity and heating needs, and mitigate the environmental impact of landfills. 

While other “conventional” power sources such as lignite, coal, or nuclear have experienced a 

steady decline (Appunn et al., 2021) or have remained constant (Elhegazy & Kamal, 2022), the 

output from WIPs has increased slightly, mainly due to efficiency gains (NABU, 2019).  

Yet, it has been argued that WIPs can be operated even more efficiently since many WIPs 

are at least in part operated manually by human operators (Zhan et al., 2021). Managing the 

combustion process is a complex task (Adams et al., 2021; Flynn, 2003); thus, highly skilled 

and experienced personnel are required (Zhang et al., 2010). Such personnel will likely be 

harder to find (Kaneko et al., 2019), and even today, major performance differences can be seen 

between human operators. 

Various automation systems exist and are already applied to industrial systems such as 

WIPs. For instance, rule-based process automation is usually used to avoid or mitigate major 

breakdowns (e.g., shutdowns due to temperature or pressure), and proportional–integral–

derivative (PID) controllers help adjust parameters around a specific set point (Takaghaj et al., 

2014). Unlike a human operator, these systems operate 24/7 with no breaks, but they tend to 

only work well in simple, linear environments (Zhan et al., 2021; Zhuang et al., 2018). 

Unfortunately, the combustion process within a WIP is more complex, so frequent human 

intervention is needed to improve performance (Stephan et al., 2001).  

More advanced controls such as model predictive control (MPC) can also be applied 

(Majanne, 2005). But these systems have their limitations: They usually require significant 

amounts of engineering and finetuning, a model of the process is needed, the computation time 

is online, and it can be long, applications of MPC in non-linear, dynamic processes are rare, 

and in general, MPC is not very flexible (Di Cairano, 2012; Forbes et al., 2015; Kubosawa et 

al., 2019; Mayne, 2014; Nian et al., 2020; Qin & Badgwell, 2003; Schubnel et al., 2020). Thus, 

MPC, which originated in the realm of industrial chemistry (Di Cairano, 2012), is only rarely 

(if not at all) used in power plant environments (Qin & Badgwell, 2003). 

Reinforcement learning (RL) provides a new approach to automate and optimize the WIP 

using “learning by doing” and thus, overcoming many of the abovementioned issues. An agent 

 
7 This paper is based on Schlappa, M., Spinler, S., & Hegemann, J. (2022). Optimizing Control of Waste 

Incineration Plants using Reinforcement Learning and Digital Twins. IEEE Transactions on Engineering 

Management 
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is trained via “trial and error”, given a reward function that considers the operational trade-offs 

of maximizing steam output while keeping emission levels low. This way, performance levels 

can be reached that exceed human performance. Since training within the real environment is 

neither possible nor desirable (Roberts & Rousseau, 1989; Steege et al., 2010), a data-driven 

simulation (“digital twin”) of the WIP is built using a neural network architecture. 

Thus, this research contributes to the application of RL in complex, industrial systems, an 

area that is still vastly under-researched compared to more classic approaches such as MPC, 

especially in the energy sector (Perera & Kamalaruban, 2021). It uses a significant amount of 

original plant data, proposes a highly data-driven process to build a digital twin of the WIP, and 

discusses a procedure for training an RL model in an offline mode. Thus, it helps bridge the 

gap between theoretical research on control problems and real-life industrial issues, 

demonstrating that RL can be used to operate and optimize a WIP. 

The rest of this paper is organized as follows: Chapter 3.2 discusses applications of RL in 

industrial systems such WIPs. Chapter 3.3 presents the setup of the digital twin of the WIP, the 

RL agent’s design, and the RL agent’s interaction with the digital twin. Chapter 3.4 

demonstrates the quantitative and qualitative performance of the RL agent and the limitations 

of this approach. Chapter 3.5 highlights the main conclusions from this application, possible 

future research, and the managerial implications. 

3.2 Literature review 

RL has been researched for decades (Gosavi, 2009; Yuxi Li, 2018; Schmidhuber, 2015; 

Sutton & Barto, 2018; Tesauro, 1994), and recently, it has experienced a significant increase in 

interest due to “benefiting from big data, powerful computation, new algorithmic techniques, 

mature software packages and architectures, and strong financial support” (Yuxi Li, 2018, p. 

5). The interest has been amplified by the super-human performance in Atari Games (Mnih et 

al., 2013, 2015) and the victory of Google DeepMind’s AlphaGo against Lee Sedol in March 

2016 (Silver et al., 2016; Sutton & Barto, 2018). Please refer to Nian et al. (2020) for a more 

detailed timeline. Outside the realm of video games, RL has been applied to learn various tasks: 

for instance, Behnke and Bennewitz (2005) teach a robot to play soccer, Arel et al. (2010) use 

RL for traffic light control, whereas Grissom et al. (2014) use it for simultaneous machine 

translation, Zhou et al. (2017) optimize chemical reaction with RL and Zheng et al. (2018) train 

a model to provide personalized online news. Generally, most real-life applications seem to 

come from the area of robotics (Duan et al., 2017; Gu et al., 2017; Kober et al., 2013), 

autonomous driving (Kiran et al., 2021), system control (Glavic, 2019), and related problems. 

3.2.1 Reinforcement learning in thermal power plants 

Relative to the research of RL in games or robotics, the research on RL in industrial 

applications is more limited since “generally, academic research groups have only limited 

access to real industrial data and applications” (Hein et al., 2018, p. 1). Nonetheless, thermal 

power plants present a great use case for the application of RL because lots of data are logged 

for regulatory and safety reasons, plant operations and the combustion dynamics tend to be very 

complex, thus overwhelming other automation systems such as PID controllers or MPC, and 
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efficiency gains can have a significant impact on the environment simply due to the sheer 

amount of power plants worldwide. 

As an early example, Stephan et al. (2001) apply multi-agent RL to control a hard-coal 

power plant. Four agents, represented by neural function approximators, are used to 

manipulate 12 controls with an action space of [-1, 0, 1]. They show that the efficiency factor 

(inversely related to the air consumption) can be increased and NOx-emissions reduced while 

satisfying several limits such as steam and gas temperatures. More recently, Cheng et al. (2018) 

use the deep Q-network algorithm (DQN) to optimize flue gas emissions, boiler efficiency, and 

coal consumption of a coal-fired boiler. The boiler is simulated using data from the distributed 

control system (DCS) and a combination of a long short-term memory (LSTM) module with a 

convolutional neural network. Four controls are manipulated with an action space of [-1, 1]. 

The results show a reduction in flue gas emissions of ~25%, an increase in boiler efficiency 

of ~0.2%, and a reduction in coal consumption of ~5% compared to the baseline. Zou et al. 

(2018) follow a similar approach to Cheng et al. (2018) to optimize the control of a thermal 

power plant with a combination of simulator and optimizer. However, they use a dense neural 

network architecture for their simulator and the deep deterministic policy gradient (DDPG) as 

their RL optimizer, showing that DDPG outperforms the genetic algorithm. Fu et al. (2020) 

focus on denitrification efficiency. They use LSTM to predict the efficiency of selective 

catalytic reduction and an asynchronous advantage actor-critic (A3C) model to optimize the 

control using six controls. The results show that the A3C model enables a denitrification 

efficiency above the target level in >96% of the time. In the most recent studies, Adams et al. 

(2021) use an advantage actor-critic (A2C) model to optimize a commercial circulating 

fluidized bed (CFB) power plant for a good balance between steam output and emission levels. 

The CFB power plant is simulated using deep neural networks. They show that electricity 

generation can be increased by ~2% while at the same time reducing emissions by ~1.5%. Zhan 

et al. (2021) introduce DeepThermal, a data-driven system that increases combustion efficiency, 

reduces pollutant emission, and controls operational risks (e.g., safety constraints). To simulate 

the power plant, they propose several deep recurrent neural networks (RNN) for each stage of 

the combustion process. They develop a new RL algorithm called MORE (“Model-based 

Offline RL with Restrictive Exploration”), essentially an actor-critic approach with restrictive 

exploration during training. In contrast to the research mentioned before, Zhan et al. implement 

the solution in “4 coal-fired thermal power plants in China” (Zhan et al., 2021) after offline 

training, showing that DeepThermal can improve the combustion efficiency by up to ~0.5%. 

While impressive progress has been made primarily on coal-fired plants, coal-fired plants 

and WIPs differ in fuel and boiler design, affecting the problem’s complexity. WIPs usually 

use untreated, heterogeneous waste, and thus, the energetic value of this fuel varies a lot (Sasaki 

et al., 2020). In contrast, the energetic value of coal is stipulated in the procurement contract 

according to the needs of a specific coal-fired plant. Next, waste is burned straight on a grate 

firing system, whereas in coal-fired plants, the coal is first pulverized and then sprayed into the 

boiler to ensure consistent combustion. These differences mean that there is more uncertainty 

in the combustion process of a WIP. Thus, the control problem is significantly more complex 

since, for instance, varying energetic fuel value affects the temperature within the boiler, which 

needs to be adjusted to meet regulatory limits and optimal combustion levels.  
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3.2.2 Reinforcement learning in waste incineration plants 

Research on applications of RL in WIPs is minimal: Only two research papers can be found 

from 2004 and 2010. However, research in this field is necessary since, in contrast to coal-fired 

plants, WIPs are here to stay for the following decades, and thus, optimized control using RL 

can provide significant upside in the long run. 

Stephan et al. (2004) use action dependent heuristic dynamic programming (ADHDP) to 

control the airflow in a WIP to avoid high CO emissions. The controller is pre-trained to mimic 

the behavior of a human operator and then optimized online. They show that CO peaks can be 

forecasted and mitigated but not avoided. Steege et al. (2010) present a neural fitted Q-iteration 

(NFQ) controller that is trained offline using seven days of data from a PID controller and, after 

training, implemented in a WIP for real-life experiments. The results are promising, showing 

more stable operations and reduced emission levels in terms of CO and NOx compared to the 

PID controller. Interestingly, the experiment without artificial data had to be canceled due to 

dangerously poor performance, highlighting that additional data about rare, unique states and 

the proper control action based on expert knowledge are needed to make this approach work.  

While both papers show promising results, the shortfalls also highlight the need for further 

research: There is a lack of research using modern RL algorithms and fully data-driven models 

to control a WIP and optimize several key parameters. 

3.3 Methodology 

The typical goal in WIP operations is to optimize the combustion process such that the 

optimal amount of steam is produced while emissions (e.g., CO and CO2) are kept at a minimal 

level. However, operational goals can be highly specific to a particular plant, depending on 

external requirements from the heat/electricity grid, composition or mix of waste, boiler design, 

or flue gas treatment, to name a few. In most cases, the human operator can influence the 

combustion process via specific controls, e.g., in the case of steam/O2 optimization, by 

adjusting the airflows and the waste throughput. 

 

 

Fig. 3.1: Operators and environments 

This control process can be learned within an RL framework. Since training of an RL agent 

is neither possible nor desirable within the real environment (i.e., the actual WIP), offline 

learning must be applied within a simulation environment (see Fig. 3.1, option D). Thus, a 

digital twin is a prerequisite for this application of RL. A similar approach is used by Schubnel 

et al. (2020) in building facilities, by Cheng et al. (2018), Zou et al. (2018), and Fu et al. (2020) 
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in coal-fired boilers, by Zhuang et al. (2018) for the treatment of paper-making wastewater, and 

by Li et al. (2020) for the cooling of data centers. 

The digital twin is built using the data collected at the WIP (option A) and a data-driven 

neural network model. One could also employ a physical model, but we refrain from doing so 

due to the lack of scaling potential of such a solution. To test the digital twin further than we 

did in our research, one could ask a human operator to operate the digital twin and give feedback 

on the “feel” of the model (option B). And finally, the trained RL agent could be implemented 

in the real environment to prove the performance (option C). However, options B and C are not 

part of this work and remain aspects for future research. The comprehensive implementation 

process is described in Fig. 3.2. 

