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A B S T R A C T

This dissertation investigates different applications of data analytics in supply

chain planning. In the last years, data analytics became more important, be-

cause of the increase of computational power and the larger availability of data.

Data analytics is used in various domains to improve operations performance,

increase customer satisfaction and revenues. However, both the research and

the application of data analytics in supply chain management is still lacking

behind other industries.

We1 analyze the potential of data analytics in the field of supply chain plan-

ning in three exemplary fields: demand forecasting, partial defection prediction and

price discrimination. In addition, we demonstrate how to deal with three com-

mon challenges in the field of data analytics: the manual effort for method selection

and hyperparameter tuning, the difficult interpretability of machine learning methods

and the risks associated with data collection through randomized experiments.

In the first paper, we develop a method selection approach in the field of in-

termittent demand prediction. Our model combines high predictive performance

with automation and calculation efficiency. Unlike common practice, the pre-

diction method gets automatically chosen for each data set without any manual

selection. Our results are stable across three different data sets that come from

different sources but all contain intermittent demand time series. We showcase

the impact of the proposed forecasting approach with a warehouse operation

simulation. We thereby prove the financial benefit with empirical data.

In the second paper, we deal with partial defection prediction in a business-to-

business environment in the logistics industry. The predictions must combine

predictive performance with interpretability and profit maximization. Our

model uses a large variety of customer-based and time-series-based features

to predict the probability of partial defection for each customer. We use a data

permutation approach to make the best performing, black-box models inter-

pretable. Furthermore, we use a profit assessment to identify the method that

leads to the highest revenue through successful retention actions.

In the third paper, we study price sensitivity prediction. We do not use any

randomized experiments, because the risk of loosing customers through such

experiments is too high. Thereby, we address the challenge of data availability

1The term “we” refers to the authors of the respective chapters as denoted at the beginning

of each chapter. For the abstract, this refers to the authors of Faber and Spinler (2019a,b,c).

v



for analytics. We find that we are able to circumvent the non-availability of

experimental data by using historical observations.

The findings from all three research areas show significant improvement po-

tential regarding the predictive performance under the special conditions that

we study (automation, interpretability, data availability). We use empirical data

from different research partners to assess the financial impact of the proposed

methods. Overall, we demonstrate the effectiveness and value of data analytics

in supply chain planning.
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1
I N T R O D U C T I O N

1.1 big data analytics

Big data analytics has significantly gained in importance over the last years

(Wang et al. 2016), mainly because of two reasons: First, the amount of avail-

able data is much bigger nowadays. Data is even considered to be the new oil

(Yi et al. 2014) that drives economic value. Second, there is now a broad un-

derstanding of the opportunities that arise through big data analytics and lead

to value creation (Brown et al. 2011), more transparency (Vassakis et al. 2018),

or better informed decision making (Chen and Zhang 2014). Several scholars

highlight that big data analytics becomes more and more popular in academia

as well as in the industry (Arora and Malik 2015, Vassakis et al. 2018). A recent

report from the management consulting firm McKinsey & Company finds the

highest potential value through analytics in marketing and sales, and supply chain

management and manufacturing (Chui et al. 2018 ). According to their insights,

future use cases cover areas such as price and promotion, predictive maintenance,

sales and demand forecast or partial defection reduction.

Although the concepts of big data and data analytics are often closely linked

to each other, it is important to understand the difference between both fields.

Chen and Zhang (2014) define the term big data as very huge data sets with

a great diversity of data types that makes it difficult to analyze with traditional

methods. Laney (2001) establishes the common concept of the 3V’s that define

big data: volume, velocity and variety. Other scholars add further characteristics

such as variability, veracity or visualization (Vassakis et al. 2018). These data sets

consist of structured and unstructured data from different sources (e.g., sensors,

social media sites) (Sivarajah et al. 2017).

Data analytics or data science or data mining is an approach to gain knowledge

from data (Vassakis et al. 2018). The underlying concept dates back to the

1950’s when first tools were introduced to discover patterns in data (Vassakis

et al. 2018). The focus increased since the mid-2000’s with the advent of big data.

Davenport (2013) distinguishes three types of analytics: 1) descriptive analytics

to extract useful information from past data, 2) predictive analytics to predict

future developments based on patterns in the data, and 3) prescriptive analytics

to provide recommendations for decision-making. Among the most common

1



2 introduction

data analytics methods are machine learning techniques (Chen and Zhang 2014).

These methods allow to extract patterns from data and thereby learn relation-

ships that help to forecast future events (Witten et al. 2016). They are used in

cases when either human expertise is not present or the human expertise can-

not be easily explained (e.g., in the case of speech recognition) (Alpaydin 2009).

Alpaydin (2009) states that there are several research areas such as statistics,

signal processing and pattern recognition that are combined in machine learn-

ing. Its application areas cover various domains with topics such as medical

diagnosis or credit risk prediction. Davenport and Ronanki (2018) distinguish

between three application areas: Process automation, gaining insight through

data analysis, and engaging with customers and employees.

1.2 challenges of big data analytics

The application of big data analytics also comes with challenges. Arora and

Malik (2015) state that it is still difficult to extract meaningful information from

big data. Sivarajah et al. (2017) adapt the findings from Zicari (2014) and Ak-

erkar (2013) and present three areas of challenges based on the data lifecycle:

data challenges (related to the characteristics of the data), process challenges (chal-

lenges to process the data) and management challenges (challenges to understand

and analyze the data).

The data challenges are directly linked to the big data concept (volume, variety,

veracity, velocity, variability and visualization) and describe how difficult it is

to deal with such data sets. One needs to combine data from different sources

with different types of data which can be structured as well as unstructured.

The process challenges are structured along the different process steps (1. data

acquisition and warehousing, 2. data mining and cleaning, 3. data aggregation

and integration, 4. data analysis and modelling, 5. data interpretation). Impor-

tant factors are the collection of the right and meaningful data in a cost efficient

manner, the selection of the right analytics approach to deal with large and

diverse data sets and finally the interpretation of the outcomes of the analysis.

Zhou et al. (2017) highlight the common trade-off between highly transparent

and interpretable models and the ones that lead to higher predictive perfor-

mance but are less accessible. They propose that one should not only focus

on the accuracy evaluation measures but also take other factors such as inter-

pretability, efficiency or stability into consideration.

The management challenges cover aspects such as privacy, security, data gover-

nance, data and information sharing, cost and data ownership. Organizations
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need to make sure that the infrastructure is compliant with all security and

privacy standards. Vassakis et al. (2018) further highlight that culture and ca-

pabilities in an organization are other crucial factors that can hinder successful

data analytics.

1.3 big data analytics in supply chain management

In supply chain management, statistics and operations research are commonly

used to improve supply chain performance (Tiwari et al. 2018). In contrast,

the research in big data analytics in supply chain management only increased

significantly since 2014 and the utilization in practice is still low (Waller and

Fawcett 2013, Nguyen et al. 2018). Among the reasons for the low usage rate are

the lack of suitable data (Schoenherr and Speier-Pero 2015), the low acceptance

rate (Gunasekaran et al. 2017) and missing skill sets (Schoenherr and Speier-

Pero 2015).

The main benefits of big data analytics in supply chain management cover

better decision making, higher efficiencies, higher transparency and flexibility

of supply chain processes as well as enhanced negotiation power towards sup-

pliers and customers (Schoenherr and Speier-Pero 2015).

Nguyen et al. (2018) structure the existing research along the supply chain

functions and find relevant work in procurement, manufacturing, transporta-

tion, warehousing and demand management. Wang et al. (2016) distinguish

between strategic and operational supply chain decisions. The first cover strate-

gic sourcing, supply chain network design and product design while the latter

is similar to the described structure of Nguyen et al. (2018) that follows the

supply chain functions.

Tiwari et al. (2018) identify future application prospects of big data analytics

in supply chain planning in the fields of responsive and agile supply chains,

reliable supply chains, sustainability and proactive risk response. A joint publi-

cation of IBM and DHL states that the potential of data analytics in the logistics

industry is large, especially because of the network structure in which more

efficient collaboration can unlock significant value (Gesing et al. 2018). As on-

time and in-full shipments are crucial for its customers, DHL uses machine

learning to predict delays and then initiate respective mitigation actions (e.g.,

choose a different airline carrier). New tools in demand prediction help to pre-

dict demand spikes and plan accordingly. A study by McKinsey & Company

lists analytic capabilities among the 10 most prominent technologies to impact

future warehouse operations (Dekhne et al. 2019). According to Columbus,
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Louis (2019) machine learning will impact supply chain management in ten

different areas that span from improvements in scheduling over routing opti-

mization and lower inventories to higher visibility and lower fraud rates. In

many of these cases, demand forecasting is the enabler. The higher the forecast

accuracies get, the higher are the efficiency gains in the supply network.

1.4 motivation behind the dissertation

We1 contribute to the existing literature by applying data analytics in different

fields.

Although data analytics becomes more popular both in academia and the

industry, various research gaps subsist. Both, the supply chain functions in dif-

ferent industries, as well as the logistic industry itself, are not among the most

popular research areas. Also, most scholars focus their research on business-to-

consumer (B2C) cases. As business-to-business (B2B) relations are different in

many terms (e.g., higher revenues per customers, longer relationships, higher

value transactions), it is important to assess these independently. Another lim-

itation of most of the existing research is the focus on predictive performance

without considering other important goals such as interpretability or ease of

implementation. We add to these gaps and provide insights regarding new ap-

plication areas. In addition, we use empirical data from different research part-

ners to translate the theoretical findings into evidence of the monetary value of

the proposed prediction methods.

1.5 structure of this work

The dissertation builds on three papers that cover three different application

areas of data analytics: intermittent demand forecasting, partial defection prediction

and price discrimination. We further address a specific challenge in the field of

data analytics in each of the papers: the manual effort for method selection and

hyperparameter tuning, the difficulty of interpretation of machine learning methods

and the risks associated with data collection through randomized experiments. The

structure of this dissertation follows these three papers. While the first paper

deals with a business-to-consumer (B2C) perspective, the other two papers cover

business-to-business (B2B) use cases. In addition, we study a traditional supply

1The term “We” refers to the authors of the respective chapters as noted at the beginning of

each chapter.
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chain challenge at an e-commerce firm in the first paper but focus on the logistics

industry in the other two papers.

• In Chapter 2, we study intermittent demand prediction as the basis for effi-

cient warehouse operations. First, we use three different data sets to com-

pare the predictive performance of various intermittent demand predic-

tion methods including traditional statistical methods and machine learn-

ing methods. Second, we analyze the effect of time series decomposition

and input data clustering on the predictive performance. Third, the vari-

ous base predictions are combined with each other to further increase the

forecast accuracy. We test simple combinations using the mean, mode or

minimum of several forecasts as well as a learned weighted aggregation

of different forecasts and a method selection scheme that selects a pre-

diction method individually for each time series based on the respective

time series characteristics. All combinatorial methods come with the ad-

vantage that no method needs to be selected manually. The last approach,

method prediction, reduces the calculation time compared to the combi-

natorial methods, because only the chosen prediction method needs to be

trained. Lastly, we use an empirical data set to evaluate the impact of

improved demand forecasts on the warehouse operations performance.

• In Chapter 3, we develop a partial defection prediction method that com-

bines high predictive accuracy with interpretability and profit optimiza-

tion. We focus on a specific case, because we study partial defection in

a continuous service delivery setting. Partial defection occurs when cus-

tomers shift significant demand to another provider. This is a common

challenge in the logistics industry, because the competition is high and

the providers are interchangeable. Due to the fact that not every cus-

tomer is equally important, we take the profitability of each customer

into account. The outcome of our model is used to carry out retention

actions by sales agents. These agents are interested to understand the rea-

sons why customers are predicted to be defectors. Therefore, we compare

the predictive performance of interpretable models vs. black-box models

and then test different methods to make the best performing black-box

models interpretable.

• In Chapter 4, we compare different prediction methods to understand

which customers are price sensitive and which are not to discriminate in

prices accordingly. We use a broad range of features including price infor-

mation to predict how customers react to specific price increases at a cer-
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tain point in time. Thereby, one can choose different pricing strategies for

different customer groups depending on their price sensitivites. In order

to avoid the risk of loosing customers through randomized experiments,

we do not use any price experiments. Instead, we use historical data to

study past reactions to different price change levels and train models to

make predictions based on new data at later points in time. We further

simulate a randomized experiment with the historical data to assess the

financial impact of the proposed pricing discrimination scheme.

Chapter 5 contains the summary of the findings of all three main chapers in-

cluding managerial implications and the major contributions in theory and

practice. We further discuss potential avenues for relevant future research.



2
A N E M P I R I C A L A S S E S S M E N T O F M E T H O D S E L E C T I O N

F O R I N T E R M I T T E N T D E M A N D P R E D I C T I O N 1

2.1 introduction

Supply chain management relies on forecasting and planning for demand (Fildes

et al. 2009). Moon et al. (2003) argue that accurate demand forecasts improve

customer satisfaction, reduce investments, and make companies more compet-

itive. A special type of forecasting involves the prediction of intermittent de-

mand. Forecasting intermittent demand differs from predicting “smooth” de-

mand because the former involves uncertainty regarding not only the extent of

demand but also the demand interval—as in the case of demand for, inter alia,

spare parts (Teunter and Duncan 2009a). The topic has become more promi-

nent with the shift from offline to online retail. Firms in the e-commerce sector

use large assortments to drive additional revenue and improve customer expe-

rience (Morton 2017). However, a large assortment also results in many slow-

moving products with intermittent demand (Chodak 2016). Brynjolfsson et al.

(2009) show that the “long tail” of demand for niche books offered by Ama-

zon increased significantly from 2000 to 2008, accounting for 37% of book sales

in 2008. Other scholars have found that a large number of niche products in the

video and music industry have almost zero sales (Elberse and Oberholzer-Gee

2006, Chellappa et al. 2007).

In academia, demand forecasting has been studied intensively (see e.g. De Gooi-

jer and Hyndman 2006) with intermittent demand prediction as one specific ap-

plication area. Scholars have recently begun to apply different machine learn-

ing methods in the field of intermittent demand prediction (Lolli et al. 2017).

Other researchers apply meta-learning heuristics either to combine different

forecasting methods or to select the most appropriate method for each focal

product (Wang et al. 2009, Lemke and Gabrys 2010). Even so, there has been

no exhaustive comparison of how the different intermittent prediction meth-

ods compare in terms of their forecasting accuracy. Nikolopoulos (2020) high-

lighted the fact that research on intermittent demand forecasting is still scarce

and needs further attention also to predict scarce events.

1The following chapter is based on Faber and Spinler (2019a), unpublished working paper.

7
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Here we study a method selection approach in the field of intermittent de-

mand. We use three different data sets to demonstrate that this approach is

widely applicable. For one of the data sets, we collaborate with a research part-

ner in the e-commerce industry—a collaboration that allows us to assess the

financial implication of various forecasting methods in the field of warehouse

operations.

We contribute to the existing research in three respects. First, we provide

a comparison of the predictive performance of various intermittent demand

prediction methods, which include time-series decomposition and data input

clustering. Thus we evaluate the relative predictive performance of methods

that have not previously been compared with respect to a given set of intermit-

tent demand data. Second, we demonstrate how method selection can improve

predictive performance while minimizing the effort required for calculation. We

show that our procedure for selecting a method is superior to a naïve selection

under which prediction methods are chosen based on their past performance.

In this context, we also analyze which time-series features should predispose

decision makers to select a particular prediction method. Third, we simulate

a warehouse operation in order to assess the financial effects of adopting our

approach to the selection of a method for predicting intermittent demand.

The rest of our paper proceeds as follows. Section 2.2 reviews the literature,

and in Section 2.3 we explain our approach to predicting intermittent demand.

The case study, which includes a simulation of warehouse operations, is pre-

sented in Section 2.4. Section 2.5 reports on the results of our analysis. We

conclude in Section 2.6 with a brief summary and some suggestions for future

research.

2.2 literature review

2.2.1 Intermittent demand prediction with time-series methods

Demand forecasting is a well-researched topic and has been a focus of scholars

for decades. De Gooijer and Hyndman (2006) review the research on time-series

forecasting between 1982 and 2006; however, they report that few studies have

addressed the subject of intermittent demand prediction. Intermittent demand

is different from smooth demand, since the former is characterized by zero

demand in many periods and irreguar demand in other periods (Eaves and

Kingsman 2004). Thus the prediction of intermittent demand is complicated

by the variability both of demand and of demand intervals (Petropoulos et al.
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2013). It is for this reason that a branch of research dedicated to intermittent

demand prediction has evolved.

In practice, such straightforward methods as simple moving average (SMA)

and single exponential smoothing (SES) are still widely used to forecast inter-

mittent demand (Petropoulos and Kourentzes 2015a). Although neither SMA

nor SES is designed to work well with intermittent time series that include a

large number of zero-demand periods, Wallström and Segerstedt (2010) find

that single exponential smoothing works well in some such cases.

The most commonly adopted approach to intermittent demand forecasting

is the Croston method (CRO), which splits the forecast into two parts: the inter-

demand interval and the demand size. An SES model is used to forecast both

parts, where those forecasts are not updated until demand has been observed

(Croston 1972). Syntetos and Boylan (2005)) prove that Croston’s approach is

biased, so they modify it to correct that bias; the resulting method is known as

the Syntetos–Boylan approximation (SBA). The methods of both Croston and

Syntetos–Boylan are among the standard approaches to intermittent demand

forecasting (Syntetos and Boylan 2005, Petropoulos and Kourentzes 2015a) and

are often used as benchmarks for new methods (Kourentzes 2013). Several

authors demonstrate that, on average, Croston (and its variants) outperform

traditional methods in the case of intermittent demand (Willemain et al. 1994,

Eaves and Kingsman 2004). Another modification to the Croston method, called

Teunter, Syntetos and Babai method (TSB), was done by Teunter et al. (2011) to

also incorporate cases with obsolescence when demand drops to zero. To do

so, the demand estimates are updated in every period, not just when demand

occured.

Another statistical prediction approach for intermittent demand is bootstrap-

ping where past observations are randomly sampled to model the lead-time

demand distribution (Syntetos et al. 2015). One of the most common methods

is described by Willemain et al. (2004) who use a Markov Chain and transi-

tion probabilities between the states. In the analysis by Teunter and Duncan

(2009b) bootstrapping performed as well as Croston whereas Syntetos et al.

(2015) question whether bootstrapping is worth the complexity compared to

simpler parametric methods such as Croston or SBA.

There is scant research also into intermittent time series that incorporate sea-

sonality and trend patterns (Gamberini et al. 2010). In such cases, there are two

popular families of prediction methods. One is the autoregressive integrated

moving average (ARIMA), which is a family of methods that consists of autore-

gressive and moving average models that exploit the Box–Jenkins procedure

(Box et al. 2015). Zhang and Qi (2005) and Gamberini et al. (2010) point out
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that the robustness of these methods explains their capacity to deal with inter-

mittent demand. Zhang and Qi compare ARIMA to neural networks—with and

without prior data processing to de-seasonalize and de-trend the data. These

authors establish that ARIMA performs better (resp. worse) than a neural net-

work without (resp. with) data processing. Another family of predictive meth-

ods, exponential smoothing state space models (ETS), consists of additive and

multiplicative combinations of level, trend, seasonality, and noise components;

hence this approach is applicable to time series with different characteristics

(Hyndman and Athanasopoulos 2014). According to De Gooijer and Hyndman

(2006), ETS models are among the most reliable forecasting methods because of

their robustness. Kourentzes et al. (2014b) use the exponential smoothing fam-

ily across multiple aggregation frequencies to improve intermittent demand

predictions. Their study reports that aggregated forecasts are superior to non-

aggregated ones, but it does not compare ETS to other forecasting methods.

For short time series where application of machine learning methods is not

possible, Athanasopoulos et al. (2017) suggest using Nearest Neighbors but

they also state that the predictive performance becomes worse if the frequency

of zero-demand periods increases.

Another approach in demand prediction is temporal aggregation that was

explained by Nikolopoulos et al. (2011) and later further refined by Kourentzes

et al. (2014b), Petropoulos and Kourentzes (2015b), Petropoulos et al. (2016).

Data is first aggregated on higher frequencies to reduce the number of zero

demand periods, then the forecast is calculated and lastly disaggregated again.

The aggregation can be either overlapping or non-overlapping. The research

of Petropoulos and Kourentzes (2015b) and Petropoulos et al. (2016) focus on

intermittent demand prediction and describe how forecast accuracy can be im-

proved by combining predictions of different temporal data aggregations over

time or volume.

2.2.2 Intermittent demand prediction with machine learning methods

Machine learning–based methods are becoming more popular as an alternative

to linear statistical approaches and also for intermittent demand forecasting.

Gutierrez et al. (2008) report that these methods are well suited to dealing with

nonlinear patterns in the data. Among the extensive variety of machine learn-

ing methods, some are widely used for the purpose of intermittent demand

forecasting. Ahmed et al. (2010) provide a review and comparison of different

machine learning methods that have been applied in the forecasting of smooth
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time series, but we are not aware of any analogous research into intermittent

demand prediction.

Artificial neural networks are popular machine learning methods that are

often used in the field of intermittent demand forecasting. These methods are

known to be flexible and to work well with nonlinearities in the data (Zhang

et al. 1998), but they require large amounts of training data (Gutierrez et al.

2008) and have a tendency to overfit (Zhang et al. 1998). Overfitting occurs

when the model becomes too specific for the training data and hence does not

work well with any other data source. Feedforward neural networks (FFNNs)

are the most widely adopted form of neural networks: a feedforward, multi-

layered perceptron that is trained by a backpropagation algorithm (Rumelhart

et al. 1988). Zhang and Qi (2005) demonstrate that neural networks can work

well for the prediction of seasonal and trend time series. Gutierrez et al. (2008)

find also that neural networks outperform single exponential smoothing (SES),

Croston method (CRO), and Syntetos Boylan approximation (SBA) in forecast-

ing “lumpy” demand. Kourentzes (2013) reports inconsistent results when com-

paring neural networks with simple moving average (SMA), SES, and CRO

to forecast intermittent demand. His findings are mixed because the neural

network model’s forecasting performance is worse than that of other models

but the resultant savings in inventory costs is greater. Lolli et al. compare

other forms of neural networks—including time-delay and recurrent networks

in addition to applied extreme learning machines—as an alternative learning

approach. These authors show that backpropagation yields better results but

requires more computational effort than do extreme learning machines.

Support vector machines (SVMs) make use of a transformation of features

into a high-dimensional feature space, which allows a linear model to be used

in the new space that represents a nonlinear decision boundary in the original

space. A penalty for complex models is added to the error function. Support

vector machines are based on the principal of minimizing structural risk (i.e.,

minimize an upper bound of the generalization error) instead of minimizing the

empirical error (Mukherjee et al. 1997). Different kernels can be used for the

inner products; common choices are a linear kernel, a polynomial kernel, and

the Gaussian radial basis function. Two advantages of SVMs are that (i) they

generalize well and (ii) their solution excludes local minima (Bao et al. 2004).

Bao et al. and Hansen et al. (2006) test the SVM approach to (intermittent)

demand forecasting and find that it performs better than either the Croston or

autoregressive integrated moving average (ARIMA) method.



12 method selection for intermittent demand prediction

2.2.3 Time-series clustering for machine learning demand forecasting

The discussion in Chen et al. (2016) suggests that a combination of input data

clustering and machine learning forecasts may improve forecast accuracy. To-

ward that end, the full data set is divided into groups consisting of observations

with similar characteristics and then, for each such cluster, separate machine

learning models are trained. Chen et al. use self-organizing maps, “growing

hierarchical” self-organizing maps, and k-means to cluster the data. Thomas-

sey and Fiordaliso (2006) use k-means combined with C4.5 decision trees to

generate forecasts for new products; they argue that k-means is one of the most

common clustering methods for which results are generally robust.

2.2.4 Meta learning via forecast combinations

A popular approach to increasing forecast accuracy is to combine forecasts

(Timmermann 2006). Studies have documented the success of forecast combina-

tions, especially with regard to model building and selection (Kourentzes et al.

2014a). According to Andrawis et al. (2011), simple combinations (e.g., averag-

ing) often work best; these authors also find that the underlying models should

be diverse enough to capture different patterns in the data. A key requirement

is to select appropriate base forecasting methods, since no combination can

overcome the deficiencies of an inaccurate component model (Andrawis et al.

2011). In their study of forecast combinations for predicting intermittent de-

mand, Petropoulos and Kourentzes (2015a) show that simple combinations of

base forecasting methods do not perform well whereas combinations of tempo-

rally aggregated time series lead to more accurate forecasts.

A related example of meta learning is based on the sequential aggregation

of experts. This model uses a polynomial “potential aggregation” rule, with

different learning rates for each expert, that computes weights for the combina-

tion of different methods. The model is optimized using squared loss (Gaillard

and Goude 2016). So far, its main application has been in predicting electricity

consumption (Devaine et al. 2013).

2.2.5 Meta learning via method selection

As an alternative to forecast combinations, a meta-learning approach can be

used to select a forecasting method for a specific time series. Using a variety of

forecasting methods allows one to consider different sales patterns for different
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products at different times. One forecasting method might yield good results

for one product but not work well for another one (and vice versa). Hence over-

all forecasting accuracy may improve if different methods are used to forecast

different types of demand patterns. This method selection is based on the work

of Collopy and Armstrong (1992), whose model uses time-series characteristics

and expert judgments to select a forecasting approach.

Automated feature extraction has been used to select from a range of fore-

casting methods, which include machine learning models (Wang et al. 2009,

Lemke and Gabrys 2010). The results of these papers are mixed. On the one

hand, Lemke and Gabrys’s selection algorithm distinguishes between using

single versus combination methods but is not designed to select a particular

method. On the other hand, Wang et al. use a decision tree to identify the best

forecasting method yet choose from only four different forecasting methods.

2.2.6 Improving warehouse operations performance

Accorsi et al. (2014) identify the two chief performance optimization areas in

warehouses: warehouse design and warehouse operations. The first involves

mid- and long-range decisions, such as the size and layout of a warehouse.

The second covers all operational activities—of which order picking is perhaps

the most important, since it accounts for the majority of labor and other costs

(Strack and Pochet 2010). Most warehouses comprise two areas: the forward

area, which is set up for fast and cheap order picking; and the reserve area,

which is used to store large quantities. The forward area is capacity constrained

because quick and cheap order picking is possible only in an area of limited size.

Inventory from the reserve area can be replenished after it is used to increase

stock in the forward area. The question of which stock keeping units (SKUs)

to store in which part of the warehouse is known as the forward-reserve problem

(Strack and Pochet 2010).

Hackman et al. (1990) discuss the allocation of products to either the capacity-

constrained picking area or the unconstrained storage area. They use a “greedy

knapsack”–based heuristic to solve this problem, where the solution amounts to

a ranking that accounts both for picking costs and for internal replenishment

costs. In a subsequent study, Frazelle et al. (1994) extend the Hackman et al.

approach by considering the picking zone’s area to be adjustable; these authors

minimize warehouse operation costs while using material handling costs as

well as equipment costs. Van den Berg et al. (1998) address the same problem

under the condition of unit load replenishment. The authors model two types
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of periods—busy and idle—with the goal of replenishing in idle periods only.

Here, too, a greedy knapsack–based model is used to minimize the overall labor

time devoted to order picking and inventory replenishment.

2.3 methodology

Our analysis follows the three-step approach illustrated schematically in Fig-

ure 2.1. After training a broad set of base forecasting methods (step 1), we

test a clustering approach for machine learning methods (2); thus we combine

data from multiple products that have similar characteristics. Next, we test two

meta-learning models: method combination (3A) and method selection (3B). As

their inputs, these models use the predictions—of both clustered and unclus-

tered base forecasting methods—with regard to the validation data set. For

the method combinations (3A), we compare simple combination models to a

more complex, learned aggregation model. The simple combinations work as

follows. First, performance measures are calculated on the validation data set

for all tested base prediction methods; the methods are then ranked in terms

of their accuracy, and the best-performing methods are selected. With each of

these methods, one predicts demand in the test period and then combines the

different predictions using their mean, mode, or minimum. We test two differ-

Figure 2.1: Demand prediction research approach

ent approaches to selecting which methods to combine: by comparing accuracy

based on the validation data either across all SKUs or separately for each stock
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keeping unit (SKU). In the former case, the same forecasting methods are se-

lected for all SKUs; in the latter, the selected methods can differ for each SKU.

One advantage of comparing across SKUs is that learning is then based on a

larger data set, which reduces overfitting. Using validation data for each SKU

separately is a more focused approach in that it learns from one SKU only. The

“learned combination” method follows the same logic as that underlying sim-

ple combinations. In this approach, no prediction methods are selected; instead,

one learns combination weights based on the measured predictive performance

of the validation data. As mentioned in Section 2.2.4, the model employs a poly-

nomial potential aggregation rule that features different learning rates for each

expert and computes weights for the combination of different methods. The

model is optimized using squared loss (Gaillard and Goude 2016). As before,

we test one model that learns the weights across all SKUs and another model

that learns the weights for each SKU separately.

As an alternative approach, we use method selection (3B). To do so, we train

a random forest model using the time-series features of the training data set

as the predictors while using the forecast accuracies of the validation data set

as the response variable. For the final prediction on the test data set, we use

the time-series features from the combined training and validation data set. We

compare three different method selection strategies. For the first approach, the

accuracies of all forecasting methods applied to the validation data set are com-

pared against each other for each SKU and then coded in a binary way. Thus,

for each SKU, the best method is coded with a 1 and all others with a 0. In this

case, the prediction is a multiple binary classification problem with one classi-

fication model for each method. The method most likely to yield an outcome

of 1 is used to calculate the forecast for the test data set. The second approach

is based on a ranking of the methods for each SKU. A regession model predicts

the rank for each SKU and method, and the model with the highest predicted

rank is chosen for the test data set. The third approach uses a regression to

predict the predictive perfomance for each SKU and each forecasting method.

Here, the method with the best predicted predictive perfomance is used for the

demand prediction of the respective stock keeping unit.

Finally, we compare all four approaches (1, 2, 3A, and 3B) using a separate

test data set. The rationale behind splitting our data into three parts (training,

validation, and test data) is to avoid any bias while building the models and

selecting or combining models. Hence the training set is used to fit the model

parameters, and the validation set is used to determine the rules for selecting

or combining methods.
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We use a TBATS model—that is, an exponential smoothing state space model

with Box–Cox transformation and ARMA errors as well as trend and seasonal

components—to establish the existence or absence of any seasonality patterns

in the time-series data (De Livera et al. 2011). If this procedure does identify

seasonality patterns for a significant share of the data set’s time series, then we

apply a decomposition method to separate the trend and seasonality prediction

from the remainder. In particular, we use the seasonal and trend decomposition

using Loess (STL), which is based on a locally weighted regression smoother

and iteratively finds the seasonal and trend component in moving windows

of data (Cleveland et al. 1990). This approach splits the time series into three

parts: the trend component, the seasonal component, and the remainder. For

each component, we employ a different forecasting approach. The seasonal

component is forecast using a naïve method that takes the seasonal value from

the same period in the previous year. For the trend component, we use the

latest observed value as a naïve prediction; the remainder is forecast using the

methods described in Section 2.2. The sum of these three separate forecasts cor-

responds to the final demand forecast. For all prediction models, we compare

the forecast accuracy of the decomposed time series against the performance

using the original time series.

