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1 Chapter 1. Introduction

Chapter 1

Introduction

Within the broad field of combinatorial optimization, sequencing and scheduling problems play

a crucial role in manufacturing and service industries in order to maintain operational efficiency

and competitiveness in the marketplace. Effective sequencing and scheduling can help to meet

shipping dates and therefore prevent loss of goodwill or ensure an efficient use of the available

resources (Pinedo, 2016). Nowadays, the significant increase in computing power over the last

decades has made it possible to consider more complex problems and to develop sophisticated

techniques to tackle those in practice.

Therefore, as a response to recent developments in industry, the integration of new aspects

into classical scheduling problems shall be the subject of this dissertation. To be precise, the

first major contribution is the consideration of new scheduling problems including the job delivery

aspect in parallel machine environments to address the trend of more service-oriented production

systems. Another important development in industry is to include the energy consumption and

cost into machine scheduling decisions due to a rising environmental awareness. In response, the

investigation of energy costs in the context of a flexible job shop environment constitutes the

second major contribution of this thesis. The combinatorial optimization problems considered in

this work belong to the complexity class of NP-hard problems, i. e. it is very unlikely that there

exists an exact algorithm with polynomially bounded runtime. Consequently, the objective is not

only to formalize these problems and to devise mathematical programming formulations, which

can determine optimal solutions for small-sized problem instances, but also to conduct theoretical

problem analyses based on which sophisticated (meta-)heuristic approaches can be developed in

order to obtain good solutions for problem instances of practical size within reasonable time.

The dissertation is organized as follows: In Chapter 2, an identical parallel machine scheduling
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problem with machine-dependent delivery times is considered, where the objective is to minimize

the total weighted tardiness. A mixed integer liner programming (MILP) formulation is proposed

for this problem as well as a variable neighborhood search (VNS) and a memetic algorithm (MA).

Furthermore, structural properties of the problem are used to reduce the computational cost of local

search and to improve the VNS. In a computational study, it is shown that the VNS outperforms

the other solution approaches.

The delivery aspect considered in Chapter 2 is extended in Chapter 3, where job-machine-

dependent delivery times in an unrelated parallel machine environment are studied with the ob-

jective of total weighted completion time minimization. The problem is formulated as a binary

quadratic assignment program and a tabu search (TS) algorithm is proposed, that employs an

efficient data structure. In a computational study, the TS is compared with a modified version of

the VNS approach from Chapter 2.

In Chapter 4, the problem studied in Chapter 2 is generalized as an unrelated parallel machine

total weighted tardiness problem with eligibility constraints and job-machine-dependent delivery

times. An MILP formulation is developed and theoretical analyses, that incorporate previous find-

ings from Chapter 2, are conducted to derive properties, that are used to improve the performance

of a VNS scheme. In a computational study, the integration of the theoretical results into the VNS

is investigated and the VNS scheme is compared with the application of commercial solver software

to the MILP as well as a constructive heuristic.

Finally, Chapter 5 deals with the total energy cost (TEC) minimization of flexible job shop

schedules when time-of-use electricity tariffs (TOU) are present, subject to an upper bound on the

makespan. Additionally, the premise of a given machine allocation and sequence of operations,

that may not be changed, is imposed. The corresponding optimization problem is formulated as

an MILP and analyzed from a theoretical perspective. Several TOU constellations are examined

for which optimal solutions can be determined in polynomial time. For the general TOU case, op-

timality properties are formulated, based on which heuristic procedures are devised. The proposed

solution approaches are compared in a computational study and the potential of TEC savings

through a relaxation of the makespan is investigated.
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Chapter 2

Solving Parallel Machine Problems with Delivery

Times and Tardiness Objectives*

2.1 Introduction

In most manufacturing and distribution systems, semi-finished jobs are transferred from one facility

to another for further processing or finished jobs are delivered to the customer. In the latter

case, the job completion time is defined as the time by which the job arrives at the customer.

Therefore, job processing and delivery must be carefully coordinated to achieve ideal overall system

performance (Lee and Chen, 2001). This becomes especially important for large companies, which

operate on a global scale and whose production resources are geographically distributed. In global

supply chains it often occurs that jobs are shipped from these production facilities to a centralized

warehouse or distribution center for further use. This study is also inspired by similar structures in

the context of cloud manufacturing (CM). CM arises as a new manufacturing paradigm through the

shift from production-oriented to service-oriented manufacturing. In CM, manufacturing resources

are managed in a centralized way encapsulated in cloud services and made available to clients,

who can use these resources according to their requirements (Xu, 2012). For further reading on

CM, please refer to Wu et al. (2013), Zhang et al. (2014b), or Wu et al. (2015). To be precise,

we are motivated by the example of a cloud garment manufacturing company which utilizes cloud

manufacturing resources to produce customized suits. Customers can design the details of their suit

exactly as they want and place their orders via a mobile application. After batching and assigning

the orders to its nationwide factories, the company must guarantee a delivery within 10 days. In

*This chapter is based on the paper Solving Parallel Machine Problems with Delivery Times and Tardiness

Objectives, which is published in the journal Annals of Operations Research and cited as Maecker and Shen (2020).
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terms of scheduling, these facilities can be regarded as parallel machines where the delivery of a job

is affected by the geographical location of the respective machine. Therefore, the delivery aspect

has to be taken into account when making decisions regarding the assignment of jobs to machines.

However, traditional scheduling models often ignore this important factor. Particularly, the case

of delivery times, which depend on distributed production resources, requires more investigation.

To address this problem, in this research, we formulate a parallel machine problem where

a machine-dependent delivery time (MDT) occurs after processing a job on a machine and the

objective is to minimize the total weighted tardiness (TWT). Since the parallel machine total

tardiness problem (PMTT) is NP -hard in the strong sense (Pfund et al., 2004), this problem is

NP -hard in the strong sense, too. Thus, finding an algorithm which provides an optimal solution

in polynomially bounded time is very unlikely.

This chapter is organized as following: First, we present a review on related machine scheduling

literature involving delivery times as well as total (weighted) tardiness minimization. Thereafter, a

mixed integer linear programming formulation (MILP), which is based on a problem transformation

and does not require machine-indexed decision variables, is proposed for the problem. To develop

a solution approach for large-sized instances, we design a variable neighborhood search (VNS)

algorithm, that uses fast evaluation techniques (FET) during local search (LS). These FETs calcu-

late only the objective value difference based on neighborhood-specific rules and therefore lead to

significantly reduced requirement on computing power. To compare the single-solution-based VNS

against other approaches, we propose a memetic algorithm (MA) as well as an Apparent Tardiness

Cost (ATC) heuristic and test these (meta-)heuristics on a large set of randomly generated test

instances. Additionally, the CPLEX solver is run on a set of small instances and results regarding

the computational benefit of our FETs are presented.

2.2 Related Literature

In this section, first, we present a comprehensive review on related literature considering machine

scheduling problems involving delivery times. Thereafter, we summarize relevant studies concerned

with total (weighted) tardiness minimization.

Maggu and Das (1980) first consider job transportation in a two-machine flow shop makespan

problem where job-dependent transportation times occur between the processing stages and trans-

portation capacity is unlimited. Both Potts (1980) and Hall and Shmoys (1992) study the problem

of scheduling jobs on a single machine with release dates and job-dependent delivery times to min-
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imize the time by which all jobs are delivered and provide heuristics with worst case analysis. The

parallel machine case of this problem is considered by Carlier (1987). A worst case analysis for

Jackson’s rule (Jackson, 1955) for this problem is provided as well as a branch and bound (B&B)

algorithm. A similar problem with identical release dates is studied by Woeginger (1994), who

proposes several list scheduling heuristics with worst case analysis. For the problem considered

by Carlier (1987), Gharbi and Haouari (2002) develop another B&B procedure and Gharbi and

Haouari (2007) improve the performance of Jackson’s rule through a preprocessing method. Fur-

thermore, Mateo et al. (2018) study a bi-objective parallel machine problem with job release dates,

delivery times, and eligibility constraints, where a penalty is induced depending on the quality of

the machine processing a job. An algorithm is proposed to find an approximate Pareto Front for

minimization of makespan and the total penalty.

An on-line scheduling approximation algorithm (AA) for the single machine case with release

dates to minimize the time by which all jobs are delivered is proposed by Hoogeveen and Vestjens

(2000) and later improved by Tian et al. (2008). Tian et al. (2007) consider a similar problem

on a single batch processing machine with release dates and delivery times and develop on-line

AAs for the bounded and unbounded case. Variations of this problem are also studied and solved

through on-line AAs by Yuan et al. (2009), Fang et al. (2011a), Tian et al. (2011), and Tian et al.

(2012). Fang et al. (2011b) consider this problem on parallel batch machines and solve it using

AAs. Another online AA is proposed by Liu and Lu (2015) for the case with two identical machines.

Lee and Chen (2001) define two types of scheduling problems with job delivery where the trans-

portation capacity is limited in terms of both available number of vehicles and vehicle capacity.

Type-1 transportation considers job transportation inside a manufacturing facility between pro-

cessing stages and type-2 transportation takes place between the facility and a customer area. In

both cases, jobs share a common delivery time and the objective is to minimize the makespan. A

complexity analysis is presented for single machine, parallel machine, and flow shop environments.

Chang and Lee (2004) study type-2 transportation for the one and two machine case with jobs that

require different amounts of space on the transportation vehicle and develop AAs. Li et al. (2005)

investigate an extension of the problem by Chang and Lee (2004) for the single machine case, where

multiple customer areas exist to which jobs are delivered by a single vehicle with limited capacity

and the objective is to minimize the sum of arrival times. Li et al. (2005) discuss the complexity of

the general case as well as special cases and propose a dynamic programming algorithm. For the

problem raised by Chang and Lee (2004), AAs are also proposed by He et al. (2006), Zhong et al.

(2007), Lu and Yuan (2008a), and Liu and Lu (2011) for the single machine case and by Su et al.

(2009) for the two machine case. Cakici et al. (2014) investigate a similar problem, where jobs are
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first processed on parallel machines and then delivered in batches by a single capacitated vehicle

with a limited number of trips. Heuristics are proposed for minimization of total weighted comple-

tion time. Wang and Cheng (2007) incorporate machine unavailability into the model by Chang

and Lee (2004) and propose AAs for the single and parallel machine case. Lu and Yuan (2008b)

propose an AA for the unbounded parallel batch machine case. Koulamas and Kyparisis (2010)

and Liu et al. (2012) study a single machine problem where jobs have past-sequence-dependent

delivery times proportional to their waiting time before processing and present polynomial-time

algorithms for multiple optimization criteria. For TWT minimization, Liu et al. (2012) develop

a polynomial time algorithm for a special case of the problem. Dong et al. (2013) present AAs

for type-2 problem on two machines and in open-shop production with one customer. Chen et al.

(2015) show, that the preemptive case of type-2 problem on identical parallel machines with one

customer is strongly NP-hard and propose an AA. A batch delivery scheduling problem with job

release dates on a single machine is considered by Ahmadizar and Farhadi (2015), where all jobs

of a batch are instantly delivered upon finishing the last job in the batch and the objective is to

minimize the sum of multiple cost components including delivery costs. To solve the problem, an

imperialist competitive algorithm is proposed. Pei et al. (2015) study a serial bounded batching

machine problem, where the job processing time is a linear function of its starting time. After

processing, batches are delivered on a single vehicle with limited capacity to a customer. Another

definition of job delivery times is presented by Chen et al. (2016) who investigate a parallel machine

problem where a set of delivery times are given and each delivery time needs to be assigned to an

individual job.

Most of the studies on machine scheduling with delivery times focus on makespan minimization,

while due-date-related criteria are almost left out of consideration. However, in order to measure

customer satisfaction and delivery efficiency, TWT is a more relevant objective. A vast amount

of literature covering parallel machine problems has been published over the past decades. How-

ever, the proportion of studies considering TWT minimization is rather limited in comparison to

completion- or flow time related objectives (Shim and Kim, 2007). Following, we present relevant

literature on the parallel machine problem with total (weighted) tardiness minimization.

With regards to the parallel machine TWT problem (PMTWT), multiple solution approaches

have been proposed. Alidaee and Rosa (1997) extend the Modified Due Date (MDD) rule by Baker

and Bertrand (1982) for the PMTWT. Another heuristic called PSK is developed by Panwalkar

et al. (1993) to minimize the mean tardiness on a single machine. PSK combines principles of

the Shortest-Processing-Time and Earliest-Due-Date rules. Koulamas (1997) develops the KPM-

heuristic which is an extension of PSK for the same problem on parallel machines. Furthermore,
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Vepsalainen and Morton (1987) introduce the ATC rule for the single machine TWT problem,

which has been applied to multiple other tardiness-related scheduling problems. For the PMTT

problem, Biskup et al. (2008) develop several efficient heuristics. Furthermore, Lin et al. (2011)

apply modifications of MDD, KPM and ATC as well as a genetic algorithm to the unrelated

PMTWT. Azizoglu and Kirca (1998), Yalaoui and Chu (2002), and Shim and Kim (2007) inves-

tigate the PMTT and develop B&B procedures. Another B&B algorithm is proposed by Liaw

et al. (2003) for the unrelated PMTWT. Srinivasa Raghavan and Venkataramana (2009) use ant

colony optimization (ACO) to solve the PMTWT. ACO algorithms are also implemented for the

unrelated PMTWT problem by Zhou et al. (2007), Mönch (2008), and Lin et al. (2013).

To conclude, among literature considering delivery times in machine scheduling, due-date-

related criteria are hardly considered even though due dates play a major role in supply chain

environments. Additionally, the case of MDT has not yet been discussed. To the best of our

knowledge, this is the first study to address the problem of TWT minimization on parallel ma-

chines with MDT.

2.3 Problem Formulation

The problem can be described as follows: Given are a set of n jobs j = 1, . . . , n and m identical

machines h = 1, . . . ,m. Each job needs to be processed by one and only one machine without

interruption while each machine can handle exactly one job at a time. All jobs are available at

time zero. Each job j has a specific processing time pj , due date dj , and weight wj . A machine-

dependent delivery time qh occurs immediately upon completing a job on the respective machine.

While a job is being transferred, the machine may already start processing the next job in line.

The transportation capacity is assumed to be unlimited in terms of both vehicle availability and

vehicle capacity. The problem is to determine a schedule π, that minimizes the TWT (
∑

wjTj).

The tardiness of a job Tj is defined as Tj = max{Cj − dj , 0} with Cj being the time job j reaches

the customer. Following the conventional three-field-notation by Graham et al. (1979), the problem

can be expressed as Pm|qh|
∑

wjTj .

2.3.1 A Mixed Integer Linear Programming Formulation

We formulate the Pm|qh|
∑

wjTj problem as an MILP model. We are able to omit machine-

dependent variables through a transformation of the problem into a regular PMTWT problem:
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For each machine, a dummy job is defined with completion time equal to the delivery time of

the respective machine, resulting in a total of n + m jobs, where jn+1, . . . , jn+m are the dummy

jobs with Cn+h = qh (h = 1, . . . ,m). Each dummy job is scheduled at the first position of the

machine and therefore effectively increases the completion times of all following jobs by the machine

delivery time as depicted in Figure 2.1. This way, delivery times do not need to be considered for

the completion time calculation of the remaining jobs. This structural property as well offers

opportunities for the design of FETs, which will be discussed in Section 2.4.3. With regards to

the mathematical formulation, this transformation allows the problem to be modeled similar to

regular PMTWT problems by using a binary precedence variable xij with

xij =

 1, if job j is sequenced immediately after job i,

0, otherwise.
(2.1)

Note that xij only needs to be defined for i = 1, . . . , n + m and j = 1, . . . , n + 1, since one job

(n + 1) is sufficient to mark the end of the schedule on each machine. The problem can now be

formulated as following:

min

n∑
i=1

wjTj (2.2)

subject to

n+1∑
j=1;j ̸=i

xij = 1 i = 1, . . . , n+m; (2.3)

n+m∑
i=1;i ̸=j

xij = 1 j = 1, . . . , n; (2.4)

Cn+h ≥ qh h = 1, . . . ,m; (2.5)

Cj ≥ Ci + pj −H(1− xij) i = 1, . . . , n+m; j = 1, . . . , n; i ̸= j; (2.6)

Tj ≥ Cj − dj j = 1, . . . , n; (2.7)

Tj ≥ 0 j = 1, . . . , n; (2.8)

xij ∈ {0, 1} i = 1, . . . , n+m; j = 1, . . . , n+ 1. (2.9)

The objective (2.2) is to minimize the TWT. Constraint (2.3) states, that all jobs and dummy

jobs must have exactly one following job. According to (2.4), all non-dummy jobs must be preceded

by exactly one job which is either a dummy job or a regular job. Note that combining (2.3) and

(2.4) ensures, that dummy jobs are scheduled first. Inequality (2.5) defines the completion times of

the dummy jobs. In constraint (2.6), the completion time of all remaining jobs is calculated based
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on the completion time of the preceding job in the sequence, where H is a sufficient large number.

Constraints (2.7) through (2.9) define the tardiness and precedence variable. An upper bound for

H can be calculated by

H =

n∑
j=1

pj + max
h=1,...,m

{qh}.

Note that our MILP is also valid if n < m. In this case, jobs are assigned to the machines with n

smallest delivery times. On the remaining machines, dummy jobs at the start of the schedule are

immediately succeeded by dummy job n+ 1 so that equality constraints (3) hold. An alternative

formulation utilizing a machine-indexed variable, that marks the first job on each machine, can be

found in the appendix.

2.4 Variable Neighborhood Search

VNS is an LS-based metaheuristic that searches changing neighborhood structures for improving

solutions to escape from local optima (Mladenović and Hansen, 1997). For a recent overview

of basic VNS schemes and variants, the reader is referred to Hansen et al. (2017). VNS has

been successfully applied to multiple combinatorial optimization problems (Hansen et al., 2010),

including various parallel machine scheduling problems ((De Paula et al., 2007), (Driessel and

Mönch, 2011), (Cheng et al., 2012)). Furthermore, VNS is used in multiple hybrid approaches

for parallel machine problems (see e. g. (Anghinolfi and Paolucci, 2007), (Chen and Chen, 2009),

(Behnamian et al., 2009), (Chen et al., 2013)). The basic structure of our VNS is given in Algorithm

1. Note that our VNS procedure differs from the conventional basic VNS structure such that after

each LS, the resulting locally optimal solution π′′ is kept even if it is worse than the incumbent

solution π. This design facilitates diversification during the search process so that unpromising

regions of the search space may be escaped more quickly. Furthermore, we use neighborhood-

Transformation

j1 j2 j3

qh qh qh

jn+h j1 j2 j3
Time

Machine h

Machine h

Figure 2.1: The problem can be transformed by defining a dummy job which is sequenced at the
first position of the machine with completion time equal to the machine delivery time. For all
remaining jobs, delivery times are now omitted.
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specific FETs in our LS to speed up the search process. In the following, we will describe the

components of our VNS.

2.4.1 Neighborhood Structures

In our VNS, a solution π is represented by m job sequences πh (h = 1, . . . ,m). Let S denote the set

of all feasible solutions for the problem at hand. We use a total of lmax = 4 different neighborhoods

Nl(π) ⊆ S (l = 1, . . . , lmax). A neighborhood is defined by how an incumbent solution is altered

to generate a new feasible solution. These neighborhoods are commonly used in VNS algorithms

for parallel machine scheduling problems and consist of job swaps and job insertion moves:

• N1 : Swap two jobs on the same machine

• N2 : Swap two jobs across two different machines

• N3 : Reinsertion of a job on the same machine

• N4 : Reinsertion of a job on a different machine

The sequence in which different neighborhoods are visited is important for the success of VNS.

The proposed sequence was determined based on preliminary experiments.

