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Introduction

After the stock market crash in 2008, a new portfolio strategy began gaining ever
increasing attention in academia and practice. This strategy is referred to as risk
parity, which in its simplest definition allocates wealth to equalize the amount of
volatility contributed by each asset to the overall portfolio volatility. In practice,
risk parity has been shown to outperform not only traditional portfolio weighting
schemes such as equal- or value-weighting, but also other weighting techniques such
as minimum variance (Chaves et al., 2011; Clarke et al., 2013). In academia, the
rise in interest was due to the attractive portfolio risk-return profile achieved by risk
parity (Prince, 2011), and its flexibility in terms of matching the risk appetite of
investors as it can easily be leveraged to achieve specific portfolio volatility levels
(Qian, 2012). Lee (2011) argues that risk parity is the most applicable portfolio
technique among risk-based techniques due to: (1) its heuristic framework, which is
an ad-hoc deconcentration approach on a risk basis that is similar in notion to the
equally-weighted portfolio which is an ad-hoc deconcentration allocation technique
on a monetary basis; (2) simple underlying economic intuition and financial inter-
pretation of monetary losses (Qian, 2006). Accordingly, numerous pension plans
and investment managers adopted this approach, resulting in over $175 billion in
assets under management as of May 2018 (Kochkodin, 2018).

Nonetheless, risk parity faced a lot of scrutiny (Foresti and Rush, 2010; Inker, 2010;
Levell, 2010). Lee (2011) argues that risk parity faces numerous challenges, despite
its outperformance of other traditional portfolio strategies from a risk-adjusted per-
formance measures. Perhaps the most important challenge is the lack of a theoretical
framework that helps explain and predict its performance in varying market condi-
tions and relative to conventional portfolio benchmarks.

The objective of this dissertation thesis is to investigate the risk parity approach in
more detail and contribute to existing literature by exploring the underlying theo-
retical foundations that result in its observed outperformance in empirical studies.
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INTRODUCTION

This dissertation aims to illustrate the relationship of the performance of risk par-
ity to longstanding behavioral biases and market anomalies, draw a clear picture
regarding the merits and perils of this approach, and demonstrate how risk parity
can be improved.

The first chapter proposes a novel approach to help explain the characteristics of
risk parity portfolios. Similar to Asness et al. (2019), we decompose the risk parity
portfolio into a volatility and a correlation component portfolio, which respectively
rely on the volatility vector and the correlation matrix to equalize the asset total
risk contributions and are equivalent to risk parity under specific assumptions. We
investigate the relationship between risk parity and its component portfolios and
whether risk parity can be replicated using a combination of the component portfo-
lios. Finally, we assess how the risk parity component portfolios can be utilized to
improve the risk-adjusted return whilst attaining the properties of risk parity.

The second chapter conducts an empirical analysis of the diversification benefits
achieved from utilizing a variety of asset classes bearing different risk-return char-
acteristics for risk parity portfolios and compare them with the benefits present in
other conventional heuristic and risk-based portfolio strategies. We further investi-
gate the implications of leveraging risk parity portfolios to achieve a specific portfolio
volatility level and analyze the resulting advantages and disadvantages.

The third chapter of this dissertation investigates the effects of shrinkage estimation
techniques of asset price moments on the risk-return profile of risk parity. In con-
trast to mean-variance portfolios, the risk contributions of individual assets in risk
parity portfolios are fixed a priori. This additional restriction is commonly found
to stabilize empirical portfolio weights in time. We investigate whether the risk-
budget for each portfolio asset acts as a natural shrinkage target theoretically and
empirically. Furthermore, we conduct an extensive empirical analysis of how risk
parity fares in comparison to other prominent weighting strategies as well as asset
variance-covariance matrix shrinkage techniques in various settings.

Altogether, the aim of dissertation is not only to contribute to earlier findings in the
literature and shed more light on the theoretical properties of risk parity, but hope-
fully also to help portfolio managers obtain a better understanding of the advantages
and disadvantages of risk parity portfolios relative to other weighting schemes.
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Chapter 1

The Value-Drivers of Risk Parity
and its Component Portfolios 1

1.1 Introduction

Risk parity (RP ) portfolios have been gaining increasing attention in academia and
practice2. RP portfolios aim to distribute the portfolio volatility equally among as-
sets, so that each asset contributes the same amount of risk to the overall portfolio
volatility. Also, RP can be leveraged to match investor preferences and to achieve a
desired target return or volatility level. Lee (2011) praises the RP approach among
other traditional and risk-based weighting strategies as the most applicable in real
markets due to its simplistic approach as an ad-hoc risk deconcentration weighting
technique (Amenc et al., 2012) and its financial interpretation in terms of monetary
losses (Qian, 2006). However, Lee (2011) argues that despite the aforementioned
appealing properties of RP , it faces several challenges. Most prominently is the lack
of an underlying theory or framework that helps explain its performance.

The aim of this study is to shed more light on the performance of RP by investi-
gating its component portfolios3, namely the volatility (V OLA) and the correlation
(CORR) component portfolios, which achieve the characteristics of RP under spe-
cific conditions. The approach is similar to Asness et al. (2019), who decompose
the Betting-Against-Beta (BAB) factor of Frazzini and Pedersen (2014) into the

1This chapter is based on Alkafri (2020). Risk Parity 2.0. Institutional Money 2, 118-126.
2For example, the increased interest for risk parity portfolios has led to the launch of several

risk parity market indices by HFR in 2017 (O’Dea, 2017) and S&P in 2018 (Liu, 2018)
3We dub these portfolios the component portfolios since they attempt to achieve the charac-

teristics of RP by relying on either the volatility component or the correlation component of the
covariance matrix, which RP utilizes to equally distribute risk.
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1.2. DATA DESCRIPTION

Betting-Against-Volatility (BAV ) and Betting-Against-Correlation (BAC) factors.
We assess the relationship of RP to its components and provide arguments as to
why RP is driven the BAB factor of Frazzini and Pedersen (2014) and is closely
related to its components, V OLA and CORR, which are in return driven by the
the low volatility anomaly and the BAC factor of Asness et al. (2019).

Furthermore, we find that RP and V OLA display similar risk-return characteristics
whereas CORR exhibits a slight improvement over the equally-weighted portfolio.
RP does not deliver a significant alpha over its components and almost the entire
variation of its returns is essentially capture by V OLA and CORR. Moreover, we
show that RP can be replicated by a linear combination of V OLA and CORR and
that utilizing these component portfolios can significantly improve the risk-adjusted
performance while maintaining the properties of RP to some extent.

The remainder of this chapter is organized as follows. Section 1.2 describes the data
set employed in the study. The methodology as well as the value-drivers of RP ,
V OLA, and CORR are discussed in section 1.3. The empirical results are summa-
rized in section 1.4 and verified in section 1.5, while section 1.6 briefly demonstrates
methods of improving RP portfolios based on the previous results. Finally, sec-
tion 1.7 concludes.

1.2 Data Description

Data were collected from Datastream and consist of daily total return prices from
01.01.1994 to 30.09.2019. We focus our analysis mainly on an asset allocation per-
spective as the variation of volatilities and correlations between different asset classes
is greater than the variations within the same asset class. As in Rudolf (1994), we
restrict the main analysis to three U.S. asset classes, namely equities, bonds, and
commodities, to simplify the analysis and ensure tractability as well as the replica-
tion of our results by future studies. Equities are represented by the S&P 500 Index,
bonds are denoted by the Thomson Reuters U.S. 10-year Government Benchmark
Index, and commodities are described by the Bloomberg Commodity Index. The
1-year U.S. Dollar deposit rate is utilized as a proxy for the risk-free asset.
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1.2. DATA DESCRIPTION

We employ an out-of-sample rolling-window approach as in DeMiguel et al. (2009).
Provided a data set which consists of T = 6,717 business days, we estimate the as-
set parameters required to construct the portfolios based on the previous M = 250
days. Portfolios are held for k = 1 days and then rebalanced using the previous M
days to estimate the asset moments. Hence, we obtain T −M = 6,467 observations
of periodic out-of-sample returns. Table 1.1 reports the summary statistics of the
asset class return series.

Table 1.1: Summary Statistics of Asset Classes

Asset Equities Bonds Commodities Risk Free

Return 8.78 4.91 4.86 2.16
Volatility 17.76 7.14 14.78 0.09
Skewness −9.46 −2.83 −6.07 0.00
Kurtosis −0.27 −0.13 −0.19 0.28
Sharpe Ratio 0.37 0.38 0.18 0.00

Notes: This table provides the return moments and Sharpe Ratios of the U.S. equities, bonds,
commodities, and the risk-free rate. The sample period covers 6,717 days from 01.01.1994 to
30.09.2019. All measures are in annual terms.

Equities deliver an average annual return of roughly 9% but is the most volatile
(17.76%) of all asset classes. Bonds seem to be the least volatile asset class (7.14%),
while delivering a slightly lesser return (4.86%) than commodities, which yield an
average annual return of 4.86% with a volatility of 14.78%. Moreover, all assets
exhibit negatively skewed and leptokurtic returns, indicating the stark presence
of extreme returns that occur during market turbulences. Although commodities
exhibit a volatility similar to equities, the returns of commodities are much lower and
similar to those of bonds in terms of excess kurtosis. The Sharpe ratios of equities
and bonds display a similar risk premium of almost 0.40, while commodities yield
a mere 0.18. Lastly, the risk-free rate is positively skewed and platykurtic with an
average return of 2.16% and a volatility of 0.09%.
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1.3. METHODOLOGY

1.3 Methodology

Risk Parity

The traditional view in finance has been coined by the mean-variance framework of
Markowitz (1952), and most prominently the Capital Asset Pricing Model (CAPM),
which implies a positive linear relationship between an asset’s beta and its expected
return. This has led to the extensive use of value- and equally-weighted portfolios
in practice (Benartzi and Thaler, 2001). Recently, there has been a shift in the
literature which dates back to the zero-beta CAPM by Black et al. (1972), who find
that the risk-return relationship implied by CAPM becomes flatter when investors
face restricted borrowing and lending. Haugen and Heins (1975) confirm a flatter
CAPM line and find that in some cases the risk-return relationship can become neg-
ative. Blitz and van Vliet (2007) as well as Baker and Haugen (2012) find that low
volatility assets outperform high volatility assets, Frazzini and Pedersen (2014) show
that low beta assets outperform high beta assets, and Asness et al. (2019) find that
assets with lower average correlations to other securities in the market outperform
assets with higher average correlations.

As a result, a new paradigm in finance and the practice of portfolio management
has emerged, which aims at managing risk budgets of portfolio assets and is referred
to as the risk-budgeting approach (Bruder and Roncalli, 2012). Perhaps the most
important technique thereof is risk parity (RP ), which equalizes the amount of risk
contributed by each asset to the portfolio volatility. RP has gained increasing at-
tention in academia and practice since it can be adjusted to match investor risk
preferences and leveraged to achieve specific portfolio return or volatility levels.

Numerous studies such as Chaves et al. (2011) and Lee (2011) find that risk-based
strategies, such as RP , outperform traditional weighting techniques such as value-
and equal-weighting. However, Lee (2011) argues that although RP empirically
yields a higher risk-adjusted return than traditional weighting schemes, it poises
several challenges. Most prominently is the lack of an underlying theory or frame-
work that helps predict its performance relative to its benchmark. Also, unless the
optimality conditions of RP are truly present in capital markets, the parity condition
is deemed as merely a starting point when stronger investment views are not present.

Qian (2005) was the first to introduce the concept of RP , who shows that RP port-
folios are mean-variance efficient if the underlying components have equal Sharpe
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1.3. METHODOLOGY

ratios and if their returns are not correlated. The author argues that the former
condition is appealing since it implies that the expected return is proportional to
the risk of each asset class, which is the case according to the Capital Asset Pricing
Model (CAPM). Regarding the latter condition, Qian (2005) finds that the histori-
cal correlation between stocks and bonds was quite low, albeit not being zero. Thus,
the author concludes that RP portfolios should be not only efficient in terms of risk
allocation but also according to the classical mean-variance framework. Thereafter,
Maillard et al. (2010) coined the RP weighting technique formally. In the following,
the main concepts of RP according to Maillard et al. (2010) are summarized.

Let σp =
√∑n

i=1 w
2
i σ

2
i +∑n

i=1
∑n
j=1
j 6=i

wiwjσi,j be the volatility of the portfolio, where

wi (wj) denotes the weight of asset i (j), σ2
i describes the return variance of asset

i, and σi,j represents the covariance between the returns of assets i and j. The
total risk contribution of asset i (TRCi) is defined as the product of the weight of
asset i (wi) and its marginal risk contribution (MRCi), where MRCi is the first
partial derivative of portfolio volatility to the weight of asset i (wi) and represents
the change in portfolio volatility as a result of an infinitesimal increase in the weight
of asset i. Formally, these are defined by

MRCi = ∂σp
∂wi

=
wiσ

2
i +∑n

j=1
j 6=i

wjσi,j

σp
= σi,p

σp
(1.1)

TRCi = wi ×MRCi = wiσi,p
σp

, (1.2)

where σi,p describes the covariance of asset i with the portfolio. Accordingly, the
following risk decomposition can be obtained4

σp =
n∑
i=1

TRCi. (1.3)

Hence, portfolio volatility can be expressed as the sum of all TRCs. Based on the
definitions provided in Equations (1.1)–(1.3), RP can be characterized by a state,
in which the vector of asset weights (w) is selected such that the TRCs of all assets
1 ≤ i ≤ n are equal, or formally TRCi = TRCj = σp/n ∀1 ≤ i, j ≤ n. This can
be realized by the following minimization problem

4Pursuant to the Euler principle, portfolio risk can be decomposed by Value-at-Risk (Gourier-
oux et al., 2000), the conditional Value-at-Risk or Expected Shortfall (Scaillet, 2004), and by any
further homogenous risk measure that is linear (Tasche, 2004).
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1.3. METHODOLOGY

w∗ = arg min
n∑
i=1

n∑
j=1

(TRCi − TRCj)2

subject to 1′w = 1
0 ≤w ≤ 1,

(1.4)

where w is the vector of asset weights, and 0 and 1 are vectors of zeroes and ones,
respectively. Moreover, the weights of RP satisfy the following property5

wi =
β−1
i,p∑n

j=1 β
−1
j,p

= 1
nβi,p

, (1.5)

where βi,p describes the beta of asset i to the portfolio. Equation 1.5 shows that
wi is a function of βi,p, where the weight of asset i is inversely proportional to its beta.

Frazzini and Pedersen (2014) show that a portfolio which is long in low beta stocks
and short in high beta stocks, which they call the Betting-Against-Beta (BAB)
factor, delivers significant positive abnormal returns. The authors provide an equi-
librium model with leverage and margin constraints that asserts these results, where
investors purchase high beta stocks as they are expected to deliver higher returns6.
The increased demand for high beta asset causes them to be overpriced. Meanwhile,
low beta assets become relatively underpriced and the resulting mispricing is not
arbitraged away as investors face leverage and funding constraints7. The authors
document significant positive returns for the BAB factor across several asset classes
and countries. Clarke et al. (2013), using a 1, 000 stocks example, show that the
asset weights of the RP portfolio are indeed inversely related to the assets’ market
beta and thereby confirming that Equation 1.5 is fulfilled in real life8. Hence, RP
can be viewed as a long-only implementation of the BAB factor, as it rewards low
beta assets and penalizes high beta assets.

A further advantage of risk-based strategies, such as RP , lies in the input param-
eters needed to determine asset weights. Chaves et al. (2011) argue that RP is

5For a derivation of Equation 1.5 see Appendix section A.1 and Maillard et al. (2010), p. 63.
6The low beta anomaly is present in U.S. corporate bonds, U.S. government bonds, and futures

markets. See Derwall et al. (2009) and Frazzini and Pedersen (2014).
7The effect of financial constraints on asset prices is not novel and has been demonstrated

by several studies. Ashcraft et al. (2010) and Gârleanu and Pedersen (2011) show assets with
higher margin required are associated with higher required returns according to Margin CAPM.
Gromb and Vayanos (2002) show that financial constraints influence assets’ required rate of return,
Brunnermeier and Pedersen (2009) link the market liquidity of financial assets to the funding
liquidity of investors, and Acharya and Pedersen (2005) show that an asset’s market liquidity
influences its expected rate of return.

8See Clarke et al. (2013), Exhibit 5, p. 47.
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1.3. METHODOLOGY

superior over mean-variance portfolios since only the covariance matrix is needed to
determine RP weights. Numerous studies such as Merton (1980) and Chopra and
Ziemba (1993) have shown that the asset covariance matrix can be estimated more
accurately than asset returns based on historical data. Also, Chopra and Ziemba
(1993) show that for mean-variance portfolios, estimation errors in variances and
covariances have a much lower impact on the portfolio optimization process than
estimation errors in asset returns, regardless of the level of investor risk-aversion.

Risk-based strategies are also a special case of volatility weighting strategies that at-
tempt to smooth the overall portfolio volatility over time. Hallerbach (2014) shows
that implementing such strategies to smooth the overall portfolio volatility over time
leads to a higher information ratio when market volatility varies over time. This re-
sult is not novel and has been shown by numerous studies such as Booth and Fama
(1992) and Fernholz et al. (1998). Volatility smoothing strategies have also been
shown to result in a higher Sharpe Ratio by studies such as Giese (2012), Ilmanen
and Kizer (2012), and Kirby and Ostdiek (2012).

Optimality arguments provide another motivation for RP . Lindberg (2009) shows
that equalizing quantities closely related to asset risk contributions solves Markowitz’s
continuous-time portfolio optimization problem of Merton (1971), if stock prices are
driven by Brownian motions with positive drift rates. Hallerbach (2012) shows that
risk-based weighting schemes result in a higher Sharpe Ratio and information ratio,
and that the overall risk-adjusted performance increases with the degree of volatility
smoothing achieved over time9. Chaves et al. (2011) confirm these results empiri-
cally, where they find that the ex-post risk allocation, as measured by the TRC, is
much more balanced for RP than equally-weighted or mean-variance portfolios, al-
beit not being exactly equal across asset classes. Meanwhile, the minimum variance
portfolio typically is extremely concentrated in the least volatile asset10.

