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Abstract

In this thesis, we1 use operations research methods to provide insights into three areas
associated with health care operations management. In Chapter 2, we use a discrete-
event supply chain simulation to asses if coordination among partners is beneficial in
a supply chain with the characteristics of the German pharmaceutical market. We
find that the greatest cost savings and service levels could be achieved through a
highly integrated collaboration although most of its impact could already be achieved
through sharing point-of-sales demand information. Results suggest that coordination
is most beneficial in situations where product shelf life is short and demand variation
is high.

In Chapter 3 we consider quality-of-life maximizing sequences of prophylactic surgeries
for female carriers of a BRCA1/2 genetic mutation, who face a significantly elevated
breast and ovarian cancer risk. Using a Markov Decision Process model, we determine
the optimal surgery sequence that maximizes the carrier’s expected lifetime quality-
adjusted life years (QALYs). Baseline results demonstrate that a QALY-maximizing
sequence recommends a bilateral mastectomy between ages 30 and 60 and bilateral
salpingo-oophorectomy after age 40 for BRCA1 carriers. Surgeries are recommended
later for BRCA2 carriers, as their cancer risk is lower. The model’s structural proper-
ties show that when one surgery has already been completed, there exists an optimal
control limit after which performing the other surgery is always QALY-maximizing.

In Chapter 4, we develop a two-stage model for optimizing when and where to assign
Ebola treatment unit (ETU) beds—across geographic regions—during an infectious
disease outbreak’s early phase. The first stage includes a dynamic transmission model
that forecasts occurrence of new cases at the regional level, thus capturing connectiv-
ity among regions; in this stage we introduce a coefficient for behavioral adaptation
to changing epidemic conditions. The second stage includes two approaches to effi-
ciently allocate intervention resources across affected regions. Such an allocation could
have prevented up to 3,434 infections over an 18-week period during the 2014 Ebola
outbreak in West Africa, a 58% improvement compared with the actual allocation.
1 In Chapter 2, 3, and 4, the term ’we’ refers to the authors of Nohdurft & Spinler (2016), Nohdurft

et al. (2016a), and Nohdurft et al. (2016b), respectively.
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Chapter 1

Introduction

1.1 The need for change in the health care
economy

The global health care economy is facing three substantial developments. First, health
care systems in developed countries are continuously increasing their level of care
following a never-ending evolution of diagnosis, treatment, and medication options.
While this imposes a heavy cost increase on health care providers and payors, i.e.
through cancer treatments costing more than 100,000 US$ per year (Siddiqui & Ra-
jkumar, 2012), patients also secondly face more complex decisions when being asked
to choose from a wider set of possible diagnostic or surgical procedures. Third, espe-
cially in emerging and developing countries, natural disasters and infectious disease
outbreaks pose a major challenge for the local health care systems, as they are seldom
prepared for large-scale health crises.

As a reaction to increasing cost of care, payors regulate the prices of newly intro-
duced pharmaceuticals, i.e. in Germany through a reference price scheme (Henschke
et al., 2013). Combined with increasing cost for research and development of new
high-revenue pharmaceuticals, pharmaceutical manufacturers are starting to consider
increasing the efficiency of their operations after decades of ever-high profit margins
(Ward, 2016).

In most health-affecting situations, patients can rely on recommendations given by
their physician. As diagnostic procedures analyzing genetic information become cheaper,
a decision whether to perform these tests and what actions to conclude from their re-
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sults often also depends on the patient’s evaluation of the situation (Dancey et al.,
2012). While physicians can still provide recommendations and counseling, solutions
transforming the complex stochastic relationships into easy-to-understand recommen-
dations are needed (Reyna et al., 2015).

While in developed countries, health care systems are trying to keep cost low while care
quality is increasing, global health crisis caused either by natural disasters or infectious
diseases are hitting developing nations with increasing frequency and impact. Natural
disasters, like wildfires or earthquakes do only have a local or regional impact (e.g.
the 2015 earthquake in Nepal). Infectious disease epidemics on the contrary can cross
borders and even oceans in few days or even hours through the international airline
network, converting a local infectious disease epidemic rapidly into a global health
concern (Mangili & Gendreau, 2012).

As local health authorities are often unable to contain an infectious disease out-
break once it peaks, foreign government and non government organizations provide
monetary, infrastructure, or personnel support (United Nations, 2015; World Health
Organization, 2003). With many stakeholders involved, coordination of efforts poses
a major challenge for institutions as the World Health Organization (WHO) (Philips
& Markham, 2014). Complexity is further increased through the nonlinear behavior
of an epidemic, which is determined by various factors like the disease prevalence,
its transmission dynamics, or the behavior of infected and susceptible individuals.
Today’s literature lacks effective methods for coordinating and allocating resources
during an infectious disease outbreak, which reduce the complexity of decisions and
stakeholder coordination throughout the epidemic.

1.2 The pharmaceutical supply chain

While pharmaceuticals already represent a significant share of the total health spend
in developed countries (i.e. 12% in the US or 14% in Germany, OECD, 2016), prices
tend to increase further due to the high development and certification efforts required
for bringing a new pharmaceutical to market (Loftus, 2016). Payors try to lower
these cost through a more cost-sensitive certification process (Thomas, 2016). To
maintain their margins, pharmaceutical manufacturers usually provide the highest
cost savings by themselves, while supply chain cost also present a viable cost reduction
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lever (Schneller & Smeltzer, 2006).

The pharmaceutical supply chain differentiates itself from other supply chains through
transporting highly sensitive goods, which are object to temperature and shelf life
regulations, to patients, who rely on timely delivery as otherwise they might face a
negative, potentially life threatening, health impact. To cope with these challenges,
the industry sticks to high service level standards through maintaining high invento-
ries and providing frequent and fast delivery to the retail outlet, mostly pharmacies
(Scheel et al., 2014). To overcome these cost-intensive policies, the pharmaceutical
supply chain could adapt coordination as supply chain management method which
has already reduced supply chain cost in other industries (de Vries et al., 2011). As
evidence for the benefits of supply chain collaboration is not without doubt, we1 aim
to investigate the benefit specifically for the pharmaceutical supply chain and make
the following contributions to the literature:

(i) We build a comprehensive discrete-event simulation model reflecting the charac-
teristics of the German pharmaceutical supply chain (SC) to assess the impact
of SC coordination on the SC cost and fill rate. The degree of coordination
between the supply chain entities can be chosen among three different collab-
oration methods. Other parameters can be varied to reflect different environ-
ments in which the SC operates. These parameter include production capacity,
product shelf life, and different order allocation mechanism used in the case of
constrained production capacity.

(ii) The demand data used throughout our experiments is based on real-world de-
mand data collected in the German pharmaceutical market. The dataset enables
us to conduct experiments with demand patterns from different pharmaceuti-
cals. For the use in our empirical experiments, we bootstrap the data using a
maximum entropy bootstrap, a method which has not been previously used in
the context of discrete-event simulation.

1 ’We’ in Chapter 2 refers to the authors of Nohdurft & Spinler (2016)
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1.3 BRCA1/2 carrier decision support

An increase in genetic testing capabilities of the health care industry and a decrease
in the involved cost has made genetic testing more widely available among affected
and unaffected patients (Katsanis & Katsanis, 2013). Although the test procedures
become increasingly precise, determining a diagnose, the corresponding treatment or
prophylactic measures from the test results is not always straightforward. Addition-
ally, patients are often not able to interpret the test results and the corresponding
health risks adequately (Portnoy et al., 2010).

One of the genetic mutations for which a test is becoming increasingly less expensive is
BRCA1/2. It has a prevalence of 1 out of 400 women in the U.S. – and one in 50 women
of Ashkenazi Jewish descent (Hall et al., 2009). Female carriers have an increased
lifetime breast and ovarian cancer risk of up to 85 and 54%, respectively, compared
to 12 and 1.4% in the general population (King, 2003; Howlader et al., 2012). While
the mutation prevalence is low in the general population, it varies across racial/ethnic
groups and is higher in families with a history of breast cancer (Frank et al., 2002;
Malone et al., 2006). Options to reduce the cancer risk include medication, e.g.
tamoxifen therapy, or a prophylactic removal of the breasts and ovaries. While the use
of tamoxifen has shown to moderately reduce the risk of a contralateral breast cancer
(Gronwald et al., 2014), a prophylactic bilateral mastectomy reduces the breast cancer
risk by about 91% and a bilateral oophorectomy the breast as well as ovarian cancer
risk by up to 59 and 79% (Eisen et al., 2005; Rebbeck et al., 2004, 2009). While each
surgery is an invasive procedures accompanied by potential complications and long-
term physiological and psychological side effects, the literature reports heterogeneous
quantitative results about the impact of prophylactic surgeries on carrier’s quality-of
life (Harmsen et al., 2015).

Although guidelines when to test for a BRCA1/2 mutation exist Moyer (2014), the
medical decision making literature still lacks comprehensive recommendations if or
when to perform prophylactic surgeries. We2 therefore make the following contri-
butions with the goal to provide a model supporting decisions about prophylactic
surgeries with understandable and actionable recommendations:

(i) We build a comprehensive Markov Decision Process (MDP) which models cancer

2 ’We’ in Chapter 3 refers to the authors of Nohdurft et al. (2016b).
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risk and mortality of BRCA1/2 carriers. The model is calibrated with data from
clinical studies for each mutation type. Unlike previously published studies, we
differentiate between four different tumor stages and breast cancer subtypes to
capture the impact on the cancer-specific mortality rate. We also consider an
age-dependent impact of a oophorectomy to account for the fact that losing the
ability to reproduce has a higher impact on quality-of-life especially for young
women.

(ii) Our numerical results provide an indication about the optimal timing of pro-
phylactic surgeries maximizing a carrier’s discounted cumulated lifetime quality-
adjusted life years. Although the size of the MDP’s state space is too large to
be solved through policy or value iteration, we transform the problem to a
linear program which we are able to solve optimally. Results include the opti-
mal surgery sequence for carriers of different ages and for a variety of different
model parameters during an extensive sensitivity analysis. We also provide re-
sults when the choice of possible surgeries is constrained through either personal
preferences or an earlier cancer diagnosis.

(iii) We provide structural insights into a simplified version of the MDP and show
that with only one surgery left in the choice set there exists an optimal control
threshold for the cancer risk after which it is always optimal to perform the
remaining surgery.

1.4 Resource allocation during infectious disease
outbreaks

Infectious diseases have been, and albeit advances in their prevention and treatment,
still are a major concern of health care systems around the globe (Fauci & Morens,
2012). Global air travel and an increase in population density in urban areas foster
their emergence and re-emergence (Morens et al., 2004). Especially the concern over a
global epidemic, a so-called pandemic, has increased (Lightfoot et al., 2013). Several
outbreaks of infectious diseases in the last years (e.g. SARS in China, Ebola 2014 in
West Africa, and Zika 2015 in South America) had at least the theoretical potential
of causing a pandemic.
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For the containment of a fast-growing epidemic, three major challenges have to be
considered: (i) the amount of intervention resources required is quickly exceeding the
capabilities of the affected health care system. (ii) Especially for highly contagious
diseases, the future trajectory and spread of the outbreak is unknown and difficult to
forecast precisely. (iii) When intervention resources are provided by foreign govern-
ment or non-government organizations, their efficient coordination is often hampered
through cross-organizational boundaries such as differing standard, hesitation to ex-
change data, or language barriers.

While during the 2014 Ebola outbreak in West Africa, sufficient monetary resources
had been pledged by different organizations (World Health Organization, 2016), the
effectiveness of the response was lowered through an initial overestimation of case
numbers (Butler, 2014b) and the lack of coordination of intervention resources (Get-
tleman, 2014). Both challenges could have been faced through a better utilization of
the available data on where and when infections occurred. While an accurate epidemic
model could forecast the spatial spread and infection numbers of the outbreak, its out-
come could also be used to increase the effectiveness of the allocation of intervention
resourced across the afflicted regions.

Although the 2014 Ebola epidemic in West Africa has fortunately abated, we3 utilize
the available data on Ebola cases to make the following contributions to the existing
literature body on epidemic modeling and intervention resource allocation during
infectious disease outbreaks:

(i) We develop an epidemic model considering multiple, interdependent popula-
tions, which reflect the heterogeneity in Ebola prevalence among the afflicted
regions. To incorporate the change of social behavior during an epidemic, we
propose a novel dampening coefficient which adapts the speed of transmission
to the change in social behavior of individuals (e.g. minimizing social contact)
who live in the affected communities. When fitting the model to the data from
the 2014 Ebola outbreak in West Africa, we find improved forecasting capability
both for spatial resolution and fit quality compared to earlier models.

(iii) We provide an analytical approach for calculating the basic reproduction num-
ber, R0, for our multi-population epidemic model. We use the numeric results
of R0 in an allocation heuristic and compare it with the results of the ADP

3 ’We’ in Chapter 4 refers to the authors of Nohdurft et al. (2016a)
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algorithm.

(ii) We use a dynamic programming algorithm to determine the allocation of inter-
vention resources, beds in our experiments, to the afflicted regions in Guinea,
Liberia, and Sierra Leone. While the size and multi-dimensionality of the state
space make the computation of an optimal solution intractable, we develop an
approximate dynamic programming algorithm based on policy iteration which
is able to solve the problem in reasonable time. The approach complements
the heuristic using R0 and both are compared to one other allocation heuristics
as well as the actual allocation. It is, to the best of our knowledge, the first
application of approximate dynamic programming with an underlying epidemic
model.
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Chapter 2

Coordination benefits in
pharmaceutical supply chains

with Stefan Spinler

The content presented in this chapter is based on Nohdurft & Spinler (2016). Par-
tial results from this chapter contributed to the conference presentations Nohdurft &
Spinler (2014a) and Nohdurft & Spinler (2014b).

The health care supply chain in developed markets is a substantial cost
driver in an industry under permanent cost-pressure while proven supply
chain practices from other industries, like retail, have not been broadly
applied. Coordination methods, like collaborative planning, forecasting,
and replenishment (CPFR), could lower cost while maintaining stable per-
formance levels. We develop a discrete event simulation which evaluates
the impact of two coordination methods on supply chain performance con-
sidering different external constraints. Results show that coordination is
beneficial both for supply chain costs and customer fill rate, especially
when product shelf life is short. The model further indicates that imple-
mentation of a coordination scheme needs to be accompanied by a profit
sharing agreement, as the benefits are highest for the wholesaler echelon
of the supply chain.
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2.1 Introduction

Modern supply chains (SCs), transporting goods from manufacturers to a diverse net-
work of retailers across country and company borders, have become complex networks
where performance has a significant financial impact on the profit of the involved
stakeholders. The health care sector, which is seeking to enhance efficiency under
ever-rising cost pressure, not only needs to handle such a complex network but is
also further constrained through regulatory hurdles, sensitive goods, and high service
level requirements. The benefits of intensified information sharing and coordination
could help to to reduce the cost of a pharmaceutical supply chain while simultaneously
maintaining a high performance level.

While the effects of coordination on SC performance have been evaluated in different
settings (Aviv, 2001; Byrne & Heavey, 2006; Cachon & Fisher, 2000; Kamalapur
et al., 2013), we contribute to the literature by focusing on the narrow but important
market of pharmaceuticals. Accounting for about 30% of health care provider’s overall
cost (Schneller & Smeltzer, 2006), supply chain management has the potential to
be an improvement lever for an industry facing high cost pressure while having to
comply with high service levels (Burns, 2002; Dacosta-Claro, 2002). The handled
goods are mostly perishable, which makes most of the existing research difficult to
apply. Our proposed model simulates different degrees of coordination in a discrete
event simulation which is calibrated to the German pharmaceutical market. We use
real demand data to assess potential performance gains through the application of
three coordination schemes. Results show that coordination is beneficial under most
circumstances, but the size of its benefits varies with the shelf life, demand variation
and available capacity.

The remainder of the paper is organized as follows: Section 2.2 provides an overview
about existing research on SC coordination and performance of health care SCs. Sec-
tion 2.3 describes the simulation model setup. Section 2.4 provides details about the
design of the experiment, while section 2.5 analyses its output. The paper concludes
with a summary of the results and provides possible directions for future research in
section 2.6.
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2.2 Literature review

The following review provides an overview about four different forms of SC coordina-
tion and SC evolution and performance in the health care industry.

Supply chain coordination The field of SC coordination is well represented in the
literature1. Results from empirical as well as analytical studies shows, that it can have
significant positive impact on cost and inventory level. Kanda & Deshmukh (2008)
propose four different coordination mechanisms: supply chain contracts, information
sharing, information technology and joint decision making.

Supply chain contracts regulate the legal relationship between SC partners with the
objective to increase overall supply chain performance while simultaneously managing
the risks emanating from coordination for each partner involved (Kanda & Deshmukh,
2008). The possibility of performance improvement is shown by Tsay (1999) through
modeling the benefits of a contract regulating product prices as well as minimum and
maximum purchasing quantities.

Byrne & Heavey (2006) show that sharing demand information in a 3-tier supply chain
with restricted production capacity is reducing costs and increasing customer service
level (CSL). Reduced inventory levels are also shown in similar settings by Cachon &
Fisher (2000); Lau et al. (2004); Li et al. (2001); Yu et al. (2001), while the model of
Li et al. (2001) highlights a possible negative impact of information sharing on CSL.
Terwiesch et al. (2005) state that sharing of forecast information could increase SC
performance in the semiconductor industry, but the potential remains unlocked due to
the likelihood of silo-optimization of the supply chain partners. This highlights that
information sharing mechanisms do not always establish a pareto-optimal situation
for all SC partners.

Information technology can support the implementation of coordination mechanisms
and increases the effectiveness and efficiency of information transfer between supply
chain partners (Kanda & Deshmukh, 2008). A common application of the information
technology measure is vendor managed inventory (VMI), which transfers inventory
responsibility to an upstream part of the supply chain and results in cost savings

1 According to Kanda & Deshmukh (2008), collaboration and coordination may be considered
synonymous terms in this context, we will only use coordination as term in this paper.
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through improved transparency about the inventory status along the SC (Haavik,
2000).

More advanced coordination methods include joint decision making between the sup-
ply chain partners. The objective shifts from optimizing a single entity to a holistic
optimization of the whole SC. One method for joint decision making is collaborative
planning, forecasting and replenishment (CPFR), which includes not only the sharing
of demand information but also collaborative determination of forecasts and replen-
ishment decisions (Skjoett-Larsen et al., 2003). Aviv (2001) examines the impact of
sharing forecasts on service level and supply chain cost in a two-tier supply chain
under uncertain demand. The resulting lower cost for all supply chain partners are
complemented by improved agility of the manufacturer and improved forecast quality
upstream of the SC. These findings are supported by Aviv (2007) as well as McCarthy
& Golicic (2002). Chen & Chen (2005) demonstrate cost reductions through joint or-
der cycle determination and quantity planning under varying demand, and Sari (2008)
shows that using the same forecast for replenishment planning outperforms VMI. Ka-
malapur et al. (2013) show that especially in settings with high demand variation,
limited production capacity, and high backorder cost, CPFR leads to a more cost
efficient SC. Results from Sawik (2009) indicate that a chronological coordination of
the planning process steps between the supply chain partners does not significantly
reduce costs.

For the purpose of this research, the existing SC models lack important characteristics
of today’s networks to be found in the health care industry, such as considering more
than two echelons (Kanda & Deshmukh, 2008). Coordination, taking into account the
perishability of goods, has been covered to a limited extent only in the existing litera-
ture. Ketzenberg & Ferguson (2008) show that sharing inventory age information and
VMI improve the effectiveness of a supply chain handling perishable grocery products
through improved customer service level and reduced write-off costs; Karaesmen et al.
(2011) highlight that supply chain coordination focusing on perishable goods should
be a direction for future research.

Supply Chain optimization in the health care industry Several areas for
improvement in the health care supply chain are discussed in the literature. Relevant
examples are lack of application of collaborative supply chain management methods
like CPFR (Aptel & Pourjalali, 2001), misaligned incentives across the supply chain
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partners (McKone-Sweet et al., 2005), and insufficient inventory management leading
to stock-outs or write-offs (Romero, 2013). Other examples focus on single parts of
the supply chain like the inflexibility in manufacturing lead times and capacity (Ebel
et al., 2013). Such improvement opportunities are required in an environment where
operational efficiency is becoming increasingly important to be able to comply with
tighter regulations, maintain quality of care, and avoid drug shortages (Alicke et al.,
2014; Romero, 2013; Vila-Parrish et al., 2012).

The health care sector could benefit from as of today largely disregarded SC collabora-
tion methods (de Vries et al., 2011), some of which have successfully been implemented
in retail. Kiely (2004) states that the lack of coordination methods can be traced back
to a relatively equal balance of power between the SC partners leading to a resistance
to share more information than necessary.

Several authors have examined the applicability of lean supply chain methods in the
health care sector. A case study conducted by Rivard-Royer et al. (2002) finds, with
some limitations, that there is no major advantage of a zero inventory system based
on pull replenishment in a hospital ward. Jarrett (1998) emphasizes the need to
implement just-in-time in the health care supply chain to remain competitive.

McKone-Sweet et al. (2005) highlight misaligned incentives along the SC partners as
one of the reasons for bad performance of the health care supply chains. Physicians
tend to overstock to hedge against volatile demand, hospital inventory managers in-
tend to drive down costs through reduced inventory levels, whereas manufacturers try
to push as much inventory as possible into the supply chain to promote their products
through increased availability.

According to Bhakoo et al. (2012), the level of coordination in the Australian health
care supply chain is lower for the upstream parts of the chain. It is further influenced
by the turnover and criticality of the product as well as the geographical complexity
of the network and the mutual trust between the partners.

While potential benefits of SC coordination have been highlighted in the literature,
evidence which conditions influence these benefits and how they are distributed among
SC partners is sparse. We contribute to the literature through analyzing the impact
of SC characteristics as demand variability, production capacity, or shelf life length,
on the benefit of coordination schemes. We analyze changes in SC performance as
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well as shifts in the cost distribution across the SC entities. To ensure the validity
of our model, we use real-world demand data in a discrete simulation model which
reflects the characteristics of a pharmaceutical SC.

2.3 Model development

Among methods available for supply chain modeling, discrete event simulation is a
widely used method to analyze SC decision problems (Tako & Robinson, 2012). We
choose a discrete event simulation approach, as an analytical solution would be in-
tractable when accommodating the complex model structure required. Discrete event
simulation has been used in several prior studies examining SC performance (Angulo
et al., 2004; Fleisch & Tellkamp, 2005; Shin & Benton, 2004). In the remainder of
this paper, the notation presented in Table 2.1 is used.

2.3.1 Structure of the Supply Chain under study

The modeled SC has a divergent, three-echelon structure (see Figure 2.1) and is tai-
lored in its size and interdependencies to the network of German pharmacies and phar-
maceutical wholesalers. Each pharmacy sources at one of the three wholesalers, which
receive the corresponding pharmaceuticals from a manufacturer. Delivery frequencies
can only be varied as integer multiples of the frequency of the next downstream ech-
elon to maintain a consistent tact in the simulation model. This constraint poses no
limitation to the application of the model, as delivery frequencies of the modeled SC
increase with each upstream echelon. Production and transportation lead times are
assumed to be constant over time but can vary between entities. Every period, each
pharmacy is facing a share of the total demand which is proportional to its market
share (see Section 2.3.4). Unsatisfied demand is lost at the pharmacies and whole-
salers, as patients can buy the needed pharmaceuticals at a different pharmacy and
pharmacies could source them at a different wholesaler. The manufacturer backlogs
unsatisfied demand, as he is the single available supplier for a specific pharmaceutical.
Pharmaceuticals have a fixed shelf life, ranging from 3 to 12 months. Each echelon
can only deliver a pharmaceutical if the remaining shelf life is longer than the minimal
remaining lead time for a possible patient delivery. Pharmaceuticals older than the
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Table 2.1: Notation of variables used in the simulation model

Input variables Model variables
Dp Demand in units at p Bi,t Backlog at i in t
DE(i) Set of downstream entities con-

nected to i including i
CT ∗i,t Optimal time to cover with safety

stock
DFn Delivery frequency of echelon n Fi,t,tf Forecasted demand for i in t for tf
E(i) Connected entity i at next upstream

echelon
FEi,t,tfe

Forecast error of i in t for a forecast
of tfe periods

HCi Holding costs per unit and period at
i

FS Forecast smoothing constant

LCi Logistic cost per unit at i INi,t,a Inventory in t at i with age a
LTi Lead time towards i LSi,t Lost sales at i
n(i) Echelon of entity i MSi Market share of i
SL Maximum shelf life Oi,t Order quantity of i
SOCi Stock-out cost per unit at i Ri,t,a Replenishment for i shipped at a
UCi Unit cost at entity i SSi,t Safety stock at i in t
UE(i) Set of upstream entities connected

to i
WIPi,t Work in progress to i in t

α Target Pharmacy service level for
safety stock optimization

WOt,i Write-offs at i

Output variables Indices
FRp Fill rate of p i Supply chain entity,

i = 1, . . . , I with I = P +W +M
HCn Holding costs at n m Manufacturer, m = 1, . . . ,M
ICn Inventory cost at n p Pharmacy, p = 1, . . . , P
LCn Logistic costs at n t Simulation period,

t = 1, . . . , T
SCCn Supply Chain cost at n w Wholesaler, w = 1, . . . ,W
WOCn Write-off-costs at n
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shelf life are written-off.

Manu-
facturer

Pharma-
cies

Material flow (all schemes)

Information flow (POS)

Information flow (CPFR)

Coordinated SC 
planning

Whole-
salers

Figure 2.1: Structure of modeled sup-
ply chain

The discrete event simulation model simulates 281 decision events in one simulation
period, representing 11 months of available demand data with 5 working days per
week. The simulation runs three successive simulation periods to permit perishability,
even when shelf life is longer than 11 months.

2.3.2 Simulation model

Model process The simulation is divided into four modules, each performing the
outlined steps sequentially for every echelon:

1) Write-off perished inventory. Inventory, which’s age is too high (a ≥ amaxn )
to be sent from the echelon n to the patient with sufficient shelf life is written
off, otherwise it is transferred to next period’s inventory and aged on period:

INi,t,a+1 =
⎧⎪⎪⎨⎪⎪⎩

INi,t−1,a ∀ a < amax
n(i)

0 ∀ a ≥ amax
n(i)

(2.1)

The maximum age amaxn in each echelon is either the sum of the average remain-
ing downstream lead times for the manufacturer (1) and wholesaler (2). As the
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pharmacy lead time towards the patient is zero, amaxn=3 is equal to the shelf life:

amaxn=1 = LT i,i=(M+1,...,M+W ) +LT i,i=(M+W+1,...,M+W+P ), (2.2)
amaxn=2 = LT i,i=(M+W+1,...,M+W+P ), (2.3)
amaxn=3 = SL. (2.4)

2) Receive replenishments. Replenishments delivered to entity i, are added to
the inventory in t when they have been shipped in period t −LTi. Having been
sent with the age a, they are added to the inventory having age a +LTi:

INi,t,a+LTi
= INi,t,a+LTi

+Ri,t−LTi,a. (2.5)

3) Satisfy pharmacy demand and ship manufacturer and wholesaler or-
ders from last period. Demand or orders are satisfied from the available
inventory. To fulfill demand Dsat

p,t,a pharmacies use their oldest inventory first.
For each inventory age, either the maximum available inventory or the remaining
unsatisfied demand is provided to the patient:

Dsat
p,t,a = max(0,Dp,t −

SL

∑
b=a+1

Dsat
p,t,b −max(0,Dp,t − INp,t,a −

SL

∑
b=a+1

Dsat
k,t,b)) (2.6)

∀ a = (SL, . . . ,1).