Algorithm 1 Basic VNS structure (I)

1: Input Neighborhood structures Nl (l = 1, . . . , lmax), random initial solution π0;
2: π = π0;
3: fbest = f(π);
4: while Time limit not reached do
5: l = 1;
6: repeat
7: Shaking: Pick random solution π′ from Nl(π);
8: Local Search: Find local optimum π′′ in Nl(π

′);
9: if f(π′′) < fbest then

10: fbest = f(π′′);
11: l = 1;
12: else
13: l = l + 1;
14: end if
15: π = π′′;
16: until l > lmax

17: end while
18: Return fbest;
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2.4.2 Shaking and Local Search

At the start of each iteration a random solution π′ is picked from the current neighborhood Nl(π)

of the incumbent solution π. This step is called Shaking and allows the search to escape from local

optima. Afterwards, an LS is performed on π′ until the local optimum π′′ is reached. The LS

systematically examines all possible moves within the current neighborhood Nl(π) and uses FETs,

which will be presented in the next section, to evaluate neighborhood solutions. Furthermore,

a first improvement strategy is employed to reduce computational effort. In this strategy, the

first improving solution found is accepted instead of evaluating a complete neighborhood. The LS

returns the local optimum π′′, which then becomes the incumbent solution π of the next iteration.

fbest is used to record the best found objective value. Each time, a new best solution is found,

the search continues with neighborhood N1 (l = 1) in the next iteration. Otherwise, the search

switches to the next neighborhood structure in line. If all neighborhoods have been visited, the

search continues with the first neighborhood. This procedure is repeated until a prescribed time

limit is reached.

2.4.3 Fast Evaluation Techniques for Local Search

LS is a computationally costly procedure due to a high number of evaluations of neighboring

solutions. To reduce this computational effort, we design neighborhood-specific FETs, that exploit

the circumstance, that only a small subset of jobs is affected by neighborhood moves. Therefore,

it is important to define dedicated neighborhood structures. For example, instead of defining a

neighborhood which consists of swapping any two jobs, it is advantageous to distinguish the cases,

where these two jobs are located on the same machine and on different machines, since for each

situation an individual FET can be designed. Hence, the exploitation of problem-specific properties

is crucial to the efficient implementation of our VNS. Other FETs can be found in Tasgetiren et al.

(2009) and Xu et al. (2014) for the single machine TWT problem with sequence-dependent setup

times. Note that our FETs are also applicable to the PMTWT problem without delivery times.

The basic FET procedure is presented in Algorithm 2. Based on the parameters of the move in

a certain neighborhood structure, e. g., the positions of two jobs to be swapped in a sequence, the

set of affected jobs K is determined. For these jobs, the new completion times C ′
j induced by the

move can be calculated based on neighborhood-specific rules. After calculating the new tardiness

values T ′
j for the affected jobs, the total objective value difference ∆ induced by the move can be

calculated as the weighted sum of differences between new and old tardiness values. If ∆ < 0, the
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move improves the current solution and is executed. The objective value is incremented by ∆.

In the following, we describe how to determine set K and calculate C ′
j for the different neigh-

borhood structures used in our VNS. We use [i]h to represent the job scheduled at the i-th position

on machine h and [l]h to represent the job at the last position on machine h.

• Swapping jobs on one machine (N1): When swapping jobs on one machine, the positions

of two jobs [i]h and [j]h in the sequence of a machine h are interchanged. For i < j,

K = {[i]h, [i+ 1]h, . . . , [j]h}. Let δ = p[i]h − p[j]h , then

C ′
j = Cj − δ, j ∈ K \ {[i]h, [j]h}, (2.10)

C ′
[i]h

= C[j]h , (2.11)

and

C ′
[j]h

= C[i]h − δ. (2.12)

• Swapping jobs on two machines (N2): This move exchanges the positions of two jobs [i]h

on machine h and [j]h′ on another machine h′. In this case, K = K1 ∪ K2, where K1 =

{[i]h, [i+ 1]h, . . . , [l]h} and K2 = {[j]h′ , [j + 1]h′ , . . . , [l]h′}. Let δ = p[i]h − p[j]h′ , then

C ′
j = Cj − δ, j ∈ K1 \ [i]h, (2.13)

C ′
j = Cj + δ, j ∈ K2 \ [j]h′ , (2.14)

C ′
[i]h

= C[j]h′ + δ, (2.15)

Algorithm 2 Basic FET structure

1: Input: Solution π with objective value f , parameters for move to solution π′ ∈ Nl(π)
2: Determine set K of affected jobs;
3: for j ∈ K do
4: Calculate new completion time C ′

j ;

5: Calculate new tardiness T ′
j = max

{
C ′

j − dj , 0
}
;

6: end for
7: ∆ =

∑
j∈K

wj

(
T ′
j − Tj

)
;

8: if ∆ < 0 then
9: π = π′;

10: f = f +∆;
11: end if
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and

C ′
[j]h′ = C[i]h − δ. (2.16)

• Job insertion on the same machine (N3): Job insertion on the same machine consists of

selecting a job [i]h on some machine h and reinserting it at another position j in the sequence.

Let δ = p[i]h . If j < i holds, indicating that job [i]h is moved to the left, then K =

{[j]h, [j + 1]h, . . . , [i]h} with

C ′
j = Cj + δ, j ∈ K \ [i]h, (2.17)

and

C ′
[i]h

= C[j]h +
(
p[i]h − p[j]h

)
. (2.18)

In the case of j > i, K = {[i]h, [i+ 1]h, . . . , [j]h} with

C ′
j = Cj − δ, j ∈ K \ [i]h, (2.19)

and

C ′
[i]h

= C[j]h . (2.20)

• Job insertion on other machine (N4): Job insertion on another machine consists of selecting a

job [i]h from the sequence on a machine h and reinserting it at some position j in the sequence

on another machine h′. In this case, K = K1 ∪K2, where K1 = {[i]h, [i+ 1]h, . . . , [l]h} and

K2 = {[j]h′ , [j + 1]h′ , . . . , [l]h′}. Let δ = p[i]h , then

C ′
j = Cj − δ, j ∈ K1 \ [i]h, (2.21)

C ′
j = Cj + δ, j ∈ K2, (2.22)

and

C ′
[i]h

= C[j]h′ +
(
p[i]h − p[j]h′

)
. (2.23)

There are two special cases to consider: If no jobs are scheduled to machine h′, then

C ′
[i]h

= p[i]h + qh′ . (2.24)
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Furthermore, if [i]h is inserted at the end of the schedule on h′, then

C ′
[i]h

= C[j−1]h′ + p[i]h . (2.25)

2.5 Memetic Algorithm

Next, we design an MA as a second approach to solve the problem at hand. As one of the

most promising population-based metaheuristics, MA is used here to compare with the trajectory

method VNS. The term memetic algorithm was introduced by Moscato and Norman (1992) and

refers to evolutionary algorithms incorporating LS procedures to locally improve individuals of the

population. A formal description of MAs is given in Radcliffe and Surry (1994). In our MA, the

local improvement phase, often referred to as hill-climbing, improves each offspring generated in

the recombination phase through a standard LS procedure.

2.5.1 Representation and Initialization

The population consists of Pn individuals with a permutation-like representation of solutions, where

each individual i consists of m job sequences πi
h (h = 1, . . . ,m) corresponding to the machines.

The initial population is randomly generated.

2.5.2 Evaluation and Selection

A fitness value fi is associated with each individual. Since we deal with a minimization problem,

the fitness of an individual is given by the reciprocal of its objective value:

fi =
1∑n

j=1 wjTj
. (2.26)

The population size is comparably small in our experiments and therefore prone to sampling errors,

which can lead to premature convergence. Therefore, we use the stochastic universal sampling

algorithm by Baker (1987) for selection of parent individuals, since the minimum and maximum

number of times an individual may be selected is bounded in this approach. Additionally, we

employ an elitist survival strategy, where the best found individual is always kept.
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2.5.3 Recombination

Recombination consists of crossover and mutation. The crossover operator combines two parent

individuals to generate an offspring solution and the mutation operator alters single individuals. In

total, Pc×Pn offspring individuals are generated by crossover, where Pc is the crossover probability,

and Pm×Pn offspring solutions are generated by mutation, where Pm is the mutation probability,

respectively.

For crossover, we use the subschedule-preservation crossover operator (SPC) proposed by Cheng

et al. (1995). SPC randomly selects two parents from the pool of parents and copies the entire job

sequence of a random machine from the first parent to the offspring solution as well as the overall

job-machine-partitioning. According to this partitioning, the remaining jobs are then copied from

the second parent by a left-to-right scan. Furthermore, single parent individuals are randomly

selected and altered by the mutation operator through the reinsertion of a random job at another

random position in the schedule.

2.5.4 Hill-Climbing

In the hill-climbing phase, a standard LS procedure with first improvement strategy is applied to

each offspring solution, that systematically examines all possible job swaps and insertion moves

on one or two machines. After hill-climbing, each offspring solution constitutes a locally optimal

solution. Finally, the new generation is randomly selected from the offspring and the former

generation while the best found solution is always kept.

2.6 Computational Results

Metaheuristic experiments were conducted on an Intel Xeon CPU E5-2697 v3 computer with

2.60GHz and 128GB RAM. Algorithms were coded in C++ and compiled by the g++-compiler.

Furthermore, we used no multi-threading. Results for metaheuristic approaches were generated as

the best result out of 5 independent runs. We conducted experiments for three levels of maximum

computing time: 5, 10, and 30 seconds. The parameter setting for the MA was determined in

preliminary tests with Pn = 10, Pc = 0.2, and Pm = 0.8. For our ATC heuristic, reported

results represent the best solution out of 10 runs with different k-values: k ∈ {0.5, 1, . . . , 5}. The

mathematical model from Section 2.3 was implemented in IBM ILOG CPLEX v12.8 using the

CPLEX C++ API. The CPLEX tests were executed on the same hardware as metaheuristics with
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number of cores limited to 12 and a prescribed time limit of 30 minutes per run, since the intention

was to use CPLEX to generate benchmark results.

2.6.1 Problem Instance Data

We generated problem instances with different sizes m ∈ {5, 10, 20} and n = α × m, where the

factor α represents the average number of jobs per machine with α ∈ {4, 8, 16}. Processing times

were chosen from the uniform distribution pj ∼ U(1, 100) and job weights from wj ∼ U(1, 10).

Furthermore, we used a modified version of the method proposed by Potts and Van Wassenhove

(1982) to determine due dates:

dj ∼ U

(
p̄

(
1− T − R

2

)
+ q̄, p̄

(
1− T +

R

2

)
+ q̄

)
, (2.27)

where T is the tardiness factor, R the relative range of due dates,

p̄ =
1

m

n∑
j=1

pj , and q̄ =
1

m

m∑
h=1

qh. (2.28)

We chose R ∈ {0.4, 0.8} and T ∈ {0.4, 0.8}. Moreover, we use three different machine delivery time

settings: qh ∼ U(1, 50), qh ∼ U(1, 100), and qh ∼ U(101, 200) to represent delivery times which are

smaller, similar to, and larger than processing times. In total, we have 108 different configurations,

for each one we generated 10 instances. Table 2.1 summarizes our instance data settings.

2.6.2 Comparison of VNS, MA, and ATC

In this experiment, we compare the performance of our single-solution-based metaheuristic VNS

and the population-based MA. We ran the tests with three different levels of maximum comput-

ing time to examine whether the maximum computing time affects the relative performance of

the approaches. Additionally, we report results of a heuristic approach based on the well-known

ATC rule. A detailed description of our ATC heuristic is given in Appendix 2.A.2. The relative

percentage deviation (RPD) is used for performance evaluation with

RPD =
Z − Z∗

Z∗ × 100, (2.29)

where Z is the best objective value found by an individual solution approach and Z∗ is the best

result among all approaches for each instance. Tables 2.2-2.4 report the results as average RPD
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(ARPD) depending on instance size, due date settings, and delivery times.

The results for the complete instance set in Table 2.2 show that VNS outperforms the MA for

all levels of computing time and the ATC heuristic. It can be observed that the ARPD increases

with problem size for all approaches, except for m = 5, where the results for α = 16 are better

than for α = 8 in the case of VNS and ATC. For m = 20, ATC results are better for α = 16 than

for α = 8 as well. In general, the ARPD for MA increases significantly stronger than for VNS and

ATC. The results of MA for large instances with n = 160 and n = 320 are non-competitive to

VNS.

Table 2.1: Test instance configurations (I)

Factor Level Count

Machines m m ∈ {5, 10, 20} 3

Jobs n
n = α×m,

3
α ∈ {4, 8, 16}

Processing times pj pj ∼ U(1, 100) 1

Weights wj wj ∼ U(1, 10) 1

Due date settings
T ∈ {0.4, 0.8} 2

R ∈ {0.4, 0.8} 2

Delivery times qh

qh ∼ U(1, 50)

3qh ∼ U(1, 100)

qh ∼ U(101, 200)

Total number of configurations 108

Table 2.2: ARPD results of VNS, MA, and ATC depending on problem size

Problem size 5 sec 10 sec 30 sec
m α ATC VNS MA VNS MA VNS MA
5 4 17.66 0.00 0.04 0.00 0.03 0.00 0.00

8 24.69 0.75 1.16 0.68 0.66 0.21 0.42
16 24.19 0.38 1.93 0.29 1.16 0.05 0.50

10 4 20.17 0.43 1.27 0.35 0.87 0.09 0.59
8 24.31 0.60 3.08 0.37 2.13 0.15 0.99
16 24.72 0.98 8.14 0.71 7.62 0.17 6.33

20 4 25.39 0.56 3.06 0.36 2.48 0.08 1.42
8 29.37 0.78 6.28 0.53 5.19 0.12 3.90
16 26.33 2.39 20.40 0.84 14.83 0.15 11.64

Mean 24.09 0.76 5.04 0.46 3.88 0.11 2.87
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With regard to the due date settings, Table 2.3 shows that instances with loose due dates

(T = 0.4) appear harder to solve than instances with tight due dates. Furthermore, for both tight

and loose due dates, the results are worse if a wide range of due dates (R = 0.8) is considered

compared to a small range. Moreover, the ARPD in the case of loose due dates with a wide range

is remarkably greater than that for all other due date settings.

Considering the results depending on the range of delivery times which are given in Table 2.4,

no definitive influence of the delivery times setting on the results of the three approaches can be

observed.

Table 2.3: ARPD results of VNS, MA, and ATC depending on due dates

Due dates 5 sec 10 sec 30 sec
T R ATC VNS MA VNS MA VNS MA

0.4 0.4 20.61 0.28 1.68 0.18 1.26 0.05 0.78
0.8 70.55 2.62 17.72 1.55 13.70 0.38 10.27

0.8 0.4 2.41 0.07 0.29 0.04 0.22 0.01 0.16
0.8 2.79 0.09 0.46 0.06 0.36 0.02 0.26

Table 2.4: ARPD results of VNS, MA, and ATC depending on delivery times

Delivery times 5 sec 10 sec 30 sec
qh ATC VNS MA VNS MA VNS MA

U(1, 50) 24.46 0.75 4.80 0.47 3.79 0.12 2.83
U(1, 100) 24.27 0.64 5.07 0.43 3.94 0.12 2.95
U(101, 200) 23.55 0.90 5.25 0.47 3.93 0.10 2.82

2.6.3 CPLEX Results for Small Instances

In addition, we solve small instances (m = 5, α ∈ {4, 8}) using the CPLEX solver, as reported in

Table 2.5. The ARPD values are calculated based on the metaheuristic results from Section 2.6.2

and the column Best reports the percentage of all instances per setting for which the CPLEX

solution was identical to the best found solution. Note that for no instance CPLEX found a better

objective value than the other approaches.

While for α = 4, CPLEX in some cases is able to match the best found solutions by the

metaheuristic approaches, it is consistently outperformed for the larger instances with α = 8.

Furthermore, CPLEX solutions confirm the observation from Section 2.6.2 that especially instances
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with loose and wide-ranged due dates are hard. Interestingly, in contrast to the metaheuristic

approaches, the performance of the model seems to be affected by the delivery times setting as in

most cases the ARPD increases for larger delivery times.

2.6.4 Computational Benefits of FET

In order to investigate the computational advantage of our FETs, we conducted experiments on a

subset of our test instances to compare FET with a normal recalculation of the objective value. For

each of the four neighborhood structures presented in Section 2.4.3, we designed straightforward

deterministic LS procedures, that start with a random initial solution and then systematically

examine neighborhood solutions. Each time an improving move is found, the current solution is

replaced by the corresponding neighborhood solution until a local optimum is reached. To ensure

comparability, we used predefined seed values to generate the initial solutions. Ten initial solutions

Table 2.5: CPLEX results for small instances: m = 5, α ∈ {4, 8}

Problem setting CPLEX
α T R qh Best ARPD
4 0.4 0.4 U(1, 50) 10% 2.12

U(1, 100) 10% 2.08
U(101, 200) 10% 4.35

0.8 U(1, 50) 70% 1.50
U(1, 100) 20% 4.54

U(101, 200) 0% 7.08
0.8 0.4 U(1, 50) 50% 0.05

U(1, 100) 70% 0.04
U(101, 200) 40% 0.43

0.8 U(1, 50) 80% 0.04
U(1, 100) 60% 0.15

U(101, 200) 0% 0.58
8 0.4 0.4 U(1, 50) 0% 17.65

U(1, 100) 0% 19.02
U(101, 200) 0% 38.90

0.8 U(1, 50) 0% 150.24
U(1, 100) 0% 82.99

U(101, 200) 0% 129.17
0.8 0.4 U(1, 50) 0% 2.46

U(1, 100) 0% 3.54
U(101, 200) 0% 5.55

0.8 U(1, 50) 0% 4.38
U(1, 100) 0% 5.26

U(101, 200) 0% 6.13
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were generated, for which an LS utilizing normal recalculation is first performed and afterwards

an LS using FET to evaluate moves. Since in both cases the LS is applied to the same initial

solutions, the search trajectory is identical for both methods. For each LS, we recorded the times

tnorm and tFET necessary to reach local optima for these ten different initial solutions.

Since the computational benefit of FET depends on the problem size, i. e., the number of jobs

and machines, we tested problems with 9 different sizes and 10 instances per size. We measure the

benefit of FET by the average benefit factor (ABF)

ABF =
tnorm
tFET

. (2.30)

Test results are reported in Table 2.6 for each problem size and neighborhood structure. Our tests

show significant benefits when integrating FETs. Specifically, the number of machines m affects

the ABF for all neighborhoods, as ABF increases for instances with more machines. This can be

explained by the fact that the number of machines, on which tardiness values of jobs need to be

recalculated, remains constant: Tardiness values of jobs change only on one machine for moves in

N1 or N3 and on two machines in N2 and N4. Assume that jobs are equally distributed among the

machines. In this case, the computational effort of normal recalculation increases with the number

of machines, whereas the effort in our FETs remains unchanged. Hence, the ABF increases with

m. Note that the effort necessary to identify all relevant jobs is negligibly small. As for the effect

of α on the ABF, similar results can be observed for N1 and N3 neighborhoods as well as for N2

and N4 neighborhoods. For N1 and N3, a strong and consistent increase of ABF can be observed

depending on the average number of jobs per machine. This suggests that the portion of jobs,

which are irrelevant for recalculation, becomes larger if the average number of jobs per machine

Table 2.6: Computational benefit of FET (ABF)

Problem size Neighborhood structure
m α N1 N3 N2 N4

5 4 5.26 5.35 7.40 10.17
8 13.08 14.44 8.40 10.37

16 21.33 23.02 9.30 10.44
10 4 12.37 12.91 15.26 19.62

8 24.49 27.01 16.85 19.55
16 37.86 41.39 18.25 20.12

20 4 22.56 24.51 30.72 37.78
8 39.80 48.15 33.10 37.84

16 61.56 73.29 36.01 39.09
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increases. In the case of N2 and N4 neighborhoods, however, there is only a slight effect of α on

the ABF.

2.7 Summary and Research Perspectives

In this research, we considered a parallel machine scheduling problem with machine-dependent

delivery times to minimize total weighted tardiness. An MILP without machine-indexed variables

was formulated. Furthermore, we proposed a VNS algorithm and designed FETs, that reduce

computational effort during the LS. In our experiments we compared multiple solution approaches

and showed that the proposed VNS outperforms an MA utilizing a standard LS and ATC heuristic

as well as the CPLEX solver for small instances. Moreover, it was observed that the test problem

size and due date setting affected the performance of all approaches, while the delivery time setting

only affected the performance of CPLEX. Additionally, we examined the benefit of integrating

problem-specific properties through our FETs in LS, which significantly reduces computing time.

