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A B S T R A C T

Transportation is the backbone of globalization and international trade. Mov-
ing goods over long distances enables companies to access new markets and
consumers to buy products from other parts of the world. Global trade is par-
ticularly driven by sea freight due to low cost and air cargo owing to its high
speed, making both transport modes key for many industries.

Anticipating future developments in transportation remains a black box for
many companies. The logistics sector is characterized by high price uncer-
tainty, market volatility, and product complexity. Transport is often organized
manually and only based on employees’ experience, making it prone to error.
Recent trends in international trade further complicate companies’ decision-
making. Trends include changes in global demand, particularly driven by grow-
ing wealth in Asian countries, leading to shifts in freight rates on major trade
lanes. The risk of supply chain disruptions, such as delays of container vessels,
has also been increasing in the last few years. More frequent extreme weather
events caused by climate change and higher traffic on shipping routes make
on-time arrivals more challenging than ever.

Recent breakthroughs in research indicate that novel data analytics-based
methods can help to increase transparency in transportation by supporting the
decision-making of shipping players. It has become evident that machine learn-
ing enhances forecast accuracy, which could enable companies to reduce uncer-
tainty in their logistics.

In our first study (Chapter 2), we1 analyze the container shipping industry
to predict delays of vessels. With a forecast accuracy of 77%, we identify im-
portant influencing factors for shipping delays. This primarily includes the
time between ports, piracy risk, demographics, weather, traffic in maritime
chokepoints, and port congestion. In our second study (Chapter 3), we present
what methods need to be applied to predict spot rates in container shipping.
With an accuracy of 89%, our forecasts support the decision-making of various
shipping players in negotiating their transportation contracts. My dissertation
journey then took me to the air cargo industry in our third study (Chapter 4).
By assessing the predictability of long-term air freight rates, we show that ma-
chine learning improves forecasts, especially for trade lanes with volatile and
complex price trends. As a result, we achieve an accuracy of 93%, enabling air
carriers and freight forwarders to increase their operating profits by 30%.

By proposing prediction solutions featuring high accuracy, robustness, and
applicability in practice, this dissertation demonstrates that predictive analytics
enhance transparency in transportation. It is our hope that more advanced
technologies, such as machine learning, will play an increasingly important
role in future decision-making on transportation.

1The term “we” in this dissertation always refers to the authors of Viellechner and Spinler
(2020, 2021a,b,c)
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1
I N T R O D U C T I O N

Much of what we do with machine learning happens beneath the surface.
Machine learning drives our algorithms for demand forecasting, product search
ranking, product and deals recommendations, merchandising placements, fraud

detection, translations, and much more.
Though less visible, much of the impact of machine learning will be of this type –

quietly but meaningfully improving core operations.

—Jeff Bezos

1.1 the importance of sea and air freight for global trade

Trade has always been vital for human beings, enabling them to exchange prod-
ucts and make a living. A great hunger for unknown, valuable goods has driven
people to explore the world and discover new territories. Famous examples in
history include the adventurous sea voyages of European explorers, such as
Christopher Columbus, and trade on the Silk Road linking Far East Asia with
Africa and Europe. At that time, reaching remote areas in the world repre-
sented a huge challenge and a dangerous endeavor for merchants. Their efforts
marked the beginning of global trade and worldwide transportation.

Today, trading goods internationally enables companies to expand their busi-
ness by serving new markets and allows consumers to choose from a tremen-
dously broad range of products (Surugiu and Surugiu 2015). The logistics in-
dustry has been key for achieving this status quo, as it thrives on global trade.
Transport modes have evolved fundamentally over the last century and now
make it possible to move goods over long distances at low costs and short lead
times. In particular, sea and air freight are crucial for international trade and
globalization. They became key transport modes with regard to both globally
traded volumes and associated economic value.

In terms of volume, maritime shipping represents the backbone of global
transportation. More than 11 billion tons were shipped around the globe in
2019, resulting in an 80% share of international trade by volume (United Na-
tions Conference on Trade and Development 2020). This tonnage is equivalent
to 14 trillion US dollars (USD) (International Chamber of Shipping 2019). Con-
tainer shipping plays a key role in global trade, as indicated by its growth in
emerging markets. For instance, China’s containerized exports and imports
massively increased from 13 million twenty-foot equivalent units (TEU) in 2000

to 52 million TEU in 2015 (Saxon and Stone 2017). In recent years, container
shipping experienced stronger growth compared with seaborne trade overall.
Despite increasing tensions in trade worldwide, container shipping grew by
2.0% in 2019 and 5.1% in 2018 compared to overall ocean transport with 0.5%
and 2.8%, respectively (United Nations Conference on Trade and Development
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2 introduction

2020). In 2019, container vessels shipped nearly two billion tons of goods
(United Nations Conference on Trade and Development 2020).

Compared to sea freight, air cargo transports far lower volume, however, the
associated total value is significant. Indeed, with only 52 million tons per year,
it represents a share of less than 1% of global trade, but it accounts for more
than 35% of international transport by value, worth 6.8 trillion USD (Interna-
tional Air Transport Association 2021). High speed, security, and reliability are
the key advantages of air cargo, making it a vital transport mode for many in-
dustries (Suryani et al. 2012). These characteristics enable moving goods with a
high value-to-weight ratio and time-sensitive items, such as perishables, short
life-cycle products, and components urgently needed for production (Budd and
Ison 2017). Consequently, air cargo volumes are projected to further grow an-
nually by 4% on average over the next 20 years (Boeing 2020).

1.2 fundamental changes in global trade

Fundamental changes in global trade can be observed, increasing the uncer-
tainty regarding future developments in the transportation sector. Significant
shifts in volumes and prices are expected on major routes in both sea and air
freight. For instance, current imbalances in trade lanes between Asia and Eu-
rope are projected to change with increasing wealth and thus growing demand
in Asian countries (Saxon and Stone 2017). This will transform the export-to-
import ratios of countries and regions, leading to significant changes in ship-
ping volumes and prices. Future freight rates will be further impacted by recent
developments in the logistics sector. This particularly includes modal shifts
from air to sea and air to rail freight (Kupfer et al. 2017). In trade between
Europe and Asia, both container shipping with accelerating speed (M. Priebe
[Kühne + Nagel], personal communication, September 16, 2020) and rail-based
intermodal transport with reduced lead time compared to sea freight and lower
cost than air cargo (Rodemann and Templar 2014) represent increasingly pre-
ferred options. The Northern Sea Route as an emerging alternative ocean route
(Lin and Chang 2018) and key environmental regulations, such as IMO 2020

(F. Clausen [Yara International], personal communication, August 5, 2019), de-
scribe further trends influencing future freight rates.

Higher uncertainty also derives from an increasing risk of supply chain
disruptions. This includes sudden events, such as the COVID-19 pandemic
that heavily affected supply chains all over the world (Nikolopoulos et al.
2021). Continuously evolving issues in logistics represent another type of sup-
ply chain disruption. For instance, congestion in ports and maritime choke-
points, such as the Suez Canal, can lead to considerable shipping delays (Salleh
et al. 2017). A booming overall population increases demand for goods, result-
ing in even more traffic and congestion on transport routes and thus higher risk
of shipping delays. During the next ten years, global trade is expected to grow
annually by 3.5% on average with even 5.6% in 2021 and 7.9% in 2022 (IHS
Markit 2020). More frequently occurring extreme weather events caused by
global warming, such as storms and floods, further increase the risk of delays
for container vessels (Salleh et al. 2017).
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1.3 resulting logistics challenges for companies

Increasing uncertainty regarding future global trade complicates the decision-
making of various transport players. It leads to sub-optimal choices and thus
inefficiencies in operations. These problems can affect both companies offering
logistics services and those in need of transportation. Greater transparency in
future global trade is needed to enable financial and operational improvements.
Anticipating potential shifts in prices allows use of an improved fact base for
negotiation between freight forwarders and carriers, as well as between cus-
tomers and freight forwarders (M. Priebe [Kühne + Nagel], personal communi-
cation, September 16, 2020). This enables them to optimize their mix of long-
and short-term transportation contracts (Boin et al. 2020). Logistics providers,
such as carriers and freight forwarders, might also advance their pricing strat-
egy while their customers could achieve lower freight rates in negotiations (V.
Henkes [Kühne + Nagel], personal communication, September 28, 2020).

Regarding supply chain disruptions, such as the sudden breakdown of sup-
ply chains caused by COVID-19, improved forecasting increases transparency
for companies to implement more resilient operations (Nikolopoulos et al. 2021).
More advanced prediction further helps to anticipate other supply chain disrup-
tions, such as delays of container vessels (Choi et al. 2017). Various shipping
players could benefit from improved delay forecasting, for example, enabling
shippers to select alternative transport routes, carriers to optimize buffers in
schedules, ports to adjust the vessel handling sequence, and receivers to effi-
ciently arrange their hinterland logistics.

1.4 opportunities from predictive analytics

Applying novel predictive analytics-based methods enhances transparency in
future developments in logistics, thus supporting companies in their decision-
making.

Predictive analytics can be used to forecast freight rates more accurately, al-
lowing various companies to optimize their transport contracts. For instance,
investing in digital solutions helped a leading air cargo carrier to improve its
pricing and thus increase its profit margin by one percentage point (pp) within
one year (Boin et al. 2020). Notably, even marginal gains in forecast accuracy
can result in significant economic benefit (Kraus et al. 2020). Research confirms
that higher predictive performance can be obtained by applying deep learn-
ing, a particular class of machine learning (ML), enabling effective decision
support for companies (Kraus et al. 2020). As a logistics provider, increasing
the profit margin by 2-4 pp enhances operating profits by 30-60% (Boin et al.
2020). In the air cargo industry, however, only some freight forwarders and
few shippers base their transport contract negotiations on predictive analytics
(V. Henkes [Kühne + Nagel], personal communication, September 28, 2020).
Similarly, only a few container shipping companies use more advanced tech-
nologies to set prices automatically for their logistics services (F. Heinemann
[Hapag-Lloyd], personal communication, March 27, 2020). This emphasizes
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the need for further optimization to reveal the hidden economic potential (P.
Rau [McKinsey & Company], personal communication, August 2, 2019).

Implementing ML algorithms can also enhance predicting delays of container
vessels, which are influenced by a large variety of factors. Here, certain ML
methods, such as random forest (RF), are particularly recommended, as they
allow incorporation of numerous drivers to forecast the final outcome (Huck
2019). Companies have started to leverage this opportunity to increase trans-
parency in their shipments. For instance, Unilever (2021) recently implemented
an information system based on ML and predictive analytics to forecast logis-
tics issues along the supply chain. This allows the company to identify conges-
tion in ports in real time, preventing shipping delays and thus high demurrage
costs. ML algorithms have also been successfully applied in academic research.
Supply chain disruptions, such as the COVID-19 pandemic, were analyzed to
successfully develop practical decision support based on predictive analytics
(Nikolopoulos et al. 2021).

1.5 contributions of this work

In the following chapters of this dissertation, we investigate the application of
predictive analytics in the container shipping and air cargo industry. As shown
previously, higher transparency in the logistics sector is needed to reduce un-
certainty for companies’ decision-making. We focus on challenges that have
been gaining attention in both academia and the transportation industry in re-
cent years and remain unsolved. These include predicting delays of container
vessels and freight rates in container shipping and air cargo. To this end, we ap-
ply an extensive methodological approach comparing time series (TS) methods
with ML algorithms to achieve highest predictive performance. Our objective
is to develop forecasts that are accurate, robust, and applicable in practice. We
propose this prediction solution to provide data-driven decision support for
practitioners in logistics departments of various companies, including shippers,
carriers, freight forwarders, terminal operators, and receivers.

In Chapter 2, we present a forecasting model for delays of container vessels.
We develop both regression and classification results and include 315 external
variables to incorporate all major influencing factors for delays. In Chapter 3,
we propose a prediction model for spot rates in container shipping. Here, we
create TS variables to capture multiple seasonality identified by autocorrelation.
We also add external variables to incorporate additional influencing factors,
particularly describing demand and supply. In Chapter 4, we shift our focus to
the air cargo industry. We suggest a prediction solution for long-term freight
rates comparing three different clustering approaches. In more detail, the three
main chapters evolve as follows:

• In Chapter 2, we present a forecasting solution for delays of container ves-
sels. We analyze 2,954 shipments with regard to their actual and sched-
uled departure and arrival times. Predicting delays of container vessels
has already been investigated by researchers, however, predominantly
from the terminal operator’s perspective, focusing on the operational or
tactical planning level. Consequently, other shipping players involved
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are disregarded and managerial implications are rather limited. In con-
trast, we focus on the strategic level to support the decision-making of
various companies in their transportation planning more in advance, in-
cluding shippers, carriers, terminal operators, and receivers. We predict
delays of vessels on major global shipping routes for any time in the year.
These forecasts are based on 315 external variables capturing important
influencing factors for delays, such as weather, natural disasters, traffic in
maritime chokepoints, port congestion, piracy risk, vessel condition, sea-
sonality, and demographics. We demonstrate a high forecast accuracy of
77%, compared with our benchmark of 59%. This enhanced transparency
helps shippers to select transport modes, routes, and ports, carriers to
optimize buffers in schedules, terminal operators to adjust the vessel han-
dling sequence, and receivers to organize their hinterland logistics more
efficiently.

• In Chapter 3, we propose a prediction model for short-term spot rates in
container shipping. Researchers have long been attracted to price fore-
casting in maritime transportation. The vast majority of studies, however,
has been performed on dry bulk shipping rather than containers. Pre-
vious research on forecasting freight rates in container shipping empha-
size the urgent need to investigate novel prediction methods, such as ML.
They further highlight the importance of increasing forecasting perfor-
mance, applying a long-term forecast horizon (FH), and testing the mod-
els with rolling forecasting windows. To ensure high model robustness
and applicability in practice, we predict spot rates six months in advance
and apply time series cross-validation (TSCV) with 182 rolling forecast-
ing windows. Our model uses a four-year dataset of daily freight rates
from 39 routes, particularly between Europe and Asia, resulting in 56,940

observations. Our prediction solution can support companies’ decision-
making, including that of logistics providers and their customers. Both
parties thus benefit from optimizing their mix of short- and long-term
transportation contracts. Our results enable another interesting opportu-
nity for bulk producing companies by transporting their bulk goods in
containers, particularly during the times of the year when spot rates are
low.

• In Chapter 4, we suggest a prediction solution for long-term contracted
freight rates in air cargo. Forecasting in aviation, in particular air cargo,
has been studied extensively in recent years. Most studies, however, pre-
dict non-price-related issues, such as demand, traffic, and delays. A large
body of research investigates revenue management and pricing, focusing
on decision support for carriers. To the best of our knowledge, only a few
studies investigate price prediction in air cargo to support the transport
decisions of freight forwarders and shippers. We contribute to a better
understanding of which methods need to be used to forecast prices in air
cargo. To validate the results of previous studies, we investigate whether
similarity-based ML methods achieve higher forecast accuracy. As recom-
mended by other researchers, we discuss the financial benefit of using a
more advanced prediction algorithm to achieve a marginal gain in fore-
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cast accuracy. To ensure high applicability of our model in practice, we
apply an FH of six months. We further implement TSCV of 184 days
to obtain robust results. Our model uses an extensive two-year dataset
of daily freight rates from 67 major global routes, resulting in 40,870 ob-
servations. To increase profits, all players, including air carriers, freight
forwarders, and shippers, can benefit from this forecasting solution by op-
timizing the mix of long- and short-term contracts. Carriers might further
improve their pricing strategies while shippers achieve better freight rates
in negotiations.

Chapter 5 summarizes this dissertation, discusses key managerial implications
of the previous three chapters, and provides directions for future research.



2
N O V E L D ATA A N A LY T I C S M E E T S C O N V E N T I O N A L
C O N TA I N E R S H I P P I N G : P R E D I C T I N G D E L AY S B Y
C O M PA R I N G VA R I O U S M A C H I N E L E A R N I N G
A L G O R I T H M S

This chapter is based on Viellechner and Spinler (2020)1 and its extended version Viel-
lechner and Spinler (2021b)2.

2.1 introduction

Container shipping plays a crucial role in global cargo transportation and con-
nects the entire supply chain from production to final customer (Lee et al. 2015).
Over the last three decades, the container shipping industry has been character-
ized by significant growth of annual volumes and vessel size (Dulebenets 2018,
Tran and Haasis 2015). Congestion at ports and maritime chokepoints such as
the Suez Canal, however, represents a major issue causing shipping delays al-
ready today (Salleh et al. 2017). The continuously growing industry is expected
to further increase this problem.

Besides congestion at ports and maritime chokepoints, bad weather also
causes delays of container vessels (Salleh et al. 2017). Extreme weather events
often lead to severe disruptions in supply chains, in particular affecting trans-
portation (Speier et al. 2011). Notably, the frequency of extreme weather events
is strongly increasing worldwide (Mahapatra et al. 2018, Markolf et al. 2019).
The ability of predicting disruptions in supply chains caused by extreme weather
events would massively enhance the resilience of supply chains (Choi et al.
2017). To this end, novel methods from predictive analytics based on machine
learning (ML) can help (Choi et al. 2017).

In general, disruptions in supply chains primarily resulting from extreme
weather events and congestion can be diverse. Here, we focus on delays of
container vessels as one type of supply chain disruptions. In particular, we aim
at investigating whether delays of container vessels between Europe and Asia
can be predicted by statistically analyzing historic delays using ML algorithms.
Shipping players such as sender, carrier, terminal operator, and receiver could
benefit from our predictions and thus reduce the risk of supply chain disrup-
tions. Knowing the delays of vessels would help senders to select transport
modes and ports, carriers to fine-tune schedules and choose alternative routes,

1This paper with the title “Novel Data Analytics Meets Conventional Container Shipping: Predicting
Delays by Comparing Various Machine Learning Algorithms” was written by Adrian Viellechner and
Stefan Spinler and was presented at and published by the Hawaii International Conference on System
Sciences (HICSS), where it received the Best Paper Award in the Decision Analytics and Service Science
Track.

2This manuscript with the title “Novel Data Analytics Meets Conventional Container Shipping:
Predicting Delays by Comparing Various Machine Learning Algorithms (Extended Version)” was written
by Adrian Viellechner and Stefan Spinler and accepted for publication by Annals of Information Systems
(AoIS).

7
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terminal operators to adjust vessel handling sequences and optimize loading
and discharging operations, and receivers to adapt their hinterland logistics.

2.2 literature review

2.2.1 Theoretical background

In this literature review, we focus on pre-event decision support for companies.
Pre-event support relates to actions for increasing supply chain robustness to
mitigate impact from supply chain disruptions. Here, we focus on delays as
one type of supply chain disruptions which can be caused by extreme weather
events, for example. To this end, we specifically investigate previous studies on
delay prediction of container vessels.

First of all, prediction models using fuzzy rule-based Bayesian network as
a hybrid decision technique already exist (Salleh et al. 2017). A further study
presents a prediction model applying data mining and the ML algorithm ran-
dom forest (RF) (Yu et al. 2018). Data mining methods are also used to improve
terminal planning and management for quayside, yard, and landside opera-
tions (Heilig et al. 2019). To this end, vessel arrival times are forecasted, per-
formance of berth operations is predicted, and storage and stacking logistics
are analyzed (Heilig et al. 2019). Another study suggests to estimate vessel
arrival times by preprocessing historical vessel positioning data followed by ap-
plying path-finding methods to connect origin port (OP) and destination port
(DP) (Alessandrini et al. 2019). Moreover, qualitative delay estimates resulting
from ML such as RF are provided in a comparison analysis of two container
terminals (Pani et al. 2015). Neural network (NN) as another ML algorithm is
implemented for predicting delays to forecast required human resources more
accurately for covering daily port operations (Fancello et al. 2011). Similarly,
more efficient allocation of human resources at ports is approached by a data
mining research that suggests a classification and regression tree model (Pani
et al. 2014). However, all these studies limit improvements to terminal opera-
tions as they consider the operational planning level. In contrast, we focus on
the strategic planning level supporting shipping players such as sender, carrier,
terminal operator, and receiver.

2.2.2 Motivation for research

The scientific relevance of this study is explained by three steps. First, there
is a need for solutions with respect to big data and predictive analytics. Choi
et al. (2017) and Hazen et al. (2018) confirm this scientific demand to optimize
business processes and to predict system performance. Second, more solutions
regarding risk management such as early-warning systems for logistics are re-
quired (Choi et al. 2017, 2016). And third, many studies emphasize the high
importance of both topics at the interface. Among many others, Choi et al.
(2016) confirm the research gap at the interface of predictive analytics and risk
management for supply chain management. In particular, Salleh et al. (2015)
highlight the interest of both academia and shipping industry for solutions to
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predict delays of container vessels. In summary, this and all aforementioned
directions from other studies build the foundation for this research.

This paper is an extended version of our conference paper published by
Hawaii International Conference on System Sciences (HICSS) (Viellechner and
Spinler 2020). In the extended version, we add a case study focusing on the
Port of Hamburg (Section 2.5). Here, we investigate the interrelation between
shipping delays of vessels arriving to or departing from the Port of Hamburg
and given tidal restrictions for the vessels.

2.2.3 Review of prediction algorithms

To prepare for the model development in the following section, we now pro-
vide an overview of suitable prediction algorithms. To this end, we categorize
them by using two dimensions: classification versus regression and statistical
learning versus no statistical learning. On the one hand, we determine that clas-
sification and regression are most relevant for predicting delays compared to
other ML algorithms such as anomaly detection or clustering. While the model
outcome of a classification algorithm such as logistic regression (LogR) is either
yes or no, regression algorithms such as linear regression (LinR) always pro-
vide a certain value. For instance, a classification algorithm predicts if it rains
tomorrow or not. In contrast, a corresponding regression algorithm forecasts
the amount of precipitation in liter per square meter. On the other hand, we
differentiate prediction algorithms by interpretability resulting in simple and
complex (Saberioon et al. 2018). We argue that interpretability depends on
the characteristic whether the prediction algorithm is based on statistical learn-
ing. Using this categorization, we classify our considered prediction algorithms
(Figure 2.1).
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Figure 2.1: Categorization of prediction algorithms

Regarding learning-based classification, we consider various predictive ML
algorithms. NN is a powerful supervised ML algorithm, however, it cannot be
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easily interpreted as it learns from hidden knowledge in the data resulting in
a blackbox (Niu et al. 2019). RF is another supervised ML algorithm. Multiple
decision tree-based RF is robust in predicting and thus prevents the problem of
overfitting (Saberioon et al. 2018). Besides aforementioned characteristics and
strengths of NN and RF, the fact that both algorithms have previously been
applied by closely related studies certainly increases the relevance and our cu-
riosity to test them in this research as well (Fancello et al. 2011, Pani et al. 2015,
Yu et al. 2018). Furthermore, support vector machine (SVM) is also a strong
supervised ML algorithm that uses a kernel function building variable subsets
to reduce complexity (Saberioon et al. 2018). This can be highly beneficial for
our research as we consider a large number of variables to explain vessel de-
lay. Four different kernels can be used: polynomial, radial, linear, and sigmoid.
NN, RF, and SVM are relevant for learning-based regression as well. Moreover,
lasso regression (LasR), ridge regression (RR), and elastic net regression (ENR)
are ML algorithms that use penalization. They aim at lowering coefficients to
prevent the problem of multicollinearity. For particularly this reason, we apply
these algorithms as our model includes a number of factor variables that might
correlate with each other which is difficult to test using regular correlation
analysis. Regarding non-learning-based classification, we apply (multinomial)
LogR. LogR determines probabilities for observations to be assigned to two
categories (here delay or no delay) (Saberioon et al. 2018). For non-learning-
based regression, we consider LinR. LinR is a statistical prediction algorithm
that defines a linear function to predict the independent variable (Niu et al.
2019). We run LogR and LinR to identify potential performance gains from ex-
ecuting more advanced learning-based algorithms such as NN, RF, and SVM.
We expect an interesting trade-off between performance and complexity and
thus include non-learning-based LogR and LinR as well.

