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A B S T R A C T

This dissertation investigates the value of customer behavior in supply chain
management through the application of (big) data analytics in demand fore-
casting. The use of advanced analytics in supply chain management is not
novel. However, the growing expansion of data volumes provides companies
with new opportunities to optimize their supply chain. Despite the rising in-
terest from both academia and practice and the recent increase in publications
in this area, empirical insights are still limited. At the same time, changes in
customer expectations towards instant product delivery require companies to
rethink their supply chain, where accurate demand forecasts are often at the
core of enabling efficient and flexible processes. This makes the development
of demand prediction models that can be used in practice especially relevant.

We1 analyze the use of customer behavior in demand forecasting in three
separate research papers. Leveraging data from research partners in the online
fashion and construction industry, we assess the potential of the developed
prediction models in three areas of application in supply chain management,
namely order fulfillment, order picking, and inventory planning.

In the first paper, we develop a prediction model for anticipatory shipping
in the fashion industry, which predicts customers’ online purchases with the
aim of shipping products in advance, and subsequently minimizing delivery
times. Using various forecasting methods and data on customers’ behavior on
the website, we test if, and how early, it is possible to predict online purchases.
Results indicate that customer purchases are, to a certain extent, predictable,
but anticipatory shipping comes at a high cost due to wrongly sent products.

The second paper assesses the extent to which clickstream data can improve
forecast accuracy for fashion products. Specifically, we assess which clickstream
variables are most suitable for predicting demand, and identify the products
that benefit most from this. Results indicate that clickstream data is especially
useful for forecasting medium- and certain intermittent-demand products. A
simulation of order picking for these products shows that using clickstream
data in the forecast substantially decreases picking times.

The third paper investigates how sequential pattern mining can be used to
determine products with correlated demand, and how to leverage this as an
input into forecasting for a supplier in the construction industry. We find that
sequential pattern mining may be beneficial when used in combination with tra-
ditional forecasting methods, and that support vector regression models seem
especially suited to forecast intermittent-demand products. An application to
inventory planning shows that our developed forecasting model might reduce
the company’s costs of inventory holding and lost sales by up to 6.9%.

Overall, our research highlights the value of using customer behavior to en-
hance demand forecasting and the benefit of using improved forecasts in vari-
ous applications in supply chain management.

1Referring to the authors of the respective chapters as noted at the beginning of each chapter.
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1
I N T R O D U C T I O N

1.1 big data analytics

In 2018, a study from the International Data Corporation (IDC) (Reinsel et al.
2018) predicted that the collective world’s data would grow from 33 to 175

zettabytes1 by 2025. By that time, 75% of the world’s population is expected
to interact with data on a daily basis, fueling the trend of massive data gener-
ation. The capability to draw insights from big data has the potential to be a
competitive asset for many companies (McAfee et al. 2012, Waller and Fawcett
2013). Already today, companies have been leveraging large data volumes to
create new and better customer services, improve their processes and opera-
tions, guide strategic and also day-to-day decision-making. This data-driven
approach has enabled companies to increase both their productivity and prof-
itability as research shows (McAfee et al. 2012). With large and complex data
volumes being widely available today and becoming less costly to store and
analyze (McAfee et al. 2012), in combination with a growing understanding of
how to leverage this data in actual business applications (Brown et al. 2011),
big data is, not surprisingly, receiving increasing attention from both academia
and the industry (Akter and Wamba 2016).

While various definitions of big data exist, big data is typically characterized
by large quantities of heterogeneous data from a variety of different sources
(e.g., social media, sensors), often generated in (near) real-time. These data
volumes are usually difficult to store, manage, and analyze with traditional
software tools (Nguyen et al. 2018, Vassakis et al. 2018). To extract insights
from big data, big data analytics (BDA) has emerged, which refers to the ap-
plication of advanced analytics techniques, including artificial intelligence, to
gain insights from big data, and ultimately leverage these insights to enhance
decision-making (Wang et al. 2016). Nowadays, BDA can be found in every in-
dustry and economy, with many enterprises focusing on developing the skillset
to gain knowledge from big data (Vassakis et al. 2018). BDA can generally
be applied to provide insights into past events (descriptive analytics), enable
the prediction of things before they happen (predictive analytics), and develop
recommendations for future actions to support decision-making (prescriptive
analytics) (Nguyen et al. 2018). Especially predictive analytics can provide com-
panies with a competitive edge, as it helps them to define future opportuni-
ties and risks. A typical application of predictive analytics is the prediction of
customer behavior, enabling companies to optimize marketing efforts, product
development, and operations, amongst others (Vassakis et al. 2018).

1One zettabyte is approximately equal to a billion terabytes.
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2 introduction

1.2 big data analytics in supply chain management

In supply chain management (SCM), analytics and data-driven decision-making
are not novel topics. Complex analytics techniques are frequently used to op-
timize the supply chain (Tiwari et al. 2018). However, the growing expansion
of data volumes generated from end-to-end supply chain management creates
new opportunities for companies (Kache and Seuring 2017). Given the advance-
ments in BDA, scientific research of SCM might be at a tipping point (Sanders
and Ganeshan 2018). In addition to traditional supply chain data points (e.g.,
sales, inventory), information from unstructured sources is collected (e.g., on-
line reviews, tweets, or website clickstream data). At the same time, this data
is becoming available on a more granular and real-time level (Sanders and
Ganeshan 2018). This provides companies with valuable information on topics
such as consumer sentiment, sales trends, and real-time inventory availability.
As supply chain performance depends to a large degree on information, BDA
could be especially beneficial for SCM (Tiwari et al. 2018). Considering that
publications in this area have only recently increased, there has been no clear
terminology on the use of big data in SCM yet. Scholars refer to it as SCM data
science (Waller and Fawcett 2013), supply chain analytics (Wang et al. 2016),
or predictive analytics (Schoenherr and Speier-Pero 2015). However, all these
terminologies are similar in the sense that they refer to the use of advanced
analytics to utilize big data in SCM (Brinch et al. 2018).

The benefits of BDA in SCM are vast and include improvements in supply
chain efficiency, enhanced supply chain planning, and a reduction of overall
supply chain cost (Schoenherr and Speier-Pero 2015). Potential applications of
BDA in SCM have been investigated in various studies. Sanders (2016) outlines
areas of application across the SCM categories source, make, move, and sell.
Choi et al. (2018) review various BDA techniques and how they can be applied
in different areas of operations management, such as forecasting, inventory
management, and transportation. Wang et al. (2016) review literature on the
application of BDA in logistics and supply chain management and distinguish
areas of application by the nature of BDA (i.e., descriptive, predictive, or pre-
scriptive) and whether the application focus is on a strategic or operational
level. In a similar manner, Nguyen et al. (2018) also distinguish applications
of BDA in SCM by the nature of BDA as well as the methods applied (e.g.,
optimization, simulation) and outline applications by supply chain function.

Despite the expected value of BDA in SCM, its application in practice can
be challenging, especially with respect to data collection and cleaning (Wang
et al. 2016). Hazen et al. (2014) point out that the extent to which BDA is use-
ful in SCM hinges to a large degree on the quality of the data collected and
processed. According to a study by Rozados and Tjahjono (2014), big data in
SCM is often distributed in information silos across non-interconnected busi-
ness functions and external sources. Without connected data sources creating
end-to-end visibility of the supply chain, it can be difficult to generate valuable
insights from big data, which could explain the limited use of BDA in practice.
Also, as Brinch et al. (2018) point out, studies providing insights on where big
data may be most beneficial within SCM are needed.
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While the application of BDA in SCM is on the rise in both academia and
practice, researchers and practitioners have yet to discover its true potential
(Schoenherr and Speier-Pero 2015, Srinivasan and Swink 2018, Tan et al. 2015).
Overall, big data in SCM is a relatively new area that lacks empirical insights
(Matthias et al. 2017, Tan et al. 2015). A recent literature review by Choi et al.
(2018) specifically calls for in-depth case studies applying BDA in SCM.

1.3 the relevance of demand forecasting in supply chain man-
agement

Through the overlap of our fast-paced, data-driven digital world with the phys-
ical reality, customer expectations are being reset, causing a shift towards the
need for real-time services and instant product delivery (Reinsel et al. 2018).
This poses a challenge for companies’ supply chains, where accurate demand
forecasts are often at the core of enabling supply chain efficiency and flexibil-
ity (Hofmann and Rutschmann 2018). Accurate demand forecasts can prevent
costs from holding excess inventory as well as lost revenue due to stockouts.
According to Kremer et al. (2016), every percentage improvement in forecast ac-
curacy results in a similar percentage improvement in terms of reduced safety
stock, without a negative impact on customer service. Despite the volume of
research on demand forecasting, recent studies suggest that practical applica-
tions of forecasting techniques still lag behind academic developments (Fildes
et al. 2019, Syntetos et al. 2016). Specifically, current scientific contributions
in this area are often mathematically complex and require expert knowledge
(Hofmann and Rutschmann 2018), potentially hindering the application of the
developed models in practice.

Historically, the prediction of future demand relies heavily on past sales, mar-
ket information, and input from experts. Big data provides companies with
the opportunity to leverage even more data points from various sources in
the forecasting process (Choi et al. 2018). Specifically, unstructured data, such
as website clickstream data, enable companies to better understand their cus-
tomers’ behavior. While many studies have aimed at modeling and predicting
customer behavior, their application is usually marketing-related. To improve
targeted marketing, Kim et al. (2005), for instance, use artificial neural networks
to understand which products and services households might be interested in.
Moe and Fader (2004) use online customers’ clickstream data to predict the
purchase probability of a customer visiting a product site in order to move cus-
tomers that are likely to make a purchase to a better performing server. While
these are just a few examples in the marketing domain, applications that lever-
age data related to customer behavior to improve supply chain performance
(e.g., through enhanced demand forecasts) remain scarce (Cirqueira et al. 2020).

1.4 contribution of this dissertation

We2 contribute to the existing literature by applying predictive analytics using
data on customer behavior to improve demand forecast accuracy. From the

2Referring to the authors of the respective chapters as noted at the beginning of each chapter.
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existing literature on predictive analytics in SCM, a limited number of studies
have been dedicated to demand management (Nguyen et al. 2018). Studies
that do investigate predictive analytics to forecast future demand are typically
focused on applications in revenue management and marketing, for instance,
to provide personalized customer services (Choi et al. 2018). Moreover, most
studies in predictive analytics, independent of their area of application, focus
on the predictive performance of the developed models, with limited insights
on both their ease of implementation and actual impact in a business setting.
Also, as previously mentioned, the utilization of BDA in SCM is still limited
(Nguyen et al. 2018, Waller and Fawcett 2013). To add to these research gaps, we
use predictive analytics to forecast future demand with the aim of improving
processes within the supply chain. Specifically, we evaluate the impact of our
forecast models on warehouse operations.

This dissertation builds on three research papers, covering various aspects
of predictive analytics in demand forecasting, partially with the specific chal-
lenge of forecasting intermittent demand. While the first two papers focus
on customer order and demand forecasting at a large European business-to-
consumer (B2C) e-commerce player, the third paper aims to improve demand
forecasts at a leading business-to-business (B2B) supplier in the construction
industry.

• Chapter 2 investigates how big data can be used to optimize delivery
times for customers. We use the dataset from a European online fash-
ion retailer to predict demand on an individual product-customer level to
enable anticipatory shipping, which refers to the advanced shipment of
products (i.e., before customers place their orders). Ideally, by the time an
order is placed, the respective product is already stored at a location close
to the customer to minimize delivery time. While Amazon already intro-
duced the concept of anticipatory shipping years ago, limited research
exists that investigates whether anticipatory shipping is actually possible
and at what cost. Using a dataset containing both structured (e.g., cus-
tomer gender and age) and unstructured data (e.g., clickstream data) and
applying various machine learning forecasting methods, we first identify
which method is best suited for our dataset. In a second step, we identify
how early in the customer-product interaction it is possible to make accu-
rate predictions (e.g., on the day customers viewed a product for the first
time, or right after they added a product to their shopping cart). In the
last step, we translate the result of our model into products (in-)correctly
sent in advance and assess in a simulation of inventory planning and or-
der fulfillment how anticipatory shipping would reduce delivery times
and at which cost.

• Using the same dataset, Chapter 3 investigates to what extent clickstream
data can improve product-level forecasts. While several studies have al-
ready assessed the value of clickstream data in predicting individual cus-
tomer orders, typically for applications in marketing, this chapter focuses
on the forecast of the aggregated product-level demand for a large prod-
uct assortment. We add to the existing literature by specifically investigat-
ing the effect of single clickstream variables and use feature engineering
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to define novel variables in this context. Using clustering techniques and
further in-depth analysis, we also outline for which products the use of
clickstream data in forecasting is especially beneficial. To assess the im-
pact of our research in a supply chain context, we simulate warehouse
order picking using the results of our forecast models with the aim of
minimizing picking times across orders.

• To investigate the application of advanced analytics techniques in a B2B
context, Chapter 4 uses the dataset from a leading supplier in the construc-
tion industry to assess how data mining and machine learning methods
can be used to automatically identify relevant information for forecast-
ing, which is typically provided by company experts. Limited research
has investigated how ’soft data’ typically identified by human judgment
can be detected automatically and incorporated into forecasts. To add to
this research gap, this chapter investigates how sequential pattern mining
can be used to determine products with correlated demand, and how to
leverage this information as an input into forecasting. The dataset used
is characterized by a very heterogeneous product portfolio, with many
products showing intermittent demand behavior, making forecasting es-
pecially challenging. Both traditional (i.e., time series methods) and ma-
chine learning forecasting methods combined with hierarchical clustering
are applied to test the extent to which sequential pattern mining may help
improve forecast accuracy. In an application to inventory planning, we as-
sess how improvements in forecast accuracy impact the company’s costs
of inventory holding and lost sales resulting from stockouts.

To conclude this dissertation, Chapter 5 provides a condensed summary of the
findings of Chapters 2-4. Further, we discuss potential avenues for relevant
future research.





2
S H O RT E N I N G D E L I V E RY T I M E S B Y P R E D I C T I N G
C U S T O M E R S ’ O N L I N E P U R C H A S E S : A C A S E S T U D Y I N
T H E FA S H I O N I N D U S T RY

The following chapter is based on Weingarten and Spinler (2021).1

2.1 introduction

In recent years, the interest in big data has been growing from both academia
and the industry (Akter and Wamba 2016). Big data is often defined in terms
of 5 V’s: volume, variety, velocity, veracity, and value (Wamba et al. 2015).
Volume refers to the quantities of data, which require a massive amount of
storage. Variety refers to the diverse types of data collected, which can be struc-
tured (e.g., customers’ demographic data) and unstructured (e.g., likes, tweets)
(Akter and Wamba 2016). Velocity stands for the speed of data generation and
processing in (near) real-time. Veracity stresses the importance of data qual-
ity. Lastly, value relates to the process of extracting value from big data to aid
decision-making (Akter and Wamba 2016, Nguyen et al. 2018). Big data pro-
vides tremendous opportunities as it is widely available and nowadays much
less expensive to access and store (McAfee et al. 2012). Due to the large volume
of data, the variety of data sources, and the speed at which data needs to be
collected and analyzed, big data analytics (BDA) has emerged. BDA involves
the application of advanced analytics techniques, such as statistics, simulation,
or optimization, to gain insights from big data to enhance decision-making and
increase business value and firm performance (Tiwari et al. 2018). Businesses
that already use BDA report a 5% increase in productivity and a 6% increase
in profitability, compared to those that do not (McAfee et al. 2012). In supply
chain management (SCM), analytics and data-driven decision-making are not
novel. Techniques such as statistics and simulation have frequently been used
in the past to optimize the supply chain (Tiwari et al. 2018). However, the
exponential increase in big data generated from end-to-end supply chain man-
agement creates new opportunities, as well as challenges, as companies are
faced with the difficulty of mining large datasets (Tiwari et al. 2018). As supply
chain performance depends to a large degree on information, BDA could be
especially beneficial for SCM. Nevertheless, the research on the application of
BDA in SCM is still in its infancy (Kache and Seuring 2017).

BDA has also been emphasized in the e-commerce context, where big data
allows online sellers to track each customer’s behavior, which provides com-
panies with opportunities such as real-time customer service, dynamic pricing,
or personalized promotion activities (Akter and Wamba 2016). While the time

1This manuscript has been published in the Information Systems Management journal in the
special issue "Managing the Marketing-Operations Interface in Omnichannel Retail". A previous
version of the manuscript has been published in the proceedings of the 53rd Hawaii International
Conference on System Sciences (Weingarten and Spinler 2020a).

7
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between purchase and product arrival used to be the main disadvantage of
e-commerce players compared to brick and mortar stores, last-mile solutions,
such as same-day or 2-hour delivery, enable almost instant gratification for con-
sumers (Voccia et al. 2019). To enable nearly instant delivery services, products
need to be stored close to the consumer (Hu and Monahan 2016). The large
assortment of many e-commerce players, such as Amazon or Alibaba, makes
this especially challenging. While many online retailers have been forward-
deploying inventory to enable fast delivery (Hu and Monahan 2016), Amazon
has been using BDA to predict customers’ purchase behavior and as a result,
ship products closer to the customers before they place their order online. Ama-
zon has patented this approach as anticipatory shipping (AS) (Spiegel et al.
2013). Whether Amazon is successful with this method, and whether predicting
costumers’ purchase behavior is possible to the extent that it enables the suc-
cessful shipping of products in advance, is, to the best of our knowledge, not
known. To better understand the possibilities for AS, this paper investigates
the predictability of customers’ purchase behavior using BDA. Subsequently,
we test how AS would impact delivery times using a simulation of inventory
and order fulfillment at a large European online fashion retailer. Specifically,
structured data (e.g., customer age and gender), as well as unstructured data
(e.g., customers’ online browsing behavior) are used to predict customers’ pur-
chases. An earlier version of this paper was published in the proceedings of
the 53rd Hawaii International Conference on System Sciences (HICSS).

The research questions that guide this study are:

1. To what extent can customer information and browsing behavior be used
to anticipate consumer purchases to ship products in advance and subse-
quently decrease delivery time?

2. What is the optimal point in time to predict customer purchases?

3. What is the operational value of using predicted purchases for AS?

The structure of the paper is as follows: Section 2.2 reviews literature re-
lated to this study. Section 2.3 explains the applied research approach and
methodology. Section 2.4 introduces the case study context and dataset. Sec-
tion 2.5 presents the results and discusses managerial implications. Section 2.6
concludes the paper and gives an outlook on areas of future research.

2.2 literature review

Our research is related to four streams of the literature, namely, (i) the applica-
tion of BDA in SCM, (ii) research aiming to understand and model customer
behavior, with a specific focus on using BDA in e-commerce to predict cus-
tomers’ purchase behavior, (iii) literature assessing the application of various
methods to predict customer purchases, and (iv) research regarding approaches
for anticipatory shipping.
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2.2.1 Big data analytics and its application in supply chain management

A widely adopted taxonomy of BDA classifies data analytics into descriptive,
predictive, and prescriptive analytics (Nguyen et al. 2018). Descriptive analyt-
ics gives insights into past events, predictive analytics makes predictions about
future events and prescriptive analytics gives recommendations for future ac-
tions to support decision-making (Nguyen et al. 2018). In the literature, BDA is
currently a vividly discussed topic among scholars due to its wide area of appli-
cation. Its usage in SCM still provides many areas for future research, although
applications of all three types of BDA can be found across the entire spectrum
of SCM. According to Nguyen et al. (2018), most studies regarding BDA in
SCM are related to logistics or manufacturing. In logistics, big data collected
from players in the distribution network, such as carriers and logistics service
providers, can be leveraged to optimize transportation systems, for instance
through the usage of radio-frequency identification (RFID) tags or mobile de-
vices (Wang et al. 2016). In manufacturing, applications of BDA range from
production to quality control, maintenance, and energy management, amongst
others. Especially the presence of sensors in production facilities provides op-
portunities for BDA (O’Donovan et al. 2015). Fewer studies seem to have been
dedicated to demand management, procurement, and inventory management
(Nguyen et al. 2018). In demand management, one main application of BDA
is demand forecasting. Cui et al. (2018), for instance, use social media data to
improve demand forecast accuracy at an online retailer. A second, increasingly
important topic in demand management that leverages BDA is demand shap-
ing. As data on individual customers are becoming available, companies are
able to make predictions on an individual level, allowing them to offer person-
alized promotions or prices and essentially influence customer demand (Feng
and Shanthikumar 2018). In procurement, BDA can be used to manage sourc-
ing risk as well as supplier performance and selection (Nguyen et al. 2018).
An example of the latter can be found in Choi et al. (2018), who use BDA to
prioritize information technology (IT) service procurement in the public sector.
Lastly, in inventory management, BDA can help optimize stock levels to de-
crease inventory holding cost, backorders, and lost sales, for instance through
improved demand forecasts or data sharing among players in the supply chain
(Kache and Seuring 2017). For a more detailed list of BDA applications in
SCM in both the scholarly and applied literature, see Nguyen et al. (2018). Our
research adds to this stream of literature by investigating one particular appli-
cation of BDA in SCM, namely anticipatory shipping, for which only limited
research exists.

Despite the high expectations of BDA in SCM, its use in practice is still lim-
ited. According to a study by Rozados and Tjahjono (2014), big data in SCM is
often distributed in information silos across non-interconnected business func-
tions and external sources. Without connected data sources creating end-to-end
visibility of the supply chain, it can be difficult to generate valuable insights
from big data. This challenge is in line with our experience. Obtaining data
from different sources to get visibility on the customers that were purchasing
products, their browsing behavior on the website, and the subsequent delivery
process of their orders, was one of the main difficulties of this study. We believe
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that this reflects a common challenge of many SCM departments when using
BDA, potentially being one reason for its limited use in practice.

2.2.2 Understanding and modeling customer behavior

Many studies have focused on understanding and also predicting customer
behavior to improve customer-centric processes, but not necessarily with a fo-
cus on big data. The application of advanced analytics techniques, including
machine learning, is frequently used to gain insights into customers’ behavior,
needs, and preferences (Lessmann and Voß 2009), especially in the field of mar-
keting and customer relationship management. Typical applications are cus-
tomer value optimization (e.g., Gessner and Volonino 2005), customer churn
prediction (e.g., Chen et al. 2012, De Caigny et al. 2018), marketing response
modeling (e.g., Kim et al. 2005), and customer segmentation (e.g., Mizuno et al.
2008), amongst others.

A specific stream of research focuses on customer behavior in e-commerce.
E-commerce players typically deal with two types of data: structured (e.g., cus-
tomer age, gender) and unstructured (e.g., clicks, likes, tweets), where the chal-
lenge of BDA lies in creating meaningful insights from the combination of the
two (Akter and Wamba 2016). Typical applications of BDA in e-commerce are
the identification of customer needs, market segmentation, or making relevant
information available at the right time (Akter and Wamba 2016). An example
of the latter is Amazon’s recommendation system, which recommends prod-
ucts to customers based on an understanding of their preferences (Zhao et al.
2015). Unstructured data, such as clickstream data, typically find applications
in demand forecasting (e.g., Cui et al. 2018, Yang et al. 2014) and marketing, for
instance, to offer personalized services (e.g., Huang and Van Mieghem 2014).
Using BDA to understand and predict the purchase behavior of online cus-
tomers is particularly relevant for many e-commerce players as it can help to
improve conversion rates, which refers to the share of website visits resulting in
a purchase (Van den Poel and Buckinx 2005). Several studies have attempted to
predict online purchase behavior, with many specifically using clickstream data
(e.g., Huang and Van Mieghem 2014, Kim et al. 2005, Lo et al. 2016, Moe and
Fader 2004, Montgomery et al. 2004, Nishimura et al. 2018, Sismeiro and Buck-
lin 2004, Van den Poel and Buckinx 2005, Xu et al. 2014), but usually not with
the aim of improving supply chain performance. Moe and Fader (2004) present
a model to predict purchase probabilities for a given site visit and re-direct
visits with a high purchase probability to a better performing server. Sismeiro
and Bucklin (2004) use Bayesian methods to predict the completion of tasks in
the online purchase process, indicating that customers’ browsing behavior is a
relevant predictor for online purchases. Lo et al. (2016) predict whether a user
is a purchaser or a non-purchaser as their day of purchase approaches. Van
den Poel and Buckinx (2005) are the first to use data from various sources in
their prediction of customer purchase probabilities, namely clickstream data,
customer demographics, and historical purchase behavior. Specifically, they
predict if a purchase is made during a customer’s next website visit. They pro-
vide a detailed list of variables used in their research, as well as other papers,
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and whether they were found to have a statistically significant effect. Build-
ing on this research, our study includes a similarly high variety of data in the
prediction. However, we focus on events taking place during a product site
visit, such as clicks on images, instead of clickstream data regarding detailed
historical browsing behavior, such as the type of previous pages visited.

A detailed literature overview regarding the prediction of customer pur-
chases in e-commerce can be found in Cirqueira et al. (2020). As their liter-
ature review outlines, applications, in which a combination of structured and
unstructured data has been used to predict customers’ online behavior and sub-
sequently improve supply chain performance, are scarce. One example can be
found in Huang and Van Mieghem (2014), who use clickstream and historical
purchase data to predict the quantity and timing of offline orders to improve
inventory management.

2.2.3 Methods for predicting customers’ online purchases

Various forecasting methods have been applied to predict customers’ online
purchasing behavior as outlined in Cirqueira et al. (2020). One process that
can be found in many studies includes the application of classification meth-
ods, where a qualitative output variable takes on values in one of N different
classes (Hastie et al. 2009). Classification models aim to determine to which
class a new observation belongs, for instance, whether a customer will pur-
chase a product (yes or no), based on a set of training data for which the class
is known. While many models for classification are well-known in the litera-
ture and easy to implement, some studies develop rather complex models to
optimally predict purchase behavior. Those models could be complicated to
replicate in a business context. Moe and Fader (2004), for instance, develop a
comprehensive conversion model that decomposes a customer’s conversion be-
havior to predict purchases, while Montgomery et al. (2004) develop a dynamic
multinomial probit model to predict purchase conversion.

In the context of classification, several types of methods exist. Verbeke et al.
(2012) summarize them into seven categories, namely decision trees, ensem-
ble methods, neural networks, statistical classifiers, nearest neighbor methods,
support vector machine (SVM) based methods, and rule induction methods.
Decision trees recursively partition training observations into subsets accord-
ing to a certain function of the input variable values. Essentially, decision trees
consist of three main building blocks, namely nodes, which test the value of
input variables, branches, representing the outcome of this test and connecting
the tree to the next node, and lastly, terminal nodes, which predict the outcome
(i.e., class) of an observation. Decision trees have relatively fast training times
and are usually easier to understand than black-box models, such as neural
networks (Maimon and Rokach 2010). Ensemble methods (e.g., random forests,
bagging, or boosting) leverage the power of multiple decision trees to improve
prediction performance (James et al. 2013). Neural networks are inspired by
biological neural networks and consist of a network of neurons connected by
functions and weights, which are estimated to fit the network to the training
data (Maimon and Rokach 2010). While neural networks have been shown to
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perform well throughout literature, they require long training times and are dif-
ficult to interpret (Maimon and Rokach 2010). Statistical classifiers (e.g., logistic
regression) use an underlying probability model that assesses the relationship
between the feature set and the output variable (Verbeke et al. 2012). Statistical
classifiers are widely used in the literature and score high on comprehensibility
and ease of implementation. Nearest neighbor methods measure the similarity
of observations using various distance measures to classify observations. The
disadvantage of these methods is that they do not work well with large datasets
as they calculate the distance to all observations for each new observation to be
classified. Moreover, nearest neighbor methods do not build a final model from
the training data that can be used for prediction (James et al. 2013). SVM-based
methods are often used for binary classification. SVMs plot each observation as
a point in an n-dimensional space, where ’n’ is the number of variables. They
create an optimal hyperplane that separates data points into two classes. If the
data points are not linearly separable, SVMs map the data points to a higher
dimensional space to enable separation (James et al. 2013). Similar to neural
networks, SVMs are difficult to comprehend (James et al. 2013). Lastly, rule in-
duction techniques generate if-then rules to make predictions for the minority
class, while observations are assigned to the majority class per default (Verbeke
et al. 2012).