 

 

Fig. 3.2: Overarching design of the implementation approach 

3.3.1 Data 

This research is supported by Uniper Technologies GmbH, which has collected the data at 

a WIP in Germany. Data come from the plant’s DCS and is available from multiple days across 

three years, approximately 330 hours of operations in 30-second frequency, resulting in 

over 40,000 data points. In total, 32 variables are measured, clustered in three categories 

(similar to Cheng et al. (2018) and Zou et al. (2018)): 12 control variables, two performance 

variables, and 18 observation variables (see the Appendix B. 1 for further details). The control 

variables are used to influence the combustion process, more specifically, the performance 

variables steam output and oxygen levels: Steam output is crucial for the plant operator to 

produce electricity and heat. Too much steam, however, is bad since it negatively affects the 

machinery. The oxygen level indicates the “quality” of the combustion: As a general rule of 

thumb, the lower the oxygen level, the better the combustion and the lower the emissions.  

No fuel or oxygen is left in perfect, stoichiometric combustion because their amounts 

exactly match. However, in an actual boiler, things are not perfect: for instance, local fires 

occur, fuel is not homogeneous, or the air is not moving in perfect planar currents. Having less 

oxygen than needed leads to emissions of CO. Therefore, typically, more oxygen is required 

than the optimal stoichiometric amount to compensate for all inhomogeneities. On the other 

hand, too much air in the system reduces the efficiency since the used air needs to be moved 

and pre-warmed. Thus, there is an optimal amount of oxygen in the system. The observation 
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variables help describe the state of the boiler (e.g., various pressure and temperature 

measurements). 

The data of the human operator itself reveal some of the critical operational issues: 

(1) human operators only use a few of the control levers; (2) human operators act only 

infrequently, leading to a long time of inactivity followed by rather “big interventions”; (3) the 

performance is rarely optimal nor even close to it. 

(1) Control levers: 12 control levers are available in the process. Table 3.1 shows how 

many times a control lever was adjusted on average per hour. Given the 30-second frequency 

of data collection, a maximum of 120 actions per hour can be logged. Three control levers are 

never used, and four more are rarely used (i.e., <5 actions per hour). Of the remaining five 

control levers, the secondary air flaps are not controlled manually but automatically by a 

conventional controller, explaining why they are changed more than 80 times per hour. Thus, 

the human operators mainly operate the power plant with only three levers (the two air flaps at 

the end of the grate (air flap 4 and air flap 5) and the load factor), which are adjusted on 

average 6-11 times per hour. Note that these three levers are “fast” levers, i.e., they directly 

impact the combustion process without long delays, which is why human operators prefer them. 

 

Table 3.1: Analysis of control variables 

Control variables Average actions per hour (max. = 120) 

Secondary air flap (front) 88 

Secondary air flap (back) 80 

Air flap 4 11 

Air flap 5 8 

Load factor 6 

Swirl flap primary airflow 1 4 

Swirl flap primary airflow 2 4 

Air flap 3 2 

Load regulator 1 

O2 controller - 

Air flap 1 - 

Air flap 2 - 

 

In theory, the RL approach could help overcome this shortfall since all control levers could 

be given to the RL agent as possible actions. Unfortunately, this is not possible in our setup 

since the digital twin is built upon this data. Thus, these seven control levers cannot be 

adequately simulated because only too little (or no) data are available for them. Therefore, the 

RL agent will only be trained to use the three control levers that the human operators use the 

most (air flap 4, air flap 5, and the load factor). 

(2) Infrequent actions: Table 3.1 already shows how limited human operators intervene 

in the process. To put it differently: On average, human operators change one of the control 

levers 36 times per hour, usually changing multiple controls simultaneously. Thus, they 

effectively only intervene 23 times per hour. Interestingly, these actions are not equally spread 

over time but happen in intervals. The human operator operates the plant for several minutes, 

followed by periods of inactivity (breaks between such intervention periods last, on average, 

16 minutes). Fig. 3.3 shows this typical behavior. The fact that actions are performed rarely 
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entails that the actions tend to be rather significant interventions even though more frequent but 

smaller interventions would be preferred from a process perspective. Performing an optimal 

action would mean that the process is in an optimal state after the action has been propagated 

through the system. The more time passes after an optimal action has been performed, the more 

the system has potentially drifted away from the optimal state. Thus, continuous optimal actions 

are necessary to maintain an optimal state in the system.  

 

 

Fig. 3.3: Typical behavior of the human operator; 

secondary air flaps are excluded since they are not manually controlled 

(3) Sub-optimal performance: A closer look at the two performance variables (i.e., steam 

output [t/h] and oxygen level [%]) shows that the combustion is volatile and that the targets are 

rarely met (Fig. 3.4). The oxygen target (+/- 5%) is only met during 3% of plant operations, 

while the steam target (+/- 5%) is met during 25%. Meeting both targets simultaneously is even 

rarer (1% of plant operations), revealing a general problem: The operational goals for the 

performance variables do not necessarily fall within a process regime that is perfectly suitable 

for steady operation. Often, operational goals are formulated based on economic or political 

interests. In a second stage, the goals are then adjusted by process engineers to meet the 

technical requirements of the plant and the process. Naturally, the final conditions are not in 

perfect agreement with the plant’s design, which typically leads to problems in operations. 
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Fig. 3.4: Analysis of performance variables: (a) steam output and (b) oxygen level 

Before the data are used for the digital twin or the RL agent, all pressure variables are 

filtered using 2-minute rolling averages to smoothen short-term fluctuations. For each control 

variable, an action variable is added, representing the delta between the respective control 

variable in t0 vs. t-1. This is needed since the RL agent outputs an action and not the target value 

of the control variable. Additional data features are engineered and added, such as averages 

over various periods in the past and past data points. The values are normalized using min-max-

scaling to [0, 1] to facilitate the training process, a commonly used technique in machine 

learning (Chakraborty et al., 2016). Since this increases the dimensionality of the input vector 

from [1 x 32] to [1 x 2156], the vector is reduced using principal component analysis (PCA) 

transformation to [1 x 253]. This way, the relevant information in the data is kept while the 

overall amount of the data is reduced to facilitate the computation. After the data preparation, 

the entire data set consists of ~36,000 data points which are randomly split into training (70%), 

validation (10%), and test set (20%). The training set is used to train the models, the validation 

set to optimize the models, and the test set to provide the accuracy of the optimized, final model. 

3.3.2 Digital twin of the WIP 

A digital twin is needed to simulate the WIP since the real plant cannot be used for the 

training of the RL agent for safety reasons. This approach is prevalent in RL research on vital 

infrastructure such as power plants (Glavic, 2019), facilitating cheap and fast data collection. 

In some areas, specialized digital twins are deployed when the relationships in the 

environments can be adequately modeled and information is fully available, e.g., virtual image 

synthesis and transformation for autonomy (VISTA) for autonomous driving (Amini et al., 

2020), simulation of urban mobility (SUMO) for traffic simulation (Lopez et al., 2018), vinyl 

acetate monomer (VAM) plant model for chemical plants (Kubosawa et al., 2019) or Shadow 

Dexterous Hand for robotic manipulation (Andrychowicz et al., 2020), to name a few. 

Unfortunately, the combustion process of the WIP is non-linear. Thus it can only be 

approximated since many dynamics are too complex, and not all information can be collected 

(Z.-H. Zheng et al., 2020; L. Zhou et al., 2022). In such cases, neural networks have shown 

good performances as a basis for digital twins (Chakraborty et al., 2020; Cheng et al., 2018; 

Chow et al., 2002; Elhegazy et al., 2022; Fu et al., 2020; Jammeli et al., 2021; Kumar & Gururaj, 
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2019; Lv & Ren, 2019; Schubnel et al., 2020; Shin et al., 2020; Zhuang et al., 2018; Zou et al., 

2018). 

Our digital twin is designed in a way that it takes the current values of the variables (i.e., 

the “current state”) and an action (i.e., a change of the control variables) to simulate the 

following values of the variables (i.e., the “next state”) (Fig. 3.5). This reflects well what is 

happening during real-world operations: the human operator observes the data (i.e., the current 

state) and acts accordingly (i.e., action). The action influences the combustion process, and new 

data can be observed (i.e., next state). Since data are collected every 30 seconds, we also think 

in 30 seconds intervals for our digital twin. Notably, the digital twin only predicts the 

performance and observation variables since the control variables can be computed directly 

(control variablet0 + action = control variablet1). 

 

 

Fig. 3.5: Inputs for and outputs of the digital twin 

For the training, the training set of ~25,000 data points is used and validated 

with ~3,500 data points using 5-fold cross-validation. Mean-squared error (MSE) is used as the 

loss function, and the training process is terminated as soon as the performance in terms of MSE 

of the validation set stalls (“early stopping”). To determine the best-performing model, a 

manual grid search tests several architectures of fully connected dense neural networks, the 

number of input variables, and some hyperparameters, e.g., learning rate or batch size. 

We observe that complex architectures (in terms of the number of layers and neurons) 

outperform simple structures in terms of MSE. However, this comes at the cost of increasingly 

higher computation times and overfitting. Thus, a balanced network architecture with 3 hidden 

layers and 1500 neurons each is chosen. The final network architecture is described in the 

Appendix B. 2. 

Regarding the number of input variables, i.e., history needed to predict the future state, 

discussions with the human operators indicate that it takes up to 30 minutes for an operator’s 

action to translate into visible changes since the system dynamics are relatively slow due to 

large spatial scales. Thus, various input vectors are tested, from using no past data to using the 

last 60 data points (i.e., 30 min of operations). On top of that, averages of different periods (e.g., 

last three data points, last ten data points) are added since it is known that momentum (as 

represented by the averages) is critical in the combustion process. Overall, >30 scenarios are 

tested, and the final digital twin is built using the last 60 data points and six averages.  

Finally, other hyperparameters such as batch size and learning rate are tuned to determine 

the best-working setup. The detailed settings of the training of the digital twin can be found in 

the Appendix B. 3. 
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Fig. 3.6: Training and test loss for the best performing settings (see the Appendix B. 3 for details) 

An accurate digital twin is quintessential for the RL agent to ensure that the policies learned 

within the digital twin can be transferred to the real environment. Fig. 3.6 shows that the digital 

twin predicts the data well (as measured by the MSE) but also generalizes well (as seen by the 

difference in the two loss curves). This best-performing model shows an MSE of 1.7e-5 in the 

training and 7.6e-5 in the test set. 

 

 

Fig. 3.7: Comparison of real and simulated oxygen and steam levels 

For a final check, the model is put to the test by comparing real to simulated data (similar 

to Cheng et al. (2018) and Fu et al. (2020)). A random data point from the test set is used as the 

starting point of a simulation. Then, only the actions of the human operator in the following 

hour are copied and input into the digital twin. Fig. 3.7 shows that the simulated data are very 
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close to the original data, meaning that the digital twin does a good job processing the actions 

of the human operator. 

3.3.3 Implementation of DQN 

With the digital twin in place, the RL agent can be implemented. For this application, DQN 

(Mnih et al., 2015) is chosen since the action space is small and discrete, the state space 

continuous, and it is known to offer better sample efficiency (François-Lavet et al., 2018; Sutton 

& Barto, 2018). Apart from fitting with the properties of the problem at hand, DQN is also 

chosen because it is more widely researched (compared to other RL algorithms), and it is used 

in other automation problems (Cheng et al., 2018; Lai et al., 2021).  

The RL algorithm enables the agent (i.e., the artificial operator of the WIP) to make 

sequential decisions to control the power plant, optimizing steam output while keeping 

emissions low. To do so, the RL agent receives a state and outputs an action that maximizes the 

reward function.  

The state space represents what the RL agent “sees”. Similar to previous work (Cheng et 

al., 2018; Mnih et al., 2013), not only the current values of the 32 variables are fed into the RL 

agent, but also the last three points in time (so-called “stacking”). Other stacks sizes, e.g., 2 or 8, 

show worse performance. Thus, the RL agent works with a stack of four points in time (4 x 32), 

representing the last 1:30 min. The values are again normalized using min-max-scaling to [0, 1] 

to facilitate the training process. 