Overall, this literature review section points out the need for work at the
interface of data analytics and logistics and provides an overview of suitable
prediction algorithms.

2.3 methodology and model development

In this section, we describe our approach for building a model to predict de-
lays of any container shipment within the following 365 days after prediction.
Figure 2.2 provides an overview of our applied methodology.

To understand the business problem and to identify a research gap, we fol-
low three steps. First, we conduct a broad literature search. Second, we obtain
current industry-specific news from shipping reports. And third, we validate
and challenge our findings from literature and industry news by performing
several semi-structured interviews with highly experienced experts from ship-
ping industry, academia, and top management consulting. After defining the
overall methodological approach, we collect shipping data including delay in-
formation as well as information that explains delays (Section 2.3.1). Here, we
apply aforementioned 3-step-approach again, including literature search, in-
dustry news, and expert interviews to ensure understanding the drivers for
delay. To reduce the number of collected explanatory variables, we conduct
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Figure 2.2: Overall methodology for this study

basic statistics such as correlation (Section 2.3.2) and perform feature selection
(Section 2.3.3). Next, we develop prediction models that range from standard
algorithms such as LinR and LogR to more advanced ML algorithms such as
RF and NN (Section 2.3.4). Lastly, we present our selection of performance
indicators (Section 2.3.5) to evaluate models.

2.3.1 Data collection

To base the prediction of delays on a solid foundation, we access satellite data
from the automatic identification system (AIS). AIS is non-public information
used by ports and other maritime authorities to track vessels. There are online
service providers such as MarineTraffic that offer paid services to access AIS
data. Overall, we collect actual data from 75,814 container shipments depart-
ing from or arriving to Asian or European ports between February 2016 and
August 2018. We only consider direct shipments without transshipment. To
include long-distance shipments with multiple port calls, we split them into
several direct shipments. For instance, we consider a shipment from Shang-
hai to Hamburg via Singapore as two separate direct shipments. In particular,
we focus on 54,908 shipments that only connect European, Asian, and African
ports. Most importantly, AIS data contains information on OP, DP, and actual
departure and arrival time.

To obtain the variable shipping delay, we compare actual information from
AIS with scheduled shipping data. Here, we access the platform eeSea provid-
ing scheduled departure and arrival times from shipping services (eeSea 2018).
eeSea offers paid services with free trials to explore its profound data base. To
ensure high data quality, we only consider shipping services connecting ports
which are among the 100 busiest ports worldwide regarding total annual con-
tainer throughput. After cleaning actual and scheduled data, we identify 2,954

shipments respectively observations with highest data quality for which we
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then calculate the variable shipping delay. It captures absolute difference com-
paring actual and scheduled travel time of a vessel from departure at OP to
arrival at DP.

Besides actual and scheduled shipping data, we collect a large set of explana-
tory variables. To this end, we conduct a broad literature search followed by
an investigation of current shipping reports primarily resulting in port conges-
tion, ports inefficiencies, vessel issues, bad weather, and unreliability of the
terminal operator (Salleh et al. 2017). To verify and challenge this set of vari-
ables, we interview six senior experts from leading carriers, academia, and top
management consulting firms. According to the experts, the most important
influencing factors for delays are bad weather at ports and en-route, port in-
efficiencies while loading or discharging the vessel, technical issues with the
vessel, congestion at maritime chokepoints such as the Suez Canal or at ports,
and forced waiting time at chokepoints or ports caused by tide conditions or
missed slots. Additionally mentioned influencing factors are delays at previous
ports, seasonality, piracy risk, and strikes. To account for the expert interviews,
we enlarge our collection of explanatory variables. In total, we collect 315 ex-
planatory variables which can be summarized by the following ten variable
groups (Figure 2.3).

Figure 2.3: Illustration of explanatory variables

Weather and natural disasters (146 variables): For weather, we consider pre-
cipitation and wind each with maximum, minimum, and average values at OP,
during travel, and at DP. We assess wind in more detail by analyzing ten differ-
ent wind types. We match wind information with exact location and time of the
vessel to understand if weather during travel influences delays (National Aero-
nautics and Space Administration 2018). For natural disasters at OP and DP, we
include drought, earthquake, epidemic, extreme temperature, flood, landslide,
storm/cyclone, volcanic, and wildfire and evaluate them by appearance risk,
annual number of events, number of deaths, number of affected people, eco-
nomic damage, and insured losses (Centre for Research on the Epidemiology
of Disasters - CRED 2018, US Department of Commerce 2019).

Demographics (64 variables): For both OP and DP, we collect the gross do-
mestic product (GDP) growth, population growth, education level, labor pro-
ductivity, strikes, unemployment rate, Purchasing Managers’ Index (PMI), and
25 more (International Labour Organization 2018, Shackman 2015).

Chokepoint congestion (37 variables): Here, we investigate what and how
many chokepoints each vessel passes during travel considering the European-



2.3 methodology and model development 13

Asian chokepoints Strait of Gibraltar, Danish straits, Bosporus, Suez Canal,
Strait of Bab El Mandeb, Strait of Hormuz, and Strait of Malacca. For par-
ticularly important Suez Canal and Strait of Malacca, we further analyze the
number of vessels passing the chokepoint and 21 more.

Port congestion (20 variables): For both OP and DP, we collect median time
at port, median time at anchorage, number of vessels departing from or arriving
to port, and 12 more (MarineTraffic 2018).

Travel details (19 variables): Here, we include delays at previous port, time
at OP, time between ports, draught in, draught out, draught difference, stopped
at anchor, and 13 more.

Piracy risk (10 variables): For piracy risk, we evaluate number of attacks in
high-risk areas and whether the vessel passes them. We identify five high-risk
areas between Europe and Asia: Strait of Malacca together with Java Sea and
Sulu Sea, South and East China Sea, Bay of Bengal with Arabian Sea, Red Sea
with Gulf of Aden, and Persian Gulf with Gulf of Oman (International Chamber
of Commerce 2018).

Vessel characteristics (8 variables): Regarding the vessel itself, we collect
information on total size, age, flag, type, gross tonnage, deadweight, length,
and breadth (MarineTraffic 2019).

Seasonality (5 variables): We collect delay information from the same year,
season, month, week, and calendar week.

Port size (4 variables): For both OP and DP, we investigate absolute an-
nual container volume and its relative annual growth (World Shipping Council
2017).

Shipper and service information (2 variables): Here, we consider name of
shipping company and name of shipping service (eeSea 2018).

2.3.2 Variable reduction using basic statistics

After completing data collection, we summarize all data in one master data
sheet in Microsoft Excel which is then read into RStudio (version 1.1.456). Note
that we use R for all following statistical purposes. To ensure a reliable data
foundation for the model, we clean and preprocess data. To this end, we re-
move incomplete observations caused by variables with missing values leading
to 1,851 remaining complete observations. Therefore, we exclude 53 explana-
tory variables with variance of zero resulting from eliminating incomplete ob-
servations as these variables do not further contribute. Next, we investigate
correlation. By using a threshold of 90%, we eliminate 65 strongly correlating
variables. We exclude additional 26 variables by applying a threshold of 80%.
Furthermore, we eliminate five factor variables, such as name and country of
ports, as these are already covered by the total set of 64 demographics variables.
This becomes clear when considering the general pattern of higher port ineffi-
ciency in developing countries. By performing all these data cleaning steps, we
reduce the total number of explanatory variables from 315 to 166.
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2.3.3 Variable reduction applying feature selection methods

We aim at further eliminating explanatory variables to reduce computation
time, increase learning accuracy, and simplify the model without lowering the
performance (Liu et al. 2010). In literature, three categories of feature selection
methods are differentiated: filter, wrapper, and embedded methods (Guyon
and Elisseeff 2003). Filter methods simply assign a score to each variable and
hence are quick in computation but do not learn (Liu et al. 2010). In contrast,
the slower but more advanced wrapper methods leverage learning as they test
the performance of variable subsets to rank the individual variables (Guyon
and Elisseeff 2003). Lastly, embedded methods determine variable importance
by developing and training the model and are thus based on learning (Liu et al.
2010). Overall, learning-based embedded methods are more capable than filter
methods and more efficient than wrapper methods as they automatically eval-
uate variables while building the model (Guyon and Elisseeff 2003). Therefore,
we apply embedded methods for feature selection and use ML-based LasR for
this purpose (Hastie et al. 2009). LasR with the glmnet method aims at lowering
coefficients by penalizing variables (Hastie et al. 2009). The glmnet method is
considered to be very efficient, as it can handle large numbers of both observa-
tions and explanatory variables and is thus often chosen for feature selection
(Hastie et al. 2009).

To confirm validity of the feature selection according to LasR, we also in-
vestigate variable importance determined by RF as another embedded method
(Hastie et al. 2009). As a result, RF substantially validates the feature selection
derived from LasR. In detail, 75% of the 20 variables with highest importance
according to RF are selected by LasR as well. Moreover, both LasR and RF
assign highest variable importance to the same variable.

We apply LasR with the following custom control parameters: method = re-
peatedcv, number = 10, repeats = 5, and verboseIter = T. Further parameters for
LasR include train/test-split = 0.7 and standardize = FALSE. We run LasR twice
by using two different data scaling methods to ensure that important variables
are kept while less important variables are eliminated. Data can be either scaled
by transforming the mean value to zero and the standard deviation to one or
by assigning all values to the range from zero to one. To run LasR, we only
consider numerical variables as LasR would assign values to each level of fac-
tor variables. To account for these variables as well, we add them one by one
and test the performance. After removing all variables with low importance,
we run LasR once again to show the importance of the remaining 59 numerical
variables (Figure 2.4).

Overall, the selection of the 59 most important numerical variables includes
29 demographics, nine weather variables, six chokepoints, six travel detail vari-
ables, four piracy risks, three port congestion variables, and two port size vari-
ables. Surprisingly, many demographics variables turn out to be highly im-
portant. This can be traced back to the fact that we consider demographics
for both countries of OP and DP of a vessel journey. This implies that the
current development state of a country influences efficiency of port operations
and thus delays of container vessels. Furthermore, many variables relate to
delays caused by weather and congestion, which are both primarily named by
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Figure 2.4: Variable importance derived from LasR

our shipping experts. According to them, weather, traffic in strategic maritime
chokepoints, and port congestion mainly result in delays for container ship-
ments between Europe and Asia. In addition, the experts highlight increasing
piracy risk especially between the two continents.

More specifically, the ten most important variables according to LasR are
the following. Travel details: Time between ports shows highest influence on
shipping delay. Interestingly, it strongly correlates with number of chokepoints
passed per vessel which we eliminate due to high correlation. Consequently,
both travel time and number of chokepoints passed per vessel highly matter.
Piracy risk: Probability of passing Strait of Malacca, Java Sea, or Sulu Sea
with many piracy attacks. Demographics: The most important demographic
variables are crops in both DP and OP, basic education, deathrate, population
density, and PMI. Weather and natural disasters: High risk of cyclones exists
in the Northwest Pacific Basin which is east of Vietnam and China. Chokepoint
congestion: The most crucial chokepoint is the Strait of Bab El Mandeb that is
south of Suez Canal.

To illustrate the most important explanatory variables for shipping delay, we
introduce a brief shipping example of a container vessel. Assume it departs
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in Europe, transships in Indonesia as well as in the Philippines, and arrives in
Hong Kong. This vessel faces high risk of delays as it travels over long distances
and passes the Strait of Bab El Mandeb respectively Suez Canal where it might
need to queue. It continues through the Strait of Malacca followed by Java and
Sulu Sea where significant piracy risk is present. It calls ports in Indonesia
and the Philippines where it experiences less efficient port operations and thus
higher loading and discharging times. On its remaining way to Hong Kong,
it crosses the Northwest Pacific Basin confronting substantial risk of cyclones
both en-route and for the arrival at Hong Kong port.

Table 2.1 provides more insights into statistical details for the most important
explanatory variables.

Table 2.1: Statistical values for important variables

Variable Variable
group

Unit/
range

SD 5%ile Median 95%ile

Time between
ports

Travel details days 4.5 0.5 1.9 15.4

Vessel in Java/
Malacca/Sulu

Piracy risk 0 or 1 0.4 0.0 0.0 1.0

Crops DP Demographics % 5.4 0.0 1.0 17.6
Basic education
OP

Demographics % 8.7 12.5 22.4 42.3

Deathrate OP Demographics % 0.2 0.4 0.9 1.1
Cyclones North-
west Pacific

Weather 0 or 1 0.5 0.0 0.0 1.0

Crops OP Demographics % 4.5 0.0 1.3 16.8
Vessel in Bab El
Mandeb

Chokepoint 0 or 1 0.3 0.0 0.0 1.0

Population den-
sity DP

Demographics ppl./
sq.mi.

1,525.8 13.8 230.9 6,482.2

PMI DP Demographics 0-100 2.9 46.8 51.1 57.2

2.3.4 Model development

In the following, we introduce our developed prediction models. To this end,
we first describe our process of finding the best model configuration (MC) re-
garding hyperparameters and parameters followed by providing detailed con-
figurations for all developed prediction models. While hyperparameters relate
to input information which we need to define before running the model, param-
eters are chosen by the algorithm during training. For instance, the different
kernels linear, radial, polynomial, and sigmoid are the main hyperparameters
for SVM, which we need to specify in the beginning. Accordingly, the number
of decision trees (ntree) and the number of features are hyperparameters for RF
whereas the number of layers and neurons are hyperparameters for NN. To
derive the best model performance, different hyperparameter configurations
need to be examined. We primarily execute grid search by systematically test-
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ing all possible combinations of hyperparameters for each model. In case of
more than 100 possible hyperparameter combinations, we apply randomized
search to investigate model performance by using regular intervals regarding
the hyperparameters. For instance, we use three different cost values of one,
eight, and 15 instead of 15 different ones from one to 15.

We now present our developed prediction models with all detailed MC of
hyperparameters and parameters by using the categorization as introduced
in Section 2.2.3: classification versus regression and statistical learning versus
no statistical learning. Regarding learning-based classification, we implement
NN by applying train/test-split = 0.7, act.fct = logistic, 10 repetitions, one hid-
den layer with one neuron, and a threshold of 0.35 for the confidence matrix.
We use the neuralnet R package (version 1.44.2) with the neuralnet function to
develop NN (Fritsch et al. 2019). For RF, we set the train/test-split = 0.7, ntree =
1,100, mtry = 7, importance = false, and proximity = true. We use the randomForest
R package (version 4.6-14) with the randomForest function to develop RF (Liaw
and Wiener 2002). For SVM, we explore all four kernels polynomial, radial, lin-
ear, and sigmoid of which polynomial results in the highest performance. We
apply train/test-split = 0.7, cost = 1,000, gamma = 0.01, coef0 = 1, degree = 2, and
epsilon = 0.1. We use the e1071 R package (version 1.7-1) with the svm function
to develop SVM (Meyer et al. 2019). Regarding learning-based regression, we
implement NN, RF, and SVM as well. For NN, we use the train/test-split = 0.8,
10 repetitions, and one hidden layer with four neurons. For RF, we set the fol-
lowing parameters: train/test-split = 0.8, ntree = 1,000, mtry = 59, and nodesize
= 5. For SVM, we apply train/test-split = 0.7, cost = 10, gamma = 0.01, coef0 =
1.5, degree = 3, and epsilon = 0.01. Furthermore, we run LasR, RR, and ENR for
which we configure train/test-split = 0.7 and customer control parameters such
as number = 10 and repeats = 5. We use the glmnet R package (version 2.0-16)
with the glmnet function to develop LasR, RR, and ENR (Hastie et al. 2009). Re-
garding non-learning-based classification, we implement LogR for which we
apply a train/test-split of 0.7 and a threshold of 0.4 for the confidence matrix.
We use the stats R package (version 3.5.1) with the glm function to develop LogR
(R Core Team 2018). Regarding non-learning-based regression, we run LinR
for which we set train/test-split to 0.7 and apply the step function to identify a
smaller variable subset. We use the stats R package (version 3.5.1) with the lm
function to develop LinR (R Core Team 2018).

2.3.5 Performance indicators

To evaluate regression models, we primarily use root mean square error (RMSE)
(Equation 2.1) and mean absolute error (MAE) (Equation 2.2). Both help com-
paring predicted with actual values (Wang and Lu 2018) and are calculated as
follows (Chai and Draxler 2014).

RMSE =

√∑N
n=1(predictedn − actualn)2

N
(2.1)

MAE =

∑N
n=1 |predictedn − actualn|

N
(2.2)
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To evaluate classification models, we primarily apply RMSE, accuracy, and sen-
sitivity. We explain the latter two by illustrating a confidence matrix (Figure
2.5).
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Figure 2.5: Confidence matrix for classification models

In shipping, positive relates to delays while negative means on-time. Thus,
accuracy shows the correctness of both positive and negative delay predictions
relative to all delay predictions (Equation 2.3).

Accuracy =
TN+ TP

TN+ TP+ FN+ FP
(2.3)

Sensitivity particularly focuses on positive actual values. In the shipping con-
text, sensitivity explains how often we predict delays in case the vessel arrives
with delays (Equation 2.4). Note that sensitivity is often also named recall or
true positive rate in literature.

Sensitivity =
TP

TP+ FN
(2.4)

With respect to container shipping, we argue that it is more expensive to falsely
predict on-time if the vessel arrives delayed than to falsely predict delays if the
vessel arrives on-time. In other words, an unexpected delayed arrival is more
difficult to handle than an unexpected on-time arrival. For instance, falsely pre-
dicting delays can be corrected by contacting the captain to confirm the delay.
In contrast, falsely predicting on-time certainly results in issues, including the
adaption of the vessel handling sequence and hinterland logistics.

In summary, this section on methodology and model development explains
the overall methodological approach, describes all data collection steps, and
elaborates on variable reduction. Ultimately, it shows the development of all
models and prepares discussion by introducing relevant performance indica-
tors.

2.4 model results

In this section, we describe and compare all developed regression (Section 2.4.1)
and classification models (Section 2.4.2) to select the best prediction model.
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2.4.1 Discussion of regression models

We can now evaluate and compare performance of developed regression mod-
els as summarized in Table 2.2.

Table 2.2: Results of regression models (with performance values and column ranks)

Model RMSE MAE
SVM with polynomial kernel 0.43 (1) 0.26 (1)
NN 0.52 (2) 0.34 (2)
SVM with radial kernel 0.53 (3) 0.34 (2)
RF 0.63 (4) 0.40 (4)
LinR 0.67 (5) 0.49 (6)
SVM with linear kernel 0.70 (6) 0.47 (5)
LasR 0.79 (7) 0.56 (7)
ENR 0.79 (7) 0.56 (7)
RR 0.80 (9) 0.56 (7)
SVM with sigmoid kernel 0.93 (10) 0.61 (10)

According to the selected performance indicators, we argue that SVM with
polynomial kernel clearly achieves highest prediction performance, followed
by NN with four neurons in one hidden layer and SVM with radial kernel.
Interestingly, all three statistical learning-based models perform significantly
better regarding both RMSE and MAE than non-learning-based LinR and other
learning-based models. While we can easily compare the performance of the
models relatively, it is more difficult to evaluate the performance of the models
in general due to the low interpretability of performance indicators. However,
Figure 2.6 A reveals that NN generally performs well when comparing pre-
dicted and actual delays whereas Figure 2.6 B shows that SVM with polynomial
kernel predicts even better.

Figure 2.6: Comparison of actual and predicted delays for (A) NN and (B) SVM as the
best regression models
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2.4.2 Discussion of classification models

Besides regression models, we can now also evaluate and compare performance
of developed classification models as summarized in Table 2.3.

Table 2.3: Results of classification models (with performance values and column ranks)

Model RMSE Accuracy Sensitivity
NN 0.41 (1) 0.77 (3) 0.78 (2)
LogR 0.41 (1) 0.75 (5) 0.75 (3)
RF 0.43 (3) 0.81 (1) 0.65 (5)
SVM with polynomial kernel 0.46 (4) 0.79 (2) 0.68 (4)
SVM with radial kernel 0.48 (5) 0.77 (3) 0.64 (6)
SVM with linear kernel 0.50 (6) 0.74 (6) 0.48 (7)
SVM with sigmoid kernel 0.61 (7) 0.63 (7) 0.96 (1)

According to the table, NN and LogR achieve the best (lowest) values for
RMSE whereas RF scores best (highest) for accuracy. While NN and LogR are
equal in RMSE, NN outperforms LogR in accuracy and sensitivity, thus we
prefer NN. To identify the best prediction model comparing NN with RF, we
need to further investigate their results. Both models perform similarly well
regarding RMSE, but strongly differ with respect to accuracy and sensitivity.
Figure 2.7 helps to understand these differences.
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Figure 2.7: Confidence matrix for (A) NN and (B) RF as the best classification models

On the one hand, NN misclassifies delays versus no delays 127 times result-
ing from 81 false positives (FP) and 46 false negatives (FN) (Figure 2.7 A). We
compare this to RF with only 108 misclassifications resulting from 36 FP and
72 FN (Figure 2.7 B). For this reason, the accuracy for RF with 81% is higher
than for NN with 77%. Notably, the accuracy of the baseline model is only 59%
meaning one could simply always predict no delays resulting in an accuracy
of 59%. Thus, both RF and NN achieve significantly higher accuracy than the
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baseline model. On the other hand, NN results in only 46 FP compared to
RF with 72 FP leading to higher sensitivity for NN. As already highlighted in
Section 2.4.1, we argue that it is more important to prevent unexpected delayed
arrivals of vessels than to prevent unexpected on-time arrivals. Therefore, we
prefer NN. Overall, we claim that NN performs best regarding classification
models, followed by LogR and RF due to the particular importance of sensitiv-
ity. Surprisingly, non-learning-based LogR performs almost as well as statistical
learning-based NN, representing the best classification model.