Verbeke et al. (2012) compare the performance of various classification meth-
ods from these seven categories and discover that most methods do not perform
significantly different. This is comparable to the findings from other studies
(e.g., Baesens et al. 2003, Lessmann et al. 2008).

2.2.4 Anticipatory shipping

Amazon has patented an approach for AS, in which the company uses big
data, including order history and data from its e-commerce portal, to predict
a customer’s online purchases and ship products to a geographical area close
to the customer. The final delivery address is not completely specified until
the customer places the order online (Spiegel et al. 2013). Not much research
regarding AS can be found in the literature. Lee (2017) presents a model for
AS in an omnichannel context. The study uses associate rule mining based on
the Apriori algorithm to predict orders within pre-defined clusters of demand
points to ship products to the nearest distribution center in advance. A genetic
algorithm is then applied to optimize AS in the distribution network. Viet
et al. (2020) present a model for AS in the agro-food industry. They also apply
associate rule mining but add a time threshold to take product perishability
into account. Both papers use historical orders as input to associate rule mining
to identify potential products and volumes for AS, assuming that association
rules (e.g., ’if product A is purchased, product B is likely to be purchased
later as well’) found in the historical data are applicable to future orders. We
believe that this approach is not suitable for the fashion industry where retailers
have enormous, frequently changing assortments with few data points (e.g.,
past orders) available for each product, limiting possibilities to find association
rules.
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2.3 methodology

2.3.1 Research approach

This paper follows a three-step approach (Figure 2.1) to predict online pur-
chases as early and accurately as possible to enable advanced shipment of
products while minimizing the number of products that are erroneously sent in
advance with no subsequent purchase. For this, we use a dataset provided by
a European online fashion retailer containing information on customers, their
browsing behavior, as well as purchase history, spanning over a period of one
year. As we want to predict whether an observation, referring to the interaction
between a customer and a product page, will result in a purchase at a certain
point in time, the response variable ’purchase decision’ is defined as a binary
variable that falls into one of two categories, yes (1) or no (0). We are thus faced
with a binary classification problem. In the first step of our research, the data
is split into training, validation, and test data, and several forecasting meth-
ods are applied to different datasets to evaluate which forecasting method and
dataset yield the best results in terms of prediction accuracy. The first dataset
consists of all observations, the second one contains only observations from
customers with frequent purchases (at least 12 per year), and lastly, customers
are split into clusters and each cluster is predicted separately. In this first step,
the whole time period of the dataset is used, which essentially means that the
prediction for purchases is made at the end of the one year time period. To
actually achieve delivery time savings, the best performing forecasting method
and dataset from step one are used to predict purchases at an earlier point in
time, namely (i) at the end of the first day a customer viewed a product and (ii)
right after a first ’add to cart’ click occurred. Also, we investigate differences
in predicting purchases in various product categories separately, to identify
product categories that are easier to predict. Lastly, to estimate the impact of
the forecasting methods, we first translate predictions into packages sent (in-)
correctly. Afterward, we apply anticipatory shipping predictions to inventory
planning and order fulfillment to simulate how much delivery time savings
would be achieved and at which cost, measured in terms of products wrongly
sent in advance without any subsequent purchases from customers in the same
geographical area.

This paper assumes that the purchase behavior of a customer does not sub-
stantially change over time, hence one observation could be assumed to be from
a time period outside that of the dataset. That is why the split into training,
validation, and test data in this paper does not take into account any temporal
order of observations, as would be done for time series forecasting.

2.3.2 Forecasting methods and accuracy measure

In the following, the applied forecasting methods are described. This is fol-
lowed by an explanation of how variables are selected (feature selection) and
lastly, how the accuracy of the methods is assessed and which assumptions are
made.
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Figure 2.1: Research approach

2.3.2.1 Forecasting methods and parameter selection

As our research is largely motivated by practice, we focus on forecasting meth-
ods that score high on ease of implementation and comprehensibility. There-
fore, we choose to apply already available and well-known classification meth-
ods for online purchase prediction and refrain from the development of a more
complex prediction model.

As many classification methods perform similar in terms of forecast accuracy
(Verbeke et al. 2012), we choose to apply only one method from each of the dif-
ferent types of classification methods outlined by Verbeke et al. (2012), except
for rule induction and nearest neighbor. As mentioned in Section 2.2.4, we do
not believe that meaningful rules can be derived for specific products due to
the frequently changing assortment of online fashion retailers and the resulting
lack of historical data per product. Nearest neighbor methods are excluded
from this research as they have difficulty handling large datasets and do not
result in a final model for prediction. From the decision tree and ensemble
methods, random forest (RF) is applied, which is a popular learning method
as it is simple to train while yielding high accuracy (Hastie et al. 2009). RF
constructs an ensemble of decision trees, where each tree casts a vote for the
predicted class and a majority vote is taken (Breiman 2001). In the class of
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neural networks (NN), the multilayer perceptron is applied, which is the most
commonly used form of neural networks. A multilayer perceptron consists of
multiple neurons (nodes) arranged in several layers. It learns the relationship
between the variables and the output variable through backpropagation (Hastie
et al. 2009). In the field of statistical classifiers, logistic regression (LG) is se-
lected, which is one of the most well-known methods in classification as it is
much easier to understand and implement compared to many other methods.
LG uses the logistic function to give outputs between 0 and 1, representing the
probability that an observation belongs to class 0 or 1 (James et al. 2013). From
the SVM-based methods, SVM with a linear and radial kernel is applied, where
the kernel governs how the training data is mapped to a higher-dimensional
space.

Most methods for classification do not work well if any class is heavily under-
sampled. This is often the case for data regarding purchase behavior as most
website visits do not result in purchases (Moe and Fader 2004). For this reason,
one-class SVM is tested as an additional method. One-class SVMs construct a
decision boundary around the majority class to differentiate it from observa-
tions in the minority class, which are considered outliers or anomalies (Khan
and Madden 2014).

All methods are implemented in R-3.5.1 and constructed to predict the prob-
ability that an observation belongs to one of the two classes. The threshold,
which determines at which probability an observation is considered to lead
to a purchase, is evaluated between 1-99% to determine which value leads to
the highest overall accuracy. All predictor variables are standardized, except
for RF. To ensure reproducibility, a summary of all hyperparameters tested for
each forecasting method, as well as the functions and packages used in R, can
be found in Appendix A in Table A.1. As all applied methods are well-known,
we refrain from providing more detailed notations and refer to the relevant
literature (Hastie et al. 2009, James et al. 2013, Maimon and Rokach 2010).

2.3.2.2 Feature selection

Correlation analysis is performed to remove highly correlated variables (pearson
correlation (r) < 0.7). Additionally, lasso linear regression and RF are per-
formed. Lasso uses a penalty term (lambda) for regression coefficients and
can drive coefficients of non-relevant variables to zero, hence essentially ex-
cluding variables. The importance measure of RF assesses the mean decrease
in accuracy if a variable is excluded. Additionally, a set of variables is selected
that excludes categorical variables with many categories as they substantially
increase training times. This results in five different sets of variables that are
tested with each forecasting method:

• Set 1: All variables

• Set 2: All variables except categorical variables with more than 53 cate-
gories

• Set 3: All variables in the lasso output using lambda.min (minimum error
observed)
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• Set 4: All variables in the lasso output using lambda.1se (error is within 1

standard error of minimum error)

• Set 5: All variables in the RF output with a mean decrease in accuracy >

0.01% (as this already leads to a reduction of 50% of variables)

2.3.2.3 Accuracy measure

A confusion matrix is often used to evaluate the performance of classification
models. In this study, five measures from the confusion matrix are used to as-
sess model performance: accuracy, sensitivity, specificity, precision, and preva-
lence. Accuracy measures the overall proportion of correct classifications. Sen-
sitivity assesses the proportion of observations resulting in a purchase that the
classifier correctly predicted as such, while specificity measures the proportion
of observations not resulting in purchases that the classifier correctly predicted
as such. Precision measures from all observations the classifier predicted as pur-
chase, the proportion that resulted in a purchase. Lastly, prevalence assesses
the proportion of observations that resulted in a purchase. As the accuracy mea-
sured with a confusion matrix is often not appropriate for imbalanced datasets,
the area under the precision-recall curve (AUPR) is calculated as an additional
performance measure, which assesses the trade-off between precision and sen-
sitivity (also called recall) (Davis and Goadrich 2006).

2.3.3 Clustering

According to Chen and Lu (2017), clustering, which is a method to partition
datasets into homogenous subsets, can improve the performance of classifica-
tion models. In this research, we aim to group customers with similar purchas-
ing behavior to improve forecast accuracy. Various clustering methods exist,
of which K-means and hierarchical clustering are two of the most well-known
approaches. K-means is known for being a very efficient algorithm for cluster-
ing. It estimates the best way to divide the dataset into a pre-specified number
of clusters by minimizing the within-cluster variation. To do this, K-means
initially assigns each observation to a cluster in a random manner. After this
initial assignment, the algorithm calculates the mean, also called centroid, of
each cluster and reassigns each observation to the closest cluster based on the
Euclidean distance to the cluster mean. This process is repeated until the cluster
assignment stops changing. Hierarchical clustering, on the other hand, devel-
ops a hierarchical decomposition of the data. This enables the assessment of the
obtained clustering for different numbers of clusters (James et al. 2013). Both
methods have their advantages and disadvantages. For K-means clustering, we
need to know in advance how many clusters to construct. Additionally, the al-
gorithm has difficulty reaching a global optimum, caused by the random initial
assignment of observations. Although hierarchical clustering is often able to
provide better results, it is computationally expensive and therefore known to
not work well with big data in comparison to K-means clustering (Maimon and
Rokach 2010). Despite its shortcomings, several studies have successfully ap-
plied K-means clustering to improve forecast accuracy (e.g., Chang et al. 2009,



2.3 methodology 17

Chen and Lu 2017, Thomassey and Fiordaliso 2006). As we aim to develop a
method for AS that can be implemented at a company that deals with a tremen-
dous amount of data, we choose to apply K-means clustering.

To develop clusters of customers that differ in their purchasing behavior, we
only use those numerical predictor variables for clustering that describe the cus-
tomer as such. To apply K-means clustering, the data is standardized and the
variables assessed for correlation. To determine the optimal number of clusters,
we compute the within-cluster variation for 1-10 clusters. Moreover, to over-
come the issue of local optima, we use 10 different initial cluster assignments
that are randomly chosen. Subsequently, forecasting methods are used to train
and predict each cluster separately.

2.3.4 Impact estimation: application to inventory planning and order fulfillment

To understand the impact of anticipatory shipping, the prediction results are
translated into the number of products sent (in-)correctly. To further investigate
the effect on delivery times, we simulate the application of anticipatory ship-
ping for a subset of premium customers from the online fashion retailer. For
this, we use the prediction results for the test dataset to simulate inventory and
order fulfillment for two consecutive weeks. For the premium customers, we
use the predictions to send products in advance to achieve delivery time sav-
ings. In the simulation, if a product purchase is predicted, the product is sent
to the warehouse closest to the customer for whom the prediction was made,
unless the warehouse already stocks the product. In order to assess this, the
closest warehouse is determined for each zip code. Moreover, the product is
reserved for 48 hours (h) for the respective customer.

As a lot of information regarding inventory and returns at the company is
not known to us, five assumptions are made for the simulation:

1. Inventory can be picked, packaged, distributed to warehouses, and deliv-
ered to customers 24 h per day (including weekends).

2. We choose a supply chain network with specialized warehouses, meaning
that each product is stored in only one warehouse at the beginning of the
planning horizon.

3. Returns are not taken into account in the inventory development during
the two weeks. However, to incorporate inventory from potential returns,
the inventory at the start of the planning horizon is assumed to be equal
to the fulfilled demand (i.e., sales) in the two weeks, plus the inventory
needed for anticipatory shipping.

4. Shipping a product to another warehouse is assumed to take 8 h on aver-
age.

5. If an order can be fulfilled from the warehouse closest to the customer,
delivery time is estimated to be 8 h on average. For all other warehouses,
it is approximated at 16 h on average.

To evaluate the results from anticipatory shipping, we first establish a baseline
by estimating how inventory and order fulfillment develop over the two weeks
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without any predictions. The simulation algorithm for the baseline as well as
the application of anticipatory shipping can be found in Appendix A.2.

2.4 case study context and data

The data for analysis is provided by an online retailer in Europe that mainly
sells fashion items. Like most online retailers, the case company tries to min-
imize delivery time. Consequently, they are interested in using predictive an-
alytics to explore opportunities to decrease delivery times. For confidentiality
reasons, no further information regarding customer and warehouse locations
can be given. The data received2 includes five types of datasets, which can all
be linked via pseudonymized customer identification numbers:

• Customer information: gender, sign-up year, segment (mainly dependent
on profitability)

• Order information: order date, products ordered, total number of orders
per customer

• View information: number of product page visits of a customer, date, and
length of visit

• Event information (information on where a customer clicked on a product
page): event type (e.g., ’click on image’, ’add to cart’), event date, total
number of clicks per customer

• Product information: product category

A few additional variables are calculated based on the dataset. Comparing
customer orders and product page views, different patterns are noticeable on
a seasonal, monthly and weekly level (Figure 2.2). In terms of seasons, fall is
the time with the lowest amount of views, but with the second-highest number
of orders. This could potentially indicate that customers’ purchase behavior
differs across seasons, for instance taking faster decisions, in terms of prod-
uct page views, to order products in the fall. On a monthly level, orders and
views show slightly different patterns, especially between November and Jan-
uary, potentially driven by different customer behavior in the weeks leading up
to Christmas. On a weekly level, most product page views occur on Sundays,
while it is not the weekday with the most orders. Perhaps customers preferably
browse through product sites on Sundays with no subsequent purchase, or sub-
sequent purchase in the following days. Due to this, we add the season, month,
and weekday on which a customer viewed a product for the first time as ad-
ditional variables to the dataset. Moreover, for each customer, the number of
times a product page was opened, the total number of events that occurred on
a product page, the order frequency (number of orders per month) and lastly,
the average decision time, which is the average time between the first date a

2The data protection principles of the General Data Protection Regulation (GDPR) are strictly
followed so that any personal data received is in a form which does not permit identification of
data subjects. Data is maintained and encrypted using Advanced Encryption Standard 256-bit
encryption.
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Figure 2.2: Difference between product order volume and product view volume per
season, month, and weekday

product was viewed and the order date, is calculated. Interestingly, there is a
large difference in the average decision time between women and men. Women
take on average 1.74 days between the first time they view a product and subse-
quent product order, while men take 1.37 days. To test whether the difference
is statistically significant, we use an unpaired two-sample Wilcoxon rank test,
also referred to as Mann Whitney test, as the data is not normally distributed.
The p-value of the test is below the significance level alpha = 0.05, indicating
that men’s average decision time is significantly different from women’s aver-
age decision time. This could have substantial implications for any type of
anticipatory action in the supply chain.

Overall, most of the variables used, especially gender, order frequency, num-
ber of product page visits of a customer, length of a visit and the total number
of clicks per customer, are all found to have a statistically significant effect in
the study of Van den Poel and Buckinx (2005). A full list of all variables used
can be found in Table 2.1. Five variables are not included in this list as they re-
semble click types unique to the case study partner’s website and are therefore
confidential.

Also for confidentiality reasons, information regarding product price was not
provided by the case study company. A lower product price could potentially
result in higher purchase probability or a faster average decision time, which
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both would have important implications for anticipatory shipping. However,
due to the lack of data, this hypothesis cannot be investigated but should be
subject to future research.

As the decision for repeat purchases (e.g., due to the wrong size) is assumed
to be different from the decision to order a product for the first time, all data
that occurred after a customer purchased a product for the first time is excluded
from the dataset.

To predict whether a customer will buy a product, a prediction on a customer-
product level is made. One observation in the constructed dataset thus contains
the views and events that happened between a customer and a product page,
combined with the general information of that specific customer and product.
Due to the size of the dataset, a random sample of 100 thousand (k) customers
is selected, resulting in a total of 8.3 million observations. From those, only 3.8%
resulted in a purchase, indicating that the dataset is imbalanced as the classifica-
tion categories are not equally represented. Due to this imbalance, techniques
for dataset balancing, such as over- and undersampling, could be investigated.
Dataset balancing would cause an increased bias towards the minority class.
However, the aim is to predict as many purchases as possible while trying to
predict observations that do not result in a purchase as accurately as possible.
The latter is necessary to avoid erroneously sending a large number of products
in advance. In this case, a bias towards the majority class is beneficial, which
is already achieved by the currently imbalanced dataset (Maimon and Rokach
2010). Balancing techniques are hence not applied.

2.4.1 Feature selection

The correlation matrix can be found in Table 2.2. Six variables show high cor-
relation: the number of times a customer visited a certain product page and
the total time a customer viewed the product page (r = 0.78), the total number
of events and the total number of product page visits of a customer during the
one-year time period (r = 0.80), and the number of times a customer opened and
closed the image gallery on a product page (r = 0.84). Lasso using lambda.1se
is most aggressive in terms of feature selection and results in a set of 23 vari-
ables, while lasso using lambda.min results in 34 variables. To perform RF,
the variables relating to product category have to be reduced to 53 categories
for implementation in R. Those product categories with a small number of ob-
servations are hence removed until the maximum number of 53 categories is
reached, resulting in a 25% decrease in dataset size. Applying RF results in
24 variables with a mean decrease in accuracy above 0.01%. The variable with
the largest decrease in accuracy is, as can be expected, the ’add to cart’ click
(2.23%). As incorporating the product category variables with more than 53

categories leads to such a substantial decrease in dataset size when limiting the
number of categories to 53, those variables are excluded from analysis using
RF, resulting in variable set 5b.
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Table 2.1: List of variables used

Num-
ber Variable

Variable
type

1 Total time a customer viewed a product page1,2,3,4,5 Numerical
2 Total number of product page visits of a customer1,2,3,4,5,6

3 Number of times a customer opened a certain product page* Numerical
4 Average decision time (average time between the first date a

product was viewed and order date)1,2,3,4,5,6
Numerical

5 Sign-up year of the customer (ranging from 1-10)1,2,3,4,5,6 Numerical
6 Order frequency (average number of orders/month)1,2,3,4,5,6 Numerical
7 Total number of events (product page clicks) of a customer* Numerical
8 Number of events (product page clicks) of a customer on a spe-

cific product page1,4,5
Numerical

9 ’Add to cart’ click1,2,3,4,5 Numerical
10 ’Add to wishlist’ click1,2,3,4,5 Numerical
11 Thumbnail click1,4,5 Numerical
12 Description box click1,2 Numerical
13 Main image click1,4,5 Numerical
14 ’Choose size’ click1,2,3,4,5 Numerical
15 Matching products click1 Numerical
16 ’Change colour’ click1,2,3,4,5 Numerical
17 Thumbnail arrow click1,2 Numerical
18 Measures box click1,2,3,4,5 Numerical
19 ’Open image gallery’ click1,2,3 Numerical
20 Thumbnail gallery click1,2 Numerical
21 Delivery details click1,2,3 Numerical
22 ’Send size request’ click1,2 Numerical
23 Size dropdown menu click1,2,3,4,5 Numerical
24 Size dropdown menu click (only in app)1,2,3,4,5 Numerical
25 Materials box click1,2,3 Numerical
26 ’Close image gallery’ click* Numerical
27 ’Open size request’ box click1,2,3 Numerical
28 Size overview click1,2 Numerical
29 Similar product click1,2 Numerical
30 Brand click1,2 Numerical
31 ’Show all similar products’ click1 Numerical
32 Materials box click (only in app)1 Numerical
33 Measures box click (only in app)1 Numerical
34 ’Close box’ click (only in app)1 Numerical
35 Purchase decision average (share of a customer’s observations

resulting in a purchase)6

Numerical

36 Customer gender1,4,5 Categorical
37 Customer segment (based on customer profitability)1,2,3,4,5 Categorical
38 Product category 1 (e.g., dress, t-shirt, etc.)2,3,4 Categorical
39 Product category 2 (e.g., ’women denim’)2,3,4 Categorical
40 Weekday a customer viewed a product for the first time1,2,4,5 Categorical
41 Month a customer viewed a product for the first time1,2,3,4,5 Categorical
42 Season a customer viewed a product for the first time1,2,4,5 Categorical

*Excluded from analysis due to high correlation.
1 Variable set 2: All variables except categorical variables with more than 53 categories.
2 Variable set 3: All variables in lasso output using lambda.min.
3 Variable set 4: All variables in lasso output using lambda.1se.
4 Variable set 5: All variables in random forest output with mean decrease in accuracy > 0.01%.
5 Variable set 5b: Variable set 5, excluding product category variables.
6 Variable used for clustering.
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For clustering, the choice of using numerical variables that describe the cus-
tomer as such results in a set of four variables as input to clustering (Table 2.1),
after previously removing highly correlated variables. To represent the rela-
tion between the set of 100k customers and 8.3 million observations, a variable
determining each customer’s purchase decision average is used as additional
input. It assesses the share of a customer’s observations that led to a purchase.
All five variables show a low correlation (r < 0.50), which is why no further
steps for decorrelation are performed.

2.5 results

2.5.1 Results from different forecasting methods and datasets

In the following, we will outline the results of using various forecasting meth-
ods to predict purchases using different datasets.

2.5.1.1 Dataset 1: all customers

The size of the training dataset is too large for most of the forecasting methods.
Therefore, we estimate the required training size to obtain meaningful results
using logistic regression, resulting in ∼115k observations. Using fewer observa-
tions leads to an outcome where each observation is predicted to not result in a
purchase. To be more conservative, a training size of 175k observations is used
across all methods. Afterward, training size is increased for each method, us-
ing the optimal choice of parameters (Table A.1) and variable set, until no more
significant improvements in accuracy are achieved or model training results in
an error, for example, due to non-convergence of algorithms.

The first results from one-class SVM indicate that the model is not appropri-
ate for this particular binary classification problem, as prediction accuracy is
exceptionally low. A large fraction of non-purchases is not identified, leading
to low specificity. One-class classification is typically used if one class is sam-
pled well, while the other class is heavily undersampled (Tax and Duin 2004).
While our dataset is imbalanced, the minority class still has a large number
of observations due to the size of the dataset. This could explain why other
models showed better performance. Moreover, observations from the minority
class might be too similar to the majority class to be considered as outliers in
a one-class SVM model. One-class SVM is therefore not further applied in the
analysis.

If all observations are predicted to be non-purchases, an accuracy of 96.23%
would be achieved. Any method resulting in accuracy above that is thus con-
sidered to be adding value. The best results are achieved by RF, which also
has the fastest training times (Table 2.3). RF achieves an accuracy of 96.95%
(AUPR: 58.83%), using 10 variables available for splitting at each tree node
and 500 trees. The model is able to predict almost 48% of all purchases and
almost 99% of all non-purchases correctly. From all ’yes purchase’ predictions,
the model is correct approximately 63% of the time. However, the model seems
to be overfitting, as the accuracy of the training data prediction is 100%. Accord-
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Table 2.2: Pairwise correlations (numerical variables)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1.00

2 -0.02 1.00

3 0.78 0.09 1.00

4 -0.02 -0.02 0.00 1.00

5 -0.01 0.02 0.02 0.14 1.00

6 0.03 0.46 0.05 -0.11 -0.01 1.00

7 0.01 0.80 0.08 -0.04 -0.05 0.57 1.00

8 0.66 -0.01 0.64 -0.02 -0.04 0.05 0.07 1.00

9 0.39 -0.03 0.37 -0.03 -0.05 0.02 -0.02 0.49 1.00

10 0.29 0.01 0.32 0.01 0.01 0.02 0.04 0.34 0.09 1.00

11 0.29 -0.02 0.26 0,00 -0.02 0.01 0.04 0.59 0.11 0.13 1.00

12 0.36 0.07 0.36 -0.01 -0.01 0.09 0.10 0.31 0.15 0.11 0.12 1.00

13 0.32 0.10 0.60 -0.01 0.01 0.06 0.10 0.41 0.16 0.20 -0.01 0.21 1.00

14 0.22 -0.07 0.03 -0.03 -0.08 0.01 -0.03 0.35 0.26 0.10 0.10 -0.02 -0.05 1.00

15 0.17 0.02 0.20 0.00 0.01 0.01 0.02 0.14 0.07 0.05 0.06 0.08 0.09 -0.01 1.00

16 0.19 -0.07 0.05 -0.02 -0.02 -0.01 -0.03 0.23 0.04 0.02 0.07 -0.02 -0.05 0.16 -0.01 1.00

17 0.08 -0.02 0.02 0.00 -0.02 0.01 0.03 0.33 0.02 0.04 0.08 0.00 0.00 0.07 0.00 0.06 1.00

18 0.16 -0.04 0.03 -0.01 -0.01 0.00 -0.01 0.26 0.05 0.06 0.06 0.00 -0.02 0.17 0.00 0.08 0.07 1.00

19 0.12 -0.03 0.03 -0.01 -0.01 0.00 -0.01 0.22 0.03 0.04 -0.01 0.00 -0.01 0.11 0.00 0.07 0.00 0.12

20 0.07 -0.01 0.02 -0.01 0.00 0.00 0.00 0.25 0.02 0.03 0.00 0.00 0.01 0.05 0.00 0.04 0.01 0.08

21 0.09 -0.02 0.02 -0.01 0.00 -0.01 -0.01 0.18 0.04 0.04 0.00 0.00 -0.01 0.10 0.00 0.04 0.00 0.56

22 0.13 -0.02 0.04 -0.01 -0.01 0.01 0.00 0.17 0.03 0.04 0.04 0.00 -0.01 0.07 0.00 0.10 0.03 0.07

23 0.22 -0.06 0.04 -0.02 -0.04 0.00 0.00 0.42 0.16 0.11 0.20 -0.01 -0.04 0.49 -0.01 0.17 0.13 0.19

24 0.51 0.04 0.61 -0.01 -0.01 0.04 0.05 0.52 0.44 0.15 0.11 0.24 0.28 -0.02 0.11 -0.02 -0.01 -0.01

25 0.13 -0.03 0.02 -0.01 -0.01 0.00 -0.01 0.19 0.04 0.04 0.04 0.00 -0.02 0.14 0.00 0.05 0.04 0.49

26 0.10 -0.02 0.03 -0.01 -0.01 0.00 0.00 0.22 0.03 0.04 -0.01 0.00 0.00 0.09 0.00 0.06 0.00 0.12

27 0.13 -0.03 0.04 -0.01 -0.02 0.00 -0.01 0.17 0.02 0.03 0.04 0.00 -0.02 0.08 0.00 0.13 0.03 0.06

28 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.02 0.00 0.00 0.02 0.00 0.01 0.02 0.02

29 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

35 0.06 -0.20 -0.05 -0.19 -0.20 0.07 -0.14 0.07 0.15 -0.02 0.01 -0.02 -0.07 0.19 -0.02 0.08 0.01 0.04
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19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 1.00

20 0.58 1.00

21 0.09 0.08 1.00

22 0.05 0.02 0.04 1.00

23 0.10 0.09 0.15 0.23 1.00

24 0.00 0.00 0.00 0.01 -0.01 1.00

25 0.10 0.04 0.33 0.06 0.11 -0.01 1.00

26 0.84 0.58 0.09 0.05 0.10 0.00 0.09 1.00

27 0.04 0.02 0.03 0.64 0.22 0.01 0.05 0.04 1.00

28 0.00 0.00 0.01 0.01 0.04 0.00 0.02 0.00 0.01 1.00

29 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 1.00

30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 1.00

31 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.12 0.06 1.00

32 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 1.00

34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

35 0.03 0.01 0.03 0.03 0.15 0.00 0.03 0.02 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
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Table 2.3: Results dataset 1: all customers (175k training observations)

Validation data Training data

Method
Variable
selection Accuracy

Sensiti-
vity

Specifi-
city Precision

Preva-
lence AUPR Accuracy

Sensiti-
vity

Specifi-
city Precision

RF Set 5b 96.95% 47.51% 98.89% 62.57% 3.77% 58.83% 100.00% 99.94% 100.00% 100.00%
NN Set 2 96.58% 38.74% 98.84% 56.73% 3.77% 48.95% 97.13% 45.63% 99.09% 65.61%
SVM Set 2 96.51% 24.06% 99.35% 59.00% 3.77% 45.73% 97.46% 40.89% 99.61% 79.98%
LG Set 5 96.42% 27.76% 99.11% 54.94% 3.77% 45.90% 96.57% 28.42% 99.16% 56.32%
RF Add to cart 96.24% 3.47% 99.87% 51.56% 3.77% 7.60% 96.35% 3.76% 99.87% 52.75%

Table 2.4: Results dataset 1: all customers (larger training data size)

Validation data Training data

Method
Variable
selection

No. of
training
observations

Accu-
racy

Sensiti-
vity

Specifi-
city

Preci-
sion

Preva-
lence AUPR

Accu-
racy

Sensiti-
vity

Specifi-
city

Preci-
sion

RF Set 5b ∼870,000 97.20% 50.36% 99.04% 67.22% 3.77% 63.79% 99.98% 99.49% 100.00% 99.94%
NN Set 2 ∼230,000 Algorithm does not converge
SVM Set 2 ∼350,000 96.54% 27.67% 99.24% 58.78% 3.77% 46.89% 97.33% 41.00% 99.51% 76.27%
LG Set 5 ∼2,300,000 96.42% 28.23% 99.09% 54.95% 3.77% 46.48% 96.41% 28.04% 99.08% 54.38%
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ing to Breiman (2001), RFs always converge so that overfitting is not an issue.
To further assess this, we increase the minimum size of the terminal nodes. This
lowers the prediction accuracy of the training data but does not improve the
validation data prediction accuracy. We conclude that overfitting indeed seems
to be no issue. NN results in 96.58% accuracy (AUPR: 48.95%), using one layer
of five hidden neurons. SVM achieves 96.51% accuracy (AUPR: 45.73%), using
a radial kernel, cost of 1, and gamma of 0.01, while LG results in an accuracy of
96.42% (AUPR: 45.90%). As the variable ’add to cart’ is determined most impor-
tant by the RF importance measure, we use RF to test whether solely using this
variable would be sufficient to achieve high prediction accuracy. However, this
leads to a much lower accuracy (96.24%) and an AUPR of 7.6%, indicating that
the remaining list of predictor variables add substantial value in combination
with ’add to cart’.

