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Chapter 1

Introduction

”It might make sense just to get some in case it catches on”, Satoshi
Nakamoto, the pseudonymous individual or group of individuals be-
hind the Bitcoin whitepaper, wrote in ”The Cryptography Mailing
List” about two weeks after the blockchain’s initial launch in January
2009. Two years would go by until individual Bitcoins became worth
one US dollar in 2011, before the first significant all-time high of more
than 16,000$ in late 2017. Considering this rapid growth, it does not
surprise that, in hindsight, virtually every portfolio would have bene-
fitted from even the smallest capital allocation to Bitcoin. Contrarily,
the extensive price volatility, hype, and arguable lack of established
fundamental valuations mobilize critics to proclaim that cryptocurren-
cies are a scam and should not be invested in at all. With no reliable
investment outlook being available, this dissertation investigates the
market efficiency of leading cryptocurrencies, with emphasis on (1) the
degree of randomness in the price changes of Bitcoin and Ethereum
compared with the S&P 500, (2) the profitability of popular techni-
cal trading strategies for the two largest cryptocurrencies, and (3) the
profitability of trend trading for a range of different cryptocurrency
types.

Firstly, I revisit the efficient market hypothesis in chapter 2. Pre-
vious research predominantly focuses on testing the degree of random-
ness of Bitcoin returns for comparably short time intervals and without
providing a benchmark of more established financial instruments. In
doing so, the literature points to low efficiency and randomness in
Bitcoin’s early years, with increasing return randomness and, thus,
efficiency over time. By utilizing the entire price history available at
the time of the analysis, I will show that the markets of Bitcoin and
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Ethereum were inefficient during their early days. However, I will be
able to demonstrate that the notion of slowly but surely increasing
market efficiency is not well supported but that this efficiency varies
over time. Further, Ethereum and Bitcoin returns predominantly ex-
hibit long-range dependence when diverting from randomness. Lastly,
by employing a benchmark of the S&P 500 index, I will show that
Bitcoin and Ethereum are substantially less market efficient than the
globally dominant equity index.

Secondly, in chapter 3, I will apply long-established technical trad-
ing strategies at different implementations for Bitcoin and Ethereum.
In doing so, I will be able to show that some trend-following strategies
yield superior absolute returns compared to the buy-and-hold portfo-
lio. Cryptocurrency markets are less developed than equity markets,
so that shorting, for example, Bitcoin, was and still is not possible
across many exchanges. I thus apply trading strategies in their lit-
eral sense where shorting is possible and in a long or out manner. As
will be shown, long or out strategies offer larger risk-adjusted return
improvements versus buy-and-hold due to reduced volatility when go-
ing out of the market, while fully implemented strategies offer higher
absolute returns. Conducting the analyses for hourly and daily re-
turn data, I also will be able to show that absolute returns are more
substantial for hourly trading, while Sharpe ratio differences versus
buy-and-hold are larger when trading on daily data.

Lastly, I will analyze the performance of modified trend-following
trading strategies for several cryptocurrencies in chapter 4. In do-
ing so, I will be able to show that shorter than usually considered
signal periods are beneficial when trading cryptocurrencies. As be-
fore, it will be shown that long or out strategies offer risk-adjusted
return improvements versus buy-and-hold with higher statistical sig-
nificance than long or short strategies. Within the considered sample,
the buy-and-hold performance of the considered cryptocurrencies is
not indicative of strategy performance.

Overall, this dissertation highlights that the markets of cryptocur-
rencies lack the level of efficiency present in equity markets. However,
the degree to which these inefficiencies can be exploited via technical
trading strategies varies strongly across cryptocurrencies. Detecting
mostly long-range dependence and finding that the most attractive
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strategies are trend-followers, my results offer an avenue for future
research on herd behavior in cryptocurrency markets.
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Chapter 2

Time-Varying Informational

Efficiency of  Bi tcoin and
Ethereum1

2.1 Introduction

In the past decade, cryptocurrencies have attracted immense atten-
tion from investors, traders, academics, and policy markets. An ev-
ident reason for this is that since their inception as known today in 
early 2009, when a Bitcoin was worth only a fraction of a U.S. dollar, 
the total market capitalization of cryptocurrencies developed to about
$2.5tn in November 2021 (Coinmarketcap, 2022). The largest and 
most well-known cryptocurrencies today are Bitcoin and Ethereum, 
which consistently rank at the very top of all cryptocurrencies as mea-
sured by market capitalization.

While the umbrella term ”cryptocurrencies” suggests a certain sim-
ilarity, Bitcoin and Ethereum differ d rastically i n t he way t hey work 
and thus also in their investment hypothesis. The Bitcoin whitepaper 
(Nakamoto, 2008) was published in October 2008, with the first Bit-
coin block being mined in early January 2009. The publication and 
subsequent global propagation of the Bitcoin network is the success of 
decades of cryptographic research and development efforts to create a 
decentralized electronic currency.2

1This chapter is based on Becker, M. (2022c). Time Varying Informational Efficiency in
the High Frequency Markets of Bitcoin and Ethereum Unpublished working paper.

2Chaum (1983) is credited for the first electronic, anonymous cryptographic money, an
invention today honored as being the first cryptocurrency.
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From an academic standpoint, Bitcoin is an emerging financial
technology with no apparent precedents in recent times. It, therefore,
lends itself to studies of exotic financial technologies differing from
existing asset and exchange systems (Alvarez-Ramirez et al., 2018).
Whereas Bitcoin and Ethereum are both cryptocurrencies, their re-
spective investment hypotheses divert considerably. While Bitcoin’s
blockchain is intended to make it digital money, it is only granted
the store of value property, as its price volatility denies it the status
as a medium of exchange and unit of account (cf. Baur & Dimpfl,
2021). The Ethereum protocol is intended to create and run decen-
tralized web applications, as it allows for anonymous transactions and
the execution of Turing-complete code attached to these transactions
(Buterin, 2013).

Pointing out that neither Bitcoin nor Ethereum has yet reached
their envisioned potential, Shiller (2020) proposes that cryptocurren-
cies and Bitcoin especially are a prime example of what he calls eco-
nomic narrative; Bitcoin is valuable only if investors think it is valu-
able, and this value depends on what investors think Bitcoin repre-
sents. With no common consensus on the true value of the cryptocur-
rencies and acknowledging their tremendous rise in market capitaliza-
tion in the past decade, it is interesting to investigate the efficiency
of the markets in which they are traded. Famously, Fama (1970)
proposed that capital markets are efficient, as investors are rational
profit maximizers utilizing all available information to collect the high-
est returns possible. This competition leads to prices fully reflecting
all available information, making price developments unpredictable as
they depend on the equally unpredictable emergence of new informa-
tion in the world.

Distinguishing types of information, Fama (1970) segments the ef-
ficient market hypothesis (EMH) into three classes, weak form, semi-
strong, and strong form efficiency. In a weakly efficient market, his-
torical price data cannot be utilized to predict future returns. In a
semi-strong efficient market, all public information does not help pre-
dict future returns. If the strong form is present, all public and private
information (insider trading) cannot be used to determine how prices
will develop in the future.

It is common to test market efficiency by scrutinizing its weak form,
as it is both the easiest to validate (since it is non-trivial to consider
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all public information and rather of theoretical nature to account for
all public and private information) and because in its absence, there is
no reason to assume semi-strong or strong form efficiency. Regarding
the historical origin of his seminal work, Fama (1970) states: ”[...] the
impetus for the development of a theory came from the accumulation
of evidence in the middle 1950’s and early 1960’s that the behavior
of common stock and other speculative prices could be well approx-
imated by a random walk. Faced with the evidence, economists felt
compelled to offer some rationalization. What resulted was a theory of
efficient markets stated in terms of random walks [...].” As this state-
ment implies that the proposition of a random walk and its subsequent
rationalization derived directly from the observation of randomness in
price data, it follows that without this randomness, there is no basis
for assuming efficient capital markets. Considering that the herewith
presumed efficiency of markets presents the foundation of essential fi-
nancial theories and models,3 it is evident that deviations from the
strong assumptions of the EMH have far-reaching implications.

A more lenient alternative to the EMH was presented by Lo (2004)
is the adaptive market hypothesis (AMH). According to the AMH, ef-
ficiency is not a fixed but an evolving property of markets that varies
over time. Important factors driving the degree of efficiency are the
number of market participants, overall market conditions, the type
and distribution of investors, opportunities for profit, and the associ-
ated risk-return profile. Further, instead of assuming humans to be
rational, the AMH proposes that market participants are biased indi-
viduals driven by fear and greed. Under the AMH, humans are not
utility maximizers but adapt to changing environments via a satisfic-
ing process, meaning they aim not to make the best but good enough
decisions for their objectives. Therefore, market efficiency is assumed
to be an evolving property based on competition, adaption, and nat-
ural selection (Lo, 2004).

Behavioralists often cite the work of Kahneman and Tversky (1979)
on prospect theory, and hence, loss aversion, to criticize the idea of
rationality and market efficiency. However, behavioral biases are com-

3The idea that asset prices accurately reflect all currently available information is funda-
mental for theories such as (in alphabetical order) the arbitrage pricing theory by Ross
(1976), Black-Scholes option pricing model by Black and Scholes (1973) and Merton
(1973), capital asset pricing model by Sharpe (1964), Lintner (1965), and Mossin (1966),
and the portfolio theory of Markowitz (1952, 1959).
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monly considered consistent with a market efficiency model based on
evolutionary properties, where individuals interact with and adapt to
changing environments based on heuristics (Lo, 2005).

Research on the market efficiency of cryptocurrencies, and most
prominently Bitcoin, has increased in recent years, beginning with
the study of Urquhart (2016). By employing daily data from 1. Au-
gust 2010 to 31. July 2016, the study rejects the EMH for the entire
sample but found increasing efficiency over time when splitting the
sample data (Urquhart, 2016). These findings were further supported
by later studies, as summarized by Kyriazis (2019), who finds in his
meta-study that most research on the efficiency of the Bitcoin (and
those of other cryptocurrencies, such as Ethereum) market finds ineffi-
ciency (especially long-range dependence) during the first years, with
increasing efficiency over time.

Notably, most previous studies employ data only until the end of
2019 (cf. López-Mart́ın et al., 2021), before the significant bull market
in 2021 (Coinmarketcap, 2022). Further, few studies on the market
efficiency of cryptocurrencies utilize high-frequency data, and if, only
for comparably short time frames (cf. Chu et al., 2019 and Zhang
et al., 2019). Another fact is that previous studies have looked at
cryptocurrencies in isolation and do not present comparative analyses
of traditional assets.

We, therefore, employ a high-frequency data set of hourly resolu-
tion for Bitcoin and Ethereum to test the AMH and do the same for
the S&P 500 in this study. Thus, to the best of our knowledge, we con-
tribute to literature by utilizing the most comprehensive time series
of Bitcoin and Ethereum to date and by providing an easily compre-
hensible benchmark analysis by employing the same methodology for
the S&P 500 index.

Doing so, we find strong support for the AMH for all three assets
under consideration, with higher degrees of inefficiency for Bitcoin and
Ethereum compared with the S&P 500. Thus, our findings imply that
Bitcoin and Ethereum exhibit (especially compared with the S&P 500)
prolonged and recurring periods of comparably low market efficiency.
Ultimately, evidence for the AMH provides reason to believe that it
may be possible to trend trade even the largest cryptocurrencies prof-
itably. The remainder of this paper is divided into five sections. First,
we provide descriptive statistics on our employed dataset in section
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2.2. Next, we explain and rationalize our methodology in section 2.3.
Next, we present our results in section 2.4 and afterward discuss them
in section 2.5. In section 2.6 we conclude our study.

2.2 Data

The hourly price data of Bitcoin and Ethereum (versus the U.S. Dol-
lar) used for the primary analysis of this paper was obtained from
Glassnode (2021), a leading data and analytics provider in the cryp-
tocurrency space. For the benchmark analysis, hourly price data of
the S&P 500 index was used, which we obtained from BacktestMar-
ket (2022). As this paper aims to provide an extensive analysis of
the market efficiency of Bitcoin and Ethereum, we include their entire
price history available at the time of this analysis. For Bitcoin, this
means hourly data from 17.07.2010 till 27.11.2021, and for Ethereum
from 08.08.2015 till 27.11.2021.

With cryptocurrencies being tradable around the clock, regardless
of the weekend or holidays, this sample starts and ends during times
when the S&P 500 was not traded, as both the 17.07.2010 and the
27.11.2021 are Saturdays. Hence, the benchmark price data of the
S&P 500 spans from 19.07.2010 to 26.11.2021. For our analyses, we
transform the price data into logarithmic returns via

rt = ln

(
Xt

Xt−1

)
(2.1)

Table 2.1 presents descriptive statistics of the thus computed Bit-
coin, Ethereum, and S&P 500 returns. The mean for all hourly returns
is positive, with the mean of Bitcoin and Ethereum being very similar
and significantly larger than the average hourly S&P 500 return in the
sample period. The returns of the crypto assets also exhibit a higher
standard deviation and range than those of the S&P 500. All time
series under investigation have a negative skewness statistic; thus, all
hourly return distributions are skewed to the left. With all kurto-
sis statistics highlighting that the return distributions are fat-tailed
compared with the normal distribution and the Jarque-Bera test for
normality being significant at the 1% level, it is shown that the returns
do not fit a normal distribution.
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Table 2.1: Descriptive statistics of Bitcoin, Ethereum, and S&P 500
log returns

Bitcoin Ethereum S&P 500
Minimum (%) -68.9716 -26.7479 -4.7151
Mean (%) 0.0141 0.0142 0.0021
Maximum (%) 55.6482 25.5594 5.6067
Median (%) 0.0002 0 0
Standard Deviation 0.0145 0.014 0.0022
Skewness -0.6599 -0.0889 -0.2475
Kurtosis 190.0852 31.0433 53.8674
Jarque-Bera 148,798,852* 2,211,577* 8,248,046*
Sample period Jul 17, 2010 Aug 08, 2015 Jul 19, 2010

- Nov 27, 2021 - Nov 27, 2021 - Nov 26, 2021

Note: * denotes statistical significance at the 1% level

2.3 Methodology

Price movements in markets adhering to weak form efficiency, as put
forward by Fama (1970), are unpredictable given past prices of the re-
spective asset. Testing the weak form efficiency is predominantly done
by examining the martingale difference hypothesis (MDH) and the
random walk hypothesis (RWH) (cf. Khuntia & Pattanayak, 2018),
as outlined below in this chapter. Following the argumentation of Lo
(2004) that market efficiency is an evolutionary, non-static property,
we test the MDH and the RWH based on a rolling window of the time
series at hand. Specifically, all statistics described hereafter are com-
puted based on a 1000-hour window, continuously incremented by one
hour.