9However, Hallerbach (2012) stresses that implementing volatility weighting strategies requires
a strict risk budgeting and monitoring process, especially strategies such as the minimum variance
portfolio necessitate setting maximum weights so that the risk of portfolio blow-ups is mitigated
when the contemporaneous volatility is somewhat low.

10Generally, highly concentrated portfolios have a higher turnover ratio, which translates to
higher transaction costs when rebalancing the portfolio and, hence, lower net portfolio returns.
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1.3. METHODOLOGY

Figure 1.1: Rolling Sharpe Ratios of Asset Classes

Notes: This figure shows the historical rolling Sharpe ratios of equities, bonds, and commodities.
The gray shaded areas indicate U.S. recessions as reported by NBER. The sample period covers
the period from 01.01.1994 to 30.09.2019 and consists of 6, 399 observations. All estimates are in
annual terms.

However, despite numerous arguments in favor of risk parity, the results from Fig-
ure 1.1, which depicts the rolling Sharpe ratios of various asset classes, suggest that
RP is not mean-variance efficient, as asset classes exhibit varying Sharpe ratios
over time and are seldom equal. As a result, several questions arise such as which
components help RP outperform traditional weighting schemes? And since RP is
not mean-variance efficient, can the risk-return profile be improved by tilting it to-
wards a certain component? To answer these questions, we begin by assessing the
properties of the RP component portfolios, namely the volatility and the correla-
tion component portfolios, which are special cases of RP and rely on either asset
volatilities or correlations to equalize asset TRCs.

10
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Components of Risk Parity

Although the covariance matrix is required to determine the RP asset weights, the
covariance matrix has several drawbacks compared to the volatility vector and the
correlation matrix. The asset variance-covariance matrix consists of squared devia-
tions, which exhibit starker changes than volatilities and correlations given higher
fluctuations in asset prices. The properties of these statistics, in addition to the
rolling annulaized returns11, are shown in Figure 1.2. Covariances generally fluc-
tuated around zero and were very small in magnitude until the financial crisis of
2008, where they exploded during the crisis and then decreased in magnitude, albeit
remaining greatly starker than the changes in covariances before 2008. Meanwhile,
the overall changes in volatilities and correlations were more pronounced and re-
mained relatively similar in terms of magnitude throughout the whole sample. In
sum, the results imply that weighting schemes that utilize the asset covariance ma-
trix to determine the asset weights might be more prone to huge allocation shifts
during turbulent market phases than portfolios that employ either the asset volatil-
ity vector or correlation matrix.

Moreover, not only were the Sharpe ratios of equities, bonds, and commodities gen-
erally not equal over time, but the same holds true for asset volatilities, correlations,
and covariances. Nevertheless, in certain periods the characteristics of various asset
classes cluster around a certain value and/or exhibit somewhat similar patterns.
For example, after the financial crisis of 2008, the changes in volatility of equities
and commodities were fairly similar, while the ratio of bond volatility to commodity
volatility has roughly been stable over time at roughly a factor of two. The correla-
tion of bonds with equities and commodities was generally negative and somewhat
similar in magnitude, whereas the correlation of equities and commodities was over-
all positive and moved in opposite direction of the bond correlations. Since asset
volatilities and/or correlations tend to display similar patterns in certain periods of
time, allocation techniques that use either the asset volatilities or correlations to
determine asset weights are likely to be less volatile with regard to changes in asset
weights than strategies employing the covariance matrix.

In the following, we present the volatility (V OLA) and the correlation (CORR)
component portfolios and discuss the market anomalies that are in favor of utilizing
these portfolios. Note that both portfolios have been briefly introduced by Maillard
et al. (2010), although they mainly investigate the RP portfolio.

11We depict the rolling annualized returns for the sake of completion.
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Volatility Component Portfolio

The volatility component portfolio (V OLA), also known as the inverse volatility
portfolio, relies solely on asset volatilities to equalize asset TRCs. Maillard et al.
(2010) show that V OLA is a special case of RP and is equivalent to RP under the
assumption that all asset correlations are equal12. Formally, V OLA is defined as

wi = 1/σi∑n
j=1 1/σj

, (1.6)

where wi is the weight of asset i with i = 1, . . . , n, while σi and σj denote the stan-
dard deviations of assets i and j, respectively. Equation 1.6 shows that the weight
of asset i is inversely related to its volatility. Hence, V OLA can be viewed as a long
only implementation of the low volatility anomaly as it overweights low volatility
stocks and underweights high volatility stocks.

The low volatility anomaly was first documented by Haugen and Heins (1975) and
refers to the empirical observation that low volatility assets deliver higher returns
than high volatility assets13. The low volatility anomaly can be attributed to viola-
tions of the assumptions underlying the Capital Asset Pricing Model (CAPM) in
financial markets. Blitz and van Vliet (2007) as well as Blitz et al. (2014) show that
numerous assumptions of CAPM are violated in real life such as different lending
and borrowing rates, investor margin constraints, investor utility functions, infor-
mation availability, and investor rationality, which all support the existence and
persistence of the low volatility anomaly14.

Another rationale for V OLA is based on behavioral biases related to the preference
for lottery-like stocks, which are positively skewed and highly volatile stocks with a
high probability of a huge positive return (lottery-like payoff). Barberis and Huang
(2008) develop an equilibrium model based on Kahneman and Tversky’s (1992)
cumulative prospect theory and find that lottery-like assets can become overpriced
and, thus, yield negative average excess returns. The overpricing of lottery-like
stocks cannot be fully arbitraged away due to short-selling constraints15.

12For more information on the derivation of this results see Appendix section A.2.
13The low volatility anomaly is robust across equity markets (Baker and Haugen, 2012), in

numerous asset classes including exotic derivatives (Falkenstein, 2009), to industry effects (Asness
et al., 2014), and is robust when controlling for the Fama French size factor (Baker and Haugen,
2012), the value factor and the Carhart momentum factor (Blitz and van Vliet, 2007), as well as
several other factors such as leverage and trading volume, among others (Ang et al., 2006).

14For a thorough literature review on the low volatility anomaly see Blitz et al. (2020).
15Mispricing of lottery-like assets increases in economic turmoils (Kumar, 2009), is greater for

assets with high limits to arbitrage (Conrad et al., 2014), and is robust when controlling for the
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Correlation Component Portfolio

The correlation component portfolio (CORR) equalizes the asset TRCs based on
the correlation matrix. Maillard et al. (2010) show that CORR is a special case
of RP and is equivalent to RP under the assumption that all asset volatilities are
equal. The asset weights are defined as follows

wi = (∑n
k=1 wkρi,k)−1∑n

j=1(∑n
k=1 wkρj,k)−1 , (1.7)

where ρj,k (ρi,k) denotes the correlation between assets j and k (i and k). CORR
overweights assets with low average correlations and underweights assets with high
average correlations. However, due to the endogenity of Equation 1.7, the weights
of CORR need to obtained through iterative optimization.

CORR can be viewed as an implementation of the findings of Asness et al. (2019)
that assets with low average correlations outperform assets with high average corre-
lations. Asness et al. (2019) find that a Betting-Against-Correlation (BAC) factor,
which is long a portfolio of low correlation stocks and short a portfolio of high
correlation stocks, delivers significant positive returns and is robust across various
markets. BAC has a significant CAPM alpha and is robust when controlling for
other factors such as the Fama and French (2015) five-factor model. Moreover, As-
ness et al. (2019) argue that the rationale behind the significant positive returns
of the BAC factor is analogous to the BAB factor as high (low) correlation stocks
have high (low) betas when the volatility is held constant. Hence, BAC is consistent
with equilibrium models with leverage constraints such as the zero-beta CAPM of
Black et al. (1972).

1.4 Empirical Results

The arguments in favor of RP seem to be related to those in favor its component
portfolios, namely V OLA and CORR. However, despite having the same objective
function of equalizing risk contributions, RP , V OLA, and CORR utilize different
parameters to determine the portfolio weights. So how does the RP portfolio relate
to its component portfolios empirically? And does the RP portfolio deliver alpha
compared to a mix of its components? To answer these questions, we begin by re-
porting the portfolio risk-return characteristics and correlations in Table 1.2.

Fama-French three factor model, the Carhart momentum factor, among others (Bali et al., 2011).
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Table 1.2: Full Sample Portfolio Summary Statistics
(a) Summary Statistics of Portfolios

Portfolio RP VOLA CORR
Return 5.93 6.04 6.26
Volatility 5.65 5.96 7.73
Sharpe 0.68 0.66 0.54
HHI 40.03 38.15 33.51

(b) Portfolio Return Correlations

Portfolio RP VOLA CORR
RP 1.00 0.99∗∗∗ 0.89∗∗∗
VOLA 0.99∗∗∗ 1.00 0.92∗∗∗
CORR 0.89∗∗∗ 0.92∗∗∗ 1.00

Notes: This table provides the out-of-sample portfolio performance measures for the risk parity
portfolio (RP ), the volatility component (V OLA), the correlatiion component (CORR) during
the period from 01.01.1994 to 30.09.2019, which consists of 6,467 observations. Portfolios are
rebalanced on a daily basis and all metrics are in annual terms. ∗, ∗∗, and ∗∗∗ indicate that the
portfolio correlation is statistically significant from 1 at the 90%, 95%, and 99%, respectively.

Although all portfolio correlations are statistically different from 1 at the 1% sig-
nificance level, correlations are high and vary between 0.89 and 0.99. The observed
high correlations are due to all portfolios having the same objective function, the
asset universe consisting of merely three assets, and portfolios being rebalanced on
a daily basis. However, the summary statistics of the portfolio returns display a
greater level of discrepancy. RP not only yields a slightly lower return than V OLA
and CORR, but also a lower volatility. This results in RP achieving the highest
Sharpe ratio of 0.68. V OLA is quite similar to RP with a correlation of 0.99 and
yields a Sharpe ratio of 0.66. Meanwhile, CORR seems quite similar to the equal-
weighting technique as its HHI is equal to 33.51% and although it yields the highest
return of 6.26%, it yields the lowest Sharpe ratio (0.54) due to the higher exhibited
volatility of 7.73%.

Next, to assess the exposure and the relationship of RP to V OLA and CORR, we
regress the RP portfolio on the component portfolios as follows

XRRP,t = α + β1XRV OLA,t + εt (1.8)
XRRP,t = α + β1XRCORR,t + εt (1.9)
XRRP,t = α + β1XRV OLA,t + β2XRCORR,t + εt, (1.10)

where XRRP,t, XRV OLA,t, and XRCORR,t describe the excess returns of RP , V OLA,
and CORR, respectively, at time t. α is the alpha of RP in excess of the component
portfolios, while the β denotes the sensitivity of RP to the corresponding component
portfolio, and εt is the regression estimation error at time t. A positive (negative) β
indicates that RP has positive (negative) exposure to the corresponding component
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portfolio.

Table 1.3 reports the results of the regression models in Equations (1.8)–(1.10) with
Newey-West robust standard errors16. The coefficients of V OLA and CORR are
statistically significant at the 1% significance level in all regressions and the R̄2 is al-
most equal to one. This suggests that V OLA and CORR capture a huge proportion
of the variation in RP returns. V OLA has a positive coefficient across all regression
models, which implies that RP overweights low volatility assets. Meanwhile, CORR
has a positive coefficient of 0.65 in model (1.9) and a slightly negative coefficient of
-0.11 when included with V OLA, which implies that RP underweights assets that
on average share a low correlation with other assets.

Table 1.3: Main Regression Results

1.8 1.9 1.10

Alpha 0.15% 1.13% 0.09%
VOLA 0.93∗∗∗ 1.07∗∗∗

CORR 0.65∗∗∗ −0.11∗∗∗

R̄2 97.12 78.83 97.47

Notes: This table reports the results of the regression models of Equations (1.8)–(1.10). The sam-
ple period covers 6, 467 days from 01.01.1994 to 30.09.2019. Alpha denotes the return in excess
of the component portfolios and is in annual terms. Portfolios are rebalanced on a daily basis.
Statistically significant measures at the 90%, 95%, and 99% confidence intervals are represented
by ∗, ∗∗, and ∗∗∗, respectively.

Moreover, the explanatory power of V OLA seems to be higher than CORR, as
the R̄2 is higher in models (1.8) than (1.9) and the exposure of RP to V OLA is
generally higher than that of CORR. These results reinforce the findings of Asness
et al. (2019), who find that the BAB factor seems to be mainly driven by the low
volatility effect while the BAC factor is of secondary importance. Furthermore,
the regressions results suggest not only that V OLA and CORR capture a great
proportion of the variance in RP returns, but also that a linear combination of the
component portfolios might outperform RP due to the insignificance of the alpha
in model (1.10). Provided this insight, we regress RP on V OLA and CORR as in

16We employ the Newey-West robust standard errors to control for heteroscedasticity and au-
tocorrelation, which are typical properties of financial data and present in our sample. Moreover,
tests for collinearity were rejected as the highest Variance Inflation Factor (VIF) amounts to 6.84,
which is below the conventional threshold of 10. Moreover, the Belsley (1991) collinearity diagnosis
also rejects the existence of collinearity with the highest conditional index equal to 5.03, which is
well below the threshold value of 30. Results are available upon request.
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Equation 1.10 and depict the regression coefficients of the component portfolios in
Figure 1.3.

Figure 1.3: Rolling Regression Coefficients of the Risk Parity Portfolio

Notes: This figure shows the rolling betas when the excess returns of risk parity are regressed on
the excess returns of the volatility and the correlation components as in Equation 1.10. The gray
shaded areas indicate U.S. recessions as reported by NBER. The sample period covers the period
from 01.01.1994 to 30.09.2019 and consists of 6, 217 observations. The alpha (regression intercept)
is excluded since it is statistically insignificant from zero throughout the sample.

The regression coefficients of V OLA and CORR change over time but seem to be
perfectly negatively correlated, where the sum of both exposures roughly equals one.
This suggests that RP can indeed be expressed as a sum of its components. The
regression coefficient of V OLA generally increases over the period analyzed whereas
the coefficient of CORR decreases. This pattern might be due to the empirical ob-
servation that the correlations among asset classes have increased over time, which
intuitively would reduce the importance of diversification based on correlations, and
hence, lead to a lower exposure to CORR and a higher one to V OLA.

In summary, our results suggest that the performance of RP is closely related to the
performance of its component portfolios, namely V OLA and CORR. RP does not
deliver a significant alpha over its components and V OLA and CORR essentially
capture the entire variation of the returns of RP . Also, the rolling regression results
imply that RP could be represented by a linear combination of V OLA and CORR,
as their rolling coefficients seem to be perfectly negatively correlated and roughly
add up to one.
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1.5 Robustness Tests

To verify our results, we extend our data set by including all equity and bond markets
of the G7 countries, in addition to commodities17. Equities, bonds, and commodities
are proxied by the corresponding MSCI total return indices, the Thomson Reuters 10
year Government Bond indices, and the Bloomberg Commodity Index, respectively.
All assets are denoted in USD. The data set spans the period from 01.01.1999 to
30.09.2019. Table 1.4 reports the summary statistics of RP , V OLA, and CORR.

Table 1.4: G7 Portfolio Summary Statistics
(a) Summary Statistics of Portfolios

Portfolio RP VOLA CORR

Return 2.87 2.53 2.90
Volatility 4.57 3.87 7.31
Sharpe 0.34 0.31 0.22
HHI 7.96 9.81 6.95

(b) Portfolio Return Correlations

Portfolio RP VOLA CORR

RP 1 0.97∗∗∗ 0.87∗∗∗

VOLA 0.97∗∗∗ 1 0.84∗∗∗

CORR 0.87∗∗∗ 0.84∗∗∗ 1

Notes: This table provides the out-of-sample portfolio performance measures for the risk parity
portfolio (RP ), the volatility component (V OLA), the correlatiion component (CORR) during
the period from 01.01.1999 to 30.09.2019, which consists of 5,159 observations. Portfolios are
rebalanced on a daily basis and all metrics are in annual terms. ∗, ∗∗, and ∗∗∗ indicate that the
portfolio correlation is statistically significant from 1 at the 90%, 95%, and 99%, respectively.

Although the correlations of portfolio returns weaken due to a broader asset uni-
verse, the results remain largely unchanged compared to Table 1.2. RP and V OLA
are very similar, whereas CORR performs poorest and displays a similar weighting
allocation to the equally-weighted portfolio with an HHI of 7.39%.

Furthermore, the results of the Newey-West regression models of Equations (1.8)–
(1.10) are reported in Table 1.518. The results are highly similar to those reported
in Table 1.3. However, due to the increase in the number of assets, the explanatory
power decreases marginally and the coefficient of CORR turns positive in model
(1.10), since exploiting the correlation structure becomes more important with a
higher number of assets.

17The relationship between RP and its component portfolios should be weaker in this scenario
than in the case of three assets as in section 1.4, since the precision of plug-in estimates, such as
historical estimates, in determining the optimal asset weights deteriorates severely by increasing
the number of assets (Jobson and Korkie, 1981; Michaud, 1989; Best and Grauer, 1991).

18Tests for collinearity were rejected as the highest Variance Inflation Factor (VIF) amounts to
3.48. Moreover, the Belsley (1991) collinearity diagnosis also rejects the existence of collinearity
with the highest conditional index equal to 3.44. Results are available upon request.
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Table 1.5: G7 Portfolios Regression Results

1.8 1.9 1.10

Alpha 0.17% 0.69% 0.21%
VOLA 1.15∗∗∗ 0.96∗∗∗

CORR 0.55∗∗∗ 0.12∗∗∗

R̄2 94.42 76.39 95.43

Notes: This table reports the results of the regression models of Equations (1.8)–(1.10). The
sample period covers 5, 159 days from 01.01.1999 to 30.09.2019. Alpha denotes the return in
excess of the component portfolios and is in annual terms. Portfolios are rebalanced on a daily
basis. Statistically significant measures at the 90%, 95%, and 99% confidence intervals are rep-
resented by ∗, ∗∗, and ∗∗∗, respectively.