After increasing training data size, the accuracy of RF improves to 97.20%
(AUPR: 63.79%) using ∼870k observations (Table 2.4). The performance of NN
cannot be improved, as larger training data sizes do not produce algorithm
convergence. Increasing training size for SVM only shows a small improve-
ment, resulting in 96.54% accuracy (AUPR: 46.89%). Lastly, the accuracy of LG
remains as before (96.42%), with a slight increase in AUPR (46.48%). As RF
outperforms all other models, it is used for the remaining analyses.

2.5.1.2 Dataset 2: customers with high order frequency

Prediction of customers with high order frequency using RF with an increased
training data size shows an overall accuracy of 96.96% and an AUPR of 67.31%
(Table 2.5). The accuracy should not be compared to the accuracy of dataset 1 as
this dataset has a much higher prevalence, meaning more observations lead to
purchases. Instead, AUPR is used for comparison, showing a higher value than
for dataset 1 (Table 2.4), indicating that customers with high order frequency
are easier to predict. In the subsequent sections, however, we continue to use
dataset 1 to further test the application of AS across all customers.

2.5.1.3 Dataset 3: impact of clustering on prediction accuracy

Assessing the within-cluster variation shows that for more than five clusters,
there is only a small reduction in within-cluster variation. K = 5 is thus chosen
as the optimal number of clusters. Predicting five clusters separately leads to
an overall prediction accuracy of 97.16% (AUPR: 63.29%) (Table 2.6), indicating
that clustering does not improve model performance. Figure 2.3 shows how
customers in those five clusters differ. For confidentiality reasons, the variable
sign-up year is adjusted so that the earliest sign-up year corresponds to ’year
1’. Cluster 1 contains customers that signed-up several years ago and show
an average order frequency. Decision time ranges from slow to fast. Cluster 2

consists of rather new customers that have not been buying much yet, while
cluster 3 is composed of customers with high order frequency who make fast
purchase decisions. The remaining two clusters are hardly noticeable in Figure
2.3 as cluster 4 contains customers that have not purchased anything yet and
viewed very few products, and cluster 5 consists of customers with few product
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Figure 2.3: Cluster differences

views who bought 1-2 products on the same day they viewed the products for
the first time.

2.5.2 Prediction at different points in time and across product categories

Successfully predicting customer purchases at the end of the first view date is
not possible according to the results (Table 2.7). The prevalence of this dataset
is much lower as the data does not contain orders that occurred on the same
day as the first view date. Model accuracy is only 98.44% (AUPR: 20.83%),
which is almost the same as predicting ’no purchase’ for all observations.

Predicting a purchase right after an ’add to cart’ click yields much better
results (Table 2.7). Accuracy is 76.08% (AUPR: 76.46%) compared to an accu-
racy of 59.28% if ’no purchase’ is predicted for all observations. In this dataset,
prevalence is much higher as the data only consists of observations that contain
an ’add to cart’ click. To further improve model performance, an additional
variable computing the ’add to cart’ conversion is added, which measures the
proportion of a customer’s ’add to cart’ clicks that led to a purchase. This
results in an accuracy of 77.56% (AUPR: 81%). Those values outperform all
previous results. In all three cases, clustering does not improve model perfor-
mance.

Using the RF importance measure to investigate the mean decrease in ac-
curacy per variable shows that ’add to cart’ conversion is ranked as the most
important variable, with a mean decrease in accuracy of 17.2%. The remainder
of the five most important variables consists of the month a customer viewed
a product for the first time, the number of product page visits, the customer’s
segment, and order frequency. Interestingly, most variables contributing to the
prediction accuracy of RF are variables describing the customer (e.g., segment,
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Table 2.5: Results dataset 2: customers with high order frequency (RF with variable set 2)

Validation data Training data

No. of training
observations Accuracy Sensitivity Specificity Precision Prevalence AUPR Accuracy Sensitivity Specificity Precision

∼870,000 96.96% 56.87% 98.79% 68.32% 4.37% 67.31% 99.10% 82.36% 99.87% 99.61%

Table 2.6: Results dataset 3: clusters (RF with variable set 5b)

Validation data Training data

Cluster

No. of
training
observations Accuracy

Sensiti-
vity

Specifi-
city Precision

Preva-
lence AUPR Accuracy

Sensiti-
vity

Specifi-
city Precision

1 ∼210,000 95.74% 54.38% 98.31% 66.68% 5.85% 64.41% 99.97% 99.54% 100.00% 99.95%
2 ∼230,000 97.41% 44.28% 99.14% 62.70% 3.16% 56.15% 99.99% 99.59% 100.00% 100.00%
3 ∼220,000 98.11% 44.25% 99.36% 61.61% 2.26% 55.86% 99.99% 99.63% 100.00% 99.96%
4 ∼200,000 100.00% 25.00% 100.00% 50.00% < 0.01% 19.51% 100.00% 100.00% 100.00% 100.00%
5 ∼12,000 87.44% 93.71% 74.31% 88.42% 67.68% 95.17% 99.00% 99.79% 97.42% 98.71%

Overall results 97.16% 46.61% 98.92% 63.08% 3.77% 63.29% 99.98% 99.61% 99.99% 99.97%
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Table 2.7: Results at the end of first view date and after ’add to cart’ click (RF with variable set 5b)

Test data Training data

Dataset

No. of
training
observations Accuracy

Sensiti-
vity

Specifi-
city Precision

Preva-
lence AUPR Accuracy

Sensiti-
vity

Specifi-
city Precision

First view date ∼580,000 98.44% 1.39% 99.99% 61.97% 1.56% 20.83% 99.47% 66.00% 100.00% 99.98%
Add to cart ∼440,000 76.08% 68.18% 81.51% 71.69% 40.72% 76.46% 99.23% 98.73% 99.57% 99.36%
Add to cart* ∼440,000 77.56% 65.89% 85.57% 75.82% 40.72% 81.00% 99.17% 98.42% 99.68% 99.53%

*Including variable ’add to cart’ conversion.

Table 2.8: Results after ’add to cart’ click per product category (RF with variable set 5b)

Product category Accuracy Sensitivity Specificity Precision Prevalence AUPR

Women’s clothing 77.81% 65.98% 85.28% 73.89% 38.71% 79.90%
Men’s clothing 78.98% 80.49% 77.60% 76.82% 47.98% 87.63%

Textile 77.93% 71.46% 82.58% 74.71% 41.85% 82.41%
Shoes 79.77% 66.40% 88.25% 78.20% 38.83% 84.19%
Loungewear/swimwear 80.45% 78.05% 82.21% 76.24% 42.24% 87.64%
Sports clothing 80.67% 75.08% 84.49% 76.76% 40.56% 87.00%
Accessories 81.49% 67.91% 89.31% 78.54% 36.55% 85.71%
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order frequency) or the product viewing process (e.g., time spent on a product
site), while most of the variables measuring clicks on a product site, except for
’add to cart’, do not seem to be particularly relevant for the prediction. This
is an interesting addition to the set of variables tested by Van den Poel and
Buckinx (2005), as their list does not cover specific click types or the time of the
first view of a product.

So far, we predicted customer purchases across all product categories. To
assess whether there is a difference in predictability, we separately use RF after
a first ’add to cart’ click for different product categories. Table 2.8 shows the re-
sults of the test data. When separately forecasting women’s and men’s clothing,
results show that the AUPR for men’s clothing is much higher, indicating that
these products are easier to predict. Moreover, the data for women’s clothing
shows a lower prevalence, suggesting that women purchase fewer of the prod-
ucts they viewed. The separation of the product portfolio into the categories
textile, shoes, loungewear/swimwear, sports clothing, and accessories, does not
show such a substantial difference in AUPR, with loungewear/swimwear and
sports clothing having the highest AUPR. The RF importance measure shows
that a similar set of variables is relevant for all product categories, except for
the month a product was viewed for the first time playing a more important
role for loungewear/swimwear.

2.5.3 Application to the future

As explained in Section 2.3.1, the split into training, validation, and test data
that has been applied so far is based on the fact that we assume that the pur-
chase behavior of a customer does not substantially change over time. To test
whether this assumption holds true, the dataset is split into training and test
data that respect the temporal order of observations, meaning that the training
data now consists of observations with a first view date in the first half of the
one-year time period, while the test data contains observations with a first view
date in the last quarter. Using RF with the original training data size of 175k
observations, an AUPR of 64.60% can be achieved, compared to 58.53% from
dataset 1 using RF. This indicates that the prediction model is also applicable
to future data.

2.5.4 How anticipatory shipping improves delivery time

To estimate the impact, the results first have to be translated into products
sent (in-) correctly. For 100k customers, the RF results of dataset 1 would have
led to 157k products being sent in advance correctly within one year, and 77k
products would have been sent without the customer buying it, creating unnec-
essary logistics cost. Essentially, for every 100 products sent correctly, 49 are
sent erroneously. A share of the latter could eventually be bought by a different
customer from a similar region, mitigating the cost of products sent incorrectly.
This will be assessed in the simulation of inventory and order fulfillment. More-
over, shipping products to a different location might result in insufficient stock
for purchases from the region those products were originally shipped from.
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Figure 2.4: Time difference between ’add to cart’ click and purchase for correctly pre-
dicted purchases

Due to a lack of data regarding historical inventory development, the impact
of this cannot be estimated with the given dataset. The best impact is achieved
when predicting after an ’add to cart’ click (including the new variable ’add to
cart’ conversion). 169k products would have been sent correctly and 54k incor-
rectly, translating into only 32 products sent by mistake for every 100 products
sent correctly. To lower the cost of erroneously sending products, the impact of
different thresholds can be tested. A 90% threshold would have led to only 11

products sent erroneously for every 100 products sent correctly. Increasing the
threshold, however, also leads to a smaller number of purchases identified (60k
instead of 169k).

When investigating the delivery time savings of predicting after an ’add to
cart’ click, meaning the time saved between an ’add to cart’ click and actual
purchase, it becomes apparent that the time difference is often too short to
send a product closer to the customer (Figure 2.4). Only ∼15% of purchases
predicted correctly would have resulted in delivery time savings of more than
one day.

To simulate the effect of anticipatory shipping, we use the prediction after
an ’add to cart’ click in the test dataset as this delivered the best results. The
dataset contains approximately 19k customers with an ’add to cart’ click. We
assume that this subset of customers could represent the case study company’s
premium customers for which an anticipatory shipping model is implemented.
Products can only be sent if the delivery address of the customer is already
known. It should be noted that for 60% of the correctly predicted purchases, a
delivery address is not known at the time of prediction. The reason for this can
be that the delivery addresses of new customers are not known yet. Encour-
aging website visitors to sign up early and provide a future delivery address,
as well as leveraging Google Analytics’ location reporting, could mitigate this
issue. For premium customers whose delivery address is known, RF predicts
584 purchases from 419 different customers in the two-week planning horizon.

Results show that without anticipatory shipping, the orders of the premium
customers in the two weeks have an average delivery time of 14.2 h, with 22%
of the orders delivered from the warehouse closest to the customer. With antic-
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ipatory shipping and a 48-hour reservation window, the delivery time can be
reduced to 13.4 h, with 48% of orders delivered from the warehouse closest to
the customer. However, for 47% of those orders, the product was still in transit
to the warehouse at the time the order was placed, with an average wait time of
5.5 h until the product arrives in the warehouse closest to the customer. When
applying anticipatory shipping only for customers that historically took over 8

h on average between the ’add to cart’ click and subsequent purchase, this per-
centage can be reduced to 43%, but average wait time remains the same. This
again highlights the challenge of the close time proximity between prediction
and purchase.

From 584 products predicted for purchase, only 25 were sent to another ware-
house without subsequent purchase from customers located in zip codes allo-
cated to the same warehouse. This number is quite small and does not even
take into account that the products might be purchased soon after the two-
weeks. This shows that while anticipatory shipping might lead to many un-
necessary products sent in advance when applied to all customers, using the
prediction for just a subset of customers could mitigate this disadvantage of AS.
This is because many products wrongly sent to another warehouse are in fact
purchased by a different customer in the same geographical area.

2.5.5 Managerial implications

The results show that while the purchase of a customer is, to a certain extent,
predictable, delivery time savings from anticipatory shipping are difficult to
achieve due to the short time between prediction and purchase. The location
of the retailer’s warehouses and customers also plays a major role in this. For
retailers with few warehouses and a widespread customer base, resulting in
long transportation times, AS could be very difficult to implement. Neverthe-
less, studies have shown that faster delivery times lead to a lower number of
returns (Bergmann 2018). The cost from wrongly predicted purchases or cor-
rectly predicted purchases arriving too late at the warehouse could potentially
be reduced through savings in product returns. Additionally, time savings from
predictions could be leveraged for anticipatory picking and packaging, instead
of anticipatory shipping, for instance, to reach same-day delivery cut-off times.

The case company will use the results of this research to estimate the business
case for AS for varying threshold levels. Like many fashion retailers, the case
company has a large volume of order movements between warehouses to avoid
sending orders containing several items in various parcels. Implementing AS
could also have a positive effect on the number of order movements.

In terms of application, we believe that the approach should be equally ap-
plicable to other online fashion retailers. Variables that were listed as most
important by RF are all data points that other fashion retailers should be able
to obtain. A limitation here is that retailers need to have sufficient website traf-
fic (i.e., customers, clicks, and orders) to generate enough observations for the
algorithms to deliver meaningful results. Being able to forecast customer pur-
chases could have many areas of application besides AS. Especially in the fast
fashion industry, it could be leveraged to reorder products, which are likely to
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sell out quickly, in advance. Also, it could be used in returns management to
redistribute returns to warehouses where sales are likely to occur in the near
future. Whether the proposed prediction model can be used in other fields
cannot be answered with this study. The purchase decision for a fashion item
might be very different from other types of products.

Lastly, it should be noted that the prediction model is fully dependent on the
quality and reliability of the input data. Issues in tracking, for example, due to
programming errors, customers not being logged in, or click types frequently
being renamed, are typical challenges that can arise in trying to obtain reliable
data.

2.6 conclusion and future research directions

This paper shows how forecasting methods can be applied to predict customers’
future purchases to generate delivery time savings. Logistic regression, neural
network, random forest, and (one-class) support vector machine are applied.
Random forest strongly outperforms all other models in terms of accuracy and
speed, indicating that the other models are not suitable in this context. When
predicting purchases after an ’add to cart’ click using RF, approximately 66%
of purchases are correctly predicted. Clustering as input for forecasting does
not lead to accuracy improvements.

Interestingly, results show that purchases of men’s clothing are easier to pre-
dict than purchases of women’s clothing. Moreover, customers with a high
order frequency seem more predictable than other customers. From the results,
we conclude that online purchases are, to a certain extent, predictable, but AS
still comes at a high cost. Due to the low number of product site visits that
convert into purchases, even a 99% accuracy of predicting those non-purchases
correctly results in many products wrongly sent in advance. For the case com-
pany, the model would have resulted in 169k products correctly sent in advance
throughout the year, and 54k products sent incorrectly.

A simulation of inventory and order fulfillment over two weeks for a set of
premium customers shows a reduction in average delivery time from 14.2 h
to 13.4 h due to anticipatory shipping. At the same time, almost half of all
products sent correctly in advance would not reach the warehouse closest to
the customer before the customer places the order, emphasizing the difficulty
of implementing AS due to the short time between prediction and purchase.
Nevertheless, only a small portion of products wrongly sent in advance are not
purchased by another customer in the same region within the two weeks, hence
the advanced shipment did eventually benefit a different customer.

AS generally leads to high logistics cost, despite good prediction accuracy. In
combination with the fact that for only 15% of all correctly predicted purchases,
the time saved would have been more than a day, the model could potentially
be better leveraged for alternatives to AS, such as anticipatory picking or pack-
aging.

The results of this study are limited by the data quality provided. Improved
data quality would likely result in higher prediction accuracy. 18% of the orders
in the data do not have an ’add to cart’ click, which is necessary to purchase
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a product. Customers not being logged in or not registered yet are most likely
the main causes of this. With ’add to cart’ clicks playing a vital role in the pre-
diction using RF, such data issues clearly limit model performance. Moreover,
only a subset of forecasting methods available for classification is applied in
this research. Other methods not tested in this study could potentially result
in higher prediction accuracy and lower cost for AS, although the literature
suggests limited improvements in accuracy through the application of related
methods (Verbeke et al. 2012). Similarly, results from clustering are limited by
the fact that this research does not fully explore possibilities for clustering, such
as applying other clustering algorithms or using categorical variables as input
to clustering.

In terms of future research directions, five areas of interest can be highlighted.
First, this research only studies to what extent online purchases can be pre-
dicted. Understanding in which quantity and size a customer will buy a prod-
uct is additional input required to enable AS. Second, being able to predict
when a purchase will occur could help determine if delivery time savings are
sufficient to send a product in advance. Third, additional data related to pric-
ing, marketing campaigns, and fashion trends, among others, could be further
studied to assess their impact on prediction accuracy. Fourth, increasing the
forecast horizon could help better capture seasonality trends. Lastly, further
research could be conducted to better understand the underlying purchase pat-
terns of customers. This could be used to improve prediction accuracy, for
instance through the construction of better customer clusters.

This study has shown that clickstream data can be useful to predict the fu-
ture orders for individual customers. Whether a similar effect can be found
on a more aggregated prediction level will be the focus of the next chapter.
Specifically, Chapter 3 investigates whether clickstream data adds value to the
product-level demand forecast for the case study partner. Typically, product-
level demand forecasts leverage historical sales as input data. Based on the
findings of this chapter, we hypothesize that using clickstream data as addi-
tional input in the forecasting process helps to improve overall forecast accu-
racy.
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T H E VA L U E O F C L I C K S T R E A M D ATA I N P R O D U C T
D E M A N D F O R E C A S T I N G

The following chapter is based on Weingarten and Spinler (2020b).

3.1 introduction

E-commerce has grown significantly in recent years, with a 47.5% increase in
Western Europe from 2015 to 2019 (Centre for Retail Research 2020). The recent
Covid-19 pandemic and the resulting lockdown of physical stores in several
countries has fueled this trend. Studies show an increase of nearly 10% in
e-commerce sales of apparel, department store goods, and beauty products
since the beginning of the pandemic (Briedis et al. 2020). The Centre for Retail
Research (2020) expects the e-commerce retail market to have grown by as much
as 31.1% by the end of 2020, putting pressure on online retailers to deliver rising
numbers of orders, often consisting of limited order lines and small quantities,
without sacrificing customer experience (Boysen et al. 2019).

In an attempt to attract customers, online retailers are offering wide assort-
ments of products, many with lumpy and volatile demand, which do not drive
high sales volumes but increase their revenues (Boyd and Bahn 2009, Morton
2017). As of April 2019, Amazon offered almost 120 million products to its
customers (ScrapHero 2019). Combined with ever-increasing customer expecta-
tions regarding service and delivery times (e.g., same-day delivery), this makes
the physical fulfillment process in e-commerce especially challenging. While
the trend toward e-commerce is expected to continue, order fulfillment has
been identified as a key bottleneck in online retailers’ supply chains, due to
order handling inefficiencies in warehouses and distribution networks (Leung
et al. 2018). This explains why the last leg of the delivery process (i.e., the
last-mile) is often considered to be one of the main challenges in e-commerce
supply chains (Leung et al. 2018). Furthermore, for omnichannel companies
that sell products through both online and offline channels, efficient warehouse
operations are a prominent theme in the literature. Unsurprisingly, as a lever to
improve operational performance and optimize delivery speed, demand fore-
casting has become essential for both purely online and omnichannel retailers.

The topic of demand forecasting has already received extensive academic at-
tention. Typically, demand forecasts leverage information from historical sales
to forecast future demand. However, limited historical sales data is available
for a large proportion of online retailers’ product assortments, owing to small
numbers of daily sales and short product lifecycles. On average, online retailers
lose half of their product portfolio every year due to stockouts and product end
of life, amongst other reasons (Morton 2017). Zalando reports that as many as
95% of its products are new every season (Zalando 2018). Forecasting demand
in e-commerce is therefore especially challenging. In the last decade, as a re-

35
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sult of companies’ increased ability to store and process large data volumes,
the inclusion of additional data in demand forecasting has become a focus of
the literature. While variables such as promotion campaigns and static product
information have frequently been included in demand forecasting (e.g., Chong
et al. 2016, Qi et al. 2019), the emergence of big data provides even more pos-
sibilities to include additional information. Compared with brick-and-mortar
stores, e-commerce players are in a unique position to collect vast amounts of
data on their customers, and more specifically on their online browsing and
purchasing behavior. However, whether including such data in the demand
forecasting process improves forecast accuracy has received limited attention
in the literature.

The forecasting and warehouse operations of a leading online fashion retailer
inspired our research. Using a unique dataset containing historical sales and
customer clickstream data detailing the product sites visited by customers and
their behavior on these sites (e.g., image clicks, view duration, etc.), we investi-
gate the effect of clickstream data on demand forecasting. We add to existing lit-
erature on demand forecasting in e-commerce by assessing the extent to which
clickstream data can help improve forecast accuracy. Specifically, we analyze
which variables derived from clickstream data are best suited to forecasting
demand. While other studies have assessed the effect of clickstream data on e-
commerce predictions, these have focused mainly on individual customer-level
predictions, typically for marketing purposes, rather than on forecasting de-
mand for a company’s product assortment. Moreover, building on commonly
used variables in this context, we apply feature engineering to define novel
variables from clickstream data for our prediction, such as the number of prod-
uct site visits lasting longer than the average viewing time for a product. To
the best of our knowledge, this is the first study to investigate the forecasting
power of this set of variables. We also apply clustering to identify particular
products for which using clickstream data is especially useful for forecasting.
Our results suggest that clickstream data can significantly improve forecast ac-
curacy, especially for medium- and certain intermittent-demand products. The
best forecast results are achieved when using a support vector machine model
with either the number of ’add to cart’ clicks or the number of unique product
site visits in combination with the historical conversion rate of these unique
visits.

Our research also contributes to existing demand forecasting literature in the
fashion industry. The development of advanced forecasting methods to fore-
cast fashion demand is not novel (Ni and Fan 2011, Thomassey 2010), but few
studies have examined the effect of clickstream data on forecast accuracy in
this context. Our results will be of interest both to purely online sellers and
to omnichannel retailers with an online sales channel. For the latter, our ap-
proach can be used to improve forecasts and operations for the online channel,
or alternatively, as shown by Huang and Van Mieghem (2014), future studies
might assess the extent to which using clickstream data in forecasting might
also help to improve demand forecasting for offline channels. Specifically, use
of location-specific clickstream data (i.e., assessing the geographical regions
from which clickstream data arises) may benefit forecasts of in-store demand.
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To quantify the impact of improvements to forecast accuracy, we use a case
study to test how our forecast models affect picking times in a warehouse, as-
suming that products may be stored in either a capacity-constrained reserve
area with fast picking times, or in a storage-efficient back area with slow pick-
ing times. The reserve area resembles a pocket sorter (PS), a novel system for
warehouse operations on which limited research has so far been conducted.
To estimate savings in picking time, we simulate the application of a greedy
heuristic in which decisions on where items are stored are guided by product
prioritization resulting from the forecast. The findings suggest that when using
a PS for low- to medium-demand products, up to 36% more product orders are
picked from the PS when using a machine-learning forecast with clickstream
variables, compared with a time-series forecast based solely on historical sales.

The remainder of this paper is structured as follows: Section 3.2 provides
an overview of related literature. In Section 3.3 we present our methodology,
including the forecasting and clustering methods, and an introduction to the
simulation used to measure the impact of the forecast results. Section 3.4 out-
lines the case study context and dataset, and summarizes the findings from
our initial data analysis. Section 3.5 presents both forecasting and simulation
results, and Section 3.6 concludes with managerial implications and an outlook
on future research.

3.2 related literature

Forecasting in e-commerce takes place at different levels of aggregation, rang-
ing from market level to product level. Market-level forecasts usually predict
total sales, often for strategic purposes such as to identify trends. In contrast,
product-level demand forecasts involve forecasting many different individual
products, and are typically used to develop short-term forecasts for use in daily
operations, such as inventory management or pricing (Fildes et al. 2019). In this
study, we focus on product-level forecasting.

The e-commerce industry is generally a very dynamic and complex environ-
ment, characterized by:

• Large, fast-changing product assortments, with thousands of different
stock-keeping units, varying in color and size (Bandara et al. 2019, Boyd
and Bahn 2009, Morton 2017).

• Intermittent, volatile product demand with strong seasonality (Bandara
et al. 2019, Thomassey 2010).

• Substantial effects of external factors on sales (e.g., holidays, consumer
trends) (Loureiro et al. 2018, Thomassey 2010).

• High levels of substitution between products (Bandara et al. 2019, Qi et al.
2019).

