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Unfortunately, in many companies, the CFO is handling financial risk,
the CEO is handling strategic risk, and the COO is handling operational risk,

but no one is looking at all those risks as one.
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Abstract

The combined impact of changing global demand and supply dynamics, extensive trading and speculation
as well as global recessionary fears, has led to an environment of unprecedented volatility in worldwide
commodity markets. As a result, effective risk management has become an increasingly important
topic on the agenda of top management in a broad range of industries. While practical evidence shows
that successful firms integrate both operational decision making and financial hedging in a firm-wide,
coordinated risk management strategy, this entails managerial challenges. On the one hand, quantifying a
firm’s exposure to raw material cost risk necessitates a sound understanding of the stochastic commodity
market dynamics. On the other hand, once the exposure to different sources of risk is understood,
executives face an intricate optimization problem over their operational and financial decision variables
with the ultimate goal to reduce profit variability, while maintaining attractive business opportunities.
In this thesis, the topic of operational and financial risk management is investigated from three different
perspectives.

InChapter 2, a four-factormaximal affine stochastic volatilitymodel of commodity prices is developed,
which is consistent with many stylized characteristics of storable commodity markets as well as the
historical term structure of commodity futures and option prices. Based on this model, we provide new
insights with respect to the structural dynamics of commodity markets and the pricing and hedging of
commodity derivatives. As the stochastic model used to describe the uncertain evolution of commodity
prices can have important implications also in the valuation and risk management of real assets, a
realistic commodity price model is a prerequisite for the integrated risk management models outlined in
the subsequent chapters of this dissertation.

Given the previously developed intuition for commodity market dynamics, we model the integrated
operational and financial risk management problem of a stylized, single-product industrial firm in
Chapter 3. The firm faces risk in the price of commodity inputs and price sensitive, stochastic demand.
Within this setting, the firm seeks to maximize inter-temporal utility under downside risk aversion over
a multi-period time horizon by dynamically choosing physical procurement volumes, unit selling prices,
and a futures hedge. We provide a flexible, simulation-based optimization algorithm, which allows us
to solve the firm’s decision problem under realistic, multi-factor commodity price dynamics involving
uncertainty in the interest rate and convenience yield as well as stochastic volatility. Based on this model,
we characterize the firm’s optimal operating policy and investigate a range of topics including: (a) the
value of managerial flexibility and the economic cost of restrictive supply contracts; (b) the importance
of accounting for the stochastic nature of costs, interest rates, convenience yields, and volatility in risk
management; (c) parameter and estimation risk; (d) the impact of risk aversion and hedging on the
distribution of cash flows; and (e) the sensitivity of expected performance to key input parameters.

As opposed to the case of a single-product firm, integrated procurement risk management in a large,
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multi-divisional organization does not only require the above mentioned cross-functional coordination
between, for example, the purchasing, sales, and finance department but also involves a cross-divisional
coordination of actions in order to effectively target the firm-wide net risk exposure. To capture the
specific aspects of integrated risk management in this type of setting, we extend the above model to a
two-product firm in Chapter 4. Within this model, each of the two divisions are subject to cost and
demand risk, which can be respectively correlated. Moreover, we allow for dynamic cross-selling to
capture the potential complementarity/substitutability of items. The firm has access to futures, call, and
put options associated with each of the commodity input markets for financial hedging. Under an inter-
temporal mean-variance utility function, we are able to provide analytic solutions to the firm’s dynamic
procurement, pricing, and financial hedging problem. Based on a complementary numerical study, we
analyze the impact of risk correlations and unilateral changes in the market environment of one division
on the entire firm. Moreover, we discuss the impact of hedging and risk aversion on optimal policy and
assess the effectiveness of different operational and financial hedging strategies for risk reduction.
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1
Introduction

Commodity price volatility constitutes a major risk in many industries that can jeopardize the success of
entire companies if left unmanaged. Regardless of whether it concerns firms engaged in the extraction
and marketing of primary commodities, refiners relying on the spread between uncertain input and
output prices, or industrial firms procuring materials for the downstream production process, an effective
management of the risks associated with volatile commodity prices is of paramount importance. Well-
known examples of the consequences caused by ill-advised procurement riskmanagement (PRM) include,
among others, the case ofMetallgesellschaft (Edwards&Canter, 1995) and the $1 billion loss on precious
metals inventory and forward contracts posted by Ford in 2001 (Hu,Munson,&Fotopoulos, 2012). While
commodity price volatility alone can jeopardize even the best planned business strategy, firms are often
exposed to additional risks such as the uncertainty about future end-product demand (Nagali et al.,
2008). Traditionally, these different types of risk are managed and hedged separately (Kouvelis, Li,
& Ding, 2013). Accordingly, demand risk is treated by means of inventory management and cost
volatility is hedged through derivatives in the financial market. However, as operational and financial
risk management decisions are not generally separable, this approach creates problems, particularly in
large, multi-divisional organizations (Fisher & Kumar, 2010).

In contrast to this traditional, disjointed view on PRM, practical evidence from Tevelson, Ross, and
Paranikas (2007), PwC (2009), and Fisher and Kumar (2010) suggests that effective PRM strategies
are commonly characterized by a more holistic view on risk exposure as well as an integrated use of
operational and financial hedging instruments spanning the entire organization. Instead of conducting
isolated risk management efforts in individual divisions, successful companies target the firm-wide
net risk exposure and integrate operational decision making with financial hedging activities. This
can involve, for example, the coordination of the firm’s pricing, inventory management, and financial
hedging decisions in order to enhance expected profits, while reducing firm-wide profit variability.
Although, investors can hedge against risks, such as commodity price volatility, through their own
portfolio diversification, effective hedging conducted by the firm can not only provide protection from
financial distress but also create value by allowing the firm to reduce sourcing and inventory related
costs, focus on innovation and new product development, and exploit attractive investment opportunities
(see, for example, C. W. Smith & Stulz, 1985; Froot, Scharfstein, & Stein, 1993; Allayannis & Weston,
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2 CHAPTER 1. INTRODUCTION

2001; MacKay & Moeller, 2007). A popular example of a successful PRM program can be found at
Hewlett-Packard (HP) (Nagali et al., 2008; Xiao, Yang, & Zhang, 2015). Launched in the early 2000s,
this program unifies a portfolio sourcing approach involving spot and forward purchasing, a dynamic
pricing policy that takes into account the current state of costs and inventories as well as a financial
hedging strategy. Besides providing planning security to HP’s management the program generated $425
million in cost savings over the 6-year period following its introduction.

However, while the above example corroborates the value of effective risk management in practice,
managing the combined exposure to multiple sources of uncertainty resembles a critical management
challenge in today’s fast changing business environment. On the one hand, managers must understand
the complex nature of commodity market dynamics in order to gage the firm’s exposure to cost volatility
and to take appropriate countermeasures. In fact, erroneous assumptions about the stochastic dynamics
of raw material prices can lead to suboptimal decision making and poor investment behavior (Schöne,
2014; Tsekrekos, Shackleton, & Wojakowski, 2012). On the other hand, deciding on the jointly optimal
operational and financial risk management policy resembles an intricate optimization problem under
multiple sources of uncertainty involving several trade-offs, numerous decision variables across the
organization, and a multi-period planning horizon. Although, different variants of PRM programs are
more commonly adopted in practice (PwC, 2009), there is yet little research that substantiates and further
cultivates these industry practices based on empirical analysis, quantitative modeling, and optimization.

To address this research gap, this thesis contributes three self-contained studies, which are organized
along the overriding objective to improve our understanding of jointly optimal operational and financial
risk management in the context of an industrial firm. We choose the following course of investigation.
First, an arbitrage-free, stochastic model of storable commodity prices is presented, which is consistent
with empirical spot and derivative price dynamics. Second, we develop and analyze a quantitative
model of the integrated dynamic procurement, pricing, and financial hedging problem of a stylized
single-product firm facing raw material cost uncertainty and demand risk. The model is formulated
such that sophisticated multi-factor commodity price models can be accounted for. Third, we extend
the previously discussed single-product model to a two-product setting, which allows us to investigate
not only the interplay between different functional decisions, such as pricing, hedging, and inventory
management but also the implications of integrated decision making across multiple divisions with
different, interdependent risks. We will provide a more detailed introduction to the topics of commodity
price modeling and integrated PRM in the following subsections and summarize the main contributions
to existing research of this thesis.

1.1 Commodity price dynamics
Managing storable commodity price risk necessitates a sound understanding of the stochastic dynamics
present in commodity spot and derivative markets. In particular, different assumptions about the model
used to describe the uncertain price dynamics can have significant implications for valuation results,
hedging policies, and the optimal operation of real assets. With respect to the valuation and hedging of
financial derivatives, this follows, among others, from Lo and Wang (1995), Bakshi, Cao, and Zhiwu
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(1997), and Hillard and Reis (1998). In the context of capital investment valuation, the critical role of
stochastic process selection is confirmed by Tsekrekos et al. (2012) and Schöne (2014).

In contrast to other asset classes such as stocks and bonds, commodity price dynamics exhibit a
number of distinctive characteristics, which have to be accounted for in this context. First, commodity
prices tend to mean-revert to an equilibrium level determined by the long-run marginal cost (Pindyck,
1999). In times of high prices, high-cost producers of the commodity can profitably enter into the market
and thereby increase supply and reduce prices. On the contrary, inefficient producers will be forced
out of the market during times of low prices, which decreases supply and ultimately drives prices back
up. While this argument is economically intuitive, mean reversion to a constant equilibrium level is
generally statistically rejected over long time spans of several decades or even centuries (see, e.g., Dixit
& Pindyck, 1994; Pindyck, 1999). Instead, it has been suggested that the equilibrium price level itself
might follow a stochastic, non-stationary process, which may capture persistent changes in the global
demand and supply of a commodity (Tang, 2012). Apart from the stochastic nature of raw material spot
prices, also the interest rate, convenience yield, and storage cost are important, stochastically moving
quantities that affect the term structure of futures prices and the expected future spot price. Finally, the
volatility of commodity prices tends to vary stochastically over time, which has important implications
for the valuation of financial and real options involving the managerial flexibility to take future actions
contingent upon the state of commodity prices.

In the context of PRM, these stylized characteristics may be particularly relevant. First, the spot
price distribution directly affects the expectation and variance of procurement costs. Second, the level
of interest rates and the net convenience yield determine economic inventory holding costs as well as
the fair price of futures contracts, which are potentially part of the firm’s financial hedging strategy.
Third, the presence of stochastic volatility does not only influence the probability of extreme events in
the raw material market but also affects the value of managerial flexibility and financial options. In
order to account for these considerations, we develop a four-factor stochastic volatility model of storable
commodity prices in Chapter 2, which can serve as an input to the subsequently studied PRM models
and, further, allows us to make the following two specific contributions to the existing literature on
commodity price modeling:

(i) The four-factor maximal affine stochastic volatility model presented in this thesis is among the
first models that allow for more than three independent sources of risk associated with commodity
price dynamics. This allows the model to capture many specific characteristics of commodity
markets including mean reversion to a stochastic long-term level, persistent shocks in the long-
term evolution of the spot price, stochastic volatility in the spot price and the convenience yield, a
time varying correlation structure of the state variables, the Samuelson (1965) effect, time-varying
degrees of backwardation as well as time-varying risk premia. The model is highly tractable,
allowing for quasi-analytical pricing formulas for futures and European options using transform
techniques. It also allows for the valuation of exotic derivatives and real options using simulation
methods.
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(ii) Complementary to the analytical results of Chapter 2, an extensive empirical study of the copper
market is presented, in which the model is evaluated based on time series data of 37,126 futures
and 12,166 corresponding American call option prices over a seven-year period. Based on this
empirical study, it is shown that the model delivers significant improvements in terms of pricing
and hedging commodity derivatives compared to benchmarks. Moreover, the study reveals that
three independent stochastic factors may be sufficient to achieve high pricing accuracy with respect
to either futures or option contracts, while a fourth factor is necessary to achieve comparably low
pricing errors with respect to both contract types at the same time. Finally, it is shown that volatility
contains important unspanned components in the copper market, implying that an option portfolio
cannot be fully hedged by solely trading in the underlying futures contracts.

1.2 Integrated risk management
As stated in the introductory discussion, effective PRM strategies commonly integrate operational de-
cision making, such as inventory management and pricing, with financial hedging activities, while
adopting a firm-wide, all-encompassing definition of risk exposure. However, the necessary degree
of coordination across both functional and divisional units poses managerial challenges amid volatile
procurement costs and stochastic demand. For instance, consider the following example of an industrial
firm facing an unexpected increase in raw material costs. Suppose the firm responds to the cost increase
by raising prices. Under the assumption of price elastic demand, this decision can cause a decline in unit
sales, higher than expected inventory levels at the end of this period, and a corresponding increase in
associated inventory carrying cost. Since excess inventories may be deployed to satisfy future demand,
necessary raw material procurement quantities in the present and future business period will decline. As
a result, the exposure to future cost volatility is reduced, requiring an adjustment of the volume of traded
hedging instruments. Finally, lower procurement and production levels may be associated with a loss in
economies of scale, resulting in higher unit manufacturing costs. Now, should prices be raised in the first
place? This type of decision problemmay be further complicated by the presence of multiple, potentially
interdependent business units with different product offerings. For example, cross-divisional correlations
in demand or cost risk may provide natural hedging opportunities, which have to be recognized in jointly
optimal decision making. Moreover, changes in the market environment in one division, may entail a
necessary revision of optimal policies in all divisions, due to, for instance, interrelations with firm-wide
profit variance or the presence of cross-selling effects.

In Chapter 3, a stylized model of a risk-averse industrial firm is developed, in which the firm sources
raw material from a volatile commodity spot market, manufactures a single end-product that is sold to
price sensitive customers under stochastic demand. Within this multi-period framework, we solve the
firms dynamic procurement, pricing, and financial hedging problem under multi-factor commodity price
dynamics. Based on this model, we make the following specific contributions to the existing literature:

(i) The model and analysis presented in Chapter 3, represent the first research that addresses the
joint pricing, inventory management, and financial hedging problem of a risk-averse firm facing
stochastic costs and demand. In this context, a flexible, Monte Carlo-based optimization algorithm
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is presented, which allows to solve the firm’s inter-temporal decision problem under arbitrary
multi-factor cost dynamics.

(ii) Complementary to the theoretical results of this chapter, a numerical study is conducted, which
provides novel insights into: (a) optimal PRM policies and the value of managerial flexibility; (b)
the sensitivity of optimal policies and expected performance to different commodity price models
and parameter risk; (c) the impact of risk aversion on the distribution of cash flows; and (d) the
sensitivity of results to a variety of critical input parameters.

