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A B S T R A C T

In 2020, approximately 151,000 warehouses were operating worldwide, with
a total annual expenditure of e300 billion, representing roughly half of total
supply chain costs. Optimized warehouse management may provide competi-
tive advantages from both cost and customer service perspectives. One way to
achieve these is to leverage the abundance of data collected in supply chains in
combination with powerful algorithms.

This dissertation investigates how novel data sources and optimization algo-
rithms, such as machine learning, can be applied in the context of warehouse
advancement. In this research, we1 analyze the warehouse environment from
two perspectives. On the one hand, we examine two available resources in
warehouses—equipment and employees—and explore how predicting break-
downs and productivity, respectively, may improve warehouse performance.
On the other hand, we investigate whether the warehouse concept of cross-
docking can be applied virtually to allow dynamic transfers between delivery
vehicles.

In our first paper, we partner with one of the largest logistics service providers
to examine how master, usage and sensor data on material handling equipment
can be incorporated into a predictive maintenance model. Existing literature fo-
cuses on either time- or condition-based variables, whereas we show, in a com-
prehensive study of statistical learning methods, that both variable types can be
included simultaneously. Our predictive maintenance model is able to capture
the majority of breakdowns (> 85%), while maintaining a low false-positive
ratio (< 7%).

In our second paper, we work with the same logistics service provider and
apply Extreme Gradient Boosting to predict the productivity of new hires. We
include operator, shift and product data to show that productivity can be pre-
dicted on an individual employee basis while substantially decreasing the fore-
casting error (50%), which translates into cost savings.

In our third paper, we look at dynamic and synchronized transshipments
during direct deliveries. This concept uses transfers between vehicles, as car-
ried out in cross-docking, but without the need for a physical warehouse. This
reduces the proportion of empty return trips by increasing the proximity of
vehicles to their location of origin. Our easy-to-implement multi-algorithm
reduces the total distance by 15% on average compared with simple direct de-
liveries, and solves large problem instances within reasonable computational
times.

This dissertation with its individual research contributions highlights how
novel data sources and optimization algorithms can contribute to advancing
warehouse management, and highlights the managerial implications of all three
topics.

1The term “we” refers to the authors of the respective chapters, as denoted at the beginning
of each chapter.
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1
I N T R O D U C T I O N

1.1 the relevance of supply chain management

Supply chains can be described as a set of multiple entities that participate in
supplying products, providing services, transferring finances and/or exchang-
ing information both, up- and downstream. Supply chain management de-
scribes supply chain entities’ tactics and strategies to improve their own long-
term performance and that of the entire supply chain (Mentzer et al. (2001)).

Although the concept of supply chains was described early in the 20
th cen-

tury (e.g., Shaw (1915)), it has been part of human history for much longer.
Examples include the organization of wars, trading between eastern and west-
ern continents along the silk route, and the flourishing sea-trade in ancient
Southeast Asia and South India (Kumar (2001)).

Nowadays, supply chain management has become more than a simple neces-
sity for businesses to operate, as optimizing supply chains’ design and opera-
tion offers a competitive advantage (Amari et al. (2006)). In particular, the trend
towards e-commerce requires supply chain strategies to be adapted to improve
customer experience and, even more importantly, further reduce costs (Gartner
(2021)).

Despite offering considerable upside potential through competitive advan-
tage, supply chains also face immense downside risk if they cease to function
properly, as shown by past and recent crises around the globe. The supply
chain disruptions caused by the great earthquake in east Japan in 2011 are es-
timated to have led to a 0.47 percentage points decline in Japan’s real GDP
(Carvalho et al. (2021)). The more recent COVID-19 pandemic, resulting in eco-
nomic shut-downs, caused shocks and disruptions to both supply and demand,
and exposed the supply chain vulnerabilities of firms almost everywhere (Shih
(2020)). The relevance of supply chains to mitigating the observed risk is re-
flected in a multitude of studies on forecasting (e.g., Nikolopoulos et al. (2021))
and the emerging topic of supply chain resilience (Ribeiro and Barbosa-Povoa
(2018)). Although these crises have led to a rethinking of the role of supply
chain management, some aspects will remain unchanged, such as customers’
demand for low prices, even if production costs rise as a result of near-shoring
suppliers (Shih (2020)).

1.2 the role of warehouses in supply chains

Warehouses are an essential component of any supply chain. In 2020, there
were approximately 151,000 warehouses globally, and this number is expected
to reach 180,000 by 2025 (Statista (2021a)). The operational costs of warehouses
worldwide amount to roughly e300 billion per annum, and these will continue
to grow with the increasing complexity of globalized supply chains and the

1



2 introduction

prevalence of e-commerce (McKinsey (2019)). As the total warehouse cost ac-
counts for roughly half of supply chain costs (Statista (2021b)), they offer great
leverage in providing a competitive cost advantage. Given their critical inter-
mediate role within supply chains, they not only provide a cost advantage, but
also impact on service levels (Kiefer and Novack (1999)) by addressing cus-
tomer expectations efficiently (Gu et al. (2007)), especially with the growth of e-
commerce and changing consumer habits towards instant gratification (Dablanc
et al. (2017)).

The main processes within a warehouse are inbound, storing, picking, pack-
ing and outbound (De Koster et al. (2007)). These are often carried out manually
and can be described as follows (Gu et al. (2007)). In the inbound area, goods
transported by a carrier arrive at the receiving dock and are unloaded. Before
being accepted, the goods usually undergo some kind of quality inspection.
In warehouses that only fulfill the function of a cross-dock, goods from var-
ious inbound carriers are consolidated into new shipments and immediately
transferred to the outbound area. Traditional inventory-holding warehouses
put the newly arrived goods into storage, which thus operates as a decoupling
point between supply and demand. Once demand materializes, the goods are
picked, mainly manually, from the storage area and sent to the packing area.
The packing function then packs and labels the (consolidated) goods to make
them ready for shipment. In the outbound area, the goods are then loaded onto
carriers for final shipment. From a process perspective, the greatest complexity
lies between picking, packing and outbound, as these need to be synchronized
to operate efficiently. From a resource perspective, the executing entities (i.e.,
labor and equipment) must be allocated to the right warehouse function in the
right quantity and at the right time.

1.3 data and advanced analytics in supply chain management

Until recently, data posed a problem, not in terms of quality or scarcity, but
because the skyrocketing volumes that emerged in the early 2000s could not
be processed by computational power available at that time. With advancing
technology, companies started to collect copious data, planning to extract in-
sights that might provide some kind of competitive advantage (Russom et al.
(2011)). Businesses’ aim to leverage data is clearly not new, but the abundance
of available data for decision-making marks a new area (Nikolopoulos et al.
(2021)).

Today, one of the most pressing concerns of CEOs is to devise a road-map
for the digital age (Hjartar et al. (2019)). Data, advanced analytics and machine
learning are integral to digital roadmaps, and thus to companies’ advancement
(Kraus et al. (2020), Hastie et al. (2009)). Since many of these concepts are
relatively new, companies are reluctant to make bold investment decisions, as
success rates and value added are uncertain (Lavalle et al. (2011)).

An obvious area in which to start is the supply chain, for two reasons. First,
the prerequisite of available and useful data is often met, as supply chains store
large amounts of (transactional) data in a standardized way. Second, companies
rely on supply chains, and especially warehouses, to fulfill more demanding
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customer expectations, such as shorter lead times or better availability (Tiwari
et al. (2017), Gu et al. (2007)). This is supported by multiple surveys by Gartner.
These show that 50% of organizations plan to invest in digitizing their supply
chains through advanced analytics and machine learning, which are deemed to
be extremely important by 69% and 66% of respondents, respectively (Gartner
(2022)). Although only 1% of supply chain leaders state that they have a digital
ecosystem today, 23% aim to have one by 2025 (Gartner (2021)).

Fortunately, a strong body of research has recently developed exploring the
incorporation of large and novel data sources into the supply chain decision-
making process. Not only computational power, but also new methods in ad-
vanced analytics and machine learning are applied to handle the new data
challenges. The topics cover the entire value chain, from initial investment, to
demand predictions, warehouse operations and product returns. Using finan-
cial market data, Kim et al. (2019) apply deep learning methods to predict risky
retail investors. Leveraging customer account details, Höppner et al. (2018) uti-
lize decision trees to predict churn behavior. To predict customer purchases,
Martínez et al. (2018) use time and value information from previous purchases
in combination with gradient boosting, Cui et al. (2017) use social media infor-
mation, and Steinker et al. (2017) use data from weather stations. In a ware-
house environment, Büsch et al. (2017) test a neural network, support vector
machine and decision tree to classify data. This enables them to determine the
best storage place for data to optimize different access costs and times in the
warehouse management system. Tufano et al. (2021) train classifier algorithms
to improve warehouse design by predicting the best storage technology, mate-
rial handling system, storage allocation strategy and picking policy. Product
return volumes are predicted by Cui et al. (2019), using product characteristics
with the Least Absolute Shrinkage and Selection Operator (LASSO).

Compared with the demand literature, which has a rich track record of ap-
plying data and machine-learning algorithms, the warehouse literature on the
same topic is as yet sparse.

1.4 contributions of this dissertation

In the next three chapters of this dissertation, we1 present individual research
projects that contribute to the current literature.

In Chapter 2, we apply a comprehensive set of machine-learning algorithms
to build a predictive maintenance model for Material Handling Equipment
(MHE) which incorporates novel data sources to forecast breakdowns. In Chap-
ter 3, we propose a prediction model for the productivity of newly hired ware-
house employees using Extreme Gradient Boosting (EGB). In Chapter 4, we
analyze the disruptive idea of virtual cross-docks that allow dynamic transfers
between vehicles, and present a multi heuristic to solve this problem. These
three chapters evolve as follows.

• In Chapter 2, we build a predictive maintenance model for material han-
dling equipment that incorporates novel data sources to forecast break-

1The term “we” refers to the authors of the respective chapters as noted at the beginning of
each chapter.
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downs. To this end, we develop a framework to structure and extract
relevant predictor variables. We then conduct a comprehensive study of
statistical learning methods for failure detection. We show that standard
sensors in material handling equipment provide sufficient data to pre-
dict the majority of breakdowns (> 85%). Our findings are confirmed
using two independent datasets, and are thus transferable. We also pro-
vide a cost-based evaluation of these statistical learning methods, and find
that K-Nearest-Neighbors (KNN) and Random Forest Classifiers (RFCs) are
cost-optimal. While most current literature focuses on either time- or
condition-based maintenance, we suggest a more robust approach. We
demonstrate that time and condition are almost equally important. As
a result, we present a prediction model that incorporates both variable
types. From a managerial perspective, we provide recommendations on
data collection, and highlight the importance of understanding the cost
ratio between breakdowns and preventive maintenance services.

• In Chapter 3, we build a prediction model for the productivity of newly
hired warehouse employees incorporating multiple data sources to sup-
port workforce planning. To this end, we develop a framework to identify
relevant variables in four categories: warehouse, operator, shift and prod-
uct. We show that using EGB with these variables can reduce the Root
Mean Squared Error (RMSE) of predictions by more than 50%. A scenario
analysis shows that improved productivity predictions translate into sub-
stantial cost savings.

• In Chapter 4, we look at direct deliveries to meet consumer demand for
instant gratification. Delivery vehicles often drive empty when return-
ing to their origin. Dynamic transshipments with perfect synchronization
would allow loads to be transferred between these vehicles without the
need for storage facilities. This would increase their proximity to their
origin and reduce the proportion of empty rides. We present a problem-
specific combination of three heuristics to solve this concept within a rea-
sonable computational time. The first evaluates the relational position
between two deliveries and, based on 36 structured cases, decides which
pairs to exclude from the solution space. The second formulates the opti-
mization problem to find the best transfer location while taking account of
time-window constraints. Finally, we apply the request-pair combination
problem to graph theory to determine the lowest overall distance. In a nu-
merical simulation, we show that our heuristic reduces the initial distance
of direct deliveries by 15%, and confirm the findings in a case study. We
also demonstrate that the total distance is best reduced by relaxing time
windows, rather than adding requests to increase the chance of transship-
ment. Our heuristic not only helps to reduce costs, but also improves
sustainability, mitigates driver shortages and is easy to implement.

In the final chapter of this dissertation, we synthesize our three research projects,
highlight their managerial implications, and suggest opportunities for future
research.



2
T H E R O L E O F N O V E L D ATA I N M A I N T E N A N C E
P L A N N I N G : B R E A K D O W N P R E D I C T I O N S F O R M AT E R I A L
H A N D L I N G E Q U I P M E N T

The following chapter is based on Falkenberg and Spinler (2022b).1

2.1 introduction

A digital strategy is one of the major topics on the agenda of most CEOs (Hjar-
tar et al. (2019)). As part of that digital strategy, advanced analytics, machine
learning or even artificial intelligence play an important role in the advance-
ment of companies (Kraus et al. (2020), Hastie et al. (2009)). However, com-
panies are hesitant to adapt as little is known about how these concepts are
successfully employed or what their value add is (Lavalle et al. (2011)). An area
with great potential for digital tools is supply chain management for the follow-
ing two reasons. First, supply chains usually offer sufficient data availability,
which is a necessity for most algorithms to work. Second, market competition
requires supply chains, especially warehouses, to advance in order to fulfill in-
creasing customer expectations like shorter lead-times or better availability (Gu
et al. (2007)).

In warehouses, most time is spent on storage and picking. Both tasks are
usually performed manually (Gu et al. (2007)). Hence, a common performance
metric is the time spent per operation, e.g., orders picked per hour (Staudt et al.
(2015a)). Reducing the time needed per warehouse operation shortens lead
times and increases productivity. As cost per labor increases and availability of
personnel decreases, the importance of automation through Material Handling
Equipment (MHE) like forklifts or automated guided vehicles becomes more im-
portant (Mercier and Castro (2018)). The consequence is that poor functioning
MHE may lead to a substantial loss in productivity (Srinivasan et al. (1994)). It
also affects manufacturers of MHE. They are not only forced to deliver high
quality products but also to provide after-sales service to deal with fierce com-
petition (Wang et al. (2019)). It is therefore important to reduce breakdowns
to avoid repair costs and productivity reduction (Valdez-Flores and Feldman
(1989), McCall (1965)).

Most of the extensive literature on preventive maintenance is limited by the
assumptions of the underlying data or by the scope of data sources it leverages
(McCall (1965), Fouladirad et al. (2018)). The first limitation materializes as
most preventive maintenance policies assume either time-based or condition-
based factors to drive breakdowns. Additionally, the time to failure is often
assumed to follow specific distributions (Ahmad and Kamaruddin (2012)). The
second limitation is observed by the absence of research on novel data and

1This paper with the title “The role of novel data in maintenance planning: Breakdown predictions for
material handling equipment” was written by Sven Falkenberg and Stefan Spinler, and has been published
in the journal “Computers & Industrial Engineering”.
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its impact on maintenance policies. Only few studies leverage sensor data and
advanced algorithms to cover complex inter-dependencies in maintenance plan-
ning. The few existing ones are limited to one or two algorithms (e.g., Heng
et al. (2009), Herzog et al. (2009), Tran et al. (2009), Caesarendra et al. (2010)).

In our research we shed light on the long established separation of time
and condition-based maintenance, and whether a combination should receive
greater attention in future research. Furthermore, we answer the question as
to whether novel data that is available nowadays plays a vital role in improv-
ing preventive maintenance. We also investigate if an integration of various
variables can be achieved through Statistical Learning Methods (SLMs) such as
machine learning algorithms.

We show on two independent datasets from different Original Equipment
Manufacturers (OEMs) that it is indeed crucial to combine time and condition-
based maintenance. Our findings indicate that they are almost equally impor-
tant for breakdown predictions. To circumvent the assumptions of most main-
tenance policies that data needs to follow a specific distribution, we show that
SLMs make reliable predictions of MHE breakdowns, even if the distribution of
failure times is not known. We further present a comprehensive study of SLMs

and prove from a cost perspective, that depending on the cost structure either
a Random Forest Classifier (RFC) or K-Nearest-Neighbors (KNN) is optimal. We
subsequently provide recommendations for practitioners on data collection and
feature extraction to improve prediction quality.

The remainder of this chapter is structured as follows. In Section 2.2 we re-
view literature on preventive maintenance and the use of novel data, and point
out our contribution to both fields. In Section 2.3 we introduce the dataset, de-
velop a hypothesis-driven framework to understand breakdown factors of MHE,
and extract independent variables based on that framework. In Section 2.4 we
introduce the SLMs of our comparative study and the necessary preprocessing.
We provide a detailed discussion on prediction results, insights gained and
financial impact. Finally, in Section 2.5 we synthesize our contributions and
present an overview of future research opportunities.

2.2 related work and literature contribution

Our research adds to two literature streams. First, the extensively researched
field of preventive maintenance and secondly the use of novel data and its
application through SLMs. We provide a short overview of previous literature
in both streams and how our research contributes to them.

2.2.1 Preventive maintenance

Preventive maintenance is the process of conducting improvement activities to
a system with the objective of increasing its availability (Usher et al. (1998)).
Although unplanned equipment downtime can be dealt with by contractual
penalties (Qin et al. (2019)), they are usually approached via preventive mainte-
nance policies. Examples are simple surveillance plans (Derman and Solomon
(1958)), experience based maintenance (Ahmad and Kamaruddin (2012)), time-
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based maintenance (Sasieni (1956)) or condition-based maintenance (Baker and
Christer (1994)). The two prominent literature streams focus on the latter two
and have been consistently reviewed (Wang (2002), de Jonge and Scarf (2019)).
Those policies deal with maintaining products of varying complexity, ranging
from single parts (Barlow and Hunter (1960)) to sophisticated systems such as
aircraft (Deng et al. (2019)). Policies often make assumptions about the sys-
tem’s condition, when that condition is observed, what condition levels exist
and how they are improved. In most cases, systems are labeled as operative
or inoperative (Derman (1963)). The inoperative state might be immediately
detected (McCall (1965)), only when inspected (McCall (1963)) or not at all (Jor-
genson and McCall (1963)). Once the deteriorated condition is observed, it
can be improved through various maintenance services. Several studies look
into the effect of minimal, perfect and other maintenance services (Klein (1962),
Boland and Proschan (1982), Cléroux et al. (1979), Nakagawa and Kowada
(1983)). Thereby, imperfect repairs are assumed to be more realistic than per-
fect repairs (Mercier and Castro (2018)). Research on both streams, time and
condition-based maintenance, are still relevant as recent studies by Cavalcante
et al. (2018), Liu et al. (2019b) and Omshi et al. (2019) show.

The application of preventive maintenance policies can be difficult due to
the required presence of a specific distribution of failure times (McCall (1965)).
They also often prove relevant from a theoretical point of view rather than a
practical one (Weiss (1962)). Less complex policies therefore benefit from ease
of implementation and analytical simplicity (Manne (1960)). Consequently, they
often assume that either time or condition-based factors determine the time to
failure although it seems plausible that both contribute to machine breakdowns
(Ahmad and Kamaruddin (2012)). It is clear that the equipment’s environment
affects it in multiple, complex ways which cannot be described by a single
process (Shen et al. (2018)). Thus, advanced methodologies are required to
appropriately address these complex environments (Linnéusson et al. (2019)).
This becomes especially apparent when the system under investigation contains
electrical parts (Ahmad and Kamaruddin (2012)) like MHE.

2.2.2 Use of novel data sources and advanced algorithms

The use of novel data has been the subject of multiple recent studies in oper-
ations where SLMs were used to incorporate data to improve predictions. The
topics cover the entire value chain from initial investment, demand predictions
to the return of products. Based on financial market data, Kim et al. (2019)
use deep learning methods to predict risky retail investors. Höppner et al.
(2018) show how decision trees are used to predict churn behavior, using ac-
count details from customers. In predicting customer purchases, Martínez et al.
(2018) leverage gradient boosting harnessing time and value information of pre-
vious purchases, whereas Cui et al. (2017) use social media information. Data
from weather stations are used to improve the sales forecasts in e-commerce
(Steinker et al. (2017)). Cui et al. (2019) apply Least Absolute Shrinkage and
Selection Operator (LASSO) for predictions of product return volumes using
product characteristics.
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In the recent past, preventive maintenance evolved with the emergence of
advanced prediction methods, and novel data found its way into maintenance
literature (Ahmad and Kamaruddin (2012), Carvalho et al. (2019), Zonta et al.
(2020)). In contrast to McCall (1965), advanced methodologies now handle large
data inputs and dependencies in preventive maintenance without becoming an-
alytically too complex or costly to implement. Herzog et al. (2009) estimated
the residual life of components and machines based on neural networks. Heng
et al. (2009) looked into how feed forward neural networks help to predict ma-
chine reliability. Regression trees were used for machine condition prognosis
by Tran et al. (2009). Caesarendra et al. (2010) assessed the degradation of
machines via relevance vector machines and logistic regressions. All of them
restricted their studies to one or two algorithms instead of conducting a broad
comparability study.

