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A B S T R A C T

This dissertation investigates capacity and technology choice decisions in mar-
itime container shipping under demand and regulatory uncertainty. In an in-
troductory overview, we1 discuss the industry and the challenges that compli-
cate investment decisions in shipping: e. g., the multitude of decisions, market
volatility, excess capacities and the trend of new environmental regulation.

Real option valuation methods can account for strategic options and the un-
certainties in capacity decisions in shipping. To assess the impact of chartering
on maritime investment, we analyze investment and charter options individu-
ally in a continuous-time model. We combine both in a discrete-time approach
taking into account key features of the industry: investment with time to build,
divestment, chartering, an endogenous charter rate, layup, and demand uncer-
tainty. While we find demand volatility to increase optimal capacities if only
investment with time to build is possible, chartering reduces this effect. It
adds value to the overall project, should be mainly applied to compensate un-
expected capacity shortages and needs to be considered in decision-making.

Uncertainty about future eco-regulation is a further challenge for the industry.
In an approximate dynamic programming model extension, we account for a
stochastic introduction of operating cost-increasing regulation to assess optimal
capacity choice under regulatory uncertainty. Regulation can allow for grandfa-
thering, affecting only newly acquired vessels. We find uncertainty about future
regulation with grandfathering to induce heavy up-front investment to secure a
low cost base even in regulated markets. Such uncertainty may increase excess
capacities and industry emissions. Uncertainty without grandfathering, how-
ever, reduces overall investment and emissions. In this case, the market may
contract as investors resort to chartering until uncertainty is resolved.

To also assess technology choice in light of uncertain future regulation, we de-
velop a two-phase regime-switching model. We derive analytical solutions and
study the effects of regulatory uncertainty on technology choice in a numerical
extension that relaxes restrictive assumptions. We find that such uncertainty
can increase optimal capacities and that a single-technology strategy is prefer-
able over a fleet of mixed technologies in most cases. We further extend the
model and compare the effectiveness of two different regimes—an emissions
cap and an emissions tax. Results suggest that an emissions cap is more effec-
tive at reducing overall emissions while a tax causes lower regulation cost. The
regime choice also determines the optimal technological fleet composition.

The main implication is that chartering and regulatory uncertainty have a
strong effect on optimal investment in shipping and should be considered in
project valuation. Further, regulatory uncertainty can lead to unintended invest-
ment behavior that undermines regulatory goals. Lastly, regulatory regimes are
not equally effective/efficient in reducing the environmental footprint of ship-
ping and constitute varying incentives for investing in eco-friendly technology.

1The term “we” refers to the authors of the respective chapters as denoted at the beginning
of each chapter. For the abstract, this refers to the authors of Haehl and Spinler (2017a,b,c).

v





A C K N O W L E D G M E N T S

This quasi-cumulative dissertation was prepared at the Kühne Institute for Lo-
gistics Management at WHU – Otto Beisheim School of Management between
2014 and 2017.

First and foremost, I would like to express my sincere gratitude to Prof. Dr.
Stefan Spinler—my first advisor at the Otto Beisheim School of Management—
for his continual guidance, support, patience, and motivation throughout my
doctoral studies. In addition to accepting my proposed dissertation subject,
Prof. Spinler helped to shape it, over the course of my studies, by offering
invaluable suggestions and methodological advice.

I would also like to thank Prof. Dr. Arnd Huchzermeier for serving in the
capacity of my second advisor and for providing helpful perspectives on the
topic of this thesis.

I am extremely grateful to the entire team at the Kühne Institute for Logistics
Management for making me feel welcome and a part of the team at all times,
even as an external doctoral student. I greatly appreciate a number of helpful
discussions on methodological approaches—and on the business applications
of my thesis topic—with Anna Achenbach, Maximilian Burkhardt, Alexander
Hess, Eike Nohdurft and especially Philipp Rau. I would also like to thank
Dr. Jan van Heys for his advice on methodology.

Last, but not least, it is unlikely I could have written such a dissertation with-
out my excitement for the sea and for all the topics connected with it. I owe
that passion to my parents, who encouraged me to participate in a six-month
school project on board the traditional sailing ship Thor Heyerdahl. There, my fel-
low students and the crew surrounding Ruth Merk and Detlef Soitzek helped to
create an experience that strongly affected me and that sparked my love for the
sea. This passion and my continued involvement in the Thor Heyerdahl project
have magnified my enjoyment of the “ups” yet also helped me to weather the
“downs” of this doctoral dissertation project.

vii





C O N T E N T S

1 introduction 1

1.1 The Container Shipping Industry . . . . . . . . . . . . . . . . . . 1

1.2 Investment Challenges in Maritime Shipping . . . . . . . . . . . 2

1.2.1 Multitude of Decisions . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Uncertainty and Market Volatility . . . . . . . . . . . . . 3

1.2.3 Curse of Excess Capacities . . . . . . . . . . . . . . . . . 5

1.3 Eco-Regulation and Compliance . . . . . . . . . . . . . . . . . . . 6

1.4 Real Options: A Method for Valuation under Uncertainty . . . . 8

1.5 Contributions of this Work . . . . . . . . . . . . . . . . . . . . . . 10

2 impact of chartering on investment under market un-
certainty 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Analytical Investment-only and Charter-only Model . . . . . . . 16

2.3.1 Model Derivation - Investment Model . . . . . . . . . . . 16

2.3.2 Model Derivation - Charter Model . . . . . . . . . . . . . 18

2.3.3 Model Calibration . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Combined Invest and Long-Term Charter Model . . . . . . . . . 23

2.4.1 Model Derivation . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Combined Invest and Short-Term Charter Model with Divest-
ment Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Model Derivation . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.2 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Conclusion and Implications for Future Research . . . . . . . . . 34

3 capacity expansion under regulatory uncertainty 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Model Formulation as a Dynamic Program . . . . . . . . . . . . 40

3.3.1 Regulatory Uncertainty with Grandfathering . . . . . . 43

3.3.2 Regulatory Uncertainty without Grandfathering . . . . 47

3.4 Solution Approach: Approximate Dynamic Programming . . . 48

3.4.1 Post-Decision State . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2 Basis Function Approach . . . . . . . . . . . . . . . . . . 50

3.4.3 ADP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.4 Value Function Approximation . . . . . . . . . . . . . . . 51

3.5 Investment Behavior under Regulatory Uncertainty . . . . . . . 52

3.5.1 Regulation of Sulfur Emissions in Maritime Shipping . . 52

3.5.2 Model Calibration . . . . . . . . . . . . . . . . . . . . . . 53

3.5.3 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . 55

ix



x contents

3.6 Conclusion and Implications for Future Research . . . . . . . . . 60

4 technology choice under emission regulation uncer-
tainty 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Investment under Regulatory Uncertainty . . . . . . . . . . . . . 67

4.3.1 Analytical Model of the Shipping Market . . . . . . . . . 67

4.3.2 Numerical Extension: Relaxing the Assumptions . . . . 74

4.4 Evaluating Emission Regulation Regimes . . . . . . . . . . . . . 78

4.4.1 Emissions Cap Regime . . . . . . . . . . . . . . . . . . . 78

4.4.2 Emissions Tax Regime . . . . . . . . . . . . . . . . . . . . 80

4.4.3 Model Calibration . . . . . . . . . . . . . . . . . . . . . . 80

4.4.4 Performance Comparison . . . . . . . . . . . . . . . . . . 81

4.5 Implications for Optimal Investment and Regulatory Decisions 84

4.6 Conclusion and Implications for Future Research . . . . . . . . . 85

5 summary and outlook 87

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

a appendix to chapter 2 93

a.1 Definition of Model Variables . . . . . . . . . . . . . . . . . . . . 93

a.2 Valuation of Option to Invest . . . . . . . . . . . . . . . . . . . . 94

a.3 Valuation of Option to Charter . . . . . . . . . . . . . . . . . . . 97

b appendix to chapter 3 99

b.1 Definition of Model Variables . . . . . . . . . . . . . . . . . . . . 99

b.2 Approximate Dynamic Programming Algorithm . . . . . . . . . 100

b.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 103

b.4 Model Verification and Validation . . . . . . . . . . . . . . . . . . 103

c appendix to chapter 4 105

c.1 Definition of Model Variables . . . . . . . . . . . . . . . . . . . . 105

c.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

bibliography 111



L I S T O F F I G U R E S

Figure 1.1 Global container vessel fleet and average vessel size . . . 2

Figure 1.2 Vessel price index for new-built and second-hand con-
tainer vessels . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.3 Container vessel layup pool and Shanghai Containerized
Freight Index (SCFI) . . . . . . . . . . . . . . . . . . . . . . 5

Figure 1.4 Expected development of shipping emissions until 2050 7

Figure 1.5 Overview of effective dates of International Maritime Or-
ganization (IMO) regulations . . . . . . . . . . . . . . . . . 7

Figure 2.1 Optimal capacity choice as a function of demand Y for
varying demand volatility . . . . . . . . . . . . . . . . . . 21

Figure 2.2 Optimal capacity choice as a function of demand Y for
varying time to build . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.3 Optimal capacity choice as a function of demand Y for
varying volatility . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.4 Schematic 2-dimensional representation of the lattice ap-
proach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.5 Project values of full model and investment-only model
and resulting relative value-add provided by option to
charter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.6 Simulation of total capacity and investment vs. charter
split in model with investment and long-term charter . . 28

Figure 2.7 Owned capacity share and total capacity build-up over
time in base case and high market volatility scenario . . 29

Figure 2.8 Simulation of total capacity and investment vs. charter
split in model with divestment, short-term charter and
static charter rate . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 2.9 Simulation of total capacity and investment vs. charter
split in model with divestment, short-term charter and
endogenous charter rate . . . . . . . . . . . . . . . . . . . 33

Figure 3.1 Two-dimensional representation of binomial tree struc-
ture in dynamic programming (DP) approach . . . . . . . 42

Figure 3.2 Results for simulations without regulatory uncertainty
and the base-case model with regulatory uncertainty . . 56

Figure 3.3 Results for simulations with regulatory uncertainty and
with increased post-regulation operating costs . . . . . . 58

Figure 4.1 Optimal total owned capacity and technology choice for
different regulation probabilities ξ. . . . . . . . . . . . . . 77

Figure 4.2 Total expected project value for investment projects with
and without regulatory uncertainty as a function of the
regulation probability ξ . . . . . . . . . . . . . . . . . . . 77

Figure 4.3 Value added due to the layup option under various sce-
narios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xi



xii List of Figures

Figure 4.4 Comparison of regulatory regimes under various regu-
lation probabilities ξ. . . . . . . . . . . . . . . . . . . . . . 81

Figure 4.5 Comparison of regulatory regimes: Emission limits and
costs associated with achieving mandated emission levels 83

Figure B.1 Approximate dynamic programming algorithm used to
solve real opt- ions model . . . . . . . . . . . . . . . . . . 101



L I S T O F TA B L E S

Table 2.1 Model parameters as used in base case scenario in all
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Table 2.2 Definition of state variables and state space for model
with time to build h = 2. . . . . . . . . . . . . . . . . . . . 24

Table 2.3 Definition of decision variables and decision space. . . . 24

Table 3.1 Definition of state variables and state space. . . . . . . . 45

Table 3.2 Definition of decision variables and action spaces. . . . . 46

Table 3.3 Sulfur oxide emission limits. . . . . . . . . . . . . . . . . . 53

Table 3.4 Base-case parameters used in all models . . . . . . . . . . 54

Table 4.1 Sulfur oxide emission limits defined by MARPOL . . . . . 75

Table 4.2 Base-case parameters used in all models . . . . . . . . . . 75

Table A.1 Definition of variables used in continuous-time models. . 93

Table A.2 Definition of additional variables used in discrete-time
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Table B.1 Definition of variables used in DP and ADP models. . . . 99

Table B.2 Sensitivity analysis: Relative project values for selected
parameter changes . . . . . . . . . . . . . . . . . . . . . . 103

Table C.1 Definition of variables used . . . . . . . . . . . . . . . . . 105

xiii



A C R O N Y M S

ADP Approximate dynamic programming

CO2 Carbon dioxide

DCF Discounted cash flow

DP Dynamic programming

ECA Emission control area

EEDI Energy Efficiency Design Index

EU European Union

HFO Heavy fuel oil

IMO International Maritime Organization

LHS Left-hand side

LNG Liquefied natural gas

MARPOL International Convention for the Prevention of Marine Pollution
from Ships

MDO Marine diesel oil

NPV Net present value

NOx Nitrogen oxide

RHS Right-hand side

SCFI Shanghai Containerized Freight Index

SEEMP Ship Energy Efficiency Management Plan

SOx Sulfur oxide

SO2 Sulfur dioxide

SO3 Sulfur trioxide

TEU Twenty-foot equivalent unit

USD US dollar

xiv



1
I N T R O D U C T I O N

Quand tu veux construire un bateau, ne commence pas
par rassembler du bois, couper des planches et distribuer du travail,
mais reveille au sein des hommes le desir de la mer grande et large.

—Antoine de Saint Exupéry

1.1 the container shipping industry

Ships and the sea have exerted a magic attraction on humans for generations
as a means of travel and trade. With its origins in Asia, trade on sailing vessels
has developed from regional routes in trade networks like the Hanseatic League
to trading across continents after the discoveries of explorers like Christopher
Columbus. In these times and up until the middle of the 19th century, sail-
ing vessels were the predominant means of sea transport before they were
replaced by steam shipping and later diesel-powered engines. The physically
hard work on board ships and in port handling as well as the resulting high
personnel intensity limited the growth of the industry until the breakthrough of
containerized freight. Since the 1950s, during which the American shipper Mal-
colm McLean has introduced intermodal transportation of containers to mar-
itime shipping (World Shipping Council 2017), the industry has seen immense
growth. Today it is a truly global trading network, in which ever-increasing con-
tainer vessels, liner services, and continuous efficiency increases also in shore-
based operations allow the transportation of unconceivable volumes of cargo
around the world. In 2015, world seaborne trade totaled 53.6 billion ton-miles
across all trade lanes and vessel types. An overwhelming majority of general
cargoes is now transported in standard containers, leaving container shipping
with a contribution of about 16% of ton-miles. Total yearly volumes of con-
tainerized trade are estimated at 175 million twenty-foot equivalent units (TEU),
which is the standardized size of a twenty foot container used as a measure-
ment unit in the industry. (United Nations Conference on Trade and Develop-
ment 2016)

This logistical achievement is accomplished by a fleet of 6,000 container ves-
sels with a total capacity of 20.6 million TEU, which has been strongly growing
over the past years. (Alphaliner 2017) The growth in fleet size is driven by
ship orders but also the growing average size of new-built vessels, which has
risen more than 130% between 2009 and 2015 in a race for economies of scale.
(United Nations Conference on Trade and Development 2016) Container ships
with capacities exceeding 10,000 TEU have become common and the largest con-
tainer vessel ever launched is currently Maersk Line’s “Madrid Maersk”— a
ship of the so called “Triple E Mark II class” with a capacity of 20,568 TEU.
(Hand 05/02/2017) Further vessels with capacities in excess of 21,000 TEU are

1



2 introduction

already on order. Figure 1.1 showcases how the worldwide fleet of container
vessels and average vessel sizes have grown since the year 1996.
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Total container fleet capacity and average vessel size since 1996

SOURCE: Clarksons Shipping Intelligence Network
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Figure 1.1: Global container vessel fleet and average vessel size. Source: Clarksons
(2016d).

Although maritime shipping has been a leading enabler of globalization and
has grown immensely over the past decades, the industry has been in diffi-
cult waters since the world financial crisis in 2009. Shipping companies face a
multitude of challenges ranging from extensive excess capacities in the market,
depressed freight and charter rates, and fierce competition, to upcoming reg-
ulation that targets the environmental footprint of the industry. The challeng-
ing decision-making in this highly capital intensive industry under significant
uncertainty—especially from potential regulation—is the focus of this disserta-
tion.

1.2 investment challenges in maritime shipping

There are ship investments that have created significant wealth for investors and
shipping companies, but at the same time such investments entail substantial
risks due to the complexity and volatility of the industry. Especially in the ongo-
ing shipping crisis, many investors and shippers are facing scarce financial re-
sources, diminishing profits or heavy losses, significant uncertainties and a mar-
ket consolidation due to bankruptcies and takeovers. The largest bankruptcy
occurred in 2016 when Hanjin Shipping Co., Ltd., one of the world’s largest
container shipping lines with more than 140 vessels, went bankrupt and finally
seized operations in early 2017. (The Guardian 09/02/2016) Investment de-
cisions in such a market environment are complex and need special decision
support tools for an appropriate project valuation. The following sections aim
to give a brief overview of the key challenges faced by maritime investors.
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1.2.1 Multitude of Decisions

At any point in time, ship investors and operators have a large variety of op-
tions for action. First, carriers need to adapt their available capacities to market
conditions. This can be done through ordering new ships that will be delivered
after a building period that fluctuates with the demand for new-built vessels.
Alternatively, used vessels can be acquired or sold on the second-hand market
to adapt transportation capacities more quickly. Apart from owning the ship-
ping fleet, investors can additionally resort to chartering vessels either based on
long-term contracts or spontaneously for short durations from the charter spot
market. Second, based on available capacities and current market conditions,
shippers need to define the trading lanes they want to serve and at what fre-
quency. This decision is not only driven by transportation demand on this route,
but also by price elasticity, competition and how the trade lane fits into the car-
rier’s remaining network. Third, carriers need to determine the freight rate at
which they offer transport services. This choice is strongly driven by market dy-
namics: especially in times of large capacities in the market, carriers oftentimes
are forced to lower their rates to undercut the market rate. Only then are they
able to reach sufficient utilization of their vessels to cover fixed operating costs.
Lastly, and among many more detailed decisions, ship operators can choose to
leave vessels idle in so-called layup. In these cases, it is cheaper for the vessel
to wait without cargo for more attractive market conditions instead of operat-
ing with low utilization, realizing even higher operating losses. In all choices
discussed, there is also an inherent technological component. Both in capacity
choices and deployment, it is vital to employ appropriate vessel technology to
ensure regulatory compliance and cost efficiency also in the future.

1.2.2 Uncertainty and Market Volatility

Shipping companies operate in a volatile industry with many sources of uncer-
tainty that should be taken into account in investment and operating decisions.
The first uncertainty to cope with are volatile vessel prices in the new-building,
second-hand and charter markets. Overall investment success oftentimes not
only depends on successful operations but also on adequate and optimal invest-
ment timing. Vessel prices are mainly driven by the ratio between total capac-
ity in the market and transportation demand as well as state funded subsidies
granted to shipyards. In times of high excess capacities, it is generally cheaper
to expand capacities, while in times of booming markets, high utilization rates
and capacity shortages, additional ships can be acquired only at sky-rocketing
prices. (Stopford 2009) The fact that there is a considerable time lag (e. g., 2 - 3

years) between the ordering of a new-built vessel and its delivery further adds
volatility to investment costs. It can also lead to situations in which carriers
are willing to pay higher prices for second-hand vessels than for new-builds to
be able to operate the ship already in a potential peak demand. Such a situa-
tion can be observed for the year 2005 in Figure 1.2, which shows indices for
new and 10 year old second-hand container vessel prices. It also illustrates the
volatility in vessel prices over time.
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New-building vs. Second-hand prices

SOURCE: Shipping Intelligence Network Timeseries, Clarksons Research Services
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Figure 1.2: Vessel price index for new-built and second-hand container vessels. Source:
Clarksons (2016a,b).

Freight rates are the market price that container carriers gain for shipping
one container from a port of origin to a destination. They are therefore the
source of income that should cover for the operator’s expenses including op-
erating costs. Like ship prices, freight rates are also volatile and depend both
on market demand for and supply of transportation services. In recent years
since the financial crisis in 2009, such rates have not only been volatile but
also remained on low levels, sometimes falling short of operating cost. (United
Nations Conference on Trade and Development 2013) High freight rate volatil-
ity is also documented in Figure 1.3 by the Shanghai Containerized Freight
Index (SCFI), an industry index of freight rates.

Apart from asset prices and charter and freight rates, operating costs are
volatile, mainly due to the fluctuating oil price. Most vessels today operate
on heavy fuel oil (HFO), which is a residual fuel that remains from the distilla-
tion process of producing petrol and distillate diesel oils. There are also cleaner,
distillate fuels available and in use—such as marine diesel oil (MDO)—mainly
within certain geographical areas in which higher environmental standards ap-
ply. All fuel prices however depend on the uncertain oil price and as such
complicate investment valuation and decisions in maritime shipping.

Last but not least, uncertainties about future (mainly environmental) regula-
tion have strong effects on investment decisions and technology choice in this
industry. We1 devote a separate introductory section (Section 1.3) to this topic
as it is a main focus of this dissertation.

1The term “we” refers to the authors of the respective chapters as denoted at the beginning
of each chapter. For the introduction, this refers to the authors of Haehl and Spinler (2017a,b,c).
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1.2.3 Curse of Excess Capacities

A key challenge for the industry is to avoid the buildup of large amounts of
excess capacity in the market. Especially since the financial crisis in 2009, ship-
ping companies suffer from high capacities that exert downward pressure on
freight and charter rates. Industry experts have often referred to this as the
vicious circle of container shipping (Merk 04/16/2016): freight rates drop as a
result of an initial stagnation or recession of transportation demand. To operate
profitably despite low freight rates, carriers order larger container ships hoping
to reduce the total cost base per container shipped by realizing economies of
scale. The simultaneous ordering leads to an increase of total market capacities
that exceed demand and are therefore barely utilized. As fixed costs of vessels
are high, carriers need to offer lower freight rates to attract cargo that can cover
operating costs. This fuels an intense price competition with low returns. Such
a situation is again an incentive to invest in even larger vessels with alleged ad-
ditional economies of scale. Such investment behavior of an entire industry has
led to significant excess capacities as can be seen from the layup pool shown in
Figure 1.3.
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In addition to this vicious circle, there is also evidence in other shipping
classes that behavioral aspects contribute to over-investment Greenwood and
Hanson (2015) find for bulk shipping markets that firms overextrapolate posi-
tive demand shocks. In such demand peaks, firms have heavily invested into
new capacity, which was only delivered when the market had ended its rally.
The resulting excess capacities have led in lower freight rates and investment
returns than it was expected by shipping companies.

While such behavioral arguments likely explain much of the buildup of ex-
cess capacities, there may also be market features such as regulatory uncer-
tainty, that can induce carriers to (rationally) build up more capacity2. Such

2Such effects have also been shown in other real options models. Refer to e. g., Aguerrevere
(2003), Sarkar (2009)
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effects have been observed also in the models proposed in this dissertation and
will be discussed in the subsequent sections. It is important to note, however,
that excess capacities are costly for the industry and—while small excess capaci-
ties may be rational to be able to cope with unexpected demand peaks—should
be avoided in the extent as observed over the past years.

1.3 eco-regulation and compliance

Emerging environmental regulation and compliance is a major trend in con-
tainer shipping and the maritime industry in general. Regulating bodies for
the sector can be individual states for their territorial waters (i. e., the United
States or the European Union) and the IMO on an international level. As a spe-
cialized agency of the United Nations, the IMO sets global standards regarding
the safety, security and environmental requirements for maritime shipping. It is
composed of representatives from 172 seafaring nations that develop, negotiate
and pass resolutions. (International Maritime Organization 2017a) Proposals
for a resolution can be submitted by any contracting government and are sub-
sequently discussed, amended and adopted in the IMO’s committees. After the
adoption of a resolution it cannot enter into force before sufficient IMO mem-
ber states have accepted and ratified the resolution. (International Maritime
Organization 2017b) Both, the negotiation process within the IMO as well as
the ratification of conventions by member states can be lengthy processes of
previously unknown duration. The complexity of regulating such an interna-
tional industry with many governments involved and the lengthy ratification
process imply fundamental uncertainties for shipping companies as to what
regulations they need to comply with in the future.

In recent years, the IMO has increased the focus on reducing the environmen-
tal impact of maritime shipping. While shipping remains the most ecologically
friendly means of transport per ton-mile, the sheer dimensions of the industry
make it a major contributor to worldwide greenhouse gas and other polluting
emissions. According to an IMO study, it contributes about 3% to global carbon
dioxide (CO2), 12% to sulfur oxide (SOx) and 13% to nitrogen oxide (NOx) emis-
sions. With the exception of SOx emissions, all three pollutants are also expected
to significantly increase in a business as usual scenario until 2050 as shown in
Figure 1.4. The expected reduction of SOx emissions can be attributed to new
abatement regulation introduced by the IMO. (International Maritime Organi-
zation 2014) In accordance with environmental efforts in other sectors, the IMO

aims to reduce greenhouse gas emissions of the industry by 20% by the year
2020 compared to 1990 levels. (Helfre and Boot 2013)

With a new focus on reducing the industry’s environmental footprint, the
IMO has started to adopt and enact several new conventions, of which the fol-
lowing policies are an excerpt: the new Energy Efficiency Design Index (EEDI)
requires new-buildings of seagoing vessels to comply with numerous design
principles that promote the energy efficiency of the new vessel. While new ves-
sels are required to comply, this policy does not apply to the existent fleet3. In
contrast to the EEDI, which aims for energy efficient vessel design, the new Ship

3Except if existing vessels undergo significant constructional changes.
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Maritime Organization (2014).

Energy Efficiency Management Plan (SEEMP) requires carriers to develop oper-
ating plans that promote energy efficient operating procedures and adequate
monitoring. This measure targets both old and new vessels. New ship recy-
cling rules limit the use of hazardous materials in ship-building and require
shipyards to build vessels in a way that allows materials to be recycled upon
their demolition at the end of the lifetime. This regulation also monitors that
recycling of old vessels is performed by certified recycling companies. While
adopted by the IMO, this convention has not yet been ratified by its member
states. Rules on ballast water treatment will enter into force in 2017 and prevent
micro-organisms from being transported in ships’ ballast water tanks from one
habitat to another, where they could damage the local ecosystem. (International
Maritime Organization 2017c) A selection of effective dates of IMO regulations
is displayed in Figure 1.5.
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One of the most significant new regulations introduced is the International
Convention for the Prevention of Marine Pollution from Ships (MARPOL) Annex
VI, which targets the reduction of sulfur emission levels. To achieve a significant
reduction, the IMO has adopted a staged approach of reducing the permissible
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sulfur content in shipping fuels. Additionally, so called emission control ar-
eas (ECAs) were defined, in which the reduction proceeds significantly faster
with lower sulfur limits. Examples of ECAs are the North and Baltic Seas, the
Mediterranean Sea, or the United States coastlines. Note that Annex VI does
not directly define SOx emission limits but rather an admissible sulfur content
in the fuel. However, carriers can comply with this regulation also by limiting
their SOx emissions to a level that corresponds to the respective sulfur content
in the fuel. Ship operators therefore have three main options for compliance
that come at high cost and pose challenge to carriers (Ryan Sept/Oct 2014):
They can resort to a fuel-switching strategy in which vessels operate on HFO

fuels with higher sulfur content in international waters and switch to more ex-
pensive low sulfur MDO fuels when entering an ECA. Alternatively, they can
install exhaust gas cleaning systems (so called scrubbers). This allows contin-
ued operations using cheaper HFO fuels but requires an investment of up to
13 million USD for the installation or retrofit of a scrubber depending on en-
gine size (Den Boer and Hoen 2015). Lastly, vessels could be retrofitted with
liquefied natural gas (LNG) propulsion, which currently is expensive and rarely
used. (Lloyd’s Register 2015) Uncertainty about SOx emission regulation will
serve as a practical example for the application of the investment valuation
models under regulatory uncertainty presented in Chapters 3 and 4.

From the most recent IMO policy actions and the ambitious reduction targets,
it can be expected that the industry will face more new environmental regula-
tion (The Economist March 30, 2013). The unknown content of future regula-
tion as well as the unpredictable duration of the legislative process introduce
fundamental regulatory uncertainty to the market that further complicates the
investment decision in maritime shipping. Uncertainty about future regulation
and technological compliance will be one of the most prominent challenges for
the industry in the foreseeable future and is a key focus of this dissertation.
(Forum For the Future May 2011)

1.4 real options : a method for valuation under uncertainty

It has become clear from the previous sections, that investment decisions in
maritime shipping are connected to high levels of uncertainty about the future
that need to be taken into account. At the same time, ship operators possess
considerable flexibility to react to changed market conditions and can therefore
follow different strategies after uncertainty has resolved. The investment mod-
eling presented in this dissertation is based on real options theory, which is
well suited for such valuations and is shortly presented here4.

Traditional finance theory teaches that investments should be valued using
discounted cash flow (DCF) methods. Using this approach, an investor discounts
expected cash flows from the project and invests if they exceed the investment
cost. The net present value (NPV) is said to be positive. This approach has two
drawbacks which real options theory aims to solve. First, DCF comes short of
business reality as it does not take into account management’s possibility to

4Helpful overviews of real option approaches can be found e. g., in Chevalier-Roignant et al.
(2011), Dixit and Pindyck (1994), Schwartz (2013).
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react to unexpected events: The approach requires to form an expectation on
future earnings which typically are dependent on an overall state of the future
(e. g., demand for sea transportation). While future states are uncertain, the DCF

method assumes a single realization and ignores the fact that management can
react to market conditions after the investment has been triggered. In reality,
management can react to the realization of unexpected future states to optimize
project payoff based on the new situation. Real options analysis aims to con-
sider management’s flexibility to change strategies after uncertainty is resolved
(Bendall and Stent 2003).

As Dixit and Pindyck (1994) point out, the second shortcoming of the DCF

approach is its assumption of investment reversibility. DCF requires that in-
vestments are reversible in a sense that costs can be recovered in case market
conditions do not turn out as well as anticipated. If reversibility is not met, DCF

alternatively assumes that the investment is a now or never opportunity. Most
real world investments, however, do not meet either of these conditions (Dixit
and Pindyck 1995). Consider investing into a container ship. If market condi-
tions deteriorate and the investor cannot earn the profits originally anticipated,
he cannot undo the investment. Neither will it be possible to sell the ship at its
original cost because other shippers will have the same difficulty of achieving
the anticipated profit in deteriorated market conditions. Selling will therefore
only be possible at a discount, rendering parts of the investment a sunk cost.
At the same time, investing into container ships is not a now or never decision.
If the investor does not invest today, the option to invest remains available in
the future as well.

Real options theory addresses these two shortcomings of traditional DCF

methods by taking into account the value of options that the investor owns
during the investment period. There are various types of options that can be
considered. One of the most frequently used options is the option to defer.
Here it is assumed that an investor has the option to invest over a certain pe-
riod of time (American call option). Once the investor buys the project, he gives
up the option to invest. Instead of investing today, the investment can be de-
ferred over the lifetime of the option. Such an option changes the investment
rule compared to DCF so that discounted future earnings need to offset not only
the investment cost but also the value of the call option that is executed. The
rule becomes: invest, if

Discounted earnings > Investment cost + Value of option to invest.