The remaining inventory is updated accordingly:

INp,t,a = INp,t,a −Dsatisfied
p,t,a . (2.7)

For the manufacturer and wholesaler echelons, respectively, three possible allo-
cation policies are used if the inventory is not sufficient to provide replenishments
for all outstanding orders. These include a simple first-come-first-serve (FCFS)
policy, a proportional policy from Cachon & Lariviere (1999), and a market
share based policy used in the German pharmaceutical market according to
industry experts.

First-come-first-serve (FCFS). Orders are satisfied in the sequence of the entity
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number i with inventory not older than amax
n(i) :

Ri,t,a = max(0,Oi,t−1 −
amax

∑
b=a+1

Ri,t,b −max(0,Oi,t−1 − INE(i),t,a −
amax

∑
b=a+1

Ri,t,b))

(2.8)

∀ a = (amax, . . . ,1).

Proportional allocation. For a more evenly distributed allocation of the available
wholesaler and manufacturer inventory among their respective downstream eche-
lons, we use a proportional allocation following Cachon & Lariviere (1999). Each
order is only satisfied by entity i up to the proportion of the factor νi ∈ (0,1),
the share of all orders which can be satisfied through the inventory on hand
with sufficient low age a ≤ amax:

νi = min

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1,

amax

∑
a=1

INi,t,a

∑
j
Oj,t−1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

∀ j with E(j) = i and n(i) = 1,2. (2.9)

Under the proportional allocation policy, the outstanding orders are realized
as under the FCFS policy, with the order quantity corrected by νi is shown in
Equation (2.10):

Ri,t,a = max(0,Oi,t−1νi −
amax

∑
b=a+1

Ri,t,b −max(0,Oi,t−1νi − INE(i),t,a −
amax

∑
b=a+1

Ri,t,b)) .

(2.10)

Market share based allocation. A third allocation policy is based on interviews
with experts from German pharmaceutical wholesalers. Each entity can only
order a share of the available inventory equivalent to its market share and no
more than 150 % of the mean of the past ρ orders:

Oadjusted
i,t−1 =min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Oi,t−1,1.5 ⋅

t−1
∑

t′=t−ρ−1
Oi,t′

ρ
,MSiINE(i),t,a

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

. (2.11)

This policy is enforced through setting Oi,t = Oadjusted
i,t ∀ n(i) = 1,2 in Equation

(2.8).
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2.3 Model development

For each of the three aforementioned allocation policies, the inventory of the
replenishing entities is updated accordingly:

INi,t,a = INi,t,a −∑
j

Rj,t,a ∀ j with E(j) = i. (2.12)

4) Define order quantity. The order quantity is computed through three differ-
ent schemes with increasing SC coordination.

Scheme 1 - conventional supply chain information sharing (CONV). The order
quantity is defined based on an adaption of the extended newsvendor approach
from Kanchanasuntorn & Techanitisawad (2006) with:

F (Zi) =
SOCi

SOCi +WOCi +HCi
. (2.13)

F (Zi) is the critical fractile, Zi is be obtained from the inverse cumulative distri-
bution function of the demand distribution. We fit log-normal distributions to
the demand patterns of each product (see Section 2.3.4). The ordering decision
for all echelons are characterized by Equation (2.14), where the stock shipped
from the upper echelon as well as the available inventory is subtracted from the
order-up-to level:

Oi,t = max(0, µDi,t
(DFn +LTi) + σD,i,t

√
(DFn +LTi)Zi (2.14)

−WIPi,t −
SL

∑
a=1
INi,t).

Scheme 2 - point of sale information sharing (POS) The order quantity cal-
culation uses a forecast which is based on the demand data collected by the
pharmacies. Considering seasonal characteristics of some of the pharmaceuti-
cals modeled (e.g. allergy or cold medicine), a Holt-Winters forecasting method
is used. For a comprehensive description of the Holt-Winter method, we refer
to Holt (2004).

We use a Holt-Winters algorithm with additive factors to separate the level,
trend, and seasonal components of the time series. The constants A,B,C ∈ [0,1]
are smoothing factors for the level, trend and seasonal change of the time series,
respectively. They are set as follows: A = 0.5, B = 0, and C = 0.8, which results
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into a reliable replication of demand curves tested during our experiments. B is
set to zero as we do not observe any trend effect in our data. The seasonal cycle
is synchronized with the simulation period of 281 days. The update equations
of the Holt-Winters forecast are initialized with zeros and the forecast is run
for six periods for calibration prior to our experiments. The order quantity is
then determined using the forecasted demand quantity and an additional safety
stock.

Oi,t = max
⎛
⎝

0,
t+LTi+DFn

∑
tf=t+1

Fi,t,tf + SSi,t −WIPi,t −
SL

∑
a=1
INi,t

⎞
⎠
. (2.15)

The safety stock quantity is computed through the product of the forecast error’s
standard deviation over the lead time σFE and the safety stock factor SSF
(Silver & Peterson, 1985). F −1 is the inverse of the cumulative distribution
function of the demand distribution:

SSi,t = σFESSF with SSF = F −1 ( HCi
SOCi

) . (2.16)

Scheme 3 - collaborative planning, forecasting and replenishment (CPFR). The
calculation of the order quantity incorporates the forecasted demand of the
pharmacies connected over the lead time to SC entity i, the inventory and work
in progress of all connected downstream entities, as shown in Equation (2.17):

Oi,t =max
⎛
⎝

0, ∑
j∈DE(i)∣n(i)=3

t+LTi+DFn(i)

∑
tf=t+1

Fj,t,tf + SSi,t (2.17)

− ∑
j∈DE(i)

∑
a

INj,t,a − ∑
j∈DE(i)

WIPj,t
⎞
⎠
.

The safety stock is allocated across entities using a Dynamic Programming (DP)
algorithm based on Minner (1997); Inderfurth & Minner (1998). To limit the
size of the action space, the algorithm utilizes a finding from Simpson (1958).
He shows that the lead time of the upstream echelons, or the time from order to
replenishment, CT ∗

i,t, against which the safety stock covers, should either be 0 or
the sum of all upstream lead times. Thus, every pharmacy covers its lead time
plus the sum of all uncovered lead times of its assigned upstream echelon entities.
The optimal coverage time for a wholesaler or manufacturer is therefore either
zero or the sum of all uncovered lead times of the assigned upstream echelon
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2.3 Model development

entities including the own lead time. In our model, we derive CT ∗
i,t as described

in Minner (1997) and refer to his article for a detailed description of the DP
algorithm.

The above described modules 1-4 are executed sequentially in every simulation period
t = 1, . . . , T .

2.3.3 Performance measures

Two performance measures are calculated, supply chain costs (SCC) and fill rate (FR).
SCC are be calculated over all echelons, while FR is only calculated for the patient
demand at the pharmacy echelon. Holding cost are charged for each item on stock
at the beginning of a simulation period, the sum over all entities and all simulation
periods results in the total inventory cost IC. Logistic cost LC are incurred when a
replenishment is shipped between SC entities. The write-off costWOC are the sum of
the product of written off pharmaceuticals in each entity with the respective write-off
cost. The sum of the three cost measures results in the total SC cost SCC.

The SCC are calculated as shown in Equations (2.18 - 2.22) and the FR is calculated
through Equation (2.22).

IC =∑
t
∑
i

(∑
a

INi,t,a)HCi (2.18)

LC =∑
t
∑
i

(∑
a

Ri,t,a)TCi (2.19)

WOC =∑
t
∑
i

WOi,tUCi (2.20)

SCC = ICn +LCn +WOCn (2.21)

FR = 1 −∑
t
∑
p

(LSp, t
Dp,t

) (2.22)

with p = (1, . . . , P ), i = (1, . . . , I) and t = (1, . . . , T )

The fill rate FR is 1 minus the share of unsatisfied demand, summed over all periods
and pharmacies.
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2.3.4 Simulation input

Demand data To ensure the validity of the model inputs, real demand data from
the German pharmaceutical market is used (data has been provided by the companies
Insight Health and ABDATA, see Appendix A.1 for a detailed description of the
dataset). The selected dataset contains monthly sales quantities over 11 months for
three different pharmaceutical products in 16 German states. Figure 2.2 shows a
plot of the timeline for the pharmaceutical with pointed demand, a product used by
patients suffering from allergies.
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Figure 2.2: Demand pattern of pharmaceutical with pointed demand for the 16 Ger-
man states2.

To approximate the sales quantity for a single pharmacy, the aggregated state de-
mand is distributed to the pharmacies in each state following the revenue distribution
of the German pharmacies (ABDA, 2013). The pharmacy revenue data is fitted with a
log-normal distribution. The goodness-of-fit is tested through a Kolmogorov-Smirnov
test, which confirms the fit of the distribution at a 1% significance level. The data
update frequency is increased from monthly to daily updates through cubic interpo-
lation. The absolute demand quantity is normalized across pharmaceuticals to ensure
comparability of the resulting SCC.

2 The plots for the remaining pharmaceuticals can be found in Appendix A.1.
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2.3 Model development

To produce i.i.d. random samples of the demand time series to be used in the different
simulation iterations, a maximum entropy bootstrap procedure was used, as it is able
to bootstrap non-stationary data. Vinod (2004) defines the bootstrap algorithm in
seven steps: (1) Arrange the data in an increasing order, (2) determine the interme-
diary points between the arranged data, (3) calculate the truncated mean across all
observations and use it to compute the lower and upper intermediary points, (4) cal-
culate the average of the maximum entropy density for each interval, (5) use a uniform
random distribution U[0,1] to calculate sample quartiles for the maximum entropy
density and sort them, (6) sort the quantiles re-establishing the order of the original
dataset, (7) repeat step one to six for the number of required bootstraps. Bootstrap
samples of the data for pharmaceutical 3 are shown in Figure 2.3. In our experi-
ments, this method produced superior time series bootstrapping results compared to
approaches using autoregressive functions.
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Figure 2.3: 30 samples of bootstrapped demand data of the pointed pharmaceutical,
state RP (Rhineland-Palatinate) using the maximum entropy boostrap
method.

Supply Chain parameters SC parameters from the German pharmaceutical mar-
ket are used in the model. They have been obtained through interviews with experts
from pharmacies as well as pharmaceutical wholesalers and are presented in Table
2.2. Three out of 16 German states are modeled (Hamburg, Mecklenburg-Western
Pomerania, and Rhineland-Palatinate), representing the spatial heterogeneity popu-
lation and pharmacy density among German states. The number of pharmacies is
reduced by factor 4 to make the simulation computational feasible and to account for
the fact that not all pharmacies are using all of the 13 wholesalers operating on the
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German market (PHAGRO, 2016). Unit cost are assumed to be equal for all product
to ensure comparability of the resulting SCC.

Table 2.2: Parameter values for three entities in the simulation

Entity Parameter Value Source

Pharma-
cies

# of Pharmacies 477 ABDA (2013)
LT from Wholes. [days] 1

Expert InterviewDelivery frequency [days] 1
HC [share of unit cost] 10%
TC [EUR per unit] 0.16
UC [EUR] 10.21 ABDATA dataset1
CLS [EUR] 777

Whole-
salers

# of Wholesalers 3 Wholesaler2

LT from Manufact. [days] 7

Expert InterviewDelivery frequency [days] 8
HC [share of unit cost] 7%
TC [EUR per unit] 0.4
UC [EUR] 8.65 ABDATA dataset

Manufac-
turer

# of Manufacturers 1

Expert Interview
Manufacturing LT [days] 30
Production frequency 16
HC [share of unit cost] 10%
UC [EUR] 1.733

1 Cost of lost sales are calculated through subtracting the unit cost from
the pharmacie’s selling price

2 www.phoenixgroup.eu, accessed October 30th, 2015
3 Assuming an 80% margin of the manufacturer, logistic cost included

2.4 Design of experiments

Based on the results of the literature review, six hypotheses are proposed about the
response of the two dependent variables SCC and FR with five independent variables
ALL,CAP,P,SCS and SL:

As SC coordination in general has been identified as cost-effective we follow Byrne &
Heavey (2006); Cachon & Fisher (2000); Lau et al. (2004); Terwiesch et al. (2005) by
proposing hypothesis 1:

24



2.4 Design of experiments

H1a: CPFR entails the lowest SCC followed by POS and CONV.

H1b: CPFR entails the highest FR followed by POS and CONV.

Sari (2008); Kamalapur et al. (2013) state that the variability of demand is handled
better in coordinated SCs. We use that finding for our second set of hypotheses:

H2a: Higher demand variability increases SCC to a lesser extent for CPFR than
for POS and CONV.

H2b: Higher demand variability reduces FR to a lesser extent for CPFR than for
POS and CONV.

Ketzenberg & Ferguson (2008) show that the cost-effectiveness of sharing inventory
age information, especially for products with a short shelf life.

H3a: Lower SL deteriorates SCC to a lesser extent for CPFR than for POS and
CONV.

H3b: Lower SL deteriorates FR to a lesser extent for CPFR than for POS and
CONV.

Sari (2008) states that benefits of coordination schemes are highest when sufficient
capacity is available. We follow her and test whether coordination schemes provide
better mitigation of this effect through coordination:

H4: The benefits of CPFR and POS for the FR decrease when production capacity
is reduced.

The proportional and practical allocation methods distribute the products more equally
across the entities of an echelon. Due to the increased average availability, we propose
a positive effect of the proportional and practical allocation techniques on overall fill
rate as compared to FCFS allocation:

H5: Using proportional allocation (PROP) or practical allocation (PRAC) in-
creases the FR compared to a FCFS allocation.

Chiang & Feng (2007) show that information sharing is more beneficial for the entities
upstream of the supply chain. We therefore propose that the share of the benefits
through using CPFR is higher for entities further upstream of the supply chain.
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H6: The higher the position upstream in the SC, the higher the share of the coor-
dination benefit.

To test these hypotheses, five independent variables are used in the main experimental
design: Type of supply chain scheme (SCS), product (PROD), capactiy (CAP), shelf
life (SL), and allocation (ALL). SCS indicates the coordination scheme under which
the supply chain is operating: conventional supply chain information sharing (CONV),
point of sale information sharing (POS), or collaborative planning, forecasting and re-
plenishment (CPFR). PROD selects one out of 3 pharmaceutical products, indicating
the demand pattern. CAP regulates the available capacity relative to the demand.
The length of the shelf life is determined by the variable SL. If capacity is allocated
through FCFS, proportional or market-share allocation is set by the variable ALL.
Table 2.3 shows the treatment levels of the independent variables. The two dependent
variables are SCC, summing up the cost of the whole supply chain and FR, indicating
the percentage of patient demand covered in the period of the demand.

To evaluate H6, we test whether the cost share of the manufacturer (CSM) and
pharmacies (CSPH) changes when using different coordination schemes.

Table 2.3: Independent variables and respective treatment levels in-
cluded in the experimental design.

Independent vari-
ables

Treatment levels
1 2 3

PROD 1 2 3
SL [days] 281 140 70
CAP [Demand] 0.9 1.1 1.3
ALL FCFS PRAC PROP
SCS CONV POS CPFR

2.5 Model output analysis

To test the significance of the effects in the simulation results, we use a Multivariate
Analysis of Variance (MANOVA), a recommended tool for simulation output analysis
(Balci, 1990). It controls the type I error rate when using multiple dependent vari-
ables and can be applied to factorial experimental designs (see Hair et al., 2006 for
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2.5 Model output analysis

a detailed methodological description). When using MANOVA, four main assump-
tions have to be considered according to Hair et al. (2006): (1) Observations should
be independent. As we use i.i.d. bootstraps in our experiments, we can assume the
independence of observations in the simulation output. (2) Correlation of dependent
variables. Following Hair et al. (2006) we use Bartlett’s test for sphericity to assess
this assumption. It tests the dataset for correlations and significant intercorrelation
among the dependent variables. Results indicate an intercorrelation among the de-
pendent variables with a significance of .000, with the correlation between SCC and
FR being 0.52. The usage of MANOVA is acceptable when the dependent variables
are moderately intercorrelated. (3) Multivariate normality of dataset. As there is no
direct test available, we test the univariate normality of the results in each treatment
group using a Jarque Bera test, giving an indication for the compliance to this as-
sumption. Results show that the assumption of normality is not met by 29% of the
treatment groups in our dataset at the 5% level. As the overall sample size is large,
we are still able to perform MANOVA. (4) Homogeneity of the dependent variable’s
variance-covariance matrices between treatment groups. To test this assumption we
would normally use the Box’s M test, but it is highly sensitive to violations of the
normality assumptions, see (3). We therefore omit the test due to the fact that we
have equal treatment group sizes and a violation of this assumption would have mini-
mal impact on the results. As MANOVA is very sensitive to outliers, we truncate our
dataset beyond the 5% and 95% percentile.

We run N = 30 iterations of each of the G = 243 treatment groups using Matlab,
R2014a, as the computation engine (see Figure 2.4 for the process of the experiment).
For analyzing the output of the simulation, the MANOVA algorithms provided by
STATA, Version 14, were applied. We use one MANOVA including the two depen-
dent variables to test our hypotheses applying a significance level of 0.01 to test the
significance of group differences3. To increase validity of our results we also perform
univariate analysis of variances (ANOVAs) on each dependent variable, supporting
the validity of our results (see Section A.2.2 for the detailed ANOVA results).

The MANOVA results in Table 2.4 show that the group differences relevant for the
constructed hypotheses are significant at the required level in all four relevant tests
(Wilks’ lambda, Pillai’s trace, Lawley-Hotelling trace, and Roy’s largest root). This
3 Although the non-compliance with three out of four assumptions is acceptable due to our ex-

perimental design, we chose the strict significance level 0.01 to avoid accepting nonsignificant
differences.
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Figure 2.4: Modules and flow of the simulation model and design of experiment.

finding is supported by the results of the ANOVAs (Table A.7 - A.10). This implies
that the choice of coordination scheme for the SC has significant impact on the cost
and fill rate, respectively. Further, the resulting cost difference depends on the de-
mand variability, product shelf life, production capacity and allocation method. The
following paragraphs present the results for each hypothesis. Exact estimates of the
dependent variables are presented in Section A.2.1, supporting the results of Fig. 2.5
- 2.9.

H1 - Impact of the degree of coordination Model results in Figure 2.5 show
that coordination through POS and CPFR achieves lower SCC and a better FR
compared to the CONV scheme without coordination. We can therefore confirm H1,
with our findings being in line with Byrne & Heavey (2006); Cachon & Fisher (2000);
Lau et al. (2004); Terwiesch et al. (2005). The cost benefit of POS is accomplished
through a shift of inventory from the two upper to the pharmacy echelon, resulting in
59% lower total inventory cost. This leads to 20% higher logistic, but also 84% lower
write-off cost, resulting in an overall cost advantage of the POS against the CONV
scheme of 36%. The CPFR scheme’s benefit with 40% is even larger. Compared to
the POS scheme inventory cost are reduced by 20%, with substantial reduction at the
wholesaler and pharmacy echelon and an increase at the manufacturer echelon. The
second significant cost benefit against the POS scheme are the lower write-off cost,
particularly at the wholesaler and manufacturer echelon. The intensified coordination
allows an increase of the fill rate from 67% (CONV) to 87% (POS) and 90% (CPFR).
Based on these results, we conclude that both coordination schemes provide overall
value for a pharma supply chain. The numerical results for H1 are presented in Table
A.1.
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Table 2.4: MANOVA results for the main experimental design showing
the significance of the effects necessary for testing hypotheses
1 – 6

Effect Statistics F value Prob > F
SCM W 0.103957 3662.415 .0000 e

P 0.932322 1522.031 .0000 a

L 8.27041 7205.594 .0000 a

R 8.227996 14341.40 .0000 u

All W 0.873195 122.2526 .0000 e

P 0.127391 118.5736 .0000 a

L 0.144549 125.938 .0000 a

R 0.139748 243.5814 .0000 u

PRO × SCM W 0.326123 383.8127 .0000 a

P 0.7282 258.6988 .0000 a

L 1.900701 551.9556 .0000 a

R 1.810004 2103.829 .0000 u

CAP × SCM W 0.266797 466.586 .0000 a

P 0.887333 331.3484 .0000 a

L 2.186003 634.8061 .0000 a

R 1.903016 2211.939 .0000 u

SL × SCM W 0.867087 63.61098 .0000 a

P 0.136314 61.51192 .0000 a

L 0.149375 65.06701 .0000 a

R 0.116759 203.5699 .0000 u

ALL × SCM W 0.675355 122.2349 .0000 a

P 0.349592 112.7509 .0000 a

L 0.444184 130.6549 .0000 a

R 0.342302 403.0036 .0000 u

e exact
a approximate
u upper bound on F
W = Wilks’ lambda
P = Pillai’s trace
L = Lawley-Hotelling trace
R = Roy’s largest root

H2 - Ability of SC coordination to cope with variable demand Results in
Figure 2.6 present the ability of the different coordination schemes to handle fluctu-
ating demand. The cost for the CONV scheme are steadily increasing as demand is
becoming more variable (13% from the stable to the pointed pharmaceutical). This
cost increase is mainly due to an overall higher inventory level (67% more inventory for
the pointed compared with the stable pharmaceutical), especially at the manufacturer
echelon (plus 298%), to buffer against the fluctuating demand. While this reaction
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Figure 2.5: Estimated average SCC and FR using the three coordination schemes

also leads to higher write-off cost (plus 56%), it prevents a further decrease of the FR
when variability increases from the seasonal to the pointed pharmaceutical. The cost
difference between CPFR and CONV increases from 37% to 44% when going from the
stable to the pointed pharmaceutical. This difference provides evidence for a higher
value of a coordination scheme in markets with variable demands. The lower cost of
the CPFR for the demands with medium and high variability (seasonal and pointed
pharmaceuticals) compared to POS let us confirm H2a, in line with Sari (2008).

The FR decreases monotonically for both, the POS and the CPFR schemes. While
the difference between the two schemes is 7 percentage points for the seasonal phar-
maceutical, it is reduced to near zero for the pointed pharmaceutical. Both schemes
deliver a higher FR compared to the CONV scheme, with the difference of the CONV
to the CPFR scheme being highest for the seasonal pharmaceutical (34 percentage
points). Results therefore indicate that increased coordination is not protecting the
supply chain against a deteriorating FR when facing more variable demand, but the
FR remains on a higher level for both schemes with coordination. We therefore have
to reject H2b, but conclude that it would be beneficial to use coordination as well in
markets with variable demand as it still provides a higher fill rate. Numerical results
for H2 are presented in Table A.2.
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Figure 2.6: Estimated SCC (left) and FR (right) for the three coordination schemes
and products with different demand variability

H3 - Influence of shelf life length on the benefits of SC coordination Results
in Figure 2.7 show that the cost benefit of the schemes with coordination increases with
shorter shelf life and they are also able to maintain a better FR across the shelf lifes
tested, although the advantage decreases when shelf life is shortened. With the CONV
scheme costs increase by 69% when shelf life is reduced from 12 to 3 months, mainly
due to increased write-off cost (plus 102%). For the POS and CPFR scheme costs
increase only by 6% and 5%, respectively. The FR remains stable across all three shelf
lifes for POS and CPFR, while it increases by 11% for CONV when shelf life is reduced
from 12 to 3 months due to larger inventory quantities at the manufacturer and
pharmacy echelons. With the FR effect sizes for POS and CPFR being as small as 1%,
we cannot draw conclusions beyond the observation that coordination schemes retain
their advantage of a higher FR, even for products with shorter shelf life. We therefore
can accept H3a but have to reject H3b. Considering the cost advantage of the schemes
applying coordination we conclude that it is beneficial to apply coordination when
handling products with a limited shelf life. Our findings are in line with Ketzenberg
& Ferguson (2008), who also find that a central coordination scheme is most beneficial
when handling perishable goods. Numerical results for H3 are presented in Table A.3.
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Figure 2.7: Estimated SCC (left) and FR (right) for the three coordination schemes
and different shelf life lengths

H4 - Handling capacity constraints through SC coordination Results in
Figure 2.8 show that the schemes using coordination dominate the CONV scheme
for all production capacity levels tested. With limited manufacturing capacity, the
fill rate subsequently declines for all schemes tested. The rate of decline increases
with the degree of coordination. When reducing capacity from 1.3 to 0.9 × mean
demand, the FR is reduced by 4, 10, and 13 percentage points for the CONV, POS,
and CPFR scheme. With these results we can confirm H4b. When acting in an envi-
ronment which requires a high and stable FR, like the pharmaceutical supply chain,
implementation of coordination schemes would still be beneficial in environments with
frequent manufacturing constraints, but a trade-off with the implementation cost for
a coordination system (e.g. telecommunication infrastructure, additional headcount)
has to be made. Detailed numerical results for H4 can be found in Table A.4.

H5 - Impact of allocation methods on SC performance Results in Figure 2.9
(left) show that the practical allocation performs worst among all allocation methods,
with the difference being 6.4 percentage points compared to the FCFS method used
in the POS scheme. Proportional allocation has a positive effect on the fill rate for
the CONV coordination scheme (plus 3 percentage points), but for the two schemes
with coordination the size of the effect is not big enough to allow a well-founded
interpretation. We therefore cannot conclude that when using a coordination scheme
in the supply chain, a more advanced allocation scheme would provide any significant
value-add to performance achieved with the coordination, leading to a rejection of
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Figure 2.8: Estimated FR for the three coordination schemes and different produc-
tion capacity constraints

H5. When coordination is not used, a proportional allocation method could provide
value, as long as the behavior of the supply chain partners is focused on increasing
the value for the whole supply chain and they not only make their decision based on
the outcome for their own entity. Detailed numerical results are presented in Table
A.5.
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Figure 2.9: Left: Estimated manufacturer and pharmacy share of the total supply
chain cost; Right: Estimated FR for the three allocation policies and
coordination schemes

H6 - Impact of SC coordination schemes on cost distribution among SC
partners Results in Figure 2.9 (right) show that coordination shifts costs back
from the wholesaler to the upper echelons of the supply chain. Without coordination,
cost are concentrated among the manufacturer (43%) and wholesalers (53%), with
the pharmacies incurring only 4% of the cost due to substantially lower holding and
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logistic cost. The increase of manufacturer and pharmacy cost share when using POS
or CPFR reduces the wholesaler’s cost share by up to 35 percentage points. These
results do reject H6, as the only echelon with an absolute benefit from POS or CPFR
is the wholesaler. With CPFR, the wholesaler’s costs decrease by 91% while the cost
of the manufacturer and pharmacy echelon increase by 15% and 35%, respectively.