When a market exhibits weak form efficiency, prices do not follow
their past trend and are mean-independent. Hence, they follow a
martingale sequence. What follows is

E [Yt|Yt−1, Yt−2, ...] = µ (2.2)

Yt = Xt −Xt−1, and (2.3)

E [Xt|Xt−1, Xt−2, ...] = Xt−1 (2.4)

where Xt is the natural logarithm of an asset’s price at time t and
Yt is the change in log price between t and t − 1. Examining the
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MDH can be done by testing the null hypothesis that a time series
process, given an information set Φt, consisting of the process past,
has constant conditional expectation

H0 : E(Yt|Φt) = µ (2.5)

The alternative hypothesis is that the process adheres to a function
of the said information set

H1 : E(Yt|Φt) = µ(Φt) (2.6)

Dominguez and Lobato (2003) developed a consistent test capable
of detecting dependencies, even for processes that are uncorrelated and
have non-linear dependencies. It is also robust to common features of
financial return data, such as heteroscedasticity and non-normality.
Because the underlying distribution and function of the examined
time series are unknown, their test is computed by employing two
test statistics (’Cramer von Mises’ [CvM] and ’Kolmogorov Smirnov’
[KS]) with similar results yet slightly different empirical power for dif-
ferent processes. With Yt being the logarithmic return of period t,
they are written as

CvMn,P =
1

σ̂2n2

[
n∑

t=1

(Yt − Ỹ )1(Ỹt,P − Ỹj,P )

]2

(2.7)

KSn,P =max
1≤i≤n

∣∣∣∣∣
1

σ̂
√
n

n∑

t=1

(Yt − Ỹ )1(Ỹt,P − Ỹj,P )

∣∣∣∣∣ (2.8)

where σ2 = 1
n

∑n
t=1(Yt − Y )2, P is a positive integer, and Ỹt,P =

(Yt−1, ..., Y(t−P ) is the indicator function. Note that the CvM and
KS statistics serve as inputs for the test developed by Dominguez
and Lobato (2003) and do not immediately yield indicative p-values.
Refer to Dominguez and Lobato (2003) for a detailed description of
the testing procedure. As Escanciano and Lobato (2009) show, the
critical values and test statistics cannot be computed directly but
can be obtained via bootstrapping. The null hypothesis of constant
conditional expectation is confirmed if the resulting p-values are close
to one, implying market efficiency, and rejected for p-values of less
than 5%.
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After considering whether past prices contain an informational
value for predicting future prices, it is interesting to determine if a
time series exhibits anti-persistency (mean-reversion) or long-range
dependence (persistency). In this regard, the RWH can be investi-
gated as it is directly consistent with the efficient market hypothesis
because it assumes that price changes occur randomly and can thus
not be predicted. Hence

f(rj,t+1|Φt) = f(rj,t+1) (2.9)

where the information set, denoted Φt, includes only past returns.
The equation implies that the conditional and marginal probability
distribution of an independent random variable are identical. While
the RWH asserts that the past helps assess an asset’s return distribu-
tion, it precludes predictive power over the sequence of future returns.

The RWH is closely related to the Wiener process (WP), the Brow-
nian motion (BM) mathematical model. The application of the BM
for stocks by Bachelier (1900) famously constitutes the first use of
higher mathematics in finance. A stochastic process {W (t), t ≥ 0} is
a WP if it satisfies all of the following

i W0 = 0

ii For any points in time t1 ≤ t2 ≤ t3 ≤ t4, the increments W (t2)−
W (t1) and W (t4)−W (t3) are independent

iii Increments of W are Gaussian increments with variance equal
to their difference in time: W (t)−W (s) N(0, t− s)

iv Wt is continous in t

Mandelbrot and Van Ness (1968) introduced fractional Brownian
motion (FBM), a generalization of the BM. In contrast to the BM, the
FBM increments do not need to be independent, making it an ideal
candidate for describing processes where the conditional and marginal
probability distribution are not equal. Thus, the FBM is a stochas-
tic process {W (t), t ≥ 0} starting at zero, zero-mean for all t, and
autocovariance function
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Cov[FBMH(t), FBMH(t+△t)] =
1

2
(|t|2H + |t+△t|2H − | △ t|2H)

(2.10)
with Hϵ(0, 1) and H denoting the Hurst exponent, which was first

described in the seminal work by Hurst (1951). When H = 0.5, it
follows

Cov[FBMH(t+△t)− FBMH(t), FBMH(t)] = 0 (2.11)

so that the FBM increments are independent. In this case, the
FBM is equal to the BM. When Hϵ(0, 0.5), it follows

Cov[FBMH(t+△t)− FBMH(t), FBMH(t)] < 0 (2.12)

and when Hϵ(0.5, 1), it follows

Cov[FBMH(t+△t)− FBMH(t), FBMH(t)] > 0 (2.13)

Therefore, H is equal to 0.5 for random processes, while values
smaller than 0.5 describe processes with anti-persistency, and values
greater than 0.5 belong to processes with long-range dependence. The
level of anti-persistency or long-range dependence is stronger the fur-
ther away H is from 0.5. As pointed out by Liu et al. (2019), values
of H between 0.45 and 0.55 describe processes reasonably close to the
random walk.

The RWH can thus be examined by considering the time-varying
dependence of a time series by estimating H. We do so by utilizing
the detrended fluctuation analysis (DFA) as developed by Peng et al.
(1994) and employed in previous studies on the RWH in the Bitcoin
market (cf. Alvarez-Ramirez et al., 2018; Bariviera, 2017; Tiwari et
al., 2018; Zhang et al. 2019).

To obtain the Hurst exponent for a time series xk, k = 1, ...,M ,
the DFA first calculates the mean xk of the time series as

xk =
1

M

M∑

j=1

xj (2.14)
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Then, an integrated sequence Yk is calculated by summing up the
difference between each value of xk and xk

Yk =
1

M

M∑

j=1

xj − xk (2.15)

Afterward, the integrated sequence Yk is divided intoN non-overlapping
sequences of equal length m. A least-squares line is then computed
for each sub-sequence to identify the present trend Ym,k. The inte-
grated sequence is detrended by subtracting Ym,k from Yk in each sub-
sequence. The fluctuation of the integrated and detrended sequence
is computed by

F (m) =

√√√√ 1

M

M∑

k=1

[Yk − Ym,k]
2 (2.16)

This computation is repeated for all sub-sequences for different
subseries sizes m, to determine how F (m) relates to m. F (m) acts as
a power-law of m, F (m) ≈ mH, where H denotes the Hurst exponent.
Lastly, by regressing ln(F (m)) on ln(m), H is obtained (Peng et al.,
1995). To improve our results, we follow Hardstone et al. (2012) rec-
ommendations regarding the setting of m. We use a 50% overlap for
the sequences to obtain more windows and hence, improved test statis-
tics. Furthermore, values of m < 4 makes polynomial least squares
fitting prone to error, while m should not be set so high that later less
than ten windows are available to calculate the average fluctuation
(Hardstone et al., 2012). Considering this, we chose window sizes of
m = {4, 5, 6, 8, 9, 11, 14, 17, 20, 24, 29, 35, 42, 51, 61, 73, 88}.

2.4 Results

Figure 2.1 presents the estimated p-values of the Dominguez-Lobato
test for Bitcoin, and Figure 2.2 provides the S&P 500 benchmark
analysis for the respective time frame. The horizontal line presents the
5% threshold. Values of the CvM and KS test statistic falling under
this line hence mark where the DL test rejects the null hypothesis of
constant conditional expectation and thus deviation from weak form
market efficiency (at the 5% significance level).

13



Figure 2.1: DL results Bitcoin

Figure 2.2: DL results S&P 500 benchmark to Bitcoin

We find ample evidence for the AMH in the Bitcoin market in the
results presented in Figure 2.1. In the timeframe from 05.09.2012 to
27.11.2021, the CvM statistic estimates inefficiency during 35.3% of
the time (1,441 days), and the KS statistic 33.6% of the time (1,372
days). While the most prolonged periods are during the first three
years of the sample, there is no apparent improvement in market effi-
ciency over time visible in the data. Instead, and in line with evolving
nature of market efficiency as proposed by the AMH, p-values swing
considerably, with extensive periods of market inefficiency scattered
across the entire sample period.

In this regard, Figure 2.2 also seems to confirm the AMH for the
S&P 500, with the respective p-values moving to an extent similar
to those associated with the prices of Bitcoin. However, the CvM
statistic estimates inefficiency only 3.4% of the time (94 days), and the
KS statistic 3.6% of the time (100 days). Comparing the respective
percentage inefficiencies thus shows that Bitcoin was 10.4 (9.3) times
as inefficient as the S&P 500 during the period under review, according
to the CvM (KS) statistics.
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Figure 2.3: DL results Ethereum

Figure 2.4: DL results S&P 500 benchmark to Ethereum

Figure 2.3 presents the estimated p-values of the Dominguez-Lobato
test for Ethereum, and Figure 2.4 provides the S&P 500 benchmark
analysis for the respective time frame. Again, the horizontal line
presents the 5% threshold.

As in the case of Bitcoin, we find ample evidence for the AMH in
the Ethereum market, as presented in Figure 2.3. In the timeframe
from 18.09.2015 to 27.11.2021, the CvM statistic estimates inefficiency
27.7% of the time (623 days), and the KS statistic 24.4% of the time
(549 days). Interestingly, the most prolonged inefficiencies are located
at the beginning of the analyzed period, just like in the case of Bitcoin.
Afterward, inefficiency occurs dispersed across the entire considered
period.

While the values presented in Figure 2.4, displaying a subset of
those contained in Figure 2.2, again confirm the AMH for the S&P
500, periods of inefficiency are relatively rare and short-lived. The
CvM statistic estimates inefficiency 0.6% of the time (8 days), and
the KS statistic 0.8% of the time (12 days).
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Figure 2.5: DFA test results Bitcoin

Consequentially, while Ethereum exhibits proportionally less inef-
ficiency than Bitcoin, it is, in comparison, significantly more inefficient
than its benchmark, being 46.2 (30.5) times as inefficient as the S&P
500 during the sample period, according to the CvM (KS) statistic.
As seen in Figure 2.2, this is because the S&P 500 is particularly in-
efficient in the period before September 2015, when the analysis of
Ethereum begins.

Figure 2.5 presents the Hurst exponent estimated by the DFA for
Bitcoin, and Figure 2.6 displays the S&P 500 benchmark during the
same period. The black horizontal line is set at 0.5, representing points
at which the DFA estimates the fractional Brownian motion to be a
Brownian motion, and thus, price changes to be independent. Points
above the line indicate long-range dependence, while points below the
line signify anti-persistence. The green horizontal lines enclose the
corridor between 0.45 and 0.55, where the fractional Brownian motion
resembles the Brownian motion reasonably closely.

In line with the results of the Dominguez-Lobato test, the DFA
rarely predicts Bitcoin prices to develop perfectly randomly. We again
find evidence for the AMH, with the Hurst exponent varying signifi-
cantly over time. During most of the considered period, Bitcoin prices
exhibit long-range dependence (78% of the time), with longer intervals
of anti-persistence, lasting several months, only being present during
the first three years (with a minimum value of 0.192). After that
and until 2018, anti-persistence exists only minutely. From 2018 on-
wards, only long-range dependence is present, with the highest Hurst
exponent values (with a maximum of 0.729) occurring at the end of
2019. On average, the DFA predicts a Hurst exponent of 0.538 for the
returns of Bitcoin.
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Figure 2.6: DFA test results S&P 500 benchmark to Bitcoin

Figure 2.7: DFA test results Ethereum

Contrasting the results for Bitcoin, the S&P 500 benchmark anal-
ysis yields virtually no indication for the presence of anti-persistence
but consistently finds the presence of long-range dependence. The
DFA, on average, finds a Hurst exponent of 0.566, with a maximum
value of 0.676 and a minimum value of 0.475. As depicted in Fig-
ure 2.6, the estimates for the S&P 500 are considerably more evenly
distributed around their mean value than those for Bitcoin. How-
ever, these changing values are above 0.5, which points to a persistent
deviation from the RWH and supports the AMH.

Figure 2.7 presents the Hurst exponent estimated by the DFA for
Ethereum, and Figure 2.8 displays the S&P 500 benchmark during the
same period. As before, the black horizontal line is set to 0.5, indicat-
ing the level at which price changes are independent, and the green
horizontal lines indicate the corridor where the fractional Brownian
motion resembles the Brownian motion reasonably closely.

Just as for Bitcoin, the DFA confirms the notion of varying ef-
ficiency and hence, the AMH for Ethereum. On average, we find a
Hurst exponent of 0.566, and Ethereum returns to be long-range de-
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Figure 2.8: DFA test results S&P 500 benchmark to Ethereum

pendent 87% of the time. Strikingly, the only noticeable phases that
show anti-persistence are also at the beginning of the observed pe-
riod, with a low of 0.403 in late 2016. After crossing the horizontal
line briefly in early 2018, values stay consistently above 0.5 until 2021,
with a maximum of 0.690 in early 2019.

As the benchmark analysis for Ethereum consists of a subset of
the benchmark analysis for Bitcoin, it is unsurprising that S&P 500
returns are again found to develop almost exclusively with long-range
dependence. The DFA, on average, finds a Hurst exponent of 0.583,
with a maximum value of 0.672 and a minimum value of 0.475. Thus,
the higher average value compared with Ethereum is not due to ex-
ceptionally high values but because of the absence of comparably low
values.

2.5 Discussion

Previous research studying the EMH by means of the MDH for Bitcoin
and Ethereum has focussed chiefly on data of lower resolution and, in
general, shorter timeframes. The first famous study utilizing the DL
test for a cryptocurrency was conducted by Khuntia and Pattanayak
(2018). Utilizing daily Bitcoin return data from 18. July 2010 to
21. December 2017 and employing a rolling window of 400 days, they
find ample evidence for the AMH. They show that periods of height-
ened efficiency and inefficiency repeatedly alternate. Although they
demonstrate mostly efficient periods from 2015 until the end of their
data, they argue for the AMH, rather than general increasing market
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efficiency, given the observed variance in the computed test statistics
(Khuntia & Pattanayak, 2018).

López-Mart́ın et al. (2021) also employ the DL test for Bitcoin
and Ethereum, considering data from 29. April 2013 to 31. Decem-
ber 2019 and from 9. August 2015 to 28. December 2019, respec-
tively. They utilize rolling windows of different sizes (250, 350, and
500 days) to examine weak form efficiency over time. In line with
the study by Khuntia and Pattanayak, they find Bitcoin returns to
be predominantly efficient from 2015 until the end of their data set.
For Ethereum, they also find, besides a period of inefficiency during
2017, a high degree of market efficiency. In contrast to the study by
Khuntia and Pattanayak, López-Mart́ın et al. (2021), while also find-
ing varying degrees of efficiency over time, conclude that the overall
trend of the returns of Bitcoin and Ethereum trend towards efficiency,
ultimately not supporting the AMH for Bitcoin and Ethereum.