Other types of options that can be modeled are options to expand, contract
or abandon the project and to choose between various possible strategies such
as employing a ship on a different route or chartering it out. (Bendall and
Stent 2003) The models and analyses presented in this dissertation are based
on real option methods to specifically take into account the most important
uncertainties in focus as well as the carrier’s options to react. While many real
option models can be solved for an exact solution, some can exceed available
computing power. Such models can be solved using approximate dynamic pro-
gramming (ADP) methods5 that we will apply in Chapter 3.

5For an overview of such methods, please refer to Powell (2009, 2011, 2012).
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1.5 contributions of this work

In the following chapters of this thesis, we6 aim to analyze optimal capacity
and technology choice under regulatory uncertainty in the container shipping
industry. It was shown in the previous sections, that this industry is charac-
terized by various sources of uncertainty, that—together with immense capital
intensity—complicate optimal decision making. By developing quantitative val-
uation models with different foci, we aim to support decision-making, which
practitioners oftentimes consider an irrational race for ever-increasing vessels.
We primarily focus on regulatory uncertainty as it is a major influencing factor
and trend for the industry and that—despite its importance—has found little
attention in the quantitative decision support literature. We base our modeling
approaches on real option methods that are well suited to value investment
projects and their inherent management options under uncertain market condi-
tions.

To lay the foundation, in Chapter 2 we propose a multi-period real option
model for valuing investments in the container shipping industry and add a
charter option to the framework. The model is used to analyze the effect of
chartering on optimal decision making and the results serve as the basis for
the model in the next chapter. In Chapter 3, we add the potential introduction
of environmental regulation to the valuation approach. We specifically analyze
the effects of regulatory uncertainty on optimal investment choice - both for
regulation that allows the grandfathering of existing capacities (i. e., existing
capacities do not have to comply) and for regulation targeting both old and
new vessels. In Chapter 4, we develop a two phase regime switching model to
focus on technology choice for complying with uncertain future regulation. In
detail, the three main chapters evolve as follows:

• In Chapter 2, we analyze the effect of chartering on optimal investment
decisions in the context of international container shipping. Based on a
continuous-time real options model, we show that long-term chartering
alone does not exhibit the capacity increasing effects in volatile markets
typically observed in investment-only models. We present a discrete-time
real options model that combines investment into and (long-term or short-
term) chartering of capacities at the same time. The model allows for im-
portant market characteristics such as time to build, operating flexibility,
divestment and an endogenous charter rate. We calibrate the model to the
international container shipping industry and analyze optimal capacity
choice with investment and chartering. We find that chartering increases
the investment project’s value and dampens the capacity-increasing effect
of investments’ time to build. At the same time, chartering can increase
optimal total capacities in volatile markets as it allows spontaneous capac-
ity additions in times of unexpected demand peaks. As chartering can be
used to offset spontaneous capacity shortages, it reduces the optimal level
of owned capacities. Overall, our model shows that the charter option

6The term “We” refers to the authors of the respective chapters as noted at the beginning of
each chapter.
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changes the dynamics of optimal investment and thus should be taken
into account in decision-making.

• In Chapter 3, we present a real options model for capacity expansion that
introduces uncertainty about potential future regulation (regulatory un-
certainty) and four key characteristics of capacity decisions: investment
with time to build, divestment, the option to charter, and operating flex-
ibility. Regulatory uncertainty is modeled as a possible upward jump in
operating, investment, and charter costs during the simulation horizon.
Our model distinguishes between regulation with and without the grand-
fathering of existing capacity, where grandfathering is the exemption of
the extant fleet from regulatory compliance. Although the model is de-
veloped as a dynamic program, we solve it for near-optimal decisions
using approximate dynamic programming. By applying our model to
the international container shipping industry, we derive insights regard-
ing optimal capacity choices under regulatory uncertainty. We find that
uncertainty about regulation with grandfathering may promote so much
up-front investment that current operational needs are exceeded, leading
to excess capacity and increased emissions. However, regulatory uncer-
tainty without grandfathering reduces investment and emissions and leads
investors to adopt more flexible capacity options, such as chartering.

• In Chapter 4 we present a real options approach to evaluating technology
and capacity choices under potential future regulation (i. e., regulatory
uncertainty). Our two-phase, regime-switching model includes the op-
tion of investing in different technologies as well as a charter option and
a layup option. From a base-case version of this model, we derive an an-
alytical solution before studying the effect of regulatory uncertainty in a
numerical extension that relaxes certain restrictive assumptions. We then
describe two regulation regimes, an emissions cap and an emissions tax,
and compare how effectively each reduces emissions. Applying the model
to maritime container shipping, we develop insights on the optimal tech-
nology choice for reducing SOx emissions. We find that regulatory uncer-
tainty can increase not only project values but also owned capacity. From
a regulatory perspective, an emissions cap reduces emissions more effec-
tively whereas an emissions tax reduces the cost of regulation. Finally,
we show that setting the emissions cap level—or deciding on the level
above which an emissions tax applies—is critical because total industry
emissions are reduced in a noncontinuous manner.

Chapter 5 summarizes the dissertation and presents the condensed managerial
implications of the three main chapters. Potential avenues for relevant future
research are also discussed.

We contribute to existing shipping literature by proposing quantitative real
option models as a decision support for investments in the volatile container
shipping industry. The models presented in this thesis help to better under-
stand optimal investment strategies and how, specifically, the availability of
chartering and the uncertainties induced by volatile market demand and poten-
tial future regulation influence optimal capacity and technology choice. Find-
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ings and implications derived are relevant for investors, operators and regula-
tors in the (container) shipping markets. Our models help investors to better
understand optimal investment strategies in general, the choice between own-
ing and chartering capacities, the influence of potential regulation on optimal
investment and rules for optimal technology choice for regulatory compliance.
Regulators need to understand the immediate and long-lasting effects of differ-
ent regulatory approaches and the uncertainty created by the legislative pro-
cess. Specifically, our models help regulators to evaluate the expected reaction
of market participants to regulatory uncertainty (both with and without grand-
fathering) and the effectiveness of different regulatory regimes in reducing in-
dustry emissions at a low regulation cost.
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T H E I M PA C T O F C H A RT E R I N G O N I N V E S T M E N T U N D E R
M A R K E T U N C E RTA I N T Y: A R E A L O P T I O N S S T U D Y I N
I N T E R N AT I O N A L C O N TA I N E R S H I P P I N G

The following chapter is based on Haehl and Spinler (2017c).

2.1 introduction

Excess capacities are a recurring challenge to the sea transport industry, regu-
larly forcing companies out of business. Especially during times of economic
downturn, excess capacities exert additional downward pressure on freight
and charter rates, which sometimes can fall below operating cost levels. While
there are theories to explain such investments from a behavioral standpoint
(Greenwood and Hanson 2015), real options theory has contributed explana-
tions based on optimal investment for profit maximization. Aguerrevere (2003)
explains excess capacities seen in investment under market uncertainty as the
result of time to build (capacity is not delivered immediately upon ordering)
and operating flexibility. He finds that the possibility to leave capacity idle of-
fers a protection against negative market developments and together with time
to build can increase optimal capacity buildup especially in volatile markets.

However, existing approaches to investment under uncertainty focus only on
investment into own production capacity. In real markets, however, businesses
also have the option to enter long- and short-term leasing or charter contracts.
While chartered capacity can also be left unused in unattractive market environ-
ments (operating flexibility), it is delivered without a time lag. It therefore can
be expected, that flexible chartering reduces incentives to build up high capac-
ities because it compensates the characteristic time to build of the investment
option. To evaluate how effective real options methods are as an explanation
of high levels of capacities in volatile markets, it is necessary to take chartering
into account as well.

International container shipping with its problem of excess capacities is an
interesting industry to apply such an investment model. As a volatile indus-
try, shipping is exposed to various uncertainties, one of which is high volatil-
ity in asset prices (see for example Kavussanos (1997), Tsolakis et al. (2003)).
Such volatility makes investment timing crucial for earning an attractive return.
Secondly, the transport market itself features highly cyclical time charter and
freight rates that can be very attractive in times of scarce transport capacity
but even below operating cost in times of economic downturn (United Nations
Conference on Trade and Development 2013). The market outcome of such
investment decisions in shipping is oftentimes a situation of excess capacity.
The industry has repeatedly found itself ordering large volumes of additional
capacity in times of economic upswing with deliveries arriving only during
market downturns. This has led to extensive excess capacities and ship opera-
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tor bankruptcies when the market was already suffering from depressed charter
and freight rates. It is often assumed, even by industry practitioners, that play-
ers invest irrationally in a race for ever larger ships and economies of scale.
Real options literature, such as Aguerrevere (2003) offer an explanation why
such investment may be optimal despite periodic excess capacities. This paper
aims to analyze the effect of chartering on overall capacity decisions to evaluate
whether or not previous findings hold true even in markets where investment
and chartering co-exist.

In this paper, we adapt the real options investment model of Aguerrevere
(2003) that features market uncertainty, time to build and operational flexibility,
to the container shipping industry to serve as a base case for comparison. We
show, using the same analytical approach, that chartering - on its own - does
not lead to the same capacity increasing effects in volatile markets, making
the interaction of investment and charter an exciting field of study. To study
whether capacity implications hold true in environments, where investment
and chartering co-exist, we develop a discrete-time binomial lattice model of
ship investment and charter under market uncertainty and with time to build,
operating flexibility and divestment. With this paper, we contribute to real op-
tions literature in three ways. First, based on an adapted model from Aguerre-
vere (2003), we confirm that time to build and operating flexibility for owned
capacities lead to increased investment, but find that chartering alone leads to
less capacity in volatile markets. Secondly, we combine the options to invest
and charter in a new discrete-time dynamic programming model extending
Fontes (2008) by introducing time to build and the additional charter option.
We show that even if investment is joined by flexible chartering, the effects of
owned capacity dominate: time to build and volatility can increase optimal ca-
pacities in volatile markets. Thirdly, we find that chartering is not employed to
build base capacity but mainly used to offset unforeseen capacity shortages in
sudden demand peaks. Finally, our model can also be applied to leasing pro-
duction capacities or the sourcing of subcomponents from a third party. This,
for example, is the case in semiconductor manufacturing where the contracting
with silicon foundries would correspond closely to chartering in our model.

The remainder of the paper is organized as follows. Section 2.2 gives an
overview of existing literature on real options analysis in general and as an ap-
plication to the shipping industry. In Section 2.3 we adapt a real options model
proposed by Aguerrevere (2003) to determine either optimal investment or the
optimal amount of chartered container shipping capacity. We combine both in-
vestment and long-term charter options in a discrete-time model in Section 2.4
to analyze the interplay between these two capacity sources. In Section 2.5 we
extend the discrete model by divestment and highly flexible short-term charter-
ing to confirm that the findings hold true even in a model that allows for more
flexibility. Section 2.6 concludes.

2.2 literature review

Discounted cash flow (DCF) has been the method of choice in investment ap-
praisal but it features two important drawbacks: As Bendall and Stent (2003)
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point out, DCF does not account for management’s valuable options to react to
unexpected events. Further, DCF assumes investment opportunities to be either
reversible or else a now or never opportunity (Dixit and Pindyck 1994). Nei-
ther is usually the case for capacity investments. Real option methods address
these shortcomings by valuing irreversible investments with options for action
such as deferral, expansion, contraction or abandoning of the project once un-
certainty is resolved.

In their seminal work, Dixit and Pindyck (1994) have treated real options
from a mainly methodological standpoint giving an overview of methods avail-
able. Other authors have suggested extensions building on the same basic the-
ory. A few model extensions should give an overview of the real options liter-
ature. Building on the basic model, Bar-Ilan and Strange (1996) have analyzed
investment lags as a feature that is important for the shipping industry. Oth-
ers such as Mossin (1968) and Brennan and Schwartz (1985) have considered
operational flexibility, allowing to suspend operations at unattractive market
price levels. Instead of only taking into account a single investor, some models
focus on strategic interaction. Sødal (2006) suggests an entry-exit model ana-
lyzing market entry of new players and exit of incumbents. A slightly different
direction is followed by Williams (1993) and Grenadier (2002), who combine
real options and game theory by reflecting strategic interaction between mar-
ket players. Like our paper, most real options literature assumes a risk-neutral
investor. Chronopoulos et al. (2011) relax this assumption and introduce risk
aversion instead. While most publications are based on European or American
options, Driouchi et al. (2010) introduce path-dependent Asian options to de-
cide on overall capacity based on average demand development. Martzoukos
and Trigeorgis (2002) relax the common assumption of normally distributed
uncertainties in real option models and propose a jump-diffusion process with
multiple sources of rare events such as innovation, political or regulatory risks.
Chronopoulos et al. (2016) compare lumpy investment strategies with stepwise
investment options with the investor able to choose the timing and size of in-
vestment. Chevalier-Roignant et al. (2011) review recent developments on real
options, including models of incremental investment relevant for this paper.

Apart from methodological contributions, there are also applications to the
energy or real estate markets and to a lesser extent in the shipping industry. For
example, the market entry-exit model was applied to shipping by Sødal (2006).
Sødal et al. (2008) use real options to model the decision to switch between the
dry bulk and wet bulk markets with combination carriers. Efficiency in these
markets is analyzed by Sødal et al. (2009) using a similar model. Bendall and
Stent (2007) use real options to value investment into an additional ship on
top of an existing fleet. Management options here include to operate the ship,
charter it to a third party or to use it as a replacement for an older existing ship.
In another paper, Bendall and Stent (2005) compare the value of ship investment
with predefined liner service to flexible strategies that can be adapted over time.
They show that management’s options increase the project value. Rau and
Spinler (2016) analyze strategic interaction in oligopolistic container shipping.
They show that a high number of market players leads to deteriorating firm
values and identify vessel sharing agreements or the formation of alliances
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as potential countermeasures. Gkochari (2015) use real options to optimize
investment timing in dry bulk shipping.

Outside of real options literature, Greenwood and Hanson (2015) have used
a behavioral approach to explain perceived over-investment in the dry bulk
shipping market. They conclude that excess capacities originate from over-
extrapolation of external demand surges while not taking into account invest-
ment decisions of competitors. Kalouptsidi (2014) studies investment and mar-
ket entry and exit under various types of time to build. She finds that time to
build is negatively correlated with fleet size and volatility.

We contribute to the literature in the following ways: (1) The continuous-
time approach allows us to identify key differences of optimal capacity buildup
between the investment and charter options separately. (2) Our discrete-time
model incorporates novel features to ensure applicability to the container ship-
ping market: We jointly study the option to invest or divest and the option to
charter. We further allow for time to build and layup of excess capacities. (3)
Based on the two models, we study the sensitivity of investment choice with
respect to the pertinent parameters and derive managerial implications for ca-
pacity choice with investment and chartering.

2.3 analytical investment-only and charter-only model

In this section, we extend the model proposed by Aguerrevere (2003) by incor-
porating chartering of ships. From separate investment and charter models, we
confirm that, in the investment case, time to build and operating flexibility lead
to increased capacity buildup in volatile markets. By contrast, when only char-
tering is possible, total capacities are relatively smaller in volatile environments.
These findings will be the basis for developing our model of combined invest-
ment and charter in Section 2.4. For ease of comparability, we adopt notation
from Aguerrevere (2003).

2.3.1 Model Derivation - Investment Model

We model a monopolistic market, in which the investor (the ship operator) can
expand his shipping capacity by incremental investment. While competition
in container shipping is oligopolistic, the monopoly assumption allows us to
combine more features of interest and still analyze their individual influences.
Features in the discrete-time models of Sections 2.4 and 2.5 include simultane-
ous investment, divestment and charter options as well as endogenous charter
cost, time to build and operating flexibility. The fact that Aguerrevere (2003)
finds the same capacity effects in oligopolistic competition as in a monopolistic
market (though more pronounced in an oligopoly), gives us confidence that
the monopoly assumption does not restrict the validity of directional findings
derived from our model. Where relevant, we will point out how we expect the
outcomes to differ in oligopolistic competition.
As an important market feature, we incorporate time to build between order
and delivery of new capacity before it can be used in operations. We also al-
low for operating flexibility, letting the shipping company reduce operations in
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market downturns by sending ships to layup. While in layup, capacity does not
generate turnover but incurs lower cost: specifically fixed costs that still apply
even if the ship is not operated1.

The market for ocean freight transport and its price level are defined by the
inverse demand function

P(t) = Y(t)q
1
γ , (2.1)

where P(t) denotes the market output price at time t for one container moved,
q the level of transport capacity operated and γ the price elasticity of demand
with γ < 02. The term Y(t) is a stochastic demand shock and includes market
influences such as the general economic development, import and export needs
and overall transportation demand. This shock term evolves according to a
Geometric Brownian Motion

dY(t) = µY(t)dt+ σY(t)dZ(t), (2.2)

where µ and σ are the rate of demand growth per period and volatility, respec-
tively.

The shipping company is assumed to operate capacity on a round-trip route.
Capacities are measured in twenty-foot equivalent units (TEU), which refers to
the twenty foot containers. All capacities and transportation output are mea-
sured on a TEU per year basis on one leg of the round-trip route. If, for exam-
ple, we consider a 12,000 TEU ship that completes 6 round-trips per year at a
utilization of 80%, the vessel has a yearly capacity of 115,200 TEU. The shipping
company can choose to expand capacity and how much of available capacity
to operate at any time, leaving the remainder in layup. In this continuous-
time model, investment, operations and layup can be chosen incrementally. As
a more realistic assumption, we introduce lumpy investment in our discrete
model in Section 2.4. Ordered capacity is paid for directly, but takes time to
build before it is delivered and operational. We distinguish between two types
of capacity: Operational capacity O(t) has been delivered and can be deployed
in operations. By contrast, we define as committed capacity K(t) those units
that will be available after the time to build. K(t) includes both operational ca-
pacity O(t) as well as those units that have been ordered but not yet delivered.

Eq. (2.3) defines the firm’s cost of operations: Cost components c1 and c2
refer to operating cost. Together, they reflect operating expenses such as fuel,
crewing, port charges and regular maintenance cost. At any time, the ship op-
erator can decide how much of available capacity to operate in the market. De-
pending on market demand, it may be optimal to leave capacity idle in layup
at cost c3 which applies only to the max(O(t) − q, 0) units of capacity in layup.
Cost parameter c3 can also be interpreted as the fixed part of operating costs
c1 that applies even if the capacity remains unused3. Lastly, financing costs
apply to the capital invested. A percentage financing cost c4 thus applies to in-

1We consider warm layup, where ships remain ready to be reactivated with short notice.
During layup, ships therefore are manned and maintained but do not incur fuel cost.

2For easier reference, Appendix A.1 lists and explains all variables used within this paper.
3Especially for cold layup, deactivation and reactivation of capacity can produce one time

costs. As we treat warm layup (where such one time costs are less relevant) and in order not to
unnecessarily increase model complexity, we do not consider one time deactivation or reactiva-
tion costs.
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vestment cost k per unit of committed capacity K(t). The overall cost function
is:

C(q) = c1q+ 0.5c2q2 + max(O(t) − q, 0)c3 +K(t)kc4. (2.3)

Due to the layup option, the shipping company can choose to operate any
capacity from none to total available operational capacity O(t) depending on
the current market price. This reflects in the company’s profit function:

π(O(t),K(t), Y(t)) =

max
06q6O(t)

[
Y(t)q1+

1
γ − c1q− 0.5c2q2 − max(O(t) − q, 0)c3 −K(t)kc4

]
. (2.4)

The shipping company can expand by ordering new capacity, which is like
holding a real option to invest. As we utilize the model’s results as a base case
for comparison, we refer to Aguerrevere (2003) for the derivation of the option
value. Details for our model with the adapted profit function in Eq. (2.4) can
be found in Appendix A.2.

As the model treats incremental investment, the shipping company can in-
crease capacities at any time and as often as it is optimal. We can thus value the
real option to invest like a perpetual American call option. Let FI(K, Y) denote
the value of the option to buy an additional unit of committed capacity at a
certain level of committed capacity K(t) and demand Y(t). The option to invest
can be exercised for an investment cost k per unit of capacity. We can construct
a risk-free portfolio and equate its expected rate of return to the risk-free rate
of interest r by applying the no-arbitrage condition (Dixit and Pindyck 1994).
This leads us to the following differential equation:

σ2

2
Y2F ′′I + µYF ′I − rFI = 0. (2.5)

This equation can be solved as outlined in Appendix A.2 to derive the condition
for optimal capacity choice. We define K(Y) as the optimal committed capacity
from investment dependent on market demand Y.

β[GI(K(Y), Y,h) − k] − YG ′I(K(Y), Y,h) = 0. (2.6)

In this condition, β is the positive root to the characteristic quadratic equation,
h is the time to build in years, GI is the marginal value of an additional unit of
committed capacity and G ′I is its derivative with respect to Y.

2.3.2 Model Derivation - Charter Model

We set up an analogous model, in which only chartering is possible. The defi-
nition of the overall market remains unchanged to the investment model. The
ship operator can now expand by chartering new capacity, which is available
immediately for deployment, without time to build. The assumption in this
model, that charter contracts run until the end of the time horizon, will be re-
laxed in the discrete-time version in Section 2.5. The cost function only changes
slightly: While operational and layup costs remain unchanged, we introduce
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chartering cost c5 which applies to all chartered capacity. The new cost function
reads:

C(q) = c1q+ 0.5c2q2 + max(O(t) − q, 0)c3 +O(t)c5. (2.7)

The valuation of the option to charter is performed analogously to the invest-
ment option above and is outlined in Appendix A.3. The main difference is that
chartering comes without time to build so that the replicating portfolio for the
option to charter can be set up one step earlier. As before, the conditions of
the resulting differential equation (see Eq. (A.13) in Appendix A.3) allow us to
derive the optimal charter capacity O(Y) as a function of demand shock Y:

βHC(O(Y), Y) − YH ′C(O(Y), Y) = 0, (2.8)

where HC denotes the value of a marginal unit of chartered capacity and H ′C is
its derivative with respect to demand shock Y.

2.3.3 Model Calibration

After setting up the separate investment and charter models, we simulate and
interpret their results. While applicable to many markets, we calibrate them
to the container shipping industry which is well reflected with characteristics
of time to build and operational flexibility. Especially the combination with
an option to charter is typical of this industry. This approach lets us better
understand the difficult investment and charter decisions in shipping, which
frequently suffers under excess capacities. Even though a monopolistic model,
it lets us derive directional implications for optimal investment in shipping.

Table 2.1: Model parameters as used in base case scenario in all models if not specified
otherwise.

Para-
meter

Value Description Para-
meter

Value Description

γ -1.4 Demand elasticity c1 700 Operating cost
($/TEU)

µ 0.01 Market growth c2 0.00008 Operating cost
($/TEU)

σ 0.2 Market volatility c3 28 Layup cost ($/TEU)
r 0.06 Interest rate c4 0.02 Financing cost
k 1,000 Investment cost

($/TEU)
c5 120 Charter cost ($/TEU)

ks 100 Divestment price
($/TEU)

To derive cost parameters, we refer to AECOM (2012), who identify typical
cost structures for a Neo Panamax container vessel of 12,000 TEU capacity. This
vessel class is expected to gain importance with the expansion of the Panama
Canal and is therefore used as basis for our model. The vessel is assumed to
complete 6 round-trips between the United States and Asia per year, carrying
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a total of 115,200 TEU per year at a utilization of 80%. Investment cost for
the vessel is estimated at about 120 million US dollar (USD). On a per TEU

basis (calculating with 115,200 TEU), we set investment cost at k = 1, 000 USD

per TEU. For operating costs we consider yearly bunkering, personnel and
maintenance cost of 89 million USD, leading to a cost of 772 USD per TEU and
year. Operational cost is split between cost factors c1 and c2, where we assign
only a small portion to c2 which lets costs grow with increasing capacities. This
is to reflect that economies of scale play an important role in shipping and that
increasing marginal costs only become relevant at high levels of capacity. We
thus set c1 = 700 and c2 = 0.00008. During layup, we assume only fixed parts
(personnel and maintenance) of the 89 million USD operating costs to apply,
while there are no variable costs for bunkering. This leads to a cost of c3 = 28

USD per TEU for warm layup. For financing cost c4 we assume an interest
rate of 8% on a debt financing volume of 25% of invested capital for owned
capacity. The remainder we assume to be financed by equity. Seen on the overall
investment volume, this results in a financing interest rate of c4 = 2% per year.
Demand elasticity is assumed at γ = −1.4 (Rau and Spinler 2016), market drift
at µ = 0.01 and the risk-less interest rate r at 6% in our base case simulations.
Table 2.1 gives an overview of the base case parameters just derived.

For the chartering model, we also need to set charter cost c5. Because the
charter market for 12,000 TEU ships is narrow and nontransparent, we esti-
mate charter cost from the New ConTex index published by the Association
of Hamburg ship brokers (VHSS Vereinigung Hamburger Schiffsmakler und
Schiffsagenten e.V. 2015). At the time of writing, a 4,250 TEU ship had a daily
time charter rate of approximately 16,000 USD. Scaling to a 12,000 TEU ship re-
sults in yearly charter cost per TEU of 142 USD. For a like-for-like comparison
with the investment model we remove personnel and maintenance cost from
the charter rate4 as they are included in operating costs c1 and c2. We thus
reduce charter cost to c5 = 120 USD per TEU and year.

2.3.4 Numerical Study

We now analyze optimal capacity choice resulting from the separate invest-
ment and charter models. The optimal capacity choice in the investment model
results from Eq. (2.6). Because Eq. (2.6) cannot be solved analytically, we ap-
ply a numerical Brent root-finding algorithm that combines section search with
parabolic interpolation (Brent 2002). Fig. 2.1a shows the optimal choice of com-
mitted capacity K(Y) as a function of demand Y for different levels of demand
volatility σ. To serve as benchmark, this figure is based on a scenario without
time to build (h = 0). Without time to build, the ship operator prefers lower
committed capacity K for increasing volatility σ in a riskier market. This effect
can be observed because, as in Aguerrevere (2003), there is a cost of excess
capacity (unnecessary initial investment and layup cost) in case of a market
downturn. Bullish markets, however, can be taken advantage of immediately

4Time charter rates typically include manning and regular maintenance of the chartered
vessel. Bunkering cost, tolls and harbor fees are paid by the charterer.
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(a) Optimal capacity choice without time to
build (h = 0)
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build (h = 2)

Figure 2.1: Optimal capacity choice as a function of demand Y for varying demand
volatility. Parameters are defined as: γ = −1.4, µ = 0.01, r = 0.06, c1 = 700,
c2 = 0.00008, c3 = 28, c4 = 0.02, k = 1, 000.

as additional capacity is available without delay. This leads to more hesitant
investment in volatile markets.

The situation changes if time to build of h = 2 is introduced (Fig. 2.1b).
This feature leads to a mixed effect of high demand volatility. At low demand,
the ship operator acts as before, building up less capacity in riskier markets.
For high demand however, we see increased investment in volatile markets,
which is consistent with effects seen in Aguerrevere (2003), Bar-Ilan and Strange
(1996), and Bar-Ilan et al. (2002). While this effect may seem surprising, Aguer-
revere (2003) offers two opposing effects of volatility as economic rationale. In
case of falling demand and excess capacity, the ship operator has to bear layup
and financing cost while not generating any revenue. This effect incentivizes
the ship operator to invest less. The opposing effect is the opportunity cost of
profits forgone if the ship operator runs into a capacity shortage. Depending
on which effect dominates, the ship operator will tend to under- or over-invest.
Based on model parameters and the level of demand, the shipping market can
range in either of the two regions identified in Fig. 2.1b. As an important impli-
cation from this model, time to build induces ship operators to build up more
capacity in volatile markets with high demand, which can lead to excess capac-
ities. Note however that the direction of this effect is ambiguous and depends
on the level of demand.

A second effect of time to build needs to be taken into account: Fig. 2.2
shows increased investment for longer times to build, irrespective of the level
of demand in the market. This effect supports large capacity orders in already
overheated markets with long time to build.

From the investment-only model we can derive the following findings: First,
longer time to build leads to increased optimal capacity for any level and volatil-
ity of demand. Second, higher demand volatility can in certain situations lead
to capacity expansion if investors face time to build. Market characteristics of
international container shipping may therefore be an incentive for companies
to increase transportation capacities to levels where they run the risk of facing
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Figure 2.2: Optimal capacity choice as a function of demand Y for varying time to build.
Parameters are defined as: γ = −1.4, µ = 0.01, σ = 0.2, r = 0.06, c1 = 700,
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Figure 2.3: Optimal capacity choice as a function of demand Y for varying volatility.
Parameters are defined as: γ = −1.4, µ = 0.01, r = 0.06, c1 = 700, c2 =
0.00008, c3 = 28, c5 = 120.

excess capacities. In such situations, opportunity costs of capacity shortages
are large enough to outweigh potential costs of excess capacity. A limitation
to these findings is that we base our analysis on a monopolistic model while
the container shipping market is of oligopolistic nature. Because Aguerrevere
(2003) finds the discussed effects and optimal capacities to be even larger in
oligopolistic or perfect competition, we are confident that results from our mo-
nopolistic model (that we extend over the course of this paper) lets us derive
directional implications, even if their extent may be underestimated. Other lim-
itations are addressed in the following models by taking into account lumpy
investment and the option of chartering.

Results change significantly in the charter-only model as displayed in Fig. 2.3.
Here, ship operators strictly charter less for increased demand volatility. This
effect is expected from an economic perspective. Chartering little capacity re-
duces the risk of carrying costly excess capacity, while for demand increases,
the shipping company can charter without delay. The cost of excess capacity ef-
fect thus outweighs the potential opportunity cost of a capacity shortage, which
the investor cannot run into without time to build.
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This said, we do not find the same capacity increasing effects of volatility as
we have seen in the investment model. The question to be solved in Sections 2.4
and 2.5 will be whether or not the effects seen from investment will be notice-
able also in a market where investment and chartering are available within the
same model.

2.4 combined invest and long-term charter model

In the previous section, we have treated investment and charter separately. We
showed that for the option to invest, there are relevant effects that can help ex-
plain high investment levels in shipping, which are non-existent in the charter-
only model. Next, we combine both options into one model to analyze the
resulting capacity choice. While for now we treat long-term investment and
chartering, we will introduce more flexibility in Section 2.5 by allowing divest-
ment and short-term charting with contract durations of one time period only.
As combining both options in continuous time appears overly complex, we
use a discrete-time binomial lattice model. The next two sections extend an ap-
proach by Fontes (2008) by adding time to build and the swing option between
investment and chartering to the model.

2.4.1 Model Derivation

In this discrete-time model, the shipping company has two simultaneous choi-
ces to make in each time period t. After observing stochastic demand Yt, the
firm decides on shipping capacity and optimal transportation output for this
period. The capacity choice can take three forms. First, the firm can invest
into new owned ships that will be delivered h periods after ordering. Second,
shipping capacity can be instantaneously increased by chartering additional
vessels that can be used already in the current period. Lastly, the company can
choose to leave capacity levels unchanged. A simultaneous expansion of owned
and chartered capacity is not allowed. For now, we also assume that built-up
capacities (owned and chartered) cannot be reduced. In parallel to the capacity
decision, the investor determines the period’s optimal transportation output to
maximize period profits.