The limitation of this work lies mainly in the delivery definition. While this offers opportunities

for exploiting structural properties in solution approaches, we suggest for future work to consider

general delivery conditions to reflect practical relevance. Additionally, even though our tests show

promising results, the VNS with FETs should be further tested against other methods and be

implemented for related problem settings to verify quality of this approach. In this context, it

would also be interesting to show whether mechanisms similar to the FET can be integrated in

other existing algorithms to further improve performance.
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2.A Appendix

2.A.1 Alternative MILP Formulation for Pm|qh|
∑

wjTj

The following MILP is an alternative to the formulation presented in Section 2.3 and explicitly

incorporates machine-dependent delivery times. It uses two binary decision variables xij with

xij =

 1, if job j is sequenced immediately after job i,

0, otherwise,
(2.31)

and yjh with

yjh =

 1, if job j is the first sequenced job on machine h,

0, otherwise.
(2.32)

Furthermore, a dummy job j = n + 1 is introduced with pn+1 = 0 that marks the end of the

schedule on each machine. The problem can now be formulated as follows:

Notation:

pj Processing time of job j

wj Weight of job j

dj Due date of job j

qh Delivery time of machine h

Cj Completion time of job j

Tj Tardiness of jobs j

H Sufficient large number

n Number of jobs

m Number of machines

min

n∑
i=1

wjTj (2.33)

subject to

n∑
j=1

yjh ≤ 1 h = 1, . . . ,m; (2.34)

m∑
h=1

yjh ≤ 1 j = 1, . . . , n; (2.35)

yjh +

n∑
i=1,i̸=j

xij = 1 j = 1, . . . , n; h = 1, . . . ,m; (2.36)
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n+1∑
i=1,i̸=j

xji = 1 j = 1, . . . , n; (2.37)

Cj ≥ (pj + qh)yjh j = 1, . . . , n; h = 1, . . .m; (2.38)

Cj ≥ Ci + pj −H(1− xij) i, j = 1, . . . , n; i ̸= j; (2.39)

Tj ≥ Cj − dj j = 1, . . . , n; (2.40)

xij ∈ {0, 1} i, j = 1, . . . , n; (2.41)

yjh ∈ {0, 1} j = 1, . . . , n; h = 1, . . . ,m; (2.42)

Cj , Tj ≥ 0 i = 1, . . . , n (2.43)

The objective (2.33) is to minimize the TWT. Constraints (2.34) and (2.35) ensure that at most

one job is assigned to the first position on each machine. Constraints (2.36) and (2.37) determine

job sequences. The completion time of the first jobs on machines is calculated by inequality (2.38)

while (2.39) defines the completion time for the remaining jobs, where H is a sufficient large

number. The tardiness of each job is calculated by inequality (2.40). Constraints (2.41) through

(2.43) define the variables.

The MILP was tested on the set of small instances described in section 6.3 as well. In a

direct comparison, a superiority of MILP performances could not be confirmed with statistical

significance.

2.A.2 ATC Heuristic for Pm|qh|
∑

wjTj

The ATC rule was originally proposed for the single machine PMTWT problem but can be applied

to other tardiness-related scheduling problems as well. The general idea of ATC is to calculate a

priority value Ij for each job, which increases as its slack, i. e., the remaining time until its due

date, reduces:

Ij =
wj

pj
exp

(
−max{dj − qh − pj − th, 0}

kp̄

)
, (2.44)

where k represents a look-ahead parameter, p̄ the average processing time of jobs, and th the current

workload of machine h. If jobs have no slack left, priority values equal shortest weighted processing

time. Our implementation of ATC for Pm|qh|
∑

wjTj is given in Algorithm 3.

In the first phase, an initial schedule is constructed using ATC. In each iteration, first, the fastest

machine is determined under consideration of machine delivery times. For each unscheduled job,

the priority value is calculated based on the current machine workload. Among all unscheduled
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Algorithm 3 ATC heuristic for Pm|qh|
∑

wjTj

1: Initialize: Workloads th = 0 (h = 1, . . . ,m), set of unscheduled jobs U = {1, . . . , n}
2: repeat
3: Determine fastest machine h∗ = arg min

h=1,...,m
{th + qh};

4: for all j ∈ U do

5: Calculate priority value: Ij =
wj

pj
exp

(
−max{dj−pj−qh−th,0}

kp̄

)
;

6: end for
7: Determine job j∗ from U such that Ij∗ = max

j∈U
{Ij};

8: (If ties exist, choose job with lowest index);
9: Schedule job j∗ at the first available position on machine h∗;

10: Update machine workload th∗ = th∗ + pj∗ and remove job j∗ from U ;
11: until U = ∅
12: Apply adjacent pairwise exchange procedure to improve given schedule;

jobs, the one with largest priority value is scheduled to the fist available position on the machine

and the machine workload is incremented by its processing time. This procedure is repeated until

all jobs are scheduled. In the second phase, an adjacent pairwise exchange procedure is applied to

each machine to improve the given schedule.
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Chapter 3

Unrelated Parallel Machine Scheduling in Distributed

Manufacturing Systems*

3.1 Introduction

Moving from production-oriented to service-oriented manufacturing, cloud manufacturing (CM)

arises as a new paradigm, where manufacturing resources are managed in a centralized way encap-

sulated in cloud services and made available to clients, who can use these resources according to

their requirements (Xu, 2012). A detailed description of the CM concept, characteristics and key

enabling technologies can be found e. g. in Zhang et al. (2014b). In our study, we consider CM in

the context of supply chains, where jobs generated by customers can be assigned to geographically

distributed production resources and need to be shipped to the customer upon completion. More

precisely, we are motivated by the example of a cloud garment manufacturing company, whose

customers can customize and order their suit via a mobile application. Orders are then batched

and assigned to nationwide factories, which, in terms of scheduling, can be regarded as parallel

machines. The delivery of a job is affected by the location of the respective factory and the location

of the customer. According to the definition of scheduling problems with job delivery by Lee and

Chen (2001), this situation is referred to as type-2 transportation, which has received considerable

attention. However, the existing literature almost exclusively considers the objective of makespan

minimization. Recently, Maecker and Shen (2020) studied a problem with machine-dependent de-

livery times on identical parallel machines and pointed out, that a more general formulation of

*This chapter is based on the conference paper Unrelated Parallel Machine Scheduling in Distributed Manufac-

turing Systems, which was presented at the International Conference on Optimization and Learning 2020 in Cádiz,

Spain, and is cited as Maecker et al. (2020).



3.2. Problem Formulation 26

delivery times is beneficial.

In our study, we formulate the emerging problem of distributing jobs among multiple factories

as an unrelated parallel machine scheduling problem, where the machines represent manufacturing

plants and job-machine-dependent delivery times are considered. The objective is to minimize

the total weighted completion time (TWC) of the jobs. We show that the problem reduces to an

assignment problem and present a binary quadratic programming formulation. Furthermore, we

propose an efficient data structure applicable in local search (LS) for large-scaled instances which

is used in Tabu Search (TS) and Variable Neighborhood Search (VNS). In a computational study,

we compare the two approaches.

3.2 Problem Formulation

Given are a set of n jobs j = 1, . . . , n and m unrelated machines i = 1, . . . ,m. Each job needs to

be processed by one and only one machine without interruption while each machine can handle

at most one job at a time. All jobs are available at time zero. Each job j has a weight wj , a

processing time pij associated with machine i, and a delivery time qij , that occurs immediately

after completing j on the respective machine. While a job is being transferred, the machine may

already process the next job in line. Transportation capacity is assumed to be unlimited in terms

of both vehicle availability and capacity. The objective is to minimize the TWC (
∑

wjCj) of the

schedule. The completion time of a job, Cj , is defined as the time by which job j reaches the

customer. Following the conventional three-field-notation by Graham et al. (1979), the problem

can be expressed as Rm|qij |
∑

wjCj .

For any given assignment of jobs to machines, sequencing jobs on each machine according to

Smith’s rule (Smith et al., 1956), i e. in non-decreasing order of pij/wj-values, is optimal, since

delivery times are decision-irrelevant. Given a schedule π = {S1, . . . , Si, . . . , Sm}, let f(π) denote

its objective value, Si the job sequence on machine i and Ĉj the conventional completion time

before delivery of job j. Jobs in Si are sorted according to Smith’s rule and by index, if for any

two jobs j and j′ we have pij/wj = pij′/wj′ . Then, f(π) is calculated by

f(π) =

m∑
i=1

∑
j∈Si

wj

(
Ĉj + qij

) =

m∑
i=1

∑
j∈Si

wjĈj +
∑
j∈Si

wjqij

 . (3.1)

Since the sum of weighted delivery times is constant for a given assignment, the problem reduces to

m 1||
∑

wjCj problems which can be solved optimally by Smith’s rule. Therefore, Rm|qij |
∑

wjCj
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reduces to an assignment problem which we formulate as a binary quadratic program using the

binary assignment variable xij with

xij =

 1, if job j is assigned to machine i,

0, otherwise.
(3.2)

The problem can now be formulated as follows:

min

n∑
j=1

wjCj (3.3)

subject to

m∑
i=1

xij = 1 j = 1, . . . , n; (3.4)

Cj =

m∑
i=1

xij

pij + qij +
∑

k∈Si;k<j

pikxik

 j = 1, . . . , n. (3.5)

The objective (3.3) is to minimize TWC. According to constraints (3.4), each job must be assigned

to exactly one machine and (3.5) calculate the job completion times.

3.3 Tabu Search Metaheuristic

Wang and Alidaee (2019) recently proposed a TS algorithm using an efficient data structure for

problem Rm||
∑

wjCj . This technique can be adapted to solve the problem with job-machine-

dependent delivery times. Given a schedule π, the contribution of job j ∈ Si to the objective

is

fj(Si) = wj

 ∑
k∈Si;k≤j

pik

+ pij

 ∑
k∈Si;k>j

wk

+ wjqij . (3.6)

The contribution value can be calculated for each job on all machines. Hence, moving job j

from machine i to l, which shall henceforth be called jump, induces an objective value change of

fj(Sl) − fj(Si). Given a feasible solution, we can use (3.6) to calculate a contribution matrix of

n ×m. To perform an LS, the matrix simply needs to be scanned for improving moves. Suppose

i is the machine to which a job j is currently assigned and an improving jump to machine l is

found such that fj(Sl) < fj(Si). If the move is executed, only the two columns fk(Si) and fk(Sl)

(k = 1, . . . , n; k ̸= j) of the contribution matrix need to be updated, which is done in O(2(n− 1))
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time.

In our TS algorithm, starting from a random initial solution, an LS is conducted examining

exclusively jump moves until a local optimum is reached. Every time a jump is carried out, a short

term memory freezes the respective job for a predefined number of search steps. The aspiration

criterion consists of allowing jump moves, that generate a new globally best solution. After a local

optimum is found, a random number of jump moves are performed to facilitate diversification of

the search. The random number is drawn from a predefined interval. This procedure is repeated

until a maximum amount of runtime is reached.

3.4 Computational Results

In a preliminary computational study, we compare the proposed TS with a VNS (Mladenović and

Hansen, 1997), that uses the same data structure but also considers swap moves, where two jobs

across different machines are exchanged. Examining swap leads to a higher computational cost

and is therefore only examined if jump has reached a local optimum. TS and VNS were coded in

C++ and tested on a set of randomly generated instances with up to m = 50 and n = 3200. Tests

were run on an Intel Xeon CPU E5-2697 v3 computer with 2.60GHz. Multi-threading was not

used. Processing times were generated from uniform distribution U(1, 100). For delivery times, we

examined six different settings. Five instances were generated for each configuration. Maximum

time per run for each approach was set at n/10 seconds. Per instance, results were generated

as the average best found objective value out of 30 independent runs. The relative percentage

deviation (RPD) is used for evaluation with RPD = (Zavg−Z∗
avg)/(Z

∗
avg)×100, where Zavg is the

average best objective value found by an individual algorithm and Z∗
avg is the best result of both

algorithms for an instance. Table 3.1 reports the average RPD (ARPD) depending on instance

size and delivery times.

Table 3.1: Results of TS and VNS
[
ARPD · 103

]
m n TS VNS m n TS VNS qij TS VNS

5 80 0.00 0.00 20 320 0.00 2.95 U(1, 30) 0.00 6.68
160 0.00 0.00 640 0.00 5.88 U(1, 100) 0.00 6.42
320 0.00 0.04 1280 0.00 4.33 U(1, 200) 0.00 5.33

10 160 0.00 0.16 50 800 0.00 16.11 U(100, 200) 0.00 2.30
320 0.00 0.74 1600 0.00 11.42 U(170, 200) 0.00 1.44
640 0.00 1.42 3200 0.00 6.80 U(100, 500) 0.00 2.75
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Overall, the TS outperforms the VNS in terms of ARPD. For smaller instances with m = 5

and n ≤ 160, results of TS and VNS are identical, while for the larger instances TS consistently

yields better results. With respect to delivery times, it can be observed that ARPD values of VNS

are higher for the first three settings. Interestingly, ARPD decreases for instances, where delivery

times are larger than the processing times. This effect deserves further investigation.

The preliminary experiment shows that our TS using a highly efficient data structure for LS

is promising. Nonetheless, more extensive testing is required. In addition, we point out that the

data structure can also be applied to other related problems.
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Chapter 4

Unrelated Parallel Machine Scheduling with Eligi-

bility Constraints and Delivery Times to Minimize

Total Weighted Tardiness*

4.1 Introduction

In terms of Pinedo (2016), parallel machine scheduling is a problem of both theoretical and practical

importance. This study considers parallel machine scheduling in the context of the new manufactur-

ing paradigm cloud manufacturing (CM), which arises through the shift from production-oriented

to service-oriented manufacturing. In CM, distributed manufacturing resources are managed in

a centralized way encapsulated in cloud services. These resources are made available to clients,

who can use them according to their requirements (Xu, 2012). The goal of CM is the full sharing

and circulation, high utilization, and on-demand usage of manufacturing resources and capabil-

ities. Therefore, one of its core services is matching, searching, and scheduling for the provider

of manufacturing services and consumers (Tao et al., 2011). For globally operating companies

with geographically distributed production resources this is especially challenging. In such set-

tings, if semi-finished jobs are transferred from one facility to another for further processing or

finished jobs are delivered to the customer, it is important that job processing and delivery are

carefully coordinated to achieve ideal overall system performance (Lee and Chen, 2001). In the

context of CM, where manufacturing jobs can be scheduled centrally to a network of geographi-

*This chapter is based on the unpublished working paper Unrelated Parallel Machine Scheduling with Eligibility

Constraints and Delivery Times to Minimize Total Weighted Tardiness cited as Maecker et al. (2021), which has

been submitted to the Computers and Operations Research journal and is currently under second review after the

first revision.
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cally distributed production facilities, these may be regarded as parallel machines. In this setting,

delivery and transportation aspects should be formulated and integrated in an appropriate way

(Mönch and Shen, 2020). Furthermore, heterogeneity of the available production resources should

be considered.

The problem at hand is inspired by the example of a provider for cloud-based manufacturing

services for printed circuit boards (PCB). Customers can upload and edit their PCB designs via

an online tool and place production orders. The provider has access to a large network of PCB

factories with different capabilities. It can thus schedule the jobs to the resources according to their

requirements. To ensure reliable lead times, the delivery aspect has to be taken into consideration

for this scheduling decision.

The aforementioned problem of assigning jobs to distributed, heterogeneous manufacturing

resources is addressed in this research as an unrelated parallel machine scheduling problem (PMSP),

where a delivery time occurs after processing a job, which is dependent on both the selected machine

and the respective job. Furthermore, there exist eligibility constraints such that the processing of a

job may be restricted to a subset of the available machines. The objective considered is to minimize

the total weighted tardiness (TWT) of all jobs. Since the parallel machine total tardiness problem

(PMTT), which constitutes a special case of this problem, is NP -hard in the strong sense (Pfund

et al., 2004), this problem is NP -hard in the strong sense, too. Hence, it is unlikely that there

exists an exact algorithm for this problem with polynomially bounded time.

The remainder of this chapter is organized as follows. In Section 4.2, we present a review

on related machine scheduling literature involving delivery times as well as PMSPs with machine

eligibility constraints or total (weighted) tardiness minimization. Section 4.3 presents an MILP-

formulation to determine optimal schedules for small-sized problem instances. In Section 4.4, we

examine the problem from a theoretical perspective to derive precedence properties that can be

used to improve local search (LS) procedures. Additionally, we propose a computational scheme

to accelerate the evaluation of schedules in different neighborhood structures. In Section 4.5, we

propose a heuristic, which is based on the Apparent Tardiness Cost (ATC) rule, as well as a

VNS-algorithm. Section 4.6 conducts a computational study on a large set of randomly generated

instances to investigate the effect on the VNS performance when the previous theoretical findings

are integrated into the search. Furthermore, we compare the VNS with the heuristic and the

Gurobi solver when applied to the MILP. The chapter concludes with Section 4.7.
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4.2 Related Work

In this section, first, a comprehensive review covering related literature of machine scheduling prob-

lems involving delivery times is provided. Afterwards, noteworthy studies covering total (weighted)

tardiness minimization on parallel machines are presented. Finally, relevant PMSP literature in-

cluding machine eligibility constraints is summarized.

Maggu and Das (1980) first consider job transportation in a two-machine flow shop makespan

problem where job-dependent transportation times occur between the processing stages and trans-

portation capacity is unlimited. Both Potts (1980) and Hall and Shmoys (1992) study the problem

of scheduling jobs on a single-machine with release dates and job-dependent delivery times to

minimize the time by which all jobs are delivered and provide heuristics with worst-case analysis.

The parallel machine case of this problem is considered by Carlier (1987). A worst case analysis

for Jackson’s rule (Jackson, 1955) for this problem is provided as well as a branch and bound

(B&B) algorithm. A similar problem with identical release dates is studied by Woeginger (1994),

who proposes several list scheduling heuristics with worst case analysis. For the problem consid-

ered by Carlier (1987), Gharbi and Haouari (2002) develop another B&B procedure and Gharbi

and Haouari (2007) improve the performance of Jackson’s rule through a preprocessing method.

Furthermore, Mateo et al. (2018) study a bi-objective PMSP with unequal job release dates, de-

livery times, and eligibility constraints, where a penalty is induced depending on the quality of

the machine processing a job. An algorithm is proposed to find an approximate Pareto front for

minimization of makespan and the total penalty.

On-line scheduling approximation algorithms (AA) for several single-machine problems involv-

ing delivery times are developed by Hoogeveen and Vestjens (2000), Tian et al. (2007), Tian et al.

(2008), and Yuan et al. (2009). Furthermore, on-line scheduling on parallel machines with delivery

times is studied by Fang et al. (2011a), Fang et al. (2011b), Tian et al. (2011), Tian et al. (2012),

and Liu and Lu (2015).

Lee and Chen (2001) define two types of scheduling problems with job delivery where the trans-

portation capacity is limited in terms of both available number of vehicles and vehicle capacity.

Type-1 transportation considers job transportation inside a manufacturing facility between pro-

cessing stages and type-2 transportation takes place between the facility and a customer area. In

both cases, jobs share a common delivery time and the objective is to minimize the makespan. A

complexity analysis is presented for single-machine, parallel-machine, and flow-shop environments.

Chang and Lee (2004) study type-2 transportation for the one and two machine case with jobs
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that require different amounts of space on the transportation vehicle and develop AAs. Li et al.

(2005) investigate an extension of the problem by Chang and Lee (2004) for the single-machine

case, where multiple customer areas exist to which jobs are delivered by a single vehicle with lim-

ited capacity and the objective is to minimize the sum of arrival times. Li et al. (2005) discuss

the complexity of the general case as well as special cases and propose a dynamic programming

algorithm. For the problem raised by Chang and Lee (2004), AAs are also proposed by He et al.

(2006), Zhong et al. (2007), Lu and Yuan (2008a), and Liu and Lu (2011) for the single-machine

case and by Su et al. (2009) for the two-machine case. Cakici et al. (2014) investigate a similar

problem, where jobs are first processed on parallel machines and then delivered in batches by a

single capacitated vehicle with a limited number of trips. Heuristics are proposed for minimizing

the total weighted completion time. Wang and Cheng (2007) incorporate machine unavailability

into the model by Chang and Lee (2004) and propose AAs for the single and parallel machine case.

Lu and Yuan (2008b) propose an AA for the unbounded parallel batch machine case. Koulamas

and Kyparisis (2010) and Liu et al. (2012) study a single-machine problem where jobs have past-

sequence-dependent delivery times proportional to their waiting time before processing and present

polynomial-time algorithms for multiple optimization criteria. For TWT minimization, Liu et al.

(2012) develop a polynomial-time algorithm for a special case of the problem. Dong et al. (2013)

present AAs for type-2 problem on two machines and in open-shop production with one customer.