2.3.1 Accuracy measure

We use both the root mean squared error (RMSE), as given in Eq. (2.1), and the

mean absolute scaled error (MASE), as in Eq. (2.2), to measure and compare

the predictive performance of our tested models. We cannot use some other

well-known measures, such as the mean absolute percentage error (MAPE),

because they do not work well in the case of intermittent demand: with these

measures, periods of zero demand can lead to infinite or undefined values. See

Hyndman et al. (2006) for a detailed explanation of performance measures in

the context of intermittent demand. The RMSE is a scale-dependent measure

because the error term is on the same scale as the data. In contrast, the MASE is

a scale-free measure and directly compares the forecast error of a tested method

with that of a naïve forecasting model. For period t, we use yt and ŷt to denote
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(respectively) actual and predicted demand. Our measures are defined formally

as follows:

RMSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2; (2.1)

MASE =
1

T

T∑
t=1

(
|yt − ŷt|

1
T−1

∑T
t=2|yt − yt−1|

)
. (2.2)

2.3.2 Prediction methods

For our intermittent demand forecasting approach, we use the methods listed

in Table 2.1. Space limitations dictate that we simply refer readers to the cited

authors for detailed explanations of these methods.

Table 2.1: Forecasting methods

Method Abbreviation Reference

Simple moving average SMA Makridakis et al. 2008

Single exponential smoothing SES Makridakis et al. 2008

Croston’s method CRO Croston 1972

Syntetos–Boylan approximation SBA Syntetos and Boylan 2005

Autoregressive integrated moving

average

ARIMA Box et al. 2015

Exponential smoothing state space

model

ETS Hyndman et al. 2002

Support vector machines SVMs Mukherjee et al. 1997

Random forest RF Breiman 2001

Feedforward neural networks FFNNs Rumelhart et al. 1988

Bidirectional recurrent neural net-

works

BRNNs Schuster and Paliwal 1997

Gradient-boosting models GBMs Ridgeway 2007

We use the simple but well-established models (SMA, SES, CRO, SBA) as

a benchmark against which to compare the more complex and meta-learning

models. In addition, we use a wide variety of different methods because extant

research offers no clear guidance on which methods are superior; recall that

previous studies report mixed findings along with different (and sometimes
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contradicting) recommendations. We therefore conclude that the choice of a

forecasting method should depend on the data set to which it will be applied.

We address this issue by way of meta-learning methods, which automatically

select different methods or method combinations based on different data in-

puts.

Besides the methods discussed in Section 2.2.2, we test three other approaches

that we suppose will work well for intermittent demand prediction. Random

forest (RF) is a machine learning method that consists of an ensemble of re-

gression or classification trees. It combines “bagging” with random feature

selection, and it does not involve the pruning of any trees. To avoid overfitting,

the prediction results of multiple trees are averaged (Breiman 2001). The ran-

dom forest approach has been used to predict smooth demand. For instance,

Kane et al. (2014) find that RF outperforms ARIMA models and Herrera et al.

(2010) reports that random forests perform better than feedforward neural net-

works but worse than support vector machines. We expect RF to work well in

the field of intermittent demand prediction because the method is known to be

robust and is relatively insensitive to parameter values (Dudek 2015). Bidirec-

tional recurrent neural networks (BRNNs) are a modification of FFNNs; they

are trained simultaneously in the positive and negative time direction, so they

can use all information in the training data. Thus BRNNs overcome the limita-

tion of using only information that pertains to the period preceding a specific

input state (Schuster and Paliwal 1997). The BRNN model takes context into

account because both past and future states are used to train it. When demand

is intermittent, any sequence of zero-demand periods is a key factor—which

is why we expect predictive performance to improve when models are trained

on demand in subsequent periods. Finally, gradient-boosting models (GBMs)

are examples of an ensemble learning method that builds on weak prediction

models. A basis function is thereby improved in a greedy fashion to reduce the

loss or error function, and each iteration uses randomly sampled data with re-

placement. This approach gained substantial attention owing to its good results,

especially in the field of load forecasting (Taieb and Hyndman 2014). Gradient

boosting is a robust method that we expect to work well with the unstable input

of intermittent demand.

We use the following parameters for the prediction methods. For SMA, we

use both a five-period and a nine-period average. For SES, the smoothing fac-

tor α is determined using a mean squared error minimization. For both ARIMA

and STL we use the corrected Akaike information criterion (AICc) to automati-

cally select the appropriate model. The Akaike information criterion (AIC) is a

model selection criterion based on the Kullback–Leibler distance between the
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candidate model and the true model; the AICc is the AIC with a correction for

small sample sizes. For the machine learning methods compared here, all input

features are scaled and also centered. We use a grid search approach to select

the best “hyperparameter” combinations (i.e., machine learning model parame-

ters that are set before the learning process) and perform three repetitions of our

fivefold cross-validation (see the Appendix A.1 for a list of all tested hyperpa-

rameters). The parameters, which are selected independently for each trained

model, consist of the chosen SKU, forecasting method, and time period.

For the simple combinations, we test outcomes from combining the top 3 and

top 5 methods as determined by their performance on the validation data set.

We use k-means clustering to combine the training data of several SKUs and to

train the forecasting models with the data for each cluster (i.e., instead of with

the data for each individual SKU). The number of clusters reflects the percent-

age of variance that can be explained in terms of that number. This percentage

is determined by calculating the within-cluster sum of squares (wss) for differ-

ent numbers of clusters—after which the location of a “bend” is identified by

plotting wss against k, the number of clusters (Sugar and James 2003). We use

different indices (e.g., the gap statistic, the silhouette method) to determine the

optimal number of clusters in a data set; for a detailed explanation of these

indices, the reader is referred to Charrad et al. (2014).

2.3.3 Time-series feature extraction

We build our model with information from time-series data on product de-

mand. Price or promotion features are irrelevant here because the revenue

from long-tail products is too low to merit consideration of any promotion or

price campaign.

Our selection of time-series features builds on preceding research in the field

of intermittent demand prediction with machine learning methods (Gutierrez

et al. 2008, Mukhopadhyay et al. 2012). Thus, we first control for autocorrelation

in the time-series data and identify which lags are significantly correlated at the

95% level. In addition to those lags, we also use the (cumulative) number of

zero-demand periods (Gutierrez et al. 2008); this factor is the basis for our “sep-

arating_zero” and “successive_zero” features defined in Table 2.2. The feature

set of the decomposed time series differs because the rest of that time series con-

tains no zero demand values; hence the separating_zero and successive_zero

features are not used.
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Table 2.2: Time-series features used for machine learning prediction

Feature Description

Lags Lagged demand for previous periods

separating_zero “the number of periods separating the last two non-zero de-

mand transaction at the end of the immediately preceeding

period” (Gutierrez et al. 2008)

successive_zero “the cumulative number of successive periods with zero de-

mand” (Mukhopadhyay et al. 2012)

The time-series clustering and our method selection approach are both based

on the time-series features described in the Appendix A.2. To determine which

of these features are most vital to selecting a accurate prediction method, we

use the “feature importance assessment” afforded by a trained random forest

model. Thus we iterate through all features and calculate, for each one, the

difference between the mean squared error of an out-of-bag data sample and

that of the same data after permuting the chosen variable. The features are then

ordered by the size of those calculated differences.

2.4 experimental design

2.4.1 Data

Our analysis is based on three data sets. The first is from our research partner:

a leading e-commerce company in Germany that sells mostly children’s prod-

ucts, books, and multimedia. The context of this retailer’s demand prediction

approach is described in Section 2.4.3. The second data set, which is from the

Royal Air Force, has been used by several other scholars (Syntetos et al. 2009, Te-

unter and Duncan 2009a, Nikolopoulos et al. 2011, Petropoulos and Kourentzes

2015a). Our third data set is the output of an intermittent demand simulation.

Each data set contains time series for 4,000 to 5,000 different products.

We report the following descriptive statistics related to demand: the demand

size or nonzero-demand vector; the average inter-demand interval; and the de-

mand per period, including zero-demand periods. These statistics are reported

for each time series in the data set from our research partner (Table 2.3), from

the Royal Air Force (Table 2.4), and from our simulations (Table 2.5).
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Table 2.3: Descriptive statistics: Research partner’s data set

Demand size Inter-demand intervals Demand per period

Mean S.D. Mean S.D. Mean S.D.

Min. 1.00 0.00 1.02 0.15 0.04 0.19

1st Q 1.32 0.66 1.45 1.25 0.29 0.62

Median 1.83 1.30 2.33 2.60 0.79 1.23

Mean 2.61 2.21 3.71 4.53 1.53 2.09

3rd Q 3.23 2.94 4.71 6.26 2.14 2.76

Max. 21.28 38.27 25.43 51.34 10.84 26.98

Table 2.4: Descriptive statistics: Royal Air Force (RAF) data set

Demand size Inter-demand intervals Demand per period

Mean S.D. Mean S.D. Mean S.D.

Min. 1.00 0.00 3.82 0.00 0.04 0.19

1st Q. 1.56 0.82 7.27 5.43 0.15 0.54

Median 3.83 3.07 9.00 6.93 0.37 1.45

Mean 13.68 12.90 9.78 7.13 1.44 5.87

3rd Q. 11.33 9.35 11.57 8.62 1.15 4.45

Max. 668.00 874.42 24.00 16.46 65.08 275.71

Table 2.5: Descriptive statistics: Simulated data set

Demand size Inter-demand intervals Demand per period

Mean S.D. Mean S.D. Mean S.D.

Min. 3.74 1.84 2.57 1.81 0.95 1.89

1st Q. 9.89 6.86 3.15 2.50 2.93 5.89

Median 12.49 9.43 3.32 2.73 3.73 7.70

Mean 13.31 10.59 3.34 2.77 3.99 8.43

3rd Q. 15.75 13.06 3.51 2.99 4.71 10.10

Max. 52.40 61.16 4.68 4.22 16.04 38.74
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The results in Table 2.3, 2.4 and 2.5 show that the RAF data set has both the

highest average demand size (for nonzero demand periods) as well as the high-

est average inter-demand intervals, thus being highly intermittent. In contrast,

the demand size and inter-demand intervals are significantly lower for the data

set from our research partner whereas the simulation data set has similar de-

mand sizes (on average) but lower average inter-demand intervals compared to

the RAF data set.

We further present two exemplary time series out of the data from our re-

search partner in Figure 2.2 and 2.3. Both show the full time series with 357

weekly observations of the demand size with a significant share of zero demand

periods.

Figure 2.2: Time series example 1/2

Figure 2.3: Time series example 2/2

We split each data set into three parts: a training set, a validation set, and a

test set. As in Mukhopadhyay et al. (2012) and Lolli et al. (2017), we use 65%

of the periods for the training set. Because our demand features are lagged, we
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start the training of machine learning models in the period after the longest lag.

Each validation set contains 20% of the periods in its respective data set and is

used to train, evaluate, and select the meta-learning models (including method

combinations and method selection); the remaining 15% of observations in each

test data set are used to assess the predictive performance of our tested models.

For each data set we focus on rolling one-period demand forecasts. Thus we

calculate forecasts for each time series in each data set for each period that is

included in the validation or test data set. The reason for single one-period

forectasts is the fact that our research partner uses such forecasts in the opera-

tional planning for its warehouse—in particular, when deciding which products

to store in which area of the warehouse so as to minimize overall warehouse

operation costs. Transfers of inventory stock are planned on a weekly basis.

2.4.2 Software implementation

The analyis for the research paper is done with the software R, using the caret

package (short for classification and regression training) that utilizes a number

of R packages for machine learning analysis (Kuhn 2015). We further use the

tsintermittent package to calculate standard intermittent demand forecasts such

as Croston (Kourentzes and Petropoulos 2016). R has the advantage of being

open source and widely used for machine learning purposes (Lantz 2013.

2.4.3 Case study context

Our research partner’s time-series data consist of daily demand for more than

4,000 SKUs between January 2010 and September 2016. Although these data

do not include out-of-stock information, we assume that stockouts are rare

for intermittent demand products and thus not relevant to our analysis. The

data are aggregated on a weekly basis (356 weekly periods in total) to reduce

intermittance and variability and to fit the predictive time frames employed.

The online retailer is interested in achieving more accurate forecasts in or-

der to make warehousing operations more efficient and thereby reduce costs.

There is only one warehouse in place, and steady demand growth has led to

its capacity being almost fully used. Increasing that capacity is not possible

at short notice and comes at a high cost. The retailer’s current focus is there-

fore on increasing its existing warehouse’s efficiency. The warehousing process

can be briefly summarized as follows. Products can be stored in a “high-bay”

bay warehouse or in a shelf-picking area; the former option is characterized
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by greater storage capacity—but also by higher picking costs—than the latter

option. Hence the retailer aims to store higher-demand articles in the picking

area and thus to minimize both picking and replenishment costs.

We simulate warehouse operation costs by using demand forecasts (of the

various predictive methods described previously) as input for the forward-

reserve problem. We analyze not only the forecast accuracy measures but also

the effect of forecast errors on inventory costs. To simulate storage costs, we

apply a simplified model of the online retailer’s actual warehousing approach.

More specifically, we adopt the forward-reserve problem approach described

in Section 2.2.6 but with a modification that allows for replenishments from the

high-bay (reserve) area to the picking (forward) area. To avoid the case of ad-

ditional replenishments within a planning period, we assume that each SKU is

stored either in the picking area or in the high-bay warehouse. Our simulation

covers the test periods, and each product’s storage location is determined—

using the demand prediction for each SKU—before the respective period starts.

A more detailed description of warehouse operations, including cost factors, is

given in the Appendix A.3.

In addition to using demand forecasts as input, we test a simple heuristic

for deciding which SKUs should be stored in which area. For that purpose we

undertake an “ABC analysis”, as is often performed in the field of inventory

control, to classify the SKUs. Thus, using mean demand as a criterion, we place

20% of the SKUs in class A, 30% in class B, and 50% in class C. Then the stor-

age strategy consists of allocating items that have exhibited the highest mean

demand (i.e., those in class A, followed by class B) to the shelf-picking area.

Each SKU is assigned to a storage area only once, and no stock transfers take

place.

2.5 results and managerial implications

2.5.1 Results of base forecasting methods

We report the accuracy of the base forecasting methods in Table 2.6. This table

reports the mean RMSE and MASE values across all SKUs in the respective

data set, and each method’s column rank in given in parentheses.

The GBM method does not work with the RAF data set because the number

of observations in its training set is too small. In fact, we find that there is

no method that works well for all data sets: the methods’ rankings differ be-

tween the data sets and also between the two accuracy measures. According
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Table 2.6: Predictive performance results of base forecasting methods

Research partner data RAF data Simulation data

RMSE MASE RMSE MASE RMSE MASE

SMA5 1.42 (10) 0.91 (5) 3.76 (8) 1.03 (3) 15.25 (11) 0.92 (13)

SMA9 1.56 (12) 1.00 (9) 3.73 (6) 1.08 (4) 14.68 (8) 0.92 (12)

SES 1.29 (1) 0.85 (3) 3.65 (4) 1.14 (5) 14.18 (3) 0.89 (6)

CRO 1.37 (8) 1.06 (12) 3.70 (5) 1.22 (7) 14.13 (2) 0.90 (11)

SBA 1.34 (7) 1.01 (10) 3.64 (3) 1.14 (6) 14.12 (1) 0.90 (10)

ARIMA 1.29 (1) 0.89 (4) 3.74 (7) 1.32 (8) 14.32 (5) 0.89 (7)

ETS 1.29 (1) 0.85 (2) 3.77 (9) 1.39 (9) 14.19 (4) 0.90 (8)

SVM-

linear

1.29 (1) 0.82 (1) 3.61 (2) 0.90 (2) 15.54 (12) 0.68 (1)

SVM-

radial

1.37 (8) 0.96 (6) 3.42 (1) 0.86 (1) 15.06 (10) 0.73 (2)

RF 1.32 (5) 0.98 (8) 4.54 (10) 1.47 (10) 14.56 (7) 0.88 (5)

FFNN 1.60 (13) 1.17 (13) 5.63 (12) 2.12 (12) 14.72 (9) 0.86 (4)

BRNN 1.49 (11) 1.04 (11) 5.27 (11) 2.09 (11) 15.59 (13) 0.90 (9)

GBM 1.33 (6) 0.97 (7) — — 14.44 (6) 0.85 (3)

the RMSE measure, SBA and SES are the most accurate; they are followed by

CRO, ETS, SVM-linear, and ARIMA. Yet our MASE results indicate that both

the SVM methods perform best, followed by SES, ARIMA, and SES. The SVM-

linear approach is highly predictive for all data sets and for both measures;

the only exception is for the RMSE applied to the simulated data, which we

suppose reflects that average demand in this case is much higher than in the

other data sets. Hence its average absolute error is also higher, which signifi-

cantly increases the RMSE value—which also explains why all of the simulated

data set’s RMSE values are significantly higher than that measure’s value for

the data from our research partner and the RAF. Overall, we conclude that

(i) the simple, traditional methods (e.g., SBA and SES) work well yet (ii) com-

plex machine learning methods (e.g., SVM) can be effective also. Methods in

the moderately complex prediction families ETS and ARIMA lead to average

results that nonetheless have the virtue of being stable across all the data sets.

Other tested machine learning methods (RF, FFNN, BRNN, GBM) seem unable
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to cope with the data’s high variability. We assume that this deficiency stems

from the limited amount of information in the feature space, which contains

only lagged demand and information regarding the previous inter-demand in-

terval.

2.5.2 Results of base forecasting methods with trend and seasonality decomposition

Table 2.7 presents the forecast accuracies for time series decomposed by trend

and seasonality. We calculate demand forecasts using the decomposed time se-

ries for all methods except for CRO and SBA (since these two methods are

stymied by negative values, which occur throughout the decomposition). Nei-

ther do we use that approach for the RAF data set, which contains only a few

items with seasonal demand patterns.

Table 2.7: Predictive performance results of base forecasting methods with time-series

decomposition

Research partner data Simulation data

RMSE MASE RMSE MASE

SMA5 1.24 (10) 0.87 (11) 13.30 (11) 0.81 (11)

SMA9 1.26 (11) 0.87 (10) 12.81 (10) 0.79 (9)

SES 1.15 (8) 0.79 (8) 12.09 (4) 0.77 (6)

ARIMA 1.11 (1) 0.76 (3) 11.99 (1) 0.76 (3)

ETS 1.14 (5) 0.77 (5) 12.01 (2) 0.77 (4)

SVM-linear 1.11 (1) 0.73 (1) 12.09 (3) 0.71 (2)

SVM-radial 1.13 (4) 0.75 (2) 12.28 (8) 0.69 (1)

RF 1.18 (9) 0.85 (9) 12.55 (9) 0.8 (10)

FFNN 1.14 (5) 0.78 (6) 12.27 (7) 0.78 (7)

BRNN 1.12 (3) 0.76 (4) 12.11 (5) 0.77 (5)

GBM 1.14 (5) 0.79 (7) 12.16 (6) 0.78 (8)

In all tested cases, predictive performance increases under time-series de-

composition. The SVM-radial, FFNN, and BRNN methods achieve the high-

est predictive gain, whereas predictive power increases only slightly for SES,

ARIMA, ETS, and RF. Because ETS and ARIMA models can deal with season-

ality and trend patterns, they do not require any decomposition pre-processing.

That said, the decomposed ARIMA and ETS models outperform all other tested
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methods—with and without time-series decomposition—followed by SVM-linear.

We therefore conclude that ETS and ARIMA are both able to extract informa-

tion from the autoregressive structure of the decomposed time series. It seems

that the linear SVM approach works well because it can avoid overfitting yet

still handle complex data.

We apply three methods that are seldom used in the field of intermittent

demand forecasting: ETS, BRNN, and GBM. The exponential smoothing state

space method works well for the original time series because the model can

deal with both trended and seasonal time series; however, the predictive perfor-

mance of ETS is only average for time series that are decomposed. The BRNN

model performs better than does the FFNN model—probably because the for-

mer is better able to learn (i.e., since both past and future states are considered

when it is trained). Autocorrelation in the time-series data is what explains

the FFNN’s comparative disadvantage. Although the GBM model is known

to be robust, it does not perform well for intermittent time series. We assume

that this outcome reflects the inability of weak learners to cope with the high

variance typical of intermittent data sets.

2.5.3 Results of combined clustering and machine learning–based forecasting

We cluster the input data to aggregate training features across similar time

series. This clustering approach is tested only for the data set from our research

partner, since the required calculation time is too long for our other two data

sets (one must train a model for each cluster, where each model includes all of

the cluster’s SKUs). These circumstances also explain our inconclusive results

for the clustered RF and SVM-radial methods. Our analysis is based on 14

clusters (following the approach described in Section 2.3.2 with the feature

set described in Section 2.3.3). We use trend and seasonality decomposition to

create the training data sets for all clustered models.

The only method for which the cluster approach yields a negative effect is

SVM-linear; its RMSE increases from 1.67 to 1.68, and its MASE rises from 0.65

to 0.67). For all other methods, the accuracy improves: FFNN (RMSE declines

from 1.74 to 1.68 and MASE from 0.71 to 0.69); BRNN (RMSE from 1.71 to 1.69,

MASE constant at 0.69); and GBM (RMSE from 1.75 to 1.68, MASE from 0.78

to 0.69). Thus we see a slight advantage to using clustered input data rather

than SKU-specific data. However, the effect is rather small—except for the GBM

approach, where we see a dramatic improvement in predictive performance. It

seems that the GBM ensemble of weak prediction models benefits the most
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from a larger data set that contains a wide variety of input cases. In contrast,

the other methods work best with data that are case specific.

2.5.4 Results of meta learning: Forecast combinations and method selection

Table 2.8 reports the predictive performance of our meta-learning models; as

before, column rankings are given in parentheses. For the simple combinations

of minimum, mode, and mean, we distinguish between two approaches: one in

which we select the base forecasting methods across all SKUs; and one where

a separate selection is made for each SKU (as described in Section 2.3.2). The

latter approach is indicated via the prefix “sku_”.

The predictive performance of the best-performing meta-learning methods

surpasses that of the best base forecasting methods with time-series decom-

position. This result is in line with prior findings that demonstrate the supe-

riority of forecast combinations—that is, given their greater robustness and

ability to accommodate different data characteristics. Once again, the rank-

ing of the tested methods differs as a function of the focal data set and the

accuracy measure used. According to the RMSE measure, the mean_5 and

mean_3 combinations work best, followed by weighted_mean_all and the se-

lection_ranking; the MASE measure assigns the best predictive performance to

sku_min_3 and min_5. If we take the average of all rankings across all data

sets and performance measures, then both min_5 and selection_ranking are the

clear winners. However, one downside of the “minimum” combinations is that,

for highly intermittent time-series data with many zero-demand periods, the

resulting forecast often predicts zero demand. That generalization holds in the

case of our RAF data set, for which the min_3 and min_5 forecasts result in av-

erage predictions of (respectively) 0.45 and 0.41 even though the actual average

demand is 1.44.

The results show also that the naïve approach, under which selection of the

forecasting method is based on how the different models perform when applied

to validation data, does not work well. This outcome reflects that time-series

characteristics change over time, which explains why prediction methods that

worked well in the past may not yield good results in the future.

We observe that the method selection (ranking_selection) works well across

all data sets. The standard deviation of the ranking scores for different data

sets and different accuracy measures is 3.22, which is smaller than that for

other relatively accurate methods (e.g., standard deviation of the min_5 rank-

ings is 5.09). In effect, then, time-series characteristics allow our selection of a
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Table 2.8: Predictive performance of meta-learning methods

Research partner RAF Simulation

RMSE MASE RMSE MASE RMSE MASE

sku_min_3 1.13 (14) 0.72 (4) 3.48 (5) 0.70 (3) 12.13 (15) 0.67 (4)

sku_min_5 1.13 (16) 0.71 (1) 3.37 (2) 0.63 (1) 12.22 (17) 0.67 (2)

sku_mode_3 1.13 (15) 0.75 (14) 3.90 (17) 0.89 (8) 12.11 (12) 0.69 (10)

sku_mode_5 1.12 (13) 0.74 (11) 3.64 (11) 0.90 (9) 12.06 (11) 0.70 (14)

sku_mean_3 1.12 (12) 0.75 (15) 3.85 (16) 0.95 (10) 12.05 (10) 0.70 (12)

sku_mean_5 1.11 (10) 0.74 (12) 3.75 (14) 0.99 (12) 12.03 (7) 0.72 (16)

min_3 1.11 (7) 0.72 (3) 3.37 (3) 0.97 (11) 12.04 (9) 0.67 (3)

min_5 1.11 (9) 0.71 (2) 3.35 (1) 0.68 (2) 12.12 (13) 0.67 (1)

mode_3 1.10 (5) 0.73 (7) 3.61 (9) 1.20 (18) 12.00 (4) 0.68 (7)

mode_5 1.10 (4) 0.74 (10) 3.62 (10) 1.07 (13) 12.00 (5) 0.70 (11)

mean_3 1.10 (3) 0.73 (8) 3.58 (6) 1.16 (17) 12.00 (3) 0.69 (9)

mean_5 1.10 (1) 0.74 (9) 3.60 (7) 1.09 (14) 11.99 (2) 0.71 (15)

weighted_

mean_sku

1.11 (6) 0.75 (13) 3.84 (15) 1.14 (16) 12.13 (14) 0.76 (18)

weighted_

mean_all

1.10 (2) 0.75 (16) 3.68 (13) 1.10 (15) 11.97 (1) 0.76 (17)

naive_

selection

1.14 (17) 0.76 (18) 4.00 (18) 0.89 (7) 12.14 (16) 0.69 (8)

selection_

ranking

1.11 (8) 0.73 (6) 3.46 (4) 0.79 (5) 12.01 (6) 0.70 (13)

selection_

regression

1.11 (11) 0.73 (5) 3.65 (12) 0.75 (4) 12.04 (8) 0.68 (5)

selection_

classification

1.14 (18) 0.75 (17) 3.61 (8) 0.86 (6) 12.35 (18) 0.68 (6)

single forecasting method to be independent of the particular data set at hand.

In comparison with other method combination schemes, method selection is

also much more efficient because only the selected prediction method needs

to be trained. For the other meta-learning methods, all base forecasting ap-

proaches must be assessed when ranking them in terms of the validation data

set—which is prerequisite to selecting the method that should be applied to the
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test data set. Depending on the size of the data set and the required frequency

of forecast updates, the time savings can easily exceed hours or even days.

With regard to assessing feature importance, if there are trend and season-

ality patterns involved then the method selection builds on the trend and sea-

sonality measures but also on the skewness of the remainder component. In

the absence of seasonality and trends, the most important features of the time

series are its mean and standard deviation. We present details of our feature

importance assessment and ranking method selection in the Appendix A.2.

2.5.5 Research partner data: Comparison with current forecasting method

We use our research partner’s data set to compare the accuracy of that online

retailer’s current forecast with predictions based on the models described in

this paper. Although confidentiality concerns preclude our knowing which

forecast approach the retailer currently uses, we do have access to selected past

demand forecasts that can be compared with the tested methods. Because the

SES model without time-series decomposition is the forecast approach whose

predictions are most similar to the firm’s internally forecasted values, we use

this model as a reference against which to compare the tested methods. The

SES forecast for the test period has a mean RMSE of 1.29 and a mean MASE

of 0.85, both of which are significantly worse than the values derived when we

use the ranking method to select an approach (RMSE of 1.11, MASE of 0.73;

each value is about 14% less than its counterpart under SES).

2.5.6 Research partner data: Results of storage cost simulation

In addition to evaluating forecast accuracy, we run a warehouse simulation

for the data set from our research partner to compare—among all the tested

forecasting methods—the operation costs that would occur. This simulation

covers periods in the test data set as well as the main cost factors: picking and

transferring stock. Results from these cost calculations based on the various

forecasting models are reported in Table 2.9.

Costs are lowest for the meta learning with learned combination rules. The

method selection approach, which yields the best performance across all data

sets in terms of our two accuracy measures, has slightly higher costs—although

they are lower than the costs of our base forecasting methods. The heuristic

approach with ABC clustering results in significantly higher costs. The models’

rank ordering does not change much when the shelf-picking area’s capacity
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Table 2.9: Results of warehouse operation costs simulation for selected prediction meth-

ods

Forecasting method Costa

Meta learning: learned combination per SKU 100.00

Meta learning: learned combination across SKUs 100.01

Meta learning: method selection (ranking) 100.17

ARIMA 102.05

SES 102.80

ABC-analysis 104.80

a
100 = cost of the best-performing method

changes from 10% to 5%, 20%, or 30%. That ordering is little affected also when

the ratio of picking-area transfer costs to high-bay–warehouse transfer costs

declines from 10:1 to 8:1, 4:1, or 1:1. In light of our results from Section 2.5.5,

we hypothesize that the actual operation costs are the same as those for the SES

method. It follows that warehouse operation costs can be reduced by nearly 3%

in the short term under the proposed method selection model.
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Figure 2.4: Correlation between the forecast accuracy (RMSE, left panel; and MASE,

right panel) and the warehouse operation costs (normalized to range be-

tween 0 and 1)

The correlation between our RMSE/MASE results and the cost calculation

is plotted in Figure 2.4, where we use a red line to mark the trend derived

via linear regression. There is a clear positive correlation between our predic-

tive performance results and the cost calculation. Thus we confirm that more

accurate forecasts translate into more efficient operations and lower costs.
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2.6 conclusion and future reseach

We find that the method selection approach works as well as the best forecast

combination methods. In both cases, predictive performance is superior to

using a single base forecasting method. We further observe that the forecast

accuracy significantly improves by using more sophisticated machine learning

methods instead of simple standard economic methods. The ranking selec-

tion approach leads to an RMSE value of 1.11 and MASE of 0.73 for the data

set of the research partner whereas the result with one of the best economic

models, ARIMA, only reaches an RMSE of 1.29 and MASE of 0.89. Similar

improvements are achieved for the two other data sets. We observe that this

improvement is mostly achieved by using the meta learning approach as the

base machine learning methods reach similar results compared to the standard

economic prediction methods. However, machine learning methods are also

more complex and require more time to calculate due to the training of the

model. Method selection offers the benefit of significantly reducing this calcu-

lation time, since only the selected method needs to be trained with historical

data. In this way our approach combines high predictive accuracy of a meta

learning model with efficient calculation reducing the complexity compared to

a standard combination approach. Moreover, we demonstrate that method se-

lection works well across different data sets; such flexibility is not evidenced

by most of the base forecasting methods, which work well with one data set

but not with another. We also observe that a prediction method’s performance

changes over time because the time-series characteristics themselves change.

When that happens, the method selection approach is able to automatically

select an alternative prediction method as needed.

The managerial implications of the findings are threefold: First, it would be

a straightforward matter for our research partner to implement the method se-

lection approach, which means that our calculated 3% savings on the overall

warehousing operation costs can be realized short-term without any change

in the warehouse setup. At the same time, the approach is efficient regard-

ing calculation times and thus demand predictions can be updated with high

frequencies. Second, this approach can be applied not only to the warehouse

storage decision but also to the decisions made by other departments, such

as procurement and marketing to further reduce warehouse operation costs

by optimizing purchase volumes or marketing campaign focus. By doing so,

the purchase frequencies and inventory levels can be improved on a SKU level.
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Lastly, another possible use is in optimizing the warehouse layout when space

must be allocated between the picking area and the high-bay warehouse.

The one caveat to adopting any of the tested prediction methods is that they

work only if there is sufficient historical demand data available to train the fore-

casting models. In the case of new products, for which no demand history is

available, one must use different demand prediction methods and forecast that

product’s demand separately. Ferreira et al. (2015) propose such an approach

in the field of fashion sample sales.

There remain several related avenues of research worth pursuing. First, one

could extend the one-period forecast to multiple periods and thereby consider,

for example, the costs of transferring stock over several periods. A longer time

horizon would be beneficial also in cases where the forecast is used to plan

order volumes or to optimize warehouse layout. Second, our model could

be augmented with more features—such as price points, weather data, and

behavioral data from the retailer’s website—to improve predictive performance.