The state variables and state space, as shown in Table 2.2, describe all states
of the world the firm can find itself in. We treat time as a discrete variable that
is also represented by a subscript t in other variables that depend on it. One
period corresponds to a time step of one year. The Geometric Brownian Motion
of demand Yt with drift µ and volatility σ is approximated in a binomial lattice
approach as developed by Cox et al. (1979), where demand can increase or
decrease each period. The up and down multiplication factors u and d as well
as the risk-neutral probability p of an up- and (1− p) of a down-movement are
defined as

u = eµdT+σ
√

dT , d = eµdT−σ
√

dT , and p =
erdT − d

u− d
. (2.9)
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Table 2.2: Definition of state variables and state space for model with time to build
h = 2.

State space Description

t ∈ T = {0, 1, 2, 3, ..., T − 1, T } Time period
Yt ∈ Y = {Y0,uY0,dY0,u2Y0,udY0,d2Y0, ...} Demand in time period t
OCt ∈ OC = {24, 000z | z ∈N∪ 0} Operational capacity from

chartering in t
OIt ∈ OI = {24, 000z | z ∈N∪ 0} Operational owned capacity

in t
PIt ∈ OI = {24, 000z | z ∈N∪ 0} Pipeline of ordered ships: op-

erational capacity in next pe-
riod t+ 1

Besides time period t and demand level Yt, the state space comprises oper-
ational capacity from chartering OCt at the beginning of each time period.
Similarly, OIt describes available operational capacity from investment (owned
capacities). To anticipate future project values, it is necessary to know the ex-
pected capacity ramp-up from orders not yet delivered. Pipeline PIt denotes
operational capacity from investment in period t+ 1, which includes OIt and
the capacity in pipeline for delivery in t+ 1. In contrast to the previous sections,
this model treats lumpy investment. To keep computing times manageable, we
allow investment in 24,000 TEU intervals, corresponding to one fully loaded
round-trip of a container ship as we use it for our parameter calibration.

Table 2.3: Definition of decision variables and decision space.

Decision space Description

chartert ∈ OC = {24, 000z > OCt | z ∈N∪ 0} Additional capac-
ity chartered in t

investt ∈ OI = {24, 000z > PIt | z ∈N∪ 0} Additional owned
capacity ordered
in t

qt ∈ Q = {24, 000z 6 OCt + chartert +OIt | z ∈N∪ 0} Transportation out-
put level in t

Table 2.3 defines the decision space available to the investor in each period.
The firm can increase chartered capacity immediately by choosing chartert
new units. Alternatively, a number of investt new units of owned capacity
can be ordered that will be delivered in period t + h due to time to build.
While chartered and own capacity cannot be increased in the same period, the
investor can choose not to expand capacities at all (investt = chartert = 0). qt
describes the transportation output chosen. Any capacity not operated is sent to
layup and incurs cost c3 per period. Both, capacity choice and output quantities
can be set to multiples of 24,000 TEU. An extension to this model is to allow the
firm to also divest existing capacity, which we introduce in Section 2.5.
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The profit function is unchanged from the previous sections, except that
owned and chartered capacities are combined:

πt(Yt,qt,OCt,OIt,PIt) = Ytq
1+ 1

γ

t − c1qt − 0.5c2q2t
− max(OCt +OIt − qt, 0)c3
− PItkc4 −OCtc5. (2.10)

This profit function allows us to define the reward function of the dynamic
program. It describes the project value in each state of the world depending on
which actions are taken. We can define the project value as the greater of two el-
ements: the project value of the most profitable charter expansion strategy VCt
and the value of the most profitable expansion strategy through investment
VIt:

Vt( Yt,OCt,OIt,PIt) = max{VCt , VIt },

where

VCt = max
06chartert6OCmax−OCt

{
max

06qt6(OCt+chartert+OIt)

{
πt(Yt,qt,OCt + chartert,OIt,PIt)

+ e−rdT E
[
Vt+1( Yt+1,OCt+1,OIt+1,PIt+1)

]}}
,

VIt = max
06investt6OImax−PIt

{
max

06qt6(OCt+OIt)

{
πt(Yt,qt,OCt,OIt,PIt + investt)

+ e−rdT E
[
Vt+1( Yt+1,OCt+1,OIt+1,PIt+1)

]}
− k investt

}
. (2.11)

Note that we maximize over all possible charter and output choices for VCt
and investment capacity expansion and output possibilities for VIt. The value
consists of period profits πt, the discounted expected value e−rdT E[Vt+1] of
the project in the next period and cash outflow for new-orders in the investment
case. We solve the optimal value function recursively, starting with a terminal
value in the last period and solving backwards until we reach period t = 0

(Bellman 1957). To do so, we define terminal values in period T + 1 assuming
that existing capacities will be used infinitely5:

VT+1 =

max
06qT+16OCT+1+OIT+1

{
πT+1(YT+1,qT+1,OCT+1,OIT+1,PIT+1)(1+ µ)

r− µ

}
.

(2.12)

5Total capacity choice remains largely unchanged if we consider a limited lifespan after the
end of the simulation horizon (e. g., 15 years). Shortening the lifespan, however, changes the final
capacity mix towards chartered capacity as investment cost of owned capacities has less time to
amortize.
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Figure 2.4: Schematic 2-dimensional representation of the lattice approach.

From here on, the model folds back through time. The state space is updated
from period to period depending on decisions taken and defined by the follow-
ing transition functions:

Yt+1 =

{
uYt for "up" movement

dYt for "down" movement,
(2.13)

OCt+1 = OCt + chartert, (2.14)

OIt+1 = PIt, (2.15)

PIt+1 = PIt + investt. (2.16)

Fig. 2.4 depicts the model schematically in a binomial tree. In time period
t = 0, the state space describes the investor’s world. Based on perceived market
demand Y0, the ship operator decides whether to expand capacity through
chartering or investing or to leave it unchanged. In parallel, the optimal output
quantity for this period is selected. Given a choice, the investor can be in one of
two states of the world in time period t = 1, depending on whether stochastic
demand Y moves up or down. Once demand Y1 is known, the next combination
of capacity and output choice is made. While the tree is set up from starting
time period t = 0 to the final period t = T , it is solved recursively from the last
period backwards. At every node the dynamic program chooses the best action
assuming that all future choices will be taken optimally.

2.4.2 Numerical Study

We now turn to analyzing model results from simulations in three different
model variants: The first variant is our full model described above allowing in-
vestment at time to build h = 2 years and instantaneous chartering. The second
variant allows investment with a time to build of h = 1 year and chartering
and our third variant is an investment-only model at time to build h = 2 years.
We gain insights from these model variants in two ways. First, we compare
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project values to derive the value added by the long-term charter option. This
allows us to better understand when chartering is a valuable on-top option.
Secondly, we investigate optimal total capacity choice and the split between in-
vestment and chartering in different parameter and market scenarios. In these
scenarios, we vary market drift µ, market volatility σ and risk-free interest rate
r and leave remaining parameters unchanged compared to the models of the
previous section.
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Figure 2.5: Project values of full model and investment-only model and resulting rel-
ative value-add provided by option to charter. Parameters are defined as:
γ = −1.4, µ = 0.01, c1 = 700, c2 = 0.00008, c3 = 28, c4 = 0.02, c5 = 120,
k = 1, 000, h = 2, OI0 = 144, 000.

We first analyze project values of the full charter and investment model with
time to build h = 2 and the investment-only model. Fig. 2.5a shows the project
value at different market volatilities σ and interest rates r for the full model.
The value of the project decreases for higher interest rates because the market
benchmark of a risk-free alternative investment becomes more attractive. For
increased market volatility σ we find larger project values. Given a positive
market drift µ, higher volatility makes demand surges more likely, in which the
shipping company can realize improved profits. The same effects are observed
in Fig. 2.5b, which shows the project values for the investment-only project
without chartering. Of special interest is what additional value is created by
granting the ship operator a charter option on top of investment. This added
value matches the value difference between the full and the investment-only
projects. It is difficult, however, to analyze the effect of parameter changes on
the value of the charter option in absolute terms as both the values of the full
and investment-only projects change at the same time. In Fig. 2.5c we thus
introduce a relative value-add from the charter option, which is calculated as:

Relative value-add =
Value of full project − Value of invest-only project

Value of invest-only project
.

It expresses the value added to the investment project by the charter option in
per cent of the investment-only project’s value.

There are two main findings to be drawn from Fig. 2.5c that showcase the
value proposition of chartering compared to investing. First, the relative value
created by the charter option increases with the risk-free rate of interest. The
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Figure 2.6: Simulation of total capacity and investment vs. charter split for different
market scenarios in model with investment and long-term charter. Base case
parameters are defined as: γ = −1.4, µ = 0.01, σ = 0.2, r = 0.06, c1 = 700,
c2 = 0.00008, c3 = 28, c4 = 0.02, c5 = 120, k = 1, 000, OI0 = 144, 000.
Deviating parameter values are labeled in the respective scenario.

economic intuition lies in the discounting of future cash flows: At high inter-
est rates, it is especially advantageous to postpone costs to later periods and
to realize revenue as early as possible. Compared to investment, chartering
postpones costs evenly over the time horizon. In high interest rate markets it is
thus advisable for ship operators to make increased use of chartering. The sec-
ond finding from Fig. 2.5c is the increased value of the charter option in highly
volatile markets. With high market volatility σ, demand surges become more
likely. In such markets, chartering offers the ship operator increased flexibility
by spontaneously providing capacity without time to build. It thereby allows
to both avoid unnecessary costs for excess capacity (layup cost) and to benefit
from sudden upward movements of demand. With these two findings, Fig. 2.5c
clearly shows the main sources of value creation from chartering.

We now simulate the model to assess capacity choices in different market sit-
uations and how chartering vs. investment are used. We run all model variants
for different parameter scenarios with N = 20, 000 simulations each to generate
reliable results. Where not indicated otherwise, we analyze capacity results in
the last period T = 15 of our simulation.

Fig. 2.6 displays simulation results for our base case (where our focus pa-
rameters are µ = 0.01, σ = 0.2 and r = 0.06) and three scenarios where one
of the focus parameters is increased. Results are shown in groups of three box
plots, representing the full model with time to build h = 1, the full model with
time to build h = 2 and the investment-only model with time to build h = 2,
labeled as H1, H2 and Inv respectively. The upper pane displays total capac-
ities recorded during 20,000 simulations, while the lower pane shows owned
capacity as a percentage of total capacity. The box plots describe the distribu-
tion of data with the red line marking the median, the outer blue edges the
25th and 75th percentiles and the whiskers indicating the most extreme data
points that have not been considered outliers. In the figure, we see that the ship
operator invests into slightly more capacity when market growth µ is increased
compared to the base case scenario and slightly less for higher interest rates r.
Let us follow up on the effect of volatility and time to build. In the continu-
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(a) Base case with volatility σ = 0.2
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(b) Increased market volatility scenario with σ = 0.6

Figure 2.7: Owned capacity share and total capacity build-up over time in base case
and high market volatility scenario. Results are based on H2 model with
investment at time to build of 2 periods and long-term charter. Remaining
parameters are γ = −1.4, µ = 0.01, r = 0.06, c1 = 700, c2 = 0.00008, c3 = 28,
c4 = 0.02, c5 = 120, k = 1, 000, OI0 = 144, 000.

ous investment model of Section 2.3, we have seen that increased time to build
leads to higher optimal capacity and that increased market volatility with time
to build can lead to a further capacity expansion. We find these results con-
firmed in the discrete model as shown in Fig. 2.6. The capacity-increasing effect
of time to build can be observed by comparing resulting capacities of the H1
and H2 model variants, where we see (slight) increases of capacity for higher
time to build throughout all parameter scenarios. Compared to the investment-
only model of Section 2.3, this effect is still observable, though dampened by
the charter option. The second effect, where resulting capacities are increased
by a combination of time to build and increased market volatility is also present
in our discrete model. This can be observed by comparing the base case and
high volatility market scenarios where we find strongly increased capacities
for higher demand volatility. The capacity increasing effect of high volatility is
even stronger in the full model with long-term chartering. Chartering allows to
increase capacities spontaneously in unforeseen demand spikes, which leads to
even higher capacities compared to the investment-only model. This intuition
is supported by increased total capacity compared to the investment-only case
and the larger share of chartered capacity at high volatility compared to the
base case scenario.

Taken together, the results suggest that time to build can increase optimal ca-
pacities in volatile markets, although the long-term charter option dampens this
effect. At the same time, chartering increases total optimal capacity in volatile
markets as it allows for spontaneous capacity additions in bullish markets.

Interesting for practitioners are also observations derived from the model
regarding the use of long-term charter. We have already seen from Fig. 2.5c
that the option to charter adds most value to the investment project when in-
terest rates are high and/or demand is volatile. Chartering should thus be
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considered an alternative especially when high interest rates make it attractive
to postpone costs and when high market volatility leads to unforeseen demand
surges. Fig. 2.7 details the build-up of capacity over time and displays the
mean share of owned out of total installed capacity. In Fig. 2.7a, the base case
is shown at low market volatility of σ = 0.2, where the ship operator relies
almost entirely on own capacity as the cheaper alternative. Fig. 2.7b shows the
capacity split for higher volatility at σ = 0.6, where more chartering is used
compared to the base case. Taken together, chartering is more expensive so
that investment is preferred in smooth and predictable market environments.
In volatile markets, chartering becomes an attractive option to skim demand
in sudden upward movements of demand. Chartering is thus used to either
compensate unforeseen demand peaks or to build up capacity in high interest
rate environments. In the latter case, postponing costs can partially offset the
general cost disadvantage of chartering.

Overall, our discrete model of investment and long-term charter supports
the effects found in the continuous investment model in Section 2.3. Time to
build and high market volatility can lead to increased investment with a risk
of building up excess capacities even with a charter option available. The long-
term charter option’s flexibility even increases the capacity increasing effect
of volatility as demand surges can be taken advantage of. In this section, we
have combined the investment and long-term charter options as seen in the
continuous model. As real markets allow divestment of owned capacities and
also more flexible short-term chartering with contracts that expire, the question
remains whether the effects are still relevant in a more realistic market. To
address this question, we extend our model to allow divestment and highly
flexible chartering with one year contracts in Section 2.5.

2.5 combined invest and short-term charter model with divest-
ment option

In this section, we further adapt the model to the actual market by implement-
ing three changes: First, we allow divestment of owned capacities. Second, we
implement short-term chartering with a contract duration of one year. As short-
term charters are more dependent on the current market environment, we also
introduce an endogenous charter rate. Third and last, all decisions (invest, di-
vest and charter) can now be taken simultaneously in each time period. With
this setup, we introduce a high degree of flexibility to the model and use sim-
ulations to analyze the effect of chartering on overall capacity choice and to
assess whether findings from previous sections also hold in even more flexible
and realistic model setups.

2.5.1 Model Derivation

Compared to the model in Section 2.4, we now allow for simultaneous invest,
divest and charter decisions. This leads to one common value function in which
we do not need to differentiate between charter and investment strategies any-
more. While investment does not change, divestment of owned capacity OIt is
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possible at sales price ks. We assume divestments to be implemented only in
the next time period and therefore discount divestment proceeds in the value
function. In this new model, we let chartering be a myopic decision in each
time period as contracts expire after one year. With this change, chartered ca-
pacity OCt drops out of the state space and chartert represents the capacity
chartered in period t. The new value function is:

Vt( Yt,OIt,PIt) =

max
06investt6OImax−PIt

{
max

06divestt6OIt

{
max

06chartert6OCmax

{
max

06qt6(chartert+OIt)

{
πt(Yt,qt, chartert,OIt,PIt + investt)

}}
+ e−rdT E

[
Vt+1( Yt+1,OIt+1,PIt+1)

]
− k investt + e

−rdTks divestt

}}
.

(2.17)

Note how Vt is not dependent anymore on chartered capacity, as OCt drops
out of the state space. We now optimize over all investment, divestment, char-
ter and operating output options possible depending on the state of the sys-
tem. The value again is comprised of period profit πt, the discounted expected
project value in the next period e−rdT E[Vt+1], cash outflow from investment
and discounted cash inflows from divestment realized in the next time period.
To reflect the new workings of the model, the transition functions need to be
adapted. While we drop the transition function for chartered capacity, we refer
to Eq. (2.13) for the transition of demand and define the remaining transitions
as:

OIt+1 = PIt − divestt, (2.18)

PIt+1 = PIt + investt − divestt . (2.19)

The state space of this model is smaller and simpler than in the previous
section. However, with investment, divestment and chartering available simul-
taneously at each time step, the number of possible actions that need to be
iterated by the program increase significantly.

To more closely represent real charter markets, we also introduce an endoge-
nous charter rate c5,t. We assume demand to not only increase freight rates (the
market price) but also the charter rate that applies for chartering vessels. Such a
feature is realistic as market participants’ need to charter additional capacities
increases in periods of attractive market prices for transportation services. We
thus define endogenous charter cost as

c5,t = c5((Yt/Y0 − 1)ω+ 1), (2.20)

where ω > 0 denotes the portion of demand growth passed on to charter cost
growth. With ω = 0, for example, charter costs are fixed and independent from
demand whileω = 1would result in an equal percentage growth or contraction
of demand and charter rate c5,t. With chartering as a myopic decision and the
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charter rate being defined endogenously, the slightly adapted profit function
now reads:

πt(Yt,qt, chartert,OIt,PIt) = Ytq
1+ 1

γ

t − c1qt − 0.5c2q2t
− max(chartert +OIt − qt, 0)c3
− PItkc4 − chartert c5,t. (2.21)

2.5.2 Numerical Study

We simulate the investment and short-term charter model with the same cost
parameters that we have applied in the previous sections. The only cost param-
eter added is the selling price applicable for divested capacities ks. We assume
the operator to be able to sell owned operational capacities at a low price of
ks = 100.

Model with constant charter rate: We first analyze simulation results for ω = 0,
which reflects static charter cost c5 as in the previous sections. Fig. 2.8 shows
simulation results for the base case and for increases of our focus cost param-
eters. The model changes compared to Section 2.4 lead to increased flexibility
both for owned and chartered capacities. While it is now possible to divest
owned ships, chartered capacity is chosen spontaneously every period after
market demand is observed. These changes not only affect total capacities, but
also the choice between investment and chartering. Compared to the invest-
ment and long-term charter model (Fig. 2.6), we see that optimal decisions in
the more flexible model (Fig. 2.8) result in a higher investment share of total
capacity. This reflects that, even though chartering has become more flexible
as well, the investment option became disproportionately more attractive as
divestment is now possible.

With the shift of capacity sourcing in mind, we now analyze resulting total
capacities and the effect of time to build and volatility. As seen in previous

0

0.5

1

1.5

2

T
o

ta
l 

o
p

er
at

in
g

 c
ap

ac
it

y

(T
E

U
)

10
6

Base Case Interest rate r = 0.12

H1 H2 Inv H1 H2 Inv H1 H2 Inv H1 H2 Inv

0

50

100

O
w

n
ed

 c
ap

ac
it

y
 i

n
 p

er
ce

n
t

o
f 

to
ta

l 
ca

p
ac

it
y

 (
%

)

Base Case Interest rate r = 0.12

H1 H2 Inv H1 H2 Inv H1 H2 Inv H1 H2 Inv

Figure 2.8: Simulation of total capacity and investment vs. charter split for different
market scenarios in model with divestment, short-term charter and static
charter rate. Base case parameters are defined as: γ = −1.4, µ = 0.01,
σ = 0.2, r = 0.06, c1 = 700, c2 = 0.00008, c3 = 28, c4 = 0.02, c5 = 120,
ω = 0, k = 1, 000, ks = 100. Deviating parameter values are labeled in the
respective scenario.
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Figure 2.9: Simulation of total capacity and investment vs. charter split for different
market scenarios in model with divestment, short-term charter and endoge-
nous charter rate. Base case parameters are defined as: γ = −1.4, µ = 0.01,
σ = 0.2, r = 0.06, c1 = 700, c2 = 0.00008, c3 = 28, c4 = 0.02, c5 = 120,
ω = 0.2, k = 1, 000, ks = 100. Deviating parameter values are labeled in the
respective scenario.

sections, higher time to build leads to increased total capacities. This can be
confirmed by comparing the full model variant with investment, chartering
and time to build of h = 2 to the full model with time to build of h = 1. Sim-
ilarly, we also see a strong increase in capacity buildup for the high volatility
scenario. We can thus confirm that time to build alone, and high volatility in
combination with time to build lead to an increase in capacities even in our flex-
ible model with divestment and short-term charter. Interestingly, the median
of resulting capacities in the high volatility scenario is slightly lower in our flex-
ible model as compared to Fig. 2.6 in Section 2.4. This shows that the effects
of time to build and high volatility are dampened by increased flexibility and
the possibility to also reduce capacity through divestment and expiring charter
contracts. Overall, this model shows that highly volatile markets in combina-
tion with time to build can lead investors to rationally expand capacities, which
frequently results in excess capacities.

Model with endogenous charter rate: To resemble real shipping markets more
closely, Fig. 2.9 shows simulation results for the investment and short-term
charter model with an endogenous charter rate at ω = 0.2 (i. e., 20% of demand
growth or contraction is passed on to the charter rate). As expected, we find
that short-term chartering - though highly flexible - only accounts for relatively
small parts of total capacity and is used mainly in volatile markets. Endoge-
nous charter rates make chartering less attractive as it becomes expensive in
the very market environments in which chartering is needed most: during de-
mand peaks for which the shipping company has not built up enough owned
capacity. We still find that time to build increases total capacities. The effect of
increased volatility is not as high anymore as in our previous models. This can
be explained by the fact that the short-term charter option is not as attractive
anymore during demand peaks.

Overall, we see that short-term chartering offers increased flexibility to the
ship operator, which has two opposing effects. On the one hand, the absence
of time to build for chartered capacities reduces the incentive for operators to
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build up capacities in advance of possible demand surges in volatile markets.
At the same time, it offers the option to increase capacities on short notice if
there is not enough owned capacity to serve demand. This second effect leads
to increases of total capacities, especially in high volatility scenarios. Which of
these effects dominates strongly depends on the question how charter rates de-
velop in times of bullish markets, as this feature determines the attractiveness
of the charter option. While the capacity increasing effects of time to build and
volatility, as also found in Aguerrevere (2003), remain intact overall, their inten-
sity is strongly influenced by available charter options. It is therefore important
to account for chartering in optimal capacity decisions. While investment be-
havior and high capacities in practice may also (and jointly) be driven by other
considerations such as behavioral motivations (Greenwood and Hanson 2015)
or by financial constraints (Drobetz et al. 2016), the effects found in this paper
contribute to high capacity levels in international shipping.

2.6 conclusion and implications for future research

In this paper, we include charter options in capacity expansion models. By
extending a continuous-time incremental investment model by Aguerrevere
(2003) to reflect charter decisions, we show that chartering does not exhibit
the same capacity-increasing incentives as investment. While time to build and
volatility increase optimal capacity choice in investment-only projects, the op-
posite is the case if only chartering is allowed in the model. To analyze the
effects of chartering on investment and total capacity decisions, we combine
both investment and long-term charter options in a discrete-time model based
on a binomial lattice approach. In an extension, we introduce divestment and
short-term instead of long-term chartering at an endogenous charter rate to
the model for more flexible decision-making. We thus contribute to the real op-
tions literature by incorporating the key characteristics of capacity expansion
decisions in many industries: time to build, operating flexibility at a certain
cost, divestment and most importantly the fundamental decision between own-
ing and (long-term vs. short-term) chartering of capacities. We further add
to existing maritime logistics literature by applying the investment and charter
real option models to capacity expansion decisions in the container shipping in-
dustry, thereby deepening the understanding of optimal capacity choice in this
cyclical and volatile market. Additionally, the presented model set-up also ap-
plies to other industries with similar characteristics such as electricity markets
or the semiconductor industry.

The main findings are the following: First, we find that an additional char-
ter option offers significant added value to a ship investment project especially
in situations of high interest rates and/or high demand volatility. Chartering
allows to postpone costs to later time periods and to spontaneously react to
unforeseen demand peaks, enabling ship operators to offset capacity shortages
from investment. Second, chartering appears to be the more expensive way to
expand capacities, making it an optimal instrument for short-term capacity cor-
rections while not being used for build-up of base capacity. Third, we present
evidence that the existence of time to build leads to an increase of optimal
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capacity choice even with the opposing effects of chartering as an alternative
capacity source. This is a result of opportunity costs of unforeseen capacity
shortages outweighing expected costs of potential excess capacities. Fourth, we
show that in certain market situations and with time to build, an increase in
market volatility can lead to higher optimal capacities for the investor. Fifth
and lastly, we see that chartering - while generally dampening incentives to
build up large capacities - also contributes to high capacity buildup in situa-
tions of peak demand if insufficient owned capacity is available. Overall, time
to build of owned ships together with volatility can increase optimal capacities
despite the charter option’s opposite effect. This opposing effect can even be
dominated by the charter option’s flexibility, allowing ship operators to quickly
increase capacities in bullish markets.

Future research could test our results empirically against observed capacity
outcomes in real markets. Specifically, it would be interesting to test what por-
tions of observed investment can be attributed to effects as seen in this paper
and to other explanations such as behavioral effects. Further relevant exten-
sions of our model are to analyze oligopolistic competition or to consider other
sources of uncertainty such as stochasticity of operating costs, asset price un-
certainty or so far neglected regulatory uncertainty.

Uncertainty about the timing and intensity of future environmental regula-
tion is a key challenge for the container shipping industry. It further compli-
cates capacity and investment decisions in this volatile and capital intensive
industry. The focus of the next chapter is to account for uncertain future eco-
regulation that can significantly increase the operating cost base for the opera-
tor. We will use this modeling to assess the impact of regulatory uncertainty on
optimal fleet size, investment vs. charter mix and resulting industry emissions.





3
C A PA C I T Y E X PA N S I O N U N D E R R E G U L AT O RY
U N C E RTA I N T Y: A R E A L O P T I O N S – B A S E D S T U D Y I N
I N T E R N AT I O N A L C O N TA I N E R S H I P P I N G

The following chapter is based on Haehl and Spinler (2017a). This manuscript is cur-
rently under revision after a “revise and resubmit” decision from Transportation Re-
search Part E: Logistics and Transportation Review.

3.1 introduction

In the past, international maritime shipping has been largely excluded from
environmental regulation efforts that forced other industries to reduce their
ecological footprints. Although such shipping is the most ecologically friendly
means of transport, the industry’s sheer size makes it a major contributor to
worldwide emissions and pollution with a total contribution of 3% to global
carbon dioxide (CO2), 13% of nitrogen oxide (NOx) and 12% to sulfur oxide (SOx)
emissions (International Maritime Organization 2014). This fact has attracted
the interest of such regulators as the International Maritime Organization (IMO),
the European Union (EU), and the United States, thus the industry will increas-
ingly be subject to regulation. With the target of reducing greenhouse gas emis-
sions by 20% below 1990 levels by 2020 (Helfre and Boot 2013), one such policy
is the stepwise reduction of SOx emission limits from 4.5% to 0.5% globally and
even 0.1% in specially designated areas. Even before these new regulatory ef-
forts, ship investors and operators faced an investment decision complicated by
its high capital intensity and by several sources of uncertainty, such as volatility
in charter and freight rates. Regulator actions introduce a new risk, and firms
must account for both the content and timing of prospective regulation. The
main reason for timing uncertainty is the process by which the IMO, as a repre-
sentative of seafaring nations within the United Nations, passes new legislation:
no new convention is in effect until enough member states have ratified it. Be-
cause that process can be a lengthy one, there is uncertainty about the exact
content and timing of future regulation.

Given their effect on operational costs, regulations (and their associated un-
certainty) must be considered when evaluating any opportunity owing to their
influence on investment success (Forum For the Future May 2011). Traditional
discounted cash flow (DCF) valuation methods are not well suited to capture un-
certainties and stochasticity (Dixit and Pindyck 1994); in contrast, real options
models can be successfully used to analyze the effect of regulatory uncertainty.

This paper presents a real options model for precisely that purpose. In a
numerical study, we investigate the effects of uncertain regulation by applying
our model to the container shipping industry. We also assess whether there is
a significant difference between expected regulatory action that allows for the
so-called grandfathering of current capacity and regulation that affects all ships
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(i. e., regardless of when purchased). For that purpose, we formulate a real op-
tions investment model in a dynamic programming (DP) framework. Thus we
extend the capacity investment model of Fontes (2008) by introducing time to
build, adding an option to charter, and incorporating regulatory uncertainty.
Finally, we use approximate dynamic programming (ADP) to solve this com-
putationally intensive model and to overcome the “curses of dimensionality”
(Powell 2011) in real-world–sized instances.

Our paper contributes to research in four ways. First, we extend the method-
ological literature by proposing an approach to consider regulatory uncertainty
via an investment model applicable to many industries. Second, we employ
a novel ADP variation that approximates the additional value created by in-
vestment—that is, above the lower boundary established by a strictly myopic
strategy. Third, by fitting our model to the shipping industry, we contribute
to research on shipping through the insights we derive on optimal decisions—
from the investor’s perspective—under regulatory uncertainty. Fourth, though
we do not focus on optimal policy making from the viewpoint of a regulator,
we do help regulators better understand how legislative processes that induce
uncertainty affect the investment decisions of market participants and resulting
industry emissions.

The rest of the paper proceeds as follows. Section 3.2 reviews the existing
literature on real options in general and in the shipping industry; it also in-
troduces the existing literature on regulatory uncertainty. In Section 3.3, we
use DP to develop a formal real options model for regulation with or without
grandfathering. Section 3.4 introduces our ADP approach to solving the com-
putationally intractable DP model. In Section 3.5, this latter method is used to
present our findings from a numerical study tailored to the container shipping
industry. Section 3.6 concludes.