The action space describes what the RL agent can “do”. As described above, only three 

control levers are used. In real life, the action space for each control variable is continuous since 

each lever can be moved within a range of [0, 100], 0 being fully closed and 100 fully opened. 

Yet, to keep the action space size as small as possible, the action space is discretized and limited 

to [-1, 0, 1], similar to, e.g., Stephan et al. (2001). The three control variables are changed 

simultaneously, and thus, the action space has a size of 33 = 27. The remaining nine control 

variables are kept at their respective levels from the beginning of the episode. 

The goal of the RL agent is to maximize steam output while keeping emission levels low. 

The target value for the steam output is set at ST = 28 t/h, and both less and more steam is bad 

since less steam means lower revenues, and more steam means a higher risk of exceeding the 

plant’s design limit. For that reason, it is also beneficial to reduce fluctuations because this 

allows for increasing the set point in a subsequent step. The oxygen level is used as a proxy for 

the emission levels since the oxygen level illustrates the combustion quality. The target value 

is OT = 6%. For both elements, the reward is the negative quadratic distance to the respective 

target value, and thus, the range of rewards is [-∞, 0]. On top of that, several constraints are 

introduced as “punishments” to ensure that the RL agent only performs “legal” actions (similar 

to Schubnel et al. (2020)) since the control variables, i.e., air flaps (AF) and load factor (LF), 

are generally only defined within AF1 = AF2 = LF = [0, 100]. Punishments are introduced to 

actively discourage bad behaviors, whereas rewards encourage good ones (Sutton & Barto, 

2018). Thus, if the air flap AF1 is already at 100 and the RL agent suggests opening it further, 

this action (a) is not executed, and the RL agent is punished with P = -100. The overall reward 

function r is given by: 
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𝑟 = {  

−(𝑆𝑇 − 𝑆𝑡0)2 − (𝑂𝑇 − 𝑂𝑡0)2 
−(𝑆𝑇 − 𝑆𝑡0)2 − (𝑂𝑇 − 𝑂𝑡0)2 − 1 ∗ 𝑃 
−(𝑆𝑇 − 𝑆𝑡0)2 − (𝑂𝑇 − 𝑂𝑡0)2 − 2 ∗ 𝑃 
−(𝑆𝑇 − 𝑆𝑡0)2 − (𝑂𝑇 − 𝑂𝑡0)2 − 3 ∗ 𝑃 

𝑖𝑓 0 < (𝐴𝐹1 + 𝑎𝐴𝐹1), (𝐴𝐹2 + 𝑎𝐴𝐹2), (𝐿𝐹 + 𝑎𝐿𝐹) < 100 
𝑖𝑓 1 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑙𝑒𝑣𝑒𝑟 𝑖𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 [0, 100] 
𝑖𝑓 2 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑙𝑒𝑣𝑒𝑟𝑠 𝑎𝑟𝑒 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 [0, 100] 
𝑖𝑓 3 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑙𝑒𝑣𝑒𝑟𝑠 𝑎𝑟𝑒 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 [0, 100] 

An episode consists of a 60-minute time window of the WIP, and actions are executed 

every 30 seconds, totaling 120 actions (“steps”) per episode. After each action, the RL agent 

receives a reward. Thus, the optimal cumulative reward over the 60 minutes would be 0 if an 

episode started on an optimal level and the RL agent kept this optimal level during the whole 

episode, which is virtually impossible. 

The training is conducted in Python using the Stable Baselines package (Hill et al., 2018). 

An episode starts with an initial state, a random data point from the training set. The three 

previous data points are added, and this stack is fed to the RL agent to make a step. An action 

is selected based on an epsilon-greedy policy, i.e., some actions are chosen based on the trained 

policy (“greedy”), and some are random. This action is paired with the current state (t0) and its 

additional features and then fed into the digital twin, which simulates the next state (t1). Then, 

the values of the control variables in t1 are computed and added to create the full next state (t1). 

The step rewards are calculated, and the tuple (current state, action, next state, reward) is stored 

in the replay buffer (Fig. 3.8). The next state serves as the current state for the next step. 

After 120 steps, the episode ends, and the total episode reward is computed. The next episode 

starts with another random starting point, and this process is repeated for as many episodes as 

required to train the RL agent.  

 

 

Fig. 3.8: Training process using DQN and the digital twin 

Similar to the training of the neural network, the network structure and various 

hyperparameters of the DQN algorithm are tuned. For the DQN network, a dense neural 

network with 3 hidden layers, 1500 neurons each, is chosen, confirming Cheng et al.’s (2018) 
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observation that deeper networks show better performance. The best-performing set of 

hyperparameters (in terms of rewards) can be found in the Appendix B. 4. 

3.4 Results and discussion 

The performance of the RL agent can be determined based on the reward function. With 

the reward function described above, the rewards for each step can be calculated and 

accumulated to determine the episode rewards (1 episode equals 120 steps in 30-second 

increments). 

 

Table 3.2: Mean episode results (for 100 episodes from the test set) after training a selected number of episodes 

Training period 

(episodes) 

Training period 

(steps) Training time 

Mean episode  

reward 

Number of 

punishments 

167 ~20,000 1:58h 3,017  177 

334 ~40,000 3:54h 2,268  2 

500 60,000 5:48h 2,313  65 

667 ~80,000 7:46h 2,175  67 

833 ~100,000 9:43h 2,666  226 

 

The RL agent is trained for various numbers of episodes (Table 3.2). Three hundred thirty-

four episodes are chosen as the optimal training period since, at this point, the episode rewards 

seem to have converged, the agent has learned not to go outside the set limits, and the risk of 

catastrophic forgetting (Kirkpatrick et al., 2017) due to “too much training” is limited. 

To judge the RL agent’s performance, the RL agent’s rewards are compared to the human 

operator (Table 3.3). On average, the RL agent outperforms the human operator by -32%. 

Table 3.3 also shows that perfect performance (i.e., rewards ≈ 0) cannot be achieved since this 

would imply that first, an episode starts with steam and oxygen levels at their respective target 

levels, and second, this level can be maintained with no deviation for an extended period, which 

is unlikely due to the combustion processes. The best total reward for the RL agent and the 

human operator in the test set are -307 and -465, respectively. 

 

Table 3.3: Mean episode rewards (for 100 episodes from the test set) 

 Mean episode reward (human) Mean episode reward (RL) Difference 

Count 100 100  

Mean -3,325 -2,268 -32% 

SD 2,288 1,484 -35% 

Min. -9,398 -5,758 -39% 

Max. -465 -307 -34% 

 

To better understand the actual performance difference, it is helpful to look at the 

underlying values, i.e., the actual oxygen and steam levels. Using 100 random episodes from 

the test set, we see that the RL agent achieves a reduction of oxygen levels by 3.6% and an 

increase of steam levels by 7.4% (Table 3.4). Overall, the mean steam output is relatively close 

to the target level (ST = 28). The mean oxygen level, while improved, is still further away 

(relatively and absolutely) from its target (OT = 6). There might be several reasons for this 
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result: The oxygen target might be generally more ambitious, explaining why we rarely see 

performance close to the target level in the original data (Fig. 3.4). Alternatively, the design of 

the reward structure might have led the RL agent to optimize the steam first, given the, on 

average, bigger (squared) distance of steam levels from their target. Nonetheless, even with this 

potential focus on optimizing steam output, performance in both metrics is better.  

 

Table 3.4: Mean oxygen and steam levels (for 100 episodes from the test set) 

 Oxygen 

(human) 

Oxygen  

(RL) 

Oxygen 

difference 

Steam 

(human) 

Steam  

(RL) 

Steam 

difference 

Count 100 100  100 100  

Mean 8.26 7.96 -3.6% 25.35 27.24 7.4% 

SD 0.93 1.09 17.1% 2.67 2.65 -0.5% 

Min. 5.66 5.82 2.9% 20.24 22.08 9.1% 

25% 7.54 7.13 -5.4% 23.57 25.23 7.0% 

50% 8.19 7.80 -4.7% 25.34 27.10 6.9% 

75% 8.76 8.93 2.0% 26.96 29.47 9.3% 

Max. 11.28 10.10 -10.4% 33.91 33.36 -1.6% 

 

The performance of the RL agent can also be analyzed qualitatively by comparing the 

actions of the human operator to the suggestions of the RL agent in a given episode. This implies 

that the actions of the human operator are reasonable in that specific situation. This approach is 

very tedious and time-consuming, yet it helps spark a conversation with the engineers on-site 

who are used to looking at charts of various variables instead of the reward function.  

In Fig. 3.9, air flap 4 is analyzed within a 2-hour timeframe. In the first 1.5 hours, the RL 

agent suggests closing the air flap 4 whereas the human operator keeps it at a constant level. 

Unfortunately, we cannot tell from the RL agent’s suggestion what absolute level it was 

expecting for the air flap 4, only that it should be lower. After 1.5h, we see that the human 

operator does close the air flap 4 significantly, and in turn, the RL agent changes the 

recommendation suggesting that it was closed too much. After around 3:05 hours, the oxygen 

level rises, and the steam output sinks. In turn, the RL agent suggests closing the air flap 4, 

which the human operator does several minutes later. Again, the RL agent perceives the level 

as too low, suggesting opening the air flap 4, and the human operator follows only a few minutes 

later. Overall, this episode indicates that the RL agent suggests the correct movements. But the 

comparison is challenging because the RL agent can only open or close the air flaps in 

increments of 1. Thus, it needs to plan well ahead to reach certain levels in time, whereas the 

human operator usually makes bigger changes but less frequently so. 
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Fig. 3.9: Comparison of the original behavior of the human operator and the suggested behavior by the RL agent 

for 1 episode and 1 control lever (air flap 4) 

While certainly, some challenges exist, these are very much in line with previous research 

in the field of RL applications in the real world (Dulac-Arnold et al., 2019, 2020).  

For instance, the digital twin of the WIP is fully data-driven, and thus, it cannot perfectly 

capture the real-life combustion process, leading to a simulation bias. A bottom-up approach, 

e.g., based on fluid dynamics, physics, and chemical reactions, might alleviate this issue. Yet 

this would defy the purpose of a generalizable, data-driven modeling approach (Flynn, 2003). 

Moreover, we see in other fields that even after putting tremendous effort into a simulation 

environment such as CARLA, “a simulation gap still exists” (Amini et al., 2020, p. 1147). 

Nonetheless, the digital twin could be improved using more data (e.g., the composition and 

quality of the waste, which introduces a lot of uncertainty into the process) or different modeling 

approaches (e.g., “semi-physical simulation” (Schoukens & Ljung, 2019) or “hybrid learning 

methods” (Ota et al., 2021; Schubnel et al., 2020)).  

Second, the performance benchmark might be unfair in two ways: First, a WIP is complex, 

and the reward function (as described above) might not capture everything the human operator 

is trying to balance. Whereas the human operators certainly follow target levels for steam 

production and emission levels, it remains unclear to what extent they try to achieve them given 

RL agent 
suggests 
reducing 
air flap 4; 
HO follows 
eventually

RL agent suggests 
reducing air flap 4; 
HO follows

RL agent suggests 
increasing air flap 4; 
HO follows but not 
enough for the RL 
agent to change the 
suggested action

Air flap 4

Air flap 5

Load factor
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that, e.g., no performance-based incentives are in place. Second, the performance comparison 

itself is not entirely fair since the rewards for the RL agent are derived from the digital twin 

(see Fig. 3.1, option D), whereas the rewards from the human operator come from the real 

machinery (option A). Even though the digital twin works quite well, for a better comparison, 

the RL agent would need to prove itself in a WIP (option C) or the human operator in the digital 

twin (option B) to avoid the simulation bias. Unfortunately, this could not be done given the 

current technical limitations of the WIP.  

And finally, this approach is computation-heavy due to the iterative approach of RL in 

general. Specialized IT knowledge and hardware would be needed to speed up the training 

process. However, this applies to the training phase only, and when fully trained and 

implemented, the RL agent decides in a fraction of a second. 

3.5 Conclusion 

Waste incineration plants are highly complex yet lack state-of-art control and optimization. 