Because of this complexity, sales data in e-commerce is often highly non-stationary,
meaning that the process of generating sales data time series is not stable over
time (Hyndman and Athanasopoulos 2018). Therefore, the e-commerce domain
requires sophisticated forecasting methods that can handle these challenges.
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3.2.1 Use of novel data sources for predictions in e-commerce

Owing to the complexity of demand forecasting in e-commerce, the use of novel
data sources to improve demand forecasts has become a popular research topic.
Lau et al. (2018) enhance demand forecasting by using sentiment analysis to
extract valuable information from customers’ product comments. Steinker et al.
(2017) improve aggregated demand forecasts by including weather forecasts in
their predictions. Kulkarni et al. (2012) investigate the power of using customer
search terms in forecasting. One stream of literature particularly investigates
how to leverage customers’ browsing behavior for predictions in e-commerce,
with demand forecasting as one potential application. Most of this research
focuses on making predictions at an individual customer-product level (e.g.,
Iwanaga et al. 2016, Nishimura et al. 2018, Sismeiro and Bucklin 2004, Wein-
garten and Spinler 2020a). However, its main focus is typically on applications
in marketing, such as personalized marketing services (Kim et al. 2005, Lo et al.
2016), price optimization (Ferreira et al. 2016), or web-page optimization (Moe
and Fader 2004). Cirqueira et al. (2020) provide a detailed review of studies
using customers’ browsing behavior for predictions in e-commerce.

Several studies use customer browsing behavior in a demand forecasting con-
text. For instance, Yeo et al. (2016) predict a customer’s intent to purchase a
specific product and forecast total product demand through the sum of cus-
tomers likely to purchase. They conclude that the browsing ratio (i.e., how
often a customer visits a particular product site compared with other products’
sites) and browsing duration helps to improve model accuracy. Huang and
Van Mieghem (2014) combine clickstream and historical purchase data to pre-
dict demand for offline orders to improve inventory management, showing that
a customer’s cumulative number of website visits provides valuable informa-
tion for demand forecasting. Van den Poel and Buckinx (2005) investigate the
effect of various variables derived from clickstream data to predict whether a
customer’s website visit will result in a purchase, showing a significant effect
for variables such as the number of past visits and the total number of histor-
ical clicks. Similarly, Guan et al. (2020) use classification methods to predict
whether a shopping session will generally result in a purchase, and how early
this prediction can accurately be made. However, the relevance of their results
to our study is limited because their dataset was collected in the context of a
mega sale event. Qi et al. (2019) use another set of variables extracted from
clickstream data (e.g., the number of page views, unique customer visits, etc.)
for product-level forecasting. Although they do not present results for indi-
vidual clickstream variables, they do report improvements in forecast accuracy
through their inclusion.

Our research builds on many of the results from the aforementioned stud-
ies. However, we formulate our demand forecasting endeavor as a regression
problem in order to forecast demand at a product level, rather than making pre-
dictions for individual customer-product combinations. In this context, we use
common variables summarized in previous work, and add to these by propos-
ing a set of new clickstream variables for evaluation.
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3.2.2 Forecasting methods in demand forecasting

Traditional time series models (e.g., exponential smoothing) are among the
most widely used methods in demand forecasting. However, they are often
not considered the most suitable in an e-commerce setting because they cannot
model the non-linearity and volatility often present in e-commerce sales data
(Fildes et al. 2019). Essentially, historical observations of time series are used to
develop models that describe the underlying structure of the series. As such,
time series models are univariate by nature, meaning that they predict future
observations for one time series at a time, and cannot learn across multiple
time series (Salinas et al. 2020). However, e-commerce assortments tend to have
a hierarchical structure, meaning that products in a subcategory may be similar,
and forecasts may benefit from models that can capture shared features across
time series (Bandara et al. 2019). Also, time series models are typically unable
to accommodate additional variables as inputs into their predictions. With ad-
vancements in computing technology, machine learning models have emerged
as an alternative to time series models for forecasting. These can capture much
more information in the forecasting process, model non-linear data patterns,
and are able to learn across sets of related products to make predictions of fu-
ture demand (Bandara et al. 2019). Compared with time series models, their
main drawbacks are typically long computation times, a requirement for suffi-
cient historical observations for model training, and limited interpretability of
their results (Petropoulos et al. 2018). Popular machine learning models that
have been shown to provide satisfactory forecasting results in comparison with
traditional methods include artificial neural networks, decision trees, and sup-
port vector machines (Carbonneau et al. 2008, Ferreira et al. 2016, Guan et al.
2020, Qi et al. 2019). Recurrent neural networks, a specific variant of artificial
neural networks, have become well-known in time series forecasting, as their
recurrent connections make them especially suited to modeling sequenced data
such as product sales (Bandara et al. 2020b).

To further improve the accuracy of the above-mentioned models, clustering
techniques have been introduced, which are able to reflect product characteris-
tics in the forecasting process. Clustering techniques group products based on
a selected set of features in order to derive homogeneous subsets of products
(Bandara et al. 2020b). Ideally, forecasting these product clusters separately pro-
vides superior forecast accuracy, as shown by Bandara et al. (2020b) and Chang
et al. (2009), amongst others.

3.2.3 E-commerce warehouse operations

As we examine the impact of our forecast models on e-commerce warehouse
operations, existing literature in this domain is also relevant. To ensure rapid
delivery of online purchases, logistics activities such as picking, packaging, and
distribution must be well managed. Among these logistics activities, order pick-
ing is typically considered to be the most labor-intensive (Leung et al. 2018).
Several research streams address this topic in the context of e-commerce opera-
tions, ranging from solutions for warehouse layout designs (e.g., Hübner et al.
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2015) to efficient storage assignment (e.g., Yang et al. 2015) and scheduling (e.g.,
Zhang et al. 2016). Warehouses typically store inventory in at least two areas:
a reserve area for efficient storage and a forward area for efficient order pick-
ing (Gu et al. 2010). Determining which products to store in what quantities
in the two areas is known as the forward-reserve problem (Gu et al. 2010). In
e-commerce, warehouses often lack lightweight solutions suitable for online or-
ders (Leung et al. 2018). To tackle this problem, novel warehousing systems
have emerged, one of which are PS systems. Pocket sorters move individual
units of inventory in bags, which are moved to and from storage to packing
stations on request, automatically sorting units into the right order for packag-
ing (Boysen et al. 2019). It is necessary to determine how many units of which
products to store in the PS, so replenishing these systems can be considered to
be a specific type of forward-reserve problem. As the PS concept is novel in
order fulfillment, limited research has been undertaken on this topic.

3.3 methodology

Our research investigates the value of clickstream data in daily demand fore-
casting using data collected from an online fashion retailer. Specifically, we
develop two-day- and seven-day-ahead forecasts, which can be used to make
short-term improvements to warehouse operations. Multistep-ahead forecasts
also enable us to assess whether the predictive performance of clickstream data
diminishes over time. We follow a five-step approach. First, we apply linear
regression to gain a first indication of whether clickstream data helps explain
variation in future demand. As a baseline model, we perform linear regression
using historical sales two and seven days ago, combined with dummy variables.
We then add clickstream variables, referred to as the clickstream model. In the
second step of our research, we establish a forecast baseline using only his-
torical sales to determine which forecasting methods are most suitable for our
dataset. Third, we analyze the effect of including variables based on clickstream
data in the forecasting process. As the results of some of the methods applied
(e.g., neural networks) are difficult to interpret, we first include additional vari-
ables one at a time to determine the effect of each variable on forecast accuracy,
and then test combinations of various variables based on our initial findings.
In the fourth step, to further improve the effect of including clickstream data
in the forecast, we apply clustering, grouping similar products to forecast them
separately. Lastly, we assess improvements to forecast accuracy using an order
picking simulation. All models applied in this research are implemented in R
(version 3.6.2).

3.3.1 Prediction methods

While time series methods are typically unable to accommodate external fac-
tors in their predictions, dynamic regression (DR) models, an extension of
autoregressive integrated moving average (ARIMA) models, are an exception.
Specifically, we use a DR model with ARIMA errors to allow for the inclusion
of clickstream variables. We focus on a selection of common machine learning
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algorithms that are well-known in the context of regression and have shown
satisfactory results in previous demand forecasting research. From ensemble
learning methods, we apply random forest (RF), which is a supervised learning
method that has gained popularity in academia because RFs are simpler to train
and easier to interpret than most other machine learning methods (Hastie et al.
2009, Maimon and Rokach 2010). An RF consists of an ensemble of decision
trees, where at each node, a randomly selected subset of variables is considered,
in order to split the node into two or more daughter nodes in a manner that im-
proves the homogeneity of the daughter nodes compared with the parent node
(Breiman 2001). From the class of artificial neural networks (NN), we apply the
a multilayer perceptron, a feed-forward neural network which consists of mul-
tiple neurons connected by functions and weights. Backpropagation is used
to fit the network to the training data (Maimon and Rokach 2010). As previ-
ously mentioned, recurrent neural networks (RNN) are particularly well-suited
to model time series data. In our research, we apply two well-known forms of
RNN, namely the Jordan recurrent neural network (JRNN) and the Elman re-
current neural network (ERNN) (Elman 1990). Support vector machine (SVM)
models are well-known in the context of classification. SVM maps data points
to a high-dimensional space using a non-linear function to enable the computa-
tion of a linear model (James et al. 2013). It then estimates the hyperplane that
fits the data in a manner that minimizes the error rate (Vapnik 1999). SVM can
also be used for regression, often referred to as support vector regression (SVR).
For all machine learning methods, we use grid search to estimate the values of
hyperparameters.

3.3.2 Model assessment

To evaluate out-of-sample forecast accuracy, we divide the data into training
and testing sets. We denote the training period as {1, ..., T } and the testing
period as {T + 1, ..., T +N}, where the last 21 days of data are used for out-of-
sample testing (i.e., N = 21). The whole period includes no major holidays or
events. We apply time-series cross-validation, using a series of 14 test sets, each
consisting of one observation for the two-day- and seven-day-ahead forecasts
(see Figure 3.1). As an illustration, to forecast demand for day T+2, we use
all historical observations of sales and clickstream variables up to day T . DR
also requires forecasts of additional variables as inputs. We use a naïve forecast
to predict future values of the clickstream variables. In this context, a naïve
forecast means that the predicted values for T+2 and T+7 equal the actual values
at T for the two-day- and seven-day-ahead forecasts, respectively.

To assess forecast accuracy, we use the root-mean-square error (RMSE) and
the mean absolute scaled error (MASE). Although the mean absolute percent-
age error (MAPE) is well-known in the context of demand forecasting, it is
infinite or undefined for zero-demand periods, and is therefore unsuitable for
datasets with intermittent-demand products (Hyndman and Athanasopoulos
2018). Using both RMSE and MASE helps us understand for which products
the inclusion of clickstream data in the forecasting process is especially useful.
The RMSE is a scale-dependent measure, as the error term is on the same scale
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Figure 3.1: Cross-validation

as the data, whereas the MASE is scale-independent, comparing the forecast
error of the test set against the forecast error from applying a naïve forecast
to the training data (Hyndman and Athanasopoulos 2018). Values below one
indicate that the forecast for the test data performs better than a naïve forecast
for the training data. As we calculate the RMSE and MASE for all products
in our dataset and then take an unweighted average across all products, large
improvements in RMSE combined with small improvements in MASE may, for
instance, indicate that forecast accuracy has mainly improved for high-demand
products. For each product, the RMSE and MASE are computed as follows:

RMSE =

√√√√1
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J∑
1

(yj − ŷj)2 (3.1)
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(3.2)

where J, a subset of the test set period, is equal to the 14-day rolling forecast
horizon, as we want to compute the forecast accuracy by averaging over the dif-
ferent test sets, while y and ŷ denote actual and forecast demand, respectively.
For the MASE, the denominator is the mean absolute error of the naïve forecast
from the training data, where m equals 2 for the two-day-ahead and 7 for the
seven-day-ahead forecast.

3.3.3 Clustering

According to Kulkarni et al. (2012), product characteristics may influence both
browsing and sales behavior, creating heterogeneity in the data. While machine
learning methods are able to learn from various products across sales time se-
ries, it can be difficult to identify shared information across these time series
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if the data is heterogeneous. Therefore, clustering techniques are introduced
into the forecasting process. Two commonly used clustering techniques are
hierarchical and K-means clustering. The former structures the data hierarchi-
cally, enabling flexible selection of the number of clusters, and consequently
analysis of the obtained clusters (James et al. 2013). K-means clustering, on
the other hand, requires the number of clusters to be pre-specified, and assigns
data points to clusters by minimizing within-cluster variation. For this, each
data point is initially assigned randomly to a cluster, and then the data points
are re-assigned based on calculating the mean of each cluster. K-means has
the disadvantage that the number of clusters must be specified in advance, and
the algorithm may lead to local optima due to the initial random allocation of
data points. However, K-means is known to be less computationally expensive
and to work better than hierarchical clustering for very large datasets (Mai-
mon and Rokach 2010). Given the large product assortments of many online
retailers and the computationally complex task of daily forecasting, we apply
K-means clustering in our study, and forecast the resulting clusters separately
using machine learning methods. Other studies involving demand forecast-
ing have already successfully used K-means to improve forecast accuracy (e.g.,
Chang et al. 2009, Chen and Lu 2016, Thomassey and Happiette 2007).

To apply K-means, we use two different feature sets to construct clusters:

1. Clustering based on demand characteristics: We use 13 different time
series features for clustering (e.g., lumpiness and linearity of sales), cal-
culated based on the last eight weeks of the training data. The selected
features are a subset of the time-series features outlined in Hyndman et al.
(2015). Further details are given in Appendix B.2.

2. Clustering based on clickstream data and total demand: To assess whether
the usefulness of clickstream data for demand forecasting depends on
products’ demand volume and conversion characteristics, we use each
product’s total demand in the last eight weeks of the training data and
the conversion rate of clickstream data as inputs into clustering. The lat-
ter is calculated by taking the training data and dividing the total sum of
a clickstream variable, such as unique customer visits to a product site,
by the total number of sales of a product.

Before applying K-means clustering, we perform principal component analy-
sis (PCA) to the feature sets to reduce dimensionality. To determine the optimal
number of clusters, we use the silhouette method, which measures how close
observations in one cluster are to observations in neighboring clusters. The
silhouette width indicates how well each observation lies within the assigned
cluster. K-means is performed for different numbers of clusters, and the opti-
mal number of clusters is the one that maximizes the average silhouette width
(Rousseeuw 1987).

3.3.4 Impact estimation: application to warehouse operations (order picking)

To estimate the impact of our forecast models, we simulate the picking of in-
dividual product orders, hereafter referred to simply as orders, using a PS for
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14 days and the two-day ahead forecast for a dataset containing K products.
Throughout the time period, a set of O orders is received and must be picked
from the warehouse. Products can be picked from a back area with slow picking
times, or a forward area, resembling a PS system, with fast picking times. Prod-
ucts are internally replenished to the PS according to a daily product forecast,
Fkt. Ideally, picking times can be reduced through improvements to forecast
accuracy. We assume that there is always sufficient inventory in the back area
for replenishment, while the PS is capacity constrained. We test capacities of
5%, 10%, and 15% of average daily orders. As picking times may vary depend-
ing on product characteristics, warehouse design, etc., we refrain from making
assumptions concerning picking times for the back and forward areas, but in-
stead calculate the percentage of products picked from the PS throughout the
14 days.

At the beginning of the planning horizon (t = 1), the forecast Fkt is sorted
according to forecast volume, and then the PS is filled according to this priori-
tization until its maximum capacity is reached. For each product, a maximum
number of m = 3 units can be stored in the PS to avoid filling the system
mainly with a few high-demand products. A list denoted as the remaining
forecast Rkt is used in the simulation, which resembles the forecast adjusted
for product units that have already been replenished to the PS on a given day
and those that have already been purchased and forecasted but had been stored
in the back area. For every order received on day t at hour h, we check whether
there is available inventory in the PS, denoted as Ikth. If yes, then the picking
time zo of the order is equal to 1, and 0 otherwise. Every hour, the available
capacity of the PS is assessed, and products are replenished from the back area
according to the remaining forecast for that day, where the time for internal
replenishment r is assumed to be one hour. For the hourly replenishment, the
remaining forecast is again sorted according to the (remaining) forecast volume.
If a product has had no orders in the last three days, no further units are added
to the PS.

At the end of each day, the remaining forecast is replaced with the forecast
for the next day and adjusted by the product units currently in the PS, as well
as those that are currently being internally replenished. A list of indices and
parameters used is given in Table 3.1, and the simulation algorithm is further
outlined in Appendix B.4.

3.4 case study context

The data is obtained from a large European fashion retailer, henceforth referred
to as ’the company’, that is specifically interested in understanding which click-
stream variables could be useful in demand forecasting. The company has a
tremendously large product assortment, making product-level forecasting espe-
cially challenging. For confidentiality reasons, no detailed information about
their current forecast could be obtained. While the company also uses a back
and forward area in their warehouses, no detailed information could be given
concerning the forward area. We choose to select a pocket sorter for the forward
area due to the novelty of the system.
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Table 3.1: Notation table

Indices

k Product in dataset, k = 1,...,K
o Product order, o = 1,...,O
t Day in planning horizon, t = 1, ...,T (T = 14)
h Hour of the day, h = 0, ..., H (H = 23)

Parameter

Fkt Forecast for product k on day t

Rkt Remaining forecast for product k on day t

Ikth Inventory in PS for product k on day t at hour h
okt Order for product k on day t

zo Picking time for order o, zo = 1 if product is picked from PS, 0

otherwise
r Time for internal replenishment, r = 1

c Capacity of PS, c = {5%, 10%, 15%}
m Maximum number of units per product allowed in PS, m = 3

3.4.1 Data collection and preprocessing

The data received spans a period of one year and covers sales and clickstream
data for a set of randomly selected stock-keeping unit (SKU), referred to as
’products’. The SKU numbers provided by the company encapsulate informa-
tion on the brand, model, and color of a product, but not its size. Our forecast
could later be disaggregated using size curves and historical data on size se-
lection. The clickstream data covers only aspects relating to product sites, and
therefore does not include information on any other pages visited by customers
(e.g., product category, brand site, shopping cart, etc.). The clickstream data can
be categorized into two types:

1. View data: This data relates to when and for how long a customer visited
a product site. A visit to a product site ends when a customer closes or
moves to a different site in the browser or app. The variable view duration
contains a particularly large number of outliers because customers may
leave product sites open without actively viewing the product. We use a
boxplot to analyze the view duration, and use the extreme of the upper
whisker as the maximum view duration, which is equal to 18.4 seconds.

2. Event data: Events refer to clicks made on a product site, such as clicks on
product images or adding a product to a customer’s wishlist or shopping
cart.

In addition, the data contain information regarding the customers who interact
with the products, including their total number of purchases, gender, and date
of birth. All products with no sales in the training period are defined as new
product introductions and are excluded from the analysis, as new products
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typically require a different forecasting approach. Moreover, products with no
clickstream data in the training set, for instance relating to customers who were
not signed in while browsing, are also excluded as only their historical sales are
available for forecasting. This results in a final dataset containing 3,000 different
products. All data is scaled to a mean of zero and a standard deviation of one
for the application of machine learning models, PCA, and K-means clustering.

3.4.2 Initial data analysis

Overall, the sales data shows strong weekly seasonality, with the highest order
volumes on Sundays and then decreasing until Saturday. As the company’s
product lifecycle is rather short, it is unsurprising that most products do not
show demand over the whole period of the data: 22% of products had sales on
fewer than ten days during the whole year, emphasizing the issue of intermit-
tent demand behavior in the dataset. In fact, in the 3,000-product dataset used,
very few products actually drive most of the demand.

As we are investigating the effect of clickstream data on demand forecasting,
the time difference between visits/clicks and purchases is of particular inter-
est. For purchased products, the average difference between the first time a
customer views a product and the subsequent purchase is 0.64 days. For ’add
to wishlist’ clicks, an average of 3.18 days elapse until purchase, whereas this
is only 0.13 days for ’add to cart’ clicks, where customers add products to their
shopping cart. These short time differences indicate that using clickstream data
for demand forecasts two or seven days ahead may be challenging. However,
it should be noted that these numbers do not distinguish between first and re-
peat purchases (i.e., a customer purchasing the same product again), where the
purchase decision process is different.

3.4.3 Feature selection

To determine how much data from historical sales to use in the forecast using
machine learning models, we look at autocorrelation in the sales time series
of various products. While there are no demand lags that show significant au-
tocorrelation across all products, the most recent demand lags generally seem
to show the highest autocorrelation. Therefore, we use the last 14 days of
the training data as predictors for the machine learning models. With respect
to the clickstream data, we explore frequently-used clickstream variables that
have been applied in previous studies (Huang and Van Mieghem 2014, Moe
and Fader 2004, Van den Poel and Buckinx 2005), such as the number of prod-
uct site visits. In addition to variables that can easily be observed from the data,
we calculate several additional variables:

• We split the variable for product site visits into three separate variables,
namely the number of visits in the morning (5 am - 9 am), during the day
(9 am - 5 pm), and during the evening (5 pm - 5 am).
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• Using the average view time for a product during the training period, we
calculate product site visits lasting longer than the average view time and
those with a view duration equal to or less than the average view time.

• The average total number of orders of customers visiting a product site on
a given day is added to the variable set, as well as the average conversion
rate of these customers, referring to the average number of visits resulting
in a purchase.

• Lastly, we use the conversion rate for various variables to calculate ex-
pected orders for a product. This is done by dividing the number of clicks
or visits by the respective conversion rate. As this essentially means di-
viding the whole clicks or visits time series for a product by its conversion
rate, we only use the resulting new time series for the machine learning
methods. For DR, forecast results will hardly change if we manipulate
the time series with the same value.

In addition, we add weekday as a dummy variable for DR, and two different
types of product categories as dummy variables for all machine learning meth-
ods. As DR predicts future demand for one product at a time, product category
cannot be added as a regressor. The full variable set is listed in Table 3.2, and
their pairwise correlations are shown in Table B.3 in the Appendix. As can be
expected from a dataset containing clickstream data, most of the variables have
a relatively high correlation, limiting the possibility of combining variables in
linear regression, forecasting, and clustering.

3.5 results

In the next subsections, we outline the results of our analysis.

3.5.1 Linear regression

Owing to high correlation between the clickstream variables, we only add vari-
ables with a correlation below 0.7 to the clickstream model. The results show
that for both the two-day- and the seven-day-ahead forecasts, the model con-
taining clickstream data explains more of the variation in sales than the model
containing only historical sales, weekday, and product category (Table 3.3).The
adjusted R-squared improves from 0.34 to 0.40 for the two-day- and from 0.22

to 0.30 for the seven-day-ahead forecast. These results indicate that clickstream
variables do indeed help to explain variation in sales, supporting our hypoth-
esis that they improve forecast accuracy. While most variables are statistically
significant at the 1% level, historical sales and the number of ’add to cart’ clicks
seem to be the best variables to explain sales variation.

3.5.2 Forecast baseline

Of the forecasting methods applied, DR and SVR produce the best results, in
terms of both RMSE and MASE (Table 3.4), and are therefore used in subse-
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Table 3.2: List of variables used

Number Variable

1 Historical sales
2 Visits (to the product site)
3 Unique visits (i.e., unique customers)
4 Total view time (on product site)
5 Average view time per visit
6 Variance in view time across visits
7 Number of ’add to cart’ clicks
8 Number of ’add to wishlist’ clicks
9 Total number of clicks
10 Average number of clicks per customer
11 Variance in clicks across customers
12 Visits above (i.e., lasting longer than) average view time
13 Visits below (i.e., shorter than or equal to) average view time
14 Visits in the morning (5 am - 9 am)
15 Visits during the day (9 am - 5 pm)
16 Visits in the evening (5 pm - 5 am)
17 Average total orders of customers (visiting the product site)
18 Average conversion rate of customers (visiting the product site)
19 Orders based on converting visits
20 Orders based on converting unique visits
21 Orders based on converting view time
22 Orders based on converting ’add to cart’ clicks
23 Orders based on converting ’add to wishlist’ clicks
24 Orders based on converting clicks
25 Weekday
26 Product category (two different variables)

quent analyses. The neural network does not converge for any tested combi-
nation of hyperparameters. The fact that the MASE values are all above one
indicates that the forecast for the test data performs worse than the naïve fore-
cast for the training data. However, this does not mean that a naïve forecast
should be used for the test data rather than the models outlined in 3.4. The
training period is much longer than the test period, and is characterized by a
large number of consecutive zero-demand days because many products are in-
troduced during the year. For example, if the first half of the training period for
a product shows zero demand, then a naïve forecast, where the demand two
days ago is used to forecast today’s demand, naturally has a very high forecast
accuracy. In comparison, with a test dataset spanning only 14 days in which
many products do show demand, the forecasting task becomes more difficult.
To verify this, we assess the effect of using a naïve forecast on the test data. As
expected, the forecast performs worse than most other methods (Table 3.4). The
MASE values should therefore not be interpreted in terms of whether they are
below one, but should rather be used to compare the forecast models.
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Table 3.3: Linear regression results (standardized coefficients)

2-day-ahead forecast 7-day-ahead forecast

Variables1

Baseline
model

Clickstream
model

Baseline
model

Clickstream
model

Historical sales (2 days ago) 0.39
***

(0.0003)
0.20

***

(0.0004)
- -

Historical sales (7 days ago) 0.28
***

(0.0003)
0.18

***

(0.0004)
0.46

***

(0.0003)
0.21

***

(0.0004)
Number of ’add to cart’ clicks - 0.35

***

(0.0004)
- 0.36

***

(0.0004)
Average view time per visit - 0.01

***

(0.0005)
- 0.01

***

(0.0005)
Variance in view time across visits - 0.02

***

(0.0004)
- 0.03

***

(0.0005)
Average number of clicks per customer - 0.00

(0.0004)
- 0.01

***

(0.0004)
Variance in clicks across customers - 0.00

***

(0.0003)
- 0.00

***

(0.0003)
Average total orders of customers - 0.00

(0.0003)
- 0.00

*

(0.0003)
Average conversion rate of customers - 0.00

***

(0.0003)
- 0.00

***

(0.0003)
Weekday (Monday) 0.02

***

(0.0001)
0.03

***

(0.0001)
0.01

***

(0.0011)
0.01

***

(0.0011)
Weekday (Tuesday) 0.00

***

(0.0001)
0.01

***

(0.0001)
0.01

***

(0.0011)
0.01

***

(0.0011)
Weekday (Wednesday) 0.01

***

(0.0001)
0.01

***

(0.0001)
0.01

***

(0.0011)
0.00

*

(0.0011)
Weekday (Thursday) 0.00

**

(0.0001)
0.01

***

(0.0001)
0.00

***

(0.0011)
0.00

(0.0011)
Weekday (Saturday) 0.00

**

(0.0001)
0.00

**

(0.0001)
0.00

***

(0.0011)
-0.01

***

(0.0011)
Weekday (Sunday) 0.04

***

(0.0001)
0.05

***

(0.0001)
0.02

***

(0.0011)
0.02

***

(0.0011)
Product category 1 (Men’s clothing) -0.01

***

(0.0007)
0.01

***

(0.0006)
-0.01

***

(0.0007)
0.01

***

(0.0007)
Product category 1 (Unisex clothing) 0.02

***

(0.0017)
0.01

***

(0.0016)
0.03

***

(0.0018)
0.02

***

(0.0017)
Product category 1 (Children’s clothing) -0.01

***

(0.0023)
0.01

***

(0.0016)
-0.01

***

(0.0025)
0.01

***

(0.0018)
Product category 1 (Other) -0.01

***

(0.0016)
0.01

***

(0.0013)
-0.01

***

(0.0017)
0.01

***

(0.0014)
Product category 2 (Footwear) 0.05

***

(0.0012)
0.02

***

(0.0012)
0.08

***

(0.0013)
0.04

***

(0.0013)
Product category 2 (Kids) 0.03

***

(0.0026)
0.01

***

(0.0018)
0.05

***

(0.0029)
0.02

***

(0.0019)
Product category 2 (Sports) 0.02

***

(0.0013)
0.01

***

(0.0013)
0.04

***

(0.0014)
0.02

***

(0.0014)
Product category 2 (Textile) 0.05

***

(0.001)
0.04

***

(0.001)
0.07

***

(0.0011)
0.05

***

(0.0011)
Product category 2 (Beach-/Underwear) 0.05

***

(0.0015)
0.04

***

(0.0015)
0.08

**

(0.0017)
0.06

***

(0.0016)
Product category 2 (Other) -0.01

***

(0.0011)
0.00

**

(0.0011)
-0.02

***

(0.0012)
0.00

(0.0011)
Intercept -0.04

***

(0.0012)
-0.04

***

(0.0011)
-0.05

***

(0.0013)
-0.04

***

(0.0012)
Adjusted R-squared 0.34 0.40 0.22 0.30

Akaike information criterion (AIC) 21,024,096 20,137,818 22,454,316 21,544,349

Standard errors are reported in parentheses. *p ⩽ 0.1, **p ⩽ 0.05, ***p ⩽ 0.01.
1 For the 2-day ahead forecast, we use sales two and seven days ago. For the 7-day ahead forecast, only
sales seven days ago are used. For the clickstream variables, we use their values two days ago for the
2-day ahead forecast and seven days ago for the 7-day ahead forecast.
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Table 3.4: Baseline results (only historical sales)

2-day-ahead
forecast

7-day-ahead
forecast

Method
Best-performing
hyperparameters MASE RMSE MASE RMSE

ARIMA Automatically selected 1.56 1.40 1.66 1.53

RF Ntree: 500

Mtry: p/3

1.77 1.49 1.99 1.57

SVR Kernel: Linear
Cost: 0.01

1.51 1.39 1.70 1.44

NN - Does not converge

JRNN Neurons: 1 & 6
1

Learning rate: 0.001 & 0.0001
1

Max. iterations: 1000

1.56 1.66 2.52 1.65

ERNN Neurons: (6, 6)
Learning rate: 0.0001

Max. iterations: 1000

2.17 1.58 2.85 1.65

Naïve - 1.81 1.62 1.98 1.76

1 Using 1 neuron and a 0.001 learning rate produces the best results for the 2-day-ahead fore-
cast and 6 neurons with a 0.0001 learning rate the best results for the 7-day-ahead forecast.