3.2 literature review

Uncertainty can be defined as “perceived inability to predict” an organization’s
future external environment (Milliken 1987). We adopt that definition and focus
on state uncertainty, where the organizational environment’s future states are
uncertain owing to, for example, unforeseeable regulatory action. Uncertainty
due to emerging eco-regulation is acknowledged to be a growing concern for
businesses in many industries (Marcus et al. 2011). While Lister et al. (2015) find
that maritime shipping is lagging behind in terms of reducing its environmen-
tal footprint, both Lister et al. (2015) and Poulsen et al. (2016) detect significant
regulatory uncertainty regarding content and timing of upcoming regulation as
the IMO is accelerating its regulatory efforts. For example, IMO regulations re-
quire member ratification—a lengthy process that can last “a decade or longer”
and so is clearly problematic for shippers’ investment decisions (Lister et al.
2015). Forum For the Future (May 2011) expects regulatory uncertainty, and its
adverse effect on investment decisions, to be one of the industry’s key future
challenges. The IMO has discussed (and, in many cases, implemented) ecolog-
ical measures that target energy efficiency in ship design and operational pro-
cedures, ship recycling, ballast water management, and ship exhaust emissions
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of carbon dioxide, sulfur, and particulate matter. While regulation in other sec-
tors such as power generation mostly allows the grandfathering of previously
existing capacity, this is not always the case in shipping. While, for example,
requirements for energy efficient ship design only target newly built vessels,
lower sulfur emission levels or the requirement to develop operational mea-
sures for increased fuel efficiency are mandatory for both new and existing
ships. (International Maritime Organization 2016a)

Research on the effects of regulatory uncertainty has mainly focused on
whether or not it leads to a deferral of investment. A majority of researchers
has argued that investment is dampened: Reinelt and Keith (2007), for exam-
ple, model replacement decisions for coal-fired power plants. They account
for the introduction of regulation as a stochastic increase of carbon emission
costs where both timing and the new cost level are uncertain. They find that
such uncertainty increases social costs of abatement and dampens investment
incentives if abatement options are expensive. Similarly Fuss et al. (2009) an-
alyze capacity investment in the energy sector under regulatory uncertainty
represented by stochastic carbon emission prices. They also find that increased
volatility in emission prices defers the adoption of less emission intensive but
more expensive technologies. Providing regulatory certainty is also demanded
by Blyth et al. (2007), who find in their real option model for the energy sector
that this would incentivize adoption of low carbon technologies. Ritzenhofen
and Spinler (2016) find deferred or even withdrawn capacity investment in a
real options framework if feed-in tariff support schemes are withdrawn, cre-
ating regulatory uncertainty. Several empirical studies also support the view
that investment is deferred by such uncertainty. Fabrizio (2013) finds reduced
investment incentives in the US renewable energy sector in states with greater
uncertainty. Similarly, Gulen and Ion (2015) show the same in an empirical
study across multiple US industries.
Opposing views are held by Hoffmann et al. (2009), who use a resource-based
view of the firm to argue that regulatory uncertainty can promote investment,
if it can be used to build up a competitive advantage or alleviate societal pres-
sure. From a real options perspective, Hassett and Metcalf (1999) find that if
uncertain tax policy is modeled as a discrete jump process (which is more re-
alistic than a continuous time random walk), investment is carried out earlier
with more capital invested. Boomsma et al. (2012) focus on the energy sector
and find both effects: uncertainty regarding the potential change of support
schemes leads to investment deferral, while uncertainty from renewable cer-
tificate trading leads to the opposite effect. Baumann and Friehe (2012) find
in an options model that uncertainty from potential market liberalization can
increase incentives for market entry but reduces investment by incumbent play-
ers.
Adopting a similar approach to model regulatory uncertainty as Reinelt and
Keith (2007), we extend research on investment under regulatory uncertainty
to the maritime shipping industry. We will also show that, whether such uncer-
tainty has positive or negative effects on investment crucially depends on the
policy’s design: in our case whether or not regulation allows grandfathering of
old capacities is pivotal.
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Real options methods are well suited to value investment under various un-
certainties. While Dixit and Pindyck (1994) give an invaluable overview of
methods available, there are several contributions that feature model charac-
teristics also relevant to our model: Bar-Ilan and Strange (1996) are credited
with introducing investment lags (or time to build) that we also consider; both
Mossin (1968) and Brennan and Schwartz (1985) examine operational flexibility
by allowing investors to suspend operations if market prices fall to untenable
levels. A significant extension to path-dependent Asian options is detailed by
Driouchi et al. (2010). Martzoukos and Trigeorgis (2002) relax the assumption
of normally distributed uncertainties and allow for jump-diffusion processes
with multiple sources of rare events. This is particularly relevant for modeling
uncertainty from potential regulation.

In the field of shipping, real options have been used to analyze switching
between dry and wet bulk shipping (Sødal et al. 2008) and to assess the ef-
ficiency of these markets (Sødal et al. 2009). Bendall and Stent (2005) show
that real options capture the value of management flexibility and lead to bet-
ter decisions under uncertainty (as compared to those based on DCF). Bendall
and Stent (2007) review fleet capacity extension with various usage options for
new ships. Acciaro (2014) combines a focus on regulation and shipping, by us-
ing real options to compare technologies for regulatory compliance. They find
that deferring investment into LNG powered vessels to gain better insight into
future fuel markets may be optimal. Patricksson et al. (2015) develop a fleet
renewal model that accounts for emission control areas (ECAs) and multiple
technologies available for regulatory compliance.

This paper’s real options–based methodology uses both dynamic program-
ming and approximate dynamic programming in order to derive the optimal
solution. The paper thereby expands on Fontes (2008), who uses a DP approach
to compare systems with fixed versus flexible production capacity. We extend
that model by incorporating time to build and a charter option and also by
adding regulatory uncertainty as a second stochastic process.

3.3 model formulation as a dynamic program

In this section, we formulate the real options model using methods of exact
DP as introduced by Bellman (1957). Because the resulting DP model is com-
plex and computationally intractable for large instances, we propose an ADP in
Section 3.4 that allows us to solve the model approximately. Our model incor-
porates the following characteristics: the option to invest with time to build, the
option to divest and to charter, operating flexibility (layup option), and uncer-
tainty regarding market demand and the introduction of regulation affecting
investment and operating costs.

We model a monopolistic market with an investor or shipper who operates
available transportation capacity. While the container shipping market is of
oligopolistic nature, we make use of the monopoly assumption to be able to
combine the multiple market features presented in this model: investment, di-
vestment, charter, a layup option and regulatory uncertainty. This assumption
allows us to include and analyze the market characteristics most in focus for the
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paper presented. Findings in Aguerrevere (2003) suggest that capacity effects
in oligopolistic and monopolistic markets may differ in size but not direction.
We are thus confident that this assumption does not restrict the validity of di-
rectional findings implied from our model. The transport market is defined by
the inverse demand function

Pt = Ỹtq
1/γ
t . (3.1)

Here Pt is the market price to transport one twenty-foot equivalent unit (TEU)
in time period t; Ỹt is the exogenous market demand; qt is the output or trans-
portation quantity; and γ < 0 is the market’s price elasticity. The exogenous
demand shock Ỹt follows a geometric Brownian motion with market drift µ
and volatility σ. We approximate demand development in a binomial lattice
(Cox et al. 1979) with a relative up-movement (u) or down-movement (d),

u = eµdT+σ
√
dT or d = eµdT−σ

√
dT , (3.2)

in each time period with probability

p =
erdT − d

u− d
(3.3)

for an up-movement and probability 1− p for a down-movement. We use dT
to signify the time-step-size (in years). See Table B.1 in Appendix B.1 for a
descriptive list of variables used.

Before introducing the model’s detailed workings, we explain the overall se-
quence of decisions. This is displayed in Figure 3.1 in a two-dimensional repre-
sentation of the resulting DP lattice. In each time period the shipper has invest-
ment, divestment, charter and layup options available for use. In each period,
the shipper observes her available capacities and the current market charac-
teristics including overall demand and whether the market is unregulated or
regulated. Depending on this information, she then chooses how much new
capacity to order (to be delivered with a time lag due to time to build), to sell
and how many units to charter from the market. She additionally decides what
parts of the available capacity to operate in the market, thereby influencing the
market price. Subsequently, the random events of the model are drawn for the
next time period. These consist of the new market demand and a regulatory
signal, which - after having arrived twice - leaves the market regulated with
higher operating costs. The level of operating cost in the regulated market is
previously uncertain and drawn from a separate stochastic process. It is only
revealed once the market becomes regulated. Then, the process of decision-
making is initiated again.

Capacity decisions are made in steps of 24,000 TEU, which corresponds to a
single round-trip of a 12,000-TEU ship that we also use to derive cost parameters.
Ordered ships are delivered following a two-period time to build, whereafter
they increase operational capacity from investment OIt. Prior to delivery, or-
dered ships are considered to be in the pipeline PIt, which comprises total
capacity from investment (i. e., irrespective of whether delivery has already oc-
curred). The pipeline includes OIt and also undelivered orders from period
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(q1, invest1, divest1, OC1)(Y1, �1, �1, c1h , OI1, 
PI1, prePI1 )

(Y2, �2, �2, c1h , OI2, PI2, prePI2 )

(Y0, 0, 1, c1h, 0, 0, 0)

(0, 24000, 0, 0)

Action space t = 1State space t = 1 State space t = 2Realization of demand, regulation and cost effects

(0, 48000, 0, 0)

(24000, 48000, 0, 24000)

(48000, 48000, 0, 48000)

(48000, 48000, 0, 48000)

Regulation:
signal �2 = 1
(�2 = 2)

d c1h

u c1h

c1h

(uY0, 1, 2,   c1h ,  0, 48000, 48000 )

(dY0, 1, 2,   c1h ,  0, 48000, 48000 )

(uY0, 1, 2, u c1h , 0, 48000, 48000 )

(dY0, 1, 2, u c1h , 0, 48000, 48000 )

(uY0, 1, 2, d c1h , 0, 48000, 48000 )

(dY0, 1, 2, d c1h , 0, 48000, 48000 )

No regulation:
signal �2 = 0
(�2 = 1)

(uY0, 0, 1, c1h , 0, 48000, 48000 )

(dY0, 0, 1, c1h , 0, 48000, 48000 )

Figure 3.1: Two-dimensional representation of binomial tree structure in the dynamic
programming approach. Note that, to be able to display the effect of regu-
lation, we assume a regulatory signal ψ1 to have arrived in the transition
from period t = 0 to t = 1.

t− 1. Divestments reduce owned capacity but with a time lag of one period
(the time required to close a deal). Chartered capacity OCt is available imme-
diately and expires at the end of the period. Thus a shipper has considerable
flexibility when determining each period’s chartered capacity.

The firm’s cost structure in an unregulated market, as formalized in Eq. (3.4),
consists of operating, layup, financing, and chartering costs. Costs that are
at low levels in an unregulated market are marked by a subscript l. Operating
costs c1l and c2 apply to the transportation quantity offered, qt, and cover such
expenses as fuel, crewing, and maintenance. When demand is low, unneeded
capacity (i. e., operational capacity minus output qt) can be laid up at cost c3.
Owned capacity can be ordered at cost kl per TEU; in doing so, however, the
shipper incurs financing cost c4 on the capital invested klPIt. Because we
assume that vessels must be paid for when ordered, the financing cost applies
to all capacity PIt. Finally, chartered capacity incurs a per-period charter cost
of c5l:

Ct = c1lqt + 0.5c2q2t + max{OIt +OCt − qt, 0}c3 + PItklc4 +OCtc5l. (3.4)

The market simulated by our model is unregulated in time period t = 0. In
every period, there is some risk that a regulation process is started or (later)
completed with a new environmental regulation coming into force that in-
creases future operating costs. We model a regulatory signal ψt ∈ {0, 1} that
arrives with probability ξ in each period and is observable by the shipper
(Pr(ψt = 1) = ξ). Once the signal has arrived twice, the market becomes
regulated. The first signal can thus be interpreted as the start of political ef-
forts towards regulation and the second signal as its enactment. We count the
signals received up to and including time period t in the variable denoted
Ψt. Our dummy variable αt indicates whether the market is unregulated
(αt = 0 if Ψt < 2) or regulated (αt = 1 if Ψt > 2). We assume regulation to
be irreversible and so, once regulated, a market will remain regulated.

In what follows, we finalize the model by way of adding one of two different
properties: with and without grandfathering. In the first case, existing capacity
is not affected by regulation; this case is detailed in Section 3.3.1. A model with-
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out grandfathering—under which all capacity, whenever ordered or activated,
must comply with the new standards—is developed in Section 3.3.2.

3.3.1 Regulatory Uncertainty with Grandfathering

In this section we assume that regulation allows the existing fleet to be grand-
fathered, which means that new standards apply only to capacity ordered or
chartered since the regulation’s effective date1. Because eco-regulation usually
requires market participants to install more advanced technology and/or use
less polluting fuels, we assume that such regulation entails an increase in in-
vestment, charter, and operating costs for new capacity (as marked by the sub-
script h, for higher costs). Under grandfathering, operating costs are defined as

c1 =


c1l if αt = 0,

c1l if αt = 1 (for capacity ordered pre-regulation),

c̃1h if αt = 1 (for capacity ordered post-regulation).

(3.5)

Operating costs are at relatively low levels c1l in unregulated markets. Even
when new laws are passed, old capacity is exempt and can still be operated at
low cost. Now, however, new capacity incurs higher costs c̃1h that are unknown
before regulation is introduced. This reflects that the sizing of new regulation
and resulting compliance cost are uncertain. We let c̃1h be normally distributed
with c̃1h ∼ N(µc1h ,σc1h) around an expected new cost level. Once realized, c̃1h
remains constant until the simulation’s last period (t = T ). To fit our discrete
dynamic programming model approach, we approximate this distribution as a
trinomial lattice (Haug 2007), where

c̃1h =


µc1he

σc1h

√
2dT with probability pu,

µc1h with probability pm = 1− (pu + pd),

µc1he
−σc1h

√
2dT with probability pd.

(3.6)

We define the probabilities pu of an up-movement and pd of a down-movement
as

pu =

(
e(rdT)/2 − e−σc1h

√
dT/2

eσc1h
√
dT/2 − e−σc1h

√
dT/2

)2
(3.7)

and

pd =

(
eσc1h

√
dT/2 − e(rdT)/2

eσc1h
√
dT/2 − e−σc1h

√
dT/2

)2
. (3.8)

1In both models, it is assumed to be public information whether or not potential regulation
will allow grandfathering of existing capacities.
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Regulation also affects investment costs k and chartering costs c5, since newly
acquired capacity is not covered by grandfathering and so must comport with
any new regulation:

k =

kl if αt = 0,

kh if αt = 1;
c5 =

c5l if αt = 0,

c5h if αt = 1.
(3.9)

We now distinguish unregulated from regulated markets in the cost function
in Eq. (3.10). In a regulated market with grandfathering, own operational ca-
pacity ordered pre-regulation (preOIt) incurs lower operating costs and is used
first in operations. The first line of Eq. (3.10)’s Right-hand side (RHS) represents
operating costs in a regulated market, where the shipper operates old capacity
when it is sufficient (I[qt6preOIt] = 1) and fills the gap with expensive new ca-
pacity at cost c̃1h if the output quantity exceeds pre-regulation capacity preOIt
(I[qt6preOIt] = 0). The second line shows operating cost in the unregulated
market. Layup costs c3 (third line) apply to all unused capacity. In the fourth
line, the financing cost applies to all invested capital. However, ships purchased
pre-regulation incur a lower capital outlay because the cost per TEU is low (kl)
whereas post-regulation capacity is more expensive. We therefore define prePIt
as owned capacity ordered pre-regulation, for which financing costs apply to
low levels of invested capital (klprePIt). Capacity purchased post-regulation
(PIt − prePIt) incurs financing costs on a higher level of capital invested (a
consequence of the higher purchasing cost kh). The two terms in the last line
stand for chartering costs in the regulated market and those in the unregulated
market. Thus we write

Ct(αt, c̃1h,qt,OCt,OIt,PIt,prePIt)

= αt
(
I[qt6preOIt]c1lqt + (1− I[qt6preOIt])(c1lpreOIt + c̃1h(qt − preOIt))

)
+ (1−αt)c1lqt + 0.5c2q2t
+ max{OIt +OCt − qt, 0}c3
+ prePItklc4 + (PIt − prePIt)khc4

+αt(OCtc5h) + (1−αt)(OCtc5l), (3.10)

where

I[qt6preOIt] =

1 if qt 6 preOIt,

0 otherwise;
and preOIt = min{OIt,prePIt}.

(3.11)
Note that operational owned capacity ordered pre-regulation, preOIt, is the
lesser of the pre-regulation pipeline (prePIt) and the available operational ca-
pacity from investment (OIt). In an unregulated market, only OIt is both op-
erational and ordered pre-regulation and thus always lower than prePIt. Once
the market is regulated, preOIt is defined by the lower of operational (already
delivered) and ordered pre-regulation capacity.
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Table 3.1: Definition of state variables and state space.

State space Description

t ∈ T = {0, 1, 2, 3, . . . , T − 1, T } Time period
Ỹt ∈ Y = {Y0,uY0,dY0,u2Y0,udY0,d2Y0, . . .} Demand in time period t
αt ∈ {0, 1} Indicator for whether or not

regulation has been
introduced

Ψt ∈N0 Sum of regulatory signals
received up to and
including time period t

c̃1h ∈ {µc1he
−σc1h

√
2dT ,µc1h ,µc1he

σc1h

√
2dT } Stochastic component of

operational cost in
regulated market

OIt ∈ OI = {24,000z | z ∈N∪ 0} Operational capacity from
investment in time period t
in steps of 24,000 TEU

PIt ∈ OI = {24,000z | z ∈N∪ 0} Pipeline of ordered ships:
operational capacity in
next period t+ 1

prePIt ∈ OI = {24,000z | z ∈N∪ 0} Part of pipeline ordered
pre-regulation

The profit function can be established by subtracting all costs from the rev-
enue realized:

πt(Ỹt,αt, c̃1h,qt,OCt,OIt,PIt,prePIt)

= Ỹtq
1+1/γ
t −Ct(αt, c̃1h,qt,OCt,OIt,PIt,prePIt). (3.12)

Having defined all the variables, we can summarize in Table 3.1 the state vari-
ables and state space of our model. The time period, demand level, state of
regulation, sum of received regulatory signals and level of post-regulatory op-
erating costs—together with the three capacity levels (OIt, PIt, prePIt)—are
sufficient to characterize all the states in which a firm can find itself.

We now focus on the decision options available to the investor. In each time
period, the shipper makes three interrelated decisions. Given the observed
market state, its first choice involves setting the output quantity qt so as to
maximize same-period profits. When capacity overruns demand, the excess is
stored as layup. Second, the output quantity is used to determine how much
capacity OCt should be chartered for this period in case of a capacity shortage.
Finally, the shipper decides about expanding or contracting the owned fleet
by (respectively) investing or divesting. Investment is possible at cost of kl
or kh per unit and with a time to build of two periods; divestment is also
possible, with sales proceeds of ks per TEU, and is realized in the following
time period. We label the units of capacity ordered as investt and those sold as
divestt. Table 3.2 lists our decision variables and their respective action spaces.
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Table 3.2: Definition of decision variables and action spaces.

Action space Description

OCt ∈ OC = {24,000z | z ∈N∪ 0} Chartered capacity
available for
operation in current
time period t

investt ∈ OI = {24,000z 6 OImax − PIt | z ∈N∪ 0} Units of capacity from
investment ordered in
time period t

divestt ∈ OI = {24,000z 6 OIt | z ∈N∪ 0} Units of capacity from
investment sold in
time period t

qt ∈ Q = {24,000z 6 OCt +OIt | z ∈N∪ 0} Transportation output
in period t

The state transfer from one period to the next is described by Eqs. (3.13)–
(3.18). Demand and regulation evolve as described previously. The sum of
regulatory signals Ψt+1 is increased by the most recent signal. New pipeline
capacity is increased by investment decisions and reduced by divestment de-
cisions. To update operational capacity OI, pipeline PIt becomes operational
and is reduced by the capacity sold in period t. In an unregulated market,
pre-regulation capacity prePIt is affected by investment and divestment. When
selling capacity in a regulated market with grandfathering, post-regulation ca-
pacity is sold first because of its higher operating costs. According to Eq. (3.18),
prePIt will be reduced by divestment only if there is no post-regulation capacity
to be sold. At the same time, investment does not increase prePI in a regulated
market:

Ỹt+1 =

uỸt for an “up” movement,

dỸt for a “down” movement;
(3.13)

αt+1 =

1 if Ψt+1 > 2,

0 otherwise;
(3.14)

Ψt+1 = Ψt + ψ̃t+1 (3.15)

PIt+1 = PIt − divestt + investt; (3.16)

OIt+1 = PIt − divestt; (3.17)

prePIt+1 =

prePIt − divestt + investt if αt = 0,

min{prePIt,PIt+1} if αt = 1.
(3.18)

We can now set up the DP’s reward function, which consists of same-period
profits, the project’s discounted expected future value, and the cash flow CIt
from investment and divestment. Observe that the firm maximizes profit πt by
choosing the optimal charter capacity and output. Transportation output can
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range between zero and the total operational capacity available, OIt +OCt, re-
flecting the model’s layup option. Chartered capacity can be freely chosen up
to the maximum charter capacity of OCmax. By making optimal investment
and divestment choices, the firm maximizes not only the project’s discounted
future value (e−rdT E[Vt+1]) but also the cash flow CIt from investment and
divestment. The shipper can divest by selling any owned and available opera-
tional capacity, and it can invest up to the maximum capacity OImax. Formally,
we have the following value function:

Vt(Ỹt,αt, c̃1h,OIt,PIt,prePIt)

= max
06investt6OImax−PIt

{
max

06divestt6OIt

{
max

06OCt6OCmax

{
max

06qt6(OIt+OCt)

{
πt
(
Ỹt,αt, c̃1h,qt,OCt,OIt,PIt + investt,prePIt + (1−α)(investt)

)}}
+ e−rdT E[Vt+1(Ỹt+1,αt+1, c̃1h,OIt+1,PIt+1,prePIt+1)]

+CI(αt, investt, divestt)
}}

, (3.19)

where

CI(αt, investt, divestt) = −investt(αtkh+(1−αt)kl)+ e
−rdT (divesttks). (3.20)

3.3.2 Regulatory Uncertainty without Grandfathering

In Section 3.3.1 we developed a model of investing that accounts for regulatory
uncertainty with grandfathering. However, many regulations target all capacity
regardless of when it was purchased. So in this section we adapt our model to
the case without grandfathering.

The model’s basic logic, including the decision options available, remains
unchanged. However, apart from introducing a new cost parameter, we also
need to adapt the cost and profit functions as well as a transition function
due to a new merit order of operations. New regulation now targets both
legacy capacity and new vessels acquired after legislation is passed. Hence
new capacity operates at the high cost level c̃1h. For old capacity we assume
an additional cost cold, since the same standards must be met but with older
technology:

c1 =


c1l if αt = 0;

c̃1h + cold if αt = 1 for capacity ordered pre-regulation,

c̃1h if αt = 1 for capacity ordered post-regulation.

(3.21)

Note that now, in a regulated market without grandfathering, it is more at-
tractive to operate a new fleet, which changes the merit order of operations.
Investment and charter costs remain unchanged from the grandfathering case
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and so are still defined by Eq. (3.9). Hence our profit function for the no-
grandfathering case changes as follows:

πt(Ỹt,αt, c̃1h,qt,OCt,OIt,PIt,OCt,prePIt)

= Ỹtq
1+1/γ
t −αt

(
I[qt6postOt]c̃1hqt

+ (1− I[qt6postOt])(c̃1hpostOt + (qt − postOt)(c̃1h + cold))
)

− (1−αt)c1lqt − 0.5c2q2t
− max{OIt +OCt − qt, 0}c3
− prePItklc4 − (PIt − prePIt)khc4

−αt(OCtc5h) − (1−αt)(OCtc5l), (3.22)

where

postOt = OIt +OCt − preOIt and I[qt6postOt] =

1 if qt 6 postOt,

0 otherwise.
(3.23)

In comparison with Eq. (3.10), the post-regulation operating cost (in the first
line of the RHS) has changed. In the regulated market, new post-regulation ca-
pacity (regardless of whether owned or chartered) is cheaper to operate than
old capacity and is therefore the preferred method of meeting output demand.
We define postOt as operational capacity acquired or chartered post-regulation;
it consists of all operational capacity except vessels ordered pre-regulation. With
enough post-regulation capacity postOt to meet output, a shipper can oper-
ate at the medium-level price c̃1h. All transportation services exceeding post-
regulation capacity (qt > postOt) are provided at higher cost, c̃1h + cold.

The transition functions that apply to operational owned capacity OIt+1 and
the pipeline PIt+1 remain unchanged. Yet when divesting in a market without
grandfathering, the shipper prefers to sell pre-regulation capacity first because
of its higher operating cost (c̃1h + cold) as compared with post-regulation ca-
pacity. Hence the transition function now becomes

prePIt+1 =

prePIt − divestt + investt if αt = 0,

min{prePIt − divestt, 0} if αt = 1.
(3.24)

The DP’s value function is unchanged from that in Section 3.3.1 because the
choices available to the shipper are identical in both cases. We can therefore
again use Eqs. (3.19) and (3.20).

3.4 solution approach : approximate dynamic programming

When applied to real-world problems, dynamic programming models quickly
reach limits owing to three “curses of dimensionality” (Powell 2011): the expo-
nentially growing size in the state, outcome, and action spaces that can make
DP models computationally intractable. To meet this challenge, we employ ap-
proximate dynamic programming. In particular, we adapt a policy iteration
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algorithm for finite-horizon problems to our purposes, combining that algo-
rithm with a basis function–derived approximation. In this approach we follow
Powell (2011), who provides an invaluable overview of the current state of ADP

and methods available.
In traditional DP, the solving algorithm visits every state S of the problem,

calculates the optimal action a to be taken, and thereby recursively deduces the
project value in every possible state of the model. This program requires that
one solve the classical recursive value function:

Vt(St) = max
at∈At

{C(St,at) + γE[Vt+1(St+1) | St]}

= max
at∈At

{
C(St,at) + γ

∑
St+1∈S

Pr(St+1 | St,at)Vt+1(St+1)
}

. (3.25)

Calculating the expected project value in period t+1 rapidly becomes computa-
tionally burdensome. We substantially reduce the calculation demands by using
ADP, adopting a basis function approach to approximate the post-decision state
value. Thus we obtain—as explained more thoroughly in what follows—the
value function

Vt(St) = max
at∈At

{C(St,at) + γVt+1(SM,a(St,at))} (3.26)

= max
at∈At

{
C(St,at) + γ

∑
f

θtfφf(S
M,a(St,at))

}
. (3.27)

Instead of calculating the project value recursively, the program is now simu-
lated from time period t = 0 to the last period t = T . In every iteration, the
algorithm collects data on actions taken and the resulting value; these data are
used to improve the next iteration’s value function approximation. Although
we cannot calculate the exact solution in this way, ADP allows us to derive near-
optimal results with significantly less calculation effort even for larger-sized
problems. This approach has similarities to least squares Monte Carlo simu-
lation as proposed in Longstaff and Schwartz (2001). However, the approach
based on Powell (2011) and used in our paper applies a recursive estimation
of the approximation parameters after every iteration. It therefore learns with
each simulation and can use the improved knowledge for better results imme-
diately.

3.4.1 Post-Decision State

Approximate dynamic programming reduces computation requirements by es-
timating the expected value of the project in time period t+ 1. To facilitate this
approximation, its value is estimated based not on the pre-decision state (in
period t) but rather on the post-decision state. Whereas the pre-decision state
is the one prevailing before any action is taken, the post-decision state reflects
the world immediately after decision at has been made in state St but before the
random event wt is drawn. Therefore, reaching the post-decision state requires
only the transition functions defined in Eqs. (3.16) and (3.17) together with
Eq. (3.18) in the grandfathering case and Eq. (3.24) in the no-grandfathering
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case. The functions that describe the realization of stochastic eventswt (demand
and regulation) then lead from the post-decision state to the next pre-decision
state in period t+ 1, but they are not needed to describe the post-decision state.

3.4.2 Basis Function Approach

To approximate the value of a post-decision state, we take a basis function ap-
proach that produces value estimates using linear least-squares regression. In-
stead of valuing all possible states St+1 in the next time period, we approximate
this expected value based on information already known in the post-decision
state Sat . In regression analysis, a typical model has the form

y = θ0 +

I∑
i=1

θixi + ε,

where the xi are the independent variables and the θi are the regression co-
efficients. In our model we use a similar approach but make use of the ADP

naming convention.
We start by defining a basis function φf(Sat ), where f ∈ F is a feature of the

post-decision state Sat . Basis functions extract—from the post-decision state—
the information relevant for estimating the project value in period t + 1. We
then use this information to define the value approximation as

Vt(S
a
t | θt) =

∑
f∈F

θtfφf(S
a
t ). (3.28)

We remark that, because the model is time-dependent, it incorporates regres-
sion coefficients θtf that vary with each time period t. These coefficients are
initialized at the beginning of the ADP algorithm; in each subsequent iteration,
they are recursively fitted to the observed data.

Because our model allows for flexible short-term chartering, large portions
of a project’s value can be realized without any investment. Chartered capacity
can be acquired for the current period without affecting future project values,
so increasing capacity solely by chartering can be viewed as a myopic decision.
To identify more clearly the value added by long-term investment, we split up
the value approximation into the value (Vmt (Sat )) due to the myopic strategy
and the approximate value added (V avt ) due to owning investment capacity:

Vt(S
a
t | θt) = V

m
t (Sat ) + V

av
t (Sat | θt). (3.29)

Because the value of a purely myopic charter-only strategy does not factor in to
long-term investment choices, we can safely ignore it when seeking the optimal
decision policy. Our novel approach is to focus solely on the value added in
the post-decision state (i. e., that in excess of value from adopting the myopic
strategy) and to approximate it as follows:

V
av
t (Sat | θt) =

∑
f∈F

θtfφf(S
a
t ). (3.30)
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3.4.3 ADP Algorithm

In dynamic programming, the state and action spaces are fully iterated recur-
sively to derive the exact solution. Because this process is computationally
expensive, approximate dynamic programming uses simulations. For a suffi-
cient number of iterations M, the algorithm simulates the model from period
t = 0 to the final period t = T . In each iteration, the algorithm observes the
value created by the decisions taken and uses this information to update the
estimation coefficients of the basis functions. By iterating sufficiently often, the
algorithm produces an increasingly exact approximation of the value function,
from which better decisions will follow. The algorithm is reproduced as Fig-
ure B.1 in Appendix B.2.

A key challenge in ADP is discovering optimal choices. Decisions depend on
a value approximation that may well be far from accurate in the early iterations.
As a result, the algorithm may choose suboptimal actions because it has not yet
internalized the value of alternatives. We address this problem by augmenting
the algorithm with a mixture of exploitation and exploration. Here exploitation
refers to choosing the value-maximizing response at based on the approxima-
tion, and exploration amounts to randomly choosing actions and thus helping
the algorithm discover values that are, at first, hidden. We incorporate explo-
ration into our model by choosing random actions during the algorithm’s first
1,000 iterations. For subsequent iterations, an ε-greedy approach determines
whether to explore in the iteration—as will occur if a randomly drawn num-
ber e ∼ U[0, 1] is smaller than ε/m, where m is the iteration counter. In this
approach, the likelihood of pursuing exploration decreases over time.

3.4.4 Value Function Approximation

One cannot approximate the post-decision state value without first selecting
suitable basis functions. To derive these, we implemented a DP version of our
model after reducing its state and action spaces enough to enable iterating the
entire state–action space. For this purpose we limited the model to T = 9 time
periods and set the maximum investment and charter capacity to the low levels
of 360,000 TEU. This “toy” model was used to generate data on optimal decision
making so we could evaluate and compare the effectiveness of potential basis
functions.