Whereas expert systems exist, they tend to be very specialized, requiring accurate models of 

the process or expert knowledge (Stephan et al., 2001). Thus, only limited control systems are 

used in practice, leading to shortfalls in performance. 

This research suggests significant upside potentials for WIPs due to the application of RL, 

benefitting the plant operator in financial terms and the environment in terms of reduced 

emission levels, which are two relevant factors for the continuing acceptance of WIPs 

(Kheybari et al., 2021). This approach might be extended to tackle further operational 

challenges in the future. For instance, the temperature of the boiler might be controlled to reduce 

cleaning costs caused by slagging and fouling or costs for oil to boost temperatures or efficiency 

in terms of overall airflow increased. Since more of the operations can be automated this way, 

the engineers can focus on different tasks at the plant where they can provide greater value. We 

are convinced that the upside potential can be even expanded when new RL algorithms are 

tested, the action space of the RL agent is extended to give a greater degree of freedom, and the 

reward function is finetuned to include other targets and balance the respective reward 

components. 

Moreover, this research shows that a digital twin of a WIP can be built using only original 

plant data, which are readily available, and neural networks, where off-the-shelf models yield 

good results, as demonstrated in the present research. This approach reduces the burden for 

future research on WIPs since the digital twin of the underlying environment usually is the main 

deterrent. In the future, this approach can be improved as suggested in Chapter 3.4 Results and 

discussion or by including additional hardware to collect novel data, e.g., video footage 

(Kaneko et al., 2019) of the waste or the inside of the combustion chamber.  

RL technology paired with digital twins can be applied beyond power plants. Ideal areas 

for applications are fields in which digital twins of the real environments (e.g., the machinery 

or processes) are readily available, i.e., industries with high degrees of digitization. There, RL 

can be applied for complex, non-linear control problems that are not well covered by today’s 

automation and control mechanisms. 
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4 OVERCOMING BARRIERS TO AI ADOPTION: A CASE STUDY 

FROM THE WASTE INCINERATION INDUSTRY 

This chapter is based on Schlappa, Hegemann et al. (2022).8 

 

4.1 Introduction 

Artificial intelligence (AI) is finding its way into many industries, from aerospace and 

agriculture to hotels and the public sector (Bughin et al., 2017; Chui et al., 2018; Nam et al., 

2021; Tao et al., 2019). Over 80% of large organizations have adopted some form of AI (Ghosh 

et al., 2019). A McKinsey report shows that 50% of the surveyed companies “have adopted AI 

in at least one business function” (Balakrishnan et al., 2020, p. 2). This rate of adoption seems 

natural since AI is creating significant benefits in different functions such as manufacturing or 

risk (Chui et al., 2018) and by different means like process automation, increased efficiencies, 

decreased failure rates, and new business models (Ammanath et al., 2020; Davenport, 2018). 

The above-mentioned adoption rates are quite high and demonstrate the broad applicability 

of AI in general. “Nevertheless, the majority of companies still use AI tools as point solutions” 

(Ghosh et al., 2019, p. 1), and “only 8% of firms engage in core practices that support 

widespread adoption” (Fountaine et al., 2019, p. 2). In addition, high adoption rates do not 

reflect the success rates and the actual value AI generates in individual use cases. Thus, whereas 

the perceived adoption of AI is relatively high, implementations with a measurable impact are 

still rare, many use cases fail to scale, and many applications are as yet experimental (Benbya 

et al., 2020; Brock & von Wangenheim, 2019; Correani et al., 2020; Fountaine et al., 2019; 

Holmström, 2021). 

We are convinced that one of the main reasons for this observation is the lack of AI 

readiness, a set of crucial properties for an organization to adopt AI successfully. Many 

companies jump into AI adoption (step 2) before doing the groundwork on AI readiness 

(step 1). However, organizations need to be ready for AI to adopt AI (AlSheibani et al., 2018; 

Issa et al., 2021; Jöhnk et al., 2021; Pumplun et al., 2019). The properties of AI readiness are 

more likely to be found in, e.g., big tech, whereas “full production implementation of AI 

technology is relatively scarce outside of the largest and most capable firms” (Davenport, 2021, 

p. 168). Most companies are not high-tech, especially in old economies such as the German 

one, and thus, they are not ready for AI (AlSheibani et al., 2018). This leads us to our research 

question: 

Which strategies facilitate AI adoption in traditional, i.e., not-AI-ready industries? 

To investigate our research question further, we set out to conduct an in-depth case study 

in an exemplary market that is not AI-ready but could and potentially should adopt AI 

technologies: the market for waste incineration plants (WIPs). WIPs are an excellent example 

since the 66 WIPs in Germany are, on average, over 30 years old and thus use old technology 

 
8 This unpublished working paper with the title “Overcoming Barriers to AI Adoption: A Case Study from the 

Waste Incineration Industry” was written by Martin Schlappa, Jonas Hegemann, Tobias Mathur, and Stefan 

Spinler. 
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(Flamme et al., 2018; Weber et al., 2020); most employees are traditionally trained engineers; 

the IT hardware used is built for reliability rather than computing performance; the software 

used is tailormade and designed to be a critical safety net rather than a dynamic optimizer; 

regulations are often intended to disincentivize innovation. Similar circumstances can be found 

in other “old economy” industries, such as manufacturing. 

We follow the qualitative case study approach as suggested by Jöhnk et al. (2021) and 

AlSheibani et al. (2020) to explore further which factors influence AI adoption. More 

specifically, we investigate Uniper’s efforts in implementing their AI solution “Operaite” across 

the waste incineration industry and assess interactions and discussions with over 160 clients. 

Based on these interactions, we distill five strategies that counter typical AI readiness barriers, 

thus increasing AI readiness. With increased AI readiness, chances for AI adoption rise 

(AlSheibani et al., 2018; Jöhnk et al., 2021; Weiner, 2009). 

This research is relevant for many reasons: We see few empirical studies exist on strategies 

for successful AI adoption, especially when faced with not AI-ready organizations. The “lack 

of research on the mechanisms of AI adoption constitutes a significant research gap” (Neumann 

et al., 2022, p. 2). As Jöhnk et al. point out: “[…] Further [exploration of] organizations’ 

specifics for AI adoption, for instance, through in-depth case studies [is needed]” (2021, p. 17). 

Our empirical results are needed to address the specific challenges of practitioners in the AI 

adoption process. We intend to go beyond theoretical considerations and provide practitioners 

with a set of strategies that are easy to use and do not require the transformation of the entire 

business. Making the entire organization entirely AI-ready is a meaningful goal. From a 

practitioner’s standpoint, however, it is essential to transform the business just as much as 

necessary to make it ready for the AI technology that is supposed to be implemented. While the 

results are derived from one specific industry (WIP), we believe they can be transferred to other 

industries well. We are convinced that practitioners will benefit greatly from this case study as 

it guides future AI implementation and rollout efforts. 

4.2 Literature review 

We first investigate the current body of literature relevant to our research. This paper builds 

upon research from two related fields: organizational AI readiness and adoption. These two 

fields are, in turn, grounded in other theories such as the technology acceptance model (TAM) 

(Davis, 1985), the technology-organization-environment (TOE) framework (Tornatzky et al., 

1990), the diffusion of innovation theory (DOI) (Rogers, 1995) or the unified theory of 

acceptance and use of technology (UTAUT) (Venkatesh et al., 2003). First, we discuss 

(conceptual) frameworks and theories regarding AI readiness and adoption itself. Second, we 

conduct a systematic literature review (SLR) to distill articles putting these frameworks into 

practice and determining organizations’ AI readiness and adoption. 

4.2.1 Organizational AI readiness and adoption 

AI readiness and adoption can be seen as an area of the more general field of innovation or 

technology adoption, which has been extensively studied, be it on an individual or 

organizational level (e.g., Chen et al., 2021; Gfrerer et al., 2021; Neumann et al., 2022; Oliveira 

& Martins, 2011). Nonetheless, AI readiness and adoption require a particular focus since AI 
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has a much higher implementation complexity than conventional technologies. It involves 

intensive and continued efforts across various functions, sometimes with the support of external 

parties, and it entails substantial adjustments in other areas such as the company culture and 

data policies (AlSheibani et al., 2020; Chatterjee et al., 2021; Davenport & Ronanki, 2018; Issa 

et al., 2021; Jöhnk et al., 2021). 

For organizations to adopt AI solutions, they need to be AI-ready (Jöhnk et al., 2021). 

Incidentally, there is no standard definition of AI readiness (Jöhnk et al., 2021). We follow 

Holmström’s definition of AI readiness, being “an organization’s abilities to deploy and use AI 

in ways that add value to the organization” (Holmström, 2021, p. 2). Research in this field is 

“still in its infancy” (Jöhnk et al., 2021, p. 8), and it is noted that AI readiness and adoption 

have not been studied exhaustively (Chatterjee et al., 2021; Jöhnk et al., 2021). 

Most of the research focuses on developing AI readiness and adoption frameworks of 

various forms which can be used to assess organizations. Even though they differ in semantics, 

many are grounded in similar underlying theories (e.g., TOE, TAM, DOI), and they include 

similar precedents to AI readiness and adoption. 

Jöhnk et al. (2021) argue that AI readiness is an essential precursor to AI adoption. They 

deduce 18 AI readiness factors along five categories (strategic alignment, resources, 

knowledge, culture, and data) from literature and interviews with 25 experts. These factors 

enable organizations to assess their readiness before adopting AI technologies and, thus, to 

proactively identify potential shortfalls within the organization, reducing the risk of failure 

regarding AI adoption. Moreover, their interviews reveal that AI readiness and adoption are not 

merely connected unilaterally, but rather that they are intertwined and “mutually reinforce (or 

restrict) one another” (Jöhnk et al., 2021, p. 16). Due to its clarity and comprehensiveness, we 

will use this framework for organizational AI readiness in our assessment (see Table 4.3). 

Similarly, AlSheibani et al. “determine factors that influence an organization’s readiness 

for AI adoption” (2018, p. 6). They analyze organizational AI adoption through the lenses of 

TOE and DOI, merging aspects of these theories to develop their framework for AI adoption at 

the firm level. Readiness is thus assessed on three levels and seven sub-levels: (1) technological 

(relative advantage and compatibility), (2) organizational (top management, organization size, 

and resources), and (3) environmental (competitive pressure and government regulatory issues). 

They test this framework empirically, showing that all factors but organization size and 

competitive pressure significantly affect AI adoption. 

Issa et al. (2021) maintain that AI technologies have unique features, and thus, they entail 

different challenges, necessitating the development of a specific adoption framework for AI. 

To account for this, they adapt the perceived characteristics innovating theory and develop a 

comprehensive AI readiness and adoption framework. They use a mixed-method (survey and 

interviews) approach to show that three strategic components (mobility, interactivity, and 

autonomy) are key to AI readiness, which is, in turn, a mediator for AI adoption. 

Baabdullah et al. (2021) examine the antecedents and consequences of successful 

acceptance of AI practices, specifically by business-to-business (B2B) SMEs in Saudi Arabia. 

They use the TOE framework to develop a conceptual model that relates, amongst others, AI 

readiness to acceptance of AI practices. Using structural equation modeling of survey data, they 

show that infrastructure and awareness (as part of AI readiness) are significantly correlated with 
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the acceptance of AI practices whereas technicality (i.e., the ease of use of AI technologies) is 

not. 

Pumplun et al. (2019) recognize that the TOE framework can be applied to describe AI 

adoption. However, multiple expert interviews suggest that additional factors are needed due to 

the specific requirements of AI. Thus, they complement the standard TOE framework by, e.g., 

customer readiness and industry requirements. Moreover, they shed light on the different views 

on AI readiness and adoption of AI technology users and providers. They argue that 

transparency over the (lack of) AI readiness is needed to enable successful AI implementation. 

Finally, Nortje & Grobbelaar (2020) argue that while AI can potentially transform 

businesses, many businesses face challenges in terms of implementation (i.e., adoption) of AI. 