Finally, Chu et al. (2019) consider the DL test for hourly Bitcoin
and Ethereum return data from 1. July 2017 to 1. September 2018,
calculating the test statistics for a comparably short rolling window of
168 hours, corresponding to 7 days. They find for both assets that the
level of return predictability varies enormously over time and interpret
their findings as solid support for the AMH.

As for the AMH, previous research concerned with the RWH for
crypto assets considered return data of lower resolution and, in gen-
eral, shorter timeframes compared to the present study. The first
study to examine the RWH for Bitcoin by estimating the Hurst ex-
ponent via the DFA was conducted by Bariviera (2017). Utilizing a
rolling window of size 500 for daily price data from 18. August 2011 to
15. February 2017, the study finds long-range dependence in the first
half of the investigated period up until 2014. Afterward, the market
is found to behave more informational efficient. After observing this
steadily increasing efficiency, the study argues for the disappearance
of inefficiency in the Bitcoin market.

Alvarez-Ramirez et al. (2018) employ a slightly smaller data set
of Bitcoin returns, spanning from 30. June 2013 to 3. June 2017.
Employing a rolling window of 250 days, they find alternating periods
of efficiency and anti-persistence, computing mostly Hurst exponents
of below 0.45. Their findings lead them to reject the EMH, and their
observations are in line with the propositions of the AMH.
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Employing a range of test statistics, Tiwari et al. (2018) studied
daily Bitcoin returns from 18. July 2010 to 16. June 2017. While
they argue for informational efficiency overall, by employing a rolling
window of 300 days, they exclusively compute Hurst exponents of less
than 0.5, with many falling below 0.45. As a consequence, also their
findings are in line with the AMH.

Later, Zhang et al. (2019) utilized the DFA for a high-frequency
data set of hourly Bitcoin and Ethereum returns from 25. February
2017 to 17. August 2017. While they do not test for the AMH directly,
their employed rolling window of 1,000 hours yields strongly varying
Hurst exponents, with many values above or below 0.55 and 0.45,
respectively, for both crypto assets.

The results of the meta-study on efficiency in cryptocurrency mar-
kets by Kyriazis (2019) are in line with these studies. The survey
concludes that most studies find evidence for some inefficiency in the
markets of cryptocurrencies, which, however, diminishes over time. In
contrast, we find constant deviations from the EMH and thus ample
support for the AMH. Bitcoin and Ethereum returns exhibit recur-
ring periods where the MDH does not hold throughout the considered
sample. Further, the DFA predicts H to be greater than 0.55 at the
end of the period, indicating strong long-range dependence.

Comparing our results to previous studies utilizing the same meth-
ods, it seems that inefficiencies are more clearly detectable at higher
data resolution. The findings presented in the studies of Chu et al.
(2019) and Zhang et al. (2019), which also employed hourly returns,
correspond to our endorsement of the AMH, while the studies that
use daily returns do not find a consistent conclusion on efficiency,
with some arguing for the AMH and others for the EMH.

Finally, by conducting a benchmark analysis, we show that Bitcoin
and Ethereum divert significantly more substantially from the MDH
than the S&P 500. Our test results for the RWH reveal that Bitcoin
and Ethereum exhibit more extreme values and hence a greater range
for H (between 0.192 and 0.729 for Bitcoin and between 0.403 and
0.690 for Ethereum) than the S&P 500 during the examined periods.
While the average H for the S&P 500 is higher than for Bitcoin and
Ethereum, the more significant swings in the cryptocurrency markets
further support the notion of the AMH. Cryptocurrencies are an ex-
otic new financial instrument of great interest to various stakeholders,
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not only because of the underlying technology and its implications,
but also because of the sharp rise in their prices over the last decade.
Previous studies on the efficiency of the Bitcoin and Ethereum market
utilizing daily data find initial periods of inefficiency but at large ar-
gue for an increase in efficiency over time. By employing an extensive
dataset covering the earlier trading days of the two cryptocurrencies
until the price rally in 2021 of hourly resolution, we show that effi-
ciency is not steadily increasing over time and hence find support for
the AMH as proposed by Lo (2004).

Testing the MDH, we find extensive reoccurring periods where Bit-
coin and Ethereum returns are not developing randomly, with signifi-
cant periods of inefficiency after 2019, the end of the datasets in many
previous studies. Further, after some anti-persistence in their respec-
tive first years of trading, we detect strong long-range dependence for
the cryptocurrencies, with the DFA predicting values of above 0.55
at the end of our sample, further adding against the case of steadily
increasing efficiency.

Computing our test statistics for an established equity index, we
also show that the Bitcoin and Ethereum markets are less efficient than
the one of the S&P 500. With the hourly returns of the cryptocurren-
cies exhibiting a significantly higher mean than the benchmark and
accounting for the persistent detection of long-range dependence, the
high-frequency market of Bitcoin and Ethereum seems attractive for
speculation.

Considering the contrast between our findings and those of studies
employing hourly data, future research should focus on the impact
of the resolution of the price data. While the lenient propositions
of the AMH are considerably easier met than the idea of constantly
high market efficiency, it is certainly interesting how efficient Bitcoin
and Ethereum returns develop when examining even smaller intervals
between prices.
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Chapter 3

Performance of Technical Trading

in the Markets of Bitcoin and

Ethereum1

3.1 Introduction

Bitcoin and Ethereum are two of the most popular cryptocurrencies in
the world today. Bitcoin was invented in 2008 by an unknown person
or group of people under the name Satoshi Nakamoto to create fully
functional digital money (Nakamoto, 2008). Ethereum, a distributed
computing platform featuring smart contract functionality, was envi-
sioned by Vitalik Buterin in 2013 (Buterin, 2013). It provides a de-
centralized Turing-complete virtual machine that can execute scripts
using an international network of public nodes without any chance
of fraud, censorship, or third-party interference (Buterin, 2013). As
the most popular cryptocurrencies, Bitcoin and Ethereum prices have
skyrocketed tremendously since their inception, making them unique
subjects of financial studies (cf. Alvarez-Ramirez et al., 2018).

According to the seminal work of Fama (1970) on market effi-
ciency, asset prices accurately reflect all available information at any
given time, making it impossible for investors to beat the market sys-
tematically. In its weak form, the efficient market hypothesis (EMH)
postulates that prices develop like a random walk2 or martingale dif-

1This chapter is based on Becker, M. (2022a). Data-Resolution Dependent Performance
of Technical Trading Strategies in the Markets of Bitcoin and Ethereum Unpublished

working paper.
2A random walk is a process where the probability distribution conditional on past data of
the process is equal to the marginal probability distribution. This implies that knowledge
of past prices does not improve the prediction of future prices.
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ference sequence3, rendering an information set including historical
prices of a given asset useless for predicting its future price (Fama,
1970).

An extensive research body testing the weak form efficiency is thus
concerned with whether the random walk hypothesis (RWH) and the
martingale difference hypothesis (MDH) hold up (cf. Kyriazis, 2019).
Barriviera (2017), Alvarez-Ramirez et al. (2018), and Zhang et al.
(2019) notably tested the RWH and MDH for Bitcoin and Khuntia
and Pattanayak (2018), López-Mart́ın et al. (2021), and Chu et al.
(2019) for Ethereum.

Barriviera (2017) and Alvarez-Ramirez et al. (2018) find evidence
against the RWH and, hence, market inefficiency in the early parts
of their investigated sample by employing a rolling window of daily
data but increasing efficiency over time. Zhang et al. (2019), who
utilize a rolling window of hourly data, observe constant deviations
from the RWH and consequentially argue for the absence of efficiency.
Similarly, Khuntia and Pattanayak (2018) and López-Mart́ın et al.
(2021), investigating the MDH using a rolling window of daily data,
find evidence against the weak form efficiency at the beginning of their
respective samples but decreasing return predictability at later stages.
However, Chu et al. (2019), examining a rolling window of hourly
returns, find persisting evidence against the MDH, implying market
inefficiency. Summarizing their findings, the markets of Bitcoin and
Ethereum seem to deviate stronger from weak form efficiency at higher
data resolution.

The study by Noda (2021) further supports these findings by di-
rectly comparing the efficiency of Bitcoin and Ethereum. Building
upon the adaptive market hypothesis proposed by Lo (2004), which
proposes that the efficiency of financial markets varies over time, the
study supports the notion of time-varying efficiency for Bitcoin and
Ethereum. It concludes that the market of Ethereum is significantly
less efficient than the market of Bitcoin (Noda, 2021).

Besides these statistical properties of price developments, Fama
(1970) formulates: ”By contrast, the stock market trader has a much
more practical criterion for judging what constitutes important de-

3A martingale difference sequence is a process that does not follow its trend and is mean
independent. Thus, if a price develops like a martingale difference sequence, the best
predictor of the next price is the current price.
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pendence in successive price changes. For his purposes the random
walk model is valid as long as knowledge of the past behaviour of the
series of price cannot be used to increase expected gains.” Therefore,
weak form efficiency can also be investigated through technical trad-
ing strategies, which, in direct contrast to the EMH, generate trading
decisions based on asset price movements.

By considering price movements directly, rather than basing trad-
ing decisions on an intrinsic valuation of the asset, the central idea
of technical analysis is the identification and following of the trend.
Regardless of their origin and validity, this following of trends tends to
turn even randomly initiated ones into self-fulfilling prophecies. This
effect is more pronounced in markets where many agents employ such
strategies, propelling the emergence of speculative bubbles (Froot et
al., 1992).

Gerritsen et al. (2020) conducted a comprehensive study on the
profitability of commonly used technical trading strategies for daily
Bitcoin returns. While they intentionally utilize methods that were
popular before the emergence of Bitcoin to minimize the risk of data
mining, they still find a range of strategies to outperform the buy-
and-hold approach. Hence, their results favor technical strategies for
Bitcoin traders, conflicting with the propositions of Fama (1970).

This study adds to the literature by examining the practical market
efficiency of Bitcoin and Ethereum in general, the notion of higher
inefficiency at higher data resolution, and findings of previous studies
arguing for a lesser efficiency of the Ethereum market compared with
the Bitcoin market. We do so by employing 19 technical trading rules
from Gerritsen (2016) and Gerritsen et al. (2020) for daily and hourly
data.

We find that popular technical trading strategies achieve signifi-
cantly higher absolute returns than the buy-and-hold approach. From
a risk-adjusted perspective, many strategies yield higher Sharpe ratios
than buy-and-hold, albeit statistical significance is mostly present for
partially implemented strategies for daily data. The rest of this study
is structured in five sections. First, we present our data and descrip-
tive statistics in section 3.2. Second, we rationalize and explain our
methodology in section 3.3. We then present our results in section 3.4.
Afterward, we discuss our findings and compare them to results from
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Table 3.1: Descriptive statistics of hourly (h) and daily (d) cryptocur-
rency log returns

Bitcoin (h) Ethereum (h) Bitcoin (d) Ethereum (d)
Minimum (%) -68.9716 -26.7479 -67.8734 -56.0618
Mean (%) 0.0139 0.0142 0.3220 0.3728
Maximum (%) 55.6482 25.5594 42.3719 44.0341
Median (%) 0.0002 0.0000 0.1996 0.1049
Standard Deviation 1.4474 1.3952 5.3182 6.1627
Skewness -0.6813 -0.0889 -0.8981 -0.0242
Kurtosis 190.4485 31.0439 18.6860 7.8407
Jarque-Bera 149,367,011* 2,211,612* 60,935* 5,899*
Sample period Jul 17, 2010 Aug 08, 2015 Jul 18, 2010 Aug 09, 2015

- Nov 27, 2021 - Nov 27, 2021 - Nov 27, 2021 - Nov 27, 2021

Note: * denotes statistical significance at the 1% level

previous research in section 3.5 before concluding our study in section
3.6.

3.2 Data

We obtained hourly and daily price data of Bitcoin and Ethereum
(in terms of US Dollars) from Glassnode (2021), a cryptocurrency
analytics and data provider. With our study aiming to provide a
comprehensive analysis of the validity of technical trading strategies,
we utilize all historic prices available at the time of this writing. In the
case of Bitcoin, this includes hourly prices from 17.07.2010 and daily
prices from 18.07.2010 to 27.11.2021. In the case of Ethereum, this
includes hourly prices from 08.08.2015 and daily prices from 09.08.2015
to 27.11.2021. We compute logarithmic returns from the price data
using:

rt = ln

(
Xt

Xt−1

)
∗ 100 (3.1)

Where Xt is the price at time t. Table 3.1 presents descriptive
statistics of the thus computed Bitcoin and Ethereum hourly and daily
returns.

The mean hourly return of Bitcoin and Ethereum is positive, while
Bitcoin exhibits a slightly larger median and mean. Hourly Bitcoin re-
turns exhibit a significantly more extensive range (124.6197 compared
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with 52.3073 for Ethereum), while the associated standard deviations
are very similar (1.4474 for Bitcoin and 1.3952 for Ethereum). Both
distributions are skewed to the left and are fat-tailed. The Jarque-
Bera test rejects normality at the 1% significance level.

In line with this, the mean daily return of both cryptocurrencies
is also positive. Ethereum has a slightly higher mean (0.3728 com-
pared with 0.3220 for Bitcoin), but Bitcoin has a nearly twice as large
median (0.1996 compared with 0.1049 for Ethereum). Both exhibit
a comparable range, while Ethereum returns have a higher standard
deviation. Daily Bitcoin returns are skewed to the left and Ethereum
returns have a near zero skew, while both distributions exhibit fat tails.
The Jarque-Bera test again rejects normality at the 1% significance
level.

3.3 Methodology

In line with the literature focusing on the validity of the random walk
hypothesis (by investigating the presence of long-range dependence or
anti-persistency in return data), technical trading approaches mostly
belong to one of two categories, countertrend or trend follower strate-
gies (Wong et al., 2003).

Moving Average

The moving average (MA) strategy is one of the oldest, most straight-
forward, and most popular trend-following strategy (Brock et al. 1992).
The strategy considers the average historical price of an asset dur-
ing a predefined time window and compares it to recent price data.
MA(X)t,n is the simple n-day moving average for a given asset X at
day t, and Xi is the asset’s closing price on day i, defined as:

MA(X)t,n =
1

n

t∑

i=t−n+1

Xi (3.2)

To generate trading signals, a long-term (MAL) and short-term
(MAS) moving average is created, where s is the number of MAS and
l is the number of MAL periods (n). Popular windows (s− l) are 1-50,
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1-150, 5-150, 1-200, and 2-200, with 1-200 being the most common
(Brock et al. 1992).