2.6 Conclusion

Our study evaluates performance differences between three supply chain coordination
schemes, with an increasing degree of coordination. The performance of each scheme is
tested in a study simulating the characteristics of the German pharmaceutical market
with varying demand variability, product shelf life, and production capacity. The
main findings are:

The most-advanced coordination scheme, CPFR, is dominating the other two schemes
by having the lowest cost and highest fill rate in almost all tested treatment groups.
Leaving implementation aside, CPFR’s benefits are clearly visible in the results.

The benefits of CPFR and POS against the CONV scheme vary when the independent
variables are changed. The usage of POS or CPFR is highly advisable for products
with a high variation in demand and a short shelf life, as both schemes keep cost
low under these circumstances. If production capacity is scarce, coordination schemes
should not be used as mitigation measure, as they perform best when ample capacity
is available.

The reactions of the two schemes with coordination on changing conditions are compa-
rable, with CPFR having an advantage of up to 12% (SCC) or 7.6 percentage points
(FR) above POS, which already captures on average 89% of the benefit obtained
through CPFR. The additional benefit of CPFR requires implementation of a com-
plex management system across different companies, which generates additional cost
for technical implementation (e.g. synchronizing data exchange), reduces control over
proprietary information (e.g. POS data), and generates a need for cross-functional
collaboration in the participating companies (Fliedner, 2003 and Skjoett-Larsen et al.,
2003). A trade-off has to be made, whether this additional performance gain justifies
such efforts.
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2.6 Conclusion

With the implementation of coordination schemes, supply chain cost are shifted from
the wholesaler to the manufacturer and pharmacy echelons. To motivate these two
echelons to implement a coordination scheme, a benefit sharing agreement has to be
reached, otherwise the pharmacies and manufacturer will not relinquish their domi-
nant market positions.

The developed simulation model incorporates many characteristics of a real supply
chain, but is also subject to limitations. The simulated echelons do only consider
only one manufacturer and a limited set of wholesalers and pharmacies. To assess a
potential effect of coordination in a competitive market, competing companies would
need to be incorporated in the model. We ignored limitations regarding the timing
of production and variability of transportation times to limit the complexity of the
model. Incorporating these effects would further increase the robustness ot the results.
To be able to test solely the effect of coordination, we neglected any implementation
cost of the coordination schemes. These cost are a part of the overall SC cost and
have to be considered when deciding about a SC scheme.

This work provides several opportunities for further research. A possible model ex-
tension could incorporate effects of benefit sharing contracts or evaluate the effect
of a partial implementation of coordination across the whole SC. The performance
of the tested coordination schemes could also be tested in different markets where
perishability is of high relevance, e.g. consumer retail. Incorporating other factors
influencing SC performance through uncertainty could increase the robustness of our
findings. Variable lead times would induce uncertainty from the upper echelons of the
SC and a more unstable manufacturing process would reflect the complexity of pro-
ducing pharmaceuticals. Another possible extension could include the assessment of
the change in effect size if only a share of the SC entities take part in the coordination
effort, while others stick with the conventional SC structure.
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Chapter 3

Was Angelina right?
Optimizing cancer prevention strategies for

BRCA carriers
with Elisa F. Long and Stefan Spinler

The content presented in this chapter is based on Nohdurft et al. (2016b).

Female carriers of a BRCA1/2 genetic mutation face significantly elevated
risks of cancer, with 45-65% of women developing breast cancer and 15-
39% developing ovarian cancer in their lifetimes. Cancer risk can be re-
duced through prophylactic surgeries like a bilateral mastectomy (BM),
bilateral salpingo-oophorectomy (BSO), or both. We develop a Markov
Decision process (MDP) which models a carriers health states and uses
clinical data to compute the optimal surgery sequence that maximizes the
carrier’s expected lifetime QALYs under varying assumptions about each
surgery’s impact on quality-of-life. Baseline results demonstrate that a
QALY-maximizing sequence recommends BM between ages 30 and 60 and
BSO after age 40. Surgeries are recommended later for BRCA2 carriers,
as their risk for both cancers is less than for BRCA1 carriers. We de-
rive structural properties from the model and show that when one surgery
has already been completed, there exists an optimal control limit beyond
which performing the other surgery is always QALY-maximizing.
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3.1 Introduction

One out of every 400 women in the U.S.—and one in 50 women of Ashkenazi Jewish
descent—carries a BRCA1/2 genetic mutation (Hall et al., 2009). Female carriers
face a significantly higher risk of breast and ovarian cancer relative to the general
population. An estimated 55-65% of BRCA1 mutation carriers and 45% of BRCA2
mutation carriers develop breast cancer in their lifetime, compared to 12% in the
general population (Antoniou et al., 2003; Chen & Parmigiani, 2007). The lifetime
risk of ovarian cancer is slightly lower at 39% (BRCA1) and 11-17% (BRCA2), but
far greater than the 1-2% risk in the general population (Antoniou et al., 2003; Chen
& Parmigiani, 2007).

Women with a known BRCA mutation can improve early cancer detection by un-
dergoing enhanced surveillance with frequent mammograms and MRIs, and poten-
tially reduce the risk of developing cancer with chemoprevention and/or prophylactic
surgery. Surgically removing both breasts, known as a bilateral mastectomy (BM),
can reduce a carrier’s lifetime risk of breast cancer by as much as 95%; removing both
ovaries and fallopian tubes, known as a bilateral salpingo-oophorectomy (BSO), can
reduce ovarian cancer risk by 80% and additionally reduce breast cancer risk by up
to 60% (Domchek et al., 2006, 2010; Eisen et al., 2005; Grann et al., 1999a; Rebbeck
et al., 2009). As both surgeries are invasive procedures with possible complications,
hormonal side effects, and fertility implications, deciding whether to undergo such
procedures—and at what age—is a difficult choice for many women. The benefits
of decreased cancer risk and peace of mind are often weighed against a reduction in
quality-of-life (QOL). BRCA mutation carriers will increasingly face this trade-off,
with more women learning of their own mutation status before a cancer diagnosis as
less expensive genetic testing becomes widely available (Long & Ganz, 2015).

While the risk-reducing benefits of BM and BSO are widely accepted, no detailed
guidelines currently exist to advise women at which age each surgery should be per-
formed. The National Comprehensive Cancer Network (NCCN) advises physicians to
discuss the option of BM with BRCA carriers, and suggests that a BSO be performed
between ages 35 and 40 or after completion of child-bearing (National Comprehen-
sive Cancer Network, 2016). Yet these recommendations do not differentiate between
BRCA1 and BRCA2, specify a recommended age to undergo BM, nor incorporate
patient QOL considerations. Other publications offer comparisons of cancer preven-
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tion strategies (Schrag et al., 1997; Grann et al., 1999b), or provide information about
cancer and mortality risk under different strategies (Kurian et al., 2014). However, a
comprehensive model to optimize patient outcomes such as expected quality-adjusted
life years (QALYs) or survival probability is still lacking.

In this study, we contribute to the existing literature by developing a comprehensive
Markov Decision Process (MDP) model of a BRCA1 or BRCA2 mutation carrier’s
health states, and the potential impact of decisions to undergo prophylactic surgery on
both breast and ovarian cancer risk, survival, and QOL. As the problem’s state space
is too large to solve directly with DP, we transform the problem of optimizing health
outcomes into a form solvable through linear programming (LP) and we identify a
QALY-maximizing sequence of prophylactic surgeries. To account for the uncertainty
about the numerically estimated model parameters and carrier-specific preferences
of the impact of surgeries on QOL, we conduct various sensitivity and robustness
analyses. We additionally exploit the model’s structural properties to analytically
derive monotone decision policies, which complement the numerical results. Our
model could help health care professionals in improving their counseling of mutation
carriers since patients can provide individualized QOL preferences for surgery.

Our primary results recommend that BRCA1 carriers undergo BM starting at age 30
up until age 60, after which BM is no longer recommended, and undergo BSO from
age 40 onwards to maximize cumulative QALYs in the baseline scenario. For BRCA2
carriers, the window for recommended BM is reduced to ages 40 to 46, after which it
is no longer advised, and the optimal age to undergo BSO is delayed to age 49 and
later, as the overall cancer risk is lower compared to BRCA1.

The remainder of the paper is organized as follows: Section 3.2 provides an overview
of the existing literature on cancer risk for BRCA1/2 carriers, risk-reduction methods
and the use of MDP models as decision aids in health care. The structure of our
MDP model is described in Section 3.3, and methods for solving it are in Section 3.4.
Numerical results of the optimization approach are presented in Section 3.5 and we
conclude with discussion in Section 3.6.
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3.2 Literature Review

3.2.1 BRCA and cancer

The link between early onset of breast cancer and genetic mutations was first discov-
ered in 1990 for BRCA1 (Hall et al., 1990) and 1994 for BRCA2 (Wooster et al., 1994).
In their meta-analysis for female mutation carriers aged 20 to 70 years old, Chen &
Parmigiani (2007) report a mean cumulative breast cancer risk of 57% (BRCA1) and
40% (BRCA2), and ovarian cancer risk of 40% (BRCA1) and 18% (BRCA2). Clinical
studies provide evidence that these risks can be reduced through performing a BM,
BSO, or both. Breast cancer risk is reduced by a BM as there is minimal breast tis-
sue remaining that that could develop cancer. McDonnell et al. (2001) report a 90%
breast cancer risk reduction with a prophylactic BM, and Rebbeck et al. (2004) esti-
mate a 94% reduction. A BSO reduces the risk of ovarian cancer by an estimated 80%
through removing the organs themselves (Rebbeck et al., 2009). This procedure has
the added benefit of lowering breast cancer risk by 30% to 59% depending on the age
at surgery, due to reduced estrogen production, which can fuel breast cancer growth
Eisen et al. (2005). Domchek et al. (2006) find a positive effect of prophylactic BSOs
on overall survival as well as breast and ovarian cancer-specific mortality of mutation
carriers. Their findings are in line with other clinical studies (Domchek et al., 2010;
Kauff et al., 2008) and are confirmed by a meta-analysis (Rebbeck et al., 2009).

3.2.2 Quality-of-life

While the medical community mostly agrees on the risk-reducing benefits of a BM or
BSO, there is less concordance regarding their respective impact on a patient’s QOL,
defined as a value between 1 (corresponding to perfect health) and 0 (death), of a
patient’s well-being given a specific condition or disease. For prophylactic BM, Grann
et al. (1999b) and Grann et al. (2010) report a reduced long-term QOL based on
an empirical evidence they find after administering questionnaires to women with an
increased risk for breast cancer and a control group. At least a temporary lower QOL
is suggested by Barton et al. (2005). They find that two-thirds of women undergoing a
BM suffer from at least one, mostly reversible, complication. Several other studies find
no long term effects of a BM. The two study populations examined by Tercyak et al.
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(2007) consist of women with a BRCA1/2 mutation and unilateral breast cancer who
chose a contralateral mastectomy (i.e., surgically removing the other non-cancerous
breast) or breast conserving therapy (i.e., removing only the breast lump and nearby
tissue) as a treatment option. Their results did not show a significantly lower QOL
associated with a BM. Geiger et al. (2006) draw similar conclusions after comparing
QOL between women who had been diagnosed with unilateral breast cancer and chose
either a contralateral mastectomy or other treatment options.

The literature on QOL following BSOs also shows heterogeneous findings. Lower long-
term health utilities are reported by Grann et al. (1999b, 2010). A review by Shuster
et al. (2008) suggests that a BSO, especially in pre-menopausal women, increases the
risk of negative side effects including osteoporosis, cardiovascular disease, and decline
in sexual activity. Shuster et al. (2008) suggest that QOL may depend on the surgery’s
timing relative to the onset of natural menopause. Their review provied indications
of a lower QOL after a BSO among pre-menopausal women, as the surgery eliminates
fertility and immediately leads to surgically-induced menopause. Fry et al. (2001) did
not find significant differences in the QOL of women who had undergone a prophylactic
BSO and women who chose a screening program instead, although women report
lower health utilities on some sub-scales after a BSO. Similar conclusions are drawn
by Madalinska et al. (2005); Michelsen et al. (2009); Robson et al. (2003). For an
extensive review of the literature in this area we refer to Harmsen et al. (2015).

3.2.3 Decision analysis models

Decision analysis using Markov Chains and Decision Process models have been ap-
plied to several health care topics, including decision support for BRCA1/2 carriers.
Mason et al. (2011) and Mason et al. (2014) numerically optimize medication deci-
sions for diabetes patients through solving a MDP with DP. Decision before making
a liver transplant are analysed by Alagoz et al. (2004, 2007), who identify optimal
policies for the timing of living-donor transplantations and the acceptance or rejection
of cadaveric organs both through numerical results and structural insights into their
models. Sandıkçı et al. (2008) determine the lost life expectancy for a patient on
the liver transplantation waiting list through concealing information about the com-
position of the waiting list. Shechter et al. (2008) determine the QALY-maximizing
time to initiate HIV treatment while Khademi et al. (2015) solve an MDP with ap-
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proximate dynamic programming to determine the value of different HIV treatment
prioritization practices.

Several papers use MDPs to provide recommendations for breast cancer screening
schedules or treatment choices based on screening results. Ayer et al. (2012) use
partially observable MDP to determine personalized mammography schedules based
on a women’s screening history and personal risk. Chhatwal et al. (2010) and Alagoz
et al. (2013) both provide numerical results and structural properties of an MDP
model to improve decisions about follow-up actions after a mammography exam. An
overview about the application of MDP in health care is given by Alagoz et al. (2010).

Several studies employ Markov chains which model health states of BRCA1/2 muta-
tion carriers to examine different prevention strategies and outcome measures. Kurian
et al. (2012) provide a decision analysis tool that computes changes in mortality rates
for different ages and both mutations based on the timing of surgeries. Schrag et al.
(1997) use a Markov model with data from clinical studies to compare the result-
ing life expectancy of nine different prevention strategies, each varying either in the
performed procedures or their timing. One of their findings suggests that delaying a
BSO for 10 years at the age of 30 has limited impact on the life expectancy. Grann
et al. (2002) and Schrag (2000) consider Tamoxifen therapy as an additional option,
while Armstrong et al. (2004) assess the effect of hormone replacement therapy on the
outcome of a BSO. In addition to measuring survival benefits, quality-adjusted out-
come measures like QALYs are used by Grann et al. (1998) and van Roosmalen et al.
(2002). Anderson et al. (2006) analyze the cost-effectiveness of different prevention
strategies.

While Markov chains can provide an indication how different static decision policies
alter certain outcome measures, the computation of optimal decision policies requires
the us of an MDP in combination with a solution method, e.g. DP. Abdollahian &
Das (2015) develop an MDP to compute the optimal timing of prophylactic BM and
BSO to achieve a cost- or QALY-optimal strategy for mutation carriers. They find
that for a BRCA1 carrier, the QALY-optimal strategy would be a BSO at age 30 and
a BM at age 50. Although their model optimizes a carrier’s accumulated QALYs, it
does not track the development of the a carrier’s health state after a cancer diagnosis
and distinguishes between tumor subtypes based only on the estrogen receptor status,
which lead to misestimates of the cancer-specific mortality rate.
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The existing literature offers limited guidance to BRCA mutation carriers and physi-
cians regarding the optimal timing of prophylactic surgeries. Studies either lack the
ability to choose an optimal strategy from all relevant decision alternatives, or re-
quire assumptions that ignore important characteristics of breast and ovarian cancer
progression. We contribute to the literature in three ways. First, we develop the
most comprehensive decision analytic model for BRCA1/2 mutation carriers that is
also computationally tractable and capable of finding the optimal surgery sequence.
Second, we exploit the structural properties of a simplified model version and analyti-
cally derive monotone decision policies, which could help foster a better understanding
of the model’s results in certain circumstances. Third, we provide insights into the
influence of a carrier’s personal preferences on her QALY-maximizing sequence of
prophylactic surgeries.

3.3 Model Formulation

We present a novel Markov Decision Process (MDP) model of the prophylactic surgery
decision faced by BRCA1/2 mutation carriers: at what age(s) to undergo a BM and
BSO to reduce her breast and ovarian cancer risk to maximize quality-adjusted life
expectancy. For the full model, we use an finite horizon with yearly decision epochs.

We assume that carriers are initially healthy with no prior history of breast or ovarian
cancer, have not previously undergone a BM or BSO surgery, and are first eligible for
surgery at 20 years old. Model states correspond to various health states, including
diagnosis of breast and ovarian cancer and associated tumor subtypes and stages.
Undergoing a BM or BSO reduces the risk of breast or breast and ovarian cancer,
respectively. The carrier’s mortality rate and QOL depends on her age and health
state. Should a cancer diagnosis occur, a cancer-specific mortality rate that depends
on the tumor site (breast or ovaries), stage, and subtype (for breast cancer only)
is added to the baseline mortality rate. Model parameters differ between the two
mutation types wherever evidence from clinical studies could be found.
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3.3.1 State space

The state space S = {age, surg, bc, bsu, bcts, oc, octs, de} consists of eight variables
as summarized in Table 3.1. Each state variable takes on one value from a finite set
described below:

age: indicates the age of the carrier in 1-year increments;
age ∈ {20, 21, . . . , AGE}. The maximum age AGE is set to 85 years as no
studies differentiate cancer risk for carriers older than this age.

surg: indicates which surgeries a carrier has previously undergone;
surg ∈ {None, BSO < 40, BSO = 40, BSO = 41, . . . , BSO > 49, BM,

BM&BSO}. The age at BSO is saved for surgeries occurring between ages
40 and 50, as earlier removal of the ovaries reduces lifetime estrogen exposure,
resulting in a lower breast cancer risk (Eisen et al., 2005).

bc: indicates whether a carrier has been previously diagnosed with breast cancer;
bc ∈ {None, In treatment, ≤ 5 years ago, > 5 years ago}. The carrier can have
no history of breast cancer, currently be in treatment, or be in a post-treatment
stage. The mortality rate for certain breast cancer sub-types (e.g., early stage
triple-negative) sharply drops after five years and distant recurrences beyond
five years post-cancer treatment are rare (Lee et al., 2011). The variable there-
fore indicates if at least five years have passed since the completion of breast
cancer treatment.

bcts: indicates the breast cancer tumor stage at the time of diagnosis;
bcts ∈ {None, I, II, III, IV }. As with most clinical studies, we distinguish
between tumor stages, where stage I tumors are <2cm and only in the breast;
stage II tumors are 2-5cm or spread to lymph nodes; stage III tumors are >5cm
or spread to the chest wall; and stage IV indicates cancer spread to other organs
such as the liver, lungs, brain, or bones. A later stage at diagnosis indicates a
less favorable prognosis and higher mortality rate (Edge & Compton, 2010).

bcsu: indicates the tumor subtype when breast cancer has been diagnosed;
bcsu ∈ {None, LuA, LuB, TN, HER2}. We use a common breast cancer
classification scheme consisting of four sub-types: Luminal A (LuA), Luminal
B (LuB), Triple-Negative (TN), and HER2, which categorize tumors based
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on common combinations of estrogen-, progesterone-, and HER2-receptor sta-
tuses. (Sørlie et al., 2003). TN and HER2 sub-types tend to be faster growing
tumors, leading to later stage at diagnosis, higher rates of metastatic disease
and therefore higher mortality rates (Brown et al., 2008).

oc: indicates whether a carrier has been previously diagnosed with ovarian cancer;
oc ∈ {None, In treatment, Post−treatment}. The carrier can have no history
of ovarian cancer, currently be in treatment, or be post-treatment.

octs: indicates the ovarian cancer tumor stage at the time of diagnosis;
octs ∈ {None, I, II, III, IV }. Stage I corresponds to tumors contained
within the ovaries or fallopian tubes; stage II tumors can have spread to the
uterus or other pelvic organs; stage III tumors have spread to the abdominal
lining or lymph nodes; stage IV indicates cancer spread to organs including the
spleen, liver, lungs, and others.

de: indicates if a carrier is alive, died from metastatic cancer or from other causes;
de ∈ {Alive, Metastatic cancer death, Other death}.

3.3.2 Action space

The model’s action space consists of four actions A = {W, BM, BSO, BM&BSO}.
If state surg indicates that no surgeries have been performed yet, a carrier can choose
an action at(s) from the following options: Wait, undergo a BM, undergo BSO, or
undergo both procedures. If su indicates that an organ has already been removed
(either prophylactically or following a cancer diagnosis), the respective surgery is ex-
cluded from the action space. Although women diagnosed with cancer ultimately
decide whether to undergo a BM or BSO as part of treatment, we assume that treat-
ment of breast cancer includes a BM; similarly treatment of ovarian cancer includes
a BSO. These are reasonable assumptions for BRCA mutation carriers, as the risk of
developing a new cancer in the future is extremely high for this population (Trainer
et al., 2010).
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3.4 Solution Approach

3.3.3 State rewards and transition probabilities

A short-term reward, rt(st, a) ∈ [0,1], is assigned to each state-action pair and deter-
ministically determined by the carrier’s health state at time t. If the action includes a
surgery, this has either a temporary or lifelong impact on the state reward. If cancer
is diagnosed, the negative effect on the reward is dependent on the cancer stage as
indicated in Table 3.5. In each state, the minimum of the QOL factors corresponding
to each state variable is chosen as the period reward. Therefore, cumulative QALYs
are calculated by summing over all health states that are visited before death.

Let Pt denote the matrix of all transition probabilities at time t. The probability
that a carrier transitions from state st to s′t+1 when choosing action a is denoted by
pt(s′t+1 ∣ st, a).

Let v∗(st) denote the optimal expected future reward when a carrier is in state st.
The value of future periods is discounted with factor γ, γ ∈ (0,1). We can find v∗(st)
by solving the following Bellman equation (Puterman, 2014):

v(st) = max
⎧⎪⎪⎨⎪⎪⎩
rt(st, a) + γ ∑

s′t∈S
pt(s′t+1 ∣ st, a)v(s′t+1), ∀st ∈ S, a ∈ A(st)

⎫⎪⎪⎬⎪⎪⎭
. (3.1)

3.4 Solution Approach

As the full model described in Section 3.3 has eight state variables which consists
of at least three possible state values and the action set contains up to four actions,
developing an analytical solution is infeasible due to the high complexity of the prob-
lem. We therefore limit the problem’s scope to only one cancer type and one possible
surgery and analytically derive an optimal control limit policy in Section 3.4.1. The
size of the model’s state space also imposes the ’curse of dimensionality’, making the
computation of an optimal solution through DP intractable. In Section 3.4.2 we there-
fore present an approach based on LP which is able to obtain an optimal numerical
solution.

47



Optimizing cancer prevention strategies for BRCA carriers

3.4.1 Structural properties

In this section, we show that a threshold policy exists for patients who have already
been diagnosed with breast or ovarian cancer (and thus undergone a BM or BSO,
respectively), and then must decide if and when to undergo the other surgery (BSO
or BM, respectively). This analysis complements the numerical solution presented in
Section 3.5 through showing that in these specific circumstances, surgery is always
optimal when the remaining cancer risk is sufficiently high. We first consider a breast
cancer survivor needs to decide if she wants to perform a BSO after having already
performed a BM. We present the reverse solution for an ovarian cancer survivor there-
after. The approach presented in this section has been extended from an approach in
Chhatwal et al. (2010).

Following a breast cancer diagnosis and treatment, the action set A is subsequently
reduced to Â = {W, BSO}, with a BSO as the only remaining surgery option. The
full model state space is S is reduced from an eight-dimensional to a one-dimensional
vector Ŝ = {x20, x21, . . . , xAGE, xsurg, xoc, xdeath}, where x20, x21, . . . , xAGE repre-
sents the carrier’s age-induced breast cancer risk; these states assume no surgery or
ovarian cancer diagnosis. We merge the state variables oc and octs into a single state
xoc, which indicates the diagnosis of ovarian cancer. The state xsurg indicates that
a BSO surgery has been performed. Finally, xdeath indicates the death of the carrier
through metastatic cancer or other causes.

The state xdeath is defined as absorbing state with rt(xdeath ∣ ⋅) = 0. After having
undergone a BSO, the action set is reduced to Â(xsurg) = {W} and rt(xsurg,W ) is
reduced by the impact of the surgery on the QOL. After a breast cancer diagnosis,
rt(xoc, ⋅) is additionally reduced by the impact of the cancer itself. We furthermore
assume the following boundary conditions when reaching T , the last decision epoch
which is defined as T = 64 in our case: In T , the immediate reward of performing
a BSO equals the reward of waiting in T which reflects the conditional discounted
QALYs of a healthy mutation carrier at T . When already having performed the
BSO, the terminal reward accounts for the reduced mortality through the cancer risk
reduction as well as the QOL impact of the BSO. The terminal reward when being
alive after a cancer diagnosis is defined alike as the conditional discounted QALYs of
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a mutation carrier diagnosed with cancer who is alive at age T :

rT (sT ,BSO) = rT (sT ,W )

= vT (sT ), ∀ sT ∈ {x20, x21, . . . , xAGE}, (3.2)
rT (xsurg,W ) = vT (xsurg),

rT (xoc,W ) = vT (xoc).

All proofs are given in the Appendix, Section B.1.2. We make the following assump-
tions:

Assumption 3.1. The probability of an ovarian cancer diagnosis pt(xoc ∣ st,W ) with-
out undergoing BSO is nondecreasing in st, st ∈ {x20, x21, . . . , xAGE}.

Several medical studies support this assumption that the annual risk of developing
ovarian cancer among BRCA carriers increases or remains constant as women age
(Chen & Parmigiani, 2007).

Assumption 3.2. The immediate reward rt(st,W ) is nonincreasing in st ∀ st ∈ Ŝ
and in t.

This implies that a carrier always moves to an equal or lower QOL state as she ages,
st ∈ {x20, x21, . . . , xAGE}; undergoes a BSO, st ∈ {xsurg}; is diagnosed with ovarian
cancer, st ∈ {xoc}; or dies, st ∈ {xdeath}.

Assumption 3.3. The function vt(st,BSO) is nonincreasing in t and in
st∀st ∈ {x20, x21, . . . , xAGE}.

This implies that a carrier’s post-BSO QALYs are not increasing with her age. A
possible decrease in QALY impact of a BSO after the onset of natural menopause will
likely be offset by the decrease in remaining QALYs while aging.

Assumption 3.4. The function vt(xoc, ⋅) is nonincreasing in t.

This implies that a carrier’s expected remaining QALYs after an ovarian cancer diag-
nosis are not increasing with her age.

Assumption 3.5. The function vt(xsurg, ⋅) is nonincreasing in t.
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This implies that a carrier’s expected remaining QALYs after a BSO are not increasing
with her age.

Assumption 3.6. vt(st,BSO) ≥ vt(oc,BSO) ∀ st ∈ {20, 21, . . . , AGE}.

This means that expected remaining QALYs following a BSO are at least as great as
expected remaining QALYs after ovarian cancer.