2.2.3 Contribution to literature

We contribute to both fields, preventive maintenance and the use of novel data.
We demonstrate that time and condition-based maintenance are almost equally
important factors driving breakdowns, and it is therefore essential that they
are considered simultaneously in maintenance planning. For that task we show
that SLMs exist which are capable of incorporating time and condition-based
data without prior knowledge about the distribution of failure times. Our com-
prehensive overview of SLMs provides insights as to why some SLMs should be
chosen over others. We further advance current literature on the use of novel
data by leveraging equipment features, usage details and sensor data, and point
out their relative importance. From there we derive guidance for practitioners
in steering the data collection process based on a framework we developed.

2.3 from hypotheses to feature generation

Our research is motivated by a reliability problem of MHE in warehouses of a
Logistics Service Provider (LSP). An OEM produces a broad range of forklifts
and leases the MHE to the LSP. A service contract between the LSP and OEM de-
fines the quantity of MHE, lengths of lease and a guaranteed uptime. To ensure
the latter, the OEM conducts regular maintenance services, either as part of a
preventative maintenance schedule or if an MHE breaks down. Dependent on
fleet size, this is done via field service or by on-site technicians. The relation be-
tween OEM and MHE is shown in Figure 2.1. Despite maintenance services, MHE

breaks down and often incurs high repair cost of approximately e1,000-1,500

per annum. Both parties, LSP and OEM, have an interest in reducing the num-
ber and length of breakdowns. The advantages for the LSP are twofold: First,
a more stable warehouse operation is achieved which eventually drives ware-
house performance. Second, cost is reduced as the LSP downsizes its leased
fleet to achieve the same expected overall availability. The OEM on the other
hand predicts when maintenance services are required and thus avoids incur-
ring more expensive breakdown costs. Furthermore, cost effective field service
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Figure 2.1: Contractual relation between OEM and LSP

is scheduled instead of costly on-site technicians. From a service perspective,
the increased reliability also provides a competitive advantage.

In this section we first develop a hypothesis-driven framework to understand
breakdown factors of MHE. Second, we provide an overview of the raw data
available, and third, we extract independent variables by applying the frame-
work to the raw data.

2.3.1 Breakdown hypotheses

An MHE, like any other machine, interacts with its environment. Multiple inter-
faces to that environment exist, e.g., the interaction between MHE and operator
or between MHE and warehouse building. Those interfaces affect the perfor-
mance of MHE and add to its deterioration and eventually to its failure. To the
best of our knowledge no framework exists which provides a comprehensive
overview of these interfaces. Therefore, we provide one (Table 2.1) with no
pretense of exhaustiveness but the purpose of gaining an understanding of the
possible impact factors. The framework also provides guidance as to which
data is helpful for breakdown predictions.

Table 2.1: Framework of MHE breakdown factors
Environment interface Interface dimensions Hypothesis

What MHE is being used? OEM* Manufacturers differ in built quality
MHE model* MHE types differ in built quality
Manufacturing year* Older MHE break more often
Dimensions (e.g., height)** MHE of larger measurements are prone to collisions
Performance (e.g., lifting capacity)* MHE with greater workload wear down quicker
Engine* Some battery types create short circuits

Where is the MHE operated? Warehouse location** Temperature or humidity of location might affect electronics
Warehouse design (e.g., aisles width)** Aisle design changes navigation difficulty and might lead to accidents

Who uses the MHE? Employee tenure** Higher tenure leads to a better handling of MHE

Employee qualifications** Better qualifications lead to a better handling of MHE

When is the MHE operated? Timing of the day (shifts)* Reduced concentration during night shift
Occurrences of operation* Increase number of operations affect wear down
Length of operation* Short or long usages are adverse for MHE (rushes or inattentiveness)

How is the MHE treated? Accidents (shocks)* MHE accidents harm equipment parts
Preventive maintenance* Regular and/or thorough maintenance increases lifespan

* Data available in our dataset ** Unavailable data, relevant for future research
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We do so by defining the main interfaces of an MHE to its environment (envi-
ronment interface). Per environment interface we determine more granular in-
terface dimensions. For each interface dimension we provide a hypothesis why
it may impact breakdowns. The first environment interface is the MHE itself. It
sounds intuitive that the inherent characteristics of an MHE, such as the manu-
facturer, the model, its age, purpose, dimensions and engine are related to the
probability of a machine breakdown. The second environment interface deals
with where the MHE is situated. This is the general location of the warehouse
but also the physical warehouse design in which the MHE operates, e.g., the
aisle specifications or floor conditions. The third interface is between the MHE

and the operating employee. The operators mainly differ in their experience,
tenure, and the training they underwent. The equipment is further impacted
by two environment interfaces, its quantitative and qualitative use. Quantity
(when the equipment is used) looks at the time of day, frequency and length
of operation. Quality (how the equipment is used), sheds light on how many
accidents occurred and how thoroughly the equipment is maintained. The de-
rived framework can not only be applied to MHE but also to other equipment
in similar environments.

2.3.2 Primary data

This section builds on two independent datasets. Each dataset comes from
a different MHE manufacturer which are referred to as OEM1 and OEM2 here-
after. OEM1 is based in Europe and supplies its MHE to customers worldwide.
The dataset of OEM1 is from a customer located in Europe. OEM2 is based in
America and also serves customers globally. The dataset of OEM2 is from a
warehouse location in North America. We use the dataset of OEM1 to build and
validate our prediction model and to derive research insights. To show that
both prediction model and insights are transferable, we repeat it on the dataset
of OEM2. Each dataset has unique variables which may increase the prediction
accuracy. However, these variables are not recorded by all OEMs. Ensuring that
our findings are applicable beyond the scope of the two datasets, we build the
prediction model based on those variables that are collected by most OEMs of
MHE. An overview of the primary data available to us is given in Figure 2.2
with specific data points and their sources. The overall system of an MHE pro-
vides two types of data, master data and usage data. Master data describes
information that is permanently associated with the equipment. It is character-
ized by the OEM, equipment model (e.g., low-level order picker or reach trucks),
year of manufacture, performance specifications (e.g., lifting capacity) and en-
gine type (e.g., combustion engine). Usage data on the other hand is data that
is continuously recorded to reflect when and how the equipment is operated.
This is done using a login terminal and sensor technology. The login terminal
recognizes if an MHE is accessed and differentiates between operational use and
maintenance services. For both, a timestamp for start and end time is recorded,
providing info on date, time and length. The shock sensor records accidents as
impact intensity. Impact intensity is measured horizontally (impacts from left-
/right) and vertically (impacts from front/rear). Especially shock sensors are
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Figure 2.2: Primary data sources of MHE

common between OEMs and often used for condition-based maintenance (Ah-
mad and Kamaruddin (2012)). The dataset for OEM1 consists of 61 MHE units.
Only those records are considered where all data points described in Figure 2.2
are on hand. As a result, 10,722 observation days are available with an average
observation length of 175 days per MHE, 125 breakdowns and a mean time to
breakdown of 57 days.

2.3.3 Feature extraction

The primary data from the previous section is used to extract features based on
the introduced framework (Table 2.1). To understand the impact of operation
quantity and quality on breakdowns, the mere time stamps captured in primary
data are not sufficient. Features need to be extracted to capture relationships
over time or between data points. As those features are problem-specific and
relevance cannot be inferred a priori, we use multiple feature variations for our
analysis (Table 2.2).

For example, we use the operation timestamps to calculate the number of
short-term usages since the last maintenance service (similar to a diesel-engined
automotive it might be possible that short-term usages are unfavorable for
MHE). As the threshold for short-term usages is unknown, we define two (less
than one and less than five minutes). The resulting data structure is shown in
Appendix A.1. Each of the 10,722 observations is represented by a line item.
For every MHE (MHEi) the corresponding master data (MDi) is provided. Ob-
servations per MHE are recorded daily (ti). The gathered usage data for that
day (UDti) is used to generate the extracted features (EFti). Eventually, each
observation contains a breakdown indicator (BIti) to classify if the MHE broke
down or not. Contrary to Radner and Jorgenson (1963) we assume that only
the entire MHE entity is observed as failed or not, not its parts individually,
resulting in a binary classification.
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Table 2.2: Feature extraction
Environment interface Environment interface Extracted feature

Quantity Operation date, time and length - Days passed (IO)
(When is the MHE operated?) - Cum. time in operation (LM)

- Cum. time in operation during morning shift (LM)
- Cum. time in operation during afternoon shift (LM)
- Cum. time in operation during late shift (LM)
- Cum. count of operations (LM)
- Cum. count of operations 1 min. (LM)
- Cum. count of operations 5 min. (LM)
- Cum. count of operations 60 min. (LM)

Quality Maintenance date, time and length - Days passed (LM)
(How is the MHE treated?) - Cum. count of maintenance services (IO)

- Duration of last maintenance
Horizontal shock intensity - Cum. intensity of horizontal shock (LM)

- Max. intensity of horizontal shock (LM)
Vertical shock intensity - Cum. intensity of vertical shock (LM)

- Max. intensity of vertical shock (LM)
Total shock intensity - Cum. intensity of shock (LM)

- Cum. intensity of shock (L7D)
- Cum. intensity of shock (L14D)
- Cum. count of shocks (IO)
- Cum. count of shocks (LM)
- Cum. count of shocks (L7D)
- Cum. count of shocks (L14D)

Notes: Cumulated (Cum) Since Initial Operation (IO) Since Last Maintenance (LM) Last 7 Days (L7D) Last 14 Days (L14D)

2.4 slm-based breakdown predictions

To solve the binary class prediction problem of the previously presented data
structure we conduct a comprehensive study on SLMs for classification prob-
lems. The advances in SLMs provide multiple algorithms able to perform reli-
able classification tasks (Hastie et al. (2009)). Therefore, we first introduce the
SLMs we investigate. Second, we discuss preprocessing steps of data and hy-
perparameter tuning for these SLMs. Third, we create a baseline against which
we benchmark each SLM. Finally, we discuss their results and the insights they
provide.

2.4.1 Statistical learning models

Solving classification problems is simple if classes are perfectly separable by
linear functions or if breakdowns follow a specific distribution. Most real data
do not fulfill this condition and it becomes computationally expensive to de-
rive non-linear separators in high dimensional data space. This task is often
approached using SLMs. Rather than focusing on a specific algorithm (like Her-
zog et al. (2009), Heng et al. (2009), Tran et al. (2009), Caesarendra et al. (2010)),
we provide a comprehensive overview by investigating the following eight SLMs

aimed at classification problems, which also include the methods used by the
just mentioned authors. Gaussian Naïve Bayes (GNB) is a simple algorithm and
uses the Bayes Theorem to determine a prediction class based on prior knowl-
edge gained from features. K-Nearest-Neighbors (KNN) derives its prediction
decision by measuring the weighted distance to already classified neighbors.
Logistic Regression (LR) leverages a sigmoid function to separate classes using
coefficients that provide better interpretability than many SLMs. Random Forest
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Classifier (RFC) separately trains multiple decision trees and combines them to
make predictions. Stochastic Gradient Boosting (SGB) also trains multiple deci-
sion trees, but uses an iterative approach to build a final model. Support Vector
Classifier (SVC) uses kernels to construct a hyperplane that separates non-linear
classes. Multilayer Perceptron Neural Network (MLP) builds a feedforward neu-
ral net using multiple layers of linear functions to generate a non-linear model.
Relevance Vector Machine (RVM) generates predictions similar to SVC but pro-
vides probabilistic instead of point estimates. A more detailed description of
the SLMs can be found in Appendix A.2. The interested reader might also refer
to Hastie et al. (2009) and Hastie et al. (2015) for further details.

2.4.2 Preprocessing, hyperparameter tuning and fitting

For SLMs to yield optimal results, it is necessary to (1) preprocess the data and
to (2) test different hyper parameter settings.

(1) Most data require preprocessing to deal with implicit data characteristics
that affect presented SLMs adversely. For breakdown predictions, this means
(a) upscaling of underrepresented dependent variables, (b) the standardization
of data and (c) the reduction of multicollinearity between features. (a) Break-
downs are usually recorded less frequently than observations where a machine
is operational. The resulting imbalance of the binary breakdown classifier, fail-
ure and non-failure respectively, leads some SLMs to underperform. A common
method is to either up-sample the minority class or to down-sample the major-
ity class. We used the Synthetic Minority Oversampling Technique (SMOTE) as
presented by Chawla et al. (2002). Instead of simply duplicating minority ob-
servations which does not add additional information, SMOTE creates synthetic
observations based on a regression. The regression in Equation 2.1,

mcj,SMOTE = mci + ud(0, 1)(mci −mcki
), (2.1)

takes an observation from the minority class mci, determines its k-nearest
neighbors mcki

and uses a uniformed distribution ud between 0 and 1 to create
a synthesized observation for the minority class mcj,SMOTE that lies between
mci and mcki

. (b) Data often comes in different measuring units. For the
MHE data in our research this is e.g., time in minutes, height in centimeters or
shocks in impact acceleration. The resulting range of values might differ sig-
nificantly. Various SLMs rely on unified data to calculate the distance between
data points when fitting the separator function. As a result, data is standard-
ized to take on similar values, e.g., by log transformations, min-max scaling or
normal standardization. Our data was normal standardized with a mean of
0. (c) Features, especially when additional features were extracted from origi-
nal ones, may show multicollinearity. This increases computational calculation
time and leads to reduced interpretability of coefficients, e.g., in logistic regres-
sions. To reduce multicollinearity, Principal Component Analysis (PCA) is used
to combine correlated features via orthogonal transformations as well as elimi-
nate low variance features. By combining features however, the interpretability
of the resulting principal components becomes difficult. Alternatively, correla-
tion between features is calculated and one of the two features with the highest
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correlation is dropped. This process is repeated until a threshold of correla-
tion among features is not exceeded. Compared to PCA, this loses marginally
more information from the data, but maintains the interpretability of features.
The latter was used with our data in which 22 out of 47 features showed mul-
ticollinearity (Figure 2.3) with R2 ⩾ 0.8. The iterative elimination of factors
led to a data set with 25 remaining features. (2) SLMs optimize parameters to
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Figure 2.3: Feature correlation (OEM1)

fit a given dataset. To ensure that the fitted model is generalizable to unseen
data, 20% of the data is held out for a final performance test. Some param-
eters need to be provided to the models before fitting. These parameters are
called hyperparameters and they are vital for the performance of SLMs. Ensur-
ing that hyperparameters generalize as well, 10-fold stratified cross-validation
was performed on the remaining 80% of data. A full enumeration of all pa-
rameter combinations was conducted using grid search. Appendix A.3 shows
all tested hyperparameters with the indication which parameters yield the best
predictive performance. To evaluate parameters and SLMs, we introduce four
performance metrics, which are based on the elements of a confusion matrix.
Those elements are true positives TP (an MHE was predicted to break down
and actually broke down), true negatives TN (an MHE was predicted to stay
operational and actually stayed operational), false positives FP (an MHE was
predicted to break down but stayed operational) and false negatives FN (an
MHE was predicted to stay operational but broke down). Precision in Equation
2.2,

Precision =
TP

TP+ FP
, (2.2)

determines correctly forecasted breakdowns divided by all forecasted break-
downs and answers the question: How many times do I order a service for the
right reason? Recall in Equation 2.3,

Recall =
TP

TP+ FN
, (2.3)
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determines correctly forecasted breakdowns divided by all true breakdowns
and answers the questions: How many of the breakdowns do I detect? The F1

score in Equation 2.4,

F1 =
2× Precision× Recall

Precision+ Recall
, (2.4)

is the harmonic mean of Precision and Recall and thus provides a balanced
view of over and under-prediction of breakdowns. Accuracy in Equation 2.5,

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
, (2.5)

provides insights on how many of all observations were predicted correctly. Al-
though not particularly helpful for imbalanced data, Accuracy serves as com-
parison towards our baseline.

The best set of hyperparameters was selected based on the F1 score whereas
all 4 metrics were used to evaluate the overall performance of SLMs on unseen
test data. Due to highly imbalanced data and focus on breakdowns we do not
report on specificity or receiver operating characteristics. The presented steps
were implemented using Python v3.7 and its scikit-learn library for SLMs on a
Windows machine with an 8-core CPU and 64 GB ram.

2.4.3 Baseline predictor

If nothing is known about the distribution of time to breakdown, it may be
advantageous to never predict a breakdown as described in a minimax main-
tenance policy (McCall (1965)). In this case a maintenance service is ordered
only after a breakdown occurs. In other words, MHE is always predicted to be
functional. This prediction model is a Naïve Predictor (NP). It is used to show
the impact of an SLM’s presence versus its absence.

2.4.4 Insights from model comparison

The SLMs’ results in Table 2.3 show two evident trends. First, prediction results
increase with an increasing prediction window. This is intuitive as the predic-
tion confidence of "Is the MHE going to break down within one day" is equal or
smaller than "Is the MHE going to break down within seven days". Second, SLMs

capturing non-linear relationships (SVC, KNN, SGB, RFC and MLP) outperform LR,
GNB and RVM. Possible reasons are that LR, as applied by us, captures linear
trends, GNB relies on the strong assumption of feature independence, and RVM

could only be fitted with its default hyperparameters on a reduced training
dataset (25%)2.

The further discussion focuses on these five higher performing SLMs. They
predict the majority of events correctly (Accuracy > 0.98) while dealing with
the imbalance of breakdown versus non-breakdown events (F1 > 0.89). They
consistently outperform NP in Accuracy, Precision and F1 by more than 70

2Calculations with the full dataset runs into memory errors, even on powerful machines
with 64 processors and 256 gigabyte memory (ram).
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Table 2.3: SLM prediction results (OEM1)*

Forecast Metric SVC KNN SGB RFC MLP LR GNB RVM NP

7 day Accuracy 0.99 0.99 0.99 0.99 0.98 0.64 0.65 0.91 0.95

Precision 0.91 0.89 0.93 0.93 0.81 0.13 0.13 0.37 0.00

Recall 0.88 0.90 0.85 0.86 0.91 0.74 0.69 0.46 0.00

F1 0.90 0.90 0.89 0.88 0.85 0.23 0.22 0.41 0.00

3 day Accuracy 0,98 0.98 0.98 0.98 0.97 0.61 0.63 0.94 0.98

Precision 0.73 0.75 0.72 0.72 0.61 0.05 0.05 0.19 0.00

Recall 0.54 0.61 0.40 0.49 0.37 0.59 0.54 0.24 0.00

F1 0.62 0.68 0.51 0.59 0.46 0.09 0.09 0.21 0.00

1 day Accuracy 0.97 0.99 0.99 0.98 0.99 0.68 0.91 0.98 0.99

Precision 0.08 0.21 0.00 0.00 0.20 0.02 0.03 0.09 0.00

Recall 0.12 0.12 0.00 0.00 0.04 0.52 0.20 0.08 0.00

F1 0.10 0.15 0.00 0.00 0.07 0.04 0.05 0.08 0.00

* Prediction results at probability decision threshold of 0.5 (See section 2.4.4.2 for more details)

percentage points at the expense of max. 15 percentage points lower Recall.
The prediction results for the second independent dataset achieved similar re-
sults (Appendix A.4).

2.4.4.1 Cost-based SLM evaluation

As no SLM is strictly better than another (MLP outperforms at Recall, RFC and
SGB at Precision, SVC and KNN at F1) it is difficult to determine which should
be favored. To overcome this, we present a cost-based comparison in which
we simulate the total cost CBM (Equation 2.6) incurred by breakdowns and
preventive maintenance services:

CBM = cM(TP+ FP)+ cMrBM(FN+uTPTP) 1 ⩽ rBM ⩽ 10, 0 ⩽ uTP ⩽ 1.
(2.6)

Every predicted breakdown (TP and FP) results in a preventive maintenance
service with cost cM. The cost of a breakdown usually exceeds cM (Chen and
Feldman (1997)). Thus, each undiscovered breakdown (FN) yields the cost of
cM multiplied by the cost ratio rBM. We provide a lower cost ratio boundary
of 1 (breakdowns are as expensive as preventive maintenance) and an upper
boundary of 10 (breakdowns are 10 times more expensive than preventive main-
tenance). Furthermore, there is a chance that an MHE breaks down despite the
breakdown was correctly predicted and a maintenance service was ordered.
The probability that the root cause of a correctly predicted breakdown stays
undiscovered during maintenance is uTP.