The strategy signals a buying decision when the MAS rises above
the MAL and a sell decision when the MAS falls below the MAL. The
rationale is to smooth out volatile time series via the MAL and to
detect deviations from it utilizing the MAS. The strategy filters out
noise signals to determine real up or downward trends. The strategy
works well if a clear trend is present, while excess volatility diminishes
its profitability (Wong et al. 2003). In formal terms, the moving av-
erage trading rule is defined as:

Buy : MAS(X)t,s > MAL(X)t,l
Sell : MAS(X)t,s < MAL(X)t,l

Trading Range Breakout

The trading range breakout strategy is another popular trend follow-
ing investing strategy (Brock et al. 1992). Based on the belief that
investors are willing to sell their positions at price peaks and buy
positions at price lows, the strategy creates trading signals based on
local price maxima (called resistance level) and minima (called sup-
port level). Support and resistance levels for an asset X are defined
as:

Support(X)t = Min(Xt−1, Xt−2, ..., Xt−n−1) (3.3)

Resistance(X)t = Max(Xt−1, Xt−2, ..., Xt−n−1) (3.4)

For n, we utilize the most popular window sizes of 50, 150, and
200 days (Brock et al. 1992). The strategy issues a buy signal when
the price rises above the current resistance level. Following the ra-
tionale that investors are willing to sell at local maxima, the current
price only exceeds its resistance level when the selling pressure is too
weak to compensate for the upwards trend, indicating a price rally.
Investors are assumed to be willing to buy at the previous minimum,
so it is difficult for the price to fall below its support level. A new
local minimum price is assumed to initiate a downward trend (Brock
et al. 1992). Hence, the trading rule is defined as:
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Buy : Xt > Resistance(X)t
Sell : Xt < Support(X)t

Moving Average Convergence Divergence

The moving average convergence divergence (MACD) strategy is trend
following and based on the difference between two exponential moving
averages (EMA). The EMA gives more weight to the most recent
closing price than the previously introduced moving average. The
weighting factor is defined as 2

n+1 , where n is the EMA period. The
most commonly used timeframes are the 12-day and 26-day EMA
(Murphy, 1999). The EMA for an asset X is calculated as:

EMA(X)t,n = [Xt − EMA(X)t−1,n]×
2

n+ 1
+ EMA(X)t−1,n (3.5)

As the formula contains the EMA of the previous period, the first-
day EMA period, EMA(X)t−1,n, is defined as the simple MA(X)t,n.
The MACD can then be calculated as:

MACD(X)t = EMA(X)t,12 − EMA(X)t,26 (3.6)

The MACD strategy follows the same rationale as the moving av-
erage strategy. It issues a buy signal when the short-term EMA is
larger than the longer-term EMA and a sell signal when the short-
term EMA is smaller than the longer-term EMA (Murphy, 1999). The
trading rule is thus defined as:

Buy : MACD(X)t > 0
Sell : MACD(X)t < 0

Moving Average Convergence Divergence Signal

Line

A method related to the MACD is the MACD signal line strategy,
which aims to smooth out the sensitivities of the MACD. For this
purpose, a 9-day EMA of the MACD is constructed as:
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MACDSignal(X)t = [MACDi,t − EMA(MACDi)t−1,9]

× 2

n+ 1
+ EMA(MACDi)t−1,9

(3.7)

As for the MACD, the MACD signal line strategy employs the sim-
ple MA for the first EMA, and hence, MA(MACD(X))t−1,9 is used as
the starting value (Gerritsen, 2016). The trading rule is accordingly
defined as:

Buy : MACDSignal(X)t > 0
Sell : MACDSignal(X)t < 0

Moving Average Convergence Divergence

Histogram

Combining the MACD and the MACD signal line methods, the MACD
histogram strategy considers the difference between the two:

MACDHistogram(X)t = MACD(X)t −MACDSignal(X)t (3.8)

With the MACD signal line smoothing out sensitivities of the
MACD, it results in a comparably slower moving average than the
MACD. The MACD histogram gets larger during a ”MACD diver-
gence” when the faster moving MACD moves away from the MACD
signal line, and vice versa, smaller during a ”MACD convergence”,
when the MACD and MACD signal line move towards each other.
At the initiation of a new trend, the faster MACD reacts before the
MACD signal line and will cross it before diverging further; the MACD
histogram’s purpose is to detect such a crossover early on (Murphy,
1999). Consequentially, positive values again indicate an uptrend and
negative a downtrend, resulting in the trading rule formulation as:

Buy : MACDHistogram(X)t > 0
Sell : MACDHistogram(X)t < 0
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Rate of Change

The rate of change is a simple trend following strategy that derives
trading signals from the difference between the price today and the
price n days ago (Gerritsen, 2016). The rate of change is calculated
as:

ROC(X)t = Xt −Xt−n−1 (3.9)

For n, we use 10 trading days, the most common timeframe for this
strategy (Gerritsen, 2016). The strategy aims to capitalize on persist-
ing price trends, expecting that price increases are followed by more
increases and price decreases are succeeded by further price decreases.
Accordingly, the rule issues trading signals as:

Buy : ROC(X)t > 0
Sell : ROC(X)t < 0

On-Balance Volume

The on-balance volume (OBV) indicator is trend following and one of
the best-known technical trading strategies utilizing volume data (Ger-
ritsen, 2016). The indicator is set to 0 in the beginning before adding
the respective trading volume (denoted V ) of days with price increases
and subtracting the trading volume of days with price decreases. The
trading volume of days without a price change is excluded:

OBV (X)t = OBV (X)t−1 +





V if Xt > Xt−1

0 if Xt = Xt−1

−V if Xt < Xt−1



 (3.10)

To generate trading signals, as for the MA strategy, a MAS and
MAL of the OBV are created (with the same time windows of 1-
50, 1-150, 5-150, 1-200, and 2-200). The OBV strategy’s rationale is
that volume changes occur before prices change. When the MAS rises
above the MAL, the increasing volume pressure is assumed to lead to
rising prices (Gerritsen, 2016). Thus, the strategy issues signals as:

Buy : MAS(OBVi)t,k > MAL(OBVi)t,l
Sell : MAS(OBVi)t,k < MAL(OBVi)t,l
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Relative Strength Index

The relative strength index is the most frequently used counter trend
indicator and considers the share of up- to down-closes over a prespec-
ified period of usually 14 trading days (Wong et al., 2003). Up-closes
(U) and down-closes (C) are defined as:

Ui,t

{
Xt −Xt−1 if Xt > Xt−1

0 otherwise

}
and Di,t

{
Xt−1 −Xt if Xt−1 > Xt

0 otherwise

}

(3.11)

Afterward, the averages of these closes are determined by:

U i,t =
1

14

t∑

t−13

U(X)t and Di,t =
1

14

t∑

t−13

D(X)t (3.12)

Then, the relative strength (RS) is calculated as the ratio between
the average up- and down-closes:

RS(X)t =
U(X)t

D(X)t
(3.13)

Last, the relative strength index at time t is computed as:

RSI(X)t = 100− 100

1 +RS(X)t
(3.14)

The resulting RSI ranges between values of 0 and 100, where 0
represents exclusive downward movement and 100 exclusive price in-
creases. Therefore, as a countertrend indicator, an RSI closer to 0
indicates an asset is oversold, while an RSI closer to 100 indicates an
asset is overbought. For the standard 14-day horizon, an RSI of 30 or
below denotes a buy signal, and an RSI of 70 or above a sell signal,
while the number of trading signals is negatively correlated with the
duration of the considered time period (Wong et al., 2003). Formally,
the trading rule is defined as:

Buy : RSI(X)t < 30
Sell : RSI(X)t > 70
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Bollinger Bands

Bollinger bands are another countertrend indicator that J. Bollinger
initially proposed in the 1980s (Lento et al. 2007). The strategy
creates and utilizes two bands, which are created based on the moving
average of an asset’s price and the respective standard deviation of
the price during the considered timeframe. The two bands are created
by adding (subtracting) the associated standard deviation to (from)
the moving average. Traditionally, a 20-day MA and a corridor of
two standard deviations between the bands are utilized (Lento et al.
2007). What results are an upper and a lower band:

BBUPPER(X)t = MA(B)t,20 + σB,20 (3.15)

BBLOWER(X)t = MA(B)t,20 − σB,20 (3.16)

Where σB,20 is the standard deviation of the price during the last
20-day period. As a countertrend indicator, the strategy assumes that
the price will return to its moving average; when the price exceeds the
upper band, a sell signal is issued, and when it falls below the lower
band, a buy signal is rendered:

Buy : X < BBLOWER(X)t
Sell : X > BBUPPER(X)t

Summary and Application

In line with the scope of our research, we apply all trading rules to
daily and hourly data and generate trading signals for daily and hourly
increments, respectively. Table 2.2 summarizes all previously elabo-
rated trading strategies.

Accounting for the fact that shorting cryptocurrencies was impos-
sible in the early years after their inception and is still not possible
across many exchanges today, we implement the trading signals in two
ways. First, we consider this circumstance and go long in case of a
buy signal and out of the market (into the risk-free asset) in case of
no signal or a sell signal (partial implementation). Second, we take
the trading signals literally and go long in case of a buy signal, out
of the market (into the risk-free asset) for no signal, and short for a
sell signal (full implementation). We obtained the risk-free rates used
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Table 3.2: Technical trading strategies summary

Strategy name Trend Buy signal Sell signal
Moving average Follower Short MA > Long MA Short MA < Long MA
Trading range breakout Follower Price > Resistance Price < Support
MACD Follower MACD > 0 MACD < 0
MACD Signal Follower MACD Signal > 0 MACD Signal < 0
MACD Histogram Follower MACD Histogram > 0 MACD Histogram < 0
Rate of change Follower ROC > 0 ROC < 0
On balance volume Follower Short MA > Long MA Short MA < Long MA
Relative strength index Counter RSI < 30 RSI > 70
Bollinger bands Counter Price < Lower band Price > Upper band

for this purpose from Kenneth R. French’s online data suppository
(French, 2022).

To judge the performance of the strategies, we follow Sharpe (1966)
and calculate the Sharpe ratio for every strategy i, at partial or full
implementation j, and for daily or hourly data k as:

Si,j,k =
Ri,j,k − rfk

σi,j,k
(3.17)

where Ri,j,k is the return and σi,j,k the standard deviation of the
returns of strategy i, at implementation j, for data resolution k, and
where rfk is the risk-free rate at data resolution k.

In the last step of our analysis, we test if the Sharpe ratios achieved
by the technical trading strategies are statistically significantly differ-
ent from the Sharpe ratio associated with the buy-and-hold portfolio.
This can be done via statistical inference and bootstrapping, and we
follow the thus developed approach of Ledoit and Wolf (2008). Their
method is based on a t-test examining whether the Sharpe ratio of
two portfolios is equal. The null hypothesis is therefore formulated as:

H0 =
Ri,j,k − rfk

σi,j,k
=

RBH,k − rfk

σBH,k

(3.18)

where RBH,k is the return and σBH,k the standard deviation of
the returns of the buy-and-hold portfolio at data resolution k. We
use 1,000 (20,000) bootstrap resamples for daily (hourly) data and
generate p-values in accordance with Ledoit and Wolf (2008).
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3.4 Results

Below we report Sharpe ratios at the resolution of the analyzed data,
meaning in daily and hourly terms, respectively. Table 3.3 presents
the Sharpe ratios of the technical trading strategies for hourly Bitcoin
returns. Of the 38 applied strategies, 10 strategies yield higher re-
turns than the buy-and-hold approach. Of those 10 strategies, three
exhibit statisically significant higher Sharpe ratios than the buy-and-
hold portfolio. Appendix A displays the associated return develop-
ments.

The MA 1-50 strategy is the only moving average strategy yield-
ing higher absolute returns than the buy-and-hold approach during
our investigated period. The return of the MA 1-50 strategy is slightly
higher at full than at partial implementation. All Sharpe ratios achieved
by moving average strategies are lower at full than at partial im-
plementation, without a single being statistically different from the
Sharpe ratio associated with the buy-and-hold approach.

All trading range breakout strategies are associated with lower ab-
solute returns than buy-and-hold. The Sharpe ratio of the SUP/RES50
strategy is statistically significant at the 5% level for both implemen-
tations, and all trading range breakout strategies yield lower Sharpe
ratios at full implementation.

All on-balance volume strategies underperform buy-and-hold in
absolute terms, with none of the strategies achieving higher absolute
returns. At full implementation, all on-balance volume strategies yield
lower Sharpe ratios than buy-and-hold. The higher Sharpe ratios at
partial implementation exist due to lowered volatility from being out of
the market for extensive time periods. The associated Sharpe ratios
are statistically not different from buy-and-hold, and all strategies
perform worse at full implementation while simultaneously achieving
lower p-values. Bollinger bands achieve lower absolute returns than
buy-and-hold at partial and full implementation. At the same time,
the reduction in the Sharpe ratio is statistically significant at the 10%
level for partial implementation.

The worst performing strategy is the relative strength index, with a
Sharpe ratio difference to buy-and-hold of -5.73 basis points at partial
and -8.96 basis points at full implementation. We find both of these
differences statistically significant at the 1% level. As shown in Table
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3.3, this is the most considerable basis point difference achieved of all
considered strategies.

The best performing strategy is MACD, achieving the highest ab-
solute return at partial and full implementation and the most sub-
stantial Sharpe ratio increase at full implementation. While absolute
returns are higher at full implementation, all Sharpe ratios are lower,
and all p-values are higher at full implementation compared with par-
tial implementation (where MACD and MACD Hist are statistically
significant at the 5% level). The second-best performing strategy is
rate of change, achieving the highest Sharpe ratio increase of all par-
tially implemented strategies (statistically significant at the 5% level)
and the second highest absolute return increase. As for the MACD
strategies, the absolute rate of change return is higher at full imple-
mentation (consider Appendix A7 and A8).

Table 3.3: Sharpe ratios of technical trading strategies for hourly Bit-
coin returns

Table 3.4 presents the Sharpe ratios of the technical trading strate-
gies for hourly Ethereum returns. Of the 38 applied strategies, 17
strategies yield higher returns than the buy-and-hold approach. Ap-
pendix B displays the associated return developments.

The MA 5-150 strategy offers the highest increase in Sharpe ratio
and absolute return of the moving average strategies, with MA 1-50
and MA 1-150 also improving absolute returns. None of the Sharpe
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ratios associated with the moving average strategies is statistically
significantly different from buy-and-hold. However, while the Sharpe
ratio of all moving average strategies is lower at full implementation,
MA 1-50, MA 1-150, and MA 5-150 achieve higher absolute returns
when allowed to go short.

The on-balance volume strategies behave similarly, with the in
absolute terms profitable OBV MA 1-150 and OBV MA 5-150 strate-
gies achieving higher returns at full implementation. All on-balance
volume strategies achieve lower Sharpe ratios at full implementation,
while none is statistically significantly different from buy-and-hold. As
for hourly Bitcoin returns, none of the trading range breakout strate-
gies offer an improvement to buy-and-hold in absolute terms.