3.5.3 Forecast including clickstream data

Tables 3.5 and 3.6 show the DR and SVR results when the clickstream variables
are added to the forecast (in addition to historical sales). For DR, for both fore-
casts, statistically significant improvements in forecast accuracy are obtained
only when using visits, unique visits, and ’add to wishlist’ clicks as additional
regressors. The statistical significance is computed using a one-sided paired
t-test, with the null-hypothesis that the MASE and RMSE values of the fore-
cast with clickstream variables are lower than those for the forecast containing
only historical sales. Interestingly, the results also indicate that visits in the
evening are better predictors of future demand than visits at other times of
the day. When using SVR, we obtain much more significant results using the
clickstream variables. Specifically, the number of ’add to cart’ clicks and orders
based on converting unique visits show the best forecast accuracy. For the latter,
the MASE improves from 1.51 to 1.47 and the RMSE from 1.39 to 1.37 for the
two-day-ahead forecast. The dummy variables do not improve the accuracy of
either forecast method.

While SVR in combination with the clickstream variables delivers better fore-
cast results than DR, a closer look at the results reveals that SVR is less accurate
for the few high-demand products in the dataset (Figure 3.2).
To test whether combinations of clickstream variables further improve forecast
accuracy, we combine unique visits and ’add to wishlist’ clicks with average to-
tal orders, average conversion of customers, and the dummy variables for DR,
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Table 3.5: Results of DR (clickstream variables)

2-day-ahead
forecast

7-day-ahead
forecast

Variables in addition to historical sales MASE RMSE MASE RMSE

None 1.56 1.40 1.66 1.53

Visits 1.53 1.39
*

1.64 1.49
*

Unique visits 1.54 1.38
*

1.64 1.48
**

Total view time 1.55 1.39 1.67 1.50

Average view time per visit 1.60 1.41 1.72 1.52

Variance in view time across visits 1.58 1.41 1.68 1.52

Visits above average view time 1.56 1.40 1.67 1.51

Visits below average view time 1.54 1.39 1.64 1.49
*

Visits in the morning 1.56 1.47 1.65 1.56

Visits during the day 1.56 1.45 1.68 1.54

Visits in the evening 1.52
**

1.43 1.64 1.53

Number of ’add to cart’ clicks 1.58 1.44 1.66 1.54

Number of ’add to wishlist’ clicks 1.52
**

1.40 1.61
***

1.39
*

Total number of clicks 1.55 1.41 1.67 1.52

Average clicks per customer 1.61 1.41 1.73 1.53

Variance in clicks across customers 1.55 1.40 1.66 1.51

Average total orders of customers 1.56 1.40 1.67 1.51
*

Average conversion rate of customers 1.58 1.40 1.69 1.50
*

Weekday 1.58 1.46 1.68 1.57

* p ⩽ 0.1, ** p ⩽ 0.05, *** p ⩽ 0.01.

and do the same for ’add to cart’ clicks and orders based on converting unique
visits for SVR. We also combine the average and variance in view time with
the total view time, as total view time alone may not be a good indicator of
purchase intention due to the issue of visitors leaving product sites open. For
DR, all variable combinations decrease forecast accuracy to some extent (Table
3.7). For SVR, while some variable combinations, such as the number of ’add to
cart’ clicks combined with the average conversion rate of customers, show sta-
tistically significant improvements in forecast accuracy (Table 3.8), better results
are achieved when using a single clickstream variable (Table 3.6).

3.5.4 Clustering

Using the first feature set for clustering (i.e., clustering based on demand char-
acteristics), the application of K-means clustering results in three product clus-
ters, as suggested by the silhouette method. Several products are excluded
from the clustering algorithm because they have zero demand during the time
period so the time series features cannot be calculated. These products are
added separately to a fourth cluster.
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Table 3.6: Results of SVR (clickstream variables)

2-day-ahead
forecast

7-day-ahead
forecast

Variables in addition to historic sales MASE RMSE MASE RMSE

None 1.51 1.39 1.70 1.44

Visits 1.47
***

1.38
***

1.68 1.43
**

Unique visits 1.48
***

1.38
***

1.68 1.42
***

Total view time 1.47
***

1.38
***

1.66
***

1.43
**

Average view time per visit 3.01 1.59 3.92 1.68

Variance in view time across visits 2.99 1.59 3.26 1.64

Visits above average view time 1.48
**

1.38
**

1.66
***

1.43
**

Visits below average view time 1.47
***

1.38
***

1.68
*

1.43
**

Visits in the morning 1.51 1.39
*

1.68 1.44

Visits during the day 1.48
***

1.38
**

1.67
***

1.43
**

Visits in the evening 1.49
**

1.39
**

1.69 1.43
**

Number of ’add to cart’ clicks 1.48
**

1.37
***

1.67
**

1.42
***

Number of ’add to wishlist’ clicks 1.49
*

1.39 1.67
**

1.43
**

Total number of clicks 1.48
*

1.38
***

1.65
***

1.43
***

Average clicks per customer 2.28 1.53 3.99 1.69

Variance in clicks across customers 1.54 1.40 2.51 1.59

Average total orders of customers 2.20 1.52 3.18 1.64

Average conversion rate of customers 2.21 1.53 3.20 1.64

Orders based on converting visits 1.48
***

1.37
***

1.65
***

1.44

Orders based on converting unique
visits

1.47
***

1.37
***

1.64
***

1.43

Orders based on converting view
time

1.48
***

1.38
***

1.67
***

1.44

Orders based on converting ’add to
cart’ clicks

1.48
***

1.37
***

1.67
*

1.42
***

Orders based on converting ’add to
wishlist’ clicks

1.46
***

1.39 1.66
***

1.44

Orders based on converting clicks 1.47
***

1.38
***

1.64
***

1.43

Product categories 1.86 1.44 2.46 1.54

* p ⩽ 0.1, ** p ⩽ 0.05, *** p ⩽ 0.01.

For clustering based on the clickstream data and total demand, we use each
product’s conversion rate of unique visits and total demand during the last
eight weeks of the training data. The unique visits variable is selected because
it is a clickstream variable with one of the best forecast results in the previous
analysis. The conversion rates generally show extremely high correlation (>
0.9); therefore we refrain from using all of them and performing PCA, and in-
stead only select the conversion rate of unique visits. To arrive at meaningful
results, we replace all outlier values with a maximum unique visits conver-
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Figure 3.2: Comparison of DR and SVR results (2-day ahead forecast)

sion rate of 52 and maximum total demand of 77 units. Furthermore, for this
feature set, the silhouette method suggests three clusters, which can easily be
analyzed because the feature set is small. The first cluster consists mainly of
products with low (i.e., intermittent) to medium demand but high conversion
rates, meaning that these products have a high number of unique visits without
subsequent purchases. The second cluster contains products with medium to
high demand and low conversion rates. Cluster three contains low- to medium-
demand products with low conversion rates. For confidentiality reasons, prod-
uct names are anonymized, so we cannot investigate what distinguishes the
low-demand products with either low or high conversion rates from each other.
The latter may potentially be products that were sold out so that unique visits
could not actually result in purchases.

To forecast demand, we again use the clickstream variables with the best
results in the previous SVR forecast (i.e., number of ’add to cart’ clicks and
orders based on converting unique visits). The results show that the clusters
based on demand characteristics worsen both RMSE and MASE (Table 3.9).
Although including the clickstream variables improves forecast accuracy, the
results are worse than running SVR on the full product dataset. For the clusters
based on the clickstream data and total demand (Table 3.9), there is a large
improvement in the MASE, even without including the clickstream data in the
forecast. Adding the clickstream variables further improves accuracy. To extend
our analysis, we examine the results by cluster (Table 3.10). For comparison
reasons, we also include the forecast accuracy for each cluster when SVR is run
across the entire 3,000-product dataset.

Looking at the low- to medium-demand clusters (1 and 3), we see that clus-
tering itself produces large improvements in the MASE, while adding the click-
stream variables has a small, but partially significant effect (e.g., adding ’add
to cart’ clicks for cluster 3). However, for the two-day-ahead forecast, adding
the clickstream variables for cluster 1 does not significantly improve forecast
accuracy. For the second cluster, clustering itself worsens MASE, but the click-
stream data does substantially improve accuracy. Generally, the results suggest
that including the clickstream data is most useful for forecasting medium- to
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Table 3.7: Results of DR (combined variables)

2-day-ahead
forecast

7-day-ahead
forecast

Variables in addition to historic sales MASE RMSE MASE RMSE

None 1.56 1.40 1.66 1.53

Unique visits + Average total orders
of customers

1.59 1.40 1.66 1.51

Unique visits + Average conversion
of customers

1.58 1.42 1.70 1.53

Unique visits + Weekday 1.54 1.42 1.66 1.53

’Add to wishlist’ clicks + Average
total orders of customers

1.56 1.42 1.65 1.52

’Add to wishlist’ clicks + Average
conversion rate of customers

1.57 1.44 1.67 1.54

’Add to wishlist’ clicks + Weekday 1.58 1.46 1.67 1.57

Total view time + Average view time
per visit

1.61 1.42 1.70 1.53

Total view time + Variance view time
across visits

1.62 1.43 1.70 1.53

* p ⩽ 0.1, ** p ⩽ 0.05, *** p ⩽ 0.01.

high-demand products, and low- to medium-demand products with low con-
version rates.

Compared with our previous analysis, a forecast per cluster with the click-
stream variables delivers the best MASE values (1.38 and 1.46 for the two- and
seven-day-ahead forecasts, respectively), while forecasting with the clickstream
variables but without clustering results in a lower RMSE value (1.37) for the
two-day-ahead forecast. The RMSE for the seven-day-ahead forecast is the
same with or without clustering. This may indicate that clustering works es-
pecially well for improving the forecast accuracy of intermittent-demand prod-
ucts, while running machine learning methods across all products is more suit-
able for medium- to high-demand products.

3.5.5 How forecasts including clickstream data improve order picking time

To further investigate products for which including clickstream data in the fore-
cast is especially useful, we perform an ABC analysis before simulating order
picking. Using the last two weeks of the training data, products making up
80% of the demand volume are denoted as A products, and the remaining ones
as BC products. In the order picking simulation, we use two different datasets
resulting from the ABC analysis: one using all products (K = 3,000) and the
other containing only B and C products (K = 2,752).

The capacity constraints of 5%, 10%, and 15% of the PS translate into 175,
350, and 525 available bags when using all products, and 50, 100, and 150
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Table 3.8: Results of SVR (combined variables)

2-day-ahead
forecast

7-day-ahead
forecast

Variables in addition to historic sales MASE RMSE MASE RMSE

None 1.51 1.39 1.70 1.44

Number ’add to cart’ clicks +
product categories

1.55 1.38
*

2.07 1.49

Number ’add to cart’ clicks +
Average total orders of customers

1.53 1.38
*

3.14 1.62

Number ’add to cart’ clicks +
Average conversion rate of
customers

1.50 1.37
***

1.69 1.42
**

Orders based on converting unique
visits + product categories

1.63 1.40 2.12 1.51

Orders based on converting unique
visits + average total orders of
customers

2.16 1.50 3.10 1.63

Orders based on converting unique
visits + average conversion rate of
customers

1.48
***

1.38
***

2.41 1.57

View time + Average view time per
visit

2.29 1.53 3.84 1.67

View time + Variance in view time
across visits

2.97 1.58 3.21 1.63

* p ⩽ 0.1, ** p ⩽ 0.05, *** p ⩽ 0.01.

bags when using only B and C products, respectively. As DR shows superior
forecast results for high-demand products, we use both DR and SVR forecasts,
with and without clickstream variables, in the simulation. In addition, we use
the forecast resulting from the second feature set for clustering as an input into
our simulation. The results are shown in Table 3.11. For the dataset containing
all products, the highest number of orders is picked from the PS when using
DR, independent of the capacity level. This is in line with our forecast results
suggesting that DR outperforms SVR for high-demand products. As the PS
is filled according to the highest forecast volume, A products are generally
prioritized. While the clickstream data shows a small positive effect on forecast
accuracy when using DR, this is only reflected in the 5% capacity simulation.
For the other two capacity levels, the number of orders picked from the PS
decreases when adding the clickstream data.

When using BC products, SVR in combination with the clickstream data re-
sults in the largest proportion of products being picked from the PS. At a
5% capacity level, the share of orders increases from 3.40% to 4.38% when the
number of ’add to cart’ clicks is added to the SVR forecast using only histor-
ical sales. Compared with the DR forecast without clickstream data (3.21%),
the SVR forecast with ’add to cart’ clicks shows a relative increase of 36% in
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Table 3.9: Overall cluster results (SVR)

2-day-ahead
forecast

7-day-ahead
forecast

Variables in addition
to historical sales Clustering MASE RMSE MASE RMSE

None None 1.51 1.39 1.70 1.44

None Demand characteristics 1.84 1.48 2.00 1.53

Number of ’add to
cart’ clicks

Demand characteristics 1.63 1.41 1.80 1.47

Orders based on
converting unique
visits

Demand characteristics 1.65 1.42 1.78 1.48

None Clickstream data1
1.39

***
1.40 1.48

***
1.43

Number of ’add to
cart’ clicks

Clickstream data1
1.39

***
1.38 1.46

***
1.42

***

Orders based on
converting unique
visits

Clickstream data1
1.38

***
1.38

***
1.46

***
1.42

*

* p ⩽ 0.1, ** p ⩽ 0.05, *** p ⩽ 0.01.
1 Clusters 1 and 2 are forecasted using a linear kernel (cost = 0.01) and cluster 3 a radial kernel
(cost = 0.1, gamma = 0.01).

products picked from the PS. At 10% and 15% capacity, the increases are 28%
and 25%, respectively. Using forecasts from clustering produces very low pick-
ing performance, supporting our hypothesis that clustering helps to improve
the forecast for intermittent-demand products in our dataset, while using SVR
with clickstream data on the full dataset is better able to forecast medium- to
high-demand products. It should be noted that 72% of B products are allocated
to the medium- to high-demand cluster when using K-means, meaning that
this cluster does not contain only A products.

Combining our findings from the forecasting and the order picking simula-
tion, we conclude that using clickstream data for demand forecasting is espe-
cially useful for B products. For the few products driving most of the demand,
DR without clickstream data produces better results. We might very well imag-
ine that for these products, different warehousing systems will be applied, for
instance in the form of a separate forward area, where the inventory of these
products is frequently replenished. Our analysis shows that using a PS system
for BC products in combination with a forecast model that includes clickstream
data might substantially improve picking times.

3.6 discussion and conclusion

Despite extensive research on demand forecasting, the inclusion of clickstream
data in product-level demand forecasting has received limited attention. This
paper investigates the value of using clickstream data in short-term sales fore-
casting for the product assortment of a leading European fashion retailer. In a
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case study of warehouse operations, we assess how our forecast models impact
the order picking process.

Table 3.10: Results per cluster (SVR)

2-day-ahead
forecast

7-day-ahead
forecast

Variables in addition
to historical sales

Clus-
ter1

Forecast
per
cluster? MASE RMSE MASE RMSE

None 1 No2
1.45 0.44 1.84 0.50

None 1 Yes 1.31 0.44 1.59 0.50

Number of ’add to cart’
clicks

1 Yes 1.30 0.44 1.60 0.49
**

Orders based on converting
unique visits

1 Yes 1.31 0.44 1.55
***

0.49
**

None 2 No2
2.39 4.94 2.49 5.05

None 2 Yes 2.45 4.94 2.57 5.05

Number of ’add to cart’
clicks

2 Yes 2.40
***

4.87
**

2.49
***

4.98
***

Orders based on converting
unique visits

2 Yes 2.41
***

4.86
***

2.52
***

5.02

None 3 No2
1.20 0.41 1.35 0.43

None 3 Yes 1.03 0.42 1.03 0.41

Number of ’add to cart’
clicks

3 Yes 1.02
*

0.42
***

1.03
*

0.41
***

Orders based on converting
unique visits

3 Yes 1.03 0.42
*

1.03 0.41

* p ⩽ 0.1, ** p ⩽ 0.05, *** p ⩽ 0.01; significance tested in comparison to results when running
SVR per cluster, with no variables in addition to historic demand.
1 Clusters 1 and 2 are forecasted using a linear kernel (cost = 0.01) and cluster 3 a radial kernel
(cost = 0.1, gamma = 0.01).
2 The forecast results are shown for products in the cluster but from running SVR on the whole
product dataset.

Comparing a traditional time-series forecasting method (DR) and various ma-
chine learning methods, our forecast results show that, particularly when using
machine learning methods, clickstream data can help improve forecast accuracy.
Using several different clickstream variables in the prediction, the number of
’add to cart’ clicks and the number of converted unique visits, estimated us-
ing the conversion rate of unique visits for a product, show the largest im-
provements in forecast accuracy when using a support vector machine model.
These results are significant at the 1% level. This is similar to findings from
Weingarten and Spinler (2020a) who show that ’add to cart’ clicks are a strong
predictor of short-term sales. However, for very high-demand products, tra-
ditional time series methods using only historical sales outperform machine
learning methods with clickstream variables.

Clustering products based on demand volume and clickstream data further
reveals that using clickstream data in forecasting is most useful for medium-
to high-demand products, as well as for low- to medium-demand products
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Table 3.11: Simulation results (order picking)

Orders picked from PS (%)

Data-
set

Forecast
method

Variables in addition
to historic sales

Forecast
per
cluster? c = 5% c = 10% c = 15%

ABC DR None No 14.62 21.42 25.88

ABC DR Unique visits No 14.72 21.03 25.08

ABC DR Number of ’add to wishlist’
clicks

No 14.12 21.13 24.92

ABC SVR None No 12.98 18.58 22.09

ABC SVR Number of ’add to cart’ clicks No 13.59 19.33 23.58

ABC SVR Orders based on converting
unique visits

No 13.60 19.56 23.11

ABC SVR Number of ’add to cart’ clicks Yes1
13.36 19.20 23.14

ABC SVR Orders based on converting
unique visits

Yes1
13.25 19.12 22.94

BC DR None No 3.21 5.81 7.85

BC DR Unique visits No 4.19 6.37 8.27

BC DR Number of ’add to wishlist’
clicks

No 3.73 5.93 8.18

BC SVR None No 3.40 5.12 7.43

BC SVR Number of ’add to cart’ clicks No 4.38 7.45 9.81

BC SVR Orders based on converting
unique visits

No 4.30 6.69 8.78

BC SVR Number of ’add to cart’ clicks Yes1
2.80 5.56 7.97

BC SVR Orders based on converting
unique visits

Yes1
2.98 5.42 7.90

1 Using total demand and clickstream data as input to clustering. Cluster 1 and 2 are forecas-
ted using a linear kernel (cost = 0.01) and cluster 3 a radial kernel (cost = 0.1, gamma = 0.01).

with low conversion rates (i.e., a small number of clicks and visits resulting in
purchases). The latter suggests that clickstream data might be useful for new
product demand forecasting, where limited sales data is available for forecast-
ing immediately after the product introduction.

The application to order picking is largely in line with our forecast results.
Using forecasts to steer internal replenishments between a back area in the
warehouse with slow picking times and a forward area with fast picking times,
resembling a PS system, DR results in the largest proportion of product orders
being picked from the forward area. After categorizing products into A, B, and
C according to their demand volume and only using B and C products for inter-
nal replenishments to the forward area, SVR in combination with clickstream
variables produces better results than DR. In fact, adding clickstream variables
to an SVR model enables 25-36% more product orders to be picked from the
forward area compared with the DR model using only historical sales. This in-
dicates that SVR in combination with clickstream variables is especially suited
to forecasting demand for B products.

Our results show the usefulness of including clickstream data in short-term
sales forecasts. In addition to order picking, our approach might be applied
to several other warehouse operations, including the relocation of inventory
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across warehouses to shorten delivery times. Other areas, such as market-
ing and customer relationship management, might also benefit from improved
short-term demand forecasts. We believe that our results are generally applica-
ble to other online fashion retailers. Whether this is the case for other industries
cannot be confirmed from our study, as the relationship between clickstream
data and purchases may be very different for non-fashion items. It would also
be interesting to assess the effect of clickstream variables in forecasting for fash-
ion retailers with both offline and online sales channels.

Naturally, forecasting using clickstream data is limited by data quality. In
particular, issues with tracking click types create challenges to using clickstream
data in forecasting. Our results are also limited by the fact that only the last
three weeks of the dataset serve as test data. To account for differences across
seasons and specific events (e.g., holidays), future research should investigate
the effect of clickstream data over a longer time period, as well as whether
clickstream data is similarly beneficial in long-term sales forecasts.

We use DR and five different machine learning methods for our analysis.
Replicating our approach using other methods, such as more complex recurrent
neural networks, might result in further improvements to forecast accuracy.
Moreover, additional variables, such as price or promotion campaigns, which
could not be obtained for our dataset, should be investigated in this context.
In particular, price may affect the relationship between clickstream data and
future sales.

It is difficult to predict true future demand because, as in this study, forecasts
typically use sales to measure accuracy. In the case of temporary stockouts,
clickstream data might add even more value in combination with historical
sales in demand forecasting. Such forecasts might be used, for instance, to
prioritize returns handling so that forecasted products are made available again
more quickly. However, this can only be assessed if retailers are able to estimate
true demand, and not just observed demand in the form of sales.

Online business-to-consumer (B2C) retailers have tremendous opportunities
to collect a wealth of data that can be leveraged in the forecasting process.
Whether similar opportunities exist in the business-to-business (B2B) context
will be the focus of the next chapter. Using a dataset from a large supplier
in the construction industry, we investigate whether data mining and machine
learning methods can be used to automatize mechanisms in the forecasting
process that would typically require human judgement, for instance in the form
of expert input. While the dataset might not qualify as big data, the methods
applied go beyond the use traditional software tools.





4
U S I N G S E Q U E N T I A L PAT T E R N M I N I N G T O I M P R O V E
D E M A N D F O R E C A S T A C C U R A C Y

The following chapter is based on Weingarten and Spinler (2020c).

4.1 introduction

Forecasting is increasingly important to organizations, owing to rising compet-
itive pressure, shorter product lifecycles, and changing consumer needs such
as faster and more reliable delivery times (Sanders and Manrodt 2003). Accu-
rate demand forecasts are relevant across all processes of the supply chain (e.g.,
production, inventory management, materials requirement planning) and also
affect companies’ suppliers and retailers. Inventory management, in particular,
is a crucial part of the supply chain as it drives inventory costs and service
levels. Inaccurate forecasts may result in excessive inventory or stock-outs, and
ultimately lost sales if customer demand cannot be fulfilled. Research suggests
that even small improvements in forecast accuracy can have a substantial effect
on inventory and service levels (Petropoulos et al. 2018). According to Kre-
mer et al. (2016), every percentage improvement in forecast accuracy results in
a similar percentage improvement in terms of reduced safety stock, without
affecting customer service levels.

Given its relevance, there is a large body of research on demand forecast-
ing. Many contributions focus on developing forecasting techniques to bet-
ter predict future demand, with varying degrees of complexity and ease of
use (Zotteri and Kalchschmidt 2007). Much of this research addresses the se-
lection of forecasting methods (e.g., Makridakis et al. 2018, Petropoulos et al.
2018), from naïve and averaging methods, to exponential smoothing (ETS) and
autoregressive integrated moving average (ARIMA) models. In addition to
these traditional forecasting methods, more complex models using machine
learning machine learning (ML) algorithms, such as neural networks, are also
applied to demand forecasting (e.g., Carbonneau et al. 2008, Gutierrez et al.
2008). However, these are typically limited in their interpretability, providing
few insights into how forecasts are developed and the effect of input variables
(Petropoulos et al. 2018).

Despite the volume of research on demand forecasting, recent studies sug-
gest that practical applications of forecasting techniques still lag behind aca-
demic developments (Sanders and Manrodt 2003). A common approach that
companies apply to forecasting demand involves developing an initial statis-
tical demand forecast using simple forecasting methods, such as exponential
smoothing, usually based on historical sales data. This initial forecast is then
reviewed and adjusted for some key products, taking into account additional
information available to the company, such as promotional and advertising ac-
tivities, price changes, holidays or insufficient inventories (Fildes and Goodwin
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2007, Fildes et al. 2009). The consensus in the literature is that these judge-
mental adjustments may have both negative and positive effects on forecast
accuracy (Fildes et al. 2009, Perera et al. 2019). Judgemental adjustments often
introduce bias into forecasts (Fahimnia et al. 2019), potentially owing to the hu-
man tendency to see patterns in noise (O’Connor et al. 1993); yet they are often
the only means to incorporate additional information into the forecast, as many
of the previously mentioned forecasting methods struggle to incorporate such
’soft data’ (Goodwin and Fildes 1999, Petropoulos et al. 2018). Nevertheless,
the complexity of the task often makes it impossible to review and adjust the
forecast for all products in a company’s portfolio. This raises the question of
how human judgement can optimally be combined with forecasting methods.