Thus, they develop a framework to assess AI readiness, supporting the implementation of AI in 

businesses. Based on a grounded theory methodology and a conceptual framework analysis, 

they conduct an SLR to deduct their framework, which consists of the following dimensions: 

(1) employee and culture, (2) technology management, (3) organizational governance and 

leadership, (4) strategy, (5) infrastructure, (6) knowledge and information, and (7) security. 

Companies may use this framework to calculate their readiness and prioritize efforts to improve 

their AI readiness. 

4.2.2 Case studies on AI readiness and adoption 

While the body of research on organizational AI readiness and adoption is not immense 

(see above), all available literature suggests that some organizational AI readiness is needed to 

adopt AI technologies successfully. This readiness, in turn, can be split into multiple categories, 

depending on the underlying theory. Whereas some of the frameworks are validated empirically 

through interviews and small surveys, these concepts seem to have rarely been put into practice 

at scale. 

Thus, we use an SLR proposed by Denyer & Tranfield (2009) and Tranfield et al. (2003) 

to compile all articles assessing AI readiness and adoption of organizations empirically. Here, 

we are intentionally not interested in conceptual articles (such as the ones mentioned above). 

Using the search string “TITLE-ABS-KEY ( ( “AI read*” OR “AI adopt*” OR “artificial 

intelligence read*” OR “artificial intelligence adopt*” ) AND ( “org*” ) AND ( “empiric*” OR 

“case stud*” ) )” we only find 27 records in the Scopus database (https://www.scopus.com) as 

of June 2022. Scopus has been used for similar SLRs (see, e.g., Kabalisa & Altmann, 2021). 

We purposefully do not restrict the initial study selection with additional keywords or time 

horizons, given that the sample size is already small. Out of these 27 records, only seven records 

are relevant based on the abstracts and other hygiene factors such as the language of the article 

(English only). This list is expanded by seven records through cross-references, out of which 

only three turn out the be relevant based on the abstract. The final ten articles are read in full, 

and another two articles are removed since, upon further inspection, they are not relevant to our 

research question. Only eight articles put the concepts of AI readiness and adoption in practice, 

i.e., measuring an organization’s AI readiness or adoption (Table 4.1).
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Table 4.1: Overview of articles assessing organizational AI readiness and adoption empirically 

Authors Focus Methodology Geography Industry 

Status of AI 

readiness/adoption Main challenges 

Strategies to overcome 

main challenges 

Bettoni et al. 

(2021) 

AI readiness 

& adoption 

Survey Europe Mixed Unprepared to adopt 

AI 

AI expertise; 

Data strategy; 

Organizational structure; 

Organization’s culture 

not provided 

Chatterjee et al. 

(2021) 

AI readiness 

& adoption 

Survey India Manufacturing, 

production 

Preliminary stage Lack of perceived 

usefulness and ease of use 

of AI 

AI adoption strategy; 

Collaboration;  

Communication;  

Customer centricity; 

Education;  

High-quality data;  

Top management support 

Ellefsen et al. 

(2019) 

AI adoption Survey Norway, 

Poland 

Logistics, 

production 

AI novice AI expertise; 

Financial constraints 

not provided 

Holmström 

(2021) 

AI readiness Case study Not provided Insurance Low to moderate AI expertise; 

Confidence to work with 

AI technologies 

AI tools and frameworks; 

Collaboration; 

Education; 

Mindset shifts 

Nam et al. 

(2021) 

AI readiness 

& adoption 

Case study Dubai Hotels AI-ready AI expertise; 

Implementation; 

Integration of AI with 

existing technologies 

Collaboration 

Neumann et al. 

(2022) 

AI adoption Case study Switzerland Public sector Mixed AI expertise Collaboration 

(Continued on next page) 
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Table 4.1: Overview of articles assessing organizational AI readiness and adoption empirically (continued) 

Authors Focus Methodology Geography Industry 

Status of AI 

readiness/adoption Main challenges 

Strategies to overcome 

main challenges 

Tao et al. (2019) AI adoption Case study China Public sector Still in its infancy AI expertise;  

Bureaucracy; 

Data sharing and security;  

Ethics; 

Legislation  

not provided 

Vuong et al. 

(2019) 

AI readiness Literature 

review 

Vietnam Healthcare Lack of AI readiness Data management and 

infrastructure; 

Financial constraints;  

Organizational structure 

not provided 

This study AI readiness 

& adoption  

Case study Europe Power plants Low AI expertise; 

Implementation 

Education; 

Trust; 

Customer centricity; 

Focus; 

Collaboration 
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The SLR confirms that only limited research exists on applying AI readiness or adoption 

frameworks. Out of these, only a few authors follow the case study methodology. We note that 

across various geographies and industries, organizations indeed have low levels of AI readiness 

or AI adoption, which was also suggested by AlSheibani et al. (2018). Only Nam et al. (2021) 

provide a case with high AI readiness. Arguably, this can be ascribed to the fact that they study 

high-class hotels in Dubai, a relatively advanced and modern industry and city. We can also see 

that all authors use different terminology: Some authors define different levels of AI readiness 

and adoption and classify organizations accordingly (Ellefsen et al., 2019; Holmström, 2021; 

Neumann et al., 2022), whereas most authors use plain words to describe the level of AI 

readiness and adoption (or lack thereof). No standards exist. 

In terms of challenges, we see recurring themes (see Fig. 4.1). For instance, most 

authors (6/8) highlight “AI expertise” as one of the main challenges to AI adoption. As Tao et 

al. point out: “[…] The department finds it challenging to fully take on the role of managing 

and supervising AI application, even at its early stage” (2019, p. 11). Because of this lack of AI 

expertise, organizations seek external support, further weakening their internal capabilities. 

 

 

Fig. 4.1: Main challenges for AI readiness and adoption (frequency of mentioning) 

Issues around “data” are also apparent. Here, organizations not only struggle with their data 

strategy but also with their data infrastructure and management. Because of this, they fail to 

exploit or even introduce AI technologies since the data needed are not readily available: 

“Without data, AI cannot be implemented” (Bettoni et al., 2021, p. 705). Moreover, “difficulties 

in data sharing and security measurement restrict the effective use of data” (Tao et al., 2019, p. 

11). 

Interestingly, only half of the articles offer strategies to overcome these challenges. They 

overwhelmingly suggest “collaboration” as a strategy, mainly because this directly impacts the 

main challenge: the lack of internal AI expertise. “Due to the lack of competency, […] advanced 

AI-based solutions […] need to be produced through close collaborations” (Nam et al., 2021, 

p. 571). Initially, external AI experts can be used to introduce AI technologies (Neumann et al., 

2022). Over time, these external AI experts can build internal AI capabilities, facilitating further 

AI adoption (Chatterjee et al., 2021). Moreover, Holmström (2021) and Chatterjee et al. (2021) 

mention the education of the workforce as another critical success factor: “[…] Managers 

should try to appropriately train the employees of the organization to enhance their expertise 
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and skill, […] facilitating the organizational authority to adopt AI in an easier way” (Chatterjee 

et al., 2021, p. 10). 

The SLR confirms that further empirical research is needed on AI readiness and adoption 

(AlSheibani et al., 2020; Jöhnk et al., 2021). It strengthens our efforts to close this research gap 

by conducting a case study. 

4.3 Methodology 

This research uses a case study (see, e.g., Eisenhardt, 1989; Yin, 2018) to close the previous 

research gaps, following Eisenhardt’s (1989) eight-step process for case study research (see 

Fig. 4.2). This approach was chosen to get insights into a complex phenomenon with qualitative 

data, which might not be revealed by other types of data (Eisenhardt & Graebner, 2007). 

 

 

Fig. 4.2: Process for case study research (Eisenhardt, 1989) 

4.3.1 Getting started 

“An initial definition of the research question, in at least broad terms, is important in 

building theory from case studies” (Eisenhardt, 1989, p. 536). As described in our introduction, 

we want to investigate which strategies facilitate AI adoption in traditional, i.e., not AI-ready 

industries. We believe that many industries struggle to adopt AI technologies because they are 

not AI-ready in the first place. Thus, we want to understand what they are struggling with and 

which strategies can help with these challenges. Specifically, we are looking for strategies that 

make organizations just AI ready enough to adopt AI technologies since, from our experience, 

that is what practitioners need the most. This case study is explorative, with the intention to 

potentially generate new theories while at the same time keeping in mind the existent body of 

literature on AI readiness and adoption. We hope that our learnings from one industry can be 

used to generalize strategies that can be applied in other industries. 

4.3.2 Selecting cases 

To study our research question, we collaborate with Uniper and its Operaite product. We 

do not follow the approach of statistical sampling but rather a theoretical sampling since we 

intentionally want to choose cases that are rich in information to gain insights and extend the 

theory (Eisenhardt, 1989). 

Operaite is a state-of-the-art AI tool to optimize WIPs in many ways, be it reducing 

emissions, increasing outputs, stabilizing operations, or other operational challenges. Operaite 

is a new product, and the team essentially operates as a corporate start-up pioneering the field 
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of AI-driven optimization in power plants. The small team of approximately ten employees 

covers the whole business process from customer interviews, use case identification and 

assessment, design of custom AI solutions, commercial contracting, technical optimization, and 

after-sales service. The product itself is made of a standardized core that can be quickly adapted 

to various use cases. In a nutshell, it is a controller implementing a neural network that takes 

sensor measurements as inputs and generates control signals as outputs. In principle, it serves 

as a digital twin of the human operator, who originally controls the process. Typically, many 

projects are executed in parallel, such that synergies and cross learnings can be generated. 

Though advanced process control technologies have been available for decades, adoption is still 

not ubiquitous, and existing solutions are often expensive, mainly due to time-consuming detail 

engineering. Here, AI solutions can shine due to their data-driven nature, enabling efficient and 

standardized project execution as one key to a profitable business model. Since Operaite is 

developing and implementing simultaneously, we can monitor the process in real-time and 

gather customer feedback, the challenges, and the approaches to overcome these from the 

sidelines, similar to Tao et al. (2019). 

Operaite’s clients are typically waste and biomass incineration companies, mainly in 

Germany and other European countries. Both waste and biomass are considered “green” fuels 

for power plants since the landfill of waste causes substantial environmental damage. WIPs, in 

particular, have a long history and have been subsidized in the last decades, such that many 

municipalities have built their own plants because they offer a two-sided benefit: (1) they 

eliminate most of the waste that is fed into it, and (2) they produce energy in terms of electricity 

or heat. On the other hand, large energy companies also operate fleets of waste or biomass 

incineration plants. These companies often have more expertise and are keener on optimizing 

their processes. These power plants are usually automated with conventional automation 

mechanisms from the field of mechanical engineering, such as proportional–integral–derivative 

(PID) controllers, fuzzy controllers, or model predictive control (MPC). AI technologies, 

however, are usually not present on site.  

The waste incineration industry is representative of other traditional companies, and as a 

sector, it is big enough to conduct good research with a large sample size. It has a meaningful 

impact on the economy overall and is vital for future sustainability goals. Thus, this case study 

offers the ideal, real-world example for assessing our research question.  

4.3.3 Crafting instruments and protocols 

The discussions between Uniper employees and the customers are regular business 

negotiations and conversations. Thus, they are confidential and should not be disturbed by 

researchers in the room. The researchers do not interfere in any way before or after the 

interactions. Thus, we rely for this research on qualitative data from various sources: 

discussions with Uniper employees, information from ERP systems, customer feedback, 

emails, and other archives, where available. These are typical qualitative data sources 

(Eisenhardt, 1989; Rashid et al., 2019), and we follow a qualitative data-only approach (Yin, 

2018). In some of these client interactions, multiple people are present, increasing the validity 

of the notes and findings (Eisenhardt, 1989). The findings are synthesized by the researchers in 

several workshops with relevant Uniper employees. Such a collaboration with “within the 
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company” employees is not common, but it enables access to confidential and proprietary data 

that otherwise cannot be accessed (Correani et al., 2020). 