Assumption 3.7. The transition probabilities for action W satisfy the following:

pt(xoc ∣ i,W ) ≤ pt+1(xoc ∣ i,W ), (3.3)
pt(xdeath ∣ i,W ) ≤ pt+1(xdeath ∣ i,W ), (3.4)

for i, j ∈ Ŝ/{xsurg}.

This assumption means that the cancer risk is nondecreasing in t; as a carrier ages,
she is more likely to transition to a worse health state (i.e., ovarian cancer or death)
if she chooses to not undergo a BSO.

Definition 3.1. Following Barlow & Proschan (1965), a Markov chain is assumed to
be of increasing failure rate (IFR), if its rows are in increasing stochastic order, as:

q(i) =
xdeath

∑
j=k

p(j ∣ i) (3.5)

is nondecreasing in i ∀ k ∈ {x20, x21, . . . , xdeath}.

The above definition means that for the underlying Markov Chain of the MDP, as
a carrier progresses into states with a higher cancer risk, her risk of progressing to
states with an even higher risk of death also increases.

To show the existence of an optimal control limit for performing a BSO, we first show
the monotonicity of vt(st) in st and t. We refer to the Appendix, Section B.1.1 for
the respective Propositions and Lemmas.

Theorem 3.1. If the transition probability matrix Pt for actionW is IFR and satisfies
the following two conditions:

vt(st,BSO) − vt(st + 1,BSO)
γvt+1(st + 1,BSO)

≤ pt(xdeath ∣ st + 1,W ) − pt(xdeath ∣ st,W ), (3.6)
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xdeath

∑
s′=st+1

pt(s′ ∣ st + 1,W ) ≥
xdeath

∑
s′=st+1

pt(s′ ∣ st,W ), (3.7)

for all st ∈ {x20, x21, . . . , xAGE} and t = 1,2, . . . , T − 1, then there exists an optimal
control threshold state st ∈ {x20, x21, . . . , xAGE } for t = 1,2, . . . , T − 1 such that:

a∗(st) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

W if st < st,

BSO if st ≥ st.
(3.8)

Inequality (3.6) denotes that as a carrier’s age increases, the decrease in QOL due to
a BSO is less than the increase in mortality risk by waiting one additional period.
Inequality (3.7) requires that the probability of moving to a higher risk state or death
increases with age.

An equivalent structural property can be derived for a carrier’s decision to undergo BM
after an ovarian cancer diagnosis and treatment, resulting in the following Theorem:

Theorem 3.2. If the transition probability matrix Pt for action W is IFR for and
satisfies the following condition:

vt(st,BM) − vt(st + 1,BM)
γvt+1(st + 1,BM)

≤ pt(xdeath ∣ st + 1,W ) − pt(xdeath ∣ st,W ), (3.9)

xdeath

∑
s′=st+1

pt(s′ ∣ st + 1,W ) ≥
xdeath

∑
s′=st+1

pt(s′ ∣ st,W ), (3.10)

for all st ∈ {x20, x21, . . . , xAGE} and t = 1,2, . . . , T − 1, then there exists an optimal
control threshold state st ∈ {x20, x21, . . . , xAGE} for t = 1,2, . . . , T − 1 such that:

a∗(st) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

W if st < st,

BM if st ≥ st.
(3.11)

We provide numerical results for Theorems 3.1 and 3.2 in Section 3.5.
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3.4.2 Solution via linear programming

Most of the MDP’s states have a limited number of feasible successor states, resulting
in a sparse transition matrix. Solving the problem in Equation (3.1) through value
iteration, the resulting DP would calculate the value of all states, of which most are
never visited. We exploit the sparsity of the transition matrix to solve the MDP using
linear programming (LP), an approach that would result in unfavourable computa-
tional performance for non-sparse transition matrices (Puterman, 2014). We obtain
an optimal solution following an approach presented in White & White (1989) and
de Farias & van Roy (2003).

We switch from a finite- to infinite-horizon MDP, as the LP approach is only capable
of solving discounted infinite-horizon MDPs. In the finite version, the probability that
a carrier significantly older than T will arrive in absorbing state Other death is high:
p(Other death(st+1) ∣ st) ≈ 1 ∀ t ≫ AGE. We therefore do not expect differences
between the finite and infinite version, as the reward for a state indicating death is
zero: rt(st, a) = 0 ∀ a ∈ Â and ∀ st ∶ de(st) = Other death.

An optimal policy π∗ which satisfies (3.1) is given by:

π∗(s) = argmax
a∈A

{r(s, a) + γ ∑
s′∈S

p(s′ ∣ s, a)v(s′)} . (3.12)

Powell (2011) shows that at optimality v is smallest value that satisfies inequality:

v ≥ max
a∈A

{r(s, a) + γ ∑
s′∈S

p(s′ ∣ s, a)v(s′)} . (3.13)

To find v∗s∀s ∈ S, we therefore need to minimize v(s)∀s ∈ S while imposing Equation
(3.13) as constraint for every state-action pair. We can now formulate the linear
program:

min
v

∑
s∈S
v(s) (3.14)

subject to
v(s) ≥ r(s, a) + γ ∑

s′∈S
p(s′ ∣ s, a)v(s′), ∀s ∈ S, a ∈ A (3.15)

After having calculated the optimal state values, we can calculate a corresponding
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optimal policy through Equation 3.12.

Due to the sparsity of the transition matrix, the number of transitions which are
not zero is significantly smaller than a full transition matrix, making the problem
tractable. The optimization of the MDP from Section 3.3 results in an LP with
7,775,625 constraints and 4,387,500 variables. The underlying algorithms are coded
in Matlab, R2015b, and the LP is solved by Gurobi 6.5.1. To ensure the applicability
of the optimization results to the research question, we ensure the validity of the model
through using an approach proposed by Gass (1983) and Sargent (2013). Detailed
results are presented in the Appendix, Section B.3.2.

3.5 Numerical Study

Although we analytically develop insights into the structure of a simplified version
of the model where a carrier is only considering one surgery type (Section 3.4.1), we
must make some simplifying assumptions in order to determine an optimal threshold
policy (Theorems 3.1 and 3.2). In particular, we ignore the effect of a prophylactic
BSO on breast cancer risk, caused through a lower estrogen production. The optimal
policy does not capture the complexity of the full model with multiple surgery op-
tions (Section 3.3). We therefore provide numerical results for the full model in the
remainder of this Section.

We conduct various numerical analyses to provide insights into optimal surgery timing
and sequence under differing assumptions. We vary the duration and magnitude of
a surgery’s impact on a carrier’s QOL. To best reflect potential decisions faced by
different BRCA mutation carriers, we also consider constraining the minimum eligible
age for a BSO (i.e., to mimic a carrier’s preference to delay the surgery until after child-
bearing), and we examine optimal strategies after either breast or ovarian cancer has
been previously diagnosed. To ensure the validity of our model, we follow a validation
process outlined in Section B.3.
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3.5.1 Data sources

The model’s transition probabilities and rewards are based on values obtained from
published clinical studies. We use BRCA1- and BRCA2-specific values when possible.
If multiple data sources are available, we select those with greater sample sizes and the
most recent studies to reflect the latest advances in cancer therapy. For the baseline
risk for breast- and ovarian cancer we use the results of a meta-analysis by Chen &
Parmigiani (2007).

Key probabilities include age-dependent breast and ovarian cancer risk; distribution
of each cancer by stage and sub-type (breast cancer only); and cancer risk-reduction
resulting from a prophylactic BM or BSO (Table 3.3 shows the distribution of subtypes
and stages for cancer diagnoses as well as the risk reduction through each prophylactic
surgery). Cancer-specific mortality rates used in the model are given in Table 3.4, and
age-dependent mortality rates from other causes are obtained from Centers for Disease
Control and Prevention & National Center for Health Statistics (2014). To reflect
current practices in medical treatemnt, no studies older than 2010 are considered for
mortality rates. Quality-of-life values for each health state used in the model are
presented in Table 3.5. Unless otherwise stated, the model’s objective is to maximize
a carrier’s discounted lifetime QALYs.

3.5.2 QALY-maximizing surgery sequence

3.5.2.1 BRCA1

The QALY-maximizing prophylactic surgery sequence for a healthy (no personal can-
cer history) BRCA1 carrier results in a life expectancy of nearly 77 years, compared
to 70 years with no prophylactic surgery, or 73 years if surgeries are delayed until
after age 50. Although life expectancy 0.4 years longer if both surgeries are per-
formed very early at the age of 30, cumulative QALYs are lower with early surgeries.
The QALY-maximizing sequence balances this trade-off of survival benefit with early
surgery against diminished QOL for the carrier following a BM and BSO.

Under the baseline parameter assumptions, the optimal surgery sequence suggests first
undergoing a BM between ages 30 and 60. Before age 30, the very low risk of breast
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cancer does not justify the loss in QOL through a BM; after age 60, the remaining
breast cancer risk is not great enough to justify a BM, especially because a BSO can
also reduce breast cancer risk. In other words, undergoing a BM incurs a “fixed cost”
because we assume a 5-year hit to QOL, which must be amortized over a sufficient
number of years in the form of reduced breast cancer risk to warrant the upfront cost.

The optimal policy then recommends a BSO for any BRCA1 carrier over age 40,
because her risk for ovarian cancer is sufficiently high to justify the expected reduction
in QOL. This surgery is recommended until age 85, as the 1-year impact on QOL in
post-menopausal women over age 50 is very small compared to the risk reduction of
both breast and ovarian cancer. Figure 3.1 depicts the optimal surgery sequence for
every age ranging from 20 years to 85.

We also use our MDP model to simulate the incidence of breast and ovarian cancer
under different prophylactic surgery policies (Figure 3.2). For BRCA1 carriers, the
simulated risk of breast cancer by age 65 decreases from 49.1% (with no surgeries)
to 5.8% with the QALY-maximizing policy, and ovarian cancer decreases from 30.3%
(with no surgeries) to 9.4% with the QALY-maximizing policy. Although the risks of
cancer (5.1% for breast, 8.1% for ovarian) are not quite as low as the more aggressive
policy of undergoing both BM and BSO at age 30, the QALY-maximizing provides 94-
98% of the cancer-reducing benefits of an aggressive policy, but importantly considers
both the overall QOL and survival gains from such dramatic surgeries. Nevertheless,
carriers who wish to minimize their cancer risk as much as possible may prefer to
undergo a BM and BSO at an earlier age.

3.5.2.2 BRCA2

For BRCA2 carriers, the optimal sequence delays both surgeries due to the lower
overall risk of breast and ovarian cancer. Undergoing a BM is only recommended for
carriers aged 40 to 46 years. Afterwards, the reduction in the future risk of breast
cancer (assuming a carrier has remained cancer-free until age 46) does not offset the
loss in QOL imposed by a prophylactic BM. However, beginning near age 50, a BSO
is recommended thereafter, as a carrier would otherwise enter natural menopause
around this age.

Under the QALY-maximizing surgery sequence, life expectancy increases to 78 years
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Figure 3.1: QALY-maximizing surgery sequence for BRCA1 (left) and BRCA2
(right) carriers who have not previously developed breast or ovarian can-
cer, nor undergone prophylactic surgery.

from 75 years with no surgeries, a smaller overall gain than for BRCA1 carriers be-
cause the overall risk of cancer is lower and thus the marginal benefits of undergoing
prophylactic surgery are more modest (Table 3.2).

As with BRCA1, the QALY-maximizing policy results in a higher incidence of breast
cancer compared with a strategy of undergoing BM and BSO at age 30, because the
QALY-maximizing policy recommends a BM only for a limited group of carriers aged
40 to 46. The risk of ovarian cancer by age 65 is reduced from 11.3% to 4.6%, which
is slightly higher than the 2.4% if women elect to have both surgeries at age 30.

3.5.2.3 Sensitivity analysis

While parameters governing the distribution of cancer stages and sub-types, surgery
risk-reduction, and cancer-related mortality rates are broadly consistent across multi-
ple clinical studies, there exists variability in estimates of QOL following prophylactic
surgery in those at high-risk of developing cancer. These variations are largely at-
tributable to differences in study populations (e.g., mutation carriers, cancer survivors,
health care professionals) or methodologies at eliciting preferences.

As both surgeries impact physical and psychological well-being, we examine how dif-
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Table 3.2: Average life expectancy, survival probability, and cumulative risk of breast
and ovarian cancer under different decision policies.

Mutation
type

Decision
policy

Average life
expectancy

Survival
prob. by age

85

Cumulative cancer
risk by age 65

Breast Ovarian

BRCA1

Without surgeries 69.8 60.6% 49.1% 30.3%
QALY-max. 76.8 81.6% 5.8% 9.4%
BM at 30 73.1 71.0% 7.5% 30.0%
BSO at 30 75.3 77.1% 25.2% 8.4%
BM & BSO at 30 77.2 82.8% 5.1% 8.1%

BRCA2

Without surgeries 75.4 77.1% 40.7% 11.3%
QALY-max. 77.8 83.9% 10.2% 4.6%
BM at 30 77.3 82.8% 5.4% 11.6%
BSO at 30 77.9 84.1% 19.3% 2.7%
BM & BSO at 30 79.0 87.1% 3.5% 2.4%

BM = Bilateral mastectomy (surgical removal of both breasts).
BSO = Bilateral salpingo-oophorectomy (surgical removal of both
ovaries and fallopian tubes).
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Figure 3.2: Cumulative cancer risk for different surgery sequences.

ferent assumptions regarding QOL, reflecting different patient preferences, affects the
optimal surgery sequence (Figure 3.3). For BRCA1 carriers, lowering the impact of
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a BM by 50% would expand the window to undergo the surgery to up until age 77.
For a BSO, a 50% reduction in its impact on QOL flips the sequence of surgeries,
recommending BSO starting at age 30 followed by BM from age 40 to 60, reflecting
the lower impact of a BSO. When varying QOL impact of both surgeries, results
show that different preferences about the impact of a BM have a higher effect on the
decision if and when it should be performed, compared to varying preferences about
a BSO impact (see Figure 3.3 and 3.4). This is likely due to the fact that a BSO
simultaneously reduces the risk for both cancers, while a BM has a static impact on
the QOL, which has to be compensated during the remaining lifespan. For ages 30
to 39 and a BM 1-year QOL impact of 0.5, our results furthermore indicate that it is
QALY-maximizing to perform a BSO in order to avoid breast cancer and subsequently
the high QOL impact of the BM performed during treatment.

For BRCA2 carriers, we find qualitatively similar results as for a 50% reduction of
the impact of a BM, the youngest age at which a BM is QALY maximizing is lowered
from 40 to 30. When reducing the impact of a BSO by 50%, the youngest age at
which a BSO is recommended is lowered from 50 to 40, and the surgery sequence does
not include a BM at any age as most of the breast cancer risk, also for carriers in
their 40s, has been removed by the BSO.

3.5.3 Constrained surgery options

3.5.3.1 Prior cancer diagnosis

Some mutation carriers might consider a limited set of surgery options, either due to
personal preferences or to a prior cancer diagnosis that required one of the surgeries
to be performed as part of the treatment, as it is often the case for BRCA mutation
carriers (Trainer et al., 2010). Following a diagnosis of ovarian cancer, a BSO as part
of treatment also reduces subsequent breast cancer risk; therefore, also undergoing
a BM is no longer QALY-maximizing at any age. In a similar vein, after a breast
cancer diagnosis and bilateral mastectomy, the marginal benefits of undergoing BSO
on breast cancer are diminished. Among young breast cancer survivors who have
undergone a BM, the optimal timing of BSO increases from age 40 to 46 (BRCA1)
and from age 43 to 48 (BRCA2). Beyond these ages, it is always QALY-maximizing to
perform a BSO, numerically in line with Theorem 3.2, which states that performing a
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Figure 3.3: Optimal surgery sequence for BRCA1 carriers at age 20, 30, 40, 50, 60,
70 assuming varying health utilities for prophylactic as well as treatment-
induced BM and BSO.

surgery is always optimal when the cancer risk exceeds the optimal control threshold
st.

To further illustrate this analysis, suppose a carrier is diagnosed with breast cancer
at the age of 35 and undergoes a BM as part of treatment. If she elects to not
undergo any additional prophylactic surgery, her life expectancy is approximately 59
years (BRCA1) or 61 years (BRCA2). However, if she decides to undergo a BSO at
the QALY-maximizing recommended age, her life expectancy increases to 70 years
(BRCA1) or 72 years (BRCA2), a substantial gain. Her ovarian cancer risk by age 65
is reduced from 30.1% to 11.2% (BRCA1) or from 11.5% to 4.1% (BRCA2) with this
strategy.

3.5.3.2 Fertility considerations

Some women may prefer to delay surgery until a later age, especially a BSO, as the
procedure eliminates future reproduction. They may wish to complete family planning
or wait until the natural onset of menopause. As our model with baseline parameters

59



Optimizing cancer prevention strategies for BRCA carriers

Age 20 - 29

0.5 0.6 0.7 0.8 0.9 1  
0.5

0.6

0.7

0.8

0.9

1  

B
S

O
 Q

O
L 

im
pa

ct

Age 30 - 39

0.5 0.6 0.7 0.8 0.9 1  
0.5

0.6

0.7

0.8

0.9

1  

Age 40 - 49

0.5 0.6 0.7 0.8 0.9 1  
0.5

0.6

0.7

0.8

0.9

1  

Age 50 - 59

0.5 0.6 0.7 0.8 0.9 1  
BM QOL impact

0.5

0.6

0.7

0.8

0.9

1  

B
S

O
 Q

O
L 

im
pa

ct

Age 60 - 69

0.5 0.6 0.7 0.8 0.9 1  
BM QOL impact

0.5

0.6

0.7

0.8

0.9

1  

Age 70 - 79

0.5 0.6 0.7 0.8 0.9 1  
BM QOL impact

0.5

0.6

0.7

0.8

0.9

1  

Do nothing
BM
BSO
BM & BSO

Figure 3.4: Optimal surgery sequence for BRCA2 carriers at age 20, 30, 40, 50, 60,
70 assuming varying health utilities for prophylactic as well as treatment-
induced BM and BSO.

does not recommend performing a BSO before age 40 (BRCA1) or 50 (BRCA2),
most women will not be substantially limited in their family planning through this
recommendation. After having performed a BM at the age of 30, delaying a BSO until
age 50 for BRCA1 carriers decreases the overall life expectancy by 1 year compared
to the QALY-maximizing sequence, ovarian cancer risk by age 65 increases by 5.8
percentage points.

3.5.4 Improved breast cancer screening

Routine screening for ovarian cancer, unfortunately, has very limited accuracy (van
Gorp et al., 2011), resulting in more frequent stage III or IV diagnoses for ovarian
cancer than for breast cancer. In contrast, frequent mammography and Magnetic
Resonance Imaging (MRI) may be effective alternatives to surgery for BRCA mutation
carriers, to decrease breast cancer-specific mortality. Although enhanced screening
will not prevent cancerous tumors from developing, it allows for earlier detection and
treatment, improving the prognosis and survival. Our baseline parameter assumptions
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reflect, to the best of our ability, the current screening practices among BRCA carriers,
in particular, the stage at which patients typically present at diagnosis (Table 3.3).
Investigating the impact of more or less frequent screening is important, as screening
adherence is known to be low even for women at high-risk of breast cancer (Garcia
et al., 2014).

We examine how changes in breast cancer screening efforts affect the optimal surgery
sequence, under the optimistic assumption that breast cancer is always diagnosed
at stage I. Compared to the original policy, a more conservative surgery sequence
is recommended: BSO at age 39 (BRCA1) or age 49 (BRCA2), and no BM at any
age (both BRCA1 and BRCA2). Of note, the probability of a breast cancer diag-
nosis increases by 27.7 percentage points compared to the baseline scenario, and life
expectancy increases by one year as stage I tumors have minimal impact on cancer-
specific mortality. Although this scenario would require essentially perfect screening
accuracy and total adherence to the screening schedule, it indicates that increased
screening efforts are a partial substitute for a prophylactic BM.
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Table 3.3: Distributions of cancer sub-types, stages, and risk-reduction
of prophylactic surgeries

Parameters [Unit] BRCA1 BRCA2 Source
Breast cancer sub-types [%]

Luminal A 04 10
Mavaddat
et al. (2012)

Luminal B 22 72
HER2 06 03
Triple Negative 69 16

Breast cancer stage at diagnosis [%]
Luminal A/B

I 49

Brown et al.
(2008)

II 40
III 07
IV 03

HER2
I 29
II 46
III 18
IV 07

Triple Negative
I 34
II 50
III 12
IV 04

Ovarian cancer stage at diagnosis [%]
I 12 09

Bolton et al.
(2012)

II 10 06
III 64 73
IV 13 12

Breast cancer RR through BSO [OR1]
≤ 40 years 0.41 Eisen et al.

(2005)40 − 50 years interpolated
≥ 50 years 0.70

Ovarian cancer RR through BSO [HR1] 0.21 Rebbeck et al.
(2009)

Breast cancer RR trough BM [HR1]
BM only 0.09 Rebbeck et al.

(2004)BM & BSO 0.05

BM = Bilateral mastectomy (surgical removal of both breasts).
BSO = Bilateral salpingo-oophorectomy (surgical removal of both ovaries and
fallopian tubes).
HR = Hazard ratio (The ratio of the cancer rate with and without prophylactic
surgery).
OR = Odds ratio (The number of cancer events after prophylactic surgery
in a period divided by the number of events in the same period assuming no
prophylactic surgery).
1 See Appendix, Section B.2 for HR and OR conversion method used.
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Table 3.4: Cancer-specific mortality rates

Tumor sub-type
and stage

Annual mortality rate Source
BRCA1 BRCA2

Breast cancer
Luminal A, stage*

I 0.004

Parise &
Caggiano
(2014)

II 0.012
III–IV 0.041

Luminal B, stage
I 0.008
II 0.026
III–IV 0.074

HER2, stage
I 0.011
II 0.037
III–IV 0.099

Triple Negative, stage
I 0.015
II 0.047
III–IV 0.147

Ovarian cancer
I–II 0.06 0.04 Bolton et al.

(2012)III–IV 0.14 0.10
* Breast cancer sub-types Luminal A and Luminal B, HER2- from Parise
& Caggiano (2014) are combined into Luminal A, to match the sub-type
definition used by Sørlie et al. (2003).
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Table 3.5: Baseline quality-of-life (QOL) values of each health state

Health state QOL factor Impact duration Source
Breast cancer

Stage I-III 0.87 1 yr Grann et al. (2010)
Stage IV (de novo) 0.59 Lifetime Grann et al. (1999b)
Stage IV (recurrence)

Luminal A 0.59 2.2 yr Grann et al. (1999b),
Lobbezoo et al.

(2015)

Luminal B 0.59 1.6 yr
HER2 0.59 1.3 yr
Triple Negative 0.59 0.7 yr

Ovarian cancer
Stage I-III 0.84 1 yr Grann et al. (2010)
Stage IV (de novo) 0.59 Lifetime Grann et al. (1999b)Stage IV (recurrence) 0.59 2.5 yr

Surgery
BM 0.88 5 yr Grann et al. (2010)
BSO 0.95 Constant until age 50,

1 yr after age 50

De novo = patient is found at stage IV cancer at diagnosis.
Recurrence = patient progressed from stage I, II, or III to stage IV.
BM = Bilateral mastectomy (surgical removal of both breasts).
BSO = Bilateral salpingo-oophorectomy (surgical removal of both
ovaries and fallopian tubes).

3.6 Discussion

This paper presents a comprehensive approach to determine a recommended course
of action for BRCA1/2 mutation carriers deciding if and when to undergo cancer risk-
reducing prophylactic surgery. Our study develops a novel Markov Decision Process
model of two simultaneous diseases—and multiple actions that can attenuate the inci-
dence of both diseases—an advance not previously explored in the decision modeling
literature. Our study combines an MDP model with a carefully appraised set of pa-
rameters based on observed clinical data. Although the size of the state space exceeds
four million states, we are able to exploit the sparsity of the transition probability
matrix and find an exact optimal solution using linear programming.

BRCA1/2 carriers are at substantially increased risk of breast and ovarian cancer
compared to the general population. Our primary model findings indicate that to
maximize a BRCA1 carrier’s lifetime discounted quality-adjusted years, a BM is rec-
ommended between age 30 and 60, along with a BSO from age 40 onwards. Under
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this sequence, our model computes an average life expectancy of 77 years for a 20-year
old BRCA1 carrier, a 10% increase compared to performing no prophylactic surgeries.
Results differ for BRCA2 carriers, with a later recommended age to undergo surgery
breast and ovarian cancer risk is lower compared to BRCA1.

As preferences about the impact of prophylactic surgeries on a carrier’s QOL most
likely vary between carriers, we provide a sensitivity analysis demonstrating how a
QALY-maximizing sequence would change when each individual surgery triggers a
higher or lower impact on QOL. Results show that surgery schedules are more sensi-
tive to changes in QOL impact of a BM than a BSO. We therefore conclude that under
our assumptions, the surgery timing of Angelina Jolie (BRCA1, BM at age of 38, BSO
in the early 40s), who’s public appearance on that matter increased awareness about
BRCA mutations, is in line with our model’s results.

3.6.1 Limitations

As with any stylized mathematical model of an underlying disease process, our MDP
model has several limitations. We select an appropriate state space to reflect key dif-
ferences in transition probabilities, mortality, and QOL, and to ensure tractability in
obtaining an optimal solution. Of course, this necessarily simplifies the complex tumor
development and progression process, and nuances in different treatment outcomes.

With only one in 400 women carrying a BRCA mutation, many of whom are unaware
of their status, most clinical studies involving BRCA carriers typically include small
samples, often limiting the granularity and explanatory power of the data. We there-
fore are not able to obtain BRCA1- or BRCA2-specific estimates of the risk-reducing
effects of surgeries. Although the baseline cancer risk varies between mutation types,
the underlying mechanisms generating the risk reductions are likely equal for both mu-
tation types, enabling us to use the same parameter values. Cancer-specific mortality
rates are typically aggregated at 5-year or 10-year intervals, leading us to assume a
constant mortality rate over time.

Structural limitations include a static screening policy and the omission of a local
recurrence (to the breast or ovary) and other treatment options. Although the quality
of breast cancer screening and adherence to the recommended schedule varies from
woman to woman, we assume a constant screening rate, limiting the accuracy of the
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cancer stage distribution at diagnosis. We try to overcome this issue through varying
the distribution during sensitivity analysis.

Chemoprevention of breast cancer through medication, like Tamoxifen or oral con-
traceptives, is not included in the action space, resulting in a potentially incomplete
representation of a carrier’s choice set. We have excluded this therapy option as a
strong risk reducing effect for all age groups and mutation types is uncertain (Duffy &
Nixon, 2002; King et al., 2001). The risk of breast cancer recurrence or a contralateral
breast cancer is significant for mutation carriers (Graeser et al., 2009; Nilsson et al.,
2014). As the state space structure does not account for recurrences nor contralateral
breast cancer and these states would alter a carrier’s mortality, our model is limited
by the accuracy of the breast cancer mortality rate. We overcome this limitation in
first assuming bilateral mastectomies in the case of a breast cancer diagnosis avoid-
ing contralateral cancer, and second capturing the implications of distant recurrences
through the overall breast cancer mortality rate.