One rarely mentioned reason for judgemental adjustments in forecasting is
additional information about the product portfolio. Typically, demand for each
product is forecasted separately, assuming that each is statistically independent.
However, in some situations demand for products is correlated, and a forecast
may thus benefit from taking account of demand for these related products.
Reasons for demand correlation between products include new product intro-
ductions (i.e., a new product replaces a mature product), substitution or compli-
mentary products. In such cases, higher demand for one product may increase
or decrease demand for related products (Bandara et al. 2019). Another reason
for demand correlation is hierarchy in a product portfolio, meaning that cer-
tain products can only be used in combination with others. For example, in
the construction industry, certain drill bits can only be used with specific ham-
mer drills. In such cases, an increase in demand for one product may result
in increased demand for the correlated product. A few studies have inves-
tigated how to incorporate correlated demand into forecasting (e.g., Bandara
et al. 2020a, 2019, Garnier and Belletoile 2019), but none appear to have exam-
ined how to identify products with correlated demand automatically, without
using human judgement, and consequently to use this information in demand
forecasting to estimate the impact on sales and inventory.

Our research is motivated by the demand forecasting of a leading construc-
tion industry supplier, ConstructX (anonymized to maintain confidentiality).
Its product portfolio is characterized by thousands of products with very het-
erogeneous demand patterns, ranging from constant weekly demand to very
intermittent demand. The company’s existing forecast is initially constructed
using simple statistical methods and later adjusted based on judgement. Con-
structX is particularly interested in exploring how ML might improve this initial
forecast. Previous research on demand forecasting in the construction industry
has focused mainly on developments in the housing market and demand for
construction overall, with limited attention to levers that might improve Con-
structX’s forecast. Our study therefore addresses three aspects. First, we inves-
tigate how ML might improve the accuracy of the company’s initial forecast,
including the application of traditional time series forecasting methods, such
as ARIMA, to provide benchmarks on the performance of ML methods. The
context of our study is especially interesting as we use a dataset containing
thousands of products with very heterogenous demand patterns. Moreover,
very limited research exists regarding product demand forecasting in the con-
struction industry. In our application, machine learning improves the mean
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absolute scaled error (MASE) of ConstructX’s existing forecast by ∼11-13%. Re-
sults from initial data analyses of the company’s historical sales are used as
additional input to refine the forecast, improving the MASE by an additional
∼4-8%. Second, the main contribution of our research is to explore the extent
to which sequential pattern mining, a rule-based ML method, might improve
demand forecasting. We apply sequential pattern mining to automatically iden-
tify products with correlated demand, and leverage this information as an in-
put into demand forecasting. This approach helps to avoid bias, which may
occur when company experts hypothesize demand correlation between prod-
ucts. The results of our analyses indicate that sequential pattern mining may
be beneficial when used in combination with traditional forecasting methods.
In combination with a dynamic regression model, sequential pattern mining
improves the MASE by up to 6.8%. Lastly, the impact of changes to the fore-
cast accuracy is quantified in relation to inventory and lost sales. While several
studies have used ML methods to forecast product demand (e.g., Bandara et al.
2019, Carbonneau et al. 2008, Gutierrez et al. 2008), most have merely compared
their performance in terms of forecast accuracy. Our results show that our fore-
casting model would reduce the company’s costs of inventory holding and lost
sales by up to 6.9%.

The remainder of the paper is structured as follows: Section 4.2 reviews lit-
erature relating to this study, Section 4.3 introduces the dataset used in our
research, and Section 4.4 explains the research approach and methodology. Sec-
tion 4.5 presents the results and Section 4.6 assesses their effect on inventory
planning and control. We conclude in Section 4.7 with a short summary and
suggestions for future research.

4.2 literature review

Our study relates to three streams of research: applications of machine learning
to demand forecasting, forecasting of correlated time series, and sequential
pattern mining.

4.2.1 Machine learning in demand forecasting

Practical applications of demand forecasting are often challenged by datasets
exhibiting erratic, intermittent and highly fluctuating demand, which often vi-
olates the assumptions of traditional forecasting methods, such as stationarity
(Salinas et al. 2020). A stationary time series is one with properties (e.g., mean
and variance) that do not change over time (Hyndman and Athanasopoulos
2018). Traditional forecasting methods are essentially linear methods and often
cannot capture non-linear data patterns, such as non-linear trends or seasonal
fluctuations (Gutierrez et al. 2008) which are often present in sales data (Chu
and Zhang 2003). ML models may help overcome these limitations, which
could explain their recent popularity as an alternative to traditional forecast-
ing methods. Artificial neural networks (NN) are some of the most popular
ML methods for forecasting and have been shown to provide satisfactory fore-
cast results compared with traditional methods (Gutierrez et al. 2008, Hill et al.
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1996), although discussion continues over when and under what conditions
NNs outperform traditional methods (De Gooijer and Hyndman 2006). Even
though NNs provide the benefit of enabling simulation of complex underly-
ing non-linear relationships in the data, their computation is also quite time-
consuming and requires large amounts of training data (Borovykh et al. 2018,
Chu and Zhang 2003, Gutierrez et al. 2008). Recurrent neural networks (RNN)
and long short-term memory networks (LSTM), a variant of RNN, have become
well-known in the context of time series forecasting. Their recurrent connec-
tions make them especially suited to model sequenced data such as time series
(Bandara et al. 2020b). Research on demand forecasting also extends to other
ML models, such as support vector regression (SVR) (e.g., Carbonneau et al.
2008) and decision trees (e.g., Thomassey and Fiordaliso 2006), which are also
able to model non-linear data patterns (James et al. 2013). The performance of
various ML methods has been explored in several forecasting competitions (e.g.,
NN3, NN5). Ahmed et al. (2010) present a detailed review and comparison of
ML methods in time series forecasting. While applying ML models to product
demand forecasting and comparing their performance to traditional methods
are not novel topics in the literature, we apply several of these methods to a
new setting using the dataset of a construction industry supplier. The nature of
the dataset, such as the presence of both products with high and intermittent
demand and products with correlated demand, makes the application of ML
models especially interesting.

4.2.2 Demand forecasting of correlated time series

The aforementioned traditional approaches to demand forecasting (e.g., ETS
and ARIMA) not only have difficulty modelling non-linearities, but are also re-
stricted to modelling univariate time series. This means that they are only capa-
ble of forecasting one time series at a time, without accounting for any potential
correlations or shared features across time series. Although much research has
focused on forecasting single or small groups of time series, general practical
applications often require the forecasting of thousands of (potentially related)
time series, such as large retailers’ product portfolios (Salinas et al. 2020). To
tackle this problem, recent studies have investigated the development of global
models that can be run across multiple time series simultaneously. These often
make use of ML methods such as RNN and LSTM (e.g., Bandara et al. 2020a,b,
2019, Salinas et al. 2020). Identifying shared information across time series is of-
ten difficult owing to the heterogeneous nature of the data (Salinas et al. 2020).
Therefore, much of this research has focused on identifying subgroups of time
series that share similar features, and then building a global model for each
subgroup. Techniques applied range from manual grouping of products, for in-
stance based on an overarching product category, on the assumption that they
share similar demand features (Bandara et al. 2019, Borovykh et al. 2018), to
clustering techniques that group time series based on a selected set of features
(Bandara et al. 2020b, Thomassey and Fiordaliso 2006). However, few stud-
ies have investigated how information on historical demand for products can
be used as an input into demand forecasts for related products. For example,
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Trapero et al. (2015) leverage the effect of promotions on demand for a set of
products as an input into forecasting demand for products with limited histori-
cal information on promotional effects. In addition to exploring the possibility
of building global ML models across the time series in our dataset, we also in-
vestigate how to use the historical demand for products to forecast the demand
for related products. We focus on identifying which products affect the future
demand for other products using sequential associate rule mining, which is a
novel approach that does appear to have been previously researched.

4.2.3 Sequential pattern mining

Technological developments have enabled companies to collect large amounts
of sales data on products bought by specific customers and the dates of those
transactions. One data mining method often used to derive knowledge from
such datasets is associate rule mining, also referred to as market basket analy-
sis, which was first introduced by Agrawal et al. (1993). Associate rule mining
helps to determine ’which items are often bought together in the same trans-
action’, and is typically applied in marketing, for instance for product shelf
placements and promotions (Zaki 2001). Agrawal and Srikant (1995) later intro-
duced the problem of sequentially mining transactions, essentially extending
associate rule mining by including a temporal aspect. This approach, known
as sequential pattern mining, can be used to model the evolution of customers’
purchases, for instance to determine whether buying peanut butter in the past is
associated with a higher likelihood of purchasing bread in the future (Agrawal
and Srikant 1995). This helps to identify product bundles that are likely to
be purchased sequentially. Agrawal and Srikant’s (1995) proposed algorithm
generates rules representing purchase sequences. An example of such rules
in the construction industry might be ’70% of customers who buy a hammer
drill also buy drill bits a month later’. With this information, it might be hy-
pothesized that using the historical demand and forecast for hammer drills as
inputs into forecasting future demand for drill bits might improve forecast accu-
racy. Discovering such rules in a large dataset may be challenging. Therefore,
Zaki (2001) developed an algorithm, referred to as sequential pattern discov-
ery using equivalence classes (SPADE), for finding sequential patterns in large
datasets. We apply this algorithm to identify products with potentially related
demand (for details, see Section 4.4.3). The numerous applications of sequen-
tial pattern mining include product recommendations (e.g., Liu et al. 2009),
customer behavior analysis (e.g., Chen et al. 2009), and product manufacturing
(e.g., Deriyenko et al. 2017). However, our study appears to be the first to apply
sequential pattern mining to the area of product demand forecasting.

4.3 demand data

Since actual demand data were unavailable, historical sales data were collected
from ConstructX to approximate demand. The dataset received contains sales
for ten Central European countries over a time span of almost three years (Jan-
uary 2017 to November 2019), amounting to 150 weeks of data and consisting of
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Figure 4.1: Weekly orders (Jan. 2017 - Nov. 2019)

approximately 22,000 different products. New product introductions, defined
as products with no demand prior to 2019, were excluded, as new products
typically require a different forecasting approach. The company’s customer
base is purely business-to-business (B2B), comprising companies from several
different industries (e.g., dry wall and electrical installation).

For the purpose of inventory planning, the company’s data are aggregated
to a weekly level to enable weekly forecasting of demand. Figure 4.1 shows the
development of and overall trend in weekly orders over the time period. For
confidentiality reasons, the data are anonymized by indexing the values so that
the largest weekly demand equals 1. The trend line shows that the number of
orders had not grown much over those three years. However, orders seem to
exhibit a yearly seasonality pattern, with increasing orders throughout the year,
and a large peak close to the end of the year caused by an annual promotional
campaign. As expected, owing to public holidays around Christmas and New
Year’s Eve, orders dropped at the end of the year. The autocorrelation func-
tion (ACF), which measures the linear relationship between current and past
values of the time series (Hyndman and Athanasopoulos 2018), indicates yearly
seasonality, with significant peaks at lags 51-54. The ACF for the order volume
(in pieces) per week for several individual products also shows significant lags
in those weeks, confirming yearly seasonality. No other consistently significant
lags can be found across products. Moreover, the weekly order volume at a
product level shows large fluctuations, making the company’s inventory plan-
ning especially difficult. As high-frequency time series, such as weekly or daily
data, often exhibit complicated seasonal patterns (Hyndman and Athanasopou-
los 2018), we use multiple seasonal decomposition to decompose our time series
into seasonal, trend and remainder components to further investigate seasonal
patterns. However, we find no additional seasonality in the data other than
yearly seasonality.
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4.4 model specification

In this section, we describe the process we use to develop the forecast model
for ConstructX. First, we specify a baseline model containing only variables
based on historical sales data. In the baseline model, we test both traditional
and ML forecasting methods to determine which are most suited to our data.
The best-performing methods are applied in subsequent steps of our analysis.
Second, we adjust the baseline model based on hypotheses derived from inter-
views with ConstructX members and initial analyses of the sales data. Third,
we apply the SPADE algorithm for sequential pattern mining to identify prod-
ucts with correlated demand, and include these products’ historical sales and
forecasts into our forecast. The baseline model serves as a benchmark to assess
whether the hypotheses derived in step two and sequential pattern mining in
step three improve forecast accuracy. As the company is producing one-month
and three-month forecasts which it wishes to adapt to weekly forecasts, we
translate this multi-step forecast into 5-week and 13-week forecasts. Owing to
the long training times required by some of the forecasting methods used (e.g.,
neural networks), all models are first trained and tested on a random subset of
3,000 products. All models are implemented in R (version 3.6.2).

4.4.1 Baseline model

ConstructX has been using a combination of simple moving average (SMA),
simple exponential smoothing (SES), and Croston’s method (Croston) to fore-
cast demand. For confidentiality reasons the exact forecast methodology was
not shared, and as the company’s forecasts are at a monthly level, overall fore-
cast accuracy cannot be compared to our results. Therefore, we apply all three
methods to approximate the company’s current forecast accuracy. SMA, a clas-
sic method in time series forecasting, uses the average demand of several se-
quential demand values to forecast future values. SMA treats observations
equally, whereas SES makes predictions based on the weighted sum of past
observations, where a smoothing factor controls the exponentially decreasing
weight assigned to past observations (Hyndman and Athanasopoulos 2018).
The third method used by the company, Croston’s method, is known to work
especially well for intermittent demand, as it separately smoothes demand
size and the inter-arrival time of demand, which refers to the average time
between non-zero demand periods (Croston 1972). In addition to these three
forecasting methods, we also use ARIMA, dynamic harmonic regression (DHR),
and TBATS. In addition to exponential smoothing models, ARIMA is another
widely used approach to time series forecasting that aims to capture autocorre-
lation in a time series by using time series lagged values and lagged forecast
errors. An underlying assumption when using ARIMA is that the time series
is stationary. This can be achieved through differencing, where the differences
between consecutive observations are computed (Box et al. 2016). In order to in-
clude additional explanatory variables, we use a regression model with ARIMA
errors as outlined by Hyndman (2010), referred to as dynamic regression (DR).
When the seasonal period is large, as is the case for our data (seasonal period
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of approximately 52 weeks), DHR is often a more suitable forecasting method.
DHR uses Fourier terms to handle seasonality, although, unlike ARIMA, it
assumes that the seasonal pattern does not change over time (Hyndman and
Athanasopoulos 2018). Lastly, we use TBATS, which is an extension of exponen-
tial smoothing methods and adds trigonometric terms (De Livera et al. 2011).
Like DHR, TBATS is able to handle large seasonal periods, but allows seasonal-
ity to change slowly over time (Hyndman and Athanasopoulos 2018).

As we are running the forecasting methods on thousands of products, we
choose the parameters that perform best for all products. For SES and TBATS,
the best parameters are automatically estimated through the application of the
R forecast package, while for ARIMA, the auto.arima function in the R pack-
age is selected as it automatically returns the best ARIMA model according
to criteria such as the akaike information criterion (AIC), which compares the
quality of forecast models (Hyndman and Athanasopoulos 2018). To enable re-
producibility, a summary of all parameters tested for each forecasting method
is given in Table C.1 in the Appendix.

With regard to machine learning, we specifically focus on methods that are
well-known in the context of regression, as demand is a continuous variable.
Specifically, random forest (RF), feed-forward neural networks (NN), recurrent
neural networks (RNN), and SVR are applied. RF is a supervised learning
method, meaning that it learns relationships between input variables and a
response variable, and constructs an ensemble of decision trees. At each split
in a decision tree, a random subset of variables is considered and the data
are split so as to improve the homogeneity of the daughter nodes compared
with the parent node (Breiman 2001). RF is a popular learning method as it is
simple to train while yielding high accuracy (Hastie et al. 2009). In the class
of NN, the multilayer perceptron is applied, which is the most commonly used
form of artificial neural networks. A multilayer perceptron consists of multiple
neurons (nodes) arranged in several layers. It learns relationships between
the variables and the response variable through backpropagation. RNN are
specific types of neural networks that are able to model sequenced data as
they contain feedback connections that preserve sequential information. In our
study, we apply two well-known RNN: the Elman recurrent neural network
(ERNN) and the Jordan recurrent neural network (JRNN) (Elman 1990). Lastly,
SVR is another supervised learning method that uses a non-linear function to
map data points into a high-dimensional space, enabling a linear model to be
computed (James et al. 2013). SVR then finds a line (or hyperplane) to fit the
data that best minimizes the error rate (Vapnik 1999). These five ML methods
are selected because they are well-known in the context of regression, but differ
in terms of accuracy and training times depending on the input data (Hastie
et al. 2009). For all ML methods, the variables are standardized to give sample
means of 0 and a standard deviation of 1.

Common approaches to multi-step ahead forecasts rely on either a recursive
or direct prediction strategy. Using a recursive approach, an H-step ahead
forecast is achieved by iterating a one-step ahead forecast H times. In each
iteration, the one-step ahead forecast is used as an input into the following
forecast, which has the disadvantage that errors are accumulated. Using a
direct strategy, an H-step ahead forecast is directly computed (Sorjamaa et al.
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2007). As the first results of RF predictions show greater forecast accuracy
using a direct strategy than using a recursive technique, the former approach
is adopted.

4.4.1.1 Evaluating forecast accuracy

To assess the models’ predictive performance, time series cross-validation is
applied (Figure 4.2), in which we use 14 different test sets, each consisting of
two different weeks to be predicted, as we are calculating a multi-step ahead
forecast (five weeks and 13 weeks ahead). The training data consists only of ob-
servations prior to those in the test data. To give the models sufficient training
data from which to learn, our test set consists of weeks toward the end of the
time period covered by our dataset.

Measures of forecast accuracy have frequently been discussed in the litera-
ture, often with recommendations on which measures are best suited to par-
ticular types of data. Some of the most well-known forecast accuracy mea-
sures are the mean absolute error (MAE), the mean absolute percentage er-
ror (MAPE) and the root-mean-square error (RMSE). Some measures, such as
MAE and RMSE, depend on the scale of the data and should not be applied to
data with different scales (Kolkova 2020). As our dataset consists of both prod-
ucts with high weekly demand and products with very intermittent demand,
MAE and RMSE are not used to measure forecast accuracy. Although MAPE
is not scale-dependent, it has the disadvantage of being infinite or undefined
if the demand is zero (Hyndman and Athanasopoulos 2018). Therefore, as
our dataset contains intermittent demand products, we also refrain from using
MAPE. Hyndman and Koehler (2006) propose a different measure, referred to
as the mean absolute scaled error (MASE), to compare forecast accuracy across
data with different units. MASE uses the MAE of the training data from a naïve
forecast method to scale the MAE of the values forecasted from the test data.
It is not only independent of the scale of the data, but is also easy to interpret.
Values larger than one indicate that the forecast is worse than the average naïve
forecast of the training data, whereas values smaller than one indicate better
performance (Hyndman and Koehler 2006). As our data shows yearly season-
ality, we apply a seasonal naïve forecast method to the training data. For a
seasonal time series, the MASE can be calculated as:

MASE =
1
J

∑
j

∣∣ej∣∣
1

T−m
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t=m+1 |yt − yt−m|

(4.1)

where ej is the forecast error for a given week and J is equal to our 14-week
rolling forecast horizon, as we seek to compute the forecast accuracy by averag-
ing over the different test datasets. The denominator is the MAE of the seasonal
naïve forecast of the training data, where m is equal to 52 weeks. A seasonal
naïve forecast means that actual demand in the previous season is used as the
forecast. As we use an expanding window for our training data, where for
each subsequent week of the forecast horizon, the training data also expand
by one week (see Figure 4.2), we apply the seasonal naïve forecast method to
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Time

Train Test

Figure 4.2: Time series cross-validation (14-week rolling horizon)

the longest training dataset. In order to compare the MASE across forecasting
methods, we compute the average MASE across all products for each method.

4.4.1.2 Variable selection for machine learning

ML methods were run both across all products (AP) simultaneously, to make
use of their ability to learn across time series, and per product (PP). This is
hereafter referred to as the ’ML set-up’. When training an ML method on a
single product, the product’s time series must be split into sequences so that
the algorithm has several batches of observations on which to be trained. The
length of each sequence and the number of sequences per product depend on
the variables selected to train the model. In time series forecasting, the inputs
for ML methods typically consist of a selection of lagged observations, but de-
termining this selection can be difficult (Zhang et al. 1998). To assess which
demand lags are most suitable to predict demand five and 13 weeks ahead, the
RF importance measure is calculated, whereby an RF is constructed to assess
variables’ importance. The importance measure reflects the mean decrease in
prediction accuracy if a variable is excluded. When calculating the RF impor-
tance measure for different weeks, no set of demand lags consistently shows
a high mean decrease in prediction accuracy, making it difficult to select vari-
ables based on significance. Therefore, we test four different sets of variables:
the last six demand lags (Set 1), the last six demand lags and the 52

nd lag (Set
2), all last demand lags up to the 52

nd lag (Set 3), and all demand lags, which
was only used when running ML methods across all products (Set 4). Figures
C.1 and C.2 in the Appendix show an example of using the last six demand
lags for a five-week ahead forecast when applying ML methods per product
and across products.

4.4.1.3 Time series clustering

As outlined in Section 4.2.2, achieving good forecast results when applying
ML methods across several time series often requires the identification of sub-
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groups of time series sharing similar features, so that an ML model can be
trained for each subgroup. In order to identify these subgroups, hierarchical
clustering is applied. This technique constructs a hierarchy of clusters based
on a set of features, typically by considering each observation as an individual
cluster and then merging similar clusters at each iteration based on their prox-
imity (bottom-up approach). Several approaches, also referred to as linkage
methods, compute the proximity of two clusters (Hastie et al. 2009). We use
Ward’s (1963) method, which merges clusters at each iteration by minimizing
the increase in the total within-cluster sum of the squared error, as this is the
only linkage method resulting in a reasonable number of products per cluster
for our dataset. All other linkage methods result in one large cluster containing
almost all products alongside several very small clusters.

Several features can be computed to describe the characteristics of a time
series. The features used for hierarchical clustering in this study are given in
Table C.2 in the Appendix. To determine the optimal number of clusters, we
use the elbow method, which estimates the sum of squared errors (SSE) for
several numbers of clusters. By plotting the number of clusters against the SSE,
we establish the optimal number of clusters when the SSE no longer decreases
much with an additional cluster, referred to as the ’elbow’ of the graph (Ketchen
and Shook 1996).

4.4.1.4 Generalizability

To determine whether our findings from the baseline model are also applicable
to other data, we simulate an additional dataset. For this, we use the simulator
for intermittent demand from the tsintermittent package in R, which simulates
time series based on three metrics: the average intermittent demand interval,
the squared coefficient of variation of non-zero demand periods, and the mean
demand of non-zero demand periods. This simulation assumes that arrivals
of non-zero demand weeks follow a Bernoulli distribution and that non-zero
demand weeks follow a negative binomial distribution. We calculate the aver-
age of the three metrics for all clusters identified with hierarchical clustering,
and use this to simulate an additional dataset with 3,000 products. All forecast-
ing methods are then applied to the simulated data, using the parameters that
performed best in the baseline model.

4.4.2 Formulation of hypotheses to adjust the baseline model

Following interviews with members of the logistics department at ConstructX
and initial analyses of the data, hypotheses are developed to refine the base-
line forecast. With regard to external factors influencing demand, the company
strongly believes that public holidays and working days per week affect de-
mand owing to the B2B nature of the business. For the same reason, industry-
specific variables relating to the growth of the construction industry and gross
domestic product (GDP) development might similarly affect demand. The con-
struction industry is also heavily influenced by weather conditions. However,
we are constructing 5- and 13-week ahead forecasts, and weather forecasts are
relatively unreliable so far ahead (Steinker et al. 2017). Instead, we use the
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month of the week being forecasted as a proxy for weather, for instance with
winter months representing cold and potentially snowy weather conditions.
This leads to our first hypothesis regarding external variables:

H1: Using external variables (public holidays as a binary variable, number
of working days per week, construction industry growth, GDP, and month
as a proxy for weather) as inputs for demand forecasting improves forecast
accuracy.

We obtained data on public holidays from Public Holidays Global1. Growth
in the construction industry was obtained from the index of production in
construction (in Germany) produced by the Organisation for Economic Co-
operation and Development (OECD)2. The same source was used for GDP data.

ConstructX sells its products through several different sales channels. When
investigating the order volume per week at a product level, it is noticeable that
two sales channels, namely retail (physical stores) and direct sales (by phone),
show different time series patterns from other sales channels (for an example
of one specific product, see Figure 4.3). Values are again indexed so that the
largest weekly demand across sales channels equals 1. This leads to the formu-
lation of our second hypothesis:

H2: Separately forecasting the ’retail’ and ’direct sales’ sales channels pro-
vides better forecast accuracy than a single forecast across all sales chan-
nels.

Estimating the effects of input variables is generally difficult with ML models
owing to their limited interpretability. Therefore, we test both hypotheses, and
specifically all external variables in hypothesis 1, separately to assess their effect
on forecast accuracy.

4.4.3 Sequential pattern mining as an input into forecasting

The SPADE algorithm for sequential pattern mining uses a dataset in vertical
ID-list format. In our application, each customer is given an identifier (ID), and
the database associates purchased products with this customer ID, along with a
time-stamp. A collection of products purchased by a customer is referred to as
an ’itemset’, which may consist of single or groups of items purchased together
at a specific time or in sequence. Itemsets with temporal sequences may take
the form (BC → AD), referred to as a temporal rule, meaning that a purchase
of products A and D is preceded by a purchase of products B and C (Zaki 2001).
Hereafter, we refer to the left-hand side of a rule as ’preceding products’ and
the right-hand side as ’predicted products’.

At a daily level, a customer’s purchases of products a few days apart may be
caused by product unavailability or deliveries from different warehouses, not
by the customer purchasing a product in relation to previously purchased prod-
ucts. To truly determine which products show sequentially correlated demand,
we aggregate purchases to a monthly level and measure sequential purchase

1https://publicholidays.de/
2http://www.oecd.org/
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Figure 4.3: Order volume (in pieces) per sales channel for one product

patterns in two consecutive months across the last seven months of our train-
ing data.

The aim of the SPADE algorithm is to find frequent itemsets and temporal
rules. The two main terms used to calculate frequency are ’support’ and ’con-
fidence’. Support refers to the number of customers who purchased a certain
itemset. Support of 50% for itemset (AB) means that 50% of all customers pur-
chased A and B in a month, while support of 50% for (B → A) means that half
of the customers purchased B and then A a month later. Confidence refers to
the likelihood of a temporal rule. Support of 50% and confidence of 10% for
rule (B → A) means that while half of the customers purchased B and then A

a month later, there is only a 10% likelihood that customers purchase product
A in the month after they purchased product B.

Running SPADE for two consecutive months across seven months results in
six different sets of temporal rules as outputs. As we want to use products’
historical demand and forecasts as inputs into forecasts for a related product,
we remove all rules where the right-hand side of a rule consists of more than
one product. As the six sets of temporal rules contains different rules for the
same product, we select the rule with the highest support. Before running
the SPADE algorithm, thresholds for support and confidence must be chosen.
Owing to the large number of products and often limited demand per product,
we decide that support for an itemset should be at least 0.1%. Higher values
result in almost no rules being found. For confidence, we test thresholds of
5%, 10% and 20%. The SPADE algorithm can be implemented in R using the
arulesSequences package. For a detailed description of the algorithm, see Zaki
(2001).
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4.5 results

In this section, we present the results from the baseline model, and from the
adjusted baseline based on the developed hypotheses in Section 4.4.2 and the
inputs of sequential pattern mining.

4.5.1 Baseline model

Of the three methods used by the company, SES performs best in terms of
forecast accuracy, while ARIMA outperforms all traditional forecasting meth-
ods, with MASE values of 0.64 and 0.65 for the 5- and 13-week ahead forecasts.
Table 4.1 summarizes the model’s performance for all applied forecasting meth-
ods using the ConstructX dataset, including the best-performing parameter for
each model.