4.3.4 Entering the field & Analyzing data 

As Glaser and Strauss (1999) suggest, we combine the two phases Entering the field and 

Analyzing data since the data collection overlaps with the analysis of the notes. Data are 

collected for two years, from May 2020 to May 2022. No specific formatting is required for 

documentation to make the process as easy as possible for the Uniper employees. Instead, 

available data are analyzed and discussed with the respective employees. 

Over 160 clients are approached (see Table 4.2). For confidentiality reasons, no client 

names can be shared. The majority of the clients operate WIPs, and most of the clients are in 

Germany. We estimate that this research covers more than 75% of the WIP market in Germany 

(Flamme et al., 2018). Beyond that, other European countries are included in this research and 

some other plant types, such as biomass incineration plants. 

 

Table 4.2: Split of customers by plant type and country 

 Frequency Percentage 

Plant type   

Waste incineration 105 65 

Biomass incineration 36 22 

Others 21 13 

Total 162 100 

Country   

Germany 85 52 

United Kingdom 28 17 

Netherlands 12 7 

Belgium 7 4 

Finland 7 4 

Austria 5 3 

Switzerland 5 3 

Others 13 8 

Total 162 100 

 

This relatively big sample size goes beyond what is typically suggested for case study 

research (Eisenhardt, 1989; Nam et al., 2021), but we intended to cover as much of the industry 

as possible. We believe that different from some more targeted case studies with smaller sample 

sizes (e.g., Chatterjee et al., 2021; Ellefsen et al., 2019; Holmström, 2021; Nam et al., 2021), 

each sample in our case study does not provide that much detail since only second-hand data 

are available that was not intentionally gathered for research but rather for business purposes. 

On Uniper’s side, the employees interacting with the customers were mainly engineers or 

product owners. On the customer side, primarily people in charge of the technology adoption, 

i.e., plant operators or engineers, people involved in day-to-day operations, or, if available, 

people familiar with AI or automation systems, were involved.  
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4.3.5 Shaping hypotheses & Enfolding literature 

Please refer to Chapter 4.4 Results for the description of the hypotheses and the comparison 

with existing literature. Here, we also put the findings into a broader context and compare them 

with other cases (Macurová & Jurásková, 2013). 

4.3.6 Reaching closure 

Eisenhardt (1989) and Yin (2018) propose that data should be collected until no new 

information emerges from the data. We reach closure after two years of data collection, yielding 

over 160 samples. We decided to stop here for many reasons: First, the initial agreement 

between the researchers and Uniper was to collect data for two years unless circumstances 

changed. Second, the composition of samples by plant type and country was well-balanced and 

representative of the market at this point. Third, we were at a point where the sources exhibited 

consistency and good quality regarding challenges and strategies to overcome these. And 

fourth, Uniper’s Operaite product has developed significantly over the collection period, and 

the team transitioned from an experimentation and business development phase to an 

implementation phase with their customers. Thus, the number of new customer outreaches 

decreased since the focus shifted to different business aspects. 

4.4 Results 

During the consultation and implementation of the Operaite AI solution, barriers were 

encountered on multiple levels: general skepticism of various stakeholders towards AI, 

especially being a “black-box” approach; limited access to data due to restrictive systems that 

are not optimized for extensive data exports; compatibility issues due to non-standardized DCS; 

problems in the daily operation that distract plant engineers from optimization tasks; and bad 

prior experiences with other advanced control methods like fuzzy control. These barriers align 

with previous research (e.g., Chui et al., 2018; Chui & Malhotra, 2018). 

The most critical goal in a typical power plant is to keep it running since any shutdown due 

to technical problems or maintenance is way more expensive than any marginal performance 

optimization. This key goal determines the organizational structure, the mindset, as well as the 

daily operation. Taking risks in operation, e.g., by going very close to the design limit of the 

power plant, is thus not common. Keeping the plant running also involves ordering and 

organizing the delivery of the waste or biomass, catching up with the latest regulatory 

constraints, updating hard- and software, solving mechanical issues, planning annual revisions, 

selling the produced energy, organizing the side processes such as recycling, depositing the 

burnt waste, and many more activities.  

With all these activities, core employees often find themselves lost in daily operations. 

They are under pressure to find ad-hoc solutions to keep the plant running and maintain a steady 

process as far as possible. Thus, for this group of employees, it is difficult to get a holistic view 

of the plant operations and to understand global optimization goals that often originate at the 

management level. In addition, since many people have been working in the plant for decades, 

different mindsets and strategies evolve in different shifts, leading to heterogeneous outcomes 

in different shifts.  
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Nonetheless, many power plants are still willing to invest in process optimization and adopt 

the latest AI technologies, but due to their limited expertise and resources, they need to rely on 

this expertise from external sources. These external partners then need to deal with the internal 

barriers to achieve a successful implementation. 

 

Table 4.3: Assessment of AI readiness in WIPs using organizational AI readiness factors (Jöhnk et al., 2021) 

Category Factor Assessment 

Strategic alignment AI-business potentials High 

 Customer AI readiness Not applicable 

 Top management support Medium 

 AI-process fit High 

 Data-driven decision making Medium 

Resources Financial budget Medium 

 Personnel Low 

 IT infrastructure Medium 

Knowledge AI awareness Low 

 Upskilling Low 

 AI ethics Low 

Culture Innovativeness Low 

 Collaborative work Low 

 Change management Low 

Data Data availability Medium 

 Data quality High 

 Data accessibility Low 

 Data flow Low 

 

In summary, we see that WIPs are not AI-ready (Table 4.3), like many other industries (see 

Table 4.1). While there is a strategic alignment and data are at least in part usable, resources 

are restricted, knowledge about AI is limited, and the company culture is not geared towards 

innovation. Nonetheless, this does not mean that AI cannot be adopted under no circumstances. 

Jöhnk et al. (2021) argue that each company has a specific target level for AI readiness 

(depending on, e.g., the industry or customers) and that AI readiness and adoption are 

“intertwined concepts” (Jöhnk et al., 2021, p. 15), i.e., that companies iteratively work on both. 

To tackle the barriers mentioned above and reach the right level of AI readiness, we develop a 

set of five strategies, targeting the factors with low AI readiness (Fig. 4.3). We think that our 

strategies work well across industries and geographies since these barriers are arguably 

hindering proper AI adoption in many traditional markets. 
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Fig. 4.3: Strategies to increase organizational AI readiness factors 

(1) Educate stakeholders more about AI: Discussions with stakeholders show that AI is 

still seen as a black box that cannot be explained, leading to skepticism and aversion toward its 

implementation, especially in safety-critical environments (Hallinan & Striphas, 2016; 

Holmström, 2021; Pasquale, 2015). Thus, there is a desire for explainability that also affects 

the choice of technology: Instead of the newest and fanciest technology, a good compromise of 

performance, robustness, and explainability is needed (Baabdullah et al., 2021). The CTO of an 

energy utility company highlighted: “For us, the human operators must always be on top of 

their game. Therefore, they must fully understand what is happening in the plant’s automation 

system.” Education also entails realistic expectation management and a clear scope of the AI 

since some stakeholders might overestimate the effects of AI (Brock & von Wangenheim, 2019; 

Davenport & Abbey, 2018; Davenport & Westerman, 2018). 

(2) Build trust between the stakeholders and the AI: AI may arouse fear in stakeholders 

(Benbya et al., 2020; Davenport & Abbey, 2018), and AI solutions tend to fundamentally 

change how, for instance, WIPs are operated. AI automation interacts directly with the plant’s 

control system; thus, a high level of trust is needed for full-scale implementation. This change 

may be softened by a staged implementation and continuous communication to achieve a 

smooth transition from conventional to AI control. To build this trust, a 3-step approach proved 

helpful (Fig. 4.4) that slowly transfers control from the human to the AI solution. After 

implementing the AI solution, a regular training and feedback loop with the operators in the 

control room has proven effective. 

One operations manager of a WIP remarked: “The AI Assistant phase really helped our 

operators to gain trust. In the beginning, most operators have been skeptical. However, after 

watching the AI for a couple of weeks, they now enjoy turning it on because they see how it 

helps them and that it is reliable.” 
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Fig. 4.4: Staged implementation of AI solution 

(3) Put the customers at the center of development: AI product development is complex. 

Companies might shy away from close collaboration with stakeholders when the education need 

is high, and the focus is on quick AI implementation. However, we think that close cooperation 

with the customers leads to a better product-market fit (Sjödin et al., 2022). Thus, we suggest 

agile product development that facilitates proximity to the customers. For instance, Operaite 

engineers included plant operators in their development who were happy with this approach: 

“The feedback was taken seriously. We were able to regularly influence the final solution”. 

Early prototyping, together with customer engineers and operators, helps build a solution with 

the expected performance level and usability. Employing the staged implementation (Fig. 4.4), 

prototypes should also be implemented fast to “learn while doing” and get real process 

feedback, especially in the “AI assistant” phase, where the AI does not directly intervene. Here, 

it is essential to pick the right customers, particularly for pilots to test new technology or 

products (Brock & von Wangenheim, 2019; Wouters et al., 2018). Again, we emphasize that 

there are often quite heterogeneous opinions in different shifts of plant operators. It is 

imperative to gather and address the complete feedback from all the different streams to enable 

a higher degree of adoption in the next iteration cycle. 

(4) Focus on the selected customers: Focusing on one industry might seem like the right 

level of focus, but our experience suggests that an even more narrow focus is needed, especially 

when faced with traditional industries (Brock & von Wangenheim, 2019). Even within one 

industry, customers tend to focus on different aspects or face different regulatory boundary 

conditions. For instance, one customer might ask for an optimization of the emission levels 

while another is struggling with safety shutdowns. Naturally, a wide variety of use cases 

emerges (Wouters et al., 2018). Thus, it is important to prioritize them for technical and 

commercial feasibility while verifying that they are “AI-only” use cases.  

(5) Collaborate with hardware providers for implementation: AI adoption is usually 

not a software-only approach, and it also entails a hardware and system integration component 

(Benbya et al., 2020). In many cases, customers cannot provide easy access to data, and 

sensitive operating technology systems restrict them. On top of that, compatibility issues, for 

instance, due to non-standardized DCS across WIPs, limit the easy and fast implementation of 

AI solutions. This is especially troublesome since various DCS are used in a highly fragmented 

market (Deutsche Bank Research, 2017). Integration with the production/operating 

environment is one of the biggest obstacles (Davenport, 2021). Thus, hardware and interface 

providers need to be included in the development process from the start to facilitate the 
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implementation, and flexible, technical solutions must be found that are compatible with 

different setups. A plant maintenance manager mentioned: “It is crucial for us that the AI 

system is integrated into our DCS system. We do not want to run systems from different OEMs. 

This creates interface and procurement issues.” Collaboration is one of the essential factors for 

AI adoption (Dewi & Ahamat, 2018; Jöhnk et al., 2021; Sjödin et al., 2022). Whereas some 

customers depend entirely on original equipment manufacturers (OEM) to apply changes or 

extensions to their DCS, others have the knowledge to train employees on site and 

independently and quickly adopt newer (AI) technology. To increase implementation speed, 

these independent customers should be preferred, e.g., for pilots. DCS expertise on site is also 

preferable from an economic point of view since OEM service is usually costly, particularly for 

small power plants. 

4.5 Discussion  

We see that the waste incineration industry is not AI-ready (yet) for many reasons (see 

Table 4.3). Nonetheless, they can be made just AI-ready enough to enable AI adoption with the 

support of external partners (Neumann et al., 2022). We have distilled five best practices that 

can help overcome barriers when bringing technology to markets that are not AI-ready. They 

should be part of the rollout strategy and be considered when designing business processes. 

Making a company fully AI-ready across all factors can be costly since organizations need 

to invest in the necessary initial resources and capabilities and develop adequate organizational 

structures and business processes (Ellefsen et al., 2019; Neumann et al., 2022). Thus, from a 

business perspective, making a company just “AI-ready enough” to enable AI adoption is 

essential, thus keeping investments in AI readiness low. This can also be done iteratively (Jöhnk 

et al., 2021). The five suggested strategies are all relatively cheap. Nonetheless, they can help 

companies save money along the AI adoption process since the most expensive resource during 

such a process is the time and commitment of the employees involved. AI adoption, in many 

cases, is not only a technical challenge but a social one. The employees need to know how to 

use the AI, be confident around it (Holmström, 2021), and see the benefits in the specific use 

case (Chatterjee et al., 2021). If the employees’ frustration during the implementation process 

is too high, it will be difficult to reverse these feelings; from our experience, such projects tend 

to die.  