Interestingly, the evaluation of classification models helps to better under-
stand the performance of developed regression models as we always apply the
performance indicator RMSE. To this end, we compare RMSE for NN as the
best classification model to SVM with polynomial kernel as the best regression
model. As a result, we only obtain a small difference: 0.41 for NN versus 0.43

for SVM. Surprisingly, the regression model is almost as good as the classifica-
tion model even though it attempts to predict delays precisely in contrast to all
classification models which only classify delays versus no delays. In addition,
we consider the aspect of interpretability when comparing NN and SVM to
select the best model. Complex models such as NN can achieve high accuracy
on the one hand but result in low interpretability on the other hand (Saberioon
et al. 2018). In summary, we argue that SVM with polynomial kernel serves
as the best prediction model in this study considering both performance and
interpretability.

Overall, this model results section evaluates all developed models by first an-
alyzing classification and regression separately. To select the best overall predic-
tion model, best-performing classification and regression models are compared
with each other.

2.5 case study : tidal restrictions at the port of hamburg

In this case study, we aim at investigating the impact of shipping delays of
vessels on reaching certain tidal windows to which the vessels might be re-
stricted. At the same time, we focus on the contrary question of how these tidal
windows influence shipping delay. We examine both questions for the Port of
Hamburg as a major global but tide-restricted port.

2.5.1 Problem statement

A significant number of deep sea ports can only be accessed via shipping chan-
nels such as rivers (Corry and Bierwirth 2019). The given water level in the
shipping channel limits the usability for vessels with higher draught compared
to maximum possible draught at low tide (LT) (Vantorre et al. 2014). In the
following, we differentiate tide-restricted and non-tide-restricted vessels. While
non-tide-restricted ones can access and leave the port at any time, tide-restricted
vessels are bounded by tidal windows resulting from high tide (HT) and LT. HT
and LT alternate approximately every six hours (Hafen Hamburg 2019b). In
the case of the Port of Hamburg, for instance, the resulting tidal range which
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measures the water level difference between HT and LT is 3.66 meters (Hafen
Hamburg 2019b).

Tide-restricted vessels can use HT to arrive to or depart from ports with tidal
restrictions, however, problems might arise when delays of vessels occur and
adjustments of inbound or outbound vessel orders are required (Corry and Bier-
wirth 2019). This can lead to waiting times of approximately 12 hours to allow
for using the shipping channel with the following HT again (Corry and Bier-
wirth 2019). Consequently, container ports face significant inefficiencies caused
by problems from tidal restrictions (Du et al. 2015). Notably, inefficiencies for
ports considerably endanger their competitiveness with more efficient ports as
inefficiencies increase service costs for vessels calling this port (Jiao et al. 2018).

In the case of the Port of Hamburg, these inefficiencies frequently emerge
(Corry and Bierwirth 2019). For this reason, we specifically investigate the
issue of shipping delays and tidal restrictions for this port. On the one hand,
the Port of Hamburg allows vessels with a draught of 12.80 meters or less
to enter or leave the port at any time (Du et al. 2015). We call these vessels
non-tide-restricted in the following. On the other hand, the Port of Hamburg
restricts entering the port for vessels with a draught of 12.81 to 15.10 meters and
limits leaving the port for vessels with a draught of 12.81 to 13.80 meters (Du
et al. 2015). We name these vessels tide-restricted for all subsequent analysis.
All restrictions regarding draught relate to fresh water conditions.

2.5.2 Methodology

To answer aforementioned research questions in this case study, we use the
same collection of 75,814 shipments as for delay prediction in this research. In
detail, there are 1,464 vessels arriving to the Port of Hamburg of which 144

include delay information, of which 44 are delayed, and of which nine are tide-
restricted due to their draught when arriving to Hamburg. Furthermore, there
are 1,462 vessels departing from the Port of Hamburg of which 140 include
delay information, of which 71 are delayed, and of which six are tide-restricted.
For arriving vessels, the draught when entering the port determines whether
the vessel is tide-restricted whereas the draught when leaving the port identi-
fies all tide-restricted departures. Next, we compare the actual time of arrival
respectively departure with collected data regarding HT and LT for all ship-
ments (Gerding 2016). The gathered information on HT and LT enables the as-
sessment of arrivals and departures with respect to tidal conditions. We regard
both delayed and non-delayed as well as tide-restricted and non-tide-restricted
vessels for the following analysis.

In this case study, we conduct four different analysis to fully understand the
interrelation between shipping delays and tidal restrictions. First, we determine
the importance of meeting HT for tide-restricted vessels arriving to or departing
from Hamburg. Second, we show correlation between tidal restrictions for
vessels and their shipping respectively transshipment time. Third, we present
an analysis on the influence of tidal restrictions for vessels on shipping delay.
And fourth, we examine whether delayed vessels miss tidal windows when
arriving to the Port of Hamburg.
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2.5.3 Analysis results

2.5.3.1 Importance of meeting high tide for tide-restricted vessels

First of all, we determine the importance of meeting HT for tide-restricted ves-
sels arriving to or departing from Hamburg. We conduct this analysis to un-
derstand to what extend vessels with tidal restrictions are bounded to tidal
windows. To this end, we compare non-tide-restricted with tide-restricted ves-
sels regarding their arrival and departure times at the Port of Hamburg. We
study the average time deviation from HT to assess when vessels arrive or de-
part with respect to tidal windows. More importantly, we examine the variance
of these arrival and departure times to understand how important it is to meet
tidal windows. We provide the results of this analysis in Table 2.4.

Table 2.4: Impact of tidal restrictions on average arrival and departure time deviation
from HT and its corresponding variance

Vessel type Status Avg. time deviation
from HT (in hours)

Time variance from
HT (in hours)

Non-tide-restricted arriving 1.6 2.9
Tide-restricted arriving 1.6 1.9
Non-tide-restricted departing 3.5 3.0
Tide-restricted departing 5.0 0.3

Notably, the table confirms that both arriving and departing tide-restricted
vessels show lower variance regarding their arrival and departure times with
respect to HT. With only 1.9 hours compared to 2.9 hours for arriving vessels
and only 0.3 hours compared to 3.0 hours for departing vessels, the variance is
smaller for vessels with tidal restrictions. Consequently, these vessels are forced
to arrive or leave the port more on-time. This indicates higher complexity for
shipments with tidal restrictions. Delays can result in missing the arrival and
departure window. Note that average arrival and departure time with regard
to HT do not show values around zero which might be intuitive, however,
it needs to be considered that tidal restrictions account for most parts of the
river called Unterelbe and not only for the port. For instance, lowest depth is
associated with the center part of the river close to Glückstadt with only 15.8
meters compared to the port with 16.7 meters (Hafen Hamburg 2019a). Thus,
tidal conditions must be considered for the entire six hour journey between the
Port of Hamburg and deep sea.

2.5.3.2 Higher shipping and transshipment time of vessels with tidal restrictions

To understand whether tide-restricted vessels are more prone to be delayed,
we analyze whether these vessels result in higher shipping and transshipment
times. We present the outcome of this analysis in Table 2.5.

Interestingly, both shipping and transshipment times are on average higher
for tide-restricted vessels compared to non-tide-restricted ones. For arrivals to
Hamburg, the average shipping (transshipment) time of tide-restricted vessels
is 1.5 (1.8) days compared to only 1.3 (1.5) days for non-tide-restricted ones. For
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Table 2.5: Impact of tidal restrictions on average shipping and transshipment time

Vessel type Status Avg. shipping time
(in days)

Avg. transshipment
time (in days)

Non-tide-restricted arriving 1.3 1.5
Tide-restricted arriving 1.5 1.8
Non-tide-restricted departing 4.1 1.6
Tide-restricted departing 5.2 1.7

departures from Hamburg, the average shipping (transshipment) time of tide-
restricted vessels is 5.2 (1.7) days compared to only 4.1 (1.6) days for non-tide-
restricted ones. As a result, the analysis indicates that tide-restricted vessels
might result in more delays than non-tide-restricted ones. We further investi-
gate this indication in the following analysis.

2.5.3.3 Higher shipping delays of vessels with tidal restrictions

To confirm the indication of higher delays for tide-restricted vessels, we test all
Hamburg-related arrivals and departures with regard to their shipping delay.
To this end, we first examine all shipments with either positive or negative
delays followed by shipments with positive delays only. We provide the results
of both analysis in Table 2.6.

Table 2.6: Impact of tidal restrictions on average shipping delay

Vessel type Status Avg. shipping de-
lay of delayed and
non-delayed vessels
(in days)

Avg. shipping de-
lay of delayed ves-
sels only (in days)

Non-tide-restricted arriving -0.4 0.6
Tide-restricted arriving -0.1 0.7
Non-tide-restricted departing -0.0 0.5
Tide-restricted departing -0.5 1.2

Regarding both positive and negative delays, tide-restricted vessels show an
average shipping delay of -0.1 days for arrivals and 0.5 days for departures
compared to non-tide-restricted vessels with only -0.4 days for arrivals and 0.0
days for departures. Regarding positive delays only, vessels with tidal restric-
tions result in an average shipping delay of 0.7 days for arrivals and 1.2 days
for departures compared to vessels without tidal restrictions with only 0.6 days
for arrivals and 0.5 days for departures. As a result, we can now confirm the
indication from previous analysis that vessels with tidal restrictions are more
prone to be delayed.

2.5.3.4 Missing tidal windows for delayed vessels

In this section, we aim at analyzing the relation between tidal restrictions and
shipping delays from the opposite perspective. Here, we investigate the impact
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of shipping delays on the vessel arrival with regard to its tidal restrictions. To
evaluate whether delayed vessels miss the tidal window when they arrive to the
Port of Hamburg or not, we use the following three criteria. First, we consider
shipping delays of arriving vessels. The more it is delayed, the higher is the
probability of missing the targeted tidal window. This becomes clear when
taking into account the fact that LT already follows HT after roughly six hours.
Second, we investigate average sailing speed from the previous port to the Port
of Hamburg. In general, the estimated time of arrival (ETA) of a vessel can be
determined quite easily after departing from the OP. Consequently, the speed
of the vessel is set accordingly to ensure reaching the targeted tidal window
in time. If it cannot be timely reached – even at highest sailing speed – the
vessel might operate in slow steaming mode to reduce fuel consumption. Then,
the vessel arrives with the following tidal window. As a result, the average
sailing speed of the vessel serves as indication whether the vessel manages to
reach the planned tidal window. And third, we consider the deviation of arrival
time and HT for delayed tide-restricted vessels compared to on-time ones. This
consideration further provides an indication how the vessel reaches the Port of
Hamburg comparing delayed with non-delayed tide-restricted vessels.

As an outcome of this analysis, we differentiate the consequences from ship-
ping delays for the arrival at the Port of Hamburg as follows: tidal window
missed with waiting time, tidal window missed without waiting time, and tidal
window not missed. Note that we imply slow steaming for vessels if waiting
is required to reach the next tidal window. We provide the evaluation of all
delayed tide-restricted shipments arriving to the Port of Hamburg in Table 2.7.

Table 2.7: Impact of shipping delays on port arrivals with respect to entry restrictions
from given tidal windows

Nr. Shipping
route

Shipping
delay
(in days)

Avg. sail-
ing speed
(in knots)

Deviation of
timing with
HT (in hours)

Evaluation if ves-
sel misses tidal
window

A TAN-HAM 1.6 17.9 5.7 Missed, no waiting
B TAN-HAM 1.2 20.6 n/a Missed, no waiting
C ANT-HAM 0.6 20.2 n/a Missed, no waiting
D ROT-HAM 0.5 14.7 0.5 Missed, waiting
E ANT-HAM 0.5 14.2 n/a Missed, waiting
F ANT-HAM 0.5 14.3 0.4 Missed, waiting
G ROT-HAM 0.4 16.4 1.8 Missed, waiting
H ANT-HAM 0.4 15.7 0.2 Missed, waiting
I ANT-HAM 0.3 26.4 n/a Not missed

In summary, eight out of nine considered delayed vessels with tidal restric-
tions miss the planned tidal window. Three of them are not required to further
wait to use the following tidal window while the remaining five shipments face
additional waiting time. Only one delayed tide-restricted vessel manages to
reach the port within the planned tidal window.

Both vessels that originate from Tanger-Med in Morocco (shipments A and
B) arrive with significant shipping delay. They clearly miss the planned tidal
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window, however, arrive to the shipping channel at regular speed without addi-
tional waiting time for using the following tidal window. Similarly, shipment C
misses the tidal window by roughly 12 hours which is approximately the time
range from a HT to the next one. By sailing at normal speed, the vessel reaches
the following tidal window.

In contrast, shipments D to H face additional waiting time due to missing
the originally planned tidal window. To understand this evaluation, we point
out the significantly lower average sailing speed of only 14.2 to 16.4 knots, as
well as the low deviation of arrival time with regard to HT of only 0.4 to 1.8
hours. Notably, these vessels arrive similarly with regard to HT compared to
non-delayed tide-restricted vessels on the same shipping routes, however, they
are forced to wait and hence operate in slow steaming mode to reduce fuel
consumption.

Surprisingly, shipment I from Antwerp to Hamburg is the only analyzed
delayed vessel that still manages to reach the planned tidal window in time. It
shows highest sailing speed compared to the remaining considered vessels and
thus avoids additional delays when arriving to the Port of Hamburg.

2.5.4 Case study conclusion

In this case study, we investigate the interrelation between shipping delays and
tidal restrictions for vessels arriving to or departing from the Port of Hamburg.
On the one hand, we present analysis pointing out the higher probability of de-
lays for tide-restricted vessels. On the other hand, we demonstrate the impact
of shipping delays on the arrival to the port regarding given tidal windows.
Consequently, both results highlight the additional complexity of tidal restric-
tions for vessels, as well as the impact of occurring shipping delays on shipping
operations. We examine all analysis with respect to the Port of Hamburg which
serves as major global container port with tidal restrictions.

2.6 managerial implications

In general, we aim at emphasizing that the model supports the strategic plan-
ning level to draw long-term conclusions regarding operations. For instance,
carriers might want to increase buffers in their schedules for certain months in
the year which regularly show more vessel delays caused by bad weather. In
contrast, the model does not focus on the operational planning level to make
short-term adjustments such as reacting to bad weather forecasts for the next
days.

Four different types of companies can benefit from the proposed prediction
model. First, senders of goods can leverage more intermodal transportation for
certain routes at specific times in the year to avoid congestion at maritime choke-
points. Intermodal transportation combines different means of transportation
such as sea and rail freight and becomes more important particularly for trans-
port between Europe and Asia (Rodemann and Templar 2014). In addition,
senders can select other ports with less congestion and more efficient oper-
ations either temporarily for certain times of the year or permanently if the
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prediction model confirms less delays for nearby ports. Second, carriers which
transport the goods can operate on alternative routes from Europe to Asia such
as the Northern Sea Route going around Russia which has been gaining impor-
tance in recent years to avoid bottlenecks at Suez Canal and Strait of Bab El
Mandeb (Lin and Chang 2018). Moreover, carriers can adjust buffers in their
schedules for routes with high delay prediction. Third, terminal operators can
optimize their loading and unloading operations, including the sequence of
vessels for handling. And forth, receivers of goods can reduce risks such as
stock-outs in stores, insufficient supply for production, high capital cost, or lost
sales depending on the business of the receiver.

To enable these adjustments of shipping operations, the aforementioned com-
panies can extract different types of information from the prediction model. On
the one hand, they benefit from predicted delays for their relevant shipping
routes. Predicted delays are the final model outcome which helps them to ad-
just shipments with high risk of delay. Here, we emphasize that companies
can benefit significantly more from SVM with polynomial kernel as the best re-
gression model compared to NN as the best classification model. This becomes
clear when recalling the granularity of the predictions. Companies would be
limited in their decision taking when only obtaining the information of vessels
being delayed or on-time without more accurate estimations. For instance, re-
ceivers would still struggle to precisely optimize their hinterland logistics and
thus include substantial buffers in their operations.

On the other hand, companies benefit from intermediate model outcome
such as variable importance. For instance, the variable time between ports
is highly important and thus companies should include more buffer into sched-
ules and following logistics regarding long-distance shipments. Moreover, a
large number of demographics variables with high importance reveals that
ports in developing countries often struggle with efficient operations. This also
accounts for ports with high volume growth indicated by the port size variables.
Consequently, fast-growing ports particularly in developing countries could be
reconsidered. Next, important variables with fluctuation during the year such
as cyclone risk in the Northwest Pacific Basin and chokepoint congestion in the
Strait of Bab El Mandeb and Suez Canal can be investigated more closely. To
this end, we recommend to understand the level of risk at different times in
the year. Furthermore, many travel details variables directly affect delays on
the same route. For instance, monitoring the variables time at OP and delays
at previous port allows for short-term adjustments of operations to react to
emerging delay.

In general, the management of aforementioned companies can easily imple-
ment and use the proposed prediction model as it is entirely built in R, up to
date, and ready to use. To effectively encounter delays in the future, compa-
nies are advised to follow three steps. First, companies should decide what
prediction error type is more crucial for their business as prediction algorithms
face different suitability with regard to prediction error types. For instance, if
FN, meaning on-time predictions in case of delayed arrivals, are more expen-
sive for the company, it is essential to select an algorithm with high sensitivity.
Thus, the risk of obtaining FN is reduced. Second, the model should be fed
with new shipments after a few years. This step is important as present cir-
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cumstances might change in the future. For instance, shipments to or from
Hamburg might face less delays in the future considering current expansion
work at the river that serves Hamburg. It is expected that this expansion re-
duces port entry restrictions due to tide conditions for large vessels. And third,
it is recommended that companies update a few explanatory variables as well.
Here, the vast majority of variables remains effective, however, some variables
such as the operating carrier need to be updated as carriers might improve or
fall off in on-time service quality over time.

Interestingly, the prediction model can be generally applied for other means
of transportation such as rail transportation. Delays in rail transportation, how-
ever, is partly influenced by other factors. To this end, the selection of explana-
tory variables must be adjusted.

2.7 conclusion and future directions

In this study, we provide data analytics-based solutions for the container ship-
ping industry. We introduce a developed prediction model to increase trans-
parency in delays of container vessels between Europe and Asia. NN as our
best classification model achieves an RMSE of 0.41 and a prediction accuracy of
77% compared to only 59% in case of naïve forecasting. SVM with polynomial
kernel as our best regression model results in an RMSE of 0.43. Notably, the
RMSE of the regression model SVM which precisely predicts delays is higher
by only 0.02 compared to the classification model NN which only classifies the
vessels as delayed or on-time.

In summary, our study shows that various shipping players benefit from in-
creased transparency in shipping delays, such as sender, carrier, terminal oper-
ator, and receiver. As highlighted in the previous section, our model targets the
strategic planning level to draw long-term conclusions regarding operations.
This provides additional directions for future studies. A prediction model fo-
cused on short-term adjustments on a daily basis should include more real-time
data such as weather forecasts and live congestion reports. That type of pre-
diction model with more short-term benefits could be used in addition to the
proposed model in this study within a corporate decision support system for
the container shipping industry.

Furthermore, the case study of investigating delays for ports with tidal re-
strictions could be extended by analyzing a larger dataset to better understand
the implications for terminal operators. This would be primarily interesting
with regard to their decision-making on delays. Additionally, a comparison of
ports with tidal restrictions could be conducted to figure out performance dif-
ferences concerning how delays are managed.

This chapter demonstrates that ML enhances predictions of shipping delays
for container vessels. In particular, SVM achieves the highest forecast accuracy,
followed by NN and RF, comparing all implemented regression models. We
obtain the best results for SVM using the polynomial kernel, in contrast to the
radial, linear, and sigmoid kernels. SVM outperforms other ML-based algo-
rithms, such as LasR, ENR, and RR. These methodological insights into which
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ML algorithms achieve the highest predictive performance lay the foundation
for the remainder of this dissertation. According to both academia and inter-
viewed shipping experts, it is worth investigating whether ML also improves
predictions of container spot rates, as another important maritime challenge.
Based on the findings of this chapter, we test whether SVM with the polyno-
mial kernel, NN, and RF achieve higher forecast accuracy in predicting spot
rates compared with more traditional time series (TS) methods. Various com-
panies, including carriers, freight forwarders, and shippers, would benefit from
increased transparency in future freight rates. This will be the focus in the fol-
lowing chapter.





3
S P O T L I G H T O N S P O T R AT E S : P R E D I C T I N G C O N TA I N E R
F R E I G H T R AT E S B Y C O M PA R I N G T I M E S E R I E S A N D
M A C H I N E L E A R N I N G A L G O R I T H M S

This chapter is based on Viellechner and Spinler (2021c)1.

3.1 introduction

Container shipping is recognized as the primary transport mode for global
trade, and over the last decades a significant growth in freight volumes has
been observed, underlining the industry’s importance for worldwide cargo op-
erations (Dulebenets 2018). Global container trade increased from 51 million
twenty-foot equivalent units (TEU) in 1997 to 182 million TEU in 2016 (Saxon
and Stone 2017). Container shipping is characterized by strong imbalances in
transported volumes between regions, such as Europe and Asia, forcing car-
riers to move empty containers. This results in massively reduced back-haul
prices, increased head-haul freight rates, and thus significant differences in the
two directions (de Oliveira 2014).

Regarding future trade, two major developments in the industry can be ob-
served. First, globally shipped volumes are generally expected to grow con-
tinuously. Second, the number of containers on trade lanes linking Asia with
other regions is particularly likely to change with increasing prosperity in Asian
countries. This may transform current imbalances in trade flows, such as Asia-
Europe and Asia-America, leading to drastic shifts in freight rates (Saxon and
Stone 2017).