Third, method selection could be expanded to choose not just one of the base

prediction models but also between both base models and from combinatorial

models.
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I N T E R P R E TA B L E P R E D I C T I O N O F PA RT I A L D E F E C T I O N :

A C A S E S T U D Y I N T H E B 2 B PA R C E L L O G I S T I C S

I N D U S T RY 1

3.1 introduction

The management of customer relationships has become a topic of increasing

interest in the academic and business worlds (Lu et al. 2014). The objective is to

create long-term profitable customer relationships that yield significant value

over time (Frow and Payne 2009). Companies want to retain their existing

customers because it is much more expensive to attract new ones (Huang and

Kechadi 2013). Studies have estimated the costs of attracting new customers

to be 5–6 times higher than the costs of retaining existing ones (Bhattacharya

1998, Nie et al. 2011). Dingli et al. (2017) state that the most common reasons

for customers churn are due to competitive offerings with cheaper prices, neg-

ative word of mouth, better service offered by competitors or re-location of

customers. Predicting defection is therefore meant to detect potential churn-

ers early on and to plan retention actions aimed at customers who are about

to switch to another provider or supplier. Therefore, often historic buying pat-

terns are analyzed to predict behavior in the future (Dingli et al. 2017). The

prediction model usually provides a defection probability for each customer,

which allows us to rank customers in terms of their churn probability. One can

then decide how many and which of these customers to target in retention cam-

paigns. Van den Poel and Lariviere (2004) state that even small improvements

in retention may lead to significant increases in future revenue. In addition to

the high costs of acquiring new customers, there are other advantages to retain-

ing current customers. Long-term customers provide higher revenues, require

lower costs to be served, and can spread positive word of mouth (Reichheld

1996). Yet owing to different levels of profitability within the customer base, it

is more important to retain some customers than others (Lemmens and Gupta

2017). Therefore, profitability should be considered when deciding which cus-

tomers to target with retention actions (Bahnsen et al. 2015).

1The following chapter is based on Faber and Spinler (2019b), unpublished working paper.
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The literature offers various definitions of defection. A common distinction

is between “defection” (churn) and “partial defection”. In the former, the cus-

tomer has been unequivocally lost (as when, e.g., a contract is terminated); in

the latter, the customer becomes inactive or switches some of its demand to

another provider (Buckinx and Van den Poel 2005).

In many industries, companies must deal with high churn rates. In telecom-

munications, churn rates are reported reaching from 45% to 70% in some years

(Mattison 2001). The implication is that more than 3.75% of all customers cancel

their contracts every month.

Our study makes three main research contributions in the field of predicting

defection. First, we widen the focus in business-to-business (B2B) contractual

settings so as to encompass not only complete defection but also partial de-

fection. Thus we demonstrate how companies that use contracts without fixed

volumes can, early on, identify (a) defectors who slowly switch to a competitor

over time and (b) which customers should be targeted with retention actions.

To maximize the firm’s future profit after such retention actions, we must learn

(i) which customers are most likely to exhibit partial defection and (ii) how

much revenue is at risk in each case. The latter question is key because there

is a significant difference between a customer that reduces its demand by (say)

half and a customer that abandons the firm completely; hence the absolute level

of revenue prior to defection is a chief concern. We therefore test the usefulness

of combining defection classification methods (e.g., logistic regression, neural

networks, gradient boosting) with regression methods that estimate future lev-

els of demand.

Second, whereas the extant literature invariably defines partial defection as

a demand decrease of more than 50%, we investigate how the predictive per-

formance changes with different thresholds or lead times for predicting par-

tial defection. We present a sensitivity analysis for two variations. (i) We vary

the threshold that determines which customers are defined as partial defectors.

The lower the threshold, the clearer the difference between partial defectors

and loyal customers who may simply have fluctuating demand over time. Yet a

lower threshold translates into a smaller number of classified partial defectors,

which tends to reduce predictive power. (ii) We modify the lead time between

the date of prediction and the prediction period. The longer the lead time, the

more time there is for retention actions but the greater the prediction error.

Given the results of both sensitivity analyses, managers are equipped to select

a combination of threshold and lead time that results in high predictive perfor-

mance while accommodating business requirements (e.g., the firm’s capacity to

engage in retention actions).
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Our third research contribution is to develop an approach that renders in-

terpretable even the more complex models of predicting defection. Current re-

search in this field seeks prediction methods that are interpretable. In contrast,

we develop a data permutation approach that can be applied in the context of

any data-mining model and that leads to high predictive performance. One

can use this approach to identify case-specific reasons why, irrespective of the

model, a customer is likely to exhibit partial defection.

The rest of our paper proceeds as follows. Section 3.2 reviews existing

research and introduces the prediction methods we consider: clustering, en-

sembling, profit-based predictions, and interpretable models. In Sections 3.3

and 3.4 we explain the chosen model approach, our case study, and the data

set. Results and managerial implications are then presented in Sections 3.5

and 3.6. We conclude in Section 3.7 with a summary and suggestions for future

research.

3.2 literature review

In this section we introduce data-mining models and survival probability mod-

els for defection prediction, including combinatorial methods that use cluster-

ing and ensembling. We also discuss models that focus on profit optimization

and interpretability instead of solely on predictive performance.

3.2.1 Defection defined

Most of the research on predicting defection is in one of two streams: optimiz-

ing predictive performance or emphasizing model interpretability (De Caigny

et al. 2018). Scholars typically focus on the accuracy needed to maximize pre-

diction performance (Verbeke et al. 2012), and some researchers use financial

metrics to plan retention actions in a way that maximizes profit (Jahromi et al.

2014). Often, the best results are achieved with rather complex models that

are difficult to understand and interpret (De Bock and Van den Poel 2012).

Hence other researchers focus on a model’s interpretability toward the end of

understanding and interpreting its predictions. The insights gained from that

research can help identify the drivers of specific customer behavior, after which

interventions can be planned in accordance with those factors (Gustafsson et al.

2005). The combination of these research streams addresses the trade-off be-

tween accuracy and interpretability (De Caigny et al. 2018). Various learning

models have been proposed for predicting defection. Among the most common
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of these are logistic regression (Neslin et al. 2006), decision trees (Wei and Chiu

2002), neural networks (Au et al. 2003b), random forests (Larivière and Van den

Poel 2005), and support vector machines (Coussement and Van den Poel 2008)

as well as survival probability models (Fader and Hardie 2007). In addition,

some studies combine two or more these models with clustering (Huang and

Kechadi 2013) or in an ensembling approach (Lemmens and Croux 2006).

Within churn research, one can further distinguish between contractual and

non-contractual settings. In the first case, churn can easily be detected by the

termination of a contract whereas this is not possible in the latter case. In

latter situations, the company has to derive the status of the customer based on

observable behavior. We focus on the first situation as our research partner has

contractual relationships to the customers who consume the offered services.

Another difference lies in the focus of the analysis: The prediction can either

focus on cohorts of similar customers or on individual customer level.

The existing literature on churn prediction focuses primarily on business-to-

consumer (B2C) interactions and consists of examples and case studies from

telecommunications (Lemmens and Croux 2006, Huang and Kechadi 2013, Lu

et al. 2014), the financial industry (Kumar and Ravi 2008), and online subscrip-

tions for gaming or music (Runge et al. 2014). In contrast, defection in B2B

settings remains a niche topic; only a few researchers (Rauyruen and Miller

2007, Jahromi et al. 2014, Chen et al. 2015a) have examined it. Jahromi et al.

call for more empirical research, especially in the B2B field. They argue that

there is less data available for B2B than for B2C settings and that insufficient

use has been made of the data that are available. There are two major differ-

ences between B2C and B2B markets. First, the customers in B2B settings are

usually fewer but larger, and they make larger and more regular purchases and

therefore tend to be more valuable (Rauyruen and Miller 2007). Because of

these large customers in B2B settings, each lost customer accounts for a signif-

icant share of the focal firm’s total revenue. It follows that churn prevention

is essential for maintaining revenue and profit. Second, the cost of switching

to another provider are often low in B2B markets and so customers can easily

move to a competitor. The rise of information technology enabled better cus-

tomer access to information, which made it easier and cheaper than before to

switch to a competitor (Wiersema 2013). Chen et al. (2015a) documents the

strong competition in these markets and also points out that competitive ad-

vantages in the logistics industry (e.g., cost, speed of delivery) can easily be

imitated by other market players. For these reasons, there is a fairly high risk

of losing customers.
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Some authors define defection as an explicit cancellation of contracts (a.k.a.

churn), while others use a broader definition that also includes customers who

are inactive or have partially defected. The latter definition is common in non-

contractual settings wherein one can observe user activity only over time, which

makes it impossible to identify complete defection. In cases of partial defec-

tion, customers purchase also from another provider but do not shift all of

their demand to that provider. According to Buckinx and Van den Poel (2005),

however, even a short-term decline in revenue can lead to complete defection

in the long run—as occurs when customers switch to another provider grad-

ually over time. Buckinx and Van den Poel define partial defection in terms

of loyal and unloyal customers, groupings that are based on those customers’

behavioral attributes. The loyal group consists of customers characterized by

an above-average purchase frequency and a below-average coefficient for vari-

ation in the interpurchase time. Ahn et al. (2006) study partial defection in the

contractual setting of the telecommunications industry. These authors define

partial defection as either nonuse or suspension of a contract. Thus they define

three different customer states: active, partially defected, and churned.

We study the particular case of partial defection in a contractual setting. Even

though a contract is in place, a customer can gradually shift its demand to

other service providers (i.e., it can partially defect). The reason is that shipping

volumes are not fixed and so can easily be adjusted. Given that the parcel ship-

ping services operate continuously, we use demand changes to classify defec-

tion. More specifically: a customer whose shipments decline by a prespecified

threshold percentage is classified as a partial defector. We focus the analysis on

individual customers given the availability of data on an individual level.

3.2.2 Models used to predict defection

García et al. (2017) perform a large literature review to review and anlyze dif-

ferent methods to predict churn. They state that the choice of method is very

dependent on the problem at hand but argue that both - a broad comparison

of methods as well as method combinations should be considered. The au-

thors show that standard methods such as regression are still widely used but

machine-learning methods are on the rise. Besides the statistical method, lo-

gistic regression, the two most common types of defection prediction methods

are data-mining models and survival probability models. The former amounts to

finding patterns in large data sets. The latter method combines (a) a simple

probability distribution (e.g., Poisson, binomial, exponential) that characterizes
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past observed behavior (e.g., purchase history) and (b) a cross-sectional hetero-

geneity to account for variation in customer characteristics across the customer

base. Among the methods briefly described next, decision tree, random for-

est, neural networks and support vector machines are data-mining models and

shifted-beta-geometric distribution is a survival probability model.

Statistical models are widely used with logistic regression (LogR) being the

most frequently adopted approach in the literature because it combines accu-

racy, interpretability, and rapid calculation (Lu et al. 2014). Although the ac-

curacy is sometimes less than that delivered by more complex models, LogR

is still preferred because of its easy and transparent application (Runge et al.

2014). Nie et al. (2011) and Coussement and Van den Poel (2008) find that lo-

gistic regression achieves higher predictive performance than do decision tree

models. Decision tree (DT) models are another widely used method whose

results are easy to calculate and interpret. Hadden et al. (2006) and Au et al.

(2003a) both use CART, whereas Chen et al. (2015a) use C4.5. However, all

these studies find that DT models yield better results than those obtained via

neural networks or logistic regression. That said, Hung et al. (2006) report that

neural networks perform better than does the C5.0 DT.

Out of the machine-learning models, Random forest (RF) is often used to pre-

dict partial defection (Buckinx and Van den Poel 2005). Larivière and Van den

Poel (2005) find that RF higher predictive performance than does LogR, and

Coussement and Van den Poel (2008) report that RF outperforms both logistic

regression and support vector machines. The analysis of Xie et al. (2009) shows

that RF performs better than decision trees, neural networks, or support vector

machines. However, Buckinx and Van den Poel (2005) find no significant dif-

ferences in the results derived via LogR or neural networks from those based

on RF. Neural networks is also frequently used to predict defection. Accord-

ing to Au et al. (2003b) and Hung et al. (2006), NN perform better than do DT;

Vafeiadis et al. (2015) find that NN perform no worse than DT and that both

perform better than either support vector machines or naïve Bayes. In contrast,

Tsai and Chen (2010) argue that the DT model works better than the tested

NN model. Support vector machines (SVM) are also popular for predicting

defection, although they usually require longer calculation times (Lessmann

and Voß 2009). Zhao et al. (2005) and Xia and Jin (2008) both report that SVM

performs better than LogR, DT, NN, or naïve Bayes. Coussement and Van den

Poel (2008) remark that only an optimal parameter selection for SVM leads to

it performing better than LogR. Vafeiadis et al. (2015) show that a DT model

and an NN model both work better than the tested SVM approach.
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An alternative to the statistical and machine-learning methods, probability

models are based on probability distributions used to predict future customer

behavior. In the case of defection, this distribution is a survival function that—

for any moment in time—returns a probability that a customer will remain

active or will defect (where that likelihood depends, in part, on the focal cus-

tomer’s contract length). Fader and Hardie (2007) develop a model for con-

tractual settings that builds on a “shifted beta geometric” distribution. Tamad-

doni et al. (2016) compare several data-mining models with probability models;

these authors find that probability models outperform data-mining models only

when the sample size is extremely small.

In summary, one can see that the results and rankings of the different pre-

diction methods differ from one analysis to the next; there are even cases of

reported results that directly contradict each other. Thus there is no “silver bul-

let” and so one must find the best method for each particular data set (Verbeke

et al. 2012). A disadvantage shared by all machine learning models (RF, NN,

SVM) is the lack of interpretability. All such models are viewed as “black boxes”

that enable analysis of overall feature importance but can generate no specific

insights regarding a single prediction.

3.2.3 The use of clustering to predict defection

Huang and Kechadi (2013) use unsupervised learning to cluster their input

data and then use a supervised method to predict defection. They find that a

hybrid model (using k-means clustering and rule induction prediction) is more

accurate than six other classification techniques (including LogR, DT, and SVM).

According to Huang and Kechadi, a hybrid approach allows the firm to compile

training sets (for its machine learning algorithms) that include customers with

similar behavior patterns and hence that result in greater predictive accuracy.

De Caigny et al. (2018) develop a different hybrid approach that combines DT-

based clustering and LogR. These authors report that the combined approach

works better than either LogR or DT and is no worse than more advanced meth-

ods such as RF. Another hybrid approach is tested by Fathian et al. (2016), who

use self-organizing maps (SOM) to cluster their data and apply four different

learning models: DT, NN, SVM, and k-nearest neighbor. These authors use

principal component analysis (PCA) to reduce the feature space and also use

bagging and boosting (see Section 3.2.4). They find that a combination of SOM,

PCA, and heterogeneous boosting performs best. Lu et al. (2014) describe a
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clustering approach that combines boosting with LogR to predict defection for

any given cluster.

3.2.4 The use of ensembling to predict defection

Researchers have often combined models in their efforts to improve predictive

performance. Popular choices of such combinations include bagging, boosting,

and stacking (Abbasimehr et al. 2014).

Bagging starts with randomly sampled sets of the training data with replace-

ment; as a result, a new training set is created for each classifier. The classifiers

are then trained individually on their respective training sets. Different classi-

fiers are typically chosen for each of those training sets. The final prediction is

made by averaging the single predictions of all of the trained classifiers.

Boosting is, in contrast, an iterative process. Prior to each iteration, the

data are reweighted to reflect the predictive accuracy observed in the previous

run. In addition, the classifiers are combined by using weights in proportion

to performance. The most commonly used implementations of boosting are

AdaBoost (Freund et al. 1996), LogitBoost (Friedman et al. 2000), and gradient

boosting (Friedman 2001).

Stacking is a two-step approach. First, base classifiers are trained with the

training data; second, another data set is used to combine the predictions of the

base classifiers. In this way, the output of all the different base models is used

as input to a new classifier that combines the outputs into a final classification.

In the analysis of Abbasimehr et al. (2014), boosting achieves better results

than bagging, stacking, or voting with four base classifiers: DT, NN, SVM, and

reduced incremental pruning to produce error reduction. Vafeiadis et al. (2015) test

and compare several different machine learning techniques (NN, SVM, DT,

naïve Bayes) as well as LogR for defection prediction and find that DT and NN

work best. In a second step, they apply AdaBoost boosting and find significant

improvements for all tested models. Lemmens and Croux (2006) find that both

bagging and stochastic gradient boosting improve on the results of DT; they

also emphasize that the choice of which method to use depends on the given

data set. Ge et al. (2017) find that a gradient boosting approach is superior to

LogR and RF in predicting defection for a “software as a service” company. In a

recent kaggle challenge (WSDM Cup 2018) that addressed defection prediction

for a leading music streaming service in Asia, Gregory (2018) used a gradient

boosting approach to win the competition. However, Chen et al. (2012) argue

that more complex SVM models work better than boosting.
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3.2.5 Combined defection prediction and profit optimization

The firm’s goal of predicting defection through classification accuracy can be

misaligned with its profit-maximizing ambitions (Bahnsen et al. 2015). The rea-

son is that misclassification costs are strongly affected by the profitability of

customers (Glady et al. 2009). Misclassification costs occur in two cases: when

defectors are wrongly classified as non-defectors and when non-defectors are

wrongly classified as defectors. In the first case, the costs are equal to the loss

in profit due to defected customers. In the latter, costs are incurred for under-

taking retention actions and for the retention offers (e.g., discounts) themselves.

The profit generated by a retention campaign depends, in turn, on (a) the like-

lihood of customers accepting the offer and (b) the incentive-driven change in

customer lifetime value (Lemmens and Gupta 2017). The optimal target size

of a retention campaign is often determined by the trade-off between retention

costs and the potential loss through defection (Lemmens and Gupta 2017). In-

stead of targeting customers with the highest predicted defection probability,

the firm should target those for whom retention actions are expected to yield

the highest return. That expected return is a function of three factors: the rev-

enue from—or customer lifetime value of—the focal customer, the cost of the

retention offer, and the offer’s acceptance rate (Verbraken et al. 2013). Bahnsen

et al. (2015) propose the following profit-based measure:

Expected profit = TP(γ(CLV −Co −Ca) + (1− γ)Ca) + FP(−Co −Ca) (3.1)

The expected profit depends on two different cases, the correct prediction of a

defector (TP = true positive) or the false prediction (FP = false positive). In

both cases, there is a retention offer cost (Co) and an administrative cost of

contacting the customer (Ca). If the customer is an actual defector (i.e., the TP

case) then that customer accepts the offer with probability γ. In this case, the

firm’s profit is the customer lifetime value (CLV) minus the costs. A customer

that is not a defector (i.e., the FP case) will always accept the offer and thus

only costs occur. So instead of maximizing profits, the firm can change the sign

of the formula and minimize costs (Bahnsen et al. 2015). One can also add the

cases of false negative predictions (where the cost is CLV) and true negative

predictions (in which case there are no costs).

Larivière and Van den Poel (2005) test different defection prediction models

and investigate the outcomes with regard to both profitability and classification

accuracy. The effect on profitability is tested by using, as dependent variables,

profit evolution (the profitability change compared to the last observation) and

profit drop (a binary value that indicates whether a customer has become less
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profitable since the previous observation). However, these authors do not op-

timize profit; they only assess accuracy in the context of forecasting future

profit development. Bahnsen et al. (2015) develop a cost-sensitive modeling

approach that accounts for CLV and that differs in the cases of correct versus

incorrect classification. They use DT, LogR, and RF models—with and with-

out cost-proportionate sampling–and report that their cost-sensitive approach

increases profitability by as much as 26.4%. Lemmens and Gupta (2017) use a

profit-based loss function to take profitability into account and to make better

predictions for high-profit customers than for others. These authors compare

the profit-based loss model with standard misclassification-based loss models

that reflect the profit increase calculated using (a) the retention action response

probability and (b) the change in CLV due to the incentive. Bahnsen et al. show

that their proposed approach yields an average increased profit of 62%. Ver-

beke et al. (2012) develop a novel profit-based performance criterion by which

CLV is used to measure the potential maximum profit that can be achieved via

a retention campaign. They maximize the potential profit across all customers

in order to select the model with the highest incremental profit and to find the

optimal share of customers to include in the campaign.

3.2.6 Interpretable models

Most of the research on predicting defection focuses on predictive accuracy.

However, there are many cases in which defection predictions must also be in-

terpretable and understandable—so that such predictions can be more easily

trusted (Freitas 2014). Especially when the prediction runs counter to expec-

tations, it is crucial to understand the model or at the least the reason for the

prediction. Freitas (2014) highlights the importance of comprehensible data-

mining models in the medical and military domains, where one must disen-

tangle cause–effect relationships. Yet comprehensibility is vital also for predic-

tions of defection because the reason for defecting might well differ among

customers, in which case customer-specific retention actions should likewise

differ to ensure a high success rate. Acting in response to a specific prediction

requires that one understands the predictive model and also the customer’s

reason for defecting. Sales agents can then use this information to target each

customer (or group of customers) and to devise measures for retaining them.

Freitas (2014) compares models that are widely viewed as delivering compre-

hensible results—including decision trees, nearest neighbors, and Bayesian net-

work classifiers—and discuss their respective advantages and disadvantages.
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Verbeke et al. (2011) use two novel data-mining models, Ant-Miner+ and an

active learning-based approach (ALBA), to combine accuracy with interpretabil-

ity. In their research, the ALBA approach that incorporates a nonlinear SVM

works best even when compared with traditional rule induction techniques

(e.g., C4.5 DT).

Besides these directly interpretable models, one can also aim to extract com-

prehensible models or simple rules from more complex models. Mashayekhi

and Gras (2015) introduce a method for extracting rules from RF models via a

hill-climbing algorithm that sharply reduces the number of rules. This method

improves comprehensibility without compromising the level of accuracy. Ribei-

ro et al. (2016) present an approach to explaining predictions of any classifier

through local interpretable model-agnostic explanations (LIME). This approach pro-

ceeds as follows. First, the observation to be explained is permuted n times.

Second, the selected classifier is used to predict the outcome of the permuted

observations. Then the (Euclidean) distance of all permuted observations to the

actual data is calculated and transformed into a similarity score. Next, the m

features that best explain the selected classifier from the outcome of the per-

muted observations are selected and used to train a simple model with the

permuted data; these features are weighted to reflect the previously calculated

similarity score. Finally, one can extract the feature weights from the simple

model to explain the selected classifier.

3.2.7 Data balancing

Defection is usually a rare event. Hence the data are often highly unbalanced

because only a small share of the firm’s customers are defectors (Lemmens

and Croux 2006). This imbalance can lead to poor predictive performance be-

cause it is more difficult to anticipate events that are relatively rare. In describ-

ing several different approaches to balancing data, He and Garcia (2009) iden-

tify three state-of-the-art solutions for unbalanced learning: sampling methods,

cost-sensitive methods, and kernel-based or active learning methods.

Sampling methods aim to achieve a balanced data set. One option is up-

sampling, in which case a random sample from the minority class is replicated.

In contrast, downsampling removes random observations from the majority

class. The synthetic minority oversampling technique (SMOTE) is an alternative

that combines downsampling of the majority class with creation of new mi-

nority instances by interpolation based on feature space similarities between

existing minority examples (Chawla et al. 2002).
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Cost-sensitive learning builds on a cost matrix that applies different misclas-

sification costs to different observations. Through weighting, a heavier cost is

imposed when errors are made in the minority class.

Active learning methods are the least common approach. They involve ker-

nel modifications and/or active learning methods for support vector machines.

3.3 approach to modeling

3.3.1 Classification models and data balancing

We use the most common classification models for predicting defection, as de-

scribed in Section 3.2.2: LogR, DT, SVM with radial kernel, RF, and NN. The DT

model used for our analysis is based on the well-known C5.0 approach. We also

test a gradient boosting models (GBM) approach (Ridgeway 2007). In addition

to these data-mining models, we use a survival probability model to character-

ize the observed behavior of customers, which in turn enables predictions about

the expected duration of a customer relationship. The contractual nature of our

setting explains our decision to use the shifted beta geometric (sBG) probability

model (Fader and Hardie 2009). Table 3.1 briefly summarizes these prediction

models. For the machine learning methods, one must select hyperparameters

Table 3.1: Prediction methods used in this analysis

Abbre-

viation Method Source

LogR Logistic regression 2013

RF Random forest Breiman (2001)

NN Neural networks Rumelhart et al. (1988)

GBM Stochastic gradient boosting model Ridgeway (2007)

C5.0 DT C5.0 decision tree Quinlan (1986)

SVM Support vector machines Scholkopf and Smola (2001)

sBG Shifted beta geometric probability

model

Weinberg and Gladen (1986)

that “tune” the learning approach so as to minimize the generalization error.

For example, an SVM with a radial basis function (RBF) kernel requires that

both the parameter of the soft-margin cost function (c) and the free parame-
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ter of the Gaussian RBF (γ) be predefined. One can use different approaches

(e.g., random selection, grid search) to select the best hyperparameters for a

particular data set. Since the computational power required for grid search is

not too large in our case and since the task can be split into parallel subtasks,

we adopt a five-fold cross-validation approach with a grid search to select the

hyperparameters that work best (Hsu et al. 2003). The tested hyperparameter

combinations are listed in Table 3.2. Given the skewed distribution of defectors

Table 3.2: Hyperparameters considered in this analysis

Classifier Hyperparameter Candidate settings

RF Randomly selected predictors 2,
√

#features/2,
√

#features

NN Weight decay 0.001, 0.01, 0.1

Hidden units 1, 2, 3, 5, 10

GBM Max. tree depth 1, 2, 3

Boosting iterations 50, 100, 200, 500

Shrinkage 0.01, 0.1

Min. terminal node size 10, 25

C5.0 Trials 1, 10, 20

versus non-defectors in the data set, we test four different data-balancing meth-

ods (upsampling, downsampling, SMOTE, and weighting; see Section 3.2.7) for

all models except for the one based on probability distribution.

3.3.2 Combined unsupervised and supervised classification

In addition to the classification approach using the models just described, we

use a combined clustering and classification approach. For this purpose, we

combine an unsupervised model to cluster the customers with a supervised

model to predict, within each cluster, each customer’s likelihood of defecting.

We use the well-known k-means clustering approach to split the data into clus-

ters before we train the models individually on each cluster (cf. Hartigan and

Wong 1979). The number of clusters is determined by the “elbow” method

(Thorndike 1953), which is based on minimizing the total within-cluster sum of

squares.
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3.3.3 Ensembling of different classifiers

Besides the GBM boosting approach (one of our base classification models),

we test two other ensembling methods that combine different classifiers. First,

we use heterogeneous bagging. We check the accuracy on the validation data

set to select the models with the highest accuracy (based on AUC-ROC; see

Section 3.3.8), after which we combine the predictions of the selected models

to estimate the defection probabilities for the test data set. We test different

numbers of models to combine (all of them or the top 3, 5, or 10). Second,

we use a stacking approach. The predictions of the various classifiers on the

validation data set are used as input for the final model training. We test and

compare all described classifiers for the stacking model.

3.3.4 Classification sensitivity analysis: Partial defection thresholds and prediction

lead times

We use sensitivity analysis to assess how different prediction conditions affect

predictive performance.

First, we test different partial defection thresholds. The dependent variable

is the share of the combined demand over four months compared to the same

months during the previous year; if demand decreases then this value is be-

tween 0 and 1. We use a threshold value to classify a customer as a partial de-

fector or not. If the calculated share is below the threshold, then the customer is

classified as a partial defector. Thus the higher the partial defection threshold,

the greater number of customers classified as partial defectors (and vice versa).

Table 3.3 reports the share of defectors for each tested threshold. In addition to

Table 3.3: Share of defectors in the data set for five partial defection thresholds

Share of

Threshold defectors (%)

0.25 0.02

0.50 0.07

0.60 0.11

0.70 0.17

0.80 0.25

the fixed threshold across all customers, we also test a signal-to-noise approach.
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In this test, we use different threshold values for each customer depending on

the variation in their previous demand: the lower the demand variation, the

higher we set the threshold value. In this way, we aim to distinguish between

a temporary and a structural decline in demand for each customer. Some B2B

customers exhibit fluctuating demand that is due to their business models (e.g.,

promotion or price effects), and these customers should not be classified as

defectors. Others have more stable demand, and it is with respect to these

customers that even a small reduction in demand is indicative of an imminent

switch to a rival; hence they should be viewed as potential defectors. We use

the coefficient for variation to cluster the customers and then apply different

threshold levels for each cluster. The cases of two and four clusters are both

tested, and we also checked the effects of five different threshold variations

(viz., 0.8, 0.7, 0.6, 0.5, and 0.25).

Second, we changed the lead time between the feature observation (i.e., time

of prediction) and the prediction period. The greater this time span, the earlier

one can identify potential defectors. However, a longer time span does reduce

the method’s predictive performance.

3.3.5 Regression models

We use regression as an alternative to the classification approach to address par-

tial defection. Regression models are used to predict future demand and hence

to identify possible reductions in revenue and profit. Customers for which pre-

dicted demand is below the partial defection threshold are considered to be

defectors. If the aim is to maximize profits, then the firm must know how much

revenue and profit is at risk for each customer. The potential profit loss result-

ing from a 50% reduction in a large customer’s demand could exceed even the

complete loss of a smaller customer. Hence we compare different regression

methods to predict each customer’s future demand. The same methods and

data are used here as for the classification approach but with three differences:

we use linear regression (LinR) instead of logistic regression as well as CART

regression trees instead of C5.0 classification trees; and we do not use a proba-

bility model.

3.3.6 Profitability analysis

Our research partner is naturally interested in the financial effects of better

partial defection predictions. How do better forecasts translate into savings or
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additional profit? In contrast to most published accounts, our research partner

does not offer discounts to retain customers. Instead, sales agents seek to re-

solve customers’ complaints and to offer them improved service. Hence each

retention call or visit comes with a fixed cost. Discussions with our research

partner led us to set this cost at e100. No published data are available for accep-

tance rate, thus we follow the literature (see e.g. Lemmens and Gupta 2017,Nes-

lin et al. 2006) and use 30% for the retention offer acceptance rate. We discussed

this approach with our research partner who confirmed this rate based on in-

ternal analysis and experience for our case. The increased profit resulting from

successful retention actions is equal to the prevented profit reduction, which in

turn depends on the chosen partial defection threshold.

The goal is to engage proactively with customers whose loss would reduce

profits the most and thus whose retention would yield the greatest uplift. There

are three options when prioritizing customers so that retention strategies max-

imize the firm’s profit. The first option is to multiply the calculated partial

defection probability of the tested classifiers (classification approach) by the

current profit of each customer. Thus customers that are both highly profitable

and likely to defect are listed first. The disadvantage of this option is that it fails

to account for the specifics of partial defection; so whether a customer is about

to reduce its demand by 50% or 90%, a score based solely on the defection prob-

ability and the profit will remain the same. For that reason, the second option

subtracts the calculated profit forecast (regression approach) from the current

profit to obtain the expected decline in profit. Here customers are sorted—from

high to low—according to that expected decline (in this case, the extent of the

demand decrease is considered).

The third option is to combine the classification result with the expected

profit decline using regression. We distinguish between two subcases. “Op-

tion 3(a)” consists of multiplying the calculated defection probability by the

calculated expected profit decline and then sorting the customers (from high

to low) according to the results. Under “option 3(b)”, all customers are ranked

independently based on both the classification result and the regression result;

then the customers are sorted by the average of those two rankings.

For all prioritization approaches, we test each classification and regression

model as well as the combinations described in Sections 3.3.1 and 3.3.5.

In addition, we test another approach that could further improve forecast

accuracy and thus enhance the profit uplift. More specifically, we use ABC

clustering to analyze separately the customers with high and low profits. We

assign the 20% of customers with the highest profits to class A, the next 30%

to class B, and the remaining customers (with the lowest profits) to class C.
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Our focus is then to optimize predictions for class A. Toward that end, we test

two different approaches. First, we use the ABC clusters much as we did the

k-means clusters described in Section 3.3.2. We train the prediction models in-

dependently for each cluster. In the second approach, we assign weights to the

customers based on their respective class assignments (this method is similar

to weighted data balancing). We test two different class weights. Customers

in classes A, B, and C are first assigned weights of (respectively) 3, 2, and 1;

then we increase the relative significance of classes A and B by changing their

weights to 10 and 3, respectively.