Chen et al. (2015) show that the preemptive case of type-2 problem on identical parallel machines

with one customer is strongly NP-hard and propose an AA. A batch delivery scheduling problem

with job release dates on a single machine is considered by Ahmadizar and Farhadi (2015), where

all jobs of a batch are instantly delivered upon finishing the last job in the batch and the objective

is to minimize the sum of multiple cost components including delivery costs. To solve the problem,

an imperialist competitive algorithm is proposed. Pei et al. (2015) study a serial bounded batching

machine problem, where the job processing time is a linear function of its starting time. After

processing, batches are delivered on a single vehicle with limited capacity to a customer. Another

definition of job delivery times is presented by Chen et al. (2016) who investigate a parallel machine

problem where a set of delivery times are given and each delivery time needs to be assigned to an

individual job.

Recently, Maecker and Shen (2020) studied an identical parallel machine total weighted tardi-

ness problem (PMTWT) with machine-dependent delivery times. They propose two MILP formu-

lations as well as an ATC-based heuristic, a memetic algorithm, and a VNS. Furthermore, Mönch

and Shen (2020) address an identical PMSP with job-machine-dependent delivery times to mini-

mize total weighted completion time, given that the completion time is defined as the time by which
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a job reaches the customer. Several special cases are exmained that can be solved optimally in

polynomial time and a greedy randomized adaptive search framework as well as a genetic algorithm

are proposed for the general problem.

Most of the studies on machine scheduling problems with delivery times focus on makespan

minimization, while due-date-related criteria are less frequently considered. Furthermore, the

definition of delivery times is restricted to job-dependent delivery times (see e. g. Potts (1980),

Carlier (1987), Woeginger (1994), Gharbi and Haouari (2002)) or common delivery times with

limitations on transportation capacity (see e. g. Lee and Chen (2001), Chang and Lee (2004)).

However, to measure customer satisfaction and delivery efficiency in a service-oriented environment,

a due-date-related criterion such as the TWT is a more relevant performance measure.

With regards to the PMTWT, multiple solution approaches have been proposed. Alidaee and

Rosa (1997) extend the Modified Due Date (MDD) rule by Baker and Bertrand (1982) for the

PMTWT. Another heuristic called P-S-K is developed by Panwalkar et al. (1993) to minimize the

mean tardiness on a single machine. P-S-K combines principles of the Shortest-Processing-Time

and Earliest-Due-Date rules. Koulamas (1997) develops the heuristic KPM which is an extension

of P-S-K for the same problem on parallel machines. Furthermore, Vepsalainen and Morton (1987)

introduce the ATC rule for the single machine TWT problem, which has been applied to various

other tardiness-related scheduling problems. For the PMTT problem, Biskup et al. (2008) develop

several efficient heuristics. Furthermore, Lin et al. (2011) apply modifications of MDD, KPM,

and ATC as well as a genetic algorithm to the unrelated PMTWT. Azizoglu and Kirca (1998),

Yalaoui and Chu (2002), and Shim and Kim (2007) investigate the PMTT and develop B&B

procedures. Another B&B algorithm is proposed by Liaw et al. (2003) for the unrelated PMTWT.

Srinivasa Raghavan and Venkataramana (2009) use ant colony optimization (ACO) to solve the

PMTWT. ACO algorithms are also implemented for the unrelated PMTWT problem by Zhou

et al. (2007), Mönch (2008), and Lin et al. (2013).

If jobs may not be processed on all of the available machines but only on a subset, this poses as an

operational constraint which is often referred to as machine eligibility or processing set restrictions.

Centeno and Armacost (1997) study a problem with identical machine, release dates, and eligibility

constraints to minimize maximum lateness. The same problem with makespan objective is inves-

tigated by Centeno and Armacost (2004). An identical PMSP with machine availability is studied

by Liao and Sheen (2008) for makespan minimization and by Sheen et al. (2008) for minimization

of maximum lateness. An unrelated PMSP with machine eligibility constraints is studied by Gao

(2010) with the two objectives minimization of makespan and total earliness/tardiness. Identical
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PMSP with release dates, machine eligibility, and sequence-dependent-setup times to minimize to-

tal weighted completion time is considered by Gokhale and Mathirajan (2012). Wang et al. (2013)

study an unrelated PMSP with release dates, machine eligibility, and sequence-dependent-setup

times, where the objective is the weighted sum of makespan and tardy jobs. Furthermore, various

unrelated, resource-constrained PMSPs with machine eligibility are studied by Afzalirad and Reza-

eian (2016), Afzalirad and Rezaeian (2017), and Afzalirad and Shafipour (2018). Su et al. (2017)

address the identical PMTWT with machine eligibility constraints and propose an ATC-based

heuristic with flexibility considerations.

To conclude, due-date-related optimization criteria are hardly considered in machine scheduling

problems with delivery times. Yet, due dates play a major role in supply chain environments. To

the best of our knowledge, the problem of TWT minimization on unrelated parallel machines with

job-machine-dependent delivery times and eligibility constraints has not been addressed so far.

4.3 Problem Formulation

Given are a set of n jobs j = 1, . . . , n and m unrelated parallel machines i = 1, . . . ,m. Each job

needs to be processed by one and only one machine from its set of eligible machines Mj without

interruption while each machine can handle at most one job at a time. All jobs are available at time

zero. Each job j has a weight wj , a processing time pij associated with machine i, a delivery time

qij (pij = qij =∞, i /∈Mj) that occurs immediately after completing j on the respective machine,

and a due date dj . While a job is being transferred, the machine may already process the next job

in line. Transportation capacity is assumed to be unlimited in terms of both vehicle availability

and capacity. The objective is to minimize the TWT (
∑

wjTj) of the schedule. The tardiness of a

job Tj is calculated by Tj = max{Cj − dj , 0}, where the completion time Cj is defined as the time

by which a job reaches the customer. Following the conventional three-field-notation by Graham

et al. (1979), the problem can be expressed as Rm|Mj , qij |
∑

wjTj , where Rm indicates unrelated

parallel machines.

Next, we present an MILP, that is based on disjunctive constraints and uses a binary assignment

variable yij with

yij =

 1, if job j is processed by machine i,

0, otherwise,
(4.1)
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as well as a binary precedence variable zjk with

zjk =

 1, if job j precedes job k in the sequence,

0, otherwise.
(4.2)

Furthermore, the variable sj denotes the start time of job j, H is a sufficient large number, and Ji

denotes the set of jobs for which machine i is eligible. The model is formulated as follows:

min

n∑
j=1

wjTj (4.3)

subject to

∑
i∈Mj

yij = 1, j = 1, . . . , n, (4.4)

sk ≥ sj + pij −H(3− yik − yij − zjk), i = 1, . . . ,m, j, k ∈ Ji, j ̸= k, (4.5)

sj ≥ sk + pik −H(2− yik − yij + zjk), i = 1, . . . ,m, j, k ∈ Ji, j ̸= k, (4.6)

Cj ≥ sj + yij(pij + qij), i = 1, . . . ,m, j = 1, . . . , n, (4.7)

Tj ≥ Cj − dj , j = 1, . . . , n, (4.8)

Tj , Cj ≥ 0, j = 1, . . . , n, (4.9)

xij , zjk ∈ {0, 1}, i = 1, . . . ,m, j, k ∈ Ji. (4.10)

The objective (4.3) is to minimize the TWT. Constraint (4.4) states that each job must be assigned

to exactly one of its eligible machines. Disjunctive constraints (4.5) and (4.6) handle the prece-

dence relationship among jobs on the machines. The job completion times and tardiness values

are calculated according to inequalities (4.7) and (4.8). Constraints (4.9) and (4.10) define the

variables. H is an upper bound on the job starting time and can be calculated by

H = max
i=1,...,m

∑
j∈Ji

pij −min
j∈Ji

{pij}

 . (4.11)
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4.4 Structural Properties for Local Search

4.4.1 Lemmata for Improving Moves in Local Search

For the 1||
∑

wjTj problem, Kanet (2007) introduces general precedence relationships among jobs.

Assume an assignment of jobs to machines for problem Rm|Mj , qij |
∑

wjTj is given. Now, se-

quencing jobs on each machine can be denoted as problem 1|qj |
∑

wjTj , where qj is the delivery

time of job j on the respective machine. Also, for simplification, let pj denote the processing time

of j on this machine. In this subsection, we present lemmata with sufficient conditions for this

problem to quickly identify improving moves in swap- and insertion-neighborhoods when delivery

times are present. The lemmata are derived by extending the theorems provided by Kanet (2007)

for problem 1||
∑

wjTj . Moreover, we provide a lemma for improving swap moves across different

machines in the Rm|Mj , qij |
∑

wjTj problem.

Swap on the Same Machine

In this subsection, we present lemmata with sufficient conditions for swaps of two jobs on the same

machine, that improve the TWT value of the schedule. Assume that there exists a schedule π with

any two jobs j and k, such that k ≺ j. Let W denote the start time of k and C the time by which

j is completed on the machine (C = Cj − qj). Furthermore, let π′ denote the schedule generated

by swapping j and k in the sequence. The swap of j and k is illustrated in Figure 4.1, where W is

the start time of job k in the initial schedule π and C is the time by which job j is completed on

the machine. Using this notation, we can now formulate the following lemmata.

Lemma 4.1. Given a feasible schedule π for problem 1|qj |
∑

wjTj with any two jobs j and k

such that k ≺ j, and a schedule π′ generated by swapping j and k with pj ≤ pk, wj > wk, and

W C

. . . k . . . j . . .

. . . j . . . k . . .π′

π

Figure 4.1: Swapping two jobs j and k on the same machine.
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dj < C + qj, if

qk − dk ≤ qj − dj (4.12)

or

wj(C + qj − dj) > wk(C + qk − dk) (4.13)

is valid, then f(π′) < f(π) holds, where f(·) denotes the objective function.

Proof: If pj ≤ pk holds, the tardiness of all jobs scheduled between j and k may not increase.

Inequality dj < C + qj implies that j is tardy in π, which is a premise for an improving move.

Therefore, swapping j and k leads to an improvement of j’s weighted tardiness. To ensure that

the improvement of j’s weighted tardiness induced by the swap is larger than the degradation of

k’s weighted tardiness, the following condition must hold:

min {wj(C + qj − dj), wj(C −W − pj)} (4.14)

>min {wk(C + qk − dk), wk(C −W − pk)} .

Conditions pj ≤ pk and wj > wk indicate

wj(C −W − pj) > wk(C −W − pk). (4.15)

Therefore, if (4.13) holds, inequality (4.14) is satisfied. Note that subject to (4.12) and wj > wk,

(4.13) is valid.

Lemma 4.2. Given a feasible schedule π for problem 1|qj |
∑

wjTj with any two jobs j and k such

that k ≺ j, and a schedule π′ generated by swapping j and k with pj ≤ pk, and wj > wk, if

wj(C + qj − dj) > wk(C −W − pk) (4.16)

is valid, then f(π′) < f(π) holds.

Proof: If pj ≤ pk holds, the tardiness of all jobs scheduled between j and k may not increase.

Since wk(C−W−pk) > 0, inequality (4.16) implies that j is tardy in π. Also, pj ≤ pk and wj > wk

lead to inequality (4.15). Therefore, if (4.16) holds, (4.14) is satisfied.

Lemma 4.3. Given a feasible schedule π for problem 1|qj |
∑

wjTj with any two jobs j and k

such that k ≺ j, and a schedule π′ generated by swapping j and k with pj ≤ pk, wj ≤ wk, and

dj < C + qj, if

wj(C −W − pj) > wk(C + qk − dk) (4.17)
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and

wj(C + qj − dj) > wk(C + qk − dk) (4.18)

are valid, then f(π′) < f(π) holds.

Proof: If pj ≤ pk holds, the tardiness of all jobs scheduled between j and k may not increase. If

inequalities (4.17) and (4.18) hold, (4.14) is satisfied. Again, dj < C + qj ensures that j is tardy

in π so that swapping j and k must lead to an improvement of j’s weighted tardiness.

Lemma 4.4. Given a feasible schedule π for problem 1|qj |
∑

wjTj with any two jobs j and k such

that k ≺ j, and a schedule π′ generated by swapping j and k with pj ≤ pk, and wj ≤ wk, if

wj(C −W − pj) > wk(C −W − pk) (4.19)

and

wj(C + qj − dj) > wk(C −W − pk) (4.20)

are valid, then f(π′) < f(π) holds.

Proof: If pj ≤ pk holds, the tardiness of all jobs scheduled between j and k may not increase.

Since wk(C−W−pk) > 0, inequality (4.20) implies that j is tardy in π. Furthermore, if inequalities

(4.19) and (4.20) hold, (4.14) is satisfied.

Insertion on the Same Machine

The following lemmata contain sufficient conditions for job insertions on the same machine that

improve the TWT of the schedule. For these lemmata, we assume there exists a schedule π with

any two jobs j and k, such that k ≺ j, and a schedule π′ generated by reinserting k immediately

W C

. . . k . . . j . . .

. . . . . . j k . . .π′

π

Figure 4.2: Insertion of job k immediately after job j on the same machine.
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after j in the schedule. Again, W denotes the start time of k in π and C the time by which j is

completed on the machine. The reinsertion of k after j is illustrated in Figure 4.2.

Lemma 4.5. Given a feasible schedule π for problem 1|qj |
∑

wjTj with any two jobs j and k such

that k ≺ j, and a schedule π′ generated by inserting k directly after j with dj < C + qj, if

min{wjpk, wj(C + qj − dj)} > wk(C + qk − dk) (4.21)

is valid, then f(π′) < f(π) holds.

Proof: If k is inserted immediately after j, the tardiness of all jobs scheduled between k and j in

π may not increase. Inequality dj < C + qj implies that j is tardy in π. The improvement of j’s

weighted tardiness induced by the reinsertion of k is given by the left-handed term of (4.21), while

the right-handed term must be larger than or equal to the weighted tardiness degradation of job

k.

Lemma 4.6. Given a feasible schedule π for problem 1|qj |
∑

wjTj with any two jobs j and k such

that k ≺ j, and a schedule π′ generated by inserting k directly after j, if

min{wjpk, wj(C + qj − dj)} > wk(C −W − pk) (4.22)

is valid, then f(π′) < f(π) holds.

Proof: If k is inserted immediately after j, the tardiness of all jobs scheduled between k and j

in π may not increase. Since wk(C −W − pk) > 0, inequality (4.22) implies that j is tardy in π.

Furthermore, the improvement of j’s weighted tardiness induced by the reinsertion of k is given

by the left-handed term of (4.22), while the right-handed term constitutes an upper bound on the

weighted tardiness degradation of job k.

Swap Across Two Machines

Next, we present an additional lemma for improving swaps of two jobs across different machines

for problem Rm|Mj , qij |
∑

wjTj . Assume there exists a schedule π with any two jobs j scheduled

on machine h and job k scheduled on machine i. Let Wj denote the start time of j in π and Wk the

start time of k, respectively. Furthermore, schedule π′ is generated by swapping the positions of j

and k in the schedule. Figure 4.3 illustrates the respective move, where Wk denotes the start time

of job k in the initial schedule on machine i and Wj the start time job k on machine h, respectively.

We now propose the following lemma:
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Lemma 4.7. Given a feasible schedule π for problem Rm|Mj , qij |
∑

wjTj with any two jobs j on

machine h and k on machine i, and a schedule π′ generated by swapping j and k with pij ≤ pik

and phk ≤ pij, if

wj max {Wk + pij + qij − dj , 0}+ wk max {Wj + phk + qhk − dk, 0} (4.23)

<wj max {Wj + phj + qhj − dj , 0}+ wk max {Wk + pik + qik − dk, 0}

is valid, then f(π′) < f(π) holds.

Proof: If inequality (4.23) is true, the combined weighted tardiness of jobs j and k in π′ is less

than in π. The premise pij ≤ pik and phk ≤ pij ensures, that the tardiness of following jobs on h

and i in π′ must be less than or equal to their tardiness in π.

We have now formulated lemmata for problem 1|qj |
∑

wjTj to identify improving moves when

swapping or inserting jobs on the same machine as well as another lemma for improving moves

when swapping jobs across machines for problem Rm|Mj , qij |
∑

wjTj . These lemmata can be

integrated in LS procedures to avoid a computationally costly evaluation of neighboring solutions.

4.4.2 Neighborhood Evaluation Acceleration

The lemmata presented in Subsection 4.4.1 can be used to quickly identify improving moves in

multiple neighborhoods. However, if these lemmata do not apply, examining whether a move is

beneficial or not is computationally costly. To reduce the computational burden, we design a

Wk Wj

. . . k . . .

. . . j . . .

π

machine h

machine i

Wk Wj

. . . j . . .

. . . k . . .
π′

machine h

machine i

Figure 4.3: Swapping two jobs j and k across different machines i and h.
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neighborhood evaluation acceleration (NEA) that exploits the fact that only a small subset of

jobs is affected by neighborhood moves. In addition, we use the problem structure to efficiently

recalculate the objective function value contribution of these jobs. Therefore, it is important to

design dedicated neighborhood structures. For example, it is advantageous to distinguish between

the swap of two jobs located on the same machine and the swap of two jobs which are located on

different machines, instead of defining a neighborhood which consists of swapping any two jobs,

since for each situation an individual NEA can be designed. Other examples of NEA techniques

can be found in Tasgetiren et al. (2009), Xu et al. (2014) and Maecker and Shen (2020).

The basic NEA procedure is presented in Algorithm 4. First, the set K of affected jobs is

determined based on the parameters of the move in a certain neighborhood structure, e. g., the

positions of two jobs which are to be swapped. For all jobs in K, their new completion times C ′
j

induced by the move can be calculated according to neighborhood-specific rules and thus also their

new tardiness values T ′
j . Afterwards, the total objective function value difference ∆ induced by

the move is calculated as the weighted sum of differences between new and old tardiness values.

The move improves the current schedule, if ∆ < 0. The objective value is incremented by ∆.

Next, we describe how to determine the set K and to calculate C ′
j for neighborhood structures

used later in the VNS scheme proposed in this research. We use [j] to indicate the position of

any job j. Furthermore, let [j]i denote the job in the [j]-th position in the sequence on machine i.

Accordingly, ([j] + 1)i represents the job in the immediate succeeding position. Furthermore, we

define ni as the total number of jobs scheduled on machine i so that (ni)i is the last job in the

sequence on machine i. Using that notation, we formulate the following NEA rules:

• Swapping jobs on a single machine (N1): When swapping jobs on a single machine, the

positions of two jobs j and k in the sequence on i are interchanged. If j is the job sequenced

Algorithm 4 Basic NEA procedure

1: Input: Schedule π with objective function value f , parameters for move to schedule π′ ∈ Nl(π)
2: Determine the set K of affected jobs;
3: for j ∈ K do
4: Calculate new completion time C ′

j ;

5: Calculate new tardiness T ′
j ← max

{
C ′

j − dj , 0
}
;

6: end for
7: ∆←

∑
j∈K

wj

(
T ′
j − Tj

)
;

8: if ∆ < 0 then
9: π ← π′;

10: f ′ ← f +∆;
11: end if
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first among j and k, i. e. [j] < [k], we have K = {[j]i, ([j] + 1)i , . . . , [k]i}. Let δ = pij − pik,

then

C ′
j′ = Cj′ − δ, j′ ∈ K \ {j, k}, (4.24)

C ′
j = Ck − qik + qij , (4.25)

and

C ′
k = Cj − qij − δ + qik. (4.26)

• Swapping jobs on two machines (N2): This move exchanges the positions in the schedule of

two jobs j on machine i and k on another machine i′. In this case, K = K1 ∪ K2, where

K1 = {[j]i, ([j] + 1)i , . . . , (ni)i} and K2 = {[k]i′ , ([k] + 1)i′ , . . . , (ni′)i′}. Let δi = pij − pik

and δi′ = pi′k − pi′j , then

C ′
j′ = Cj′ − δi, j′ ∈ K1 \ j, (4.27)

C ′
j′ = Cj′ − δi′ , j′ ∈ K2 \ k, (4.28)

C ′
j = Ck − qi′k − δi′ + qi′j , (4.29)

and

C ′
k = Cj − qij − δi + qik. (4.30)

• Job insertion on the same machine (N3): Job insertion on the same machine consists of

selecting a job j on some machine i and reinserting it at another position [k] in the sequence,

where k is the job currently scheduled on that position. Let δ = pij . If [k] < [j] holds,

indicating that job j is moved to the left, then K = {[k]i, ([k] + 1)i , . . . , [j]i} with

C ′
j′ = Cj′ + δ, j′ ∈ K \ j, (4.31)

and

C ′
j = Ck − qik − pik + pij + qij . (4.32)

In the case of [k] > [j], K = {[j]i, ([j] + 1)i , . . . , [k]i} with

C ′
j′ = Cj′ − δ, j′ ∈ K \ j, (4.33)

and

C ′
j = Ck − qik + qij . (4.34)
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• Job insertion on other machine (N4): Job insertion on another machine consists of se-

lecting a job j from the sequence on machine i and reinserting it at some position [k] in

the sequence on another machine i′, where k is the job currently scheduled on that posi-

tion on i′. In this situation, K = K1 ∪ K2, where K1 = {[j]i, ([j] + 1)i , . . . , (ni)i} and

K2 = {[k]i′ , ([k] + 1)i′ , . . . , (ni′)i′}. Let δi = pij and δi′ = pi′j , then

C ′
j′ = Cj′ − δ, j′ ∈ K1 \ j, (4.35)

C ′
j′ = Cj′ + δ, j′ ∈ K2, (4.36)

and

C ′
j = Ck − qi′k − pi′k + pi′j + qi′j . (4.37)

There are two special cases to consider. If no jobs are scheduled on machine i′, then

C ′
j = pi′j + qi′j . (4.38)

Furthermore, if j is inserted at the end of the schedule on i′ and l = (ni′)i′ , then

C ′
j = Cl − qi′l + pi′j + qi′j . (4.39)

4.5 Heuristic and Metaheuristic Approaches

4.5.1 ATC-D Heuristic

An ATC implementation for problem Rm||
∑

wjTj is proposed by Lin et al. (2011) and by Maecker

and Shen (2020) for problem Pm|qi|
∑

wjTj . For the problem at hand, machine eligibility and

job-machine-dependent delivery times need to be incorporated. We present our implementation

called ATC-D for problem Rm|Mj , qij |
∑

wjTj in Algorithm 5, where D refers to delivery.