Predicting future prices represents a crucial task for various shipping players,
as they base important business decisions on this information. However, antic-
ipating freight rates is challenging due to the lack of transparency in demand
and supply influencing prices (J. Carnarius [Forto], personal communication,
January 15, 2020). It is even more difficult when large volume shifts on trade
lanes are expected which can impact freight rates considerably. More accurate
price forecasting could help shipping customers with their decision-making,
such as trade-offs between short- and long-term contracts with carriers and
transporting bulk goods in containers or on conventional bulk vessels. Com-
panies have started to leverage these opportunities, but only on a manual and
ad hoc basis, making such decisions prone to error (F. Clausen [Yara Interna-
tional], personal communication, August 5, 2019). Carriers might also benefit
from improved freight rate predictions by optimizing their pricing for container
services (M. Acciaro [Hapag-Lloyd Center for Shipping and Global Logistics],
personal communication, October 24, 2019). Surprisingly, only a few liner ship-
ping companies set their rates automatically using more advanced technologies

1This unpublished working paper with the title “Spotlight on Spot Rates: Predicting Container
Freight Rates by Comparing Time Series and Machine Learning Algorithms” was written by Adrian
Viellechner and Stefan Spinler.
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(F. Heinemann [Hapag-Lloyd], personal communication, March 27, 2020), sug-
gesting that there is still a large need for optimization (P. Rau [McKinsey &
Company], personal communication, August 2, 2019).

To enable these opportunities, novel data analytics-based methods should be
considered, as these are recognized to equip users with advanced prediction
abilities. Machine learning (ML) algorithms produce significantly better results
than conventional statistical methods in predicting shipping delays of container
vessels (Viellechner and Spinler 2020). Applying new models, such as neural
networks (NN), might also improve forecasts for container freight rates (Munim
and Schramm 2017).

The aim of this study is to propose a prediction model for container spot
rates to support shipping players’ business decisions. We seek to answer three
research questions (RQ):

• RQ 1: Which method works best to predict container spot rates, compar-
ing ML with time series (TS) models?

• RQ 2: Does clustering trade lanes and adding external variables improve
forecast accuracy?

• RQ 3: Which corporate business decisions can be supported by our pro-
posed prediction solution, and what is the resulting economic benefit?

In the remainder of this article, Section 3.2 reviews existing research on mar-
itime forecasting, outlines the contribution of this study, and describes factors
influencing container spot rates. Section 3.3 details all data collection steps and
the model development for freight rates. Section 3.4 discusses the forecasting
results and assesses the impact of clustering routes and adding external vari-
ables on predictive performance. Section 3.5 presents managerial implications,
and Section 3.6 draws conclusions and suggests directions for future research.

3.2 theoretical background

3.2.1 Review of literature on maritime forecasting

Researchers have long been attracted to forecasting freight rates and analyz-
ing their dynamics. Most studies, however, are concerned with dry bulk ship-
ping rather than containers. For instance, many researchers investigate TS algo-
rithms to predict bulk freight rates, such as vector autoregressive (VAR) models
(Batchelor et al. 2007). Others opt for ML, particularly using NN (Zeng et al.
2016).

Less research has been carried out on container freight rates (Table 3.1). Some
studies propose prediction models for non-price-related topics, such as con-
tainer volumes (Chou et al. 2008, Wang et al. 2013) and shipping delays (Fan-
cello et al. 2011, Viellechner and Spinler 2020). Other studies investigate the
drivers of freight rates and the influence of trade imbalances on prices (de
Oliveira 2014), analyze seasonality (Yin and Shi 2018), and discuss general rate
increase (GRI) announcements (Chen et al. 2017). A few solutions for predict-
ing freight rates have been reported, such as dynamic econometric forecast-
ing (Luo et al. 2009). They emphasize the high influence on prices of both
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Table 3.1: Overview of existing forecasting studies in container shipping

Authors
(year)

Major objective Methodology Data
time
range

Data
granu-
larity

Chou et al.
(2008)

Predict shipping
volumes for Tai-
wanese ports

Modified regression
including non-stationary
contribution coefficient

1989-
2001

year

Luo et al.
(2009)

Predict freight
rates analyzing de-
mand and supply

Dynamic economic
model using three-stage
least squares method

1980-
2008

year

Fancello
et al. (2011)

Predict shipping
delay of vessels

Dynamic NN-based sim-
ulation and optimization
for resource allocation

2008 vessel
spe-
cific

Wang et al.
(2013)

Predict volumes
for Taiwanese and
Korean markets

Comparison of regres-
sion and system dynam-
ics simulation models

1990-
2008

year

de Oliveira
(2014)

Investigate the
determinants of
freight rates

Empirical analysis, re-
gression, and break
down of freight rates into
basic rate and surcharges

2007-
2008

month

Nielsen
et al. (2014)

Predict freight
rates analyzing FH
and observation fit

ARIMA and econometric
models and experiments
on parameters’ impact

2010-
2012

week

Chen et al.
(2017)

Analyze spot rate
manipulation relat-
ing to GRI

Empirical study of the
GRI system regarding in-
dustrial competition

2009-
2013

week

Munim
and
Schramm
(2017)

Predict freight
rates for European-
Asian trade and
discuss price
dynamics

Application of ARIMA,
ARCH, and ARIMARCH
methods

2009-
2015

week/
month

Yin and
Shi (2018)

Investigate freight
rates relating to
seasonality

Analysis of the China
Containerized Freight In-
dex

2004-
2016

month

Munim
and
Schramm
(2020)

Predict freight
rates for Asian-
European and
Asian-American
trade

Comparison of ANN and
traditional methods in-
cluding ARIMA, VAR,
and VEC

2015-
2017

week

Viellechner
and Spin-
ler (2020)

Predict shipping
delay of vessels
between Europe
and Asia

Regression and classifi-
cation models compar-
ing conventional statisti-
cal methods with ML

2016-
2018

vessel
spe-
cific

Viellechner
and Spin-
ler (2021c)

Predict spot rates
for trade between
Europe, Asia, and
North America

Comparison of TS with
ML methods and impact
analysis of clustering and
external variables

2015-
2019

day
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customers’ demand for container shipping and carriers’ supply of fleet capac-
ity. The resulting accuracy is greater than 95%, however, the model outputs
yearly forecasts, disregarding significant fluctuations in prices during the year.
Nielsen et al. (2014) apply autoregressive integrated moving average (ARIMA)
and econometric methods, also resulting in an accuracy of approximately 95%.
This model uses weekly data and thus allows for more granular predictions.
The authors focus on short- to mid-term operations by forecasting freight rates
one to 15 weeks ahead. However, applying this forecast horizon (FH) lim-
its strategic managerial implications, such as optimizing between short- and
long-term contracts, because shipping customers require price transparency six
months in advance (F. Clausen [Yara International], personal communication,
August 5, 2019). Munim and Schramm (2017) introduce a prediction model
applying ARIMA, autoregressive conditional heteroscedasticity (ARCH), and
a combination (ARIMARCH). The proposed model achieves a high accuracy
of approximately 95%. They collected an extensive dataset with weekly and
monthly granularity, however, the model only forecasts three weeks out-sample
limiting strategic managerial opportunities. Munim and Schramm (2020) pro-
pose another forecasting solution based on ARIMA, VAR, vector error correc-
tion (VEC), and artificial NN. They use 142 weeks for training and 13 weeks
for testing the model. The authors emphasize high suitability of ARIMA for
predicting freight rates, resulting in a mean absolute percentage error (MAPE)
of 26.5%.

3.2.2 Contribution of this research

Reviewing maritime prediction publications reveals that most studies focus on
dry bulk shipping and that research on containers is particularly limited with
regard to price forecasting. To contribute to this area, we investigate whether
spot rates can be predicted and describe how such forecasts might best be
performed. Shipping companies can only benefit from a prediction tool if it
provides granular forecasts well in advance, however, these requirements are
often not incorporated into existing studies. Munim and Schramm (2017) con-
firm this research gap and emphasize the urgent need to increase predictive
performance and robustness by applying a long-term FH. To enable strate-
gic decision-making for shipping players, we develop 182-step-ahead forecasts,
representing six months as FH. Munim and Schramm (2020) further highlight
the importance of implementing rolling forecasting windows to validate pre-
diction results for each route. To achieve higher model robustness compared
with existing research, we apply time series cross-validation (TSCV) using 182

rolling forecasting windows. Munim and Schramm (2020) also call for further
studies to test additional methods, particularly ML which has so far received
little research attention regarding container shipping. Our study contributes
to a better understanding of which methods to apply to predict spot rates and
whether ML algorithms can achieve even greater forecast accuracy. To this end,
we investigate a broad range of different approaches, including 12 TS and three
ML models.
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3.2.3 Factors influencing container spot rates

To predict freight rates, we first increased transparency in their determinants.
In general, shipping prices closely follow the principle of demand and supply
(Luo et al. 2009). Demand is strongly driven by economic growth (M. Acciaro
[Hapag-Lloyd Center for Shipping and Global Logistics], personal communi-
cation, October 24, 2019), global disruptions resulting from sudden events (J.
Kang [Novartis], personal communication, July 26, 2019), and seasonal holi-
days, particularly Chinese New Year and Christmas (Yin and Shi 2018). Eco-
nomic indicators, such as the Purchasing Managers’ Index (PMI), can be used
to anticipate future global demand (J. Carnarius [Forto], personal communica-
tion, January 15, 2020). Supply is mostly influenced by the deployed capacity
on a shipping route (de Oliveira 2014). It can be defined in terms of the num-
ber of vessels, average carrying capacity, and length of journeys (Munim and
Schramm 2017). Spot rates are also driven by political factors, such as geopolit-
ical conflicts, trade barriers, and regulations. For instance, prices may be influ-
enced by political disturbances in the South China Sea, tariffs between China
and the US, and decarbonization regulations, such as IMO 2020 which has
forced carriers to adjust their use of bunkers (F. Clausen [Yara International],
personal communication, August 5, 2019). Other factors include alternative
transport modes, price expectations and discrimination, and the interaction be-
tween spot and long rates (M. Acciaro [Hapag-Lloyd Center for Shipping and
Global Logistics], personal communication, October 24, 2019).

3.3 methodology

3.3.1 Data collection for container spot rates

We collected daily container spot rates between July 24, 2015, and July 23,
2019, using a demo version to access the database of the online logistics ser-
vice provider, Xeneta (2019b)2. We targeted 227 global shipping routes linking
45 major ports, resulting in 331,647 data points. Each observation represents
the average spot market price, excluding terminal handling charges, as paid by
shipping customers to carriers.

To obtain complete TS, we cleaned our database with regard to missing val-
ues. We used the daily percentage price change from routes without gaps to
supply others if both trade lanes originated from and arrived in the same region.
To ensure high-quality data, we excluded routes with more than 75 missing val-
ues (5%). Consequently, we kept 39 routes with complete data for four years,
primarily covering European-Asian connections with both head- and back-haul.
Removing February 29, 2016, due to a leap year, resulted in 1,460 data points
per route and 56,940 observations in total.

As most missing values arose between 2015 and 2017, we created a second
dataset from 2017 to 2019 capturing 86 trade lanes (125,560 observations). To
draw conclusions on the required training length, we used both datasets in this
study.

2Xeneta remains the owner of the data used in this research (copyright).
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3.3.2 Time series analysis

To understand underlying trends and seasonality in the collected data, we con-
ducted TS analysis. We determined trends by visually evaluating freight rates
over time and investigating autocorrelation, which also enabled the identifica-
tion of seasonal patterns (Hyndman and Athanasopoulos 2018). To illustrate
the autocorrelation function (ACF), we used the forecast R package (version 8.10)
with the ggAcf function (Hyndman and Khandakar 2008).

3.3.3 Data creation for time series variables

While TS methods automatically base predictions on trend and seasonality, ML
models must be manually fed with this information. To this end, we developed
70 TS variables.

3.3.3.1 Date-related information (16 variables)

We included the date, day of the week, day of the month, day of the year, week,
month, quarter, season, and year. For example, February 2, 2018, is described
by weekday 5, day 2, day 33, week 5, month 2, quarter 1, season 4, and 2018.
We converted all cyclical variables into sine (Equation 3.1) and cosine (Equation
3.2) values using the following formula (Hyndman and Athanasopoulos 2018).

variablesine = sin

(
2π

variablemax
· variable

)
(3.1)

variablecosine = cos

(
2π

variablemax
· variable

)
(3.2)

For instance, the numerical values for December (12) and January (1) were
more similar after the conversion: variablesine = 0.11 and variablecosine = 0.99 for
December, compared with variablesine = 0.01 and variablecosine = 1.00 for January.

3.3.3.2 Historical container spot rates (54 variables)

We created three sets of 18 variables to account for yearly, monthly, and weekly
patterns. For yearly seasonality (YS), we included prices from one, two, and
three years previously. For monthly seasonality (MS), we considered freight
rates from six, seven, and eight months ago to prevent violation of our half-
year FH. For weakly seasonality (WS), we used 26, 27, and 28 weeks previously,
again to respect our FH of six months. We also considered relative changes
compared with the last day, week, month, quarter, and year. Consequently,
each seasonality type is described by three absolute values and 15 percentages.
To prevent artificially created data gaps, we used actual rates to replace missing
values in some variables.
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3.3.4 Data collection for external variables

Based on our investigation of factors influencing container spot rates (Section
3.2.3), we created 74 external variables to explain remaining variation in spot
rates.

3.3.4.1 Economic indicators (60 variables)

We collected monthly data for PMI (Quandl 2019) and Baltic Dry Index (BDI),
including its sub-indices for Capesize (BCI), Panamax (BPI), Supramax (BSI),
and Handysize (BHI) (Fusion Media 2019). We associated spot rates with the
PMI from six and seven months previously and with Baltic indices from seven
and eight months ago. We created 10 variables for each economic indicator,
considering the absolute values from the two different months and their per-
centage changes compared with the previous month, quarter, half-year, and
year.

3.3.4.2 Special holidays (10 variables)

We focused on events relevant to European-Asian trade, including Chinese New
Year, Chinese National Holiday, Christmas, New Year’s Eve, and Easter. We
considered the individual events and broader vacation weeks by setting holi-
days to one and other days to zero.

3.3.4.3 Political factors (3 variables)

We investigated commercial tariffs on trade between China and the US, show-
ing increasing tension between the two countries in recent years. We incor-
porated average Chinese tariffs on US goods, average US tariffs on Chinese
products, and the sum of both (Peterson Institute for International Economics
2020).

3.3.4.4 Contract rates (1 variable)

We collected daily long rates, using the market average from contracts between
shipping customers and carriers (Xeneta 2019b)3.

3.3.5 Variable selection

To evaluate the predictive power of all variables, we applied efficient and ac-
curate embedded methods (Guyon and Elisseeff 2003). Here, we chose widely-
used random forecast (RF) for its consistent evaluation of variables’ importance
in large datasets, as in this study. To achieve robust results, we developed a
large number of trees and thus set the hyperparameter ntree to 1,000 (Verikas
et al. 2011). We further implemented nodesize of 5, mtry of 48, and FH of 182

days, and used the randomForest R package (version 4.6-14) with the randomFor-
est function (Liaw and Wiener 2002).

3Xeneta remains the owner of the data used in this research (copyright).
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3.3.6 Clustering

To further improve predictions, we grouped shipping routes with similar price
developments applying agglomerative hierarchical clustering (Aghabozorgi et al.
2015). We then optimized all hyperparameters on the clustered datasets to tai-
lor the models to each group of routes. To cluster trade lanes, we utilized the
dtwclust R package (version 5.5.6) by using the dist function with the dynamic
time warping method to determine similarity of routes and applying the hclust
function with the average method to develop the hierarchy of clusters (Sardá-
Espinosa 2019).

3.3.7 Model development

We focused on regression, rather than classification, to obtain precise forecasts,
enabling the greatest possible managerial opportunities. We categorized all
applied models in terms of their ability to capture seasonality and external
information.

To achieve the highest forecast accuracy, we fine-tuned all hyperparameters
for each model. To this end, we used grid search testing various combinations
of values for all hyperparameters and evaluated the predictive performance by
applying TSCV, which represents a more sophisticated approach for dividing
TS data into training and test sets (Hyndman and Athanasopoulos 2018). We
implemented TSCV using 182 rolling forecasting windows to clearly separate
observations for training and testing purposes and computed the forecast accu-
racy as an average across all test sets (Hyndman and Athanasopoulos 2018). We
then used the optimized hyperparameter setting for each model and developed
predictions sequentially for every route.

3.3.7.1 TS models for single seasonality without external variables

We developed classic algorithms, such as ARIMA, which combines autoregres-
sive and moving average models (Box et al. 2016). As ARIMA transforms non-
stationary TS into stationary data, it is considered useful and often applied
in practice. To implement ARIMA, we utilized the forecast R package (version
8.10) with the auto.arima function (Hyndman and Khandakar 2008). Seasonal
ARIMA (SARIMA) includes seasonality while still transforming non-stationary
data (Box et al. 2016). We set p = 0, d = 1, q = 0, P = 0, D = 0, Q = 1, and pe-
riod = 30.42 days for MS. To implement SARIMA, we used the stats R package
(version 3.5.1) with the arima function (R Core Team 2018). We also applied
a broad range of exponential smoothing (ES) models, as a particularly robust
class of forecasting methods (Gardner 2006). We included simple ES (SES)
without trend or seasonality, ES with additive trend (ESadditive) to account
for constant price changes, and ES with additive damped trend (ESdamped)
to explain freight rate developments that change over time. We also applied
the error-trend-seasonality (ETS) method to describe additive or multiplicative
errors. To implement all ES models, we utilized the forecast R package (ver-
sion 8.10) with ses, holt, and ets functions (Hyndman and Khandakar 2008). We
further developed naïve (NAIVE) and seasonal naïve (SNAIVE) forecasts, as
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these may be useful for economic TS prediction. The NAIVE approach consid-
ers the most recently available observation, whereas SNAIVE learns from the
last value of the same season. Here, we applied the forecast R package (version
8.10) with naive and snaive functions (Hyndman and Khandakar 2008).

3.3.7.2 TS models for multiple seasonality without external variables

We implemented a trigonometric model that uses Box-Cox transformations, au-
toregressive and moving average errors, trend, and seasonality (TBATS). It
represents a highly automated modeling framework that is particularly advan-
tageous for TS forecasting with complex seasonal patterns (de Livera et al. 2011).
To apply TBATS, we used the forecast R package (version 8.10) with the tbats
function (Hyndman and Khandakar 2008).

3.3.7.3 TS models for single seasonality with external variables

To include multiple input factors to influence the output, we developed dy-
namic regression (DR) (Pankratz 1991). We utilized the forecast R package
(version 8.10) with the auto.arima function and its xreg argument and set both
stationary and stepwise to true (Hyndman and Khandakar 2008).

3.3.7.4 TS models for multiple seasonality with external variables

Here, we implemented dynamic harmonic regression (DHR) to handle multi-
ple seasonal patterns that often characterize long TS with daily data, as in this
study (Young et al. 1999). DHR uses pairs of sine and cosine values called
Fourier terms to capture seasonality and controls them by order parameter K.
To cope with YS, MS, and WS, we optimized L, M, and N determining K =
c(L,M,N). We included external variables in the xreg argument of the auto.arima
(DHRarima) and tslm (DHRtslm) functions utilizing the forecast package (ver-
sion 8.10) in R (Hyndman and Khandakar 2008).

3.3.7.5 ML models for multiple seasonality with external variables

Regarding ML, we implemented RF, recurrent neural network (RNN), and sup-
port vector machine (SVM) and fed them with information on trend and sea-
sonality by including all 70 TS variables. RF combines multiple decision trees
and can be applied to regression and classification problems. It is known to
provide accurate predictions and is particularly useful to prevent the issue of
overfitting (Breiman 2001). To develop RF, we set ntree to 10, mtry to 23, and
nodesize to five, utilizing the randomForest R package (version 4.6-14) with the
randomForest function (Liaw and Wiener 2002). RNN represents another pow-
erful ML model for TS forecasting. It identifies deeply hidden information
in TS data by using backward connections of neurons, as in many biological
NN (Williams and Zipser 1995). We generally followed the modeling structure
by Chollet and Allaire (2017) and obtained the best results applying recurrent
dropout and stacking layers with the following hyperparameters: train_max =
1,095, test_max = 1,460, delay = 182, lookback = 182, step = 91, batch size = 64,
dropout = 0.1, recurrent dropout = 0.1, units (gru layer) = 182, units (output layer) =
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1, steps per epoch = 10, and epochs = 1. We extrapolated the results of one route to
others within the same cluster due to high computation times. To develop RNN,
we utilized the keras R package (version 2.2.5.0) with the keras_model_sequential
and layer_gru functions (Allaire and Chollet 2019). We also implemented SVM,
which focuses on structural risk minimization and generalization errors, in con-
trast to more traditional models that use empirical risk minimization to limit
training errors. SVM is suitable for regression and works particularly well for
TS forecasting, achieving greater accuracy than most other techniques (Mukher-
jee et al. 1997). We applied the following hyperparameters: kernel = polynomial,
cost = 1, gamma = 1, coef0 = 0.001, degree = 2, and epsilon = 0.1. To implement
SVM, we used the e1071 R package (version 1.7-3) with the svm function (Meyer
et al. 2019).

3.3.8 Model configuration analysis

To obtain predictions that are accurate, robust, and applicable in practice, we
investigated different model configurations (MC) with regard to TS length, FH,
and TSCV. For all three aspects, we tested two options, resulting in eight MC.
Regarding TS length, we compared the two- and four-year datasets (Section
3.3.1). To achieve high applicability in practice, we implemented a long-term
FH of three and six months developing 91- and 182-step-ahead forecasts, re-
spectively. To obtain robust results, we applied a large number of test sets for
TSCV using 91 and 182 rolling forecasting windows. This analysis is based on
non-clustered data without external variables.

3.3.9 Performance indicators

To evaluate the forecast accuracy of all developed models, we selected four per-
formance indicators owing to their advantages and disadvantages (Shcherbakov
et al. 2013). Different accuracy measures might result in contradictory out-
comes (Hyndman and Athanasopoulos 2018). Thus, we consider multiple per-
formance indicators to ensure choosing the best method.

For testing the same set of routes, we applied mean absolute error (MAE)
(Equation 3.3) and root mean square error (RMSE) (Equation 3.4), which rep-
resent common scale-dependent measures with high ease of interpretability
(Hyndman and Koehler 2006).

MAE =

∑N
n=1 |predictedn − actualn|

N
(3.3)

RMSE =

√∑N
n=1(predictedn − actualn)2

N
(3.4)

For comparing the forecast accuracy across different datasets or clusters, we
used MAPE (Equation 3.5), which overcomes the disadvantage of scale depen-
dence (Shcherbakov et al. 2013). As container spot rates are positive and consid-
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erably greater than zero, MAPE represents an attractive performance indicator
due to its simplicity (Hyndman and Koehler 2006).