Relative strength index and Bollinger bands are the worst perform-
ing strategies. Statistically significantly different from buy-and-hold
at the 1% level, the relative strength index strategy yields a negative
Sharpe ratio at both partial and full implementation. Bollinger bands
are associated with a negative Sharpe ratio at both implementations,
statistically insignificant for partial and significant at the 1% level at
full implementation.

The best performing strategies are rate of change (achieving the
highest Sharpe ratio increase at partial implementation, statistically
significant at the 5% level) and MACD (yielding a statistically signifi-
cant Sharpe ratio increase for partial and the highest Sharpe ratio in-
crease at full implementation). MACD, MACD Signal, and the rate of
change strategy yield lower Sharpe ratios but higher absolute returns
at full implementation. In contrast, the MACD Histogram strategy
resembles buy-and-hold at partial and underperforms buy-and-hold at
full implementation.

Table 3.5 presents the Sharpe ratios of the technical trading strate-
gies for daily Bitcoin returns. Of the 38 applied strategies, 14 strate-
gies yield higher returns than the buy-and-hold approach. Appendix
C displays the associated return developments.

Of all moving average strategies, the MA 1-50 is the only strategy
more profitable than buy-and-hold. At partial implementation, MA
1-50, MA 1-150, and MA 5-150 yield better risk-adjusted returns than
buy-and-hold, while only the MA 1-50 strategy returns are statistically
significantly different from the buy-and-hold returns (at the 5% level).
All moving average strategies perform worse at full implementation,
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Table 3.4: Sharpe ratios of technical trading strategies for hourly
Ethereum returns

and only the MA 1-50 and MA 5-150 strategy achieves a positive
difference in Sharpe ratio compared with the buy-and-hold strategy.

None of the trading range breakout strategies is more profitable
than the buy-and-hold approach. The SUP/RES50 and SUP/RES150
yield statistically significant improved Sharpe ratios. Further, all trad-
ing range breakout strategies suffer at full implementation. Of the on-
balance volume strategies, OBV MA 1-50 and OBV MA 5-150 achieve
higher absolute returns than buy-and-hold at both partial and full
implementation. However, as for the moving average strategies, all
on-balance volume strategies perform worse at full implementation.
Only the resulting Sharpe ratio difference compared to buy-and-hold
of the OBV MA 1-50 is statistically significant at the 10% level.

While not achieving any noteworthy absolute returns and under-
performing buy-and-hold heavily (see Appendix C13 and Appendix
C14), Bollinger bands offer the highest increase in Sharpe ratio of all
fully implemented strategies, statistically significant at the 5% level.
The Sharpe ratio increase at partial implementation of the Bollinger
bands is found to be statistically insignificant.

The most salient results are achieved by the MACD, rate of change,
and relative strength index implementations. The highest absolute re-
turns of all considered strategies are achieved by the MACD strategies,
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whereas absolute returns are higher at full implementation. At partial
implementation, all MACD strategies offer an increased Sharpe ratio
significant at the 5% level. While absolute returns are improved at
full implementation, all thus achieved Sharpe ratios are lower than at
partial implementation and lose their statistical significance compared
with the buy-and-hold approach.

The highest Sharpe ratio increase at partial implementation is
achieved by the rate of change strategy, with an increase of 3.05 basis
points, significant at the 1% level. The increase is lowered to 1.34 ba-
sis points at full implementation and loses statistical significance. In
absolute terms, however, rate of change is the second most profitable
strategy, with a strong increase in profitability at full implementation.

Last, the worst performing strategy is the relative strength index,
being the only strategy to yield a negative Sharpe ratio. Significant
at the 1% level in both cases, the strategy yields a -16.26 basis point
difference at partial and a -28.89 basis point difference at full imple-
mentation. The relative strength index strategy hence exhibits the
most striking and most negative results of all strategies employed for
daily Bitcoin returns.

Table 3.5: Sharpe ratios of technical trading strategies for daily Bit-
coin returns

Table 3.6 presents the Sharpe ratios of the technical trading strate-
gies for daily Ethereum returns. Of the 38 applied strategies, nine
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strategies yield higher returns than the buy-and-hold approach. Ap-
pendix D displays the associated return developments.

Of the moving average strategies, MA 1-50 and MA 1-150 yield
higher absolute returns than buy-and-hold at partial implementation.
MA 1-150 is the only moving average strategy achieving higher abso-
lute returns at full implementation. While the return increase is more
pronounced at full implementation, all Sharpe ratios are statistically
insignificant.

As for daily Bitcoin returns, not one of the trading range break-
out strategies is more profitable than the buy-and-hold approach or
yields a statistically significant improved Share ratio, while perfor-
mance worsens at full implementation. The same holds for all on-
balance volume strategies. Similarly to the moving average strategies,
the performance of the on-balance volume seems to deteriorate when
considering older data, with the OBV MA 1-50 strategy resulting in
the lowest and the OBV MA 2-200 strategy resulting in the highest
reduction in Sharpe ratio compared with buy-and-hold.

Mirroring the results for daily Bitcoin returns again, Bollinger
bands achieve the highest Sharpe ratio increase of all fully imple-
mented strategies (statistically significant at the 10% level) while heav-
ily underperforming buy-and-hold in absolute terms (see Appendix
D13 and Appendix D14). The rate of change strategy achieves the
highest absolute returns of our tested strategies, where gains are more
substantial for full than for partial implementation. At partial imple-
mentation, the strategy offers the second highest Sharpe ratio increase
(statistically significant at the 5% level) and the third highest increase
at full implementation.

The second highest absolute returns are associated with the MACD
strategies. As for rate of change, absolute returns are higher at full im-
plementation, while Sharpe ratio increases (statistically significantly
different from buy-and-hold for partial implementation at the 10%
level) are higher at partial than at full implementation of the strate-
gies.

The only strategy to achieve Sharpe ratios statistically different
from buy-and-hold at the 1% level is the relative strength index, with
a -15.31 basis point difference at partial and a -29.29 basis point dif-
ference at full implementation. The relative strength index is the only
strategy with an overall negative Sharpe ratio.
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Table 3.6: Sharpe ratios of technical trading strategies for daily
Ethereum returns

In summary, we find trend-following strategies to outperform coun-
tertrend strategies for Bitcoin and Ethereum, regardless of the data
resolution. Moreover, strategies utilizing comparably recent informa-
tion perform better than strategies relying on older information. The
best and most reliably performing strategies across all data sets are
MA 1-50 (utilizing the last 50 days), MACD and MACD signal (draw-
ing from the last 26 days), and rate of change (generating trading
signals from the last 10 days). All these strategies are also found to
yield higher absolute returns at full implementation, indicating that
they are well suited for detecting downward trends. The two con-
sidered countertrend strategies, relative strength index and Bollinger
bands, underperform buy-and-hold considerably. Equally, the trading
range breakout strategy underperforms buy-and-hold regardless of the
chosen time frame.

3.5 Discussion

Previously, Kyriazis (2019), who considered thirty-eight studies on the
efficient market hypothesis, concluded that most research detects the
presence of, with time, fading long-range dependence in the markets of
Bitcoin and other cryptocurrencies. Notably, Khuntia and Pattanayak
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(2018) consider the MDH for daily Bitcoin returns from July 2010 to
December 2017. Their results point to time-varying degrees of market
efficiency, with a trend towards increased efficiency at the end of their
sample.

Studying the MDH for daily Bitcoin and Ethereum returns from
April 2013 and August 2015 until December 2019, respectively, López-
Mart́ın et al. (2021) argue for periods of market inefficiency during the
earlier trading years of the cryptocurrencies. However, they also find
that the markets tend towards efficiency in later parts of their sample
(López-Mart́ın et al., 2021). Contrasting this, Chu et al. (2019) find
that, by employing hourly Bitcoin and Ethereum data from July 2017
to September 2018, the return predictability of both cryptocurrencies,
according to the MDH, varies enormously over time and conclude by
arguing against market efficiency.

Researching weak form market efficiency by considering the RWH,
Barriviera (2017) utilizes daily Bitcoin data from August 2011 to
February 2017, finding that inefficiency is diminishing over time. These
findings were later confirmed by Alvarez-Ramirez et al. (2018), who
considered the RWH for daily Bitcoin from June 2013 to June 2017.
Like the study of Chu et al. (2019) employing hourly data contrasts
with the findings of studies using daily data for tests of the MDH, the
results of Zhang et al. (2019) deviate from the aforementioned stud-
ies on the RWH. By employing hourly data Bitcoin and Ethereum
data from February 2017 to August 2017, Zhang et al. (2019) find
significant deviations from efficiency in both cryptocurrency markets.

We examine the market efficiency of Bitcoin and Ethereum at
hourly and daily data resolution by means of popular technical trad-
ing strategies as previously mentioned by Gerritsen et al. (2020) in
their study on Bitcoin and by Gerritsen (2016) for Dutch listed firms
and the major indices in the Netherlands. In our sample, the best
performing strategies are the MACD and rate of change. The worst
performing strategy is the countertrend strategy relative strength in-
dex. In terms of the Sharpe ratio, we find our strategies to produce
more considerable differences to buy-and-hold for both Bitcoin and
Ethereum when considering daily data. Further, we find higher abso-
lute returns when employing the strategies for hourly than for daily
data.
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Corbet et al. (2019), Gerritsen et al. (2020), Grobys et al. (2020),
and Svogun and Bazán-Palomino (2022) previously conducted exten-
sive studies on technical trading strategies for Bitcoin and Ethereum.
Corbet et al. (2019) investigate moving average and trading range
breakout strategies for 1-minute Bitcoin data from 01.01.2014 to
25.06.2018. They find that a multitude of moving average strate-
gies yield excess returns. However, the best performing strategies do
not utilize the most common timeframes as described by Brock et
al. (1992) of 1-50, 1-150, 5-150, 1-200, and 2-200 days, but signif-
icantly shorter durations of 1-5, 2-5, and 1-10 minutes. Considering
that they calculate returns for 24 different moving average timeframes,
their study does not focus on confirming popular strategies before the
emergence of Bitcoin but on researching the profitability of many pos-
sible moving average strategies.

The study of Grobys et al. (2020) on moving average strategies
draws a similar conclusion. They consider daily data of several cryp-
tocurrencies from 01.01.2016 to 31.12.2018 and find that a 1-20 days
moving average strategy is more profitable than both moving average
strategies with longer timeframes as proposed by Brock et al. (1992)
and the buy-and-hold strategy for Bitcoin and Ethereum.

Our findings are in line with the findings of the study of Gerritsen
et al. (2020), who found the MACD strategies and the rate of change
strategy to be the best performing and the relative strength index and
Bollinger band strategy to be the worst performing in terms of Sharpe
ratio improvement relative to the buy-and-hold portfolio. As in our
study, they find these strategies to yield more substantial results at
full implementation.

In a more recent study, Svogun and Bazán-Palomino (2022) ex-
amine moving average and trading range breakout strategies for daily
and 1-minute returns of multiple cryptocurrencies from 01.01.2016 to
10.11.2021. As in our study, they find that many technical strategies
yield higher Sharpe ratios than the buy-and-hold strategy. Addition-
ally, their results are stronger for Ethereum than for Bitcoin, while
for daily data, more Ethereum than Bitcoin, and for 1-minute data,
more Bitcoin than Ethereum strategies outperformed their respective
buy-and-hold benchmark.

In summary, the studies of Corbet et al. (2019), Gerritsen et al.
(2020), Grobys et al. (2020), and Svogun and Bazán-Palomino (2022)
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all find evidence for the profitability of some technical trading strate-
gies in the markets of Bitcoin and Ethereum. Similarly to the other
studies, which all highlight the profitability of strategies using shorter
than traditionally usual timeframes, we find strategies utilizing compa-
rably recent information to yield better results than those that employ
older price data.

While the literature on the MDH and RWH finds at least periods
of deviations from weak form efficiency in the markets of Bitcoin and
Ethereum (cf. Alvarez-Ramirez et al., 2018; Bariviera, 2017; Chu et
al., 2019; Khuntia & Pattanayak, 2018; Kyriazis, 2019; López-Mart́ın
et al., 2021; Zhang et al., 2019), our study shows that these inefficien-
cies are significant enough for technical trading strategies (even those
which emerged before cryptocurrencies as known today) to achieve
higher absolute returns than the buy-and-hold strategy. While the MA
1-50, the three MACD, and the rate of change strategy only achieve
Sharpe ratios statistically significantly different from buy-and-hold for
daily Bitcoin data at partial implementation, they yield impressive
absolute returns for both Bitcoin and Ethereum. Hence, the random
walk model, as put by Fama (1970), is, in the eyes of a stock market
trader capitalizing on their knowledge of past prices, questionable for
Bitcoin and Ethereum.

3.6 Conclusion

Technical trading strategies aim to capitalize on persisting trends in
asset price changes and have been around for centuries. We consider
the claim of Fama (1970) that from a trader’s perspective, a market
is inefficient so long as knowledge of past prices offers them opportu-
nities to outperform the market. To mitigate the risk of data mining,
we investigate this hypothesis for Bitcoin and Ethereum by employ-
ing several of the most popular technical approaches that have been
popularized before the emergence of Bitcoin, the first cryptocurrency
as they are known today.

Utilizing daily and hourly returns, we show that typical implemen-
tations of some technical trading strategies yield significantly higher
absolute returns for Bitcoin and Ethereum than buy-and-hold. For
daily and hourly returns, the trend following MACD, MACD signal,
and rate of change strategy offer strongly increased absolute returns
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for both cryptocurrencies. In contrast, the relative strength index
strategy yields a negative Sharpe ratio. Our results also show that dif-
ferent data resolutions favor different strategies and that there exists
a clear counterplay between momentum and contrarian approaches;
with trend following strategies achieving the best results, it is not
surprising that countertrend approaches perform considerably worse.

We find some statistically significant different Sharpe ratios from
buy-and-hold, especially at partial implementation of the strategies
for daily data. However, this significance is always lost at full imple-
mentation, making our findings ambivalent regarding the weak form
market efficiency. Some widely popular technical strategies offer sig-
nificantly higher returns to traders, while others heavily underperform
buy-and-hold. Comparing hourly and daily data reveals that absolute
returns are more significant when the technical strategies are employed
at higher data resolution (e.g., Appendix A8 and C8 for Bitcoin and
Appendix B8 and D8 for Ethereum). In this regard, we align with
existing literature finding that the markets of Bitcoin and Ethereum
deviate stronger from weak form market efficiency at higher data res-
olution.