In each iteration, first, the fastest machine is determined among those eligible for the remaining

unscheduled jobs. Afterwards, for all unscheduled jobs assignable to this machine, the priority value

is calculated based on its current workload. Among these jobs, the one with largest priority value

is selected to be scheduled next. If there exist machines eligible for this job, on which it can be

processed without being tardy, we choose the one with smallest processing time, since, in contrast

to the delivery time, the processing time of this job also affects the completion times of successive
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jobs. If no such machine exists, a greedy rule is applied that schedules the job to the eligible

machine with earliest completion time. Finally, the machine workload is updated accordingly.

The described procedure is repeated until all jobs are scheduled. In the second phase, an adjacent

pairwise exchange procedure is applied to each machine to improve the given schedule. In this step,

all possible swaps of adjacent jobs in the sequences of the machines are systematically examined

until no further improvement by an adjacent swap is possible. We refer to Algorithm 7 in the

appendix for a detailed description of the adjacent pairwise exchange. The ATC-D heuristic serves

as a benchmark scheme for the VNS procedure proposed in the next subsection.

4.5.2 Variable Neighborhood Search

VNS is an LS-based metaheuristic that searches changing neighborhood structures for improving

schedules to escape from local optima (Mladenović and Hansen, 1997). For a recent overview of

basic VNS schemes and variants, the reader is referred to Hansen et al. (2017). VNS has been suc-

cessfully applied to multiple combinatorial optimization problems (Hansen et al., 2010), including

various PMSPs (see e. g. De Paula et al. (2007), Driessel and Mönch (2011), or Cheng et al. (2012)).

Furthermore, VNS is used in multiple hybrid approaches for parallel machine problems (see e. g.

Anghinolfi and Paolucci (2007), Chen and Chen (2009), Behnamian et al. (2009), or Chen et al.

(2013)). In this subsection, we first present our VNS scheme for problem Rm|Mj , qij |
∑

wjTj .

Algorithm 5 ATC-D heuristic for Rm|Mj , qij |
∑

wjTj

1: Initialize: Workloads ti = 0 (i = 1, . . . ,m), set of unscheduled jobs U = {1, . . . , n};
2: Calculate p̄i =

n∑
j=1

pij/n; i = 1, . . . ,m;

3: repeat
4: Determine fastest eligible machine i∗ = arg min

i=1,...,m;
Ji∩U ̸=∅

{ti};

5: for all j ∈ U ∩ Ji∗ do

6: Calculate priority value: Ii∗j =
wj

pi∗j
exp

(
−max{dj−pi∗j−qi∗j−ti∗ ,0}

kp̄i∗

)
;

7: end for
8: Determine next job j∗ = arg max

j∈U∩Ji∗
{Ii∗j};

9: Schedule j∗ on machine i∗∗ = arg min
i∈Mj

{pij∗ |ti + pij∗ + qij∗ ≤ dj∗};

10: if i∗∗ does not exist then
11: Schedule j∗ on machine i∗∗ = arg min

i∈Mj

{ti + pij∗ + qij∗};

12: end if
13: Update ti∗∗ = ti∗∗ + pi∗∗j∗ and U = U \ i∗∗;
14: until U = ∅
15: Apply adjacent pairwise exchange procedure to improve given schedule;
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The basic structure of the VNS scheme is given in Algorithm 6. Note that the proposed VNS

procedure differs from the conventional basic VNS structure. After each LS phase, the resulting

locally optimal schedule π′′ is kept, even if it does not improve the incumbent schedule π. This

design facilitates diversification during the search process in order to escape unpromising regions

of the search space more quickly. In the following, we will describe the components of our VNS.

In our VNS scheme, a schedule π is encoded by m job sequences πi (i = 1, . . . ,m). The initial

schedule π0 is generated randomly. Note that in preliminary experiments we compared multiple

initialization approaches such as ATC-D and randomized workload balancing, but could not find

statistically significant differences between the individual approaches. To evaluate statistical sig-

nificance, the Wilcoxon signed-rank test (Wilcoxon, 1945) with a significance level of 0.05 was used

for all experiments reported in this research.

Let S denote the set of all feasible schedules for the problem at hand and lmax the maximum

number of neighborhood structures Nl(π) ⊆ S (l = 1, . . . , lmax). A neighborhood is defined by

how an incumbent schedule is altered to generate a new feasible schedule. In our VNS, we use

neighborhood structures according to the scheme below:

• N1: Reinsertion of a job on the same machine

• N2: Reinsertion of a job on a different machine

• N3: Swap two jobs on the same machine

Algorithm 6 Basic VNS structure (II)

1: Input Neighborhood structures Nl (l = 1, . . . , lmax), initial schedule π0;
2: π = π0;
3: fbest = f(π);
4: repeat
5: l = 1;
6: repeat
7: Shaking: Choose randomly a schedule π′ from Nl(π);
8: Local Search: Find local minimum π′′ in Nl(π

′);
9: if f(π′′) < fbest then

10: fbest = f(π′′);
11: l = 1;
12: else
13: l = l + 1;
14: end if
15: π := π′′;
16: until l > lmax

17: until Termination criterion
18: Return fbest;
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• N4: Swap two jobs across two different machines

• N5: Perform k consecutive reinsertions of jobs at other positions in the schedule

• N6: Perform k consectuive swaps of job pairs in the schedule

Note that N5 and N6 include reinsertion or swap both on the same machine as well as across

different machines. Also, the total number of neighborhood structures can be increased arbitrarily

ifN5 andN6 are repeatedly revisited with an incremented value of k in each iteration. The sequence

in which different neighborhood structures are visited is important for the success of VNS. The

proposed sequence was determined based on preliminary experiments.

At the start of each iteration, a random schedule π′ is chosen from the current neighborhood

Nl(π) of the incumbent schedule π. This step is called Shaking and allows the search to escape from

local optima. Afterwards, an LS is performed on π′ until the local optimum π′′ is reached. In the

LS phase, all possible moves within the current neighborhood Nl(π) are systematically examined.

Note that for N5 and N6, the number of moves to be examined is limited, since the size of these

neighborhood structures grows considerably based on k. Furthermore, a first improvement strategy

is employed to reduce computational effort. In this strategy, the first improving solution found

is accepted as new incumbent solution. We choose this strategy instead of the best improvement

approach, where the entire neighborhood is evaluated before selecting the best improving neighbor,

since the neighborhood sizes grow exponentially with the problem size.

The LS returns the local optimum π′′, which then becomes the incumbent solution π of the next

iteration. fbest is used to record the best found objective function value. Each time a new best

solution is found, the search continues with neighborhood structure N1 (l = 1) in the next iteration.

Otherwise, the search switches to the next neighborhood structure in line. If all neighborhood

structures have been visited, the search returns to the first neighborhood structure. This procedure

is repeated until a predetermined termination criterion is satisfied, such as a computing time limit

or a maximum number of iterations.

Next, the NEA and lemmata proposed in Section 4.4 shall be integrated into the VNS scheme to

improve its performance. The respective computational experiments are presented in the following

section.
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4.6 Computational Results

4.6.1 Design of Experiments

All experiments in this chapter are conducted on an Intel Xeon CPU E5-2697 v3 computer with

2.60GHz and 128GB RAM. Algorithms are coded in the C++ programming language and compiled

by the g++-compiler. Furthermore, we use no multi-threading, except for the MILP experiments.

In our experiments, we use three different instance sets, whose parameter settings are shown in

Table 4.1. The different instance configurations are randomly generated. To generate due dates, a

modified version of the scheme proposed by Potts and Van Wassenhove (1982) is used:

dj ∼ U

(
p̄

(
1− T − R

2

)
+ qmin, p̄

(
1− T +

R

2

)
+ qmin

)
, (4.40)

where T is the tardiness factor, R the relative range of due dates,

p̄ =
1

m

n∑
j=1

min
i∈Mj

{pij}, and qmin = min
j=1,...,n
i∈Mj

{qij}. (4.41)

Furthermore, in our experiments, we use the relative percentage deviation RPD as a measure to

compare different solution approaches. We calculate the RPD by

RPD =
Z(A)− Z∗

Z∗ × 100, (4.42)

where Z(A) is the best objective value found by an individual approach A, and Z∗ is the best

result among all approaches tested for an instance.

4.6.2 Integration of NEA and Lemmata

Next, we present results of several experiments to examine the effect on the VNS performance,

when the NEA as well as the lemmata from Section 4.4 are integrated into the search. In these

experiments, we use four different variants of the VNS scheme:

1. V NS0: The standard variant of the VNS scheme that uses neither NEA nor lemmata. Neigh-

borhood solutions are evaluated by recalculating the objective value contribution of jobs

scheduled to machines affected by the respective move.

2. V NSL: In this variant, the lemmata from Section 4.4.1 are used exclusively to evaluate
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neighborhood solutions.

3. V NSN : In this variant, the NEA proposed in Section 4.4.2 is used exclusively to evaluate

neighborhood solutions.

4. V NSNL: In this variant, the lemmata and NEA are combined to evaluate neighborhood

solutions. For a certain portion of all iterations, only the lemmata are used to find improving

schedules. In all remaining iterations, the algorithm switches to NEA. The parameter γ ∈

[0, 1] controls the fraction of iterations, where lemmata are used.

Note that these variants consider only the neighborhood structures N1-N4 during the search

phase. The effect of including N5 and N6 shall be examined separately. Initially, we conducted

preliminary experiments with a computing time limit termination criterion and observed that

V NSN yields significantly better RPD results than V NS0 due to a larger number of schedules

being evaluated within the same time. V NSL, on the other hand, did not match the solution quality

of the other approaches, since the lemmata can identify only a fraction of improving moves. Yet,

in the V NSL variant, neighborhood solutions were evaluated considerably faster by the lemmata.

These observations motivated us to develop the integrated VNS strategy denoted by V NSNL with

partial use of the lemmata. Next, we show the detailed results of our experiments for this variant

Table 4.1: Test instance configurations (II)

Instance set

Factor I II III

Machines m {2, 4} {5, 10, 20} {2, 4, 8}
Job rate α (n = α×m) {5, 7.5} {4, 8, 16} {10, 20, 40}
Eligibility probability Pelig {0.5, 0.7, 0.9}
Processing times pj ∼ U(1, 100)

Weights wj ∼ U(1, 10)

Due date setting
T ∈ {0.4, 0.8}
R ∈ {0.4, 0.8}

Delivery times

qij ∼ U(1, 30)

qh ∼ U(1, 100)

qh ∼ U(101, 200)

qh ∼ U(170, 200)

Independent replications 10

Total # of instances 1920 4320 4320
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of the VNS scheme.

First, we present an experiment to determine an appropriate value for the γ parameter that

controls the fraction of iterations in which the lemmata are used for evaluation instead of NEA. We

test γ ∈ {0, 0.01, 0.1, 0.2, 0.33} and use as termination criterion a maximum number of iterations

itermax = 1000, after which the algorithm is terminated. We record not just the RPD, but also

the computing time required to complete the specified number of iterations. For the experiments,

we use instance Sets II and III as described in Table 4.1. V NSNL is performed five times for

each value of γ on each of the 8640 instances. Out of the five solutions generated, we use the one

with best objective function value to calculate the RPD. The computing time is calculated as the

average over all runs. The RPD and computing time results based on γ are summarized in Figure

4.4. A more detailed view of the results based on the instance size can be found in Tables 4.6 and

4.7 in the appendix.

Overall, the RPD increases if γ is increased. On the other hand, the computing time decreases.

More specifically, we observe that for instances with less machines, the computing time reduction

is more apparent if γ increases. Note that the difference of RPD between γ = 0 and γ = 0.01 is not

statistically significant, while the difference in computing time is. This result suggests integrating

the lemmata into the VNS since it reduces computational effort. However, it needs to be carefully

balanced with NEA.

Next, we compare V NSNL with the original V NS0, when both variants have the time limit

termination criterion tmax = βn seconds with β ∈ {0.01, 0.05, 0.1, 0.2}. Figure 4.5 displays the

RPD based on β and Figure 4.6 the number of iterations executed within the specified time limit.
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Figure 4.4: RPD and mean time [sec] of V NSNL based on γ.



51 Chapter 4. Maecker et al. (2021)

With respect to the results depicted in Figure 4.5, we observe that the RPD of V NSNL and

V NS0 are very similar, if the time limit is increased. Furthermore, as can be seen in Figure 4.6,

V NSNL is able to execute a considerably larger amount of iterations within the time limit due to

the speed-up of NEA and the lemmata.

4.6.3 MILP Experiments

We test the MILP on instance Set I, which contains small-sized problems with up to n = 30 jobs.

The model was solved using the Gurobi v8.1 solver (Gurobi Optimization, 2021). The time limit

per instance was set to 1800 seconds with a maximum of four threads. Results of the tests are

shown based on the different instance parameters in Tables 4.2 and 4.3. Column Opt shows the
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portion of instances, for which an optimal solution was found and verified within the time limit,

Time shows the average computing time, Gap shows the average gap of the best found solution,

#Var and #Constr show the number of decision-variables and constraints of the MILP for the

respective problem size.

Given the results in Table 4.2, we observe that even for small problems not all instances can

be solved optimally. While for n = 20 we are able to determine an optimal solution for 55% of

the instances with an average MIP gap of 7%, the larger instances with n = 30 already are not

optimally solvable in our tests. Note that the MIP gap is an upper bound on the deviation of the

best found objective function value from the optimal value.

With respect to the due dates, as shown in Table 4.3, both tardiness factor resp. tightness

and range of due dates appear to affect the portion of instances solved optimally. The fraction of

instances solved optimally is larger for the setting with tight due dates than for loose due dates.

Also, the instances where due dates are drawn from a large range have a higher fraction of optimally

solved instances compared to the instances with a small due date range.

With regard to the eligibility probability, we observe that a smaller eligibility rate leads to

a larger fraction of instances solved optimally. Furthermore, the results show no considerable

influence of the delivery time setting.

Table 4.2: Gurobi results based on problem size

m n Opt Time Gap #Var #Constr

2 10 1.00 0.78 0.00 150 400
15 0.88 333.66 0.03 300 900

4 20 0.55 1024.92 0.07 540 3160
30 0.00 1800.00 0.51 1110 7140

Table 4.3: Gurobi results based on due date setting, eligibility probability, and delivery time setting

T R Opt Time Gap Pelig Opt Time Gap qij Opt Time Gap

0.4 0.4 0.64 725.5 0.21 0.5 0.71 589.7 0.11 1-30 0.61 768.1 0.18
0.8 0.68 644.3 0.14 0.7 0.60 814.1 0.16 1-100 0.60 800.5 0.14

0.8 0.4 0.54 918.3 0.14 0.9 0.51 965.7 0.18 101-200 0.59 820.2 0.13
0.8 0.58 871.2 0.13 170-200 0.63 770.6 0.16
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4.6.4 Extension of VNS Neighborhood Structures

We proceed with an experiment to investigate, whether the performance of V NSNL can be im-

proved by increasing the number of neighborhood structures visited during the search. To be

precise, we compare V NSNL with the variant V NSNL
2 , where also neighborhood structures N5

and N6 with k = 2 are visited so that lmax = 6, and the variant V NSNL
4 , where N5 and N6 are

included with k ∈ {2, 3, 4} so that lmax = 10, respectively. The neighborhoods are visited in an

order such that the number of consecutive moves k is step-wise increased and insertion neighbor-

hoods are examined before swap neighborhoods at each level of k. We test the three variants with

fixed time limits tmax ∈ {1, 2, 5, 10, 30, 60} seconds to reflect a practical setting. These tests are

run on instance Set II. The RPD is calculated based on the best result out of five independent

runs for each instance. Note that the lemmata and NEA cannot be applied directly to evaluate

solutions in neighborhood structures N5 and N6. Hence, the motivation of this experiment is to

test, whether an intensified, efficient search in the basic neighborhood structures N1-N4 is prefer-

able to a diversified, computationally more costly search or vice versa. Figure 4.7 shows the RPD

results of the three variants for the different time limits.

As the results show, V NSNL with no extended neighborhoods yields the smallest RPD for

all tested time limits. Furthermore, we observe that overall the RPD increases, if the maximum

number of consecutive moves becomes larger. We therefore conjecture that the continuous efficient

search in the relatively small neighborhoods is preferable to the extended neighborhood functions.
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Figure 4.7: RPD of V NSNL, V NSNL
2 , and V NSNL

4 based on tmax [sec]
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4.6.5 Comparison of Gurobi, VNS, and ATC-D

Next, we compare the solution approaches V NSNL, ATC-D, and the Gurobi solver when applied to

the MILP. As previous results show, the MILP is restricted to small instances. Therefore, we first

compare the three approaches on Set I with respect to RPD and computing time. The termination

criterion of V NSNL is set to tmax = 60 seconds and γ = 0.1. ATC-D is performed ten times with

look-ahead parameter k ∈ {0.5, 1.0, . . . , 5.0} and the best solution is kept. The computing time

reported for ATC-D is the cumulated time of all ten runs. The results are shown in Table 4.4.

For the small-sized instances, V NSNL yields overall best RPD. The fact that the solutions

determined by V NSNL consistently match all optimal solutions provided by the solver, indicates

that the VNS scheme is implemented correctly. Furthermore, V NSNL found also for all other

instances the best solution among all approaches. For m = 4 and n = 30, the solver could not

find and verify optimal solutions. Nonetheless, the objective value of the solutions found deviates

on average about 1.62% from the solutions generated by V NSNL, yet, at the expense of large

computing times. On the one hand, the RPD of ATC-D is considerably larger than the RPD of

Gurobi and V NSNL. On the other hand, ATC-D requires significantly less computing time.

Finally, we compare the performance of ATC-D with V NSNL on instance Set II. The time

limit for these tests was set to tmax = 60 seconds. Since V NSNL consistently found better or

equal solutions compared to ATC-D, in Table 4.5, we only report RPD and computing time of the

ATC-D.

It is noteworthy that ATC-D requires the modest computing times. However, the RPD is not

competitive. Interestingly, the α-parameter appears to strongly affect the RPD, while the overall

numbers of jobs and machines do not.

Table 4.4: Results of Gurobi, V NSNL, and ATC-D based on instance size

RPD Time [sec]
m α Gurobi V NSNL ATC-D Gurobi ATC-D

2 5 0.00 0.00 14.07 0.7765 0.0004
7.5 0.00 0.00 26.23 333.6603 0.0041

4 5 0.02 0.00 19.82 1024.9155 0.0011
7.5 1.62 0.00 41.46 1800.0000 0.0022

Mean 0.41 0.00 25.40 789.8421 0.0019
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4.7 Summary and Research Perspectives

In this research, we considered an NP-hard unrelated parallel machine scheduling problem with job-

machine-dependent delivery times, eligibility constraints, and the objective of TWT minimization.