As opposed to PRM in the previously considered single-product firm, risk management in large,
multi-divisional enterprises does not only involve cross-functional decision coordination between, for
instance, the procurement, sales, and finance department but can further necessitate cross-divisional
information exchange and a firm-wide alignment of actions (Fisher & Kumar, 2010). Chapter 4 is,
therefore, dedicated to optimal PRM in a two-product firm. While it is only a minor extension to allow
for n-products, this specification is sufficient to allow for an investigation of the PRM specific trade-offs
involved in the management of a large organization. While the general setup of the two-product model
is similar to the single-product model, it features cost and demand risk in each of the two divisions,
which can be respectively correlated. Additionally, we account for the possibility of stockout-based
cross-demand between individual divisions to capture the potential substitutability/complementarity of
the offered items. The firm dynamically maximizes inter-period, mean-variance utility over a multi-
period horizon by choosing the jointly optimal vectors of stocking quantities and unit selling prices as
well as a variance minimizing hedging portfolio consisting of futures, call, and put option contracts
tradeable in each of the associated commodity markets. Based on this model, we make the following
main contributions to existing literature in Chapter 4:

(i) This is the first research investigating the jointly optimal procurement, pricing, and financial
hedging problem of a multi-product, risk-averse firm and provides novel insights with respect
to the interplay between multi-divisional operations, firm-wide net risk exposure, and optimal
hedging in different markets. Within this framework, we provide analytic solutions to the firm’s
operational and financial decision problem.

(ii) To supplement the analytical results of this chapter, a numerical study is provided, which in-
vestigates the impact of cross-divisional risk correlations and unilateral changes in the market
environment of one division on the optimal firm-wide PRM policy. We then assess the impact of
risk aversion and financial hedging on profits, utility, and optimal polices and provide a comparison
of variance reduction under different operational and financial hedging strategies.





2
A four-factor stochastic volatility model of com-
modity prices

The content presented in this chapter is based on Schöne and Spinler (2015).

The number of factors driving the uncertain dynamics of commodity prices has been
a central consideration in financial literature. While themajority of empirical studies
relies on the assumption that up to three factors are sufficient to explain all relevant
uncertainty inherent in commodity spot, futures, and option prices, evidence from
Trolle and Schwartz (2009b) and Hughen (2010) indicates a need for additional risk
factors. In this chapter, we propose a four-factor maximal affine stochastic volatility
model that allows for three independent sources of risk in the futures term structure
and an additional, potentially unspanned stochastic volatility process. The model
principally integrates the insights from Hughen (2010) and Tang (2012) and nests
many well-known models in the literature. It can account for several stylized facts
associated with commodity dynamics such as mean reversion to a stochastic level,
stochastic volatility in the convenience yield, a time-varying correlation structure,
and time-varying risk-premia. In-sample and out-of-sample tests indicate a superior
model fit to futures and options data as well as lower hedging errors compared to
three-factor benchmark models. The results also indicate that three factors are not
sufficient to model the joint dynamics of future and option prices accurately.

2.1 Introduction
Stochastic commodity price models play a central role in the valuation and hedging of commodity-linked
financial and real assets. The critical importance of carefully specifying the process followed by the
underlying asset is highlighted in a number of studies. In the context of financial options, these include
Lo andWang (1995), Bakshi et al. (1997), and Hillard and Reis (1998). With respect to real investments,
Tsekrekos et al. (2012) and Schöne (2014) show that valuation results and optimal investment behavior

7
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depend critically on the stochastic commodity price process driving the uncertain cash flow stream of an
asset.

In the wake of erratic price swings observed in many commodity markets during the last decade
and the stellar growth in the volume of outstanding commodity derivatives during this period, also the
valuation and risk-management of commodity-linked investments has gained greatly in importance.1
However, despite the now abundant literature concerned with commodity price models, the topic is
a subject of ongoing debate. This has to do with the stepwise discovery of numerous stylized facts
associated with commodity price dynamics and the resulting challenge to address the new insights with
more consistent, tractable, and intuitive pricing models for futures, options, and real assets.

In this context, a central consideration has been the number of factors assumed to drive the uncertain
spot price dynamics. In the early stages, one-factor models dominated the scientific landscape in
commodity price modeling. For instance, Schwartz (1982), Brennan and Schwartz (1985), Siegel,
Smith, and Paddock (1987), and Cortazar and Schwartz (1993) assumed that all the uncertainty of price
movements could be captured by a geometric Brownian motion (GBM). Similarly, Laughton and Jacoby
(1993), Ross (1997), and Schwartz (1997), advocated one-factor mean-reverting Ornstein-Uhlenbeck
(OU) models, which have the more favorable implication that the volatility of futures returns declines
with contract maturity - a common property in commodity markets known as the Samuelson (1965)
effect.

Common to all one-factor models, however, is the unrealistic implication that the returns of all futures
in the term structure are perfectly correlated and that the degree of backwardation is time-invariant. Thus,
the well-known two-factor models of Gibson and Schwartz (1990), Schwartz (1997), and the formally
equivalent model of Schwartz and Smith (2000) emerged as more realistic alternatives to one-factor
processes. To further improve pricing performance, several articles have advocated three-factor models.
These include, for instance, the constant volatility models in Cortazar and Schwartz (1994), Schwartz
(1997), Clewlow and Strickland (1999), Cortazar and Schwartz (2003), Casassus and Collin-Dufresne
(2005), and Tang (2012) as well as the stochastic volatility models in Deng (2000), Richter and Sörensen
(2003), Geman and Nguyen (2005), Hikspoors and Jaimungal (2008), Lutz (2010), Hughen (2010), and
Liu and Tang (2011).

Yet, in spite of the success of these models, several studies indicate that more than three factors
may be required to explain not only the cross-sectional dynamics of the futures curve but also the term
structure of volatility and option prices. For instance, Cortazar and Naranjo (2006) show that a fourth
factor is needed to fit the volatility term structure of crude oil futures and Trolle and Schwartz (2009b)
find, based on the Heath, Jarrow, and Morton (1992) (HJM) framework, that the best fit to futures and
options data is in a four-factor model featuring six independent sources of risk. In this model, three
factors are associated with the futures curve and two factors capture the variation in implied volatility of

1 According to the Bank of International Settlements (2007), the number of outstanding exchange-traded commodity
derivative contracts almost tripled from 2002 to 2005. During this period, the number of outstanding copper futures
and options increased by 41% and 140%, respectively. Even more impressive is the development in the over-the-counter
market, where the number of outstanding commodity derivative contracts reached $6.4 trillion in mid-2006, about 14
times the level of 1998.
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futures options across time, maturity, and moneyness. A more implicit argument for commodities being
driven by more than three sources of uncertainty follows from Hughen (2010). In particular, his three
factor stochastic volatility model exhibits the best fit to futures prices when these are allowed to depend
on all three state variables, including the volatility process. In this configuration, however, the historical
estimate of the volatility state variable is unrealistic and model fit to options data is unsatisfactory. When
the model is restricted such that volatility is unspanned by futures, both the estimate of the volatility
state variable and the fit to options data improve. However, in this setting futures pricing performance
deteriorates to the level of a two-factor model. Hughen (2010) concludes that a fourth factor may be
needed to successfully model the joint dynamics of futures and option prices.

While these articles suggest that a general pricing model for commodity futures and options neces-
sitates three factors associated with the futures curve and at least one additional, potentially unspanned
stochastic volatility (USV) factor, this possibility has been little explored by previous research. In fact,
the only model consistent with this postulated requirement is the HJM-type model of Trolle and Schwartz
(2009b).

To shed further light on the merits of allowing for an additional source of uncertainty, we make two
main contributions to existing research in this chapter. First, a four-factor maximal affine stochastic
volatility model is developed, which appears to be the first maximal stochastic volatility model for
commodity prices that is not of the HJM-type but allows for more than three independent sources
of uncertainty.2 The model accommodates many stylized facts associated with commodities. These
include mean reversion to a stochastic long-term level, persistent shocks in the long-term evolution of
the spot price, stochastic volatility in the spot price and the convenience yield, a time varying correlation
structure of the state variables, the Samuelson effect, time-varying degrees of backwardation as well
as time-varying risk premia. The model is highly tractable as it leads to quasi-analytical formulas for
futures and European options using transform techniques. It can account for the typical lag between
the maturity of an option and the underlying futures contract and allows for the valuation of complex
derivatives and real options using, for instance, the method of Longstaff and Schwartz (2001).3 The
model nests many well-known stochastic processes including the models of Gibson and Schwartz (1990),
Richter and Sörensen (2003), Hikspoors and Jaimungal (2007), and Tang (2012).

The second contribution of this chapter is the empirical implementation of the model in the copper
market using time series consisting of 37,126 futures observations and 12,166 corresponding American
call option prices over the period from March 2006 to December 2013. In this context two research
questions are addressed. First, does the four-factor model proposed in this chapter deliver a superior
pricing performance for the joint dynamics of futures and option prices compared to successful three-
factor models present in the literature? Second, do option prices contain important information not fully
spanned by futures contracts in the copper market?4

2 Collin-Dufresne, Goldstein, and Jones (2008) discuss models of order N > 3 in the context of yield curve modeling.
The four-factor commodity price model of Cortazar and Naranjo (2006) does not allow for stochastic volatility and the
jump-diffusion model of Yan (2002) is not maximal.

3 According to Schwartz and Miltersen (1998), accounting for the time lag between the maturity of the option contract and
the underlying futures can have a significant effect on option prices.

4 This question is raised by Trolle and Schwartz (2009b), who find evidence for unspanned stochastic volatility in commodity
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The main results can be summarized in two statements. First, the four-factor model developed in this
chapter delivers considerable improvements over the three-factor benchmark models in terms of pricing
and hedging commodity derivatives. Moreover, three factors are not sufficient to price futures and
options jointly but may yield a good fit to either type of contract, depending on model parameterization.
Second, volatility contains important unspanned components in the copper market, implying that an
option portfolio cannot be fully hedged by solely trading in the underlying futures.

The remainder of this chapter is organized as follows. In Section 2.2, the model is presented and
formulas for the valuation of commodity futures and options are developed. The dataset and empirical
model implementation as well as pricing and hedging results are discussed in Section 2.3. Section 2.4
concludes.

2.2 Commodity price model
It is assumed that the commodity spot price (St ) is driven by four independent sources of uncertainty. This
assumption is based on two arguments. First, it follows from the introductory discussion that three factors
are necessary to explain the cross-sectional variation in futures prices. Second, Trolle and Schwartz
(2009b) find that 85.6% of the instantaneous variance of the spot price and 96.2% of the instantaneous
variance in the cost of carry can be explained by one additional volatility factor. As the potential gain in
pricing accuracy from a second volatility factor has to be traded-off against higher model complexity, a
four-factor model is assumed to resemble the most practical compromise for the purpose of this thesis.

The log-spot price, denoted by xt := ln St , fluctuates around a non-stationary long-term mean θt
and qt is a mean-reverting temporary factor with a similar interpretation as the net convenience yield.5
The variance process of St is denoted by vt . For easier reference, we will refer to the model as
the stochastic mean and volatility (SMV) model. Under the risk-neutral probability measure Q, the
stochastic differential equation (SDE) of the state vector

Xt =
[
xt θt qt vt

]> (2.1)

can be written in matrix notation as

dXt = [A + BXt ] dt + ΣtdWQt , (2.2)

where the instantaneous variance and covariance are given by

ΣtΣ
>
t = Ω0 +Ω1vt, (2.3)

and A, B, Ω0, and Ω1 contain constants.6 The notation used in this paper is closely related to Hughen

markets. However, their empirical study is limited to the case of crude oil.
5 The relationship between qt and the net convenience yield of the commodity is discussed more formally later in this

section. Note that a similar approach is adopted in Tang (2012).
6 We assume the existence of an equivalent risk-neutral probability measure, implying the absence of arbitrage according to

the first fundamental theorem of asset pricing (see, e.g., Duffie, 1996). The measure is generally unique and markets are
complete if a sufficient number of futures are traded (Casassus & Collin-Dufresne, 2005).
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(2010), who also provides several examples reconciling the matrix form adopted in this chapter with the
more traditional form of SDEs in the context of several well-known pricing models. Substituting A, B,
Ω0, and Ω1 into Equation 2.2 yields four SDEs corresponding to the traditional writing style.

Given a probability space and filtration generated by a standard Brownian Motion WQt in R4, the
commodity spot price is an Itô process with respect to WQt . It is well-known (see, e.g., Björk, 2009)
that in the absence of arbitrage, the risk-neutral drift of St must satisfy EQt [dSt ] = (r − δt ) Stdt, where
r denotes the risk-free interest rate and δt refers to the net convenience yield, which accounts for the
"interim benefits accruing to the physical owners of a commodity as a rate" Routledge, Seppi, and Spatt
(2000, p. 1314). The instantaneous variance of Equation 2.2 needs to satisfy

Σ
2
t,11dWQ

t,1 + Σ
2
t,12dWQ

t,2 + Σ
2
t,13dWQ

t,3 + Σ
2
t,14dWQ

t,4 = vt . (2.4)

In the terminology of Duffie and Kan (1996), models of the form in Equation 2.2, in which xt and
ΣtΣ

>
t are affine functions of the state variables, are referred to as affine models of the spot price. In

particular, a four-factor model in which the instantaneous variance is driven by a single state variable (vt )
belongs to the class of A1(4) models. The model is ‘maximal’ in terms of Dai and Singleton (2000) and
Collin-Dufresne et al. (2008) in the sense that the maximum number of risk-neutral parameters exists,
which are also identifiable from contingent claims prices.7 The risk-neutral drift in the SMV model is
determined by A and B:

A =



0

µ2

κ33 µ3

κ44 µ4



, B =



−κ11 κ11 −1 κ14

0 0 0 0

0 0 −κ33 0

0 0 0 −κ44



. (2.5)

This specification agrees with many theoretical and empirical insights about commodity prices. In this
regard, two aspects deserve further discussion.