Last, we show the rolling regression coefficients of Equation 1.10 in Figure 1.4. The
results remain largely unchanged to Table 1.3, although the regression coefficients
of V OLA and CORR are more volatile over time and almost equal during the dot
com bubble of 2000-2001 and more prominently the abrupt appreciation of the U.S.
Dollar in 2005 (Elwell, 2006), which raised concerns of a currency crisis (Bew, 2005).
Altogether, our results seem to be robust when controlling for the number of assets
in the asset universe.

Figure 1.4: Rolling Regression Coefficients of G7 Risk Parity Portfolio

Notes: This figure shows the rolling betas when the excess returns of risk parity are regressed on
the excess returns of the volatility and the correlation components as in Equation 1.10. The gray
shaded areas indicate U.S. recessions as reported by NBER. The sample period covers the period
from 01.01.1999 to 30.09.2019 and consists of 4, 909 observations. The alpha (regression intercept)
is excluded as it is statistically insignificant from zero throughout the sample.
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1.6 On Improving Risk Parity

Provided that V OLA and CORR explain a great amount of its return variation, we
investigate whether RP can be improved by utilizing these component portfolios.
We construct 2, 000 linear combination portfolios consisting of V OLA and CORR
that range in weighting between 150%/−50% to −50%/150%. We depictRP , V OLA,
CORR, and their linear combinations in the mean-variance framework in Figure 1.5.
V OLA and CORR deliver a higher annual return and a higher annual volatility, but
neither component strictly dominates RP in the mean-variance space. However, a
linear combination of the components can dominate the RP portfolio from a mean-
variance perspective. Given that a false combination might lead to worse risk-return
properties, how can one utilize the components on an ad-hoc basis? Can we forecast
in which market periods would V OLA or CORR deliver a superior performance?
And how can we shift the allocation from RP to its components19?

Figure 1.5: Risk-Return Profiles of Component Linear Combination Portfolios

Notes: This figure provides the risk-return properties of portfolios constructed as a linear
combination of the RP components. The linear combination portfolios range in weighting
between −150%/50% to 50%/−150% for V OLA and CORR, respectively. The sample covers
the period from 01.01.1994 to 30.09.2019, which consists of 6,467 observations. Portfolios are
rebalanced on a daily basis and all metrics are in annual terms.

19Certainly, several methods could be employed, but for brevity, we propose a single and simple
approach to show that an improvement based on the component portfolios is possible.
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Numerous studies such as Longin and Solnik (2001) and Campbell et al. (2002)
have documented that correlations in financial markets vary based on the general
market environment. In recessionary periods, correlations tend to increase so that
diversifying a portfolio based on correlations becomes more difficult. In expansion-
ary periods, markets exhibit positive returns on average and volatilities decrease,
making asset correlations vital for diversifying portfolio risk. Accordingly, if an in-
vestor desires to maintain the properties of RP whilst improving general risk-return
characteristics, an investor can discredit asset correlations and utilize V OLA during
recessions. Meanwhile, in expansionary phases the investor can employ CORR to
exploit the correlation structure of financial returns and minimize risk.

Provided the aforementioned arguments and using the NBER data for U.S. reces-
sions, we propose a RP component timing strategy (TIMING) that employs V OLA
in recessionary periods and CORR in expansionary phases. We assess the risk-return
properties of the RP portfolio in comparison to its component portfolios as well as
the equally-weighted portfolio (EW ) and the minimum variance portfolio (MV ).
We select these two portfolios as Maillard et al. (2010) show that the volatility of
RP lies between that of MV and EW , or formally σMV < σRP < σEW . Table 1.6
reports the portfolio correlations as well as the portfolio risk-return properties.

All portfolio correlations are quite high, ranging between 0.75 and 0.99, albeit being
statistically significantly different from 1. V OLA and RP portfolios exhibit slightly
higher returns and volatilities compared to MV while CORR shows a marginal im-
provement over EW . This results in a Sharpe ratio below 0.70 for MV , RP , and
V OLA, while EW and CORR yield a mere ratio of 0.52 and 0.54, respectively.
Meanwhile, TIMING shows a significant improvement over all strategies at the 1%
significance level by yielding a Sharpe ratio of 0.73.

Moreover, regarding the distribution of portfolio returns, all strategies exhibit neg-
atively skewed returns, which coincides with the longstanding findings of Moore
(1962) and Fama (1965), among others, that financial returns are negatively skewed
in big sample sets. Portfolio returns are also leptokurtic, which suggests that all
portfolios suffer from extreme negative returns in turbulent market phases. CORR
yields the highest kurtosis of of roughly 9.4, while RP and V OLA exhibit a kurtosis
of roughly 6.8. Meanwhile, TIMING exhibits the lowest kurtosis in its portfolio
returns. This indicates that the returns of TIMING are more stable and experience
fewer extreme returns.
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Finally, regarding portfolio concentrations as measured by HHI, EW (33.33%),
CORR (33.41%), and TIMING (33.51%) are the least concentrated portfolios,
MV (46.75%) is the most concentrated portfolio, while RP and V OLA yield an
HHI of 40.03% and 38.15%, respectively. Thus, the results of Table 1.6 suggest
that the RP components have several benefits, where utilizing them not only helps
maintain the appealing properties of RP , but also helps in significantly improving
portfolio properties.

Table 1.6: Risk Parity Component Timing Strategy
(a) Portfolio Return Correlations

Portfolio EW MV RP VOLA CORR TIMING

EW 1 0.71∗∗∗ 0.86∗∗∗ 0.91∗∗∗ 0.99∗∗∗ 0.95∗∗∗

MV 0.71∗∗∗ 1 0.96∗∗∗ 0.92∗∗∗ 0.75∗∗∗ 0.83∗∗∗

RP 0.86∗∗∗ 0.96∗∗∗ 1 0.99∗∗∗ 0.89∗∗∗ 0.93∗∗∗

VOLA 0.91∗∗∗ 0.92∗∗∗ 0.99∗∗∗ 1 0.92∗∗∗ 0.95∗∗∗

CORR 0.99∗∗∗ 0.75∗∗∗ 0.89∗∗∗ 0.92∗∗∗ 1 0.95∗∗∗

TIMING 0.95∗∗∗ 0.83∗∗∗ 0.93∗∗∗ 0.95∗∗∗ 0.95∗∗∗ 1

(b) Summary Statistics of Portfolios

Portfolio EW MV RP VOLA CORR TIMING

Return 6.36 5.77 5.93 6.04 6.26 7.03
Volatility 8.23 5.29 5.65 5.96 7.73 6.79
Skewness −0.37 −0.11 −0.15 −0.20 −0.33 −0.18
Kurtosis 9.36 7.05 6.80 6.84 9.43 5.80
Sharpe 0.52∗∗∗ 0.69∗∗∗ 0.68∗∗∗ 0.66∗∗∗ 0.54∗∗∗ 0.73
HHI 33.33 46.75 40.03 38.15 33.51 34.41

Notes: This table provides the out-of-sample portfolio performance measures for the equally-
weighted portfolio (EW ), the minimum variance portfolio (MV ), the risk parity portfolio (RP ), the
volatility component (V OLA), the correlation component (CORR), and the risk parity component
timing portfolio (TIMING) during the period from 01.01.1994 to 30.09.2019, which consists of 6,467
observations. Portfolios are rebalanced on a daily basis and all metrics are in annual terms. ∗, ∗∗,
and ∗∗∗ indicate that the portfolio correlation is statistically significant from 1 in Table 1.6a and
significantly different from the Sharpe ratio of TIMING in Table 1.6b at the 90%, 95%, and 99%,
respectively.
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1.7 Conclusion

Risk parity (RP ) portfolios are highly attractive to investors and have been gaining
increasing attention in academia and practice. They aim to equalize the total risk
contributions of assets and can be leveraged to match investor preferences such as
achieve a desired target return or maintain a specific volatility level. The aim of this
study is to analyze the properties of RP in more detail by investigating its compo-
nent portfolios, namely the volatility (V OLA) and the correlation (CORR) compo-
nent portfolios, which achieve the characteristics of RP under certain circumstances.
The approach is similar to Asness et al. (2019), who decompose the Betting-Against-
Beta factor of Frazzini and Pedersen (2014) into the Betting-Against-Volatility and
Betting-Against-Correlation factor. We assess the relationship of RP to its compo-
nents and provide arguments in favor of RP , explain how its returns are driven by
the BAB of Frazzini and Pedersen (2014) and is closely related to its components,
V OLA and CORR, which are driven by the low-volatility anomaly and the BAC
factor of Asness et al. (2019).

RP and V OLA display similar risk-return characteristics whereas CORR exhibits
a slight improvement over the equally-weighted portfolio (EW ). RP delivers a risk-
return profile that is not statistically different from the minimum variance (MV )
portfolio, but achieves a much lower level of portfolio concentration. As a result,
RP might be more attractive to investors as less concentrated portfolios typically
result in lower turnover ratios and, hence, higher net returns and as RP would not
require additional constraints to prevent the portfolio from achieving high and un-
stable weights as is the case for MV (Michaud (1989)). Moreover, RP does not
deliver a significant alpha over its components and V OLA and CORR essentially
capture the entire variation of the returns of RP , where RP has a high positive
exposure to V OLA and typically a low or even slightly negative exposure to CORR.

Finally, we show that the rolling regression coefficients of V OLA and CORR are
almost perfectly negatively correlated and sum up to one, which implies that RP
can be replicated by a linear combination of V OLA and CORR and that these
component portfolios can can be utilized to improve the general risk-return profile
RP while maintaining its properties to some extent. We briefly illustrate an ex-
ample where we utilize V OLA in recessionary and CORR in expansionary periods,
which results in a significant improvement in portfolio performance compared to
RP . However, we leave further investigations into methods of improving RP via its
components for future research.
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Chapter 2

Diversification Benefits for Risk
Parity1

2.1 Introduction

Diversification is paramount for portfolio performance and is often claimed to be the
only free lunch in investing. Perold (2012) argues that diversification also protects
from suffering huge losses of underperforming assets that may be irreversible. This
chapter contributes to the existing body of literature by investigating in the out-
of-sample diversification benefits of leveraged and unleveraged risk parity portfolios
for a variety of asset classes from a long-only U.S. investor perspective. The chapter
focuses on the properties an asset class has to fulfill in order to be beneficial in a risk
parity strategy. Moreover, comparisons are also drawn to other popular risk-based
strategies, such as minimum variance or inverse volatility. The risk parity strategy
uses the asset class variance-covariance information in order to achieve equal risk
contribution. This study is related to Qian (2011, 2012), who analytically demon-
strates the in-sample benefits of the risk parity strategy.

The notion and benefits of portfolio diversification were first demonstrated in the
mean-variance framework of Markowitz (1952), which utilizes differences in the asset
covariance matrix to minimize risk for a given level of portfolio return. Numerous
studies such as Michaud (1989) show that the risk-return characteristics of mean-
variance portfolios are inferior compared to alternative weighting schemes, such as
equal-weighting, and are rarely employed in practice. This is due to the estimation
errors underlying the forecasts of asset moments, which the mean-variance frame-

1This chapter is based on Alkafri and Molleyres (2019). Diversification Benefits for Risk Parity.
Unpublished working paper.
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work typically maximizes, resulting in subpar portfolios.2 Recently, numerous stud-
ies such as Chaves et al. (2011), Chow et al. (2011), Lee (2011), and Clarke et al.
(2013) find that risk-based portfolios, such as risk parity and minimum variance,
deliver better risk-adjusted returns than capitalization weighted portfolios or other
traditional weighting techniques as for example equally weighted portfolios. Chaves
et al. (2011) show that risk parity portfolios perform better than mean-variance op-
timized portfolios as well as the minimum variance portfolios, yielding a much more
stable Sharpe ratio. However, the majority of these studies are conducted in an
in-sample manner, which does not accurately represent the decision environment,
where the future returns and volatilities of assets are uncertain and forecasts thereof
underlie estimation error. This study contrasts those studies by using a more accu-
rate out-of-sample representation of the performance of such portfolios.

Our findings show that risk parity portfolios achieve a superior risk-adjusted return
compared with other popular weighting strategies while yielding a lower risk expo-
sure and volatility. Risk parity portfolios also exhibit a stable and smooth change
in weights over time. However, they are very susceptible to the properties of its as-
sets, where adding a negative risk premium asset significantly worsens its risk-return
profile. Leveraging the risk parity portfolio substantially improves the risk-adjusted
performance, which is in line with the findings of Qian (2012). Leveraging risk par-
ity also results in a minor increase in risk exposure and in a much higher portfolio
concentration.

The remainder of this chapter is organized as follows: Section 2.2 describes the
dataset in terms of construction and risk-return properties. In section 2.3, the
methodology and employed portfolio weighting strategies are introduced. The em-
pirical results are presented and discussed in section 2.4, whereas robustness checks
are presented in section 2.5. Section 2.6 concludes and draws finishing remarks.

2Chopra and Ziemba (1993) show that negative effects of estimation errors in asset means are
greater by a factor of ten as compared to estimation errors of asset variances and covariances.
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2.2 Data Description

Five asset classes are utilized in this study, which are equities and bonds of developed
markets (DM), equities and bonds of emerging markets (EM), and commodities.
Developed markets are represented by the G7 countries, which are Canada, France,
Germany, Italy, Japan, the United Kingdom, and the United States of America.
Emerging markets are represented by the People’s Republic of China, the Czech
Republic, India, Mexico, Poland and South Africa, which are the emerging markets
with the largest overall debt outstanding and the longest series of historical data.
In order to be independent from the construction methodology of conventional de-
veloped and emerging market indices and to allow equal exposure to every market,
we equally weight each country within each asset class and market classification.
This is because the variation of volatilities and correlations between different asset
classes is greater than the variations within the same asset class.

Historical asset prices are collected from Datastream. The dataset spans the pe-
riod from January 2011 to September 2019 and consists of daily total return prices,
which assume the reinvestment of dividends or coupon payments, and adjusts for
stock splits or share buybacks. Equity indices are represented by the MSCI stock
market indices and are denoted in USD. Bond indices are represented by Thom-
son Reuters 10-year government bond indices, which are denoted in local currency.
Accordingly, bond returns are hedged to USD according to the interest rate parity
model. Commodities are represented by the Bloomberg Commodity index and are
denominated in USD. Finally, the 1-month U.S. deposit rate is employed as a proxy
for the risk-free asset.

The summary statistics of the various asset classes are reported in Table 2.1. The
average annualized returns are 4.84% p.a. for developed market equities, 7.55%
p.a. for developed markets bonds, 0.80% p.a. for emerging markets equities, and
9.71% p.a. for emerging markets bonds, while commodities yield a negative return
of −7.27% p.a. The annualized volatility and the Value-at-Risk (V aR) measures
suggest that bonds are the least risky, followed by equities, whereas commodities
are the asset class with the highest risk. All asset classes exhibit negatively skewed
and leptokurtic returns, and show similar distributions. Developed equities are the
most negatively skewed (−0.57) and are heavily influenced by fat tail returns, with a
kurtosis of 8.62. Finally, in terms of the Sharpe ratio, commodities yield a negative
ratio of −0.57. Developed and emerging market equities achieve a Sharpe ratio of
0.32 and 0.06, respectively, while bonds achieved the highest Sharpe ratios of 0.64
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and 0.74 for developed and emerging markets.

To gain more insights regarding the potential diversification benefits, we report the
correlation coefficients in Table 2.2. Developed and emerging equity markets share a
high correlation with each other amounting to 0.76 and a relatively high correlation
with commodities of roughly 0.45 and 0.42 for developed and emerging equities, re-
spectively. The correlation between developed and emerging bond markets amounts
to 0.75. Developed bond markets share negative correlations with developed (−0.53)
and emerging (−0.41) equities as well as commodities (−0.35). Emerging market
bonds exhibit a negative correlation with emerging market equities of −0.66, while
experiencing a similar correlation with developed market equities (−0.67) and com-
modities (−0.42).

The results from tables 2.1 and 2.2 suggest that emerging market bonds are a promis-
ing asset class for improving the out-of-sample risk-return profile of traditional de-
veloped market stock/bond portfolios, as they offer a high risk-return ratio while
exhibiting low correlations with other asset classes. Despite the low correlation of
commodities with bond markets, they might not improve portfolio performance due
to the high correlation with equities and the overall negative risk premium.

Table 2.1: Summary Statistics of Asset Classes

Asset DM Equities DM Bonds EM Equities EM Bonds Commodities

Return 4.84 7.55 0.80 9.71 −7.27
Volatility 15.16 11.77 14.14 13.04 12.86
Skewness −0.57 −0.02 −0.47 0.28 −0.28
Kurtosis 8.62 5.76 6.21 5.50 5.39
Sharpe Ratio 0.32 0.64 0.06 0.74 −0.57
Value-at-Risk 30.42 19.84 32.10 20.62 37.20

Notes: This table provides asset return moments, Sharpe ratios, and the Value-at-Risk of the stock and
bond indices as well as the commodity index. The daily sample period covers 2277 days from January
2011 to September 2019. All measures are in annual terms. DM and EM represent developed markets
and emerging markets, respectively.

Finally, the results are in line with those of conventional literature as well as in
practice. Emerging markets performed very well in the last decade, mainly due
to the reforms following the emerging markets’ crisis.3 The poor performance of
commodities as well as the relatively higher correlations observed with other asset

3For more information on the performance of emerging markets, especially the outperformance
of emerging market bonds, refer to Roberts et al. (2018).
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classes of the investigated time period are also in line with conventional literature
investigating the benefits of commodities in asset allocation, such as Daskalaki and
Skiadopoulos (2011). Also, developed market equities and bonds were affected by
the Euro sovereign bond crisis spillovers as well as the recent U.S. trade wars, which
both negatively influenced the performance of developed markets.