For this problem, an MILP was proposed. Furthermore, we formulated several properties to quickly

evaluate neighborhood solutions in LS procedures. The properties were incorporated in a VNS

algorithm and a computational study was conducted to investigate the effect of these properties

on the algorithm performance. The study showed, that the computational effort can be reduced

significantly through the use of structural properties. Furthermore, the ATC-D heuristic was

proposed. In our experiments, we compared the three approaches. While the applicability of the

MILP is strongly limited by the instance size, it can be used to determine optimal schedules for

small-sized instances. Large-sized instances can be solved efficiently by the VNS and the ATC-D.

Even though the ATC-D is outperformed by the VNS in terms of solution quality, it can be used

to find acceptable solutions with significantly smaller computational effort.

For future research, we suggest that the incorporation of the theoretical aspects into solution

approaches is also tested for other problems, since we expect the properties to be easily transferable

to special cases of the problem such as Pm||
∑

wjTj . Also, we believe it is worthy to investigate

whether they can be adapted for more general problem settings, e. g. if sequence-dependent-setup-

times are included into the problem formulation. With respect to the proposed VNS scheme, it

is necessary to compare it with other solution approaches that can solve large-sized instances to

validate its performance. Furthermore, the practical relevance of the problem could be further

increased by imposing additional constraints on the delivery aspect such as limited availability of

Table 4.5: Results of ATC-D based on instance size

m n RPD Time [sec]

5 20 13.255 0.001
40 42.773 0.003
80 112.108 0.014

10 40 12.883 0.004
80 40.025 0.016
160 123.906 0.072

20 80 13.438 0.021
160 33.951 0.089
320 102.396 0.409

Mean 54.971 0.070
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transportation vehicles and vehicle capacity.

4.A Appendix

Table 4.6 shows a detailed view of the RPD results summarized in Figure 4.4 based on the problem

size and γ.

Table 4.6: RPD of V NSNL based on instance size and γ

γ
m n 0 0.01 0.1 0.2 0.33

2 20 0.001 0.000 0.000 0.000 0.000
40 0.065 0.010 0.002 0.129 0.029
80 0.175 0.084 0.131 0.153 0.227

4 40 0.041 0.038 0.056 0.042 0.045
80 0.357 0.306 0.375 0.351 0.497
160 0.975 1.120 1.035 1.444 1.632

8 80 0.178 0.153 0.184 0.207 0.199
160 0.615 0.598 0.644 0.766 0.811
320 0.925 1.083 1.220 1.446 1.640

5 20 0.015 0.010 0.010 0.005 0.012
40 0.024 0.025 0.041 0.031 0.036
80 0.273 0.321 0.281 0.357 0.377

10 40 0.071 0.087 0.095 0.104 0.103
80 0.137 0.119 0.148 0.150 0.188
160 0.460 0.475 0.570 0.523 0.617

20 80 0.225 0.212 0.232 0.266 0.283
160 0.138 0.120 0.150 0.163 0.179
320 0.305 0.292 0.316 0.317 0.353

Mean 0.277 0.281 0.305 0.358 0.402
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Table 4.7 shows a detailed view of the computing time results summarized in Figure 4.4 based

on the problem size and γ.

Table 4.7: Computing time [sec] of V NSNL based on instance size and γ

γ
m n 0 0.01 0.1 0.2 0.33

2 20 0.184 0.182 0.178 0.179 0.173
40 1.101 1.101 1.082 1.061 1.032
80 8.731 8.708 8.585 8.427 8.249

4 40 0.986 0.985 0.975 0.963 0.947
80 7.153 7.138 7.073 6.996 6.906

160 59.786 59.697 59.292 58.749 58.376
8 80 5.475 5.468 5.419 5.365 5.303

160 41.520 41.490 41.238 40.864 40.457
320 354.687 354.672 352.497 350.040 348.364

5 20 0.172 0.172 0.169 0.175 0.170
40 0.943 0.940 0.929 0.914 0.901
80 6.517 6.505 6.456 6.318 6.235

10 40 0.797 0.795 0.790 0.777 0.763
80 5.010 5.002 4.959 4.861 4.796

160 36.590 36.515 36.270 35.538 35.111
20 80 3.884 3.880 3.847 3.774 3.724

160 25.074 25.028 24.821 24.338 24.052
320 186.975 186.613 185.579 181.696 179.698

Mean 41.421 41.383 41.120 40.613 40.292

Algorithm 7 shows the pseudo-code of the adjacent pairwise exchange procedure which is used

to improve the solution constructed in the first phase of the ATC-D heuristic.

Algorithm 7 Adjacent pairwise exchange procedure

1: Input: Feasible schedule π for problem Rm|Mj , qij |
∑

wjTj .
2: repeat
3: found improvement← false;
4: for j ∈ π do
5: if j is not the last job on its machine then
6: π′ ← swap j and its immediate successor in π;
7: if f(π′) < f(π) then
8: π ← π′;
9: found improvement← true;

10: end if
11: end if
12: end for
13: until found improvement == false
14: Return: π;
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Chapter 5

Energy Efficient Scheduling for a Fixed Sequence

in Flexible Job-Shop Manufacturing Systems*

5.1 Introduction

With sustainability becoming a key objective for manufacturing systems and the increase of energy

prices, energy costs can no longer be ignored in production planning and scheduling problems.

This is particularly important for companies using time-of-use electricity tariffs (TOU), which can

exploit the flexibility in their schedules to reduce their total energy cost. In this research, we are

considering, within the context of a flexible job-shop scheduling system and for a fixed sequence

of operations on the machines, the flexibility offered by allowing the makespan to be completed

before a predefined time limit. By allowing operations to be started later, and not always as early

as possible as it is most often considered in the scheduling literature, it is possible to benefit from

lower energy prices while maintaining a high level of productivity. More precisely, as shown in our

numerical results, a maximum allowed makespan that is only slightly larger than or even equal to

the minimum makespan may lead to beneficial reductions of the total energy cost.

It should be pointed out that the minimization of the total energy cost is a non-regular criterion.

As for instance studied in Mati et al. (2011), a regular criterion is an increasing function of the

completion times of the jobs, i.e., for a regular criterion, there is always an optimal schedule in

which jobs start (and are completed) as early as possible. Hence, when minimizing the total energy

cost, an optimal schedule is not straightforward to determine for a given sequence of operations on

*This chapter is based on the unpublished working paper Energy Efficient Scheduling for a Fixed Sequence in

Flexible Job-Shop Manufacturing Systems cited as Shen et al. (2021), which has been submitted to the European

Journal of Operational Research and is currently in second revision.
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the machines. This is why we need to propose new solution approaches.

Section 5.2 provides a literature review on the minimization of energy costs in scheduling

problems, that shows the originality of our problem. The latter is formalized in Section 5.3 as a

Mixed Integer Linear Program (MILP). Several properties are derived in Section 5.4 to support

the analysis of the complexity of the problem. Some of the properties are used to propose two

heuristics, a shifting procedure and a dynamic-programming-based procedure, in Sections 5.5.

Computational experiments are conducted in Section 5.6 to compare the results of the IBM ILOG

CPLEX solver when applied to the MILP and the two heuristic approaches, which show the

interest of the shifting procedure. The computational experiments also illustrate that interesting

cost savings can be obtained for relatively small values of the maximum allowed makespan and

for different sequences of the same flexible job-shop problem. Finally, some conclusions are drawn

together with some perspectives in Section 5.8.

5.2 Literature Review

The integration of energy aspects into classical machine scheduling problems gains increasing atten-

tion over the past years. Energy-aware scheduling (EAS) has been studied in multiple production

environments including single machines, parallel machines, flow-shops, and job-shops. Comprehen-

sive surveys of the EAS literature can be found in Gahm et al. (2016), Biel and Glock (2016) and

Akbar and Irohara (2018). Gahm et al. (2016) develop a research framework for energy-efficient

scheduling, according to which the existing literature is classified. Biel and Glock (2016) provide a

systematic literature review of the state-of-the-literature for short- and mid-term energy-efficient

production planning. Akbar and Irohara (2018) present a framework to conduct literature review

for sustainable manufacturing literature.

Next, we review the relevant machine scheduling literature covering the minimization of the

total energy cost (TEC) under consideration of time-of-use electricity tariffs (TOU). For a single

machine, Shrouf et al. (2014) investigate the minimization of TEC in the presence of TOU prices,

where the operator can choose between different machine states affecting the energy consumption

rate of the machine. A mathematical formulation and a GA approach are presented. Che et al.

(2016) consider a problem with job-dependent energy consumption rates to minimize TEC, and

propose an MILP as well as a heuristic. Another MILP and a heuristic are proposed by Zhang

et al. (2018) for the same problem. Rubaiee et al. (2018) investigate a multi-objective problem

with constant energy consumption rates to minimize the total tardiness and TEC. An MILP, three
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different GA approaches and a heuristic algorithm are proposed to solve the problem.

TEC minimization under TOU has also been considered for parallel machines. Moon et al.

(2013) investigate the problem of minimizing the sum of the makespan and TEC on unrelated

parallel machines with machine-dependent energy consumption rates (MDCR) and propose an

MILP and a GA. A similar problem is studied by Ding et al. (2016) in the presence of job-machine-

dependent energy consumption rates (JMDCR), and the objective is to minimize TEC, while there

is a bound imposed on the makespan. They propose an MILP and a column generation heuristic.

Che et al. (2017) develop another MILP and a two-stage heuristic for this problem. Wang et al.

(2018) consider a multi-objective problem to minimize TEC and the makespan on identical parallel

machines with MDCR, and implement the augmented ϵ-constraint method, a two-stage heuristic,

and a non-dominated sorting algorithm II (NSGA-II). Zhou et al. (2018) study the same problem

with uniform batch machines, and Zeng et al. (2018) with uniform machines to minimize TEC and

the number of used machines.

TEC minimization can also be found in the context of (hybrid) flow shop scheduling in the lit-

erature. Luo et al. (2013) study a multi-objective hybrid flow shop scheduling problem with MDCR

and uniform parallel machines at each stage, where the objectives are TEC and the makespan, and

compare different metaheuristic approaches. Zhang et al. (2014a) propose an MIP and a hybrid

Ant Colony Optimization (ACO) algorithm for a multi-objective flow shop scheduling problem

with JMDCR, where the objectives are minimization of TEC and the CO2 emissions. Zheng et al.

(2020) propose an MIP and a multi-objective ACO algorithm to minimize TEC and the makespan

in a two-stage blocking permutation flow shop scheduling problem with variable-speed machines.

Recently, Schulz et al. (2020) study a multi-objective hybrid flow shop scheduling problem with

variable discrete production speed levels to minimize both the total tardiness and TEC.

The literature on TEC minimization in (flexible) job shop environments remains very limited

and is rather case specific. Moon and Park (2014) develop models for two scenarios of the Flexible

Job Shop Scheduling Problem (FJSP) with time-machine-dependent electricity costs, where the

objective is to minimize the sum of the production overtime cost and electricity cost. The second

model additionally incorporates distributed energy resources and energy storage. Liu et al. (2015)

study a classical job shop problem inspired by a real-world production setting, where regular stops

of energy supply require the company to use generators resulting in higher CO2 emissions and

electricity costs. A mathematical model is developed to minimize the three objectives: Total

weighted tardiness, total energy consumption, and TEC. Zhang et al. (2017) study an FJSP with

machine speed selection to minimize the makespan and TEC under TOU tariffs, and propose a
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modified biogeography-based optimization algorithm combined with variable neighborhood search.

To our knowledge, the problem settings in this chapter have so far never been addressed in the

literature.

5.3 Problem Formulation

We consider the flexible job shop scheduling (FJS) problem where the total energy cost is mini-

mized. A set J of n jobs and a set M of m machines are given. Each job i consists of a sequence of

ni consecutive operations, where the jth operation of job i, denoted by oij ∈ O, can be processed

on any machine in a subset Mij ⊆M of compatible (also called eligible) machines.

For each operation oij , let P k
ij be its processing time on machine k ∈ Mij . In addition to the

classic FJS settings, we adopt the Time-of-Use pricing scheme TOU . Different unit electricity

power costs, denoted by TOU = {E1, . . . , Eb, . . . , EB}, are present for each individual pricing

period b, with b specifying the starting point of the associated time interval.

Compared to traditional scheduling problems, our primary objective is to ensure a desired

throughput rate by giving a maximum makespan Cmax ≤ C̄. The planning horizon is thus given

by T = {1, . . . , C̄}. The focus is then on minimizing the total energy cost TEC with a constraint

on the makespan.

We first use an existing algorithm to generate solutions for FJS problem instances. This algo-

rithm is based on the tabu search procedure proposed in Shen et al. (2018) by excluding setup-

related elements. According to the time-based measure makespan Cmax, operations are divided

into a set Oc
t of critical operations and a set On

t of non-critical operations. The algorithm starts

at a random solution π0. In each iteration, the current solution is improved either by resequencing

critical operations oij ∈ Oc
t on the same machine or reassigning oij ∈ Oc

t to a different eligible

machine. In this context, structural properties on the FJS ensure move feasibility and accelerate

the evaluation of neighbours. As a result, a set Π of schedules with makespan satisfying Cmax ≤ C̄

are accepted.

The algorithm thus delivers different feasible schedules. Let π ∈ Π be the assignment and

sequence of a resulting schedule with Cmax ≤ C̄. Each operation oij is now assigned to a machine

k ∈ Mij with a corresponding start time sij . Let Pij , respectively Sij , be the set with the direct

predecessors, respectively successors, of oij . By using the well-known definitions of head rij and
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tail qij in job shop scheduling, we have sij = rij with

rij = max
oi′j′∈Pij

{
ri′j′ + P k′

i′j′

}
(5.1)

qij = max
oi′j′∈Sij

{
P k′

i′j′ + qi′j′
}
. (5.2)

For operations oij ∈ Oc
t , the equation rij + P k

ij + qij = Cmax holds. Now, let us consider the case

where the makespan is allowed to be extended to C̄. The earliest start time smin
ij and latest start

time smax
ij for each operation oij on the assigned machine can be expressed as follows:

smin
ij = rij (5.3)

smax
ij = C̄ − qij − P k

ij (5.4)

Accordingly, we define the feasible processing range for all operations.

Definition 5.1 (Feasible processing range). The periods Vij ∈
[
smin
ij , smax

ij + P k
ij

]
define the feasible

processing range for operation oij.

We assume that the feasible processing range of each operation can cross at most one price

interval in TOU . The difference in pricing of adjacent intervals for oij is thus given by ∆Eij . If an

operation has to span over multiple intervals, the system flexibility is very limited. Also, subject

to Cmax ≤ C̄, it is common that each operation does not have much idle time.

The problem now consists in determining optimal start times sij for a given sequence π. We

first introduce the following time-indexed decision variables:

xkt
ij =

 1, if oij is processed during time period t on machine k,

0, otherwise,
(5.5)

and

ytij =

 1, if the processing of oij starts in time period t,

0, otherwise.
(5.6)

Furthermore, assume that k′ is the machine to which oij is assigned in sequence π. The problem

can be formulated as the following mixed linear integer programming model (MIP):

min
∑

oij∈On
t

∑
t∈Vij

Etx
k′t
ij . (5.7)
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subject to

∑
t∈Vij

xk′t
ij = P k′

ij ∀Oij ∈ On
t ; (5.8)

∑
oij∈On

t

xkt
ij ≤ 1 ∀t ∈ Vij ; k ∈M ; (5.9)

∑
t∈Vij

ytij = 1 ∀oij ∈ On
t ; (5.10)

y1ij ≥ xk′1
ij ∀oij ∈ On

t ; (5.11)

ytij ≥ xk′t
ij − xk′t−1

ij ∀oij ∈ On
t ; t ∈ Vij \ 1; (5.12)

sij ≥ tytij ∀oij ∈ On
t ; t ∈ Vij ; (5.13)

sij ≤ tytij +
(
Cmax − P k′

ij

) (
1− ytij

)
∀oij ∈ On

t ; t ∈ Vij ; (5.14)

sij ≥ sij−1 + P k′

ij−1 ∀oij ∈ On
t ; (5.15)

sij ≥ si′j′ + P k′

i′j′ ∀oij ∈ On
t ; (oi′j′ , oij) ∈ π; (5.16)

sij = rij ∀oij ∈ Oc
t ; (5.17)

xkt
ij , y

t
ij ∈ {0, 1} ∀oij ∈ O; k ∈M ; t ∈ Vij ; (5.18)

According to (5.7), the objective is to minimize the total energy cost in the planning horizon.

Constraint (5.8) requires that the sum of the processing periods of an operation is equal to its

processing time. Constraint (5.9) ensures that at most one operation is being processed in each

period on each machine. According to Constraint (5.10), each operation has exactly one start pe-

riod. Constraints (5.11) and (5.12) define the start period and avoid preemption, while constraints

(5.13) and (5.14) connect the operation start period and start time variables. Constraint (5.15)

follows the precedence constraints for operations that belong to the same job. Constraint (5.16)

prevents the overlapping of operations on the same machine. Constraint (5.17) fixes the start times

for time-critical operations, and constraint (5.18) defines the binary decision variables.

5.4 Problem Analysis

Note that, in the presence of TOU prices, conventional theories do not apply in general. In this

section, we first introduce relevant definitions. Then, several properties are derived for the TEC

to be minimized while satisfying the maximum makespan C̄.
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5.4.1 Definitions

So far, we have used the term critical operations oij ∈ Oc
t defined on the classical criterion Cmax.

While some properties for the makespan criterion also hold here, additional definitions are required

when minimizing TEC. To consider the case where operations become critical if they have the

potential to improve TEC by being moved, we next present the definition of critical operations in

terms of Cmax and TEC.

Definition 5.2 (Time-critical operation). For a given sequence with a makespan Cmax, an oper-

ation oij is time-critical if rij + P k
ij + qij = Cmax or, equivalently, if smax

ij − smin
ij = C̄ − Cmax.

Definition 5.3 (Energy-critical operation). For a given sequence with a given TEC, an operation

oij is energy-critical if smin
ij < b < smax

ij + P k
ij, where b is specified by TOU .

The set of energy-critical operations is denoted by Oc
e compared to the conventional set Oc

t

of time-critical operations. In Figure 5.1, the operations in blue Oc
t = {o21, o32, o22, o33} are the

time-critical operations for the makespan. The remaining operations are not time-critical. On the

other hand, o12 can move around b1 while the feasible processing ranges of o23 and o13 cover the last

two intervals. Using Definition 5.3, the energy-critical operations in red are Oc
e = {o12, o23, o13}.

Relating to different TOU cases, it is necessary to introduce some additional definitions.

Definition 5.4 (Left-shifted schedule). A schedule is left-shifted if all operations oij ∈ O start at

smin
ij .

Definition 5.5 (Right-shifted schedule). A schedule is right-shifted if all operations oij ∈ O start

at smax
ij .

Definition 5.6 (Compact schedule). A schedule is compact if it is either left- or right-shifted.

Figure 5.1: Illustration of critical operations
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Definition 5.7 (Partial compactness). Given a schedule and a set Of ⊂ O of operations with fixed

start times, the successors of operations in Of ensure partial compactness if they are left-shifted.

Alternatively, partial compactness can also be defined on operations with fixed completion times

and their predecessors.

As illustrated in Figure 5.2, starting from a non-compact schedule in the left Gantt chart, all

operations in the second and third intervals achieve partial compactness, whereas the start times

of operations in Of = {(1, 2), (2, 2), (3, 2)} remain unchanged in the right Gantt chart.

5.4.2 Properties with Varying TOU Settings

Considering the fluctuating prices of TOU , energy costs can benefit from varying the start times

of operations as formalized below. Using the new definitions, we have the following lemmata.

Lemma 5.1. For a given sequence, shifting non-energy-critical operations oij /∈ Oc
e does not change

TEC.

Lemma 5.2. If TEC is changed for a fixed sequence π, then the start time of at least one operation

oij is altered with

smin
ij ≤ b ≤ smax

ij + P k
ij , (5.19)

where b is the start time of an interval according to TOU .

Given a fixed sequence π, moving operations in the same price interval leads to a constant

TEC. This contradicts condition (5.19). Therefore, the only possibility to change TEC in this

case is to change the start times of operations whose feasible processing ranges cross price intervals.
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Figure 5.2: Illustration of a compact schedule
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Therefore, we should concentrate on critical operations in terms of TEC, i.e., oij ∈ Oc
e. In an

optimal solution, the remaining operations shift accordingly but with no effect on TEC.