3.3.7 Interpretability

Prediction accuracy is more helpful, of course, when the classification results

can be easily interpreted. There are two reasons why our research partner seeks

to identify the features most important to customers that are predicted defec-

tors. First, its sales agents need to know why the focal customer was classified

as a partial defector. Second, that information is used by sales agents when

making retention calls. Agents adapt their approach to the retention discussion

so that it reflects the reasons underlying the customer’s predicted defection.

The easiest way to derive a customer-specific ranking of features is to use

directly interpretable models such as LogR or DT. We therefore start by com-

paring the predictive performance of such models with more complex ones.

The choice of which model to use is normally based on the trade-off between

accuracy and interpretability. In a second step, we aim to make complex mod-

els more interpretable and thereby to combine high accuracy with transparency.

For that purpose we first follow the LIME approach (see Section 3.2.6), which is

based on fitting linear models to permutations of the original training set. The

output is a list of the features most responsible for a given observation’s clas-

sification. To evaluate the LIME approach, we use it in combination with the

LogR model and compare the ranking of the extracted features with the ones

obtained directly from LogR. A high correlation between these two feature

rankings indicates a good explanatory model.

We also test another approach that builds on LIME but reduces the method to

the permutation part (i.e., without fitting another model to the permuted data).

For each observation, we resample each feature value using all other values of

the same feature in the data set. We then calculate the distance between the new

defection probability to the actual probability and sort the features according to

those distance values. Once again, we evaluate this approach by combining it
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with the LogR model and then comparing the ranking of the extracted features

to the ranking of features that are derived directly from logistic regression.

3.3.8 Accuracy measures

We first introduce the accuracy measures used for classification methods and

then describe those used for regression methods. Finally, we explain our ap-

proach to evaluating the financial uplift that results from using any of the clas-

sification or regression methods.

The performance measure of classification models is based on a so-called

confusion matrix, shown in Figure 3.1, that contains the number of correctly

and incorrectly predicted cases. In the case of a true positive (TP), an actual

defector is correctly predicted as a defector; similarly, true negative (TN) refers

to a correct classification of a non-defector. The misclassification of a defector

as a non-defector constitutes a false negative (FN), and the false prediction of a

non-defector as a defector is a false positive (FP). We evaluate the performance

Figure 3.1: Confusion matrix for binary classification

of the classification models using the top decile lift (TDL), the area under the curve

of the receiver operating characteristic (AUC-ROC), and the area under the curve of

the precision recall characteristic (AUC-PRC).

The top decile lift factor compares the proportion of defectors in the top

customer decile (according the predicted partial defection probability) with the

corresponding proportion in the full data set. A score higher than 1 indicates

that there is a higher density of defectors in the top decile than in the full

data set. This measure helps the firm’s sales agents decide which customers to

target in a retention campaign (Neslin et al. 2006), since the share of customers

to be contacted is usually determined beforehand. For this reason, the TDL is

considered to be especially helpful in planning retention actions.
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The receiver operating characteristic curve is a two-dimensional representa-

tion of how the true positive rate (3.2) is related to the false positive rate (3.3)

for various cut-off values (Hanley and McNeil 1982):

True positive rate =
TP

TP + FN
; (3.2)

False positive rate =
FP

FP + TN
. (3.3)

The precision recall characteristic curve represents precision, as defined by

Equation 3.4, in terms of recall, as defined in Equation 3.5—again for different

cut-off values. This curve is often used to evaluate the predictive performance

of models tested on unbalanced data sets (He and Garcia 2009).

Precision =
TP

TP + FP
; (3.4)

Recall =
TP

TP + FN
. (3.5)

Example ROC and PRC curves are shown in Figure 3.2. The AUC is a com-

mon score-based measure that distills the curve’s information into a single

value (Krzanowski and Hand 2009). A random classifier leads to a diagonal

ROC curve, which yields a value of 0.5 for AUC-ROC; whereas the AUC-PRC’s

value resulting from a random classifier is approximately the class ratio (Keil-

wagen et al. 2014).

Figure 3.2: ROC curve (left panel) and PRC curve (right panel)
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When assessing the regression models, our metrics are the mean absolute error

(MAE) and the root mean-squared error (RMSE) measures. These measures are

formally defined in Equations 3.6 and 3.7, respectively:

yt = Actual demand,

ŷt = Predicted demand;

MAE =
1

T

T∑
t=1

|yt − ŷt|, (3.6)

RMSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2. (3.7)

To estimate the expected profit, we adapt the retention campaign contribu-

tion formula of Neslin et al. (2006). We simplify matters by using the actual

profit decline with a short-term focus—that is, instead of undertaking a more

complicated, long-term CLV calculation. Also, we take into consideration the

fact that the research partner does not offer any discounts to retain customers

but focuses on targeted calls to the respective customers by the sales agents

which comes with a fix cost. We change the formula so that it is no longer

necessary to define up front the fraction of customers to be targeted by the

retention campaign. Instead, we adopt an approach similar to that used for

the TDL. Thus we first sort the customers, as described in Section 3.3.6, by us-

ing: (a) the current profit multiplied by the defection probability (for the tested

classification models); (b) the predicted profit decline (for the tested regression

methods); or (c) a combination of both classification and regression predictions.

Next we use (3.8) to calculate the profit Pk for each decile k of customers:

N = number of customers in the decile,

α = success rate (= share of customers that remain due to the retention

offering),

c = retention costs (= the cost of contacting a customer), and

d = actual profit decline (aggregated profit in the target months compared to

the same months in the year before) without retention action.

Pk =

N∑
i=1

αdi − cN; (3.8)

We then report profits for the top decile, P1, in the top decile profit (TDP)

and create a profit index to cover the results of all deciles. We adapt the index

approach of Ling and Li (1998) for use in the context of a defection model’s clas-
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sification performance. So letting Pk denote the profits derived from decile k,

we write

Profit index = 1P1 + 0.9P2 + 0.8P3 + · · ·+ 0.1P10. (3.9)

Table 3.4 summarizes the accuracy measures that we use.

Table 3.4: Overview of measures

Purpose Abbreviation Explanation

Accuracy measures TDL Top decile lift

(classification) ROC Receiver operating characteristic

PRC Precision recall characteristic

Accuracy measures MAE Mean absolute error

(regression) RMSE Root mean-squared error

Profitability measures TDP Top decile profit

Profit index Profit index

3.4 case study and data

3.4.1 Case study

We work with a large parcel logistics provider in Germany that offers both

B2C and B2B services. Our research focuses on parcel delivery in the B2B

customer segment. According to Esser and Kurte (2020) more than 2 million

B2B customers were served with B2B parcel services in Germany in 2019. They

further state that 60 % of all company branches use parcel services daily. The

parcel volume increased by 3.8 % in 2019 to a total of 3.65 billion shipments

whereas 44 % are B2B related. The authors further state that the share of B2B

parcel shipments is significant and B2B services are the backbone of the German

society and economy. The total revenue of the parcel industry is estimated

to be 20.4 billion Euro in 2019 (Esser and Kurte 2020). The German market

is highly competitive with high price sensitivity among customers (Esser and

Kurte 2020). Thus, churn prevention is a strategic necessity to avoid losing

market share to competitors.

The data comprise monthly observations of 30,000 random customers over

the years 2012 to 2017. The descriptive statistics of the time series in focus of
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the analysis can be found in Table 3.5. We present both the mean and the

standard deviation across all time series.

Table 3.5: Descriptive statistics - demand size

Mean Standard deviation

Min. 30.53 0.00

1st Q. 183.74 86.22

Median 370.71 175.64

Mean 642.58 329.70

3rd Q. 812.32 381.92

Max. 23902.42 25156.43

We further present two exemplary time series in Figure 3.3 and 3.4. Both

show the full time series with 67 monthly observations since 2012. Figure 3.3

shows a time series with seasonality patterns but without any (partial) defec-

tion whereas Figure 3.4 shows a time series where demand drops to zero in

period 61 and following.

Figure 3.3: Time series example without partial defection

We refer to the independent variables associated with these observations as

features, which are captured for all customers at three yearly intervals: in Jan-

uary 2015, January 2016, and January 2017. Despite the contractual setting, we

assess partial defection because the shipment volumes are not fixed. We observe

that customers often switch to another provider slowly over time. It is therefore

not enough to take only complete defectors into account because then defectors

would not be identified until almost all demand had already shifted to a com-

petitor. Hence customers are classified as defectors (= 1) or non-defectors (= 0)
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Figure 3.4: Time series example with (partial) defection

depending on the difference between the total demand in a four months time

frame in the observation year and demand during the same four months of the

previous year. We test different prediction time horizons to balance the time

required to initiate retention actions and the predictive performance. We use a

four-month total to minimize the influence of short-term fluctuations that could

dominate observations limited to a shorter period. To define a customer as a

defector, we test different defection thresholds which translate into a reduction

in demand as compared with the same period in the previous year.

We split our data into three parts: (i) the training data, which are used to

train the prediction models; (ii) the validation data, to evaluate prediction per-

formance and identify the most ensemble-appropriate methods; and (iii) the

separate test data set, which we use to measure predictive accuracy. We start

by randomly assigning 65% of the customers to the training set, 20% to the

validation set, and 15% to the test set. Then we take the 2015 and 2016 observa-

tions of the chosen customers for the training and validation set and the 2017

observations of the test customers for the test set. Thus we simulate the actual

analytics approach at the logistics provider, which can use its past data (here,

for years 2015 and 2016) to train and evaluate the models intended for appli-

cation to its current data (here, for 2017). We ensure that both the training and

validation data sets include the same share (7%) of defectors. Yet because the

share of defectors may change over time, we use a different share (12%) for the

test set.
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3.4.2 Description and preprocessing of the data set

The data at hand consists of the monthly time series data as described above

plus additional features mesaures at three points in time (2015/2016/2017). We

use a set of nearly 500 features, from various sources at the logistics provider,

that can be grouped into three thematic clusters:

• transactional data (e.g., volumes, peak-volume month, prices for different

products, contract duration, volume share of selected weekdays);

• customer master data (e.g., size, industry, location, contract length, usage

of specific services such as CO2 compensating shipments or warehousing,

profitability, distance to fulfillment center of competitive parcel service

providers); and

• customer service information (e.g., icoming/outgoing calls, personal meet-

ings, complaints per topics such as pricing/delays).

For time-series–based features, such as revenue and volume, we use several

different time horizons and reference values. Table 3.6 summarizes the main

features that are directly derived from each customer’s monthly revenue time

series.

Next we use the seasonal and trend decomposition using Loess (STL) approach

(Cleveland et al. 1990) to divide the revenue time series into a seasonal com-

ponent, a longer-term trend, and a remainder component. We use these three

parts of the time series to create the additional features listed in Table 3.7.

In addition, we calculate the time-series–based features described in Table 3.8.

We also use the auto-regressive integrated moving average forecasting method to

predict demand during the four-month target period. The resulting feature is

calculated by dividing the obtained forecast by the demand from the same

periods in the previous year.

There are two disadvantages to a data set that, like ours, has a wide va-

riety of features. First, calculations take longer when a larger data set is in-

volved; second, interpretive difficulties increase with the number of available

features. However, data complexity can be reduced by three different types

of feature selection methods: filter, wrapper, and embedded (Liu et al. 2010).

Filter models (e.g., chi-squared test, information gain) analyze the data’s gen-

eral characteristics and use an assessment criterion such as distance to rank the

features (Guyon and Elisseeff 2003). Wrappers (e.g., recursive feature selection

or Boruta) embody a specific learning approach and use performance on those

terms as their assessment criterion (Liu et al. 2010). Embedded methods (e.g.,
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Table 3.6: Overview of revenue time-series features

Feature Explanation

fluc_1m Revenue of last month compared to same month in

previous year (same also for two and four months)

revenue_old Revenue in the four-month target period in previ-

ous year

share_1m_revenue Share of revenue in last month compared to full

year (same for 4 and 6 months)

share_december_revenue Share of revenue in December compared to full year

(same for other months)

share_Q1_revenue Share of revenue in first quarter compared to full

year (same for other quarters)

share_summer_revenue Share of revenue in summer months compared to

full year (same for other seasons)

share_saturday_revenue Share of revenue on Saturdays compared to full

week (same for other weekdays)

Table 3.7: Overview of time-series features using STL

Feature Explanation

trend_4m Trend of last 4 months compared to the 4

months before (same also compared to the same

4 months 1 and 2 years earlier)

remainder_4m Remainder of last 4 months compared to the 4

months before (same also compared to the same

4 months 1 and 2 years earlier)

trend_vs_remainder_12m Trend compared to remainder of last 12 months

seasonal_vs_remainder_12m Seasonal compared to remainder of last 12

months

LASSO) incorporate feature selection into the classifier and thus select the fea-

tures while the model is being created; the objective function is then used to

evaluate the performance of a specific feature subset (Liu et al. 2010). Each of

these methods has its respective advantages and disadvantages. Filter meth-

ods are easy to apply and require limited calculation effort, but their predictive
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Table 3.8: Overview of time-series–based features

Feature Explanation

skewness Measures the asymmetry of a time series

kurtosis Measures the tailedness of a time series

breakpoints Number of structural breaks in a time series

teraesvirta Teraesvirta neural network test for the nonlinearity of a time se-

ries

auto_corr Ljung–Box test for serial correlation of a time series

hurst Hurst exponent; measures the long-term memory of a time series

performance often falls short of results derived using wrapper and embedded

methods (Guyon and Elisseeff 2003).

We test two different wrapper feature selection methods. Recursive feature

elimination (RFE) is based on iteratively training new models and, after each

iteration, removing the data set’s worst-performing feature. The model with

the best performance is ultimately used to select the chosen features. With this

method, cross-validation resampling is used to avoid overfitting; typical im-

plementations use RF and 10 times cross-validation (Kuhn 2012). The second

method, Boruta, selects relevant features by comparing the feature importance

to random permutations of the original feature. It proceeds as follows: all fea-

tures are duplicated by “shadow” features, which are randomly shuffled copies

of the original features. After fitting a random forest model, features that are

less important than its shadow duplicates are removed. This iterative approach

continues until a predefined number of iterations has been reached or until all

features have been classified as either important or unimportant (Kursa et al.

2010).

3.5 results

In this section, we first report our findings on the predictive performance of

the tested classification models (Section 3.5.1) and then describe a sensitivity

analysis in which we compare the classification effects of different thresholds

and lead times (Section 3.5.2). Next, we present the results of regression mod-

els (Section 3.5.3) and of combinations of classification and regression models

(Section 3.5.4). We then discuss insights derived from the profitability focus
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approach (Section 3.5.5) and the interpretability focus approach (Section 3.5.6).

We conclude with information related to feature importance (Section 3.5.7).

3.5.1 Results of classification models

Table 3.9 reports accuracy results of the tested classification models—including

all data-balancing methods but without feature selection. The profit measures

TDP and profit index are based on ranking customers according to the product

of (a) the firm’s current profit and (b) the defection probability calculated using

the respective prediction model.

Table 3.9: Predictive performance of all models: No feature selection (column rankings

in parentheses)

Balan-

cing

AUC-ROC AUC-PRC TDL TDP Profit index

LogR none 0.710 (24) 0.275 (24) 2.630 (25) 549,594 (13) 674,061 (20)

weights 0.723 (17) 0.281 (21) 2.777 (22) 490,559 (26) 676,341 (17)

down 0.709 (25) 0.263 (25) 2.667 (24) 494,021 (24) 649,259 (27)

up 0.719 (21) 0.277 (23) 2.762 (23) 489,422 (27) 676,335 (18)

smote 0.723 (18) 0.288 (18) 2.930 (17) 510,489 (21) 667,578 (23)

RF none 0.748 (9) 0.353 (4) 3.222 (5) 556,405 (8) 696,460 (10)

weights 0.750 (8) 0.354 (3) 3.281 (4) 551,367 (12) 697,282 (8)

down 0.761 (2) 0.322 (8) 3.018 (14) 552,402 (11) 697,036 (9)

up 0.745 (10) 0.310 (12) 3.054 (11) 548,003 (14) 698,635 (7)

smote 0.759 (3) 0.315 (11) 3.061 (9) 555,892 (9) 699,148 (6)

NN none 0.689 (26) 0.200 (30) 1.410 (30) 466,863 (29) 634,502 (29)

weights 0.739 (14) 0.296 (14) 2.959 (15) 543,444 (15) 693,044 (11)

down 0.722 (19) 0.286 (19) 2.798 (21) 497,939 (23) 654,373 (26)

up 0.716 (22) 0.291 (17) 2.908 (18) 535,051 (18) 692,038 (13)

smote 0.722 (20) 0.279 (22) 2.937 (16) 505,577 (22) 669,937 (22)

GBM none 0.758 (5) 0.348 (6) 3.295 (2) 553,888 (10) 687,225 (15)

weights 0.758 (4) 0.355 (2) 3.310 (1) 596,499 (2) 711,573 (2)

down 0.765 (1) 0.359 (1) 3.208 (6) 582,315 (4) 706,289 (3)

Continued on next page
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Table 3.9: Predictive performance of all models: No feature selection (column rankings

in parentheses) (continued)

Balan -

cing

AUC-ROC AUC-PRC TDL TDP Profit index

up 0.757 (6) 0.349 (5) 3.288 (3) 605,735 (1) 713,729 (1)

smote 0.741 (13) 0.322 (9) 3.098 (8) 583,425 (3) 703,097 (4)

C5.0 none 0.657 (30) 0.236 (27) 2.294 (28) 489,182 (28) 664,981 (24)

DT weights 0.675 (27) 0.217 (29) 2.126 (29) 379,699 (30) 632,953 (30)

down 0.744 (11) 0.324 (7) 3.127 (7) 562,160 (5) 701,805 (5)

up 0.711 (23) 0.283 (20) 2.835 (20) 539,103 (17) 646,655 (28)

smote 0.729 (15) 0.304 (13) 3.032 (13) 558,164 (7) 679,605 (16)

SVM none 0.661 (29) 0.236 (26) 2.528 (26) 492,183 (25) 661,589 (25)

weights 0.663 (28) 0.233 (28) 2.462 (27) 527,444 (20) 671,652 (21)

down 0.741 (12) 0.293 (16) 2.901 (19) 529,984 (19) 689,885 (14)

up 0.753 (7) 0.315 (10) 3.061 (9) 559,041 (6) 692,041 (12)

smote 0.726 (16) 0.293 (15) 3.047 (12) 539,296 (16) 675,092 (19)

sBG n/a 0.563 (31) 0.125 (31) 1.188 (31) 182,623 (31) 418,594 (31)

The best prediction models reach an AUC-ROC of up to 0.765, an AUC-PRC

of up to 0.359 (both GBM down), and a TDL of up to 3.310 (GBM weights).

With regard to the profit measures, the best models achieve a TDP of more

than e605,000 and a profit index of more than e713,000 (both GBM up). Over-

all, GBM provides the best predictive performance, followed by RF. Across

all methods, the downsampling data-balancing approach has on average the

highest values for the accuracy measures (AUC-ROC, AUC-PRC, and TDL)

whereas the upsampling balancing approach yields the highest profit measures

(TDP and profit index). The probability model sBG performs significantly worse

compared to all other methods; in fact, its results are only slightly better than

would follow from random guessing. We also observe a high correlation be-

tween the accuracy measures and profit measures (Pearson’s ρ > 0.85 between

AUC-ROC and both TDP and the profit index).

We use Boruta and RFE feature selection to reduce the number of features

in the data set. That number is reduced from 225 to 154 with Boruta and to

63 with RFE. (The accuracy measures for prediction methods using Boruta or

RFE feature selection are tabulated in the Appendix B in Tables B.1 and B.2,
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respectively.) The accuracy of the GBM and RF models using Boruta and RFE

feature selection are both close to the ones without any feature selection; thus

the AUC-ROC of GBM orig is 0.758 both with and without Boruta feature selec-

tion and is 0.753 with RFE. Yet the NN and LogR models, which exhibit better

performance than any of the two tested feature selection methods, improve still

further: the AUC-ROC for NN orig increases from 0.689 to 0.733 with Boruta

and to 0.758 with RFE. The same observation regarding the performance of

LogR and NN holds true for the profit measures, especially when one com-

pares results of the full-featured models with results from models with RFE

(i.e., the TDP for NN orig increases from e466,863 to e540,348). On average

across all classifiers, there is almost no difference among the three accuracy

measures when we compare Boruta or RFE feature selection with the results

of models that use all features. In contrast, the profit measures do improve

slightly, on average, with either Boruta or recursive feature elimination.

Following our application of different prediction models, data-balancing

methods, and feature selection mechanisms, we test the combination of un-

supervised and supervised classification in a clustering approach. The elbow

method (see Section 3.3.2) indicates that three is the appropriate number of

clusters for our data set. Next, we assign the customers from both the training

and the test data set to these clusters and train separate models for each of the

clusters. One cluster contains 16% of all observations, and each of the other two

clusters contains 42%. We present the results of the GBM classification method

as an example. Note that we cannot use the downsampling data-balancing

method because there are so few defectors in one of the training clusters. Re-

sults of the clustered approach are reported in Table 3.10.

Table 3.10: Predictive performance of the clustered approach with GBM method

Data AUC- AUC- Profit

balancing ROC PRC TDL TDP index

orig 0.754 0.354 3.178 540,311 690,716

weights 0.762 0.347 3.215 578,667 703,789

up 0.756 0.336 3.164 568,516 692,895

smote 0.739 0.306 2.937 544,958 686,026

We find that the results of all three accuracy measures for all tested classi-

fiers with clustering are similar to the results without clustering. However, the

same cannot be said of the profit measures. In almost all cases (except the
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profit index for orig), performance of the non-clustered approach is better than

that of the clustered approach (e.g., respective TDLs for orig of e553,888 and

e540,311). We assume that these outcomes reflect the training data’s being—in

the non-clustered approach—broader and more diverse, which facilitates the

generalizing performed by algorithms.

We now present results of the ensembling methods that combine different

classification models. Table 3.11 reports findings related to the heterogeneous

bagged approach for combinations with different numbers of base classifiers

(all, top 3, top 5, top 10), where rankings are determined by the classifiers’ pre-

dictive performance on the validation data set. The results when using different

stacking classification models (LogR, RF, NN, GBM, C5.0 DT, SVM) are given

in Table 3.12.

Table 3.11: Predictive performance of the bagging approach

AUC- AUC- Profit

Method ROC PRC TDL TDP index

mean_all 0.765 0.352 3.288 558,679 706,081

mean_top3 0.760 0.345 3.281 598,988 712,847

mean_top5 0.764 0.355 3.317 599,260 713,887

mean_top10 0.766 0.358 3.295 588,760 709,928

Table 3.12: Predictive performance of the stacking approach

AUC- AUC- Profit

Method ROC PRC TDL TDP index

LogR 0.768 0.354 3.273 578,060 704,851

RF 0.734 0.328 3.193 541,184 687,338

NN 0.766 0.350 3.251 566,774 702,637

SVM 0.604 0.234 2.404 459,725 660,658

C5.0 DT 0.767 0.351 3.332 567,227 702,379

GBM 0.740 0.314 2.974 561,999 618,679

The results in Table 3.11 show an improvement in predictive performance

compared to most of the base classifiers. An ensemble of the best five models

(according to their accuracy on the validation data set) leads to slight improve-

ments, especially in the profit measures, over the downsampled GBM base
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classifier: the AUC-ROC rises from 0.764 to 0.760. However, the AUC-PRC falls

from 0.355 to 0.335, the TDL from 3.317 to 3.135, the TDP from e599,260 to

e589,256, and the profit index from e713,887 to e706,218). In contrast, the

stacked models in Table 3.12—when compared to the best base classifiers—

yield similar results for the accuracy measures but worse results for the profit

measures. Across all measures, the LogR, NN, and C5.0 DT stacking models

work best.

3.5.2 Sensitivity analysis for classification models

Table 3.13 presents results of our sensitivity analysis regarding lead time: the

amount of time between the prediction and the customer’s expected action.

Table 3.13: Predictive performance of the GBM model with different lead times

Lead AUC- AUC- Profit

time ROC PRC TDL TDP index

1 0.786 0.359 3.645 566,760 592,713

2 0.744 0.325 3.107 560,928 696,123

3 0.743 0.322 3.087 529,257 652,263

5 0.710 0.336 2.681 626,703 898,443

7 0.661 0.324 2.347 640,982 1,041,990

There is a clear correlation between lead time and prediction accuracy. All

accuracy measures confirm that, the shorter the lead time, the better the pre-

dictive performance. The only exception is the AUC-PRC result for a lead time

of five months that is worse than the result with a lead time of seven months.

In contrast, the profit measures improve significantly with longer lead times.

But these outcomes come with a major caveat because they are not truly com-

parable given the different periods examined. In particular: using a lead time

of two months places the focus on total demand from April to July; whereas

a lead time of seven months will focus on total demand from September to

December. As the customers of our research partner switch slowly to another

provider, the demand of defectors declines over time. Hence the further one

looks into the future, the larger the demand gap becomes. Since change in de-

mand is the basis for our profit measures, it follows that these measures tend

to improve the further we look into the future.
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We present the prediction accuracies for different partial defection thresholds

in Table 3.14. The threshold value is calculated as demand in the target period

divided by demand during the same period in the previous year. A customer

is classified as a defector if that ratio falls below the threshold value.

The results in Table 3.14 show that, the higher the threshold value, the worse

the AUC-ROC and TDL but the better the AUC-PRC. These outcomes can be ex-

plained by the increasing number of defectors in data sets with higher threshold

values, which reduces data imbalance. Overall, profit measures based on the

0.25 threshold perform significantly worse than those based on any of the other

four tested thresholds. In such comparisons, one must distinguish between the

different data-balancing methods. For instance, profit results of the orig and

SMOTE improve under higher thresholds whereas those of the weighted and

upsampling balancing methods decline. These differences, too, reflect the data

set’s changing exent of imbalance. The greater the imbalance (and hence the

fewer defectors in the data), the more accurate are the results for the weighted

and upsampling methods of balancing.

The results of our signal-to-noise approach—in which we apply different

thresholds for different customer groups depending on their past demand

variations—do not differ significantly from the results described previously.

3.5.3 Results of regression models

Results of the regression models are reported in Table 3.15, where MAE and

RMSE are the performance measures and TDP and profit index are the profit

measures. Both of these profit measures are based on ranking customers ac-

cording to the expected profit loss—that is, the difference between the current

profit and the future profit as predicted using the respective regression model.

The GBM model is the most accurate for three of the four measures; only NN

has a higher profit index result. The SVM model is extremely accurate when

measured by MAE but performs worse than the other models in terms of the

RMSE measure. This finding suggests that there are more large errors for the

SVM model that are weighted higher using the RMSE measure. The results of

the profit measures for all methods are significantly lower than the outcomes

of the classification models.
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Table 3.14: Predictive performance of the GBM model with different partial defection

thresholds (column rankings in parentheses)

Balan- AUC- AUC- Profit

TH cing ROC PRC TDL TDP index

0.25 none 0.755 (11) 0.227 (25) 4.017 (5) 528,321 (25) 678,172 (25)

weights 0.785 (1) 0.258 (23) 4.440 (1) 566,170 (18) 698,330 (19)

down 0.780 (2) 0.260 (22) 4.261 (3) 561,388 (21) 696,340 (22)

up 0.778 (3) 0.264 (21) 4.408 (2) 563,571 (19) 696,740 (21)

smote 0.776 (4) 0.241 (24) 4.261 (3) 571,202 (14) 695,322 (23)

0.50 none 0.758 (7) 0.348 (19) 3.295 (7) 553,888 (23) 687,225 (24)

weights 0.758 (6) 0.355 (17) 3.310 (6) 596,499 (3) 711,573 (4)

down 0.765 (5) 0.359 (16) 3.208 (9) 582,315 (10) 706,289 (14)

up 0.757 (8) 0.349 (18) 3.288 (8) 605,735 (1) 713,729 (2)

smote 0.741 (19) 0.322 (20) 3.098 (10) 583,425 (9) 703,097 (18)

0.60 none 0.749 (15) 0.405 (14) 2.829 (14) 575,032 (13) 697,952 (20)

weights 0.752 (12) 0.412 (13) 2.877 (13) 567,094 (15) 708,859 (9)

down 0.756 (10) 0.429 (11) 2.993 (12) 560,861 (22) 707,394 (12)

up 0.757 (9) 0.422 (12) 2.999 (11) 583,668 (8) 709,453 (7)

smote 0.733 (24) 0.387 (15) 2.660 (15) 594,027 (5) 703,363 (17)

0.70 none 0.750 (13) 0.499 (7) 2.513 (18) 579,495 (11) 706,865 (13)

weights 0.748 (16) 0.504 (6) 2.521 (17) 566,630 (16) 708,923 (8)

down 0.746 (17) 0.494 (9) 2.464 (19) 586,460 (7) 708,612 (10)

up 0.749 (14) 0.498 (8) 2.532 (16) 576,461 (12) 711,884 (3)

smote 0.733 (23) 0.476 (10) 2.350 (20) 598,366 (2) 709,851 (6)

0.80 none 0.735 (22) 0.580 (4) 2.160 (24) 587,958 (6) 714,009 (1)

weights 0.742 (18) 0.583 (3) 2.171 (23) 553,377 (24) 705,641 (15)

down 0.740 (20) 0.583 (1) 2.185 (22) 562,199 (20) 705,326 (16)

up 0.740 (21) 0.583 (2) 2.188 (21) 566,207 (17) 707,886 (11)

smote 0.724 (25) 0.561 (5) 2.059 (25) 594,400 (4) 710,319 (5)

Note: TH = threshold.
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Table 3.15: Predictive performance of regression models (column rankings in parenthe-

ses)

Model MAE RMSE TDP Profit index

LinR 0.485 (5) 1.650 (3) 493,677 (4) 501,269 (5)

RF 0.454 (3) 1.646 (2) 468,487 (6) 458,478 (6)

NN 0.472 (4) 1.727 (6) 511,276 (3) 630,592 (1)

GBM 0.437 (1) 1.643 (1) 536,263 (1) 577,902 (2)

CART DT 0.490 (6) 1.678 (5) 493,056 (5) 574,516 (3)

SVM 0.437 (1) 1.668 (4) 514,720 (2) 561,175 (4)

3.5.4 Results of combinations of classification and regression models

After testing the described classification and regression approaches, we com-

bine both predictions with the aim of further increasing the profit lift through

retention actions (as described in Section 3.3.6). For this purpose, we test and

compare two different methods. Under approach A, we sort customers accord-

ing to the product of the predicted defection probability and the predicted

profit loss; in approach B, customers are sorted by the average of their clas-

sification and regression rankings. As an example, we present the results for

approach A with the GBM classification models. The TDP results are given in

Table 3.16, and the profit index results are reported in Table 3.17.
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Table 3.16: Top decile profit for combinations of GBM classification and different regression models

(row rankings in parentheses)

Data balancing LinR RF NN GBM SVM CART DT

orig 475,345 (4) 412,395 (6) 476,628 (3) 490,521 (2) 458,810 (5) 519,100 (1)

weights 500,092 (5) 454,995 (6) 508,585 (4) 546,142 (2) 513,578 (3) 563,123 (1)

down 497,466 (5) 460,328 (6) 514,113 (4) 547,739 (2) 518,851 (3) 564,524 (1)

up 496,179 (5) 457,221 (6) 512,440 (3) 545,391 (2) 511,183 (4) 562,749 (1)

smote 485,293 (5) 446,961 (6) 510,470 (3) 529,706 (2) 499,769 (4) 564,546 (1)
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Table 3.17: Profit index for combinations of GBM classification and different regression models

(row rankings in parentheses)

Data balancing LinR RF NN GBM SVM CART DT

orig 483,621 (5) 433,931 (6) 642,807 (1) 561,407 (3) 546,709 (4) 581,528 (2)

weights 481,354 (5) 436,709 (6) 645,431 (1) 572,731 (3) 558,989 (4) 593,941 (2)

down 488,775 (5) 443,383 (6) 640,335 (1) 575,264 (3) 559,866 (4) 595,014 (2)

up 480,782 (5) 436,762 (6) 643,777 (1) 573,015 (3) 558,045 (4) 595,138 (2)

smote 482,139 (5) 439,511 (6) 646,396 (1) 571,583 (3) 555,994 (4) 593,372 (2)
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The results show that, regardless of the data-balancing method, the TDP is

highest when GBM classification is combined with CART regression whereas

the profit index is highest when GBM classification is combined with NN re-

gression. Although most of the profit measures results are better (higher) than

those obtained using the pure regression approach presented in Section 3.5.3,

their performance is significantly lower than that of the base classifiers pre-

sented in Section 3.5.1. Our analysis of all the other classifiers (i.e., besides

GBM) yield the same qualitative results.