With other studies finding that technical methods building on
shorter than previously standard timeframes offer better results than
traditional ones, future research should focus on further analyses of
technical strategies utilizing short timeframes. Since Ethereum is an
even more novel asset than Bitcoin, these strategies should also be
tested on newer cryptocurrencies to investigate the relationship be-
tween the novelty of an asset and the associated market efficiency.
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Chapter 4

Performance of Trend Trading in

Cryptocurrency Markets1

4.1 Introduction

As Fama (1970) hypothesized, asset prices change like a random walk
in the weakest form of efficient capital markets, making it impossible
for investors to trade profitably by relying on past price data. For
cryptocurrencies and predominantly bitcoin, this hypothesis has been
extensively tested. Summarizing thirty-eight studies concerned with
the efficient market hypothesis, Kyriazis (2019) infers that while some
research finds prevailing trends in cryptocurrency prices, most works
find increasing randomness and, thus, efficiency over time.

Other research has directly focused on the viability of trend trad-
ing in cryptocurrency markets. Gerritsen et al. (2020) studied the
profitability of technical trading strategies commonly employed for
equities for Bitcoin data, finding that some strategies outperform buy-
and-hold. Other studies analyzed variations of popular strategies such
as moving average trading, finding that the utilization of shorter than
commonly used timeframes for signal generation is advantageous (cf.
Corbet et al., 2019; Grobys et al. (2020); Svogun & Bazán-Palomino,
2022).

While most previous research has focused on the market efficiency
and profitability of technical trading strategies for Bitcoin and Ethereum,
our study adds to the literature by considering a range of popular
cryptocurrencies. Lo (2004) hypothesized that market efficiency is
a time-varying property of markets following an evolutionary process

1This chapter is based on Becker, M. (2022b). Timeframe Dependent Performance of
Trend Trading in Cryptocurrency Markets Unpublished working paper.
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deriving from the behavior of its participants. With smaller and newer
cryptocurrencies being traded by less individuals than e.g. Bitcoin, we
hypothesize that the market efficiency of more novel cryptocurrencies
should be respectively lower. This assumption is in line with previous
research, finding that Ethereum is less efficient than Bitcoin (cf. Kyr-
iazis, 2019). Therefore, we expect technical trading strategies to be
profitable for the cryptocurrencies included in this study. We build on
previous findings to validate this hypothesis and utilize comparably
short timeframes to generate trading signals.

Asset Description

While the seminal work of Nakamoto (2009) introduced the public to
the first generation of blockchains in the form of Bitcoin, there are
nowadays more than 8,000 new blockchain project uploads to GitHub
annually (Connors & Sarkar, 2022). First-generation blockchains are
distributed digital ledgers resistant to manipulation, providing the
foundation for cryptocurrencies like Bitcoin (Yaga et al., 2018). In the
second generation of blockchains, smart contracts were added to this
foundation, effectively allowing entire computer programs to run on
a blockchain. Computer programs running on blockchains are called
decentralized applications (dApps) and stand at the core of the next
iteration of the internet (Web3.0), envisioned to function without cen-
tralized parties managing data (Zou et al., 2021).

The vast technological progress underscores the apparent confu-
sion when Bitcoin gets equated with blockchain or cryptocurrencies
at large. Relating the total market capitalization of cryptocurrencies,
standing at about $1.0tn (Coinmarketcap, 2022), to the companies in-
cluded in the Wilshire 5000 Index tracking all actively traded equities
in the United States, reemphasizes the relevance of cryptocurrencies
as financial assets, with the median (average) market capitalization of
said companies being $1.2bn ($13.2bn) (Sure Dividend, 2022). With
current Bitcoin dominance levels (the percentage share of Bitcoin’s
market capitalization relative to the entire cryptocurrency market) of
merely 40% (Coinmarketcap, 2022), many blockchain projects have
valuations on par with US companies. Below we provide a brief intro-
duction to the cryptocurrencies included in this study.

46



Cardano

Envisioned by Ethereum co-founder Charles Hoskinson in 2015, Car-
dano is a cryptocurrency project launched in 2017. Setting exception-
ally high standards for itself, the team behind Cardano is developing
the protocol based on peer-reviewed research (Hoskinson, 2017). Car-
dano aims to provide an energy-efficient blockchain capable of execut-
ing smart contracts and dApps.

For this objective, a Proof-of-Stake (PoS) consensus protocol is em-
ployed, where the verification of transactions does not depend on solv-
ing an arbitrary hash puzzle, as is the case for Proof-of-Work (PoW)
networks such as Bitcoin. Instead, PoS randomly selects validators
to agree on the accuracy of a transaction, while every such valida-
tor vouches with their stake of ADA, the native currency of Cardano.
Confirming fraudulent transactions is penalized with the destruction
of the staked ADA, and confirming correct transactions is rewarded
with credited ADA, aligning the validators’ and Cardano project’s in-
centives (Hoskinson, 2017). Besides verifying transactions, ADA is
intended to serve as a secure global exchange of value and can also be
used to pay for dApps or transaction fees. As of early November 2022,
ADA had a market capitalization of $12.3bn (Coinmarketcap, 2022).

Decentraland

The initial whitepaper for Decentraland was published in 2017 (cf.
Ordano et al., 2017), and the platform was subsequently released in
2020. Running on top of the Ethereum blockchain, Decentraland is a
platform for a virtual reality metaverse. Decentraland enables users to
build applications and create content that other users of the metaverse
can experience. Land within the platform is ownable by users, and
the digital real estate owner controls which (user) generated content
is associated with the virtual Land. While Land is a non-fungible to-
ken (NFT), MANA, the asset considered in this study, is the currency
with which users of Decentraland can pay for both Land and make pur-
chases within the metaverse (Ordano et al., 2017). In early November
2022, MANA had a market capitalization of $1.0bn (Coinmarketcap,
2022).
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Ethereum

Vitalik Buterin publicized the idea of Ethereum in a white paper in
2013. Building on the ideas of Bitcoin, Ethereum does not only pro-
vide for decentralized, tamper-proof transactions but also for the host-
ing of a Turin-complete virtual machine (Buterin, 2013). The so-called
Ethereum Virtual Machine (EVM) can run smart contracts, laying the
foundation for smart contracts on the distributed computing platform.
While initially launched with a Bitcoin-like PoW consensus mechanism
heavily dependent on high energy consumption, the ”Merge” upgrade
executed in September 2022 changed Ethereum’s consensus mecha-
nism to PoS, effectively reducing its energy consumption by more than
99.9% (Ethereum, 2022). As the second largest cryptocurrency, the
total market capitalization of ETH, the native token of the Ethereum
blockchain, stood at $148.5bn in early November 2022 (Coinmarket-
cap, 2022).

Ripple

Founded in 2012, the digital currency often referred to as Ripple is
XRP, a digital currency running on RippleNet, a digital platform for
payments. RippleNet, in turn, runs on top of the XRP ledger, a
distributed database (Arslanian, 2022). Being released shortly after
Bitcoin’s original inception, Ripple’s main objective is to facilitate
transactions in very short time at low costs, qualities that Bitcoin
does not have due to its PoW consensus mechanism. Accordingly,
Ripple and XRP cater to large institutions engaged in cross-border
transactions (Schwartz et al., 2014). Consistently ranking among the
largest cryptocurrencies, XRP had a market capitalization of $18.9bn
in November 2022 (Coinmarketcap, 2022).

Sandbox

Like Decentraland, the Sandbox is a decentralized virtual gaming
world on top of the Ethereum blockchain. Like MANA in Decen-
traland, SAND (the native token of the Sandbox) can be used to buy
ASSET and LAND NFTs in the Sandbox. ASSET NFTs correspond
to user-generated content, while LAND represents digital real estate
in the metaverse; the first sale of LAND NFTs took place in late 2019
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(The Sandbox, 2020). The market capitalization of SAND in early
November 2022 was $1.0bn, on par with the market capitalization of
Decentraland (Coinmarketcap, 2022).

Shiba Inu

Shiba Inu is a blockchain project based on an anonymously published
white paper from August 2020 (Pagariya et al., 2022). Mentioning
the GameStop and AMC short squeeze of 2021 directly, the project’s
self-declared goal is to build a decentralized community-based cryp-
tocurrency, returning power to its users (Ryoshi, 2021). Shiba Inu
runs on top of the Ethereum blockchain and was initially intended to
become a ”dogecoin killer”, meaning it was meant to replace the pre-
viously launched cryptocurrency themed around the same Shiba Inu
dog breed (Arslanian, 2022). The project actively supports dog shel-
ters and while arguably being a less serious venture than standalone
blockchains, SHIB, the native token of the Shiba Inu, had a market
capitalization of $5.4bn in November 2022 (Coinmarketcap, 2022).

Solana

Based on the white paper of Yakovenko (2017), Solana is an open-
source blockchain project utilizing a Proof of History (PoH) published
in 2020. Based on the PoH, the Solana blockchain can link specific
events with distinct points in time. Combining the PoH with a PoS
consensus mechanism, Solana is a highly scalable and fast blockchain,
theoretically able to handle up to 710,000 transactions per second
(Yakovenko, 2017). Combining its low transaction costs and speed
with the ability to execute smart contracts, Solana is inherently de-
signed to facilitate dApps. SOL, the native token of Solana used to
pay for the hosting of on-chain programs or transaction validation,
had a market capitalization of $6.8bn in early November 2022 (Coin-
marketcap, 2022).

Contribution

We add to the literature by applying previous insights on the prof-
itability of technical strategies using short-term signals to a wide range
of cryptocurrencies. Further, we incorporate data spanning until the
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end of September 2022, thus examining trading performance during
the latest price peaks in late 2021 and the following troughs in the
first three quarters of 2022.

In line with previous research, we find that cryptocurrency price
trends are short-lived and that more recent information is significantly
more helpful for trading strategies across assets. Some technical trad-
ing strategies make investors in absolute and risk-adjusted terms bet-
ter off than the buy-and-hold portfolio. Statistical significance of the
Sharpe ratio improvements associated with our implemented strate-
gies almost exclusively drops away when allowing shorting the asset.
Last, neither novelty, size, nor the associated buy-and-hold return of
our investigated cryptocurrencies are reliable indicators for the prof-
itability of technical trading strategies (and hence, market efficiency).

The remaining sections are structured as follows. First, our data
and descriptive statistics are presented in section 4.2. Second, we
present and explain our methodology in section 4.3. Third, we present
our results in section 4.4. Fourth, we discuss our findings in section
4.5 before coming to a conclusion in section 4.6.

4.2 Data

We obtained hourly price data of Cardano, Decentraland, Ethereum,
Ripple, Sandbox, Shiba Inu, and Solana in terms of US Dollars from
Kraken (2022), a leading cryptocurrency exchange. While the avail-
ability of the first price point depends on the date when the respective
cryptocurrency got listed on the exchange, price data for all assets is
available until 30.09.2022. We compute logarithmic returns from the
price data using:

rt = ln

(
Xt

Xt−1

)
∗ 100 (4.1)

Where Xt is the price at time t. Table 4.1 presents descriptive
statistics of the thus computed hourly cryptocurrency log returns.

Ethereum returns constitute the longest available time series of
about seven years, whereas Shiba Inu returns are the shortest time
series of slightly less than a year. The mean hourly return of all assets
besides Shiba Inu and Solana is positive, with Decentraland exhibiting
the largest median and mean return. Ripple has the lowest mean re-
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Table 4.1: Descriptive statistics of hourly cryptocurrency log returns

Note: * denotes statistical significance at the 1% level

turn, and all cryptocurrency returns have comparable standard devia-
tions, ranging from 1.2923 (Shiba Inu) to 2.0895 (Ethereum). Ethereum
returns exhibit the strongest positive skew, followed by Sandbox, De-
centraland, Shiba Inu, and Ripple. Solana returns have a negative,
near zero skew, and Cardano returns are skewed to the left the most
with a value of -0.4099. All logarithmic return distributions are fat-
tailed and the Jarque-Bera test rejects normality at the 1% significance
level for all assets.

4.3 Methodology

Following previous studies on the profitability of technical trading
strategies in cryptocurrency markets (cf. Corbet et al., 2019; Ger-
ritsen et al., 2020; Svogun & Bazán-Palomino, 2022), we examine the
performance of the trend-following moving average and rate of change
strategy. Trend-following strategies have historically been indentified
to be more worthwhile than counter-trend strategies for the trading
of Bitcoin (Gerritsen et al., 2020). Further, Corbet et al. (2019) and
Svogun & Bazán-Palomino (2022) show that these strategies perform
better when they are employed utilizing shorter timeframes than com-
monly used for equities. The strategies and timeframes employed in
this study are explained below.

Moving Average

Considering historical average prices of an asset during a predefined
time window and relating them to more recent price levels, the moving
average (MA) is among the oldest and most popular technical trading
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strategies (Brock et al. 1992). The strategy considers the average
historical price of an asset during a predefined time window and com-
pares it to recent price data. MA(X)t,n is the n-day moving average
of an asset X at time t, denoted as:

MA(X)t,n =
1

n

t∑

i=t−n+1

Xi (4.2)

Trading signals are generated by firstly computing a short-term
moving average (MAS) and a long-term moving average (MAL), with
s corresponding to the number of days considered for the MAS and l

corresponding to the number of MAL days. The most common time
window (s − l) traditionally used for equities trading is 1-200, with
other popular windows being 1-50, 1-150, 2-200, and 5-150 (Brock et
al. 1992).

After the computation of MAS and MAL values, the moving aver-
age strategy issues a sell signal when the MAS drops below the MAL
and a buy signal when the MAS increases above the MAL. The basic
principle is to smooth volatile time series using the MAL and to detect
deviations from them using the MAS. The strategy filters out spurious
signals to identify true uptrends or downtrends. The strategy works
well when there is a clear trend, while excessive volatility reduces its
usefulness (Wong et al. 2003). Formally, the moving average trading
rule is defined as follows:

Buy : MAS(X)t,s > MAL(X)t,l
Sell : MAS(X)t,s < MAL(X)t,l

For Bitcoin, Corbet et al. (2019) conducted a comprehensive study
of a wider range of MAS and MAL combinations, adding 10 as an
additional MAS period and using values as low as 5 for the MAL. Fol-
lowing their approach, we utilize a similar yet slightly more extensive
range of possible timeframes for our analysis.

Rate of Change

The rate of change (ROC) is a simple trend-following strategy that
derives trading signals from the difference between today’s and the
price n days ago (Gerritsen, 2016). As such, the strategy seeks to ex-
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ploit continuing price trends with the expectation that price increases
will be followed by further price increases and that price reductions
will be followed by further price reductions. The rate of change is thus
computed as follows:

ROC(X)t = Xt −Xt−n−1 (4.3)

The most common timeframe employed for traditional rate of change
trading is 10 days (Gerritsen, 2016), and the strategy generates trad-
ing signals as:

Buy : ROC(X)t > 0
Sell : ROC(X)t < 0

As for moving average trading, we employ a more extensive range
for n to determine whether cryptocurrency price trends persist for
shorter or longer than commonly assumed for equities. Accordingly,
we compare current prices with price levels from 2 through 15 days
ago.