After fitting the ARIMA models, a plot of the ACF of the residuals for two
example products (Product A with high demand, Product B with intermittent
demand) shows some remaining autocorrelation (Figure 4.4). However, the
Ljung-Box statistic (Ljung and Box 1978) shows a large p-value for both prod-
ucts, indicating white noise and hence good model fit. However, some of the
residuals of other products do not exhibit a white noise process, suggesting that
the selected ARIMA model does not provide a good fit. This is unfortunately
a disadvantage of using auto.arima, as it may not always produce a model
with better fit in comparison to manually selecting ARIMA model parameters,
which is infeasible to do across thousands of products. In the ARIMA models
chosen by auto.arima, only 2% of the 3,000 products use a seasonal ARIMA
model, indicating that the 52-week seasonality seen in the data might be driven
by just a handful of products. Moreover, for half of the products, an ARIMA
(0,0,0) model was fitted, indicating that the time series of these products resem-
bles white noise, suggesting that these are time series with no autocorrelation
(Hyndman and Athanasopoulos 2018).

Of the ML methods, SVR provides the highest forecast accuracy for Con-
structX, with a MASE of 0.57 for the 5-week ahead forecast and 0.58 for the
13-week ahead forecast. Out of all ML methods, the variable set containing the
last six demand lags and the 52

nd lag delivers the best MASE results. More-
over, all ML methods apart from RF result in extremely large MASE values
when run across all products. Closer examination of the data reveals that the
ML methods are heavily influenced by products with high demand, making it
difficult to predict the many zero-demand periods of other products correctly.
NN delivers no results: when run across all products, the algorithm does not
converge, and when run per product, it runs endlessly without providing any
results. When running the ML models per product, several products have to
be excluded. Owing to the large number of zero-demand periods for several
products, the response variable in the training data sometimes consisted of only
zero-demand weeks, resulting in an error when applying any ML method. RF
requires the response variable to have more than five unique values, further
excluding products from the forecast. Products that have to be excluded from
the ML forecast are replaced by results from ARIMA in order to compare all
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Figure 4.4: Baseline model: autocorrelation function of residuals (two example prod-
ucts)

3,000 products across methods. Overall, ARIMA, RF, SVR and JRNN produce
better forecast accuracy than SES. To test whether the forecast accuracy of
those four methods is significantly better compared to SES, a paired samples
Wilcoxon Test is used, as the difference in MASE is not normally distributed.
Results show that the improvement in MASE for ARIMA, SVR and JRNN are
statistically significant at p ⩽ 0.01.

To evaluate the SVR model’s ability to generalize, we apply SVR to both the
test and training sets. As we do not replace any products with ARIMA results
in this case, we receive a forecast for only around 2,000 products. The test data
shows a MASE of 0.67 and 0.68 for the 5- and 13-week ahead forecasts, while
the training data produces values of 0.59 and 0.59. As there is no large increase
in MASE between the training and test data, overfitting does not appear to be
a concern.

For the simulated data, SVR also shows the best performance in terms of
MASE (Table 4.1). The simulated data does not take account of autocorrela-
tion or seasonality in ConstructX’s original dataset as the simulation is purely
based on metrics related to the nature of intermittent demand of the company’s
products. Our results highlight the power of SVR in forecasting intermittent de-
mand, irrespective of other characteristics of the time series.
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Table 4.1: Results: baseline model

MASE (ConstructX) MASE (Simulated data)

Method
Best-performing
parameters ML set-up

Variable
Selection

5-week
ahead
forecast

13-week
ahead
forecast

5-week
ahead
forecast

13-week
ahead
forecast

SMA Order: 7 - - 0.87 0.91 1.15 1.21

SES1 - - - 0.68 0.68 0.99 1.05

Croston Alpha: 0.1 - - 1.28 1.30 1.04 1.09

ARIMA1 - - - 0.64 0.65 0.98 1.03

DHR K: 1 - - 0.70 0.73 0.99 1.05

TBATS1 - - - 0.84 0.90 1.05 1.12

RF Ntree: 500 PP Set 2 0.65 0.66 1.01 1.07

SVR Kernel: radial
Cost: 0.1
Gamma: 0.01

PP Set 2 0.57 0.58 0.90 0.95

NN Neurons: c(2,1) PP Set 2 Does not converge 1.08 1.15

JRNN Neurons: 1

Learning rate: 0.01

Max. iterations: 1000

PP Set 2 0.63 0.64 0.99 1.04

ERNN Neurons: c(6,4)
Learning rate: 0.01

Max. iterations: 1000

PP Set 2 0.79 0.81 1.17 1.21

1 Best parameters are automatically selected for each product.
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4.5.2 Baseline model with clustering

Applying hierarchical clustering and using the elbow method to determine the
optimal number of clusters results in a set of four different clusters. The first
consists of products with relatively stable demand, meaning little demand vari-
ability and no large demand peaks. Cluster two contains products with sev-
eral zero-demand periods and average demand variability. Cluster three con-
tains solely intermittent-demand products, meaning a very large number of
zero-demand periods, combined with very high demand variability. Lastly, the
fourth cluster contains products with almost no zero-demand periods.

To improve forecast accuracy, we test all forecasting methods on each cluster.
The results are presented in Table 4.2. For clusters 1, 2 and 4, SVR with the
same parameters as in the baseline model performs best. For cluster 3, ARIMA
provides better results. However, calculating the MASE across all clusters pro-
duces the same forecast accuracy as using SVR for all products, indicating no
improvement in accuracy through clustering. Furthermore, after clustering,
most ML methods still deliver extremely large MASE values when run across
all products in a cluster. Therefore, we apply hierarchical clustering a second
time, now using the average demand in non-zero demand periods in the last
52 weeks of the training data, as this seems to greatly affect the ML models’
ability to deliver lower MASE values when run across products. Again testing
all forecasting methods per cluster, ML methods run across all products in a
cluster now deliver MASE values below 1. However, SVR run per product with
variable set 2 is again the best-performing forecasting method for each clus-
ter, resulting in no improvement in MASE compared with the baseline model
without clustering.

Table 4.2: Results: baseline model (with clustering)

Cluster Method Parameters ML set-up
Variable
selection

MASE
(5-week
ahead
forecast)

MASE
(13-week
ahead
forecast)

1 SVR Kernel: radial
Cost: 0.1
Gamma: 0.01

PP Set 2 0.67 0.69

2 SVR Kernel: radial
Cost: 0.1
Gamma: 0.01

PP Set 2 0.62 0.61

3 ARIMA1 - - - 0.21 0.22

4 SVR Kernel: radial
Cost: 0.1
Gamma: 0.01

PP Set 2 0.59 0.58

All Best method per cluster 0.57 0.58

1 Best parameters are automatically selected for each product.
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Table 4.3: Results: adjusted baseline model (external variables)

5-week ahead forecast 13-week ahead forecast

Method External variables included
Baseline
MASE1 MASE ∆

Baseline
MASE1 MASE ∆

DR Public holidays 0.72
2

0.74 0.02 0.85 0.86 0.01

DR Working days per week 0.72
2

0.78 0.06 0.85 0.91 0.06

DR Construction growth 0.72
2

0.76 0.04 0.85 0.88 0.03

DR GDP 0.72
2

0.72 0.00 0.85 0.85 0.00

DR Weather approximation 0.64
3

0.82 0.18 0.65 0.84 0.19

SVR Public holidays 0.63
2

0.65 0.02 0.76 0.77 0.01

SVR Working days per week 0.63
2

0.68 0.05 0.76 0.81 0.05

SVR Construction growth 0.63
2

0.68 0.05 0.76 0.80 0.04

SVR GDP 0.63
2

0.65 0.02 0.76 0.78 0.02

SVR Weather approximation 0.57
3

0.62 0.05 0.58 0.64 0.06

1 Represents the MASE using ARIMA or SVR without including external variables.
2 Based on demand data from Germany only.
3 Based on all demand data.
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4.5.3 Adjusted baseline model

To investigate the effect of the external variables outlined in Section 4.4.2, we
use both ARIMA and SVR (with the best-performing parameters, variable set
and ML set-up from the baseline model) as these were the traditional and ML
forecast methods that resulted in the lowest MASE values in the baseline model.
In order to include external variables, we replace ARIMA with a regression
model with ARIMA errors, namely DR. Approximately 60% of the company’s
demand originates in Germany. To establish whether the external variables gen-
erally have a positive effect on forecast accuracy, public holidays, the number of
working days per week, construction market growth and GDP for Germany are
used to forecast demand from Germany for the 3,000 products. For construc-
tion market growth and GDP, the forecasts are computed using ARIMA, as ac-
tual values would not be known at the time of forecasting. Table 4.3 shows the
forecast accuracy of DR and SVR without external variables, referred to as the
baseline MASE, compared with the forecast accuracy with external variables in-
cluded. None of the external variables improves forecast accuracy when using
DR or SVR. Interestingly, the RF importance measure indicates a higher mean
decrease in accuracy for most external variables compared with the lagged
demand values. When using RF, the inclusion of external variables actually
improves forecast accuracy. Nevertheless, the MASE using RF is still larger
than for DR and SVR. As a result, no further analyses involving the external
variables are conducted, and H1 is rejected.

When forecasting sales channels separately, again SVR performs best, but
with slightly different parameters for each sales channel (Table 4.4). Overall,
the results show a MASE of 0.57 for both multi-step ahead forecasts, meaning
that the 13-week ahead forecast improves by 0.01. This supports H2, as the
difference in MASE is statistically significant at the at p ⩽ 0.01.

Table 4.4: Results: adjusted baseline model (sales channel)

Sales
channel Method Parameters ML set-up

Variable
selection

MASE
(5-week
ahead
forecast)

MASE
(13-week
ahead
forecast)

Retail SVR Kernel: radial
Cost: 0.1
Gamma: 0.01

PP Set 2 0.64 0.74

Direct
sales

SVR Kernel: radial
Cost: 0.1
Gamma: 0.01

PP Set 2 0.75 0.82

Other SVR Kernel: radial
Cost: 0.1
Gamma: 0.01

PP Set 2 0.66 0.68

All Best method per sales channel 0.57 0.57



80 using sequential pattern mining

4.5.4 Sequential pattern mining

Sequential pattern mining, as outlined in Section 4.4.3, results in the identifica-
tion of only a few temporal rules, despite the low support value chosen (0.1%).
This can be explained by the large number of intermittent-demand products
in the company’s product portfolio. To derive more rules to allow estimation
of the effect on forecast accuracy, SPADE was run on the full 22,000-product
dataset, which results in temporal rules for a set of 73, 118 and 157 products
for three different confidence levels (5%, 10%, 15%). Although this is a small
fraction of the whole dataset, the products for which temporal rules were iden-
tified are those with particularly high demand, where significant savings in
inventory cost, backorders and lost sales might be achieved through greater
forecast accuracy.

We forecast these products separately in order to assess whether the forecast
accuracy might be improved by using the preceding items as inputs into the
forecast. Once again, we use DR and SVR with the best-performing parame-
ters, variable selection and the ML set-up from the baseline model. Prior to
this, we calculate forecasts for the preceding products using SVR with a linear
kernel, as this produces the best results in terms of MASE for these products.
Table 4.5 shows the results for the three confidence levels. In order to estimate
improvements in forecast accuracy, the table also shows the MASE results with-
out including the preceding products in the forecast, referred to as the baseline
MASE. Using DR, the MASE shows a statistically significant improvement for
all three confidence levels when including the preceding products. The largest
improvement in the MASE (6.8%) is achieved with a confidence level of 10%.
For SVR, on the other hand, there is no improvement in forecast accuracy for
any of the three confidence levels. Thus, traditional time series forecasting
methods may be better able than ML methods to make use of the demand of
preceding products as inputs. When the former provides better forecast results
than the latter, sequential pattern mining may be beneficial. However, for Con-
structX, we conclude that sequential pattern mining should not be included in
the forecast.

4.5.5 Final model

In a last step, the findings from the (adjusted) baseline model are applied to the
full 22,000-product portfolio to estimate the overall improvement in forecast ac-
curacy compared with ConstructX’s existing forecast, which is approximated
using SES. Table 4.6 shows that the company might improve its forecast ac-
curacy by 11-13% by switching to an SVR forecasting method. Forecasting
demand per sales channel improves the MASE by an additional 4-8%. In the
3,000-product dataset, forecasting by sales channel only produced a marginal
improvement in the MASE. However, its application to the full dataset veri-
fies that forecasting by sales channel has a positive impact on forecast accuracy,
confirming H2. All improvements in MASE are statistically significant at the
1% confidence level.



4.
5

r
e

s
u

l
t

s
8

1

Table 4.5: Results: sequential pattern mining

5-week ahead forecast 13-week ahead forecast

Confidence
level

Number of
predicted
products Method

Baseline
MASE1 MASE ∆

Baseline
MASE1 MASE ∆

5% 157 DR 0.73 0.71 -0.02
**

0.76 0.74 -0.02
***

SVR 0.68 0.71 0.03 0.69 0.73 0.04

10% 118 DR 0.74 0.69 -0.05
***

0.76 0.72 -0.04
***

SVR 0.67 0.69 0.02 0.68 0.71 0.03

20% 73 DR 0.77 0.75 -0.02
*

0.84 0.81 -0.03
**

SVR 0.69 0.71 0.02 0.74 0.78 0.04

1 Represents the MASE without the inclusion of preceding items.
*p ⩽ 0.1, **p ⩽ 0.05, ***p ⩽ 0.01; statistical significance of difference in MASE is only tested for improvements in MASE

when using temporal rules.

Table 4.6: Results: final model (using 22,000-product dataset)

5-week ahead forecast 13-week ahead forecast

Forecasting step Method
Baseline
MASE1 MASE ∆

Baseline
MASE1 MASE ∆

Baseline model
(best performing method)

SVR 0.68 0.59 -0.09
***

0.76 0.65 -0.08
***

Adjusted baseline model
(forecast by sales channel)

SVR 0.68 0.56 -0.12
***

0.69 0.60 -0.13
***

1 Represents the MASE when using SES.
*p ⩽ 0.1, **p ⩽ 0.05, ***p ⩽ 0.01; statistical significance of difference in MASE is tested.
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The rationale for SVR performing substantially better than other methods for
this dataset is determined by investigating the particular products for which
SVR delivers better results. Comparing the average MASE to the number of
zero-demand periods per product across the 14-week forecast horizon reveals
that the difference in MASE between SVR and ARIMA becomes much larger
when the number of zero-demand periods increases (Figure 4.5). It seems that
the more zero-demand periods for a product, the better SVR performs com-
pared to ARIMA, indicating that SVR may be especially suited to intermittent-
demand products.

4.6 how forecast accuracy impacts inventory planning

This section presents our assessment of the impact of our forecasting models
compared with the company’s existing forecast. This is done through a simu-
lation of inventory across a 14-week planning horizon using the 5-week ahead
forecast. Since high forecast accuracy reduces excess inventory and inventory
shortages, the impact of the forecasting models are assessed in terms of the cost
of holding excess inventory and lost sales arising from inventory shortages.

4.6.1 Inventory planning model

We assume that ConstructX follows an (r,S) inventory policy, meaning that for
every r time period, the company places sufficient replenishment orders to re-
store the on-hand inventory to target level S (Silver et al. 1998). In our inventory
planning model, r is equal to 1, meaning that replenishment orders are placed
weekly. The order up-to level Sp,t for each product p in week t is determined
by the forecasted demand plus the safety stock that the company keeps to mit-
igate the risk of lost sales due to errors in the forecast. For simplicity reasons,
we assume that the lead time LT , meaning the time it takes for order replenish-
ments to arrive, is the same for each product. The lead time is set to four weeks
to truly estimate the effect of the 5-week ahead forecasts. With a lead time of
four weeks, the forecast can be used to place replenishment orders to ensure
sufficient inventory on-hand for the forecasted week.

An inventory shortage Ift,p occurs when there is insufficient inventory on
hand to fulfill demand and potential backorders from previous weeks. This
results in either lost sales or backorders requiring fulfillment in subsequent
weeks. Owing to the nature of business in the construction industry, customers
seldomly refrain from purchasing if products are unavailable. However, the
company did not provide data on the percentage of lost sales c, meaning the
fraction of purchases lost due to inventory shortage. Therefore, we test different
lost sales percentages, ranging from 10% to 50%. The fraction of the inventory
shortage not resulting in lost sales is equivalent to backorders. The cost of lost
sales L across the 14-week planning horizon can therefore be calculated as:

L =

T∑
t=1

P∑
p=1

Ift,p × sp ×m× c (4.2)
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Figure 4.5: Comparison of SVR and ARIMA

For confidentiality reasons, ConstructX only provided an indexed sales price
sp, with the index known only to the company. To estimate the cost of lost
sales, the indexed sales price is multiplied by an assumed profit margin m of
15%.

Inventory holding costs are associated with the costs of inventory storage,
such as facility, labor and insurance costs, and depend on the average inventory
on hand. Using the inventory at the beginning of week Ibt,p and at the end of the
week Iet,p, the average inventory on hand over the 14-week planning horizon
can be calculated, resulting in the following formula for total inventory holding
cost C:

C = h×
P∑

p=1

sp × (1−m)

T

T∑
t=1

Ibt,p + Iet,p

2
(4.3)

The inventory holding cost h is assumed to be 15% of the cost of goods sold.
Table 4.7 presents an overview of the model notation and input parameter

values. For a full explanation of the model, including all relevant equations,
see Appendix C.4.

4.6.2 Results of inventory planning model

A first simulation of the inventory reveals that SVR tends to under-forecast
demand, which may be very costly for a high lost sales percentage. See Ap-
pendix C.5 for the analysis relating to forecast bias. As different values of the
SVR parameters result in similar forecast accuracy, we choose a combination
that reduces the issue of under-forecasting while only marginally impacting on
forecast accuracy (cost = 1, gamma = 0.1). With the updated parameters, the
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Table 4.7: Notation table

Indices

t Time period (week), t,...,T (T = 14)
p Product in product portfolio, p,...,P (P = 22,000)

Parameter and variables

L Total cost of lost sales
C Total inventory holding cost
r Review period, r = 1 week
Sp,t Order up-to level for each product p in week t

LT Lead time to replenish inventory, LT = 4 weeks
Ibp,t Inventory of product p at the beginning of week t

Ifp,t Inventory shortage of product p at the end of week t

Iep,t Inventory of product p at the end of week t

sp Indexed sales price of product p
c Percentage of lost sales, c = {10%, 20%, 30%, 40%; 50%}
m Profit margin, m = 15%
h Inventory holding cost, h = 15%

MASE changes to 0.61 and 0.66 for the 5-week and 13-week ahead forecasts
using SVR for the 22,000-product dataset. For SVR forecasts by sales channel,
the MASE changes to 0.58 and 0.62. All results are still statistically significant
at the 1% confidence level. The simulation results with the updated parameters
for SVR are presented in Table 4.8, using SES to approximate the company’s
current forecast. The costs of lost sales are extrapolated for one year in order
to compare them with yearly savings on inventory holding costs. By simply
switching to an SVR forecasting method, the company might decrease its yearly
net cost, meaning the sum of the costs of inventory holding and lost sales, by
up to 5.2%. Using an SVR forecast by sales channel, the net cost might be re-
duced by up to 6.9%. However, with a high lost sales percentage, the net cost
savings reduce to zero, and are even negative for the forecast by sales channel.
This is attributable to the fact that despite the change in parameter values, the
SVR forecast still results in more products with an under-forecast than the SES
forecast (see Appendix C.5). In an actual application of our forecast model,
this forecast bias could be removed, for instance by adding the average forecast
error to the forecast. However, to do this, the forecast error should first be ob-
served over a longer period of time, which is outside the scope of our analysis
as our planning horizon is set to 14 weeks.

Overall, an increased lost sales percentage also increases the inventory hold-
ing cost. This is because the former lowers the number of backorders, which
must be fulfilled from inventory on hand in subsequent weeks, causing a larger
average inventory on hand. However, the effect of different lost sales percent-
ages on inventory holding costs is very minimal, as shown in Table 4.8.
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Table 4.8: Effect of forecast models on costs of lost sales and inventory holding

ConstructX’s existing
forecast (SES)

Baseline model
(best-performing method: SVR)

Adjusted baseline model
(forecast by sales channel: SVR)

Lost sales
percen-
tage

Cost of
lost
sales

Inventory
holding
cost

Net
cost

Cost of
lost
sales

Inventory
holding
cost

Net
cost

∆ Net
cost (%)

Cost of
lost
sales

Inventory
holding
cost

Net
cost

∆ Net
cost (%)

10% 1.7 9.9 11.6 2.0 9.0 11.0 -5.2 2.2 8.6 10.8 -6.9
20% 2.9 10.0 12.9 3.5 9.0 12.5 -3.1 3.8 8.6 12.4 -3.9
30% 3.8 10.0 13.8 4.6 9.0 13.6 -1.5 5.0 8.6 13.6 -1.5
40% 4.4 10.0 14.4 5.3 9.0 14.3 -0.7 5.8 8.6 14.4 0

50% 5.7 10.0 15.7 6.7 9.0 15.7 0 7.2 8.6 15.8 0.6
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4.7 conclusion

The increasing importance of accurate demand forecasts has given rise to a
large body of research. The development of advanced forecasting methods
and method selection are frequently discussed in the literature, while another
stream of research focuses on the inclusion of human judgement in forecasts.
Our study lies at the intersection of human judgement and method selection,
as we investigate how to automatically detect information typically supplied
by knowledge experts within a company. We also leverage this information
to forecast demand using several traditional and machine learning methods.
Using real-world data from a leading supplier in the construction industry, we
study the impact of our forecasting models in terms of forecast accuracy and
cost.

We find that of all the tested forecasting methods, SVR performs best in terms
of forecast accuracy. It improves the company’s existing forecast from a MASE
of 0.68 for a 5-week ahead forecast and 0.73 for a 13-week ahead forecast to 0.59

and 0.65 respectively. Further analysis also suggests that SVR works especially
well for intermittent-demand products. These findings are corroborated by ap-
plying the forecasting method to an additional simulated dataset based on the
intermittent-demand characteristics of the original dataset.

To further improve forecast accuracy, external variables (e.g., public holidays
and GDP) are included in the forecast, but these result in no improvement.
As our initial data analysis suggest that demand behavior differs across sales
channels, we use SVR to forecast demand per sales channel. This improves the
MASE to 0.56 (5-week ahead forecast) and 0.60 (13-week ahead forecast).

Products are often used in combination, particularly for suppliers in the con-
struction industry, and therefore show correlated demand. To leverage this
information for our forecast, we apply sequential pattern mining, which iden-
tifies products with correlated demand by finding sequential patterns. Our
results show that forecast accuracy improves when using this additional infor-
mation with a dynamic regression model. However, it does not improve the
results of the SVR model, which still delivers superior forecast accuracy. Con-
sequently, we conclude that sequential pattern mining is inappropriate for use
by ConstructX. However, for companies and datasets where traditional forecast-
ing methods, such as dynamic regression, deliver superior results to machine
learning methods, sequential pattern mining might be used to improve forecast
accuracy.

Most previous research has only assessed the impact of ML methods on fore-
cast accuracy. Therefore, in the last step of our research, we investigate the
impact of the 5-week ahead forecast on the costs of inventory holding and lost
sales at ConstructX. The results show that the company might decrease its net
costs by up to 6.9% with an SVR forecast by sales channel. However, this de-
crease in net cost diminishes with high percentages of lost sales, relating to
the fraction of inventory shortage resulting in loss of sales. This can be ex-
plained by the fact that our SVR forecast tends to under-forecast slightly more
often than the company’s existing forecast, approximated by an SES model. In
an actual application of our forecasting model, the under-forecast could be re-
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moved, enabling companies to decrease their net costs even with high lost sales
percentages.

While the results presented in this study depend largely on characteristics of
the dataset used, our analysis points to the potential benefits of using ML in
product demand forecasting, and especially SVR in the context of intermittent-
demand forecasting. We argue that ML methods may significantly outperform
traditional forecasting methods, as shown with both the original and simulated
datasets. However, when traditional methods provide better results, accounting
for correlated demand in the forecast by using sequential pattern mining may
be a lever to improve forecast accuracy.

Our research has some limitations. First, as actual historical demand data
were unavailable, historical sales data is used to approximate demand. This
may lead to inaccuracies in the analysis, as sales data do not accurately reflect
unfulfilled demand (i.e., lost sales) or the time of demand, for instance because
demand was fulfilled at a later point in time. Moreover, the impact of our fore-
casting model on the costs of inventory holding and lost sales is only assessed
over a short period of time. In order to remove potential forecast bias and truly
assess the impact of different forecast models, the application should be tested
over a longer time period.

Future research might further investigate the use of sequential pattern min-
ing in demand forecasting. Owing to the large number of intermittent-demand
products in the company’s dataset, our application of sequential pattern mining
identifies only a very small set of products with correlated demand. It would
be very interesting to see the application of sequential pattern mining, and its
subsequent use in demand forecasting, in a dataset with products with much
higher demand volumes, potentially resulting in a larger set of related prod-
ucts and larger improvements in forecast accuracy, possibly also when using
ML methods.
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C O N C L U S I O N A N D O U T L O O K

5.1 summary

The tremendous growth of data volumes from various sources has provided
companies with new opportunities to shape and optimize their supply chain.
Especially data from unstructured sources (e.g., social media, companies’ web-
sites, sensors) has the potential to provide companies with new insights to be
used in their decision-making. While other fields, such as marketing, have
already started to leverage insights drawn from data related to customer be-
havior, the use of such data in supply chain management (SCM) is novel, and
empirical insights on the topic remain scarce.

This dissertation aims to contribute to both academia and practice by provid-
ing insights into the value of customer behavior in demand forecasting in three
separate research papers. For this purpose, empirical data from two very differ-
ent industry research partners are leveraged. The first two research papers fo-
cus on demand forecasting at an online retailer in a business-to-consumer (B2C)
context, where customer behavior is observed through data collected from the
company’s online webshop. Specifically, customers’ interaction with product
sites is used as input to demand forecasting. The third research paper takes
place in a B2B setting in the construction industry, where customers resemble
other businesses whose behavior is investigated in the form of related product
purchases. The insights from our research are three-fold.

First, as one of the main contributions of this dissertation, all three research
papers highlight the value of customer behavior in demand forecasting. Chap-
ters 2 and 3 show that clickstream data can be useful to enhance short-term
demand forecasts. Specifically, Chapter 2 reveals that it is possible to very
accurately predict customers’ purchases right after they added a product to
their shopping cart. This enables companies to implement anticipatory actions
before customers place their orders, for instance, to optimize delivery times.
Chapter 3 shows that customer clickstream data can be powerful in improv-
ing product-level demand forecasts, especially for medium-demand products
as well as certain intermittent demand products. Similar to Chapter 2, ’add
to cart’ clicks are found to be a strong predictor for future demand. Chapter
4 highlights the value of using customers’ historical purchase patterns in de-
mand forecasting. Sequential pattern mining is applied to determine products
with related demand — a task for which the involvement of company experts
is usually required. Using the demand of these related products in the forecast-
ing process shows improvements in forecast accuracy when using time-series
models.

Second, this research highlights both the potential and limitations of machine
learning in demand forecasting. Chapters 2 and 3 reveal that machine learning
methods are able to leverage underlying behavioral patterns from customer be-
havior data to predict future demand. Especially Chapter 3 shows that machine

89



90 conclusion and outlook

learning methods are better able to capture information from customer click-
stream data compared to traditional time-series methods. Furthermore, Chap-
ters 3 and 4 show that support vector regression (SVR) is especially well-suited
to predict intermittent demand. However, these two chapters also outline that
traditional time-series models often provide very similar, in some instances
even better, forecast accuracy. In Chapter 3, for instance, dynamic regression, a
time-series forecasting method, outperforms machine learning methods when
forecasting the demand for high-demand products. As machine learning mod-
els are black-boxes that are difficult to interpret, time series methods, which
are much easier to understand, might be preferred in practice, especially if
their performance in terms of forecast accuracy is comparable.