For education purposes, it is crucial to have a high-level and easy-to-understand pitch. To 

give a holistic view of the AI product, the pitch should (1) provide the context of the technical 

solution, i.e., compare to other technologies customers are familiar with, (2) emphasize the 

benefits of AI in this context, and (3) manage expectations and honestly say what AI cannot do. 

Based on this, it is easier to dive deeper into the technical properties of AI solutions and make 

the stakeholder understand why it can be valuable. Supporting material might be case studies 

of reference implementations. When the project is ongoing, additional steps can be taken to 

educate the employees, such as speaking in front of larger groups of employees (including ones 

not directly involved with the implementation or usage of the AI technology) to spread the word 

across the company. 

To build trust between stakeholders and AI, we suggest a staged implementation. We start 

with an assistant mode that produces recommendations before the solution actively and 
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autonomously manipulates the system. During this phase, training sessions for the operators 

can support adoption and make them feel comfortable with the AI. Taking upcoming 

constructive feedback during these sessions seriously and using it for further optimization is 

beneficial for the implemented solution itself as well as for the customer because it makes them 

feel involved. Thus, the customers also put more trust in the solution. To make this happen, it 

is vital to listen carefully to the customer, beginning with the first meeting and understanding 

the specific pain points. Only a clear problem statement that everybody agreed upon can lead 

to fruitful discussions in later stages of the project.  

Suppose, at some point during the project, it turns out that the customer has a specific 

problem that does not seem scalable, or there are external boundary conditions by the 

municipality, OEM, or management that cannot easily be solved. In that case, it should be 

seriously considered to stop the project. A good time to stop the project is after the first 

interviews and the data assessment when most of the information is available to judge the 

success rate. Having a list of critical questions that should be clarified early in the project can 

avoid major blockage in later stages. Companies need to keep in mind that AI cannot solve all 

kinds of problems and that it might not be the right solution to a specific issue at hand. 

When external hardware providers or OEMs need to be involved in implementation, it 

might help to establish a separate and direct communication channel with them. Frequent 

alignment on specific projects will lead to more efficient project execution. Likewise, it will 

reduce the feeling of competition for the OEM because they will also benefit from more orders. 

Even though many conversations with customers and employees were used to understand 

AI readiness and adoption in WIPs, the findings are primarily related to this industry. Arguably, 

it is peculiar since it is a safety-critical infrastructure that might have cultivated a distinct 

company culture. Beyond that, most plants are unique and tailormade, thus hindering the 

scalability of general AI technologies. 

Following the strategies suggested above does not imply successful AI adoption. It might 

merely help increase AI readiness. As pointed out earlier: With increased AI readiness, chances 

for AI adoption rise (AlSheibani et al., 2018; Jöhnk et al., 2021; Weiner, 2009). Individual 

organizations might face barriers in other areas that we do not impact. For instance, many 

companies mention issues with their data as a central challenge to successful AI adoption 

(Bettoni et al., 2021; Björkdahl, 2020; Chui & Malhotra, 2018; Vuong et al., 2019), for which 

other strategies are needed. In our case study with WIPs, data are usually readily available since 

it must be monitored for regulatory reasons and is crucial to provide control mechanisms and 

maintenance. Moreover, none of our strategies touch upon strategic alignment as one of the 

critical factors for AI readiness (Jöhnk et al., 2021) because we did not observe this as a 

challenge in our case study. Nonetheless, we recognize that this can be a significant barrier 

(Chui & Malhotra, 2018). AI readiness and adoption are complex matters that will require many 

targeted strategies from managers to implement AI technologies successfully.  

4.6 Conclusion 

We set out to find strategies that facilitate AI adoption in traditional, i.e., not-AI-ready 

industries. While there is much focus on the big tech companies (e.g., Google, Apple) and how 

they apply AI technologies in innovative ways, traditional, engineering-driven markets are 
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usually overlooked. Nonetheless, these markets still represent a significant portion of many 

economies with great potential for improvement. We used the waste incineration industry as an 

exemplary not-AI-ready industry and conducted a 2-year case study with over 160 client 

interactions. We see that many companies intend to adopt AI technologies without being AI-

ready. The challenges they face align with the body of literature, even though empirical work 

such as case studies are generally rare. Companies must do much more than sell AI solutions 

to introduce AI solutions to such traditional markets. Thus, we propose five strategies to enable 

a sufficient level of AI readiness. Focusing from the start on the people and the eventual 

implementation beyond the product development is critical.  

This study has several contributions: First, we summarize the literature on case studies 

related to organizational AI readiness and adoption. This is, to our knowledge, the first review 

of such kind, showing how under-researched this area is. Second, we determine the AI readiness 

of the waste incineration industry, representative of various other old, engineering-driven 

industries. Applying one of the AI readiness frameworks to an entire industry is unique. Third, 

we use the interactions between Uniper and its customers to develop five strategies that can 

help companies become just AI-ready enough for AI adoption. The idea of becoming just “good 

enough” differs from most research approaches (especially the conceptual ones), developing a 

long list of factors and strategies which quickly overwhelm companies. Our small set of 

strategies has proven to be successful.  

In the future, we see multiple research needs. We believe that similarly large case studies 

must be conducted in other industries and with other AI technologies to validate the results. For 

instance, exploring industries with data challenges would be interesting since this might entail 

very different strategies. Moreover, we see a need for an overarching AI adoption framework. 

Even though some authors suggest AI readiness or AI adoption assessments (e.g., AlSheibani 

et al., 2018; Holmström, 2021; Jöhnk et al., 2021), these only help companies assess their 

current levels and potentially show gaps. We believe that companies need more than that, for 

instance, assessing AI readiness depending on AI technology and suggesting strategies to 

overcome barriers and close AI readiness and adoption gaps. 

We are convinced that these strategies can be applied in various environments. As our 

literature review shows, many environments are not AI-ready; thus, the companies are 

partnering with external AI experts, like in our case study. We believe that more strategies must 

be shared to enable faster AI adoption. We see that many prototypes and pilots are tested in the 

market, and we perceive an appetite for AI solutions from traditional markets. However, 

repeated failures continue to strengthen skepticism and fear toward AI. Thus, the solutions 

proposed in this paper should help practitioners succeed in their AI endeavors in traditional 

markets. 
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5 CONCLUSION 

Disruptions are and will be part of our lives. Because of this inevitability, we need strategies 

to avoid or handle them effectively. This dissertation looked empirically at two such ways: 

resilience and artificial intelligence (AI). We first assess existing resilience measures, develop 

our own resilience measure, and benchmark resilience levels in a large part of the German 

economy: the manufacturing industry (Chapter 2). We then use a state-of-the-art AI approach 

(reinforcement learning) to control and optimize a waste incineration plant (WIP), increasing 

performance as well as enabling more stable operations (Chapter 3). Finally, we examine 

challenges with AI adoption via an in-depth case study and suggest strategies to overcome these 

(Chapter 4). 

5.1 Summary 

In Chapter 2, we focus on the perceived organizational resilience of the German 

manufacturing industry. First, we conduct a systematic literature review (SLR) and realize 

that (1) no recent data for the German market exist, (2) there are only a few simple measures 

for resilience, and (3) the surveys seem impractical for practitioners. These realizations further 

strengthen our research motivation. Thus, we develop a resilience survey and a novel resilience 

measure, the Enterprise Resilience Index (ERI). We collect responses from ~200 professionals 

and investigate their company’s past, current and anticipated resilience levels. The results show 

a medium resilience level (ERI = 63.9) across the manufacturing industry. However, we see 

differences between sub-industries: For instance, the Chemicals industry (ERI = 73.8) seems to 

be relatively more resilient than the Machinery (ERI = 54.5) and the Foods and Consumer 

Goods industries (ERI = 61.4). We also find that the companies perceive their current resilience 

levels to be below past (i.e., last year’s) levels while at the same time gathering a strong 

anticipated need for (primarily external) resilience, arguably because the German 

manufacturing industry expects disruption from external sources. This need is especially 

pronounced in large enterprises with significantly higher levels than small and medium-sized 

enterprises. Moreover, we see strong correlations between internal and external perceived 

resilience levels across all time horizons. 

As the sample is sufficiently large, we are convinced that the results are representative of 

the manufacturing industry. Nonetheless, we would like to increase the sample size further to 

better capture trends at the sub-industry level using more granular industry codes. The survey 

is well-suited to be used across industries and geographies, and our feedback suggests that the 

participants appreciated the shortness of the survey. 

Our survey provides a first-of-its-kind overview of perceived organizational resilience 

across multiple companies and industries in Germany. Practitioners can use the tools (i.e., the 

survey and the ERI) to benchmark their organizational resilience against their peers’, thus 

enabling all companies to become more resilient through transparency. We hope the results will 

spark conversations between resilience experts in various fields. Potentially, “resilience 

leaders” can share their best practice to enable “resilience laggards” to improve their resilience, 

which in turn could increase the resilience of an entire supply chain due to its dependencies. 

The differences in past, present and future organizational resilience highlight the need for 
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continuous resilience measuring. Thus, we believe that in the future, our survey should be used 

to continuously and regularly benchmark (parts of) the economy in terms of perceived 

organizational resilience. This will create a longitudinal view of resilience that might inspire 

further research. 

In Chapter 3, we bring state-of-the-art AI technology, i.e., reinforcement learning (RL), to 

the traditional waste incineration industry. We use raw plant data from the distributed control 

system to build a digital twin of the waste incineration plant (WIP) since the actual equipment, 

i.e., the real WIP, cannot be used as the training environment. The data include key 

characteristics such as the control parameters (e.g., air flap position), boiler characteristics (e.g., 

temperature, pressure), and the performance parameters (steam output and oxygen levels). 

These parameters are chosen together with industry experts who use these to control the process 

in the day-to-day operations. The digital twin uses a neural network with 3 hidden layers 

and 1500 neurons each, and it is trained with a set of ~25,000 data points using 5-fold cross-

validation. The best-performing model shows a mean-squared error (MSE) of 1.7e-5 in the 

training and 7.6e-5 in the test set. Within this offline environment, the RL agent is trained to 

control and optimize the combustion process of the WIP using multiple optimization criteria. 

We use the deep Q-network (DQN) algorithm for the training. The RL agent controls three 

control parameters (two air flaps and the load factor). The goal is to keep the steam output at a 

specific target level while keeping emission levels low. These goals (along with some other 

operational targets) are implemented in the reward function. The agent is trained for 334 60-

minute-long episodes, each episode consisting of 120 steps in which the agent takes actions. In 

terms of rewards, the RL agent outperforms the human operator by 32% while simultaneously 

reducing the volatility of the process (measured by the standard deviation) by 35%. In terms of 

the performance parameters, we see that the RL agent achieves a reduction of oxygen levels by 

3.6% and an increase of steam levels by 7.4%. 

Since the approach is fully data-driven and with limited expert input, it can be transferred 

to other control processes, where original plant data are readily available. Mainly using off-the-

shelf models, this approach reduces the burden for future research on WIPs since the digital 

twin of the underlying environment usually is the main deterrent. Nonetheless, RL is still best 

suited for applications in which digital twins of the real environments are available, i.e., 

industries with high degrees of digitization. RL can be applied for complex, non-linear control 

problems that today’s automation and control mechanisms do not handle well. 