Table 2.2: Correlation Matrix of Asset Classes

Asset DM Equities DM Bonds EM Equities EM Bonds Commodities

DM Equities 1.0000 −0.5309 0.7558 −0.6696 0.4547
DM Bonds −0.5309 1.0000 −0.4080 0.7525 −0.3538
EM Equities 0.7558 −0.4080 1.0000 −0.6581 0.4228
EM Bonds −0.6696 0.7525 −0.6581 1.0000 −0.4157
Commodities 0.4547 −0.3538 0.4228 −0.4157 1.0000

Notes: This table provides asset return correlation coefficients for the sample period, which covers 2277
days from January 2011 to September 2019. DM and EM represent developed markets and emerging
markets, respectively.

2.3 Methodology

We evaluate the out-of-sample benefits of adding different asset classes to the risk
parity strategy and compare them against different asset allocation strategies, which
are extensively employed in conventional literature and in practice. To do so, we
investigate the performance of a non-leveraged risk parity portfolio (RP ), as well as
a leveraged risk parity portfolio (LRP ) with a target volatility equal to that of the
benchmark (amounting to the historical average volatility of 60/40 mutual funds of
roughly 7%). In addition, the strategies include two heuristic weighting techniques,
which are the 60/40 stock/bond traditional allocation benchmark (BM) and an
equally weighted portfolio (EW ), as well as two risk-based asset allocation models,
which are the Markowitz minimum variance portfolio (MV ) and the inverse volatil-
ity weighting technique (V OLA).

This study employs a rolling-window out-of-sample approach similar to DeMiguel
et al. (2009). Given a time series consisting of T = 2277 observations, we use an
estimation window of M = 250 business days to estimate the asset moments that
are used as input parameters to determine the portfolio weights of each allocation
strategy. Each portfolio is held for k = 1 business days, after which the portfo-
lio is rebalanced by using the previous M = 250 business days as an estimation
window. Accordingly, the process continues dropping the earliest observation from
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the estimation window while adding the most recent observation, which results in a
total of T −M = 2025 periodic out-of-sample observations of portfolio returns. The
remainder of this section describes the employed asset allocation strategies in more
detail.

Risk-Based Asset Allocation Models

Risk-based strategies rely greatly on assumptions or empirical findings that are coun-
terintuitive to traditional theories in finance literature. Although the Capital Asset
Pricing Model (CAPM) implies a positive linear beta-return relationship, numerous
studies such as Black et al. (1972) as well as Haugen and Heins (1975) observe a flat-
ter risk-return relationship than that implied by the CAPM. However, more recent
studies such as Baker and Haugen (2010) as well as Baker et al. (2011) document
a negative relationship. Furthermore, the observed negative relationship is not spe-
cific to a certain asset class or market. Blitz and van Vliet (2007) as well as Frazzini
and Pedersen (2014) show that the negative relationship is not only present in less
efficient financial markets such as emerging markets, but also in developed markets.
Frazzini and Pedersen (2014) document the negative beta-return relationship in the
U.S. corporate bond market, the U.S. government bond market, and the futures
market. Falkenstein (2009) shows that the negative relationship is also present in
roughly all major asset classes, including derivatives markets.

Moreover, Baker et al. (2011) show that the low-volatility effect is robust even after
controlling for the market capitalization of firms. Asness et al. (2014) show that
the anomaly remains present when controlling for industry effects, and Blitz and
van Vliet (2007) show that the negative relationship remains significant even when
controlling for the Fama French three factors and the Carhart momentum factor.

Risk Parity

We begin by describing the risk parity strategy, which is the focus of this chapter.
The roots of risk parity date back to the 1990s, when Bridgewater Associates devel-
oped and launched the first risk parity portfolio under the name of the All-Weather
Fund.4 Originally, an allocation strategy was in parity when the asset weights were
proportional to their corresponding inverse volatility.5 Later on, Qian (2005) as well
as Maillard et al. (2010) developed a more formal definition that incorporates asset

4For more information refer to Prince (2011).
5This approach is currently referred to as the inverse volatility or the naive risk parity weighting

technique, which is explained in more detail later in this section.
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correlations, where a portfolio is in parity when the risk budgets of all assets are
equalized, or in other words, when each asset has the same contribution to total
portfolio risk. The weights of the risk parity portfolio can be expressed as follows:

y∗ = arg min
√
y′
∑

y

s.t.


∑n
i=1 ln yi > c

y > 0
,

(2.1)

where the optimal weights that sum up to 100% are then determined as w∗i =
y∗i /

∑n
j=1 y

∗
j . c is an arbitrarily chosen constant and ∑ describes the asset variance-

covariance matrix. As can be seen from Equation 2.1, risk parity is closely related
to the minimum variance portfolio, with an additional diversification constraint.6

Indeed, Maillard et al. (2010) show that, based on the risk budget determined by
c, the volatility of risk parity portfolio lies between those of the minimum variance
and the equally weighted portfolios, or formally σMV < σRP < σEW .7

Moreover, Lee (2011) shows that the risk parity portfolio weights can be expressed
as wi = β−1

i (wi)/
∑n
j=1 β

−1
j (wj) = 1/nβi(wi), where βi is a function of wi, denotes

the beta of asset i towards the constructed portfolio. As a result, the returns of
the risk parity portfolio are driven by low beta assets and strongly related to the
betting-against-beta factor of Frazzini and Pedersen (2014), which states that low
beta stocks usually outperform high beta stocks. Similarly, the risk parity portfolio
is related to the low-volatility anomaly documented by Baker et al. (2011) as well
as the betting-against-correlation factor of Asness et al. (2019).

In addition to the unleveraged risk parity portfolio (RP ), we construct a leveraged
risk parity portfolio (LRP ), which aims to achieve a target portfolio volatility sim-
ilar to the historical volatility exhibited by multi-asset stock/bond benchmarks of
7%. Lee (2011) argues that although the parity element might be of secondary im-
portance for investors, the ability to match investor risk preferences or to achieve a
target level of portfolio return or risk by leveraging the risk parity portfolio (e.g.,
using futures contracts) makes the strategy highly attractive and unique. Qian
(2012) finds that leveraged risk parity portfolios yield a positive diversification re-
turn as long as the leverage ratio is not greater than a factor of three of invested
wealth. Furthermore, the author argues that turnover and diversification return de-

6For more information on the derivation of Equation 2.1 and the arbitrary constant c, see
Maillard et al. (2010), Appendices A and B, p. 68.

7For a proof of this characteristic, refer to Maillard et al. (2010), Appendix B, pp. 68-69.
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pend greatly on the level of correlations among assets of the asset universe and that
a low correlation across assets is paramount for maintaining a low turnover ratio
and a positive diversification return for risk parity portfolios.

Markowitz Minimum Variance

Typically, the mean-variance framework minimizes portfolio risk for a given level of
portfolio return. However, in the special case of the minimum variance portfolio,
only portfolio risk is minimized while asset returns are completely disregarded. The
asset weights of MV can be expressed as follows:

minw′
∑

w
n∑
i=1

wi = 1
(2.2)

Despite the poor performance of mean-variance portfolios in practice, numerous
studies, such as Chopra and Ziemba (1993) as well as Chow et al. (2011), document
that MV outperforms traditional heuristic weighting techniques in equity markets.
Chopra and Ziemba (1993) show analytically that better portfolios can be obtained
when stocks are assumed to have the same expected return as compared to portfolios
based on noisy estimates of the expected returns of individual stocks, which is an
implicit assumption underlying the MV optimization. Moreover, MV equalizes the
risk contributions of assets, but only on a marginal basis.

Nevertheless, MV has certain drawbacks. As in mean-variance portfolios, minimum
variance optimized portfolios are typically highly concentrated in a select number
of assets with the lowest volatility and its weights are rather unstable, which re-
sults in a high turnover ratio. These shortcomings have been documented by nu-
merous studies such as Clarke et al. (2013) and DeMiguel et al. (2009), who raise
doubt as to whether this strategy addresses investor preferences, since relative to a
value-weighted portfolio, theMV strategy shifts concentrations from assets with the
highest market capitalizations to the assets with the lowest volatilities. As a result,
the authors argue that imposing constraints on MV weights to penalize assets with
the lowest volatilities and avoiding high concentrations might help mitigate these
problems and improve portfolio performance.
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Inverse Volatility (Naive Risk Parity)

As the name implies, inverse volatility assigns large weights to low-volatility assets.
This strategy is also referred to as the naive risk parity strategy, as it equalizes the
risk contributions of assets when the correlations among assets are almost identical.
Formally, the weights of each asset can be expressed as

wi = 1/σi∑n
i=1 1/σi

(2.3)

where σi is the volatility of asset i. Each asset is assigned a weight, which corre-
sponds to its inverse volatility divided by the sum of all assets’ inverse volatilities.

Anderson et al. (2012) report that the naive risk parity strategy performs well and
usually outperforms the equally and value-weighted portfolios as well as the 60/40
stock/bond portfolio. The approach is mainly driven by the low-volatility effect
documented by Baker et al. (2011), among others. Nonetheless, unlike the afore-
mentioned risk-based strategies, V OLA does not necessarily minimize total portfolio
risk since asset covariances are not taken into account.

Heuristic Asset Allocation Techniques

60/40 Stock/Bond Portfolio

The benchmark in this study is a portfolio with a 60 percent allocation in developed
market equities and a 40 percent allocation in developed market bonds, which is
conventional in finance literature. This weighting technique has received a lot of
criticism recently, as studies such as Qian (2011) show that these portfolios are not
diversified and even though equities amount to only 60 percent of the total portfolio,
they account for roughly 85 percent of the overall portfolio volatility.

Equal-Weighting (Naive Portfolio)

Also referred to as the naive weighting technique or the 1/N portfolio, this weighting
scheme simply assigns the same weight to every asset under consideration, or for-
mally wi = 1/n. The equally weighted portfolio utilizes the size factor, which is the
empirical observation that small market cap stocks outperform its large cap peers,
and bets on the mean-reversion in asset prices, as it sells stocks with a positive gain
and buys stocks with a negative gain at every rebalancing period.
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Benartzi and Thaler (2001) as well as Windcliff and Boyle (2004) document the
extensive application of equally weighted portfolios in practice. The wide use of
equally weighted portfolios by fund managers is not only due to the heuristic being
an extremely robust proxy of the tangency portfolio, but more importantly for be-
ing the basis for more recent ad hoc weighting techniques. This strategy does not
diversify the portfolio based on utilizing differences in the asset covariance matrix
as in Modern Portfolio Theory, but rather deconcentrates the portfolio in an ad hoc
manner, in which the initial investment is split in equal monetary amounts across
the highest feasible number of assets. The notion of deconcentration paved the way
for more recent approaches such as risk parity, which deconcentrates the portfolio
on an ad hoc risk basis.

2.4 Empirical Results

To provide a holistic analysis of the diversification benefits in a comprehensive man-
ner, we divide our results into two subsections, where we begin by assessing the
improvements in risk profiles. Later, we investigate the improvements in portfolio
performance relative to the benchmark as well as to the other risk-based portfolios.
Moreover, since U.S. mutual fund managers typically cannot enter short positions,
the main analysis of this study will focus on long-only portfolios.

Improvement in Risk Profiles

Since risk parity is a risk-based strategy which aims to improve the general risk pro-
file of the portfolio, we begin by depicting the 250 days rolling portfolio volatilities
based on the asset covariance matrix of the unleveraged as well as the leveraged risk
parity portfolios in Figure 2.1. The portfolios are constructed using different asset
classes in comparison to the 60/40 developed markets benchmark. The correspond-
ing changes in portfolio weights over time are shown in Figure 2.28.

8For completeness, rolling volatilities, portfolio weights over time, and the asset risk contribu-
tion ratios to portfolio volatility for every asset class combination of the portfolios presented in
section 2.3 are additionally reported in Appendix Appendix B.
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Figure 2.1: Portfolio Rolling Volatilities
(a) Unleveraged Risk Parity

(b) Leveraged Risk Parity

Notes: Panel (a) displays the annual rolling volatilities of unleveraged risk parity portfolios com-
pared to the 60/40 stock/bond benchmark, whereas panel (b) exhibits the annual rolling volatilities
of risk parity portfolios leveraged to a target overall portfolio volatility of 7%. DM, EM, and CO
denote developed markets, emerging markets, and commodities, respectively.
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Figure 2.2: Risk Parity Weights
(a) Unleveraged Risk Parity

(b) Leveraged Risk Parity

Notes: This figure shows the allocation changes over time for unleveraged risk parity portfolios in
panel (a) and leveraged risk parity portfolios with a target volatility level of 7% in panel (b). DM,
EM, and CO denote developed markets, emerging markets, and commodities, respectively.
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Figure 2.1a shows the rolling volatilities of the unleveraged risk parity portfolios.
Generally, risk parity portfolios exhibit a lower portfolio volatility in comparison to
the traditional benchmark. During the Euro sovereign crisis between 2011 and 2013,
the volatility of the benchmark, ranging between 7% and 11%, greatly exceeds that
of risk parity portfolios, while risk parity portfolios yield a somewhat similar volatil-
ity varying between 4% and 6%. Afterwards, the changes in the volatilities of the
risk parity portfolios and the benchmark become very similar, albeit the benchmark
yielding a higher volatility than all risk parity portfolios.

Among the risk parity portfolios, the risk parity portfolio constructed with devel-
oped and emerging markets as well as commodities yields the lowest volatility during
the Euro sovereign crisis, while the developed markets and commodities portfolio
results in the lowest portfolio volatility after 2014.

When risk parity portfolios are leveraged, they achieve their target level of portfolio
volatility and all combinations result in a portfolio volatility that is slightly higher
than 7%. As can be seen from Figure 2.1b, this is mainly due to the estimation
errors underlying the asset variance-covariance matrix forecasts.

Meanwhile, changes in weights for risk parity strategies, both leveraged and unlever-
aged, are rather smooth over time. Risk parity strategies in all scenarios seem to
overweight developed market bonds. This is mainly due to its low volatility com-
pared to other asset classes as well as its low correlations to other asset classes. More-
over, to achieve a target volatility level of 7% that mimics that historical volatility
of a traditional 60/40 benchmark, the weights of the strategy are increased propor-
tionally to a leverage factor ranging between one and two, which is well below the
maximum leverage threshold identified by Qian (2012) for a positive diversification
return.
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Figure 2.3: Portfolio Rolling Expected Shortfall (CVaR)
(a) Unleveraged Risk Parity

(b) Leveraged Risk Parity

Notes: Panel (a) displays the rolling expected shortfall (CVaR) of unleveraged risk parity portfolios
compared to the 60/40 stock/bond benchmark, whereas panel (b) exhibits the rolling expected
shortfall (CVaR) of risk parity portfolios leveraged to a target overall portfolio volatility of 7%.
DM, EM, and CO denote developed markets, emerging markets, and commodities, respectively.
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In order to assess the risk exposure variations of risk parity portfolios over time,
we show the 250-days rolling expected shortfall, also known as the Conditional-
Value-at-Risk (CVaR), of risk parity portfolios as compared to the benchmark in
Figure 2.3. Generally, the risk exposures imply a different pattern than that observed
for the rolling portfolio volatilities. When risk parity portfolios are not leveraged,
as shown in Figure 2.3a, the risk exposure is minimized and constantly smaller in
magnitude than that of the benchmark. Moreover, regardless of the initial portfolio
constituents, adding commodities to the portfolio results in a decrease of the total
risk exposure, whereas including stocks and bonds of emerging markets results in
an increase of CVaR.

Figure 2.3b shows the rolling risk exposures of the benchmark as well as leveraged
risk parity portfolios as measured by CVaR. The lowest risk exposure is achieved
by a developed markets portfolio. Adding commodities to the portfolio results in a
higher risk exposure, regardless of the initial portfolio constituents. This might be
due to the negative risk premium observed for the commodities index in our sample.
Likewise, when stocks and bonds of emerging markets are added to the portfolio,
the overall portfolio risk exposure is also increased. As a result, the portfolio con-
sisting of developed and emerging markets as well as commodities has the highest
risk exposure. The risk exposures of leveraged risk parity portfolios are higher than
their unleveraged counterparts and are higher than the risk exposure of the 60/40
benchmark in certain periods, although they maintain a lower risk exposure on av-
erage.

Altogether, the smooth changes in asset weights over time helps unleveraged risk
parity portfolios to not only exhibit a lower volatility compared to the benchmark,
but also result in a lower risk exposure as measured by the CVaR. Leveraged risk
parity portfolios seem to achieve their target volatility level with a high degree
of precision by proportionally increasing the asset weights according to their risk
budgets, which overall results in leverage ratio below two. However, leveraging the
asset weights causes the risk parity portfolio to have a higher level of risk exposure,
which in certain periods also exceeds the risk exposure of the 60/40 benchmark.
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Enhancement of Returns and Performance

In this subsection we investigate the performance characteristics of risk parity in
comparison to the traditional 60/40 in more detail, then we show the effects of
leveraging the risk parity portfolio (to a target volatility level of 7%), and finally
compare the performance summary statistics of risk parity with asset allocation
strategies presented in section 2.3. Table 2.3 reports the summary statistics of the
unleveraged risk parity portfolios in Table 2.3a and the leveraged counterparts in
Table 2.3b.

Although unleveraged risk parity portfolios yield a lower volatility than BM , they
still achieve a higher average return for the developed market portfolio (7.74%).
Adding commodities to the portfolio not only decreases the overall portfolio volatil-
ity due to its relatively low correlations with other asset classes, but also decreases
the portfolio average return due to the negative risk premium exhibited by commodi-
ties throughout the sample. Adding emerging markets results in a slight reduction
in average return and a minor increase in volatility due to the relatively higher
volatilities of emerging markets as compared with developed markets. This causes
the developed markets and the developed/emerging markets portfolios to have the
highest Sharpe ratios of 1.07 and 1.19, respectively, while portfolios including com-
modities yield 0.53 and 0.80, thereby underperforming BM which yields 0.90.