Third, this dissertation highlights the importance of moving beyond metrics
that solely measure forecast accuracy. Translating improvements in demand
forecasts into the impact in an actual business application enables companies to
reveal both the true benefits but also limitations of demand predictions. Chap-
ter 2 shows that while it is possible to accurately predict customers’ future
orders, using those predictions to ship products in advance comes at a high
cost. This is due to the large share of product site visits not resulting in a pur-
chase, where small forecast errors cause a large number of products wrongly
shipped in advance. Order predictions could therefore better be leveraged for
other anticipatory processes, such as anticipatory picking and packaging. In
Chapter 3, measures of forecast accuracy indicate the potential of using click-
stream data in demand forecasting. However, the application of forecasts to
order picking in the warehouse reveals that clickstream data should, in fact,
not be used to forecast high-demand products. Lastly, while SVR outperforms
all other methods in terms of forecast accuracy in Chapter 4, the application to
inventory planning shows that time-series methods sometimes result in lower
inventory holding and lost sales cost, despite lower forecast accuracy. This is
because, for the dataset used, the SVR model tends to under-forecast, which
can be expensive if the cost of lost sales from stockouts is high. Most research
investigating machine learning models in forecasting do not typically assess
forecast bias.

It should be noted that the results of this dissertation are largely dependent
on the data quality provided. Especially for clickstream data, inaccurate track-
ing systems, or customers not being logged in can make it difficult for any
analytical model to truly understand customer behavior.

In terms of generalizability, we believe that the results from Chapters 2 and
3 are also applicable to other online fashion retailers. Whether clickstream data
in demand forecasting is also useful in other industries cannot be answered
with this research, as the purchase decision for non-fashion items might be very
different. The approach developed in Chapter 4 could equally be applied at any
company with assortments containing products with related demand, such as
the electronics industry, although this research does not answer whether the use
of related products could help improve forecast accuracy at other companies.
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5.2 outlook

This dissertation investigates different applications of advanced analytics to
draw insights from customer behavior to enhance demand forecasts. While the
insights discovered contribute to the literature on demand forecasting as well
as (big) data analytics in SCM, several areas for future research are suggested.

The insights from Chapters 2 and 3 mainly relate to the fashion industry.
While some studies have assessed the use of clickstream data for predictions in
other industries (e.g. Qi et al. 2019), future research should assess to what ex-
tent the value of clickstream data in predictions differs across industries. Also,
developing a deeper understanding of the purchase decision process for differ-
ent types of products (e.g., fashion, electronics, beauty) could provide further
insights to enhance prediction models.

As already outlined previously, sequential pattern mining could be a useful
tool in the demand forecasting process. While our research shows that using
related products as input to demand forecasting has the potential to improve
forecast accuracy, it would be very interesting to validate the use of the devel-
oped approach on a dataset with much more related products.

Across all three research papers, various prediction methods are tested to
determine the best-suited method for each dataset. Although machine learning
models are seen as black boxes, approaches have been developed to make them
more interpretable. Future research assessing why and when certain (machine
learning) methods outperform others would be extremely powerful to reduce
the effort needed to develop dataset- and application-specific prediction mod-
els.

In conclusion, the expected growth and future relevance of big data and ad-
vanced analytics stress the importance of developing efficient prediction mod-
els that can be used in practice. While this dissertation provides new insights
into specific topics in this field, there are many aspects that remain for future re-
search, of which just a few are presented above. We believe that the intersection
of customer behavior, predictive analytics, and SCM provides a very promising
agenda for future research.
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a.1 forecasting methods

To enable reproducibility of the results, Table A.1 presents all hyperparameters
tested for each forecasting method, and the R package and function used.

Table A.1: Overview of forecasting methods and hyperparameters used

Method Hyperparameters tested R package R function

RF Ntree: 50, 500*
Mtry: default, 4, 10*, 12

randomForest randomForest()

NN Neurons: 3, 5*, 7, c(2,1)
c(2,2), c(3,2)

neuralnet neuralnet()

SVM Kernel: linear, radial*
Cost: 0.1, 1*, 10

Gamma (only for radial
kernel): 0.001, 0.01*, 0.1

e1071 svm()

One-class SVM Kernel: radial
Gamma: 0.01*, 0.1
Nu: 0.1, 0.5, 0.6, 0.8*

e1071 svm()

LG - glmnet glm(family =
binomial)

K-means Nstart: 10

k: 1-10

stats kmeans()

*Hyperparameters resulting in the highest AUPR value for the respective forecasting method.

a.2 simulation algorithm for anticipatory shipping

Our simulation seeks to estimate the average delivery time, the number of or-
ders fulfilled from the warehouse closest to the customer, and the number of
orders wrongly shipped in advance without subsequent orders for orders from
a set of premium customers in a two-week planning horizon. Those three met-
rics are compared with and without the application of anticipatory shipping.
The latter is referred to as the baseline.

In the baseline, Ipo denotes the inventory of product p after order o has been
fulfilled. The starting inventory per product Ipo=0 is equal to the total demand
in the two weeks, which ensures that all orders can be fulfilled. To represent
a supply chain with specialized warehouses, the starting inventory is allocated
across warehouses so that each warehouse stocks an equal number of products.
I
pw
o denotes the inventory of product p in warehouse w after order o. If an or-
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der can be fulfilled from a warehouse that is closest to the customer, we assume
an average delivery time do of l1 = 8 h and l2 = 16 h otherwise. To compare
the baseline results to the results obtained from anticipatory shipping, we only
simulate those orders in the baseline which contain products that occur on the
list for anticipatory shipping, resulting in a total number of O orders simulated.
For confidentiality reasons, this number cannot be stated. Moreover, one order
is equal to the demand for one unit of a specific product. Orders are fulfilled
from four different warehouses so that for each order and corresponding de-
livery address, warehouses are ranked according to their distance. Ideally, as
many orders as possible are fulfilled from the closest warehouse. Table A.2
outlines the indices and parameters used while Figure A.1 demonstrates the
algorithm to simulate inventory and order fulfillment in the baseline.

begin
Set Ipo=0 := demand for product p during the whole planning horizon T ;

Set Ipwo=0 := I
p
o=0 if product p was allocated to warehouse w, set to 0

otherwise;
Set o := 1;
Sort all orders o in O by their purchase time in ascending order
for o in O do

/* Determine delivery time for order o. */

do =


l1, if I

pw
o−1 > 0 and w = closest warehouse to delivery

address of o
l2, otherwise

/* For the warehouse the order was supplied from, update
inventory. */

Ipwo = I
pw
o−1 − 1

end
end

Figure A.1: Algorithm 1 (baseline simulation)

To simulate the application of anticipatory shipping, the parameter t is intro-
duced, resembling the time of purchase or prediction, which is equal to the
time of the first add to cart click for the latter. The time horizon of two weeks
is therefore represented as t = 1, ..., 336 h. The additional parameter is needed
so that products from a prediction can be reserved for customers. Addition-
ally, a binary variable k is introduced, distinguishing whether an order is an
actual order (k = 0) or predicted order (k = 1). The starting inventory I

p
t=0

of each product is now equal to the total demand in the two weeks plus the
demand needed for anticipatory shipping. This starting inventory is allocated
to the four warehouses in the same manner as in the baseline simulation. If
a purchase is predicted, the product is shipped to the warehouse closest to
the delivery address of the prediction, which takes l3 = 8 h on average, and
reserved for a period of r = 48 h, unless the closest warehouse already stocks
the product. To simulate this, the notation of a reservation list is introduced,
which stores information on the customer, product, and closest warehouse for
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Table A.2: Notation table (baseline simulation)

Indices

w Inventory storage location (warehouse), w = {1,2,3,4}
p Product, p = 1, ..., P (P = 579)
o Customer product order, o = 1, ..., O

Parameter

I
p
o Inventory of product p after order o
I
pw
o Inventory of product p in warehouse w after order o
do Delivery time of order o
l1 Delivery time if an order can be fulfilled from the warehouse

closest to the customer, l1 = 8 h
l2 Delivery time if an order can be fulfilled from the warehouse

closest to the customer, l2 = 16 h

which a purchase was predicted, as well as the time m until which the product
is reserved. After the reservation period, the product is available again for all
customers. If a customer, for which a product has been shipped in advance,
purchases a product that has not arrived at the closest warehouse yet, then the
customer’s delivery time is equal to l1 = 8 h plus the time the order remains in
transit to the warehouse. As the actual delivery address for an order might be
different from the prediction, for instance, because a customer ordered prod-
ucts to a different delivery address in the past, a check is made whether the
warehouse from the predicted order on the reservation list is the same as the
warehouse closest to the delivery address of the actual order. Table A.3 out-
lines the indices and parameters used while Figure Figure A.2 demonstrates
the algorithm to simulate inventory and order fulfillment with an application
of anticipatory shipping.
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begin
Set Ipt=0 := demand for product p during the planning horizon T +

inventory for anticipatory shipping;
Set Ipwt=0 := I

p
t=0 if product p was allocated to warehouse w, set to 0

otherwise;
Set o := 1;
Set t := 1;
Sort all orders o in O by their purchase time (or time of prediction) in

ascending order
for ok in O do

/* Check for each order if t needs to be updated and update
starting inventory accordingly. */

if to ̸= t then
t = t+ 1

I
pw
t = I

pw
t + I

pw
t−1

end
if k = 1 and I

pw
t = 0 in the warehouse closest to the delivery address then

/* Calculate mo and add order to reservation list. */

mo = to + r

reservation = reservation+ ok

/* For the warehouse the prediction was supplied from,
update inventory. Add starting inventory in the
warehouse prediction was shipped to. */

I
pw
t = I

pw
t − 1

I
pw
t+r = I

pw
t+r + 1

else
if customer, product, and closest warehouse of the order are on the

reservation list and to < mo then
/* Determine delivery time for order, incl. potential

waiting time for products in transit and remove order
from reservation list. */

do = l1 + max{0,m− t− (r− l3)}

reservation = reservation− ok

else
/* Determine delivery time for the order. For warehouse

the order was supplied from, update inventory. */

do =

l1, if I
pw
t > 0 and w = closest warehouse to delivery

address of o
l2, otherwise

I
pw
t = I

pw
t − 1

end
end

end
end

Figure A.2: Algorithm 2 (anticipatory shipping simulation)
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Table A.3: Notation table (anticipatory shipping simulation)

Indices

w Inventory storage location (warehouse), w = {1,2,3,4}
p Product, p = 1, ..., P (P = 579)
o Customer product order, o = 1, ..., O
k Binary variable indicating whether o is an actual (k = 0) or

predicted order (k = 1)
t Time stamp (hour), t = 1, ..., T (T = 336)

Parameter

I
p
t Inventory of product p at time stamp t

I
pw
t Inventory of product p in warehouse w at time stamp t

ok Order of type k

do Delivery time of order o
to Time stamp of order o
l1 Delivery time if an order can be fulfilled from the warehouse

closest to the customer, lo = 8 h
l2 Delivery time if an order can be fulfilled from the warehouse

closest to the customer, l2 = 16 h
l3 Time to ship an order from one warehouse to another, l3 = 8 h
r Reservation period, r = 48 h
mo Time until which the product of a predicted order o is reserved

for a customer

Lists

reservation List containing information on product, customer and closest
warehouse for predicted orders
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b.1 forecast methods

To enable reproducibility of the results, Table B.1 presents all hyperparameters
tested for each forecasting method, and the R package and function used.

Table B.1: Overview of forecasting methods and hyperparameters used

Method Hyperparameters tested R package R function

DR Automatically selected forecast auto.arima()

RF Ntree: 500, 5000 randomForest randomForest()

SVR Kernel: linear, radial
Cost: 10

(-3:2)

Gamma: 10
(-3:1)

e1071 svm()

FFNN Neurons: 1, 2, 3, (1,1) neuralnet neuralnet()

JRNN Neurons: 1, 3, 4, 6

Learning rate: 10
(-5:-1)

Max. iterations: 1000, 2000

RSNNS jordan()

ERNN Neurons: 3, 6, (2,2), (6,6), (12,12)
Learning rate: 10

(-5:-1)

Max. iterations: 1000, 2000

RSNNS elman()

Naïve - forecast naive()

b.2 clustering

The time series features used for clustering based on demand characteristics
are given in Table B.2. These are a subset of the features outlined in Hyndman
et al. (2015). They aim to capture global information in time series, and can be
computed using the tsmeasures package in R. As the function identifies no sea-
sonal component for many of the intermittent-demand products, the features
concerning season are not computed. For further explanation of the features
used, see Hyndman et al. (2015).
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Table B.2: Features for time-series clustering using demand characteristics

Feature Description

Lumpiness Variance of annual variances of remainder

Entropy Spectral entropy

ACF1 Autocorrelation (first order)

Lshift Level shift using a rolling window

Vchange Change in variance

Cpoints Number of crossing points

Fspots Flat spots (using discretization)

Trend Strength of trend

Linearity Strength of linearity

Curvature Strength of curvature

Spikiness Strength of spikiness

KLscore Kullback-Leibler score

Change.idx Index of the maximum KL score

b.3 initial data analyses

In the 3,000-product dataset, very few products drive most of the demand (Fig-
ure B.1). Moreover, analysis of orders per weekday shows that the highest order
volumes are placed on Sundays, and volumes decrease continuously over the
following weekdays (Figure B.2).

To assess possibilities for combining clickstream variables in forecasting, we
assess pairwise correlations (Table B.3). As most variables have a high correla-
tion (pearson correlation (r)> 0.7), as can be expected from such a dataset, there
are limited possibilities for variable combinations.

b.4 simulation algorithm for order picking

In Figure B.3, we outline the algorithm used to simulate order picking. The list
of indices and parameters can be found in Table 3.1 in chapter 3.
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Figure B.1: Demand distribution across products

Figure B.2: Order volume across weekdays
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Table B.3: Pairwise correlations (numerical variables)

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1.00

2 0.55 1.00

3 0.55 0.99 1.00

4 0.57 0.99 0.98 1.00

5 0.17 0.23 0.24 0.26 1.00

6 0.18 0.26 0.28 0.29 0.78 1.00

7 0.67 0.82 0.80 0.84 0.21 0.23 1.00

8 0.54 0.91 0.91 0.91 0.22 0.25 0.79 1.00

9 0.57 0.96 0.95 0.97 0.26 0.29 0.85 0.89 1.00

10 0.18 0.25 0.26 0.27 0.67 0.66 0.23 0.24 0.32 1.00

11 0.03 0.04 0.04 0.05 0.10 0.11 0.04 0.04 0.09 0.35 1.00

12 0.56 0.99 0.98 1.00 0.25 0.28 0.83 0.91 0.96 0.26 0.05 1.00

13 0.54 1.00 0.99 0.97 0.21 0.25 0.81 0.91 0.95 0.24 0.04 0.97 1.00

14 0.53 0.91 0.91 0.91 0.22 0.25 0.78 0.84 0.89 0.24 0.04 0.91 0.90 1.00

15 0.53 0.98 0.97 0.96 0.22 0.24 0.80 0.89 0.94 0.24 0.04 0.97 0.98 0.89 1.00

16 0.54 0.98 0.98 0.97 0.23 0.26 0.80 0.9 0.95 0.25 0.04 0.97 0.98 0.87 0.93 1.00

17 0.06 0.08 0.09 0.09 0.29 0.26 0.07 0.08 0.09 0.25 0.03 0.09 0.08 0.08 0.08 0.08 1.00

18 0.06 0.06 0.06 0.06 0.32 0.23 0.06 0.05 0.07 0.21 0.03 0.06 0.05 0.06 0.05 0.05 0.13 1.00

19 0.71 0.77 0.77 0.78 0.23 0.26 0.84 0.74 0.78 0.24 0.04 0.77 0.76 0.73 0.74 0.75 0.08 0.07 1.00

20 0.71 0.76 0.77 0.78 0.24 0.26 0.84 0.74 0.77 0.24 0.04 0.77 0.75 0.73 0.74 0.75 0.08 0.07 0.99 1.00

21 0.72 0.76 0.76 0.78 0.25 0.27 0.85 0.74 0.78 0.25 0.04 0.78 0.74 0.73 0.74 0.75 0.08 0.08 0.99 0.99 1.00

22 0.73 0.72 0.71 0.74 0.22 0.24 0.92 0.7 0.75 0.24 0.04 0.73 0.70 0.69 0.69 0.70 0.07 0.07 0.93 0.92 0.93 1.00

23 0.66 0.71 0.71 0.72 0.22 0.24 0.79 0.78 0.73 0.24 0.04 0.72 0.70 0.67 0.69 0.70 0.07 0.07 0.92 0.92 0.92 0.86 1.00

24 0.72 0.75 0.75 0.77 0.24 0.26 0.86 0.74 0.79 0.28 0.07 0.77 0.74 0.72 0.73 0.74 0.08 0.08 0.98 0.98 0.98 0.94 0.91 1.00
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begin
Sort okth by their purchase time in ascending order;
Set r := 1; m := 1; t := 1, h := 0;
Set c := number of available bags resulting from dataset and capacity level used;
Set Rkt := Fkt and sort products k in Rkt by forecasted volume in descending order;
Set k := 1 and sort products k in Ikth so that they have the same order as in Rkt
/* Initialize starting inventory in PS. */

while
∑K

k Ikth < c do
if Ikth < m and Rkt > 0 then

Ikth = Ikth + 1

Rkt = Rkt − 1

else
k = k+ 1

end
end
/* Check picking time for product order. */
for okt in O do

if Ikth > 0 then
zo = 1

Ikth = Ikth − 1

else
zo = 0

/* Remove from Fkt if product was forecasted. */
if Fkt > 0 then

Rkt = Rkt − 1

end
/* Decide on internal replenishment. */
if h reaches the next hour without any further order arriving then

Ikth = Ikth + Ikt,h+1

h = h+ 1

Sort products k in Rkt by forecasted volume in descending order
Sort products k in Ikth so that they have the same order as in Rkt

k = 1

while
∑K

k Ikth +
∑K

k Ikt,h+1 < c do
if Ikth > 0 and

∑t
t−2 okt = 0 then

k = k+ 1

else
/* If there are less than 3 units in PS and the product has

a forecasted volume. */

if
∑h+1

h Ikth < m and Rkt > 0 then
Ikth = Ikth + Ikt,h+1

Rkt = Rkt − 1

else
k = k+ 1

end
end

end
end
/* End of day, update remaining forecast with forecast for next day.

*/
if t reaches the next day without any further order arriving then

t = t+ 1

Rkt = Fkt − Ikth − Ikt,h+1

end
end

end

Figure B.3: Simulation algorithm (order picking)
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c.1 forecasting methods

To enable reproducibility of the results, Table C.1 presents all (hyper-)parameters
tested for each forecasting method, and the R package and function used. To
identify the best-performing parameters, cross-validation across 14 weeks is
performed.

ML methods are run both across all products (AP) at once, to make use of
their ability to learn across time series, as well as per product (PP). Figures C.1
and C.2 show examples of using the last six demand lags for a 5-week ahead
forecast when applying ML methods per product and across products. Here,
Xt is equal to the lagged demand in week t, representing the input variables
for the ML methods, and Yt is the demand in week t, representing the response
variable.

Table C.1: Overview of forecasting methods and (hyper-)parameters used

Method Parameters tested R package R function

SMA Order: 6, 7, 8 forecast ma()

SES Automatically selected forecast ses()

Croston Alpha: 0.01, 0.1, 0.2 forecast croston()

ARIMA Automatically selected forecast auto.arima()

DR Automatically selected forecast auto.arima()

DHR Fourier term K: 1, 2 forecast auto.arima()

TBATS Automatically selected forecast tbats()

RF Ntree: 500, 5000 randomForest randomForest()

SVR Kernel: linear, radial
Cost: 0.001, 0.01, 0.1, 1

Gamma: 0.001, 0.01, 0.1

e1071 svm()

NN Neurons: c(2,1), c(2,2) neuralnet neuralnet()

JRNN Neurons: 1, 3, 5

Learning rate: 0.01, 0.1, 0.2
Max. iterations: 1000, 2000

RSNNS jordan()

ERNN Neurons: c(3,2), c(6,4)
Learning rate: 0.01, 0.1, 0.2
Max. iterations: 1000, 2000

RSNNS elman()
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Figure C.1: Training machine learning methods per product (5-week ahead forecast
with variable set 1)

Figure C.2: Training machine learning methods across products (5-week ahead forecast
with variable set 1)
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c.2 clustering

The time-series features used for clustering are given in Table C.2.

Table C.2: Features for time series clustering

Feature Description

CV Coefficient of variation, measuring the variance in demand height

ADI Average demand interval, measuring the average interval between two
periods of non-zero demand

Nonzero Number of non-zero demand periods

Skewness Measure describing the symmetry of the data

Kurtosis Peak measure, characterizing the tail extremity of a distribution

c.3 data simulation

To test the generalizability of the forecasting methods used, we apply them to
a simulated dataset. The new data are simulated using the average demand
interval (ADI), the squared coefficient of variation (CV2), and the mean level
of demand in non-zero demand periods (Level) of the original data from Con-
structX. For each cluster constructed with hierarchical clustering, the average
of these three metrics across all products is calculated (Table C.3) and used
to simulate exactly the same number (N) of time series, resulting in a dataset
containing 3,000 products.

Table C.3: Assessment of clusters for data simulation

Cluster N ADI CV2 Level

1 1,433 1.88 0.77 6,027

2 935 8.29 0.92 2,772

3 550 17.61 2.12 1,331

4 81 1.22 3.08 1,669

c.4 inventory planning model

We assume that ConstructX follows an (r,S) inventory policy, meaning that
every r time periods, the company places sufficient replenishment orders to
restore the on-hand inventory to target level S. An overview of the model
notation can be found in Table C.4.

In our inventory planning model, r is equal to 1, meaning that replenishment
orders are placed weekly. The order up-to level Sp,t for each product p in week
t is determined by the forecast demand ŷp,t plus the safety stock SSp:

Sp,t = ŷp,t + SSp (C.1)
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SSp = z
√
σ̂2
pLT (C.2)

Parameter z is the standard score, which is based on the company’s service
level. For a 98% alpha-service level, z is equal to 2.05. σ̂2

p refers to the variance
of the forecast error. Equations (C.3)-(C.6) outline how inventory develops over
time:

Ibp,t = Iep,t−1 + xp,t−LT (C.3)

Ifp,t = |min
{
0, Ibp,t − yp,t − Ifp,t−1

}
| (C.4)

Iep,t = max
{
0, Ibp,t − yp,t − Ifp,t−1 × (1− c)

}
(C.5)

Idp,t = Iep,t +

t=t−LT∑
t=t−1

xp,t (C.6)

Equation (C.3) ensures that the inventory at the beginning of the week Ibp,t is
equal to the inventory at the end of the previous week Iep,t−1 plus the replen-
ishment order xt−LT placed earlier with respect to lead time LT . We assume
that replenishment orders are always available at the beginning of the week.
An inventory shortage Ifp,t occurs when the inventory at the beginning of the
week is insufficient to fulfill the weekly demand and any inventory shortage
from the previous week (C.4). An inventory shortage results in either lost sales
or backorders to be fulfilled in subsequent weeks, and is determined by the
lost sales percentage c, which is assessed for a range from 10% to 50%. The
inventory at the end of the week Iep,t is calculated by subtracting the weekly
demand yp,t and backorders from the previous week from the inventory at the
beginning of the week (C.5). Lastly, the inventory position is defined as the
amount of inventory on hand at the end of the week plus any inventory from
outstanding replenishment orders (C.6).

If the inventory position at the end of the week is insufficient to fulfill the
forecasted demand ŷp,t during lead time LT and review period r, the required
safety stock and the current inventory shortage, then a replenishment order
xp,t is placed (C.7):

xp,t = max

{
0,

t=t+r+LT∑
t=t+1

ŷp,t + SSp + Ifp,t × c− Idp,t

}
(C.7)

At the beginning of our 14-week planning horizon, the forecast error is not yet
known. Therefore, we simulate an additional 14 weeks of inventory prior to our
planning horizon, referred to as the initialization period. This is necessary to
estimate the safety stock, inventory shortage, and inventory at the end of week
t = 0. The forecast error used to estimate the safety stock is therefore calculated
based on the demand and forecast during the initialization period. As no data
on inventory or backorders were provided by ConstructX, we assume that there
was no inventory shortage at the start of the initialization period (C.8), and set
inventory at the end of week before the initialization period equal to the safety
stock (C.9).

Ifp,t=−T = 0 (C.8)

Iep,t=−T = SSp (C.9)
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To assess the impact of different forecasting methods, the total cost of lost sales
L and total inventory holding cost are calculated across the 14-week planning
horizon with:

L =

T∑
t=1

P∑
p=1

Ift,p × sp ×m× c (C.10)

C = h×
P∑

p=1

sp × (1−m)

T

T∑
t=1

Ibt,p + Iet,p

2
(C.11)

Parameter sp reflects the indexed sales price, the index being known only to
ConstructX. The profit margin m is assumed to be 15%. Lastly, the inventory
holding cost h is assumed to be 15% of the cost of goods sold. In a last step, the
total cost of lost sales is extrapolated to one year in order to compare it with
the total inventory holding cost.

Table C.4: Notation table

Indices

t Time period (week), t = −T ,...,T (T = 14)
p Product in product portfolio, p,...,P (P = 22,000)

IParameter and variables

L Total cost of lost sales
C Total inventory holding cost
r Review period, r = 1 week
Sp,t Order up-to level for each product p in week t

σ̂2
p Variance of the forecast error for product p during the initialization

period
LT Lead time to replenish inventory, LT = 4 weeks
α alpha-service level, α = 98%
z Standard score associated with alpha-service level of 98%, z = 2.05

Ibp,t Inventory of product p at the beginning of week t

Ifp,t Inventory shortage of product p at the end of week t

Iep,t Inventory of product p at the end of week t

Idp,t Inventory position of product p at the end of week t

ŷp,t Forecast for product p in week t

yp,t Demand for product p in week t

xp,t Replenishment order placed for product p at the end of week t

sp Indexed sales price of product p
c Percentage of lost sales, c = {10%, 20%, 30%, 40%; 50%}
m Profit margin, m = 15%
h Inventory holding cost, h = 15%
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c.5 forecast bias

Forecast bias is the tendency of a forecast to either under- or over-forecast. In
the case of under-forecasting, the forecast values are on average lower than the
actual values. A common measure to quantify forecast bias is the tracking sig-
nal. From the various formulae available to measure a form of tracking signal,
we choose to calculate the ratio of the cumulative sum of forecast errors to their
mean absolute deviation, as outlined by (Venkataraman and Pinto 2016). Ac-
cording to Ravi (2014), a typical rule of thumb is that for tracking signals in the
range of ±4, a forecast is assumed to work correctly, with no bias. To be more
conservative, we used a range of ±3 to flag forecast bias. According to Valen-
tini and Dietterich (2004), the cost and gamma parameters of SVR may have a
large impact on forecast bias. Specifically, low values may cause forecast bias.
Increasing the two parameters to the next higher number that we test (Table
C.1), i.e., increasing cost from 0.1 to 1 and gamma from 0.01 to 0.1, improves
the forecast bias tremendously with no great impact on forecast accuracy. Table
C.5 shows the impact of the change in SVR parameters on forecast bias, as well
as the forecast bias when using SES.

Table C.5: Evaluation of forecast bias

Forecast
method Parameters

Products with an
under-forecast

Products with an
over-forecast

Products without
forecast bias

SES Automatically
selected

21% 31% 48%

SVR Kernel: radial
Cost: 0.1
Gamma: 0.01

46% 20% 34%

SVR Kernel: radial
Cost: 1

Gamma: 0.1

32% 22% 46%
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