First, κ11 creates a co-integration relationship between xt and θt such that the spot price may exhibit
mean reversion towards the stochastic long-term level θt at a mean reversion speed κ11 > 0. This
agrees with graphical evidence presented in Casassus and Collin-Dufresne (2005, p. 2298), Tang (2012,
p. 782), and Section 2.3.1 of this chapter, where it is shown that the price of the short-term futures -
an approximation of the spot price - tends to fluctuate around the price of the long-term futures, which
can also be interpreted as the expected long-term price level θt . The process of the long-term mean is
chosen to be non-stationary, implying that also the system of xt and θt is non-stationary. This assumption
is justified, among others, by Pindyck and Rubinfeld (1991) and Pindyck (1999), who show that more
than 100 years of data are necessary to reject a unit root in crude oil and copper prices and fail to reject
a random walk for coal, natural gas, and lumber over the same period. Moreover, Cashin, Liang, and

7 The concept of ‘maximality’ of term structure models in the context of commodity markets is also discussed, for instance,
in Casassus and Collin-Dufresne (2005), Hughen (2010), and Liu and Tang (2011).
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McDermott (2000) and Bloch, Fraser, and MacDonald (2012) find that commodity price shocks are
typically persistent.8 However, although the system is non-stationary, the model dynamics allow for
mean reversion in the futures term structure, which does not require mean reversion to a constant mean
(Tang, 2012).9,10

Second, allowing the drift of xt to be a function of the state vector allows for a richer unconditional
correlation structure between the spot price, convenience yield, and volatility, compared to many earlier
models, where the state variables may only have an instantaneous correlation in the Brownian motion
terms (Casassus & Collin-Dufresne, 2005).11 This is desirable given the empirically documented
interaction between these state variables. For instance, Routledge et al. (2000) show in a competitive
rational expectations model that convenience yields should be high in times of low commodity storage
in the economy. As prices are typically high in times of supply shortages (Wu & Chen, 2010), it follows
that the theory of storage predicts a positive relationship between spot prices and the convenience yield.
To see how the positive level dependence between the spot price and the convenience yield is captured
by the SMV model, we use the arguments of Tang (2012). In particular, recap that the risk-neutral drift
of the spot price has to satisfy the following relationship

r − δt −
1
2
σ2
t = κ11 (θt − xt ) − qt + κ14vt ⇔ δt = r −

1
2
σ2
t − κ11 (θt − xt ) + qt − κ14vt .

By equating the drift of the SMV model with the required risk-neutral dynamics of the spot price, it is
evident that a positive relationship between the net convenience yield and the log-spot price is established
if κ11 > 0. Hence, the SMVmodel allows for an unconditional correlation between the spot price and the
convenience yield in a similar way as the models in Casassus and Collin-Dufresne (2005) and Hughen
(2010), where this effect is accomplished by allowing the drift of the convenience yield process to depend
on the log-spot price.

With respect to the interaction between the spot price and volatility, Geman and Nguyen (2005) find
a negative relationship between volatility and world inventory in the soybean market. Assuming, again,
that prices are high in times of a relative scarcity of a commodity, we expect a positive relationship
between spot prices and volatility.12 The drift of the SMV model captures this possibility if κ14 > 0.
An alternative interpretation for the role of κ14 follows from Litzenberger and Rabinowitz (1995) and
Ng and Pirrong (1994), who find that the degree of backwardation in oil and metal futures is positively
related to volatility. If this effect dominates, we expect κ14 < 0, since an increase in volatility will lower

8 The assumption of persistent shocks in the long-term mean is relaxed by Korn (2005), who finds that this may have
important implications for the valuation of long-term futures.

9 In particular, Bessembinder, Coughenour, Seguin, and Smoller (1995) show that shocks to commodity spot prices are
not fully absorbed by the futures curve, indicating that investors expect parts of these shocks to be reversed in the future.
Yet, this does not necessarily imply stationarity of the spot price process in the sense of unit-root or variance ratio tests
(Schöne, 2014).

10 Previous studies discussing models featuring mean reversion to a non-stationary level include Pilipovic (1997), Hikspoors
and Jaimungal (2007), Lutz (2010), and Tang (2012). On the contrary, Deng (2000), Geman andNguyen (2005), Hikspoors
and Jaimungal (2008), and Realdon (2013) allow mean reversion in the long-term level.

11 Examples of such models can be found in Brennan (1991), Gibson and Schwartz (1990), and Schwartz (1997).
12 This is often referred to as the inverse leverage effect, which is discussed in more detail in Section 2.3.1.
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the risk-neutral drift of xt and, hence, the expected future spot price. This corresponds to a lower futures
price and a higher degree of backwardation. In either case, the presence of an unconditional correlation
structure between xt , qt , and vt enhances model flexibility and complements the instantaneous variance
and covariance structure described in the following paragraph.

The instantaneous variance and covariance structure of the SMV model closely follows Hughen
(2010) and is specified by the following set of parameters

Ω0 =



0 s12 s13 ϑσ14

s12 s22 s23 ϑσ24

s13 s23 s33 ϑσ34

ϑσ14 ϑσ24 ϑσ34 ϑσ44



, Ω1 =



1 σ12 σ13 σ14

σ12 σ22 σ23 σ24

σ13 σ23 σ33 σ34

σ14 σ24 σ34 σ44



. (2.6)

Accordingly, the SMVmodel allows for stochastic volatility in all state variables and a full, time-varying
instantaneous correlation structure associated with the entire state vector. This takes into account, among
others, three well-documented empirical observations. First, spot price volatility is highly stochastic in
most commodity markets (e.g., Pindyck, 2004; and Schöne, 2014), which coincides with fat tails in the
distribution of commodity returns (e.g., Kat & Oomen, 2007) and pronounced implied volatility smiles
in options data (e.g., Eydeland & Wolyniec, 2003). Second, the volatility of the convenience yield is
stochastic (Liu & Tang, 2011). Third, Routledge et al. (2000) predict that the correlation between the
spot price and the convenience yield needs to be time-varying in a competitive rational expectations
model.

2.2.1 Identifiability and admissibility
In order for all model parameters to be identifiable from contingent claims prices and to ensure that the
SDE in Equation 2.2 is admissible, i.e., that it has a unique solution for any initial value of the state
vector, restrictions need to be imposed on the parameters.

From Dai and Singleton (2000) and Collin-Dufresne et al. (2008) it follows that a model of the
form A1(4) admits 22 identifiable parameters under the risk-neutral measure. In particular, we have the
following four restrictions on the number of identifiable parameters. First, two parameters may define
the drift of the variance process. Second, five parameters may determine the drift of the spot price
process. Third, three covariance terms may exist between the variance process and the remaining state
variables. Fourth, 12 parameters may determine the variance and covariance terms of the Gaussian state
variables (xt , θt , and qt ). These conditions are satisfied and there is no ambiguity in the dynamics of the
state vector.13 However, it is worth noting that with respect to the fourth condition, the formulation of
ΣtΣ

>
t = Ω0 + Ω1vt differs from the canonical form in Collin-Dufresne et al. (2008), as the volatility of

the variance process is not standardized in the SMV model. Instead, the variance process coincides with
the variance of the first state variable (Ω0 (1, 1) = 0 and Ω1 (1, 1) = 1) and has an instantaneous variance
of σ44. Hence, the SMV model has 10 variance/covariance terms of the Gaussian state variables and the

13 See Collin-Dufresne et al. (2008) and Hughen (2010) for details.
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additional parameters σ44 and ν. In total, there are 22 risk-neutral parameters as permitted.
The existence of a unique solution to Equation 2.2 in stochastic volatility models necessitates that vt

does not stochastically move out of the region, where the instantaneous process variance is positive and
ΣΣ> = Ω0 +Ω1vt is positive definite. Following Hughen (2010), necessary and sufficient constraints on
the parameters are the Feller conditions

2κ44 (µ4 + ϑ) ≥ σ44, 2κ̂44 ( µ̂4 + ϑ) ≥ σ44, ϑ ≤ 0, (2.7)

and the expressions Ω1 as well as Ω0 −Ω1ϑ need to be positive semidefinite, i.e., the smallest eigenvalue
must be non-decreasing in both expressions. The second term in Equation 2.7 refers to the model
dynamics under the physical probability measure that will be discussed in Section 2.2.5.

2.2.2 Futures prices

It is well-known (e.g., Cox, Ingersoll, &Ross, 1981) that the futures price at time twithmaturityT−t = τ,
is equivalent to the risk-neutral expectation of the future spot price

Ft,τ = E
Q
t [St+τ] = EQt

[
ext+τ

]
(2.8)

and that the futures price is the solution to the following Feynman-Kac equation with boundary condition
FT,0 = ST

∂F
∂t
=
∂F
∂X

(A + BX ) +
1
2

Tr
(
∂2F
∂X2 (Ω0 +Ω1v)

)
. (2.9)

From Duffie and Kan (1996), it follows that the solution to affine term structure models of the form in
Equation 2.9 is given by

ln F
(
xt, θt, qt, vt, τ

)
= α (τ) + β1 (τ) xt + β2 (τ) θt + β3 (τ) qt + β4 (τ) vt . (2.10)

Substituting Equation 2.10 into Equation 2.9 yields

α′ + β′Xt = βA + βBXt +
1
2

Tr
(
β> β (Ω0 +Ω1vt )

)
= βA + βBXt +

1
2

(
βΩ0 β

> + βΩ1 β
>vt

)
, (2.11)

where β =
[
β1(τ) β2(τ) β3(τ) β4(τ)

]
. Separation of variables leads to the following system of

ordinary differential equations (ODE)

α′ = βA +
1
2
βΩ0 β

> (2.12)

β′1 = βB(1) (2.13)
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β′2 = βB(2) (2.14)

β′3 = βB(3) (2.15)

β′4 = βB(4) +
1
2
βΩ1 β

>, (2.16)

where B( j) refers to the jth column of B. This system is of the Ricatti type and uniquely determines α, β,
and F. As the futures price at maturity must coincide with the spot price, we have the following boundary
conditions: β1 = 1 and α(0) = β2(0) = β3(0) = β4(0) = 0. This is quickly verified by substituting
the boundary conditions into Equation 2.10, which gives F

(
xT , θT , qT , vT , 0

)
= ST . The solution to the

system in Equation 2.12-2.16 can be obtained using a standard Runge-Kutta algorithm.

2.2.3 Option prices
In commodity markets, options are typically written on futures contracts and not the physical underlying.
Thus, we will focus on futures options in this section. By applying Itô’s lemma to Equation 2.10, we
obtain the following risk-neutral dynamics of the futures price and the volatility state variable

dFt = Ft β (τ) ΣtdWt (2.17)

dvt = (µ4 + κ44vt ) dt + ~e4ΣtdWt, (2.18)

where ~e4 = [0 0 0 1]. Following Heston (1993), we can represent the value of a European call
option C on a futures contract F with strike K, futures maturity τ1, option maturity τ0, and discount
function P (t, τ0) in the form of Black (1976)

C (t, τ0, τ1, F, v, K ) = P (t, τ0) (FΠ1 − KΠ2) . (2.19)

Π1 and Π2 can be calculated using the following formula from Heston (1993)

Πj =
1
2
+

1
π

∫ ∞

0
<



e−iφ ln[K] f j (x, v, τ0; φ)
iφ


dφ, j = 1, 2 (2.20)

where f (· ; φ) refers to the model’s characteristic function.14,15 It is known that f (·) is exponential-affine
and takes the form

f (x, v, τ0, τ1; φ) = ea j (τ0,τ1)+b j (τ0,τ1)v+iφx . (2.21)

14 The discount function denotes the time-t price of a zero-coupon bond with a face value of one. In the empirical model
implementation discussed in Section 2.3, the discount function P

(
t, τ0

)
is obtained by fitting a Nelson and Siegel (1987)

curve to the LIBOR/Swap curve on each trading day. The curve consists of 1-month, 3-month, 6-month, and 12-month
LIBOR rates and the 2-year swap rate. A similar approach is used by Trolle and Schwartz (2009b).

15 The pricing formula of Heston (1993) was later extended, for instance, by Bakshi and Madan (2000) and Duffie, Pan, and
Singleton (2000).
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Using the approach of Heston (1993) and his appendix, we obtain the affine coefficients a j and bj as
solutions to the following pair of ordinary differential equations

a j =
1
2

[(
2u j − 1

)
iφ − φ2

]
βΩ0 β

> +
[(

u j + iφ
)
βΩ0~e4 + µ4

]
bj +

1
2
σ44ϑb2

j (2.22)

bj =
1
2

[(
2u j − 1

)
iφ − φ2

]
βΩ1 β

> +
[(

u j + iφ
)
βΩ1~e4 − κ44

]
bj +

1
2
σ44b2

j, (2.23)

where u1 = 1, u2 = 0 , and a(0) = b(0) = 0. In the remainder of this chapter, the integral in Equation 2.20
is evaluated using a Gauss-Legendre quadrature with 30 integration points and the integral is truncated
at 400.16

2.2.4 Unspanned stochastic volatility
An important aspect in the valuation and risk management of commodity options is the question whether
options depend on risk not fully spanned by futures contracts. Thus, this section is devoted to briefly
discuss the implications of unspanned stochastic volatility for the SMV model.

Previous studies have presented mixed evidence as to whether volatility is unspanned in commodity
markets. On the one hand, Trolle and Schwartz (2009b) find, in an extensive empirical study, that
volatility is indeed mostly unspanned by futures in the crude oil market, implying that options cannot
be fully hedged by trading only in their underlying futures. On the other hand, as discussed above, the
degree of backwardation in oil and metal futures is positively related to volatility, indicating that futures
prices contain at least some information related to volatility.

Contrary to all constant volatility models and many stochastic volatility models, including those of
Deng (2000), Richter and Sörensen (2003), Geman and Nguyen (2005), and Hikspoors and Jaimungal
(2008), the SMV model can exhibit unspanned stochastic volatility under certain parameter conditions.
In particular, we require that the futures price F, given by Equation 2.10, does not depend on the variance
state variable vt , which implies that β4 needs to be identically zero. Following the approach in Hughen
(2010), β4 will disappear if the function M (from Equation 2.16) and all its derivatives with respect to τ
are zero when τ = 0.17

M = βB(4) +
1
2
βΩ1 β

> =

= β1κ14 +
1
2

(
β2

1 + β
2
2σ22 + β

2
3σ33

)
+ β1 β2σ12 + β1 β3σ13 + β2 β3σ23 (2.24)

Using the boundary conditions of Equation 2.11 and Equation 2.13-2.15, the derivatives of M can be
calculated up to any order. It follows that in the presence of unspanned stochastic volatility κ11 = σ13 =

σ33 = 0 and κ14 = −0.5. Also the remaining covariance terms related to the third state variable in Ω1

16 More specifically, we use 15 integration points on the interval 0 to 50 and 15 on the interval 50 to 400. A similar approach
is adopted by Trolle and Schwartz (2009b).