The cost comparison per SLM is shown in Figure 2.4. From a cost perspective,
RFC or KNN should be chosen, depending if the cost ratio is below or above 2.2
respectively. For our dataset, rBM is approximately 2.0 according to the LSP’s
experts.
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Figure 2.4: Cost comparison for breakdown to maintenance cost ratio (uTP = 0)

2.4.4.2 Cost ratio dependent threshold optimization

Once an SLM is selected, further optimization is achieved to account for risk
appetite, depending on whether undetected breakdowns or unnecessary main-
tenance services should be minimized. Each binary machine learning classifier
calculates a probability threshold pt for unseen data to decide if it belongs to
one or the other class. This default threshold is pt = 0.5, assigning failure
if the probability belonging to that class is ⩾ 0.5, and assigning non-failure
otherwise. This threshold can be changed and increasing it results in more
conservative predictions of failures. Figure 2.5 shows the decision threshold-
dependent change of metric scores for the RFC, which is the relevant SLM for
our dataset. In the threshold corridor between 0.30 and 0.55, the F1 score stays
relatively constant in a range of 0.88− 0.90. In that corridor, Recall starts on
top of Precision until a pt value of 0.42, from where the order reverses. In con-
clusion, multiple pairwise combinations of Recall and Precision are possible
without sacrificing a reduction of F1.

To find the cost-optimized threshold, we calculate CBM dependent on rBM and
pt (cM set to 1 and uTP set to 0). The resulting cost function assumes a semi-
paraboloid shape (Figure 2.6) with a ruled surface as the function between rBM

and CBM is linear. The function increases monotonically for gradient rBM. For
pt < 0.15, CBM increases with decreasing pt values, independent of rBM. This is
because unreasonably many observations are labeled as breakdowns and each
FP incurs cost cM. Since cM is constant, the increase of CBM for pt < 0.15 is
homogeneous. For pt > 0.15 and rBM < 1.5, CBM decreases with increasing
pt. This is due to the fact that only high probability breakdowns should be
predicted, as the gain of a TP is relatively low compared to the loss of an FP. In
the extreme case of rBM = 1, predicting breakdowns achieves no benefit and it
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is always better to repair failures when they occur. For pt > 0.15 and rBM > 1.5,
CBM increases with increasing pt. Since breakdowns get relatively expensive
compared to maintenance services, a more liberal prediction of breakdowns
should be followed since the gain of an TP is high compared to the loss of an FP.
From a cost perspective we conclude that companies aiming at implementing
breakdown predictions need to carefully study their breakdown to maintenance
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cost ratio in order to choose the proper decision threshold. This is especially
important if rBM is in the area where the slope of CBM changes for pt (In our
case rBM ≈ 1.3)

2.4.4.3 Feature importance and implications

Additionally to a cost perspective it is important to understand what drives
breakdowns. The insights from SLMs, however, are difficult to interpret as sim-
ple coefficients like in linear regressions are not available (Steinker et al. (2017)).
From both cost-relevant SLMs, RFC still allows us to extract the importance of
variables. The results not only indicate which factors drive breakdowns, but
also what data should be collected by practitioners.

We use the Gini Impurity which measures the probability of an observation
being wrongly classified. It serves as a criterion to construct the tree nodes
which split data into branches so that these branches best contain a breakdown
event or not (Hastie et al. (2009)). RFC feature importance provides informa-
tion on how much each feature helps in decreasing the impurity. Focusing on
those features whose importance exceeds 0.1 (Figure 2.7), we see that relevant
features come from three categories. The first one covers time-based features
(dark grey shading) and is the basis for literature on time-based maintenance.
The second comprises condition-based features (medium grey shading) and
is covered by literature on condition-based maintenance. Features in the third
category contain static information, usually found in master data of MHE. Look-
ing at individual features, time-based ones are the three most important. From
a cumulative perspective, however, condition-based features exceed the other
two categories, indicating that condition-related features are slightly more im-
portant than time-related ones. Given that time and condition features are both
in a range of 40− 50%, the conclusion is that it is crucial to leverage both data
sources. This is particularly interesting as Amari et al. (2006) and Bloch and
Geitner (2012) report that equipment breakdowns are mostly condition-driven,
accounting for 80− 99% of failures, which is not supported by our findings.
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When discussing the individual features from Figure 2.7 in their respective
order (i the highest, xiv the lowest), we derive the following:

(i, iii) Time passed since an MHE was put into operation has the highest fea-
ture score. This indicates that the overall age of an MHE plays an important
role, and that perfect repairs during maintenance, as covered by Klein (1962),
are not apparent. Yet, days passed since last maintenance suggests that the dis-
tribution of time to failure is indeed affected by maintenance services. Hence,
the repairs are not purely minimal repairs as described by Barlow and Hunter
(1960) where equipment is just brought back to the state it was originally in
before breakdown.

(ii) The cumulative operation time during late shifts ranks second. Although
time-related, it is also an indication for an implicit condition-based feature as
the operating behavior might change. For example, drivers during late shifts
may be less attentive, thus contributing to the faster deterioration of MHE. Ap-
parently, features for short (<1 and <5 minutes) and long (>60 minutes) term
usages are not considered at all.

(iv) As electric parts in equipment are contributing factors towards break-
downs (Ahmad and Kamaruddin (2012)), it is not surprising that power cuts
are a good predictor for failures as they indicate potential short circuits.

(v, vii, viii, ix, xiii) Furthermore, it is intuitive that shocks and other forms
of violence contribute to breakdowns, and thus appear multiple times. Similar
to the time-based features, the cumulative number of shocks is important from
two angles. On one hand, the cumulative shocks since initial operation reflect
a general wearing down of equipment parts. On the other hand, it seems to
be especially relevant if there was a clustering of shocks in the recent past (last
14 days). Additionally, it is worthwhile noting that both, max. horizontal and
vertical shock intensity, are among top predictors. They appear to complement
the quantitative view on shocks by adding a level of magnitude as exceeding a
certain threshold of impact increases the likelihood of failure. Although the vi-
olence indicator is among features with importance above 1%, its contribution
to prediction accuracy is relatively low. It appears that manual observations of
damage to MHE (e.g., dents) may be telling if equipment was treated inappro-
priately in the past, but only provide limited indicators about failures in the
future.

(vi) The length of the last conducted maintenance service seems to serve as
a proxy for MHE condition. A possible explanation is that longer maintenance
times reflect equipment improvements close to a complete overhaul, whereas
short maintenance times resemble minimal repairs.

(x, xi, xii xiv) The last section of relevant features is comprised of MHE mas-
ter data. Manufacturing year and agreed operating hours correlate with days
passed since initial operation and cumulative time in operation respectively.
Consequently, possible explanations for their contribution to prediction accu-
racy are similar. Nevertheless, both sets of information are valuable to organi-
zations as they are known a priori, whereas the mentioned time-based features
need to be calculated. Finally, MHE characteristics like lifting height and en-
gine type are used for predictions, while manufacturers or MHE type are of no
interest. A plausible explanation for the feature importance of lifting height
and engine type is that they represent an MHE’s working load. MHE with large
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engines for heavy-duty or long-range to reach higher storage areas, tends to be
subject to stress, which might affect breakdowns.

We conclude that both recording mechanisms, the login terminal and the sen-
sors, are relevant data sources to improve prediction results. To our knowledge,
OEMs of MHE already install both as default configurations. Although master
data only contributes marginally, it should also be included as it is obtained at
close to zero cost.

2.4.4.4 Impact of predictive maintenance

For impact calculation we compare the base cost CBase of our dataset in Equa-
tion 2.7,

CBase = cMrBM(TP+ FN), (2.7)

to the occurred cost after implementing the SLM (CBM). The base cost is the
total number of breakdowns (TP + FN) multiplied by the cost for breakdowns
(cM × rBM). The resulting impact after implementing an SLM (ISLM) is shown
in Equation 2.8,

ISLM =
CBase −CBM

CBase

≡ Recall

(
1−

1

rBMPrecision
− uTP

)
CBase, rBM,P > 0,

(2.8)

which is the percentage-wise cost reduction from CBase to CBM. It can be
shown that ISLM is a function of Precision, Recall, rBM and uTP (see Ap-
pendix A.5 for details). Thus, the impact is independent of breakdowns and
non-breakdowns in an observation period for constant Recall and Precision.

Table 2.4: Confusion matrix

Predicted class

Positive Negative Total

Actual class Positive 108 17 125

Negative 8 10,589 10,597

Total 116 10,606 10,722

The prediction results of our OEM1 dataset (Table 2.4) show that out of 10,722

observation days, a total of 125 breakdowns occurred. RFC correctly predicted
108 out of 125 breakdowns and missed 17. In total, the RFC predicted 116

breakdowns, thus misclassified 8 non-breakdowns as failures. A Recall of 0.86,
Precision of 0.93, rBM of ≈ 2.0 and uTP of 0 yields an impact ISLM of 40%
(Table 2.5). Given that prediction results for OEM2 are similar to OEM1 (39%),
the impact ISLM is transferable. Based on the annual cost for breakdowns
incurred by the 61 MHE units in our dataset which corresponded to e75,000,
the cost savings is in the magnitude of e500 per MHE per year. As it is unlikely
that all correctly predicted breakdowns can be avoided through maintenance
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services, Table 2.5 shows the potential savings for varying values of uTP. If 50%
of correctly forecasted breakdowns cannot be avoided through maintenance, no
savings can be achieved. Assuming a detection rate of 80% (uTP = 0.2) and a
worldwide MHE production quantity of 1.8 million units in 2016 (Bond (2017)),
the overall impact adds up to a mid-three million digit cost saving only for the
newly produced MHE.

Table 2.5: Impact after SLM implementation

Scenarios for varying uTP

0.0 0.1 0.2 0.3 0.4 0.5

ISLM 40% 31% 23% 14% 5% -3%
Savings (e/MHE/year) 489 383 277 172 66 -40

2.5 discussion and conclusion

2.5.1 Synthesis

In this chapter we build a predictive maintenance model for MHE which in-
corporates novel data sources (Figure 2.2) to forecast breakdowns, and test it
on two separate and independent datasets from OEMs. Opposing to classical
preventive maintenance models, our maintenance policy relies solely on the
prediction of breakdowns and disregards standard maintenance intervals. If a
breakdown is predicted, a maintenance service is scheduled which reduces the
probability of the breakdown to occur.

To create meaningful features from raw data, we develop a framework (Ta-
ble 2.1) to understand how an MHE interacts with its environment. The inter-
faces between MHE and environment provide guidelines for breakdown indica-
tors and subsequent feature extraction (Table 2.2). A comprehensive investiga-
tion of SLMs demonstrates that five algorithms were capable of processing the
extracted features by predicting breakdowns with a F1 score performance of
> 0.85 (Table 2.3).

In detail we find that:
(1) SLMs incorporate complex data simultaneously, ranging from fixed mas-

ter data to variable usage data such as operation times and sensor recordings.
Accurate predictions are made without prior knowledge about the distribution
function of time-to-failure.

(2) The extracted features are transferable as similar prediction performance
is achieved on a second independent dataset (Appendix 3). This shows, in
contrast to Kim et al. (2019), that the efficient recycling of features is viable.

(3) Two SLMs, RFC and KNN, minimize total cost. While RFC does so for
rBM ⩽ 2.2, KNN is cost-optimal for rBM > 2.2. An annual cost reduction
through breakdowns in the magnitude of e500 per MHE is accomplished and
amounts to a mid-three million digit cost-saving worldwide.
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(4) Given a constant SLM performance, it is shown that for a given decision
threshold the total cost is a function of Recall, Precision and rBM. The function
is independent of the actual breakdown and non-breakdown observations.

(5) The probability threshold optimization for further cost reduction needs
to be exercised with caution. Since CBM, as a function of pt, rBM and uTP,
assumes a semi-paraboloid shape with a ruled surface, it is of paramount im-
portance to understand the value of rBM. A one-directed change of pt increases
or decreases CBM, depending on rBM.

(6) Where most literature focuses on either time or condition-based data, we
not only show that it is pivotal to incorporate both data types, but also to
leverage the equipment’s master data. This also contradicts the findings of
Amari et al. (2006) and Bloch and Geitner (2012) who state that the equipment’s
condition accounts for 80− 99% of failures.

(7) The three data sources, master data, login terminal, and shock sensors,
are sufficient to predict breakdowns. The prerequisites are given for most MHE

as OEMs contacted by us use login terminals and shock sensors in their equip-
ment by default. Thus, the limitations caused by difficult to obtain data (McCall
(1965)), or data that is available but expensive to access (Ahmad and Kamarud-
din (2012)), are no longer an issue.

2.5.2 Future research

Our research contributes and extends existing knowledge on the topic of pre-
ventive maintenance and provides a starting point for further research. We
see mainly two areas for future exploration. The first area derives from the
framework of impact factors (Table 2.1) we present in our research. Although
we cover a wide range of possible factors, three environment interfaces are not
examined. Therefore, potential research efforts might investigate the environ-
ment in which an MHE is located (warehouse location and design), the impact
of operators (e.g., their tenure or qualifications), and additional sensor data
(e.g., vibrations, temperature or humidity). The second area is concerned with
the transferability of our research to other fields. Potential applications are all
types of vehicles with similar complexity such as ride-on mowers, e-scooters,
cranes, farming vehicles, bikes, cars or trucks, as they too undergo regular
maintenance services.

From a resource perspective, there are two executing entities in the ware-
house, i.e., equipment and labor. In this chapter, we conducted a comprehen-
sive analysis of SLMs to predict breakdowns of MHE. In the following Chapter 3,
we consider the other executing resource, the warehouse employees. Specifi-
cally, we investigate how Extreme Gradient Boosting (EGB) can be used to pre-
dict the productivity of operational employees to improve workforce planning.
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I N T E G R AT I N G O P E R AT I O N A L A N D H U M A N FA C T O R S T O
P R E D I C T D A I LY P R O D U C T I V I T Y O F WA R E H O U S E
E M P L O Y E E S U S I N G E X T R E M E G R A D I E N T B O O S T I N G

The following chapter is based on Falkenberg and Spinler (2022a).1

3.1 introduction

Warehouses, as part of supply chains, may provide a substantial competitive ad-
vantage by enabling efficient satisfaction of customers’ expectations (Gu et al.
(2007)). The main processes in a warehouse are inbound, storage, picking, pack-
ing and outbound (De Koster et al. (2007)). These are often carried out man-
ually (Gu et al. (2007)), and are affected by uncertainties from two sides. One
is the workload (demand) that must be processed, which is subject to many
external factors. The other relates to machinery and workforce (supply) issues
caused, for example, by breakdowns or performance fluctuations. When en-
gaging in workforce planning to match the workload with the workforce, it
is important to reflect on these uncertainties to ensure effective and efficient
processes (van Gils et al. (2017)). Demand-side forecasting has received con-
siderable research attention (e.g., van Gils et al. (2015) and (2017), Schwarzkopf
et al. (1988), De Gooijer and Hyndman (2006)), whereas supply-side predictions
have been of secondary importance, even though accurately forecasting future
personnel requirements is crucial for companies’ success (Masud (1985)). In
fact, the workforce is often used to offset poor demand forecasts (Sanders and
Ritzman (2004)). Most studies focus on ways to improve productivity, such as
skills allocation (Matusiak et al. (2017)), establishment of standard operating
procedures (Mor et al. (2019)) and storage strategies (Chan and Chan (2011)).
The few supply-side studies deal with highly aggregated predictions and make
limited use of available data. Our study addresses this gap by providing a
method that makes daily employee-specific productivity predictions incorpo-
rating a multitude of variables.

The remainder of this chapter is structured as follows. In Section 3.2 we
review the existing literature and explain our contributions. In Sections 3.3
and 3.4 we introduce the dataset for our model, establish the baseline, and
provide an overview of the technicalities of our method. In Section 3.5 we
discuss the prediction results, highlight the insights derived, and present a
cost-based impact calculation. In Section 3.6 we conclude by summarizing our
study and suggesting avenues for future research.

1This paper with the title “Integrating operational and human factors to predict daily productivity
of warehouse employees using extreme gradient boosting” was written by Sven Falkenberg and Stefan
Spinler, and has been published in the journal “International Journal of Production Research”.
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3.2 related work and literature contribution

Workforce productivity is driven by three sources of variability: employees, the
operations that they conduct, and the environment in which they are placed
(Doerr and Arreola-Risa (2000)). Most research focuses on a single factor within
these categories. In the employee category, for example, studies investigate
the effect of well-being (Gandy et al. (2014)), interview performance (Liziwe
et al. (2008)), workers attitudes (Fletcher et al. (2006)), personality and demo-
graphics (Juran and Schruben (2004)), and differences between workers (Doerr
and Arreola-Risa (2000)). Operations-specific effects are addressed in extensive
research on line balancing problems (Sivasankaran and Shahabudeen (2014)),
and on the relationship between visible backlogs and productivity (Powell and
Schultz (2004)). Studies of the environmental effects on productivity examine
the relationship between leadership and employees (Loi et al. (2011)), drug test-
ing (Konovsky and Cropanzano (1991)) and general design factors.

Few studies involve actual predictions of productivity. Those that do are
highly aggregated by time or warehouse, despite the fact that productivity is
likely to vary by employee (Thompson and Goodale (2006)). Masud (1985)
carries out productivity forecasting at a warehouse level and on a monthly
basis using a Box-Jenkins modeling approach, while Islam et al. (2021) use
swarm optimization. Both use only a single factor for their predictions. To our
knowledge, only two studies leverage multiple variables to forecast productiv-
ity. Sonmez and Rowings (1998) use neural networks with several variables in
a construction setting, while Thomas and Sakarcan (1994) apply this method in
a warehouse context, but aggregated to productivity per square meter rather
than at the employee level.

Reasons for the absence of research incorporating multiple variables include
the increased complexity of relationships, the knowledge required about distri-
butions, and the questionable cost-effectiveness of improved accuracy (Doerr
and Arreola-Risa (2000)).

Our research addresses this problem and contributes in four ways. First,
we provide a framework to identify the four main categories that impact on
productivity. Second, we show that Extreme Gradient Boosting (EGB) is capa-
ble of capturing the complex relationship between multiple variables without
prior knowledge of the distributions of these variables. Third, we show that
the improvement to prediction accuracy using multiple variables is substantial.
Fourth, we confirm that this can be achieved cost-effectively by showing that
computational optimization efforts can be recycled, thus reducing the most ex-
pensive part of computations.

3.3 case introduction

3.3.1 Case partner and problem definition

In this study, we consider a problem of a leading Logistics Service Provider (LSP)
operating a large number of warehouses worldwide. A major task in managing
these warehouses is operational workforce planning, which involves predicting
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the upcoming workload (demand) and translating this into staff requirements
(supply). This is a challenging task, as unknown variables come from both
sides. On the one hand, demand is subject to seasons, trends, promotions and
other factors that cause uncertainty. On the other hand, staff planning must
account for no-shows of personnel, as well as the varying productivity of het-
erogeneous staff. To handle these uncertainties, the LSP conducts operational
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Figure 3.1: Workforce planning

workforce planning in the following steps (Figure 3.1). First, historical customer
demand and actual orders are used to generate volume forecasts per shift. Sec-
ond, the orders in a given shift are sequenced to create a detailed work schedule
for each function (e.g., picking or packing). This schedule is translated into the
number of operations required (e.g., number of picking units). Taking account
of the target service level, the appropriate number of warehouse associates is
scheduled. To determine the appropriate number of warehouse associates, each
employee is assigned a tenure-based productivity rate expressed as operations
per time unit (e.g., picking units per hour). Associates are added to the shift
until the total productivity of all associates is sufficient to fulfill the given ser-
vice level. This is particularly difficult owing to high churn rates among ware-
house employees, as the productivity of new hires varies widely. Hence, the
LSP wishes to implement a model that predicts productivity in the first eight
weeks of employment to better reconcile workforce and workload.

3.3.2 Data overview

Our dataset covers the picking and packing process of a large warehouse with
roughly 11 million recorded transactions. Aggregated by days, we have about
14,000 observations that occurred within the first eight weeks of employment.
The recorded and aggregated variables vi are shown in Table 3.1. Each observa-
tion can be identified by the date it occurred, the executing employee, and the
function to which the employee was allocated.
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Table 3.1: Data overview

Category Variable Variable name Variable count [shape]

Identifier v1 Date 365 [Timestamp]

v2 Employee number >600 [Employee ID]

v3 Function 2 [Picking, Packing]

Long-term stimulators v4 Job role 4 [Normal, seasonal, temporary and forklift operator]

v5 Assigned shift 2 [Early, Late]

v6 40 hour contract 2 [Yes, No]

v7 Operational supervisor 11 [Operational supervisor ID]

v8 Managing supervisor 4 [Managing supervisor ID]

Short-term stimulators v9 Overtime 2 [Yes, No]

v10 Double time 2 [Yes, No]

Operational productivity v11 Hours worked [⩾1]

v12 Orders processed [⩾1]

v13 Quantity processed [⩾1]

v14 Volume processed [⩾1]

v15 Weight processed [⩾1]

Target variable v16 Quantities processed per hour [⩾1]

Long-term stimulators relate to job roles, assigned shifts, contracted hours
and supervisors. The job role determines whether someone is permanently
hired for manual work (laborer) or specifically to handle forklifts (forklift oper-
ator). Non-permanent hires are hired either for a specific time period (seasonal
labor) or to fill gaps with no specific timeline (temporary labor). Employees are
assigned to one of two shifts, early or late, and some have a guaranteed 40-hour
workweek. During shifts, they are supervised by two entities: the warehouse
responsible (managing supervisor) and the shopfloor lead (operational super-
visor).