The returns of all portfolios are negatively skewed. The developed markets portfolio
and its counterpart including commodities yield are slightly less skewed than BM ,
whereas the negative skewness of portfolios including emerging markets is more
pronounced. Moreover, risk parity portfolios exhibit a higher kurtosis than BM ,
where kurtosis increases the more assets are included in the portfolio, which amounts
to a minimum of 6.90 for the developed markets and commodities portfolio and a
maximum of 7.81 for the developed/emerging markets and commodities portfolio.
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Table 2.3: Risk Parity Portfolios Summary Statistics
(a) Unleveraged Risk Parity Portfolio

Portfolio BM DM DM/CO DM/EM DM/EM/CO

Average Return 7.43 7.74 3.90 6.96 4.61
Volatility 7.29 6.41 5.75 5.15 4.70
Sharpe Ratio 0.90 1.07 0.53 1.19 0.80
Skewness −0.57 −0.49 −0.34 −0.53 −0.42
Kurtosis 6.62 6.98 6.90 7.77 7.81
Beta 1.00 0.78 0.62 0.53 0.45
Alpha 1.76 −1.01 2.68 0.82
t Statistic 1.69∗ −0.80 2.19∗∗ 0.69
Max Drawdown 14.73 13.55 16.95 8.82 11.14
Value-at-Risk 9.53 7.18 9.48 5.03 6.32
HHI 520.00 50.47 35.30 25.41 20.73

(b) Leveraged Risk Parity Portfolio

Portfolio BM DM DM/CO DM/EM DM/EM/CO

Average Return 7.43 9.87 5.36 10.81 7.65
Volatility 7.29 7.21 7.22 7.27 7.26
Sharpe Ratio 0.90 1.25 0.63 1.37 0.94
Skewness −0.57 −0.32 −0.31 −0.35 −0.34
Kurtosis 6.62 5.03 5.01 5.63 5.59
Beta 1.00 0.85 0.75 0.71 0.67
Alpha 3.53 −0.41 5.41 2.44
t Statistic 2.63∗∗ −0.25 2.95∗∗∗ 1.27
Max Drawdown 14.73 11.81 17.11 11.54 13.85
Value-at-Risk 9.53 6.89 11.42 6.09 9.24
HHI 52.00 73.36 62.67 55.67 53.42

Notes: This table provides the out-of-sample portfolio performance measures for the risk parity
portfolio and the 60/40 benchmark during the period from January 2011 to September 2019, which
consists of 2025 daily portfolio return observations. Portfolios are rebalanced on a daily basis and
all measures are annualized. Beta and Alpha are the β and α of the CAPM regression, while t
Statistic denotes the α student’s test statistic. Max Drawdown denotes the maximum drawdown of
a portfolio. VaR denotes the parametric Value-at-Risk at a 99% confidence level during the sample
period, while HHI represents the Herfindahl-Hirschman Index for portfolio concentration. Values
significant at the 90%, 95%, and 99% confidence levels are denoted by *, **, and ***, respectively.
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Furthermore, according to the CAPM regression model, the beta of the risk parity
portfolios towards the benchmark intuitively decreases by including more assets in
the portfolio. All portfolios yield a beta lower than 1, which is highest for the devel-
oped markets portfolio with a value of 0.78 and lowest for the developed/emerging
markets and commodities portfolio with a beta of 0.45. Also, the portfolios exclud-
ing commodities yield significant annual alphas amounting to 1.69% and 2.19% for
the developed markets and the developed/emerging markets portfolios, respectively,
while portfolios including commodities result in an insignificant alpha of −1.01%
when added to developed markets and 0.82% when added to developed/emerging
markets.

In addition, a gradual decrease in portfolio concentration is observed the more asset
classes are included in the portfolio, as the HHI is lower than the benchmark in all
scenarios. We also observe a much lower VaR for risk parity portfolios. Developed
and emerging markets portfolios achieve the lowest VaR of 5.03 while the developed
markets and commodities portfolio has the highest VaR of 9.48.

The maximum drawdown of the portfolios is also reduced compared to that of the
benchmark of 14.73%, excluding the developed markets and commodities portfolio
which experiences a higher drawdown of 16.95%. The maximum drawdown is heav-
ily influenced by the risk premium of the assets included in the portfolio: adding
commodities, which have a negative risk premium, results in an increase in maxi-
mum drawdown while adding emerging markets reduces the maximum drawdown
to 8.82%.

Figure 2.4 shows the rolling Sharpe ratios of risk parity portfolios. Figure 2.4a shows
that both stock bond portfolios deliver a higher Sharpe ratio than the benchmark
over almost the entire sample period. Meanwhile, the underperformance in terms of
the Sharpe ratio observed in Table 2.3 for risk parity portfolios including commodi-
ties is mainly due to the period from mid 2013 to late 2016, where both portfolios
lag the Sharpe ratio of the benchmark by almost 0.5. When portfolios are lever-
aged, the Sharpe ratio of all portfolios is shifted slightly upwards. Portfolios that
include commodities also underperform the benchmark for the period ranging from
mid 2013 to late 2016, albeit by a much lesser difference.

In conclusion, risk parity portfolios are highly sensitive to the properties of their
asset classes. They suffer when adding negative risk premium assets, such as in this
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Figure 2.4: Portfolio Rolling Sharpe Ratios
(a) Unleveraged Risk Parity

(b) Leveraged Risk Parity

Notes: Panel (a) displays the annual rolling Sharpe ratios of unleveraged risk parity portfolios
compared to the 60/40 stock/bond benchmark, whereas panel (b) exhibits the annual rolling
Sharpe ratios of risk parity portfolios leveraged to a target overall portfolio volatility of 7%. DM,
EM, and CO denote developed markets, emerging markets, and commodities, respectively.
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sample commodities, to its allocation universe, since the strategy invests in those
assets to equalize the risk contributions of all assets within the portfolio. Risk parity
portfolios yield a lower risk compared to its benchmark in all cases, and when nega-
tive risk premium assets are excluded from the asset universe, they outperform the
traditional 60/40 benchmark on a variety of measures, such as CVaR and Sharpe
ratio, among others.

Nonetheless, proponents of Modern Portfolio Theory might argue that other risk-
based strategies would perform better, especially the Markowitz minimum variance
portfolio, which is analytically designed to minimize risk and has been documented
to yield favorable results by numerous studies. As a result, in Table 2.4, we report
the out-of-sample results of the allocation strategies described in section 2.3.

Generally, the patterns exhibited by risk parity portfolios are also exhibited by all
other weighting techniques. Adding commodities to the portfolio results in a much
lower return and Sharpe ratio due to its negative risk premium in the past decade.
Nonetheless, adding commodities also results in a lower annual volatility and VaR,
although the magnitude of the decrease is lesser than the decrease in returns.

Moreover, risk-based strategies seem to outperform the equally weighted portfolio
with regard to every asset universe combination and every portfolio metric, with the
exception of the HHI where the equally weighted portfolio by definition achieves the
lowest portfolio concentration. Similarly, V OLA performs worst among the risk-
based strategies in every measure and across all scenarios, but is the least concen-
trated portfolio as measured by the HHI. Note that V OLA is by definition equivalent
to RP in Table 2.4a, since the asset universe consists of two asset classes and, hence,
only one correlation exists.

MV yields slightly better results than RP . It results in a slightly higher Sharpe
ratio and poses a marginal improvement in terms of VaR, but is much more concen-
trated than RP , where the difference in HHI increases with the number of assets.
The relatively higher concentration of minimum variance portfolios is not a new ob-
servation and has been documented numerous times. However, RP is more prone to
assets with a negative risk premium than MV , as the Sharpe ratio decreases more
when adding commodities. The higher vulnerability of the RP is most prominent
when commodities are added to developed markets, where the Sharpe ratio of RP
drops from 1.07 to 0.53, which is still better than that of V OLA amounting to 0.35.
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Table 2.4: Risk-Based Portfolios Summary Statistics
(a) Developed Markets

Portfolio BM EW MV VOLA RP LRP

Return 7.43 7.52 7.98 7.74 7.74 9.87
Volatility 7.29 6.59 6.43 6.41 6.41 7.21
Sharpe Ratio 0.90 1.01 1.11 1.07 1.07 1.25
VaR 9.53 7.81 6.97 7.18 7.18 6.89
HHI 52.00 50.00 50.80 50.47 50.47 73.36

(b) Developed Markets and Commodities

Portfolio BM EW MV VOLA RP LRP

Return 7.43 2.77 4.62 2.99 3.90 5.36
Volatility 7.29 6.42 5.70 6.17 5.75 7.22
Sharpe Ratio 0.90 0.30 0.66 0.35 0.53 0.63
VaR 9.53 12.16 8.65 11.35 9.48 11.42
HHI 52.00 33.33 37.00 33.54 35.30 62.67

(c) Developed and Emerging Markets

Portfolio BM EW MV VOLA RP LRP

Return 7.43 6.62 7.37 6.91 6.96 10.81
Volatility 7.29 5.36 4.99 5.27 5.15 7.27
Sharpe Ratio 0.90 1.08 1.31 1.15 1.19 1.37
VaR 9.53 5.85 4.24 5.35 5.03 6.09
HHI 52.00 25.00 27.15 25.17 25.41 55.67

(d) Developed, Emerging Markets, and Commodities

Portfolio BM EW MV VOLA RP LRP

Return 7.43 3.95 5.01 4.20 4.61 7.65
Volatility 7.29 5.16 4.59 4.99 4.70 7.26
Sharpe Ratio 0.90 0.60 0.91 0.67 0.80 0.94
VaR 9.53 8.05 5.67 7.40 6.32 9.24
HHI 52.00 20.00 21.94 20.11 20.73 53.42

Notes: This table provides the out-of-sample portfolio performance measures for the portfolio strate-
gies described in section 2.3 during the period from January 2011 to September 2019, which consists
of 2025 daily portfolio return observations. Portfolios are rebalanced on a daily basis and all measures
are annualized. VaR denotes the parametric VaR at a 99% confidence level during the sample period,
while HHI represents the Herfindahl-Hirschman Index for portfolio concentration.
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The LRP portfolio with a target portfolio volatility level of 7% achieves on aver-
age a volatility of 7.20% to 7.30%, which is very close to the one observed by the
60/40 developed markets benchmark of 7.29%. It delivers the highest Sharpe ratio
of all weighting techniques, excluding the case with developed markets and com-
modities, where it performs on par with MV . However, the significant increase in
Sharpe ratio comes at the price of portfolio concentration, where the HHI of LRP
is typically the highest due to leverage. Nevertheless, LRP still yields a lower VaR
than EW and V OLA, and when commodities are not included, the VaR of LRP
is lower than BM while being not significantly higher than the VaRs ofMV and RP .

The volatility and risk exposure of all unleveraged allocation strategies estimated
decrease by expanding the asset universe. Even though the risk parity portfolio
generally offers a lower risk exposure and volatility than the majority of the allo-
cation strategies employed in this study, they slightly underperform the minimum
variance portfolio in terms of Sharpe ratio. The Sharpe ratio of risk parity portfolios
decrease when including asset classes with negative risk premiums, as it is the case
for commodities in this sample period. The leveraged risk parity portfolio signifi-
cantly boosts the performance of the portfolio in terms of return, Sharpe ratio, and
maximum drawdown, among others. This is also accompanied by a slight increase
in volatility, risk exposure, and most prominently portfolio concentration. Further-
more, risk parity portfolios tend to smoothly change weights over time in both the
unleveraged and leveraged versions, which in turn makes the higher portfolio con-
centration less hazardous in terms of risk exposure.

Additionally, our study indicates that in the past decade, asset classes such as com-
modities had a negative diversification effect on portfolio performance, and that the
best portfolio performance was achieved by a portfolio invested in developed and
emerging markets. These results are in line with conventional literature investigat-
ing the diversification benefits of commodities such as Bessler and Wolff (2015), who
find that commodities do not result in any portfolio gain. The observed outperfor-
mance of risk parity portfolios in this study further reinforces the findings of Chaves
et al. (2011), who find that risk parity portfolios perform better than conventional
asset allocation techniques.
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2.5 Robustness Tests

Portfolio rebalancing is essential for harvesting diversification return. In other words,
diversification and rebalancing are inseparable. But what is the underlying dynamic
of rebalancing that leads to a positive diversification return for a typical portfolio?
This question is crucial to an understanding of the source of diversification return
and in extending the analysis to leveraged long-short portfolios.

Alternative Asset Universe

Table 2.5 reports the results of all strategies as in section 2.4 using the individual
stock and bond country indices as single instruments instead of our constructed
market indices. The results remain largely unchanged from those observed in Ta-
ble 2.4. However, all portfolios exhibit better performance measures provided that
the number of assets under consideration increased significantly, which makes the
portfolio less prone to the negative risk premium of commodities for example.

Alternative Rebalancing Frequency

We also vary our rebalancing frequency to monthly portfolio holding periods, which
are reported in Table 2.6. The results observed here are very similar to those re-
ported in section 2.4. In fact, when portfolios are rebalanced on a monthly basis,
the negative impact of commodities on the performance of RP and LRP become
even more pronounced. Although RP and LRP still outperform all other strategies,
MV yields the highest Sharpe ratio when commodities are included, and slightly
outperforms RP and LRP for the developed and emerging markets portfolio.

Alternative Data Periodicity

Our final robustness test involves changing the periodicity of the data. Accordingly,
we employ monthly data and estimate the input parameters based on the past
24 months of historical monthly data. Table 2.7 reports the results of employing
monthly data series. However, in this setting, MV , although achieving a relatively
low volatility compared to other portfolios, is the worst performing portfolio accord-
ing to the Sharpe ratio. On the contrary, V OLA dominates MV according to the
mean-variance framework in every scenario and in some cases performs even better
than RP . Nonetheless, the main patterns of our results remain similar to the pre-
vious results of section 2.4: LRP outperforms all other risk-based strategies as well
as EW , while RP comes in second with respect to the Sharpe ratio.
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Table 2.5: Risk-Based Portfolios Summary Statistics with Individual Assets
(a) Developed Markets

Portfolio BM EW MV VOLA RP LRP

Return 7.43 7.52 6.36 7.25 6.93 11.15
Volatility 7.29 6.59 4.30 5.65 5.05 7.33
Sharpe Ratio 0.90 1.01 1.28 1.13 1.20 1.40
VaR 9.53 7.81 3.64 5.91 4.82 5.91
HHI 7.43 7.14 15.77 8.85 9.22 20.81

(b) Developed Markets and Commodities

Portfolio BM EW MV VOLA RP LRP

Return 7.43 6.57 5.16 6.16 5.67 9.66
Volatility 7.29 6.33 4.12 5.43 4.73 7.35
Sharpe Ratio 0.90 0.90 1.05 0.98 1.02 1.20
VaR 9.53 8.15 4.43 6.47 5.33 7.44
HHI 7.43 6.67 13.49 8.13 8.53 21.78

(c) Developed and Emerging Markets

Portfolio BM EW MV VOLA RP LRP

Return 7.43 6.69 6.78 6.77 6.86 13.95
Volatility 7.29 5.41 3.42 4.61 3.75 7.49
Sharpe Ratio 0.90 1.08 1.74 1.28 1.61 1.75
VaR 9.53 5.89 1.17 3.95 1.85 3.47
HHI 7.43 3.85 7.44 4.66 5.24 20.44

(d) Developed, Emerging Markets, and Commodities

Portfolio BM EW MV VOLA RP LRP

Return 7.43 6.19 6.06 6.14 6.06 12.84
Volatility 7.29 5.28 3.35 4.48 3.59 7.48
Sharpe Ratio 0.90 1.01 1.56 1.18 1.45 1.60
VaR 9.53 6.09 1.73 4.29 2.29 4.57
HHI 7.43 3.70 6.62 4.45 5.02 21.38

Notes: This table provides the out-of-sample portfolio performance measures for the portfolio strate-
gies of section 2.3 during the period from January 2011 to September 2019, which consists of 2025 daily
portfolio return observations. Portfolios are rebalanced on a daily basis and all measures are annual-
ized. VaR denotes the parametric VaR at a 99% confidence level during the sample period, while HHI
represents the Herfindahl-Hirschman Index for portfolio concentration.
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Table 2.6: Risk-Based Portfolios Summary Statistics with Monthly Rebalancing
(a) Developed Markets

Portfolio BM EW MV VOLA RP LRP

Return 6.80 6.92 7.32 7.13 7.13 9.02
Volatility 7.51 6.91 7.01 6.90 6.90 8.10
Sharpe Ratio 0.80 0.89 0.93 0.92 0.92 1.02
VaR 10.68 9.15 9.00 8.91 8.91 9.83
HHI 52.00 50.00 50.78 50.46 50.46 72.92

(b) Developed Markets and Commodities

Portfolio BM EW MV VOLA RP LRP

Return 6.80 2.35 4.11 2.58 3.41 4.64
Volatility 7.51 6.26 5.68 6.15 5.69 7.42
Sharpe Ratio 0.80 0.25 0.58 0.29 0.46 0.52
VaR 10.68 12.21 9.10 11.72 9.83 12.63
HHI 52.00 33.33 36.94 33.53 35.28 62.26

(c) Developed and Emerging Markets

Portfolio BM EW MV VOLA RP LRP

Return 6.80 6.17 6.95 6.47 6.54 10.10
Volatility 7.51 5.29 4.78 5.24 5.08 7.56
Sharpe Ratio 0.80 1.02 1.29 1.08 1.13 1.23
VaR 10.68 6.13 4.17 5.72 5.28 7.48
HHI 52.00 25.00 27.10 25.17 25.40 55.25

(d) Developed, Emerging Markets, and Commodities

Portfolio BM EW MV VOLA RP LRP

Return 6.80 3.58 4.69 3.84 4.26 7.02
Volatility 7.51 5.00 4.19 4.88 4.41 7.18
Sharpe Ratio 0.80 0.56 0.93 0.63 0.79 0.87
VaR 10.68 8.04 5.06 7.50 6.00 9.68
HHI 52.00 20.00 21.94 20.11 20.72 53.01