The basis functions that in the statistical analysis seemed to be most promis-
ing for use were subsequently tested for their performance in the ADP algorithm.
The final basis functions were selected based on performance with respect to
two criteria. First, in an ADP with the same parameters as the DP “toy” model,
the basis functions presented below (excluding φ22) have lead to a close repli-
cation of capacity decisions as seen in the DP “toy” model’s exact and optimal
results. The second criterion was the value added in the full ADP model as com-
pared with a myopic (charter-only) project. Here we compared the average of
actual project values achieved in 10,000 simulations with the average project

2φ2 contains a threshold that needs to be set individually for a specific calibration of the
model. As the threshold is not the same in the “toy” and full models, φ2 could not be tested in
the “toy” model.
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value achieved in a myopic version of the ADP model—that is, one in which no
investment is possible. In this reference model the shipper—after perceiving
demand and the regulatory state of the market—can choose charter and out-
put capacity in each period. That flexibility makes the myopic model a highly
challenging benchmark against which to compare our ADP model.

Of all the basis functions tested, the best performance was delivered by the
following:

φ1 = Ỹt, φ5 = I[Ψt=1]PIt, φ9 = OI
2
t ,

φ2 = max{Ỹt − threshold× (1+ µ)t, 0}, φ6 = I[Ψt=2]PIt, φ10 = PI
2
t .

φ3 = ỸtOIt φ7 = I[Ψt=1]prePIt,

φ4 = ỸtPIt, φ8 = I[Ψt=2]prePIt, (3.31)

In these basis functions, market demand is reflected in φ1; interaction terms be-
tween demand and capacitiesOI and PI are reflected in φ3 and φ4, respectively;
φ5 and φ6 capture the effect of pipeline PI in a market with one regulatory sig-
nal received (Ψt = 1) and in the regulated market (Ψt > 2) and φ7 and φ8
the effect of pre-regulation capacity prePI in these markets. In φ9 and φ10,
the squared versions of (respectively) operational capacity OI and pipeline ca-
pacity PI introduce curvature to the approximated value function and thereby
prevent the model from always choosing extreme capacities. Basis function φ2
considers demand above a certain threshold. This helps us approximate option-
like payoffs in the value function, and we increase the threshold each period by
market drift µ. We set a threshold of 29m in our expression for φ2, but we omit
this basis function in simulations without regulatory uncertainty.

3.5 investment behavior under regulatory uncertainty

In this section we calibrate our model to the container shipping industry toward
the end of developing insight into optimal investment levels and strategy under
regulatory uncertainty. We use the reduction in allowed limits of sulfur oxide
emissions as an example test case, but the model can be adapted to address the
effects of other regulations also.

3.5.1 Regulation of Sulfur Emissions in Maritime Shipping

The IMO has acknowledged that shipping is a major contributor to global emis-
sions of SOx (i. e., sulfur dioxide (SO2), sulfur trioxide (SO3), and many other
compounds containing both sulfur and oxygen), and it has begun to lower the
permissible levels of emissions. In Annex VI of the International Convention
for the Prevention of Marine Pollution from Ships (MARPOL), the IMO laid out
a staged approach to reducing sulfur emissions worldwide and also in special
emission control areas (ECAs) like the Baltic and North Seas and the English
Channel. The limits posted in Table 3.3 show the gradual lowering of admissi-
ble SOx emissions. Because the strictest MARPOL limits are still 100 times higher
than those allowed in vehicular road traffic (Brynolf et al. 2014), the future
almost certainly holds further regulatory action on this front.
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Table 3.3: Sulfur oxide emission limits.

Outside an ECA Inside an ECA

4.5% m/m prior to 1 January 2012 1.5% m/m prior to 1 July 2010

3.5% m/m on and after 1 January 2012 1.0% m/m on and after 1 July 2010

0.5% m/m on and after 1 January 2020

0.1% m/m on and after 1 January
2015

Adapted from International Maritime Organization (2016b). ECA = emission control area;
m/m = mass per mass (i. e., percentage mass of sulfur oxide gases in the total mass of the
emission).

There are two main technological approaches available for compliance with
MARPOL Annex VI: shippers can either shift to low-sulfur fuels or clean con-
taminated exhausts using “scrubbers”. Using low-sulfur fuels requires little in-
vestment, but it does raise operating costs significantly because such fuels are
60%–70% more expensive (Schinas and Stefanakos 2012). Installing a scrubber
requires sizeable investment, especially as a retrofit, and also increases opera-
tional costs slightly because of reduced fuel efficiency (Lindstad and Eskeland
2016). Retrofitting a ship of the size used in our calibration would cost about
13 million US dollars (USD) (200 USD/kW engine power) in investment cost (Den
Boer and Hoen 2015) and about 3 million USD of additional yearly operating
costs for maintenance, operating materials and reduced fuel efficiency (Lind-
stad et al. 2015, Van Rynbach et al. 2015). The IMO’s efforts to reduce sulfur
emissions pose financial challenges to the shipping industry, and they offer fer-
tile ground for our numerical analysis. For this we consider the reduction of the
worldwide SOx emission limit from 3.5% to 0.5% sulfur content and assume that
vessels ordered or chartered in a regulated market are equipped with scrubber
technology. Vessels ordered before the introduction are assumed to comply
with regulation by switching to low-sulfur fuels if they are not protected by
grandfathering.

3.5.2 Model Calibration

Our numerical study uses the financial parameters listed in Table 3.4; the in-
dicated values are derived from AECOM (2012), a document that reports on
the cost structure of a 12,000-TEU Neo Panamax container vessel. This vessel
class is used as the basis for our study, in part because we expect it to gain in
importance following expansion of the Panama Canal. We assume that a vessel
completes six round-trips between Asia and the United States each year. Given
an average utilization of 80%, this vessel’s yearly capacity is 115,200 TEU. If
the market is unregulated then we assume that a newly built ship costs about
105 million (all monetary values are given in US dollars), or a per-TEU invest-
ment amount kl of roughly 900. Divestments of owned capacity can be exe-
cuted at a sales price of ks = 300 per TEU.

Operating costs for bunkering (i. e., fueling), personnel, and regular main-
tenance amount to some 89 million each year and are split between the cost
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Table 3.4: Base-case parameters used in all models (unless indicated otherwise).

Parameter Value Parameter Value

T 15 (years) c2 0.00008 (USD)
γ −1.4 c3 28 (USD)
µ 0.03 c4 0.02

σ 0.1 c5l 140 (USD)
r 0.06 c5h 160 (USD)
ξ 0.3 kl 900 (USD)
c1l 700 (USD) kh 1,000 (USD)
E[c̃1h] 800 (USD) ks 300 (USD)
σc̃1h 0.05 OI & OC 0 6 x 6 1,080,000 (TEU)
c1ot 20 (USD) Y0 18,000,000

parameters c1l = 700 and c2 = 0.00008—values that allow unit costs to grow
slowly with rising capacity. We adopt this approach to reflect the importance
of economies of scale and also because increasing marginal costs are irrelevant
except at high levels of capacity. If the ship is not operated then no bunkering
is needed; in that case, the vessel incurs lower layup costs of c3 = 28 per TEU.
For acquired ships, we assume that 25% of the investment cost was financed us-
ing debt at an interest rate of 8%. Spread across the overall investment volume,
financing costs amount to 2% (c4 = 0.02).

We assume that in each period there is a constant risk (ξ = 0.3) of a regulation
signal, while regulation is enacted once the second signal has been received.
Once the market is regulated, we let the investment cost rise to kh = 1,000,
reflecting the additional cost of about 13 million USD for a scrubber. Operating
costs in the regulated market are normally distributed with a mean expected
value of E[c̃1h] = 800 and a standard deviation of σc̃1h = 0.05, representing the
additional operating cost mainly driven by a loss of fuel efficiency. Once the
post-regulation cost is unveiled, it remains constant until the simulation’s last
period. In a regulated market without grandfathering, old capacity must be
operated on low sulfur marine diesel oil (MDO) which is more expensive than
using a scrubber. The cost disadvantage of capacity based on old technology is
fixed at a low value of cold = 20.

The charter rate is determined based on information from VHSS Vereinigung
Hamburger Schiffsmakler und Schiffsagenten e.V. (2015), a publisher of rates
for different classes of vessel. We use the rate for the largest published vessel
class and then scale it to a 12,000-TEU vessel; this results in a charter cost of
c5l = 140, which rises to c5h = 160 when the market is regulated. The markup
in the regulated market represents the cost of installing a scrubber that the
owner charges to the charterer with an assumed amortization period of 5 years.

The remaining market parameters are set as follows. The model runs over
T = 15 time periods, the price elasticity is γ = −1.4, the market drift is µ = 0.03,
the standard deviation of demand is σ = 0.1, and the risk-free interest rate is
set at r = 0.06 in the base-case scenario.
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In the numerical study, we also calculate the regulation’s impact on yearly
emission levels. For this purpose we assume ships in the unregulated market to
operate on heavy fuel oil (HFO) with 3.5% m/m sulfur content. In the regulated
market, all vessels that need to comply with the new regulation are assumed to
be using scrubbers or low-sulfur fuels that reduce the sulfur emissions to the
equivalent of 0.5% sulfur. Based on the distance between Asia and the United
States, we assume the vessel to consume 0.6 tons of fuel per TEU transported on
the one-way route. Multiplying this assumed fuel consumption with the sulfur
content yields the resulting SOx emissions.

3.5.3 Numerical Study

We now simulate the ADP model—using the parameters previously stipulated—
to analyze the effect of regulatory uncertainty on optimal investment in the
shipping industry. Toward that end, we start by simulating a comparison sce-
nario without regulation; we then compare it to a model with regulatory uncer-
tainty and assess its effects on capacity outcomes. Finally, we present a scenario
with increased post-regulation costs to better understand the impact of high
regulatory uncertainty in this market. To obtain a sufficiently large set of data,
we simulate each model 10,000 times and derive implications based on average
simulation results. Model runs are performed with the following tuning pa-
rameters, which yield reasonable outcomes. We iterate the model M = 15,000
times, incorporate exploration for the first 1,000 iterations, and use ε = 10 for
the ε-greedy exploration thereafter. With regard to the step-size, we set δ1 = 0.4
and δ2 = 0.8. A sensitivity analysis, in which we assess the variation in project
values induced by changes in the most relevant model parameters is shown in
Table B.2 in Appendix B.3. Relative changes of project values are small in all
cases, which highlights the robustness of the proposed model. Note also, that
there is only little difference in resulting project value variations between the
models with and without grandfathering. As a limitation, the model does not
generate added value—on top of the ambitious benchmark established by the
flexible myopic strategy3—when market volatility exceeds σ = 0.2. This, how-
ever, does not restrict the model’s application to the shipping industry: with
a 7.0% standard deviation of yearly container shipping demand between 2009

and 2016 on the trade lane analyzed (Far East to United States), there is a solid
buffer for the model to be applicable even if the industry should become more
volatile. (Alphaliner 2012, 2015, 2017) Additionally to demand uncertainty, the
model allows for volatility from potential market regulation and cost uncer-
tainty.

The simulation outcomes with (resp., without) regulation are plotted in Fig-
ure 3.2 as solid black (resp., dashed red) lines; under both conditions we use the
base-case parameters from Table 3.4. The lines plot mean values based on 10,000

simulations, while the “whiskers” indicate standard deviations. Results in mar-
kets where regulation features grandfathering are displayed in the figure’s left
column, and the no-grandfathering results are shown in its right column.

3As chartering is chosen after uncertainty is resolved, the shipper can always choose the
optimal capacity and has no risk of incurring a loss.
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Figure 3.2: Results for simulations without regulatory uncertainty (red) and the base-
case model with regulatory uncertainty (black). Base-case parameters, as
listed in Table 3.4, apply with the following exception: the model without
regulatory uncertainty (red) is calculated with probability of regulation ξ =
0. All calculations are performed with M = 15,000 ADP iterations.

In the market without regulation risk, investment behavior is driven solely
by stochastic demand. Absent regulation, there is no need (or way) to distin-
guish between cases with or without grandfathering. Total capacity, including
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owned and chartered ships, increases in a fairly stable manner. We can see also
that owned capacity makes up a large part of total capacity and that chartering
is used mainly to compensate for unexpected changes in demand. Use of the
layup option is observed even in this simulation without regulatory uncertainty.
Excess capacity may be parked in layup as a consequence of two opposed ef-
fects that are relevant to identifying optimal capacity (Aguerrevere 2003). On
the one hand, the cost of excess capacity (in the form of layup and financing
costs) argues for a relatively conservative choice of capacity. On the other hand,
capacity shortages during periods of strong demand amount to an opportunity
cost of profits forgone; this latter dynamic argues for a relatively aggressive
capacity decision. Which of these two effects dominates, as well as the amount
of excess capacity observed, depends on both market volatility and the cost pa-
rameters. The results from this model without regulatory uncertainty can serve
as a base case for comparison.

Next, we extend the model by adding the possibility of new regulation be-
ing introduced. The market is unregulated in the first time period but, with
probability ξ = 0.3, regulatory signals can arrive in any of the following pe-
riods. In a market with regulatory uncertainty but without grandfathering
(black lines in graphs on the right side of Figure 3.2), we derive two main re-
sults. First, compared to our no-regulation model, optimal investment in own
capacity declines—which, in turn, reduces total capacity. Potential regulation
increases operating, investment, and charter costs, which means that freight
rates would also have to rise to keep operating capacity stable. Since demand
is no different than in our no-regulation scenario, the shipper must reduce ca-
pacity to maximize its profits. Regulation without grandfathering thus leads to
reduced market capacity, which results from an increased cost base for ships
acquired (i. e., both pre- and post-regulation).

Our second main result from the market without grandfathering is that, de-
spite reduced investment, chartering remains stable and even increases in the
later periods. This finding underscores the charter option’s attractiveness: the
shipper can observe market conditions before determining its optimal charter
capacity, and the charter contracts run for just a single time period. Chartering
is a slightly more expensive yet extremely flexible source of capacity. Especially
in volatile markets with regulatory uncertainty, it is preferable to rely more on
chartering—and to refrain from investing heavily in owned capacity—until that
uncertainty is resolved.

The overall investment and operating behavior in markets without grandfa-
thering is also reflected in the resulting emission levels. On average, total emis-
sions are reduced compared to the base case without regulatory risk. Note that
the reason for the seemingly small reduction in overall emissions is a result of
simulations in which the market becomes regulated during the time horizon
considered and simulations in which the market remains without regulation.

In the scenario with grandfathering (left side of Figure 3.2), the anticipated
regulation excludes any capacity ordered before that regulation takes effect.
That exception fundamentally changes the market’s economics: whereas new
ships are cheaper to operate in the no-grandfathering case, old capacity is more
attractive in the grandfathering case. This claim is supported by three key take-
aways from our simulations. First, as compared with the no-regulation scenario,
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Figure 3.3: Results for simulations with regulatory uncertainty (red) and with in-
creased post-regulation operating costs (black). Base-case parameters, as
listed in Table 3.4, apply with the following exception: the model with in-
creased post-regulation cost (black) is calculated with E[c̃1h] = 1,000. All
calculations are performed with M = 15,000 ADP iterations.

we find higher levels of total capacity—especially during the early time periods.
Note that this increased capacity is driven by the owned capacity ordered prior
to regulation being introduced. The pre-regulation investment capacity prePI
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is built up to secure a low–operating cost base for the possibly regulated future.
Our second finding is that, under regulation, chartering is cut back severely
and replaced with investment. Such behavior confirms that, in a regulated mar-
ket, old owned capacity is cheaper to operate than either chartered or newly
ordered ships. Since the chartering in our model is contracted on a yearly basis,
it follows that chartered capacity is always affected by regulation. Third, the
share of total capacity in layup increases significantly as compared with the
no-regulation scenario. In this example, optimal outcomes result from up-front
investment in excess of operational needs; value is generated not by making
myopic decisions but by accounting for the repercussions of today’s decision
on future profits.

The upfront investment also leads to repercussions on the emission levels
resulting from operations. As shippers heavily invest into old technologies that
are cheap to operate, the environmental regulation even leads to a slight in-
crease in total emissions. Apart from having created uncertainty for shippers,
the policy has counteracted the original goal of reducing environmental pollu-
tion. While this is a transitional effect, it will take many years until old vessels
protected by grandfathering are nearing the end of their lifetime and are re-
placed by ships that need to comply with the new emission limits.

Overall, then, it is optimal—in a market with regulatory uncertainty and
grandfathering—to boost investment before regulation is enacted and thereby
to lock in a low-cost base. This conclusion is relevant to shippers, who can
improve their odds of long-term success by investing pre-regulation (in the
grandfathering case), and even more relevant to regulators. By creating uncer-
tainty about the details of future regulation (when grandfathering is expected),
regulators unwittingly encourage current investment with two adverse effects.
First, the new orders are probably still equipped with technologies targeted for
replacement by new regulation. This uncertainty can therefore even increase
total emissions for a long transitional period and thereby undermine regula-
tory targets. Second, regulatory uncertainty with grandfathering can lead to
additional build-up of excess capacity. That outcome can hasten deteriorating
market conditions in an industry that repeatedly suffers from excess capacity
and hence from depressed freight and charter rates. While excess capacities
exert downward pressure on market prices, they do not reduce the transporta-
tion output by the shipper. An increase of emissions can therefore be expected,
which counteracts the regulatory objective. It is therefore imperative that the
regulator minimize the duration of uncertainty, especially if grandfathering is
likely.

In Figure 3.3 we analyze how the possibility of more drastic regulation af-
fects capacity decisions. Dashed red lines plot the market with regulatory un-
certainty and base-case parameters from Table 3.4, while the black lines plot
a comparable scenario but with expected post-regulation operational costs in-
creased to E[c̃1h] = 1,000. The results accord with those displayed by, and
discussed with reference to, Figure 3.2: the risk of tighter regulations promotes
up-front investment with an increase in total emissions provided that regulation
allows for grandfathering. Without grandfathering, however, increased regula-
tory risk reduces investment in own capacity and also charter capacity; in this
case, the market runs the risk of contracting. Therefore, regulators must remain
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cognizant of how uncertainty-inducing legislative processes can adversely af-
fect the real economics of the industry. There are two main limitations to the
findings derived from this model. First, we have assumed a monopolistic mar-
ket structure which we believe would only change the size of the effects found
but not the qualitative findings. Second, the proposed model is an approxi-
mate dynamic program, which means that solutions obtained are believed to
be near-optimal strategies. It is possible, however, that there exist better strate-
gies than the ones found by this approximative algorithm. When applied to
other settings, the model needs to be re-calibrated to deliver reliable results.

3.6 conclusion and implications for future research

This paper proposes a real options model to analyze optimal investment un-
der regulatory uncertainty. We employ both dynamic and approximate dy-
namic programming to implement and solve the model computationally. To
derive insights concerning the effect of regulatory uncertainty on investment
decisions, we apply the proposed approach to international maritime shipping.
This industry is characterized by extremely capital-intensive projects, the need
to make foresighted decisions (a consequence of time required to build and
the durability of ships), and a recent trend toward regularization that has bur-
dened the market with another source of uncertainty. Our proposed investment
model contributes to the real options literature by combining the characteris-
tics of many capacity decisions—an investment and divestment option, time to
build, an alternative charter option, and operational flexibility—that are rele-
vant to the real-world setting examined here. We believe that this is the first
paper to combine these factors with regulatory uncertainty when analyzing the
latter’s effects on optimal investment. We contribute also to maritime shipping
research by raising awareness for, and by analyzing the influence of, regulatory
uncertainty. We establish some directional findings with respect to optimal in-
vestment under regulatory uncertainty, and in so doing we identify another
possible source of continued excess capacity in this market.

We derive two principal results from simulating the model. First, we find
that uncertainty about future regulation with grandfathering leads to a signif-
icant increase of investment in capacity and an increase of industry emissions.
According to the model, shippers should deliberately build up capacity before
regulation is introduced to secure sustained low operating cost levels. In fact,
we show that capacity rises above expected operational needs and so ends up
significantly increasing the market’s excess capacity. Regulators would do well
to focus on this result, since it indicates that regulatory uncertainty (with grand-
fathering) incentivizes market participants to invest in more old capacity than
is currently needed—a dynamic that is clearly at odds with the regulator’s
mandate to reduce the negative environmental effects of the industry.

Second, in a market with regulatory uncertainty but without grandfather-
ing, we find that the uncertainty discourages investment and reduces overall
emissions. More specifically, shippers spend less on developing their own ca-
pacity and focus more on chartered capacity. Yet the increase in chartering
in later periods does not entirely compensate for capacity contraction on the



3.6 conclusion and implications for future research 61

investment side, so total market capacity shrinks. Without grandfathering, reg-
ulatory uncertainty puts markets in a “waiting” mode where chartering—the
more flexible capacity—is preferred until uncertainty is resolved. In real mar-
kets, the reduction of total capacity may become even more pronounced if the
availability of chartered capacity is limited.

In short: regulatory uncertainty has a strong effect on the investment deci-
sions made by maritime shippers, and investors as well as regulators should be
well aware of its likely repercussions. Furthermore, it is not just the regulation
itself but also the preceding uncertainty that amounts to an “intervention” that
can move markets in sometimes unexpected or unwanted directions. Intrigu-
ing topics for future research are to test these findings empirically or to expand
the analytical model so that it offers investors a technology choice when facing
regulatory uncertainty.

This last question is especially relevant as investors need to build a fleet of
vessels that is able to comply with upcoming regulation at the lowest cost pos-
sible. To this end, they will have to decide about what vessel technologies to
invest in. Such technology choice when facing uncertain future regulation is
the focus of the next chapter, in which we both the effects of regulatory uncer-
tainty on optimal technology choice and the effectiveness of different regulatory
regimes in reducing the environmental footprint of maritime shipping.
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T E C H N O L O G Y C H O I C E U N D E R E M I S S I O N R E G U L AT I O N
U N C E RTA I N T Y I N I N T E R N AT I O N A L C O N TA I N E R
S H I P P I N G

The following chapter is based on Haehl and Spinler (2017b). This manuscript is cur-
rently under revision after a “revise and resubmit” decision from the European Journal
of Operational Research (EJOR).

4.1 introduction

Uncertainty concerning environmental regulation affects capacity decisions and
technology choice decisions in many industries, and it is of growing importance
especially in ocean shipping. International container shipping is the most effi-
cient means of transport, yet it contributes significantly to worldwide emissions
owing to the sheer size of the industry. Moreover, environmental regulation
has focused less on maritime shipping than it has on land-based sectors (Lister
et al. 2015). Hence most such shipping still operates on “residual” fuels and
other technologies that contribute to worldwide pollution and the emission of
greenhouse gases, and there are strong barriers to the adoption of ameliorating
technological innovation. These barriers include cost and capital expenditure
factors, industry practices, and problems of a principal–agent nature (Acciaro
et al. 2013). The maritime shipping sector is a major contributor to worldwide
emissions: it accounts for (approximately) 3% of global carbon dioxide (CO2)
emissions, 13% of nitrogen oxide (NOx) emissions, and 12% of sulfur oxide (SOx)
emissions (International Maritime Organization 2014).1 In recent years, the
International Maritime Organization (IMO) has become increasingly active in
introducing regulations that aim to reduce the industry’s ecological footprint.
Among the new rules, most prominent are the limits on sulfur oxide emission
introduced by Annex VI of the International Convention for the Prevention of
Marine Pollution from Ships (MARPOL). Under this ruling, the IMO sets maxi-
mum permitted fuel sulfur content and maximum levels of the resulting SOx

emissions depending on whether ships operate on the high seas or within spec-
ified emission control areas (ECAs), where lower limits apply. Those emission
limits will be further reduced in a staged approach, eventually forcing ship
operators to adopt various costly abatement options—for example, switching
to more expensive distillate fuels, installing exhaust gas–cleaning systems, or
operating on liquefied natural gas.

The increase in regulatory activities by institutions (such as the IMO) and in-
dividual member states causes uncertainty for ship operators about the future
regulatory environment, which fundamentally affects investment economics.
Regulatory compliance is widely acknowledged as a factor that drives capacity

1Here NOx denotes nitric oxide (NO) and nitrogen dioxide (NO2); similarly, we use SOx as
shorthand for sulfur monoxide (SO), sulfur dioxide (SO2), sulfur trioxide (SO3), and so forth as
well as for other, more complex sulfur compounds such as S2O2, S6O2, and S7O2.
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decisions in general and, more specifically, investment in emission abatement
technology (Acciaro 2014). Since regulatory compliance has become so impor-
tant, it follows that accounting for expected regulations, the resulting uncer-
tainty, and available technology options are all key to successful investment
decisions in shipping and also in other industries.

Our paper presents an investment model that allows for identifying the opti-
mal technology and capacity choices under regulatory uncertainty. Both analyt-
ically and in a numerical study, we investigate optimal decision making—from
the ship operator’s perspective—as a function of market conditions and the
regulatory uncertainty that shippers face. We also analyze different regulation
methods while adopting the perspective of a regulator seeking to achieve tar-
geted emission levels in a cost-effective manner. To address these issues, we
develop a regime-switching investment model via a two-phase approach. This
real options model accommodates the possible introduction of environmental
regulation, with the result that both operating costs and emission levels are
stochastic; in addition, it incorporates an option to invest in capacity offered by
different technologies, the alternative of chartering, and a layup option for ex-
cess capacity. Our approach extends the model of Drake et al. (2016) by adding
a charter option, modeling an endogenous price function as well as the possi-
bility of switching from an unregulated to a regulated market, and accounting
for emissions more explicitly.

This paper contributes to the literature in three ways. First, we present an
extended model that enables one to consider investment decisions under regu-
latory uncertainty, which is characteristic of many industries. Second, by adopt-
ing the investor’s viewpoint we are better able to explain the optimal technol-
ogy choice—that is, the choice that maximizes profit while ensuring regulatory
compliance. Third, we help regulators understand the outcomes and effective-
ness of two different regulation approaches: a strict cap on emissions and a
penalty (via taxation) for failing to meet emission targets. Both scenarios are
analyzed in detail so that we can better explicate the trade-offs that arise when
deciding on a regulatory approach.

The paper proceeds as follows. Section 4.2 reviews the extant research on
investment under uncertainty and on regulatory uncertainty both within and
outside the shipping industry. In Section 4.3, we start by taking regulatory un-
certainty as given and develop—under some basic assumptions—the analytical
model for technology investment; we then examine the results that follow from
this approach. Next we relax those assumptions by way of a numerical exten-
sion of the model and detail its implications for optimal investment behavior.
Section 4.4 adopts the regulator’s perspective and compares the cost effective-
ness of two alternative regulatory regimes at achieving emission targets. In
Section 4.5 we discuss what the proposed models imply for optimal investment
decisions by ship operators and also for efficient market regulation. Section 4.6
concludes.
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4.2 literature review

Our proposed model is related to several strands of existing literature, which
are briefly reviewed here. In particular, that research addresses real options
methods for investment appraisal under various types of uncertainty, regu-
latory uncertainty per se, and choosing technology with an eye toward both
profit maximization and regulatory compliance.

Real options methods are well known to be appropriate for valuing invest-
ments under uncertainty (Copeland and Antikarov 2001, Dixit and Pindyck
1994). Scholars have applied this approach to project valuation under opera-
tional flexibility (Brennan and Schwartz 1985, Mossin 1968), with investment
lags (Aguerrevere 2003, Bar-Ilan and Strange 1996), and in oligopolistic mar-
kets featuring strategic interaction (Aguerrevere 2009, Grenadier 2002, Sødal
2006, Williams 1993). Such approaches have also been applied to the industry
of maritime shipping, where Bendall and Stent (2003) show that real options
better capture—than do traditional discounted–cash flow methods—the value
of various options for deploying purchased ships. Bendall and Stent (2005)
value the introduction of a new express liner service with flexible employment
strategies, and Bendall and Stent (2007) allow new shipping capacities to be
used as expansion or replacement assets. Sødal (2006) uses options to analyze
market entry and exit decisions in an oligopolistic shipping market. The dry
and wet bulk markets are examined with regard to market efficiency and to the
switching between these markets by combination carriers in Sødal et al. (2009),
and the value added due to the flexibility of switching (between wet and dry
bulk markets) by combination carriers is evaluated in Sødal et al. (2008). Rau
and Spinler (2016) develop a container shipping–specific real options model
with strategic interaction and find that strategic interaction increases firm value.
Their argument for alliance formation is addressed in a follow-up study by Rau
and Spinler (2017), who show that real options methods outperform alternative
methods even in a competitive setting with deliberate formation of alliances.

Regulatory uncertainty and its effect on optimal investment decisions have
been debated in empirical work and also in research employing real options
approaches—especially as regards the energy production sector. Most studies
in the real options literature posit that regulatory uncertainty reduces or at least
delays investment. For example, Reinelt and Keith (2007) analyze the cost of
regulatory uncertainty for a technology choice investment problem in energy
production. They find that regulatory uncertainty increases the social cost of
emission abatement, and delays investment in new gas-fired power plants, if
gas prices are expected to be high. Fuss et al. (2009) likewise find that the tran-
sition to renewables is postponed when the trading prices for SOx emissions
are volatile; yet they also find that periodic jumps in emission price reduce in-
vestment less than do policies that change in a more continuous fashion. Blyth
et al. (2007) accordingly recommend that regulators reduce long-term policy
uncertainty if they wish to promote investment in energy-efficient technolo-
gies. Ritzenhofen and Spinler (2016) find only a limited effect of regulatory
uncertainty under a regime of feed-in tariffs on investment, but they argue
that this result reflects particular modeling assumptions; they expect that op-
timal investment levels would be lower if regulators were allowed to modify
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support regimes retroactively. The claim that uncertainty has a negative effect
on investment incentives is supported also by some empirical studies on this
subject. Both Fabrizio (2013) and Gulen and Ion (2015) find that regulatory
uncertainty reduces investment in the energy sector and also in a US sample
spanning multiple industries. The results reported by Gulen and Ion suggest
that this effect is even stronger when investment is irreversible or when firms
are heavily dependent on government spending.

The other side of this debate usually adopts a resource-based view of the firm.
With regard to power generators in Germany, Hoffmann et al. (2009) argue that
policy uncertainty does not postpone investment by firms able to secure a com-
petitive resource, leverage complementary resources, or alleviate institutional
pressure—as may occur when societal pressure induces the firm to behave in
an environmentally responsible manner. Rodriguez Lopez et al. (2017) conduct
a survey of 250 participants in the European Union’s Emissions Trading Sys-
tem and find that regulation-induced uncertainty (e. g., about abatement costs)
makes a firm more likely to invest. Those empirical findings are seemingly con-
firmed by a real options analysis of uncertain tax policy offered by Hassett
and Metcalf (1999). The authors find that, although firm-level investment may
be delayed if cost follows a continuous-time random walk, the opposite dy-
namic may prevail if tax policy follows a stationary and discrete jump process.
These results are in accord with the findings in Fuss et al. (2009) just mentioned.
Boomsma et al. (2012) also document both deferral and promotion of invest-
ment for increased policy uncertainty in the energy sector, where the outcome
varies as a function of the regulator’s chosen support scheme(s).