Short-term stimulators of employees’ productivity are extra payments and
non-monotonous workdays. Extra payments are made if employees work more
than eight hours a day (overtime) or on more than six consecutive days (double-
time). Non-monotonous workdays refer to employees being allowed to switch
between functions.

Operational productivity records warehouse associates’ performance. The
variables tracked include the daily number of orders processed, comprising
individual units (quantity) and their respective volume and weight in cubic
centimeters and grams. For each record, the processing time is logged.

The data reveal that productivity, expressed as operations per hour, peaks
during summer and winter, which correlates with the LSP’s promotion cycles
(Figure 3.2). The two functions show similar patterns throughout the year with
a stable 95% confidence interval.

At a weekly level, both functions have similar productivity from Monday to
Sunday with a comparable spread (Figure 3.3). For both functions, the lowest
performance is on Saturday, with regard to medians and outliers2. A poten-
tial explanation is that motivation decreases at weekends, but may recover on
Sunday when double-time payments apply.

2Outliers are observations beyond the whiskers that extend the inner quartiles by 1.5 times
the interquartile range.
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Figure 3.3: Productivity per work day

Motivators offering short-term incentives (Figure 3.4), such as extra pay-
ments, appear to have little effect. No significant difference can be observed
for overtime, while for double-time, the interquartile range increases only for
the picking function. Switching tasks to avoid monotonous work produces a
positive productivity trend with increasing alternations.
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Figure 3.4: Productivity with overtime, double-time and task switching

The development of productivity in the first 40 working days (eight weeks)
reveals different learning curves for picking and packing (Figure 3.5). Picking
shows a steady learning curve over the first six weeks until a stable produc-
tivity level is established. In contrast, packing reaches a stable productivity
level in week 3, with two preceding weeks of increasing productivity. New
employees usually start in picking and may change to packing with more expe-
rience, which may explain the earlier maturity in the packing function. Outliers
decrease in both functions within the first two weeks (14 working days).
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Figure 3.5: Picking and packing productivity in the first 40 days
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To gain insights into what drives the productivity learning rate in the first
eight weeks, we examine individual long-term stimulators (Figure 3.6). Job
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Figure 3.6: Productivity by long-term stimulators

role (Figure 3.6a) does not appear to impact on productivity development. In
the picking function, no role shows consistently better performance than an-
other. For packing, only one role (laborer) constantly performs above average,
while temporary labor is below average for all eight weeks. Other packing roles
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exhibit no distinct pattern. A different picture can be seen in the shift assign-
ment (Figure 3.6b). Apart from week 3 in the picking function, all other weeks
in both functions indicate higher productivity for the early shift compared with
the late shift. On the other hand, different supervisors have no strong effect on
productivity development at either operational or managerial level (Figures 3.6c
and 3.6d). Although two operational supervisors correlate with better produc-
tivity in one function (supervisor 10 in picking, supervisor 9 in packing), these
individuals’ higher productivity does not apply to the other function. A pos-
sible explanation is their expertise in one of the two functions. Similarly, no
managing supervisor is consistently better than another in both functions. Su-
pervisor 1 is superior to supervisor 2 in packing, but below average in picking.
Overall, the performance of supervisors at the management level shows less
variation than that of operational supervisors. Lastly, employees with 40-hour
contracts start with above-average productivity in both functions (Figure 3.6e).
This advantage flattens out in weeks 3 and 4 for picking and packing, respec-
tively. Those without 40-hour contracts start below average but show a steep
learning curve over the eight weeks, resulting in a turning point in the last two
weeks.

In summary, the data show few clear distinguishing variables, such as as-
signed shifts or tasks switched. Most variables offer limited insights (40-hour
contract, job role, function, months) or are inconclusive (supervisors, payments,
weekdays).

3.3.3 Baseline and simple predictor

For workforce planning, the LSP assumes that after the initial training it takes
warehouse associates four full working weeks to achieve the full productiv-
ity of a tenured employee. A working week is defined as five working days
for a warehouse associate, regardless of whether or not these are consecutive.
Starting with a productivity level of 40% in the first working week, regressive
increases to 60%, 75% and 80% are assumed in weeks 2, 3 and 4 respectively
(Table 3.2). These productivity assumptions are based on historical data and
represent workforce averages. As can be inferred from sub-section 3.3.2, the

Table 3.2: Assumed ramp-up of new hires’ productivity

Working week Cumulative work days Assumed productivity

1 1-5 40%
2 5-10 60%
3 11-15 75%
4 16-20 80%

⩾5 ⩾21 100%

LSP’s assumptions are too simplistic for use as a baseline in our study. For exam-
ple, they are neither employee-specific, nor do they consider different learning
curves between functions. Hence, we introduce a more robust baseline for com-
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parison. Our model makes predictions at an individual employee level, and
therefore we introduce three simple, employee-based predictors. All three sim-
ple predictors leverage past productivity per employee to forecast the future.
They rely on building Cumulative Moving Averages (CMA) or Simple Moving
Averages (SMA), and differ only in the length of historical data stored.

The first simple predictor, CMA (Equation 3.1), is based on an employee’s
overall productivity level, and calculated by averaging all available n data
points of previous productivity observations pt:

CMAn+1 =
p1 + p2 + ... + pn

n
1 ⩽ n. (3.1)

The second predictor, SMA5 (Equation 3.2), builds a moving productivity
average over the last five working days:

SMA5n+1,k=5 =
1

k

n∑
t=n−k+1

pt 5 ⩽ n. (3.2)

The rationale for a short historical horizon is to capture productivity changes
more quickly to account for the initial learning curve. The downside is that
event-driven variations have a stronger impact on productivity predictions. The
third simple predictor, SMA10 (Equation 3.3), takes account of the past 10 work-
ing days:

SMA10n+1,k=10 =
1

k

n∑
t=n−k+1

pt 10 ⩽ n. (3.3)

With a mid-range horizon, this predictor balances the short-term learning curve
and the employee’s overall productivity level. We replace SMA5 and SMA10

with CMA in cases where n < k.

3.4 data preparation and method

This section clarifies the methods we used to prepare the data and build the
predictions model. We introduce a structured approach to identify potential
factors influencing productivity. We use this approach to enrich the primary
data by extracting meaningful features. We then present a short overview of
ensemble tree methods and our tuning of relevant parameters in this process.

3.4.1 Feature generation

Operational warehouse employees’ productivity is driven by many factors. In
order to better understand what variables come into play, we provide a struc-
tured framework that categorizes these factors into four impact categories: (1)
Warehouse, (2) Operator, (3) Shift and (4) Product (Table 3.3). Within these
categories, we list potential factors influencing productivity, with no claim to
being fully exhaustive. For each factor in a category, we show which primary
variables vi are available in our dataset. We also list the features we extracted
from the primary variables.
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Table 3.3: Framework of productivity impact factors

Impact category Impact factor Data variable Extracted feature

Warehouse Location * -
Design * -
Size * -
Process maturity * -
Degree of automation * -

Operator Job role v4 Job role
Salary v6 40-hour contract
Age * -
Experience v1 Total days worked

v11 Total hours worked
v13 Total quantity processed

Training * -
Days off v1 Days off since last shift
Sick days * -
Past performance v16 SMAP,5, SMAP,10, CMAP,n

Shift Date v1 Month of the year
Day of the week

Function v3 Function
Shift type v5 Shift type
Work monotony v3 Functions switched per shift
Supervisors v7 Operational supervisor

v8 Managing supervisor
Extra payments v9 Overtime

v10 Double-time
Workforce size * -

Product Quantity v12 Daily orders picked
v13 Daily quantity picked

Volume v14 Daily volume picked
Weight v15 Daily weight picked
Special Handling requirements * -

Note: * unavailable data, relevant for future research

The first impact category is the warehouse in which the operation takes place.
Impact factors affecting productivity performance include location (e.g., places
with high or low humidity), design (e.g., easy or difficult to access aisles), size
(e.g., short or long travel distances), process maturity (e.g., standard operating
procedures) and extent of automation (e.g., picking robots).

The second impact category is the actual operator who conducts the work.
The corresponding impact factors are the job role (e.g., full-time employee or
temporary labor), salary (e.g., different hourly wages), age (e.g., physical fit-
ness), work experience (e.g., accumulated work hours), training (e.g., onboard-
ing workshops), days off (e.g., recreation time), sick days (e.g., overall health)
and past performance (e.g., historical performance indicators).

The third impact category is the shift environment in which the operator
is placed. Potential impact factors are the date (e.g., extreme temperatures in
some months, or proximity of weekdays to the weekend), function (e.g., differ-
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ing operations per hour per function), shift type (e.g., reduced attention during
night shifts), work monotony (e.g., assembly line versus job shop), supervisors
(e.g., ability to motivate), extra payments (e.g., increased wage for overtime
work) and workforce size (e.g., congestion caused in aisles).

The fourth impact category is the product that is being processed. The effi-
ciency with which a product can be picked and packed is affected by the quan-
tity (e.g., economies of scale for higher quantities), volume (e.g., large products
are more unwieldy), weight (e.g., faster exhaustion when handling heavy prod-
ucts) and special requirements (e.g., lower operability of breakable, hazardous
or cooled products).

The extent of available data variables enables us to study a high proportion
of impact factors.

3.4.2 Ensemble tree methods

We use an ensemble tree method to build our prediction model. While single
trees are the simplest form of decision tree models, the most popular ensemble
tree methods are Random Forest (RF) and Gradient Boosting (GB) (Hastie et al.
(2015), Friedman (2002), Breiman (2001)). Ensemble tree methods offer several
advantages over established and easily comprehensible methods such as lin-
ear regression. They do not require extensive pre-processing of data, such as
normalization of variables, they allow processing of categorical and numerical
variables simultaneously, and they can cope with unbalanced and non-linear
data. Compared with single decision trees, ensemble methods are more robust
because the overfitting associated with single trees is reduced, which may in-
crease accuracy in relation to unseen data. In this sub-section, we present a
concise introduction to tree methods for predictions.

A single tree model is intuitive, as it follows a tree structure that divides
the dataset at decision nodes into two, or sometimes more, subsets (branches).
At the end of each branch may be another decision node or a final prediction
value (leaf). A decision node has a decision parameter and a corresponding
decision threshold. The parameter is one of the variables in the dataset. The
decision threshold is a value in the range of all values of the chosen variable.
It is selected to minimize the variance of the target variable in the resulting
subset. In a fully grown tree, decision nodes are added until only one value
exists for each branch. This is cumbersome and leads to over-fitting of the
resulting model; hence, it is likely to be a bad predictor for unseen data. As a
result, a stop criterion is used which limits, for example, the number of decision
nodes (depth of the tree) or the maximum variance to be achieved (purity of a
branch).

Ensemble tree methods make use of single trees by combining them. This
can be done simultaneously (bagging) or sequentially (boosting).

RF is a bagging algorithm as it builds multiple single trees simultaneously.
Each tree uses a random subset based on a selection of randomized observa-
tions and variables. Individual weak learners (single trees) are then combined
to make a collective prediction (strong learner). For regression purposes, con-
sensus is achieved by averaging all weak learners. Owing to the parallelization
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of individual tree building, RFs can be built in a similar time to single trees.
They also perform better on unseen data, as over-fitting is reduced compared
with single trees. A drawback is reduced interpretability.

GB, on the other hand, is a boosting algorithm that builds single trees one
after another. During this process, the current tree focuses on improving the
part of the previous tree that had the highest prediction error. The error is
defined as any suitable loss function. Owing to its sequential and self-learning
nature, GB often outperforms RFs, but is slower. Friedman (2000) proposes EGB

which uses a greedy algorithm to decrease the processing time. In our research,
we focus on EGB for its prediction performance advantage, but also report the
results of RF as a reference for our analysis.

3.4.3 Hyper-parameter tuning

Hyperparameters define the conditions and boundaries of the algorithm’s learn-
ing process. Prediction performance may be adversely affected by poorly cho-
sen hyperparameters. Before hyperparameters are tuned, the data are pre-
processed. Most importantly, we transform variables that show heteroscedas-
ticity, and create dummy variables for categorical values. Hyperparameter op-
timization in EGB requires a range of test values to be defined for relevant
parameters (Appendix B.1).

Max_depth determines the depth of a tree by defining the maximum num-
ber of sequential nodes to be used. The default value is six, which we increase
in increments of two until a maximum of 10 concatenated variables-nodes is
used in a single tree. We also examine the case when only four variables are
used. The Min_child_weight hyperparameter has a default value of 1, mean-
ing that nodes can split data until only one observation is left. This allows
the algorithm to reflect specific cases, but may also lead to overfitting. Hence
we test all single-digit values in increments of two to allow the model to be
more conservative. Eta is the learning rate of the algorithm and lower values
allow the algorithm to make smaller steps for better optimization, but simul-
taneously increase computational time. Given the efficiency of EGB, we allow
values smaller than the default of 0.3, first in decimal increments, then with
two low rates of 0.05 and 0.01. The Gamma hyperparameter defines by how
much a node needs to reduce the error when splitting the dataset. Higher val-
ues reduce overfitting at the expense of lower granularity. While the default
is 0, we start with 0.01 and increase test values by a factor of 10 up to a max-
imum value of 10. Subsample and Colsample_bytree reflect the proportion
of randomly selected observations (rows) and features (columns) respectively.
Given that we use training and test datasets as well as cross-validation which
already partitions the observations, we limit Subsample to high values of 0.9
and 1 (default). In Colsample_bytree we test all ratios in increments of 0.25.

Each combination of hyperparameter test values is evaluated against our loss
function which is equal to the Root Mean Squared Error (RMSE) in Equation 3.4:

RMSE =

√√√√ 1

n

n∑
t=1

(p̂t − pt)2, (3.4)
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where pt represents the time spent per operation, a common performance met-
ric for warehouse productivity (Staudt et al. (2015b)).

To find the best hyperparameters while making them generalizable to unseen
data, we use 10-fold cross-validation. The dataset is randomly split 80/20 into
training and test subsets respectively. This is repeated ten times, and hyper-
parameter tuning is conducted on each of the ten training subsets. We chose
the set of hyperparameters with the lowest average RMSE over all ten training
subsets. The prediction performance reported later is based on the RMSE for
the test subset only.

The calculations are performed on a Windows server with a six core Intel(R)
Xeon(R) CPU E5-2630, with 2.30GHz and 64 gigabyte ram. All calculations are
implemented in Python v3.9.

3.5 predicting new hires’ productivity

3.5.1 Prediction results

Our model predicts the productivity of warehouse employees in their first eight
weeks of employment. For all eight weeks, our model outperforms the predic-
tion accuracy3 of the LSP, all three simple predictors and the RF (Table 3.4). In
comparison with the LSP’s predictions, EGB shows an RMSE improvement of
41.6% in picking and 52.5% in packing. In relation to the three simple pre-
dictors, EGB shows further RMSE improvements in the range of 20.2-20.9% and
25.3-26.1%, respectively. Even compared with RF, EGB improves the prediction
accuracy by 5.5% and 9.1%, respectively. Segmenting the prediction results
into individual weeks reveals that EGB outperforms the LSP in all weeks by at
least 17.7% for picking and 22.5% for packing. The highest improvements are
observed in week 1 (60.7% and 65.7%). This is favorable, given that least in-
formation is available and variance in new hires’ productivity is highest in the
first week. EGB always outperforms the simple predictors in the picking func-
tion, while in packing it does so in all but two weeks. In those two weeks,
only SMA5 is marginally better, by 3.4% in week 4 and 1.5% in week 7. In
the more volatile first four of the eight weeks, EGB prevails over RF with only
one exception, in week 2 in the picking function. However, it should be noted
that even the simple predictors successfully improve the LSP’s current model
by at least 26.2% for picking and 35.7% for packing. The variation between
SMA5 and SMA10 is low, with a maximum difference of 0.6 and 0.8 percent-
age points, respectively. The prediction results of the EGB model are achieved
by tuning the hyperparameters for each function individually. A disadvantage
is that the cross-validation required is computationally expensive. Table 3.5
shows that the trained hyperparameters are sufficiently insensitive when inter-
changed: using hyperparameters tuned in the training dataset of one function
and applying them to the model for the other function yields similar results.
Hence, it is sufficient to tune hyperparameters once for each dataset.

3Significance of p < 0.01 for cross-validated RMSE versus all other models



38 productivity prediction of warehouse employees

Table 3.4: Prediction results

Picking Packing

Week Model RMSE ∆Model, LSP ∆EGB, Model RMSE ∆Model, LSP ∆EGB, Model

All LSP 29,60 0,0% 41,6% 67,18 0,0% 52,5%
SMA5 21,67 26,8% 20,2% 43,23 35,7% 26,1%
SMA10 21,76 26,5% 20,5% 42,66 36,5% 25,1%
CMA 21,86 26,1% 20,9% 42,76 36,4% 25,3%
RF 18,29 38,2% 5,5% 35,15 47,7% 9,1%
EGB 17,29 41,6% 0,0% 31,94 52,5% 0,0%

1 LSP 34,58 0,0% 60,7% 81,83 0,0% 65,7%
SMA5 21,42 38,1% 36,6% 55,36 32,3% 49,3%
SMA10 21,42 38,1% 36,6% 55,36 32,3% 49,3%
CMA 21,42 38,1% 36,6% 55,36 32,3% 49,3%
RF 16,46 52,4% 17,5% 36,92 54,9% 24,0%
EGB 13,58 60,7% 0,0% 28,07 65,7% 0,0%

2 LSP 29,79 0,0% 38,6% 71,90 0,0% 58,3%
SMA5 20,58 30,9% 11,1% 33,96 52,8% 11,7%
SMA10 21,45 28,0% 14,7% 33,95 52,8% 11,7%
CMA 21,45 28,0% 14,7% 33,95 52,8% 11,7%
RF 18,01 39,5% -1,6% 31,75 55,8% 5,5%
EGB 18,30 38,6% 0,0% 29,99 58,3% 0,0%

3 LSP 25,38 0,0% 17,7% 64,05 0,0% 50,0%
SMA5 22,46 11,5% 6,9% 38,73 39,5% 17,3%
SMA10 23,00 9,4% 9,1% 37,81 41,0% 15,3%
CMA 23,37 7,9% 10,6% 37,99 40,7% 15,7%
RF 21,29 16,1% 1,8% 35,14 45,1% 8,9%
EGB 20,90 17,7% 0,0% 32,02 50,0% 0,0%

4 LSP 21,44 0,0% 30,1% 55,91 0,0% 38,8%
SMA5 20,38 4,9% 26,4% 34,79 37,8% 1,6%
SMA10 19,90 7,2% 24,7% 33,12 40,8% -3,4%
CMA 19,89 7,2% 24,6% 34,24 38,8% 0,0%
RF 16,65 22,3% 10,0% 34,57 38,2% 1,0%
EGB 14,99 30,1% 0,0% 34,23 38,8% 0,0%

5 LSP 28,33 0,0% 41,2% 48,45 0,0% 40,7%
SMA5 20,14 28,9% 17,3% 32,42 33,1% 11,4%
SMA10 19,36 31,7% 13,9% 32,73 32,4% 12,2%
CMA 19,69 30,5% 15,4% 33,15 31,6% 13,3%
RF 17,03 39,9% 2,2% 31,45 35,1% 8,6%
EGB 16,66 41,2% 0,0% 28,74 40,7% 0,0%

6 LSP 27,90 0,0% 18,9% 55,45 0,0% 22,5%
SMA5 27,80 0,4% 18,6% 47,61 14,1% 9,8%
SMA10 27,45 1,6% 17,5% 45,92 17,2% 6,5%
CMA 27,80 0,4% 18,6% 44,36 20,0% 3,2%
RF 22,13 20,7% -2,3% 42,37 23,6% -1,4%
EGB 22,64 18,9% 0,0% 42,95 22,5% 0,0%

7 LSP 27,19 0,0% 23,7% 39,48 0,0% 27,5%
SMA5 22,40 17,6% 7,4% 32,31 18,2% 11,4%
SMA10 21,47 21,0% 3,4% 28,20 28,6% -1,5%
CMA 23,57 13,3% 12,0% 28,87 26,9% 0,8%
RF 22,40 17,6% 7,4% 26,65 32,5% -7,4%
EGB 20,75 23,7% 0,0% 28,63 27,5% 0,0%

8 LSP 26,74 0,0% 34,4% 59,63 0,0% 30,3%
SMA5 20,91 21,8% 16,2% 42,62 28,5% 2,5%
SMA10 21,47 19,7% 18,4% 42,16 29,3% 1,4%
CMA 19,17 28,3% 8,6% 42,99 27,9% 3,3%
RF 17,30 35,3% -1,3% 39,71 33,4% -4,7%
EGB 17,53 34,4% 0,0% 41,57 30,3% 0,0%
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Table 3.5: Recycling of hyperparameters

Function used for hyperparameter tuning

Picking Packing

RMSE at applied function Picking 17.29 31.64

Packing 17.02 31.94

3.5.2 Insights from variable analysis

To understand what drives prediction accuracy, we examine the permutation
importance of EGB. Permutation importance provides information on the im-
portance of each variable used in the model. It indicates the percentage by
which the model’s metric would worsen if that variable were omitted (Breiman
(2001)). We observe that the variable order differs depending on the function
(Figure 3.7). For picking, the Product impact category (see Table 3.3) with the
two variables Quantity processed and Orders processed shows the highest permu-
tation importance. On the other hand, Weight processed and Volume processed
contribute little to prediction accuracy. The Operator impact category also im-
proves prediction performance, with three variables in the top five. These three
variables, Total hours worked, Quantity processed and SMA5, represent employees’
experience and past performance. Other variables in these categories and all
variables in the Shift impact category have a subsidiary effect.
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Figure 3.7: EGB permutation importance

In the packing function, three of the top four variables are in the Product im-
pact category. Similarly to the picking function, Quantity processed and Orders
processed are the most important variables. Variables in the Operator category
do not have the same permutation importance as in the picking function, and
the importance of the Shift impact category is as low as in picking. Overall,
the key difference is that the Product category is most important in the pack-
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ing function, while a combination of workload and experience is relevant in
the picking function. A potential explanation is that picking is more complex
due to longer travel paths and interactions with picking robots, which require
experience to master the process. In contrast, packing has standardized work
procedures that are easier to internalize.