MAPE =

∑N
n=1

∣∣∣predictedn−actualn
actualn

∣∣∣
N

(3.5)

We also selected the mean absolute scaled error (MASE) (Equation 3.6) for its
scale independence, high interpretability, and broad applicability (Hyndman
and Koehler 2006). We implemented MASE using the NAIVE model with 91-
and 182-step-ahead forecasts as benchmark to respect our FH of three and six
months, respectively.

MASE =

∑N
n=1

∣∣∣∣ predictedn−actualn
1

T−FH×
∑T

t=FH+1 |actualt−actualt−FH|

∣∣∣∣
N

(3.6)

3.4 results

3.4.1 Data analysis results

3.4.1.1 Results from time series analysis (Section 3.3.2)

We identify a decline in container spot rates for most shipping routes between
2017 and 2019. This trend was caused primarily by overcapacity in the market
and lower global demand due to an economic slowdown (M. Acciaro [Hapag-
Lloyd Center for Shipping and Global Logistics], personal communication, Oc-
tober 24, 2019). We further determine multiple seasonality, with yearly, monthly,
and weekly patterns. The ACF shows significant coefficients at lags 30, 61, 90,
91, 120, 151, 181, and 242, multiples of 30 or 31 days, indicating MS, and at lag
365, suggesting YS (Figure 3.1).

Figure 3.1: Correlogram showing autocorrelation of spot rates for Shanghai-Rotterdam
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Autocorrelation provides no evidence of WS, however, we find a seven-day
recurring pattern investigating relative changes in daily spot rates.

3.4.1.2 Results from variable selection (Section 3.3.5)

Applying variable selection reveals that TS variables are considerably more
important than external information for predicting container spot rates (Figure
3.2).

Figure 3.2: Variables’ importance

Among the 20 most important variables, 18 refer to TS patterns: YS (6), WS
(6), MS (5), date, PMI, and long-term rates. Notably, five of the eight top-
ranked variables relate to yearly patterns. The high importance of TS variables,
particularly YS, confirms the influence of seasonal holidays, such as Chinese
New Year and Christmas, on demand for container services and thus freight
rates, as discussed in Section 3.2.3.

3.4.1.3 Results from clustering (Section 3.3.6)

Interestingly, clustering shipping routes suggests a strong connection between
price development and geographical similarity (Figure 3.3).

Container spot rates follow the same patterns for vessels departing from and
arriving in the same region. For instance, prices for shipments from Northern
European ports, such as Rotterdam, Antwerp, and Hamburg, to destinations in
East Asia, including Shanghai, Shenzhen, and Singapore, are similar.

3.4.1.4 Results from model configuration analysis (Section 3.3.8)

Applying MC 1-8 leads to different predictive performances of each model (Ta-
ble A.1). For example, DHRarima results in a lower MASE for all four-year
MC 1-4 compared with the two-year MC 5-8: 0.5 (MC 1) versus 0.7 (MC 5), 0.7
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Figure 3.3: Dendrogram showing clusters of routes

(MC 2) versus 0.8 (MC 6), 0.6 (MC 3) versus 1.2 (MC 7), and 0.6 (MC 4) versus
1.1 (MC 8). Thus, models based on four years of data generally perform better
than those with shorter TS, suggesting that a longer training period enhances
learning from past observations, leading to more precise forecasts. Regarding
the four-year dataset, MC 1 performs best (MAE of 93.5), followed by MC 4

(113.3), MC 3 (122.0), and MC 2 (124.7). Importantly, MC 4 is more robust than
MC 1 and 3, because it tests forecast accuracy twice as often, with TSCV of 182

rather than 91. MC 4 is also more applicable in practice than MC 1 and 2, as
the FH of 182 days provides predictions three months further in advance.

In summary, MC 4, based on the four-year dataset and 182 days for both FH
and TSCV, represents the best MC regarding robustness, forecast accuracy, and
applicability in practice and is thus used for all following discussions.

3.4.2 Forecasting results

Overall, SVM achieves the greatest predictive performance (RQ 1) considering
MAE of 60.1, followed by DHRarima (88.9), RNN (101.6), and RF (116.6) (Table
3.2). All four models provide the highest forecast accuracy when clustering
routes and incorporating external variables (version D).
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Table 3.2: Prediction results of TS and ML models (ranked by MAE)

Model
(version)

Type Clus-
ter-
ing

External
vari-
ables

MAE -RMSE MAPE MASE

SVM (D) ML yes yes 60.1 74.9 10.8 0.3
SVM (C) ML yes no 61.6 76.4 11.2 0.3
DHRarima (D) TS yes yes 88.9 109.7 14.0 0.4
DHRarima (B) TS no yes 95.2 116.1 14.6 0.5
RNN (D) ML yes yes 101.6 117.2 25.6 0.5
DHRarima (C) TS yes no 106.6 129.9 20.1 0.5
RNN (B) ML no yes 109.4 131.5 26.3 0.5
RNN (C) ML yes no 112.2 127.9 28.0 0.5
DHRarima (A) TS no no 113.3 136.4 20.7 0.6
RF (D) ML yes yes 116.6 131.3 24.2 0.6
SNAIVE (A) TS no no 117.5 133.4 30.1 0.5
ETS (A) TS no no 123.6 149.4 21.4 0.6
ESdamped (A) TS no no 123.7 148.5 21.5 0.6
SES (A) TS no no 125.0 149.1 22.2 0.6
NAIVE (A) TS no no 125.0 149.1 22.2 0.6
ARIMA (A) TS no no 125.4 149.5 22.2 0.6
RNN (A) ML no no 126.2 152.1 31.1 0.6
RF (B) ML no yes 126.8 142.1 27.0 0.6
SARIMA (A) TS no no 127.2 154.4 22.7 0.6
DR (A) TS no no 127.4 142.0 31.3 0.6
DHRtslm (A) TS no no 127.4 144.1 31.0 0.6
RF (C) ML yes no 128.3 147.1 29.9 0.6
SVM (B) ML no yes 128.7 148.6 32.2 0.5
TBATS (A) TS no no 132.9 158.7 23.0 0.7
RF (A) ML no no 140.1 159.4 34.4 0.7
SVM (A) ML no no 153.7 175.1 39.5 0.6
ESadditive (A) TS no no 168.5 204.6 26.0 0.9

3.4.2.1 Time series models

When considering the TS models without clustering and external variables first
(version A), DHRarima shows the most accurate predictions, with an MAE of
113.3, followed by SNAIVE (117.5) and ETS (123.6) (Table 3.2). All of them
provide more precise forecasts than the NAIVE model (125.0), which serves as
benchmark. Note that the MASE for the NAIVE approach is 0.6, and not 1.0, as
one might expect. MASE is calculated by scaling the errors of a certain method
with the MAE for NAIVE’s training data as opposed to the test set (Hyndman
and Athanasopoulos 2018).

DHRarima represents the most accurate TS model in this study. This suggests
that the best results are provided by a model that captures complex seasonal
patterns, unlike most other TS methods, confirming the indication of multiple
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seasonality in spot rates (Section 3.4.1.1). Clustering routes and adding external
information, including BDI, BCI, three PMI variables, and Chinese holidays,
further decrease the MAE to 106.6 and 95.2, respectively. Applying both at the
same time leads to an MAE of 88.9 and thus the best results. To illustrate these
improvements, we consider the major route Shanghai-Rotterdam as an example
and compare the versions A-D (Figure 3.4).

Figure 3.4: Prediction results of DHRarima for Shanghai-Rotterdam comparing actuals
(gray) and forecasts (black): (A) without clustering or external variables; (B)
with external variables; (C) with clustering; (D) with clustering and external
variables

The predictions capture the general course of the actual data, however, they
deviate significantly at the end of the TS (Figure 3.4 A) which is largely im-
proved when incorporating external variables (Figure 3.4 B). Here, economic
indicators help to anticipate a weaker global economy leading to lower demand
and thus decreasing prices in June and July 2019. Applying hierarchical clus-
tering also increases predictive performance, however, visual change remains
small for this route (Figure 3.4 C).

3.4.2.2 Machine learning models

SVM achieves significantly better results than RNN and RF in predicting con-
tainer spot rates. The RMSE of 74.9 and MAE of 60.1 are at least 40 US dollars
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(USD) lower than for RNN and RF (Table 3.2). Furthermore, the MAPE of 10.8%
is less than half of its corresponding values for RNN or RF.

All three developed ML models, particularly SVM, generate significantly bet-
ter results when adding external variables and clustering routes. Surprisingly,
SVM ranks last when running the model on non-clustered data without ex-
ternal variables (RMSE of 175.1), but it achieves the best outcome across all
models when applying both clustering and external information (74.9). The im-
provement is less substantial but also evident for RNN (152.1 versus 117.2) and
RF (159.4 compared with 131.3). We obtain the highest accuracy when adding
one PMI variable and long rates for SVM, 10 PMI variables for RNN, and all
74 external variables for RF. To illustrate the prediction results produced by
SVM as the best-performing model, we use the major shipping route Shanghai-
Rotterdam again as an example (Figure 3.5).

Figure 3.5: Prediction results of SVM for Shanghai-Rotterdam comparing actuals (gray)
and forecasts (black): (A) without clustering or external variables; (B) with
external variables; (C) with clustering; (D) with clustering and external vari-
ables

Overall, SVM forecasts container spot rates very accurately (Figure 3.5 A).
Both adding external information (Figure 3.5 B) and clustering routes (Figure
3.5 C) further improve the predictive performance and lead to even better re-
sults when being applied together (Figure 3.5 D). SVM appears to learn well
from seasonal patterns in Asian-European rates and converts this information
into accurate forecasts. SVM further manages to respond to changes in external
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variables, such as lower PMI values indicating a global economic decline. As a
result, spot rates predicted by SVM deviate only slightly at the end of the TS
(Figure 3.5 D) in contrast to DHRarima (Figure 3.4 D).

3.4.3 Comparison of time series and machine learning models

Both TS and ML approaches are generally suited to forecast container spot
rates, as all predictions are conducted with a long-term FH of six months to
maximize model robustness and repeated 182 times to ensure high applicability
in practice. When considering all shipping routes, SVM, the best-performing
ML approach (RMSE of 74.9), outperforms DHRarima, the highest-ranked TS
model (109.7). Regarding head-haul trade from Asia to Europe, SVM (Figure
3.5 D) clearly provides more accurate predictions than DHRarima (Figure 3.4 D).
The RMSE differs greatly, with 47.5 for SVM compared with 76.5 for DHRarima.
Regarding back-haul from Europe to Asia, SVM also results in the best forecasts
(Figure A.2 D), however, DHRarima represents a competitive alternative (Figure
A.1 D). Here, the RMSE values of 70.0 for SVM and 82.0 for DHRarima are more
similar.

3.4.4 Improvement from external variables and clustering

Both adding external variables and clustering shipping routes improve the pre-
diction of container spot rates (RQ 2).

Incorporating external information increases the forecast accuracy of all tested
TS and ML models. For instance, MAE decreases by 25.0 for SVM, 18.1 for
DHRarima, 16.8 for RNN, and 13.3 for RF (Table 3.2). External variables im-
prove forecasts as they explain uncommon patterns in TS which complicate
predictions, as occurred on July 1, 2019. Here, spot rates dropped by 4.8%,
in contrast to increasing prices of 7.5% in 2018, 8.0% in 2017, and even 77.1%
in 2016 (Figure A.3). To demonstrate the impact of adding external variables,
we predict spot rates one year earlier from January to July 2018. When apply-
ing DHRarima without external variables for Shanghai-Rotterdam, the RMSE
is only 65.3, compared with 110.8 using 2019 data. More stable TS patterns
in 2018 enable this considerably higher accuracy. Adding external variables to
the prediction for 2019 significantly lowers the RMSE from 110.8 to 80.6 and
hence massively helps to overcome the issue of uncommon price developments
in that year.

Clustering also increases predictive performance of all implemented TS and
ML models. For instance, MAE decreases by 92.1 for SVM, 14.0 for RNN,
11.8 for RF, and 6.7 for DHRarima (Table 3.2). These improvements particu-
larly arise from fine-tuning hyperparameters, such as order parameter K for
DHRarima, to account for different price behavior comparing shipping routes.

3.5 discussion and managerial implications

Manufacturers of bulk goods, such as chemical companies, may use our pre-
diction model to benefit from temporarily low spot rates transporting their
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products in containers rather than on conventional bulk vessels. This oppor-
tunity reduces costs involved in shipping to customers and supplying other
business units, primarily on highly imbalanced back-haul trade lanes, such as
from Europe to Asia. These routes are characterized by low freight rates of-
fered by carriers owing to the high amount of empty containers due to the low
utilization of vessels. Some companies have already started to leverage this op-
portunity, but only on a manual and ad hoc basis, as it requires a longer time
horizon for planning of half a year (F. Clausen [Yara International], personal
communication, August 5, 2019). To maximize the applicability of our model,
we set the FH to six months.

Any shipping customer may benefit from optimizing their share of spot ver-
sus long rates, as illustrated by major routes linking Asia, Europe, and North
America (Figure 3.6).

Figure 3.6: Comparison of long (gray) and spot (black) rates: (A) Antwerp-Shanghai;
(B) Shanghai-Rotterdam; (C) Hamburg-New York; (D) Shenzhen-New York

Spot and long rates seem to be largely interlinked on some trade lanes (Figure
3.6 C), however, they differ significantly regarding other routes. Long-term
contracted rates were clearly lower from the end of 2016 to early 2019 (Figure
3.6 A) and from mid-2016 to the end of 2017 (Figure 3.6 B). In contrast, spot rates
showed consistently lower values from mid-2015 to the end of 2016 (Figure 3.6
D). Shipping customers can benefit from these price differences and associated
potential cost savings (Table 3.3).
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Table 3.3: Economic benefit analysis showing cost-saving potential from contract opti-
mization (values in percent)

Shipping
route

Best
scenario

Realistic
scenario

Conservative
scenario

Long-
rate
sav-
ing

Spot-
rate
sav-
ing

Total
sav-
ing

Long-
rate
sav-
ing

Spot-
rate
sav-
ing

Total
sav-
ing

Long-
rate
sav-
ing

Spot-
rate
sav-
ing

Total
sav-
ing

Antwerp-
Shanghai

35.7 -1.2 36.9 32.9 -0.0 32.9 32.9 -0.0 32.9

Hamburg-
New York

13.1 -1.9 15.0 11.3 -1.1 12.4 -4.0 -0.0 -4.0

Shanghai-
Rotterdam

13.0 -6.3 19.4 10.9 -0.0 10.9 -9.8 -0.0 -9.8

Shenzhen-
New York

16.6 -7.6 24.2 15.0 -6.8 21.8 15.0 -6.8 21.8

Average 19.6 -4.3 23.8 17.5 -2.0 19.5 15.4 -1.7 17.1

The best scenario displays the maximum potential cost savings when choos-
ing the lower value between spot and long rates. It provides an unrealistic up-
per bound, as contracted rates are agreed between companies on a long-term
basis, which prevents either party from spontaneous changes. To obtain more
robust results, we restrict the realistic and conservative scenarios by setting a
minimum time period of five and 10 months, respectively, in which either rate
must continue to be lower than the other. In the realistic scenario, this opportu-
nity enables average total cost savings of 19.5%, which is a significant economic
benefit (RQ 3). Regarding Antwerp-Shanghai, the analysis shows an efficiency
gain of even 32.9%.

Shipping customers may further benefit from insights into variables’ impor-
tance, such as strong multiple seasonality (Figure 3.2). Regarding trade from
Shanghai to Rotterdam, spot rates drop towards April and October, signifi-
cantly increase in May and November, and reach their highest levels in January
each year (Figure A.3). Increasing transparency in internal demand and produc-
tion schedules within an organization allows adjusting the timing of shipments
between business units to benefit from lower prices in certain months. For de-
liveries to entities outside the organization, companies might incentivize their
customers to shifting their reorder points, profiting both parties from lower
rates.

Carriers may also benefit from optimizing spot versus long rates enhancing
their pricing and thus maximize revenues. Table 3.3 can also be understood as
possible revenue gains for carriers. Surprisingly, only a few liner shipping com-
panies base their pricing on automatic processes, leveraging additional intelli-
gence from more advanced technologies, such as ML (F. Heinemann [Hapag-
Lloyd], personal communication, March 27, 2020).

Our proposed prediction solution can also be applied to other transport
modes, such as rail, air, and road. As the model handles multiple seasonality, it
would be particularly interesting to test for other seasonal transport problems.



50 predicting spot rates in container shipping

Incorporated economic indicators, such as the PMI, generally measure future
demand and hence can also be used for other transport modes. To account
for specific characteristics of other cargo problems, additional variables can be
added to the model.

3.6 conclusions

This study proposes a prediction model to increase transparency in container
spot rates. It represents an impactful data analytics-based solution that can be
used by various shipping players to predict prices six months in advance. This
long-term FH is crucial to enable strategic managerial adjustments. We consider
trade lanes linking major regions, primarily Europe and Asia, and compare the
forecast accuracy of three ML with 12 TS algorithms. To ensure high model
robustness and applicability in practice, we test several MC adjusting the TS
length, FH, and TSCV. We also investigate the impact of clustering trade lanes
and adding external variables on predictive performance.

Overall, we show that SVM achieves the highest forecast accuracy, followed
by DHRarima and RNN. For SVM, we obtain an RMSE of 74.9, compared
with 109.7 for DHRarima and 117.2 for RNN. All three models outperform the
NAIVE approach with an RMSE of 149.1, which serves as benchmark. We argue
that ML models work better than TS approaches in predicting container spot
rates, with SVM clearly providing the best results. We demonstrate that cluster-
ing trade lanes improves predictive performance as it helps to consider different
price development patterns comparing regions. We further show that adding
external variables allows reacting to sudden macroeconomic effects. Notably,
the most challenging MC that sets both TSCV and FH to six months enables
accurate predictions, as well as the highest model robustness and applicability
in practice.

In summary, we demonstrate that powerful data analytics tools, such as the
proposed solution, may provide useful decision support. Both shipping cus-
tomers and carriers might benefit from the forecasts to optimize their maritime
operations. Carriers might advance their pricing and thus increase revenues
when anticipating average market spot rates. Bulk producing companies might
transport their goods in containers, particularly when prices reach low levels,
as an alternative to the conventional bulk option. Any shipping customer might
adjust its share of short- and long-term contracts with carriers. To show the eco-
nomic benefit of this opportunity, we calculate potential cost savings, resulting
in 19.5%.

Future research might use the most recent freight data collected during the
COVID-19 pandemic to analyze its impact on forecast accuracy. It might be
valuable to reevaluate the effect of macroeconomic indicators regarding their
predictive performance during the pandemic. It might also be insightful to in-
vestigate whether additional external variables, such as container capacity per
route, GRI announcements, changes in shipping alliances, and market consoli-
dation of carriers further increase the forecast accuracy.
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This chapter shows that ML algorithms achieve higher forecast accuracy in
predicting container spot rates compared with TS methods. As in Chapter 2,
SVM provides the best results also in Chapter 3. Both incorporating external
variables and clustering of trade lanes improve the predictive performance. As
discussed in this chapter, it might be particularly interesting to test such a
prediction solution for other transport sectors by applying the gained insights
into TS forecasting using ML. The air cargo industry represents another crucial
transportation mode for global trade. After analyzing spot rates in container
shipping in Chapter 3, we now shift the focus on long-term freight rates in
air cargo in Chapter 4. Greater transparency in these prices would support
air carriers, freight forwarders, and shippers to better negotiate freight rates in
transportation contracts and thus increase operational efficiency.





4
D ATA A N A LY T I C S F O R P R E D I C T I N G L O N G - T E R M
F R E I G H T R AT E S I N A I R C A R G O : A C O M PA R I S O N O F
M A C H I N E L E A R N I N G A N D T I M E S E R I E S M E T H O D S

This chapter is based on Viellechner and Spinler (2021a)1.

4.1 introduction

The air cargo industry has grown over the last four decades, driven particu-
larly by increasing globalization (Kupfer et al. 2017). Air freight is expected to
become ever more important for global trade, as it moves high-value and time-
sensitive goods around the world (Lin et al. 2017). However, growth in this
industry has slowed over the last 20 years, as some shippers and freight for-
warders have switched to lower-cost transportation modes, such as container
shipping (Kupfer et al. 2017). In contrast, air cargo experienced a strong re-
vival during the COVID-19 pandemic in 2020 when supply chains broke down
worldwide (F. Perl [European Air Transport Leipzig], personal communication,
September 25, 2020). These developments have caused increased uncertainty
about future developments in air cargo, including freight rates.

The high volatility of the air freight market makes it extremely difficult for
companies to predict prices well in advance (M. Priebe [Kühne + Nagel], per-
sonal communication, September 16, 2020). There are three key players in the
air cargo supply chain: air carriers, freight forwarders, and shippers (Lin et al.
2017). High market volatility complicates the pricing of cargo services, which is
a crucial task for logistics providers, such as air carriers and freight forwarders,
and is becoming even more critical for their financial stability with increasing
operating costs of fuel, staff, and regulations (Azadian and Murat 2018). Pric-
ing is challenging owing to the high complexity of freight rates and the large
number of influencing factors, such as routes, commodities, cargo requirements,
time, and delivery options (Azadian and Murat 2018). Limited availability of
practical solutions further prevents companies from optimizing their revenue
management (Becker and Dill 2007). In summary, the logistics industry has less
mature pricing strategies than other sectors (Boin et al. 2020). High uncertainty
about future freight rates also affects their customers, who aim for low prices in
negotiations, but often base their decisions only on their employees’ experience
(V. Henkes [Kühne + Nagel], personal communication, September 28, 2020).

Increased transparency in future air freight rates would support both logis-
tics providers’ and their customers’ decision-making, thereby improving their
financial performance. They would benefit from enhanced price predictions to
optimize their mix of long- and short-term contracts. Logistics providers might
also fine-tune their pricing, and thus significantly improve their profits. For

1This unpublished working paper with the title “Data Analytics for Predicting Long-Term Freight
Rates in Air Cargo: A Comparison of Machine Learning and Time Series Methods” was written by
Adrian Viellechner and Stefan Spinler.
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instance, optimizing prices by 2-4% may increase profits by 30-60% (Boin et al.
2020). Customers of logistics contracts would benefit from improved freight
rate predictions to achieve lower prices in negotiations. Lowering prices by 2-
4% and thus reducing transportation costs may increase their profits by 11-22%.
This emphasizes the importance of applying more advanced technological so-
lutions.