Another limiting factor is the magnitude and duration of the impact of prophylac-
tic surgeries on women’s QOL. Empirical studies present contradicting evidence for
the impact of a BM and BSO (Harmsen et al., 2015). Most important, women ex-
hibit varying preferences about surgery feasibility and timing, reflecting individual
differences in family planning, self-perception, and perceived risk of cancer. We do
not explicitly model the decision to undergo other procedures, including breast re-
construction following a bilateral mastectomy or oocyte retrieval prior to a bilateral
salpingo-oophorectomy. To account for variability in these parameter values, we con-
duct an extensive sensitivity analysis varying both the impact of a BM and BSO.

3.6.2 Conclusions and future research

Through examining the structural properties of a simplified MDP model, we find that
under the reasonable assumption that the cancer risk increases with age, an optimal-
control limit exists, after which surgery is always QALY-maximizing. However, this
analysis is limited to women who have already undergone either a BM or BSO, and
it further assumes a minimal effect of a BSO on breast cancer risk.

We numerically confirm this optimal threshold for a BRCA carrier, who after hav-
ing already been diagnosed with breast cancer is recommended to perform a BSO no
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later than age 46 (BRCA1) or age 48 (BRCA2). Improved breast cancer screening
adherence also impacts the recommended surgery schedule—under the optimistic as-
sumption that all breast cancer tumors are diagnosed in stage I, our model does not
recommend performing a BM at any age as the impact on QOL is not offset by a
sufficient risk reduction.

Our model could be extended in several ways. By combining it with an underlying
cancer model the consequences on QOL and the cancer specific mortality rate could
become more precise. By modeling the QOL impact as a stochastic variable, the
resulting decision policy would be more robust to uncertain outcomes of the surgeries
(e.g., caused by complications). With more women seeking genetic testing for cancer-
causing mutations, such as BRCA1/2, decision support models such as the one we
have developed can help medical patients make better decisions under uncertainty, to
improve both the length and quality of life. It also provides the basis for a possible
cost effectiveness analysis which could be helpful to health care providers in assessing
the optimal surgery sequence for cost effectiveness against the treatment of a possible
breast or ovarian cancer.
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Chapter 4

Spatial allocation of resources for
epidemic control: A greedy heuristic
versus dynamic programming approach

with Elisa F. Long and Stefan Spinler

The content presented in this chapter is based on Nohdurft et al. (2016a). Partial
results from this chapter contributed to the conference presentations Nohdurft et al.
(2015a) and Nohdurft et al. (2015b).

Allocating intervention resources effectively is vital for controlling geo-
graphically diverse and rapidly evolving infectious disease epidemics, such
as the 2014 West Africa Ebola outbreak. We develop a two-stage model
for optimizing when and where to assign Ebola treatment unit (ETU)
beds during an outbreak’s early phases. The first stage includes an epi-
demic model that forecasts occurrence of new cases at the regional level.
The second stage includes two approaches to efficiently allocate interven-
tion resources across affected regions: a greedy heuristic which prioritizes
bed allocation based on a region’s reproductive number which delivers
good results when cased data are limited; and an approximate dynamic
programming algorithm which utilizes the developed epidemic model to
consider the impact of allocated resources and can be used when more
nuanced data are available.
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4.1 Introduction

Emerging infectious disease outbreaks, such as the 2014 Ebola epidemic in West
Africa, or the ongoing Zika virus epidemic in Latin America, demonstrate the need
for rapid and coordinated response efforts to mitigate the epidemics’ spread. Before
deploying critical medical resources—such as Ebola treatment units (ETUs), medica-
tions, and health care personnel—an essential step to ensure maximal benefit is as-
sessing when and where such resources are most needed and anticipated to be needed.
As an epidemic evolves temporally and geospatially, it becomes increasingly difficult
to efficiently contain transmission. Achieving the most effective response requires a
dynamic policy that integrates real-time updates in epidemiologic data, and adjusts
intervention efforts to re-optimize resource allocation.

Mathematical models of Ebola transmission typically aggregate on a national scale
(Gomes et al., 2014), despite evidence that Ebola—unlike other widespread pan-
demics, such as influenza—has remained concentrated in specific regions. The 2014
Ebola outbreak heterogeneously affected 51 out of 63 geographic regions in Liberia,
Guinea, and Sierra Leone. Case numbers in affected regions ranged from fewer than
10 to more than 2,000, with one-third of regions accounting for 80% of all cases (Hu-
manitarian Data Exchange, 2015a), suggesting that contagion could best be reduced
with a targeted response. Physical proximity to regions with sizable infected popu-
lations undoubtedly affects both the spread of disease (Merler et al., 2015) and the
ability to coordinate response efforts.

In mid-2014, some often cited models projected that nearly 600,000 new Ebola cases
would occur by the outbreak’s end, and as many as 1.4 million cases if underreporting
were corrected (Butler, 2014b; Meltzer et al., 2014). Yet by the end of 2015, approx-
imately 28,600 Ebola cases had been reported in West Africa (Humanitarian Data
Exchange, 2015a). Early projections greatly overestimated new cases, in part because
the underlying models assumed minimal or no behavioral changes in response to the
epidemic’s growth (Heesterbeek et al., 2015). Such models are typically calibrated to
early transmission data and, when applied to later stages, their static parameters can
lead to significant mis-estimates of disease incidence or prevalence. Once the risk of
contracting Ebola was widely recognized in mid- to late-2014, transportation to and
from the most affected regions was greatly reduced while social contact decreased lo-
cally. Our model accounts for this time-dependent change in behavior; hence it offers
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more realistic predictions of new cases over time and also performs well even with the
limited data available during the epidemic’s initial phases.

In this paper we develop and compare two novel approaches to better allocate epidemic
intervention resources across regions. We calibrate an epidemic model to the 2014
Ebola outbreak, (Section 4.3), although the framework could apply to any emerging
infectious disease outbreak. The first allocation approach, Greedy R0, simply rank-
orders affected regions based on the basic reproduction number, R0, and allocates
resources only to regions where R0 > 1, which indicates a growing epidemic (Section
4.4). The second approach, ADP algorithm, formulates the resource allocation prob-
lem as a nonlinear optimization problem with an underlying dynamic epidemic model,
which we numerically solve using an Approximate Dynamic Programming (ADP) al-
gorithm. While the Greedy R0 approach is relatively easy to compute, the ADP
algorithm provides a better solution when more complex allocation decisions are per-
mitted and the impact on future transmission is included. Using Ebola incidence data
from the 2014 epidemic in West Africa, we consider both approaches under different
resource budgets and epidemic forecasting scenarios, and compare their relative per-
formance to the planned allocation and various heuristics (Section 4.5). Finally, we
discuss implications for practice and key conclusions (Section 4.6).

4.2 Literature Review

4.2.1 Epidemic Modeling of Ebola

Prior studies have developed models of human-to-human transmission of major Ebola
outbreaks; for animal-to-human transmission, see Walsh et al. (2005); Groseth et al.
(2007). Most studies forecast the epidemic’s trajectory using an extension of a com-
partmental susceptible-infectious-removed (SIR) model, which specifies a system of
nonlinear differential equations to model the movement of individuals between com-
partments (Anderson & May, 1991). In such models, Susceptible individuals are vul-
nerable to infection, Infectious individuals can transmit Ebola to those susceptible,
and Removed individuals have either died or recovered from the disease.

A key measure of an epidemic’s persistence in a population is the basic reproduction
number, R0, defined as the average number of secondary infections caused by a typi-
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cal infected individual in a predominantly susceptible population. If R0 < 1 then the
epidemic eventually dies out, but if R0 > 1 then the disease remains endemic. R0 is
essentially the sufficient contact rate for transmission multiplied by the duration of
infectivity. Therefore, R0 could be lowered by (i) reducing contact between suscepti-
ble and infectious people (e.g., through quarantines or closures of school and work),
(ii) reducing the likelihood of transmission if contact does occur (e.g., through bleach-
ing stations or personal protective equipment for health care workers), or (iii) reducing
the period of infectivity (e.g., by increasing medical personnel and treatment centers
or ensuring safe burial practices).

The earliest Ebola outbreaks to be extensively modeled were the 1995 Democratic
Republic of the Congo (DRC) and 2000 Uganda epidemics (Table 4.1). Chowell et al.
(2004) used a susceptible-exposed-infectious-removed (SEIR) model with least-squares
to estimate R0 values of 1.34 for Uganda and 1.83 for DRC, which likely differ because
of different virus subtypes. Using a similar SEIR model, Lekone & Finkenstädt (2006)
estimated an R0 of 1.36 for the 1995 DRC outbreak. Another modeling study (Legrand
et al., 2007) of the DRC outbreak concluded that a delay in intervention deployment
was the most important factor in determining final epidemic size, followed by speed of
hospitalization and efficacy of burial interventions. Ferrari et al. (2005) estimated R0

while correcting for underreporting and the bias associated with using discrete data
within a continuous process; their R0 estimates were generally higher than those of
other studies for these particular epidemics.

Recent models of the 2014 West Africa Ebola outbreak have estimated an R0 of
approximately 1.80 (range: 1.51 to 2.53), with every study concurring that R0 > 1
(Table 4.1). Different assumptions regarding intervention efficacy, time horizons, un-
derlying transmission, or mortality rates—combined with a lack of high-quality case
data—contribute to the differing estimates of R0. Most studies calibrate their mod-
els with country-level case counts to forecast the epidemic’s trajectory. Using data
from Sierra Leone and Liberia, Meltzer et al. (2014) found that rapid hospitaliza-
tion of Ebola-stricken patients could reduce transmission risk and help contain the
epidemic. The World Health Organization (WHO Ebola Response Team, 2014) pre-
dicted future cases by assuming a Poisson process based on field data; this analysis
incorporated transmission correlations between districts but did not explicitly model
dynamic transmission. Althaus (2014) used a prior model (Legrand et al., 2007)
and found that greater intervention efficacy slowed outbreaks in Guinea and Sierra
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Table 4.1: Estimated R0 values for major Ebola outbreaks.

Year Region R0 Source

1995 Democratic Republic of the Congo
1.83 Chowell et al. (2004)
3.65 Ferrari et al. (2005)
1.36 Lekone & Finkenstädt (2006)

2000 Uganda 1.34 Chowell et al. (2004)
1.79 Ferrari et al. (2005)

2014

Guinea 1.51 Althaus (2014)
1.71 WHO Ebola Response Team (2014)

Liberia
1.59 Althaus (2014)
2.22 Rivers et al. (2014)
1.83 WHO Ebola Response Team (2014)
1.84 Merler et al. (2015)

Montserrado County, Liberia 2.49 Lewnard et al. (2014)

Sierra Leone
2.53 Althaus (2014)
1.78 Rivers et al. (2014)
2.02 WHO Ebola Response Team (2014)

Liberia and Sierra Leone 1.80 Meltzer et al. (2014)

All affected regions 1.78 Fisman et al. (2014)
1.80 Gomes et al. (2014)

Leone whereas transmission remained constant in Liberia. Khan et al. (2015) used
an extended compartmental model and estimated R0 values of 1.76 for Liberia and
1.49 for Sierra Leone. Using a compartmental model and a Markov Chain Monte
Carlo (MCMC) approach for fitting data from Montserrado County, Liberia, Lew-
nard et al. (2014) found that the effectiveness of Ebola treatment units depends on
how rapidly cases are detected.

Several studies have proposed models to account for time-dependent intervention ef-
ficacy or heterogeneous populations. Fisman et al. (2014) combined R0 with a decay
factor representing the net effect of control measures against further transmission;
however, the authors modeled the epidemic by aggregating populations at the coun-
try level. Merler et al. (2015) also used a model based on Legrand et al. (2007) and
estimated an R0 of 1.84 for Liberia. Instead of assuming homogeneous mixing, these
authors divided the population into households and derived a mixing pattern from
the behavior of individuals in households. They estimated that 52.9% of the infections
occur in households or in the general community. Other epidemic models with mul-
tiple dependent populations have been applied to influenza (Wu et al., 2007) as well
as other disease outbreaks (Apolloni et al., 2014), but these models have not been
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applied to Ebola.

4.2.2 Resource Allocation for Infectious Diseases

Optimization models of resource allocation for other infectious diseases typically con-
sider independent populations or just a few dependent populations (Greenhalgh, 1986;
Wilson et al., 2006; Rowthorn et al., 2009). Given Ebola’s long incubation period—up
to 21 days after infection before the onset of symptoms (World Health Organization,
2015)—exposed individuals may move between regions and interact with different pop-
ulations before becoming aware of their infection status. Especially when resources
are constrained, policy makers and public health leaders must balance the trade-off
between prioritizing highly affected key populations and providing a solution that is
equitable; this trade-off was exemplified during the 2009 H1N1 influenza pandemic,
when vaccines were in short supply (Medlock & Galvani, 2009). Reaching agreement
on a stated objective, such as minimizing new infections or maximizing life-years,
poses an additional challenge. Brandeau (2004) reviewed the literature on optimal
resource allocation in epidemic settings.

An early study (Greenhalgh, 1986) used control theory to determine the optimal
rate at which people within a single population should be removed. Optimal con-
trol has also been used in the more complex case of multiple interacting populations.
Rowthorn et al. (2009) used a susceptible-infectious-susceptible (SIS) model to al-
locate a treatment budget to two connected populations; they found that onward
transmission was minimized by first treating the population with fewer infectious in-
dividuals. Conversely, Ndeffo Mbah & Gilligan (2011) used optimal control with an
SIR model with ten populations and found that vaccinating populations with more
infectious individuals was optimal. Richter et al. (1999) drew similar conclusions; they
found that prioritizing HIV prevention efforts among high-risk populations minimized
new infections over a five-year period.

Spatial differences between populations have been considered within compartmental
epidemic models. Wilson et al. (2006) compared the allocation of anti-retroviral ther-
apy among urban and rural areas, and Wu et al. (2007) used a nonlinear optimization
program to evaluate the allocation of influenza vaccinations among ten regions in the
United States. Gerberry et al. (2014) used a linear program to maximize HIV in-
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fections averted with different prevention plans in nine South African regions; these
authors found that resources should be provided to the most susceptible individuals.
By constructing nonlinear production functions that relate the investment in inter-
vention to its efficacy, several studies have optimized resource allocation in dependent
populations (Zaric & Brandeau, 2001, 2002) or in multiple independent populations
(Brandeau et al., 2003).

Despite numerous studies in the epidemiology and operations research literature, there
is no comprehensive model for efficient resource allocation during a rapidly evolving
outbreak. Although spatial heterogeneity has been previously examined (Wilson et al.,
2006; Wu et al., 2007), those studies considered neither the epidemic’s future trajec-
tory nor the behavioral responses of individuals to epidemic conditions. We therefore
contribute to the literature in two ways. We first develop a multi-population epi-
demic model with a novel behavioral transmission dampening factor. We secondly
develop and test two resource allocation approaches: a Greedy R0 approach based on
an analytically derived bound on R0, which could be used to make a fast decision
when the allocation time frame is short, and an ADP algorithm, which could pro-
vide an improved solution when the allocation decision is more complex, e.g., given a
larger budget to allocate, or constraints on the speed of deployment. Both approaches
incorporate spatial heterogeneity among populations, and thereby support informed
decision making in particular during an epidemic’s early stages—when accurate and
timely case data are limited.

4.3 Epidemic Model

We construct a dynamic epidemic model with a mixing coefficient to capture Ebola
transmission both within a geographic region and between regions (Figure 4.1). We
introduce a novel, time-dependent transmission dampening coefficient based on the
degree of behavioral adaptation of the affected population as existence of the outbreak
becomes apparent. Parameter values are estimated numerically by fitting the model
to daily case counts for the 2014 Ebola epidemic in West Africa.
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Si,t Ii,t Ri,t

K

∑
j=1
(mi,jβjψj,t) Ij,t

Nj,t δi

Region i

S2,t I2,t R2,t

Region 2

S1,t I1,t R1,t

Region 1

Sj,t Ij,t Rj,t

Region j

SK,t IK,t RK,t

Region K

di,j. . .

. . .

Figure 4.1: Schematic diagram of Susceptible-Infectious-Removed (SIR) epidemic
model among K interdependent regions. Dark blue boxes depict Ebola
infection status, light blue boxes depict geographic regions, and arrows
between regions show Ebola transmission rates inversely proportional to
geographic distance.

4.3.1 Infection Dynamics

To model Ebola transmission from infected to uninfected individuals, as well as re-
covery or death, we assume an SIR compartmental model for each of K geographic
regions. The epidemic’s nonlinear dynamics arise because the rate of new infections
is proportional to the sizes of the susceptible population in region i and the infectious
population in region j.

Let Si,t, Ii,t, and Ri,t denote the number of susceptible, infectious, and removed indi-
viduals, respectively, in region i at time t. Ni,t denotes the total population, such that
Si,t + Ii,t +Ri,t = Ni,t. The transmission coefficient, βj, is the per-contact transmission
probability between a susceptible person and an infectious person from region j. If
transmission occurs, a newly infected individual can then transmit the infection after
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symptom onset until recovery or burial, for a period of time with mean duration 1/δi.
The full model is represented by Equations (4.3)–(4.5).

Most epidemic models assume homogeneous mixing within the population, which im-
plies that susceptible individuals randomly come into contact with other individuals
in the population with equal probability. This assumption is reasonable for individuals
living near each other, but it may not hold for geographically distant populations. One
solution is to assume that populations are completely isolated, so that transmission
occurs only inside each geographic region; thus dSi,t

dt = −Si,tβi Ii,t

Ni,t
, ∀i. Although this

approach simplifies the dynamics, it may not adequately reflect the natural spread of
an infectious disease like Ebola.

4.3.2 Geographic Proximity

To forecast such a large-scale and heterogeneous epidemic, we extend the basic SIR
model to capture interactions among individuals from different regions by adjusting
the effective transmission rate to reflect geographic proximity of populations to one
another. Let c0 (0 ≤ c0 ≤ 1) denote the fraction of contacts located within the home
region, with the remaining 1−c0 in outside regions. The degree of mixingmi,j between
individuals in regions i and j is proportional to the inverse of the distance di,j between
the two regions’ capitals (Figure 4.1), adapting the approach of Wu et al. (2007):

mi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1 − c0)
1

di,j

K

∑
k=1
k≠j

1
dk,j

if i ≠ j,

c0 if i = j.

(4.1)

4.3.3 Dampening via Adaptive Behavior

During the outbreak’s early phases, Ebola case numbers increased by 91% within 24
days starting in August 2014. Yet over an equal period in March 2015, cases increased
by only 3% despite a large fraction of the population remaining susceptible (Human-
itarian Data Exchange, 2015a). Although intervention measures were simultaneously
scaled up in the intervening months, disease transmission was reduced further owing
to behavioral changes made by individuals living in Ebola-afflicted communities (Del
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Valle et al., 2005). We model this change in disease contagion by introducing the
dampening coefficient ψj,t, which reduces the effective transmission rate in region j

as the epidemic progresses and individuals modify their behavior accordingly. We
assume a logistic function that allows for a slow increase in awareness during the out-
break’s beginning (as captured by the steepness factor αj for each region), followed
by rapid behavioral adaptation as the epidemic peaks until the minimum dampening
value 1 − ψmin

j for region j is reached:

ψj,t = 1 −
ψmin
j

1 + e−αj(t−Tj/2)
. (4.2)

The period of epidemic data for region j used for calibrating the model is Tj, with Tj/2
representing the midpoint. For each region j, we numerically estimate the parameters
αj and ψmin

j .

We combine an SIR model with the geographic mixing component (mi,j) and behavior
dampening coefficient (ψj,t) to obtain the following system of equations for region
i = 1,2, . . . ,K:

dSi,t
dt

= −Si,t
K

∑
j=1

(mi,jβjψj,t)
Ij,t
Nj,t

, (4.3)

dIi,t
dt

= Si,t
K

∑
j=1

(mi,jβjψj,t)
Ij,t
Nj,t

− δiIi,t, (4.4)

dRi,t

dt
= δiIi,t. (4.5)

The term (mi,jβjψj,t) is the effective transmission rate at time t from infectious in-
dividuals in region j to susceptible individuals in region i. We conduct sensitivity
analysis by ignoring geographic distance (c0 = 1) or behavior dampening (ψi,t = 1, ∀i,
0 ≤ t ≤ Ti); results are presented in Section 4.5.1.

The epidemic model was calibrated with confirmed Ebola case data from 21 regions in
Guinea, Liberia, and Sierra Leone, which collectively accounted for 60% of the total
infections observed (Humanitarian Data Exchange, 2015b). We used between 20 and
100 days of the available 140 days of data to test the model’s performance against
the observed case count. Model calibration was performed using a Markov chain
Monte Carlo (MCMC) approach with a Metropolis–Hastings algorithm, an established
method for fitting epidemic models to empirical data (Gibson, 1998; Currie, 2007). A
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detailed description of the calibration approach is available in the Appendix.

4.3.4 R0 Computation

To compute the basic reproduction number, R0, of our SIR model for K regions with
transmission dependent on geographic proximity and dynamic behavior dampening,
we use the next generation matrix approach (van den Driessche & Watmough, 2002;
Arino & Van Den Driessche, Pauline, 2003). This method essentially linearizes the
nonlinear system (4.3)–(4.5) near the disease-free equilibrium, Ii(t) = 0,∀i, to deter-
mine if the epidemic dies out or remains endemic in the overall population.

We first introduce the following vector notation (the subscript t is suppressed for
clarity). Let s = (S1, . . . , SK)′, i = (I1, . . . , IK)′, r = (R1, . . . ,RK)′, n = (N1, . . . ,NK)′,
and δ = (δ1, . . . , δK)′. Let diag(s) be a K×K matrix with diagonal components of the
vector s. Define the K ×K matrix A with Ai,j = mi,jβjψj/Nj. The epidemic model
can be rewritten as:

ṡ = −diag(s)Ai, (4.6)
i̇ = diag(s)Ai − diag(δ)i, (4.7)
ṙ = diag(δ)i. (4.8)

with s + i + r = n.

Definition 4.1. A square non-negative matrix F is called primitive if there is an n

such that all the components of Fn are positive.

Assumption 4.1. Infected individuals must eventually recover or die, so δi > 0,∀i.

Assumption 4.2. After a sufficient number of time periods, an infection originating
in region j will ultimately lead to an infection in region i; therefore, A is primitive.

Lemma 4.1. Given a primitive matrix F and positive matrix V, then FV−1 has a
positive real eigenvalue λmax such that all other eigenvalues of FV−1 satisfy ∣λ∣ ≤ λmax.

Proof The proof of Lemma 4.1 follows from the standard Perron-Frobenius theorem
for non-negative matrices.
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Using the next generation matrix approach, the basic reproduction number for our
model is:

R0 = λmax(FV−1) = λmax (diag(s)Adiag(δ−1)) , (4.9)

where λmax(⋅) is the dominant eigenvalue of a matrix. Component i, j of the matrix
F = diag(s)A is the rate of new infections occurring in region i that originate in region
j. Component j, k of the matrix V−1 = diag(δ−1) is the average length of time that
an individual in region j is infectious before recovery or death. Hence, component i, k
of FV−1 is the expected number of people in region i who acquire infection from an
infectious individual originally located in region k at the epidemic’s start.

Theorem 4.1. Given a deterministic epidemic model in multiple dependent popu-
lations with transmission matrix A and recovery or death rate δ, then the epidemic
persists if R0 > 1 and dies out if R0 < 1.

Proof With no population re-entry or new births, the number of susceptible indi-
viduals in each region is monotonically decreasing, so ṡ ≤ 0. Because the system of
equations (4.6)–(4.8) is Lipschitz continuous, the nonlinear differential equation (4.7)
can be approximated by the linear differential equation:

ẋ = diag(s)A − diag(δ)x

at points near the epidemic’s start. The solution of this is of the form:

xi(t) =
K

∑
j=1
ci,je

−λjt

with constants ci,j. The trajectory of x will approach the disease-free equilibrium
xi(t) = 0,∀i, if the maximum real part of all the eigenvalues of the matrix diag(s)A−
diag(δ) does not exceed 0. Finally,

λmax (diag(s)A − diag(δ)) < 0⇐⇒ λmax (diag(s)Adiag(δ−1)) < 1

Therefore, the epidemic will approach the disease-free equilibrium if R0 < 1.

Corollary 4.1. The dominant eigenvalue λmax has the following bounds:

min
j

K

∑
i=1

mi,jβjψj
δj

≤ λmax ≤ max
j

K

∑
i=1

mi,jβjψj
δj

,
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min
i

K

∑
j=1

mi,jβjψj
δj

≤ λmax ≤ max
i

K

∑
j=1

mi,jβjψj
δj

.

Proof The proof of Corollary 4.1 follows from the standard Perron-Frobenius theorem
for non-negative matrices.

Using Corollary 4.1 for the epidemic model in Equations (4.3)–(4.5), we can provide
upper bounds for R0j, the basic reproduction number in each region j = 1, . . . ,K. R0j

is essentially the total number of new infections—that occur both within region j and
to all outside regions—caused by each infectious individual originally in region j at
the epidemic’s start:

R0j ≤
K

∑
i=1

mi,jβjψj
δj

. (4.10)

4.4 Allocation of Intervention Resources

During epidemic crises, policy makers and non-government organizations (NGOs)
must often allocate resources based on the limited data available at the time of decision
(Doctors Without Borders, 2015). Our calibrated epidemic model can help improve
these decisions by augmenting existing data with projections of the epidemic’s trajec-
tory over time and across regions. Identifying the optimal distribution of resources will
maximize their effect. An overview of the model elements and their interdependencies
is presented in Figure C.1 in the Appendix.

Compared to transmissible diseases with long infectious periods, such as HIV/AIDS,
patients infected with Ebola typically suffer a relatively sudden death or recovery.
Maintaining sufficient ETU capacity is key to any containment strategy (Lewnard
et al., 2014; Merler et al., 2015), requiring both physical bed infrastructure and health
care workers. Infected individuals who are treated in ETUs are less likely to transmit
the virus, owing to better protective measures by health care workers and reduced
contact with susceptible individuals in the community. We therefore assume that the
transmission coefficient βj of those treated within an ETU is reduced by a factor ξ
(0 ≤ ξ ≤ 1). Although we consider ETU beds as our primary resource, the optimization
model could apply to other resources, including health care personnel, vaccinations,
and medical equipment. The remainder of this section describes our two resource
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allocation approaches.

4.4.1 Greedy R0

By Theorem 1, we ensure that the epidemic theoretically dies out if max
j

R0j < 1.
Using Equation (4.10), we use the upper bound of R0j for each region as a proxy
for the infection potential of that region. Consider a resource allocation scheme that
rank-orders regions based on R0j:

R
(1)
0 ≤ R(2)0 ≤ ⋅ ⋅ ⋅ ≤ R(K−1)

0 ≤ R(K)0

where R(i)0 is the ith-smallest value. In each period, r resources are distributed (the
maximum deployment rate) to any region j where R0j > 1, in descending order of R0j

until the budget is exhausted. The resulting allocation heuristic therefore prioritizes
regions where an epidemic is progressing, but ignores regions where the infection
potential is not yet high enough or the epidemic has already abated.