Next, we investigate the structure of TOU . Starting with two-interval TOUs with two cases. It

is trivial to either left or right shift all operations to reach an optimal solution. Cases with three-

interval TOUs, denoted by TOU(3), are depicted in Figure 5.3. After examining the increasing

and decreasing tendencies of adjacent price intervals, we present the following properties.

Lemma 5.3. For case 1 of TOU(3) as depicted in Figure 5.3, a left-shifted schedule is optimal.

Proof: In case 1 of TOU(3), the prices are strictly increasing. Assume that an operation oij is not

left-shifted, i.e. sij > smin
ij . The completion time of this operation is greater than the left-shifted

position Cij > Cl
ij = smin

ij + P k
ij . Therefore, the energy cost for this operation cannot be smaller,

since E(sij) ≥ E
(
smin
ij

)
and E(Cij) ≥ E

(
Cl

ij

)
hold.

Similarly, we have the next lemmata for cases 2 and 3 of TOU(3). Prices are decreasing in case

2 while case 3 reaches the highest price in the middle interval.

Lemma 5.4. For case 2 of TOU(3) as depicted in Figure 5.3, a right-shifted schedule is optimal.

Lemma 5.5. For case 3 of TOU(3) as depicted in Figure 5.3, a schedule is optimal if all operations

oij ∈ Oc
e with smax

ij + P k
ij ≤ b2 are left-shifted and the remaining ones are right-shifted.

So far, the first three cases of TOU(3) can be solved to optimality by directly applying lemmata

5.3–5.5. We next discuss the case 4 of TOU(3).

Lemma 5.6. For case 4 of TOU(3) as depicted in Figure 5.3 with only two prices, the problem is

equivalent to maximizing the total processing time in the second interval.

Figure 5.3: TOU combination
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Lemma 5.7. For case 4 of TOU(3) as depicted in Figure 5.3 with three different prices, maximizing

the total processing time in the second interval is not always optimal.

According to Lemma 5.6, the first and the last intervals have identical prices. Solving the

problem indicates processing most possible operations in the second interval. It is not true for case

4 with three different prices where prices for the first and the last intervals are different. Figure 5.4

shows a counter-example, where the prices of TOU(3) are 3, 1, and 2. Compared to the left Gantt

chart, the total idle time in the second interval in the right Gantt chart is larger, as indicated by

the hatched area on the third machine. As a result, TEC is further reduced.

Proposition 5.1. For case 4 of TOU(3) as depicted in Figure 5.3, there exists an optimal schedule

where only operations oij ∈ Oc
e such that smin

ij < b1 are not left-shifted.

Proof: In an optimal schedule, operations oij such that smin
ij < b1 and smax

ij + P k
ij ≤ b1 can be

left-shifted, right-shifted or in between since they can only be scheduled in the first interval. Also,

operations oij such that smin
ij ≥ b1 can always be left-shifted in an optimal schedule, since the

energy costs for these operations can only be reduced by left-shifting them as the energy price in

the third interval is larger than the energy price in the second interval. Hence, only operations such

that smin
ij < b1 and smax

ij + P k
ij > b1, i.e. operations oij ∈ Oc

e such that smin
ij < b1 (see Definition

5.3), might be delayed to save energy costs by moving processing times between the first and third

intervals.

Note that, in an optimal schedule and following Proposition 5.1, if we note Oc′

e the subset of

operations Oc
e such that sij < b1 and sij + P k

ij ≥ b1, then the operations in Oc′

e ensure partial

compactness, i.e. all the successors of operations in Oc′

e are left-shifted (see Definition 5.7).

According to Proposition 5.1, there is at least one optimal schedule that ensures partial compact-

ness. Conversely, a schedule of partial compactness is not necessarily optimal. Ideally, operations
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Figure 5.4: Illustration of Lemma 5.7
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are concentrated in cost-efficient intervals without deteriorating the makespan. A considerable

number of remaining operations are attached to their predecessors/successors. The crucial part is

to identify which operations to delay.

If we expand TOU and consider the schedule on a daily basis, TOU is typically divided into

four intervals, consisting of off-, mid-, and on-peak levels. In general, depending on the sequence

of peak levels, different cases of TOU can be formulated. As shown in Figure 5.5, there are two

sets of symmetrical combinations, and thus eight combinations in total. Without loss of generality,

we investigate the four cases on the left side. Similar to TOU(3), we can derive the two following

lemmata immediately.

Lemma 5.8. Lemma 5.3 applies to case 1 of TOU(4) as depicted in Figure 5.5.

Lemma 5.9. For case 2 of TOU(4) as depicted in Figure 5.5, a schedule is optimal if all operations

oij ∈ Oc
e with smax

ij + P k
ij ≤ b3 are left-shifted and the remaining ones are right-shifted.

With respect to cases 3 and 4 of TOU(4), it is again essential to determine which operations

should be delayed and how to delay their processing. The start times of the remaining operations

then follow automatically as left-shifted to ensure partial compactness.

Proposition 5.2. For case 3 of TOU(4) as depicted in Figure 5.5, there exists an optimal schedule

where only operations oij ∈ Oc
e such that smin

ij < b1 are neither left-shifted nor right-shifted.

Proposition 5.3. For case 4 of TOU(4) as depicted in Figure 5.5, there exists an optimal schedule

where only operations oij ∈ Oc
e such that smin

ij < b2 are not left-shifted.

For these cases, we can further narrow the relevant operations down to the energy-critical

operations crossing a specific interval in TOU . Following the analysis, we can see that, for TOU(3)

Figure 5.5: Combinations of TOU with four intervals
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and TOU(4), a majority of cases can be solved to optimality by applying the properties. For the

remaining cases, we focus on operations oij ∈ Oc
e and stress compactness.

It is also noteworthy that there are optimal but not compact schedules. Especially when TOU

intervals are further increasing, ensuring compactness can become time-consuming. Alternatively,

we can specify the possible positions for energy-critical operations as four cases.

Proposition 5.4. For a given sequence π, the start point of an operation oij ∈ Oc
e satisfies one of

the following cases of its feasible processing range in an optimal solution to minimize TEC:

Case 1 sij = rij;

Case 2 sij = Cmax − qij − P k
ij;

Case 3 sij = b where oij starts at b according to TOU ;

Case 4 sij = b− P k
ij where oij ends at b according to TOU .

Proof: The four cases are depicted in Figure 5.6. Case 1 indicates that oij is left-shifted and

directly follows its predecessor(s). In case 2, oij is right-shifted and attached to its successor to

reach its maximum delay. Following the previous analysis in Lemmata 5.3–5.9, we know that

they are the optimal positions for increasing and decreasing TOU prices. Note that the feasible

processing range Vij of an operation oij can cross at most one interval. If E(b − 1) > E(b) and

smax
ij ≥ b+ P k

ij hold, start time sij < b leads to an increased TEC while sij > b does not improve

TEC. Therefore, sij = b is optimal (Case 3). Similarly, it can be proved that sij = b− P k
ij (Case

4) is optimal if E(b) < E(b+ 1) and smin
ij ≤ b− P k

ij are true.

We were not able to formally prove the complexity of case 4 of TOU(3) and cases 3 and 4 of

TOU(4), that we leave for future research. Our belief is that case 4 of TOU(3) is NP-hard. If true,

this would mean that cases 3 and 4 of TOU(4), that include case 4 of TOU(3), are also NP-hard.

5.5 Heuristic Approaches

Based on the previous analysis and observations, we now develop heuristic approaches to comple-

ment the MIP model to determine the start times of operations for a given sequence π. The first

heuristic, the shifting procedure (SP) presented in Section 5.5.1, mainly focuses on the unsolv-

able cases as discussed in Section 5.4, while the second heuristic, the dynamic-programming-based

procedure (DP) presented in Section 5.5.2, solves the FJSP with general TOU settings.
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Figure 5.6: Illustration of Propositions 5.4

5.5.1 Shifting Procedure

Before presenting the shifting procedure (SP), we first introduce the concept of critical interval.

Definition 5.8 (Critical interval). Given a TOU pricing, an interval, defined by the left and right

price breaks [b∗l , b
∗
r ], is critical if the prices of its two adjacent intervals are higher.

By definition, the interval with b∗l = b1 and b∗r = b2 in case 3 of TOU(4) is critical. In an

optimization procedure, we can thus focus solely on the operations crossing b1 or b2. Furthermore,

delaying an operation oij by t units causes multiple operations (o′) to shift simultaneously as

a result of partial compactness. These operations are on diverse paths passing through oij , i.e.

o′ ∈ PA(oij). The TEC variation can thus be expressed as follows:

∆TEC =
∑

o′∈PA(oij)

c(o′) · t, c(o′) ∈ {0,∆E}, (5.20)

where ∆E is the price difference when o′ crosses intervals. According to equation (5.20), TEC

can be constant or temporarily increasing before it is improved. Therefore, we can set t = 1 and

stepwise increase the start time of oij within the feasible processing range while calculating the

TEC variation, until the best combination is determined. Next, we propose SP as follows.

SP is described in Algorithm 8 and relies primarily on the systematic shifting of operations

crossing the price breaks adjacent to the critical interval in order to reduce TEC. SP starts with
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a left-shifted initial solution π0 and first identifies the relevant operations in Or. In the forward

phase, the start times of operations oij in Or are stepwise increased (sij = sij+1). After each step,

succeeding operations, whose start times become infeasible due to the shift of oij , are updated. The

resulting schedule is also adjusted to ensure partial compactness of all preceding and succeeding

operations of oij . As long as the resulting TEC does not deteriorate, the schedule is updated. This

step is repeated until the start time reaches its maximum value (sij = smax
ij ). The procedure then

turns to the next operation in Or. The process is equivalent in the backward phase, where the

start times of operations in Or are stepwise decreased (sij = sij − 1). Both forward and backward

phases ensure that energy-critical operations are being pushed into the most cost-efficient interval.

An advantage of SP is that, for each shifting step, the energy cost variation of the entire schedule

and not of the individual operation is evaluated.

For illustration, Figures 5.7, 5.8 and 5.9 show an initial solution, the forward phase, and the

backward phase of SP, respectively. For simplification, all operations oij ∈ Or in the initial solution

Algorithm 8 SP – Shifting Procedure

1: Input:
2: Initial left-shifted solution π0 with problem sij = rij ; πb = π0

3: Price breaks adjacent to the critical interval b∗l and b∗r ;
4: Set of relevant operations

Or = {oij : smin
ij < b∗l , s

max
ij + P k

ij ≥ b∗l } ∪ {oij : smin
ij < b∗r , s

max
ij + P k

ij ≥ b∗r}
5: repeat
6: for all operations oij ∈ Or do ▷ Forward phase
7: πc ← πb

8: while sij < smax
ij do

9: πc ← Increase Start T ime(πc, sij)
10: πc ← Ensure Compactness(πc)
11: if TEC(πc) ≤ TEC(πb) then
12: πb ← πc

13: end if
14: end while
15: end for
16: for all operations oij ∈ Or do ▷ Backward phase
17: πc ← πb

18: while sij > smin
ij do

19: πc ← Decrease Start T ime(πc, sij)
20: πc ← Ensure Compactness(πc)
21: if TEC(πc) ≤ TEC(πb) then
22: πb ← πc

23: end if
24: end while
25: end for
26: until No further improvement found
27: Return πb
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are already shifted towards the critical interval as far as possible without affecting the start times of

other operations in order to ensure partial compactness. Red-framed operations are time-critical.

In the forward phase, operations (4,1), (9,2), and (2,3) are relevant operations, i.e. in Or. Each

Gantt chart in Figure 5.8 illustrates the shifting of an operation in Or. The shifting of other energy-

critical operations in this example does increase TEC and is therefore not displayed. Thick black

frames highlight the block of operations that are being moved accordingly to ensure compactness.

Figure 5.9 then shows a step in the backward phase, where operation (11,4) in Or along with the

block (7,2,. . .,8,5) are being shifted into the second interval. As a result, TEC is then further

reduced by 15 units.

SP does not always reach optimal solutions. For the small example in Figure 5.10, initial and

optimal solutions are shown in the top-left and top-right Gantt charts. Two illustrative moves of

SP are depicted in the bottom-left and bottom-right Gantt charts. Due to the increased TEC,

such intermediate moves are not realized. In order to find the optimum, SP would have to either

perform inferior moves or move operations simultaneously. Computationally, however, it would

be very expensive. On the other hand, as shown in our extensive computational experiments,

excluding these cases requires considerably less computational time and leads to small deviation

from an optimal solution.

5.5.2 Dynamic-Programming-Based Procedure

As discussed in Section 5.4.2, several TOU combinations can be solved to optimality by integrating

the corresponding properties. Furthermore, we develop SP to address the remaining cases, where

a large number of operations are excluded. In return, we can afford to stepwise increase/decrease

start times.

Figure 5.7: Illustration of SP – initial solution
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Figure 5.8: Illustration of SP – forward phase

Figure 5.9: Illustration of SP – backward phase
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Figure 5.10: Illustration of case not solved to optimality

In general, the number of operations relevant to the variation of TEC increases when TOU

includes more intervals. Recall that Lemma 5.1 identifies promising operations, while Proposition

5.4 indicates how to move these operations. Combining these properties, we also develop a dynamic-

programming-based procedure (DP) to improve the start times of operations for a given sequence.

According to the DP Algorithm 9, the values of bij , rij , qij for operations oij ∈ Oc
e are calculated

based on a given sequence π0. In the forward DP procedure, operations whose predecessors are

non-existent or have been labelled are considered. By building partial solutions, we calculate all

four cases given in Proposition 5.4. Note that the backward version is only performed on a subset

of partial solutions Πv, where the start times of the operations are not fixed yet. In the end,

the algorithm returns a solution π∗ with improved start times for all operations and with the

best-known TEC.

For better understanding, Figure 5.11 shows a small example of the DP procedure which starts

with an initial sequence (I) and TOU = {3, 1, 2}. Note that operations o1,1 and o2,1 are not

energy-critical, since their feasible processing range does not cross b1. Hence, we set s1,1 = r1,1,

s2,1 = r2,1, and update R = {o2,2; o1,2}. In step (II), o2,2 is selected and R = {o1,2}. For o2,2,

one new partial solution is built according to Case 1 (s2,2 = r2,2) of Proposition 5.4. Without loss

of generality, we show only the part of the search tree corresponding to the forward phase of the
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Algorithm 9 DP – Dynamic-programming-based Procedure

1: Input: Initial solution π0 with rij , qij , O
c
e

2: Πc ← {π0}; Πv ← ∅ ▷ Start forward DP
3: Determine set R = {oij : oi′j′ ∈ Pij is non-existent or labelled}
4: while R is not empty do
5: Select an operation oij ∈ R and R← R \ oij ;
6: if oij ∈ Oc

e then
7: for π ∈ Πc ∪Πv do
8: Determine smin

ij according to (5.3)

9: Determine smax
ij = C̄ − qij ;

10: Determine bij ∈ [smin
ij , smax

ij ]

11: Πc ← Πc ∪ π ⊕ omin
ij , where sij = smin

ij ▷ Corresponding to case 1

12: Πc ← Πc ∪ π ⊕ obij , where sij = bij ▷ Corresponding to case 3
13: Πv ← Πc ∪ π ⊕ ovij , where sij is variable
14: end for
15: end if
16: Label oij and update R;
17: end while
18: Determine set Q = {oij : oi′j′ ∈ Sij is non-existent or labelled} ▷ Perform backward DP
19: while Q is not empty do
20: Select an operation oij ∈ Q and Q← Q \ oij
21: if oij ∈ Oc

e then
22: for π ∈ Πv do
23: Determine smax

ij according to (5.4)
24: Πv ← Πv ∪ π ⊕ omax

ij , where sij = smax
ij ▷ Corresponding to case 2

25: Πv ← Πv ∪ π ⊕ ob
−

ij , where sij = bij − P k
ij ▷ Corresponding to case 4

26: end for
27: end if
28: Label oij and update Q;
29: end while
30: return π∗ ← argmin{TEC(π), π ∈ Πc ∪Πv}

algorithm and do not examine set Πv of partial solutions, where sij remains variable. Based on

solution (II), two extended partial solutions are generated corresponding to Case 1 (s1,2 = r1,2)

and Case 3 (s1,2 = b). Labelling o1,2 leads to R = {o1,3, o2,3}. According to Proposition 5.1,

o1,3 and o2,3 must ensure partial compactness. Therefore, it is not necessary to consider multiple

start times besides Case 1. Note that integrating the structural properties of Section 5.4 is vital,

since a significant number of partial solutions can be ruled out. The final solution with s1,2 = b

corresponds to the optimal TEC.
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Figure 5.11: Example for DP heuristic with search tree containing partial and final solutions.
Optimal solution is marked by a red frame.

5.6 Computational Experiments

Section 5.6.1 first presents how our extensive experiments are designed. Then, in Section 5.6.2, we

first optimally solve the benchmark instances with small values of C̄ by using IBM ILOG CPLEX,

and the results are compared with those given by SP and DP. Since IBM ILOG CPLEX cannot

reach optimal solutions with increasing values of C̄, we then only focus in Section 5.6.3 on the

comparison of SP and DP.

5.6.1 Experimental Design

Our experiments are performed on existing benchmark instances for the flexible job shop scheduling

problem. We first summarize the benchmark sets in previous studies:

• Demirkol/Mehta/Uzsoy instances from Demirkol et al. (1998): Dmu01–80 ranging from 20

jobs on 15 machines to 50 jobs on 20 machines;

• Hurink/Jurisch/Thole instances from Hurink et al. (1994): car1–8, abz5–9, la1–40, orb1–10,

mt06, 10, 20 including edata, rdata, and vdata, ranging from 6 jobs on 6 machines to 30 jobs
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on 10 machines;

• Dauzère-Pérès/Paulli instances from Dauzère-Pérès and Paulli (1997): 01–18a ranging from

10 jobs on 5 machines to 20 jobs on 10 machines;

• Brandimarte instances from Brandimarte (1993): Mk01–10 ranging from 10 jobs on 6 ma-

chines to 20 jobs on 15 machines;

• Barnes/Chambers instances from Barnes and Chambers (1996): mt10∗, setb4∗, and seti5∗

sets ranging from 10 jobs on 11 machines and 15 jobs on 18 machines.

With respect to TOU pricing schemes, we are motivated by practical applications. Table 5.1

simulates the electricity prices in Germany (Schulz et al., 2020), where daily prices are divided into

four intervals of three levels. This setting is equivalent to Case 2 in Figure 5.5, which, following

Lemma 5.9, can be solved to optimality.

Furthermore, we are also interested in solving other cases, since they are of both theoretical

and practical relevance. Without loss of generality, we specify the TOU price levels as 1, 2, 3

and 4, and examine 10 combinations as given in Table 5.2. Combination 3 corresponds to the

German electricity market setting. According to the analysis in Section 5.4, optimal solutions

can be obtained for the first four combinations while the remaining combinations are challenging.

Therefore, besides the TOU(4) cases, we add two additional TOU(3) cases.

As a starting point, we generate a sequence π0 for the best known makespan by using the Tabu

Table 5.1: TOU prices

Time (hours) 0-7 8-15 16-20 21-23
Level off-peak mid-peak on-peak mid-peak

Price
(
e

MWh

)
80 160 240 160

Table 5.2: TOU settings

Main TOU Symmetrical TOU
combination combination

1 {1,2,3,4} 2 {4,3,2,1}
3 {1,2,3,2} 4 {2,3,2,1}
5 {1,2,1,2} 6 {2,1,2,1}
7 {2,1,2,3} 8 {3,2,1,2}
9 {2,1,3} 10 {3,1,2}
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Search algorithm of Shen et al. (2018), i.e. C∗
max = Cmax(π

0). An upper bound of the makespan

is given by

C̄ = (1 + a) · C∗
max, (5.21)

where a is selected from the range [0%, 20%]. For comparison purposes, we also use a set of

alternative sequences satisfying Cmax ≤ C̄ obtained by the same Tabu Search algorithm.

Both SP and DP are coded using the C++ programming language. The MILP is implemented

and solved using IBM ILOG CPLEX 12.8. All the computational experiments are carried out on

a PC with Intel Xeon CPU E5-2697 v3 with 2.60GHz and 128 GB RAM.

5.6.2 Comparison of Heuristics SP and DP with IBM ILOG CPLEX

Considering the limited capacity of commercial solvers, we first use IBM ILOG CPLEX, SP, and

DP to determine the schedule without deteriorating the best known makespan, i.e., C̄ = C∗
max.