The third related line of research is the modeling of technology choice. In
the non-shipping literature, the aforementioned model of Reinelt and Keith
(2007) also treats technology choice and offers the power generation firm vari-
ous options, including gas-fired plants, for the replacement of an old coal-fired
plant. Fuss et al. (2009) also allow for investment in fossil-fuel technology, with
and without carbon capture, as well as in alternative renewable energy sources.
They find that—under SOx emission price uncertainty—firms prefer to invest
in coal-fired power plants, to retrofit carbon capture technology when that ap-
proach is dictated by the economics of SOx penalties , and to make the transition
to renewable energies only as a last resort. This behavior pattern reflects the an-
ticipated benefit of waiting until uncertainty is resolved. Kettunen et al. (2011)
provide another example of using real options approaches to study technology
choice in the energy business. With regard to shipping, Acciaro (2014) uses real
options to compare different means of complying with the limits established for
emission control areas. He finds that immediate retrofitting of liquefied natural
gas (LNG) propulsion is less profitable than switching to low-sulfur fuels, de-
spite the latter approach’s high cost. The advisability of deferring investment in
an LNG retrofit depends on the price difference between high- and low-sulfur
fuels. Patricksson et al. (2015) establish a fleet renewal model in which a fleet’s
ships can either switch fuel when entering ECAs, avoid ECAs altogether, or be
retrofitted with so-called scrubber systems; the second stage of this model in-
corporates allocation of capacity to different trade lanes. These authors show
that considering new regulation and technology choices are crucial elements of
maritime investment decision making.
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The model that we propose combines a capacity investment problem with
technology choice under regulatory uncertainty. We extend the model of Drake
et al. (2016), who analyze the effects of an emissions tax regime and an emis-
sions cap-and-trade regime on technology choice in a two-stage model. In
particular, we incorporate the following new features: an endogenous price
function, a stochastic introduction of regulation that increases operating costs,
and an additional charter option. These features render the model suitable for
the analysis of shipping markets and of the possibility that emissions will be
regulated. We also model explicitly the environmental effect of regulation on
emissions in order to compare the effectiveness of two different regulatory poli-
cies: a cap versus a tax on emissions.

4.3 investment under regulatory uncertainty

In this section we formulate a two-stage, regime-switching real options model
for technology choice under regulatory uncertainty, thereby extending a model
proposed by Drake et al. (2016). Our model—in all its forms—presupposes a
monopolistic market setting. Even though the container shipping sector more
closely resembles an oligopoly, the monopoly assumption makes it easier to an-
alyze how regulatory uncertainty affects the firm’s choice of technology. This
assumption also allows us to incorporate more features of the market being
considered and facilitates isolating their impact on optimal decision making.
We are confident that the effects of market characteristics are qualitatively simi-
lar in monopolistic and oligopolistic settings, as Aguerrevere (2003) has shown.
Because we aim to identify the directional effects of regulatory uncertainty and
are not concerned with the precise sizing of markets, we have adopted the
assumption that this setting is a monopolistic one.

We begin by deriving an analytical market model that yields general analyt-
ical results. Yet because this version of the model requires strict assumptions
that need not apply in practice, we shall later relax those assumptions and de-
rive implications by way of a numerical study in which the model is calibrated
to the container shipping industry.

4.3.1 Analytical Model of the Shipping Market

The analytical investment model introduced next forms the basis for all exten-
sions developed later in the paper. After presenting this model in Section 4.3.1.1,
we derive analytical results in Section 4.3.1.2. A numerical extension with less
strict assumptions then follows in Section 4.3.2.

4.3.1.1 Investment under Market and Regulatory Uncertainty

We consider a monopolistic ship investor/operator in a stochastic model with
two phases: an investment phase and an operating phase. In the first of these
phases, the investor may acquire shipping capacity based on various technolo-
gies that feature different investment costs, operating costs, and levels of envi-
ronmentally damaging emissions. At the time of investment, the shipping firm
faces uncertainty about future demand and about whether (or not) the market
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will be regulated. These uncertainties are resolved after phase 1. In phase 2,
the investor can operate the “owned capacity” acquired in phase 1 and can also
resort to chartering should demand exceed that shipping capacity. The shipper
is free to decide whether or not owned capacity is employed in phase 2 as well
as which technology is employed first.

The model can be more easily understood if we first consider phase 2, the
operating phase. In a monopolistic market, container transport can be offered
at market price p = βDγ; thus the freight rate depends on demand D and the
“tuning” parameters β and γ. Demand in our model is a stochastic parameter,
but uncertainty is resolved before the second phase and so demand is a known
quantity at that point. Both the market price p and demand D refer to one
container being transported one way on a round-trip. Transportation demand
can be served by the shipper using its owned capacity acquired in phase 1.
Such capacity can be based on different technologies, which we label using
the subscript i. Equation (4.1) formalizes the total costs incurred by a ship’s
operator, in phase 2, as a function of the transported quantity qi. Our model
explicitly accommodates the stochastic risk that regulation will be introduced
in the market. The parameter α indicates whether the market is unregulated
(α = 0) or regulated (α = 1) in the operating phase.

In an unregulated market, we assume that capacity enabled by any partic-
ular technology can be operated in its standard configuration (i. e., as it has
been delivered to the shipper). Then the owned capacity employing technol-
ogy i can be operated at cost co,std

i per twenty-foot equivalent unit (TEU) trans-
ported. In a regulated market, compliance requires that the shipper’s vessels
be retrofitted; the result is a higher operating cost, co,ret

i , for a unit of capacity
based on retrofitted technology i.

Instead of operating its owned capacity, the shipper also has what is known
as the layup option. A shipper that chooses to operate less than its available
shipping capacity, Ki, incurs a layup cost of cl. Note that both fixed and flex-
ible costs are included in the operating cost coi , which applies to all capacity
operated in the market. Ships in layup do not incur this cost; instead they incur
the lower layup cost cl, which represents only the fixed part of operating costs
(i. e., crewing and maintenance). Finally, the shipper incurs a debt financing
cost on invested capital. While Ki denotes the units of owned capacity, ki de-
notes the price per unit of capacity in which the firm invested during phase 1.
The term cf stands for the debt financing cost as a percentage of total invested
capital. Thus the overall cost function C is expressed formally as

C =
∑
i

[
((1−α)co,std

i +αco,ret
i )qi + max{Ki − qi, 0}cl +Kikicf

]
+ ((1−α)co,std

c +αco,ret
c + cc)qc,

(4.1)

where
qc = max

{
D−
∑
i

Ki, 0
}

.

When stochastic demandD exceeds available owned capacity
∑
i Ki, the ship-

per can bridge that capacity gap by accessing the charter market, thus offering
transportation via chartered capacity qc. Like owned ships, chartered capacity
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can be operated at a standard operating cost co,std
c in an unregulated market

(α = 0) or at a higher cost co,ret
c in a regulated market that requires ships to be

retrofitted. Moreover, a charter rate cc is added for every unit of chartered ca-
pacity. We remark that capacity is chartered only if doing so is profitable—that
is, only if the market price exceeds operating and chartering costs.
The cost function can now be used to establish a formula characterizing firm
profits. The ship operator will maximize those profits by identifying the op-
timal transportation quantities qi. Here the operator has two options. First,
the shipper can decide to leave capacity idle in layup if operation would be
unprofitable; this option is reflected by the (·)+ formulation for both owned
and chartered capacity. Second, the shipper retains “dispatch flexibility” and
can therefore choose which type of available capacity to employ (i. e., which
technology is used first to serve demand). The constraints on this profit maxi-
mization problem are that transportation volume must be nonnegative and, in
the case of owned ships, cannot exceed available capacity. Neither can trans-
portation volume exceed market demand D. Hence we can write

π(D,α,Ki) = max
qi

∑
i

(p− (1−α)co,std
i +αco,ret

i + cl)+qi

+ (p− (1−α)co,std
c −αco,ret

c − cc)+qc −
∑
i

Ki(kic
f + cl)

s.t. 0 6 qi 6 Ki, qc > 0,
∑
i

qi + qc 6 D.

(4.2)

As in Drake et al. (2016), we use a merit-ordering approach to solve phase 1’s
profit maximization problem. This approach requires the following two basic
assumptions: (i) all capacity can be operated profitably for all possible real-
izations of stochastic demand and the resulting freight rate; and (ii) the merit
ordering of technologies is already known in the investment phase. Assump-
tion (ii) implies that, in the analytical solution, there cannot be two differ-
ent merit orders in a regulated and an unregulated market. We use a sorting
function to rank owned capacity in terms of decreasing marginal profit; thus
Ω(j) = arg maxi∈N\Ω({1,...,j−1}) ∂π/∂qi. This function returns which technol-
ogy i ranks in jth place as regards the marginal profit merit order of technolo-
gies. For simplicity and comparability, we adopt the notation used in Drake
et al. and abbreviate as follows: [i] = Ω(i); thus subscript [i] refers to the
technology in ith place of the merit order. Hence merit ordering allows us
to establish that the shipper will first use the most profitable owned capacity
available to serve demand. If demand exceeds the capacity of the most prof-
itable technology, then the second most profitable technology will be employed
to fill as much of the remaining demand for which capacity is available. The
optimal transportation quantities q∗[i] can thus be formulated as the minimum
of (a) available capacity and (b) the remaining demand yet to be served:

q∗[i] = min
{
K[i],

(
D−

i−1∑
i=1

K[i]

)+}
. (4.3)
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Having solved the model’s second phase, we can now work backwards to
examine the transition between the investment and operation phases. Between
these phases, all uncertainty addressed by the model is resolved. In our analytic
model, we consider both demand D̃ and regulation α̃ to be uncertain; however,
we do not further specify the stochastic distribution of either parameter. We
only assume that stochastic demand D̃ > 0 and that α̃ ∈ {0, 1}, where the
market is regulated (in phase 2) with probability ξ.

Next we analyze investment during phase 1. At this stage, demand is un-
known and it is also unknown whether the market will be regulated in phase 2.
Given these uncertainties, the shipper must decide how much total capacity
to acquire and from which technology to source that capacity. Of course, not
all ordered ships must employ the same technology. Each unit of capacity can
be acquired at an investment cost ki. Thus the investor attempts to optimize
the investment project’s expected value, which consists of the expected prof-
its from phase 2 minus the investment cost from phase 1. The optimization is
constrained only by the requirement that ordered capacity may not be negative:

V(D̃, α̃,Ki) = max
Ki

E[π(D̃, α̃,Ki)] −
∑
i

kiKi s.t. Ki > 0 ∀i. (4.4)

To be able to derive an analytical solution, we solve this maximization problem
for a scenario in which there are two technologies that can be ordered. For
our purposes in this paper, technology 1 is defined as an old technology that
incurs high operating costs in both unregulated and regulated markets yet is
relatively inexpensive to procure. Technology 2 is ecologically friendly but re-
quires high levels of investment; however it incurs lower operating costs in both
unregulated and regulated markets. Maximizing the value function for these
two capacity types yields the optimal investment described by Proposition 1.
See Appendix C.2 for a proof that solving Eq. (4.4) yields the optimal capacity
choice; our model’s variables are all listed and defined in Appendix C.1.

Proposition 1. Under demand and regulatory uncertainty, assume that the merit
order is known ex ante. Then, provided that phase 2’s marginal profits are positive,
optimal capacity K∗[1] and K∗[2] are given by:

K∗[1] =



0 if c̄oc + cc 6 k[2] + k[2]cf + c̄o[2],

K̂[1] if k[1]+k[1]c
f−k[2]−k[2]c

f

c̄o
[2]

−c̄o
[1]

6
k[2]+k[2]c

f+cl

c̄oc−c̄
o
[2]

+cc+cl

∧ c̄oc + c
c > k[2] + k[2]c

f + c̄o[2],

0 if c̄o[1] + k[1] + k[1]c
f > c̄o[2] + k[2] + k[2]c

f

∧ c̄oc + c
c > k[2] + k[2]c

f + c̄o[2],

F−1
D̃

(
1−

k[1]+k[1]c
f−k[2]−k[2]c

f

c̄o
[2]

−c̄o
[1]

)
otherwise;
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K∗[2] =



0 if c̄oc + cc 6 k[2] + k[2]cf + c̄o[2],

0 if k[1]+k[1]c
f−k[2]−k[2]c

f

c̄o
[2]

−c̄o
[1]

6
k[2]+k[2]c

f+cl

c̄oc−c̄
o
[2]

+cc+cl

∧ c̄oc + c
c > k[2] + k[2]c

f + c̄o[2],

K̂[2] if c̄o[1] + k[1] + k[1]c
f > c̄o[2] + k[2] + k[2]c

f

∧ c̄oc + c
c > k[2] + k[2]c

f + c̄o[2],

K̂[2] −K
∗
[1] otherwise.

Here

K̂[i] = F
−1
D̃

(
1−

k[i] + k[i]c
f + cl

c̄oc + c
c − c̄o[i] + c

l

)
,

c̄o[i] = (1− ξ)co[i] + ξc
o
[i], c̄oc = (1− ξ)coc + ξc

o
c .

This proposition reveals that there exists a range of strategies that include
making no investment at all, effecting a “portfolio solution”, and adopting the
“corner solution” of investing in just one technology. It is optimal for the ship-
per not to invest if, after investment cost is accounted for, the total costs of char-
tered capacity are lower than those of owned technology. Under this approach,
the shipper waits until phase 2 and then makes a myopic decision about the
optimal charter and transportation quantities depending on perceived demand
and the shipper’s belief about the likelihood of future market regulation.

However, if chartering is—as would normally be expected—more expensive,
then a corner solution involving a single-technology investment strategy is op-
timal in the two cases described next. (i) If the second condition in the set
of optimal solutions holds, the investor builds up capacity using only technol-
ogy [1] (here, the clean technology) and has a higher operating margin. This
may occur if the sum of the investment cost and the fixed (i. e., layup) cost of
dirty technology [2] is not low enough to compensate for [2]’s operating margin
disadvantage as compared with technology [1]. The left-hand side (LHS) of the
condition gives the additional investment in [1] needed for every dollar of gain
in the operating margin versus technology [2]. If that ratio is smaller than the
additional investment in [2] needed for every dollar of gain in the operating
margin versus chartering, then it is optimal to invest only in technology [1],
for which operating profits are achievable at the lowest relative investment cost.
(ii) If the investment and fixed costs of dirty technology [2] are low enough to
compensate for its operating margin disadvantage, then [2] becomes the more
profitable technology overall. In this case, the outcome is a single-technology
strategy with investment only in K[2] despite the lower operating margin. In
both single-technology strategies, the amount of investment is defined by the
upper bound of K̂[i] that is derived by setting the other technology’s capacity to
zero: K[−i] = 0. This statement follows because the value function is concave in
capacity K1 and also in capacity K2 (see Appendix C.2 for details) and because
the cross partial derivative is negative (see Eq. (C.8)).

Finally, a portfolio solution consisting of both technologies is optimal in all
other cases. This solution obtains if owning vessels is cheaper overall than char-
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tering and if neither technology clearly outperforms the other. Under those
circumstances, the most certain part of stochastic demand is served with clean
and profitable technology [1], which typically requires a greater investment and
likely involves more risk. The least certain peaks of demand are served with the
operationally less profitable dirty technology [2], for which both investment
cost and risk are lower. These results for the optimal capacity and technology
choices are similar to those reported in Drake et al. (2016). The main difference
stems from the additional charter option included in our model, which must
be considered when assessing the trade-offs of investing in either of the two
technologies.

4.3.1.2 Implications for Optimal Investment

We now explore how regulatory uncertainty affects the optimal choice of ca-
pacity and technology in this analytical model; we also show how the charter
option contributes value to the overall investment project, especially under reg-
ulatory uncertainty. Regulatory uncertainty in our model is proxied by the
possible introduction of new environmental policy that requires retrofitting ex-
tant capacity for compliance purposes. Depending on the technology of ships
purchased, retrofitting may entail either a small or a large additional cost. The
following corollary shows how total capacity changes as new regulations be-
come more likely to be enacted (i. e., as ξ increases).

Corollary 1. Suppose the market is characterized by regulatory uncertainty. Assume
that the merit order is known ex ante and that positive marginal profits are generated
in phase 2. Then total owned capacity

K∗[1] +K
∗
[2]

increases with ξ if (co,ret
c − co,std

c )/(co,ret
[2] − co,std

[2] ) > 1,

decreases with ξ if (co,ret
c − co,std

c )/(co,ret
[2] − co,std

[2] ) < 1.

The displayed statements are true provided that coc + cc > k[2] + k[2]cf + co[2] holds;
otherwise, investment remains at K∗[1] +K

∗
[2] = 0 per Proposition 1.

For an increase in regulation probability ξ, total capacity increases if the op-
erating cost of chartered capacity rises more—in response to the change from
an unregulated to a regulated market—than does owned (dirty) capacity [2].
Otherwise, total investment declines. Note that total owned capacity is driven
by the operating cost of [2], the less profitable technology. Because increasing
owned capacity would replace chartered ships in the operation phase, the rel-
ative size of their marginal operating profits determines the overall effect of
regulation on investment.

Corollary 2. Let the market be characterized by regulatory uncertainty, let the merit
order be known ex ante, and suppose that phase 2 yields positive marginal profits. Then
the choice of technology changes with an increase in regulation probability ξ depending
on which case of the optimal solution (described in Proposition 1) applies:

(a) K∗[1] and K∗[2] remain unchanged (K∗[1] = K
∗
[2] = 0).
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(b)
K∗[1]

increases with ξ if (co,ret
c − co,std

c )/(co,ret
[1] − co,std

[1] ) > 1

decreases with ξ if (co,ret
c − co,std

c )/(co,ret
[1] − co,std

[1] ) < 1

K∗[2] remains unchanged.

(c) K∗[1] remains unchanged;

K∗[2]

increases with ξ if (co,ret
c − co,std

c )/(co,ret
[2] − co,std

[2] ) > 1

decreases with ξ if (co,ret
c − co,std

c )/(co,ret
[2] − co,std

[2] ) < 1

(d)

K∗[1]


increases with ξ if (k[1] + k[1]c

f − k[2] − k[2]c
f)

× (co,ret
[2] − co,std

[2] + co,std
[1] − co,ret

[1] ) > 0

decreases with ξ otherwise.

Change of K∗[2] is unclear.

If chartering is so cheap that no investments are made, then a change in the
likelihood of regulation does not alter investment behavior in phase 1. In both
cases of a single-technology solution, the same logic holds as for total owned ca-
pacity. If the operating costs of owned ships increase less under new regulation
than do the costs of chartering vessels, then the optimal amount of investment
in that single technology increases. The portfolio solution case is more com-
plicated. Although one cannot know in advance how new regulation affects
capacity K[2], investment in the more profitable [1]-based capacity increases:
(i) if such capacity has a higher investment cost k[1] yet its operating cost in-
creases less under regulation than does the operating cost of technology [2];
or (ii) if [1]-based capacity suffers more than does [2]-based capacity from in-
creased post-regulation operating costs yet has a lower investment cost. In a
portfolio solution with technologies as specified previously, scenario (i) is most
likely when clean capacity [1] requires more investment—but is less affected by
tighter regulation—than [2]. Then it becomes more likely that the firm invests
in clean technology.

Thus we have demonstrated that the charter option has a significant effect
not only on total capacity but also on the choice of technology—since ordering
more owned vessels reduces the likelihood of chartering. Corollary 3 details
when the charter option contributes to the overall investment project value.

Corollary 3. Let the merit order be known ex ante, and suppose as before that phase 2
generates positive marginal profitability. Then, under regulatory uncertainty, char-
tering adds value to the portfolio solution of the investment project provided that
Pr(D̃ > K∗[1] +K

∗
[2]) > 0. These inequalities hold if

c̄oc + c
c > c̄o[2] − c

l.

The displayed condition is satisfied for all cases in Proposition 1 that result in
the firm investing in accordance with either the single-technology or portfolio
solution. When the condition does not hold, a charter-only solution is optimal—
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in which case chartering is the sole contributor to project value. For all other
cases in Proposition 1, there is always a positive probability that demand will
exceed owned transportation capacity and so chartering will contribute to the
project’s overall expected value.

4.3.2 Numerical Extension: Relaxing the Assumptions

The analytical model presented in previous sections is based on two key as-
sumptions: first, that all shipping capacity (whether owned or chartered) can
be operated profitably in both unregulated and regulated markets; second, that
the merit order is already known in the investment phase. Yet real-world regula-
tion can alter the merit order of technologies and in some cases can even render
technologies unprofitable. Therefore, in this section we relax both assumptions
and solve the model numerically for a scenario in which merit ordering occurs
instead during the operation phase. In order to derive the expected value of
future profits, as presented in Eq. (4.4), we perform a Monte Carlo simulation
of 50,000 stochastic demand and regulation realizations—thereby ensuring con-
vergence to the true expected value. To solve the phase-1 optimization problem
we employ MATLAB’s pattern search algorithm (from its Global Optimization
Toolbox) for constrained, derivative-free optimization. Our insights are then
derived by simulating and solving the model for different parameter settings
that are based on a calibration to the international container shipping industry.

4.3.2.1 Model Calibration

For the numerical experiments, we calibrate the model to international con-
tainer shipping and the industry’s exposure to regulations aimed at reducing
sulfur (SOx) emissions. With its revision of the International Convention for the
Prevention of Marine Pollution from Ships (MARPOL) Annex VI, the IMO intro-
duced a staged approach to reducing such emissions both worldwide and in
special emission control areas. The sulfur content allowed in shipping fuels is
summarized in Table 4.1. The actual date upon which a worldwide limit of
0.5% m/m was to become official had been substantially delayed pending a
review, but that date has recently been confirmed to be 2020. Ship operators
have three main options for complying with the new regulation. The compli-
ance option in widest use is fuel switching. On worldwide trade routes, ships
mostly operate on heavy fuel oil (HFO)—a residual fuel whose sulfur content
is normally 3.5%. The MARPOL revision dictates that ships entering ECAs, and
ships sailing anywhere after 2020, must reduce their emissions. Such reduction
can be achieved by switching to (more expensive) low-sulfur distillate fuels,
such as marine diesel oil (MDO), or by retrofitting or building ships to operate
on liquefied natural gas. The latter option is expensive and so is rarely used.
The most popular method (after fuel switching) used to reduce emissions is
the retrofitting of exhaust gas–cleaning systems or scrubbers. When fitted with
scrubbers, ships can continue operating on cheaper HFOs because the scrub-
ber captures SOx particles from the exhaust (Den Boer and Hoen 2015, Lloyd’s
Register 2015).
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Table 4.1: Sulfur oxide emission limits defined by MARPOL.

Outside an ECA Inside an ECA

4.5% m/m prior to 1 January 2012 1.5% m/m prior to 1 July 2010

3.5% m/m on and after 1 January 2012 1.0% m/m on and after 1 July 2010

0.5% m/m on and after 1 January 2020

0.1% m/m on and after 1 January
2015

Note: ECA = emission control area; m/m = mass per mass (i. e., percentage mass of sulfur
oxide gases in the total mass of the emission).
Source: Adapted from International Maritime Organization (2016b).

In the following analyses, our model takes the introduction of a worldwide
0.5% SOx limit as the change in regulatory regime faced by shippers. A shipping
firm can invest in a standard ship (technology 1) that operates on HFO in an
unregulated market but must switch to more expensive MDO if SOx limits are
reduced. As technology 2, we consider an “eco-friendly” ship equipped with a
scrubber.2 We shall assume that all available chartered vessels must also resort
to fuel switching.

As summarized in Table 4.2, the model parameters have been set as follows.
We consider the trade lane between Asia and the US West Coast, for which the
yearly transport volume is about 13 million TEU (Alphaliner 2016). We assume
that demand is drawn from a truncated normal distribution (Botev 2017) cen-
tered at µ = 13 million and with volatility σ = 0.2. The distribution’s lower
boundary is truncated at zero because we require that demand be strictly posi-
tive. The freight rate (p) at the time of writing was about $850 (US) from Shang-
hai to Los Angeles and $340 for the return trip (World Freight Rates 2017). We
set that price function’s tuning parameters to β = 0.15 and γ = 0.5 to reach a
representative market price when demand is 13 million TEU per year.

Table 4.2: Base-case parameters used in all models (unless specified otherwise).

Market parameters

β = 0.15 µ = 13 mn cf = 0.02 ξ = 0.25 τ = 3,500
γ = 0.5 σ = 0.2 cl = 28 ē = 0.6 χ̂ = 0.005

Techn. 1: Fuel switch Techn. 2: Scrubber Chartering

k1 = 70 k2 = 80 cc = 85

co,std
1 = 350 χstd

1 = 0.035 co,std
2 = 355 χstd

2 = 0.035 co,std
c = 350 χstd

c = 0.035
co,ret
1 = 450 χret

1 = 0.005 co,ret
2 = 380 χret

2 = 0.001 co,ret
c = 450 χret

c = 0.005

2We focus exclusively on the vessel’s SOx impact. However, some have objected that scrub-
bers are not environmentally beneficial because they reduce fuel efficiency and because vessels
that continue to operate on HFOs still emit—that is, even with scrubbers—high levels of other
emissions (e. g., particulate matter). See Lindstad and Eskeland (2016).
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For all ship-specific parameters, we assume a neo-Panamax container vessel
with a capacity of 12,000 TEU. Because we are interested in yearly costs, we
assume that the ship completes six round-trips on the Asia–US route with an
average utilization of 80%, yielding a yearly capacity of 115,200 TEU. According
to a study on vessel operating costs AECOM (2012), the standard 12,000-TEU

ship costs about $120 million; hence k1 = $70 on an annual per-TEU basis—
assuming that the vessel has an economic lifetime of 15 years. A technology-1
(fuel-switching) ship has a standard operating cost of co,std

1 = $350/TEU when
operating on HFO. This figure is based on annual maintenance and personnel
costs of $3.3 million (AECOM 2012) and an HFO price of $300/ton (Ship &
Bunker 2017). In a regulated market, operating costs increase because the MDO

fuel cost is $400/ton (Ship & Bunker 2017); thus co,ret
1 = $450/TEU.

It is also possible to order technology-2 ships (here, those equipped with a
scrubber) but at a higher investment cost of k2 = $80/TEU. This figure is based
on a price of $15 million—or $200 per kilowatt of engine power—for installa-
tion of a scrubber (Den Boer and Hoen 2015), where the typical engine size is
75,000 kW (MAN Diesel & Turbo 2013). The ship with scrubber can be oper-
ated at co,std

2 = $355/TEU, which includes a small cost premium for scrubber
maintenance (although we assume that the scrubber is deactivated in an unreg-
ulated market). In a regulated market, the scrubber is activated while the ship
continues to operate on HFO. The scrubber technology entails an additional an-
nual cost of about $3 million due to maintenance, operating materials, and the
vessel’s consequent reduced fuel efficiency (Lindstad et al. 2015, Van Rynbach
et al. 2015). In a regulated market, then, a technology-2–based ship’s operating
cost is co,ret

2 = $380/TEU. Irrespective of their technology base, owned ships
can be laid up at a cost of cl = $28/TEU, a figure that incorporates a vessel’s
fixed costs of $3.3 million per year for maintenance and personnel. When laid
up, ships are assumed to incur no fuel cost. Unless otherwise indicated, we
assume a regulation probability of ξ = 0.25.

Chartered ships have the same operating cost as do owned ships that rely
on fuel switching (technology 1). Additionally, a charter cost of cc = $85/TEU
applies. This figure reflects daily charter costs of $10,000 for a 4,250-TEU ves-
sel, which we have scaled up to the standard 12,000-TEU ship and converted to
the corresponding TEU volume on an annual capacity basis (VHSS Vereinigung
Hamburger Schiffsmakler und Schiffsagenten e.V. 2015). The emission parame-
ters given in Table 4.2 will be discussed in Section 4.4.

4.3.2.2 Implications for Optimal Investment

We now take a numerical approach to analyzing technology choice and the in-
fluence of regulatory uncertainty. Figure 4.1 plots total owned capacity and its
composition (by technology) for the base-case parameters as a function of the
regulation probability ξ. The graph shows that it is always optimal, under these
parameters, to adopt a single-technology strategy. There exist very few combi-
nations of other parameter values for which a portfolio solution would be opti-
mal. Figure 4.1 also reveals the switching point between strategies: whereas a
fuel-switching strategy based on standard container ship technology (i. e., tech-
nology 1) is optimal at low regulation probabilities, technology-2 ships with
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scrubbers become more attractive at ξ > 0.3. Note that this result holds even
though—unlike our specification for the analytical model—the merit order of
technologies 1 and 2 is not known ex ante. If the market remains unregulated
(resp., becomes regulated), then fuel-switching ships will be cheaper (resp.,
more expensive) to operate.

Figure 4.1: Optimal total owned capacity and technology choice for different regulation
probabilities ξ.

Figure 4.2: Total expected project value for investment projects with and without regu-
latory uncertainty as a function of the regulation probability ξ. Note: Oper-
ating cost in the scenario without regulatory uncertainty assumed to equal
the expected operating cost in the scenario with regulatory uncertainty.

Although the model identifies a single-technology strategy as optimal, reg-
ulatory uncertainty does increase the investment project’s value. Figure 4.2
compares project values in a regime where operating costs are deterministic
with values in a regime where the possibility of regulation renders those costs
stochastic. For a fair comparison, we assume that capacity in the no-regulation
scenario can be handled at the average expected operating cost that applies
when future regulation is uncertain. Two results are clearly evident. First, in-
creases in the likelihood of regulation reduce the investment project’s value:
despite the unchanged operating costs in regulated and unregulated markets,
a higher regulation probability increases expected cost. Second, under regula-
tion uncertainty the project has greater value because of the shipper’s available
options in responding to potential regulation. In particular, both the option to
charter and the layup option (for unprofitable technologies) limit the shipper’s
investment risk.

Figure 4.3 details one of these sources of value: the layup option. In Fig-
ure 4.3a we can see that project values—across all levels of demand volatil-
ity σ—are no less with the layup option than without it. The option of laying
up unprofitable vessels is especially attractive at high levels of demand volatil-
ity, where it is more likely that the prices a shipper can charge will fall to such
low levels that it is no longer possible to cover operating expenses. Similarly,
the layup option can limit firm losses when expected demand D̃ is low; that dy-
namic is evident in Figure 4.3b. Thus the layup option, the charter option, and
the flexibility to employ the most profitable technology all lead to increased
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(a) Project value with and without the layup option for different values of demand volatil-
ity σ

(b) Project value with and without layup option for different demand locations µ

Figure 4.3: Value added due to the layup option under various scenarios.

project values under regulatory uncertainty as compared to the case of ship-
pers facing a deterministic operating cost that equals the expected value under
uncertainty.