Approach B, under which customers are sorted according to the average rank

of both the classification and regression predictions, leads to strongly similar

results that are likewise worse than those derived via the pure classification

approach.

3.5.5 Results of profitability focus

In addition to evaluating predictive performance, we seek to improve that per-

formance with respect to high-profit customers and thereby maximize overall

profit (as described in Section 3.3.6). We present the results for two different

approaches. First, we use clustering. Table 3.18 reports performance measures

for the ABC clusters that are based on customer-specific profits. As an example,

we present the results of the GBM models; Table 3.19 gives the accuracy mea-

sure results for each of the three clusters. Second, we use weighting. Table 3.20

reports results of the weighted approach (with weights of 3 for customers in

cluster A, 2 for those in cluster B, and 1 for cluster C).

Table 3.18: Predictive performance of the GBM method with ABC clustering by profits

Data AUC- AUC- Profit

balancing ROC PRC TDL TDP index

orig 0.738 0.345 3.186 518,149 666,137

weights 0.747 0.339 3.135 601,713 701,849

down 0.760 0.340 3.127 602,660 706,689

up 0.743 0.341 3.244 570,176 686,206

smote 0.750 0.330 3.091 595,536 705,372

Table 3.18 reveals that almost all accuracy measures perform worse than does

the base classifier without ABC clustering; only the results for the model with

SMOTE data balancing are better. The TDP is higher with ABC clustering for
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weights, down, and SMOTE, and the profit index is slightly better for down and

SMOTE. In all other cases, the results of the base GBM classifier outperform

the ABC clustered approach. Here we present only GBM as an example but

find comparable results for the other methods. We obtain similar findings with

the same approach but when using revenue clusters instead of profit clusters.

Table 3.19: Predictive performance of the GBM method by cluster

without data balancing

AUC- AUC-

Cluster ROC PRC TDL

A 0.771 0.386 4.012

B 0.769 0.366 3.655

C 0.719 0.329 2.827

The results for each of the clusters in Table 3.19 show that the accuracy is

greatest for cluster A—that is, for customers that generate the most profits.

This finding is in accord with our approach to calculating profit (with TDP and

profit index measures) because we use the profit also to sort customers and

only then calculate the profit measures.

Table 3.20: Predictive performance of ABC weighting by profits

AUC- AUC- Profit

Method ROC PRC TDL TDP index

LogR 0.692 0.278 2.747 362,246 570,163

RF 0.751 0.356 3.281 547,579 695,089

NN 0.753 0.313 2.966 565,547 695,958

SVM 0.691 0.252 2.440 548,271 687,758

GBM 0.756 0.348 3.361 560,341 695,724

C5.0 DT 0.699 0.275 2.952 514,622 670,232

The results of the weighted approach (see Table 3.20) generally show no im-

provement over the various base classifier results. In particular, the results of

the profit measures are worse. We shall present results only for the approach

using weights 3, 2, and 1; similar results are obtained using the respective

weights 10, 3, and 1. Finally, the same qualitative results are obtained when we

use revenue (rather than profits) to determine the ABC weights.
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3.5.6 Results of interpretability focus

Our research has documented that the directly interpretable models LogR and

C5.0 DT are each significantly less accurate than the more complex models

GBM and bagged ensembling. Since the goal should be to achieve high accu-

racy and interpretability, we test two methods for explaining the predictions of

complex and otherwise non-interpretable models: LIME and data permutation.

We evaluate the effectiveness of both methods by comparing customers’ ranked

features based on LIME and data permutation on the LogR model with their

ranked features based on our estimated coefficients for the LogR model. The

Kendall rank correlation coefficient is a measure that can be used to compare

the two rankings.

The average correlation of all customers in the test data set between the fea-

ture rankings based on LogR and the permutation approach is 0.82; for all

customers, this value is significant at the 1% level. In contrast, the correlation

between the ranking based on LogR and the one based on the LIME approach

is not signifcant for most customers. Hence we conclude that our permuta-

tion approach enables the extraction of customer-specific feature importance.

This approach can easily be used for other non-interpretable models as well.

It follows that the selection of a model for predicting defection can be based

solely on predictive performance—that is, irrespective of any interpretability

constraints.

Table 3.21: Overview of selected customers

id rank rev profit prob reason_1 reason_2 reason_3

234 367 6384 638 0.81 share_dec

(H)

volume

_v_av (H)

longest

_contract

(L)

75 368 8773 263 0.76 trend_12m

(L)

share

_december

(H)

parcel_vol

(L)

9627 369 21964 4393 0.64 first_m

_active (L)

arima (L) dist_hub

(H)

We use the information so extracted to build an “information board” for the

sales agents (see Table 3.21), which contains customers’ identifies and ranks

based on their respective defection probabilities. The revenue and profit over
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the preceding four months indicates a customer’s potential financial effect on

the firm. Subsequent columns in the table show the predicted defection proba-

bility and the top three reasons for defecting (as given by the extracted feature

ranking for each customer). The notation (H) or (L) indicates whether the value

of a customer’s focal feature is, respectively, higher or lower than the average

across all customers. Sales agents who have knowledge of why a customer is

predicted to defect can use that knowledge during the retention call.

3.5.7 Feature importance

It is helpful to understand not only the customer-specific features that indicate

reasons for partial defection but also the features across all customers that drive

defection. Hence we compile, in Table 3.22, the leading features from the GBM

model without feature selection. We restrict the list to the top 20 features as

ranked by their importance in the upsampled model that has the highest profit

measures among the GBM models (see Table 3.9). Table 3.22 reports mean val-

ues that are scaled from 0 to 100.

Most of the top features in Table 3.22 are transactional and reflect the relative

value of certain months (e.g., summer revenue, December share of sales). Other

features, such as the coefficient for varation (cv2), are time series–based. It is

noteworthy that the autoregressive integrated moving average (ARIMA) fore-

cast is one of the most predictive features. A comparison of rankings for the

different data-balancing methods shows that they are closely matched, espe-

cially with regard to the top three features they identify. We observe the great-

est difference across rankings for the SMOTE balancing approach (trend_12m

is ranked at position 70).
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Table 3.22: Variable-importance GBM models (column rankings in parentheses)

Feature none weights down up smote

share_4m_volume 100 (1) 100 (1) 100 (1) 100 (1) 100 (1)

trend_6m 42.65 (2) 40.55 (3) 36.47 (3) 39.79 (2) 14.78 (7)

share_1m_volume 22.67 (5) 41.11 (2) 44.35 (2) 39.62 (3) 11.87 (9)

share_6m_volume 36.77 (3) 16.41 (6) 23.47 (5) 17.2 (4) 7.22 (13)

cv2 6.91 (16) 17.43 (5) 23.58 (4) 16.95 (5) 7.44 (12)

share_Q2_revenue 20.48 (6) 20.23 (4) 15.61 (6) 15.97 (6) 3.50 (23)

trend_vs_remainder

_12m

8.13 (11) 14.64 (7) 10.93 (7) 13.94 (7) 1.69 (34)

first_month_active 1.89 (56) 11.71 (8) 7.08 (11) 12.13 (8) 4.82 (20)

cv2_12m 6.50 (17) 8.49 (12) 7.06 (12) 8.86 (9) 1.23 (47)

fluc_1m 15.21 (9) 9.59 (9) 7.43 (10) 8.46 (10) 2.62 (26)

longest_contract 1.46 (66) 9.46 (10) 2.96 (21) 7.11 (11) 0.53 (94)

share_march 15.69 (8) 8.27 (13) 5.95 (14) 6.87 (12) 3.29 (24)

arima 16.19 (7) 7.09 (16) 4.28 (18) 6.84 (13) 2.34 (28)

trend_24m 2.85 (36) 7.82 (15) 2.90 (22) 6.41 (14) 2.45 (27)

volume_parcel 7.05 (13) 9.24 (11) 7.48 (9) 5.50 (15) 1.73 (33)

share_december 6.93 (14) 7.95 (14) 5.70 (15) 5.44 (16) 9.95 (10)

summer_revenue 22.70 (4) 4.81 (18) 7.50 (8) 5.23 (17) 5.96 (17)

trend_12m 6.93 (15) 5.43 (17) 1.79 (26) 5.23 (18) 0.79 (70)

delivery_month_range 0.24 (126) 3.50 (20) 6.95 (13) 4.48 (19) 0.14 (154)

defected_before 5.34 (18) 1.77 (34) 0.51 (44) 2.36 (20) 16.58 (6)

3.6 summary of results and managerial implications

Of the base classifiers, the GBM models work best, followed by RF. Bagged

ensembling yields results similar to those under the GBM method. Thus our

results show the advantage of more complex classification models (e.g., GBM,

bagged ensembling) in comparison with the simpler LogR and DT methods (the

AUC-ROC is 0.764 for bagged ensembling of the top 5 models, versus 0.695 for

the best LogR model and 0.744 for the best C5.0 DT model). We can see also that,

on average and across all tested methods, the downsampled approach leads to

the highest AUC-ROC and AUC-PRC; that method’s effectiveness is closely
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followed by upsampling and SMOTE. For the profit measures, upsampling

yields the best results on average.

If the goal is to achieve greater financial gain through retention activities,

then we find that the firm should prefer using a classification model to adopt-

ing either the regression approach or the combined classification and regres-

sion approach. However, we do not consider retention offerings in form of

discounts due to the fact that the research partner does use such measures. Us-

ing discounts will change the expected profitability due to the impact on the

customer lifetime value.

In addition, we find that the tested feature selection methods reduce the

number of features without compromising predictive performance. In fact, ac-

curacy of the LogR and NN models improves with fewer features. However, no

significant differences arise when we compare the Akaike information criterion

for models with and without feature selection. We remark also that predictive

performance is improved neither by stacking nor by the combination of unsu-

pervised and supervised clustering.

In light of the superior results delivered by complex yet non-interpretable

models, one must usually prioritize either predictive performance or inter-

pretability. However, we demonstrate that our permutation approach makes it

possible to achieve both goals. The advantage of this approach is that it renders

any learning model interpretable—which, in the context of our study, leads

to identifying customer-specific reasons for partial defection. The firm’s sales

agents can use this information to understand the classification outcome’s ra-

tionale and then to adapt their retention strategy accordingly.

For the threshold sensitivity analysis, there is a clear correlation between the

chosen threshold value and the predictive performance measures. The higher

the threshold value, the higher the AUC-ROC and the lower the AUC-PRC.

These relations hold because the measures depend on the extent of class imbal-

ance, which is defined by the partial defection threshold. A higher threshold

is associated with a lower class imbalance because more customers are classi-

fied as partial defectors. Results for the profit measures show that a thresh-

old of 0.25 leads to a significantly lower profit (after retention actions) than

do all the higher tested thresholds. As before, this outcome reflects the small

number of partial defectors in the case of a low threshold, which makes pre-

diction more difficult. For our thresholds above 0.25, the choice of a threshold-

appropriate data-balancing method is more important than is the choice of the

threshold itself. There is no improvement when we use different thresholds for

customers grouped by demand variability; the reason, we suppose, is that past

demand variation is an unreliable metric for distinguishing between temporary
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and structural declines in demand. The results tend to validate our decision

to use partial rather than complete defection—that is, given the higher profits

(after retention actions) that can be achieved when the threshold exceeds 0.25.

In the event of complete defection the threshold would be 0, in which case the

results should be even worse than when threshold is 0.25. Our decision to use

data-balancing methods is also supported: the lower the threshold, the more

essential these methods are to achieving good results.

A critical managerial decision is to select the forecast horizon. We confirm the

intuition that, the nearer (in time) the change in customer behavior, the greater

the prediction accuracy. Thus we find a huge gap in predictive performance

when the lead time changes from one month to two months and also when it

changes from three to five months and from five to seven months. When choos-

ing a lead time, management should account for possible changes in accuracy

as well as the relevant business requirements. The latter are driven, for example,

by the firm’s capacity to carry out retention actions and thus the time needed

to engage with all predicted partial defectors.

Managers must also decide on the number of customers that should be tar-

geted with the retention campaign. The profit measures used in our research

offer insights on each customer decile. Although we report only the TDP and

the profit index, the decile profit is positive for the first four deciles of all tested

models. However, profit declines significantly with each decile (i.e., GBM with-

out data balancing TDP e553,888, 2nd decile e139,254, 3rd decile e74,089, 4th

decile e33.860). A profit of more than e800,000 could be achieved if there were

sufficient capacity to contact each customer in the first four deciles.

The feature importance of the trained models shows that revenue- or volume-

based transactional features play a key role. This finding is in line with the

observation that customers switch to competitors slowly over time. The ear-

lier this demand shift can be identified, the sooner that retention actions can

commence. Recall that the ARIMA forecast further improves predictive per-

formance, which again is calculated with time-series data. Because the feature

rankings are similar for all tested balancing methods, we conclude that the

result is stable.

3.7 conclusion and future research directions

This paper illustrates the importance of predicting B2B partial defection pre-

diction: our research partner can increase its profit (after retention actions) by

more than e500,000 in the short term by targeting the first decile of customers
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with the highest defection probabilities—even though the retention acceptance

offer rate is only 30%. We demonstrate the advantage of using partial defection

predictions in cases when customers switch their provider slowly over time, a

behavior observable in contractual settings when the volume of products or ser-

vices to be delivered is not fixed. The feature importance information extracted

from the trained models reveals that transactional features are the most predic-

tive because they reflect defection over time. Although partial defection cov-

ers cases from significant demand reduction to complete defection, our results

show that the classification approach is superior to a regression or combined

classification and regression approach. We also establish that the GBM learning

model yields better results than do more complex approaches such as stacking

or combinations of unsupervised and supervised learning.

The results of our sensitivity analysis document the relation between us-

ing different thresholds and lead times for predicting partial defection and

for predictive performance more generally. We confirm the appropriateness

of predicting partial (rather than complete) defection and also that the abil-

ity to predict defection is relatively stable for lead times between one and three

months. These results provide the basis for managerial decisions concerning

which threshold and lead time should be used in the specific context of a focal

company. One paramount decision criteria might be the capacity to carry out

the required number of retention calls within the chosen lead time. Our per-

mutation approach allows one to explain the individual classifications made by

complex models, thereby resolving the trade-off between accuracy and inter-

pretability. This approach can improve the success of retention actions because

sales agents are able to respond to the actual needs of each customer. Also,

the cost of retention actions might decrease because sales agents can learn the

reason for a customer’s dissatisfaction before directly addressing that customer.

The market conditions faced by our research partner—namely, large cus-

tomers, strong competition, and low switching costs—are typical in B2B set-

tings. One can therefore follow the same approach used to predict partial

defection also for other B2B players who operate in contractual settings but

without fixed volumes.

There are several research directions whose pursuit would likely yield further

knowledge about the prediction of partial defection in B2B settings. First, addi-

tional insights could be gleaned from sales agents (e.g., their discussion points

from the previous customer contact) or from industry performance predictions—

either of which might increase forecast accuracy. Second, a better understand-

ing of the actual reasons for defection (e.g., price, service) would make it easier

to plan appropriate and context-specific retention actions. Also, one could use
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these reasons to train a multiclass classification approach that might perform

better. Third, the profit calculation approach could be strengthened if more

were known about different possible retention actions as well as their respec-

tive costs and success rates. The research partner could also introduce retention

discounts that would change the profit calculation as these discounts would im-

pact the expected profit significantly. If this is the case, one can extend the ex-

pected profit calculation to a customer lifetime value calculation. In this context,

one could also analyze whether the success of retention actions depends on the

lead time (i.e., is there a long-term or only a short-term effect). Finally, differ-

ent time-series lengths could be used when calculating the dependent variable

(here, aggregated four-month demand) to see whether a particular length is

reliably associated with more accurate predictions.





4
M A C H I N E L E A R N I N G – B A S E D P R I C E S E G M E N TAT I O N

B A S E D O N P R I C E S E N S I T I V I T Y: A C A S E S T U D Y I N T H E

B 2 B PA R C E L L O G I S T I C S I N D U S T RY 1

4.1 introduction

Pricing is the basic tool in revenue management, and intelligent pricing is the

easiest and quickest way to increase profits (Phillips 2005). Yet success requires

identifying the price that maximizes revenue without losing customers. Cus-

tomers differ in their willingness to pay, and finding the optimal price for each

customer is a challenging problem. One possible solution is price discrimination:

offering different prices to different customers (or groups of customers). Such

“segmented” pricing has a long history to increase both revenue and profit

(Miao et al. 2019). Thus customers are usually clustered into groups based on

their demand patterns, after which individual pricing strategies are applied to

each group. In practice, however, the extent of customer diversity makes it dif-

ficult to distinguish usefully among the customer segments so defined (Chen

et al. 2015b). It is only within the last few years that scholars have begun to

examine pricing at the individual level rather than the customer segment level

(Ban and Keskin 2019). Research into this “personalized” price discrimination

or segmentation has been boosted by newly available data sources, such as de-

tailed customer demographics and sales histories (Ban and Keskin 2019, Dubé

and Misra 2017). Such information can help companies find, for each customer,

the price that maximizes overall revenue. Most of the literature in this field

incorporates price experiments designed to reveal unknown demand functions

and to stipulate the corresponding optimal price changes (Qu et al. 2016). Com-

panies use such price experiments to learn about the demand functions of their

customers (den Boer 2015). The extant research mainly addresses business-to-

consumer (B2C) settings with applications for e-commerce (Gupta and Pathak

2014, Miao et al. 2019), service subscriptions (Shiller et al. 2013, Dubé and Misra

2017), transportation (Chen et al. 2015b), and hospitality (Vives et al. 2018).

Most of these papers deal with perishable inventory and finite selling seasons

(Fisher et al. 2017).

1The following chapter is based on Faber and Spinler (2019c), unpublished working paper.
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Another research stream in pricing is “dynamic” pricing with inventory ef-

fects. One can distinguish between selling a finite amount of perishable in-

ventory and joint pricing and inventory problems (den Boer 2015). In the first

case, one follows the ambition—especially in the airline and hotel sectors—to

balance supply and demand (Miao et al. 2019). den Boer (2015) highlight that

the inventory at the end of the selling hoizon gets lost. Thus, the price depends

on both the available inventory and the time left in the selling period. Another

application area is perishable goods with the ambition to reduce spoilage at

the end of the shelf life (Adenso-Díaz et al. 2017). The second case considers

models where the ambition is not only revenue driven but also analyzing the

required capacity and deciding e.g., on different fare classes to offer or deciding

on inventory capacities (Adenso-Díaz et al. 2017, den Boer 2015).

There are two ways in which the pricing situation we study differs from most

of the previous research. First, we focus not on the B2C setting but rather on the

business-to-business (B2B) setting. The B2B sector plays a prominent economic

role because it accounts for nearly half of all transactions in the United States

(Dwyer and Tanner 2002). Nonetheless, B2B settings appear in an extremely

small fraction of research worldwide: only 3.4% of the articles in the top four

marketing journals (LaPlaca and Katrichis 2009). There is an important differ-

ence between B2B and B2C. In particular, under B2B contracts the prices are

commonly negotiated for each customer individually and can be changed from

one purchase or price negotiation to another (Zhang et al. 2014). Also, B2B con-

tracts are associated with longer-lasting business relationships; it follows that

pricing is a crucial aspect of retaining customers. Qu et al. (2016) highlight the

virtues of the price discrimination that B2B conventions enable—for instance,

retaining the high revenue of individual customers that could be lost if a higher

proposed price exceeds their willingness to pay. In addition, the authors argue

that B2B customers are more diverse than are B2C customers.

The second difference between this study and previous work is that our re-

search partner provides a continuous service over time, which means that nei-

ther inventory status nor the time of a sale is a factor. In most situations re-

lated to pricing strategies, the product or service is offered at a certain price;

customers then decide whether to buy or not to buy. However, we study long-

lasting business relationships during which regular price adjustments are made.

Thus customers already consume the service at a certain price, and the question

is how they will react to price increases. Customers can either accept the new

price—and so leave their demand unchanged—or shift some or all of that de-

mand to another provider. Hence this study of price discrimination is directly

linked to the topic of churn. Price and price changes are certainly factors that
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customers consider when deciding on a service provider. We therefore test for

whether churn predictions correctly identify which customers are price sensi-

tive and which are not.

Our research makes three contributions to the literature. First, we analyze

how price changes affect demand in a B2B service setting. Thus we train a de-

mand prediction model with a broad set of features, including price change

information, and identify which of those features have a significant effect on

demand. Second, we assess and predict price sensitivities but without conduct-

ing any price experiments. We instead train our model with data from past

price changes and the subsequent demand reactions—that is, because price ex-

periments involve a risk of losing customers. Third, we demonstrate that the

simulation of an A/B test with different price change levels allows one to eval-

uate the accuracy of models for predicting price sensitivity and to identify the

revenue potential when a firm’s pricing strategy is properly aligned with the

identified price sensitivities.

The rest of our paper proceeds as follows. Section 4.2 reviews the relevant

literature, after which our approach to modeling is explained in Section 4.3. We

then present the case study and describe the data set in Section 4.4. The results

of our analysis are reported in Section 4.5 and the managerial conclusions are

drawn in Section 4.6. Section 4.7 concludes with a summary and the outlook

for related research opportunities.

4.2 literature review

Segmented pricing has become a popular research field in the last decade, es-

pecially with the advent of online retailing and its attendant new data sources

(Miao et al. 2019). Applying price theories in practice requires knowledge of

the underlying demand function (den Boer 2015). Early work assumed that

the demand function is known to the seller (for an overview, see Bitran and

Caldentey 2003, Elmaghraby and Keskinocak 2003). Real-world sellers, how-

ever, seldom know their customers’ demand functions—especially in industries

where market conditions change rapidly (Miao et al. 2019). Hence sellers must

estimate the demand curve via price experiments. Den Boer (2015) reviews this

field’s history and current research. The author distinguishes between two liter-

ature streams in monopolist settings: one where the demand function changes

dynamically over time; and another where the demand function is static but

where pricing depends on the inventory level. We review the first stream be-

cause B2B services, the focus of our study, are not inventory driven.
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There is an extensive literature that approaches segmented pricing from the

perspective of identifying unknown demand functions. Ban and Keskin (2019)

group this research into two different fields: discriminating pricing in Bayesian

settings with iterative updates of a prior belief function (e.g., Araman and

Caldentey 2009, Qu et al. 2016, Cheung et al. (2017)); and frequentist settings

with sequential price experiments (Besbes and Zeevi 2009, Keskin and Zeevi

2014). The papers cited here all presuppose continuous prices, but Miao et al.

(2019) discuss studies that assume discrete price points (Ferreira et al. 2018)

or focus on segmented pricing in a changing environment (Keskin and Zeevi

2016).

Recent research (see e.g. Chen et al. 2015b, Cohen et al. 2016, Qiang and Bay-

ati 2016) examines how considering the characteristics of individual customers

can make learning more flexible with regard to those customers and to differ-

ent market settings. There are many cases featuring the availability of rich data

sets with customer information (e.g., browsing data), competitor information,

and/or product characteristics (e.g., ratings). Of course, this information can

change over time (Miao et al. 2019). Ban and Keskin (2019) go one step further

by considering feature-dependent price sensitivity.

Another approach to pricing decisions is described in the literature on cluster-

ing. Ferreira et al. (2015) cluster products based on their demand characteristics

before application of a pricing strategy based on those characteristics. Cheung

et al. (2017) use k-means clustering to generate a set of different demand func-

tions. For each product, a specific pricing approach is chosen based on the

selected demand function.

There have been only a few applications of machine learning methods in

the field of price discrimination. Gupta and Pathak (2014) propose a com-

bined model of unsupervised and supervised learning with which to identify

price ranges for different customer segments. Shiller et al. (2013) use machine

learning to predict—based on Web browsing histories—the demand for Net-

flix subscriptions. These authors report that exploiting demographic data in-

creases profits by only 0.30%, as compared with a 14.55% increase when Web

browsing histories are used. Dubé and Misra (2017) combine machine learning

with a large-scale price experiment; they find that incorporating customer de-

mographic information into price decisions yields significant profit increases.

Schlosser and Boissier (2018) assess a range of different machine learning mod-

els in terms of predicting the sales probabilities of various products. In a second

step, these authors employ a dynamic programming model to identify superior

pricing strategies.
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Another under-researched field is price discrimination in B2B settings. Qu

et al. (2016) develop a model based on approximate Bayesian inference. Zhang

et al. (2014) use a hierarchical Bayesian approach and distinguish between two

different customer states of trust in the seller. Both of these papers point to a

difference between B2C and B2B pricing decisions that reflects the difference

in their respective customer relationships. Zhang et al. (2014) also emphasize

that B2B customers must make more than a binary, buy–not buy decision; they

must also decide how much to buy.

Because frequent price experiments are not always feasible, Cheung et al.

(2017) seek to achieve high performance while minimizing their reliance on

them. Schlosser and Boissier (2018) underscore the need for pricing simulations—

given that experiments are difficult (if not hazardous) in competitive settings.

Price sensitivity is another factor that affects churn (Shaaban et al. 2012,

Zhang et al. 2012). Dominique-Ferreira et al. (2016) report that loyal customers

are less price sensitive than are nonloyal customers, but these findings are not

statistically significant. Stock (2005) documents an inverse relationship between

customer satisfaction and price sensitivity, and Tanford et al. (2012) find that

price sensitivity is a reliable indicator of future customer defection.

4.3 model approach

Following the research of Chen et al. (2015b), Cohen et al. (2016) and Qiang

and Bayati (2016), we use customer characteristics when analyzing price sen-

sitivity. That approach is appropriate when one considers the diversity of B2B

customers in our data set. Thus we combine price-related information with a

broad set of features characterizing each customer.

We use the random forest prediction method, which Bajari et al. (2015) has

shown works well for predicting demand. This method’s foundation dates to

Breiman et al.’s (1984) introducing the classification and regression tree (CART)

algorithm. A root node creates binary splits—until either (a) splitting no longer

adds value to the prediction or (b) all of each node’s observations have the

same value. Although the method is known to be fast and remains popular,

it does have some limitations. Most importantly, decision trees tend to overfit

and so yield accurate predictions only with training data (Hastie et al. 2009).

To overcome this limitation, the random forest approach uses an “ensembling”

method: combining many different CART decision trees (see Breiman 2001),

thereby reducing the variance and thus the risk of overfitting. Each of the
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ensembled decision trees is a randomized variant because of the three factors

described next.

First, bootstrap aggregation (a.k.a. bagging) is used—which means that the

training set for each tree is a “resample with replacement” from the initial train-

ing set. Second, a random selection of the features (a.k.a. feature bagging) is

used at each splitting node. Third, the predictions of all trees in the ensemble

are either averaged (in the case of regression) or selected by majority vote (in

the case of classification). Because the trees can be fitted in parallel, this method

is quite fast (for a detailed description, see Breiman 2001). We use a grid search

with three repeats of five-fold cross-validation to optimize the model’s hyper-

parameters. In our case, the only hyperparameter requiring optimization is

the one that defines the feature bagging step’s number of randomly selected

features. For this hyperparameter, we test values of 2, p/2, and p, where p is

the reference data set’s number of features. Thus we test both extremes: a low

number of selected features that have the strongest effect; and a high number of

features, which includes variables that are less influental yet may nevertheless

contribute to the prediction.

Our modeling approach consists of a two-step process. First, we test for

whether price has any effect at all on demand. Toward this end, we train models

to predict demand either with or without price features and then compare the

performance of these models. Second, we assess predictions of price sensitivity.

Thus we compare different approaches to distinguishing between customers

with low versus high price sensitivity to price.

4.3.1 Assessment of price feature importance

We test the predictive performance that results from using different feature

combinations (price features, demand time-series features, and customer fea-

tures) in order to identify which model delivers the highest forecast accuracy.

To compare the performance of demand prediction models with and without

price-related information, we use two standard metrics: the mean absolute er-

ror (MAE) and the root mean-squared error (RMSE); these performance measures
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are calculated as in Eq. (4.1) and Eq. (4.2), respectively. Here, for period t, yt
captures actual demand and ŷt represents predicted demand:

MAE =
1

T

T∑
t=1

|yt − ŷt|; (4.1)

RMSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2. (4.2)

We use the Wilcoxon signed-rank test to test for whether the forecast accuracy

differs significantly between models using different feature sets. This test is

a distribution-free, nonparametric technique that is widely used to compare

forecast accuracies (Demšar 2006).

To learn more about the significance of particular price features, we analyze

the “variable importance” ranking as determined by the best-performing model.

Doing so requires iterating through all the features and calculating, for each

feature, the difference between the mean squared error of an out-of-bag data

sample and that of the same data after permuting the chosen variable. The last

step consists of ordering the features in terms of the size of those differences

(for a more detailed description of this approach, see Hastie et al. 2009).

4.3.2 Assessment of price sensitivity classification

In assessing price sensitivities, we test different approaches to distinguishing

between customers with low and high price sensitivities; see Table 4.1 for an

overview. We do not use methods designed to learn individual demand func-

tions because the behavior of customers in our data set is highly time depen-

dent: at different times, customers react differently to the same price change.

We forgo identifying individual demand functions also because there are so

few observations per customer—that is, since the price usually changes only

once each year. In light of how much time elapses between two price changes

(and thus between two observations), other factors affecting the demand func-

tion might themselves have changed.

The naïve approaches are each based on a single customer characteristic. We

formulate a hypothesis about the correlation between each characteristic and

the associated price sensitivity and then sort the customers accordingly. First

we assume that customers under a long-term contract are relatively less price

sensitive because they have been loyal in the past. Second, we assume that high

demand volumes indicate low price sensitivities; that is, we hypothesize that

customers that ship more have higher switching costs than do those that ship
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Table 4.1: Approaches to predicting price sensitivity

Name Description

Naïve (contract length) Sort the customers according their contract lengths

Naïve (demand volume) Sort the customers according their demand volumes

Price simulation Simulate the effect of different price changes on the

demand prediction

Churn prediction Sort the customers according their predicted churn

probabilities

Sensitivity prediction Predict the expected price sensitivities (using regres-

sion or classification)

lower volumes. We use the total demand volume in the three months preceding

the time of prediction to compare shipment volumes between customers. The

customers are sorted from high to low—in terms of contract length or demand

volume, as applies—and in this way we order them from (respectively) low to

high expected sensitivity to price.

The churn prediction approach is similar to both naïve methods. In this case,

we expect that customers with high churn probabilities are also extremely price

sensitive, and we sort the customers accordingly. Since there were few instances

of a customer totally abandoning our research partner, we define churn as par-

tial defection. Thus a customer is classified as a churner only if its demand

declines to less than half the demand volume observed during the same period

one year earlier. We use a separate machine learning model—one with the same

features and the same lead time as the demand prediction model—to predict

churn probabilities. We also replace our random forest model with a gradient

boosting model because Gregory (2018) has documented the latter method’s

superiority in the field of churn prediction. Stochastic gradient boosting is an

ensembling method that combines weak prediction models. In each run, a

new classifier is trained and the data are then reweighted to reflect the preced-

ing run’s predictive performance (see Friedman 2001). Just as in the demand

prediction approach, we test the model with and without price features to es-

tablish whether (or not) accuracy improves when price information is taken

into account.