Note that we implement two models in CPLEX. The first one, denoted by MIP 0 is presented

in Section 5.3. The second model MIP 1 integrates Lemmata 5.3–5.9 to reduce the number of

operations to consider.

The models are able to solve the benchmark sets Hurink et al. (1994); Dauzère-Pérès and Paulli

(1997); Brandimarte (1993), and Barnes and Chambers (1996) of 115 instances in total, except for

one with TOU = {2, 1, 2, 3}, one with TOU = {2, 1, 2, 1}, and one with TOU = {2, 1, 3}. Tables

5.3 and 5.4 compare the solution quality and computational time of MIP 0, MIP 1, SP, and DP

variants. The relative percentage deviation (RPD)is determined using:

RPD =

(
TEC(A)

TEC∗ − 1

)
100, A ∈ {MIP 0, MIP 1, SP, DP variants}, (5.22)

where TEC∗ denotes the minimal cost and TEC(A) the resulting cost after applying approach A.

We can see from Table 5.3 that, for the first four TOU combinations, the procedure relying on the

optimization properties determines optimal solutions instantaneously. It is also worth mentioning

that, compared to the original model MIP 0, the improved version MIP 1 is significantly faster.

For the remaining cases, Table 5.4 provides the RPD and CPU time for each procedure. The

columns in “Optima” indicate the number (“No.”) and the ratio (“Ratio”) of problem instances

for which the solutions are optimal. Note that SP obtains all optimal solutions, while DP obtains

optimal solutions for 85% of the instances on average. The deviation of the solutions obtained by

DP from the optimal solutions is lower than 0.01%. Moreover, SP and DP require considerably
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less computational time than IBM ILOG CPLEX.

Note that the total number of potential start times significantly increase with the maximum

makespan C̄. Tables 5.5 and 5.6 report the computational time of MIP 0, MIP 1, SP and DP

when the makespan is increased by 5%. The time limit is set to one hour. We can observe that the

computational time for MIP 0 and MIP 1 to determine an optimal solution increases greatly, while

the instances in Table 5.6 are not solvable for MIP 0 in one hour. In comparison, the computational

time of the procedure with the optimization properties (Columns “Properties”) is negligible (see

Table 5.5), and the computational times of SP and DP are small and very close, about 5 seconds

Table 5.3: Comparison of IBM ILOG CPLEX and procedure with optimization properties

TOU MIP 0 MIP 1 Procedure
with properties

Time Time RPD Time

{1,2,3,4} 10.44 2.19 0.00 0.00081
{4,3,2,1} 6.87 2.12 0.00 0.00080
{1,2,3,2} 9.99 2.34 0.00 0.00080
{2,3,2,1} 11.33 2.25 0.00 0.00080

Mean 9.66 2.23 0.00 0.00080

Table 5.4: Comparison of SP and DP based on all instances solved optimally by IBM ILOG CPLEX

TOU CPLEX SP DP
MIP 0 MIP 1 Optima Optima
Time Time RPD No. Ratio Time RPD No. Ratio Time

{2,1,2,3} 43.95 36.91 0.000 114 1.00 0.65 0.008 90 0.79 1.72
{3,2,1,2} 50.29 11.74 0.000 115 1.00 0.78 0.006 94 0.82 1.85
{1,2,1,2} 99.39 7.18 0.000 115 1.00 0.49 0.006 93 0.81 0.12
{2,1,2,1} 50.71 34.71 0.000 114 1.00 0.40 0.006 92 0.81 0.12
{2,1,3} 42.32 34.06 0.000 114 1.00 0.49 0.001 107 0.94 0.12
{3,1,2} 19.34 3.19 0.000 115 1.00 0.60 0.003 105 0.91 0.15

Mean 51.00 21.30 0.000 1.00 0.58 0.005 0.85 0.68

Table 5.5: Computational times when increasing C̄ by 5% (I)

TOU MIP 0 MIP 1 Properties TOU MIP 0 MIP 1 Properties

{1,2,3,4} 10.11 4.72 0.0008 {4,3,2,1} 8.60 4.11 0.0008
{1,2,3,2} 16.13 5.53 0.0008 {2,3,2,1} 31.79 5.43 0.0008
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(see Table 5.6).

5.6.3 Performance of SP and DP

For the problem sizes that cannot be solved using IBM ILOG CPLEX, only SP and DP are

compared. The relative percentage of TEC improvement (RPI) is expressed by

RPI =

(
1− TEC(A)

TEC(π0)

)
· 100, A ∈ {SP, DP variants}, (5.23)

where TEC(π0) and TEC(A) are the initial costs of π0 and the costs after applying SP or DP. In

our experiments, we first set a ∈ {0%, 1%, 5%, 10%, 15%, 20%} to relax C̄. As reported in Table

5.7, TEC is further improved for all TOUs and values of a. SP obtains slightly better results.

Figure 5.12 shows that the computational time of SP is significantly larger than the computational

time of DP as a and C̄ increase.

In addition, we have tested problem instances with extended TOUs of up to 8 intervals and two

levels for a. The results, summarized in Table 5.8, confirm that DP and SP determine solutions

that are very close in terms of quality, and that the computational times of SP quickly increase

Table 5.6: Computational times when increasing C̄ by 5% (II)

TOU MIP 0 MIP 1 SP DP TOU MIP 0 MIP 1 SP DP

{1,2,1,2} – 2523.47 3.33 2.68 {2,1,2,1} – 2636.18 3.65 2.61
{2,1,2,3} – 2329.03 6.90 4.42 {3,2,1,2} – 2248.60 7.55 5.75
{2,1,3} – 1889.36 5.46 3.09 {3,1,2} – 1584.23 5.55 3.02

Table 5.7: Comparison of percentage of TEC improvement (RPI) of SP and DP for individual
TOUs

TOU SP DP
a 0% 1% 5% 10% 15% 20% 0% 1% 5% 10% 15% 20%

{1,2,1,2} 0.61 0.68 0.85 1.05 1.21 1.30 0.60 0.66 0.77 0.94 1.09 1.15
{2,1,2,1} 1.32 1.92 4.53 7.74 10.96 14.18 1.32 1.90 4.47 7.65 10.86 14.04
{2,1,2,3} 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.47 0.47 0.46 0.46 0.46
{3,2,1,2} 1.08 1.56 3.66 6.31 8.86 11.33 1.07 1.55 3.66 6.30 8.86 11.33
{2,1,3} 0.49 0.50 0.50 0.50 0.50 0.50 0.49 0.49 0.49 0.49 0.49 0.49
{3,1,2} 1.11 1.59 3.73 6.34 8.87 11.38 1.11 1.59 3.72 6.33 8.86 11.37

Mean 0.85 1.12 2.29 3.74 5.15 6.53 0.84 1.11 2.26 3.70 5.10 6.47
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with the maximum makespan.

5.7 Benefits of Minimizing Electricity Costs

In Section 5.7.1, the benefits and potential of cost reduction are closely examined with different

TOUs and values of the maximum makespan. Then, further aspects are analyzed in Section 5.7.2,

including the flexibility of the resources in the instances, alternative sequences, and their impact

on the algorithm performance.

Table 5.8: Comparison of DP and SP for more than 4 TOU intervals (RPI)

a = 0% a = 10%
TOU SP DP SP DP

RPI Time RPI Time RPI Time RPI Time

{2,1,3,1,2} 2.44 0.39 2.41 2.49 4.67 21.29 5.81 8.12
{2,1,2,3,1,2} 2.27 0.43 2.22 3.88 4.62 20.86 5.54 8.78
{2,1,2,1,2,1,2} 4.02 0.43 3.97 4.12 1.80 36.68 1.36 9.06
{2,1,2,3,2,1,2,3} 5.87 0.53 5.83 5.39 1.47 59.45 1.06 9.80

Mean 3.65 0.45 3.61 3.97 3.14 34.57 3.45 8.94
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Figure 5.12: Comparison of computational times of SP and DP depending on a.
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5.7.1 Potential of TEC Reduction

We can observe from Table 5.7 that the TEC improvement varies widely for different TOU settings.

More specifically, Tables 5.9 and 5.10 provide the min, max and mean percentage improvement

according to TOUs. Also, the tables are roughly divided into three categories which show strong,

distinct and slight correlation between the TEC improvement and TOUs.

When the price is increasing in the final phase of TOU , relaxing C̄ only leads to a minor

TEC improvement. On the other hand, if the prices are fluctuating, the cost reduction becomes

promising, around 1% without degrading the minimum makespan and over 10% with a 20% increase

of the minimum makespan. Finally, with small prices in the final phase of TOU , major TEC

improvements up to 20% are achieved.

In general, even when TOU settings have more and irregular intervals as in Table 5.11, a

significant TEC improvement is possible.

In addition, we investigated the selection of a in smaller steps: a ∈ {1%, 2%, . . . , 10%}. Figure

5.13 shows similar patterns with three major groups according to TOUs.

For illustration purposes, we next use several Gantt charts to visualize the modified schedules

and TEC improvements. Figure 5.14 shows the substantial TEC improvement for problem instance

la01 after increasing the makespan by 20%. For the same problem instance, Figure 5.15 shows that

TEC can still be improved when the best known makespan is the maximum allowed makespan.

On the other hand, Figure 5.16 shows that, despite increasing prices in the extended period, TEC

Table 5.9: Min, max, and mean TEC improvement (RPI) (I)

TOU a
0% 1% 5%

Min Max Mean Min Max Mean Min Max Mean

{1,2,3,4} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
{2,1,2,3} 0.00 2.38 0.48 0.00 2.38 0.48 0.00 2.38 0.48
{2,1,3} 0.00 2.83 0.49 0.00 2.83 0.50 0.00 2.83 0.50
{1,2,1,2} 0.00 3.12 0.61 0.00 3.18 0.68 0.00 3.32 0.85

{1,2,3,2} 0.00 3.06 0.61 0.00 3.06 1.05 1.90 5.61 3.06
{3,2,1,2} 0.06 4.02 1.08 0.43 4.41 1.56 2.47 6.57 3.66
{3,1,2} 0.06 5.06 1.11 0.32 5.47 1.59 1.89 8.64 3.73

{2,1,2,1} 0.00 5.50 1.32 0.00 5.50 1.92 2.79 8.56 4.53
{2,3,2,1} 0.10 0.10 1.14 0.30 0.30 1.96 4.06 4.06 5.65
{4,3,2,1} 0.13 5.41 1.37 0.46 5.69 2.35 4.56 10.12 6.70
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Table 5.10: Min, max, and mean TEC improvement (RPI) (II)

TOU a
10% 15% 20%

Min Max Mean Min Max Mean Min Max Mean

{1,2,3,4} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
{2,1,2,3} 0.00 2.38 0.48 0.00 2.38 0.48 0.00 2.38 0.48
{2,1,3} 0.00 2.83 0.50 0.00 2.83 0.50 0.00 2.83 0.50
{1,2,1,2} 0.00 4.95 1.05 0.00 6.52 1.21 0.00 7.05 1.30

{1,2,3,2} 3.81 8.16 5.57 6.98 9.93 8.07 8.57 12.61 10.46
{3,2,1,2} 4.42 10.22 6.31 6.98 13.80 8.86 9.41 16.45 11.33
{3,1,2} 4.10 11.57 6.34 4.88 13.96 8.87 7.05 15.79 11.38

{2,1,2,1} 5.18 11.62 7.74 9.45 15.60 10.96 12.35 18.65 14.18
{2,3,2,1} 7.54 7.54 10.26 13.65 13.65 14.88 15.64 15.64 19.30
{4,3,2,1} 8.66 15.56 12.14 16.11 21.64 17.58 20.50 26.39 22.96

Table 5.11: Minimum and Maximum values of RPI for more than 4 TOU intervals

TOU a = 0% a = 10%
Min Max Min Max

{2,1,3,1,2} 0.47 6.89 0.95 10.80
{2,1,2,3,1,2} 0.11 7.21 0.69 10.36
{2,1,2,1,2,1,2} 1.21 8.89 0.00 6.21
{2,1,2,3,2,1,2,3} 0.60 11.60 0.00 5.56
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Figure 5.13: Percentage TEC improvement (RPI) with additional values of a
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can be reduced.

Figure 5.14: TEC improvement for instance la01 (C̄ > C∗
max)

Figure 5.15: TEC improvement for instance la01 (C̄ = C∗
max)
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Figure 5.16: TEC improvement for instance la02 despite increasing prices

5.7.2 Further Analysis

In this section, we analyze some additional aspects of our problem. Figure 5.17 summarizes the

relative TEC improvement according to the problem sizes. The consistent pattern suggests that

the TEC improvement is relatively stable with the increase of the maximum makespan.

In addition, we sorted out the Hurink instances (Hurink et al., 1994) to analyze the TEC

improvement potential in relation to the flexibility of the resources in the instances. All TOU

combinations are selected and a ∈ {5%, 15%}. All instances in sdata, edata, rdata, and vdata are

tested, and the average value is used for comparison. It can be seen from Table 5.12 that the RPI

slightly varies with the flexibility of the resources. No major differences are observed.

For comparison, we next use alternative sequences of the flexible job-shop scheduling problem

such that Cmax ≤ C̄. In Table 5.13, the improvement is calculated by using the initial TEC of the

alternative sequence with a makespan close to C̄. It is interesting to compare the results with the

TEC improvement for a sequence with the best known makespan C∗
max. In this respect, results are

clearly divided into two parts where negative values are present for TOUs with increasing prices

in the last intervals. This is due to the fact that alternative sequences with makespan close to C̄

have more operations processed in the final periods. If these operations are time-critical, then it



5.7. Benefits of Minimizing Electricity Costs 86

1% 5% 10% 15% 20%
0

2

4

6

a

R
P
I

1-99
100-199
200-299
300-400

Figure 5.17: Percentage TEC improvement (RPI) based on a and number of operations

Table 5.12: Percentage TEC improvement (RPI) for Hurink instances with diverse flexibility

TOU sdata edata rdata vdata
a 5% 15% 5% 15% 5% 15% 5% 15%

{1,2,3,4} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
{4,3,2,1} 7.24 18.28 6.69 17.52 6.71 17.51 7.76 18.70
{1,2,3,2} 3.08 8.01 3.04 8.06 3.14 8.17 3.31 8.21
{2,3,2,1} 5.97 15.25 5.63 14.76 5.69 14.80 6.39 15.67
{1,2,1,2} 1.59 2.46 0.81 1.03 0.64 0.74 2.12 3.17
{2,1,2,1} 4.89 11.32 4.40 10.83 4.47 10.87 5.56 12.08
{2,1,2,3} 0.71 0.71 0.42 0.42 0.37 0.37 0.96 0.96
{3,2,1,2} 4.62 10.38 3.67 8.87 3.48 8.49 5.19 10.78
{2,1,3} 0.82 0.84 0.50 0.50 0.37 0.37 0.99 0.99
{3,1,2} 4.66 10.02 3.84 8.92 3.45 8.57 4.99 10.67
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is impossible to move them. For the other combinations, the TEC improvement remains close for

each a. This suggests that, by using a sequence with the best known makespan C∗
max, the result

strongly depends on the initial sequence and TOU settings. On the other hand, good results are

obtained with all TOU settings when using alternative sequences which do not violate C̄.

5.8 Summary and Research Perspectives

In this research, we investigated the potential of energy cost savings in the flexible job shop environ-

ment, where the sequence of operations on the machines is fixed and ending the schedule after its

minimum makespan is allowed. By considering diverse tariffs-of-use, we derived propositions and

lemmata to solve special cases to optimality. These properties also help to formalize the problem

as a mixed integer linear program. We also proposed two heuristic approaches which are able to

obtain high-quality solutions in small computational times for the most complex cases. Numerical

results also confirm that substantial TEC savings can be achieved with a relatively small increase,

or even no increase, of the minimum makespan.

Our observation and experiments suggest that the most general case of the problem is not

polynomially solvable. Its complexity status deserves further investigation. More importantly, and

as illustrated in our numerical experiments, changing the assignment and the sequence of operations

lead to substantial additional TEC savings. Also, the non-regularity of the TEC criterion makes

it a challenging problem to explore, since a left-shifted schedule is not always optimal for a given

sequence of jobs. Indeed, not only the jobs must be assigned and sequenced on the machines, but

Table 5.13: Percentage TEC improvement based on alternative sequences

TOU Cmax ≤ C̄ Cmax = C∗
max

a 1% 5% 10% 1% 5% 10%

{1,2,3,4} 0.00 0.00 0.00 -0.47 -3.19 -6.28
{1,2,3,2} 0.55 0.70 0.81 0.51 0.37 0.22
{1,2,1,2} 0.59 0.70 0.89 0.38 -0.83 -2.18
{2,1,2,3} 0.49 0.53 0.62 0.10 -1.98 -4.33
{2,1,3} 0.50 0.59 0.70 0.22 -1.79 -4.04

{4,3,2,1} 1.25 1.55 1.89 1.59 3.80 6.29
{2,3,2,1} 1.02 1.29 1.58 1.30 3.05 5.05
{2,1,2,1} 1.25 1.53 1.83 1.41 2.67 4.12
{3,2,1,2} 1.02 1.22 1.49 1.04 1.35 1.68
{3,1,2} 1.05 1.30 1.56 1.12 1.49 1.81
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an optimal schedule must also be determined.

Hence, our current research aims at combining the heuristics introduced in this research with

solution methods for the traditional flexible job shop scheduling problem. The objective is still

to minimize the total energy cost with a constraint on the maximum allowed makespan, but we

believe studying the minimization of both the total energy cost and the makespan is a relevant

research avenue.
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Chapter 6

Conclusions

In this thesis, to address recent developments in industry, the integration of job delivery times

into machine scheduling was studied. More specifically, three related optimization problems in

the context of parallel machine environments were formulated which are motivated by the new

manufacturing paradigm cloud manufacturing. Additionally, a special case of the flexible job shop

scheduling problem was investigated, where the objective is to minimize the total energy cost in

the presence of time-of-use energy pricing schemes, subject to a bound on the makespan of the

schedule.

For the studied problems, mathematical programming formulations were proposed as a means to

derive optimal solutions for small-sized instances. Furthermore, the problems were analyzed from a

theoretical perspective. To tackle instances of practical size, multiple (meta-)heuristic approaches

were proposed for each problem which integrate the findings from the theoretical analyses to

increase efficiency and quality of the solution procedures. To evaluate these approaches, extensive

computational experiments were conducted.

To be precise, for the identical parallel machine scheduling problem with machine-dependent

delivery times and total weighted tardiness minimization in Chapter 2, structural properties were

identified that can be exploited to significantly increase the efficiency of local search procedures.

Those properties were integrated in a variable neighborhood search (VNS) algorithm.

After modification, this VNS could also be applied to the unrelated parallel machine problem

with job-machine-dependent delivery times and total weighted completion time minimization in

Chapter 3. However, computational experiments showed that this approach was outperformed by

a tabu search algorithm employing a data structure tailored to the underlying assignment problem.
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Furthermore, the VNS approach incorporating problem-specific properties could also be adapted

for the unrelated parallel machine problem with job-machine-dependent delivery times, eligibility

constraints, and total weighted tardiness minimization in Chapter 4, which generalizes the problem

from Chapter 2. Not only are the previous findings applied to this problem, but also new properties

are formulated that can help to improve local search based solution procedures.

With respect to the special case of the flexible job shop problem involving time-of-use energy

prices in Chapter 5, the theoretical analysis identified certain cases of pricing structures, for which

optimal solutions can be determined in polynomial time. Moreover, general properties of optimal

solutions were formulated based on which heuristic approaches were devised. An extensive com-

putational study compared the different approaches and investigated the potential of energy cost

savings through a relaxation of the maximum makespan.

For the integration of delivery aspects into machine scheduling, there exist multiple perspectives

for future research. While this thesis considers delivery times only in the context of parallel machine

problems, other production environments such as flow shops or job shops are of interest as well.

Furthermore, additional constraints should be taken into account such as a limited number of

transportation vehicles and vehicle capacity to increase practical relevance.

In case of the flexible job shop problem with time-of-use energy prices, several aspects deserve

further investigation, too. First of all, although the results suggest that the special case of the

problem considered in Chapter 5 is NP-hard, it is not yet formally proven. Another aspect of

interest is the number of price intervals during the planning horizon, which remains limited in this

study. In this context, multiple pricing cycles deserve consideration. Furthermore, based on the

results from this study, the development of comprehensive approaches, that do not just operate on

a given solution with a fixed sequence, but also alter it, is required in order to solve the general

flexible job shop problem as well.
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