4.4 evaluating emission regulation regimes

We have heretofore treated potential regulation as the source of a stochastic
increase in operating costs. Next we extend the model to reflect two specific
environmental policy regimes. We also now grant shippers the flexibility to
decide whether their vessels should be retrofitted (i. e., operated at a higher
cost) for compliance purposes. This approach allows us to adopt the perspective
of a regulator, who must be cognizant of the effects that different regulatory
regimes have—on market participants’ investment and operating behavior—
when devising a regime intended to achieve regulation targets efficiently. We
shall examine outcomes under two different regimes, a emissions cap and an
emissions tax, and then compare how those regimes affect a shipper’s optimal
strategies.

4.4.1 Emissions Cap Regime

The regulatory regime we discuss first is one that strictly prohibits the oper-
ation of vessels that exceed a predefined emissions cap. This regime matches
the actual SOx regulation as passed by the IMO, which allows the operation of
only those vessels that can meet the prevailing SOx limit—either by switching
fuels, installing a scrubber, or employing LNG propulsion. To adapt the model
previously developed to this new policy regime, we define ē as the average fuel
consumption required for transporting 1 TEU on the trade route between Asia
and the United States. Furthermore, we let χstd

i denote the SOx emissions level
of technology i in its standard configuration and let χret

i denote that level in
the retrofitted configuration (i. e., operating on MDO fuel or with an activated
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scrubber). The term χ̂ represents the maximum allowable SOx emission level
in the regulated market. Given these parameters, we can express the adapted
profit function. Again we assume that the market can be either unregulated (in
which case the old emissions cap of 3.5% SOx applies) or regulated (where the
limit is lowered to 0.5%). We allow the shipper to decide, in light of particular
regulatory demands, whether it wants to employ technologies in their standard
or retrofitted configurations. Hence the profit function can change because, for
each technology i, the shipper will choose the more profitable configuration
(standard vs. retrofit) that complies with the emissions cap. If a configuration
of technology i achieves regulatory compliance, the indicator function used
in the following definition of firm profits becomes I

[αχ
std/ret
i 6χ̂]

= 1. The same
function applies to chartered capacity, where the shipper can also choose the
standard or retrofitted configurations provided that the emission requirements
are satisfied:

π =

max
qi

{∑
i

(
max{(βD̃γ − co,std

[i] + cl)I[αχstd
i 6χ̂], (βD̃

γ − co,ret
[i] + cl)I[αχret

i 6χ̂]}
+qi

)
+ max{(βD̃γ − co,std

[c] − cc)I[αχstd
c 6χ̂], (βD̃

γ − co,ret
[c] − cc)I[αχret

c 6χ̂]}
+

×
(
D̃−
∑
i

K[i]

)+
−
∑
i

K[i](k[i]c
f + cl)

}
s.t. 0 6 qi 6 Ki and

∑
i

qi 6 D ∀i.

(4.5)
It is worth noting that, in this version of our model, there is considerable flex-

ibility in setting the emission parameters of the legal cap and also of the indi-
vidual technologies affected. Whereas the assumption in previous sections was
that the retrofitted configurations of all technologies fulfill the requirements of
a regulated market, it is now possible to analyze situations in which some tech-
nologies cannot be employed at all—that is, not even when retrofitted—after
regulation has been introduced. Conversely, however, some technologies can
be supposed to “overachieve” with respect to new emission targets. So if the
standard configuration of a sufficiently eco-friendly technology fulfills even the
regulated market’s requirements, then the shipper now can use the standard
(i. e., not retrofitted) configuration in that market.
So that we can analyze the resulting impact on industry emissions, we define
total emissions based on the capacities operated in the market; here qstd and
qret refer to the transportation quantities available from using (respectively)
standard or retrofitted technology. These variables are further marked with the
subscript i or c to indicate owned technologies and chartered capacity:

E =
∑
i

(χstd
i q

std
i + χret

i q
ret
i )ē+ (χstd

c q
std
c + χret

c q
ret
c )ē. (4.6)
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4.4.2 Emissions Tax Regime

The second regulatory regime to be analyzed is an emissions tax, which is as-
sessed on all emissions that exceed a predefined threshold. In this regime, the
regulator sets both the emissions threshold χ̂ and the tax rate τ that applies to
any emissions in excess of χ̂. Much as in the emissions cap regime, the ship-
per can decide which technologies and configurations thereof to employ. De-
pending on the cost parameters, it may be optimal to employ a technology in
standard configuration with high emissions and simply pay the penalty tax. Yet
it might also be more profitable to adopt the cleaner retrofitted configuration,
which would have a higher operating cost but would be charged a lower (or no)
emissions tax. In the adapted profit function, we thus introduce a minimization
between the costs of the standard and retrofitted configurations for each tech-
nology. Note that the tax applies only if the market is regulated (α = 1) and the
emission limit is exceeded (χstd/ret > χ̂); furthermore, it applies to the excess
(χ− χ̂)+ē emitted per operated unit. The new profit function is thus written as
follows:

π =

max
qi

{∑
i

[(p+ cl − min{co,std
i +α(χstd

i − χ̂)+ēτ, co,ret
i +α(χret

i − χ̂)+ēτ})+qi]

+ (p− cc − min{co,std
c +α(χstd

c − χ̂)+ēτ, co,ret
c +α(χret

c − χ̂)+ēτ})+qc

−
∑
i

Ki(kic
f + cl)

}
s.t. 0 6 qi 6 Ki and

∑
i

qi 6 D ∀i.

(4.7)
The emissions tax regime grants great flexibility to the shipper, who can freely
choose which technology and configuration to employ toward the end of maxi-
mizing its profit. Total emissions resulting from operations can be determined
as shown in the emissions cap setting formalized in Eq. (4.6).

4.4.3 Model Calibration

In addition to the parameters already defined in Section 4.3.2.1, we now cali-
brate the remaining emissions-related parameters necessary for the regulatory
regime extensions just described. Recall that the investor can order owned
ships of two technologies: the market standard is technology 1, which requires
switching to expensive MDO fuels in order to reach low SOx emission levels;
technology 2 is more expensive to order but is equipped with a SOx scrubber.
Chartered vessels rely on the fuel-switching technology 1 (refer to Table 4.2 for
the respective cost parameters). To calculate emission levels, we assume a fuel
consumption of ē = 0.6 tons per one-way trip; this figure is based on a typi-
cal 12,000-TEU ship’s consumption of 450 tons per day and a voyage duration
of 13 days (AECOM 2012). Both technology-1 capacity and chartered capacity
run on HFO in the standard configuration and emit the HFO-typical 3.5% SOx

per ton of fuel. These statements apply also in the case of technology 2’s stan-
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dard configuration, under which the ship operates on HFO and with an idle
scrubber. We therefore set all standard emission levels to χstd

i = χstd
c = 0.035.

In a retrofitted configuration, both technology-1 vessels and chartered vessels
operate on low-sulfur MDO fuel and have emission levels of no more than 0.5%
SOx (χret

1 = χret
c = 0.005). The scrubber retrofitting in technology 2 is even more

effective; when activated, it results in emission levels as low as 0.01% (and so
χret
2 = 0.001). For our numerical analyses we use a tax rate of τ = $3, 500 per

extra ton of SOx emitted. This value is a hypothetical one given that the regu-
lator can set the tax rate at any level. Yet our analyses indicate that a tax rate
near this value would be high enough to reduce emissions significantly but
also low enough that shipping capacity of lower emission efficiency would not
necessarily be excluded. After all, such exclusion would render the emissions
tax regime no different than the emissions cap regime.

4.4.4 Performance Comparison

Prior to evaluating the effectiveness of our two proposed policy regimes, we
analyze and compare their respective investment levels, project values, and SOx

emissions. These outcomes are illustrated in Figure 4.4. The figure clearly con-
firms our intuition that an emissions cap regime is the more challenging policy
approach because it allows shippers less flexibility. Figure 4.4b documents the
consistently lower project values under an emissions cap regime.

(a) Optimal total capacity and choice of technology

(b) Expected project value

(c) Expected total SOx emissions

Figure 4.4: Comparison of regulatory regimes under various regulation probabilities ξ.
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Although regulation via taxes reduces the project value to a lesser extent
than does regulation via caps, the shipper’s capacity choices differ significantly.
Figure 4.4a plots total owned capacity (red lines) and the respective shares of
investment in the fuel-switching technology 1 for the emissions cap (circular
markers) and the emissions tax (cross marks). The two main findings with re-
gard to technology choice are that, first of all, investing in a single-technology
portfolio is the optimal strategy in most cases. Only in a small bandwidth of
regulation probabilities do we find a mixture of technologies to be the optimal
approach under an emissions tax regime. Second, we see that the stricter regu-
lation associated with an emissions cap regime incentivizes shippers to invest
in the eco-friendly technology 2 (scrubbers) even when the likelihood of regu-
lation is low. Thus new technologies are promoted more by capping emissions
than by taxing them.

There also are two main results with regard to total owned capacity. The first
is that, at low regulation probabilities, more investment in own capacity is ob-
served in the tax regime than in the cap regime. The intuition here is that if
regulation is unlikely and emissions are addressed via taxation, then the ship-
per can still operate technology 1 vessels in standard configuration (burning
HFO) by paying an emissions tax that is less than would be the additional cost
of switching to MDO fuel. In the cap regime, however, that approach is not an
option and so the firm reduces own capacity to lower its investment risk. Then,
if more capacity is needed, it makes more sense to secure that by chartering.
The second main result is that, once a shipper switches to scrubber technology
in the emissions cap regime, it builds up more own capacity than it would in
the emissions tax regime. The explanation for this finding is that, if regulation
is extremely probable, then the profits from adopting the scrubber technology
are much greater than those from chartering. However, a shipper that is short
on capacity will be forced to resort to expensive chartered vessels, which can
comply with regulation only by using expensive MDO fuel. Because profitability
would then decline, the shipper prefers to ensure enough capacity for which
policy compliance is relatively inexpensive.

The investment behavior just discussed can also be seen in the SOx emissions,
plotted in Figure 4.4c that result from operations. As expected, the stricter emis-
sions cap regime consistently leads to lower overall emissions. At the same time,
the emissions curve of the tax regime clearly shows the points at which an in-
vestor would switch technologies. The emissions tax does not have a favorable
effect until the regulation probability reaches 30%; only then does the transition
to more efficient technologies become optimal—that is, since doing so avoids a
profit-reducing tax burden. These technology switches explain the curvature of
expected emissions in the tax regime.

We now address the question of how effectively the two considered regimes
reduce total emission levels at an acceptable cost. Figure 4.5 shows in a com-
pact way the particular emissions caps and thresholds needed, in each regu-
lation regime, to achieve a certain level of total industry SOx emissions—and
at what cost to the shipper. The graph can be read as follows. If the emission
level in a cap regime is to be lowered, then the targeted level of overall indus-
try emissions in tons is given on the x-axis. Moving upward to the blue line
with round markers, one can read off the required emissions cap χ̂ on the left
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y-axis; the total cost of regulating the market can be identified by moving up-
ward to the solid red line and then reading the cost of regulation from the right
y-axis. The same procedure can be followed with regard to the emissions tax
regime. So identifying the nearest cross mark on the blue line lets one read off
the required emission threshold χ̂ above which the emissions tax applies. Then,
moving upward to the nearest cross on the dashed red line reveals the regu-
lation cost incurred by the shipper. In this tax regime, however, the shipper’s
regulation cost differs from the overall economic cost of regulation. For the
latter, taxes paid are not considered a cost from the perspective of an entire
economy; that economic cost is plotted by the figure’s “dash-dotted” red line.
When interpreting this graph, one must bear in mind that it is impossible to
achieve an emission level of (say) 1.5× 10−5 tons: lowering the emissions cap
to below 3.5% immediately reduces total emissions to levels far lower than one
would expect as there is only technology available at very high and very low
emission efficiency levels. In contrast, lowering the emission threshold in the
tax regime to below 3.5% has no effect on total emissions until that thresh-
old falls below 1.6%. At this point, the shipper switches technology and total
emissions are reduced instantly because eco-friendly operations become less
expensive than paying the emissions tax. It is therefore important to consider
only those values that are marked on the graph.

Figure 4.5: Comparison of regulatory regimes: Emission limits and costs associated
with achieving mandated emission levels. Note: Regulation cost is defined
as the difference in project value between an unregulated market (ξ = 0)
and a market in which regulation is certain (ξ = 1).

Four principal findings follow from Figure 4.5. First, a given emissions limit
can lead to very different overall emission outcomes in the two regimes. Under
an emissions tax regime, outcomes can be further affected by modifying the tax
rate per ton of SOx emitted. Increasing the tax rate (τ) shifts the cross-marked
blue emission line of the tax regime to the left. At the currently assumed tax rate
of τ = $3, 500 per ton, it is not possible to achieve the same overall reduction
in emissions as in the emissions cap regime—that is, regardless of how low a
regulator sets the threshold. To achieve the same results, the tax rate would
have to be raised. Second, lowering emission limits can sometimes lead to large
reductions in overall emissions yet can sometimes have no effect at all. Hence
it is essential that the regulator be aware of these “tipping points” if the aim is
to design an effective policy. Third, the overall economic cost of a tax regime is
significantly less than the profit loss incurred by market participants. In such
a regime, then, the regulator reaps some of the shipper profits. Fourth, a tax
regime is less costly to implement. The shipper’s costs are also lower than in
the emissions cap scenario, though with less effectiveness in reducing overall
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emissions. Although it is (slightly) more expensive for the shipper, an emissions
cap regime achieves significantly lower total emissions.

4.5 implications for optimal investment and regulatory deci-
sions

The results derived from our analytical and numerical approaches described
in previous sections bear important implications for optimal investment un-
der regulatory uncertainty from the investor’s perspective and also for optimal
regulatory design from a legislative viewpoint. Although the model was cali-
brated for international container shipping, it could easily be adapted to other
regulatory and industry settings. Therefore, the implications for investors and
regulators should be of interest to a broader audience.

There are four main implications for optimal investment. First, despite the
analytical model showing that portfolio solutions of multiple technologies are
possible, the numerical study suggests that these are rather unlikely. In our
calibration for the shipping industry, a portfolio solution is optimal only in a
narrow band of regulation probabilities; in all other cases, a single-technology
strategy maximizes expected project value. One caveat to this conclusion is
that the two-period model we propose does not account for developments over
a longer time span. It seems reasonable to suppose that accounting for ad-
ditional time periods would increase the attractiveness of a portfolio solution,
since in that case the fleet would need to function at optimal levels across peri-
ods characterized by a greater variety of trading conditions. The second main
implication of our findings is that, as the likelihood of regulation increases, it
may be optimal to increase owned capacity. This dynamic applies when the
profitability of own technologies are less compromised by a new policy than
is the alternative of chartering additional capacity. It follows that if regula-
tion is expected then a careful analysis of predicted cost effects is in order,
especially since it may not be immediately self-evident that a shipper’s own
capacity should be expanded in response to more likely regulation. Third, the
wisdom of changing technologies when the regulation probability increases de-
pends on how adversely a technology—as compared with alternative methods
of compliance—is affected by new policies. This paper has established that a
technology’s relative attractiveness can be either heightened or diminished by
regulation effects. Finally, we have seen that regulatory uncertainty can in-
crease the expected value of the investment project. Here we must distinguish
between two effects. If we compare an unregulated market with one that faces
potential regulation, we find that a project’s value decreases as the average cost
of operations increases. However, if we compare a market with a deterministic
operating cost that is comparable to the probability-weighted expected operat-
ing cost of a market with regulatory uncertainty, then we find that uncertainty
increases that project’s value. This increase in value is explained by the various
strategic options (layup option, charter option, dispatch flexibility) available
to the shipping firm, which enable an optimal response to market conditions.
Those options serve to protect investors against potential losses. Paradoxically,



4.6 conclusion and implications for future research 85

then, investor payoffs may be greater in a relatively uncertain than in a rela-
tively certain market (provided there is no increase in expected costs).

The numerical study presented in Section 4.4 yields three primary implica-
tions relevant to the optimal design of regulations. First, a strict emissions cap
prohibiting the operation of vessels that do not meet mandated emission stan-
dards will reduce overall industry emissions more effectively than an emissions
tax regime. Such a cap can also promote more investment in clean technologies
that may even overachieve vis-à-vis defined emission targets. Nevertheless, the
second implication of our numerical study is that an emissions tax regime—
which levies a tax on all emissions above a certain threshold—gives the investor
more operational flexibility regarding technology choice. When that flexibility
is exploited to maximize profits, an emissions tax regime may end up costing
the shipper less even though its operational profits must be shared with tax-
levying agencies. These two implications underscore the necessity of regulators
having a clear view of their priorities: if the main goal is to minimize emissions
and promote clean technology, then an emissions cap is preferable; but if the
main goal is to reduce emissions—albeit while minimizing the regulatory ef-
fect on profits—then an emissions tax is preferable. The third main implication
for regulatory design is illustrated in Figure 4.5. Namely, selecting the emis-
sion limit is crucial in both of the regimes examined here. The effect, on over-
all industry emissions, of lowering that limit is neither linear nor continuous.
Regulators should therefore analyze in considerable detail all the technologies
available for achieving compliance; only then will the chosen emission limits
be likely to have their intended effect.

The findings and implications stemming from our model were derived with
reference to container shipping, but the main results should be valid also for
other industries. The model itself can likewise be calibrated to fit other indus-
tries and regulatory settings. There are, naturally enough, some limitations of
the model we develop. For instance, it presupposes a monopolistic market to
enable our focus on the main characteristics relevant to this study; notwith-
standing our confidence that the results derived here are qualitatively applica-
ble to oligopolistic settings, their quantitative magnitude may well vary. Also,
this paper’s focus on a change in regulatory regime led us to design a two-
phase model. Taking more time periods into account could modify our results
and/or yield additional findings of interest.

4.6 conclusion and implications for future research

This paper proposes a real options regime-switching model that can be used
to identify optimal investment and technology choices under regulatory un-
certainty. We employ a two-phase modeling approach and characterize both
market demand and the introduction of environmental regulation as stochas-
tic components. In order to derive insights regarding the optimal choice of
technology, we devise and solve a basic version of the model analytically. By
then calibrating the model to international container shipping and solving it
numerically, we can drop some of the analytical model’s restrictive assump-
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tions. Finally, we adopt the perspective of a regulator and compare the costs
and effectiveness of two different regulatory regimes.

The proposed investment model contributes to the real options literature by
accounting for the most relevant features of investment in an era that has be-
come increasingly affected by ecological awareness and regulation. Thus our
model incorporates the option to invest in transportation capacity based on
different technologies, the possibility that new regulations could increase oper-
ating costs, a layup option, and the option to charter additional capacity dur-
ing the model’s second (operating) phase. We also account specifically for the
emission characteristics of those technologies considered, which allows us to
assess the effect of various technology investment strategies on overall industry
emissions. This paper contributes to the literature on investment appraisal by
presenting a model that can be usefully adapted to multiple industries, and it
contributes to the maritime literature by offering insights based on our calibra-
tion of that model to the shipping industry. Finally, we contribute by enabling
a better understanding by regulators of the relative effectiveness of common
regulatory policies.

In short, we have demonstrated that regulation uncertainty can strongly in-
fluence investment patterns and the choice of technology for operations. Our
paper is therefore relevant not only to maritime shipping but also to any in-
dustry in which regulatory uncertainty can affect the appraisal of investments.
Fruitful avenues for future research include analyzing technology choices under
regulatory uncertainty in other market settings as well as expanding the time
horizon considered. Another aspect worthy of consideration in future modeling
efforts is the “time to build”, which is extremely important also in the shipping
industry.



5
S U M M A RY A N D O U T L O O K

5.1 summary

Maritime container shipping has been in stormy weather since the 2009 finan-
cial crisis despite the immense growth the industry has seen over the past
decades. High volatility in asset prices, freight and charter rates as well as fun-
damental uncertainty as to future regulatory conditions are key challenges for
capacity and technology decisions in this highly capital intensive industry. In
a quest for economies of scale, past capacity choices have resulted in a race for
ever-increasing vessels and a capacity supply that fundamentally exceeds trans-
portation demand. The induced price competition has led to such low levels of
freight and charter rates that it has become difficult to operate profitably—also
resulting in bankruptcies1 and a market consolidation. In light of past invest-
ment decision making that has frequently been considered irrational by practi-
tioners, there is a need for decision support tools to better understand optimal
capacity and technology choice in this challenging industry. An increasing fo-
cus by the IMO on reducing the industry’s environmental footprint will be one
of the key challenges for the industry going forward that further complicates
capacity decisions. Therefore, there is also a need to analyze the impact of
characteristic uncertainties and challenges of the shipping market on optimal
capacity and technology choice.

This dissertation aims to contribute to a better understanding of optimal ca-
pacity choice in maritime container shipping. To this end, we2 develop quantita-
tive valuation models that let us analyze the effects of selected market features.
We first lay the foundation by evaluating how an additional charter option
changes the optimal investment outcome under demand uncertainty (Chap-
ter 2). We build on these findings by introducing regulatory uncertainty in the
form of a stochastic introduction of new regulation that increases the cost of
compliance (Chapter 3). This model helps ship investors and regulators to bet-
ter understand how uncertainty about future regulation can change market eco-
nomics and optimal decision-making. Lastly, we shift the focus to technology
choice under such regulatory uncertainty (Chapter 4). In a regime-switching
model we analyze optimal compliance strategies in different regimes of envi-
ronmental regulation. Findings help investors make better decisions on how to
build up capacity that is compliant with regulation in a cost-effective way. They
also contribute to regulators’ understanding of how effective different regula-
tion regimes are in reducing emission levels and doing so at as little cost as
possible.

In Chapter 2, we explore the effect that the availability of chartering has on
optimal investment decisions. In a continuous-time real options model, we

1See, for example, the bankruptcy of Hanjin Shipping Co., Ltd. (The Guardian 09/02/2016)
2The term “we” refers to the authors of the respective chapters as denoted at the beginning

of each chapter. For the conclusion, this refers to the authors of Haehl and Spinler (2017a,b,c).
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show that increased demand uncertainty can be an incentive to rationally ex-
pand own capacities if these are delivered only after a time to build. In a similar
model, in which only chartering is possible (i. e., without time to build), we do
not find this capacity–increasing effect of market volatility. To create a better
understanding of the interaction of these two individual effects, we present
a discrete-time real options model that allows investment and (long-term or
short-term) chartering at the same time under market uncertainty. The shipping
industry is reflected in additional model features such as time to build, oper-
ating flexibility, a divestment option and an endogenous charter rate. Results
show that the availability of chartering increases project values and reduces the
incentive of time to build to preventively increase capacities in volatile markets.
In demand peaks, however, chartering can lead to increased capacity levels as it
allows to reap profits from unexpected demand surges by immediately increas-
ing capacities. Overall, the level of owned capacity should be reduced. While
carriers can bridge resulting capacity shortages with short-term charter, charter-
ing does not appear to be optimal for a buildup of base capacity. Findings from
this chapter are relevant to ship operators, who can further their understanding
of optimal capacity choice and investment vs. charter split.

In Chapter 3, we focus on the effect of regulatory uncertainty on optimal
capacity choice. To this end, we include a stochastic introduction of new envi-
ronmental regulation in the model that increases operating costs in a regulated
market to a previously unknown level. We differentiate two models, one in
which the grandfathering3 of old capacities is allowed and one in which all ca-
pacities are affected by new regulation. The model is formulated in a dynamic
programming (DP) approach that allows for time to build, divestment, (short-
term) charter and operating flexibility. As a full iteration of this discrete-time
model is intractable, we resort to approximate dynamic programming (ADP)
methods to solve for near-optimal solutions. From an investor’s perspective,
we find that regulatory uncertainty with grandfathering can lead to excessive
upfront investment to secure a low operating cost base even if the market
should become regulated in the future. A capacity buildup well beyond cur-
rent operational needs may be optimal from an individual investor’s point of
view. In an oligopolistic market, this could well lead to significant excess ca-
pacities and pronounced price competition. The case is different if investors
expect regulation not to allow grandfathering. In this case, investors should
invest conservatively and rely more on chartering until uncertainty is resolved.
From a regulator’s perspective, these findings are also highly relevant, as both
situations of uncertainty come with unwanted side-effects. Uncertainty about
regulation with grandfathering can plunge the already beaten market into even
more severe excess capacities, while uncertainty about regulation without can
impede investment altogether and slow down the market. It also turns out
that, if grandfathering is allowed, investors build up capacities of cheap, old
technology. This can even increase total industry emissions above the level in
a completely unregulated market without any uncertainty about future regula-
tion. This is not the case if grandfathering is not allowed: here, emissions are
reduced already before new policies are introduced. Regulators should there-

3If regulation allows for grandfathering, only vessels built after the effective date of the
policy need to comply.
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fore keep uncertainty regarding the legislative process low to avoid unwanted
effects of excess capacities, increases of total emissions or a slow-down of mar-
ket activity due to reduced investment.

In Chapter 4, we shift focus to explicitly modeling and analyzing technology
choice for compliance under regulatory uncertainty. We present a two-phase
regime-switching model in which the ship operator can invest into two differ-
ent technologies, a “clean” and a “dirty” technology in phase 1. In the second
phase, there is a chance of the market being regulated, which increases operat-
ing costs. In this phase the carrier can additionally charter vessels and makes
the decision how many vessels of which technology to deploy in operations.
We first solve the model analytically and subsequently relax basic assumptions
by finding optimal solutions numerically. Model results suggest that—while
portfolio solutions of both technologies are possible—they are optimal only in
few cases under restricted conditions. In most cases, a single-technology strat-
egy is the better and more profitable choice. We further find that, if owned
capacity is hurt less by regulation than chartered vessels, it can be optimal to
increase the owned fleet in light of regulatory uncertainty. Interestingly, regula-
tory uncertainty can further increase the overall project value. This is a result of
the options embedded in the model: the chartering and the layup options pro-
vide a protection against potential losses in unattractive markets (low demand
and/or regulated market) and at the same time allow to reap profits from un-
expectedly positive market environments. While these findings are highly rele-
vant to investors, we also take on a regulator’s perspective by introducing and
comparing two different regulation regimes—an emissions cap and an emis-
sions tax regime. While an emissions cap regime is more effective at reducing
overall industry emissions, the tax regime leaves more operational flexibility to
the ship operator. This impairs the emission reduction potential but leads to
lower cost caused by regulating the market. An important takeaway for regula-
tors is also that total emissions are not reduced in a linear or even continuous
fashion with a reduction of the emissions limit (i. e., the emissions cap or the
limit above which an emissions tax applies). It is therefore essential for regu-
lators to study the technologies available for compliance in sufficient detail to
identify the relevant thresholds.

There are three main limitations to the findings presented in this disserta-
tion. First, we have assumed a monopolistic market setting in all models of
this thesis while the container shipping market is of oligopolistic nature. This
choice was made deliberately as it has allowed to include in the model the
numerous features relevant to the shipping industry, such as investment and
divestment options, time to build, a charter option, a layup option, demand
uncertainty and regulatory uncertainty. As other research has found the same
capacity effects under market uncertainty in monopolistic and oligopolistic set-
tings (see Aguerrevere (2003)), we are confident that our assumption influences
only the quantitative extent but not the direction of effects found. The second
limitation affects only findings presented in Chapter 3, where we solve the
real options model using ADP methods. While we have ensured the algorithm’s
performance versus a challenging benchmark, it remains an approximation of
optimal strategies. The last limitation concerns the regime-switching model in
Chapter 4. While the other models presented span multiple time periods, the
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regime-switching model with which we analyze technology choice under reg-
ulatory uncertainty focuses on two phases—an investment and an operating
phase. Including more time periods could, for example, make portfolio options
more attractive than they appear when analyzing two time periods only.

With this dissertation, we contribute both to methodological real option liter-
ature by analyzing the effect of chartering on investment choice, by proposing
an ADP-based method for valuing investment and charter projects under reg-
ulatory uncertainty and by analyzing technology choice in a framework that
can be adapted to different regulatory regimes. All models presented can be
modified and calibrated to other industries than shipping as well. We further
contribute to maritime shipping investment literature and present relevant in-
sights both for ship investor-operators and regulators. Operators can benefit
from an advanced understanding of optimal investment vs. charter split, of ca-
pacity choice under regulatory uncertainty with and without grandfathering
and of optimal technology choice under regulatory uncertainty depending on
different policy regimes. Regulators can learn about expected market reactions
from uncertainty about future regulation, about the effectiveness of two dif-
ferent regulation regimes and about potential unexpected pitfalls, such as an
increase of emission levels despite the desire to introduce emission-lowering
policies.

5.2 outlook

This dissertation focused on optimal capacity and technology choice in con-
tainer shipping under market and regulatory uncertainty. While the models
proposed deliver many interesting and valuable findings, such research also
leads to new questions and avenues for future research to be addressed.

The models presented in this dissertation were calibrated to the maritime
shipping industry by applying typical market and cost parameters. It would be
interesting to test the findings from these models empirically against the actual
shipping markets. Such empirical testing could be attempted for example by
analyzing capacity and technology choice effects before and after the introduc-
tion of SOx regulations by the IMO. This could not only confirm the directional
findings proposed here, but also attempt a sizing of the relevant effects.

Apart from this empirical approach, there are also exciting fields for further
research in the real options space. As mentioned above, we have chosen to apply
a monopoly assumption to be able to include the relevant market characteristics
in focus. It would be an exciting challenge to push valuation methods further to
be able to include these features also in an oligopolistic setting with competition
between ocean carriers. Such an advancement of methods could potentially
also allow combining the features that we have analyzed in separate modeling
approaches into a single model. With this, the interaction between chartering,
endogenous charter cost, regulatory uncertainty, and technology choice could
be analyzed and evaluated for reinforcing or canceling effects.

We have discussed in Section 1, that shipping is characterized by a multitude
of uncertainties. In our modeling, we have focused on demand and regulatory
uncertainty (leading to uncertain cost levels). Future research could also take
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into account cost uncertainty from oil prices as well as asset price uncertainty,
which we have not included. Especially studying asset price uncertainty is be-
lieved to be an interesting field as there are players in the market that generate
their profits almost entirely from an asset play.

Lastly, we have focused our analyses on the operations on a specific trade
lane. Future research could add value by integrating our research into an over-
arching strategic game, in which the operator can choose on which trade lanes
to compete. Such a feature could take into account network effects to integrate
optimal decision making from the initial investment decision, to the choice of
trade lanes, and finally the choice of transportation supply offered on each lane.

In conclusion, investment decisions in maritime shipping remain a complex
optimization problem. There are plenty of aspects remaining for further re-
search, of which the ones presented above are the ones closest related to this
dissertation. We therefore believe that there is a promising research agenda
at the crossing point of real options valuation methods and the international
shipping industry.