4.4.2 ADP Algorithm

Nonlinear Optimization Model

We also formulate a nonlinear program with underlying dynamics governed by the
model in Equations (4.3)–(4.5). We divide the time horizon into discrete, equidistant
periods t ∈ (t0, . . . , tf); in the Ebola example, each period consists of one week. In
period t, region i is assigned ai,t resources. The allocation is constrained by the total
available budget B, and the maximum deployment rate per region per period r, re-
flecting the limited ability to distribute available resources quickly in affected regions.
Once resources are assigned to a region, we assume that they remain there for the rest
of the outbreak: ai,t ≥ ai,t−1 ∀i, t > 0. This assumption is reasonable in the context of
Ebola, although it could be relaxed. In our example, ai,t denotes an integer number
of beds; however, this approach could be generalized to noninteger variables.

The projected number of new Ebola infections Inew
i,t in region i during period t is based
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on the underlying SIR model:

Inew
i,t (at) = Si,t

K

∑
j=1

(mi,jβjψj,t)(
ξmin(Ij,t, aj,t) + (Ij,t − aj,t)+

Nj,t

). (4.11)

The number of infected individuals treated in ETU beds in region j during period t
is min(Ij,t, aj,t), where the effective transmission rate of this population is reduced
by ξ. The term (Ij,t−aj,t)+ corresponds to any remaining infected individuals who are
not treated in an ETU—because of a bed shortage, for example—and who therefore
continue to transmit infection at the original rate.

Our objective is to minimize the cumulative number of new Ebola infections in all
regions over the entire time horizon. One might instead consider other objectives,
such as maximizing QALYs or minimizing the number of infections in a given region.
Under the assumptions given above, we obtain the following optimization model:

minimize
K

∑
i=1

tf

∑
t=t0

Inew
i,t (at) (4.12)

subject to
K

∑
i=1
ai,t ≤ B ∀t, (4.13)

0 ≤ (ai,t − ai,t−1) ≤ r ∀i, t > 0, (4.14)
ai,t integer ∀i, t, (4.15)
equations (4.3)–(4.5). (4.16)

Dynamic Program

To solve this nonlinear program, we use deterministic DP with a finite horizon, ex-
tending the approach of Blount et al. (1997) by optimizing resource allocation across
multiple dependent populations.

In period t, the state space xt consists of two vectors (St, It) consisting of K elements
each:

St = (S1,t, S2,t, . . . , SK,t) and It = (I1,t, I2,t, . . . , IK,t).

Here St and It represent the number of susceptible and infectious individuals, respec-
tively, in each region during period t. State transitions from xt to xt+1 are governed not
only by the number of susceptible and infectious individuals but also by the resources
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allocated during period t:

Si,t+1 = Si,t − Inew
i,t (xt, at), (4.17)

Ii,t+1 = Ii,t + Inew
i,t (xt, at) − δiIi,t. (4.18)

The initial conditions, x0 = (St0 , It0), refer to the size of the susceptible and infectious
populations in each region at the start of the epidemic. We assume that no ETU
resources are initially available within each region (ai,t0 = 0, ∀i), which is reasonable
for an emerging outbreak like Ebola, although this assumption could be relaxed.
This DP problem can be divided into a sequence of subproblems and then solved,
by the Principle of Optimality (Bertsekas, 1995), with a terminal value Vtf (xtf ) = 0.
The solution is obtained via backward recursion starting at tf while assuming that no
future infections occur after this period—in other words, that the outbreak eventually
dies out.

Approximate Dynamic Program

With 21 regions, home to several million susceptible individuals, finding the exact
solution of this dynamic program is computationally intractable given the “curse of
dimensionality” caused by the large state space. To overcome this issue, we propose
an ADP approach that approximates the value of a state without sweeping over the
entire state space. This methodology has previously been applied to resource alloca-
tion problems in health care, such as planning elective patient admissions (Barz &
Rajaram, 2015; Hulshof et al., 2015), but not to epidemic control.

To demonstrate how our solution method could apply to other intractable dynamic
programs, we proceed as follows. First we introduce the policy iteration algorithm
used and then reformulate each period’s decision into multiple Knapsack subproblems;
this allows ADP to be used with large state spaces. Next we explain the selection
and use of linear basis functions to approximate the value of a state, and finally we
describe the method used to explore or exploit the state space. The psuedocode for
the developed ADP is presented in Fig. C.2 in the Appendix.
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Policy Iteration.

Our ADP approach is based on a policy iteration algorithm (Powell, 2011), which
solves a finite-horizon problem using linear basis functions to approximate the value
function. We replace the exact value of the state Vt(xt) with a value approxima-
tion V̂t(xt):

V̂t(xt) = min
at∈At

(
K

∑
i=1
Inew
i,t (xt, at) + γV̂t+1(xt+1)). (4.19)

The ADP algorithm (see Appendix for details) consists of one outer loop and two
nested loops. The first nested loop computes an optimal allocation decision, based
on the current approximate value function using a nonlinear Knapsack approach pre-
sented in Section C.2.1 in the Appendix. The second nested loop updates the basis
function parameter vector (θn) with the observed state value. The outer loop repeats
the two inner loops for N iterations, where N is sufficiently large to reach convergence
of θ in all tested cases. The optimal policy can then be computed using θN within
the value function approximation.

Feature Extraction.

To efficiently approximate the future value of a state xt, without sweeping over the
entire state space, we use a basis function approach (Powell, 2011). A basis function
φf(xt) summarizes just a few state features f ∈ F , thereby reducing the large set of
state variables from the original dynamic program. For our Ebola model, we examine
the following set of features:

F = {Si, Ii, R0, SiIi,
Ii
Si
,
K

∑
j=1
Ij, Si

K

∑
j=1
Ij,

K

∑
j=1

Ij
Si
, R0iSiIi, B ∀i}. (4.20)

Selecting appropriate basis functions is essential for a good approximation of the value
function because doing so extracts those elements from the state space that have high
explanatory power (e.g., the number of infected individuals in a population affects the
future epidemic trajectory in that population). We rank potential basis functions in
terms of their explanatory power for a state’s future value (Hulshof et al., 2015). We
simulate epidemic trajectory paths under different resource allocation policies, and
then treat these simulated values as observations in a linear regression to determine
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Table 4.2: Basis functions considered and the average R2 and Akaike
information criterion (AIC) values across all populations.

Basis function (∀i ∈ 1, . . . ,K) # of variables R2 AIC (×105)
SiIi K .653 2.42
Ii + Si∑Kj=1 Ij 2K .653 2.43
Si∑Kj=1 Ij +B K + 1 .771 2.36
Ii

Si
+B K + 1 .822 2.30

R0i K .592 2.49
R0iSiIi +B K + 1 .867 2.09

which set of features best approximates the value function (Table 4.2).

We use φ(xt) to denote the column vector of features and use θt to denote the pa-
rameter vector of estimated regression coefficients. The value function approximation
at iteration n of the ADP algorithm is:

V̄ n
t (xt∣θnt ) = φ(xt)Tθnt . (4.21)

λn = 1 − µ
n
. (4.22)

To assure that the ADP is not only visiting states with an already high approximated
value we use ε-greedy exploration throughout our experiments. Detailed reasons for
the selection of this method are given in Section C.2.3 in the Appendix. Let φ(xt)
denote the column vector of features, and θt denote the parameter vector of esti-
mated regression coefficients. The value function approximation at iteration n of the
algorithm is:

V̄ n
t (xt∣θnt ) = φ(xt)Tθnt . (4.23)

To ensure that the algorithm is not only visiting states with an already high approxi-
mated value, we use ε-greedy exploration throughout our experiments. The algorithm
for updating θtn after each iteration is presented in Section C.2.2.

4.5 Numerical Results

We first describe fitting our SIR model with behavior dampening and proximity-based
transmission to the 2014 Ebola epidemic in West Africa. To illustrate the utility of the
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Greedy R0 approach and ADP algorithm, we compare their performance with other
benchmark heuristics. Calculations were performed in Matlab R2015b.

4.5.1 Epidemic Model Fit

Ebola case count data for all 21 regions were obtained from the Humanitarian Data
Exchange (2015b); total population estimates Ni for each region were obtained from
Sierra Leone Statistics (2004); Liberia Institute of Statistics and Geo-Information Ser-
vice (2008); Institut National de la Statistique (2014). The mean time from symptom
onset to recovery or burial of an individual, 1/δi, was based on prior estimates from
Merler et al. (2015). The reduction in infectivity among individuals treated in ETUs
was set to ξ = 0.5, the most conservative value provided by Merler and colleagues.
An MCMC approach was used to numerically estimate remaining parameters: the
transmission coefficient βi, minimum dampening value ψmin

i , and steepness factor αi
for each region as well as the proportion c0 of contacts in each region. MCMC was run
for 200,000 iterations, though our final parameter estimates were based on only the
last 50,000 iterations. Details on the model calibration as well as convergence graphs
are presented in Section C.3 in the Appendix.

Using the method in Section 4.3.4 and parameter values estimated using 100 days of
data, we obtain bounds for the basic reproduction number of 0.19 ≤ R0 ≤ 1.69, and
a precise estimation through Equation (4.9) of R0 = 1.17. This estimate is signifi-
cantly lower than earlier published estimates (Table 4.1), as our model accounts for
a reduction in transmission through behavior change.
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Figure 4.2: Observed and projected Ebola cases for (A) Conakry, Guinea, (B) Guéck-
édou, Guinea, (C) Port Loko, Sierra Leone, and (D) Montserrado,
Liberia; the model is fit to 100 days of data (red circles) and compares
the following 40 days of actual cases (yellow circles) with projected cases
(blue line).

After estimating all model parameters, we forecast new Ebola cases over a 40-day
period (Table 4.3). Using 100 days of past data, the model projects 9,555 infections
across all regions over the following 40 days, compared to 9,480 confirmed cases during
this period—an aggregate overestimate of less than 1%. The mean absolute percentage
error (MAPE) across all regions is 11% (Figure 4.2), which may reflect underreporting
and/or variations in intervention rollout. Estimating parameters based on 60 days of
past data increases the MAPE to 20%, and with only 20 days of past data, the MAPE
reaches 30% (Table 4.3). These figures demonstrate that our model yields accurate
forecasts when sufficient data are available yet still provides a good approximation of
the epidemic’s future trajectory when data are limited. Although our model’s validity
deteriorates with fewer data points, it performs far better than the initial projections
of the 2014 Ebola epidemic. If we assume static behavior dampening coefficients ψi(t),
then the MAPE increases from 11% to 24% using 100 days of data, and up to 133%
with only 20 days of data (Table 4.3). Detailed epidemic model fit results for all
regions are presented in Section C.3.1.
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Table 4.3: Observed and projected Ebola cases with mean absolute percentage error
(MAPE) averaged across 21 regions for different model configurations;
projected cases are compared with actual cases observed 40 days after the
calibration period.

Fitting
period

Observed
cases

Base model No behavior damp. No connectivity
Projected

cases
MAPE
(%)

Projected
cases

MAPE
(%)

Projected
cases

MAPE
(%)

20 6,361 3,823 30 1,228 166 3,845 35
40 7,527 4,705 27 5,093 24 6,839 50
60 8,468 7,006 20 8,814 23 12,818 63
80 9,206 8,641 15 9,792 15 16,232 70
100 9,480 9,555 11 13,024 24 16,991 68

Figure 4.3: Cumulative Ebola infections from 2 September 2014 to 19 January 2015
and number of cases originating from (A) Port Loko, Sierra Leone,
(B) Nimba, Liberia, (C) Kérouané, Guinea, and (D) Conakry, Guinea. 89
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The proximity of infectious individuals to susceptible populations further contributes
to the epidemic’s heterogeneous spread, where some regions witness rapid increases
in new infections. One of the regions closest to the epicenters of the 2014 Ebola
epidemic is Kambia, Sierra Leone, where an estimated 58 infections (32% of the total
in this region) originate in severely affected adjacent regions. In the coastal region
of Conakry, Guinea, 68 cases (only 18% of the total) originate outside the region,
due to its geographic isolation from areas with high Ebola case counts (Figure 4.3).
If our model completely ignores distances between regions, the MAPE increases from
11% to 68% (using 100 days of data for calibration), demonstrating the importance
of mixing patterns among susceptible and infected populations.

Most infections in a region originate from infectious individuals within the same
region. However, if regions are geographically close (e.g., Port Loko and Kambia,
Sierra Leone) or if they vary in disease prevalence (e.g., Bombali, Sierra Leone versus
Conakry, Guinea), then the proximity between regions should be considered when
allocating intervention resources. Moreover, understanding which regions are most
vulnerable to Ebola transmission from neighboring regions can help policy makers
anticipate where next to target relief efforts.

4.5.2 ADP Implementation

We regress different sets of state features on a sample dataset of simulated epidemic
trajectories and choose the basis function with the most explanatory power: R0iSiIi+
B,∀i ∈ 1, . . . ,K (Table 4.2). The ADP algorithm is run for 2,000 iterations, resulting
in convergence in all tested cases. The first 100 iterations are used for exploration
to ensure adequate fitting of the basis function parameters; thereafter, a decreasing
exploration rate of 1/0.1n is used. Convergence is slower for larger budgets B or
higher deployment rates r as there are more potential allocation decisions to consider.
Average runtime is 11 hours using one core of a 2.3-GHz Intel Xeon E5 processor.

4.5.3 Greedy R0 versus ADP Algorithm

To illustrate the relative utility of each approach, we first estimate model parameters
using periods ranging from 20 to 100 days. Assuming beds are allocated according
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to Greedy R0 or ADP algorithm, we calculate projected future Ebola cases—and the
number that could be theoretically averted—compared to the forecasted epidemic
with no beds available. A short fitting period of 20 or 40 days might reflect a typical
scenario faced by policy makers who must quickly allocate resources during the early
days of an emerging outbreak, whereas a longer fitting period represents later stages
when more accurate case data are available. In our numerical experiments, all fitting
periods start on September 2, 2014; resources are then allocated for the following 18
weeks, in order to fully utilize the entire budget and allow the epidemic to subside.
We further test the performance of the ADP algorithm against the simpler Greedy
R0 approach for budgets between 50 and 200 beds, assuming a maximum deployment
rate of five beds per week and region.

Variations in the number of days used to fit the epidemic model, or the overall budget
size, highlight the relative strengths and weaknesses of each approach (Table 4.4).
Greedy R0 generally performs as well as or better than the ADP algorithm for shorter
fitting periods (≤ 40 days), when the full epidemic model is less precise (MAPE > 27%,
see Table 4.3). Greedy R0 outperforms the ADP algorithm by up to 44%, avoiding
1,989 infections with a budget of 50 beds and a fitting period of 40 days, compared
to 1,378 avoided by ADP algorithm. In this case, Greedy R0 allocates beds to only 5
regions (where 1.01 ≤ R0j ≤ 1.35), compared to 17 regions with ADP algorithm.

The ADP algorithm performs best when the underlying epidemic model is fit to a
strong time series of case data: with a fitting period of 60 days and budget of 150
beds, the ADP algorithm averts 4,161 infections, compared to 3,876 cases averted
using Greedy R0, a 7% improvement. As shown in Figure 4.4, the ADP algorithm
spreads the available budget across more regions, allocating between 2 and 23 beds in
all 21 regions, as it finds a solution based on regional epidemic forecasts. In contrast,
Greedy R0 uniformly allocates beds to only 6 regions (where 1.06 ≤ R0j ≤ 1.57). With
larger budgets (> 50 beds), the ADP algorithm dominates across most fitting periods;
with a fitting period of 40 days Greedy R0 outperforms the ADP algorithm, although
differences are small relative to the total number of cases. This discontinuity is likely
due to jumps in model parameters in regions where case numbers are not changing
continuously (i.e., due to under- or over-reporting). The ADP algorithm considers all
regions in its allocation, whereas Greedy R0 considers only regions with R0j > 1 and
is therefore not sensitive to parameter changes for regions below this threshold.
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Table 4.4: Number of new cases computed with the R0 heuristic and
ADP algorithm for different bed budgets and number of days
of case data used for fitting the epidemic model (gray cells
indicate dominant ADP solutions).

# of days
used for
fitting

Greedy R0 ADP algorithm
Bed budget Bed budget

50 100 150 200 50 100 150 200

20 551 468 442 442 679 454 420 419
40 843 618 602 602 1455 715 662 651
60 2161 1488 1221 1184 1673 1164 936 892
80 2895 1653 1429 1348 1794 1243 970 958
100 2573 1501 1313 1270 2105 1286 999 962

4.5.4 Other Allocation Heuristics

We test the performance of the aforementioned approaches against two heuristics:
planned allocation, based on the fraction of available beds (UNMEER, 2015) allocated
to each region by participating organizations (e.g., the US Centers for Disease Control
and Prevention, French Red Cross, Doctors Without Borders, Save The Children, local
health ministries), and an allocation in proportion to each region’s cumulative number
of infections.

The planned allocation heuristic performs poorly because it fails to incorporate infor-
mation about the epidemic’s future trajectory. Both the ADP algorithm and Greedy
R0 outperform it, as well as the heuristic based on the cumulative number of infec-
tions, in every scenario tested, although the relative improvement increases with the
length of the fitting period. For example, the ADP algorithm could prevent 3,424
infections with a budget of 50 beds and a fitting period of 60 days, while the planned
allocation or cumulative number of infections heuristic could only prevent 1,424 or
2,524 infections, respectively. We find that the ADP algorithm offers the greatest
benefit compared to the simpler heuristics when trade-offs between regions must be
made. For example, with 150 available beds and 60-day fitting period, the number of
infectious individuals in Conakry, Guinea exceeds the number of beds allocated; ADP
algorithm balances the projected infections occurring in Conakry against infections in
other regions if beds were assigned elsewhere.

Compared with the actual planned allocation, the ADP algorithm generally shifts
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Figure 4.4: Number of beds allocated to each region (between 21 November 2014 and
27 March 2015, Budget of 150 beds, fitting period 60 days) under the ap-
proximate dynamic programming (ADP) algorithm (purple), the Greedy
R0 approach (yellow), the planned allocation (blue), and a benchmark
heuristics with allocations based number of infections (red).

resources to less affected regions; this resource transfer serves to reduce the epidemic’s
spread from nearby, severely affected regions (Figure 4.4). For instance, the ADP
solution allocates 23 ETU beds to Bombali, Sierra Leone (region 2)—more than double
the planned allocation of 11 beds—because of Bombali’s proximity to two highly
affected regions (Tonkolili and Moyamba, Sierra Leone). However, this ADP solution
comes at the cost of allocating fewer ETU beds to other regions, including Conakry,
Guinea (region 5), that are farther away from highly affected regions. In contrast, the
infection-based heuristic mitigates the Ebola outbreak at current “hot spots” but does
not account for the nearby populations most prone to acquiring Ebola in the future,
while the Greedy R0 approach uniformly allocates beds across regions with a high
epidemic potential, but not necessarily the greatest number of infectious individuals.

The significance of geospatial spread becomes even more evident if the epidemic model
ignores disease transmission across regions (i.e., if we set c0 = 1). In this case, the
ADP algorithm results in 7.4% more infections than the scenario with inter-regional
connectivity based on population proximity (i.e., if c0 < 1). This finding underscores
the importance of incorporating network effects into epidemic model projections and
resource allocation.

Although the ADP algorithm and Greedy R0 approach outperform other heuristics in
our experiments, the quality of their solution depend on the quality of the epidemic
model and associated data. Poor-quality projections based on limited data, as ob-
served with the initial 2014 Ebola estimates for West Africa (Butler, 2014b; Meltzer
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et al., 2014), are likely to result in a suboptimal allocation. Using an epidemic model
that is fitted to only 10 days of data, the ADP algorithm would allocate 8 beds to
Margibi, Liberia, leaving many other regions with significant bed shortages. Later
data reveal this region to be ultimately less affected, and early projections vastly
overestimate the number of cases there.

4.6 Discussion

This paper presents a novel, two-stage model to improve the allocation of limited re-
sources across geographic regions to mitigate an emerging infectious disease outbreak.
The first stage includes an epidemic model forecasting an outbreak’s trajectory on a
regional level. The second stage provides methods to effectively allocate intervention
resources across multiple regions. We analytically derive a solution for determining
the basic reproduction number, R0, for our multi-population epidemic model. This
allows us to determine each region’s R0j, which is subsequently used to prioritize re-
gions where the epidemic will continue to spread (i.e., R0j > 1) through an Greedy R0

allocation scheme. We also develop a second allocation approach, the first model to
combine an approximate dynamic programming algorithm with an underlying non-
linear epidemic model for computing an effective allocation of intervention resources.

We demonstrate the utility of our ADP algorithm and Greedy R0 heuristic by first
calibrating the epidemic model to data from the 2014 Ebola epidemic in West Africa
and then comparing the projected number of future Ebola cases under both alloca-
tions of Ebola treatment unit beds with the actual planned allocation and with two
benchmark heuristics. We find that both the ADP algorithm and Greedy R0 heuristic
identify allocations more effective than the one actually planned. The ADP algorithm
could have prevented up to 3,424 new Ebola infections over 18 weeks compared to
1,424 prevented by the planned allocation during this period, a 58% improvement.

The epidemic model developed here features two elements that enhance its validity.
First, a connectivity matrix of the 21 affected regions, which adjusts transmission rates
between regions based on geographic distance, leads to better forecasts of a widely
heterogeneous epidemic like Ebola than do extant techniques. Second, a dynamic be-
havioral change parameter for each region captures nonlinear trends in both contact
patterns and self-isolation practices as the epidemic spreads differentially among com-
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munities. Unlike earlier models that overestimated future Ebola cases by two orders
of magnitude, our model more closely matches actual case counts—even when fewer
than 100 days of data are used to estimate model parameters.

Numerical results demonstrate that Greedy R0 and ADP algorithm are complementary
methods for allocating intervention resources during emerging epidemics. While the
Greedy R0 approach performs well during the early days of an outbreak, the ADP
algorithm finds better solutions later, when sufficient case data have been collected.
The Greedy R0 approach could therefore be relevant for decision makers in situations
where case data are sparse and a quick decision needed. The ADP algorithm could
be used when intervention resources supply has ramped up, enabling more strategic
allocation decisions which consider an allocation’s impact on the trajectory of the
epidemic across the affected regions. Both methods incorporate improved forecast
estimates of the epidemic’s trajectory and can be adapted to other populations and
geographic regions.

The specific compartments of the epidemic model (e.g., susceptible, exposed, vacci-
nated, pregnant, etc.) and associated parameters could be easily adjusted for other
infectious diseases. By including other relevant interventions into the model’s dynam-
ics, our methodology could be used to identify the optimal combination of interven-
tions; examples include vaccines, personal protective equipment, and insect control
for mosquito-borne diseases such as Zika. The recent outbreak in Latin America has
shown that modeling efforts, like the one carried out in this paper, are more than
a one-time necessity. The 2014 Ebola outbreak afforded many valuable lessons, one
of which was the importance of recognizing self-protective behavior as the outbreak
unfolded, which ultimately reduced transmission rates and, fortunately, resulted in
fewer infections than initially forecast (Heesterbeek et al., 2015). With the current
Zika epidemic, behavior adaptation (e.g., through reduced pregnancy rates or human
travel patterns to Zika-afflicted regions), spatial heterogeneity (e.g., due to rainfall
or other climate conditions) and the effectiveness of ongoing efforts to eradicate the
particular mosquito vector, all contribute to reliable forecasts of new cases (Ferguson
et al., 2016). For the application to Zika, a compartmental modeling approach could
be used, although the structure and interdependencies of the compartments would
need to be changed to reflect the disease transmission through vectors and not hu-
mans itself. As with any infectious disease outbreak, a key challenge to reduce the
disease burden of Zika is to deploy intervention efforts as fast as possible, ideally
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supported by models capable of processing sparse case data.

Our study has limitations. A basic SIR model simplifies the complex natural history
of disease progression; more granular health states might improve forecasts of new
cases or Ebola-related deaths. We consider only a single resource in the optimal
allocation; in reality, decision makers may need to allocate money across multiple
resources (e.g., prevention programs, improved screening, treatment). Due to limited
data, we assume a static deployment curve; one extension of our model could include
dynamic deployment rate thresholds to reflect the gradual availability of resources, as
when staff are trained by previously trained workers. We model connectivity among
regions as proportional to the distance between capitals, which ignores the distribution
of where individuals actually reside. More detailed travel behavior could illuminate
contact patterns. Finally, a key challenge in reliably forecasting an emerging outbreak
is the lack of high-quality data early in the epidemic. An area that merits future
research is the development of a model that uses a Bayesian exploration method to
accommodate stochastically arriving data points.

4.6.1 Managerial Implications

In any real-world epidemic, accurate and up-to-date data on new cases and mortal-
ity rates are limited. Our model improves the ability of policy makers to respond
effectively to an emerging outbreak, providing them with more accurate forecasts and
an optimized allocation of resources. One important finding from our numerical ex-
periments is the importance of making spatially coordinated decisions. Connectivity
between regions clearly affects the epidemic’s spatial spread, yet these relationships
are typically neglected when allocation decisions are based on such local indicators as
the current number of infectious individuals in each region. Improved data sharing
and coordination of epidemic relief efforts among organizations operating in differ-
ent regions could help ensure that resources are prioritized to the most vulnerable
populations.

When deciding how best to distribute limited resources for epidemic control, public
health authorities must often balance speed of deployment with reach of the program.
The availability of beds is constrained by limited financial resources and technological
barriers for acquiring the necessary infrastructure and equipment, whereas a more
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rapid deployment rate relies on a continuous supply of personal protective equipment
and on the availability of health care workers (Butler, 2014a). Specialized training
approaches, such as “train the trainer”, may be necessary for ensuring that a sufficient
number of adequately skilled personnel are available. During training courses, new
health care workers are taught not only how to handle personal protective equipment
but also how to pass their knowledge on to other new personnel. Our model results
show, for example, that an increase in the deployment rate from two to eight beds per
week and region would result in 47% fewer infections (with a constant budget of 150
beds and a fitting period of 60 days). Since deployment speed is crucial, it follows that
preparedness for future outbreaks could be improved by adopting common standards
for equipment and for training of health care workers. Furthermore, coordination and
collaboration among different organizations—facilitated by institutions like the UN
Office for the Coordination of Human Affairs—would almost certainly enable faster
roll out of interventions to future crisis regions (Woolhouse et al., 2015).