The permutation importance ranking provides an indication of relationships
between the variables and prediction performance. To confirm this, we repeat
the prediction using a full factorial design for impact categories (Table 3.6),
thereby testing all combinations of the three categories.

Table 3.6: Effect of impact category variables on EGB performance

Picking Packing

Impact Categories RMSE MAE (SD) ∆MAE,All(95%KI) RMSE MAE (SD) ∆MAE,All(95%KI)

Operator ×Shift×Product 17.29 11.2 (13.2) 31.94 19.5 (25.3)

Operator ×Shift 19.52 13.1 (14.5)* -1.91 (-3.01, -0.82) 35.61 21.7 (28.2)** -2.25 (-4.16, -0.34)

Operator ×Product 17.29 11.5 (13.0) -0.28 (-1.32, 0.75) 31.36 19.8 (24.4) -0.27 (-2.04, 1.50)

Shift ×Product 18.69 13.0 (13.5)* -1.81 (-2.86, -0.76) 35.23 24.1 (25.7)* -4.56 (-6.38, -2.74)

Operator 19.93 13.5 (14.6)* -2.37 (-3.48, -1.27) 35.36 21.4 (25.7)** -1.88 (-3.79, -3.90)

Product 21.57 15.3 (15.2)* -4.13 (-5.25, -3.00) 35.21 25.2 (24.6)* -5.68 (-7.46, -3.90)

Shift 22.01 15.5 (15.7)* -4.31 (-5.45, -3.16) 40.03 26.7 (29.8)* -7.21 (-9.18, -5.23)

Notes: *p < 0.01, **p < 0.05 (significance of MAE increase versus Operator ×Shift×Product)

We observe that compared with using all variables, using only those from the
Product and Operator impact categories achieves similar prediction performance.
The Mean Absolute Error (MAE) differences of -0.28 (picking) and -0.27 (pack-
ing) are not significant. The Shift×Product and Operator× Shift category com-
binations have similar RMSE prediction performance but perform significantly
worse than using all variables, confirming that the Shift variables are less im-
portant. This is further supported by the fact that prediction performance is
lowest when variables from only the Shift category are used. Of the three in-
stances of the experiment design that use only one variable category, Operator
outperforms the others.

3.5.3 Impact on staff planning

The previous section has shown that our model outperforms the LSP’s forecast,
as well as all other baselines. To quantify the impact, we consider two cases:
under and overestimating the actual productivity (U and O). Both cases may
incur costs (cU and cO).

If productivity is underestimated, employees will work faster than assumed.
In the best scenario, employees will finish earlier than planned, clock out, and
be paid the corresponding salary, or use their remaining time to help others.
However, in many other scenarios employees incur additional costs. Employees
may finish as planned but sit idle before clocking out. They may also intention-
ally work slower during the day. Repeated or accumulated over-productivity
may also lead to congestion in subsequent processes.

If productivity is overestimated, employees will need more time than planned
to complete the given work. Additional costs will be incurred, as employees
may be paid extra for the overtime. Employees in downstream processes may
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need to wait, which will also result in additional wages. This may ultimately
lead to reduced service levels as shipping cut-off times may be missed resulting
in penalty payments or loss of reputation.

In any given shift, productivity may be underestimated for some employees
and overestimated for others. In such cases, they may potentially support each
other (Cantor and Jin (2019)), which will reduce U and O. We denote this
support probability as s. As a result, Equation 3.5 determines the cost CU,O of
under and overestimating productivity:

CU,O = cUU+ cOO−min(U,O)s(cU + cO). (3.5)

We compare CU,O in our EGB model with the LSP’s current model and the
best simple predictor (SMA5). To gain a comprehensive overview, we consider
a total of 231 scenarios. For s we test probabilities between 0.0 and 1.0 in
decimal steps. The lower bound of 0.0 describes the case where no support
is given by over-productive employees to under-productive employees. The
upper bound of 1.0 reflects a situation in which the entire remaining capacity
of over-productive employees is used to support others. We analyze relative
ratios of cU and cO. Starting in balance, where cU equals cO, we look in both
directions until one assumes twice the value of the other. The cost reduction
impact IEGB is calculated using Equation 3.6:

IEGB =
CU,O −C ′

U,O

CU,O
, (3.6)

and illustrated in Figure 3.8.
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Figure 3.8: Cost reduction potential of EGB
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For the picking function, the cost reduction impact of EGB versus the LSP’s
model and SMA5 is shown in Sub-figure 3.8a and 3.8b, respectively. EGB

achieves a cost reduction of 44-47% compared with the LSP model, and 3-13%
compared with the SMA5. Both show their highest potential where employees
do not support each other and where cO is twice as high as cU. The lowest
impact is achieved in situations where full support would be reasonable. With
an increasing cO/cU ratio, the impact increases. As EGB produces more un-
derestimations of actual productivity, it profits in situations where cO exceeds
cU. On the support probability axis, the potential of EGB decreases with higher
support values. This is because LSP and SMA5 are slightly better balanced be-
tween under- and overestimating productivity. As a result, they benefit more if
mutual support is assumed.

Sub-figures 3.8c and 3.8d show the cost reduction potential of EGB versus the
LSP’s model (53-86%) and SMA5 (7-38%) in the packing function. Contrary to
picking, the highest potential is achieved for low cO/cU ratios and high support
probabilities. On the opposite side of the axes, the cost reduction is lowest. The
LSP’s model and SMA5 are highly imbalanced towards underestimating pro-
ductivity; hence, higher cU values result in increased cost reduction potential
for EGB. Given EGB’s balanced ratio between U and O, it also benefits from high
support probabilities.

Overall, EGB shows a positive cost reduction potential in all scenarios across
both functions. The magnitude in our case ranges from 3 to 86%. Owing to
EGB’s lower tendency for imbalance, it shows higher profits than losses in sce-
narios where support between employees is assumed. EGB shows even greater
potential when the baselines are highly biased towards either under- or overes-
timating productivity.

3.6 discussion and conclusion

3.6.1 Synthesis

In this study, we build an EGB model to predict the productivity of newly hired
warehouse associates in two functions, picking and packing. To do this, we de-
vise a framework to identify the four main categories that impact on productiv-
ity: the warehouse in which the operation takes place, the operator, the shift in
which the operator is placed and the product. We partner with a world-leading
LSP to collect an extensive dataset with over 10 million data records across 16

variables. The dataset covers all but the warehouse category. We extract addi-
tional features from the 16 source variables in accordance with our framework
of productivity impact factors (Table 3.3). For evaluation purposes, we intro-
duce three baselines and RF in addition to the LSP’s assumption of a four-week
static ramp-up phase. First, we find that our EGB model in combination with
the extracted features outperforms the LSP’s model, all three baselines and RF.
Compared with the LSP’s model, we reduce the RMSE by 42% for the picking
and 53% for the packing function. RMSE reductions of at least 20% and 25% are
achieved versus the baselines, and the RF results are improved by 6% and 9%,
respectively. Second, we show that hyperparameters tuned for one function
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can be recycled for use in the EGB model of another function. This allows signif-
icant reductions in computation time, which is usually more expensive for EGB

than for RFs. Third, we test a full factorial design of all three variable categories,
and prove that variables in the Operator and Product categories are sufficient
to achieve the same prediction accuracy as when all three categories are used.
Hence, practitioners are recommended to focus their data collection on these
two categories. Fourth, we calculate that the improved productivity prediction
reduces the cost of over- and underestimating productivity by up to 47% in the
picking and 86% in the packing function. This calculation uses a cost-based
evaluation that considers under- and overestimations of productivity, and the
potential equalization effect if both are apparent at the same time.

Given the extent of our collected data, the size and maturity of the analyzed
warehouse, and the magnitude of improvements to predictions, we expect our
approach using EGB to be generalizable to other warehouses. With regard to
data beyond the scope of our research, we presume that impact factors such as
age and training received will further improve prediction accuracy. However,
warehouse factors have a more severe impact on generalizability. In facilities
with substantially diverging setups in terms of location, design, maturity and
automation, the one-to-one applicability of our approach may be reduced.

3.6.2 Future research

We propose two areas for future research. The first covers variables derived
from our framework (Table 3.3) that could not be obtained during our data col-
lection. At the employee level, this concerns the employee’s age and training
received. In particular, we hypothesize that the amount of training received
might be used as a variable to further improve prediction accuracy. Further-
more, different warehouses should be considered in order to understand the
effect of different locations, designs, sizes, process maturity and degree of au-
tomation, and particularly how well our findings can be generalized to other
warehouse set-ups. The second potential area for further research covers other
environments to which our model might be transferred. Within the scope of
warehouses, this might be achieved by broadening the productivity prediction
to other functions, such as inbound or put-away. The scope of future research
might also be broadened to consider other manual work areas, such as the
production or service industries.

This chapter has shown that the daily productivity of warehouse employ-
ees can be predicted using EGB, outperforming the LSP’s assumption and other
baselines. Together with Chapter 2, we investigated the two executing ware-
house resources, i.e., equipment and labor. The following Chapter 4 considers
the fundamental idea of physical warehouses. In a more disruptive approach,
we investigate whether the warehouse concept of cross-docking can be applied
virtually to allow dynamic transfers between delivery vehicles.





4
A M U LT I - A L G O R I T H M F O R D Y N A M I C T R A N S S H I P M E N T S
W I T H P E R F E C T S Y N C H R O N I Z AT I O N

The following chapter is based on Falkenberg et al. (2022).1

4.1 introduction

Direct deliveries within hours or even minutes have gained popularity, driven
by the growth of e-commerce and changing consumer habits toward instant
gratification (Dablanc et al. (2017)). Although direct deliveries have existed in
the courier service industry for some time, these service offerings have been ex-
tended more recently to food outlets, online retailers and grocery stores. Exam-
ples include UberRush for VIP food delivery and other courier services, Ama-
zon Prime Now for some of Amazon’s retail business, and Gorillas and Food
Rocket, which deliver groceries within minutes in Germany and the United
States, respectively. Increased demand for direct deliveries, in combination
with already rising parcel volumes in cities with constrained road networks,
may intensify congestion and impair the environment (Zhen et al. (2021), Liu
et al. (2019a)). Although carried out mainly by small vehicles, sometimes even
with single unit-sized capacity, direct deliveries are often inefficient due to
empty rides when returning to their origin (Dablanc et al. (2017), Lammgård
and Andersson (2014)).

As a result, novel ways to reduce transport time are welcomed to bring down
costs and emissions (Rincon-Garcia et al. (2020)). Concepts such as ride-sharing
(Enzi et al. (2020)) and crowd-sourced logistics using ad hoc drivers (Arslan
et al. (2018)) leverage existing traffic to limit the need for additional vehicles,
although it is not always clear whether traffic congestion is actually mitigated
(Beojone and Geroliminis (2021)). In addition to using existing traffic for new
volumes, the footprint of current volumes can be mitigated by reducing the pro-
portion of empty rides, such as backhauls (Lammgård and Andersson (2014)).

This chapter addresses the latter issue, and in particular the case of direct
shipments where transport vehicles return to their origin after delivery, such
as in food deliveries by drivers employed directly by restaurants. These di-
rect deliveries are often sub-optimal because no routing is utilized to increase
efficiency by allowing multi-stops, as in the Vehicle Routing Problem (VRP).

One solution to these inefficiencies is the concept of cross-docking, where
transshipment locations with little or no storage capacity are used to transfer
goods from one vehicle to another in order to reduce distribution costs (Grang-
ier et al. (2017)). This may be beneficial in situations where multiple suppliers
deliver to the same set of recipients. Rather than each supplier delivering to the
drop-off locations individually, they meet at cross-docks where their loads are

1This unpublished working paper with the title “A multi-algorithm for dynamic transshipments with
perfect synchronization” was written by Sven Falkenberg, Stefan Spinler and Arne Strauss, and is cur-
rently under review at the journal “European Journal of Operational Research”.
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redistributed. Loads composed of various sub-loads from the different delivery
locations are then delivered to the final recipients. For instance, supermarkets
do not usually receive deliveries directly from, for example, a pasta factory de-
livering to multiple other supermarkets afterward. Rather, they receive trucks
with the right mix of products from multiple suppliers, which have been con-
solidated at cross-docks. The drawbacks of cross-docking are the costs of the
facility and handling processes (Masson et al. (2014b)), the dependence on suit-
able locations, and lack of flexibility to amend the location if circumstances
change. In cities, locations for cross-docking opportunities are rare, and shorter
delivery distances often do not justify the additional handling time. This may
explain why cross-docking tends to be leveraged for long-haul transport rather
than in urban areas.

To circumvent this problem, we propose the concept of dynamic transfers
with perfect synchronization for direct deliveries. In this context, dynamic
means that transfer points are flexible, and thus permit transshipment activi-
ties at any location. In order to allow this without the need for physical storage
facilities, perfect synchronization between vehicles is required. The total dis-
tance can thereby be reduced if the increased mileage of the delivery trip can
be offset by shorter return trips. Although transfers at any location are difficult
to realize in practice, we consider them for two reasons. First, formulation of
a continuous optimization problem offers advantages in terms of mathematical
methods and computational speed. The continuous location coordinates can
later be approximated to the nearest feasible ones if required. Second, in future
scenarios with drone-based deliveries, it is reasonable to assume that transfers
in controlled airspace will be viable at any location. The technical prerequisites
for transfers between drones are described in a patent by IBM (Szondy (2017)).

Consider two simple examples illustrated in Figure 4.1, each with two deliv-
ery requests, r and r ′. We assume that both are pizza deliveries, carried out by
restaurant-owned vehicles, such as bicycles. Pizza r is picked up at pizza place
pr and delivered to the customer who ordered the pizza at dr. After the deliv-
ery, bicycle vr returns to the pizzeria pr. The same holds for vr ′ analogously.
Using dynamic transfers rather than individual deliveries, both bicycles could
meet at transfer location tr,r ′ and exchange pizzas. After the exchange, vr de-
livers pizza r ′ to the respective customer dr ′ , and returns to its native pizza
place pr. Similarly, pizza r is delivered to dr by vr ′ , which then returns to pr ′ .
Assuming Euclidean distances, the total distance traveled is reduced from 16 to
12.9 (-19%) in Example 1 and from 17.9 to 16.9 (-6%) in Example 2.
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Figure 4.1: Total distance reduction through transfers
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In this research, our comprehensive literature review shows that dynamic
transfer locations with perfect synchronization have not yet been studied. We
propose a multi-algorithm that solves large instances of the problem in under
three minutes. For this purpose, we combine a problem-specific geometric al-
gorithm to reduce the solution space, Sequential Least Squares Programming
(SLSQP) to find the optimal transfer location between requests, and Edmonds’
Blossom Algorithm (EBA) to determine which requests should be paired. Com-
pared with direct deliveries, we show in a numerical simulation that dynamic
transfers reduce costs by 15% on average, without violating time-window con-
straints. This is achieved mainly by cutting the non-value-adding return part
of the total trip distance, thus still allowing short delivery times. We confirm
the simulation results by applying our algorithm to real food delivery data in
the city of Bordeaux, where we find an average cost reduction of 11%. We also
show that the effort required for data collection and the complexity of the algo-
rithm are reasonable, and that a simple central coordinator suffices to realize
the reported potential.

The remainder of this chapter is structured as follows. In Section 4.2 we
present a literature overview, and in Section 4.3 we define the problem and its
complexity. We then present our multi-algorithm in Section 4.4, and provide
numerical simulation and case study results in Section 4.5. In Section 4.6, we
synthesize our findings, and highlight opportunities for future research.

4.2 related work and literature contribution

A broader consideration of transshipments has emerged in the last decade and
particularly in recent years. Transshipments are presented mainly as a sub-
problem of VRPs, specifically in relation to two variants, the Pickup and Delivery
Problem (PDP) and the Dial-a-Ride Problem (DARP). The PDP is concerned with
the pickup and delivery of goods and often focuses on minimizing cost or dis-
tance, whereas the DARP deals with the transport of people and also considers
convenience factors. If transshipments are allowed, the two problem types are
usually referred to as the Pickup and Delivery Problem with Transfers (PDPT)
and the Dial-a-Ride Problem with Transfers (DARPT). An overview of research
on these topics is shown in Table 4.1.

Given the complexity of the problem, most authors focus on static problem
setups in which all necessary data are available upfront. Only Zhou and Lin
(2019), Deleplanque and Quilliot (2013a), Thangiah et al. (2007) and Reinhardt
et al. (2013) propose dynamic concepts. As the PDPT is NP-hard (Rais et al.
(2014)), the proposed optimal solutions only consider problems of small size
with six to nine requests (Rais et al. (2014), Pierotti and Van Essen (2021) and
Cortés et al. (2010)). Speranza et al. (2016)’s survey of intermediate facilities
highlights synchronization of vehicles’ arrival and departure as an interesting
variant for future research. However, all but four authors avoid the need for
synchronization by providing storage opportunities. For the PDPT, some kind
of physical storage place for goods is provided, whereas in the DARPT it is as-
sumed that waiting times at transfer locations will be acceptable. Rais et al.
(2014) develop a mixed-integer programming model for the PDPT with a syn-
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Table 4.1: Research dealing with transfers of requests
Transfer points Approach

Authors Problem type Location Storage Design Requests Method Optimal

Takoudjou et al. (2012) PDPT Fixed Yes Static 50 Variable Neighbourhood Descent No
Thangiah et al. (2007) PDPT Fixed Yes Dynamic 159 Insertion-based algorithm No
Danloup et al. (2018) PDPT Fixed Yes Static 25 Genetic algorithm No
Qu and Bard (2012) PDPT Fixed Yes Static 25 Greedy randomized adaptive search procedure No
Wolfinger (2021) PDPT Fixed Yes Static 55 Large neighborhood search No
Peng et al. (2019) PDPT Fixed Yes Static 5 Hybrid partical swarm optimization No
Kerivin et al. (2008) PDPT Fixed Yes Static 15 Branch & Cut No
Masson et al. (2014b) PDPT Fixed Yes Static 85 Branch & Cut No
Wolfinger and Salazar González (2021) PDPT Fixed Yes Static 10 Branch & Cut No
Minic and Laporte (2006) PDPT Fixed Yes Static 100 Insertion-based algorithm No
Voigt and Kuhn (2021) PDPT Fixed Yes Static 100 Adaptive large neighborhood search No
Sampaio et al. (2020) PDPT Fixed Yes Static 100 Adaptive large neighborhood search No
Zhou and Lin (2019) PDPT Fixed Yes Dynamic 45 Adaptive boundary relaxation heuristic No
Oertel (2001) PDPT Fixed Yes Static 40 Column generation heuristic No
Mues and Pickl (2006) PDPT Fixed Yes Static 70 Column generation heuristic No
Masson et al. (2013) PDPT Fixed Yes Static 193 Adaptive large neighborhood search No
Rais et al. (2014) PDPT Fixed No Static 7 Mixed integer programming Yes
Shang and Cuff (1996) DARPT Fixed Yes Static 9 Multi-objective heuristic No
Masson et al. (2014a) DARPT Fixed Yes Static 193 Adaptive large neighborhood search No
Pierotti and Van Essen (2021) DARPT Fixed Yes Static 9 Mixed integer linear programming Yes
Cortés et al. (2010) DARPT Fixed Yes Static 6 Branch & Cut Yes
Hammouda et al. (2020) DARPT Fixed Yes Static 10 Simulated annealing No
Masson et al. (2012) DARPT Fixed Yes Static 193 Adaptive large neighborhood search No
Deleplanque and Quilliot (2013b) DARPT Fixed Yes Static 144 Adaptive large neighborhood search No
Bögl et al. (2015) DARPT Fixed Yes Static 40 Branch & Cut No
Schönberger (2017) DARPT Fixed Yes Static 100 Genetic algorithm No
Twist et al. (2021) DARPT Fixed No Static 500 Simulated annealing No
Reinhardt et al. (2013) DARPT Fixed No Dynamic 555 Simulated annealing No
Deleplanque and Quilliot (2013a) DARPT Dynamic Yes Dynamic 96 Insertion-based algorithm No

Our research PDPT Dynamic No Static 100 Geometric heuristic with SLSQP and EBA No

chronization constraint for transshipments. They optimize the problem solu-
tion with seven requests, but with fixed transfer points at pickup and delivery
nodes. Reinhardt et al. (2013) investigate passengers with reduced mobility in
an airport environment, who cannot be left alone and thus require synchro-
nization during transfers. The authors present a simulated annealing-based
greedy heuristic in combination with local search using advanced neighbor-
hoods. They optimize the problem with up to 555 passengers in a dynamic
environment by maximizing the number of passengers taken care of while
minimizing excess time. However, they consider a maximum of four trans-
fer points with fixed locations. Their solution is improved by Twist et al. (2021),
at the expense of abandoning the dynamic environment. To our knowledge,
only Deleplanque and Quilliot (2013a)’s study discusses the use of dynamic
transfer points, but they do not impose synchronization. Given the dynamic
environment in which they analyze up to 96 requests, it is unclear how many
are considered simultaneously.