17 See Collin-Dufresne and Goldstein (2002) for further reference related to the necessary conditions for unspanned stochastic
volatility in term structure models.
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(σ23 and σ34) will be zero. The restrictions for Ω1 and Ω0 − Ω1ϑ to be positive semidefinite remain
intact. It is evident that the above restrictions heavily influence the risk-neutral dynamics of the SMV
model. When volatility is unspanned, the futures price becomes a function of two state variables and is
given by

ln F
(
xt, θt, qt, vt, τ

)
= α (τ) + xt + β3 (τ) qt, (2.25)

where α (τ) and β3 (τ) remain analytic functions of time. Options may, additionally, depend on the
unspanned stochastic volatility factor.

2.2.5 Risk premia
The above discussion refers entirely to the dynamics of the state vector under the risk-neutral probability
measure. While this specification is appropriate to price financial securities, we require risk premia for
the empirical model implementation and commodity price forecasting. The most common approach
in previous empirical research (e.g., Schwartz, 1997; Geman & Nguyen, 2005; Richter & Sörensen,
2003) is to assume that risk premia are constant. However, Casassus and Collin-Dufresne (2005)
demonstrate that time-varying risk premia are necessary to capture important mean reversion dynamics
in commodity spot prices, which can have substantial consequences for the model-implied holding period
return distribution and risk management. Thus, in the SMV model, we follow the approach of Dai and
Singleton (2000), Duffee (2002), and Casassus and Collin-Dufresne (2005) and specify the vector of risk
premia Λ =

[
λx λθ λq λv

]>
as an affine function of Xt .

From Girsanov’s Theorem it follows (see, e.g., Björk, 2009) that the density transformation from the
risk-neutral to the physical measure is given by

WPt = WQt −
∫ t

0
Λ (Xs) ds, (2.26)

where the vector of risk premia is defined as

Λ =
[
Â − A +

(
B̂ − B

)
Xt

]
Σ
−1. (2.27)

Substituting Equation 2.26 into Equation 2.2, yields the continuous time model dynamics under the
physical probability measure

dXt =
[
Â + B̂Xt

]
dt + ΣtdWPt , (2.28)

where A and B are now replaced by

Â =



µ̂1

µ̂2

κ̂33 µ̂3

κ̂44 µ̂4



, B̂ =



−κ̂11 κ11 −1 κ14

0 0 0 0

0 0 −κ̂33 0

0 0 0 −κ̂44



. (2.29)
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This specification can accommodate, for instance, a negative relationship between commodity spot prices
and the spot price risk premium, which is supported by several empirical studies (e.g., Bessembinder et
al., 1995).18 To see this, we can write the risk premium of the log-spot price as

λx =
[
µ̂1 − ( κ̂11 − κ11) xt

]
Σ
−1, (2.30)

where a negative relationship between xt and λx exists if κ̂11 > κ11. By similar arguments, the SMV
model can capture, for instance, a negative premium for volatility risk, as discovered by Doran and Ronn
(2008) in the natural gas and oil market. Generally, it is possible to allow for an even more flexible
specification of Λ by inserting additional parameters into B̂. In this way, the risk premium of each risk
factor may depend not only on the state variable it is directly associated with but also on the other state
variables.19 This possibility, however, is not further explored for two reasons. First, previous studies
(e.g., Geman & Nguyen, 2005; and Trolle & Schwartz, 2009b) find that risk premia can typically not
be estimated from a series of past derivative prices with statistical significance, suggesting that more
elaborate specifications of Λ may lead to little additional and reliable insights. Second, experiments
based on the dataset used in this chapter confirm that additional parameters slow down model calibration
and seem to add negligible pricing accuracy.

2.3 Empirical implementation
In this section, the previously outlined model is evaluated based on empirical data from the market of
copper derivatives. We proceed by first presenting the dataset and estimation procedure. Subsequently,
calibration results as well as the pricing and hedging performance of the model are discussed.

2.3.1 Data
The dataset consists of copper futures and corresponding American call option prices obtained from
COMEX. The choice of the copper market as the subject of study is motivated by three aspects. First,
copper is considered as one of the most important industrial metals with extensive usage in construction,
heating, air conditioning, and wiring applications. Second, the financial market for copper-related
products is highly liquid and COMEX copper futures and options are among the most actively traded
commodity instruments available.20 Third, the copper market has been a popular subject in related
research (e.g., Schwartz, 1997; Cortazar & Schwartz, 2003; and Tang, 2012). As previous studies find
that models with superior performance in the application to copper derivatives are likewise preferable
in various other markets (e.g., crude oil and gold), we expect the empirical findings of this section
to be similarly indicative of model performance in other important, non-cyclical markets of storable
commodities.

18 This is also one of the main features in Tang (2012), who uses a similar specification of the spot price risk premium.
19 See Hughen (2010), for a more general specification of risk premia in the context of a three-factor stochastic volatility

model.
20 The number of outstanding copper futures reached 35.5m in 2005. This compares to 93m, 34.5m, and 33.3m for crude

oil, gold, and aluminum, respectively (Bank of International Settlements, 2007). According to CME Group (2013), the
average volume of daily trades in COMEX copper futures was in excess of 70,000 contracts in 2013.
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The sample period lasts from 31 March 2006 to 30 December 2013. The choice of this time horizon
reflects three considerations. First, it takes into account the structural changes witnessed by commodity
markets over the last decade. In particular, the ascent of commodity prices and volatility beginning in late
2004 are often considered to be symptoms of both structural demand and supply imbalances originating
from fast growing demand in Asia and the continuing financialization of commodity markets.21 As these
factors are expected to have a persistent impact on commodity price dynamics, it appears sensible to
focus on a sample period that already reflects the new normal in the copper market and may, thus, yield
results that are more indicative of pricing performance in the future. Second, the sample includes times
of substantial financial market turmoil surrounding the global financial crisis. As it is useful to gain
an understanding of how well pricing models perform even in times of extreme market movements, the
financial crisis is kept in the sample. Third, the availability and quality of options data corresponding to
the relevant futures contracts improved significantly after the beginning of the sample period.

For both options and futures, we use daily official closing prices, resulting in 1954 trading dates in
the sample.22,23 The futures data consists of 19 generic time series constructed from individual futures
contracts with maturities ranging from 1 month to 19 months. This corresponds to a total of 37,126
futures prices in the dataset. The futures are arranged in consecutive order such that F1 represents a
generic series of futures contracts closest to maturity and F19 refers to the series of contracts with the
longest maturity. For each series Fn, the index n also roughly corresponds to the maturity of the time
series in months.24 In line with common practice (see, e.g., Richter & Sörensen, 2003; Hughen, 2010),
maturities are calculated up to the last trading date.25 For the calibration of the SMV model, every
second futures (F1,3,...,19) is used, while the remaining contracts (F2,5,...,18) are saved for out-of-sample
tests.

Panel A of Figure 2.1 illustrates the price of the shortest and longest maturity futures in the dataset
as well as the degree of strong backwardation. The stochastic fluctuations of the short-term futures
price around the long-term futures price support the assumption of mean reversion in the spot price to a
stochastic equilibrium level in the SMV model, as discussed in Section 2.2. Panel B displays different
shapes of the futures term structure on selected dates during the sample period.

The call options data consists of 16 generic time series, which are constructed from individual option
contracts. On each trading date, these comprise eight different maturities and two different strike prices
for each of the maturities. For model calibration, we use maturities of 1, 5, 9, and 13 months, while
maturities of 2, 6, 10, and 14 months are retained for out-of-sample tests. Options with longer maturities
are not considered as liquidity tends to decrease with maturity. However, the range of maturities in
the sample is sufficient to capture some information with respect to volatility dynamics along the term

21 See Mayer (2009), Nissanke (2012), and Silvennoinen and Thorp (2013).
22 The official daily closing price is determined by the closing range used for marking to market all account balances including

the calculation of daily gains and losses, margin calls, and invoice prices for deliveries in futures market accounts.
23 Cortazar and Schwartz (2003) suggest that daily data yields a more complete picture of a model’s pricing performance

compared to lower frequency (e.g., weekly) data. In particular, they find that two-factor models are able to price the futures
term structure accurately on average but can exhibit large pricing errors on individual days.

24 A graphical illustration of this data organization can be found in Schwartz (1997, p. 935).
25 The last trading date of a futures contract is approximately one month after the first notice date, whereupon the holder of

the futures may be required to take physical delivery of the underlying commodity.
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structure. For instance, in line with the Samuelson (1965) effect, Panel F shows decreasing implied
Black (1976) (i.e., log-normal) volatilities as maturity increases.

The two strike prices used with each of the maturities are denoted by K1 and K2. Both strikes are
adjusted over time to roughly track changes in the spot price. This is shown in Panel C of Figure 2.1.
While it would be interesting to observe more than two different strike prices for all maturities on each
day to gain a more complete picture of the implied volatility surface, this possibility is not pursued here
for simplicity. However, as shown by Panel E and F of Figure 2.1, the dataset contains, nonetheless,
important information about implied volatility dynamics for different moneyness levels (defined as the
futures price divided by the strike). For instance, Panel F shows a higher average implied volatility for
options with strike price K1 (average moneyness: 1.00), than for options with strike price K2 (average
moneyness: 0.94). This implies an upward sloping volatility skew and reflects that in-the-money calls
are on average expensive relative to out-of-the money calls. It is also known as the inverse leverage effect
and can be explained by a high willingness to pay for protection against rising commodity prices by, e.g.,
industrial copper consumers. Intuitively, this may be explained by commodities’ positive exposure to
supply shocks. Liu and Tang (2011) attribute the upward sloping volatility skew for call options on crude
oil and copper futures to a positive relationship between spot prices, convenience yields, and volatility,
which can also be captured by the SMV model.26

Since the option pricing formula derived in Section 2.2.3 is only valid for European options, historical
option prices have to be converted to European prices by making an adjustment for the early exercise
premium. This is accomplished by, first, fitting a trinomial lattice to the American option price and by
then using the inferred volatility to calculate the corresponding European price and the early exercise
premium.27 To minimize the possibility of errors resulting from the approximation of the early exercise
premia, we discard all options with moneyness greater than 1.05.28 Also excluded are OTM options with
moneyness below 0.8, as these tend to be less actively traded.29 After making these adjustments to the
dataset, we are left with 12,166 European call option prices. An overview of the distribution of option
contracts with respect to moneyness is given in Panel D of Figure 2.1, taking into account the full sample
period.

2.3.2 Estimation procedure
A common calibration methodology for term structure models with unobservable state variables is the
Kalman filter.30 This approach is particularly well-suited when the estimation involves a complicated
model and has desirable econometric properties for the purpose of this thesis (Duffee&Stanton, 2004). As

26 Liu and Tang (2011) point out that an upward sloping volatility skew is consistent with evidence from Deaton and Laroque
(1996), who find that commodity prices exhibit irregular, large, positive price spikes.

27 Richter and Sörensen (2003) and Trolle and Schwartz (2009b) use a similar approach.
28 Trolle and Schwartz (2009b) use an even more restrictive approach and exclude all in-the-money (ITM) options, i.e., with

moneyness above one. They point out that out-of-the-money (OTM) options also have the advantage that they tend to be
more liquid than ITM options.

29 Also excluded are options with prices of less than US$ 0.1.
30 Previous articles employing the Kalman filter in the calibration of commodity price models with stochastic volatility

include Richter and Sörensen (2003), Nielsen and Schwartz (2004), Geman and Nguyen (2005), Trolle and Schwartz
(2009b), and Liu and Tang (2011). Further references for constant volatility models are Lo and Wang (1995), Schwartz
(1997), Pindyck (1999), Schwartz and Smith (2000), and Cortazar and Naranjo (2006).
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Figure 2.1: Dataset. Panel A illustrates the evolution of the short-term and long-term copper futures over the
sample period (31 March 2006 - 30 December 2013). The histogram shows the degree of strong backwardation
calculated as F1 − F19, where F1 is interpreted as a proxy for the spot price. Panel B shows different exemplary
term structures, where prices are shown relative to the long-term futures price for better readability. The sample
dates corresponding to the curves from top to bottom (referring the left edge of the curves) are: 12.11.07, 21.05.10,
22.07.10, 25.10.10, 02.07.13, 16.12.13. Panel C illustrates how the strike price series K1 and K2 are adjusted
to track changes in the underlying. Panel D illustrates the distribution of option contracts in the sample w.r.t
moneyness (F/K). Panel E depicts the implied volatility of the short-term options for K1 and K2. Panel F displays
the average implied volatility for all options in the sample against maturity. The average moneyness corresponding
to options with strike series K1 and K2 are 1.00 and 0.94, respectively.
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option prices are non-linear in the volatility state variable and since the SMVmodel is non-Gaussian, we
resort to the extended Kalman filter (EKF) in conjunction with quasi-maximum likelihood estimation.31
By maximizing the log-likelihood obtained from the Kalman filter recursions, we can infer the risk-
neutral parameters from the cross section of derivative prices and the risk premia from the information
contained in the time series dimension.

First, the model is cast in state space form, which consists of a transition equation and a measurement
equation. The transition equation describes the discrete-time dynamics of the state vector Xt , while
the measurement equation links the unobservable state variables to the observed derivative prices. The
transition equation is given by

Xt+1 = Â∆ +
(
I + B̂∆

)
Xt + ωt+1, ωt+1 ∼ i.i.d., (2.31)

where I refers to the identity matrix, ∆ denotes the size of the discrete time steps, and the mean and
variance of the disturbance term are: E [ωt+1] = 0 and Var [ωt+1] = ΣtΣ>t . As the size of the time steps
is relatively small given the use of daily data, we follow Schwartz (1997) and use an Euler discretization
for the transition equation.32 The measurement equation can be expressed as

Yt = h (Xt ) + εt, εt ∼ i.i.d. N (0, ξ) , (2.32)

where h denotes the pricing function and εt is a vector of measurement errors. The pricing function is
constructed from Equation 2.10, which relates the state vector to the log-futures prices and Equation 2.19,
which relates the volatility state variable to the observed option prices. Note that in the option pricing
formula, it is assumed that the prevailing price of the underlying futures is known. Alternatively, one
might use the Kalman filter prediction for the futures price, however, in this way approximation errors in
the futures price can translate into larger option pricing errors, which would, in turn, lead to a distorted
picture of the true option pricing performance of the model.