The price simulation method is an extension of the simple demand prediction

model that we use to assess price feature importance. Here we use permuta-

tions of the actual price feature values, as illustrated by Figure 4.1’s example.
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In each permutation, we change the price features to reflect a different price

change level. For each of the 30 replacements for every customer, we obtain a

simulated but updated demand prediction. Next, for each customer we fit a lin-

ear regression based on the log-transformed price change steps—between 1%

and 30%—and the calculated demand predictions. The slope of the regression

line then equals the customer’s predicted price sensitivity.

Figure 4.1: Price simulation approach

Finally, the direct prediction model is based squarely on price sensitivities (i.e.,

on demand change divided by price change). We test a regression model and

also a classification model. In the first case, we predict individuals’ price sensi-

tivities and order customers from the highest positive value to the lowest nega-

tive value. Second, we predict the probabilities of the focal customer having a

low sensitivity and having a high sensitivity. We then use the sum of these two

predicted probabilities to order the customers from the highest price sensitivity

(i.e., the largest difference between the probability prediction for high sensitivity

and the prediction for low sensitivity) to the lowest price sensitivity (smallest

difference between the probability predictions for high and low sensitivity).

To evaluate classification performance, we split the observations in our vali-

dation data set into two groups based on the median value of the actual price

sensitivities. We then use a minmax normalization to transform the price sen-

sitivity predictions of the approaches described previously into probabilities

for the group of highly price-sensitive customers. Next we evaluate the per-

formance of the different classification models using the area under the curve of

the receiver operating characteristic (AUC-ROC) and the area under the curve of the

precision recall characteristic (AUC-PRC). The ROC curve is a graphical represen-

tation of how the true positive rate (TPR), as described in Eq. (4.3), is related to

the false positive rate (FPR) in Eq. (4.4) for different cut-off values that define the

probability threshold for distinguishing between class A and class B (Hanley

and McNeil 1982):
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True positive rate =
TP

TP + FN
; (4.3)

False positive rate =
FP

FP + TN
. (4.4)

The PRC curve represents precision (as defined by Eq. (4.5)) in terms of recall

(defined in Eq. (4.6))—again for different threshold values (He and Garcia 2009):

Precision =
TP

TP + FP
; (4.5)

Recall =
TP

TP + FN
. (4.6)

The AUC distills an ROC or PRC curve’s information into a single value

(Krzanowski and Hand 2009). A random classification generates a diagonal

ROC curve whose AUC-ROC value is 0.5, whereas the AUC-PRC value of a

random classifier is approximately the class ratio (Keilwagen et al. 2014). We

use these measures also to compare the churn predictions of models with and

without price information.

4.3.3 Financial impact calculation

To assess the financial potential of the various prediction approaches, we use

a simulated A/B testing approach. We start by distinguishing between cus-

tomers that encountered small and large price adjustments in the validation

data set, using the median of all price change values to split customers into

two groups. Next, we split each of those groups based on the price sensitivity

predictions (i.e., low vs. high price sensitivities) of the models being compared.

Customers whose predicted price sensitivities are above (resp., below) the me-

dian are considered to be (resp., not to be) price sensitive. Finally, we evaluate

and compare—for each of the four groups—the change in demand that follows

a price change. In the event of an accurate classification into low and high price

sensitivities, the change in actual demand should differ significantly between

those two groups. Thus we compare the change in demand of customer groups

with predicted low and high price sensitivities separately for both types (large

and small) of price changes. The four customer groups are depicted schemat-

ically in Figure 4.2. Our A/B test simulation is applicable because (i) price

sensitivities were not considered when making previous pricing decisions and

(ii) our validation data set exhibits considerable variance in the actual price

changes made (1st quartile, 6%; median, 8%; 3rd quartile, 12%).

Figure 4.2 presents the four customer groups that we distinguish based on

their calculated price sensitivity and the actual price change that they receive.
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Figure 4.2: Customer groups as a function of actual price change and predicted price

sensitivity

We calculate revenue potential by focusing on the two groups for which the

actual price change is not aligned with the predicted price sensitivity: groups

A and D in Figure 4.2. For group A, we assume that revenue will increase if

one lowers the price and thereby increases demand. For group D, we assume

that a higher price will generate more revenue—although demand might falter.

After the price change, we compare the differences—between groups A and C

and between groups B and D—in demand change and check whether those dif-

ferences are statistically significant. Next, we calculate the revenue potential if

the price changes for groups A and D are based on predicted price sensitivities.

We use the average difference of the demand change, as well as the average

difference of the price change between groups A and C and between groups B

and D, to calculate the expected price and demand change and thus, ultimately,

the change in revenue.

4.4 case study and data

Our research builds on a partnership with a large parcel logistics provider in

Germany. This provider serves both B2C and B2B customers, but our analy-

sis focuses on the latter. The market is highly competitive, and several other

providers offer similar services. Also, the switching costs for customers are low

and so they can easily shift their demand to competitors. Since contracts are ne-

gotiated individually with each customer, the prices are also customer specific.

Our research partner routinely changes prices for B2B customers; these are nor-

mally price increases (due, e.g., to inflation). However, the price increases are

customer specific and not all customers receive the same increase at the same
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time. For some customers the price might remain the same while others receive

moderate price increases and other large price adjustments. The prices charged

a customer do not change more than once every six months, and they usually

change just once per year. These price changes are determined at least four

months in advance and, after being aligned internally, are communicated to

customers. Because most price changes become effective in January, customers

are notified during the busy time before Christmas—when almost all market ca-

pacity is fully utilized. This is one reason why customers refrain from changing

their demand volumes until the new prices become effective. Another reason is

that negotiations with alternative suppliers take time. Even so, customers gen-

erally switch without hesitation when higher prices come into effect. Due to

the customer specific pricing and price adjustment approach, the identification

of price sensitivities is helpful to identify the right level of price adjustments in-

dividually for each customer. It is essential to identify the features that indicate

the price sensitivity and adjust the pricing scheme accordingly.

The ambition is to analyze the impact from changes in prices on future de-

mand, individually for each customer and thereby derive the expected price

sensitivity per customer. The model learns from the effect of past price ad-

justments to change in demand. Thereby, one is able to predict the expected

demand change and thus price sensitivities as a factor to decide on planned

price adjustments and sitinguish between customers with low and the ones

with high price sensitivities.

We use the model developed here to study the demand change that follows

a price change. However, we are uninformed about the demand split—at the

customer level—between our research partner and its rivals. Hence we cannot

tell whether a specific customer’s demand changes reflect a true demand shift

(i.e., to a competing provider) or, instead, a change in the customer’s particular

circumstances (e.g., variation in the demand of its end customers). Yet the latter

case is rather rare, we expect (as does our research partner), so it should not

significantly change our model. Note also that our study period is limited to

five years (viz., 2015–2019) characterized by positive economic development

and no major shocks.

We have access to monthly time-series data on customer-level demand vol-

ume and revenue from January 2012 to January 2019. The data set contains

12,000 customers in total. Because we lack information on all past price changes,

we use a two-step approach (as needed) to identify them. First, we calculate the

customer-specific parcel price as revenue divided by the number of parcels. We

then perform a break-point analysis to identify the time of structural changes

that, we assume, correspond to actual price adjustments (for a detailed descrip-
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tion of break-point analysis, see Bai and Perron 2003). We observe that, across

all customers, many price changes occur in January (nearly a third of the full

year’s number) while the remaining price changes are almost evenly distributed

across the other eleven months.

Table 4.2: Price features: Overview

Price feature Description

time_since_last_pc Number of months since previous price change

price_before Actual price before the price change

price_change_percent Price change (in %)

total_price_change_percent Total price change since January 2012 (in %)

vol_before Demand volume in the reference period

avg_price_vol_cluster Price divided by the mean price of customers in

the same group (according to their shipping vol-

umes)

We use a variety of feature sets as input data for our model: customer-based

features, price features, and time-series–based features; see Table 4.2 and Ta-

ble 4.3. We do not tabulate all customer-related features because there are more

than 100 of them. The customer feature set includes information about, inter

alia, recent customer interactions (e.g., complaints, calls), demand for other

products and services (e.g., international shipments), contract lengths, and com-

pany’s location.

Among the time-series features is an autoregressive integrated moving average

(ARIMA) demand forecast for the target period. The ARIMA method builds

on the approach described by Box et al. (2015). Such models are denoted

ARIMA(p,d,q) where p denotes the number of time lags, d the “degree of

differencing”, and q the order of the moving-average model. This method is

widely used for the prediction of time series (Zhang 2003). The underlying prin-

ciple of ARIMA is that time-series values are a linear function of multiple past

observations and random errors. This approach incorporates the Box–Jenkins

method, an iterative three-step process consisting of model identification, pa-

rameter estimation, and evaluation. In the identification step, a time series is

transformed to become stationary so that the mean, variance, and autocorrela-

tion are all time invariant. We estimate the (p,d,q) parameter via a nonlinear

optimization approach that minimizes errors. In the last step, goodness of fit

is evaluated; at this point, either another iteration begins or the finally chosen
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Table 4.3: Features of the demand time series

Time-series feature Description

fluc_1m Demand in the previous month (t − 1) as compared

with the same period one year earlier

fluc_2m Demand in the previous 2 months (t − 2 to t − 1) as

compared with the same periods one year earlier

fluc_3m Demand in the previous 3 months (t − 3 to t − 1) as

compared with the same periods one year earlier

volume_recent Demand in the previous 3 months (t− 3 to t− 1)

volume_H_last Demand in the previous 6 months (t− 6 to t− 1)

volume_before Demand in the reference period (t− 12 to t− 10)

M_last_volume_v_av Demand in the previous month (t− 1) divided by total

demand in the preceding 12 months

Q_last_volume_v_av Demand in the previous 3 months (t − 3 to t − 1) di-

vided by total demand in the preceding 12 months

Q2_last_volume_v_av Demand in the months (t− 6 to t− 4) divided by total

demand in the preceding 12 months

H_last_volume_v_av Demand in the preceding 6 months (t− 6 to t− 1) di-

vided by total demand in the preceding 12 months

arima ARIMA demand forecast for the target period (t to t+

2)

cv2 Coefficient of variation in the entire demand time se-

ries

kur Kurtosis of the entire demand time series

skew Skewness of the entire demand time series

cv2_12m Coefficient of variation in the preceding 12 months

kur_12m Kurtosis in the preceding 12 months

last_demand1 Total demand in the months t− 3 to t− 1

last_demand2 Total demand in the months t− 6 to t− 4

last_demand3 Total demand in the months t− 9 to t− 7

last_demand4 Total demand in the months t− 12 to t− 10

model is used for prediction. Hyndman et al. (2007) propose a stepwise heuris-
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tic for automatically choosing the best model. The Hyndman et al. approach is

used to generate all the ARIMA forecasts in this paper.

We are able either to collect or to calculate the time-series and price-based

features for each month between January 2012 and January 2019. Yet because

customer-based features were available only for the time between January 2015

and January 2019, we limit our analysis to that latter period. The data set is

split into two parts: the training data set includes all price changes between

June 2015 and December 2018; and the validation data set consists only of the

price changes made in January 2019. In this way, we mimic our research part-

ner’s actual planning approach, under which past data are used for training

purposes and future predictions. As an additional test of our model’s stability,

we adopt the same approach but with a different split of the data; here data

up to December 2017 are used for training purposes and data from January to

April 2018 are used for the validation data set.

For the demand prediction model, we use four months for the lead time lt

between when the prediction is made and the target period. This choice, too,

reflects our research partner’s situation. Price changes are planned in advance

so that there will be enough time for internal coordination and for communi-

cating the changes to customers. Because we study the demand reaction to

price changes, our target period starts in the same month that the price change

becomes effective. It follows that the different feature sets reference different

times. Both time-series and customer-based features represent information at

the time of prediction (tp)—that is, at the start of the lead time. In contrast, the

planned price change is known in advance and so price-based features refer

to the actual time of the price change (tc = tp + lt), which corresponds to the

end of the lead time. Figure 4.3 presents the timeline of a sample price change

made in January 2016.

Figure 4.3: Timeline of prediction approach (typical of a price change in January 2016)
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We define the responsive variable as a ratio: total demand (D) of the demand

volumes (di) in the three months of the target period divided by total demand

in the same months in the prior year (di−12):

D =

∑tp+2
i=tp

di∑tp+2−12
i=tp−12 di

. (4.7)

Thus, the minimum value of the dependent variable Dp is 0 for a customer

that switches all of its demand, but it is greater than 1 when demand increases

in comparison with the previous year.

The training and validation data sets are created as follows. For each month

(t) in the reference period (June 2015 to January 2019), we select all customers

(ci) for which the price changed in the focal month. Altogether, there are 7,400

observations in our training data set and 2,300 observations in our validation

data set.

4.5 results

In this section, we first assess whether price information increases the forecast

accuracy of our tested demand prediction models. Next we identify the price

features most predictive of customer-specific price sensitivities. We then present

results of the price sensitivity prediction, including the revenue potential when

the pricing approach is aligned with calculated price sensitivities.

4.5.1 Results of the price feature importance assessment

We distinguish among three different feature sets—customer-based data (cust),

demand time-series–based features (ts), and price-related features (price)—and

test the random forest demand prediction model’s accuracy with different com-

binations of these sets. For comparison purposes, we also test the accuracy of

a linear regression, a naïve prediction (i.e., one that assumes demand is con-

stant, D = 1, for all observations), and an ARIMA model (see Section 4.4). The

accuracy measures of the random forest model (with different feature sets) are

given in Table 4.4 and those of the statistical models are given in Table 4.5.

The model with all three feature sets (cust_price_ts) leads to the best predic-

tive performance (MAE of 0.208 and RMSE of 0.306). The Wilcoxon signed-rank

test shows that the MAE and RMSE results for the cust_price_ts model differ

significantly from those of all other models at the 95% confidence level. Re-

gardless of which feature sets are used, we find that the linear regression, the
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Table 4.4: Accuracy measures used to assess demand prediction

by random forest models

cust price ts MAE RMSE

x – – 0.225 0.327

– x – 0.243 0.344

– – x 0.214 0.315

x x – 0.221 0.321

x – x 0.212 0.313

– x x 0.210 0.309

x x x 0.208 0.306

Note: x = included in feature set combination, – = excluded from feature set combination.

Table 4.5: Accuracy measures used to assess demand prediction

by statistical models

Model MAE RMSE

Linear regression 0.492 1.003

ARIMA 0.278 0.634

Naïve 0.248 0.354

ARIMA forecast, and the naïve model perform significantly worse than do all

random forest models. In general, we observe that both MAE as well as RMSE

measures are quite high if the result is meant to be used to predict future de-

mand levels. It seems that the features used for the analysis are not sufficient

to fully explain the change in demand. There might be other factors that are

not observable for the research partner (e.g., prices of competitors) that signifi-

cantly affect the demand of their customers. In our case, we are only interested

to learn about the price sensitivity of customers, measures in their reaction to

price changes. Thus, the exact demand size is not important and the results are

considered to be sufficient.

Because we use the same data for the churn prediction approach, we also

test that model with different data inputs. We find that the model with price

features (cust_price_ts model) works significantly better than the one without

them (cust_ts model): the AUC-ROC increases from 0.789 to 0.823 and the AUC-

PRC from 0.356 to 0.368. The increase in forecast accuracy is even greater for
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models that incorporate data-balancing methods; in a model with upsampling,

for example, the AUC-ROC increases from 0.779 to 0.825 and the AUC-PRC

from 0.303 to 0.361.

We assess the relative importance of predictive features according to the ap-

proach described in Section 4.3.1. For our cust_price_ts model, the results—

which are scaled from 0 to 100—are reported in Table 4.6.

Table 4.6: Feature importance: Top 20 features of the cust_price_ts model

Feature Importance

price_change_percent 100

arima 53.40

Q_last_volume_v_av 31.99

fluc_3m 29.88

fluc_2m 29.38

fluc_1m 26.83

Q2last_volume_v_av 26.79

total_price_change_percent 23.46

M_last_volume_v_av 23.44

last_demand2 23.28

revenue_Last_year 22.98

share_product_x 22.34

last_demand4 22.01

cv2 21.94

contractual_quantity 21.14

cv2_12m 20.56

vol_service_x 20.50

price_before 20.46

vol_before 20.31

avg_price_vol_cluster 19.91

The actual price change (price_change_percent) is the most important feature

in the random forest model, and it is far more important than the next-listed

feature (the ARIMA forecast). This forecasting predominance of the actual price

change confirms the strong effect of price changes on subsequent demand. In

contrast, the difference in features’ relative importance between the ranks of 3
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and 20 is quite small. Besides the actual price change, several other price-

related features make this list: the total price change since 2012 (ranked 8th), the

actual price before the focal price change (ranked 18th), and the price compared

with that for customers exhibiting similar demand volumes (ranked 20th). Most

of the listed non–price-related features (e.g., Q_last_volume_v_av) are based on

the demand time series.

4.5.2 Classifying customers by their price sensitivity

We use the AUC-ROC and AUC-PRC measures to compare the classification

performance of various models for predicting price sensitivity. The results are

presented in Table 4.7. (In Tables 4.7–4.11, “Sens pred (class)” = price sensitivity

prediction based on the classification (grouping) of customers and “Sens pred

(reg)” = price sensitivity prediction based on regression.)

Table 4.7: Classification performance by type of approach

Approach AUC-ROC AUC-PRC

Contract length 0.505 0.513

Demand volume 0.578 0.575

Price simulation 0.562 0.594

Churn prediction 0.652 0.663

Sens pred (class) 0.744 0.728

Sens pred (reg) 0.736 0.717

We can see that the contract length approach (AUC-ROC = 0.505) is really no

better than random guessing (AUC-ROC = 0.5). Also, the demand volume and

the price simulation approaches are only slightly better; their AUC-ROC values

are (respectively) 0.578 and 0.562. The two direct methods for predicting price

sensitivity exhibit the best predictive performance, with AUC-ROC values of

0.744 and 0.736. Hence classification and regression are the preferred methods

for distinguishing between customers with high and low price sensitivities. We

obtain the same results when using 2018 data (instead of 2019 data) in the

validation data set; this outcome establishes that the effectiveness of these direct

prediction models is not time dependent.

To identify the features most useful for distinguishing between customers

whose price sensitivity is high or low, we perform an ex post analysis and

compare—separately for customers that face small and large price changes—
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the differences in mean feature values between customer groups with high

versus low price sensitivities. Regardless of sensitivity to prices, a customer’s

profitability is (from the service provider’s perspective) one of the most impor-

tant features. On average, customers with low price sensitivities have higher

contribution margins than do customers that are highly price sensitive; hence

customers that previously negotiated lower prices are more price sensitive. The

same relation holds for the number of additional services (e.g., preferred day

delivery, insurance, cash on delivery) offered by our research partner: on av-

erage, customers with low price sensitivities order more additional services.

There is one difference between the customer groups facing different price

change levels. Namely, recent demand trends play a role only in outcomes

for the group that faces large price changes. This means that customers with a

positive (increasing) demand trend are less likely to reduce their demand after

a price change and thus are less price sensitive. Although we have identified

correlations between feature values and the classification results, these are not

causal relationships and are not even the same for each individual customer. We

test this claim for the profitability feature and also for the additional services;

using each of these features for the classification approach yields AUC-ROC

values of 0.49 and 0.52, respectively. Therefore, these correlations are not an

effective means for distinguishing between customers of high and low price

sensitivity.

4.5.3 Calculating the financial impact of predictions

We present results of the price sensitivity analysis in Tables 4.8 and 4.9. For

each of the prediction approaches, we compare the mean demand change for

the two groups of customers—those classified as having low or high price

sensitivities—and then test for whether (or not) the difference between these

groups is statistically significant. The tables report the number of observations

(N) and the average demand change that follows the price adjustment (Mean)

as well as the standard deviation of the demand changes (SD), the difference in

the mean demand change between the customer groups with low versus high

predicted price sensitivites (Mean difference), the degrees of freedom (df), the

t-statistic (t) and the p-value (p), and the lower and upper boundaries of the

95% confidence interval (CI).
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Table 4.8: Changes in demand of customers after small price changes

95% CI

Mean

Approach Sens N Mean SD difference t df p Lower Upper

Contract length Low 548 1.03 0.36 0.006 0.311 1,101 0.756 –0.032 0.045

High 582 1.02 0.29

Demand volume Low 606 1.06 0.30 0.065 3.236 1,004 0.001 0.025 0.104

High 524 0.99 0.37

Price simulation Low 524 1.07 0.33 0.074 3.782 1,105 0.000 0.036 0.113

High 606 0.99 0.33

Churn prediction Low 828 1.08 0.31 0.201 9.013 500 0.000 0.157 0.245

High 302 0.88 0.34

Sens pred (class) Low 599 1.14 0.33 0.247 13.562 1,124 0.000 0.211 0.283

High 528 0.90 0.28

Sens pred (reg) Low 558 1.15 0.34 0.243 13.210 1,066 0.000 0.207 0.279

High 572 0.91 0.27

Note: CI = confidence interval, df = degrees of freedom, SD = standard deviation.
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Table 4.9: Changes in demand of customers after large price changes

95% CI

Mean

Approach Sens N Mean SD difference t df p Lower Upper

Contract length Low 582 0.97 0.40 0.043 2.043 1,021 0.041 0.002 0.084

High 548 0.93 0.30

Demand volume Low 524 0.99 0.34 0.082 3.969 1,123 0.000 0.042 0.123

High 606 0.91 0.36

Price simulation Low 606 0.98 0.33 0.064 3.016 1,046 0.003 0.022 0.105

High 524 0.92 0.38

Churn prediction Low 302 1.06 0.28 0.150 7.252 690 0.000 0.109 0.190

High 828 0.91 0.37

Sens pred (class) Low 526 1.08 0.33 0.251 12.796 1,094 0.000 0.212 0.289

High 598 0.83 0.32

Sens pred (reg) Low 572 1.07 0.34 0.252 12.867 1,125 0.000 0.213 0.290

High 558 0.82 0.32

Note: CI = confidence interval, df = degrees of freedom, SD = standard deviation.
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For the group of customers presented with small price changes (6% increase,

on average), there is a significant difference in demand change—between cus-

tomers considered to have high versus low price sensitivity—except when the

contract length classification method is used (p = 0.756). The table’s reported

values show also that the mean difference is greatest for direct price sensitiv-

ity predictions (via classification or regression) and for the churn prediction;

in the latter, the demand of customers with low price sensitivities increases by

7% to 15% whereas demand of those with high price sensitivities decreases by

more than 9%.

The average decline in demand of customers receiving large price increases

(of 13%, on average) is greater, and so demand during the target period is

lower, than of customers receiving small price increases. The difference in de-

mand change—between customers with low versus high price sensitivities—is

greatest for the direct methods (classification and regression) of predicting price

sensitivity (mean difference = 0.25), followed by the churn prediction approach

(mean difference = 0.15). For all prediction approaches, the mean difference is

significant at the 95% confidence interval. However, the mean difference for the

contract length approach is not significant at the 99% confidence interval.

In short, there is a significant difference in the demand change of customers

depending on whether or not they are predicted to be highly price sensitive.

This effect is observed irrespective of whether the price change is small or large.

The mean difference is greatest for the direct price sensitivity prediction and

churn prediction methods. In contrast, there is no significant difference be-

tween customer groups whose price sensitivities are based on contract length.

To assess the potential financial benefits from aligning price changes with

predicted price sensitivities, we focus on two groups of customers: those that

receive large price adjustments and are predicted to be highly price sensitive

(group A), and those that receive small price adjustments and are predicted to

have low price sensitivity (group D). We compare the former group with cus-

tomers that are also presumed to be highly price sensitive but that receive small

price adjustments and compare the latter group with those that are also classi-

fied as not being price sensitive but receive large price adjustments. For both

comparisons, we again check the difference of the demand change that follows

the respective price change and test whether that difference is significant. We

present the results for customers with high and low predicted price sensitivities

in (respectively) Table 4.10 and Table 4.11. For each prediction approach, we

distinguish (in the “Price” column) between customers that receive large versus

small price changes.
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Table 4.10: Changes in demand of customers with high predicted price sensitivities

95% CI

Mean

Approach Price N Mean SD difference t df p Lower Upper

Contract length Low 582 1.02 0.29 0.094 5.314 1,127 0.000 0.059 0.129

High 548 0.93 0.30

Demand volume Low 524 1.06 0.30 0.062 3.677 1,101 0.000 0.037 0.122

High 606 0.99 0.34

Price simulation Low 606 0.98 0.33 0.068 3.590 1,050 0.000 0.034 0.118

High 524 0.91 0.38

Churn prediction Low 302 0.88 0.34 –0.031 –1.328 575 0.185 –0.077 0.015

High 828 0.91 0.37

Sens pred (class) Low 599 0.90 0.28 0.064 3.561 1,124 0.000 0.029 0.099

High 526 0.83 0.32

Sens pred (reg) Low 572 0.91 0.27 0.084 4.743 1,097 0.000 0.049 0.118

High 558 0.82 0.32

Note: CI = confidence interval, df = degrees of freedom, SD = standard deviation.
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Table 4.11: Changes in demand of customers with low predicted price sensitivities

95% CI

Mean

Approach Price N Mean SD difference t df p Lower Upper

Contract length Low 548 1.03 0.36 0.057 2.516 1,105 0.012 0.013 0.102

High 582 0.97 0.40

Demand volume Low 606 1.06 0.30 0.062 3.286 1,052 0.001 0.025 0.099

High 524 0.99 0.34

Price simulation Low 524 1.07 0.33 0.087 4.425 1,103 0.000 0.048 0.125

High 606 0.98 0.33

Churn prediction Low 828 1.08 0.31 0.021 1.047 588 0.295 –0.018 0.059

High 302 1.06 0.28

Sens pred (class) Low 526 1.14 0.33 0.061 3.063 1,103 0.002 0.022 0.099

High 599 1.08 0.33

Sens pred (reg) Low 558 1.15 0.34 0.075 3.716 1,127 0.000 0.036 0.115

High 572 1.07 0.34

Note: CI = confidence interval, df = degrees of freedom, SD = standard deviation.
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The results for customers that are predicted to have high price sensitivities

(Table 4.10) establish that the demand change difference between customers

receiving small versus large price adjustments is significant for all prediction

methods—except for the churn prediction approach. The mean difference is

greater than 0.06 for all other prediction methods, and it exceeds 0.08 for the

contract length approach and the sensitivity regression prediction.

For customers predicted to have low price sensitivities (Table 4.11), the mean

difference in the demand change between groups is insignificant only when

the churn prediction approach is used. With all other prediction methods, the

difference in demand change between customers that received small versus

large price changes is greater than 0.06. This difference is greatest for the price

simulation approach (0.087), followed by the regression-based direct sensitivity

prediction (0.075).

Combining the results of assessments according to price change levels and

to predicted price sensitivity levels, we find the greatest between-group differ-

ences in demand change when using the prediction approach based on price

sensitivity regression. Among all the tested approaches, this one most accu-

rately distinguishes between customers with low and high price sensitivities.

The other tested models—excepting the contract length and churn prediction

approaches—also yield significant (albeit smaller) differences between the cus-

tomer groups. The churn prediction approach reveals a correlation between

price sensitivity customer classes but no difference between customers subject

to small versus large price changes. It seems that customers with extremely

low or extremely high predicted churn probabilities are unconcerned about the

price change level. The latter group may already have decided to use other

providers (i.e., independently of the price change), and the former group is rel-

atively insensitive to price because they demand the same volumes regardless

of whether the price adjustment is small or large. Hence firms in this group

can be financially exploited by a supplier that institutes a large price increase

only for customers with low predicted churn probabilities.

We calculate the potential financial gain—from adopting the prediction ap-

proach of price sensitivity regression—when all customers with high (resp.

low) predicted price sensitivities are given small (resp. large) price adjustments.

Thus we combine the average difference between the price changes (from 6%

to 13%) and the average difference between the demand changes (from 1.07

to 1.15 for customers with high price sensitivites and from 0.82 to 0.91 for those

with low price sensitivities) to calculate the potential new revenue for both cus-

tomer groups: the group of customers with low predicted price sensitivites and

previously small price adjustments and customers with high predicted price
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sensitivites and previously large price adjustments. In the first case, we find

no change in revenue. In the second case, however, there is a 2% increase that

would amount to some e1.5 million in additional annual revenue (calculated by

comparing the expected revenue based on the presumed price change and the

expected demand change due to the predicted price sensitivities to the actual

revenue based on the actual price adjustment and respective demand change).

The potential revenue gain can be increased still further if we split our cus-

tomers into quartiles (for both price change and predicted price sensitivity)

and then focus on the first and the fourth quartiles. So under this approach

we consider only customers that are in quartiles with the largest (17% on aver-

age) and smallest (5% on average) price adjustments and are also in quartiles

with the highest and lowest predicted price sensitivities. We again calculate

the potential revenue gain and identify a revenue increase of 4% for customers

with previously small price adjustments and low price sensitivities and an in-

crease of 18% for customers with previously high price adjustments and high

price sensitivities. In this case, the annual revenue potential totals more than

e4 million.

Finally, we test the financial impact of basing price change levels not on the

first and last quartile of customers but use the average price increases of all

four quartiles as potential options. We find that these additional options do

not increase the revenue potential, from which it follows that one need only

consider the two extreme cases of customers in the first and last quartile of

price change levels.

4.6 managerial implications

The results of our analysis show the effect of price changes on customer de-

mand as well as the large variance—between customers with low and high

price sensitivities—in these demand changes. The prediction method we pro-

pose for distinguishing between customers with low and high price sensitivi-

ties is easy to implement and so could be used immediately by our research

partner. Even though price experiments were not considered in the past, this

prediction approach enables them because it significantly reduces the risk of

losing customers. Results of the classification performance measure confirm

the model’s high level of accuracy. Our prediction approach thus allows for

effectively selecting between small and large price adjustments for different

customer groups and hence for assessing the demand effects of various price

change levels. Our research partner anticipates undertaking an A/B test to
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validate our results and to generate more observations that can be used for fur-

ther training of (and for making additional improvements in) the model. The

more diverse are the training set’s price changes, the more accurate will be the

model’s predictions.

Price adjustments can be fine-tuned by testing price change levels below and

above the currently considered levels for customers with, respectively, the low-

est and highest predicted price sensitvities. For that purpose, the lower and

upper 5% or 10% of customers could be targeted with price changes that are

more extreme than the current average. Such adjustments could become criti-

cal given the increasing cost pressure in the parcel shipping sector, a result of

higher costs for “last mile” delivery (Thiele and Dieke 2018). These increased

costs can strain a firm’s current prices, which may need to be raised so that

earnings do not decline. This consideration magnifies the importance of setting

optimal price levels and of thereby remaining competitive with rivals—and not

losing customers because of price increases that are too extreme.

4.7 conclusion and future research directions

Our research documents that price changes affect customer demand in a com-

petitive B2B service environment. Because price adjustments can lead to par-

tial defection, it is essential for the firm to identify which customers are price

sensitive—and which are not—and then to align its pricing strategy with those

predictions. We find that price features increase the accuracy of predictions

regarding both demand and churn. After testing several methods of predict-

ing price sensitivity that do not rely on price experiments, we conclude that

the most effective approaches are those that use classification or regression to

distinguish between customers with low and high price sensitivities. The classi-

fication performance of these two direct models is significantly better than that

exhibited by other prediction methods. This result is time independent, which

we prove by using different splits of the time-series data.

The prediction approach proposed here is applicable whenever sufficient his-

torical data—with different levels of price adjustments—are available. So even

if price experiments are an option, our data-driven approach is a good starting

point from which to distinguish between customers with low and high sensitiv-

ity to prices; that information can then serve as input for an A/B test.