In summary, given the problem’s complexity, most research focuses on non-
optimal solutions, considers few transfer points with fixed locations, and offers
storage opportunities to avoid synchronization constraints.

However, in situations where direct deliveries are made in urban areas, for
example by restaurant-managed drivers, the number of requests may be high,
and physical storage facilities to allow transfers may be costly or even infea-
sible, and sometimes unsuitable for perishable products. Nevertheless, urban
areas with high road density allow drivers to meet almost anywhere for imme-
diate product transfers. Our research addresses this opportunity by providing a
multi-algorithm to solve large problem instances in which the number of trans-
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shipment points is unlimited, their locations dynamic, and transfers synchro-
nized. Our research thus contributes to the presented literature in considering
a unique combination of transfer point characteristics that have not previously
been considered.

4.3 problem definition

4.3.1 Notation and cost evaluation

We consider a Cartesian coordinate system in a two-dimensional Euclidean
space. We define a set of delivery requests R and a set of homogeneous vehicles
V with unit-sized capacity Q. The load of request r ∈ R is transported from
pickup point pr ∈ P to delivery point dr ∈ D. All requests are known upfront,
and their loads are dispatched at once and must be delivered within a time-
window constraint twr. Each load consumes the capacity Q, so a vehicle can
carry only one load at any given time. A vehicle vr ∈ V conducts one trip,
starting and ending at pr, resulting in a fleet size of |V | = |R|. We consider
two options. The first represents the classic case of direct shipments, where
vehicle vr picks up r at pr, delivers the load to dr and returns to pr. In the
second option, a central decision-maker exists that coordinates a network of
businesses that allow transshipments between each other. In this option, we
relax the pairing constraint between vr and r and allow vr to meet one, and
only one, other vr ′ at any transfer point tr,r ′ . The constraint of a maximum
of one transfer, also used by Deleplanque and Quilliot (2013a), reflects realistic
setups, as further transfers would reduce the perceived convenience (Masson
et al. (2014b)). At the transfer point, vr hands over r to vr ′ and in turn receives
r ′, after which vr then delivers r ′ to dr ′ and returns to pr. Similarly, vr ′ delivers
r to dr and returns to pr ′ . Loads cannot be stored at tr,r ′ , so synchronized
transfers are required and transfer times are ignored. Hence, waiting time
wtvr,vr ′ applies if vr or vr ′ arrive at tr,r ′ before the other. The maximum number
of transfer points is |V |

2 if each vehicle meets another.
In our problem formulation, one time unit equals one distance unit. The

Euclidean distance between two coordinates c and c ′ is given by Equation 4.1,
and thus holds the triangle inequality:

d(c, c ′) =
√
(c ′x − cx)2 + (c ′y − cy)2. (4.1)

If two requests, r and r ′, are under investigation for a potential transfer, we
denote them as a request pair rpr,r ′ . For each request pair, we differentiate
between the total cost of either not using a transfer location (c(rpr,r ′)) or using
one (c(rpr,r ′ , tr,r ′)).

In Equation 4.2, we determine the cost of a request pair without using a trans-
fer location by summing the delivery and return distances for both requests, r
and r ′:

c(rpr,r ′) = d(pr,dr) + d(dr,pr)

+d(pr ′ ,dr ′) + d(dr ′ ,pr ′).
(4.2)



50 dynamic transfers with perfect synchronization

In Equation 4.3, if a transfer location tr,r ′ is used, the cost of rpr,r ′ is cal-
culated by combining the distance traveled by vr and vr ′ . The cost of vr is
calculated as the distance from pickup location pr to transfer location tr,r ′ , vr’s
potential waiting time for vr ′ at tr,r ′ if the distance from pr ′ to tr,r ′ is longer,
the distance traveled by vr to deliver r ′ to pr ′ after the transfer, and vr’s return
to pr. The cost of vr ′ is calculated analogously:

c(rpr,r ′ , tr,r ′) = d(pr, tr,r ′) + max(d(pr ′ , tr,r ′) − d(pr, tr,r ′), 0)

+d(tr,r ′ ,dr ′) + d(dr ′ ,pr)

+d(pr ′ , tr,r ′) + max(d(pr, tr,r ′) − d(pr ′ , tr,r ′), 0)

+d(tr,r ′ ,dr) + d(dr,pr ′).

(4.3)

A feasible solution with cost c(rpr,r ′ , tr,r ′) is given if the delivery times of r
and r ′ do not violate time constraints twr and twr ′ respectively. Equation 4.4
shows the constraint formulation for r:

d(pr, tr,r ′) + max(d(pr ′ , tr,r ′) − d(pr, tr,r ′), 0) + d(tr,r ′ ,dr) ⩽ twr. (4.4)

4.3.2 Problem complexity

The complexity of the formulated problem increases with the number of re-
quests. A simple problem with four requests is shown in Figure 4.2.

Graphical representation of set R with |R|=4

Request A

Request BRequest D

Request C

Request pairs

rpA,B: (A paired with B)

rpA,C: (A paired with C)

rpA,D: (A paired with D)

rpB,C: (B paired with C)

rpB,D: (B paired with D)

rpC,D: (C paired with D)

Pair combinations

pc1: [rpA,B and rpC,D] 

pc2: [rpA,C and rpB,D] 

pc3: [rpA,D and rpB,C]

Figure 4.2: Example of transfer complexity with four requests

Each request may involve a transshipment with one of the other requests,
resulting in a total of six request pairs to be evaluated. As the order within pairs
does not matter, the total number of potential request pairs |RP| is calculated
using the binomial coefficient (Equation 4.5):

|RP| =

(
n

k

)
=

(
|R|

2

)
=

|R|!
2!(|R|− 2)!

|R| ∈N + 1. (4.5)

It must then be decided which combination of request pairs minimizes the
total distance. Choosing one pair affects the solution space, as other pairings
become unavailable. If, for example, request A in Figure 4.2 is chosen to meet
with B, then neither A nor B can be involved in a transfer with C or D. The
only remaining request pair which can be added to the current solution is
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the transfer between C and D. To calculate the total number of possible pair
combinations PC, we use Equation 4.6:

|PC| =


∏M=

|R|−2
2

m=0 (|R|− 2k− 1) |R| ∈ 2N∏M=
|R|−1

2

m=0 (|R|− 2k− 1) |R| ∈ 2N + 1.
(4.6)

While the number of request pairs grows moderately with r, the pair com-
binations increase drastically owing to the property of geometric series. Ap-
pendix C.1 shows the number of request pairs and pair combinations for var-
ious values of |R|. A realistic magnitude of 50 requests requires consideration
of 1, 225 request pairs and investigation of 5.8× 1031 pair combinations, hence
becoming infeasible.

4.3.3 Brute-force solution

A brute-force algorithm to solve the problem is shown in Algorithm 1.

Algorithm 1 Brute-force algorithm for direct deliveries with dynamic transfers

Require: CG, R, P, D, TW, T

Ensure: |R| ∈ 2N, d(c, c ′)←
√
(c ′x − cx)2 + (c ′y − cy)2

1: procedure BruteForce(R)
2: RP = All request pairs rpr,r ′ of r∪ r ′ ∈ R with r ̸= r ′

3: for rpr,r ′ in RP do
4: CostWithoutTransfer = c(rpr,r ′)
5: BestCost = CostWithoutTransfer

6: for t in T do
7: CostWithTransfer = c(rpr,r ′ , tr,r ′)
8: if CostWithTransfer < BestCost then
9: if d(pr, tr,r ′) + max(d(pr ′ , tr,r ′) − d(pr, tr,r ′), 0)

+d(tr,r ′ ,dr ′) ⩽ twr, then
10: if d(pr ′ , tr,r ′) + max(d(pr, tr,r ′) − d(pr ′ , tr,r ′), 0)

+d(tr,r ′ ,dr) ⩽ twr ′ , then
11: BestCost = CostWithTransfer

12: Improvementr,r ′ = CostWithoutTransfer−BestCost

13: PC = All combinations of rp ∈ RP such that no element of a rp

appears in another pair within a pair combination pc

14: ImprovementOfBestPC = 0

15: for pc in PC do
16: CostOfPC =

∑RP
n=1 Improvementr,r ′

17: if CostOfPC > ImprovementOfBestPC then
18: ImprovementOfBestPC = CostOfPC

The input is given in the form of a coordinate grid CG with fixed side length
and sets R with P and D, time-window constraints TW and potential transfer
locations T . The latter are all, theoretically infinite, coordinates in CG. First,
all potential request pairs are created by pairing each r with all r ′ ∈ R \ r. For
each request pair, the baseline cost c(rpr,r ′) of direct delivery without transfer
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is calculated. Next, the lowest cost of using a transfer location c(rpr,r ′ , tr,r ′)

is calculated for each request pair. Therefore, each coordinate in the defined
coordinate grid is tested as a potential transfer location. If the delivery time
using the transfer location does not violate the time-window constraint, and
c(rpr,r ′ , tr,r ′) improves c(rpr,r ′), then a new best cost is found and the improve-
ment is stored. Ultimately, the total improvement for each possible pair com-
bination is calculated by adding the improvements for each request pair. The
pair combination with the highest total improvement provides the final solu-
tion. For example, suppose we have 50 delivery requests in a 100x100 grid
and, for simplicity, the pickup, delivery and transfer points are located only
at integer coordinates. Neglecting the minuscule calculations, one would need
to calculate the baseline cost for 1,225 transfer scenarios. Then, for each of the
1,225 scenarios, the cost of 10,000 varying transfer locations would be computed
and eventually fed into 5.8× 1031 request pair combinations.

Finding the optimum by conducting a full enumeration, as in this algorithm,
is inefficient and computationally expensive. Three steps in Algorithm 1 are
especially problematic in that regard. First, considering all request pairs (line 2)
is excessive and increases the complexity of the following steps in finding the
optimal transfer location and pair combinations. Second, testing all locations
(lines 6-12) to find the optimal transfer location is cumbersome because, theo-
retically, an infinite number of locations in a two-dimensional Euclidean space
must be checked. Third, for a problem of practical size, the number of pair
combinations to be checked (lines 13-18) becomes infeasible given the nature of
geometric series. In the next section, we present a problem-specific algorithm
consisting of three sub-algorithms to solve each of these problems in reasonable
computation time.

4.4 algorithm formulation

4.4.1 Sub-algorithm 1: Reducing the solution space

We show that a full enumeration is computationally expensive. One difficulty
is that all request pairs are initially considered, although, intuitively, some pairs
should not be examined. Two examples of such cases are shown in Figure 4.3.

(a) Distant position between two requests (b) Adverse relational position between two requests
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Figure 4.3: Exemplary request pairs with no improvement through transfers

Some deliveries (Figure 4.3a) are so far apart that either the combined dis-
tance to a common transfer location exceeds the combined distance of the two
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delivery trips, or the distance to the new delivery location using a transfer lo-
cation exceeds the time-window constraint. To reduce the solution space based
on unfavorable distances, we can simply remove request pair rpr,r ′ from set RP
according to Equation 4.7:

RP \ rpr,r ′ if =


d(pr,pr ′) ⩾ d(pr,dr) + d(pr ′ ,dr ′) or

d(pr,dr ′) ⩾ twr ′ or

d(pr ′ ,dr) ⩾ twr.

(4.7)

Other deliveries (Figure 4.3b) are in close proximity, but their relative position
makes a transfer obsolete. In the example, the two deliveries run in parallel and
in the same direction. Hence, meeting at a transfer location would only increase
the total distance.

The conditions under which the relative position of two requests leads to a
situation that offers no improvement potential are not intuitive. We propose
a structured approach to evaluate those positions to steer the decision process.
First, we define how the relational position of two requests, r and r ′, is deter-
mined. To do so, we rotate the coordinate plane, such that the request r under
consideration has a vertical position and is directed upwards (Figure 4.4).
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Figure 4.4: Surrounding areas from the perspective of a request

From this perspective, we can define whether a coordinate is located above
dr (top), below pr (bottom) or between pr and dr (middle), and whether it is
placed to the left or right of request r. This yields six surrounding areas: Top
Left (TL), Top Right (TR), Middle Left (ML), Middle Right (MR), Bottom Left (BL)
and Bottom Right (BR). Any other request r ′ with pr ′ and dr ′ can be allocated to
one of these six areas. Consequently, we obtain 36 potential positions of request
r ′ in relation to r (Figure 4.5). For example, the first case (TL-TL) describes a
request r ′ that starts somewhere in the TL area and ends in the same area.

To determine which cases offer no improvement potential, one must under-
stand that two independent conditions favor a transfer of goods.

Condition 1: At least part of r ′ is next to r (areas ML or MR) and the direction
of r ′ is opposite to that of r (that is any direction facing downwards). For an
example, see Figure 4.1a.
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Figure 4.5: All positions of request r’ in relation to r

Condition 2: Requests r and r ′ have a direct or indirect crossing point. An
indirect crossing point is apparent if a crossing would exist assuming the vector
of request r is extended beyond the delivery location dr. For an example, see
Figure 4.1b.

Based on Condition 1, we exclude six cases (ML-TL, MR-TR, BL-ML, BL-TL,
BR-TR, BR-MR) in which r ′ is (in some part) next to r but in a similar direc-
tion. As both, r and r ′ are directed upwards with no direct crossing, there is no
transfer location that could improve the base scenario. Two cases, ML-ML and
MR-MR, can only be excluded if r ′ is not directed downwards. We also exclude
six cases (TL-TL, TR-TR, BL-BL, BL-BR, BR-BR, BR-BL) based on Condition 2. In
these scenarios, no direct or indirect crossing exists between r and r ′. Another
four cases (BL-TR, BL-MR, BR-ML, BR-TL) are excluded if r ′ undercuts r, re-
sulting in a no-cross situation. To determine which of the 36 cases holds for a
given request pair, we propose the transformation shown in Figure 4.6.
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Figure 4.6: Transformation of transfer scenarios to determine relational positions

First, we take the initial request pair (Figure 4.6a) consisting of request pair
r and r ′, and shift it so that pr,∗ starts at the origin (Figure 4.6b). Equations 4.8
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show how to transform the initial x and y-coordinates (cx, cy) of the two re-
quests into shifted coordinates (cx∗ , cy∗):

cx∗ = cx − pr,x

cy∗ = cy − pr,y.
(4.8)

Second, we calculate the angle α between the vector of r∗ and the y-axis
(Figure 4.6c) using Equation 4.9:

α = cos−1

 dr,y∗√
d2
r,x∗ + d2

r,y∗

 . (4.9)

Finally, we use the obtained angle α to rotate the entire request pair (Fig-
ure 4.6d) using Equation 4.10 so that pr,∗∗ starts at the origin and dr,∗∗ lies
above it on the y-axis:[

cx∗∗

cy∗∗

]
=

[
cos(α) sin(α)

− sin(α) cos(α)

]
×

[
cx∗

cy∗

]
. (4.10)

RelationalPosition(rpr,r ′) is the function that conducts the steps in Equa-
tions 4.8 to 4.10 to determine which of the 36 relational positions between r

and r ′ holds, and to decide whether to exclude rpr,r ′ from RP. Algorithm 2

then reduces the initial solution space in which all request pairs are considered.
It first generates all request pairs, then excludes them if the distance between
two requests is too large to find meaningful transfer locations and finally ap-
plies the RelationalPosition(rpr,r ′) function to exclude further request pairs
if their relational position is unfavorable.

Algorithm 2 Solution Space Reduction

Require: R, P, D, TW

Ensure: |R| ∈ 2N, d(c, c ′)←
√
(c ′x − cx)2 + (c ′y − cy)2

1: procedure SolutionSpaceReduction(RP)
2: RP = All request pairs rpr,r ′ of r∪ r ′ ∈ R with r ̸= r ′

3: for rpr,r ′ in RP do
4: if d(pr,pr ′) ⩾ d(pr,dr) + d(pr ′ ,dr ′) then RP \ rpr,r ′

5: else if d(pr,dr ′) ⩾ twr ′ then RP \ rpr,r ′

6: else if d(pr ′ ,dr) ⩾ twr then RP \ rpr,r ′

7: else RelationalPosition(rpr,r ′)

4.4.2 Sub-algorithm 2: Finding the optimal transshipment location

Using the previous algorithm, we have reduced the solution space by excluding
request pairs whose cost cannot be improved through transfer locations. For
each of the remaining request pairs, we must now determine the best feasible
transfer location tr,r ′,Opt. Only then can we compare the cost without transfers
c(rpr,r ′) to the cost with transfers c(rpr,r ′ , tr,r ′) and decide whether a transfer
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location improves the initial situation of direct deliveries. To find tr,r ′,Opt, we
formulate the following minimization problem (Equations 4.11):

min
tr,r ′ ,Opt

d(pr, tr,r ′) + d(pr ′ , tr,r ′)

+max(d(pr ′ , tr,r ′) − d(pr, tr,r ′),d(pr, tr,r ′) − d(pr ′ , tr,r ′))

+d(tr,r ′ ,dr) + d(tr,r ′ ,dr ′)

s.t. d(pr, tr,r ′) + max(d(pr ′ , tr,r ′)

−d(pr, tr,r ′), 0) + d(tr,r ′ ,dr ′) ⩽ twr

d(pr ′ , tr,r ′) + max(d(pr, tr,r ′)

−d(pr ′ , tr,r ′), 0) + d(tr,r ′ ,dr) ⩽ twr ′ .

(4.11)

The objective function minimizes the combined delivery cost of r and r ′ when
using a transfer location. The cost of delivery is based on Equations 4.2 and 4.3,
but ignores the return distances d(dr ′ ,pr) and d(dr,pr ′) as they do not depend
on tr,r ′ . The two constraints ensure that the delivery time when using a transfer
location does not exceed time windows twr and twr ′ .
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Figure 4.7: Costs of various transfer locations

Ignoring time window constraints, Figure 4.7 shows the location of tr,r ′,Opt

for three example request pairs. The upper illustration (Figure 4.7a) shows
two requests falling under Condition 1, as introduced in subsection 4.4.1, where
requests are next to each other in opposing directions. The diagonal lighter
shaded area from top left to bottom right indicates that tr,r ′ generally yields
lower cost if the distance to the two pickup locations is equal, leading to no
waiting time at the transfer location. The bottom illustration shows a three-
dimensional representation of the total cost c(rpr,r ′ , tr,r ′) for the upper exam-
ple, depending on x and y-coordinates for tr,r ′ . Figures 4.7b and 4.7c show
examples for Condition 2 with a direct and indirect crossing, respectively. All
three examples show convex cost functions for tr,r ′ , which holds for all combi-
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nations of two requests and one transfer location. This is owing to the fact that
the squared Euclidean distance function between two coordinates is convex. As
the sum of convex functions is again convex, our cost function, comprising of
four distance functions, is also convex.