To take advantage of these financial opportunities, companies must invest in
digital applications (Boin et al. 2020). For instance, use of novel data analytics-
based methods, such as machine learning (ML), allows significantly greater
forecast accuracy than conventional statistical approaches to predicting ship-
ping delays for container vessels (Viellechner and Spinler 2020). In the aviation
industry, some companies have been working on solutions to increase price
transparency. For instance, Hopper (2021), a Canadian startup supported by
the Lufthansa Innovation Hub, is using artificial intelligence to develop price
predictions for passenger flights. Regarding air cargo, WorldACD Market Data
(2021) provides information on trends in freight rates and volumes for different
regions on a monthly basis. Xeneta (2019a) equips its customers with current
benchmarks of average air cargo market prices for various connections, weight
categories, and service levels.

The objective of this study is to forecast long-term air freight rates to support
companies’ decision-making on future prices. We seek to answer the following
three research questions (RQ):

• RQ 1: Which method works best to predict long-term air freight rates,
comparing ML with time series (TS) models?

• RQ 2: Does clustering trade lanes and adding external variables improve
forecast accuracy?

• RQ 3: Which corporate business decisions can be supported by our pro-
posed prediction solution, and what is the resulting economic benefit?

In the remainder of this article, Section 4.2 reviews existing literature on
predictions in aviation, explains the contribution of this study, and elaborates
on factors influencing air freight rates. Section 4.3 describes the methodology,
including data collection on freight rates and variables, and implementation
of different forecasting methods. Section 4.4 presents the prediction results,
comparing ML with TS models, and evaluates the effect of adding external
information and clustering routes. We discuss the managerial implications in
Section 4.5, and draw conclusions and suggest directions for future research in
Section 4.6.

4.2 theoretical background

4.2.1 Review of literature on predictions in aviation

Our research topic falls under the broad category of predicting future develop-
ments in aviation, including passenger and cargo services.

Regarding aviation in general, researchers have long been attracted to air traf-
fic management, in terms of forecasting flight delays (Yu et al. 2019a), taxi-out
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times (Diana 2018), departure delays (Rodríguez-Sanz et al. 2018), congested
days and associated delays at airports (Scarpel and Pelicioni 2018, Shone et al.
2020), as well as traffic demand (Leal de Matos and Ormerod 2000).

Many studies have also been carried out on air passenger services, predicting
demand for scheduled transportation (Banerjee et al. 2020), customer numbers
and flight volumes (Gelhausen et al. 2018), and passenger flows (Sun et al. 2019).
Fewer studies have dealt with financial forecasting relating to passenger flights,
such as predicting travel price changes (Wohlfarth et al. 2011), the lowest future
airfares (Zheng et al. 2017), and airline profitability (Xu et al. 2021).

Forecasting for air cargo has also attracted extensive academic research. A
large body of literature predicts demand for freight services (Alexander and
Merkert 2020, Chi and Baek 2012, Cline et al. 1998, Plakandaras et al. 2019,
Suryani et al. 2012) and future cargo volumes and growth (Budd and Ison 2017,
Klindokmai et al. 2014, Kupfer et al. 2017). Many studies are concerned with
revenue management, explaining the main characteristics (Kasilingam 1997),
investigating cargo density (Chao and Li 2017), establishing rules for capacity
allocation (Han et al. 2010), discussing buy-back policy to account for demand
uncertainties (Lin et al. 2017), and providing decision support by forecasting
demand, capacity, and overbooking (Becker and Dill 2007). Pricing optimiza-
tion, which is closely interlinked with revenue management, is another pop-
ular research topic in relation to air cargo businesses. For instance, Azadian
and Murat (2018) determine carriers’ pricing approach by considering the price
elasticity of customer demand, Yu et al. (2019b) analyze different pricing strate-
gies in the spot market, and Zhu et al. (2015) apply dual predictive models to
forecast bidding and final prices.

In most of these studies on revenue management and pricing optimization,
the topic is investigated from a carrier’s perspective. To the best of our knowl-
edge, few studies of the air cargo industry deal with predicting prices to sup-
port freight forwarders’ and shippers’ decision-making. Cho et al. (2012) fore-
cast air freight rates by applying stepwise regression and incorporating 110

explanatory variables. They focus on two routes, Incheon in South Korea to
Los Angeles in the United States and Incheon to Frankfurt in Germany, result-
ing in a forecast accuracy of approximately 90%. Suh et al. (2014) apply TS
prediction using an autoregressive integrated moving average (ARIMA) model.
They investigate three trade lanes from airports in Los Angeles and Miami in
the United States and Vienna in Austria, and obtain a forecast error of between
3.5% and 14.5%, depending on the route.

4.2.2 Contribution of this research

A review of forecasting publications on aviation reveals that most studies fo-
cus on non-price-related topics, such as demand and delay, and that research
on air cargo businesses is particularly limited with regard to price predictions
from the perspectives of freight forwarders and shippers. To contribute to this
field and provide useful decision support, we investigate whether long-term
air freight rates can be predicted with high forecast accuracy, model robust-
ness, and applicability in practice. We also show how such predictions can be
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developed, and discuss the financial implications of using these improved price
forecasts.

In various transportation industries, such as container shipping, any freight
rate prediction solution must be based on a long-term forecast horizon (FH) to
ensure the model’s high applicability in practice (Munim and Schramm 2017).
For air cargo, forecasts of long-term freight rates need to be available to com-
panies at least six months in advance to allow for strategic decision-making
(V. Henkes [Kühne + Nagel], personal communication, September 28, 2020).
It is also recommended that such freight rate prediction solutions should be
tested extensively to achieve high model robustness by applying rolling fore-
casting windows (Munim and Schramm 2020). Therefore, we developed 184-
step-ahead predictions, and implemented time series cross-validation (TSCV),
setting the number of rolling forecasting windows at 184 (six months). Price
predictions in aviation should also take account of a large number of influ-
encing factors (Zheng et al. 2017). Thus, we included 62 external variables to
incorporate air cargo market information on demand and supply, as well as 51

TS variables to learn from past developments in air freight rates.
Our study provides a better understanding of which methods should be used

to forecast long-term air freight rates by comparing TS and ML algorithms.
To verify the conclusion that similarity-based ML methods produce the best
predictive performance (Baumann et al. 2019), we tested both similarity-based
methods applying a support vector machine (SVM), and non-similarity-based
approaches implementing a recurrent neural network (RNN) and a random
forest (RF). As advised by Carbonneau et al. (2008), we weighed potential
marginal gains in the forecast accuracy of more sophisticated prediction algo-
rithms against more simplistic approaches. We discuss the economic impact on
logistics companies of applying a data analytics-based freight rate prediction
solution, which may be significant even in cases of marginal forecast accuracy
gains (Kraus et al. 2020).

4.2.3 Factors influencing long-term air freight rates

To forecast air cargo prices, we first deepened our knowledge of their drivers by
interviewing experts from the air cargo industry. Overall, long-term air freight
rates closely follow the basic principle of demand and supply (F. Perl [European
Air Transport Leipzig], personal communication, September 25, 2020).

Demand is influenced primarily by imported and exported tonnage between
two countries or regions and global economic development, for which macroe-
conomic indicators, such as the Purchasing Managers’ Index (PMI), may help to
anticipate future trends (J. Ringbeck [ricon], personal communication, Septem-
ber 7, 2020). Seasonality further drives demand for air cargo services, with
high peaks in winter due mainly to Christmas and Chinese New Year, and
lower demand in the summer months (F. Perl [European Air Transport Leipzig],
personal communication, September 25, 2020). Market introductions of new
products and utilization of container ships as an alternative transport mode are
additional factors influencing demand (M. Priebe [Kühne + Nagel], personal
communication, September 16, 2020).
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Supply is influenced mainly by utilization of airplanes and availability of
cargo capacity, including both freighters and belly freight on passenger flights
(M. Priebe [Kühne + Nagel], personal communication, September 16, 2020). In-
terestingly, available air freight capacity has constantly increased in recent years
(F. Perl [European Air Transport Leipzig], personal communication, September
25, 2020). Seasonality also influences the supply of air cargo services, as cargo
airlines’ summer and winter schedules differ, with more flights from April to
October and lower capacity in the remaining months, particularly during Chi-
nese New Year and Christmas (V. Henkes [Kühne + Nagel], personal commu-
nication, September 28, 2020).

Other major drivers of air freight rates include the price of kerosene, which
is strongly correlated with oil prices (M. Priebe [Kühne + Nagel], personal
communication, September 16, 2020), and the relative negotiating power of
the two companies signing a contract (V. Henkes [Kühne + Nagel], personal
communication, September 28, 2020).

4.3 methodology

In this section, we present our methodological approach to predicting air freight
rates. We describe our data collection and detail all developed prediction mod-
els, including TS and ML algorithms. We also explain variables’ importance, TS
analysis, and clustering of trade lanes, and identify a selection of performance
indicators to evaluate forecast accuracy.

4.3.1 Data collection for air freight rates

We collected a total of 306,600 daily air freight rates between January 1, 2018,
and December 31, 2019. For this time period, we targeted 70 international trade
lanes linking 24 major global air cargo hubs around the world. For instance,
we included Chicago for North America, Mexico City for Central America, Sao
Paulo for South America, Frankfurt for Europe, Johannesburg for Africa, Dubai
for the Middle East, New Delhi for South Asia, Hong Kong for East Asia, Singa-
pore for Southeast Asia, and Sydney for Australia. Each data point represents
the average market price of long-term contracts between freight forwarders and
their customers. For every day and route, we collected six different rates for
two weight categories (more than 500 kilograms, and at least 1,000 kilograms),
and three service levels (lower, mid, and upper). To gather all freight rates,
we accessed the profound database of online logistics service provider, Xeneta
(2019a)2.

To feed the prediction algorithms with complete and reliable TS, we cleaned
the collected data by applying the following steps. First, we excluded all rates
before May 1, 2018, due to a considerably greater number of missing values in
these months compared with the remaining TS. To resolve smaller data issues
after this date, we leveraged available prices from adjacent months to fill gaps
in seven trade lanes. To ensure high-quality data, we removed three routes
entirely, as they included large batches of missing values or showed significant

2Xeneta remains the owner of the data used in this research (copyright).
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inconsistencies. We also utilized the greater availability of regional rates to
improve the data quality for 13 routes. For instance, we collected prices for
trade from Hong Kong to the United Arab Emirates rather than only to Dubai.
We selected the 500+ kilogram weight category and the mid service level, as
this combination showed the highest data availability. Consequently, we kept
67 trade lanes with complete data between May 1, 2018, and December 31, 2019,
resulting in 610 prices per route and 40,870 observations in total.

4.3.2 Time series analysis

To make underlying patterns in the collected freight rates more transparent,
we analyzed the TS data for all trade lanes. We visually evaluated the price
development of each route to determine existing trends, and investigated auto-
correlation to identify seasonal patterns (Hyndman and Athanasopoulos 2018).
To implement the autocorrelation function (ACF) as part of this TS analysis, we
utilized the forecast package (version 8.12) in R with the ggAcf function (Hynd-
man and Khandakar 2008).

4.3.3 Data creation for time series variables

To incorporate the identified trends and seasonal patterns in freight rates into
ML models, we created a broad set of 51 TS variables capturing these charac-
teristics. We included date-related information, such as year and month, and
associated the freight rate on any given date with historical prices.

4.3.3.1 Date-related information (16 variables)

Here, we included the actual date as well as the corresponding year, season,
quarter, month, week, and the day of the year, month, and week. For instance,
we added the following details to the freight rate on May 1, 2018: 2018, season
1, quarter 2, month 5, week 18, day 121 (of the year), day 1 (of the month),
and day 2 (of the week). To account for the cyclical character of all these nu-
merical variables, apart from the year, we converted them by applying the sine
(Equation 4.1) and cosine (Equation 4.2) (Hyndman and Athanasopoulos 2018).

variablesine = sin

(
2π

variablemax
· variable

)
(4.1)

variablecosine = cos

(
2π

variablemax
· variable

)
(4.2)

For instance, the weekday Monday directly follows Sunday, so the two days
are close, but their numerical values of one and seven are very different. Con-
verting them results in variablesine = 0.02 and variablecosine = 1.00 for Monday,
compared with variablesine = 0.11 and variablecosine = 0.99 for Sunday. Since sine
and cosine values range from -1 to 1, the converted numbers reflect high simi-
larity.
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4.3.3.2 Associated previous rates (35 variables)

We associated each freight rate with the prices from six, seven, eight, nine, 10,
11, and 12 months previously. We did not include any value from the last six
months in order to respect the FH of half a year introduced subsequently. We
also created 28 variables to capture their relative changes compared with the
previous day, week, month, and quarter. This resulted in 30 variables capturing
monthly seasonality (MS) and five variables describing yearly seasonality (YS).

4.3.4 Data collection for external variables

Based on our investigation of factors influencing long-term air freight rates (Sec-
tion 4.2.3), we developed another 62 variables capturing external information
to explain remaining variation in prices besides recurrent seasonal patterns.

4.3.4.1 Purchasing Manager’s Index (30 variables)

To anticipate future global demand, we collected monthly manufacturing data
from the PMI as a major economic indicator (IHS Markit 2019). We associated
each freight rate with the PMI from six, seven, and eight months previously to
respect our six-month FH. We also considered their relative changes compared
with the previous month, quarter, half-year, and year. We collected a country-
specific PMI for each destination airport, as well as a global PMI. Note that we
assigned aggregated data to countries for which PMI information was unavail-
able: China for Hong Kong, Association of Southeast Asian Nations (ASEAN)
for Singapore, the emerging markets’ PMI for South Africa, and the global PMI
for Qatar and the United Arab Emirates.

4.3.4.2 Air cargo market indicators (17 variables)

We accessed monthly data for the cargo load factor (CLF) to understand air-
plane utilization (8 variables), cargo tonne-kilometers (CTK) as an indicator of
market demand in terms of traffic (5 variables), and available CTK (ACTK) to
reflect market supply in terms of capacity (4 variables) (International Air Trans-
port Association 2019). For each of these, we considered year-on-year (yoy) and
year-to-date (ytd) changes, and collected percentages for both origin and desti-
nation regions. In addition, regarding traffic, we obtained segment-based CTK
by route. For example, we described shipments from Shanghai to Tokyo by CTK
for the origin region China, the destination region Japan, and the China-Japan
segment specifically. Regarding utilization, we also collected four variables cap-
turing the absolute CLF level for yoy and ytd for both origin and destination
regions. We associated each freight rate with all these market indicators from
six months previously to respect our half-year FH.

4.3.4.3 Oil price (15 variables)

To incorporate oil prices, we collected daily rates for Brent Crude (comdirect
2019). In line with the PMI variables, we associated each freight rate with the oil
price from six, seven, and eight months previously to respect our half-year FH.
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We also considered their relative changes compared with the previous month,
quarter, half-year, and year.

4.3.5 Variable selection

To understand the importance of all 113 developed variables for predicting air
freight rates, we performed variable selection by applying embedded methods,
which are highly accurate and efficient (Guyon and Elisseeff 2003). We selected
RF, as a widely-used embedded method, to benefit from its consistent evalua-
tion of variables’ importance, particularly for large datasets, as in this research
(Verikas et al. 2011). To obtain robust results, we implemented a large num-
ber of trees, and thus set the parameter ntree to 1,000 (Verikas et al. 2011). We
included all 67 trade lanes and applied a nodesize of 5, mtry of 20, and FH of
184 days representing six months. We used all freight rates before July 1, 2019,
for training, and the remaining prices for model testing. To implement RF, we
utilized the randomForest package (version 4.6-14) in R with the randomForest
function (Liaw and Wiener 2002).

4.3.6 Clustering

To further increase accuracy, we opted for clustering-based forecasting, group-
ing the trade lanes before running the prediction models (Chen and Lu 2017).
We investigated three different approaches to identify the best predictive per-
formance: agglomerative hierarchical (Aghabozorgi et al. 2015), k-means (Har-
tigan and Wong 1979), and manual regional clustering. To implement agglom-
erative hierarchical clustering, we utilized the dtwclust package (version 5.5.6)
in R with the dist function and dynamic time warping method to determine sim-
ilarity between routes, and the hclust function and average method to develop
the hierarchy of clusters (Sardá-Espinosa 2019). To apply k-means clustering,
we set nstart to 20 and the number of clusters to four, and utilized the stats
package (version 4.0.3) in R with the kmeans function (R Core Team 2020). We
also grouped trade lanes manually according to regions. For instance, we as-
signed all routes originating in Europe and with a destination in East Asia to
one cluster as their rates developed similarly over time.

4.3.7 Model development

We categorized the models implemented in this study according to their ability
to incorporate multiple seasonality and external variables. To split the TS data
into training and testing sets, we applied more advanced TSCV (Hyndman and
Athanasopoulos 2018). We ran each model with four different model configu-
rations (MC) (numbers given in days): FH = 92 and TSCV = 92 (MC 1); FH =
92 and TSCV = 184 (MC 2); FH = 184 and TSCV = 92 (MC 3); and FH = 184 and
TSCV = 184 (MC 4). Note that 92 and 184 days represent three and six months,
respectively.
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4.3.7.1 TS models for single seasonality without external variables

We implemented traditional algorithms, including ARIMA (Box et al. 2016), sea-
sonal ARIMA (SARIMA), a broad range of exponential smoothing (ES) meth-
ods (Gardner 2006), and one-step naïve (NAIVE) and seasonal naïve (SNAIVE)
models. We applied the forecast package (version 8.12) in R using the following
functions: auto.arima for ARIMA, ses for simple ES (SES), ets for error-trend-
seasonality (ETS), holt for ES with additive trend (ESadditive) and additive
damped trend (ESdamped), naive for NAIVE, and snaive for SNAIVE (Hyn-
dman and Khandakar 2008). To implement SARIMA, we utilized the stats
package (version 4.0.3) in R with the arima function, and set the following pa-
rameters: p = 0, d = 0, q = 0, P = 0, D = 0, Q = 2, and period = 30.42 days for MS
(R Core Team 2020).

4.3.7.2 TS models for multiple seasonality without external variables

Implementing a trigonometric model with Box-Cox transformations, autore-
gressive and moving average errors, trend, and seasonality (TBATS) enabled
the incorporation of multiple seasonal patterns (de Livera et al. 2011). To de-
velop TBATS, we utilized the forecast package (version 8.12) in R with the tbats
function (Hyndman and Khandakar 2008).

4.3.7.3 TS models for single seasonality with external variables

Applying dynamic regression (DR) allowed the incorporation of external vari-
ables (Pankratz 1991). To this end, we used the xreg argument from the auto.arima
function, which is part of the forecast package (version 8.12) in R (Hyndman
and Khandakar 2008). We tested all external variables one after another, and
obtained the best results when adding the global PMI variable of eight months
previously and capturing the relative change compared with six months ago.
We also set the three parameters stationary, seasonality, and stepwise to true.

4.3.7.4 TS models for multiple seasonality with external variables

To incorporate both multiple seasonality and external variables, we applied
dynamic harmonic regression (DHR) (Young et al. 1999). We used the xreg ar-
gument again to include external information, and achieved the best forecast
accuracy by adding the same variable to the model as for DR. We implemented
two DHR approaches, utilizing the auto.arima (DHRarima) and tslm (DHRtslm)
functions from the forecast package (version 8.12) in R (Hyndman and Khan-
dakar 2008). For DHRarima without external variables, we set stationary = true,
seasonality = false, stepwise = true, order parameter K = 5 for MC 1 and 2, and
K = 1 for MC 3 and 4. When including external variables, we used stationary
= false for MC 1 and 2, stationary = true for MC 3 and 4, seasonality = false,
stepwise = false, and K = 1. For DHRtslm without external variables, we set K
= 5 for MC 2 and K = 1 for MC 1, 3, and 4. When including external variables,
we used K = 4 for MC 1, K = 7 for MC 2, and K = 2 for MC 3 and 4.
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4.3.7.5 ML models for multiple seasonality with external variables

Applying ML algorithms also allowed the incorporation of both multiple sea-
sonality and external variables. Here, we implemented RF (Breiman 2001),
RNN (Williams and Zipser 1995), and SVM (Mukherjee et al. 1997). We first
ran all three ML models using only the 51 TS variables, and then included all
113 variables incorporating external information as well. For RF, we used ntree
= 100, nodesize = 10, and mtry = 3 utilizing the randomForest package (version
4.6-14) in R with the randomForest function (Liaw and Wiener 2002). For RNN,
we followed the modeling structure provided by Chollet and Allaire (2017) and
set the following parameters: train_max = 395, test_max = 610, delay = 184, look-
back = 30, step = 30, batch size = 128, units in gru layer = 30, units in output layer
= 1, steps per epoch = 10, and epochs = 1. To implement RNN, we utilized the
keras package (version 2.3.0.0) in R with keras_model_sequential and layer_gru
functions (Allaire and Chollet 2019). For SVM, we used cost = 1, gamma = 0.001,
coef0 = 0, degree = 2, epsilon = 1, and kernel = polynomial. To implement SVM,
we utilized the e1071 package (version 1.7-3) in R with the svm function (Meyer
et al. 2019).

4.3.8 Performance indicators

We used multiple performance indicators to evaluate the prediction results in
order to benefit from their different advantages and overcome certain weak-
nesses (Shcherbakov et al. 2013). To compare the forecast accuracy of models
running on the same set of trade lanes, we utilized the mean absolute error
(MAE) (Equation 4.3) and root mean square error (RMSE) (Equation 4.4). Both
measures are easy to interpret and are thus often used in practice; however,
they can only be applied to assess a single dataset due to scale dependency
(Hyndman and Koehler 2006).

MAE =

∑N
n=1 |predictedn − actualn|

N
(4.3)

RMSE =

√∑N
n=1(predictedn − actualn)2

N
(4.4)

We used the scale-independent mean absolute scaled error (MASE) (Equation
4.5) and mean absolute percentage error (MAPE) (Equation 4.6) to evaluate
forecast accuracy across different clusters of trade lanes (Hyndman and Koehler
2006).

MASE =

∑N
n=1

∣∣∣∣ predictedn−actualn
1

T−FH×
∑T

t=FH+1 |actualt−actualt−FH|

∣∣∣∣
N

(4.5)

MAPE =

∑N
n=1

∣∣∣predictedn−actualn
actualn

∣∣∣
N

(4.6)
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4.4 results

In this section, we first present the results of our data analysis, which lays the
foundation for predicting air freight rates. We then report all prediction results,
followed by a comparison of the TS and ML algorithms, and an evaluation
of the impact of clustering routes and adding external variables on forecast
accuracy.