4.6.2 Conclusion

The eradication of any infectious disease requires substantial commitments of financial
and human resources. More than $1.6 billion of emergency funding was provided by
different nations and institutions for the 2014 West African epidemic, yet more than
28,000 people contracted Ebola and nearly 11,000 people died of the disease. Although
transmission of the Ebola outbreak has fortunately abated, there are many lessons
to be learned from this tragedy. One vital lesson is that optimizing the allocation of
available resources can significantly increase the number of lives saved during future
infectious disease outbreaks.
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Chapter 5

Summary and future research
opportunities

5.1 Summary

In this thesis, we work on topics which are driven by three trends in the health care
sector: (i) In countries with developed health care systems, providers and manufac-
turers face cost pressure as payors try to contain rising cost induced by a higher life
expectancy and increasingly advanced medical procedures. (ii) With genetic diagnos-
tic tests now being able to give insights e.g. into an individual’s genetically deter-
mined cancer risk, questions arise what consequences test result should have when
prophylactic treatment options are available. (iii) In the last decade, both severity
and frequency of infectious disease epidemics with a potential for a global pandemic
have increased, challenging current practices how government and non-government
organizations perform and coordinate humanitarian interventions in affected regions.
This thesis tries to provide approaches which could help tackling the above mentioned
challenges through the usage of methods developed in the field of operations research.
We therefore apply recent datasets to real-life problems to ensure the relevance and
practicability of the approaches.

During our research on the benefits of coordination in pharmaceutical supply chains,
we examine if improved coordination between partners in a pharmaceutical supply
chain could help drive down supply chain cost, a significant cost driver in this area,
while maintaining the overall service level. We use demand data from the German
pharmaceutical market and model a supply chain using a discrete-event simulation
model fed with parameters from German pharmacies and wholesalers. To analyze the
effect of coordination on supply chain cost and service level, we construct three scenar-
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ios which we later compare through using MANOVA: (1) No coordination, (2) sharing
of point-of-sale demand information, and (3) full coordination, including joint decision
of order quantities in all echelons, also known as collaborative planning, forecasting
and replenishment (CPFR). Each of the scenarios is tested by varying internal and
external circumstances like varying demand patterns, product shelf life, production
capacity and inventory allocation scheme. Results show that CPFR dominates the
other two scenarios with the lowest cost and highest fill rate under all circumstances
tested, although its benefit depends on the characteristics of the SC. Benefits of full
coordination are highest when demand variation is high and product shelf life is low,
suggesting an implementation for seasonal and low shelf-life products. A disruption
common for pharmaceutical supply chains, constrained production capacity, is not
mitigated better through more intensive coordination. Further results suggest that
although CPFR is the dominant coordination method tested, an implementation of
point-of-sale information sharing only might be more beneficial as it already captures
on average 89% of CPFR’s benefit while incurring less implementation efforts.

In our work on the optimization of cancer prevention strategies for BRCA carriers,
we provide insights in how women carrying a mutation could maximize their QALYs
through an optimal timing of prophylactic surgeries. The model is calibrated with
data from recent clinical studies and could help patients and health care practitioners
to make trade-offs between different treatment options which reduce the elevated risk
of breast- and ovarian cancer. We analyze if and when performing a surgery would
maximize the accumulated and discounted QALYs of a BRCA1/2 mutation carrier.
Results with a baseline parameter set show that a BRCA1 carrier should perform a
BM between age 30 and 60. Before and afterwards, the loss in quality-of-life through
the surgery is not offset by the reduction in breast cancer risk. Additionally, a BSO is
QALY-maximizing from the age of 40. Even though the benefit of a BSO reduces with
a carrier’s age, its impact on the quality of life after 50 is low compared to the BM as
one important factor, its negative impact on the ability to reproduce, is not relevant
after the age of 50 in most cases. Following the QALY-maximizing surgery sequence,
simulation results of the model indicate that a BRCA1 carrier would increase her
average life expectancy from 70 to 77 years. For BRCA2 carriers, QALY-maximizing
surgery ages are pushed back as the overall breast and ovarian caner risk is lower than
for BRCA1 carriers. Sensitivity analysis show that the recommended surgery age is
heavily dependent on a carriers preferences about the impact of the surgeries on her
quality-of-life. Besides the optimal numerical solution, we provide insights into the
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structural properties of a simplified version of our model. Assuming a post-cancer
scenario, where either the breasts or ovaries have already been removed as part of the
cancer treatment, an optimal control threshold for cancer risk exists, after which it is
always optimal to remove the remaining organ.

Two methods for the allocation of intervention resources in regions affected by in-
fectious disease outbreaks based on an epidemic model are presented in our work
with data from the 2014 Ebola outbreak in West Africa. We first calibrate a multi-
population epidemic model with a novel behavioral dampening coefficient to data from
the 2014 Ebola outbreak in West Africa. We choose ETU beds as the intervention
resource to be allocated across 21 regions in the three countries affected by the Ebola
outbreak: Guinea, Liberia, and Sierra Leone. Our first allocation approach, Greedy
R0, is based on prioritizing the regions by their basic reproduction, R0, which we
determine based on a developed analytical solution. The second allocation approach
uses ADP to compute an efficient allocation of beds across the affected regions, as the
state space is too large to compute an optimal solution through DP. When comparing
both approaches with one other heuristics and the actual allocation, results show that
neither the Greedy R0 nor the ADP algorithm provide a dominant solution as for
small bed budgets and imprecise epidemic models, the Greedy R0 approach provides
the most effective allocation. For more complex allocation decisions where larger bed
budgets are involved and precise epidemic model parameters are available, the ADP
algorithm proves to be the dominant solution as it incorporates the impact of the
allocated beds on the future trajectory of the epidemic in its decision. By applying
these two approaches, our model results suggest that up to 2,000 infections could have
been saved compared with the actually planned allocation.

5.2 Future research

With the results obtained in each of the three research projects included in this thesis,
we enable further research in numerous areas. The following paragraphs elaborate on
possible extensions considering future trends in each of the fields covered.

With the increase in hardware and software capabilities of analyzing large amounts of
data, the technical barriers for exchanging data and coordinate planning in a SC get
lower. Implementation of a coordinated planning scheme is remaining complicated
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though, with legal and behavioral boundaries remaining strong. Further research
efforts therefore could explore e.g. how incentive systems for SC partners have to be
designed to prevent inefficient behavior of single entities. While lack of mutual trust in
a joint planning system will almost always be a barrier preventing the full integration
of a SC, future research could also elaborate on the effects of a participation of only
a share of all SC partners in a collaboration scheme.

Due to sinking cost for genetic testing and increased awareness, the number of pre-
cancer BRCA1/2 detections is likely to grow. This does not only require intensified
efforts to develop patient-specific recommendations about the options to be consid-
ered after a detection, but will also magnify the number of clinical studies providing
insights BRCA-specific parameters which could be used in a decision support model.
An important area of future research will therefore be the further development of
decision support model increasing both the level of detail and the quality of the input
parameters. Another important area is the dissemination of the model result be-
yond the academic literature. As most patients do not have the necessary skills and
knowledge to understand the results presented in an academic research paper, rec-
ommendations need to be transformed in a form understandable by average patients
without sacrificing the clarity about the model’s inherent uncertainty.

During infectious disease outbreaks, data is available while the epidemic is still grow-
ing and allocation decisions are made. Further developments in the enhancement
of epidemic models and resource allocation recommendations should therefore con-
centrate on using the available data to compute simple, but actionable methods for
adapting existing models to emerging situations. This could e.g. be achieved through
a modular approach in epidemic modeling, where a multi-population module is only
used when an outbreak shows signs of spatial heterogeneity. Further work could also
advance the quality of solutions computed through ADP. This could include the ap-
plication of additional exploration methods as well as the integration of additional
basis function. To further increase the impact in this field of research, future efforts
should also consider the standards and procedures applied by organizations deploying
the allocated resources.
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Appendix to Chapter 2

A.1 Demand dataset

The available demand data contains demand time series for pharmaceuticals from five
different markets (Allergy, Cold, Diabetes, Hypertension, and Parkinson disease) and
the corresponding specification of the pharmaceuticals (e.g. wholesaler price, shelf life,
etc.). Demand data was collected and provided by Insight Health, pharmaceuticals
were matched with specification provided by ABDATA through their PNZ (pharma-
ceutical identification number). Pharmaceuticals were included in the simulation and
selected through the following steps:

1) All pharmaceuticals without any demand were dropped

2) All pharmaceuticals with a cumulative demand of 1,000 units or less were
dropped

3) All pharmaceuticals with data missing for one or more state(s) were dropped

4) The pharmaceuticals were sorted by their variance, the products with the high-
est, lowest, and median variance were selected.

Figure A.1 shows the demand time series for the pharmaceuticals with stable and
seasonal demand. To make the simulation computationally feasibly, only 3 of the
16 available states were used. Hamburg, Rhineland-Palatinate, and Mecklenburg-
Western Pomerania, represent about 9% of the total German population.
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Figure A.1: Demand pattern of pharmaceutical with stable (left) and seasonal (right)
demand

A.2 Detailed MANOVA results

A.2.1 Estimated DV means

Table A.1 - A.6 contain the mean of the dependent variables, estimated after the
significance of the differences between the treatment groups were confirmed through
the MANOVA.

Table A.1: Estimated SCC and FR means using different coordination
schemes (H1)

Dependent
variables

SCS Mean
Boundaries (95
% CI)

Lower Upper
SCC CONV 408.1956 405.994 410.3972

POS 265.7893 263.649 267.9301
CPFR 248.0453 245.9296 250.1609

FR CONV 0.6742 0.6721 0.6764
POS 0.8661 0.8640 0.8682
CPFR 0.8967 0.8947 0.8987
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Table A.2: Estimated SCC and FR means using different coordination
schemes and demand variabilities (H2)

Dependent
variables

PRO SCS Mean
Boundaries
(95 % CI)

Lower Upper
SCC 1 CONV 384.2577 380.6108 387.9045

POS 237.7617 233.9320 241.5914
CPFR 242.9663 239.3218 246.6109

2 CONV 406.4219 402.5152 410.3286
POS 288.1984 284.5538 291.8429
CPFR 254.6082 250.9590 258.2573

3 CONV 434.3498 430.4666 438.2330
POS 271.8097 268.1651 275.4543
CPFR 246.6222 242.9272 250.3172

FR 1 CONV 0.7366 0.7331 0.7402
POS 0.9592 0.9555 0.9629
CPFR 0.9637 0.9602 0.9672

2 CONV 0.6000 0.5962 0.6038
POS 0.8400 0.8365 0.8436
CPFR 0.9174 0.9139 0.9209

3 CONV 0.6853 0.6816 0.6891
POS 0.7975 0.7940 0.8010
CPFR 0.8077 0.8041 0.8112
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Table A.3: Estimated SCC and FR means using different coordination
schemes and product shelf lifes (H3).

Dependent
variables

SL SCS Mean
Boundaries
(95 % CI)

Lower Upper
Lower Upper

SCC 12 CONV 332.3801 328.4202 336.3401
POS 258.0682 254.4055 261.7310
CPFR 243.5934 239.9350 247.2517

6 CONV 355.5414 351.8901 359.1926
POS 264.1034 260.3693 267.8375
CPFR 243.7415 240.0663 247.4167

3 CONV 536.8093 532.9823 540.6364
POS 275.1304 271.4206 278.8403
CPFR 256.8359 253.1822 260.4895

FR 12 CONV 0.6261 0.6223 0.6299
POS 0.8687 0.8652 0.8723
CPFR 0.8899 0.8863 0.8934

6 CONV 0.6971 0.6935 0.7006
POS 0.8705 0.8669 0.8741
CPFR 0.9006 0.8970 0.9041

3 CONV 0.6984 0.6948 0.7021
POS 0.8591 0.8555 0.8626
CPFR 0.8995 0.8960 0.9030
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Table A.4: Estimated SCC and FR means using different coordination
schemes and production capacity (H4).

Dependent
variables

Capacity SCS Mean
Boundaries
(95 % CI)

Lower Upper
SCC 0.9 × Demand CONV 362.8908 359.1873 366.5942

POS 246.9107 243.2631 250.5582
CPFR 227.7218 224.0248 231.4189

1.1 × Demand CONV 422.0921 418.2689 425.9153
POS 270.8907 267.1469 274.6345
CPFR 255.2361 251.5909 258.8814

1.3 × Demand CONV 441.2523 437.3498 445.1548
POS 279.9230 276.1957 283.6503
CPFR 261.8260 258.1807 265.4713

FR 0.9 × Demand CONV 0.6505 0.6469 0.6541
POS 0.8044 0.8009 0.8079
CPFR 0.8202 0.8166 0.8237

1.1 × Demand CONV 0.6717 0.6680 0.6754
POS 0.8860 0.8824 0.8897
CPFR 0.9244 0.9208 0.9279

1.3 × Demand CONV 0.7014 0.6976 0.7052
POS 0.9120 0.9084 0.9157
CPFR 0.9481 0.9445 0.9516

Table A.5: Estimated SCC and FR means using different coordination
and allocation schemes (H5).

Dependent
variable

Allocation Pol-
icy SCS Mean

Boundaries
(95 % CI)

Lower Upper
FR FIFO CONV 0.6674 0.6636 0.6711

POS 0.8928 0.8892 0.8963
CPFR 0.8984 0.8949 0.9019

Proportional CONV 0.6972 0.6935 0.7008
POS 0.8776 0.8739 0.8813
CPFR 0.9076 0.9040 0.9111

Practical CONV 0.6587 0.6551 0.6624
POS 0.8286 0.8250 0.8321
CPFR 0.8844 0.8809 0.8880
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Table A.6: Estimated manufacturer and pharmacy cost shares using dif-
ferent coordination schemes (H6)

Dependent
variables

SCS Mean
Boundaries (95
% CI)

Lower Upper
CSM CONV 0.4732 0.470358 0.4760

POS 0.7761 0.773 0.7789
CPFR 0.8455 0.842778 0.8482

CSPH CONV 0.0378 0.0375 0.0380
POS 0.0742 0.0740 0.0745
CPFR 0.0798 0.0795 0.0801
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A.2.2 ANOVA results

In Table A.7 - A.10, the results of the five ANOVAs are presented as follow-up analysis
to the MANOVA assumptions discussed in Section 2.5. Results show that also for
each univariate ANOVA, the relevant effects are significant at a .01 significance level.

Table A.7: ANOVA results with SCC as dependent variable.

Effect Sum of squares Mean square F value Prob > F
SCS 35070020.18 17535010.09 6262.18 0.0000
ALL 411583.55 205791.78 73.49 0.0000
PRO × SCM 2017756.15 336292.69 120.10 0.0000
CAP × SCM 3480677.00 580112.83 207.17 0.0000
SL × SCM 18568242.01 3094707.00 1105.20 0.0000
ALL × SCM 614436.29 153609.07 54.86 0.0000

Table A.8: ANOVA results with FR as dependent variable.

Effect Sum of squares Mean square F value Prob > F
SCS 66.36 33.18 12738.12 0.0000
ALL 1.76 0.88 338.02 0.0000
PRO × SCM 28.02 4.67 1792.81 0.0000
CAP × SCM 13.19 2.20 844.23 0.0000
SL × SCM 2.55 0.43 163.41 0.0000
ALL × SCM 0.85 0.21 81.14 0.0000

Table A.9: ANOVA results with CSPH as dependent variable.

Effect Sum of squares Mean square F value Prob > F
SCM 2.37 1.19 23431.27 0.0000
ALL 0.04 0.02 346.29 0.0000
PRO × SCM 0.25 0.04 807.75 0.0000
CAP × SCM 0.00 0.00 7.26 0.0000
SL × SCM 0.01 0.00 33.36 0.0000
ALL × SCM 0.03 0.01 154.81 0.0000

Table A.10: ANOVA results with CSM as dependent variable.

Effect Sum of squares Mean square F value Prob > F
SCS 178.64 89.32 19348.73 0.0000
ALL 2.00 1.00 216.96 0.0000
PRO × SCM 13.13 2.19 474.13 0.0000
CAP × SCM 0.42 0.07 15.24 0.0000
SL × SCM 5.86 0.98 211.42 0.0000
ALL × SCM 1.72 0.43 93.27 0.0000
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B.1 Structural properties

In this Section, we first provide the remaining Propositions and Lemmas which have
been omitted in Section 3.4.1 and give the necessary proofs afterwards.

B.1.1 Supporting Propositions and Lemmas

In Proposition B.1, we show that vt(st) is nonincreasing in st, implying that a carrier’s
expected QALYs do not increase with her age and cancer risk, respectively.

Proposition B.1. If the transition probability matrix for action W is IFR for all
t = 1,2, . . . , T , then vt(st) is nonincreasing in st, for st = x20, x21, . . . , xAGE, and
t = 1,2, . . . , T − 1.

To show that vt(st) is also nonincreasing in t, which means that the expected QALYs
of a patient do not increase with her age, we first present Lemma B.1:

Lemma B.1. If Assumption 3.7 holds for t = 1,2, . . . , T − 1, then for any f(i) non-
increasing in i, the following holds:

∑
s′t∈Ŝ

pt(s′t ∣ i)f(s′t) ≥ ∑
s′t∈Ŝ

pt+1(s′t ∣ i)f(s′t). (B.1)

Proposition B.2. The optimal value function, vt(st), is nonincreasing in t for all
st ∈ Ŝ.

To prove Theorem 3.1, the following Lemma is used:
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Lemma B.2. P = [pt(j ∣ i)] is an IFR transition probability matrix for i, j = 1,2, . . . ,N ,
such that ∑k

∗
k=i+1 pt(k ∣ i + 1) ≥ ∑k

∗
k=i+1 pt(k ∣ i) for i < k∗ ≤ N and t = 1,2, . . . , T − 1. If

f(i) is a nonincreasing function in i, then the following holds:

i

∑
k=1

{pt(k ∣ i) − pt(k ∣ i + 1)}f(k) ≥
i

∑
k=1

{pt(k ∣ i) − pt(k ∣ i + 1)}f(i), (B.2)

k∗

∑
k′=i+1

{pt(k′ ∣ i) − pt(k′ ∣ i + 1)}f(k′) ≥
k∗

∑
k′=i+1

{pt(k′ ∣ i) − p(k′ ∣ i + 1)}f(i + 1). (B.3)

B.1.2 Proofs

Proof of Proposition B.1 The proof of Proposition B.1 is similar to the proof of
Proposition 4.7.3 in Puterman (2014) and therefore omitted here.

Proof of Lemma B.1 The sum over a row in the transition probability matrix
results to ∑x

death

s′=0 pt(s′ ∣ i) = ∑x
death

s′=0 pt+1(s′ ∣ i) = 1. Let

E =
xdeath

∑
s′=x20

pt+1(s′ ∣ i) −
xdeath

∑
s′=x20

pt(s′ ∣ i) = 0, then

E =
⎧⎪⎪⎨⎪⎪⎩

xdeath

∑
s′=x20

pt+1(s′ ∣ i) −
xdeath

∑
s′=x20

pt(s′ ∣ i)
⎫⎪⎪⎬⎪⎪⎭
f(x20)

≥ pt+1(x20 ∣ i)f(x20) − pt(x20 ∣ i)f(x20)

+
⎧⎪⎪⎨⎪⎪⎩

xdeath

∑
s′=x21

pt+1(s′ ∣ i) −
xdeath

∑
s′=1

pt(s′ ∣ i)
⎫⎪⎪⎬⎪⎪⎭
f(x21) (B.4)

≥
x21

∑
s′=x20

pt+1(s′ ∣ i)f(s′) −
x21

∑
s′=x20

pt(s′ ∣ i)f(s′)

+
⎧⎪⎪⎨⎪⎪⎩

xdeath

∑
s′=x22

pt+1(s′ ∣ i) −
xdeath

∑
s′=x22

pt(s′ ∣ i)
⎫⎪⎪⎬⎪⎪⎭
f(x22). (B.5)

(B.4) and (B.5) hold through the assumption that f(i) is nonincreasing in i. It
therefore follows that:

E ≤
xdeath

∑
s′=x20

pt+1(s′ ∣ i)f(s′) −
xdeath

∑
s′=x20

pt(s′ ∣ i)f(s′) (B.6)
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≥
xdeath

∑
s′=x20

pt+1(s′ ∣ i)f(s′) −
xdeath

∑
s′=x20

pt(s′ ∣ i)f(s′),

which leads to ∑s′∈Ŝ pt(s′ ∣ i)f(s′) ≥ ∑s′∈Ŝ pt+1(s′ ∣ i)f(s′).

Proof of Proposition B.2 We use backward induction to proof this Proposition:
For t = T − 1:

vT−1(sT−1) ≥ rT−1(sT−1,BSO)

≥ rT (sT ,BSO) (B.7)
= vT (sT ). (B.8)

Assumption 3.2 and 3.3 can be used to deduce (B.7) and the boundary condition of
given in Equation (3.2) leads to (B.8). It follows that vT−1(sT−1) ≥ vT (sT ), which is
a sufficient proof for the base case. The Proposition is assumed to hold as well for
t = t0 ∀st Ŝ. That the theorem holds for t = t0 − 1 is proven through:

vt0−1(st) = max
⎧⎪⎪⎨⎪⎪⎩
rt0−1(st0−1,BSO) + γ ∑

s′∈Ŝ
pt0−1(s′ ∣ st0−1,BSO)vt0(x′),

rt0−1(st0−1,W ) + γ ∑
s′∈Ŝ

pt0−1(s′ ∣ st0−1,W )vt0(s′)
⎫⎪⎪⎬⎪⎪⎭

≥ max
⎧⎪⎪⎨⎪⎪⎩
rt0(st0 ,BSO) + γ ∑

s′∈Ŝ
pt0(s′ ∣ st0 ,BSO)vt0(s′),

rt0(st0 ,W ) + γ ∑
s′∈Ŝ

pt0(s′ ∣ st0 ,W )vt0(s′)
⎫⎪⎪⎬⎪⎪⎭

(B.9)

≥ max
⎧⎪⎪⎨⎪⎪⎩
rt0(st0 ,BSO) + γ ∑

s′∈Ŝ
pt0(s′ ∣ st0 ,BSO)vt0+1(s′)

rt0(st0 ,W ) + γ ∑
s′∈Ŝ

pt0(s′ ∣ st0 ,W )vt0+1(s′)
⎫⎪⎪⎬⎪⎪⎭

(B.10)

= vt0(st0), (B.11)

where (B.9) follows from Assumption 3.1 - 3.3 and Lemma B.1. The induction hy-
pothesis vt0(st) ≥ vt0+1(st) leads to (B.10). The Proposition therefore holds for all
t = 1,2, . . . , T − 1.

113



Appendix to Chapter 3

Proof of Lemma B.2 The following proof of Lemma B.2 is given for the infi-
nite case in Alagoz et al. (2004). To proof Equation B.2, we repeat that the IFR
assumption implies that ∑kj=1 pt(j ∣ i) ≥ ∑kj=1 pt(j ∣ i + 1) for any k ∈ Ŝ. Let

i

∑
k=1

{pt(k ∣ i) − pt(k i + 1)}f(k)

= {pt(x21 ∣ i) − pt(x21 ∣ i + 1)}f(x21) +
i

∑
k=x22

{pt(k ∣ i) − pt(k ∣ i + 1)}f(k)

≥ {pt(x21 ∣ i) − pt(x21 ∣ i + 1)}f(x22) +
i

∑
k=x22

{pt(k ∣ i) − pt(k ∣ i + 1)}f(k) (B.12)

= {pt(x21 ∣ i) + pt(x22 ∣ i) − pt(x21 ∣ i + 1) − pt(x22 ∣ i + 1)}f(x22)

+
i

∑
k=x23

{pt(k ∣ i) − pt(l ∣ i + 1)}f(k)

≥ {pt(x21 ∣ i) + pt(x22 ∣ i) − pt(x21 ∣ i + 1) − pt(x22 ∣ i + x22)}f(x23)

+
i

∑
k=x23

{pt(k ∣ i) − pt(k ∣ i + 1)}f(k), (B.13)

with (B.12) following from pt(x21 ∣ i) ≥ pt(x21 ∣ i + 1) and f(x21) ≥ f(x22). Inequality
(B.13) holds as pt(x21 ∣ i) + pt(x22 ∣ i) ≥ pt(x21 ∣ i + 1) and v(x21) ≥ v(x22). The
complete proof follows from the application of the same procedure to the remaining
states x23, . . . , xdeath. Equation (B.3) requires a similar proof which is omitted here.

Proof of Theorem 3.1 The following inequalities hold if a∗(st) exists:

vt(st,BSO) ≥ rt(st,W ) + γ ∑
s′∈Ŝ

pt(s′ ∣ st,W )vt+1(s′), (B.14)

vt(st + 1,BSO) ≥ rt(st + 1,W ) + γ ∑
s′∈Ŝ

pt(s′ ∣ st + 1,W )vt+1(s′). (B.15)

Assume a∗(st) = BSO for st = st and a∗(st + 1) = W only for st = st + 1, and t =
0,1, . . . , T − 1. It follows:

vt(st,BSO) ≥ rt(st,W ) + γ ∑
s′∈Ŝ

pt(s′ ∣ st,W )vt+1(s′)

vt(st,BSO) < r∗t (st + 1,W )

+ γ ∑
s′∈Ŝ

pt(s′ ∣ st + 1,W )vt+1(s′)
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vt(st,BSO)−

v(st + 1,BSO) > rt(st,W ) − rt(st + 1,W )

+ γ ∑
s′∈Ŝ

{pt(s′ ∣ st,W ) − pt(s′ ∣ st + 1,W )}vt+1(s′)

≥ γ ∑
s′∈Ŝ

{pt(s′ ∣ st,W ) − pt(s′ ∣ st + 1,W )}vt+1(s′) (B.16)

= γ
st

∑
s′=0

{pt(s′ ∣ st,W ) − pt(s′ ∣ st + 1,W )}vt+1(s′)

+ γ
xAGE

∑
s′′=st+1

{pt(s′′ ∣ st,W ) − pt(s′′ ∣ st + 1, S)}vt+1(s′′)

≥ γ
st∗
∑
s′=0

{pt(s′ ∣ st∗,W ) − pt(s′ ∣ st + 1,W )}vt+1(st)

+ γ
xAGE

∑
s′′=st+1

{pt(s′′ ∣ st,W ) − pt(s′′ ∣ st + 1,W )}vt+1(st + 1) (B.17)

≥ γ
st∗
∑
s′=0

{pt(s′ ∣ st,W ) − pt(s′ ∣ st + 1,W )}vt+1(st + 1)

+ γ
xAGE

∑
s′′=st+1

{pt(s′′ ∣ st,W ) − pt(s′′ ∣ st + 1,W )}vt+1(st + 1) (B.18)

= γ
xAGE

∑
s′=0

{pt(s′ ∣ st,W ) − pt(s′ ∣ st + 1,W )}vt+1(st + 1)

≥ γ
xAGE

∑
s′=0

{pt(s′ ∣ st,W ) − pt(s′ ∣ st + 1,W )}vt+1(st + 1,BSO) (B.19)

= γ{pt(xdeath ∣ st + 1,W )

− pt(xdeath ∣ st,W )}rt+1(st + 1,BSO) (B.20)

Inequality (B.16) follows from Assumption 3.1 as well as pt(j ∣ s,W ) = 0 for j ∈ {xsurg}
and s ∈ Ŝ/xsurg. Inequality (B.17) follows from Proposition B.1 and Lemma B.2.
Being IFR, PWt implies that ∑x

death

s′=st+1 pt(s′ ∣ st,W ) ≤ ∑x
death

s′=st+1 pt(s′ ∣ st + 1,W ) and
∑st

s′=0 pt(s′ ∣ st,W ) ≥ ∑st

s′=st
pt(s′ ∣ st + 1,W ). By using Proposition B.1 to state that

vt+1(st) ≥ vt+1(st + 1), vt+1(st) in Equation (B.17) can be replaced by vt+1(st + 1) in
Equation (B.18). With PWt being IFR and vt+1(st + 1) ≥ rt+1(st + 1,BSO), we can
conclude inequality (B.19). Equation (B.20) can therefore be replaced by:

vt(st,BSO) − vt(st + 1,BSO)
vt+1(st + 1,BSO)

> γ{pt(xdeath ∣ st + 1,W ) − pt(xdeath ∣ st,W )}, (B.21)
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which contradicts Equation (3.1), from which the proof follows.