To further simplify the optimization problem, we state that it never makes
sense for a request r to wait for another request r ′, as it is always better to be
on the move than to waste time waiting. We conclude that the optimal trans-
shipment point will be located at a coordinate equally distant from pr and pr ′ .
Using the x and y-coordinates of both requests (pr,x, pr,y, pr ′,x, pr ′,y), we derive
the equation on which the optimal transfer location must lie. Equation 4.12 de-
scribes the midpoint between pr and pr ′ and is thus a potential transshipment
point with no waiting time:

tx,y,mid = (
pr,x + pr ′,x

2
,
pr,y + pr ′,y

2
). (4.12)

The equation sought for the optimal transfer location is perpendicular to the
equation connecting pr and pr ′ , hence its slope at is described by Equation 4.13:

at = −
pr ′,x − pr,x

pr ′,y − pr,y
. (4.13)

The resulting Equation 4.14 describes the function on which tr,r ′,Opt will lie:

ty = −
pr ′,x − pr,x

pr ′,y − pr,y
tx +

pr,y + pr ′,y

2
+

pr ′,x − pr,x

pr ′,y − pr,y

pr,x + pr ′,x

2
. (4.14)

This is used in the optimization problem to circumvent the max() function and
to make the objective function dependent on only one variable (tx instead of tx
and ty).

To find the optimal transfer location per request pair efficiently, we use the
SLSQP algorithm. SLSQP takes a sequential approach to nonlinear optimiza-
tion with inequality constraints (Kraft (1988)). It is a generalization of the
Karush-Kuhn-Tucker (KKT) conditions which consider problems with equality
constraints, while KKT is itself a generalization of the Newton method for un-
constrained problems (Nocedal and Wright (2006)). For the mathematical op-
timization, the function to be optimized must be twice continuously differen-
tiable. Both inequality constraints and differentiability are true for our problem.
As the starting point for our optimization, we use Equation 4.12.

We define OptimalTransferLocation(rpr,r ′) as the function that implements
the SLSQP algorithm to find the optimal transfer location for two requests, r and
r ′.

4.4.3 Sub-algorithm 3: Optimizing the combination of request pairs

Having determined the lowest cost possible for each request pair rpr,r ′ , we
must determine which pairs to combine in order to minimize the total cost.
Rather than testing all pair combinations |PC|, we transfer our problem to the
area of graph theory and use existing algorithms to solve the known assignment
problem.
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The generalized assignment problem deals with matching two groups of the
same size with each other (bipartite graph), such as a group of drivers with
a group of vehicles. In cases where not all drivers are qualified to drive ev-
ery car, the Hopcroft-Karp algorithm (Hopcroft and Karp (1971)) aims to find
the maximum number of matches. Furthermore, if drivers have preferences
for particular vehicles, the Hungarian algorithm (Kuhn (1955), Munkres (1957))
produces solutions for maximum weighted matchings. However, there are no
two distinct groups to be matched in our problem, as each request r could be
matched with any other request r ′ ̸= r. Hence, we use Edmonds’ Blossom Al-
gorithm (EBA) to create maximum matchings, as it does not require the general
graph to be bipartite (Edmonds (1965a), Edmonds (1965b)).

The EBA considers vertices v ∈ V and edges e ∈ E, defining an undirected
graph G = (V ,E). It finds the maximum matchings M, with a matching m being
defined as an edge connecting two vertices while each vertex is connected to a
maximum of one edge. The EBA builds an augmenting path within G, which
is a path starting and ending at a free vertex while alternating matched and
unmatched edges. After finding such an augmented path, the algorithm inverts
it to increase the number of matchings by one. A crucial part of the EBA is that
when a circular path of odd length is discovered, the algorithm contracts it
(the blossom). This postpones the decision to create an augmented path and
supports the linkage of further augmenting paths to the existing ones. For a
detailed explanation, see Feil (2016). For our purpose, we use Kolmogorov’s
(2009) extension of the EBA to solve the maximum weight-matching problem.

To apply the extended EBA to our problem, we must define three elements:
vertices, edges and weights. For the vertices, we define the requests in R. The
edges are the connections between two requests r and r ′ and represent our
request pairs rpr,r ′ (found via sub-algorithm 1). The weights are the potential
distance improvements per request pair; that is, either zero for the independent
fulfillment cost of both requests or, if better and feasible, the improvement of
using a transfer location (found via sub-algorithm 2). We obtain an undirected
graph in which each request-node is connected to all other request-nodes. We
define MaximumWeightedMatchings(RP) as the function that implements
the weighted EBA to find the best combination of request pairs minimizing the
total cost (sub-algorithm 3).

We can now formulate our multi-algorithm by combining all three sub-algo-
rithms (Algorithm 3) to minimize the cost of direct deliveries by using dynamic
transshipments with perfect synchronization.

Algorithm 3 Algorithm for direct deliveries with dynamic transshipments

Require: R, P, D, TW

Ensure: |R| ∈ 2N, d(c, c ′)←
√

(c ′x − cx)2 + (c ′y − cy)2

1: procedure DynamicTransferAlgorithm(R)
2: SolutionSpaceReduction(RP)
3: OptimalTransferLocation(rpr,r ′)
4: MaximumWeightedMatchings(RP)
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4.5 algorithm results

4.5.1 Numerical simulation

Our algorithm is tested on 30 randomly generated scenarios, each of which is
simulated 100 times. For each scenario, we use a squared coordinate grid with
a side length of 100. The scenarios differ in the number of requests considered
and the time-window constraints imposed. The number of randomly generated
requests assumes values of 10, 20, 30, 40, 50, and 100. For each request scenario,
we consider maximum delivery times of 10, 20, 30, 40 and 50. The pickup loca-
tions are randomly selected, with the implication that no two pickup locations
can be located at the same coordinate. The delivery locations within each re-
quest are chosen such that they can be directly delivered to without violating
the time constraints. We also assume that each delivery location is unique. As
a naming convention for each scenario, we use R|R|− TW|TW|. For example,
R10-TW10 describes a scenario with 10 requests and a time-window constraint
of 10. For each scenario, we average the results across all 100 simulations. We
report the total initial cost, i.e., the delivery and return trip of all requests in
the given scenario and the standard deviation of the initial cost. We show sep-
arately the cost of delivery and the cost of returns, which are equal in the case
of direct deliveries. We also report the total and percentage cost improvement
achieved by our algorithm, and the total and percentage change of the delivery
and return trip. The results are shown in Table 4.2.

With regard to total cost, we see two intuitive trends. The total cost grows
with increasing numbers of requests and larger time windows in a given re-
quest scenario. A similar trend is observed in the total cost improvement. The
more requests are available in a fixed grid, the more likely it becomes that two
requests find a transfer location that reduces their combined cost. Increasing
the time-window constraint allows the search radius of each request r to be
extended to partner with another request r ′, which also increases the cost re-
duction potential. Scenario R10-TW10 achieves almost no cost improvement
with an average of only 0.1%. Given the low number of requests and narrow
time windows, only one transshipment opportunity is found in every ten sim-
ulations. With the most relaxed time-window constraint of 50, our algorithm
improves the R10 scenario by 8.4%. Comparing R10-TW10 with scenarios in
which either the requests or the time windows are increased by 100% reveals
that time windows have a greater impact on the solution. R10-TW20 shows a
1.5% improvement, while R20-TW10 produces a 0.8% improvement. A similar
relationship is observed if, for example, R20-TW10 is compared with R20-TW20

and R40-TW10, or R50-TW10 with R50-TW20 and R100-TW10. The general per-
formance improvement in relation to the number of requests and time-window
constraints is shown in Figure 4.8. Starting with TW10, it can be seen that
doubling the time window (TW20) increases the improvement approximately
threefold. Another duplication to TW40 shows an improvement increase by a
factor of two. We also notice that, especially for a lower number of requests
between 10 and 30, larger time windows enable steeper improvements.

While TW10 and TW20 have a rather constant increase across all requests,
TW30 and TW40 almost triple and TW50 doubles the impact when requests
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Table 4.2: Numerical simulation results

Cost at initial setup Cost improvement after algorithm

Scenario |R| tw Total (Std. Dev.) Delivery/Return Total (%) Delivery (%) Return (%) Transfers

R10-TW10 10 10 131 (15) 65 0.2 (0.1) -0.1 (-0.2) 0.3 (0.5) 0.1
R10-TW20 10 20 257 (31) 128 4.2 (1.5) -0.5 (-0.4) 4.7 (3.7) 0.4
R10-TW30 10 30 380 (49) 190 14.6 (3.8) -2.4 (-1.3) 17.0 (8.9) 1.1
R10-TW40 10 40 499 (64) 249 25.3 (4.9) -3.7 (-1.5) 29.0 (11.6) 1.4
R10-TW50 10 50 605 (75) 303 52.0 (8.4) -7.2 (-2.4) 59.3 (19.6) 2.2

R20-TW10 20 10 268 (20) 134 2.4 (0.8) -0.6 (-0.4) 2.9 (2.2) 0.6
R20-TW20 20 20 521 (43) 260 16.2 (3.1) -2.7 (-1.0) 19.0 (7.3) 1.9
R20-TW30 20 30 776 (60) 388 57.7 (7.4) -7.7 (-2.0) 65.4 (16.9) 3.8
R20-TW40 20 40 1021 (85) 510 103.7 (10.1) -13.4 (-2.6) 117.0 (22.9) 5.0
R20-TW50 20 50 1251 (112) 626 169.9 (13.4) -16.7 (-2.7) 186.6 (29.8) 6.0

R30-TW10 30 10 395 (27) 198 5.3 (1.3) -1.2 (-0.6) 6.5 (3.3) 1.4
R30-TW20 30 20 782 (56) 391 36.8 (4.6) -6.4 (-1.6) 43.2 (11.0) 4.1
R30-TW30 30 30 1153 (77) 576 106.5 (9.) -13.7 (-2.4) 120.2 (20.9) 7.0
R30-TW40 30 40 1501 (112) 750 200.0 (13.) -21.4 (-2.9) 221.4 (29.5) 9.0
R30-TW50 30 50 1862 (121) 931 307.2 (16.4) -29.0 (-3.1) 336.2 (36.1) 10.2

R40-TW10 40 10 529 (29) 264 8.2 (1.5) -1.8 (-0.7) 10.0 (3.8) 2.1
R40-TW20 40 20 1036 (55) 518 63.6 (6.1) -10.1 (-1.9) 73.7 (14.2) 6.9
R40-TW30 40 30 1534 (92) 767 169.5 (11.0) -21.3 (-2.8) 190.8 (24.9) 10.7
R40-TW40 40 40 2013 (118) 1007 302.6 (14.9) -29.7 (-2.9) 332.3 (33.0) 13.1
R40-TW50 40 50 2479 (177) 1240 459.9 (18.4) -33.4 (-2.7) 493.3 (39.8) 14.4

R50-TW10 50 10 665 (32) 332 14.1 (2.1) -2.8 (-0.8) 16.9 (5.1) 3.4
R50-TW20 50 20 1291 (55) 646 96.8 (7.4) -13.4 (-2.1) 110.2 (17.1) 9.9
R50-TW30 50 30 1894 (102) 947 222.8 (11.7) -24.6 (-2.6) 247.4 (26.1) 14.1
R50-TW40 50 40 2497 (136) 1248 414.1 (16.5) -37.3 (-3.0) 451.4 (36.2) 17.1
R50-TW50 50 50 3073 (163) 1536 613.2 (19.9) -45.3 (-2.9) 658.5 (42.9) 18.9

R100-TW10 100 10 1326 (44) 663 55.5 (4.1) -9.0 (-1.4) 64.6 (9.7) 12.1
R100-TW20 100 20 2602 (101) 1301 309.4 (11.8) -35.9 (-2.8) 345.3 (26.5) 28.3
R100-TW30 100 30 3828 (139) 1914 668.9 (17.4) -56.5 (-3.0) 725.4 (37.9) 36.1
R100-TW40 100 40 4992 (184) 2496 1085.2 (21.7) -67.5 (-2.7) 1152.7 (46.2) 39.5
R100-TW50 100 50 6166 (194) 3083 1549.9 (25.1) -71.6 (-2.3) 1621.5 (52.6) 41.8

Average (15.1) (-2.0) (21,3) 10.8
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Figure 4.8: Impact of multi-algorithm for each scenario

increase from 10 to 30. The Delivery(%) and Return(%) columns in Table 4.2
reveal the origin of the overall cost reduction. While it is obvious that trip
times for direct deliveries must increase if transshipment points are used, we
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see that the delivery cost rises little, with a maximum observation of 3.1%. In
contrast, the return cost is reduced substantially. In 21 out of 30 scenarios, the
cost reduction for the return trip assumes double-digit percentages, with up to
52.6% in scenario R100-TW50. In all scenarios except R10-TW10 and R10-TW20,
at least one transfer location is found on average. In R100-TW50, roughly 42

transfer locations are used, resulting in 84 requests utilizing transfers. Just 16

out of 100 requests remain in their original setup with direct deliveries. Even
the largest scenario is computed in less than three minutes. We conclude that
our multi-algorithm for dynamic transshipments with perfect synchronization
during direct deliveries potentially yields substantial cost reduction, especially
for setups with many requests and large time windows.

4.5.2 Food delivery case study

In addition to the numerical simulation, we test our algorithm on the case of
food deliveries in the city of Bordeaux. For each consignment, the available
data contain the latitude, longitude, date and timestamp of pickup and deliv-
ery. Based on the timestamp of order placement, we aggregate all orders into
increments of five minutes. We assume that all orders placed within these five-
minute time horizons could be considered simultaneously for optimization by
a central decision-maker. From a total observation period of three months, we
select 10 days that have more than 20 requests within a five-minute time bracket
(Table 4.3).

Table 4.3: Algorithm results for food delivery data in Bordeaux
Cost at initial setup Cost improvement after algorithm

Case ID Date Hour Minute |R| tw Total Delivery/Return Total (%) Delivery (%) Return (%) Transfers

Bordeaux_1 2016-10-23 8pm 05-09 24 3 59 29 6.8 (11.5%) 7.0 (23.9%) -0.3 (-0.9%) 7

Bordeaux_2 2016-10-23 8pm 40-44 22 3 64 32 7.2 (11.3%) 8.3 (26.0%) -1.1 (-3.3%) 9

Bordeaux_3 2016-11-04 8pm 05-09 25 3 79 40 8.4 (10.6%) 10.4 (26.2%) -2.0 (-5.0%) 9

Bordeaux_4 2016-11-10 8pm 10-14 24 3 54 27 3.2 (6.0%) 4.2 (15.4%) -0.9 (-3.5%) 9

Bordeaux_5 2016-11-11 7pm 35-39 27 3 66 33 4.9 (7.5%) 5.9 (18.1%) -1.0 (-3.2%) 9

Bordeaux_6 2016-12-09 8pm 20-24 23 3 59 30 5.8 (9.8%) 7.1 (24.1%) -1.3 (-4.5%) 8

Bordeaux_7 2017-01-12 8pm 25-39 24 3 57 29 6.3 (11.0%) 6.8 (23.7%) -0.5 (-1.6%) 6

Bordeaux_8 2017-01-13 8pm 35-39 25 3 52 26 5.4 (10.4%) 5.7 (22.1%) -0.4 (-1.4%) 7

Bordeaux_9 2017-01-15 7pm 25-39 24 3 51 26 9.7 (18.8%) 10.4 (40.4%) -0.7 (-2.8%) 9

Bordeaux_10 2017-01-22 9pm 00-04 31 3 64 32 6.3 (9.8%) 7.0 (21.6%) -0.6 (-2.0%) 9

Average (10.6%) (-2.9%) (24.0%) 8.2

For example, the case labeled "Bordeaux_1" contains 24 requests placed on
October 23, 2016 between 08:05:00pm and 08:09:59pm. Given that the longest
deliveries are required to cover approximately 2.7 kilometers, we set the deliv-
ery constraint to 3.0 kilometers. Using our algorithm, the distance covered for
these 10 observations is reduced by 11% on average. This is achieved by using
eight transshipments that reduce the return distance by 24%, while the deliv-
ery distance is increased by only 3%. These results are in line with the results
of comparable scenarios in our numerical simulation (R20-TW10 - R30-TW50),
and thus confirm our findings.
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4.6 discussion and conclusion

4.6.1 Synthesis

In this chapter, we propose consideration of dynamic transshipments with per-
fect synchronization for direct deliveries. We show that the problem’s complex-
ity makes a full enumeration infeasible for instances of practicable size. A prob-
lem size of 100 requests yields nearly 5,000 potential request pairs and requires
2.7×1078 request pair combinations to be tested. We present a problem-specific
combination of three algorithms to solve this problem. The first evaluates the
relational position of two requests r and r ′ and, based on 36 structured cases,
decides which pairs to exclude from the solution space. The second formulates
the optimization problem to find the best transfer location while taking account
of time-window constraints, which we simplify and solve using SLSQP. Finally,
we transfer the request pair combination problem to graph theory, and leverage
EBA to determine the lowest overall distance. In an extensive scenario analysis,
we show that our algorithm substantially reduces the initial distance of direct
deliveries by 15% on average, and by up to 25% in the largest scenario, while
adhering to the time-window constraints. We demonstrate that the total dis-
tance is best reduced by relaxing time windows rather than adding requests to
increase the chance of transshipments. We confirm our findings in a case study
using food delivery data from the city of Bordeaux and show that the algorithm
achieves an average distance reduction of 11%.

The main limitations of our research are as follows. First, we assume hub-
specific delivery vehicles that return to their origin after direct deliveries, such
as private delivery vehicles operated by a pizzeria. This assumption is spe-
cific to our problem setup and would differ for external logistics services that
conduct deliveries for multiple clients. For that purpose, our algorithm would
need to be implemented as a sub-problem of routing optimization. A further
limitation is our assumption of absolute flexibility to place transfer locations.
Although this may be approximately true for city logistics with a dense net-
work of roads, it is less realistic for rural areas with, for example, large and
inaccessible fields or forests. In our setup, assuming that transfers do not con-
sume time is not a limiting factor, as this is analogous to reducing the delivery
time window, which is implicitly considered in our scenarios. However, in an
optimization in which multiple deliveries are subsequently served over a fixed
period of time, it is necessary to include transfer times. Positive transfer times
might result in being able to fulfill fewer orders overall. Lastly, we do not
consider quality-related factors. For example, temperature-controlled deliver-
ies might be adversely affected by transshipments, especially if more than one
transfer were allowed. Transshipments also increase the probability of errors,
such as dropping or mixing up products during the transfer process.

Our findings have the following managerial implications. From a cost per-
spective, allowing sufficiently large time windows to interact with customers is
more important than the volume game of increasing sales numbers. Neverthe-
less, synergy effects and increased profits must be considered in addition to the
cost-only perspective. Furthermore, allowing transfers within direct shipments
substantially reduces the non-value-adding return part of the total trip distance.
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This will enable businesses not only to reduce costs, but also to improve sustain-
ability. For example, reducing the distances driven correlates with reductions
of carbon and other emissions. Reductions in the total required distance will
also translate into fewer vehicles needed for a given number of requests, which
will reduce both congestion and the emissions realized during vehicle produc-
tion. Another effect of lower mileage and fewer cars is reduced demand for
drivers. Given the severe driver shortage in recent years, transshipments might
mitigate this problem.

In addition, given that networks of businesses may participate in such a sys-
tem of transshipment, the complexity of implementation is low for two reasons.
First, the physical effort is moderate, as only one transfer location is added to
the original trip, while the effort to return is reduced. Second, the algorithm
is easily implemented, as few input parameters are required. The algorithm is
also efficient and solves our largest instance in under three minutes.

4.6.2 Future research

Future research might focus on two areas: extending our model, and testing it
in different contexts. One extension might be to increase the number of trans-
shipments allowed per delivery. In a scenario with unlimited transfers, requests
would be taken care of by all vehicles operating on the same linear route, sim-
ilar to airplanes being covered by different air traffic controllers. Furthermore,
a dynamic representation should be considered to allow the optimization to
consider newly added requests in real-time. Another extension might be to
increase the capacity constraints to allow more than one unit load to be carried
per vehicle, which would ultimately result in a routing problem. With regard to
another capacity issue, a non-homogeneous fleet might be of interest, as differ-
ent food places might have varying storage boxes that limit exchanges of loads.
Lastly, including quality parameters might be an option to reflect the quality of
transport, such as the number of transfers or extended delivery times.

Our method might also be applied to other contexts. During the picking
process in warehouses, employees often use picking boxes to collect items for
an order, and keep these boxes until delivery to the packing area. Rather than
having a fixed assignment between box and employee, our algorithm might
help to determine when it would make sense for containers to be exchanged
between employees. Another example might be long-haul transport of vari-
ous kinds. Whenever an underutilized back-haul exists, for example due to
imbalanced market demand or customer networks, transshipments might be
useful. For example, trucks might meet at roadhouses and exchange goods
using truck-mounted forklifts. Ultimately, large industrial business complexes
that use intra-logistic deliveries might benefit from transfers during direct de-
liveries.





5
S U M M A RY A N D O U T L O O K

5.1 synthesis , managerial implications and research contribu-
tions

The research presented in this dissertation was motivated by the critical inter-
mediate role played by warehouses in supply chains, and the opportunities
they offer for competitive cost and service advantages. Novel data sources
and optimization algorithms can be used to improve the 150,000 warehouses
worldwide that account for roughly half of supply chain costs. In our three
research projects, we look at predictions of warehouse equipment breakdowns,
predictions of warehouse employees’ productivity, and the potential for cross-
docking-like transshipments in direct deliveries.