We also find that, as compared with highly price-sensitive customers, those

with low price sensitivites have (on average) the following characteristics: they

order more additional services and have higher contribution margins; when
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given large price changes, they also have a more positive demand trend. In lieu

of price experiments, we use a simulated A/B test with different price changes

to illustrate the effectiveness of our method and to calculate its financial poten-

tial. This approach works well because of the high variance in the validation

data set’s actual price change levels. Thus one can apply this method before

initiating any price experiments, which run a nonnegligible risk of losing cus-

tomers. Considerable financial gain is possible when prices are aligned with

customers’ price sensitivity. In our case, the expected annual revenue increase

is e4 million—even though this estimate is based only on customers that re-

ceived a price adjustment in January 2019. The actual potential is much higher,

since two thirds of all price adjustments occur in the rest of the year.

The insights gained from this research paper suggest that scholars could

profit from investigating optimal price adjustment levels for price-sensitive and

price-insensitive customers. Here we have split the customers into two groups

based on the median of the actual price change levels; we then used the mean

of the actual price changes given to the two groups as the two possible price

change levels that customers could face. Thus we have not tested whether rev-

enue gain could be increased by setting some other (lower or higher) price

level.

At this point we can suggest two alternative methods for testing other price

change levels: (i) an analytical approach that requires only a large enough val-

idation data set; and (ii) a method that builds on price experiments. First, one

can increase the number of customers in the validation data set and then split

those customers into more than four groups (e.g., into deciles) based on the

actual price changes they were given; then the optimal price change can be

identified at a more granular level. A disadvantage of this approach is that one

can test only those price change levels that have previously been used. Second,

one way to overcome that limitation is by conducting A/B tests. The more of

such tests that are carried out and the more diverse are the price changes in

them, the better a model learns individual demand reactions and so the more

its predictive accuracy improves. Of course, this approach risks—indeed, it

practically guarantees—losing customers whose willingness to pay is exceeded

by the changed price.
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5.1 conclusion

The application of data analytics in the context of supply chain management and in

the logistics industry is very diverse and covers different stages of the value chain

as well as different industries. Although the potential of analytics capabilities

is well known, many companies still struggle to identify appropriate use cases

and to estimate the financial potential from using this technology. In academia,

the topic became much more popluar in recent years, yet many research gaps

remain. Also, many researchers focus on theoretical contributions, neglecting

the implementation in practice.

This dissertation aims to contribute to a better understanding of data ana-

lytics with regards to specific needs such as interpretability, calculation efficiency,

data availability and impact analysis. To this end, the three underlying research

projects cover typical challenges in the field of data analytics. All three projects

have been conducted in cooperation with industry research partners who pro-

vided empirical data for the analysis. The main findings from the projects are

threefold:

First, the tested machine learning-based application methods outperform tradi-

tional statistical methods in most cases. However, the best performing method

differs for each data set and thus it is challenging to identify universally valid

recommendations which prediction method to use in which application area or

which industry. To overcome this challenge, meta learning methods can be used

that either learn to combine several different prediction methods or to select a

specific method for a specific data set. Thereby, one can either further increase

the predictive performance in case of learned combinations or significantly de-

crease the calculation time in case of the method selection.

Second, machine learning methods are known to be black-box models. But

employees who use the output of these models, often want to understand the

reason for a specific prediction to trust the data input they receive. Therefore,

interpretability is a key factor to consider in many application areas of prediction

models in the industry. Due to the fact that interpretable models often come

with lower accuracies compared to more complex black-box models, there is a

trade-off between interpretability and predictive performance. However, there

111
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are approaches to make black-box models interpretable and thus allow insights

how specific predictions materialized.

Third, the value of existing data is often not clear and the risks associated

with new data acquisition can be high. In cases such as churn mitigation ac-

tions or pricing decisions, randomized experiments can cause harm, because

one might loose customers. It is important to consider such risks in the plan-

ning phase of analytics use cases and to decide whether to take the risk or

to find alternative data sources. Past data observations can eventually contain

sufficient information to train models without the need for randomized experi-

ments.

5.2 contributions to theory and practice

We1 contribute to the existing literature and the current discussion around data

analytics in forecasting and planning by analyzing three main challenges in the

domain: The need for computationally efficient predictions, the request for inter-

pretability and the requirement to run algorithms with existing, historical data

without the need to run risky experiments. All our findings are based on empirical

research in collaboration with research partners from the industry. Thus, we also

consider the practical requirements, implications and advantages through the

proposed models. Following the structure of this dissertation, the contributions

are summarized along the three case studies.

In Chapter 2, we apply meta learning methods in the field of intermittent

demand prediction with the ambition to improve warehouse operations. We com-

pare a variety of different prediction methods including data pre-processing

through time series decomposition and data clustering. The results show that

forecast combinations increase the predictive performance but come at the cost

of long calculation times, because many models need to be trained in parallel.

As an alternative, we apply a method selection scheme that performs as good as

the combinatorial methods but makes predictions much faster, because only the

selected prediction method needs to be trained. Thus, we combine efficiency

with predictive performance. The results of a warehouse simulation show that

the proposed approach leads to yearly savings of 3% of the warehouse oper-

ation costs. The approach is easily implementable and does not require any

change in the warehouse setup.

1The term “we” refers to the authors of the respective chapters as denoted at the beginning

of each chapter. For the conclusion, this refers to the authors of Faber and Spinler (2019a,b,c).
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In Chapter 3, we predict partial defection of customers in a business-to-business

market. With our analysis, we broaden the scope of previous research to cover

partial defection in business-to-business relations that are characterized by con-

tinuous service delivery and individually negotiated contracts. The competi-

tion in the market is high and customers can easily shift demand to competitors.

We compare a set of different prediction models including machine learning

and probability based methods. The ambition is to combine high predictive per-

formance, maximization of profits and interpretability to understand the case-

specific reasons for customers to partially defect. We find that directly inter-

pretable models have significantly lower predictive accuracy compared to more

complex, black-box models. Therefore, we use a data permutation approach

to make the better performing methods interpretable. In addition, we use sen-

sitivity analysis to measure the impact from different partial defection thresh-

old values and different prediction lead times. Financial measures guide the

choice of a combination of threshold level and lead time that maximizes profit,

after retention actions, while accommodating such company-specific business

requirements as the capacity to undertake retention actions. The results show

that the research partner can increase its profit (after retention actions) by more

than e500,000 in the short term.

In Chapter 4, we predict price sensitivities of customers to select the right price

change level for each of them. Unlike previous research, we do not carry out

any price experiments but fully rely on existing data from past price changes

and the following adjustments to demand. This is, because in the case of price

experiments the risk of losing customers is too high. With the existing data,

we simulate a random experiment to identify which customers are little and

which ones are highly price sensitive. We train a model to predict the expected

price sensitivity for each customer. To validate the findings, we compare the

actual demand change of the customers in focus. We find that an approach that

directly predicts the customer specific price sensitivity works best whereas we

do not find any correlation between the contract length or the demand volume

and the actual price sensitivity. The results indicate a potential revenue increase

of e4 million per annum.

5.3 avenues for future research

This dissertation covers different applications of data analytics in forecasting

and planning. Although, the research reveals interesting and valuable insights,
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avenues for future research exist. Following these calls for further research may

lead to new insights.

First, Chapter 2 covers intermittent demand prediction and warehouse oper-

ation optimization. The existing rolling one-period forecast can be extended to

a multiple-period forecast. Thereby, the costs of stock transfers over multiple

periods can be taken into consideration to optimize the warehouse operations.

Other than that, the multiple-period forecast can be used to plan order volumes

or to optimize the warehouse layout. Furthermore, additional information can

be added to further increase the predictive performance. In addition to the

used time series data, price information, weather data or behavioral data from

the website can be leveraged.

Second, Chapter 3 contains a partial defection prediction approach that com-

bines high predictive accuracy with interpretability and profit optimization. In

a next step, judgemental information from the sales agents regarding the last

customer contacts can be added to the feature space to further improve the pre-

dictive performance. In addition, information regarding the actual defection

reason can help to tailor different retention actions. Also, different prediction

models can be trained to make forecasts for different defection causes. A better

understanding of different retention actions and the respective costs and suc-

cess rates might further contribute to improve the model. Also, an assessment

of the retention success rates for different prediction lead times would allow to

choose the best suitable lead time.

Third, Chapter 4 is about price discrimination to distinguish between little

and highly price sensitive customers. With this regard, the proposed approach

can be used as an input for price experiments to validate the findings and to

generate additional data that can be used to further improve the model. In

addition, it would be helpful to not only classify customers into two groups

based on their expected price sensitivities but to better understand which price

levels to choose for which customer group. A larger data set may allow to

use more classes of different price changes. Thereby, a more diverse choice of

potential price change levels would exist.

In conclusion, the research areas of method selection, model interpretability and

data driven analysis without risky experiments should all be further explored as

they deal with major challenges in the field of data analytics. The further rise

of analytics makes it more important to use efficient prediction methods and to

understand the outcome. Also, the use of existing data with minimal additional

data collection is essential, because the latter is time consuming and sometimes

difficult to perform. Apart from the specific topics covered in the dissertation,

there are numerous other fields for further research in the field of data-driven
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forecasting and planning. With regards to supply chain management and de-

mand predictions, other application areas cover procurement or production. In

the logistics industry, routing and capacity planning as well as predictive risk

management are potential application areas.
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a.1 hyperparameters for machine learning methods

The hyperparameters we tested for machine learning methods are listed in Ta-

ble A.1. The choice of these hyperparameters was based on a literature review

that revealed the parameter values most commonly used in intermittent de-

mand prediction. We use a fivefold cross-validation approach with grid search

to identify the hyperparameters that work best.

Table A.1: Hyperparameters for machine learning methods

Method Parameters

SVM linear Cost: 1

SVM radial Cost: 0.25, 0.5, 1

Sigma: automatic sigma estimation (sigest)

RF Randomly selected predictors: 2,p/2,p (p = number of features)

FFNN Weight decay: 0.0001, 0.001, 0.1

Neurons: 1, 3, 5, 10

BRNN Neurons: 1, 2, 3

GBM Maximum tree depth: 1, 2, 3

Boosting iterations: 50, 100, 150

Shrinkage: 0.1

Minimum terminal node size: 10

116
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a.2 time-series features for clustering and method selection

meta learning

The time-series features used for clustering and for our method selection ap-

proach are given in Table A.2. The “Decomp.” column indicates whether (or

not) the feature is also calculated for the trend- and seasonality-decomposed

time series.

Table A.2: Features for time-series clustering and meta learning using method selection

Feature Description Decomp.

CV Coefficient of variation Yes

ADI Average inter-demand interval No

Mean Mean demand Yes

Mean_52w Mean demand of last 52 weeks No

Nonzero Number of nonzero-demand periods No

Skewness Symmetry measure Yes

Kurtosis Peak measure Yes

Breakpoints Number of breakpoints in the time series Yes

Teraesvirta Neural network test for nonlinearity Yes

Hurst Exponent for self-similarity (long-range dependence) Yes

Serial-corr Measurement of the serial correlation of the time se-

ries

Yes

Trend Measurement of the trend No

Seasonality Measurement of the seasonality No

Coefficient of variation and average inter-demand interval measure the variation

in demand height (CV) and the regularity of a demand (ADI: average interval

between two periods of nonzero demand).

Mean and Nonzero are general descriptive statistics that indicate the average

value and the number of zero demand values in a time series.

Skewness describes the symmetry of a data set. Negative (resp. positive) val-

ues indicate skewness to the left (resp. right). The normal distribution’s skew-

ness is 0.

Kurtosis characterizes the tail extremity of a distribution as compared with

the normal distribution. High values of kurtosis reflect the existence of outliers.
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Breakpoints are indicators of unexpected shifts in a time series. We apply the

strucchange package in R that uses dynamic programming to find breakpoints.

The Bayesian information criterion (BIC) is used to find an optimal model with

a minimal residual sum of squares.

The Teraesvirta neural network test for nonlinearity is used to test the nonlinearity

of a time series.

The Hurst exponent provides information about the long-term self-similarity

of a time series. When this parameter equals 0.5, the time series is considered

to be a geometric random walk; a smaller (resp. larger) exponent corresponds

to a mean-reverting (resp. trending) series.

Serial correlation (a.k.a. autocorrelation) reflects the stationarity of a time se-

ries. The Box–Pierce statistic is a well-known measure that combines the auto-

correlation for different time lags.

Trend and seasonality are indicators of the magnitude of trend and seasonality

patterns in a time series. First, the focal time series is decomposed using the

seasonal and trend decomposition using Loess (STL) approach. Then the stan-

dard deviation of the non-decomposed time series is divided by the standard

deviation of (respectively) the de-trended or the de-seasonalized time series.

In Table A.3 we present, for all three data sets, the feature ranking used dur-

ing method selection. We report the ranking for the best-performing method

selection approach—that is, the ranking prediction. The table contains no rank

for the trend, seasonality, or decomposed features for the Royal Air Force (RAF)

data because there are so few observations in that data set that reflect seasonal-

ity or trend patterns.
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Table A.3: Ranking of features used in the ranking method selection approach

Research RAF Simulation Average

Feature partner data data data rank

trend 1 4 2.50

seasonality 2 3 2.50

skew_decomp 5 2 3.50

mean_12m 3 8 5 5.33

cv2 7 3 7 5.67

stdev_12m 4 4 10 6.00

stdev 9 1 14 8.00

mean 13 2 16 10.33

stdev_decomp 6 15 10.50

hurst 12 15 8 11.67
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a.3 warehouse operation costs algorithm

Our simulation seeks to capture the circumstances of the online retailer, so we

start by using its current cost factors for picking and stock transfers as well as

its current storage space restriction for the shelf-picking area. Then we relax

those assumptions and calculate the costs for different scenarios with different

cost factors and storage space allocations. In this way we aim to generalize our

findings and ensure that the proposed forecast approach is sufficiently robust

to work well for other warehouse setups.

Thus our first simulation is based on the following costs, which are supplied

by the online retailer. The picking costs are e0.1 per item in the shelf-picking

area and e0.4 for items stored in the high-bay warehouse, where the higher cost

for picks from the high-bay warehouse are due to the time needed for repackag-

ing. It costs e0.6 per product for a stock transfer from the high-bay warehouse

to the picking area and e1.5 for a stock transfer from the picking area to the

high-bay warehouse; the latter’s higher costs stem from the costs for new card-

board boxes in which the items are stored. We use the same cost factors for all

products because the products (mostly books or boxes with children’s toys) are

similar to each other and so picking times are comparable across items. The ca-

pacity of the shelf-picking area is 10% of the retailer’s overall storage capacity.

In subsequent simulations we change the shelf-picking area’s proportion (from

10% to 5%, 20%, and 30% of overall capacity) and also change the ratio of stock

transfer costs (from a ratio of 15:1 to 8:1, 4:1, and 1:1).

The algorithm we use to calculate warehouse operation costs is reproduced

in Figure A.1. The indicator variables 1storage_shelf and 1storage_wh are set to 1 if

the focal stock keeping unit (SKU) was stored either in the shelf-picking area

(1storage_shelf ) or the high-bay warehouse (1storage_wh) in the preceding period; oth-

erwise, those indicators are set to 0.
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1: for m← 1,M(number of prediction methods) do

2: for n← 1,Ntext(numberofperiods) do

3: for s← 1,S(number of SKUs) do . For each SKU, calculate costs for both

areas

4: Cost_whm,n,s ← forecastm,n,s ∗ pick_wh + transfershelf _wh ∗

1storage_shelf ,m,n−1,s

5: Cost_shelfm,n,s ← forecastm,n,s ∗ pick_shelf + transferwh_shelf ∗

1storage_wh,m,n−1,s

6: Cost_differencem,n,s ← Cost_whm,n,s − Cost_shelfm,n,s

7: end for

8: Sort s according to Cost_differencem,n in decreasing order .

Assign SKUs with highest cost difference to shelf-picking area; assign other SKUs

to high-bay warehouse

9: for s← 1, capacityshelf do

10: 1storage_shelf ,m,n,s ← 1

11: 1storage_wh,m,n,s ← 0

12: end for

13: for s← capacityshelf + 1,S do

14: 1storage_shelf ,m,n,s ← 0

15: 1storage_wh,m,n,s ← 1

16: end for

17: for s← 1,S do . Calculate picking and replenishment (transfer) costs for

each SKU

18: Cost_pickm,n,s ← forecastm,n,s ∗ pick_wh ∗ 1storage_wh,m,n,s+

forecastm,n,s ∗ pick_shelf ∗ 1storage_shelf ,m,n,s

19: Cost_transferm,n,s ← transfershelf _wh ∗ 1storage_shelf ,m,n−1,s+

transferwh_shelf ∗ 1storage_wh,m,n−1,s

20: end for

21: end for . Calculate total costs for selected method across all SKUs and all

periods

22: Total_costm ←
∑N

n=1

∑S
s=1 Cost_pickm,n,s + Cost_transferm,n,s

23: end for

Figure A.1: Algorithm for calculating warehouse operation costs



B
A P P E N D I X T O C H A P T E R 3

b.1 predictive performance of churn prediction models with

feature selection

Table B.1: Predictive performance of all models: Boruta feature selection (column rank-

ings in parentheses)

Balan-

cing

AUC-ROC AUC-PRC TDL TDP Profit index

LogR orig 0.723 (23) 0.288 (21) 2.879 (18) 562,362 (10) 678,027 (20)

weights 0.738 (12) 0.292 (17) 2.879 (18) 491,978 (26) 672,753 (21)

down 0.729 (21) 0.279 (24) 2.820 (23) 502,286 (24) 652,333 (28)

up 0.736 (15) 0.291 (18) 2.857 (20) 489,008 (28) 669,580 (22)

smote 0.738 (13) 0.299 (15) 2.937 (14) 517,047 (23) 667,416 (23)

RF orig 0.745 (10) 0.346 (4) 3.244 (3) 557,514 (13) 697,883 (7)

weights 0.736 (14) 0.346 (2) 3.273 (1) 546,516 (18) 692,148 (15)

down 0.748 (9) 0.305 (14) 2.901 (17) 549,734 (15) 695,321 (10)

up 0.733 (18) 0.308 (13) 3.032 (12) 537,977 (20) 694,611 (14)

smote 0.756 (5) 0.326 (8) 3.091 (7) 565,918 (8) 702,695 (4)

NN orig 0.733 (16) 0.290 (20) 2.798 (24) 490,881 (27) 638,148 (29)

weights 0.758 (3) 0.310 (12) 3.018 (13) 565,937 (7) 695,197 (11)

down 0.721 (24) 0.285 (23) 2.915 (16) 532,108 (21) 691,637 (16)

up 0.697 (26) 0.275 (26) 2.798 (24) 530,465 (22) 684,908 (18)

smote 0.731 (19) 0.290 (19) 2.828 (22) 538,894 (19) 695,433 (9)

GBM orig 0.758 (2) 0.339 (5) 3.061 (10) 546,674 (17) 695,649 (8)

weights 0.757 (4) 0.346 (3) 3.142 (4) 590,807 (2) 712,026 (2)

down 0.760 (1) 0.335 (6) 3.135 (5) 589,256 (3) 706,218 (3)

up 0.756 (6) 0.355 (1) 3.251 (2) 596,692 (1) 712,352 (1)

Continued on next page
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Table B.1: Predictive performance of all models: Boruta feature selection (column rank-

ings in parentheses) (continued)

Balan -

cing

AUC-ROC AUC-PRC TDL TDP Profit index

smote 0.730 (20) 0.330 (7) 3.083 (8) 580,672 (5) 702,400 (5)

C5.0 orig 0.714 (25) 0.285 (22) 2.784 (26) 574,384 (6) 664,876 (25)

DT weights 0.693 (27) 0.230 (28) 2.382 (28) 338,121 (30) 615,806 (30)

down 0.740 (11) 0.312 (9) 3.127 (6) 550,951 (14) 694,918 (12)

up 0.683 (28) 0.267 (27) 2.638 (27) 549,534 (16) 663,024 (26)

smote 0.733 (17) 0.297 (16) 2.930 (15) 582,451 (4) 683,942 (19)

SVM orig 0.619 (30) 0.210 (30) 2.323 (30) 500,389 (25) 665,561 (24)

weights 0.625 (29) 0.214 (29) 2.360 (29) 486,172 (29) 658,925 (27)

down 0.728 (22) 0.277 (25) 2.857 (20) 558,088 (12) 694,770 (13)

up 0.749 (8) 0.312 (11) 3.069 (9) 558,403 (11) 699,494 (6)

smote 0.749 (7) 0.312 (10) 3.040 (11) 565,845 (9) 687,303 (17)

Table B.2: Predictive performance of all models: RFE feature selection (column rank-

ings in parentheses)

Balan-

cing

AUC-ROC AUC-PRC TDL TDP Profit index

LogR orig 0.739 (21) 0.307 (21) 3.120 (14) 544,668 (19) 691,881 (17)

weights 0.756 (8) 0.309 (19) 2.974 (19) 509,031 (26) 679,111 (21)

down 0.746 (19) 0.299 (23) 2.945 (22) 479,696 (29) 667,973 (26)

up 0.755 (9) 0.308 (20) 2.981 (18) 511,240 (25) 679,702 (20)

smote 0.752 (13) 0.318 (14) 3.113 (15) 508,390 (27) 666,395 (27)

RF orig 0.749 (17) 0.353 (1) 3.266 (2) 577,603 (4) 700,875 (7)

weights 0.751 (16) 0.351 (2) 3.178 (8) 575,637 (5) 700,440 (10)

down 0.753 (11) 0.314 (16) 2.952 (20) 545,078 (18) 694,629 (15)

up 0.744 (20) 0.315 (15) 3.083 (16) 582,687 (2) 704,069 (3)

smote 0.739 (22) 0.297 (25) 2.923 (23) 562,638 (12) 698,437 (12)

Continued on next page
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Table B.2: Predictive performance of all models: RFE feature selection (column rank-

ings in parentheses) (continued)

Balan -

cing

AUC-ROC AUC-PRC TDL TDP Profit index

NN orig 0.758 (4) 0.310 (18) 2.945 (21) 540,348 (21) 675,873 (24)

weights 0.764 (2) 0.325 (9) 3.244 (3) 563,558 (11) 700,658 (8)

down 0.757 (6) 0.325 (10) 3.135 (12) 558,511 (13) 701,279 (5)

up 0.759 (3) 0.326 (8) 3.171 (9) 542,268 (20) 689,481 (18)

smote 0.757 (5) 0.324 (11) 3.193 (7) 527,995 (23) 680,551 (19)

GBM orig 0.753 (12) 0.337 (6) 3.164 (11) 550,387 (16) 693,296 (16)

weights 0.748 (18) 0.343 (5) 3.171 (9) 566,757 (9) 705,505 (2)

down 0.757 (7) 0.345 (3) 3.325 (1) 554,617 (15) 703,706 (4)

up 0.752 (15) 0.344 (4) 3.244 (3) 594,221 (1) 707,359 (1)

smote 0.730 (24) 0.314 (17) 3.025 (17) 567,016 (8) 700,916 (6)

C5.0 orig 0.711 (26) 0.298 (24) 2.908 (25) 575,520 (6) 672,681 (25)

DT weights 0.617 (30) 0.167 (30) 0.614 (30) 263,916 (30) 549,453 (30)

down 0.733 (23) 0.319 (13) 2.923 (23) 529,948 (22) 694,990 (14)

up 0.677 (27) 0.254 (27) 2.594 (29) 545,469 (17) 675,952 (23)

smote 0.721 (25) 0.286 (26) 2.813 (26) 568,900 (7) 676,496 (22)

SVM orig 0.640 (28) 0.243 (29) 2.674 (27) 498,667 (28) 662,873 (29)

weights 0.637 (29) 0.243 (28) 2.660 (28) 512,140 (24) 665,485 (28)

down 0.755 (10) 0.307 (22) 3.127 (13) 577,609 (3) 700,544 (9)

up 0.765 (1) 0.330 (7) 3.208 (5) 554,873 (14) 699,301 (11)

smote 0.752 (14) 0.323 (12) 3.200 (6) 565,308 (10) 696,553 (13)



B I B L I O G R A P H Y

Abbasimehr, H., Setak, M., Tarokh, M.J., 2014. A comparative assessment of

the performance of ensemble learning in customer churn prediction. Int.

Arab J. Inf. Technol. 11, 599–606.

Accorsi, R., Manzini, R., Maranesi, F., 2014. A decision-support system for the

design and management of warehousing systems. Computers in Industry

65, 175–186.

Adenso-Díaz, B., Lozano, S., Palacio, A., 2017. Effects of dynamic pricing of

perishable products on revenue and waste. Applied Mathematical

Modelling 45, 148–164.

Ahmed, N.K., Atiya, A.F., Gayar, N.E., El-Shishiny, H., 2010. An empirical

comparison of machine learning models for time series forecasting.

Econometric Reviews 29, 594–621.

Ahn, J.H., Han, S.P., Lee, Y.S., 2006. Customer churn analysis: Churn

determinants and mediation effects of partial defection in the korean

mobile telecommunications service industry. Telecommunications Policy

30, 552–568.

Akerkar, R., 2013. Big data computing. Crc Press.

Alpaydin, E., 2009. Introduction to machine learning. MIT press.

Andrawis, R.R., Atiya, A.F., El-Shishiny, H., 2011. Forecast combinations of

computational intelligence and linear models for the NN5 time series

forecasting competition. International Journal of Forecasting 27, 672–688.

Araman, V.F., Caldentey, R., 2009. Dynamic pricing for nonperishable

products with demand learning. Operations Research 57, 1169–1188.

Arora, D., Malik, P., 2015. Analytics: Key to go from generating big data to

deriving business value, in: 2015 IEEE first international conference on

big data computing service and applications, IEEE. pp. 446–452.

Athanasopoulos, G., Hyndman, R.J., Kourentzes, N., Petropoulos, F., 2017.

Forecasting with temporal hierarchies. European Journal of Operational

Research 262, 60–74.

Au, T., Ma, G., Li, S., 2003a. Applying and evaluating models to predict

customer attrition using data mining techniques. Journal of Comparative

International Management 6.

125



126 bibliography

Au, W.H., Chan, K.C., Yao, X., 2003b. A novel evolutionary data mining

algorithm with applications to churn prediction. IEEE transactions on

evolutionary computation 7, 532–545.

Bahnsen, A.C., Aouada, D., Ottersten, B., 2015. A novel cost-sensitive

framework for customer churn predictive modeling. Decision Analytics 2,

5.

Bai, J., Perron, P., 2003. Computation and analysis of multiple structural

change models. Journal of Applied Econometrics 18, 1–22.

Bajari, P., Nekipelov, D., Ryan, S.P., Yang, M., 2015. Machine learning methods

for demand estimation. American Economic Review 105, 481–85.

Ban, G.Y., Keskin, N.B., 2019. Personalized dynamic pricing with machine

learning: High dimensional features and heterogeneous elasticity.

Available at SSRN 2972985 .

Bao, Y., Wang, W., Zhang, J., 2004. Forecasting intermittent demand by SVMs

regression, in: Systems, Man and Cybernetics, 2004 IEEE International

Conference on, IEEE. pp. 461–466.

Van den Berg, J.P., Sharp, G.P., Gademann, A.N., Pochet, Y., 1998.

Forward-reserve allocation in a warehouse with unit-load replenishments.

European Journal of Operational Research 111, 98–113.

Besbes, O., Zeevi, A., 2009. Dynamic pricing without knowing the demand

function: Risk bounds and near-optimal algorithms. Operations Research

57, 1407–1420.

Bhattacharya, C., 1998. When customers are members: Customer retention in

paid membership contexts. Journal of the Academy of Marketing Science

26, 31–44.

Bitran, G., Caldentey, R., 2003. An overview of pricing models for revenue

management. Manufacturing & Service Operations Management 5,

203–229.

den Boer, A.V., 2015. Dynamic pricing and learning: Historical origins, current

research, and new directions. Surveys in Operations Research and

Management Science 20, 1–18.

Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M., 2015. Time series analysis:

Forecasting and control. John Wiley & Sons.

Breiman, L., 2001. Random forests. Machine Learning 45, 5–32.

Breiman, L., Friedman, J., Stone, C.J., Olshen, R., 1984. Classification and

Regression Trees. CRC Press.



bibliography 127

Brown, B., Chui, M., Manyika, J., 2011. Are you ready for the era of big data.

McKinsey Quarterly 4, 24–35.

Brynjolfsson, E., Hu, Y.J., Smith, M.D., 2009. A longer tail?: Estimating the

shape of amazon’s sales distribution curve in 2008, in: Workshop on

Information Systems and Economics (WISE).

Buckinx, W., Van den Poel, D., 2005. Customer base analysis: Partial defection

of behaviourally loyal clients in a non-contractual FMCG retail setting.

European Journal of Operational Research 164, 252–268.

Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A., 2014. NbClust: An R

package for determining the relevant number of clusters in a data set.

Journal of Statistical Software 61, 1–36.

Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., 2002. SMOTE:

Synthetic minority over-sampling technique. Journal of Artificial

Intelligence Research 16, 321–357.

Chellappa, R., Konsynski, B., Sambamurthy, V., Shivendu, S., 2007. An

empirical study of the myths and facts of digitization in the music

industry, in: Presentation 2007 Workshop Information Systems

Economics (WISE), Montreal.

Chen, C.P., Zhang, C.Y., 2014. Data-intensive applications, challenges,

techniques and technologies: A survey on big data. Information Sciences

275, 314–347.

Chen, I.F., Lu, C.J., Chen, I.F., Lu, C.J., 2016. Sales forecasting by combining

clustering and machine-learning techniques for computer retailing.

Neural Computing and Applications , 1–15.

Chen, K., Hu, Y.H., Hsieh, Y.C., 2015a. Predicting customer churn from

valuable B2B customers in the logistics industry: A case study.

Information Systems and e-Business Management 13, 475–494.

Chen, X., Owen, Z., Pixton, C., Simchi-Levi, D., 2015b. A statistical learning

approach to personalization in revenue management. Available at SSRN

2579462 .

Chen, Z.Y., Fan, Z.P., Sun, M., 2012. A hierarchical multiple kernel support

vector machine for customer churn prediction using longitudinal

behavioral data. European Journal of Operational Research 223, 461–472.

Cheung, W.C., Simchi-Levi, D., Wang, H., 2017. Dynamic pricing and demand

learning with limited price experimentation. Operations Research 65,

1722–1731.



128 bibliography

Chodak, G., 2016. The nuisance of slow moving products in electronic

commerce. Professionals Center for Business Research 3, 11–16.

Chui, M., Manyika, J., Miremadi, M., Henke, N., Chung, R., Nel, P., Malhotra,

S., 2018. Notes from the AI frontier: Insights from hundreds of use cases.

McKinsey Global Institute .

Cleveland, R.B., Cleveland, W.S., Terpenning, I., 1990. STL: A seasonal-trend

decomposition procedure based on Loess. Journal of Official Statistics 6,

3.

Cohen, M., Lobel, I., Paes Leme, R., 2016. Feature-based dynamic pricing.

Available at SSRN 2737045 .

Collopy, F., Armstrong, J.S., 1992. Rule-based forecasting: Development and

validation of an expert systems approach to combining time series

extrapolations. Management Science 38, 1394–1414.

Columbus, Louis, 2019. How to improve supply chains with machine learning:

10 proven ways. URL:

https://www.forbes.com/sites/louiscolumbus/2019/04/28/

how-to-improve-supply-chains-with-machine-learning-10-proven-ways/.

Coussement, K., Van den Poel, D., 2008. Churn prediction in subscription

services: An application of support vector machines while comparing

two parameter-selection techniques. Expert Systems with Applications 34,

313–327.

Croston, J.D., 1972. Forecasting and stock control for intermittent demands.

Operational Research Quarterly , 289–303.

Davenport, T.H., 2013. Analytics 3.0. Harvard Business Review 91, 64–+.

Davenport, T.H., Ronanki, R., 2018. Artificial intelligence for the real world.

Harvard Business Review 96, 108–116.

De Bock, K.W., Van den Poel, D., 2012. Reconciling performance and

interpretability in customer churn prediction using ensemble learning

based on generalized additive models. Expert Systems with Applications

39, 6816–6826.