In the setup of the calibration procedure, we closely follow Trolle and Schwartz (2009b). As pointed
out in their article, it would be ideal to fit the model directly to implied Black (1976) volatilities instead of
option prices, since these are more stable across time, moneyness, andmaturity. However, as this requires
the numerical inversion of the option pricing formula for each option price, time step, and optimization
iteration, it is computationally not desirable. Instead, we scale option prices by their implied Black
(1976) vegas, which approximately converts pricing errors in terms of prices to pricing errors in terms
of implied volatilities.

Therefore, the vector of m futures prices, Ft,1, . . . , Ft,m and n call option prices, Ct,1, . . . ,Ct,n, with
corresponding Black (1976) vegas Vt,1, . . . ,Vt,n, can be written analogously to Trolle and Schwartz

31 Note that the EKF procedure is theoretically not appropriate in this setting, as the conditional covariance matrix ΣtΣ>t in
Equation 2.31 depends on the estimate of the volatility state variable in the Kalman filter recursions (Duan & Simonato,
1999). However, Trolle and Schwartz (2009a) investigate the small-sample properties of this approach and find virtually
no biases. Moreover, the EKF has become standard practice in the estimation of stochastic volatility models of the kind
studied in this chapter.

32 Schwartz (1997) finds that using an Euler discretization leads to accurate parameter estimates up to the fourth significant
figure, even in the presence of weekly data.
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(2009b) as

Yt =
(
ln Ft,1, . . . , ln Ft,m, Ct,1/Vt,1, . . . ,Ct,n/Vt,n

)
. (2.33)

The implementation of the measurement equation in the Kalman filter requires the computation of its
derivatives with respect to the state vector.33 In particular, the update of the state estimate relies on the
quantity

H ′ =
∂h (Xt )
∂Xt

�����Xt=X̂t |t−1

(2.34)

where X̂t |t−1 = Et−1 [Xt ]. For the futures pricing part of h (Xt ), H ′ can be directly computed from
Equation 2.10. For the option pricing formula given by Equation 2.19, H ′ is equivalent to the option
vega, which can be calculated in semi-analytical form using

∂C
∂v
= P (t, τ0)

[
F
∂Π1
∂v
− K

∂Π2
∂v

]
(2.35)

and
∂Πj

∂v
=

1
π

∫ ∞

0
<


bj (τ0, τ1)

e−iφ ln[K] f j (x, v, τ0; φ)
iφ


dφ, j = 1, 2, (2.36)

where the notation and computation procedure are adopted from Section 2.2.3. To reduce the number
of parameters in the estimation problem, we assume that the measurement errors are cross-sectionally
uncorrelated, i.e., that ξ is diagonal and that one measurement error applies to the entire futures curve and
another to all option contracts. As pointed out by Schwartz (1997), the measurement errors may capture,
among others, bid-ask spreads, price limits, errors in the data, and non-simultaneity of observations.

For the numerical maximization of the likelihood function, we initially use the direct search Nelder-
Mead algorithm as it proves to cope well with discontinuities in the objective function, which may arise
from implausible parameter guesses. The result of this optimization run is subsequently passed to the
gradient-based sequential quadratic programming (SQP) algorithmwith BFGS calculation of the Hessian
matrix. The SQP algorithm resembles an efficient optimization method to refine the solution of the direct
search method. To minimize the risk of not reaching the global maximum, the procedure is initialized
with several plausible initial parameter sets. To speed up calibration, it is useful to precalculate the affine
coefficients in Equation 2.12-2.16 and Equation 2.22-2.23 for all relevant maturities in the dataset at the
beginning of each evaluation of the likelihood function, as opposed to repeatedly solving both systems
of ODEs for each time step in the filter.34

33 Refer to Harvey (1989) for a classical reference for the Kalman filter and Trolle and Schwartz (2009b) for implementation
details in the context of commodity term structure models.

34 Note that in the numerical implementation of the model, we assume that s12 = s13 = s23 = 0, since experiments reveal
that this significantly speeds up calibration as it simplifies meeting the nonlinear constraints on positive definiteness of
ΣtΣ

>
t .



24 CHAPTER 2. A FOUR-FACTOR MODEL OF COMMODITY PRICES

2.3.3 Estimation results
The estimated parameters are shown in Table 2.1 for two settings. First, the model is calibrated to
futures data only (Setting A) and, second, the model is jointly estimated with futures and options data
(Setting B). In both settings, parameter estimates are in linewith the expectations discussed in Section 2.2.
For instance, since κ11 > 0, the spot price reverts to a stochastic long-term level and the drift captures a
positive relationship between the spot price level and the convenience yield. The conjectured negative
relationship between the spot price risk premium (λx) and xt is confirmed, given that κ̂11 > κ11. The
model shows a positive unconditional correlation between the spot price and the variance state variable
(κ14 > 0), which may indicate the presence of an inverse leverage effect. At the same time, σ24 < 0
reflects a negative instantaneous correlation between volatility and the long-term price level, which can
also be interpreted as a positive correlation between volatility and the degree of backwardation in the
futures curve. With respect to the risk premia, several parameters are not statistically significant, which
is typical in the estimation of term structure models (e.g., Geman & Nguyen, 2005; Trolle & Schwartz,
2009b).

While the fundamental interpretations in the SMVmodel described above are valid in both calibration
settings, there are several differences in the parameter estimates depending on the type of contract used
in model calibration. To learn more about the relative information content of futures and option prices
and to address the question of whether volatility is likely to be unspanned by futures prices in the copper
market, the parameter differences and model dynamics in both settings are discussed in more detail
hereafter.

Table 2.1 reports the absolute differences between the parameter estimates in both settings (|A − B |),
where two parameters pA and pB are considered different from each other at the 95% confidence level if

|pA − pB | > z
√

(seA)2 + (seB)2. (2.37)

Here, z denotes the relevant percentile of the standard normal distribution and seA and seB are standard
errors corresponding to the parameter estimates in each setting.35 This calculation illustrates that there
are sizable and statistically significant differences in the parameters, depending on the calibration setting.
Hence, the parameter set that yields the best model fit to historical futures prices is significantly different
from the parameter set that is optimal to capture the joint dynamics of futures prices and log-normal
implied option volatilities. This suggests that option prices contain additional information not fully
captured by the futures curve, which may result from the sensitivity of option prices to higher moments
of the underlying return distribution, while futures prices simply reflect the risk-neutral expectation of
the future spot price. In order to better understand how the dynamics of the SMV model are affected
by the presence of option prices in the estimation setting, we compute correlations between the state
variables using the parameters from Panel A and B. If the presence of option prices has little effect on a
state variable, we would expect a high correlation between the state variable estimates implied by both

35 The asymptotic covariance matrix and the standard errors are computed from the Hessian matrix of the likelihood function
at the optimal parameter set.
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Table 2.1: Maximum-likelihood parameter estimates of the SMV model for the full-sample period and two
calibration settings

Parameter estimates (2006 - 2013)

Variable A: Futures B: Futures and options |A − B |

µ2 -0.0535 (0.005)* -0.0581 (0.001)* 0.00
µ3 0.2940 (0.023)* 0.1503 (0.010)* 0.14*
µ4 0.1024 (0.007)* 0.0615 (0.000)* 0.04*
µ̂1 1.0828 (0.599) 5.4826 (1.657)* 4.40*
µ̂2 0.0600 (0.148) -0.0557 (0.111) 0.12
µ̂3 0.3102 (0.042)* 4.9278 (21.240) 4.62
µ̂4 0.2227 (0.219) 1.6949 (6.308) 1.47
κ11 0.9766 (0.099)* 0.3630 (0.000)* 0.61*
κ14 2.1302 (0.259)* 0.0712 (0.000)* 2.06*
κ33 2.9907 (0.141)* 1.4049 (0.003)* 1.59*
κ44 0.5995 (0.056)* 0.3080 (0.000)* 0.29*
κ̂11 1.1374 (0.105)* 1.2970 (0.283)* 0.16
κ̂33 2.7471 (1.030)* 0.0085 (0.044) 2.74*
κ̂44 0.2829 (0.201) 0.0343 (0.137) 0.25
s22 0.0000 (0.000) 0.0000 (0.000)* 0.00*
s33 0.0000 (0.000) 0.0003 (0.000)* 0.00*
σ12 0.8400 (0.037)* 0.8728 (0.000)* 0.03
σ13 -0.0405 (0.035) 0.0175 (0.000)* 0.06
σ14 0.0230 (0.022) -0.0040 (0.000)* 0.03
σ22 1.1865 (0.086)* 1.2888 (0.001)* 0.10
σ23 -0.3350 (0.047)* 0.1901 (0.000)* 0.53*
σ24 -0.2148 (0.025)* -0.0842 (0.000)* 0.13*
σ33 0.4411 (0.037)* 0.1392 (0.000)* 0.30*
σ34 0.1733 (0.013)* -0.0018 (0.000)* 0.18*
σ44 0.1227 (0.009)* 0.0379 (0.000)* 0.08*
ϑ 0.0000 (0.000) 0.0000 (0.000)* 0.00*
ξfutures 0.0000 (0.000)* 0.0000 (0.000)* 0.00*
ξoptions - - 0.0007 (0.000)* -

Log-likelihood 117,653 130,898

Setting A refers to parameters estimated from futures data only. Setting B shows parameters calibrated with both
futures and options data. |A − B | indicates the absolute difference between a parameter estimate from A and B.
Standard errors are in parenthesis. Significance at the 95% confidence level is indicated by *.
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Figure 2.2: Estimated state variables. Panel A shows the estimated spot price xt and the long-term mean θt
along with the realized spot price at the London Metal Exchange (LME). Panel B depicts the estimate of qt and
the historical net convenience yield δt , implied by the adjacent futures F1 and F2. Panel C illustrates the variance
process vt and the annualized GARCH(1,1) variance, inferred from daily returns of the short-term futures F1. In
all panels, every 5th observation is displayed for better readability.

parameter settings, i.e., including and excluding option prices. The results are as follows: ρx = 0.99,
ρθ = 0.94, ρq = 0.08, ρv = −0.03. Moreover, we calculate the correlation between the annualized
GARCH(1,1) volatility of daily returns of the short-term futures (F1) and the volatility estimate of the
SMV model for both parameter sets. The results are as follows: ρAv = 0.09, ρBv = 0.81. We also impose
the parameter conditions for unspanned stochastic volatility derived in Section 2.2.4 and re-estimate the
model with futures data. The correlation between the newly estimated volatility state variable and the
GARCH(1,1) estimated of realized volatility is: ρAusv = 0.68.

From these findings, it follows that: first, the presence of option prices mainly affects the dynamics
of the variance state variable, while the estimates of the spot price and long-term mean are largely
unaffected;36 second, when volatility is spanned and the model is estimated with futures data only,
the volatility estimate is unrealistic, suggesting that it captures information that is relevant for pricing
the futures curve but does not coincide with volatility. However, when volatility is constrained to be
unspanned, it can be estimated with reasonable accuracy from a time series of past futures prices. When
the model is jointly estimated with futures and options data, the estimate of volatility most accurately
resembles realized GARCH(1,1) and log-normal implied option volatility. However, in this setting vt

does not need to be completely unspanned. In fact, futures prices depend to some extent on vt when the
model is jointly estimated in Setting B.37

In summary, while volatility can be estimated from the time series information contained in futures

36 The fact that the dynamics of qt change considerably from Setting A to B can be explained by the inter-relation of the
volatility process with the drift of the model. For instance, if the dynamics of vt change in the presence of options data,
this will affect the drift of xt via the parameter κ14, which in turn will impact the dynamics of all other state variables and
parameters.

37 Note that futures prices are less dependent on vt in Setting B than in Setting A. To see this, we compare the relative
magnitude of the term β4 (τ) vt in the futures pricing formula (Equation 2.10) for each parameterization.
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prices, it cannot be accurately inferred from the futures curve on a given trading day. This is consistent
with Trolle and Schwartz (2009b), who find that volatility is largely unspanned by futures in the crude oil
market. The results also suggest that the SMVmodel is best estimated using both futures and options data,
as this leads to the most realistic estimate of historical volatility. Under this optimal parameterization,
volatility is partly spanned by futures prices in the SMV model.38 A graphical representation of the
estimated state variables using futures and option prices is given in Figure 2.2.

2.3.4 Pricing performance
To assess the pricing performance of the SMVmodel, we consider Akaike’s information criterion (AIC),
the Bayesian information criterion (BIC), and mean absolute pricing errors (MAE).39 The SMV model
is compared to the three-factor maximal stochastic volatility model of Hughen (2010) (SV) and the
three-factor stochastic long-term mean model of Tang (2012) (SM). The choice of these benchmarks is
motivated by two aspects. First, the above authors show in their respective articles that both processes
deliver superior pricing performance for commodity futures compared to the vast majority of popular
models present in the literature. For instance, based on crude oil futures data, Hughen (2010) shows
that the SV model improves upon all nested specifications, which include, among others, the models in
Gibson and Schwartz (1990), Schwartz and Smith (2000), Richter and Sörensen (2003), Casassus and
Collin-Dufresne (2005) (with constant interest rates), Korn (2005), and Cortazar and Naranjo (2006).
Also the SM model is shown to yield a superior pricing performance compared to the models in Gibson
and Schwartz (1990) and Casassus and Collin-Dufresne (2005) (with constant interest rates). Second,
the SMV model principally integrates the instantaneous variance and covariance specification of the SV
model and the mean reversion dynamics of the SM model.

The goodness of fit statistics are shown for each of the parameter settings (A and B) discussed in
Section 2.3.3. Note that option pricing results are only shown for the SMV and SV model as the constant
volatility SM model resembles no sensible benchmark here. The results are reported in Table 2.2,
suggesting that the SMV model exhibits a better fit to the data in both settings, justifying the higher
number of parameters.40

Next, we compute MAEs of fitted and actual futures prices as well as fitted and actual log-normal
implied option volatilities. The futures and option pricing results are reported in Table 2.3 and Table 2.4,
respectively. Results are shown for an in-sample and out-of-sample setting. In-sample pricing errors are
calculated based on the same contracts used for model calibration, while the out-of-sample test uses a set
of different contracts (see Section 2.3.1). In each of the settings, we use the Kalman filter to forecast the
state vector using information up to the previous day and then price the futures and options term structure
based on the predicted state variables. Thus, strictly speaking, neither of the tests is truly in-sample,

38 Note that the parameter conditions for unspanned stochastic volatility significantly constrain the dynamics of the SMV
model so that even if volatility was completely unspanned in reality, it would be unlikely that the conditions emerged as
satisfied in a parameter set that is optimal with respect to pricing performance.