4.4.1 Data analysis results

4.4.1.1 Results from time series analysis (Section 4.3.2)

We found that prices decreased considerably in 2019 for the majority of trade
lanes. Regarding both in- and outbound European trade, demand for cargo ser-
vices went down, while supply increased owing to higher belly capacity from
more passenger flights, and thus air freight rates decreased (M. Priebe [Kühne
+ Nagel], personal communication, September 16, 2020). We also identified
multiple seasonality, including monthly and yearly patterns. An investigation
of autocorrelation revealed significant coefficients for lags of multiples of 30 or
31 days, indicating MS (Figure B.1). Lag 365 also showed a highly significant
value for the ACF, which implied YS.

4.4.1.2 Results from variable selection (Section 4.3.5)

Interestingly, the results showed high importance for both TS and external vari-
ables measured through RF, indicating that both types of information might
be beneficial as inputs into the prediction models. The 30 most important vari-
ables were date-related information (9), global PMI (9), country-specific PMI
(7), and air cargo market indicators (5) (Figure B.2). The high importance of
date-related information confirmed the existence of seasonal price patterns, as
indicated in the results from TS analysis (Section 4.4.1.1). Notably, PMI and air
cargo market indicators, which both reflect demand and supply in the freight
industry, are also highly important for price prediction.

4.4.1.3 Results from clustering (Section 4.3.6)

For the k-means clustering, the trade lanes were assigned to four large groups
(Figure B.3), which is the recommended number of clusters for the elbow
method with its within-cluster variation (Figure B.4). Applying the average
silhouette method showed that using four clusters was satisfactory. All trade
lanes apart from one route were correctly assigned to clusters, as we consis-
tently obtained a positive silhouette width for all routes, and an average sil-
houette width of at least 0.5 (Figure B.5). The result for compactness, which
optimizes the similarity of members within the same cluster, was 90.8%, thus
confirming the suitability of using four clusters.

In applying agglomerative hierarchical clustering, we set the number of clus-
ters to ten (Figure B.6). We investigated the forecast accuracy by testing differ-
ent groupings of routes. However, the predictive performance decreased con-
siderably when using a lower number of clusters, and only slightly increased
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with more clusters. Surprisingly, neither k-means nor the hierarchical approach
led to clustering of routes by regional similarity.

When grouping trade lanes manually by regions, we ended up with 21 clus-
ters. To compare the model performance based on non-regional clustering,
such as k-means and hierarchical, with regional manual grouping, we applied
all three clustering approaches in subsequent analyses.

4.4.1.4 Model configuration selection

To compare the forecast accuracy, robustness, and applicability of our predic-
tion models, we investigated four different MC of each model, setting the FH
and TSCV to either three or six months, and considering non-clustered data
without external variables (Table B.1). All models showed consistent outcomes.
For instance, the NAIVE approach produced MAPE values of 5.71% (MC 1),
5.46% (MC 2), 8.45% (MC 3), and 8.96% (MC 4). MC 1 and 2 clearly achieved
higher accuracy than MC 3 and 4. However, these are based on an FH of only
three months, which would prevent freight forwarders and their customers
from using the predictions in price negotiations for long-term freight contracts.
The accuracy levels of MC 3 and 4 are comparable as they have similar MAPE
values, but MC 4 is much more robust owing to a TSCV of six rather than only
three months. Consequently, we use MC 4 for all following discussions as it
balances forecast accuracy, robustness, and applicability in practice.

4.4.2 Forecasting results

Overall, we obtained the best prediction results when applying ML algorithms,
incorporating external information, and running the models on clustered data
(Table 4.1). SVM achieved the highest forecast accuracy with an MAPE of 6.77%,
followed by RF with an MAPE of 8.20 (RQ 1). Both ML models outperformed
the best TS approaches in this study, which produced MAPE values of 8.56% for
DHRtslm and 8.86% for DR. Notably, the top five models are all ML rather than
TS models. For instance, SVM achieved better results than all TS models when
including external variables and applying any clustering method, including
regional, hierarchical, and k-means. This observation confirms the remarkable
forecasting results provided by SVM in this study.
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Table 4.1: Forecasting results of ML and TS models (ranked by MAPE)

Model Type Cluster-
ing

External
data

MAE RMSE MASE MAPE

SVM ML regional yes 0.13 0.15 0.63 6.77

SVM ML hierarchicalyes 0.15 0.17 0.75 8.14

RF ML regional yes 0.16 0.18 0.81 8.20

SVM ML regional no 0.16 0.18 0.80 8.27

SVM ML k-means yes 0.17 0.19 0.82 8.53

DHRtslm TS regional yes 0.17 0.20 0.84 8.56

RF ML hierarchicalyes 0.17 0.19 0.85 8.73

DHRtslm TS hierarchicalyes 0.17 0.20 0.84 8.76

DR TS no yes 0.17 0.19 0.86 8.86

RF ML k-means yes 0.18 0.20 0.87 8.89

SVM ML hierarchicalno 0.17 0.19 0.85 8.93

DHRtslm TS no yes 0.18 0.20 0.87 8.93

DHRtslm TS k-means yes 0.18 0.20 0.87 8.93

SES TS no no 0.17 0.19 0.85 8.96

NAIVE TS no no 0.17 0.19 0.85 8.96

RF ML no yes 0.18 0.20 0.88 8.97

ETS TS no no 0.17 0.20 0.86 8.97

ESdamped TS no no 0.17 0.20 0.85 8.98

RF ML regional no 0.18 0.20 0.90 9.00

DHRarima TS no yes 0.18 0.20 0.88 9.06

DHRarima TS no no 0.18 0.20 0.87 9.15

DHRtslm TS regional no 0.18 0.20 0.88 9.20

RF ML hierarchicalno 0.18 0.21 0.91 9.28

DHRtslm TS hierarchicalno 0.18 0.20 0.88 9.28

DHRtslm TS no no 0.18 0.20 0.89 9.33

DHRtslm TS k-means no 0.18 0.20 0.89 9.33

TBATS TS no no 0.18 0.22 0.91 9.37

SVM ML no yes 0.18 0.20 0.91 9.41

DR TS no no 0.19 0.20 0.93 9.47

SARIMA TS no no 0.19 0.20 0.93 9.48

SVM ML k-means no 0.19 0.20 0.92 9.51

RF ML k-means no 0.19 0.22 0.95 9.61

RNN ML no no 0.20 0.22 0.97 9.84

RF ML no no 0.20 0.22 0.98 9.86

SVM ML no no 0.20 0.21 0.97 9.92

RNN ML no yes 0.20 0.22 0.97 9.95

ARIMA TS no no 0.19 0.22 0.96 10.28

SNAIVE TS no no 0.24 0.25 1.17 11.75

ESadditive TS no no 0.29 0.34 1.44 15.63
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4.4.2.1 Machine learning models

In line with Baumann et al. (2019), we achieved higher predictive performance
with SVM, which is a similarity-based ML method, than with RF and RNN,
which are non-similarity-based approaches. To illustrate the forecasting re-
sults from SVM (Figure 4.1) and RF (Figure 4.2), the best ML-based models
in this study, we use the major trade lanes of London-Shanghai (LHR-PVG)
and Shanghai-Doha (PVG-DOH) as examples.

Figure 4.1: Forecasting results of SVM for (A) London-Shanghai and (B) Shanghai-
Doha

Although prices fluctuated heavily over time, SVM managed to forecast air
freight rates very accurately. As we applied an FH of six months, predictions
for August 2019 were developed using information no later than February 2019,
when prices were considerably higher than subsequently (Figure 4.1 A). Inter-
estingly, SVM correctly forecasted significantly lower rates, presumably owing
to its ability to incorporate external variables, such as PMI, indicating lower
market demand in 2019. SVM also predicted freight rates well for routes with
an increasing trend (Figure 4.1 B).

Figure 4.2: Forecasting results of RF for (A) London-Shanghai and (B) Shanghai-Doha

Overall, RF also captured the general trend in air freight rates very well.
Compared with SVM, RF showed similarly accurate forecasts for the European-
Asian route (Figure 4.2 A), and slightly less precise predictions for trade from
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Asia to the Middle East (Figure 4.2 B) where it struggled to process a decrease
in prices at the end of 2019 following a previous steep increase.

4.4.2.2 Time series models

To illustrate the forecasting results of DHRtslm (Figure 4.3) and DR (Figure
4.4), which were the best TS-based models in this study, we again use the major
trade lanes of London-Shanghai (LHR-PVG) and Shanghai-Doha (PVG-DOH)
as examples.

Figure 4.3: Forecasting results of DHRtslm for (A) London-Shanghai and (B) Shanghai-
Doha

DHRtslm provided satisfactory predictions, but was clearly outperformed
by ML-based SVM and RF. In contrast to the latter, DHRtslm is limited with
regard to the number of parameters for adjusting the method to specific char-
acteristics of trade lanes, as it only allows optimization of the order parameter
K, apart from the standard parameters of stationary, seasonality, and stepwise.

Figure 4.4: Forecasting results of DR for (A) London-Shanghai and (B) Shanghai-Doha

Similarly, DR captured the general trend in air freight rates, but less accu-
rately than SVM and RF. Like DHRtslm, DR is limited in the number of pa-
rameters that can be adjusted. Furthermore, only one external variable can
be included in the xreg argument, and it incorporates only single seasonality.
These limitations presumably explain its lower accuracy compared with SVM
and RF.
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4.4.3 Comparison of machine learning and time series models

Overall, ML models achieved greater forecast accuracy than TS methods for
predictions of long-term air freight rates. In contrast to most available TS ap-
proaches, such as NAIVE, ES, and ARIMA, ML algorithms allow the incorpora-
tion of external variables, and optimization of the model by adjusting multiple
parameters according to the characteristics of different trade lanes. Notably,
both advantages enhance predictive performance substantially. For instance,
SVM resulted in an MAPE of 9.92% without using external variables and clus-
tering, compared with an MAPE of 6.77% when including external information
and applying clustered datasets (Table 4.1).

Applying ML algorithms provided the best forecast accuracy overall. How-
ever, TS models may be a competitive alternative in some cases, as the results
differed by trade lane. The routes considered in this study show different lev-
els of variation in their freight rates, which we measured by the coefficient of
variation (CV) (Figure 4.5).
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Figure 4.5: Forecast accuracy of the best ML and TS models with regard to variation of
freight rates

We aggregated the trade lanes by using five CV ranges: very low (0-5%),
low (5-10%), medium (10-15%), high (15-20%), and very high (more than 20%).
For routes with very low variation, all implemented methods indicated by the
average across all models achieved satisfactory results. In this case, TS models
were a competitive alternative to ML-based SVM and RF. With increasing CV,
SVM clearly showed lower values for MAPE than DHRtslm and DR as the
best-performing TS models.

The routes included in this study also varied with regard to freight rate
trends. Here, we aggregated the trade lanes by classifying them into six types
of trend: slightly decreasing, slightly increasing, clearly decreasing, clearly in-
creasing, decreasing then increasing, and increasing then decreasing (Figure
4.6).
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Figure 4.6: Forecast accuracy of all ML and TS models with regard to (A) decreasing
and (B) increasing trends in freight rates (models on x-axis ordered by over-
all MAPE across all routes with the study’s best model on the right)

For slightly increasing and decreasing trends, all TS and ML models pro-
vided accurate forecasts, with an MAPE ranging from 2% to 5%, except for
ESadditive. The prediction results differed more for stronger trends. For clearly
decreasing prices, TS-based TBATS and ESdamped achieved the lowest MAPE
of 7%, and the ML models SVM and RF were competitive with 9% (Figure 4.6
A). Similarly, the best TS and ML methods were comparable, with an MAPE of
6% for clearly increasing freight rates (Figure 4.6 B). Interestingly, ML achieved
significantly better results for routes with more complex and volatile trends. In
particular, SVM provided very accurate predictions, with an MAPE of 7% com-
pared with 12% from most TS models (Figure 4.6 B), for routes with first increas-
ing and then decreasing prices. For the opposite development, the MAPE was
10% for SVM as opposed to 13% for most TS models (Figure 4.6 A). SVM clearly
benefits from the ability to incorporate external variables, which enhances pre-
dictions for routes with complex and volatile rate developments. For instance,
unexpected demand shocks may explain suddenly declining prices, which can
be better anticipated by SVM than by TS models.

4.4.4 Improvement from clustering and external variables

Both incorporating external variables and running the prediction models on
clustered datasets improved the forecast accuracy (RQ 2) of all models tested
in this study (Table 4.2).

On average, adding external variables improved the predictions by 0.60 per-
centage points (pp), using MAPE as a measure of accuracy. All three clustering
approaches enhanced the predictions, with reductions in MAPE ranging from
0.22 to 0.88 pp. Surprisingly, the regional manual approach provided better re-
sults than k-means and hierarchical clustering. Presumably, the higher number
of clusters, as well as more similar developments in freight rates within each
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Table 4.2: Impact of clustering and external variables on forecast accuracy for the best
ML and TS models (measured by a reduction of MAPE in pp)

Clustering External variables SVM RF DHRtslm Average
no yes 0.51 0.90 0.40 0.60

yes (k-means) no 0.41 0.26 0.00 0.22

yes (hierarchical) no 0.99 0.58 0.05 0.54

yes (regional) no 1.65 0.86 0.13 0.88

yes (k-means) yes 0.89 0.08 0.00 0.32

yes (hierarchical) yes 1.27 0.23 0.17 0.56

yes (regional) yes 2.64 0.77 0.37 1.26

cluster, drove the better results. Here, using both external variables and cluster-
ing at the same time improved the MAPE by 1.26 pp on average, and by 2.64

pp for SVM. These improvements are significant in view of the high overall
forecast accuracy of the models implemented in this study, indicated by MAPE
values ranging from 6.77% to 9.95% for all models except ARIMA, SNAIVE,
and ESadditive (Table 4.1).

4.5 discussion and managerial implications

In this section, we first explain which corporate business decisions can be en-
hanced by increased transparency in future long-term air freight rates. We then
discuss the financial implications of improving these decisions, and evaluate
whether our proposed prediction solution is suitable for this purpose.

Pricing strategies in the logistics industry are as yet immature, and thus many
companies struggle to achieve optimal freight rates (Boin et al. 2020). Higher
transparency in future air cargo prices may support the decision-making of
various companies, including cargo airlines, freight forwarders, shippers, and
even passenger airlines, which transport 50% of total tonnage via belly freight
(J. Ringbeck [ricon], personal communication, September 7, 2020). In general,
companies can benefit in two main use cases (UC): transportation contracts
between freight forwarders and shippers (UC 1), and between air carriers and
freight forwarders (UC 2) (M. Priebe [Kühne + Nagel], personal communication,
September 16, 2020).

Investing in digital solutions increases transparency in future market prices
(Boin et al. 2020). This helps logistics providers, including freight forwarders
(UC 1) and air carriers (UC 2), to adjust their mix of long- and short-term con-
tracts with customers, and then optimize their pricing to maximize revenues
and thus profits. Better understanding of future price trends is essential to
enable freight forwarders to avoid setting freight rates too low, as they often
only consider the experience of their employees (V. Henkes [Kühne + Nagel],
personal communication, September 28, 2020). Cargo airlines can benefit from
improved price forecasting by better exploiting price potential or adjusting ca-
pacities (J. Ringbeck [ricon], personal communication, September 7, 2020). Sim-
ilarly, passenger airlines may adapt the extent to which they offer cargo ser-
vices to benefit even more from this profitable business (F. Perl [European Air
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Transport Leipzig], personal communication, September 25, 2020). For instance,
KLM (2021) operates five Boeing 747-400 Combi aircrafts, allowing it to carry
more cargo goods at the back of its airplanes.

Anticipating future trends in freight rates also helps customers, including
shippers (UC 1) and freight forwarders (UC 2), to adjust their proportions of
long- and short-term contracts with logistics providers and to achieve lower
prices in negotiations (V. Henkes [Kühne + Nagel], personal communication,
September 28, 2020). Both freight forwarders and shippers are interested in
securing more accurate freight rate predictions to improve these decisions (M.
Priebe [Kühne + Nagel], personal communication, September 16, 2020). Some
freight forwarders are now leveraging analytical tools, but very few shippers
are basing their contracts and price decisions on digital solutions (V. Henkes
[Kühne + Nagel], personal communication, September 28, 2020).

Our proposed prediction solution supports these business decisions, as it
achieves high forecast accuracy, with an MAPE of 6.77%, enabling significant
financial improvements. Applying ML algorithms enhanced predictive perfor-
mance in this study, with an MAPE of 6.77% for SVM compared with 8.96%
for the NAIVE approach that served as a benchmark. We argue that two pp
represents a considerable performance improvement, as we increase the fore-
cast accuracy from an already high level of approximately 91% for the NAIVE
approach to more than 93% for SVM. Gains in the forecast accuracy of the
more sophisticated prediction algorithms need to be weighed against more ba-
sic approaches (Carbonneau et al. 2008). However, the economic impact of
using data analytics may be significant, even from marginal gains in forecast
accuracy (Kraus et al. 2020). From the perspective of logistics providers, such
as freight forwarders (UC 1) and air carriers (UC 2), increasing prices by 2%
results in 30% higher operating profits (RQ 3), assuming an average profit mar-
gin of 5-6% (Boin et al. 2020). From the customers’ perspective, shippers (UC 1)
and freight forwarders (UC 2) can achieve lower prices in contract negotiations,
and thereby increase their profits by 11% (RQ 3). Here, we assume an average
profit margin of 5% and transportation costs of 30% of customers’ total costs.

Applying our proposed prediction solution enables these significant eco-
nomic improvements. In addition to a forecast accuracy of more than 93%, our
solution is also characterized by high model robustness and applicability in
practice. Logistics companies require price transparency half a year in advance
(V. Henkes [Kühne + Nagel], personal communication, September 28, 2020).
Consequently, we forecast freight rates six months ahead, while maintaining
an accuracy of more than 93%. To achieve robust results, we apply TSCV with
184 rolling forecasting windows.

Companies can use our proposed prediction solution in two ways. First, they
will benefit from freight rate forecasts, which are the ultimate outcome of the
model. Second, they may also gain insights into the importance of different
variables. We find that both TS and external variables, particularly PMI and air
cargo market indicators, are important for predicting long-term freight rates
(Section 4.4.1.2). This information may help companies to further investigate
relevant areas of their business to foresee potential future shifts in prices. This
might include economic development in specific areas and activities regarding
utilization of airplanes and planned changes in cargo capacity.
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Our prediction solution is ready to use and easy to adapt, as it is developed
entirely in open-source software R (version 1.3.1093) (R Core Team 2020). The
model can be tailored to specific geographical characteristics of new routes by
adding or removing external variables. It can also be applied to other industries,
such as different transport modes, including road, rail, and sea. Investigating
another cargo situation also characterized by seasonality might be particularly
interesting, using the 51 related variables already built into this model.

4.6 conclusion and future research

This study proposes a forecasting solution powered by data analytics to support
companies’ decision-making on long-term air freight rates. We predict prices
six months in advance to achieve high applicability of our model in practice. To
obtain robust results, we apply TSCV, testing 184 rolling forecasting windows.
Our proposed prediction solution uses a full two-year dataset with daily prices
from 2018 to 2019, covering 67 global trade lanes linking 24 major cargo airports.
To achieve the highest forecast accuracy, we implement 12 TS and three ML
algorithms and compare their results with four different accuracy measures.
To further increase predictive performance, we cluster the trade lanes and feed
our model with additional information. We include 51 TS variables to capture
seasonality in freight rates, as well as 62 external variables, such as CLF to
describe supply and PMI to anticipate demand.

Overall, we demonstrate that SVM provides the best predictions of long-term
air freight rates, with an MAPE of 6.77%, followed by RF (8.20%) and DHRtslm
(8.56%). Applying ML, and primarily SVM, helps to achieve more accurate
forecasts than TS models, particularly for trade lanes with high price variations.
ML also outperforms TS approaches for routes characterized by complex trends
with increasing and decreasing prices. We also find that both adding external
variables and clustering trade lanes improve the forecast accuracy, reducing the
MAPE by 0.60 pp and 0.88 pp, respectively. Incorporating external information
and clustering routes at the same time decreases the MAPE by 1.26 pp.

In summary, we show that our developed air freight rate forecasts may pro-
vide useful decision support, enabling various companies to improve their op-
erational efficiency. We identify two main UC: transportation contracts between
freight forwarders (logistics providers) and shippers (customers), and between
air carriers (logistics providers) and freight forwarders (customers). All these
companies would benefit from greater transparency in future market freight
rates to adjust their mix of long- and short-term contracts. Logistics providers
can also adjust their capacity and advance their pricing, and thus maximize
profits. Optimizing prices by 2% in their contracts with customers increases
their profits by 30%. Customers can use the improved price predictions to
achieve lower prices in contract negotiations, resulting in 11% higher profits.

Future research is needed to investigate the forecast accuracy of air freight
rate prediction models, such as our proposed solution, during the COVID-19

pandemic. We suggest evaluating the predictive performance of variables in an-
ticipating economic disruptions as early as possible and forecasting price shifts
caused by the pandemic. Regarding the methodology, it might be valuable to
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test other ML algorithms, such as gradient boosting machine, as well as lasso,
ridge, and elastic net regression, and compare these with the particularly strong
performance of SVM in this study.





5
S U M M A RY A N D O U T L O O K

5.1 summary

Air and sea freight are key drivers for globalization as they are the main trans-
port modes for international trade. The complexity of the logistics sector has
always been a major challenge for decision makers in transportation. Fun-
damental changes in global trade further complicate their business. Shifts in
worldwide demand are projected, particularly driven by growing wealth and
population in Asian countries. This will lead to future changes in volumes and
thus freight rates on major shipping routes linking Asia with Europe and North
America. Furthermore, traffic increases are expected as demand rises from a
growing world population. Extreme weather events, such as storms and floods,
occur more frequently due to climate change. Both developments increase the
risk of supply chain disruptions, including delays of container vessels, and thus
cause further uncertainty for transportation. This makes decision-making very
difficult for shipping players.

Our research increases transparency in transportation, supporting both logis-
tics providers on optimizing their service offerings and customers on shipping
their goods. We contribute to a better understanding of expected delays of
container vessels by investigating a broad range of influencing factors (Chap-
ter 2). To address the fundamental challenge of anticipating future spot rates
in container shipping, it is important to assess different prediction algorithms
comparing ML with TS methods (Chapter 3). Likewise, with a shifted focus on
long-term freight rates, we investigate the predictability of future prices in the
air cargo industry (Chapter 4).