De Caigny, A., Coussement, K., De Bock, K.W., 2018. A new hybrid

classification algorithm for customer churn prediction based on logistic

regression and decision trees. European Journal of Operational Research .

De Gooijer, J.G., Hyndman, R.J., 2006. 25 years of time series forecasting.

International journal of forecasting 22, 443–473.

https://www.forbes.com/sites/louiscolumbus/2019/04/28/how-to-improve-supply-chains-with-machine-learning-10-proven-ways/
https://www.forbes.com/sites/louiscolumbus/2019/04/28/how-to-improve-supply-chains-with-machine-learning-10-proven-ways/


bibliography 129

De Livera, A.M., Hyndman, R.J., Snyder, R.D., 2011. Forecasting time series

with complex seasonal patterns using exponential smoothing. Journal of

the American Statistical Association 106, 1513–1527.

Dekhne, A., Hastings, G., Murnane, J., Neuhaus, F., 2019. Automation in

logistics: Big opportunity, bigger uncertainty. URL:

https://www.mckinsey.com/industries/

travel-transport-and-logistics/our-insights/

automation-in-logistics-big-opportunity-bigger-uncertainty.

Demšar, J., 2006. Statistical comparisons of classifiers over multiple data sets.

Journal of Machine Learning Research 7, 1–30.

Devaine, M., Gaillard, P., Goude, Y., Stoltz, G., 2013. Forecasting electricity

consumption by aggregating specialized experts. Machine Learning 90,

231–260.

Dingli, A., Marmara, V., Fournier, N.S., 2017. Comparison of deep learning

algorithms to predict customer churn within a local retail industry.

International journal of machine learning and computing 7, 128–132.

Dominique-Ferreira, S., Vasconcelos, H., Proença, J.F., 2016. Determinants of

customer price sensitivity: An empirical analysis. Journal of Services

Marketing 30, 327–340.

Dubé, J.P., Misra, S., 2017. Scalable price targeting. Technical Report. National

Bureau of Economic Research.

Dudek, G., 2015. Short-term load forecasting using random forests, in: Filev,

D., Jabłkowski, J., Kacprzyk, J., Krawczak, M., Popchev, I., Rutkowski, L.,

Sgurev, V., Sotirova, E., Szynkarczyk, P., Zadrozny, S. (Eds.), Intelligent

Systems’ 2014, Springer International Publishing. pp. 821–828.

Dwyer, F.R., Tanner, J.F., 2002. Business marketing: Connecting strategy,

relationships, and learning. McGraw-Hill New York.

Eaves, A.H., Kingsman, B.G., 2004. Forecasting for the ordering and

stock-holding of spare parts. Journal of the Operational Research Society

55, 431–437.

Elberse, A., Oberholzer-Gee, F., 2006. Superstars and underdogs: An

examination of the long tail phenomenon in video sales. Division of

Research, Harvard Business School.

Elmaghraby, W., Keskinocak, P., 2003. Dynamic pricing in the presence of

inventory considerations: Research overview, current practices, and

future directions. Management Science 49, 1287–1309.

https://www.mckinsey.com/industries/travel-transport-and-logistics/our-insights/automation-in-logistics-big-opportunity-bigger-uncertainty
https://www.mckinsey.com/industries/travel-transport-and-logistics/our-insights/automation-in-logistics-big-opportunity-bigger-uncertainty
https://www.mckinsey.com/industries/travel-transport-and-logistics/our-insights/automation-in-logistics-big-opportunity-bigger-uncertainty


130 bibliography

Esser, K., Kurte, J., 2020. Kep-studie 2020-analyse des marktes in deutschland.

Bundesverband Paket und Expresslogistik eV: Berlin, Germany .

Faber, A., Spinler, S., 2019a. An empirical assessment of method selection for

intermittent demand prediction. Unpublished working paper .

Faber, A., Spinler, S., 2019b. Interpretable prediction of partial defection: A

case study in the B2B parcel logistics industry. Unpublished working

paper .

Faber, A., Spinler, S., 2019c. Machine learning–based prediction of price

sensitivity: A case study in the B2B parcel logistics industry.

Unpublished working paper .

Fader, P.S., Hardie, B.G., 2007. How to project customer retention. Journal of

Interactive Marketing 21, 76–90.

Fader, P.S., Hardie, B.G., 2009. Probability models for customer-base analysis.

Journal of Interactive Marketing 23, 61–69.

Fathian, M., Hoseinpoor, Y., Minaei-Bidgoli, B., 2016. Offering a hybrid

approach of data mining to predict the customer churn based on bagging

and boosting methods. Kybernetes 45, 732–743.

Ferreira, K.J., Lee, B.H.A., Simchi-Levi, D., 2015. Analytics for an online

retailer: Demand forecasting and price optimization. Manufacturing &

Service Operations Management 18, 69–88.

Ferreira, K.J., Simchi-Levi, D., Wang, H., 2018. Online network revenue

management using thompson sampling. Operations Research 66,

1586–1602.

Fildes, R., Goodwin, P., Lawrence, M., Nikolopoulos, K., 2009. Effective

forecasting and judgmental adjustments: An empirical evaluation and

strategies for improvement in supply-chain planning. International

Journal of Forecasting 25, 3–23.

Fisher, M., Gallino, S., Li, J., 2017. Competition-based dynamic pricing in

online retailing: A methodology validated with field experiments.

Management Science 64, 2496–2514.

Frazelle, E., Hackman, S., Passy, U., Platzman, L., 1994. The forward reserve

problem. optimization in industry, 2.

Freitas, A.A., 2014. Comprehensible classification models: A position paper.

ACM SIGKDD explorations newsletter 15, 1–10.

Freund, Y., Schapire, R.E., et al., 1996. Experiments with a new boosting

algorithm, in: Icml, Citeseer. pp. 148–156.



bibliography 131

Friedman, J., Hastie, T., Tibshirani, R., et al., 2000. Additive logistic regression:

A statistical view of boosting (with discussion and a rejoinder by the

authors). The Annals of Statistics 28, 337–407.

Friedman, J.H., 2001. Greedy function approximation: A gradient boosting

machine. Annals of Statistics , 1189–1232.

Frow, P., Payne, A., 2009. Customer relationship management: A strategic

perspective. Journal of Business Market Management 3, 7–27.

Gaillard, P., Goude, Y., 2016. opera: Online Prediction by Expert Aggregation.

URL: https://CRAN.R-project.org/package=opera. r package version

1.0.

Gamberini, R., Lolli, F., Rimini, B., Sgarbossa, F., 2010. Forecasting of sporadic

demand patterns with seasonality and trend components: An empirical

comparison between Holt-Winters and (S)ARIMA methods.

Mathematical Problems in Engineering 2010.

García, D.L., Nebot, À., Vellido, A., 2017. Intelligent data analysis approaches

to churn as a business problem: a survey. Knowledge and Information

Systems 51, 719–774.

Ge, Y., He, S., Xiong, J., Brown, D.E., 2017. Customer churn analysis for a

software-as-a-service company, in: Systems and Information Engineering

Design Symposium (SIEDS), 2017, IEEE. pp. 106–111.

Gesing, B., Peterson, S.J., Michelsen, D., 2018. Artificial intelligence in logistics:

A collaborative report by DHL and IBM on implications and use cases for

the logistics industry. DHL Customer Solutions & Innovation .

Glady, N., Baesens, B., Croux, C., 2009. Modeling churn using customer

lifetime value. European Journal of Operational Research 197, 402–411.

Gregory, B., 2018. Predicting customer churn: Extreme gradient boosting with

temporal data. arXiv preprint arXiv:1802.03396 .

Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S.F., Childe, S.J.,

Hazen, B., Akter, S., 2017. Big data and predictive analytics for supply

chain and organizational performance. Journal of Business Research 70,

308–317.

Gupta, R., Pathak, C., 2014. A machine learning framework for predicting

purchase by online customers based on dynamic pricing. Procedia

Computer Science 36, 599–605.

Gustafsson, A., Johnson, M.D., Roos, I., 2005. The effects of customer

satisfaction, relationship commitment dimensions, and triggers on

customer retention. Journal of Marketing 69, 210–218.

https://CRAN.R-project.org/package=opera


132 bibliography

Gutierrez, R.S., Solis, A.O., Mukhopadhyay, S., 2008. Lumpy demand

forecasting using neural networks. International Journal of Production

Economics 111, 409–420.

Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection.

Journal of Machine Learning Research 3, 1157–1182.

Hackman, S.T., Rosenblatt, M.J., Olin, J.M., 1990. Allocating items to an

automated storage and retrieval system. IIE transactions 22, 7–14.

Hadden, J., Tiwari, A., Roy, R., Ruta, D., 2006. Churn prediction: Does

technology matter. International Journal of Intelligent Technology 1,

104–110.

Hanley, J.A., McNeil, B.J., 1982. The meaning and use of the area under a

receiver operating characteristic (ROC) curve. Radiology 143, 29–36.

Hansen, J., McDonald, J., Nelson, R., 2006. Some evidence on forecasting

time-series with support vector machines. Journal of the Operational

Research Society 57, 1053–1063.

Hartigan, J.A., Wong, M.A., 1979. Algorithm AS 136: A k-means clustering

algorithm. Journal of the Royal Statistical Society. Series C (Applied

Statistics) 28, 100–108.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical

learning: Data mining, inference, and prediction. Springer New York.

He, H., Garcia, E.A., 2009. Learning from imbalanced data. IEEE Transactions

on Knowledge and Data Engineering 21, 1263–1284.

Herrera, M., Torgo, L., Izquierdo, J., Pérez-García, R., 2010. Predictive models

for forecasting hourly urban water demand. Journal of Hydrology 387,

141–150.

Hosmer Jr, D.W., Lemeshow, S., Sturdivant, R.X., 2013. Applied logistic

regression. John Wiley & Sons.

Hsu, C.W., Chang, C.C., Lin, C.J., et al., 2003. A practical guide to support

vector classification .

Huang, Y., Kechadi, T., 2013. An effective hybrid learning system for

telecommunication churn prediction. Expert Systems with Applications

40, 5635–5647.

Hung, S.Y., Yen, D.C., Wang, H.Y., 2006. Applying data mining to telecom

churn management. Expert Systems with Applications 31, 515–524.

Hyndman, R.J., Athanasopoulos, G., 2014. Forecasting: Principles and practice.

OTexts.



bibliography 133

Hyndman, R.J., Khandakar, Y., et al., 2007. Automatic time series for

forecasting: The forecast package for R. 6/07, Monash University,

Department of Econometrics and Business Statistics.

Hyndman, R.J., Koehler, A.B., Snyder, R.D., Grose, S., 2002. A state space

framework for automatic forecasting using exponential smoothing

methods. International Journal of Forecasting 18, 439–454.

Hyndman, R.J., et al., 2006. Another look at forecast-accuracy metrics for

intermittent demand. Foresight: The International Journal of Applied

Forecasting 4, 43–46.

Jahromi, A.T., Stakhovych, S., Ewing, M., 2014. Managing B2B customer churn,

retention and profitability. Industrial Marketing Management 43,

1258–1268.

Kane, M., Price, N., Scotch, M., Rabinowitz, P., 2014. Comparison of ARIMA

and random forest time series models for prediction of avian influenza

H5N1 outbreaks. BMC Bioinformatics 15.

Keilwagen, J., Grosse, I., Grau, J., 2014. Area under precision-recall curves for

weighted and unweighted data. PLoS One 9, e92209.

Keskin, N.B., Zeevi, A., 2014. Dynamic pricing with an unknown demand

model: Asymptotically optimal semi-myopic policies. Operations

Research 62, 1142–1167.

Keskin, N.B., Zeevi, A., 2016. Chasing demand: Learning and earning in a

changing environment. Mathematics of Operations Research 42, 277–307.

Kourentzes, N., 2013. Intermittent demand forecasts with neural networks.

International Journal of Production Economics 143, 198–206.

Kourentzes, N., Barrow, D.K., Crone, S.F., 2014a. Neural network ensemble

operators for time series forecasting. Expert Systems with Applications

41, 4235–4244.

Kourentzes, N., Petropoulos, F., 2016. Forecasting with r, in: International

Symposium on Forecasting, p. 19th.

Kourentzes, N., Petropoulos, F., Trapero, J.R., 2014b. Improving forecasting by

estimating time series structural components across multiple frequencies.

International Journal of Forecasting 30, 291–302.

Krzanowski, W.J., Hand, D.J., 2009. ROC curves for continuous data. CRC

Press.

Kuhn, M., 2012. Variable selection using the caret package URL:

https://www.idg.pl/mirrors/CRAN/web/packages/caret/vignettes/

caretSelection.pdf.

https://www.idg.pl/mirrors/CRAN/web/packages/caret/vignettes/caretSelection.pdf
https://www.idg.pl/mirrors/CRAN/web/packages/caret/vignettes/caretSelection.pdf


134 bibliography

Kuhn, M., 2015. Caret: classification and regression training. ascl , ascl–1505.

Kumar, D.A., Ravi, V., 2008. Predicting credit card customer churn in banks

using data mining. International Journal of Data Analysis Techniques

and Strategies 1, 4–28.

Kursa, M.B., Rudnicki, W.R., et al., 2010. Feature selection with the Boruta

package. J Stat Softw 36, 1–13.

Laney, D., 2001. 3D data management: Controlling data volume, velocity and

variety. META Group Research Note 6, 1.

Lantz, B., 2013. Machine learning with R. Packt publishing ltd.

LaPlaca, P.J., Katrichis, J.M., 2009. Relative presence of business-to-business

research in the marketing literature. Journal of Business-to-Business

Marketing 16, 1–22.

Larivière, B., Van den Poel, D., 2005. Predicting customer retention and

profitability by using random forests and regression forests techniques.

Expert Systems with Applications 29, 472–484.

Lemke, C., Gabrys, B., 2010. Meta-learning for time series forecasting and

forecast combination. Neurocomputing 73, 2006–2016.

Lemmens, A., Croux, C., 2006. Bagging and boosting classification trees to

predict churn. Journal of Marketing Research 43, 276–286.

Lemmens, A., Gupta, S., 2017. Managing churn to maximize profits. Available

at SSRN 2964906 .

Lessmann, S., Voß, S., 2009. A reference model for customer-centric data

mining with support vector machines. European Journal of Operational

Research 199, 520–530.

Ling, C.X., Li, C., 1998. Data mining for direct marketing: Problems and

solutions, in: Kdd, pp. 73–79.

Liu, H., Motoda, H., Setiono, R., Zhao, Z., 2010. Feature selection: An ever

evolving frontier in data mining, in: Feature Selection in Data Mining, pp.

4–13.

Lolli, F., Gamberini, R., Regattieri, A., Balugani, E., Gatos, T., Gucci, S., 2017.

Single-hidden layer neural networks for forecasting intermittent demand.

International Journal of Production Economics 183, 116–128.

Lu, N., Lin, H., Lu, J., Zhang, G., 2014. A customer churn prediction model in

telecom industry using boosting. IEEE Transactions on Industrial

Informatics 10, 1659–1665.

Makridakis, S., Wheelwright, S.C., Hyndman, R.J., 2008. Forecasting methods

and applications. John Wiley & Sons.



bibliography 135

Mashayekhi, M., Gras, R., 2015. Rule extraction from random forest: The RF+

HC methods, in: Canadian Conference on Artificial Intelligence, Springer.

pp. 223–237.

Mattison, R., 2001. Telecom churn management: The golden opportunity.

APDG Publ.

Miao, S., Chen, X., Chao, X., Liu, J., Zhang, Y., 2019. Context-based dynamic

pricing with online clustering. arXiv preprint arXiv:1902.06199 .

Moon, M.A., Mentzer, J.T., Smith, C.D., 2003. Conducting a sales forecasting

audit. International Journal of Forecasting 19, 5–25.

Morton, E., 2017. More products lead to more growth in online retailing. URL:

https://www.digitalcommerce360.com/2017/08/29/

products-lead-growth-online-retailing/.

Mukherjee, S., Osuna, E., Girosi, F., 1997. Nonlinear prediction of chaotic time

series using support vector machines, in: Neural Networks for Signal

Processing VII. Proceedings of the 1997 IEEE Signal Processing Society

Workshop, IEEE. pp. 511–520.

Mukhopadhyay, S., Solis, A.O., Gutierrez, R.S., 2012. The accuracy of

non-traditional versus traditional methods of forecasting lumpy demand.

Journal of Forecasting 31, 721–735.

Neslin, S.A., Gupta, S., Kamakura, W., Lu, J., Mason, C.H., 2006. Defection

detection: Measuring and understanding the predictive accuracy of

customer churn models. Journal of Marketing Research 43, 204–211.

Nguyen, T., Li, Z., Spiegler, V., Ieromonachou, P., Lin, Y., 2018. Big data

analytics in supply chain management: A state-of-the-art literature

review. Computers & Operations Research 98, 254–264.

Nie, G., Rowe, W., Zhang, L., Tian, Y., Shi, Y., 2011. Credit card churn

forecasting by logistic regression and decision tree. Expert Systems with

Applications 38, 15273–15285.

Nikolopoulos, K., 2020. We need to talk about intermittent demand

forecasting. European Journal of Operational Research .

Nikolopoulos, K., Syntetos, A.A., Boylan, J.E., Petropoulos, F.,

Assimakopoulos, V., 2011. An aggregate–disaggregate intermittent

demand approach (ADIDA) to forecasting: An empirical proposition and

analysis. Journal of the Operational Research Society 62, 544–554.

Petropoulos, F., Kourentzes, N., 2015a. Forecast combinations for intermittent

demand. Journal of the Operational Research Society 66, 914–924.

https://www.digitalcommerce360.com/2017/08/29/products-lead-growth-online-retailing/
https://www.digitalcommerce360.com/2017/08/29/products-lead-growth-online-retailing/


136 bibliography

Petropoulos, F., Kourentzes, N., 2015b. Forecast combinations for intermittent

demand. Journal of the Operational Research Society 66, 914–924.

Petropoulos, F., Kourentzes, N., Nikolopoulos, K., 2016. Another look at

estimators for intermittent demand. International Journal of Production

Economics 181, 154–161.

Petropoulos, F., Nikolopoulos, K., Spithourakis, G.P., Assimakopoulos, V.,

2013. Empirical heuristics for improving intermittent demand forecasting.

Industrial Management & Data Systems 113, 683–696.

Phillips, R.L., 2005. Pricing and revenue optimization. Stanford University

Press.

Van den Poel, D., Lariviere, B., 2004. Customer attrition analysis for financial

services using proportional hazard models. European Journal of

Operational Research 157, 196–217.

Qiang, S., Bayati, M., 2016. Dynamic pricing with demand covariates.

Available at SSRN 2765257 .

Qu, H., Ryzhov, I.O., Fu, M.C., Bergerson, E., Kurka, M., 2016. Learning

demand curves in B2B pricing: A new framework and case study.

Submitted for publication .

Quinlan, J.R., 1986. Induction of decision trees. Machine Learning 1, 81–106.

Rauyruen, P., Miller, K.E., 2007. Relationship quality as a predictor of B2B

customer loyalty. Journal of Business Research 60, 21–31.

Reichheld, F.F., 1996. Learning from customer defections. Harvard business

review 74, 56–67.

Ribeiro, M.T., Singh, S., Guestrin, C., 2016. Why should I trust you?:

Explaining the predictions of any classifier, in: Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, ACM. pp. 1135–1144.

Ridgeway, G., 2007. Generalized boosted models: A guide to the gbm package.

Update 1, 2007.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., et al., 1988. Learning

representations by back-propagating errors. Cognitive Modeling 5, 1.

Runge, J., Gao, P., Garcin, F., Faltings, B., 2014. Churn prediction for

high-value players in casual social games, in: Computational Intelligence

and Games (CIG), 2014 IEEE Conference on, IEEE. pp. 1–8.

Schlosser, R., Boissier, M., 2018. Dynamic pricing under competition on online

marketplaces: A data-driven approach, in: Proceedings of the 24th ACM



bibliography 137

SIGKDD International Conference on Knowledge Discovery & Data

Mining, ACM. pp. 705–714.

Schoenherr, T., Speier-Pero, C., 2015. Data science, predictive analytics, and

big data in supply chain management: Current state and future potential.

Journal of Business Logistics 36, 120–132.

Scholkopf, B., Smola, A.J., 2001. Learning with kernels: Support vector

machines, regularization, optimization, and beyond. MIT press.

Schuster, M., Paliwal, K.K., 1997. Bidirectional recurrent neural networks.

IEEE Transactions on Signal Processing 45, 2673–2681.

Shaaban, E., Helmy, Y., Khder, A., Nasr, M., 2012. A proposed churn

prediction model .

Shiller, B.R., et al., 2013. First degree price discrimination using big data.

Brandeis Univ., Department of Economics.

Sivarajah, U., Kamal, M.M., Irani, Z., Weerakkody, V., 2017. Critical analysis of

big data challenges and analytical methods. Journal of Business Research

70, 263–286.

Stock, R.M., 2005. Can customer satisfaction decrease price sensitivity in

business-to-business markets? Journal of Business-to-Business Marketing

12, 59–87.

Strack, G., Pochet, Y., 2010. An integrated model for warehouse and inventory

planning. European Journal of Operational Research 204, 35–50.

Sugar, C.A., James, G.M., 2003. Finding the number of clusters in a dataset:

An information-theoretic approach. Journal of the American Statistical

Association 98, 750–763.

Syntetos, A.A., Babai, M.Z., Dallery, Y., Teunter, R., 2009. Periodic control of

intermittent demand items: Theory and empirical analysis. Journal of the

Operational Research Society 60, 611–618.

Syntetos, A.A., Babai, M.Z., Gardner Jr, E.S., 2015. Forecasting intermittent

inventory demands: simple parametric methods vs. bootstrapping.

Journal of Business Research 68, 1746–1752.

Syntetos, A.A., Boylan, J.E., 2005. The accuracy of intermittent demand

estimates. International Journal of forecasting 21, 303–314.

Taieb, S.B., Hyndman, R.J., 2014. A gradient boosting approach to the kaggle

load forecasting competition. International Journal of Forecasting 30,

382–394.



138 bibliography

Tamaddoni, A., Stakhovych, S., Ewing, M., 2016. Comparing churn prediction

techniques and assessing their performance: A contingent perspective.

Journal of Service Research 19, 123–141.

Tanford, S., Raab, C., Kim, Y.S., 2012. Determinants of customer loyalty and

purchasing behavior for full-service and limited-service hotels.

International Journal of Hospitality Management 31, 319–328.

Teunter, R.H., Duncan, L., 2009a. Forecasting intermittent demand: A

comparative study. Journal of the Operational Research Society 60,

321–329.

Teunter, R.H., Duncan, L., 2009b. Forecasting intermittent demand: a

comparative study. Journal of the Operational Research Society 60,

321–329.

Teunter, R.H., Syntetos, A.A., Babai, M.Z., 2011. Intermittent demand: Linking

forecasting to inventory obsolescence. European Journal of Operational

Research 214, 606–615.

Thiele, S., Dieke, A.K., 2018. The impact of competition on consumer prices

for cross-border parcels, in: The Contribution of the Postal and Delivery

Sector. Springer, pp. 257–269.

Thomassey, S., Fiordaliso, A., 2006. A hybrid sales forecasting system based

on clustering and decision trees. Decision Support Systems 42, 408–421.

Thorndike, R.L., 1953. Who belongs in the family? Psychometrika 18, 267–276.

Timmermann, A., 2006. Forecast combinations. Handbook of Economic

Forecasting 1, 135–196.

Tiwari, S., Wee, H.M., Daryanto, Y., 2018. Big data analytics in supply chain

management between 2010 and 2016: Insights to industries. Computers &

Industrial Engineering 115, 319–330.

Tsai, C.F., Chen, M.Y., 2010. Variable selection by association rules for

customer churn prediction of multimedia on demand. Expert Systems

with Applications 37, 2006–2015.

Vafeiadis, T., Diamantaras, K.I., Sarigiannidis, G., Chatzisavvas, K.C., 2015. A

comparison of machine learning techniques for customer churn

prediction. Simulation Modelling Practice and Theory 55, 1–9.

Vassakis, K., Petrakis, E., Kopanakis, I., 2018. Big data analytics: Applications,

prospects and challenges, in: Mobile Big Data. Springer, pp. 3–20.

Verbeke, W., Dejaeger, K., Martens, D., Hur, J., Baesens, B., 2012. New insights

into churn prediction in the telecommunication sector: A profit driven



bibliography 139

data mining approach. European Journal of Operational Research 218,

211–229.

Verbeke, W., Martens, D., Mues, C., Baesens, B., 2011. Building

comprehensible customer churn prediction models with advanced rule

induction techniques. Expert Systems with Applications 38, 2354–2364.

Verbraken, T., Verbeke, W., Baesens, B., 2013. A novel profit maximizing

metric for measuring classification performance of customer churn

prediction models. IEEE transactions on knowledge and data engineering

25, 961–973.

Vives, A., Jacob, M., Aguiló, E., 2018. Online hotel demand model and

own-price elasticities: An empirical application in a mature resort

destination. Tourism Economics .

Waller, M.A., Fawcett, S.E., 2013. Data science, predictive analytics, and big

data: A revolution that will transform supply chain design and

management. Journal of Business Logistics 34, 77–84.

Wallström, P., Segerstedt, A., 2010. Evaluation of forecasting error

measurements and techniques for intermittent demand. International

Journal of Production Economics 128, 625–636.

Wang, G., Gunasekaran, A., Ngai, E.W., Papadopoulos, T., 2016. Big data

analytics in logistics and supply chain management: Certain

investigations for research and applications. International Journal of

Production Economics 176, 98–110.

Wang, X., Smith-Miles, K., Hyndman, R., 2009. Rule induction for forecasting

method selection: Meta-learning the characteristics of univariate time

series. Neurocomputing 72, 2581–2594.

Wei, C.P., Chiu, I.T., 2002. Turning telecommunications call details to churn

prediction: A data mining approach. Expert Systems with Applications

23, 103–112.

Weinberg, C.R., Gladen, B.C., 1986. The beta-geometric distribution applied to

comparative fecundability studies. Biometrics , 547–560.

Wiersema, F., 2013. The B2B agenda: The current state of B2B marketing and a

look ahead. Industrial Marketing Management 42, 470–488.

Willemain, T.R., Smart, C.N., Schwarz, H.F., 2004. A new approach to

forecasting intermittent demand for service parts inventories.

International Journal of forecasting 20, 375–387.

Willemain, T.R., Smart, C.N., Shockor, J.H., DeSautels, P.A., 1994. Forecasting

intermittent demand in manufacturing: A comparative evaluation of



140 bibliography

croston’s method. International Journal of Forecasting 10, 529–538.

Witten, I.H., Frank, E., Hall, M.A., Pal, C.J., 2016. Data Mining: Practical

machine learning tools and techniques. Morgan Kaufmann.

Xia, G.e., Jin, W.d., 2008. Model of customer churn prediction on support

vector machine. Systems Engineering-Theory & Practice 28, 71–77.

Xie, Y., Li, X., Ngai, E., Ying, W., 2009. Customer churn prediction using

improved balanced random forests. Expert Systems with Applications 36,

5445–5449.

Yi, X., Liu, F., Liu, J., Jin, H., 2014. Building a network highway for big data:

Architecture and challenges. IEEE Network 28, 5–13.

Zhang, G., Patuwo, B.E., Hu, M.Y., 1998. Forecasting with artificial neural

networks: The state of the art. International Journal of Forecasting 14,

35–62.

Zhang, G.P., 2003. Time series forecasting using a hybrid ARIMA and neural

network model. Neurocomputing 50, 159–175.

Zhang, G.P., Qi, M., 2005. Neural network forecasting for seasonal and trend

time series. European journal of operational research 160, 501–514.

Zhang, J.Z., Netzer, O., Ansari, A., 2014. Dynamic targeted pricing in B2B

relationships. Marketing Science 33, 317–337.

Zhang, X., Zhu, J., Xu, S., Wan, Y., 2012. Predicting customer churn through

interpersonal influence. Knowledge-Based Systems 28, 97–104.

Zhao, Y., Li, B., Li, X., Liu, W., Ren, S., 2005. Customer churn prediction using

improved one-class support vector machine, in: International Conference

on Advanced Data Mining and Applications, Springer. pp. 300–306.

Zhou, L., Pan, S., Wang, J., Vasilakos, A.V., 2017. Machine learning on big data:

Opportunities and challenges. Neurocomputing 237, 350–361.

Zicari, R.V., 2014. Big data: Challenges and opportunities. Big Data

Computing 1, 103–128.


	Dedication
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Big data analytics
	1.2 Challenges of big data analytics
	1.3 Big data analytics in supply chain management
	1.4 Motivation behind the dissertation
	1.5 Structure of this work

	2 Method selection for intermittent demand prediction
	2.1 Introduction
	2.2 Literature review
	2.2.1 Intermittent demand prediction with time-series methods
	2.2.2 Intermittent demand prediction with machine learning methods
	2.2.3 Time-series clustering for machine learning demand forecasting
	2.2.4 Meta learning via forecast combinations
	2.2.5 Meta learning via method selection
	2.2.6 Improving warehouse operations performance

	2.3 Methodology
	2.3.1 Accuracy measure
	2.3.2 Prediction methods
	2.3.3 Time-series feature extraction

	2.4 Experimental design
	2.4.1 Data
	2.4.2 Software implementation
	2.4.3 Case study context

	2.5 Results and managerial implications
	2.5.1 Results of base forecasting methods
	2.5.2 Results of base forecasting methods with trend and seasonality decomposition
	2.5.3 Results of combined clustering and machine learning–based forecasting
	2.5.4 Results of meta learning: Forecast combinations and method selection
	2.5.5 Research partner data: Comparison with current forecasting method
	2.5.6 Research partner data: Results of storage cost simulation

	2.6 Conclusion and future reseach

	3 Interpretable prediction of partial defection
	3.1 Introduction
	3.2 Literature review
	3.2.1 Defection defined
	3.2.2 Models used to predict defection
	3.2.3 The use of clustering to predict defection
	3.2.4 The use of ensembling to predict defection
	3.2.5 Combined defection prediction and profit optimization
	3.2.6 Interpretable models
	3.2.7 Data balancing

	3.3 Approach to modeling
	3.3.1 Classification models and data balancing
	3.3.2 Combined unsupervised and supervised classification
	3.3.3 Ensembling of different classifiers
	3.3.4 Classification sensitivity analysis: Partial defection thresholds and prediction lead times
	3.3.5 Regression models
	3.3.6 Profitability analysis
	3.3.7 Interpretability
	3.3.8 Accuracy measures

	3.4 Case study and data
	3.4.1 Case study
	3.4.2 Description and preprocessing of the data set

	3.5 Results
	3.5.1 Results of classification models
	3.5.2 Sensitivity analysis for classification models
	3.5.3 Results of regression models
	3.5.4 Results of combinations of classification and regression models
	3.5.5 Results of profitability focus
	3.5.6 Results of interpretability focus
	3.5.7 Feature importance

	3.6 Summary of results and managerial implications
	3.7 Conclusion and future research directions

	4 Machine learning–based price segmentation prediction
	4.1 Introduction
	4.2 Literature review
	4.3 Model approach
	4.3.1 Assessment of price feature importance
	4.3.2 Assessment of price sensitivity classification
	4.3.3 Financial impact calculation

	4.4 Case study and data
	4.5 Results
	4.5.1 Results of the price feature importance assessment
	4.5.2 Classifying customers by their price sensitivity
	4.5.3 Calculating the financial impact of predictions

	4.6 Managerial implications
	4.7 Conclusion and future research directions

	5 Conclusion and Outlook
	5.1 Conclusion
	5.2 Contributions to theory and practice
	5.3 Avenues for future research

	A Appendix to Chapter 2
	A.1 Hyperparameters for machine learning methods
	A.2 Time-series features
	A.3 Warehouse operation costs algorithm

	B Appendix to Chapter 3
	B.1 Churn prediction models with feature selection

	Bibliography