A
A P P E N D I X T O C H A P T E R 2

a.1 definition of model variables

Table A.1: Definition of variables used in continuous-time models.

Variable Description

γ Price elasticity of demand with γ < 0
µ Drift rate of demand Y(t) in Geometric Brownian Motion
π Firm profit (USD)
σ Standard deviation of demand Y in Geometric Brownian Motion
C(q) Firm total cost function (USD)
c1 Operating cost: personnel, bunker, maintenance (USD/TEU)
c2 Operating cost: personnel, bunker, maintenance (USD/TEU)
c3 Layup cost factor (USD/TEU)
c4 Cost factor for financing cost of owned capacity
c5 Charter rate per unit of chartered capacity (USD/TEU)
dZ(t) Increment of a standard Wiener process
FC(O, Y) Value of the option to charter (USD)
FI(K, Y) Value of the option to invest (USD)
GI(K, Y,h) Value of incremental unit of committed capacity from invest-

ment (USD)
h Time to build before ordered capacity is delivered (years)
HC(O, Y) Value incremental unit of chartered operational capacity (USD)
HI(O, Y) Value of incremental unit of invested operational capacity from

investment (USD)
k Investment cost per unit of capacity (USD/TEU)
K(t) Committed capacity reflecting both operational capacity as well

as capacity ordered but not yet delivered (TEU)
O(t) Operational capacity, reflecting those transport capacities deliv-

ered to the investor and are ready for operation (TEU)
O0 Initial capacity at t = 0 (TEU)
P(t) Market price at time t (USD/TEU)
q Output quantity (TEU)
r Risk-free rate of interest
Y(t) Market demand signal, (Geometric Brownian Motion)
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Table A.2: Definition of additional variables used in discrete-time models

Variable Description

ω Portion of demand growth/contraction passed on to the endoge-
nous charter rate c5,t

chartert Additional charter capacity chartered in t (TEU)
d Percentage change of demand per period for a down-movement
divestt Divestment in period t (TEU)
investt Investment / new-orders in period t (TEU)
ks Divestment price (USD/TEU)
OCt Operational capacity from charter at beginning of time period t

(TEU)
OIt Operational capacity from investment in time period t (TEU)
p Risk-neutral probability of an up-movement
PIt Pipeline of investment capacity in time period t including capac-

ity delivered in period t+ 1 (TEU)
t Time period of 1 year
u Percentage change of demand per period for an up-movement

a.2 valuation of option to invest

In this appendix, we derive the value of the option to invest of Section 2.3. We
follow an approach as outlined in Aguerrevere (2003), extending it with layup
cost c3 and financing cost c4.
We start by deriving HI, the value of an additional unit of operational capacity
O based on Eq. (2.4). At a given level of operational capacity O, an additional
unit of operational capacity creates marginal profits of

∆π(O, Y(t)) = max
[(
1+

1

γ

)
Y(t)O

1
γ − c1 − c2O− kc4, −c3 − kc4

]
. (A.1)

To value an additional unit of operational capacity HI, we use methods based
on contingent claims analysis as detailed in Dixit and Pindyck (1994). The ap-
proach is to construct a risk-less portfolio and to equate its expected rate of
return to the risk-free rate of interest r by applying the no-arbitrage condition1:

1

2
σ2Y2H ′′I (Y) + µYH

′
I(Y) − rHI(Y) + π(Y) = 0. (A.2)

1The assumption is that capital markets are complete and arbitrage-free because asset prices
adapt so that assets with the same expected rate of return have the same market value. Hence, a
risk-less portfolio must pay the risk-free interest r.
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By solving differential Eq. (A.2), we receive the value of the marginal unit of
operational capacity:

HI(O, Y) =



A(O)Yα +
(1+ 1

γ)YO
1
γ

r−µ

−c1+c2O+kc4
r for Y >

(
1+ 1

γ

)−1
O− 1

γ (c1 + c2O− c3)

B(O)Yβ − c3+kc4
r for Y <

(
1+ 1

γ

)−1
O− 1

γ (c1 + c2O− c3)

(A.3)
with

A(O) =

(
1+ 1

γ

)α
O
α
γ (c1 + c2O− c3)

1−α

(β−α)

(
β

r
−
β− 1

r− µ

)
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(
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γ

)β
O
β
γ (c1 + c2O− c3)

1−β
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α

r
−
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)
. (A.4)

The exponents α and β are the negative and positive roots to the characteristic
quadratic equation respectively:

α =
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2
−
µ
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µ
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−
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+ 2
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σ2
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(A.5)

Having valued an additional unit of operational capacity today, we consider
time to build h to derive the value of the marginal unit of committed capacity
GI(K, Y,h) at the time of ordering:

GI(K(t), Y(t),h) = E
[∫∞
h

e−rt∆π(K(t), Y(t))dt |Y(t)
]

= e−rhE

[∫∞
0

e−rt∆π(K(t), Y(t))dt |Y(t)
]

= e−rhE [HI(K(t), Y(t+ h)) |Y(t)] (A.6)

We derive the expectation analogous to Aguerrevere (2003) and refer to his
Appendix B for mathematical details. We specify the value of an additional
unit of committed capacity as

GI(K, Y,h) = (1−Φ(v−ασ
√
h))A(K)Yα

+ (1−Φ(v− σ
√
h))

(
1+ 1

γ

)
K
1
γYe−(r−µ)h

r− µ

− (1−Φ(v))
c1 + c2K+ kc4

r
e−rh +Φ(v−βσ

√
h)B(K)Yβ

−Φ(v)
c3 + kc4

r
e−rh (A.7)
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where Φ is the cumulative distribution function of the standard normal distri-
bution and v is defined as

v = v(K, Y,h) =
log
[(
1+ 1

γ

)−1
K− 1

γ (c1 + c2K− c3)

]
− log Y −

(
µ− σ2

2

)
h

σ
√
h

.

Based on the value of an additional unit of committed capacity GI, we value
the option to invest into this additional capacity. The option can be valued like
a perpetual American call option. Let FI(K, Y) denote the value of the option
to buy an additional unit of committed capacity at given committed capacity
K and demand Y. We establish a risk-less portfolio, determine its return and
equate it to the risk-free rate of interest, yielding the differential equation

σ2

2
Y2F ′′I + µYF ′I − rFI = 0 (A.8)

with three boundary conditions that describe the option value in a situation
of demand Y = 0, the investment threshold and the smooth-pasting condition
respectively:

FI(K, 0) = 0

FI(K, Y(K)) = GI(K, Y(K),h) − k

F ′I(K, Y(K)) = G ′I(K, Y(K),h) (A.9)

Using the second and third boundary conditions, we can derive the equality
condition for optimal choice of committed capacity K(Y) dependent on ob-
served demand Y:

β[GI(K(Y), Y,h) − k] − YG ′I(K(Y), Y,h) = 0 (A.10)

where G ′I is defined as

G ′I(K, Y,h) = (1−Φ(v−ασ
√
h))αA(K)Yα−1 +
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√
h)
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√
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e−rh. (A.11)
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a.3 valuation of option to charter

To value the charter option, we determine the value of an additional unit of
chartered capacity HC(O, Y) based on the adapted cost function in Eq. (2.7):

∆π(O, Y(t)) = max
[(
1+

1

γ

)
Y(t)O

1
γ − c1 − c2O− c5,−c3 − c5

]
. (A.12)

Using contingent claims analysis, a risk-less portfolio can be constructed. The
following differential equation can be derived for the change in portfolio value,
where HC(Y) denotes the value of a marginal unit of chartered capacity and
H ′C(Y) and H ′′C(Y) are the first and second partial derivatives with respect to
demand shock Y:

1

2
σ2Y2H ′′C(Y) + µYH

′
C(Y) − rHC(Y) + π(Y) = 0. (A.13)

The solution to this equation is the value of an added unit of chartered capacity
HC:

HC(O, Y) =



A(O)Yα +
(1+ 1

γ)YO
1
γ

r−µ

−c1+c2O+c5
r for Y >

(
1+ 1

γ

)−1
O− 1

γ (c1 + c2O− c3)

B(O)Yβ − c3+c5
r for Y <

(
1+ 1

γ

)−1
O− 1

γ (c1 + c2O− c3),

(A.14)

with A(O) and B(O) defined as seen in Eq. (A.4) and α and β being the nega-
tive and positive roots to the characteristic quadratic equation respectively (see
Eq. (A.5)).

The steps performed so far are similar to the calculations for the option to
invest. When chartering, however, new capacities are added immediately with-
out time to build, so that we can directly value the option to charter, FC, by
solving the differential equation

σ2

2
Y2F ′′C + µYF ′C − rFC = 0. (A.15)

Boundary conditions to this differential equation help to solve for the optimal
operational capacity O(Y). The first condition describes the option value at the
absorbing barrier of demand Y = 0. The second condition defines the threshold
at which an investor charters an additional unit of capacity. Thus the option to
charter needs to be worth as much or less than the value of the added unit of
chartered capacity. The third condition is the smooth-pasting condition:

FC(O, 0) = 0

FC(O, Y(O)) = HC(O, Y(O))

F ′C(O, Y(O)) = H ′C(O, Y(O)). (A.16)
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The first condition yields a general solution to the differential equation of the
form FC(O, Y) = E(O)Yβ and from the second and third conditions we can de-
rive the condition for the optimal charter capacityO(Y) as a function of demand
shock Y:

βHC(O(Y), Y) − YH ′C(O(Y), Y) = 0. (A.17)
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b.1 definition of model variables

Table B.1 lists and describes all variables used in the dynamic and approximate
dynamic programming models employed in the paper.

Table B.1: Definition of variables used in DP and ADP models.

Variable Description

αt Indicator variable for whether the market is regulated (αt = 1) or
not (αt = 0)

δ1, δ2 Tuning parameters in the step-size rule of the linear regression
ε Tuning parameter in ε-greedy exploration
γ Price elasticity (γ < 0)
µ Expected market drift of demand Ỹt
µc1h Expected value of post-regulation operating cost c̃1h (USD/TEU)
πt Period profit from operations (USD)
σ Market volatility of demand Ỹt
σc1h Standard deviation of post-regulation operating cost c̃1h
θtf Regression coefficients for feature f in period t
ξ Probability of regulatory signal (ψ̃t = 1) in each period
ψ̃t Stochastic regulatory signal ∈ {0, 1} in time period t
Ψt Sum of regulatory signals ψ̃t received before and including time

period t
c̃1h Operating cost for regulated capacity (USD/TEU)
c1l Uncertain operating cost for unregulated capacity (USD/TEU)
c2 Operating cost (USD/TEU)
c3 Layup cost (USD/TEU)
c4 Financing cost on capital invested
c5h Charter rate in regulated market (USD/TEU)
c5l Charter rate in unregulated market (USD/TEU)
cold Extra operating cost post-regulation for outdated technology

(USD/TEU)
Ct Period overall cost (USD)
kh Investment cost in regulated market (USD/TEU)
kl Investment cost in unregulated market (USD/TEU)

99
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Table B.1: continued.

Variable Description

ks Selling price for divested owned capacity (USD/TEU)
m,M Iterations of ADP algorithm
OCt Operational capacity from chartering (TEU)
OIt Operational capacity from investment (TEU)
p Risk-neutral probability of an up-movement of demand Ỹt
Pt Market price (USD/TEU)
pd Probability of down-movement of post-regulation operating cost

c̃1h

PIt Pipeline of operational capacity from investment available in pe-
riod t+ 1 (TEU)

postOt Operational capacity (invested and chartered) ordered post-
regulation (TEU)

preOIt Operational capacity from investment ordered pre-regulation
(TEU)

prePIt Pipeline of invested capacity ordered pre-regulation (TEU)
pu Probability of up-movement of post-regulation operating cost c̃1h
qt Transportation quantity (TEU)
u Percentage up-movement of demand Ỹt
Vt Project value (USD)
Ỹt Stochastic market demand

b.2 approximate dynamic programming algorithm

Figure B.1 delineates the ADP algorithm used to find near-optimal solutions to
the investment model presented in the paper.

In the first step of the algorithm, we define basis functions that extract the
most relevant features of the post-decision state to approximate the value func-
tion. Regression coefficients are initialized for the first simulation (θtf = 0) and
updated at every iteration of the algorithm based on the sample data so far
observed. Starting at a chosen initial state S00, we perform M iterations until
the algorithm converges to (what is presumed to be) the true solution. For each
iteration m, we draw a random set wm of our stochastic variables: demand
Ỹt and regulatory signal ψ̃t (for all t ∈ T ) and operational post-regulation
costs c̃1h. Starting at the initial state S00, we calculate the optimal decision at by
maximizing the overall project value. Observe that this is where we employ the
approximation of the value function. Given a chosen action at, the realization
of random event wmt takes the system to the next state. This process is repeated
until the last time period, t = T . Once we arrive at a state ST+1, its value is
initialized with a terminal value that assumes existing capacity can be used
forever.
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begin
Define basis functions φf(S);
Initialize θ0tf for all t;
Initialize recursive least-squares updating matrix B0;
Choose initial state S0;
for m = 1, 2, . . . ,M do

Choose sample path wm for t = 0, 1, . . . , T + 1;
for t = 0, 1, . . . , T do

if m 6 1,000 or ε
m > e then

Choose random action amt
else

Compute optimal action:

amt = arg max
at∈Amt

{
π(Smt ,at) +CI(at)

+ erdT
∑
f

θm−1
tf φf(S

M,a(Smt ,at))
}

end
Compute next state in t+ 1:

Smt+1 = S
M(Smt ,amt ,Wt+1(wm))

end
Initialize terminal value v̂mT+1 = π(S

m
T+1)

1+µ
r−µ ;

for t = T , T − 1, . . . , 0 do
Compute observed project value:

v̂mt = π(Smt ,amt ) +CI(amt ) + e−rdT v̂mt+1

end
Update approximation coefficients using recursive least-squares
linear regression to obtain θmtf for all t ∈ T and f ∈ F:

θm = θm−1 −Hmφmε̂m

end
Return regression coefficients θMt for all t ∈ T .

end

Figure B.1: Approximate dynamic programming algorithm used to solve real opt-
ions model

Iterating backwards through time, the algorithm adds up profits and cash
flows to derive the project value in each period. The values so obtained are spe-
cific to the realizations of stochastic variables wm and to the decisions made
during the iteration. Although the actions taken may not be optimal, they
nonetheless reveal information that can be used to update the estimation co-
efficients. After that updating, we iterate until the algorithm converges.

The updating of the estimation coefficients is performed as follows: In con-
trast to empirical research, we have no batch data and instead obtain sample
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data from our ADP model itself. Thus the first ADP iteration begins with initial
values for the regression coefficients θtf, which can only be updated recursively
as new observations are collected. That updating proceeds via a recursive least-
squares approach for non-stationary data, as outlined by Powell (2011). The
general recursive updating formula can be written in matrix notation as fol-
lows:

θm = θm−1 −Hmφmε̂m; (B.1)

here Hm is a scaling matrix calculated as

Hm =
1

γm
Bm−1. (B.2)

The error term ε̂m is the difference between the value estimate and the observed
value v̂m:

ε̂m = V
av
t (Sat | θm−1

t )v̂m. (B.3)

As an |F|× |F| matrix, Bm has a row and column for each feature that is pulled
from the state space by the basis functions. Formally, we have

Bm =
1

λm

(
Bm−1 −

1

γm
(Bm−1φm(φm)TBm−1)

)
, (B.4)

where γm is a scalar:

γm = λm + (φm)TBm−1φm. (B.5)

In Eqs. (B.4) and (B.5), λm behaves like a typical step-size but in the opposite
direction. A value of λm = 1 weights all observations equally while smaller
values put more emphasis on recent observations. Although this parameter can
be set statically, we achieve better results following an approach proposed by
Powell (2011): define it as λm = 1 − δ1/m

δ2 , where δ1 and δ2 are “tuning”
parameters that we set to 0.4 and 0.8, respectively. Using this step-size rule, we
achieve stable results by first allowing new observations to have a strong effect
and subsequently weakening their impact.
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b.3 sensitivity analysis

Table B.2: Sensitivity analysis: Relative project values for selected parameter changes.
The reference value of 100% refers to project values in a base case calibration
according to Table 3.4 in the with and without grandfathering (GF) models.

Relative project value

Parameter Parameter value With GF Without GF

σ

-50% 0.05 97.0% 97.3%

Base case 0.10 100.0% 100.0%

+50% 0.15 102.6% 101.9%

µ

-20% 0.024 87.0% 87.1%

Base case 0.03 100.0% 100.0%

+20% 0.036 118.8% 118.9%

µc1h

-10% 720 100.2% 103.0%

Base case 800 100.0% 100.0%

+10% 880 99.8% 97.3%

b.4 model verification and validation

This paper has proposed an approximate dynamic programming model to sup-
port and analyze capacity decisions in container shipping markets under de-
mand and regulatory uncertainty. To ensure the model’s credibility, we per-
form model verification and validation as described in Gass (1983) and Sargent
(2013).

Model Verification

Model verification ensures the exact implementation of the mathematical model
in the software. We assure this by applying several measures when program-
ming.

• Stepwise coding. The model was programmed in a step-by-step manner,
starting with a highly simplified version. Further variables were added
only after expected and optimal performance had been assured at each
step.

• Documentation. The programming code written for the technical imple-
mentation of the proposed model is commented wherever its intent is not
entirely self-evident. In this way we improve the code’s readability and
make it easier for other researchers to understand.

• Output verification. To verify the model’s correct functioning, we visual-
ize model output for easier interpretation. Thus we run the model with
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various sets of parameters to check its sensitivity to changes in input val-
ues. Finally, we perform a high number of simulations (as described in
Section 3.5.3) to ensure that results are consistent.

Model Validation

We validate the model in the various ways described next.

• Data validity. We derive cost parameters by referring, whenever possible,
to the detailed cost analyses in AECOM (2012). Chartering costs were
estimated based on a publicly available charter cost index.

• Extreme conditions test. The model was tasked with delivering reasonable
results even when running simulations that used extreme values of the pa-
rameters. For example, the no-regulation scenario and the scenario with
heightened risk of regulation were used to test such extreme conditions.

• Mathematical validity. The mathematical model’s detailed structure is ex-
plained in Section 3.3, and the solution approach using ADP is explained
in Section 3.4. As further validation we present the ADP program’s pseudo-
code in Figure B.1.

• Sensitivity analysis. We establish the robustness of our results by analyzing
the model’s sensitivity to different parameter assumptions. We performed
sensitivity analyses for relevant input cost parameters; of these, the most
interesting are presented in Section 3.5.3.
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c.1 definition of model variables

Table C.1: Definition of variables used

Variable Description

α̃ Indicator variable for whether or not the market is regulated
β Scaling factor in the market price function
γ Elasticity of demand
µ Location of demand (TEU per year)
ξ Probability of regulation
π Firm profit (USD)
σ Volatility of demand
χ̂ Emission cap in emissions cap regime; emission threshold in

tax regime (% sulfur content)
χret
i , χret

c Emission efficiency of retrofitted capacity (% sulfur content)
χstd
i , χstd

c Emission efficiency of standard configuration capacity
(% sulfur content)

cc Charter cost of chartered capacities (USD/TEU)
cf Financing cost of owned capacities (% of ki)
cl Layup cost (USD/TEU)
co,ret
i , co,ret

c Operating cost of technology i or of chartered capacity c in
regulated market (USD/TEU)

co,std
i , co,std

c Operating cost of technology i or of chartered capacity c in
unregulated market (USD/TEU)

coc Operating cost of chartered capacity (USD/TEU)
D̃ Stochastic transportation demand (TEU)
ē Typical fuel consumption (tons/TEU)
ki Investment cost of technology i (USD/TEU)
Ki Capacity available of technology i (TEU)
K̂i Maximum optimum capacity of technology i (TEU)
p Freight rate (market price)(USD/TEU)
qc Transportation quantity using chartered capacity (TEU)
qi Transportation quantity using technology i (TEU)
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c.2 proofs

Proof of Proposition 1. Inserting the phase-2 optimal output quantities from
Eq. (4.3) into the value function of Eq. (4.4) yields

V(D̃,c̃oi , cc) =

max
K1,K2

E
[
(βD̃γ − (1− α̃)co,std

[1] − α̃co,ret
[1] + cl)min{K[1], D̃}

+ (βD̃γ − (1− α̃)co,std
[2] − α̃co,ret

[2] + cl)min{K[2], (D̃−K[1])
+}

+ (βD̃γ − (1− α̃)co,std
c − α̃co,ret

c − cc)
(
D̃−
∑
i

K[i]

)+]
−
∑
i

K[i](k[i] + k[i]c
f + cl)

s.t. K[i] > 0 ∀i.
(C.1)

The first derivatives with respect to K[1] and K[2] are, respectively,

∂V

∂K[1]
(D̃, coi , cc)

=
(
(1− ξ)co,std

[1] + ξco,ret
[1] − (1− ξ)co,std

[2] − ξco,ret
[2]

)
FD̃(K[1])

+
(
(1− ξ)co,std

[2] + ξco,ret
[2] − (1− ξ)co,std

c − ξco,ret
c − cc − cl

)
FD̃(K[1] +K[2])

− (1− ξ)co,std
[1] − ξco,ret

[1] + (1− ξ)co,std
c + ξco,ret

c + cc − k[1] − k[1]c
f (C.2)

and

∂V

∂K[2]
(D̃, coi , cc) =

(
(1− ξ)co,std

c + ξco,ret
c − (1− ξ)co,std

[2] − ξco,ret
[2] + cl + cc

)
× (1− FD̃(K[1] +K[2])) − (k[2] + k[2]c

f + cl). (C.3)

Now setting Eq. (C.3) equal to zero, we obtain the optimal total capacity:

K∗[1] +K
∗
[2] = F

−1
D̃

(
1−

k[2] + k[2]c
f + cl

(1− ξ)co,std
c + ξco,ret

c − (1− ξ)co,std
[2] − ξco,ret

[2] + cl + cc

)
.

(C.4)
Setting Eq. (C.2) equal to zero and inserting the optimal total capacity from
Eq. (C.4) then yields the optimal technology-[1] capacity

K∗[1] = F
−1
D̃

(
1−

k[1] + k[1]c
f − k[2] − k[2]c

f

(1− ξ)co,std
[2] + ξco,ret

[2] − (1− ξ)co,std
[1] − ξco,ret

[1]

)
. (C.5)

Optimal investment in capacity K[2] is then derived by subtracting Eq. (C.5)
from Eq. (C.4). The case differentiation in Proposition 1 follows because the
arguments in Eq. (C.4) and Eq. (C.5)—as well as the difference between Eq. (C.4)
and Eq. (C.5)—must all be nonnegative.
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Proof of concavity in base case with regulatory uncertainty. To ensure that the opti-
mum just calculated is indeed a maximum, we prove that the project value
function V is concave. For this purpose we use the Hessian matrix

H(V) =

 ∂2V
∂K2

[1]

∂2V
∂K[1]∂K[2]

∂2V
∂K[1]∂K[2]

∂2V
∂K2

[2]

 (C.6)

where

∂2V

∂K2[1]
=
(
(1− ξ)co,std

[1] + ξco,ret
[1] − (1− ξ)co,std

[2] − ξco,ret
[2]

)
fD̃(K[1])

+
(
(1− ξ)co,std

[2] + ξco,ret
[2] − (1− ξ)co,std

c − ξco,ret
c − cc − cl

)
× fD̃(K[1] +K[2]) (C.7)

and

∂2V

∂K2[2]
=

∂2V

∂K[1]∂K[2]
=
(
(1− ξ)co,std

[2] + ξco,ret
[2] − (1− ξ)co,std

c − ξco,ret
c − cl − cc

)
× fD̃(K[1] +K[2]). (C.8)

The first-order leading principal is nonpositive because E[co[1]] 6 E[co[2]], as
follows from merit ordering and our assumption that the operating cost of
all owned capacity is less than the operating and charter costs of chartered
capacity: E[co[i]] < E[coc ] + c

c. In fact, that leading principal is strictly negative
when either fD̃(K[1]) or fD̃(K[1]+K[2]) > 0. The Hessian’s determinant (i.e., the
second-order leading principal),

|H(V)| =
(
(1− ξ)co,std

[1] + ξco,ret
[1] − (1− ξ)co,std

[2] − ξco,ret
[2]

)
fD̃(K[1])

×
(
(1− ξ)co,std

[2] + ξco,ret
[2] − (1− ξ)co,std

c − ξco,ret
c − cl − cc

)
× fD̃(K[1] +K[2]), (C.9)

is strictly positive if both fD̃(K[1]) > 0 and fD̃(K[1] + K[2]) > 0—given that,
by assumption, (Eα̃[co[1]] − Eα̃[c

o
[2]]) 6 0 and Eα̃[c

o
[2]] 6 Eα̃[c

o
c ] + c

l + cc. The
Hessian is at least negative semi-definite, and it is negative definite whenever
fD̃(K[1]) > 0 and fD̃(K[1] +K[2]) > 0. Hence the value function V is concave in
capacities K[1] and K[2] and is strictly concave provided that fD̃(K[1]) > 0 and
fD̃(K[1] +K[2]) > 0.

Proof of Corollary 1. In a market regime with regulatory uncertainty, with merit
ordering that is known ex ante, and with positive marginal profits in phase 2,
the total capacity changes with an increase of regulation risk ξ according to its
first derivative:

∂K∗[1] +K[2]

∂ξ

=
∂

∂ξ
F−1
D̃

(
1−

k[2] + k[2]c
f + cl

(1− ξ)co,std
c + ξco,ret

c − (1− ξ)co,std
[2] − ξco,ret

[2] + cl + cc

)
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=
(k[2] + k[2]c

f + cl)(co,ret
c − co,std

c + co,std
[2] − co,ret

[2] )

fD̃

(
1−

k[2]+k[2]c
f+cl

c̄oc−c̄
o
[2]

+cl+cc

)
(c̄oc − c̄

o
[2] + c

l + cc)2

=

> 0 if (co,ret
c − co,std

c )/(co,ret
[2] − co,std

[2] ) > 1,

< 0 if (co,ret
c − co,std

c )/(co,ret
[2] − co,std

[2] ) < 1.
(C.10)

The reason is that both fD̃
(
1−

k[2]+k[2]c
f+cl

c̄oc−c̄
o
[2]

+cl+cc

)
> 0 and (c̄oc − c̄

o
[2] + c

l+ cc)2 > 0

in the denominator and that (k[2] + k[2]cf + cl) > 0 in the numerator.

Proof of Corollary 2. To derive the influence of regulation probability on optimal
capacities K∗[1] and K∗[2], we calculate the derivatives of the solution detailed in
Proposition 1 for all four cases. Case 1:

∂K[i]

∂ξ
= 0. (C.11)

Case 2:

∂K[1]

∂ξ
=
∂K̂[1]

∂ξ
=
∂

∂ξ
F−1
D̃

(
1−

k[1] + k[1]c
f + cl

c̄oc + c
c − c̄o[1] + c

l

)

=
(k[1] + k[1]c

f + cl)(co,ret
c − co,std

c + co,std
[1] − co,ret

[1] )

fD̃

(
1−

k[1]+k[1]c
f+cl

c̄oc+c
c−c̄o

[1]
+cl

)
(c̄oc + c

c − c̄o[1] + c
l)2

=

> 0 if (co,ret
c − c

o,unreg
c )/(co,ret

[1] − co,std
[1] ) > 1,

< 0 if (co,ret
c − c

o,unreg
c )/(co,ret

[1] − co,std
[1] ) < 1.

(C.12)

These equalities hold because the denominator in the second line is positive
owing to the squared term and by definition of the probability density function.
Also, (k[1] + k[1]cf + cl) > 0 and

∂K[2]

∂ξ
= 0. (C.13)

Case 3:
∂K[1]

∂ξ
= 0 (C.14)

and

∂K[2]

∂ξ
=
∂K̂[2]

∂ξ
=
∂

∂ξ
F−1
D̃

(
1−

k[2] + k[2]c
f + cl

c̄oc + c
c − c̄o[2] + c

l

)

=
(k[2] + k[2]c

f + cl)(co,ret
c − co,std

c + co,std
[2] − co,ret

[2] )

fD̃

(
1−

k[2]+k[2]c
f+cl

c̄oc+c
c−c̄o

[2]
+cl

)
(c̄oc + c

c − c̄o[2] + c
l)2

=

> 0 if (co,ret
c − co,std

c )/(co,ret
[2] − co,std

[2] ) > 1,

< 0 if (co,ret
c − co,std

c )/(co,ret
[2] − co,std

[2] ) < 1.
(C.15)
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Here the same argument as in Case 2 applies—as does, accordingly, the inequal-
ity
(k[2] + k[2]c

f + cl) > 0.

Case 4:

∂K[1]

∂ξ
=
∂

∂ξ
F−1
D̃

(
1−

k[1] + k[1]c
f − k[2] − k[2]c

f

c̄o[2] − c̄
o
[1]

)

=
(k[1] + k[1]c

f − k[2] − k[2]c
f)(co,ret

[2] − co,std
[2] + co,std

[1] − co,ret
[1] )

fD̃

(
1−

k[1]+k[1]c
f−k[2]−k[2]c

f

c̄o
[2]

−c̄o
[1]

)
(c̄o[2] − c̄

o
[1])

2

=



> 0 if (k[1] + k[1]c
f − k[2] − k[2]c

f) > 0

and (co,ret
[2] − co,std

[2] )/(co,ret
[1] − co,std

[1] ) > 1,

> 0 if (k[1] + k[1]c
f − k[2] − k[2]c

f) < 0

and (co,ret
[2] − co,std

[2] )/(co,ret
[1] − co,std

[1] ) < 1,

< 0 otherwise.

(C.16)

This result holds because the denominator is nonnegative due to the squared
term and the definition of the probability density function. Finally,

∂K[2]

∂ξ
=
∂

∂ξ

{
F−1
D̃

(
1−

k[2] + k[2]c
f + cl

(1− ξ)co,std
c + ξco,ret

c − (1− ξ)co,std
[2] − ξco,ret

[2] + cl + cc

)

− F−1
D̃

(
1−

k[1] + k[1]c
f − k[2] − k[2]c

f

(1− ξ)co,std
[2] + ξco,ret

[2] − (1− ξ)co,std
[1] − ξco,ret

[1]

)}

=
(k[2] + k[2]c

f + cl)(co,ret
c − co,std

c + co,std
[2] − co,ret

[2] )

fD̃

(
1−

k[2]+k[2]c
f+cl

c̄oc−c̄
o
[2]

+cl+cc

)
(c̄oc − c̄
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In this case, the direction of capacity change is unclear.

Proof of Corollary 3. Chartering adds value only if there is a positive probability
that demand exceeds optimal capacity:

Pr(D̃ > K∗[1] +K
∗
[2]) > 0,

1− FD̃(K
∗
[1] +K

∗
[2]) > 0.

(C.18)
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Inserting the solution of Eq. (C.4), we obtain

1−
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o
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> 0,

c̄oc + c
c > c̄o[2] − c

l.

(C.19)
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