Notes: This table provides the out-of-sample portfolio performance measures for the portfolio strategies
of section 2.3 during the period from January 2011 to September 2019, which consists of 100 monthly
portfolio return observations. Portfolios are rebalanced on a monthly basis and all measures are an-
nualized. VaR denotes the parametric VaR at a 99% confidence level during the sample period, while
HHI represents the Herfindahl-Hirschman Index for portfolio concentration.
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Table 2.7: Risk-Based Portfolios Summary Statistics with Monthly Data
(a) Developed Markets

Portfolio BM EW MV VOLA RP LRP

Return 6.62 6.81 6.05 6.32 6.32 7.78
Volatility 7.87 7.27 7.28 7.25 7.25 8.04
Sharpe Ratio 0.84 0.93 0.83 0.87 0.87 0.96
VaR 11.69 10.11 10.88 10.54 10.54 10.92
HHI 52.00 50.00 50.88 50.37 50.37 58.67

(b) Developed Markets and Commodities

Portfolio BM EW MV VOLA RP LRP

Return 6.62 1.96 2.01 1.72 2.25 3.57
Volatility 7.87 6.43 6.16 6.30 6.04 8.35
Sharpe Ratio 0.84 0.30 0.32 0.27 0.37 0.42
VaR 11.69 13.00 12.31 12.93 11.81 15.85
HHI 52.00 33.33 37.08 33.51 35.05 67.10

(c) Developed and Emerging Markets

Portfolio BM EW MV VOLA RP LRP

Return 6.62 6.42 5.12 6.30 5.91 7.46
Volatility 7.87 7.41 7.02 7.33 7.07 8.27
Sharpe Ratio 0.84 0.86 0.73 0.85 0.83 0.90
VaR 11.69 10.81 11.22 10.76 10.54 11.78
HHI 52.00 25.00 32.09 25.31 26.26 33.96

(d) Developed, Emerging Markets, and Commodities

Portfolio BM EW MV VOLA RP LRP

Return 6.62 3.59 2.39 3.67 2.89 4.77
Volatility 7.87 6.69 5.95 6.63 6.01 8.62
Sharpe Ratio 0.84 0.53 0.40 0.55 0.48 0.55
VaR 11.69 11.97 11.44 11.74 11.09 15.30
HHI 52.00 20.00 28.89 20.22 22.14 44.66

Notes: This table provides the out-of-sample portfolio performance measures for the portfolio strategies
of section 2.3 during the period from January 2011 to September 2019, which consists of 78 monthly
portfolio return observations. Portfolios are rebalanced on a monthly basis and all measures are an-
nualized. VaR denotes the parametric VaR at a 99% confidence level during the sample period, while
HHI represents the Herfindahl-Hirschman Index for portfolio concentration.
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2.6 Conclusion

We assess the diversification benefits of risk parity portfolios in the context of multi-
asset portfolios consisting of a variety of asset classes bearing different characteristics
and compare them to the traditional 60/40 stock/bond portfolio, which is most com-
monly employed by fund managers. We compare the diversification benefits on a
wide variety of measures concerning risk, return, and portfolio concentration. Until
now, the majority of studies assessing the diversification benefits of portfolios are
in-sample analyses and mainly concerned with the performance of mean-variance
portfolios and the corresponding shifts or changes to the efficient frontier. However,
this setting does not realistically represent the decision environment that investors
and fund managers deal with, as they are unable to accurately forecast the future
and their forecasts typically underlie significant estimation errors.

Subsequently, a more accurate reflection of the diversification benefits of portfo-
lio analysis requires an out-of-sample approach. However, existing out-of-sample
studies are limited to the mean-variance framework and present contradicting find-
ings. In addition, we compare the diversification benefits of risk parity portfolios
with other heuristic weighting schemes and popular risk-based allocation models.
The asset allocation strategies include the equal-weighting, minimum variance, and
inverse volatility. These portfolios are tested in a wide variety of settings with a
broader asset universe, a varying holding period, and a different data periodicity.

In conclusion, risk parity portfolios offer a superior risk-return portfolio profile com-
pared with other popular weighting strategies. They offer a lower risk exposure and
volatility than conventional allocation strategies while achieving a relatively high
Sharpe ratio and average return. Moreover, the weights of risk parity portfolio are
rather stable and change smoothly over time. However, risk parity portfolios are
highly sensitive to their assets and adding a negative risk premium asset can cause
a significant deterioration in terms of the Sharpe ratio. Leveraging the risk parity
portfolio significantly boosts the performance of the portfolio in terms of return and
Sharpe ratio, among others. This is also accompanied by a slight increase in volatil-
ity, risk exposure, and most prominently portfolio concentration.

Although our findings are highly relevant for practice, investors and fund managers
need to exert some caution when implementing these models in practice. Our study
has some limitations as we employ a select number of assets, a specific set of alloca-
tion models, and a definite sample period. Nevertheless, we feel confident that we
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investigated the out-of-sample properties of the risk parity strategy in a holistic sense
and compared its benefits with those of its most relevant peer allocation schemes.
Furthermore, our analysis relied on historical estimates of asset moments, and as
numerous studies such as Chopra and Ziemba (1993) have demonstrated, historical
estimates are riddled with estimation errors and have lower forecasting power for
future returns. Accordingly, if investors employ forecasting models with a higher
predictive power, they will be able to benefit to a higher degree when employing the
risk parity portfolio.
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Chapter 3

Linear Shrinkage in Risk Parity1

3.1 Introduction

Risk parity (RP ) is a cross-sectional portfolio allocation technique in which each
asset contributes the same amount to the total portfolio volatility. While it says
nothing about expected returns, an input most difficult to estimate precisely, it lim-
its the risk contribution of individual assets. This appealing property makes such
strategies especially popular among practitioners. Only recently, RP has gained
some interest from academia due to its well documented performance in empiri-
cal analysis (Chaves et al., 2011). Some studies such as Clarke et al. (2013) and
Lee (2014), among others, find that RP is superior to traditional strategies such
as equal- and value-weighting or other weighting techniques that incorporate other
moments of asset prices. Further, Maillard et al. (2010) provide theoretical argu-
ments about RP and show for example, that a negative relationship exists between
RP asset weights and RP asset betas, which coincides with the findings of Frazzini
and Pedersen (2014) that low beta assets outperform high beta assets.

RP is often compared to the Markowitz (1952) minimum variance (MV ) portfolio.
However, the main input parameter to RP and MV strategies is the variance-
covariance matrix of the asset returns: a property difficult to estimate when the
correlations among assets is high, i.e. in times of market crashes, or when the
number of assets increase. A popular method that has been shown to improve
the risk-return properties of portfolios when estimates of asset moments contain
estimation error (Fabozzi et al., 2007) is called shrinkage. This technique tries to

1This chapter is based on Alkafri and Frey (2020). Linear Shrinkage in Risk Parity. Working
Paper. The paper was presented at the 1st LUMS / TSM / WHU Doctoral Workshop, Toulouse,
France, 2019 and at the Frontiers of Factor Investing Conference, Lancaster, United Kingdom,
2021.
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mitigate estimation error by simply averaging over various models. For example,
Ledoit and Wolf (2004a) demonstrate how linearly shrinking the asset covariance
matrix enhances the performance of portfolios, especially mean-variance optimized
portfolios. More recently, Ledoit and Wolf (2017) also propose a non-linear shrink-
age technique and demonstrate how the Sharpe ratio of portfolios is increased to
a greater extent. The latter shrinkage technique is an important breakthrough in
risk-budgeting techniques such as RP for numerous reasons. Maillard et al. (2010)
show that RP can be expressed as a minimum variance portfolio optimization with
an additional constraint for equalizing the asset risk budgets. Also, the authors
show that the volatility of RP lies between the volatility of the minimum variance
portfolio and that of the equally-weighted portfolio. This implies that RP results
from a shrinkage between the minimum variance and the equally-weighted portfolio.

An alternative to overcoming estimation error is to disregard plug-in estimates and
employ a heuristic allocation scheme such as equal weighting (EW ). Given that
EW disregards asset moments, it is viewed as the most heuristic method of allo-
cation. Still, disregarding the asset characteristics makes certain properties of EW
portfolios, such as the level of diversification, highly sensitive to the underlying asset
universe. For example, if the risk of the underlying assets vary significantly, a high
risk concentration and a limited degree of diversification are attained, as the weights
of the riskiest and the least risky assets in EW are identical. While EW strategies
are employed on a broad scale by mutual and pension funds (Benartzi and Thaler,
2001; Windcliff and Boyle, 2004), it is viewed as an ad hoc manner of deconcentra-
tion by equally spreading the initial wealth across all assets. As a matter of fact, the
notion of deconcentration in EW has led to the development of RP portfolios, which
aim to deconcentrate the portfolio from a risk perspective, where each asset con-
tributes to the same amount of risk to the overall portfolio risk. Amenc et al. (2012)
argue that such techniques are classified as ad hoc allocation schemes, due to their
reliance on the notion of deconcentration and the absence of a theoretical framework.

We investigate the impact of shrinkage estimation techniques for the moments of as-
set returns in risk parity portfolios. Given the number of assets in the asset universe,
the risk contributions of individual assets in RP portfolios are fixed a priori. This
additional information is commonly found to stabilize empirical portfolio weights
over time. Accordingly, we assess whether an asset’s risk budget in the RP opti-
mization serves as a natural shrinkage target, and whether the parity element of
RP is beneficial in improving portfolio performance relative to conventional linear
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and non-linear shrinkage techniques. We therefore bridge the gap between mean-
variance and risk parity portfolios in a unique way. We test our results in asset
allocation and high-dimensional portfolios and find that the marginal risk-budget
for each portfolio asset indeed serves as a natural shrinkage target, in which RP

weights are a results of shrinking MV weights towards EW weights given each as-
set’s risk budget. Hence, we also provide a new perspective on risk parity portfolios.
In higher dimensions however, we find that risk parity strategies can not compete
with shrinkage solutions to MV portfolios; a clear indication that parity shrinkage
in RP has its limits.

This study is related to Ardia et al. (2017), who assess the impact of estimation errors
in the asset variance-covariance matrix in various risk-based portfolios; among them
the RP strategy. Using Monte Carlo simulation methods, they find that equal-risk-
contribution and inverse-volatility weighted portfolio weights are relatively robust
to covariance misspecification while the MV portfolio weights are highly sensitive
to errors in both the estimated variances and correlations. While their study only
operates in small dimensions with 5 to 30 assets, we investigate the impact of shrink-
age estimation techniques also in high dimensions, where RP portfolios are typically
not applied. Accordingly, it is important not only to study where the regularization
benefits come from, but also to understand where the limitations arise.

The remainder of this study is organized as follows. Section 3.2 motivates our
study by showing the impact of estimation error on RP and MV portfolios in a
simulation study. Section 3.3 shows that the parity element in RP acts as a natural
shrinkage device. Section 3.4 describes the empirical setup and briefly defines other
conventional shrinkage and heuristic weighting techniques in the literature. RP ,
MV , and the strategies in section 3.4 are assessed in a multi asset allocation setting
as well as in high-dimensional equity portfolios in sections 3.5 and 3.6. Section 3.7
concludes.
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3.2 A Motivational Example

Academia has often focused on mean-variance portfolios (Markowitz, 1952), in which
the portfolio weighting is governed by the risk preferences of the investor and the
diversification benefits of individual assets. Despite the theoretical elegance and
intuitiveness of the mean-variance framework, it did not fare well in practice and
resulted in highly concentrated, underperforming, and simply “wrong” portfolios
(Michaud, 1989). The observed underperformance of mean-variance optimized port-
folios is due to the fact that the deterministic input parameters, namely the asset
return vector and the asset covariance matrix, can only be estimated with severe
estimation errors.2 The only applied exception of mean-variance optimized portfo-
lios is MV , which only attempts to minimize portfolio risk whilst neglecting asset
returns. Numerous studies such as Chopra and Ziemba (1993), Clarke et al. (2006),
and Chow et al. (2011) document the outperformance of MV in equity markets.
However, MV has its shortcomings and a main issue is its high concentration in low
volatility assets (Chan et al., 1999; Clarke et al., 2011; DeMiguel et al., 2009).

To provide some more empirical intuition for the reader, we replicate the main find-
ing of Jobson and Korkie (1980) to illustrate the difference between RP and MV

in terms of its sensitivity to plug-in estimates. We randomly select N = 10, 50, 100
assets from stocks that are listed in the NYSE, AMEX, and NASDAQ exchanges.
In each scenario, we estimate the ex post asset moments and accordingly determine
the "true" RP and MV portfolios and compare them with 10,000 portfolios, which
are computed based on 250 hypothetical returns that are simulated using a multi-
variate normal distribution with return vector (µ) covariance matrix (∑) equal to
the assets’ "true" ex-post return and covariance matrix. The purpose of the simu-
lation is to evaluate how close these simulated portfolios are compared to the true
portfolio when increasing the number of assets held in the portfolio. The results of
the simulation experiment are illustrated in Figure 3.1.

Our results are in line with Jobson and Korkie (1980) forMV . SimulatedMV port-
folios either yield a higher return with a higher variance or are suboptimal compared
with the true MV portfolio. Furthermore, the difference in MV between the true
portfolio and estimations thereof increases with the number of assets. Meanwhile,
the simulated RP portfolios are heavily concentrated around the true RP portfolio,
which lies roughly in the center of all simulated portfolios. This observation holds

2See for example Best and Grauer (1991); Chopra and Ziemba (1993); Jobson and Korkie
(1980); Michaud (1989)).

55
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Figure 3.1: Portfolio Sharpe Ratio under Estimation Error

(a) Minimum Variance

12 12.5 13 13.5 14

Standard deviation in percent

12

13

14

15

16

17

18

19

20

R
e

tu
rn

 i
n

 p
e

rc
e

n
t

n = 10

9 10 11 12

Standard deviation in percent

8

10

12

14

16

18

20

22

24

R
e

tu
rn

 i
n

 p
e

rc
e

n
t

n = 50

6 8 10 12

Standard deviation in percent

4

6

8

10

12

14

16

18

20

22

R
e

tu
rn

 i
n

 p
e

rc
e

n
t

n = 100

Simulated Portfolios True Portfolio

(b) Risk Parity
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Notes: This figure illustrates the difference in the risk-return properties between the true portfolio
and 10,000 simulated portfolios for the cases of N = 10, 50, 100 assets. The true portfolio is
determined by the ex post sample moments, whereas the simulated portfolios are determined by
plug-in estimates for 250 simulated returns.
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true regardless of the number of assets in the portfolio. The results suggest that
RP can be better estimated using plug-in estimates, as the simulated portfolios lie
closely around the true portfolio. Also, simulated RP portfolios can not only be sub-
optimal compared to the true portfolio, but can also dominate the true RP portfolio
in the mean-variance space. Accordingly, the results imply that the RP technique,
by strictly defining the total risk contribution of each asset, induces a structure on
the portfolio weights and, hence, can be deemed as a form of portfolio regularization.

3.3 Methodology

RP portfolios constitute a middle-ground betweenMV and EW . They maintain the
notion of deconcentration as in EW whilst considering single and joint asset total
risk contributions so that all assets contribute equally to portfolio risk. Although
MV equalizes asset risk contributions, it does so merely on a marginal basis. This
implies that a minimal change in the weight of any asset in MV should result in the
same ex-ante change in overall portfolio risk. However, the total risk contributions
are generally not equal, which causes portfolio risk to be mainly concentrated in a
few assets, foregoing the benefits of diversification. Maillard et al. (2010) show that
risk parity can be denoted as the minimum variance portfolio with an additional
risk budget constraint, formally it can be expressed as

y∗ = arg min
√
y′
∑

y

s.t.


∑n
i=1 ln yi > c

y > 0
,

(3.1)

where the optimal weights w∗ = {w∗1, . . . , w∗N} that sum up to 100% are then de-
termined as w∗i = y∗i /

∑N
j=1 y

∗
j ∀i = 1, . . . , N . γ is an arbitrarily chosen constant

and ∑ describes the asset variance-covariance matrix. Indeed, Maillard et al. (2010)
show that, based on the risk budget determined by γ, the volatility of RP lies be-
tween those of MV and EW , or formally σMV < σRP < σEW .3

3For more information on the derivation of these properties of RP as well as the constant γ,
refer to Maillard et al. (2010), Appendix B, pp. 68-69.
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An alternative to overcoming estimation error is to adjust the plug-in estimates ob-
jectively or subjectively, which can be based on the expectations of fund managers,
asset pricing theories, or a combination of both (Black and Litterman, 1992). Above
all, statistical methods which aim at obtaining estimators that are less prone to sam-
pling errors or fat-tails are employed. Most prominently are shrinkage techniques,
which are a routine of averaging various estimators.4 The notion underlying shrink-
age is that portfolios that yield a stable performance regardless of market phases,
namely portfolios that are more robust to estimation errors and model risk, are bet-
ter suited for investors, especially risk-averse investors. This property is paramount
in finance, given that financial returns are heavily entailed with extreme returns
or fat-tails that typically have a significant impact on the portfolio optimization
process and, thus, portfolio performance. Hence, shrinkage techniques reduce the
impact of fat-tails and estimation errors, yielding more conservative portfolios that
perform well regardless of market conditions (Fabozzi et al., 2007).

Shrinkage techniques date back to James and Stein (1961) and typically consist
of: (i) An arbitrary estimator such as historical plug-in estimates, (ii) a structured
shrinkage target, and (iii) a parameter that determines the shrinkage intensity be-
tween (i) and (ii). James and Stein (1961) show that the benefit of shrinkage tech-
niques is while the shrinkage target is typically biased, it has less variance than the
plug-in estimate. Hence, it can be shown that under general conditions a shrinkage
intensity exists where the estimation error of the resulting shrinkage estimator is
lower than that of the sample plug-in estimate.