In Chapter 2, we build a predictive maintenance model for Material Han-
dling Equipment (MHE) by forecasting breakdowns. First, we develop a struc-
tured framework to define meaningful prediction features by looking at how
the MHE interacts with the environment. We then combine novel data from
shock sensors with master and usage data on that equipment to generate the
defined features. In a comprehensive study, we analyze eight machine-learning
algorithms and their ability to incorporate these novel data sources. Given the
difficulty of highly imbalanced data (breakdown events occurred on only 125

out of 10,722), the five algorithms capturing non-linear relationships achieve
high prediction performance, with an F1 score of > 0.85. An evaluation of the
costs of breakdowns and maintenance services reveals that, from a cost reduc-
tion perspective, the Random Forest Classifier (RFC) achieves the best results.
With an accuracy of 99%, precision of 93%, recall of 86% and F1 score of 88%, it
detects 108 out of 125 breakdowns, with only eight false positive classifications.
Using a second dataset, we show that the features defined through our frame-
work can be applied analogously. We also achieve similar prediction results,
with an accuracy of 99%, precision of 95%, recall of 82% and F1 score of 88%,
thus showing that our findings are transferable.

From a managerial perspective, we propose that data collection efforts should
focus first on the condition-based, then on time-based factors, and lastly on
master data. We know that OEMs of MHE already install login terminals and
shock sensors as default configurations; hence, data can be obtained at low
cost. Given that master data are usually available at no cost, they should also
be included, even though they contribute only marginally.

The main contribution of this chapter is to contradict the assumption of most
literature that either time- or condition-based factors are responsible for break-
downs, as well as the view that considering both variables would be too com-
plex. First, we show through a feature importance analysis that, in fact, both
contribute to the occurrence of breakdowns. Second, we include master data
as a third data type in addition to time and condition variables, and show
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how such data also contribute to prediction accuracy. Third, we show that
machine-learning algorithms are capable of incorporating all three data types
simultaneously.

In Chapter 3, we predict the productivity of newly hired warehouse asso-
ciates within their first eight weeks of employment using Extreme Gradient
Boosting (EGB). As in Chapter 2, we first develop a framework to capture fac-
tors most likely to impact on productivity, namely the warehouse in which the
operation takes place, the operator, the shift in which the operator is placed
and the product. We collect data from a Logistics Service Provider (LSP) for
two functions on all but the warehouse dimension, and we build an EGB model
to predict productivity on a daily basis for each employee individually. For
comparison, we use the LSP’s actual productivity assumptions, three simple
predictors, and a Random Forest (RF) as additional baselines. Considering all
eight weeks, our model outperforms the prediction accuracy of the LSP and all
other baselines. We show that the EGB improves the Root Mean Squared Er-
ror (RMSE) by 41% in the picking and 52% in the packing function. All three
simple baselines are improved by around 20% in both functions, and the RF

is improved by 5% and 9% in the picking and packing functions, respectively.
Our model performs especially well in the critical first weeks when least infor-
mation is available and productivity variance highest. Compared with the LSP’s
current cost structure, we show that the prediction improvement translates into
a cost reduction of up to 47% in picking and 86% in packing.

With regards to generalizing the method and results, we have two indicators.
First, although the two functions differ considerably from an operational per-
spective, we show that using the tuned hyperparameters of one function and
applying them to the prediction model of the other yields very similar predic-
tion results. Second, the substantial prediction improvement is based on an
extensive dataset collected in a highly mature warehouse operation. Hence,
we believe our method will produce more robust results - not only for other
functions, but also to some extent for other warehouses.

Our full factorial design analysis tests all combinations of variable categories,
namely Operator, Product and Shift, revealing various managerial implica-
tions. We show that when only one of the three categories is used, Shift vari-
ables have the lowest prediction accuracy. In addition, using the Operator

and Product variables yields the same results as when the Shift category is
added. From this perspective, one should not invest time in collecting Shift

variables. However, if collection of personal information (Operator category)
is problematic owing to concerns by unions and work councils or for other
reasons, Shift data should be collected as predictions are improved compared
with using Product variables alone.

To the best of our knowledge, productivity predictions have only been con-
sidered at an aggregated level, not an employee or daily level. However, dis-
aggregated data are vital if productivity forecasts are to be used for processes
such as workforce planning. Hence, our work contributes to a topic relevant to
most industrial companies, and is the first of its kind in the academic research
body. Our structured framework of relevant productivity factors can be used
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by other researchers investigating similar topics.

In Chapter 4, we analyze the emerging demand for instant deliveries, and
examine how dynamic and synchronized transfers, similar to cross-dock-like
transshipments, reduce the total distance driven. Given the size and complex-
ity of the problem, we propose a combination of three successive algorithms.
First, a geometric algorithm evaluates the relational position of two delivery
requests, allocates it to one of 36 predefined cases and, based on a set of prede-
fined rules, decides whether to omit it from the solution space. The second al-
gorithm (SLSQP) finds the best transfer location by minimizing the time-window
constrained total distance function. Lastly, the EBA finds the best combination
of transfer locations to be used. Our multi-algorithm is tested on 30 numerical
scenarios with different time constraints and up to 100 requests. On average,
the algorithm reduces the initial distance of direct deliveries by 15%. We show
that this distance reduction is achieved mainly by shortening the empty return
distance (21% on average), while the delivery trip increases moderately (3% on
average). These findings are then confirmed in a case study using food delivery
data from Bordeaux, with an average distance reduction of 11%.

Our multi-algorithm is problem-specific. As a result, making our method-
ological approach transferable to other environments, and especially other con-
straints, will require adjustments. If the boundary conditions remain similar,
as in the case study we investigated, the methodology and its results will be
generalizable.

Our research has several managerial implications. If the concept of dynamic
and synchronized transshipments is used to reduce the total distance, then man-
agers and organizations should focus on interactions with existing customers
rather than increased sales activity. This is because relaxing the time-window
constraints on current delivery requests will increase the probability of success-
ful transshipments more than adding new requests. In addition to considering
dynamic transfers when reducing the total distance is important, organizations
struggling with driver shortages, seeking to reduce their ecological footprint or
downsizing their delivery fleet should also consider transshipments. However,
to realize the identified benefits, organizations must participate in collabora-
tive networks with a central decision-maker steering transshipment decisions.
This will require a certain level of trust between participants to allow deliveries
through other entities. Although the algorithm is easy to implement and com-
putationally efficient, some initial investment must be made to set up such a
system.

The research in this chapter contributes to an emerging literature stream on
transshipments. All previous studies assume either fixed transfer locations or
storage opportunities to avoid synchronization constraints. Our research ap-
pears to be the first to consider both aspects, and thus makes an important
contribution.

In conclusion, all three research papers solve relevant problems and are
tested with actual data from organizations facing these challenges. They con-
tribute to literature streams on warehouse management, applications of machine-
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learning algorithms, use of novel data sources, and transshipments during de-
liveries.

5.2 future research opportunities

Our findings make several contributions to the literature and have various man-
agerial implications. The limitations of our research highlight potential direc-
tions for future research.

In the first two studies, presented in Chapter 2 and 3, we integrate novel data
into prediction models. For this purpose, we develop individual frameworks
to determine the most important variables. Although we cover a wide range
of these variables, we were unable to examine all of them. Based on Chapter 2,
future research should investigate the environment in which MHE is located
(e.g., warehouse location and design), the impact of operators (e.g., their tenure
or qualifications) and additional sensor data (e.g., vibrations, temperature, hu-
midity). In Chapter 3, factors of interest not yet covered include employee char-
acteristics (e.g., age, training received) and various warehouse parameters (e.g.,
design, size, process maturity, degree of automation). We believe that the latter
will be of greater interest, as warehouse parameters differ structurally, which
may impact more severely on prediction accuracy. The methods of both chap-
ters might be transferred to other contexts to validate the generalizability of our
findings. On the one hand, our methodologies should be tested in similar se-
tups, i.e., additional warehouses. Beyond the scope of warehouses, predictions
of moving equipment breakdowns should be tested on vehicles with similar
complexity (e.g., ride-on mowers, e-scooters, cranes, farm vehicles, bikes, cars,
trucks), whereas productivity predictions might be extended to other areas of
manual work (e.g., production and service industries).

The research opportunities arising from Chapter 4 result mainly from re-
laxation of our model assumptions. Although we show that transshipments
reduce the total distance driven compared with vehicles conducting direct de-
liveries, we assume static scenarios with information known upfront, vehicles
with unit-sized capacity, and a maximum of one transfer per delivery. Each as-
sumption offers interesting research potential. Allowing higher than unit-sized
capacity might be most interesting, as this would result in more complex rout-
ing problems with multiple pickups and deliveries during a tour. Given that
routing problems are highly relevant but often complex, we believe that this
research path would be the most challenging but would yield the most relevant
results. Although our static perspective on the problem can be achieved by ag-
gregating time intervals, considering dynamic problem types is a second area
for future research. This is particularly relevant from a practice-oriented per-
spective, as introducing dynamic information into the problem, such as newly
placed delivery requests, may change the current solution. Lastly, and simi-
larly to Chapters 2 and 3, the use of dynamic and synchronized transfers in
other setups might be of high practical use. One example might be to analyze
whether two warehouse employees’ walking distance in the picking process can
be reduced if they are permitted to exchange picking containers.
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Summarizing, our research not only enriches the current literature, but also
offers several new, interesting and relevant research opportunities.
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A P P E N D I X T O C H A P T E R 2

a.1 data structure

𝑀𝐻𝐸𝑖 𝑀𝐷𝑖 𝑡𝑖, 𝑆𝑡𝑎𝑟𝑡 𝑈𝐷𝑡𝑖, 𝑆𝑡𝑎𝑟𝑡 𝐸𝐹𝑡𝑖, 𝑆𝑡𝑎𝑟𝑡 𝐵𝐼𝑡𝑖, 𝑆𝑡𝑎𝑟𝑡

𝑀𝐻𝐸𝑖 𝑀𝐷𝑖 𝑡𝑖, 𝑆𝑡𝑎𝑟𝑡+1 𝑈𝐷𝑡𝑖, 𝑆𝑡𝑎𝑟𝑡+1 𝐸𝐹𝑡𝑖, 𝑆𝑡𝑎𝑟𝑡+1 𝐵𝐼𝑡𝑖, 𝑆𝑡𝑎𝑟𝑡+1

𝑀𝐻𝐸𝑖 𝑀𝐷𝑖 𝑡𝑖, 𝑆𝑡𝑎𝑟𝑡+2 𝑈𝐷𝑡𝑖, 𝑆𝑡𝑎𝑟𝑡+2 𝐸𝐹𝑡𝑖, 𝑆𝑡𝑎𝑟𝑡+2 𝐵𝐼𝑡𝑖, 𝑆𝑡𝑎𝑟𝑡+2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑀𝐻𝐸𝑖 𝑀𝐷𝑖 𝑡𝑖, 𝐸𝑛𝑑 𝑈𝐷𝑡𝑖, 𝐸𝑛𝑑 𝐸𝐹𝑡𝑖, 𝐸𝑛𝑑 𝐵𝐼𝑡𝑖, 𝐸𝑛𝑑

𝑀𝐻𝐸𝑖+1 𝑀𝐷𝑖+1 𝑡𝑖+1, 𝑆𝑡𝑎𝑟𝑡 𝑈𝐷𝑡𝑖+1, 𝑆𝑡𝑎𝑟𝑡 𝐸𝐹𝑡𝑖+1, 𝑆𝑡𝑎𝑟𝑡 𝐵𝐼𝑡𝑖+1, 𝑆𝑡𝑎𝑟𝑡

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

+

+
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a.2 description of statistical learning methods

SLM Description

Gaussian Naïve
Bayes (GNB)

The GNB is known to be a simple algorithm that is computationally in-
expensive, even for large data sets and often outperforms sophisticated
algorithms. It is based on Bayes Theorem, thus calculating probabilities
for an outcome (classification) based on the prior knowledge of informa-
tion (features), which are possibly related. A strong assumption is that
features are independent of each other (Chan et al. (1979)).

K-Nearest-
Neighbors
(KNN)

The KNN uses k pre-labeled observations that are in closest proximity
(nearest neighbors) to the data to be classified. Each neighbor casts a
vote based on its own class. The sum of all, sometimes weighted votes,
determines the class of the unlabeled observation.

Logistic Regres-
sion (LR)

Unlike linear regression, LR predicts classes instead of continuous values.
It uses a logistic sigmoid function with a value range from 0 to 1, represent-
ing the probability of an observation belonging to a class or not. Maximum
likelihood is used to fit the sigmoid function. Compared to many other
algorithms, Logistic Regression (LR) offers better interpretability through
coefficients which provide information on feature importance.

Random Forest
Classifier (RFC)

In RFCs, individual weak learners (uncorrelated decision trees) are com-
bined to form one strong learner (random forest). Each decision tree is
trained on a random sample with replacement from the original data. The
independently trained decision trees are combined to take a majority vote
(bagging) on unlabeled data. RFCs are known to be efficient for a high
number of observations and features (Breiman (2001)).

Stochastic Gra-
dient Boosting
(SGB)

Similar to RFCs, SGB is an ensemble method that combines multiple weak
learners. It does not generate weak learners independently in parallel but
uses an iterative approach. By this, a weak learner builds on information
gained by the previously built one (Friedman (2002)).

Support Vector
Classifier (SVC)

An SVC constructs a hyperplane that optimally separates two classes. The
hyperplane thereby maximizes the corridor width between the two classes.
The observations lying on the edges of that corridor define its width and
are called the support vectors. Support Vector Classifier (SVC)s are able to
capture non-linear relationship using kernels to divide classes in higher
dimensional data.

Multilayer Per-
ceptron Neural
Network (MLP)

Neural networks consist of three layers: input, hidden and output layer.
During the feedforward process they feed independent variables (input
layer) into linear functions (neurons) and combine them into a non-linear
function (hidden layer) to yield the target value (output layer). During
backpropagation, the error between output layer and real values are used
to optimize the neural net. MLPs use one or more hidden layers and pass
information during feedforward only to the next layer, not between neu-
rons of the same layer, within the same neuron or to a neuron of a previous
layer.

Relevance Vec-
tor Machine
(RVM)

With an identical functional form to that of SVC, RVM differs by exploit-
ing a Bayesian learning framework to make probabilistic estimates instead
of point estimates. By omitting SVC’s complexity parameter, it does not
require cross-validation (Tipping (2001)).
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a.3 slm hyperparameters

SLM Python hyperparameter Tested values

KNN n_neighbors 1
a,c, 2

b, 3, 4, 5, 6, 7, 8, 9, 10

weights distancea,b,c, uniform

algorithm ball_treea,b,c, kd_tree

MLP solver lbfgs, sgd, adama,b,c

hidden_layer_sizes (10), (50), (100), (10, 10), (50, 50), (100, 100), (10, 10, 10), (50, 50, 50),

(100, 100, 100), (10, 10, 10, 10), (50, 50, 50, 50), (100, 100, 100, 100)a,b,c,

(10, 10, 10, 10, 10), (50, 50, 50, 50, 50), (100, 100, 100, 100, 100)

max_iter 500
a,b,c, 1000

activation logistic, tanh, relua,b,c

alpha 0.0001
c, 0.001

a,b, 0.01, 0.1, 1

learning_rate constanta,b,c, invscaling

SGB objective binary:logistica,b,c

learning_rate 0.001, 0.01, 0.1b, 1
a,c

colsample_bytree 0.3c, 0.7a,b

n_estimators 500
a,b,c, 1000

max_depth 5
c, 10

a,b, None

gamma 0
a,b, 0.1c, 0.2

reg_alpha 0
a,b,c, 0.5, 1

reg_lambda 0
b,c, 0.5, 1

a

GNB var_smoothing 0.1c, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01
a,b, 0.009, 0.008, 0.007,

0.006, 0.005, 0.004, 0.003, 0.002, 1e-03, 1e-04, 1e-05, 1e-06, 1e-07, 1e-08,

1e-09, 1e-10, 1e-11

LR solver liblinear, newton-cg, sag, sagaa,b,c, lbfgs

penalty l1a,b, l2c, elasticnet, None

C 0.001, 0.01
b, 0.02, 0.03, 0.04, 0.05, 0.06

a, 0.07
c, 0.08, 0.09, 0.1, 1, 5, 10, 15

max_iter 500, 1000
a,b,c

class_weight balanceda,b,c, none

RFC n_estimators 100, 200, 300, 400
a,c, 500, 1000, 1500, 2000

b

max_depth 10, 20, 30
a,b,c, 40, 50, 75, 100, None

max_features auto, sqrta,b,c

min_samples_leaf 1
a,b,c, 2, 4

min_samples_split 2
b, 5

a,c, 10

bootstrap True, Falsea,b,c

SVC kernel polyc, rbfa,b, sigmoid

C 0.01, 0.1, 1, 10, 100
b, 1000

a,c

gamma 0.00001, 0.0001, 0.001, 0.01, 0.1, 1
a, 10

b, 100
c

degree (only poly kernel) 0, 1, 2, 3, 4
c, 5

RVM alpha 1e-06

beta 1e-06
a,b,c

coef0 0
a,b,c

coef1 Nonea,b,c

degree 3
a,b,c

kernel rbfa,b,c

niter 100
a,b,c

niterposterior 50
a,b,c

thresholdalpha 1e09
a,b,c

tol 0.001
a,b,c

Notes: Best hyperparameter for 7-day forecast (a), 3-day forecast (b) and 1-day forecast (c)
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a.4 slm prediction results for oem2

Forecast Metric SVC KNN SGB RFC MLP LR GNB NP

7 day Accuracy 0.99 0.99 0.99 0.99 0.98 0.73 0.88 0.95

Precision 0.94 0.90 0.95 0.95 0.86 0.13 0.11 0.00

Recall 0.87 0.88 0.86 0.82 0.73 0.79 0.21 0.00

F1 0.90 0.89 0.91 0.88 0.79 0.22 0.14 0.00

3 day Accuracy 0.99 0.99 0.99 0.99 0.98 0.73 0.93 0.98

Precision 0.84 0.80 0.83 0.90 0.75 0.06 0.08 0.00

Recall 0.74 0.74 0.55 0.54 0.41 0.78 0.19 0.00

F1 0.75 0.77 0.66 0.68 0.53 0.11 0.11 0.00

1 day Accuracy 0.98 0.99 0.99 0.99 0.99 0.73 0.96 0.99

Precision 0.03 0.07 0.00 0.00 0.00 0.02 0.03 0.00

Recall 0.05 0.03 0.00 0.00 0.00 0.70 0.13 0.00

F1 0.04 0.04 0.00 0.00 0.00 0.04 0.05 0.00

Note: RVM not included as it shows non-competitive prediction results for OEM1, but

consumes large amount of computational resources

a.5 impact of implementing slm

ISLM =
CBase −CBM

CBase

≡ cMrBM(TP+ FN) − cM(TP+ FP) − cMrBM(FN+ uTPTP)

cMrBM(TP+ FN)

≡ TP

TP+ FN
−

TP+ FP

rBM(TP+ FN)
−

uTPTP

TP+ FN

≡ TP

TP+ FN
−

1
TP+FN
rBM

TP+FP

−
uTPTP

TP+ FN

≡ TP

TP+ FN
−

TP
TP+FN

rBM
TP

TP+FP

−
uTPTP

TP+ FN

≡ Recall−
Recall

rBMPrecision
− uTPRecall

≡ Recall

(
1−

1

rBMPrecision
− uTP

)
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A P P E N D I X T O C H A P T E R 3

b.1 egb hyperparameter test values

Hyperparameter Description Tested values

Booster Defines the algorithm type gbtree
Max_depth Limits the number of decision

node levels
4,6∗,8∗∗,10

Min_child_weight Ensures that the number of ob-
servations in the leaves does not
fall below a specified threshold

1,3∗,∗∗,5,7,9

Eta Acts as learning rate to increase
robustness by reducing the im-
pact of each new tree

0.01, 0.05, 0.1∗∗, 0.2∗, 0.3

Gamma Sets the minimum error reduc-
tion required in a decision node

0.01, 0.1, 1
∗, 10

∗∗

Subsample Determines what proportion is
randomly sampled from obser-
vations

0.9∗,∗∗, 1

Colsample_bytree Determines what proportion is
randomly sampled from fea-
tures

0.25, 0.5, 0.75
∗, 1

∗∗

Notes: ∗ best parameters for the picking function, ∗∗ best parameters for the packing function
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A P P E N D I X T O C H A P T E R 4

c.1 complexity of request pairs and pair combinations

Requests* Request pairs Pair combinations

2 1 1

4 6 3

6 15 15

8 28 105

10 45 945

... ... ...
50 1,225 5.8×10

31

... ... ...
100 4,950 2.7×10

78

Note: *dummy request is added if total request number is uneven
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