B.2 Data format conversion

This section describes the formulas used to convert the data collected from different
clinical studies into a form which is usable in the MDP.

Cancer risk Chen & Parmigiani (2007) provide the probability of being diagnosed
with breast- and ovarian cancer in 10-year intervals. As we use 1-year decision epochs
in the MDP, these probabilities need to be converted to yearly probabilities. We do
this through the following Equations, with p10 being the probability of an event hap-
pening during a 10-year interval, and p1 the probability of the same event happening
during for a 1-year interval:

p1 = 1 − 10
√

1 − p10 (B.22)

Risk reduction given as odds ratio (OR) The reduction of cancer risk through
prophylactic surgery is given as OR by Eisen et al. (2005). An odds ratio is defined
in the following Equation with pb as the baseline probability of an event and prr as
the probability of this event after the risk reducing surgery:

OR =
prr

1−prr

pb

1−pb

. (B.23)

Being in line with Grant (2014), the probability after having performed a risk reducing
surgery therefore results to:

prr =
ORpb

1 − pb +ORpb
. (B.24)

Risk reduction given as hazard ratio (HR) Rebbeck et al. (2004) and Rebbeck
et al. (2009) use HRs as indicator for the reduction in cancer risk through prophylactic
surgery. We convert the probability p of being diagnosed with cancer in t years to a
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rate r (assuming a constant rate) through:

r = − ln(1 − p)t−1 (B.25)

The rate r is then adjusted for the risk reduction through surgery by multiplying it
with the HR.

B.3 Model verification and validation

To ensure that the model described in Section 3.3 matches reality in the intended
way, we follow model verification and validation steps proposed by Gass (1983).

B.3.1 Model verification

Model verification aims to ensure that the model “runs as intended”, in our case
meaning that the written software matches the mathematical expressions given in
the model description. The methods used during the model development process are
common in software development projects:

• Modular coding: We start coding a very simple MDP containing only one
variable and test it using example parameters. Once accurate performance has
been assured, we add the next variable and test the model behavior with an
extended set of example parameters. This procedure is repeated until the MDP
is completed.

• Documentation: To document the content of the algorithm and to make it
easily interpretable for people not involved in the research project we comment
the non-self-explaining lines of code while writing the algorithms.

• Model output verification: To ensure the correctness of the full model, we
conduct extensive sensitivity analysis not only with parameter values relevant for
answering the research question but also indicating when modifying the input
parameters the model results behave in the intended way. We also perform
simulations of the MDP to ensure that the input parameters are processed in
the intended way.
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B.3.2 Model validation

According to Gass (1983), model validation “tests the agreement between the behav-
ior of the model and the real world system being modeled”. We apply validation
techniques defined by Gass (1983) as well as Sargent (2013) to our model:

• Comparison to other models: We compare the outputs of our model with
existing publications in the research area (e.g. Abdollahian & Das, 2015; Grann
et al., 1998; van Roosmalen et al., 2002). Although our results unsurprisingly do
not exactly match the result of the aforementioned works, the general direction
of the results is comparable.

• Data validity: While most of our parameter values have been empirically
estimated during clinical studies, we use only recent studies with a sufficient
population size (see also Section 3.5.1).

• Face validity: The input parameters and assumptions are discussed with clin-
ical expert in the field of breast and ovarian cancer, e.g. from UCLA University
hospital or the University Medical Center Hamburg-Eppendorf (UKE).

• Extreme condition tests: We test the model output behavior through set-
ting the input parameters to extreme levels, e.g. assuming a QALY impact of
prophylactic surgeries of 0 or 1 or setting the risk of one cancer to 0 or 1.

• Logical / mathematical validity: The model structure is documented for
validation in Section 3.3 and analyzed in Section 3.4.1. MDP has been applied
numerous times to similar research questions (see Section 3.2).

• Sensitivity analysis: We run a wide set of sensitivity analysis to proof the
robustness of our approach under different parameter assumptions (see Section
3.5).
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Appendix to Chapter 4

C.1 Paper 3 Appendix

We provide additional model details and results on both the ADP algorithm C.2
and the calibration of the epidemic model C.3. An overview about the relationships
between the different model elements and the data used is presented in Fig. C.1.

C.2 ADP Algorithm

The pseudocode of the ADP policy iteration algorithm is presented in Fig. C.2. The
mechanics of the Knapsack formulation used to efficiently compute an approximate
solution of row 13 of the ADP algorithm are presented in Section C.2.1. Details on
the recursive updating of the parameter vector θnt , performed in line 19, are presented
in section C.2.2. We provide details on the used exploration method in Section C.2.3.

C.2.1 Knapsack Formulation.

The resource allocation step in the ADP algorithm can be performed only for problems
with small action spaces, since sweeps over the whole action space are computationally
expensive. Although this problem is similar to a Knapsack problem, most known
solution methods cannot be applied because the objective function is neither convex
nor concave (Kellerer et al., 2004). We therefore divide each allocation problem into
r subproblems, where r is the maximum number of additional beds which can be
allocated per region per period. In each of the resulting subperiods, indexed by τ , only
0 or 1 beds can be allocated to each region. The resulting 0/1 nonlinear Knapsack
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Figure C.1: Relationships between input data, model elements, and model results.
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1 begin

2 Set basis function φf ;

3 Set θ0
t for all t;

4 Set starting state x0;

5 for n = 1,2, . . . ,N do

6 Draw randomly e ∼ Uniform(0,1);

7 for t = t0, t0 + 1, . . . , tf do

8 if ∑Ki=1∑tt0 ani,t ≥ B then

9 ani,t = 0 ∀i = 1, . . . ,K;

10 else if (n < 200) ∨ (e < 1/0.1n) then

11 Randomly select ani,t ∈ At;

12 else

13 Compute ani,t = argmin
ai,t∈At

(∑Ki=1 I
new
i,t (xt, ai,t) + γθn−1

t φ(xnt+1 ∣ xnt , ai,t)T );

14 end

15 end

16 Initialize V̂ n
tf
= 0;

17 for t = tf , tf − 1, . . . , t0 do

18 V̂ n
t = ∑Ki=1 I

new
i,t (xnt , ani,t) + γV̂ n

t+1;

19 θnt = θn−1
t − 1

γnGn−1φn∆n;

20 end

21 end

22 Return basis function parameters θNt for all t.

Figure C.2: Approximate dynamic programming algorithm.

problems can be solved with an approximation method introduced by Hochbaum
(1995), which is briefly explained in the following paragraph.

For each subperiod τ ∈ (0,1, . . . , r), we write the cost for allocating ai,t+τ beds in
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t + τ as:

c(ai,t+τ) =
K

∑
i=1
Inew
i,t+τ(xt+τ , ai,t+τ) + γrθn−1

t φ(xnt+τ+(1/r) ∣ xnt+τ , ai,t+τ)T , (C.1)

where γr is the subperiod discount rate. The approximate benefit pk of allocating
1 bed in region k is pk,τ = c(ak,τ = 0) − c(ak,τ = 1), where ai = 0 ∀i ≠ k. The resulting
0/1 Knapsack subproblem in period τ is thus:

maximize
K

∑
k=1

pkak,τ (C.2)

subject to
K

∑
k=1

ak,τ ≤K, (C.3)

ak,τ ∈ {0,1} ∀k. (C.4)

After transforming the ADP algorithm’s search for an optimal decision into a nonlin-
ear Knapsack problem, we can solve large-scale resource allocation problems—with
population sizes of several million—in a reasonable amount of time even though the
underlying epidemic model is characterized by dynamics that are nonlinear and non-
convex.

C.2.2 Recursive least square updating

In line 19 of the ADP Algorithm, the parameter vector θnt is updated using a recursive
least-squares approach for nonstationary data (Powell, 2011) that is based on the
previous iteration’s estimated coefficients θn−1

t :

θnt = θn−1
t − 1

γn
Gn−1φn∆n. (C.5)

The 2K × 2K matrix Gn is updated recursively using the expression

Gn = 1
λn

(Gn−1 − 1
γn

(Gn−1φn(φn)TGn−1)), (C.6)

and γn is a scalar computed using

γn = λn + (φn)TGn−1φn. (C.7)
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The difference ∆n between the previous iteration’s value approximation for state xt
and its corresponding “observed” (i.e., simulated) value at iteration n is:

∆n = V̄ n−1
t (xt) − V̂ n

t (xt). (C.8)

C.2.3 Exploration versus Exploitation

One limitation of ADP is that an allocation decision (in the first loop of the algorithm)
might visit only the states with a high approximated value. Previously unvisited, low-
value states would be ignored even though their value approximation might change
once visited. To address this problem, we explore the state space also by making
random allocation decisions. Although exploration increases the likelihood of a near-
optimal solution, it also reduces the speed of convergence—a trade-off well known as
the “exploration–exploitation dilemma”.

Heuristic learning policies (e.g., ε-greedy and Boltzmann exploration) or directed
learning methods (e.g., knowledge gradient exploration (Powell, 2011) can determine
an appropriate degree of exploration or a set of states for which exploration will likely
be worthwhile. Because the exploration of our problem’s state space is relatively in-
expensive, we choose a combination of pure and ε-greedy exploration, which yielded
good results in our experiments. During the first 100 iterations, the algorithm explores
only by making random allocation decisions. Thereafter, during the nth iteration, if
e < 1/0.1n for e ∼ Uniform(0,1) then a random decision is chosen; otherwise, the al-
gorithm exploits the current value function approximation (Fig. C.3). This procedure
assures both a high degree of exploration initially and decreasing exploration as the
algorithm progresses.

C.3 Epidemic Model Calibration

The epidemic model was calibrated with confirmed Ebola case data from 21 regions
in Guinea, Liberia, and Sierra Leone, which collectively accounted for 60% of the
total infections observed (Humanitarian Data Exchange, 2015b). Regions with no
change in cases, or with fewer than 50 cases or five data points, were omitted. We
also excluded 61 observations (amounting to less than 2.5% of the total dataset) that
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Figure C.3: Approximate dynamic program convergence (solid blue plot) and explo-
ration rate (dotted red plot) with a budget of B = 150 beds, a fitting
period of 60 days, and a maximum deployment rate of r = 5 beds per
week per region.

could clearly be identified as outliers as well as two regions with inconsistent case
numbers. These particular observations were likely the result of misreporting (e.g.,
in a single week one region’s case count jumped from 50 to 1,000 before falling back
to 60). We used 140 days of available data; of these, the first 100 days (beginning on
2 September 2014) were used for fitting purposes and the next 40 days were used to
test the model’s prediction against the outbreak’s actual trajectory. As a robustness
check, we evaluated the model’s performance using case count data from only 20,
40, 60, 80, or 100 days. Model calibration was performed using a Markov chain
Monte Carlo approach with a Metropolis–Hastings algorithm, an established method
for fitting epidemic models to empirical data (Gibson, 1998; Currie, 2007). The model
was simultaneously calibrated for all K regions in our dataset while assuming that
the epidemic dynamics described in Equations (4.3)–(4.5). applied to each region.
Because the data points were recorded on a daily basis, the model time horizon was
divided into corresponding discrete periods: t ∈ (t0, . . . , tf).

The vector wn contains the parameter c0 and the parameters βi, ψmax
i , and αi, for i =

1,2, . . . ,K, at iteration n of the MCMC algorithm. Since the value of each parameter
is unknown, we assume Uniform prior distributions over the following intervals: βi ∈
(0,10−5), ψmax

i ∈ (0,1), αi ∈ (0,1), and c0 ∈ (0.8,1). The sum of squared errors between
the observed Ebola case count (Ĩi,t) and the model projection (Ii,t(wn)) in region i at
time t is:

SSE =
K

∑
i=1

tf

∑
t=t0

(Ĩi,t − Ii,t(wn))
2
. (C.9)

The Metropolis–Hastings algorithm recursively calculates a new parameter candidate
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set wn at iteration n via maximum likelihood with the following likelihood ratio:

LR = P (Ĩ ∣wn)
P (Ĩ ∣wn−1)

= exp( −
K

∑
i=1

tf

∑
t=t0

(Ĩi,t − Ii,t(wn))
2

+
K

∑
i=1

tf

∑
t=t0

(Ĩi,t − Ii,t(wn−1))). (C.10)

At iteration n, the candidate parameter set wn replaces the previous set wn−1 if
LR > ν, with ν ∼ Uniform(0,1). The algorithm continues until convergence is obtained
for all parameter values (at most 150,000 iterations in our experiments; see Fig. C.25
- C.45 for convergence plots).

C.3.1 Epidemic model fit results

The accuracy of the developed epidemic model when comparing it to the observed
case data is tested with varying amount of data available for calibration. Ranging
from 20 to 100 days, the calibration periods represent the low data availability in the
initial phase of an epidemic as well as more progressed situations when sufficient data
is available. Projected and observed trajectories of the 21 regions can be found in
Figure C.4 - C.24. Results show that the ability to accurately project the epidemic’s
trajectory increases with the amount of data available for calibrating the model. Re-
sults from Conakry, Guinea, and Margibi, Liberia, additionally indicate that not only
the amount of available data, but also it’s quality is a major factor for the projec-
tion accuracy. In the case of Conakry, a 40 days long fitting period results into a an
acceptable MAPE of 9%, as the case data has no major jumps and is reported fre-
quently. The observed data for Margibi is likely corrupted by underreporting between
September and October 2014, resulting in a significantly higher MAPE of 88%. The
variance of fit accuracies for the different fit periods are presented in Table C.1 to C.5.
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Table C.1: Observed cases, projected cases, and MAPE for each region.
The underlying epidemic model uses 20 days of data for pa-
rameter fitting and projects the epidemic trajectory for an-
other 40. The MAPE is only computed for the timeframce
after the period used for fitting.

Regions Cases October 31st 2014 MAPE (%)
ID Name Projected Observed
1 Bo 82 175 32
2 Bombali 297 571 33
3 Bomi 34 73 19
4 Bong 65 78 12
5 Conakry 139 220 29
6 Coyah 10 52 64
7 Guéckédou 240 253 4
8 Kailahun 600 554 11
9 Kambia 19 39 42
10 Kenema 684 493 48
11 Kerouane 31 87 38
12 Kono 19 38 31
13 Lofa 276 304 5
14 Macenta 347 550 28
15 Margibi 38 312 34
16 Montserrado 412 1496 31
17 Moyamba 84 96 18
18 Nimba 66 106 24
19 Nzerekore 20 97 62
20 Port Loko 283 557 33
21 Tonkolili 80 210 42
Total / average 3823 6361 31
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Table C.2: Observed cases, projected cases, and MAPE for each region.
The underlying epidemic model uses 40 days of data for pa-
rameter fitting and projects the epidemic trajectory for an-
other 40. The MAPE is only computed for the timeframce
after the period used for fitting.

Regions Cases November 20th 2014 MAPE (%)
ID Name Projected Observed
1 Bo 125 229 34
2 Bombali 660 745 13
3 Bomi 35 135 50
4 Bong 89 103 10
5 Conakry 227 249 9
6 Coyah 42 69 35
7 Guéckédou 253 260 2
8 Kailahun 540 559 3
9 Kambia 35 59 27
10 Kenema 444 494 9
11 Kerouane 37 139 58
12 Kono 40 72 19
13 Lofa 292 325 6
14 Macenta 470 640 18
15 Margibi 43 344 75
16 Montserrado 380 1584 65
17 Moyamba 146 154 8
18 Nimba 90 110 16
19 Nzerekore 47 166 57
20 Port Loko 521 771 20
21 Tonkolili 188 320 30
Total / average 4706 7527 27
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Table C.3: Observed cases, projected cases, and MAPE for each region.
The underlying epidemic model uses 60 days of data for pa-
rameter fitting and projects the epidemic trajectory for an-
other 40. The MAPE is only computed for the timeframce
after the period used for fitting.

Regions Cases December 10th 2014 MAPE (%)
ID Name Projected Observed
1 Bo 183 288 28
2 Bombali 1058 892 8
3 Bomi 50 137 59
4 Bong 86 135 24
5 Conakry 299 289 5
6 Coyah 79 117 12
7 Guéckédou 261 264 1
8 Kailahun 557 563 1
9 Kambia 55 88 30
10 Kenema 482 494 4
11 Kerouane 85 145 40
12 Kono 55 123 30
13 Lofa 309 326 6
14 Macenta 563 699 14
15 Margibi 271 383 29
16 Montserrado 1172 1676 31
17 Moyamba 140 171 19
18 Nimba 111 114 6
19 Nzerekore 108 193 37
20 Port Loko 747 981 16
21 Tonkolili 334 390 18
Total / average 7006 8468 20
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Table C.4: Observed cases, projected cases, and MAPE for each region.
The underlying epidemic model uses 80 days of data for pa-
rameter fitting and projects the epidemic trajectory for an-
other 40. The MAPE is only computed for the timeframce
after the period used for fitting.

Regions Cases December 30th 2014 MAPE (%)
ID Name Projected Observed
1 Bo 230 306 24
2 Bombali 1173 965 9
3 Bomi 79 139 44
4 Bong 114 150 21
5 Conakry 343 353 6
6 Coyah 97 155 27
7 Guéckédou 267 269 0
8 Kailahun 567 565 0
9 Kambia 73 111 29
10 Kenema 504 496 1
11 Kerouane 138 160 16
12 Kono 68 197 47
13 Lofa 320 332 4
14 Macenta 628 715 11
15 Margibi 427 391 4
16 Montserrado 1712 1771 6
17 Moyamba 210 185 6
18 Nimba 127 116 4
19 Nzerekore 161 209 26
20 Port Loko 945 1192 16
21 Tonkolili 457 429 5
Total / average 8641 9206 15
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Table C.5: Observed cases, projected cases, and MAPE for each region.
The underlying epidemic model uses 100 days of data for
parameter fitting and projects the epidemic trajectory for
another 40. The MAPE is only computed for the timeframce
after the period used for fitting.

Regions Cases January 19th 2014 MAPE (%)
ID Name Projected Observed
1 Bo 275 314 16
2 Bombali 1216 979 12
3 Bomi 113 139 21
4 Bong 129 150 17
5 Conakry 378 383 3
6 Coyah 125 168 28
7 Guéckédou 270 269 1
8 Kailahun 571 565 0
9 Kambia 97 140 25
10 Kenema 512 498 2
11 Kerouane 169 160 4
12 Kono 103 235 47
13 Lofa 325 332 3
14 Macenta 672 715 7
15 Margibi 453 391 8
16 Montserrado 1831 1775 2
17 Moyamba 236 202 11
18 Nimba 128 116 6
19 Nzerekore 212 211 6
20 Port Loko 1188 1293 10
21 Tonkolili 553 445 12
Total / average 9555 9480 11
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Figure C.4: Epidemic model fit for
Bo, Sierra Leone, with
(A) 20, (B), 40, (C), 60,
(D) 80 and, (E) 100 days
of data used for fitting
and a projection period
of 40 days.
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Figure C.5: Epidemic model fit for
Bombali, Sierra Leone,
with (A) 20, (B), 40,
(C), 60, (D) 80 and, (E)
100 days of data used for
fitting and a projection
period of 40 days.
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Figure C.6: Epidemic model fit for
Bomi, Liberia, with (A)
20, (B), 40, (C), 60, (D)
80 and, (E) 100 days of
data used for fitting and
a projection period of 40
days.
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Figure C.7: Epidemic model fit for
Bong, Liberia, with (A)
20, (B), 40, (C), 60, (D)
80 and, (E) 100 days of
data used for fitting and
a projection period of 40
days.
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Figure C.8: Epidemic model fit for
Conakry, Guinea, with
(A) 20, (B), 40, (C), 60,
(D) 80 and, (E) 100 days
of data used for fitting
and a projection period
of 40 days.
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Figure C.9: Epidemic model fit for
Coyah, Guinea, with (A)
20, (B), 40, (C), 60, (D)
80 and, (E) 100 days of
data used for fitting and
a projection period of 40
days.
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Figure C.10: Epidemic model fit for
Guéckédou, Guinea,
with (A) 20, (B), 40,
(C), 60, (D) 80 and,
(E) 100 days of data
used for fitting and a
projection period of 40
days.

C
u

m
u

la
ti

ve
 c

as
es

09/15 10/15 11/15 12/15 01/15
480

500

520

540

560

580
MAPE: 0.33%

D

09/15 10/15 11/15 12/15 01/15
480

500

520

540

560

580
MAPE: 1.02%

C

09/15 10/15 11/15 12/15 01/15
480

500

520

540

560

580
MAPE: 3.37%

B

09/15 10/15 11/15 12/15 01/15
Date (2014 - 2015)

480

500

520

540

560

580
MAPE: 1.12%

E

09/15 10/15 11/15 12/15 01/15
480

500

520

540

560

580
MAPE: 8.26%

A

Projected
Confirmed, used for fitting
Confirmed

Figure C.11: Epidemic model fit
for Kailahun, Sierra
Leone, with (A) 20,
(B), 40, (C), 60, (D)
80 and, (E) 100 days
of data used for fitting
and a projection period
of 40 days.
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Figure C.12: Epidemic model fit for
Kambia, Sierra Leone,
with (A) 20, (B), 40,
(C), 60, (D) 80 and, (E)
100 days of data used
for fitting and a projec-
tion period of 40 days.
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Figure C.13: Epidemic model fit for
Kenema, Sierra Leone,
with (A) 20, (B), 40,
(C), 60, (D) 80 and, (E)
100 days of data used
for fitting and a projec-
tion period of 40 days.
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Figure C.14: Epidemic model fit
for Kerouane, Guinea,
with (A) 20, (B), 40,
(C), 60, (D) 80 and,
(E) 100 days of data
used for fitting and a
projection period of 40
days.
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Figure C.15: Epidemic model fit for
Kono, Sierra Leone,
with (A) 20, (B), 40,
(C), 60, (D) 80 and, (E)
100 days of data used
for fitting and a projec-
tion period of 40 days.
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Figure C.16: Epidemic model fit for
Lofa, Liberia, with (A)
20, (B), 40, (C), 60, (D)
80 and, (E) 100 days
of data used for fitting
and a projection period
of 40 days.
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Figure C.17: Epidemic model fit for
Macenta, Guinea, with
(A) 20, (B), 40, (C),
60, (D) 80 and, (E) 100
days of data used for
fitting and a projection
period of 40 days.
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Figure C.18: Epidemic model fit for
Margibi, Liberia, with
(A) 20, (B), 40, (C),
60, (D) 80 and, (E) 100
days of data used for
fitting and a projection
period of 40 days.
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Figure C.19: Epidemic model fit for
Montserrade, Liberia,
with (A) 20, (B), 40,
(C), 60, (D) 80 and, (E)
100 days of data used
for fitting and a projec-
tion period of 40 days.
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Figure C.20: Epidemic model fit
for Moyamba, Sierra
Leone, with (A) 20,
(B), 40, (C), 60, (D)
80 and, (E) 100 days
of data used for fitting
and a projection period
of 40 days.
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Figure C.21: Epidemic model fit for
Nimba, Liberia, with
(A) 20, (B), 40, (C),
60, (D) 80 and, (E) 100
days of data used for
fitting and a projection
period of 40 days.
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Figure C.22: Epidemic model fit for
Nzereko, Guinea, with
(A) 20, (B), 40, (C),
60, (D) 80 and, (E) 100
days of data used for
fitting and a projection
period of 40 days.
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Figure C.23: Epidemic model fit
for Porto Loko, Sierra
Leone, with (A) 20,
(B), 40, (C), 60, (D)
80 and, (E) 100 days
of data used for fitting
and a projection period
of 40 days.
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Figure C.24: Epidemic model fit for
Tonkolili, Sierra Leone,
with (A) 20, (B), 40,
(C), 60, (D) 80 and, (E)
100 days of data used
for fitting and a projec-
tion period of 40 days.
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Figure C.25: MCMC convergence for Bo, Sierra Leone. The algorithm
fits 4 parameters to 100 days of observed data: (A) The
transmission coefficient β, (B) the maximum dampening
factor γmax, (C) the steepness factor of the damening
curve a, and (D) the share of contacts inside a popou-
lation co. The panel description for the other regions is
identical and therefore omitted in the remaining figures.
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Figure C.26: MCMC convergence for Bombali, Sierra Leone.
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Figure C.27: MCMC convergence for Bomi, Liberia.
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Figure C.28: MCMC convergence for Bong, Liberia.
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Figure C.29: MCMC convergence for Conakry, Guinea.
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Figure C.30: MCMC convergence for Coyah, Guinea.
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Figure C.31: MCMC convergence for Guéckédou, Guinea.
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Figure C.32: MCMC convergence for Kailahun, Sierra Leone.
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Figure C.33: MCMC convergence for Kambia, Sierra Leone.
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Figure C.34: MCMC convergence for Kenema, Sierra Leone.
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Figure C.35: MCMC convergence for Kerouane, Guinea.
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Figure C.36: MCMC convergence for Kono, Sierra Leone.
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Figure C.37: MCMC convergence for Lofa, Liberia.
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Figure C.38: MCMC convergence for Macenta, Guinea.
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Figure C.39: MCMC convergence for Margibi, Liberia.
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Figure C.40: MCMC convergence for Montserrado, Liberia.
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Figure C.41: MCMC convergence for Moyamba, Sierra Leone.

150



C.3 Epidemic Model Calibration

0 5 10 15

×104

0

0.5

1

β

×10-6 β = 8.54204e-08

A

0 5 10 15

×104

0

0.5

1

γ
m

ax

γ
max

 = 0.25162

B

0 5 10 15

×104

0

0.5

1

a

a = 0.00000

B

0 5 10 15

×104

0.8

0.9

1

c 0

c
0
 = 0.83439

D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

MCMC convergence of estimated parameters for Nimba, Liberia

A
cc

ep
te

d
 p

ro
p

o
sa

l v
al

u
es

Figure C.42: MCMC convergence for Nimba, Liberia.
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Figure C.43: MCMC convergence for Nzerekore, Guinea.
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Figure C.44: MCMC convergence for Port Loko, Sierra Leone.
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Figure C.45: MCMC convergence for Tonkolili, Sierra Leone.
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