39 The AIC and BIC have the advantage that models under comparison need not be nested, which is not true for, e.g.,
likelihood ratio tests.

40 Including the measurement errors from the Kalman filter, the SMV model has 27 parameters in Setting A, compared to
25 and 15 in the SV and SM models, respectively.
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Table 2.2: Goodness of fit statistics

A: Futures B: Futures and options

Model LL AIC BIC LL AIC BIC

SMV 117,653 -235,252 -235,022 130,898 -261,740 -261,494
SV 111,582 -223,114 -222,901 123,998 -247,944 -247,715
SM 112,219 -224,408 -224,280 - - -

Reported are the maximum log-likelihood (LL), Akaike information criterion (AIC), and Bayesian information
criterion (BIC) for the two calibration settings and three different models. In Setting A models are estimated with
futures data only. In Setting B, models are calibrated with futures and options data. SV refers to the stochastic
volatility model of Hughen (2010) and SM denotes the stochastic long-term mean model of Tang (2012). All
models are estimated over the full sample period (31 March 2006 to 30 December 2013).

as we only use the predicted and not updated state vector from the Kalman filter recursions to compute
pricing errors.41

The SMV model exhibits lower futures pricing errors than the SV and SM model for all contract
maturities in the in-sample and out-of-sample test. However, the improvement in pricing performance
is marginal. On average, the in-sample MAE of the SMV model is 0.17% and 0.27% lower than under
the SV and SM model, respectively. The out-of-sample results are similar. This is in line with the
introductory discussion, stating that three factors are sufficient to explain nearly all variation in the term
structure of futures prices accurately. Hence, the fourth factor in the SMV process adds little accuracy
here.

Turning to the errors in actual and fitted log-normal implied volatilities (Table 2.4), the relative
advantage of the SMV model over the SV model becomes more visible. The average MAE across
moneyness and maturity levels is 72% lower under the SMV model using in-sample data and 61% lower
in the out-of-sample setting. A possible explanation for the significantly lower pricing errors in the SMV
model is the potential inability of three-factor models to price the term structure of futures and option
prices jointly. As discussed in the introduction, this idea is expressed by Hughen (2010), who finds that
the SV model is able to either price the futures curve accurately or to provide a good fit to volatility and
option prices but that it cannot achieve both objectives at the same time. In his analysis, the result depends
on the restrictions imposed on the dynamics of volatility. In particular, if futures prices are allowed to be
a function of all three state variables, including the volatility process, the fit to futures data is accurate,
however, the model fails to explain volatility dynamics and option prices well. If, instead, volatility is
restricted to be unspanned by futures prices, the model fit to volatility and options data improves but this
occurs at the expense of the previously low futures pricing errors. In the restricted case, the model allows
for only two independent sources of uncertainty in the futures curve, which explains the deterioration in

41 In both tests it is assumed that parameters do not change over time. To investigate the validity of this assumption, one
might calibrate the model to different subsamples and use the obtained parameters to compute pricing errors in different
periods (see, e.g., Schwartz, 1997). This analysis is omitted here, since Trolle and Schwartz (2009b) find in a similar
context that considering pricing results in different subsamples does not change the performance rank order of compared
models.
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Table 2.3: Mean absolute futures pricing errors

SMV SV SM

In-sample MAE MAE (%) MAE MAE (%) MAE MAE (%)

F1 4,796 1,545 4,805 1,547 4,810 1,549
F3 4,771 1,536 4,773 1,538 4,776 1,539
F5 4,715 1,518 4,716 1,520 4,724 1,522
F7 4,641 1,498 4,645 1,500 4,652 1,502
F9 4,575 1,481 4,583 1,484 4,588 1,486
F11 4,522 1,470 4,536 1,474 4,539 1,476
F13 4,476 1,462 4,489 1,466 4,494 1,468
F15 4,447 1,460 4,455 1,463 4,461 1,465
F17 4,412 1,456 4,418 1,459 4,425 1,461
F19 4,381 1,453 4,392 1,457 4,395 1,459
Out-of-sample

F2 4,792 1,544 4,799 1,546 4,800 1,546
F4 4,744 1,527 4,749 1,529 4,755 1,531
F6 4,681 1,509 4,687 1,511 4,693 1,513
F8 4,609 1,489 4,616 1,492 4,622 1,494
F10 4,551 1,476 4,561 1,480 4,563 1,481
F12 4,503 1,467 4,516 1,471 4,517 1,472
F14 4,462 1,461 4,472 1,464 4,476 1,466
F16 4,424 1,456 4,433 1,459 4,437 1,461
F18 4,397 1,455 4,408 1,458 4,412 1,461

In-sample mean 4,574 1,488 4,581 1,491 4,586 1,493
Out-of-sample mean 4,574 1,487 4,582 1,490 4,586 1,492

SV refers to the stochastic volatility model of Hughen (2010). SM denotes the stochastic long-term mean model
in Tang (2012). Mean absolute pricing errors (MAE) are calculated as the average across all trading days of the
absolute difference in the one day ahead predicted and realized futures price. MAE (%) are computed as the
average of daily absolute pricing errors divided by the observed futures prices. Model parameters used to calculate
pricing errors are calibrated with futures data only. For the SMV model, these are shown in Part A of Table 2.1.
All calculations are based on the full sample period.

model fit.
To see whether this conclusion is equally valid in the context of this dataset and whether the fourth

factor in the SMVmodel can help to overcome the inability of the SVmodel to capture the joint dynamics
of futures and option prices, we report averageMAEs of a newly estimated, restricted SVmodel (SVUSV),
along with the average pricing errors for the SV and SMV model in Table 2.5.42 Focusing first on the
joint calibration results in Part B of the table, three aspects are worth highlighting. First, the SMVmodel

42 Please refer to Hughen (2010) for the necessary conditions that ensure unspanned stochastic volatility in the SV model.
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Table 2.4: Mean absolute errors in implied option volatilities

In-sample Out-of-sample

Moneyness Model C1 C5 C9 C13 C2 C6 C10 C14

0.80-0.85 SMV 4,063 1,529 1,802 1,358 8,341 3,458 2,906 3,169
SV 9,076 10,336 9,676 8,037 20,259 9,519 8,017 7,472

0.85-0.90 SMV 3,429 1,900 1,478 1,699 6,824 2,734 2,377 2,681
SV 6,915 7,483 6,953 6,934 17,078 6,537 5,717 6,156

0.90-0.95 SMV 3,342 1,457 1,455 1,965 5,601 2,482 2,553 2,892
SV 7,270 5,884 5,836 6,121 15,953 5,223 5,197 5,635

0.95-1.00 SMV 2,866 1,420 1,305 1,545 3,548 2,278 2,206 2,479
SV 7,730 6,369 5,927 5,779 11,284 5,665 5,157 5,125

1.00-1.05 SMV 3,203 1,617 1,365 1,479 3,814 2,162 1,942 1,987
SV 8,571 6,515 6,123 5,916 12,124 6,094 5,634 5,617

Reported are the mean absolute differences between fitted and actual log-normal implied volatilities in percentages.
Results are shown for different maturities (C1, . . . ,C14) and moneyness levels. Moneyness is defined as the futures
price divided by the strike. Results are computed with parameters estimated with futures and options data. For the
SMV model, these are shown in Part B of Table 2.1. All calculations are based on the full sample period.

achieves the best fit to both futures prices and option volatilities throughout.43 Second, the unrestricted
SV model shows lower futures pricing errors than the restricted version. Third, the restricted SV model
yields a better fit to options data than the unrestricted version.44

These results are perfectly in line with the findings of Hughen (2010) and, furthermore, indicate that
the four-factor SMV model is general enough to capture the joint dynamics of both instruments without
compromise. Comparing the results from Setting A and B, it is evident that the close fit of the SMV
model to futures prices does almost not deteriorate once options are added to the estimation. In particular,
in the in-sample test, the average futures pricing error increases just marginally by 4.577/4.574-1 = 0.1%.

In summary, the results support the introductory conjecture that four independent sources of uncer-
tainty are necessary to capture the joint dynamics of futures prices and implied option volatilities. Since
a good model fit to the futures curve fully utilizes three independent sources of uncertainty, a three-factor
model does not permit any additional capacity to capture the volatility dynamics in option prices, which
do not seem to fully coincide with the dynamics relevant for futures pricing. The SMV model also
improves over the SV and SM model when futures prices are considered in isolation and yields a better
fit to the implied volatility dynamics of option prices than the SV and SVUSV model. These results are

43 For the crude oil market, Trolle and Schwartz (2009b) report a root-mean-square error (RMSE) of actual and predicted
log-normal implied volatilities of 1.31% for their five-factor HJM model (SV2gen). For a simplified alternative model
(SV1) with only one stochastic volatility factor that may be partially spanned by futures contracts, they report a RMSE of
2.1%. While these results are not directly comparable to this study, due to the heterogeneity of datasets, they indicate that
the SMV model delivers roughly similar pricing errors compared the (only) other four and five-factor models present in
commodity derivatives literature.

44 The volatility estimates in the SV and SVUSV model have correlations with the realized GARCH(1,1) volatility of daily
returns of the short-term futures (F1) of 0.18 and 0.81, respectively.
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Table 2.5: Summary of mean absolute errors

Calibration data: A: Futures B: Futures and options

Futures Futures Options

Models IS OOS IS OOS IS OOS

SMV 4.574 4.574 4.577 4.577 2.014 3.322
SV 4.581 4.582 4.635 4.642 7.173 8.473
SVUSV 4.640 4.618 4.654 4.635 2.376 3.674

Reported are the average mean absolute pricing errors for futures and options in two settings. Setting A uses model
parameters inferred from futures data only. Setting B is based on parameters calibrated from futures and option
prices. Pricing errors for futures are defined as the average MAE across maturities as reported at the bottom of
Table 2.3. For options, pricing errors are defined as the average MAE computed across all moneyness levels and
maturities reported in Table 2.4. IS and OOS denote in-sample and out-of-sample results, respectively. SVUSV
denotes the SV model, restricted to exhibit unspanned stochastic volatility. All calculations are based on the full
sample period.

similar in the in-sample and out-of-sample test.

2.3.5 Hedging performance
This section provides a comparison of the relative hedging performance of the SMV and SVmodel.45 At
first, we construct an equally weighted portfolio of call options satisfying the selection criteria discussed
in Section 2.3.1. On each trading day, this portfolio comprises between four and eight call options
with maturities ranging from 1-13 months in the in-sample case and 2-14 months in the out-of-sample
case. In addition, three hedging portfolios are formed. First, H1 denotes a portfolio consisting of two
equally weighted futures with maturities corresponding to the shortest and longest maturity in the option
portfolio. H1 is rebalanced daily, to render the option portfolio delta neutral. Call option deltas in the
SMV model are calculated as follows: ∆C = P (t, τ0) Π1. Second, H2 comprises the instruments of
H1 and an additional call option with a maturity corresponding to the shortest maturity in the option
portfolio. H2 is rebalanced daily to eliminate both delta and gamma risk in the option portfolio. Option
gammas in the SMV model are calculated according to

Γ = P (t, τ0)
∂Π1
∂F
=

P (t, τ0)
π F

∫ ∞

0
<

[
e−iφ ln[K] f1 (x, v, τ0; φ)

]
dφ. (2.38)

Third, H3 comprises H2 and a second call option with a maturity corresponding to the longest maturity
in the option portfolio. H3 is rebalanced to neutralize delta, gamma, and vega risk in the option portfolio.
Option vegas in the SMV model are computed as discussed in Section 2.3.2.

The mean absolute daily changes in the values of the unhedged and hedged portfolios, are reported
in Table 2.6. Both in-sample and out-of-sample results indicate that the SMV model leads to lower
hedging errors, which can be explained by its superior fit to implied log-normal option volatilities and

45 Trolle and Schwartz (2009b) use a similar hedging case study to assess the presence of unspanned stochastic volatility in
the crude oil market.
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Table 2.6: Hedging performance of the SMV and SV model

In-sample Out-of-sample

Portfolio SMV SV SMV-SV (%) SMV SV SMV-SV (%)

U 8,44 8,44 0,00 8,80 8,80 0,00
U+H1 2,29 2,44 -6,41 2,43 2,51 -3,44
U+H2 1,23 1,29 -4,97 1,06 1,09 -2,63
U+H3 0,53 0,58 -9,24 0,61 0,62 -2,59

Mean (ex. U) 1,35 1,44 -6,34 1,37 1,41 -3,11

Reported are the mean absolute daily changes in the value of 4 different portfolios. U denotes an unhedged
portfolio of call options meeting the selection criteria from Section 2.3.1. H1 includes a delta-hedge using 2
different, equally weighted, futures with maturities corresponding to the shortest and longest option maturity. H2
is rebalanced to hedge delta and gamma risk, using H1 and a short-term call option. H3 is rebalanced to eliminate
delta, gamma, and vega risk, using H2 and a long-term call option. All calculations are based on the full sample
period.

the resulting accuracy in calculating hedge ratios. If the SMV model were the true generating process
of option and futures prices, daily changes in hedged portfolio values would be closer to zero, however,
as we do not hedge continuously and due to the presence of idiosyncratic noise in option prices, a
considerable hedging error remains (Trolle & Schwartz, 2009b).

2.4 Conclusion
In this chapter, we propose a four-factor maximal affine stochastic volatility model, which allows for three
independent sources of uncertainty associatedwith the futures term structure and an additional, potentially
unspanned stochastic volatility factor. Moreover, the model features mean reversion to a stochastic long-
term level, a time-varying instantaneous correlation structure between all state variables as well as
unconditional correlations between the spot price, convenience yield, and volatility state variable. The
model is empirically implemented using time series of 37,126 futures and 12,166 corresponding call
option prices, observed between March 2006 and December 2013.

The empirical results of this study lead to three conclusions. First, the SMVmodel exhibits a superior
pricing performance compared to the three-factor models of Hughen (2010) and Tang (2012). Since
these benchmark models are known to yield a superior fit to futures data in various commodity markets,
compared to many commodity price processes, the pricing results of the SMV model are considerable.
Second, the findings support the introductory hypothesis that a universal model for commodity futures
and options will require more than three independent sources of uncertainty to accurately capture the
joint dynamics of both contract types. Third, in line with the findings of Trolle and Schwartz (2009b)
in the context of crude oil derivatives, we find that copper options contain important information that is
not fully spanned by futures prices. This implies that volatility cannot be accurately inferred from the
futures curve alone and option prices cannot be fully hedged by trading in the underlying instruments
only. This conclusion is also supported by the results of a simple hedging study.
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The SMV model can be extended in a number of ways. For instance, stochastic interest rates may be
included for the valuation of long-term futures and real options (see, e.g., Schwartz, 1997; Casassus &
Collin-Dufresne, 2005), the spot price process can be augmented with jumps to better fit the short-term
implied volatility smile (see, e.g., Deng, 2000; Villaplana, 2003; Casassus & Collin-Dufresne, 2005;
and Realdon, 2013), and deterministic seasonality functions can be incorporated in the spot price and
variance process for the application to seasonal commodity markets such as soybeans (see, e.g., Fackler
& Roberts, 1999; Lucia & Schwartz, 2002; Richter & Sörensen, 2003; and Geman & Nguyen, 2005).