Application

As we employ high-frequency data at hourly resolution while utiliz-
ing trading strategies that use daily timeframes, we incrementally roll
forward both strategies by one hour. Correspondingly, we determine
the current day’s price by computing a moving average of the last 24
hours. In the same way, a MAL of 200 days corresponds to the moving
average of the last 4,800 hours.

While the Kraken exchange, the source of the data employed in this
study, today offers futures with hourly settlement (Kraken, 2022b),
taking short positions in cryptocurrencies was not possible during the
early years after their creation. Therefore, we compute strategy re-
turns for two different implementations. In the first, we take the
constraint into account and hence go long in an asset when a strategy
issues a buy decision and out of the market when a sell signal is is-
sued (partial implementation). In the second, we fully implement the
trading strategy with a long position for buy signals and short for sell
signals (full implementation).
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To evaluate the performance of the strategies, we follow Sharpe
(1966) and calculate the Sharpe ratio (Si,j) for every strategy i, at
partial or full implementation j as:

Si,j =
Ri,j − rf

σi,j
(4.4)

where Ri,j is the return and σi,j the associated standard devia-
tion of of strategy i at implementation j and rf denotes the risk-free
rate. Considering the interest rate environment during our sample
period and the impracticality of investing at the risk-free rate for
only hours, we assume the risk-free rate to be zero. Last, we test
whether the Sharpe ratios achieved by the technical strategies differ
from the Sharpe ratio associated with the buy-and-hold portfolio to
a statistically significant degree. We do so by statistical inference
and bootstrapping, following the approach developed by Ledoit and
Wolf (2008). Their method utilizes a t-test investigating whether the
Sharpe ratio of two portfolios is equal. The respective null hypothesis
is formulated as:

H0 =
Ri,j − rf

σi,j
=

RBH − rf

σBH

(4.5)

RBH denotes the return and σBH the standard deviation of the
returns of the buy-and-hold portfolio. We use 20,000 bootstrap re-
samples and generate p-values following Ledoit and Wolf (2008).

4.4 Results

Below we report profitability and Sharpe ratios of the previously in-
troduced moving average and rate of change strategies. Timeframes
are referenced by the numbers in the respective strategy name. For
example, MA 2-20 refers to a moving average strategy with a MAS
of 2 and a MAL of 20. In the same way, ROC 10 corresponds to the
traditional application of the rate of change strategy, comparing the
current day’s price to the price 10 days ago, and ROC 15 compares
the current day’s price to the price 15 days ago.

Table 4.2 presents the strategy performances for Cardano, and
Appendix A visualizes the associated return developments. Of the 50
moving average strategies, 12 exhibit a statistically significant Sharpe
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ratio increase over buy-and-hold. Of the 28 rate of change strategies,
only one results in a statistically significant Sharpe ratio increase.

At partial implementation, all moving average strategies using a
20-day window for the MAL achieve a statistically significant Sharpe
ratio different from buy and hold. Absolute returns and Sharpe ratios
are mostly higher at full implementation; however, these strategies
lose statistical significance due to a substantial increase in volatility
(consider Appendix A).

The best-performing rate of change strategy for partial and full im-
plementation considers the last 11 days. While the strategy achieves
a statistically significant improved Sharpe ratio at partial implemen-
tation (being the only rate of change strategy to do so for Cardano),
this statistical significance is lost at full implementation due to a sub-
stantial increase in volatility. However, the fully implemented version
of ROC 11 achieves a more than fivefold absolute return compared
with the partially implemented version.

Table 4.3 presents the strategy performances for Decentraland, and
Appendix B visualizes the associated return developments. None of
the 50 moving average and 28 rate of change strategies achieves a
statistically signficantly increased Sharpe ratio. At partial implemen-
tation and the corresponding going out of the market, the forgone
returns are too substantial for the thus equally reduced volatility to
affect the Sharpe ratio favorably. With full implementation, return
volatility increases too much to improve the Sharpe ratio statistically
significantly despite increased absolute returns.

Table 4.4 presents the strategy performances for Ethereum, and
Appendix C visualizes the associated return developments. Of the 50
moving average strategies, 9 exhibit a statistically significant Sharpe
ratio increase over buy-and-hold. Of the 28 rate of change strategies,
seven result in a statistically significant Sharpe ratio increase.

At partial implementation, all moving average strategies employing
a 20-day MAL window yield improved Sharpe ratios significant at the
5% level. The basis point increase is higher for all of them at full
implementation. However, the statistical significance drops to the
10% level in all cases, while the MA 5-20 strategy loses its statistical
significance completely. In general, moving average strategies utilizing
a 100-day MAL or longer perform worse than strategies with shorter
timeframes.
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Table 4.2: Sharpe ratios of technical trading strategies for Cardano

No rate of change strategy yields statistically significant results
at full implementation. Interestingly, the best-performing strategy
(which also exhibits the lowest p-value) is the ROC 3 strategy, while
the traditional ROC 10 strategy does not yield significant results. Be-
sides the short-term ROC 3 strategy, the best results are derived from
strategies considering slightly older than traditional data, with ROC
12, ROC 13, and ROC 15 yielding improved Sharpe ratios significant
at the 5% level.

Table 4.5 presents the strategy performances for Ripple, and Ap-
pendix D visualizes the associated return developments. Of the 50
moving average strategies, seven achieve a statistically significant Sharpe
ratio increase over buy-and-hold. Of the 28 rate of change strategies,
14 result in a statistically significantly increased Sharpe ratio..

56



Table 4.3: Sharpe ratios of technical trading strategies for Decentra-
land

The best-performing moving average strategy is MA 2-10, which at
partial implementation achieves a Sharpe ratio increase of 0.92 basis
points (significant at the 5% level) and 1.20 basis points at full imple-
mentation (significant at the 10% level). At partial implementation,
all strategies utilizing a MAS of 1 or 2 and a MAL from 5 up to 20
yield Sharpe ratio improvements at least statistically significant at the
10% level.

Of the exclusively profitable rate of change strategies, ROC4 and
ROC 6 up to ROC 15 yield statistically significant Sharpe ratio im-
provements at partial implementation. Further, the Sharpe ratio im-
provements associated with the ROC 7, ROC 11, and ROC 12 strate-
gies are also statistically significant at the 10% level at full imple-
mentation. Despite this high level of the overall significance of the

57



Table 4.4: Sharpe ratios of technical trading strategies for Ethereum

rate of change strategies, it should be noted that the Sharpe ratio im-
provement associated with the best-performing rate of change strategy
(ROC 7) is slightly smaller than the one associated with the best mov-
ing average strategy (MA 2-10).

Table 4.6 presents the strategy performances for Sandbox, and
Appendix E visualizes the associated return developments. Of the 50
moving average and 28 rate of change strategies none achieves a sta-
tistically significant Sharpe ratio increase. While most strategies yield
higher absolute returns than buy-and-hold, Sandbox is the only asset
associated with any (and only) statistically significant deteriorated
Sharpe ratios.

As for the other currencies, moving average strategies tend to per-
form worse the longer the timeframe of the MAL gets. The negative,
statistically significant results are all associated with MA strategies
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Table 4.5: Sharpe ratios of technical trading strategies for Ripple

utilizing the last 200 days as MAL at partial implementation. No rate
of change strategy does achieve statistically significant results. ROC
2 is the only strategy yielding a reduced Sharpe ratio compared to
buy-and-hold, while ROC 2 and ROC 11 lead to a decreased absolute
return.

Table 4.7 presents the strategy performances for Shiba Inu, and
Appendix F visualizes the associated return developments. All 78
strategies achieve higher absolute returns than the buy-and-hold bench-
mark. Shiba Inu exhibits the lowest buy-and-hold ratio of all assets
in our sample (-0.015) and the shortest time series. Therefore, Sharpe
ratios of partially implemented moving average strategies with high
MAL values are partially incomputable because these strategies are
simply out of the market (nearly) all the time.
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Table 4.6: Sharpe ratios of technical trading strategies for Sandbox

While all strategies outperform buy-and-hold, many are associ-
ated with an overall negative Sharpe ratio. No moving average strat-
egy achieves statistically significant Sharpe ratio improvements. Only
MA 1-5 and MA 2-5 achieve a non-negative Sharpe ratio at partial
implementation. Rate of change strategies behave similarly, with only
a few strategies achieving a positive Sharpe ratio at partial implemen-
tation. However, ROC 13 is associated with a 1.85 basis point increase
compared to buy-and-hold significant at the 10% level and the high-
est increase of all strategies and all assets at full implementation (3.12
basis point increase, also significant at the 10% level).

Table 4.8 presents the strategy performances for Solana, and Ap-
pendix G visualizes the associated return developments. Of the 50
moving average strategies, seven achieve a statistically significantly
increased Sharpe ratio compared with the buy-and-hold benchmark.
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Table 4.7: Sharpe ratios of technical trading strategies for Shiba Inu

Of the 28 rate of change strategies, five result in a statistically signif-
icant Sharpe ratio increase.

Solana’s buy-and-hold performance is associated with a negative
Sharpe ratio, yet the only strategies that strictly result in a negative
Sharpe ratio are partially implemented moving average strategies uti-
lizing a 100-day MAL or older data. Despite the poor buy-and-hold
performance of Solana, the associated moving average strategy perfor-
mances are the best out of all examined assets. The MA 2-10 strategy
(significant at the 5% level for partial and the 10% level for full im-
plementation) achieves both the highest Sharpe ratio of all partially
implemented (0.019) and fully implemented (0.026) strategies.

Of the rate of change strategies, at partial implementation, ROC
4 to ROC 8 yield Sharpe ratio improvements above one basis point
compared to buy-and-hold (significant at the 10% level). While losing

61



Table 4.8: Sharpe ratios of technical trading strategies for Solana

their statistical significance at full implementation, ROC 5 to ROC 8
achieve the highest Sharpe ratio (0.017) of all rate of change strategies
in this study.

Summarizing our findings, we first of all find that our examined
strategies perform to vastly different degrees across cryptocurrencies.
This underscores that the returns of our sample assets do neither de-
velop synchronously nor follow the same patterns. Our strategies yield
the most statistically significantly increased Sharpe ratios for (in de-
scending order) Ripple, Ethereum, Cardano, and Solana. In the case
of Ripple, 27% of all strategies achieve significant Sharpe ratio in-
creases, while 15% do so for Solana. Only three strategies result in
significantly increased Sharpe ratios when applied for Shiba Inu, zero
for Decentraland, and Sandbox is associated with four significantly
decreased Sharpe ratios. Thus, we find our examined strategies to
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perform better for more serious cryptocurrencies and worse for gam-
ing and meme cryptocurrencies.

Statistical significance is nearly uniformly higher for partially im-
plemented strategies, whereas actual absolute returns are larger at
full implementation. Partially implemented strategies exhibit higher
statistical significance due to the inherently lower volatility of strate-
gies that can go out of the market. Conversely, fully implemented
strategies that also short the asset are associated with large volatility
increases. Hence, the increased absolute returns are counterbalanced
by increased volatility, rendering most Sharpe ratio increases of fully
implemented strategies statistically insignificant.

Last, the profitability of the strategies is not conditional on the
general profitability of the assets. Whereas Shiba Inu buy-and-hold
has a negative Sharpe ratio, it is the only currency for which all strate-
gies outperform buy-and-hold. A buy-and-hold investment in Solana
is also associated with a negative Sharpe ratio, yet it is the asset where
our examined strategies perform the best.

4.5 Discussion

Previously, many studies considered the market efficiency of cryp-
tocurrencies from various angles. Whereas Kyriazis (2019) provides
a good overview of the research focused on the statistical properties of
cryptocurrency price developments, other studies investigated the per-
formance of trend trading directly (cf. Corbet et al., 2019; Gerritsen
et al., 2020; Grobys et al., 2020; Svogun & Bazán -Palomino,2022).
Where the former concludes by arguing for increasing randomness and
thus efficiency over time, the latter all find at least small opportunities
for profitable technical trading.

We examine the profitability and risk-adjusted returns of trend-
following technical trading strategies for seven cryptocurrencies. More
precisely, we employ moving average strategies as described by Brock
et al. (1992) and use similar MAS and MAL timeframes as applied by
Corbet et al. (2019). Additionally, we analyze momentum by utilizing
the rate of change strategy (cf. Gerritsen, 2016) with a corridor of 2
to 15 days as the benchmark for the current price. To increase the
practical relevance of our work, we apply these trading strategies to
hourly data corresponding to the futures settlement rhythm traded on
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the Kraken exchange. Last, our study examines time series spanning
until the end of September 2022, covering the market correction fol-
lowing the price peaks in late 2021, thus analyzing the performance of
trend trading during both recent boom and bust periods.

Across all our sampled cryptocurrencies, using 10 or 20 days as
the MAL period improves Sharpe ratios at both full and partial im-
plementation of the trading strategies. Conversely, all strategies that
rely on a 200-day MAL yield, on average, a reduction in Sharpe ratio
across cryptocurrencies and implementations. With commonly used
MAL periods being at least 50 days long (cf. Brock et al., 1992),
our findings are in line with the studies of Corbet et al. (2019) and
Grobys et al. (2020), who previously identified the profitability of
short timeframes for moving average cryptocurrency trading.

Similarly, we only find the ROC 2 strategy to, on average, yield a
negative Sharpe ratio across all assets and implementations. For the
full sample, ROC 7 to ROC 15 strictly lead to an improved Sharpe
ratio, and upon exclusion of Decentraland (MANA), all rate of change
strategies but ROC 2 lead to an increased Sharpe ratio. The best-
performing rate of change strategy, yielding not only a Sharpe ratio
increase but also achieving higher absolute returns for every asset,
is ROC 7. The only cryptocurrencies in our sample where no rate
of change strategy produced a statistically significant Sharpe ratio
difference are the two metaverse tokens of Decentraland and Sandbox,
which are also the assets with the lowest market capitalization in our
study. In contrast to this stand the results for Ripple, the oldest
considered cryptocurrency, for which seven rate of change strategies
achieve improved Sharpe ratios significant at the 5% level and another
seven at the 10% level.

Our results show that trend trading is no reliable strategy in cryp-
tocurrency markets. As highlighted before, the performance and asso-
ciated statistical significance of our examined strategies varies widely
across assets. However, as demonstrated by the performance of the
MA 2-20 strategy, we find some generality for the previous finding of
the relatively higher profitability of shorter-term signals for Bitcoin
and Ethereum (cf. Corbet et al., 2019; Grobys et al., 2020; Svogun &
Bazán-Palomino, 2022).

The initially hypothesized relationship between the market effi-
ciency of a cryptocurrency and its novelty and size could not be con-
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firmed. For the two smallest assets, Decentraland and Sandbox, no
strategy yields a statistically significant improved Sharpe ratio, while
many do so for the three largest assets (Ethereum, Ripple, and Car-
dano). This dynamic is noteworthy since the market capitalization
of these cryptocurrencies is comparable to or larger than the average
market capitalization of the companies included in the Wilshire 5000
index. The market thus seems to successfully differentiate between
different cryptocurrencies, with their returns neither developing syn-
chronously nor follow the same patterns. With our trend following
strategies performing better for currencies with large market capital-
izations, it seems that more popular cryptocurrencies are experiencing
more market inefficiencies. Whether these exist due to herding and
hype or due to entirely different phenomena remains a topic for future
research.