Linear Shrinkage in Risk Parity

Provided our previous arguments, the RP strategy can be defined as a simple form
of portfolio regularization. While shrinkage and factor approaches reduce dimen-
sionality by reducing the number of estimable parameters, risk parity induces a
structure on the portfolio weights by restricting the risk contribution of individual
assets to the total portfolio variance.

4Other methods to mitigate the effect of estimation errors include Bayesian techniques (Barry,
1974), Bayesian approach in combination with asset pricing models (Pástor, 2000), robust opti-
mization models (Garlappi et al., 2007), Bayesian robust optimization techniques (Wang, 2005),
robust estimation methods (DeMiguel and Nogales, 2009), and employing portfolio constraints
(Jagannathan and Ma, 2003).
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Provided N assets, let r = {r1, . . . , rN} be a collection of the N asset returns and
w = {w1, . . . , wN} the corresponding portfolio weight vector. The portfolio variance
is defined by σ2

p(w) = w′Σw = ∑N
i=1 w

2
i σ

2
i +∑N

i=1
∑
i 6=j wiwjσij, where Σ is the N×N

variance-covariance matrix of r with variances σ2
i and covariances σij. The marginal

risk contribution of a single asset i towards the total portfolio is ∂σp(w)
/
∂wi. Given

that the total portfolio variance is the sum of the individual risk contributions of all
assets, σp(w) = ∑N

i=1

(
wi × ∂σp(w)

/
∂wi

)
, the risk budgeting portfolio is defined by

wrp =
{
w ∈ [0, 1]N :

N∑
i=1

wi = 1, wi ≥ 0, wi × (Σw)i = bi × (w′Σw)
}
, (3.2)

where wi is the ith element of the weight vector, (Σw)i denotes the ith element of the
corresponding vector and bi ≥ 0 is the weight risk budget for asset i with∑N

i=1 bi = 1.
For the equally-weighted risk contribution (RP ) portfolio case in which bi = bj∀i, j,
Maillard et al. (2010) show that σp(wmv) ≤ σp(wrp) ≤ σp(wEW ).

The important question now is how shrinkage approaches and the risk budgeting
restriction are related in a portfolio context. Let us start with the most basic setup
of a bivariate RP portfolio. With w = (w1, 1 − w1) and σ2

1 and σ2
2 denoting the

variances of asset 1 and 2, it can be shown that for a long-only case (0 ≤ w1 ≤ 1),
the unique RP portfolio solution to Equation 3.1 is

wRP =
(

σ−1
1

σ−1
1 + σ−1

2
,

σ−1
2

σ−1
1 + σ−1

2

)
=
(

σ2

σ1 + σ2
,

σ1

σ1 + σ2

)
. (3.3)

This reveals the enriching property of the RP portfolio: The higher the variance
in asset 2, the higher the weight of asset 1 and vice versa. Further, assuming that
assets 1 and 2 are uncorrelated (ρ12 = 0), then the RP portfolio coincides with the
minimum-variance portfolio (wRP = wgmv).5

The empirical counterpart with estimated variance-covariance matrix is

ŵRP =
(

σ̂−1
1

σ̂−1
1 + σ̂−1

2
,

σ̂−1
2

σ̂−1
1 + σ̂−1

2

)
=
(

σ̂2

σ̂1 + σ̂2
,

σ̂1

σ̂1 + σ̂2

)
. (3.4)

5It holds that wgmv =
(

σ2−σ12
σ1+σ2−2σ12

, σ1−σ12
σ1+σ2−2σ12

)
where σ12 = ρ12σ1σ2 and ρ12 is the correlation

coefficient between assets 1 and 2.
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Furthermore, given

Σ̂ =
 σ̂2

1 σ̂12

σ̂12 σ̂2
2

 , (3.5)

while for low N inverting the estimated variance-covariance matrix (Σ̂) to obtain
the RP portfolio weights is not very costly in terms of estimation errors, it becomes
a problem for larger asset universes or more correlated markets. Typically, dimen-
sion reduction techniques such as factor modeling or shrinkage towards a shrinkage
target are valid attempts to mitigate estimator errors. A traditional shrinkage es-
timator for the variance-covariance matrix by Ledoit and Wolf (2004a) shrinks the
sample variance-covariance matrix estimate towards the identity matrix (I). Given
a shrinkage intensity κ ∈ [0, 1], the approach yields

Σ̂∗ = κI + (1− κ)Σ̂

=
κ 0

0 κ

+ (1− κ)
 σ̂2

1 σ̂12

σ̂12 σ̂2
2


=
κ+ (1− κ)σ̂2

1 (1− κ)σ̂12

(1− κ)σ̂12 κ+ (1− κ)σ̂2
2

 (3.6)

Hence, theRP portfolio for this case and replacing the traditional variance-covariance
matrix with a shrinkage equivalent yields

ŵ∗RP =


1√

κ+ (1− κ)σ̂2
1

1√
κ+ (1− κ)σ̂2

1

+ 1√
κ+ (1− κ)σ̂2

2

,

1√
κ+ (1− κ)σ̂2

2

1√
κ+ (1− κ)σ̂2

1

+ 1√
κ+ (1− κ)σ̂2

2


It directly follows that

lim
κ→0

ŵ∗RP =
(

σ̂2

σ̂1 + σ̂2
,

σ̂1

σ̂1 + σ̂2

)
(3.7)

lim
κ→1

ŵ∗RP =
(1

2 ,
1
2

)
. (3.8)

Hence, we see that the shrinkage approach forces the RP portfolio towards the naive
EW portfolio.
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3.4 Empirical Setup

Strategies

Given the results of Section 3.3, the question arises as to how RP fares compared to
other shrinkage-based allocation schemes. The following section briefly describes the
allocation techniques employed in the empirical analysis, which consist of heuristic
weighting schemes as well as the most prominent shrinkage techniques in the liter-
ature. Table 3.1 provides an overview of all strategies investigated in our study.

Table 3.1: List of Employed Portfolio Strategies

№ Strategy Definition Abbreviation

Panel A: Heuristic Weighting Techniques
1 Equally Weighted Portfolio EW

2 Inverse Volatility Portfolio V OLA

Panel B: Minimum Variance Portfolios
3 Minimum Variance Portfolio MV

4 Minimum Variance Portfolio with Linear Covariance Matrix
Shrinkage using the Identity Matrix Model

MV ID

5 Minimum Variance Portfolio with Linear Covariance Matrix
Shrinkage using the Constant Correlation Model

MVCCM

6 Minimum Variance Portfolio with Non-Linear Covariance Ma-
trix Shrinkage

MVNLS

Panel C: Risk Parity Portfolios
7 Risk Parity Portfolio RP

8 Risk Parity Portfolio with Linear Covariance Matrix Shrink-
age using the Identity Matrix Model

RPID

9 Risk Parity Portfolio with Linear Covariance Matrix Shrink-
age using the Constant Correlation Model

RPCCM

10 Risk Parity Portfolio with Non-Linear Covariance Matrix
Shrinkage

RPNLS
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3.4. EMPIRICAL SETUP

Inverse Volatility

The inverse volatility strategy6 (V OLA) is a heuristic allocation scheme that assigns
weights according to asset volatilities, formally it is defined as

wi = 1/σi∑N
i=1 1/σi

(3.9)

where σi is the volatility of asset i. The weight of an asset i equals its inverse
volatility divided by the sum of inverse volatilities for all assets. As a results, V OLA
overweights low volatility stocks and underweights high volatility stocks. Hence, it
is related to the low-volatility effect (Baker et al., 2011), which has been shown to
outperform other heuristic weighting schemes such as equal- and value-weighting
(Anderson et al., 2012). However, the total portfolio volatility is not minimized
with V OLA since asset covariances are not considered in the weighting process.

Linear Shrinkage

We also employ the Ledoit and Wolf (2004a,b) linear shrinkage techniques, which
can be described as optimally weighted averages of the sample variance-covariance
matrix of the asset universe (∑̂) and a shrinkage target (F̂ ). The shrinkage approach
can be expressed as follows

∑̂
LWLS

= αF̂ + (1− α)
∑̂
,

where α denotes the shrinkage intensity, ∑̂ represents the sample variance-covariance
matrix, and F̂ describes the shrinkage target.7 We employ two different models
as a shrinkage target, which are the constant correlation model implied variance-
covariance matrix (MVCCM ;RPCCM) (Ledoit and Wolf, 2004a) and the variance-
covariance matrix implied by a multiple of the identity matrix (MV ID;RPID)
(Ledoit and Wolf, 2004b).

Non-Linear Shrinkage

Recently, a new class of shrinkage methods has emerged, which are referred to as
non-linear shrinkage techniques. Unlike linear shrinkage, these techniques impose
less structure on the plug in estimates and shrink each estimate by an amount, where
the shrinkage intensity varies in a non-linear manner depending on how far they lie

6This strategy is also referred to as naive risk parity, as it equalizes the risk contributions of
assets when the correlations among assets are (almost) identical. See Maillard et al. (2010).

7For more information on the shrinkage targets as well as the derivation of the optimal shrinkage
intensity αrefer to Ledoit and Wolf (2004a,b).
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from the shrinkage target. In this study, we will focus on the analytical non-linear
shrinkage technique proposed by Ledoit and Wolf (2017) as this is superior in terms
of computational power and feasibility as compared with numerical approaches such
as Abadir et al. (2014), and Lam (2016), among others. The analytical non-linear
shrinkage estimator ∑̂LWNLS is determined by

Σ̂LWNLS = UT δ̂
o
TUT with δ̂oT := Diag

(
φ̂oT (λT,1), . . . , λT,N)

)
,

where UT := [uT,1, . . . , uT,N ] is a (full) orthogonal matrix whose columns are the sam-
ple eigenvectors uT,i, λT,i denotes the sample eigenvalues, and φ̂oT (x) represents the
optimal shrinkage function.8 We employ this technique on the risk parity (RPNLS)
and minimum variance (MVNLS) portfolios.

Data Description

Data were collected from Datastream and consist of daily total return price in-
dices, which are price indices that are adjusted for dividends and stock splits, from
01.01.1994 to 30.09.2019. We employ an out-of-sample rolling-window approach as
in DeMiguel et al. (2009). Each data set consists ofM = 6,783 business days, where
the asset moments are estimated based on the previous T = 250 days. Portfolios are
held for θ = 20 business days then rebalanced using the previous T business days.
We test the portfolios in Table 3.1 in different settings, which are: (1) in multi asset
allocation where T � N and the risk-return properties of different asset classes vary
to greater extent that the risk-return properties within a single asset class; and (2)
highly dimensional9 equity portfolios where plug-in estimates are quite unreliable
(Jobson and Korkie, 1980).

Let Pi,t be the price of asset i at time t and Di,t be the dividend payment of asset i
in period t, then the total return of asset i in period t+ 1 (ri,t+1) is defined as

ri,t+1 = Pi,t+1 +Di,t

Pi,t
− 1. (3.10)

Accordingly, the total return of a strategy j with j ∈ {1, . . . , 10} and N assets
at time t + 1 is rj,t+1 = ∑N

i=1(ri,t+1 × ŵi,j,t), where ŵi,j,t represents the weight of
asset i for strategy j at time t. At rebalancing, a trade of |ŵi,j,t+1 − ŵi,j,t+| occurs
for each asset i held in strategy j, where ŵi,j,t+ denotes the weight of asset i for

8For more information on the derivation of φ̂oT (x) see Ledoit and Péché (2011), Theorem 3.
9Typically, when the number of observations T is not significantly larger than the number of

assets N , a portfolio is referred to as a high dimensional portfolio.
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strategy j immediately before rebalancing at time t + 1, which is determined as
ŵi,j,t+ = ŵi,j,t × (1 + ri,t+1). Following DeMiguel et al. (2009), let ξ represent a
proportional transaction cost paid for each asset when rebalancing the portfolio,
then the total cost incurred from trading all assets for portfolio j is obtained by
ξ × ∑N

i=1|ŵi,j,t+1 − ŵi,j,t+|. As a result, the wealth from investing in strategy j at
time t+ 1 is determined as

Wj,t+1 = Wj,t(1 + rj,t+1)(1− ξ
N∑
i=1
|ŵi,j,t+1 − ŵi,j,t+|), (3.11)

where the return net of transaction costs for strategy j is given by (Wj,t+1/Wj,t)− 1
with Wj,t+1 and Wj,t describing wealth at time t + 1 and t, respectively. Moreover,
as in DeMiguel et al. (2009), the turnover of strategy j is defined as the average sum
over time of the absolute value of the trades incurred for all assets or formally

Turnoverj = 1
M − T

M−T∑
t=1

N∑
i=1

(|ŵi,j,t+1 − ŵi,j,t+|). (3.12)

Turnover measures the average percentage of total wealth that is traded at each re-
balancing period and is related to the transaction costs incurred when implementing
a strategy j. It is noteworthy to mention that a portfolio strategy which is superior
in gross terms, that is in the absence of transaction costs, might not be optimal to
implement when transaction costs are taken into account.

3.5 Applications in Multi Asset Allocation

To demonstrate how RP fares compared with the aforementioned strategies, we an-
alyze the characteristics of each strategy in an asset allocation setting, where all
strategies are rebalanced on a monthly basis. The data set comprises of equities and
bonds of all developed countries according to the MSCI classification.10 Equities are
represented by the MSCI total return indices and are denoted in USD. Bond markets
are denoted by the Datastream 10 year government bond indices, and are hedged to
USD according to the interest rate parity model using the Thomson Reuters spot
and 1 month forward rates. Commodities are described by the Bloomberg Commod-
ity Index and are denoted in USD. Table 3.2 reports the risk-return characteristics
of RP , EW , MV , and the shrinkage techniques highlighted in Table 3.1.

All strategies result in a positive growth of wealth over time. In gross terms, MV

10We exclude Hong Kong, Israel, and Singapore due to insufficient historical bond data.
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yields the highest terminal wealth ($340.40), followed by RPNLS ($299.57), RP
($290.09), and MVCCM ($283.96), while other shrinkage and heuristic strategies
yield a much lower gross wealth of circa $240. However,MV is the most concentrated
portfolio with an HHI of 53%. Shrinkage techniques decrease the portfolio concen-
tration, with MV ID yielding the lowest concentration of 17.45% while MVCCM

yields the highest HHI of 32.85%. EW is the least concentrated portfolio by defini-
tion (2.36%), followed by V OLA (3.88%), whereas RP yields an HHI of 10.43%.

Shrinkage techniques for RP do not necessarily improve portfolio characteristics and
generally do not vary significantly from RP . RP yields slightly better results than
its shrinkage counterparts in terms of return, volatility, maximum drawdown, and
even turnover. Nevertheless, the variation as mentioned earlier remains marginal
and merits no significant improvements. In terms of net Sharpe ratio, only RPNLS
(0.29) yields a value on par with RP (0.28), whilst RPID (0.24) and RPCCM

(0.23) underperform. This indicates that, unlike for the case of MV , the regulariza-
tion implied by the risk budget constraint on the weights of RP portfolios is quite
stark and no longer enables the portfolio weights of significant further alteration.

Since a higher portfolio concentration typically results in a higher turnover ratio and,
thus, higher transaction costs, the results change regarding net terminal wealth. MV

performs worst due to having the highest turnover ratio (4.94), which translates into
transaction costs of roughly 54% of total gross wealth, resulting in a terminal net
wealth of merely $156.81. This result coincides with the findings of Best and Grauer
(1991), Michaud (1989), among others, that mean-variance optimized portfolios are
highly sensitive to estimation risk, and typically result in high turnover ratios which
ultimately leads to a significant underperformance relative to other weighting tech-
niques. Meanwhile, RP yields the highest net terminal wealth of roughly $260,
followed by V OLA ($235.11) and EW ($224.97). Prominent shrinkage techniques
pose an improvement compared to MV , albeit remaining suboptimal compared to
RP and the heuristic techniques in terms of net terminal wealth.

All portfolio returns are leptokurtic; indicating the existence of fat-tails in the return
distribution. This is in line with the longstanding finding that financial returns are
heavily entailed with extreme returns or fat-tails. Interestingly, although the tradi-
tional view on financial returns is that they are negatively skewed (Fama, 1965) and
despite the presence of financial crises in our sample period, not all portfolios exhibit
negatively skewed gross returns. RP and MV ID pose virtually no skewness, while
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3.5. APPLICATIONS IN MULTI ASSET ALLOCATION

Figure 3.2: Global Portfolio Performance Measures over Time

(a) Historical Performance

(b) Realized Sharpe

(c) Realized Volatility

(d) Realized CVaR

Notes: This figure illustrates the differences in gross historical performance, realized Sharpe ratio,
realized volatility and realized Conditional Value at Risk (CVaR) between the different portfolio
strategies outlined in Table 3.1. The gray shaded areas indicate U.S. recessions as reported by
NBER. The results in Panels (b) to (d) are calculated based on a rolling window of 60 monthly
portfolio realized return observations.
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3.6. APPLICATIONS IN HIGH-DIMENSIONAL PORTFOLIOS

MV reveals a positive skewness of 0.51. These results imply that in the absence of
transaction costs, these allocation strategies are effective in mitigating the extreme
negative returns that occur during market turbulences. Nonetheless, all portfolio
returns are negatively skewed when taking transaction costs into account.

Regarding the maximum drawdown (MDD), which is the maximum loss during the
sample period, MVCCM and MVNLS perform best in both gross and net terms.
MV shows a quite low gross MDD (23.98%), but due to the high transaction costs, it
results in a net drawdown of 35.83%. Heuristic strategies, namely EW and V OLA,
exhibit the MDD along with MV ID of roughly 50%, while RP results in a draw-
down of 40%. Finally, albeit MV yielding the highest Sharpe ratio of 0.66 in gross
terms, it yields the lowest ratio in net terms of 0.17. MVCCM has the highest
ratio of 0.39, whereas MVNLS and RP result in a ratio of roughly 0.30. The ob-
served outperformance of MVCCM coincides with the findings of Ledoit and Wolf
(2004a), who find that MVCCM performs best for samples with N < 100 assets.