This research suggests significant upside potentials for WIPs due to the application of RL, 

benefitting the plant operator financially, environmentally, and operationally: (1) it increases 

profits of the WIP by increasing the average steam output, which is converted to electricity and 

heat but also by increasing waste throughput, a second source of revenue of a WIP; (2) it 

decreases emissions in an environment where regulations are getting tougher; (3) it decreases 

the dependence on highly skilled and scarce human operators which in turn can be used for 

other value-adding tasks. This approach can be used to solve further typical issues at WIPs, 

e.g., staining of the boiler due to improper temperatures and high emission levels (“slagging 

and fouling”) or unplanned shutdowns. In a broader sense, this application can be seen as a 

general-purpose framework, showcasing the power of RL to control complex processes without 

the need for very specialized models of the process or expert knowledge. The fully data-driven 
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approach using many “off-the-shelf” tools facilitates the adoption in environments where data 

scientists may be lacking. 

In Chapter 4, we look at the barriers to AI adoption. Specifically, we dive deeper into the 

waste incineration market to understand better which strategies facilitate AI adoption in 

traditional, i.e., not-AI-ready industries. To investigate our research question, we conduct an 

SLR on previous efforts to empirically study AI readiness and adoption. Since only limited 

research exists, we administer our own qualitative case study based on Uniper’s efforts in 

implementing their AI solution “Operaite” across the waste incineration industry. We assess 

interactions and discussions with over 160 clients and synthesize five strategies that counter 

typical AI readiness barriers, thus increasing AI readiness: education, trust, customer centricity, 

focus, and collaboration. These strategies focus on transforming the businesses just as much as 

necessary to prepare them for the AI technology that is supposed to be implemented. With 

increased AI readiness, chances for AI adoption rise. 

While the results are derived from one specific industry (WIP), we are convinced that these 

strategies can be applied in various environments. As our literature review shows, many 

environments are not AI-ready. Many industries, especially in developed countries such as 

Germany, are grounded on technologies from the last centuries, and thus, they have not fully 

adopted AI. We are convinced that practitioners will benefit greatly from this case study as it 

guides future AI implementation and rollout efforts. 

This work contributes to the literature on AI readiness and adoption in many ways: it 

provides a comprehensive overview of the current state of the literature; it gives empirical 

evidence on AI readiness and adoption, applying an AI readiness framework to an entire 

industry; and it suggests a prioritized set of proven strategies to facilitate the mechanism of AI 

adoption whereas most research only provides general strategies for AI adoption. Managers 

benefit from this work since it goes beyond theoretical considerations and provides practitioners 

with a set of strategies that are easy to use and do not require the transformation of the complete 

business. Making the whole organization entirely AI-ready is a meaningful goal. From a 

practitioner’s standpoint, however, it is essential to transform the business just as much as 

necessary to make it ready for the AI technology that is supposed to be implemented.  

In conclusion, the three chapters use various research methods to answer numerous 

research questions regarding organizational resilience and AI technologies. They give empirical 

evidence and expand the literature on organizational resilience and benchmarking, 

reinforcement learning and digital twins, and AI readiness and adoption. 

5.2 Outlook 

This dissertation makes multiple contributions to the academic literature and has many 

managerial implications. Nonetheless, we still see ways to take this research further and tackle 

some of its limitations.  

The survey conducted in Chapter 2 is designed to be used as a longitudinal study. Our 

survey results show significant differences in perceived organizational resilience over two 

years. It would be interesting to see how the perceived organizational resilience develops and 

how effective managers are at assessing their future need for resilience or past resilience levels, 

which would become possible with another round of data collection. Additionally, this survey 
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could be extended systematically to more industries and countries since the literature suggests 

such differences. Finally, the concern with all ex-ante resilience measures is their validity. Thus, 

a real disruption is needed to see if the companies that perceived themselves as resilient fare 

better than the non-resilient companies. 

For Chapter 3, we also see multiple routes for future extensions. The current setup with the 

DQN algorithm can be expanded step by step, for instance, by enlarging the action space to 

enable greater step sizes. Moreover, the reward function can be adapted to include more 

operational parameters that might be of second-order relevance to WIPs. To take the approach 

beyond DQN, different algorithms can be applied and benchmarked. The literature on RL 

makes fast advancements, and new algorithms are regularly developed and tested in game 

environments. It would be exciting to see their application with real process data. Next, we 

would like to see the implementation of our RL agent in the real environment to confirm its 

superior performance. Finally, RL should be brought to more control problems beyond WIPs, 

for instance, in other power plants with combustion processes.  

The case study in Chapter 4 provides hands-on guidance for AI adoption. Since it was 

gathered across companies from one industry, we would like to see similar analyses for other 

industries that might have other challenges with their AI readiness, such as their data strategy. 

Moreover, implementing other AI technologies should be studied since AI technologies differ 

vastly in terms of resource needs and complexity. These research paths could be combined to 

create an overarching AI readiness and adoption framework that helps professionals understand 

their current level of AI readiness and the needed level based on certain types of technologies. 

Finally, while we looked at organizational resilience and AI separately, we also see that AI 

technologies can enable resilience. Future research could be specifically devoted to directly 

testing the link between AI and resilience in companies, industries, or economies. AI might 

help solve some of the complex problems that bring uncertainty and disruptions to companies. 

In conclusion, we see many exciting ways to extend this work, highlighting the importance 

of the presented topics and the need for further research. We believe that resilience and AI are 

more than just trendy topics: They are here to stay and will affect many areas of our lives. 
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A APPENDIX TO CHAPTER 2 

A. 1: Survey questions, in original language [answering options] 

1. Mein Unternehmen ist im letzten Jahr mit internen Störungen (Mitarbeiterfluktuationen, 

Maschinenausfälle, …) gut umgegangen. 

[stimme nicht zu; stimme eher nicht zu; neutral; stimme eher zu; stimme voll zu] 

2. Mein Unternehmen ist im letzten Jahr mit externen Störungen (Lieferkettenstörungen, 

politische Konflikte, …) gut umgegangen. 

3. Mein Unternehmen ist auf interne Störungen (Mitarbeiterfluktuationen, 

Maschinenausfälle, …) gut vorbereitet. 

4. Mein Unternehmen ist auf externe Störungen (Lieferkettenstörungen, politische 

Konflikte, …) gut vorbereitet. 

5. Mein Unternehmen erwartet im nächsten Jahr erhebliche interne Störungen 

(Mitarbeiterfluktuationen, Maschinenausfälle, …). 

6. Mein Unternehmen erwartet im nächsten Jahr erhebliche externe Störungen 

(Lieferkettenstörungen, politische Konflikte, …). 

7. Welcher Industrie würden Sie Ihr Unternehmen zuordnen? 

[Herstellung von Kraftwagen und Kraftwagenteilen; Herstellung von 

Metallerzeugnissen (inkl. Metallerzeugung und -bearbeitung); Herstellung von 

Datenverarbeitungsgeräten, elektronischen und optischen Erzeugnissen, elektrischen 

Ausrüstungen; Herstellung von pharmazeutischen Erzeugnissen; Herstellung von 

Nahrung, Getränken und Futtermitteln; Herstellung von Textilien, Bekleidung, Schuhen 

und Lederwaren; Herstellung von chemischen Erzeugnissen; Maschinenbau; 

Mineralölverarbeitung; Herstellung von Möbeln; Herstellung von Glas und Glaswaren, 

Keramik, Verarbeitung von Steinen und Erden; Herstellung von sonstigen Waren] 

8. Wie hoch war der Umsatz Ihres Unternehmens im letzten Jahr? 

[< 10 Mio. €; 10-50 Mio. €; 50-100 Mio. €; 100-500 Mio. €; 500 Mio. € - 1 Mrd. €; 

1-5 Mrd. €; >5 Mrd. €] 

9. Wie viele Beschäftigte hat Ihr Unternehmen? 

[< 100; 100-250; 250-500; 500-1,000; 1,000-5,000; 5,000-10,000; > 10,000] 

  



APPENDIX TO CHAPTER 2 

66 

 

A. 2: Survey questions, translated [answering options] 

1. My company has dealt well with internal disruptions (employee fluctuations, machine 

breakdowns, …) in the past year. 

[disagree strongly; disagree somewhat; neutral; agree somewhat; agree strongly] 

2. My company has dealt well with external disruptions (supply chain disruptions, political 

conflicts, …) in the past year. 

3. My company is well prepared for internal disruptions (employee fluctuations, machine 

breakdowns, …). 

4. My company is well prepared for external disruptions (supply chain disruptions, 

political conflicts, …). 

5. My company expects significant internal disruptions (employee fluctuations, machine 

breakdowns, …) in the next year. 

6. My company expects significant external disruptions (supply chain disruptions, political 

conflicts, …) in the next year. 

7. To which industry would you classify your company? 

[Manufacture of motor vehicles; manufacture of fabricated metal products (incl. basic 

metals and fabricated metal products); manufacture of computers, electronic and optical 

products, electrical equipment; manufacture of pharmaceuticals; manufacture of food 

products, beverages and tobacco; manufacture of textiles, apparel, footwear and leather 

products; manufacture of chemicals and chemical products; machinery and equipment; 

manufacture of refined petroleum products; manufacture of furniture; manufacture of 

glass and glass products, ceramics and related products; manufacture of other products]. 

8. What was the turnover of your company last year? 

[< 10 m. €; 10-50 m. €; 50-100 m. €; 100-500 m. €; 500 m. € - 1 bn. €; 1-5 bn. €;  

>5 bn. €] 

9. How many employees does your company have? 

[< 100; 100-250; 250-500; 500-1,000; 1,000-5,000; 5,000-10,000; > 10,000] 
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B APPENDIX TO CHAPTER 3 

B. 1: Variables in the data set and their ranges 

Variables Mean Min. Max. Unit 

Control variables     

Air flap 1 45.2 1.3 47.3 % 

Air flap 2 65.5 1.2 81.9 % 

Air flap 3 83.6 28.9 100 % 

Air flap 4 40.4 1.1 100 % 

Air flap 5 20.5 0.9 100 % 

Secondary air flap (front) 5,100 4,431 8,432  

Secondary air flap (back) 3,144 2,736 5,328  

Swirl flap primary airflow 1 38.1 14.9 61.1 % 

Swirl flap primary airflow 2 38.1 14.9 61.1 % 

Load factor 58.4 0 94.0 % 

Load regulator 10.4 8.9 11.6 % 

O2 controller 49.7 49.7 50.0 % 

Performance variables     

O2 level 8.3 3.7 14.2 % 

Steam output 25.6 10.8 39.6 t/h 

Observation variables     

Primary air volume 40,025 26,788 50,139 m3/h 

Secondary air volume (front) 5,114 0 8,659 m3/h 

Secondary air volume (back) 3,151 0 5,422 m3/h 

Primary air pressure 3.3 -0.4 6.6 mbar 

Secondary air pressure 79.3 2.3 99.2 mbar 

Drum pressure 41.9 39.4 45.0 bar 

Dynamic pressure -0.6 -1.7 1.1 mbar 

Air pressure roller 1 -0.5 -2.0 1.1 mbar 

Air pressure roller 2 1.1 -1.4 5.0 mbar 

Air pressure roller 3 1.0 -1.1 5.0 mbar 

Air pressure roller 4 -0.7 -2.5 4.2 mbar 

Air pressure roller 5 -1.5 -2.5 2.6 mbar 

Boiler temperature 981 826 1,091 °C 

O2 in boiler 10.0 0.2 15.2 % 

CO in boiler 15.9 0 675 mg/m3 

CO in chimney 22.7 0 300 mg/m3 

Steam pressure 38.0 36.0 38.9 bar 

Steam temperature 396 364 413 °C 
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B. 2: Final network architecture 

 

 

 

B. 3: Hyperparameters of the digital twin 

Hyperparameter Value 

PCA factor 0.995 

Batch size 256 

Optimizer RMSProp 

Learning rate 0.001 

Patience 100 

Best epoch 402 

 

 

B. 4: Hyperparameters for training of DQN algorithm 

Hyperparameter Value 

Training episodes 334 

Episode length (i.e., steps) 120 

Batch size 32 

Gamma 0.99 

Learning rate 0.0005 

Final epsilon 0.02 

Exploration fraction 0.1 

Replay buffer size 50,000 

Training frequency 4 

Target network update (every XX steps) 600 

Stacks 4 

Learning starts after XX steps 1200 
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