In Chapter 2, we analyze delays of container vessels and propose a quantita-
tive solution to forecast these. We apply both regression and classification mod-
els comparing more conventional statistical methods, such as linear regression,
with more advanced ML algorithms, including SVM, neural network (NN), and
RF. Regarding classification, NN provides the best results with an RMSE of 0.41

and an accuracy of 77%. This means that we classify three out of four vessels
correctly as to whether they arrive on-time or are delayed. Notably, our forecast
accuracy of 77% is significantly higher than the benchmark of 59%. Regarding
regression, we demonstrate that prediction algorithms using statistical learning
achieve better results than non-learning-based methods. SVM with the poly-
nomial kernel represents the best regression model, resulting in an RMSE of
0.43, followed by NN (0.52) and SVM with the radial kernel (0.53). The forecast
error of polynomial kernel-based SVM is marginally higher compared to NN
as the best classification model even though it predicts delays precisely in con-
trast to those only differentiating on-time and delayed shipments. Moreover,
we discuss the trade-off between forecast accuracy and interpretability which
is important for application by practitioners. We argue that SVM is more in-
terpretable than NN with its complex structure of multiple neurons and layers.

75
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We also show that the time between ports, piracy risk, demographics, weather,
and traffic in maritime chokepoints, such as the Suez Canal, are the most impor-
tant influencing factors for delays of container vessels. Overall, we demonstrate
that the most accurate predictions can be obtained by applying ML methods for
both regression and classification. Various shipping players can benefit from
the increased transparency in delays of container vessels enabled by our pro-
posed prediction model. This includes shippers in selecting transport routes,
carriers in optimizing buffers in schedules, terminal operators in adjusting the
vessel handling sequence, and receivers in organizing their hinterland logistics.
In an additional case study on the interrelation between tidal restrictions of the
Port of Hamburg and shipping delays of container vessels, we show increased
probability of further delays for tide-restricted vessels.

In Chapter 3, the focus on the container shipping industry remains, but shifts
towards another important challenge: reducing uncertainty in future spot rates.
To increase transparency in the market, we predict prices comparing TS meth-
ods with ML algorithms. Our data analytics-based approach enables high fore-
cast accuracy with an MAPE of 10.8% for SVM, the best-performing model in
this study. Overall, ML provides better results than TS methods for predicting
container spot rates. Three out of the four best models are ML-based, result-
ing in an MAE of 60.1 for SVM, followed by DHRarima (88.9), RNN (101.6),
and RF (116.6). We show that TS variables are significantly more important
for predicting spot rates than external information. TS variables capture multi-
ple seasonality, including yearly, monthly, and weekly patterns in freight rates,
as identified by autocorrelation. We further demonstrate that clustering trade
lanes improves forecast accuracy. Interestingly, applying hierarchical cluster-
ing leads to grouping routes according to geographical similarity in this case.
Clustering trade lanes helps to fine-tune hyperparameters of the forecasting al-
gorithms, accounting for similar price developments of routes within the same
cluster. Furthermore, our study shows that external information explains un-
common patterns in TS data as they describe changes in demand and supply.
For instance, economic indicators, such as PMI, enable identification of eco-
nomic slowdowns, resulting in lower freight rates. Incorporating this informa-
tion increases the robustness of our proposed forecasting model, as it can react
to sudden changes in demand. Both logistics providers and their customers
can benefit from our proposed prediction solution to optimize their mix of
short- and long-term transport contracts. This adjustment leads to an average
financial impact of 19.5%. Our forecasts also enable logistics providers to op-
timize their pricing and thus increase profits. Customers can further benefit
from increased transparency in future freight rates to achieve lower prices in
negotiations.

After thorough analysis of the container shipping industry in Chapter 2 and
Chapter 3, we shift the focus to another aspect worth investigating in the trans-
port industry in Chapter 4. Here, we assess the predictability of freight rates
in air cargo. This logistics sector is also characterized by high uncertainty
regarding future prices, particularly long-term contracted rates. In line with
other studies, we confirm that similarity-based ML methods, here SVM, achieve
greater forecast accuracy than non-similarity-based models. SVM outputs the
best results with an MAPE of 6.77%, followed by RF (8.20%) and DHRtslm
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(8.56%), compared to the benchmark of 8.96%. As recommended by other re-
searchers, we discuss the financial implication of achieving a marginally higher
forecast accuracy using more advanced prediction algorithms. In our study, we
found that using SVM enhances predictive performance by 2.19 pp. This marks
a significant improvement in predictive performance as it increases profits by
30% for logistics providers and 11% for shippers. Companies can achieve these
efficiency gains when adjusting their mix of long- and short-term transportation
contracts. In addition, increased transparency in future market prices helps air
carriers and freight forwarders to optimize their pricing and shippers to ne-
gotiate lower prices. Overall, we demonstrate that ML algorithms forecast air
freight rates more accurately than TS methods. The difference in performance
is considerably larger for trade lanes with higher variation in prices. ML also
shows better results for routes with more complex trends in prices. For in-
stance, TS methods allow similar performance in case of slightly increasing or
decreasing prices, however, ML methods provide significantly better results for
volatile trends in air freight rates. We further demonstrate that clustering trade
lanes and adding external variables increase forecast accuracy. We obtain the
best results when grouping routes manually according to geographical similar-
ity. The most important external variables for predicting long-term air freight
rates are date-relative information with strong monthly patterns, PMI indicat-
ing future regional and global demand shifts, and air cargo market indicators,
particularly CLF and CTK.

While this dissertation shows how predictive analytics can be used effectively
in container shipping and air cargo, it also comes with some limitations. First,
all three chapters focus on enabling strategic managerial improvements and
thus short-term operational implications are disregarded. For instance, real-
time information on congestion, traffic, and weather are not incorporated into
our proposed forecasting solution in Chapter 2. This data would be required
to forecast a specific shipment precisely, for example, next week. Similarly, we
forecast freight rates for container shipping in Chapter 3 and air cargo in Chap-
ter 4 based on a long-term FH of six months. According to practitioners, this
long-term FH enables effective decision-making for transportation, for exam-
ple, in adjusting contracts. Thus, short-term predictions, such as forecasting
tomorrow’s prices, are not the focus of our research. Second, our forecasting
solutions are based on a selection of forecasting algorithms. Regarding ML, we
limit our models to the most promising methods, primarily including SVM, RF,
and RNN. Third, our research uses TS data up to December 2019 and thus
information before the COVID-19 pandemic. Our price prediction solutions in-
corporate economic indicators to capture changes in demand, however, massive
shocks, such as the global economic decline in 2020 caused by the pandemic,
require further verification of the forecast accuracy provided by our models.

With this dissertation, we contribute to several streams of literature. Over-
all, we apply novel predictive analytics to increase transparency in the logistics
sector which is characterized by high uncertainty. We contribute to container
shipping literature by providing new insights into the predictability of ship-
ping delays and associated influencing factors to enhance strategic managerial
opportunities. In contrast to the focus on terminal operators of most studies,
we aim to support the decision-making of various shipping players. We also
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extend research on forecasting freight rates in both container shipping and air
cargo by presenting a prediction solution that is accurate, robust, and appli-
cable in practice. Compared with other studies, we apply a long-term FH of
six months to increase managerial opportunities and use TSCV with multiple
rolling forecasting windows to ensure high model robustness. We further con-
tribute to this literature by implementing additional ML algorithms to achieve
higher accuracy, as recommended by other researchers. Limited research exists,
particularly in air cargo, that supports the decision-making of companies other
than carriers. Studies on pricing and revenue management in air cargo often
focus on the carrier’s perspective. Beyond these, we demonstrate opportunities
for the other players involved, such as freight forwarders and shippers. We
further contribute to a better understanding of when to opt for ML rather than
TS methods. Practitioners can benefit from higher forecast accuracy for routes
with volatile and complex price developments. Our forecasting models also
enhance the scope covered by previous literature by increasing transparency in
the importance of different influencing factors for predicting shipping delays
and freight rates. The models proposed in this research are ready to use and
can easily be applied to other transportation modes by modifying the selection
of external variables.

5.2 outlook

This dissertation investigates predictive analytics in container shipping and air
cargo. We provide forecasting solutions to support the decision-making of com-
panies involved in sea and air transportation. This primarily includes shippers,
carriers, freight forwarders, terminal operators, and receivers. Our findings
also lead to potential new areas for future research.

Based on the limitations of this dissertation described in the previous sec-
tion, we suggest the following three directions for future investigation. First,
researchers could extend our forecasting solution for shipping delays of con-
tainer vessels by adding real-time information. This might include weather
forecasts, reports on traffic and congestion from ports and maritime choke-
points, and live-tracking of vessels. Incorporating these variables would enable
the tactical or even operational planning level and thus complement our ob-
jective of enhancing strategic managerial implications. Second, future research
could investigate additional ML algorithms to forecast shipping delays and
prices in sea and air freight. We suggest applying gradient boosting machine
and further deep learning methods, a particular class of ML. As highlighted by
other researchers, deep learning methods often result in higher forecast accu-
racy. Third, it would be very interesting to test our proposed prediction models
using data during the COVID-19 pandemic. Economic shocks of this magni-
tude are likely to remain challenging to foresee, however, additional external
variables could help to further improve predictions. For instance, indices that
immediately reveal uncommon demand or supply patterns could provide early
warning information to adjust forecasts. Future research could also focus on the
stage after economic disruption. Companies could benefit from increased trans-
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parency in the projected recovery of transport volumes and prices to improve
their response to the crisis.

In conclusion, applying predictive analytics by using ML algorithms remains
a fairly new approach and certainly offers many open questions to be addressed
for further advancements. Predicting vessel delays and freight rates in con-
tainer shipping and air cargo remains challenging but promising for practi-
tioners. We thus believe that novel predictive analytics applied to the logistics
sector represents an interesting research area to be further investigated in the
future.

In my journey from analyzing container shipping to air cargo, I also explored
the interrelation between industry and academia during my doctoral thesis.
Conducting interviews with experts from both worlds enabled highly valuable
but contrasting insights. Research often focuses on improving methodology
which is important to develop accurate and robust forecasts. Industry rather
pushes for the financial benefit, simplicity, and applicability of tools to ensure
that decision makers can use them effectively. Reconciling both approaches is
key to implementing an impactful decision support solution. It also became ev-
ident that insights from different transportation sectors, namely container ship-
ping and air cargo, complement each other. It is my hope that collaborations
between academia and industry, including different transportation sectors, will
play an increasingly important role going forward. This will further enhance
effective prediction of shipping delays and freight rates in the future and thus
lead to significant economic and practical impact in managing transportation.
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Figure A.1: Prediction results of DHRarima for Antwerp-Shanghai comparing actuals
(gray) and forecasts (black): (A) without clustering or external variables;
(B) with external variables; (C) with clustering; (D) with clustering and
external variables

81
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Figure A.2: Prediction results of SVM for Antwerp-Shanghai comparing actuals (gray)
and forecasts (black): (A) without clustering or external variables; (B) with
external variables; (C) with clustering; (D) with clustering and external
variables
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Figure A.3: Yearly comparison of container spot rates for Shanghai-Rotterdam
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Table A.1: Forecasting results of all TS models (no clustering, no external variables)
comparing MC 1-8

Model Data FH TSCV MAE RMSE MAPE MASE
(MC) (years) (days) (days)
ARIMA (1) 4 91 91 92.6 124.0 14.0 0.5
ARIMA (2) 4 91 182 124.9 157.0 17.6 0.7
ARIMA (3) 4 182 91 139.8 166.8 24.2 0.7
ARIMA (4) 4 182 182 125.4 149.5 22.2 0.6
ARIMA (5) 2 91 91 98.1 126.0 13.5 0.7
ARIMA (6) 2 91 182 136.3 168.0 16.4 0.9
ARIMA (7) 2 182 91 195.8 223.1 25.8 1.2
ARIMA (8) 2 182 182 185.8 216.8 23.7 1.1
DHRarima (1) 4 91 91 93.5 117.2 14.1 0.5
DHRarima (2) 4 91 182 124.7 150.3 17.4 0.7
DHRarima (3) 4 182 91 122.0 150.0 22.1 0.6
DHRarima (4) 4 182 182 113.3 136.4 20.7 0.6
DHRarima (5) 2 91 91 97.9 126.0 13.5 0.7
DHRarima (6) 2 91 182 134.5 166.2 16.2 0.8
DHRarima (7) 2 182 91 189.5 218.7 25.1 1.2
DHRarima (8) 2 182 182 181.4 213.6 23.2 1.1
DHRtslm (1) 4 91 91 85.0 91.0 25.1 0.5
DHRtslm (2) 4 91 182 118.0 142.1 25.7 0.6
DHRtslm (3) 4 182 91 104.6 111.5 32.4 0.5
DHRtslm (4) 4 182 182 127.4 144.1 31.0 0.6
DHRtslm (5) 2 91 91 146.0 152.9 24.8 1.1
DHRtslm (6) 2 91 182 175.2 195.6 26.4 1.3
DHRtslm (7) 2 182 91 188.8 196.3 33.5 1.4
DHRtslm (8) 2 182 182 199.1 214.5 32.1 1.4
DR (1) 4 91 91 112.6 123.0 32.4 0.6
DR (2) 4 91 182 130.9 147.9 30.9 0.7
DR (3) 4 182 91 114.5 121.9 33.6 0.5
DR (4) 4 182 182 127.4 142.0 31.3 0.6
DR (5) 2 91 91 171.3 182.3 30.3 1.3
DR (6) 2 91 182 182.0 197.4 29.4 1.4
DR (7) 2 182 91 199.8 207.7 34.7 1.5
DR (8) 2 182 182 203.5 217.3 32.8 1.5
ESadditive (1) 4 91 91 117.8 151.1 16.1 0.6
ESadditive (2) 4 91 182 145.9 182.8 19.3 0.8
ESadditive (3) 4 182 91 191.0 230.9 28.7 1.0
ESadditive (4) 4 182 182 168.5 204.6 26.0 0.9
ESadditive (5) 2 91 91 129.4 156.5 16.6 0.8
ESadditive (6) 2 91 182 161.0 192.1 18.5 1.0
ESadditive (7) 2 182 91 222.7 270.6 28.1 1.2
ESadditive (8) 2 182 182 224.3 270.0 26.9 1.2
ESdamped (1) 4 91 91 91.3 122.6 13.4 0.5
ESdamped (2) 4 91 182 124.3 156.5 17.2 0.7
ESdamped (3) 4 182 91 139.1 166.4 23.8 0.7
ESdamped (4) 4 182 182 123.7 148.5 21.5 0.6
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Table A.1: continued
Model Data FH TSCV MAE RMSE MAPE MASE
(MC) (years) (days) (days)
ESdamped (5) 2 91 91 93.6 120.4 12.3 0.6
ESdamped (6) 2 91 182 133.2 163.9 16.1 0.8
ESdamped (7) 2 182 91 188.4 213.9 25.7 1.2
ESdamped (8) 2 182 182 173.9 201.3 23.2 1.1
ETS (1) 4 91 91 93.8 125.3 14.6 0.5
ETS (2) 4 91 182 124.6 157.0 17.4 0.7
ETS (3) 4 182 91 136.4 165.5 22.7 0.7
ETS (4) 4 182 182 123.6 149.4 21.4 0.6
ETS (5) 2 91 91 93.1 120.9 12.3 0.6
ETS (6) 2 91 182 132.9 163.8 16.0 0.8
ETS (7) 2 182 91 189.0 214.3 25.4 1.2
ETS (8) 2 182 182 176.7 204.7 23.5 1.1
NAIVE (1) 4 91 91 92.5 124.0 14.0 0.5
NAIVE (2) 4 91 182 124.9 157.0 17.6 0.7
NAIVE (3) 4 182 91 139.2 166.2 24.2 0.7
NAIVE (4) 4 182 182 125.0 149.1 22.2 0.6
NAIVE (5) 2 91 91 92.9 120.8 12.3 0.6
NAIVE (6) 2 91 182 132.3 163.0 16.1 0.8
NAIVE (7) 2 182 91 187.1 211.6 25.6 1.2
NAIVE (8) 2 182 182 173.9 200.2 23.3 1.1
SARIMA (1) 4 91 91 94.2 123.6 14.6 0.5
SARIMA (2) 4 91 182 127.8 161.3 18.1 0.7
SARIMA (3) 4 182 91 146.3 175.8 25.1 0.8
SARIMA (4) 4 182 182 127.2 154.4 22.7 0.6
SARIMA (5) 2 91 91 92.0 120.2 12.0 0.6
SARIMA (6) 2 91 182 131.4 162.2 15.9 0.8
SARIMA (7) 2 182 91 185.8 211.1 25.4 1.2
SARIMA (8) 2 182 182 174.8 200.9 23.3 1.1
SES (1) 4 91 91 92.5 124.0 14.0 0.5
SES (2) 4 91 182 124.9 156.9 17.6 0.7
SES (3) 4 182 91 139.2 166.2 24.2 0.7
SES (4) 4 182 182 125.0 149.1 22.2 0.6
SES (5) 2 91 91 92.9 120.8 12.3 0.6
SES (6) 2 91 182 132.3 163.0 16.1 0.8
SES (7) 2 182 91 187.1 211.6 25.6 1.2
SES (8) 2 182 182 173.9 200.2 23.3 1.1
SNAIVE (1) 4 91 91 139.6 153.2 35.3 0.8
SNAIVE (2) 4 91 182 117.5 133.4 30.1 0.7
SNAIVE (3) 4 182 91 139.6 153.2 35.3 0.7
SNAIVE (4) 4 182 182 117.5 133.4 30.1 0.5
SNAIVE (5) 2 91 91 187.5 202.4 30.7 1.5
SNAIVE (6) 2 91 182 190.6 211.8 29.3 1.4
SNAIVE (7) 2 182 91 187.5 202.4 30.7 1.4
SNAIVE (8) 2 182 182 190.6 211.8 29.3 1.2
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Figure B.1: Correlogram showing autocorrelation for Hong Kong-Los Angeles (HKG-
LAX)
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Figure B.2: Importance of top 30 variables from RF

Figure B.3: Cluster plot showing trade lanes’ grouping from k-means clustering
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Figure B.4: Within-cluster variation from k-means clustering

Figure B.5: Silhouette from k-means clustering
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Figure B.6: Dendrogram showing trade lanes’ grouping from agglomerative hierarchi-
cal clustering
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Table B.1: Forecasting results of all ML and TS models (no clustering, no external vari-
ables) comparing MC 1-4

Model (MC) Type FH TSCV MAE RMSE MASE MAPE
ARIMA (1) TS 92 92 0.12 0.13 0.90 6.22

ARIMA (2) TS 92 184 0.11 0.14 0.83 5.98

ARIMA (3) TS 184 92 0.19 0.20 0.95 9.88

ARIMA (4) TS 184 184 0.19 0.22 0.96 10.28

DHRarima (1) TS 92 92 0.15 0.17 1.18 8.10

DHRarima (2) TS 92 184 0.17 0.20 1.22 8.63

DHRarima (3) TS 184 92 0.16 0.17 0.83 8.21

DHRarima (4) TS 184 184 0.18 0.20 0.87 9.15

DHRtslm (1) TS 92 92 0.22 0.22 1.69 10.64

DHRtslm (2) TS 92 184 0.22 0.23 1.57 10.75

DHRtslm (3) TS 184 92 0.17 0.17 0.85 8.44

DHRtslm (4) TS 184 184 0.18 0.20 0.89 9.33

DR (1) TS 92 92 0.16 0.16 1.23 7.89

DR (2) TS 92 184 0.16 0.18 1.16 8.07

DR (3) TS 184 92 0.18 0.19 0.94 9.16

DR (4) TS 184 184 0.19 0.20 0.93 9.47

ESadditive (1) TS 92 92 0.14 0.15 1.09 7.64

ESadditive (2) TS 92 184 0.14 0.16 1.04 7.61

ESadditive (3) TS 184 92 0.25 0.27 1.30 13.86

ESadditive (4) TS 184 184 0.29 0.34 1.44 15.63

ESdamped (1) TS 92 92 0.11 0.12 0.84 5.72

ESdamped (2) TS 92 184 0.10 0.13 0.76 5.47

ESdamped (3) TS 184 92 0.16 0.17 0.84 8.45

ESdamped (4) TS 184 184 0.17 0.20 0.85 8.98

ETS (1) TS 92 92 0.11 0.12 0.85 5.76

ETS (2) TS 92 184 0.11 0.13 0.77 5.49

ETS (3) TS 184 92 0.17 0.18 0.85 8.55

ETS (4) TS 184 184 0.17 0.20 0.86 8.97

NAIVE (1) TS 92 92 0.11 0.12 0.84 5.71

NAIVE (2) TS 92 184 0.10 0.13 0.76 5.46

NAIVE (3) TS 184 92 0.16 0.17 0.84 8.45

NAIVE (4) TS 184 184 0.17 0.19 0.85 8.96

RF (1) ML 92 92 0.18 0.19 1.40 9.36

RF (2) ML 92 184 0.19 0.20 1.34 9.60

RF (3) ML 184 92 0.20 0.20 1.00 9.50

RF (4) ML 184 184 0.20 0.22 0.98 9.86

RNN (4) ML 184 184 0.20 0.22 0.97 9.84
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Table B.1: continued

Model (MC) Type FH TSCV MAE RMSE MASE MAPE
SARIMA (1) TS 92 92 0.17 0.17 1.29 8.23

SARIMA (2) TS 92 184 0.17 0.18 1.21 8.35

SARIMA (3) TS 184 92 0.19 0.19 0.95 9.13

SARIMA (4) TS 184 184 0.19 0.20 0.93 9.48

SES (1) TS 92 92 0.11 0.12 0.84 5.71

SES (2) TS 92 184 0.10 0.13 0.76 5.46

SES (3) TS 184 92 0.16 0.17 0.84 8.45

SES (4) TS 184 184 0.17 0.19 0.85 8.96

SNAIVE (1) TS 92 92 0.24 0.26 1.86 11.81

SNAIVE (2) TS 92 184 0.23 0.25 1.68 11.58

SNAIVE (3) TS 184 92 0.24 0.25 1.23 11.75

SNAIVE (4) TS 184 184 0.24 0.25 1.17 11.75

SVM (1) ML 92 92 0.16 0.17 1.27 8.53

SVM (2) ML 92 184 0.16 0.18 1.18 8.50

SVM (3) ML 184 92 0.20 0.21 1.02 10.00

SVM (4) ML 184 184 0.20 0.21 0.97 9.92

TBATS (1) TS 92 92 0.11 0.12 0.87 5.90

TBATS (2) TS 92 184 0.11 0.13 0.77 5.57

TBATS (3) TS 184 92 0.16 0.17 0.84 8.38

TBATS (4) TS 184 184 0.18 0.22 0.91 9.37
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