To better understand the portfolio dynamics we also assess the performance mea-
sures over time in Figure 3.1.11 In terms of historical performance, MV shows the
highest terminal wealth. However, the only strategy to show positive performance
during the 2008 financial crisis isMV ID, an indication that naive diversification can
be beneficial during market turmoils. While the differences in Sharpe ratio dynamics
are not very profound, only MV based portfolios reduce portfolio volatility signifi-
cantly. The same is true for the realized CVaR, where the magnitude for the MV

shrinkage and non-shrinkage strategies is much smaller than for EW , V OLA, and
the RP variants. RP dominates the variance regularization completely in the tails
of the portfolio return distribution as the CVaR is identical for all RP strategies.

3.6 Applications in High-Dimensional Portfolios

Next, we assess the strategies in equity portfolios and the effect of dimensionality on
portfolio performance, where we randomly select three cases with N = 50, 125, 250
equities from all stocks listed in the NYSE, AMEX, and NASDAQ exchanges. The
data set is nominated in USD, consists of total return price indices, and ranges from
01.01.1994 to 31.12.2019. Tables 3.3–3.5 report the results of the out-of-sample
performance of each strategy for N = 50, 100, and 250, respectively.

11We also illustrate the portfolio weights over time for each strategy in Table 3.1 in Appendix
Appendix C.
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3.6. APPLICATIONS IN HIGH-DIMENSIONAL PORTFOLIOS

The distribution of portfolio returns remain unchanged to Section 3.5, where almost
all strategies exhibit negatively skewed returns. MV is the most concentrated port-
folio in all cases of N and exhibits the largest turnover rate, supporting Michaud
(1989) that the mean-variance optimization using plug-in estimates results in highly
concentrated and unstable portfolios. As the asset universe increases, not only does
the concentration and turnover of MV increase substantially, but the return of
the portfolio also drastically decreases whilst its volatility spikes. Again, this is in
line with Michaud (1989) and Best and Grauer (1991), among others, that mean-
variance optimized portfolios behave as error maximizers instead of achieving the
mean-variance efficient portfolio, thereby deteriorating their risk-adjusted perfor-
mance. As a result, MV performs well only for the case of N = 50 where it yields a
Sharpe ratio of 0.63 net of transaction costs, thereby being suboptimal to only the
covariance shrinkage strategies of Ledoit and Wolf (2004a,b), whereas its net Sharpe
ratio declines with N yielding the lowest net Sharpe ratio of 0.25 for N = 250.

Regarding heuristic weighting schemes, EW yields stable albeit modest risk-adjusted
returns for all N . As the number of assets increases, the risk-adjusted return of EW
improves while the turnover remains quite low at around 0.35% of portfolio volume,
yielding a higher net Sharpe ratio than MV for N = 250. V OLA as well as RP
display very similar properties, which are yet better than EW . The Sharpe ratio of
both strategies increases with the number of assets and is almost identical for both
strategies, although V OLA exhibits a significantly lower turnover ratio of roughly
0.34.

Covariance shrinkage techniques provide mixed results. MV ID andMVCCM yield
the highest Sharpe ratios before and after transaction costs for all cases of N . The
difference in risk-adjusted performance is minimal for N = 50 and 100, but the gap
widens significantly for N = 250 withMV ID andMVCCM respectively yielding a
Sharpe ratio of 0.73 and 0.91 net transaction costs. Meanwhile, MVNLS seems to
shrink the portfolio towards EW as the number of assets increases, where MVNLS

is identical to EW for N = 250 in all portfolio characteristics. These results con-
tradict the findings of Ledoit and Wolf (2019), who using Monte Carlo simulations
find that non-linear shrinkage of the covariance matrix performs better than linear
shrinkage in high dimensional portfolios. Our results indicate that a more structured
shrinkage target, that is linear shrinkage of all parameters to a unified shrinkage
target, results in a better risk-adjusted performance for MV portfolios than impos-
ing less structure as in individual shrinkage targets via non-linear shrinkage.
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3.7. CONCLUSION

Finally, shrinking the covariance matrix in RP results in a deterioration of portfolio
performance for all cases of N , regardless of the approach. This result is in line with
those of Section 3.5 and further reinforces the notion of the inflexibility of the asset
weights in RP portfolios due to the risk budgeting constraint. Altogether, shrinkage
techniques seem to exhibit some merits when applied in MV optimized portfolios,
but do not yield significant benefits for variations thereof such as RP .12

3.7 Conclusion

In this study we investigate the impact of shrinkage estimation techniques for the
variance-covariance matrix of asset returns in risk parity portfolios for different as-
set universe dimensions. While we provide theoretical and empirical evidence that
risk budgeting on the asset level serves as a regularization mechanism, most impor-
tantly this chapter combines two strands of literature: Using mean-variance linear
and non-linear shrinkage techniques in risk parity portfolios. In this, we provide a
unique and novel perspective on risk parity portfolios.

We find that: (i) RP is a shrinkage variant that works well in lower dimensions; (ii)
Combining RP with shrinkage estimators of the variance-covariance matrix yields
even better returns in lower dimensions, but seems suboptimal for larger asset uni-
verses; (iii) pure shrinkage estimators for MV portfolios dominate all RP variants
in higher dimensions, indicating that fixing the risk contribution of individual assets
does not mitigate the effects of estimation errors and even dominates regularization
effects from more stable variance estimators. A further argument for this is that
for large N , the equal risk budgeting constraint does not decrease portfolio variance.

Future research should consider combinations of mean-variance and risk parity port-
folios that specifically account for a better portfolio allocation rule that captures the
best of both worlds; for example through an optimal shrinkage intensity similar to
DeMiguel et al. (2013). Applications should also include more asset classes such
as currencies or private equity, account for fat-tail distribution through a typical
GARCH model as in Ardia et al. (2017) or even be concerned with more practical
considerations in asset liability and risk management.

12We refrain from including the rolling performance measures for the high dimensional portfolios
in this study for parsimony. These results are available upon request from the authors.
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Conclusion

In summary, this dissertation addresses the issues raised by academia and practice
regarding the absence of a theoretical framework that explains the properties as well
as the risk-return characteristics of risk parity portfolios. We hope that the results
of this dissertation project not only answers the questions posed by previous studies
in academia, but also helps the investment management industry obtain a better
understanding of the strengths and weaknesses of risk parity portfolios.

In the first chapter we find that risk parity is indeed closely related to its component
portfolio, namely the volatility and correlation component portfolios, and that it can
be replicated by a linear combination of its component portfolios. Furthermore, we
show that the outpeformance of risk parity, the volatility component, and the corre-
lation component portfolios are driven by the Betting-against-Beta factor (Frazzini
and Pedersen, 2014), the volatility effect (Haugen and Heins, 1975; Blitz and van
Vliet, 2007), and the Betting-against-Correlation factor (Asness et al., 2019), respec-
tively. Finally, we demonstrate how the component portfolios can be utilized based
on varying market conditions to improve the risk-return profile whilst attaining the
appealing characteristics of risk parity.

Our findings in the second chapter show that, compared to other strategies, risk
parity portfolios yield a superior risk-return profile whilst achieving a lower return
volatility and risk exposure. Risk parity portfolios exhibit a low and stable turnover
in asset weights, which remains smooth over time and helps reduce transaction costs
that occur when rebalancing the portfolio. Nonetheless, the performance of risk par-
ity portfolios is highly sensitive to its constituents and a substantial deterioration in
the risk-return characteristics is observed when adding negative risk premium assets
to the portfolio. Moreover, leveraging risk parity portfolios to achieve a specific level
of portfolio volatility significantly improves its risk-adjusted performance, but also
introduces some hazards such as a slight increase in risk exposure and a significant
increase in portfolio asset concentration.
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CONCLUSION

The third chapter investigates the impact of shrinkage estimation techniques for
the variance-covariance matrix of asset returns in risk parity portfolios for different
asset universe dimensions. We provide theoretical and empirical evidence that risk
budgeting on the asset level, which is the underlying principal of risk parity port-
folios, serves as a regularization mechanism and, hence, we provide a unique and
novel perspective on risk parity portfolios. Our results show that: (i) Risk parity
is a shrinkage variant that performs well in low dimensional portfolios, where the
number of observations of the estimation window are much greater than the number
of assets; (ii) Combining risk parity with shrinkage estimation techniques for the
variance-covariance matrix could slightly enhance the risk-adjusted return in lower
dimensions, but become suboptimal as the number of assets increases; (iii) Pure
shrinkage estimators for minimum variance portfolios dominate all risk parity vari-
ants in higher dimensions, indicating that fixing the risk contribution of individual
assets does not alleviate the impact of estimation errors and dominates regulariza-
tion effects from more stable variance estimators.

Last but not least, our findings raises some further questions about the risk-return
properties of risk parity portfolios, which we hope that they will be addressed by
future research.
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APPENDIX TO CHAPTER 1

A.1 The Inverse Beta Relationship of Risk Parity
Portfolio Weights

Definition: Total Risk Contribution (TRC)

Let wi be the weight of asset i in a portfolio with i = 1, . . . , n, σi,p the covariance
of asset i with the portfolio, and σp the standard deviation of the portfolio returns,
then the Total Risk Contribution of asset i (TRCi) is defined by

TRCi = wiσi,p
σp

(A.1)

Definition: Beta of asset i to Portfolio (βi,p)

Let σi,p be the covariance of asset i with the portfolio and σ2
p the variance of portfolio

returns, then the beta of asset i to the portfolio is defined by

βi,p = σi,p
σ2
p

(A.2)

Since the risk parity portfolio equalizes the asset Total Risk Contributions by defi-
nition, it satisfies the following condition

TRCi = TRCj = σp
n

(A.3)

By setting Equation A.1 equal to Equation A.3 and solving for wi we obtain

wiσi,p
σp

= σp
n

wi =
σ2
p

σi,pn
= 1
βi,pn

=
β−1
i,p

n

Thus, we confirm that the weight of an asset i in the RP portfolio is inversely re-
lated to the asset’s beta to the portfolio βi,p and the total number of assets in the
portfolio n.
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APPENDIX TO CHAPTER 1

Furthermore, provided Equation A.1 and βi,p, we obtain

TRCi = wiσi,p
σp

TRCi = wiσi,p
σp
× σp
σp

TRCi = wiσi,pσp
σ2
p

TRCi = wiβi,pσp

βi,p = TRCi
wiσp

(A.4)

To show that ∑n
i=1 β

−1
i,p = n, we substitute βi,p by Equation A.4

n∑
i=1

β−1
i,p =

n∑
i=1

1
βi,p

=
n∑
i=1

1
(TRCi

wiσp
)

=
n∑
i=1

wiσp
TRCi

by substituting Equation A.3 for TRCi and provided the constraint in Equation 1.4
that ∑n

1=iwi = 1

n∑
i=1

wiσp
TRCi

=
n∑
i=1

wiσp

(σp

n
)

=
n∑
i=1

win

= n

Thus, we confirm that ∑n
i=1 β

−1
i,p = n.
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A.2 The Equivalence of the Volatility Component
Portfolio to Risk Parity

Definition: The Volatility Component Portfolio (V OLA)

Let wi is the weight of asset i with i = 1, . . . , n and σi be the standard deviation of
the returns of asset i. As mentioned in section 1.3, the asset weights of the volatility
component portfolio, also known as the inverse volatility strategy, can be defined by

wi = σ−1
i∑n

i=1 σ
−1
i

. (A.5)

The V OLA portfolio corresponds to the RP portfolio under the assumption that
the correlations among assets are equal. Accordingly, by plugging the asset weights
of Equation A.5, the portfolio variance for the case of n = 2 assets can be simplified
as follows:

σ2
p = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2σ1σ2ρ1,2

=
(

σ−1
1

σ−1
1 + σ−1

2

)2

σ2
1 +

(
σ−1

2

σ−1
1 + σ−1

2

)2

σ2
2

+ 2
(

σ−1
1

σ−1
1 + σ−1

2

)(
σ−1

2

σ−1
1 + σ−1

2

)
σ1σ2ρ1,2

=
(

σ2

σ1 + σ2

)2
σ2

1 +
(

σ1

σ1 + σ2

)2
σ2

2

+ 2
(

σ2

σ1 + σ2

)(
σ1

σ1 + σ2

)
σ1σ2ρ1,2

= σ2
1σ

2
2

(σ1 + σ2)2 + σ2
1σ

2
2

(σ1 + σ2)2 + 2 σ2
1σ

2
2ρ1,2

(σ1 + σ2)2

= 2σ2
1σ

2
2(1 + ρ1,2)

(σ1 + σ2)2

= 2σ2
1w

2
1(1 + ρ1,2) = 2σ2

2w
2
2(1 + ρ1,2). (A.6)

79



APPENDIX TO CHAPTER 1

For n = 2 assets, the portfolio variance is merely twice the squared product of the
asset weight and the asset volatility multiplied by one plus the asset correlation.
Since σ1w1 = σ2w2, the MRC of assets 1 and 2 are

MRC1 = ∂σp
∂w1

=
∂
(√

2σ2
1w

2
1(1 + ρ1,2)

)
∂w1

=
∂
(√

2(1 + ρ1,2)σ1w1

)
∂w1

=
√

2(1 + ρ1,2)σ1

MRC2 = ∂σp
∂w2

=
∂
(√

2σ2
2w

2
2(1 + ρ1,2)

)
∂w2

=
∂
(√

2(1 + ρ1,2)σ2w2

)
∂w2

=
√

2(1 + ρ1,2)σ2 (A.7)

And hence it follows directly that

TRC1 = w1 ×
∂σp
∂w1

= w1σ1

√
2(1 + ρ1,2)

= w2σ2

√
2(1 + ρ1,2) = w2 ×

∂σp
∂w2

= TRC2.

(A.8)

Deriving similar results in closed-form is not possible for general n. Hence, to make
the case, we assume that all correlations are equal across assets, i.e. ρi,j = ρ∀ i, j.
Then the total risk contribution of asset i is given by

TRCi =
w2
i σ

2
i + ρ

∑
i 6=j wiwjσiσj
σp

(A.9)

The risk parity portfolio is obtained for TRCi = TRCj ∀ i, j and hence it is

TRCi = TRCj (A.10)

⇔
w2
i σ

2
i + ρ

∑
i 6=j wiwjσiσj
σp

=
w2
jσ

2
j + ρ

∑
i 6=j wiwjσiσj

σp
(A.11)

∗⇔ w2
i σ

2
i = w2

jσ
2
j (A.12)

where ∗ follows by using ρ ≥ − 1
n−1 . Since the budget constraint requires ∑iwi = 1,
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we find that

wi = σ−1
i∑n

i=1 σ
−1
i

∀ i = 1, . . . , n. (A.13)

With this we find for the total risk contribution of asset i TRCi that

TRCi =
w2
i σ

2
i + ρ

∑
i 6=j wiwjσiσj
σp

=

(
σ−1

i∑n

i∗=1 σ
−1
i∗

)2
σ2
i + ρ

∑
i 6=j

σ−1
i∑n

i∗=1 σ
−1
i∗

σ−1
j∑n

i∗=1 σ
−1
i∗
σiσj√∑n

k=1

(
σ−1

k∑n

i∗=1 σ
−1
i∗

)2
σ2
k + ρ

∑
k

∑
k 6=l

σ−1
k∑n

i∗=1 σ
−1
i∗

σ−1
l∑n

i∗=1 σ
−1
i∗
σkσl

=

(∑n
i∗=1 σ

−1
i∗

)−2
+ ρ

∑
i 6=j

(∑n
i∗=1 σ

−1
i∗

)−2√∑n
k=1

(∑n
i∗=1 σ

−1
i∗

)−2
+ ρ

∑
k

∑
i 6=j

(∑n
i∗=1 σ

−1
i∗

)−2

=

(∑n
i∗=1 σ

−1
i∗

)−2
+ ρ× (n− 1)×

(∑n
i∗=1 σ

−1
i∗

)−2√
n×

(∑n
i∗=1 σ

−1
i∗

)−2
+ ρ× n× (n− 1)×

(∑n
i∗=1 σ

−1
i∗

)−2

=
(1 + ρ(n− 1))

(∑n
i∗=1 σ

−1
i∗

)−2√
n(1 + ρ(n− 1))

(∑n
i∗=1 σ

−1
i∗

)−2

=

√
1 + ρ(n− 1)
√
n

(
n∑

i∗=1
σ−1
i∗

)−1

= TRCj ∀ i, j.

Hence, under the assumption of equal correlations all total risk contributions for the
volatility component portfolio (V OLA) are identical and, hence, it is equivalent to
the risk parity portfolio.
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Appendix to Chapter 2

In this appendix we report supplementary results which might be interesting for the
reader, but are not essential to our analysis. These mainly consist of the rolling
volatility, Sharpe ratio, the weight heat maps for the other portfolios employed in
this study, and summary statistics for the asset risk contribution ratios (RCR). The
risk contribution ratio of an asset denotes the percentage amount of risk contributed
by that asset to the total portfolio risk or volatility.
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Figure B.3: Weights of Risk-Based Strategies
(a) Minimum Variance

(b) Inverse Volatility

Notes: This figure shows the allocation changes over time for the Markowitz minimum variance
portfolio in panel (a) and the inverse volatility portfolio in panel (b). DM, EM, and CO denote
developed markets, emerging markets, and commodities, respectively.
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APPENDIX TO CHAPTER 3

In the following we illustrate the portfolio weight changes over time for the portfolios
in Section 3.5. EW is excluded from the chart as its asset weights are constant over
time.

Figure C.1: Global Portfolio Weights over Time

(a) V OLA (b) MV (c) RP

(d) MV ID (e) MVCCM (f) MVNLS

(g) RPID (h) RPCCM (i) RPNLS

Notes: This figure shows the allocation changes over time for the different portfolio strategies
outlined in Table 3.1. Portfolios are rebalanced on a monthly basis. The data set spans the period
from January 1994 to December 2019, which consists of 6782 daily portfolio return observations.
Portfolios are rebalanced on a monthly basis.
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