With respect to the empirical part of this chapter, it would be interesting to consider different contracts,
markets, and benchmarks. For instance, an assessment of model fit to long-term futures may yield new
insights with respect to model applicability in the context of long-term capital investment appraisal and
real options valuation. It also needs to be clarified whether the SMV model is similarly powerful in
other major commodity markets such as crude oil or gold. Finally, it would be useful to directly compare
the performance of the SMV model to different benchmarks such as the HJM-type models in Trolle and
Schwartz (2009b). These issues are left to future research.





3
Dynamic procurement, pricing, and hedging under
cost and demand risk

The content presented in this chapter is based on Schöne, Spinler, and Birge (2016b). Partial results
from this chapter contributed to the conference presentation of Schöne (2015) and the presentation of
Spinler (2016).

In this chapter, we consider a periodic review, single-item, multi-period inventory
model in the presence of demand risk and multi-factor commodity price dynamics.
Within this framework, we characterize the jointly optimal strategy for the firm’s
purchasing, pricing, and financial hedging decision under risk aversion. The model
is solved using a flexible, Monte Carlo-based optimization algorithm that is novel
to the literature on inventory management. Our analysis leads to the following main
conclusions: (a) adopting an integrated pricing, procurement, and financial hedging
policy can increase expected utility and profits, while reducing downside risk; (b)
even a risk-averse firm may benefit from an increase in commodity price volatility
in terms of both utility and profits under operational flexibility. The opposite is true
for demand risk in the presence of production lead time. However, the negative
impact of demand risk on utility and profits is mitigated by operational flexibility.
(c) different assumptions about the stochastic cost process can have significant
implications for valuation results, optimal policies, and risk management.

3.1 Introduction
In today’s fast changing market environment, firms are often exposed to multiple sources of uncertainty.
On the one hand, commodity price volatility may constitute a major source of risk related to production
costs, while revenues are, on the other hand, frequently subject to volatile demand. As the combined risk
resulting from both cost and demand risk can pose a significant threat to firms’ profitability, effective,
cross-functional hedging strategies have become an important topic on the agenda of top management
(Fisher & Kumar, 2010). Traditionally, cost and demand risks are hedged separately; risks related to

35
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the evolution of commodity prices are hedged by derivatives and demand risk by physical inventory
(Kouvelis et al., 2013). However, as pointed out by the authors, inventory and hedging decisions are
not necessarily independent but need to be considered and optimized jointly. More recently, Xiao et al.
(2015) suggest that a successful PRM strategy may not only span inventory and hedging decisions but
can, additionally, benefit from dynamic pricing of the end product depending on the current state of costs
and inventories. By adopting an integrated PRM approach of this kind, Hewlett-Packard realized over
$425 million in cost savings over a 6-year period.

However, while the benefits of an integrated pricing, procurement, and hedging strategy are practically
evident, it remains a non-trivial question how the different cross-functional decisions should be optimally
coordinated under uncertainty. As an illustration of the complex interdependence of decisions within
an integrated PRM strategy, consider the following example of an industrial firm, facing an unexpected
increase in raw material prices. Suppose the firm responds to the cost increase by raising prices. Under
the assumption of price elastic demand, this decision can cause a decline in unit sales, higher than
expected inventory levels at the end of this period, and a corresponding increase in associated inventory
carrying cost. Since excess inventories may be deployed to satisfy future demand, necessary rawmaterial
procurement quantities in the present and future business period will decline. As a result, the exposure
to future cost volatility is reduced, requiring an adjustment of the volume of traded hedging instruments.
Finally, lower procurement and production levels may be associated with a loss in economies of scale,
resulting in higher unit costs. Now, should prices be raised in the first place?

While this example illustrates the complexity of integrated PRM decisions faced by many firms in
practice, previous research on jointly optimal inventory management, financial hedging, and pricing
policies is sparse. In fact, Xiao et al. (2015) are the first to study an integrated pricing, multi-sourcing
(spot and forward), and inventory control model of a risk-neutral firm under stochastic demand and
volatile procurement costs.

In the present study, we extend this model in several directions, allowing for risk aversion, financial
hedging, and multi-factor cost dynamics. We make the following three main contributions to existing
research: (1) the first study to address the joint pricing, inventory management, and hedging problem
of a risk-averse firm facing stochastic costs and demand; (2) a flexible, Monte Carlo-based optimization
algorithm that allows to solve the firm’s decision problem under multi-factor cost dynamics; (3) an
extensive numerical study to (a) characterize optimal PRMpolicies and the value ofmanagerial flexibility,
(b) assess the influence of different stochastic commodity price models and input uncertainty on valuation
results, policies, and risks, (c) quantify the impact of risk aversion on the distribution of profits, and (d)
determine the sensitivity of valuation results to model inputs.

We consider the following fundamental setting: a stylized industrial firm sources a traded commodity,
which is processed into a final product under lead time, stored, and sold at the profit maximizing price
to meet uncertain, price elastic demand. The firm procures physical material from the spot market and
can enter into futures contracts as a financial hedge against future spot price risk. The firm dynamically
optimizes inter-period utility over a multi-period time horizon and is averse to downside risk, which
refers to the possibility that future profit expectations are not met. We assume here that the firm has an
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incentive for risk reduction as in the theoretical models of C. W. Smith and Stulz (1985) and Froot et al.
(1993). While we do not explicitly capture such value-enhancing mechanisms in our models, they are
consistent with empirical evidence (e.g., Allayannis & Weston, 2001; and MacKay & Moeller, 2007)
that supports the use of hedging. The fundamental setting studied in this chapter is also closely related
to business practice and was developed in close consultation with risk management executives at the
multi-national chemical company BASF.

Our findings show that a dynamic PRM strategy involving pricing, inventory management, and
hedging decisions leads to an increase in both expected utility and profits, while reducing downside
risk, compared to operating strategies that are characterized by a lower degree of managerial flexibility.
In line with Xiao et al. (2015), we find that the present value of expected profits is increasing in cost
volatility. However, the risk-averse firm may not always prefer higher cost volatility due to the associated
risk of losses. When a futures hedge can be implemented, even a risk-averse firm can benefit from cost
volatility. In contrast, utility and profits are decreasing in demand volatility but this effect is mitigated
by dynamic pricing. In this context, the strategic value of dynamic pricing can be increasing in demand
volatility for a firm that is currently operating under a fixed price strategy. With respect to commodity
price dynamics, we find that different models can have significant implications for valuation results and
operating policies. Neglecting the stochastic nature of interest rates, the convenience yield, and volatility
can increase downside risk and profit variance. Moreover, our findings suggest that model calibration
error can affect operating policies significantly. For instance, in the context of a standardWiener process,
managers should be careful not to underestimate the drift and volatility parameters as this can lead to
excessive hedging and eventually to higher downside risk.

3.2 Literature review
This research is closely related to the literature on inventory management in the presence of stochastic
costs as well as operational and financial hedging. It is also linked to research on the joint pricing and
inventory management decision in the presence of stochastic demand. A third related stream of literature
is concerned with commodity price modeling, derivatives pricing as well as the valuation and optimal
operation of commodity-linked real assets. We will briefly review the literature from each of these fields
below.

An excellent survey of earlier studies on the integration of operational and financial risk management
can be found in Kleindorfer (2009). Berling and Martínez-de-Albéniz (2011) provide an overview of
research focusing on the influence of stochastic purchase prices on optimal inventory policies and Haksöz
and Seshadri (2007) give a comprehensive literature survey of spotmarket operations, purchasing, and the
valuation of procurement contracts. Studies focusing on the joint optimization of inventory or capacity
and hedging decisions in a single-period setting include Gaur and Seshadri (2005), Caldentey and Haugh
(2006), Ding, Dong, and Kouvelis (2007), and Chod, Rudi, and Van Mieghem (2010). Multi-period
problems of integrated operating and hedging decisions can be found in X. Chen, Sim, Simchi-Levi,
and Peng (2007), Zhu and Kapuscinski (2011), and Kouvelis et al. (2013). The latter of these articles
is closely related to the present study regarding a number of aspects. The authors consider the joint
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optimization of inventory levels and financial hedging of a risk-averse firm with mean-variance, inter-
period utility. The firm faces stochastic costs and demand and has access to the spot, futures, and options
market. Selling prices are, however, assumed to be fixed and costs follow a standard one-factor model.

In contrast to the literature on operational and financial risk management under stochastic costs,
research on joint pricing and inventory management no longer assumes fixed selling prices. Instead,
ordering costs are non-stochastic. An extensive review of this literature stream is given by X. Chen and
Simchi-Levi (2012) and a more recent overview can be found in Xiao et al. (2015). Among the studies
cited therein, X. Chen and Simchi-Levi (2004a) should be mentioned here. The authors analyze a finite
horizon joint pricing and inventory control problem with fixed set-up costs and show the optimality of
an (s, S, p) policy. Here, inventory is managed according to an (s, S) policy and optimal prices depend
on the initial inventory position in each period. In Section 3.6, we extend these findings to the case of
stochastic costs and show that optimal prices not only depend on the inventory position but also on the
state of costs.

The body of literature on commodity price modeling and the valuation of financial and real assets
has become extensive. Related articles on commodity price processes and the valuation of commodity
derivatives include Gibson and Schwartz (1990), Schwartz (1997), Schwartz and Smith (2000), Richter
and Sörensen (2003), Casassus and Collin-Dufresne (2005), Geman and Nguyen (2005), Trolle and
Schwartz (2009b), Hughen (2010), and Tang (2012). The detailed consideration of commodity price
dynamics in this chapter is motivated by a number of studies, highlighting the critical importance of
stochastic process assumptions in valuation models. For instance, J. E. Smith and McCardle (1999) find
that mean reversion in oil and gas prices has a substantial influence on the valuation and operation of
oil and gas investments. Tsekrekos et al. (2012) compare the commodity price processes outlined in
Schwartz (1997) and find that process choice has important implications for theoretical asset values and
optimal decision rules. A similar conclusion is reached by Schöne (2014), who provides an empirical
analysis of commodity price dynamics in different markets, suitable stochastic processes of spot price
dynamics, and their implications for the valuation and operation of a mining project with multiple
embedded real options. More recently, Secomandi, Lai, Margot, Scheller-Wolf, and Seppi (2015) study
the valuation and hedging of cash flows generated by commodity- and energy-conversion assets and find
that even small errors in the stochastic price model can have a disproportionately larger impact on storage
valuation and hedging decisions. Goel (2007) and Goel and Gutierrez (2011) consider the Schwartz
and Smith (2000) model in the context of optimal procurement and distribution policies, exploiting
information from the term structure of commodity prices. Finally, Boogert and de Jong (2008, 2011)
study the valuation of gas storage under single- and multi-factor commodity price dynamics. Their work
is methodologically related to our research with respect to the valuation of cash flows under operational
flexibility and multi-factor commodity price dynamics.

3.3 Single-product model
In this section, we model the dynamic pricing, inventory management, and financial hedging problem
of a risk-averse industrial firm under uncertain raw material costs and stochastic, price elastic demand.
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The sequence of events in our model is as follows. At the beginning of each period, the firm observes
the current commodity price st and the inventory level it , carried over from the previous period. Given
this information, the firm chooses the quantity of physical material to buy from the spot market bt , the
unit selling price of the end product pt , and the futures hedge f t . After these decisions are made, the
periodic demand shock occurs and profits are realized.

With respect to the production process, raw material is directly supplied to the manufacturing process
without prior storage and final products are available for sale after a lead time of one period. Thus,
there is no raw material inventory in our model and speculative raw material storage is ruled out. This is
motivated by four main arguments: first, under the assumption that the firm’s subjective storage costs are
in line with the market implied cost of carry, the expected return on physical inventory is zero; second,
in the absence of transaction costs, the payoff from holding physical inventory corresponds to trading a
futures contract and can, therefore, be replicated in the financial market; third, in practice, many firms
source raw material in the form of preprocessed parts and may not hold raw material inventory at all;
fourth, we assume immediate supply of raw material from the spot market so that raw material storage
does not reduce lead time. With respect to the futures hedge, it is assumed that the firm does not take
physical delivery of the futures contracts, which are only used as financial hedging instruments. Due to
the one-period production time lag, period t = T − 1 is the last time when raw material is bought and
period t = T − 2 is the last time when financial hedging takes place. Thus, one cycle of the decision
problem spans three time periods. In the exposition below, we denote stochastic variables by uppercase
letters and their realizations by corresponding lower case letters.