Finally, we find that the performance of our strategies did not
explicitly suffer during the market downturn. On the contrary, we find
the most considerable improvements for the two assets with a negative
buy-and-hold Sharpe ratio. Trend trading in Solana (Sharpe ratio of
-0.001) is associated with this study’s most considerable Sharpe ratio
improvements, and all strategies generate higher absolute returns for
Shiba Inu (Sharpe ratio of -0.015).

4.6 Conclusion

The term cryptocurrency today entails a broad universe of vastly dif-
ferent assets. While Bitcoin pioneered the space intending to become
a decentralized global currency, more recent projects aim to create
the next version of the internet with WEB3.0. Next to those initia-
tives, even community ventures without an apparent purpose, such as
Shiba Inu, attract enough interest to amass valuation levels of multiple
billion US dollars.

Trend trading, the attempt to trade profitably on past price data,
has been around for centuries. This fact is in direct contrast to the effi-
cient market hypothesis popularized by Fama (1970), who argues that
this is a futile approach with asset prices developing unpredictably.
Previous research has identified that technical trading strategies that
were widely known before the emergence of Bitcoin can outperform
the buy-and-hold approach. Later studies found that utilizing shorter
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than previously standard timeframes for generating trading signals
leads to even more significant gains when trading cryptocurrencies.

We build upon these previous findings and employ an extensive
range of moving average and rate of change strategies for the native
tokens of the Cardano, Decentraland, Ethereum, Ripple, Sandbox,
Shiba Inu, and Solana blockchains. Utilizing hourly data from the
Kraken exchange, we find trend trading to make investors better off
in many cases. Across our entire sample, moving average strategies us-
ing shorter than standard MAL timeframes is associated with higher,
and using the longest commonly used MAL timeframes is associated
with lower Sharpe ratios. Statistical significance of the thus achieved
Sharpe ratios varies strongly across cryptocurrencies and implementa-
tion of the strategies. For larger cryptocurrencies, some Sharpe ratio
improvements of partially implemented moving average strategies are
statistically relevant. At full implementation this significance drops
away due to increased volatility. For Decentraland, Sandbox, and
Shiba Inu, none of the moving average strategies offers statistically
significant Sharpe ratio increases.

While some of our employed rate of change strategies offer in-
creased absolute returns, only few yield statistically significantly in-
creased Sharpe ratios compared to buy-and-hold. As for moving av-
erage strategies, we find absolute returns to be greater at full imple-
mentation, while partially implemented strategies achieve Sharpe ratio
improvements with higher statistical significance. Again, this is due
to more substantial increases in volatility than returns when allowing
the strategies to short the underlying asset.

Arguing for market inefficiency regardless of the overall market de-
velopment, we find technical trading strategies to outperform buy-and-
hold also after extending our time series to incorporate recent price
downward trends. However, our initial hypothesis of more novel cryp-
tocurrencies being less efficient than older ones could not be verified.
While Ripple and Ethereum are the oldest assets considered in this
study, they are also those where the most trading strategies achieve
statistically significant results. With the largest cryptocurrencies in-
creasingly possessing market capitalizations greater than many pub-
licly traded companies, future research should focus on fundamental
valuation drivers of blockchain projects and the underlying reasons for
trend trading apparently working better for large cryptocurrencies.
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Chapter 5

Conclusion

Over the past decade, cryptocurrencies and blockchain technology at-
tracted vast interest and capital. Starting with Bitcoin as envisioned
by Satoshi Nakamoto, the crypto space rapidly developed and is still
creating innovative technologies, be it smart contracts or metaverses.
With high price volatility, no definite investment hypotheses, and short
price histories, investing in cryptocurrencies remains a risky endeavor.
Previous research attested cryptocurrencies, and Bitcoin in particu-
lar, diminishing market inefficiencies. Within this dissertation, I am
analyzing the market efficiency of Bitcoin and Ethereum with the, to
the best of my knowledge, most extensive high-frequency dataset to
date. I do this by focusing on theoretical and practical market effi-
ciency aspects. With the practical aspect of market efficiency being
easier to grasp, I also examine the risk-adjusted profitability of simple
technical trading strategies for a broader range of different types of
cryptocurrencies.

Overall, I find that a strict interpretation of the efficient market
hypothesis, be it in a theoretical sense focusing on the patterns present
in price data or the practical sense relating to the profitability of trend
trading, does not withstand rigorous analysis. This finding can not
be attributed to the respective size of a cryptocurrency, going against
the notion that less popular projects are subject to fewer profit-seeking
investors, driving up market efficiency.

First, in chapter 2, I show that the adaptive market hypothesis
better describes the price development of Bitcoin and Ethereum than
the efficient market hypothesis does. Both cryptocurrencies exhibit
apparent deviations from a truly random process, where the degree of
efficiency constantly varies over time. Further, by conducting the same
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analysis for the S&P 500, I find that Bitcoin and Ethereum exhibit
significantly more extended periods of inefficiency than the world’s
dominant equity index. Bitcoin, Ethereum, and the S&P 500 exhibited
mostly long-range dependence during the investigated period.

Second, I investigate the practical market efficiency of Bitcoin and
Ethereum in chapter 3. By employing only popular technical trading
strategies that existed before Bitcoin was invented, I ensure that data
mining is not a concern. In doing so, I still show that some basic
trend-following strategies yield superior absolute returns compared to
the buy-and-hold approach. In line with this, countertrend strategies
perform poorly. In general, absolute returns are higher when consid-
ering hourly data, indicating that exploitable patterns are short-lived.

Third, I consider a more comprehensive range of cryptocurrencies
for the performance of modified trend-following strategies in chap-
ter 4. I find that exploitable price patterns across cryptocurrencies
are short-lived compared with the commonly assumed duration of eq-
uity price patterns. The best-performing strategies utilize input data
significantly shorter than usually considered in trend trading. I can
also show that market inefficiencies can be substantial, with the most
significant Sharpe ratio gain being achieved by an asset with negative
buy-and-hold performance.

To conclude, I find ample, sometimes minor, deviations from one
of the most fundamental theories in financial literature. While the de-
viations from the efficient market hypothesis might appear minuscule,
it is essential to highlight that, for example, the neoclassical capital
asset pricing model is just the best model existing in practice. Consid-
ering all the evidence from behavioral finance, a model incorporating
individual preferences would be more appropriate. While this remains
a significant challenge, this dissertation highlights that even the best
available models in finance are based on theories with rather stark as-
sumptions which only partially hold up when rigorously scrutinized. I
show that simple technical trading strategies can make investors better
off, something categorically ruled out by the efficient market hypoth-
esis. However, with cryptocurrencies remaining a novel asset class,
only time will tell how the efficiency will develop in the forthcoming
years.

68



Appendix A

Appendix to Chapter 3
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Appendix A1 Bitcoin moving average hourly trading (long or
out)

Appendix A2 Bitcoin moving average hourly trading
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Appendix A3 Bitcoin trading range breakout hourly trading (long
or out)

Appendix A4 Bitcoin trading range breakout hourly trading
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Appendix A5 Bitcoin MACD hourly trading (long or out)

Appendix A6 Bitcoin MACD hourly trading
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Appendix A7 Bitcoin rate of change hourly trading (long or out)

Appendix A8 Bitcoin rate of change hourly trading
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Appendix A9 Bitcoin on-balance volume hourly trading (long or
out)

Appendix A10 Bitcoin on-balance volume hourly trading
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Appendix A11 Bitcoin relative strength index hourly trading (long
or out)

Appendix A12 Bitcoin relative strength index hourly trading
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Appendix A13 Bitcoin Bollinger bands hourly trading (long or out)

Appendix A14 Bitcoin Bollinger bands hourly trading
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Appendix B1 Ethereum moving average hourly trading (long or
out)

Appendix B2 Ethereum moving average hourly trading
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Appendix B3 Ethereum trading range breakout hourly trading
(long or out)

Appendix B4 Ethereum trading range breakout hourly trading
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Appendix B5 Ethereum MACD hourly trading (long or out)

Appendix B6 Ethereum MACD hourly trading
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Appendix B7 Ethereum rate of change hourly trading (long or out)

Appendix B8 Ethereum rate of change hourly trading
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Appendix B9 Ethereum on-balance volume hourly trading (long or
out)

Appendix B10 Ethereum on-balance volume hourly trading
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Appendix B11 Ethereum relative strength index hourly trading
(long or out)

Appendix B12 Ethereum relative strength index hourly trading
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Appendix B13 Ethereum Bollinger bands hourly trading (long or
out)

Appendix B14 Ethereum Bollinger bands hourly trading
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Appendix C1 Bitcoin moving average daily trading (long or out)

Appendix C2 Bitcoin moving average daily trading
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Appendix C3 Bitcoin trading range breakout daily trading (long or
out)

Appendix C4 Bitcoin trading range breakout daily trading
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Appendix C5 Bitcoin MACD daily trading (long or out)

Appendix C6 Bitcoin MACD daily trading
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Appendix C7 Bitcoin rate of change daily trading (long or out)

Appendix C8 Bitcoin rate of change daily trading
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Appendix C9 Bitcoin on-balance volume daily trading (long or out)

Appendix C10 Bitcoin on-balance volume daily trading
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Appendix C11 Bitcoin relative strength index daily trading (long
or out)

Appendix C12 Bitcoin relative strength index daily trading
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Appendix C13 Bitcoin Bollinger bands daily trading (long or out)

Appendix C14 Bitcoin Bollinger bands daily trading
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Appendix D1 Ethereum moving average daily trading (long or out)

Appendix D2 Ethereum moving average daily trading
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Appendix D3 Ethereum trading range breakout daily trading (long
or out)

Appendix D4 Ethereum trading range breakout daily trading

92



Appendix D5 Ethereum MACD daily trading (long or out)

Appendix D6 Ethereum MACD daily trading
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Appendix D7 Ethereum rate of change daily trading (long or out)

Appendix D8 Ethereum rate of change daily trading
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Appendix D9 Ethereum on-balance volume daily trading (long or
out)

Appendix D10 Ethereum on-balance volume daily trading
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Appendix D11 Ethereum relative strength index daily trading
(long or out)

Appendix D12 Ethereum relative strength index daily trading
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Appendix D13 Ethereum Bollinger bands daily trading (long or
out)

Appendix D14 Ethereum Bollinger bands daily trading
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Appendix B

Appendix to Chapter 4
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Appendix A1 Cardano moving average trading 1-x (long or out)

Appendix A2 Cardano moving average trading 1-x
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Appendix A3 Cardano moving average trading 2-x (long or out)

Appendix A4 Cardano moving average trading 2-x
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Appendix A5 Cardano moving average trading 5-x (long or out)

Appendix A6 Cardano moving average trading 5-x
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Appendix A7 Cardano moving average trading 10-x (long or out)

Appendix A8 Cardano moving average trading 10-x
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Appendix A9 Cardano rate of change trading (long or out)

Appendix A10 Cardano rate of change trading
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Appendix B1 Decentraland moving average trading 1-x (long or
out)

Appendix B2 Decentraland moving average trading 1-x
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Appendix B3 Decentraland moving average trading 2-x (long or
out)

Appendix B4 Decentraland moving average trading 2-x
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Appendix B5 Decentraland moving average trading 5-x (long or
out)

Appendix B6 Decentraland moving average trading 5-x
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Appendix B7 Decentraland moving average trading 10-x (long or
out)

Appendix B8 Decentraland moving average trading 10-x
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Appendix B9 Decentraland rate of change trading (long or out)

Appendix B10 Decentraland rate of change trading
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Appendix C1 Ethereum moving average trading 1-x (long or out)

Appendix C2 Ethereum moving average trading 1-x
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Appendix C3 Ethereum moving average trading 2-x (long or out)

Appendix C4 Ethereum moving average trading 2-x
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Appendix C5 Ethereum moving average trading 5-x (long or out)

Appendix C6 Ethereum moving average trading 5-x
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Appendix C7 Ethereum moving average trading 10-x (long or out)

Appendix C8 Ethereum moving average trading 10-x
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Appendix C9 Ethereum rate of change trading (long or out)

Appendix C10 Ethereum rate of change trading
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Appendix D1 Ripple moving average trading 1-x (long or out)

Appendix D2 Ripple moving average trading 1-x

115



Appendix D3 Ripple moving average trading 2-x (long or out)

Appendix D4 Ripple moving average trading 2-x

116



Appendix D5 Ripple moving average trading 5-x (long or out)

Appendix D6 Ripple moving average trading 5-x
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Appendix D7 Ripple moving average trading 10-x (long or out)

Appendix D8 Ripple moving average trading 10-x
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Appendix D9 Ripple rate of change trading (long or out)

Appendix D10 Ripple rate of change trading
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Appendix E1 Sandbox moving average trading 1-x (long or out)

Appendix E2 Sandbox moving average trading 1-x
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Appendix E3 Sandbox moving average trading 2-x (long or out)

Appendix E4 Sandbox moving average trading 2-x
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Appendix E5 Sandbox moving average trading 5-x (long or out)

Appendix E6 Sandbox moving average trading 5-x
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Appendix E7 Sandbox moving average trading 10-x (long or out)

Appendix E8 Sandbox moving average trading 10-x
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Appendix E9 Sandbox rate of change trading (long or out)

Appendix E10 Sandbox rate of change trading
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Appendix F1 Shiba Inu moving average trading 1-x (long or out)

Appendix F2 Shiba Inu moving average trading 1-x
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Appendix F3 Shiba Inu moving average trading 2-x (long or out)

Appendix F4 Shiba Inu moving average trading 2-x
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Appendix F5 Shiba Inu moving average trading 5-x (long or out)

Appendix F6 Shiba Inu moving average trading 5-x
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Appendix F7 Shiba Inu moving average trading 10-x (long or out)

Appendix F8 Shiba Inu moving average trading 10-x
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Appendix F9 Shiba Inu rate of change trading (long or out)

Appendix F10 Shiba Inu rate of change trading
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Appendix G1 Solana moving average trading 1-x (long or out)

Appendix G2 Solana moving average trading 1-x
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Appendix G3 Solana moving average trading 2-x (long or out)

Appendix G4 Solana moving average trading 2-x
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Appendix G5 Solana moving average trading 5-x (long or out)

Appendix G6 Solana moving average trading 5-x
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Appendix G7 Solana moving average trading 10-x (long or out)

Appendix G8 Solana moving average trading 10-x
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Appendix G9 Solana rate of change trading (long or out)

Appendix G10 Solana rate of change trading
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