Let ΠO
t (pt, bt | it, st, ψt ) denote the firm’s random economic operating profit at the end of period t,

given an initial inventory level of final products it , the commodity price realization st , and the observed
demand shock ψt . The operating profit in period t is given by

Π
O
t (pt, bt | it, st, ψt ) = ptqt − bt (st + wt ) − ht (it + bt ) , (3.1)

where qt = min{dt, it} refers to the number of units sold, the demand is given by dt = a − ηpt + ψt ,
and ψt is a realization of the standard normal demand shock Ψ ∼ N (0, σd). Demand is bounded from
below by zero and unmet demand is lost and not backlogged. Note that alternative demand specifications
include, for instance, the multiplicative model discussed in X. Chen and Simchi-Levi (2004a) or a model
of correlated demand and commodity prices in the sense of Gaur and Seshadri (2005). For a detailed
comparison of additive and multiplicative demand in the context of dynamic pricing, we refer to Petruzzi
and Dada (1999). The initial inventory level in period t + 1 is equivalent to the ending period inventory
at time t so that it+1 = it − qt + bt . To account for limited storage capacity, we impose bt ≤ imax − it ,
where imax refers to the capacity of the firm’s storage facility. wt denotes unit labor costs, reflecting the
non-stochastic part of production costs, and ht is the economic unit holding cost of inventory, which is
defined as ht = st (rt + ϕ). rt denotes the current risk free interest rate and ϕ is a percentage reflecting
inventory storage and handling costs.1 At the end of the optimization horizon (t = T), excess inventory

1 Handling costs may not necessarily be proportional to the commodity price in all practical applications. However, it is
straightforward to account for inventory holding costs as an absolute cost per item instead.
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can be sold for a salvage value SV =
(
iT − qT

)
ΦsT , where Φ denotes the percentage of the market value

of excess inventory that is received as a salvage value. The cash flow from financial hedging is given by

Π
F
t+1 (St+1, f t ) = (St+1 − E [St+1 | st ]) f t, (3.2)

where f t denotes the number of futures contracts entered in the current period. The futures price reflects
the risk-neutral expectation of the future spot price so that E

[
ΠF
t+1 (·) | st

]
= 0. Total periodical end-of-

period profits are given as the sum of economic operating profits and the proceeds from financial hedging
activities

Π
OF
t (pt, bt | it, st, f t−1, ψt ) = ΠO

t (pt, bt | it, st, ψt ) + ΠF
t (st, f t−1) . (3.3)

As discussed in the introduction, firms may have an incentive for risk reduction, even when investors
are well-diversified. For example, in the presence of market frictions, such as taxes or costs of financial
distress, risk management enhances firm value (C. W. Smith & Stulz, 1985). Moreover, hedging can
help to ensure the availability of sufficient internal funds for investment, research, and development. If
the cost of external funding exceeds the cost of internal funds, risk management has a positive effect on
firm value (Froot et al., 1993). In our model, we capture such incentives for risk reduction implicitly by
introducing risk aversion through a corporate utility function. This is in line with, among others, Eppen,
Martin, and Schrage (1989), Caldentey and Haugh (2006), and Kouvelis et al. (2013). For instance,
in a similar setting Kouvelis et al. (2013) introduce an inter-period mean-variance utility function of
the form U = E [·] − (λ/2) V [·], where E [·] and V [·] refer to the expectation and variance of profits,
respectively. In this study, we propose a slightly different version of the above utility function, where
firms derive disutility from downside risk relative to an expectation, rather than the symmetric variance
of future profits. As, for instance, Fisher and Kumar (2010) point out that firms may destroy substantial
value by hedging away upside potential in the attempt to gain protection against downside risk, it appears
desirable to work with a utility function that does not penalize risk symmetrically. This definition of
utility is also in line with the above stated theoretical arguments supporting the value enhancing nature
of risk management. For instance, the downside risk of missing profit targets is directly related to the
risk of facing a lack of internal funds and expected costs of financial distress. Moreover, downside risk is
priced in the cross-section of stock returns with evident implications for firms’ cost of capital and market
value (Ang, Chen, & Xing, 2006). Measures of downside risk have also been utilized in a variety of
settings, including, for example, capacity planning (Eppen et al., 1989) as well as dynamic pricing and
inventory management (Y. Chen, Xu, & Zhang, 2009; Xu, 2010). Finally, our utility function is closely
related to the widely used mean-semivariance and mean-variance criteria.

The firm’s utility associated with a random stream of profits Π in a given period t, is given recursively
by Ut = Πt [·] − λDt [·] + E [Ut+1]. Similarly to Kouvelis et al. (2013), expectations, denoted by E,
are defined under the assumption of the "partially complete" market introduced by J. E. Smith and
Nau (1995). Accordingly, the probability measure associated with E is a combination of the risk-neutral
probability measure on commodity spot prices and the firm’s subjective probability measure on demands.
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D denotes a downside deviation from a dynamically updated expectation, and λ ≥ 0 refers to the absolute
level of downside risk aversion. Formally, we define the firm’s recursive utility at the beginning of each
period t ∈ [t,T] as

Ut (pt, bt, f t | it, st, f t−1) = E
[
Π

OF
t

]
− λDt + E

[
Ut+1 | st

]
, (3.4)

where

Dt =

{
E



T∑
k=t

e−rt (k−t)∆
Π

O∗

k

�����
st−1


− E



T∑
k=t

e−rt (k−t)∆
Π

OF
k

�����
st


, 0

}+
(3.5)

and + denotes the maximum. Before turning to an interpretation of the utility function, we further clarify
the availability of information at the time of decision making. While the above expressions for ΠO and
ΠOF refer to the end of a given period to simplify the exposition, Ut denotes utility at the beginning
of period t, when decision making takes place. As stated above, the firm chooses pt , bt , and f t at the
beginning of each period, given the level of inventories, the futures position, and the current state of
the commodity price process st , but without knowledge of the realized demand shock ψt that occurs
after the decisions are made. If we were to assume knowledge of ψt at the time of decision making, the
model would exhibit a deterministic relationship between unit selling prices and resulting demand from
the perspective of the firm – a situation that defies reality. Thus, at the time of decision making, the
firm takes expectations with respect to both the future commodity price St+1, conditional on st , and the
demand shock Ψ that occurs in the current period.

In a given period, the firm’s utility is determined by three components: first, the expected profits
from operations and hedging activities in the current period ΠOF

t ; second, the potential disutility from a
decline in the present value of operating profits below projections (Dt ); third, expected future utilityUt+1.
Intuitively, Dt can be interpreted as follows. In each period, the firm formulates an expectation about
expected operating profits in the future, given the currently observable commodity price and inventory
level. This expectation takes into account all currently available information and the optimality of
future decisions. In the next period, a revised expectation is formulated about current and future profits,
given the realization of commodity price uncertainty st and the new state of inventories. The apriori
expectation based on st−1 is compared to the updated expectation, resulting in disutility whenever the
current outlook of present and future profits is below the expectation that was set in the previous period.
The apriori profit expectation against which the updated profit outlook is compared is denoted by ΠO∗ ,
where ∗ indicates the optimality of ΠO with respect to current and future operating activities of the firm.
ΠO∗ is best obtained in a separate optimization over ΠO. Under the resulting utility function, the role
of hedging is to limit the downside risk inherent in future operating profits that is caused by commodity
price and demand volatility. As Dt refers to profit expectations related to the entire remaining planning
horizon rather than standalone periodical profits, we ensure that decisions are inter-temporally optimal.
To clarify this statement, consider the following example. If commodity prices are low in a given period,
it may be value maximizing to make a high invest in inventory, allowing for higher unit sales in the
future. However, the inventory investment in the current period corresponds to an unexpectedly high
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cash outflow, which decreases ΠO
t below previous expectations E

[
ΠO
t | st−1

]
. Thus, if downside risk

were measured based on periodical profits, the inventory investment would cause disutility despite its
positive effect on expected future profits and the value of the firm. By considering not only current but
also expected future profits at the time of decision making, this inter-temporal inconsistency is avoided.
The effect of future downside risk on utility is recursively accounted for.

3.4 Commodity price dynamics
Following the existing literature on commodity price modeling and the valuation of financial and real
assets under uncertainty, we acknowledge that different assumptions about the stochastic process used
in a valuation model can affect expectations and policies significantly. With respect to the procurement
and hedging model studied in this chapter, the commodity price process assumes a critical role in several
regards. First, different stochastic processes may imply diverse distributions of future spot prices, which
determine raw material procurement costs. Second, theoretical futures prices are affected by different
assumptions about spot price and cost of carry dynamics, which may influence the optimal hedging
strategy of the firm. Third, the procurement model features option-like characteristics as the firm is
able to adjust selling prices, procurement quantities, and hedging activities contingent upon the future
realization of commodity prices. As the value of such real options depends on the price distribution, it
follows that optimal policies and valuation estimates may differ under diverse stochastic processes.

To account for the complex nature of commodity markets in a PRM context, we propose the following
four-factor model of the risk-neutral spot price dynamics: dS =

(
r − q

)
Sdt + σsSdWs +

√
vSdWsv,

dr = κr (θr − r) dt + σrdWr , dδ = κδ (θδ − δ) dt + σqdWq, dv = κv (θv − v) dt + σv
√
vdWv. Given

a probability space and filtration generated by a standard Brownian motion Wt in R4, the spot price
is an Itô process with respect to Wt . St refers to the commodity spot price, rt and δt denote the
instantaneous risk-free interest rate and net convenience yield, respectively, and vt is a variance process.
Note that, for simplicity, we make an exception from our notational convention and denote the stochastic
variables r , δ, and v by lowercase letters. The instantaneous correlation structure is defined as follows:
Cov (dWs, dWr ) = ρsrdt, Cov

(
dWs, dWq

)
= ρsqdt, Cov (dWsv, dWv) = ρsvdt, Cov

(
dWr, dWq

)
=

ρrqdt. We will refer to this process as the SRCV model in analogy to its four factors. The model is
closely related to, among others, the well-known two- and three-factor models of Schwartz (1997) as well
as the three- and four-factor models in Richter and Sörensen (2003), Hughen (2010) and Yan (2002). The
choice of this specification is motivated by two main arguments. First, by allowing for both stochastic
interest rates and convenience yields we are able to infer discount rates and inventory carrying costs
directly from futures and bond prices. Second, stochastic volatility is important to explain option prices
(Bakshi et al., 1997). As it is well-known that volatility is generally stochastic in commodity markets
(see, e.g., Hughen, 2010) and due to the option-like flexibility in the procurement and hedging model,
we include volatility risk in the model.

Besides themost general four-factor SRCVprocess, several nestedmodels are discussed. In particular,
we define the SRC process as an SRCV model without stochastic volatility and the SC model as an SRC
process with constant interest rate. These models are equivalent to the three- and two-factor model of
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Schwartz (1997). S refers to a one-factor model with constant drift and volatility, which is equivalent to
a GBM that is commonly used in the operations management literature to model stochastic costs.

We implement the SRCV process and nested models empirically using weekly prices of WTI crude
oil futures from NYMEX with maturities of 1, 3, 12, and 24 months over the time period from January
3, 2000 until December 29, 2014. This leaves us with a total of 3,132 futures price observations. The
model is also calibrated to the term structure of interest rates over this period, which is represented by
the 1-, 3-, and 12-months LIBOR rates and the 2-year swap rate, which are converted to discount bond
prices. Details of the empirical implementation are relegated to Appendix A.2.2

3.5 Numerical evaluation
In this section, we discuss the implementation of the PRM model. We adopt a numerical optimization
approach, which is highly flexible in the sense that it allows for multi-factor commodity market dynamics
and a realistic treatment of inventory.3 We proceed by, first, explaining the dynamic optimization
algorithm and, thereafter, provide a detailed discussion of the least squares estimation procedure, which
is used to obtain conditional expectations of future utility in the dynamic program.

3.5.1 Dynamic program
In solving the procurement and hedging model, we set up a dynamic program in conjunction with least
squares estimation of the continuation value in order to accommodate multi-factor commodity price
dynamics. This approach is based on the least squares Monte Carlo (LSM) algorithm of Longstaff and
Schwartz (2001) and has close linkages with the valuation method applied by Boogert and de Jong (2008,
2011) in the context of gas storage valuation. We will refer to this valuation algorithm as least squares
Monte Carlo optimization (LSMO). Our goal is to find the jointly optimal policy for spot procurement
(bt ), pricing (pt ), and hedging ( f t ) such that the firm’s utility satisfies the following dynamic program:

Ut (·) = max
pt ≥0, 0≤bt ≤imax−it, ft ≥0

{
ut (·) + e−rt∆E [Ut+1 (·) | xt ]

}
(3.3)

for all t ∈ [t,T], where ut is defined as the periodic utility excluding the continuation value

ut (·) = E
[
Π

OF
t

]
− λDt (3.4)

and Dt follows from Equation 3.5. As we work with multi-factor models of commodity price dynamics,
we formulate the expectation of future utility conditional on today’s state of the commodity price process
more generally as E [Ut+1 (·) | xt ], where expectations are taken conditional on xt , which denotes the
vector of all stochastic state variables in a given process. For instance, in the case of the four-factor SRCV

2 Note that the model is not limited to an application in the crude oil market. Rather, we choose the crude oil market in
our numerical study as it is relevant in a wide business context and has particular relevance for the risk management at
chemical firms such as BASF.

3 In contrast to the numerical setup used in this section, analytical tractability typically requires myopic decisions, which
can, in turn, necessitate restrictive assumptions with respect to the treatment of leftover inventory (see, e.g., Kouvelis et
al., 2013).
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Algorithm 1: Least squares Monte Carlo optimization

Initialization:

Generate Nx commodity price paths xt with Nt = T/∆ time steps
Let X denote a state space with dimension Nt × Nx × Ni × Nf

Step 1 Initialize terminal contribution
forall States X ∈ XNt do

UT

(
p∗T , b

∗
T ≡ 0, f ∗T ≡ 0|X

)
= max

pT ≥0, 0≤bT ≤imax−Xi

{uT (pT , bT ≡ 0, fT ≡ 0|X )}
end

Step 2 Backward recursion
for t ← Nt − 1 to 1 do

A. Determine continuation values
forall States X ∈ Xt do

Ct (X ) = e−rt∆E
[
Ut+1

(
p∗t+1, b

∗
t+1, f t = X ′f |X

′
)
|Xx

]

end

B. Optimization
forall States X ∈ Xt do

Ut
(
p∗t , b

∗
t , f ∗t |X

)
= max

pt ≥0, 0≤bt ≤imax−Xi, ft ≥0

{
ut (pt, bt, f t |X ) + Ĉ (pt, bt, f t |X )

}
, where

Ĉ (pt, bt, f t |X ) = Lk (I, F ,Ct (Xx ) , it+1 (pt, bt ) , f t )

end
end

Nt denotes the number of time steps, Nx denotes the number of price paths, Ni denotes the number of discretization points for
the inventory discretization I, and Nf refers to the number of discretization points for the hedging positions F . By Xt , we
denote the set of all states at the time step t. Within the set Xt , X = {it, xt, ft−1}, and, for example, Xi = it and Xx = xt .
X ′ refers to the state X in the subsequent time period t + 1, which captures the next realization of commodity prices xt , but
is equivalent to X with respect to the inventory level i and futures position f . The expectation E [·|x] is computed using
Equation 3.7. Lk (·) denotes an interpolation function, where k = {linear, cubic, spline} indicates the interpolation method
used. Thus, for a given state X , Ĉ (·) denotes the expected continuation value C (·), interpolated from the discretization I and
F , given the decisions pt , bt , and ft . Note that the continuation value does not directly depend on pt and bt but rather on the
ending (beginning) inventory level of the current (next) period, which is a function of pt and bt . Demand risk Ψ is omitted in
the above representation for simplicity. In the presence of Ψ, respective expectations have to be taken over ut and it+1

(
pt, bt

)
.

model xt =
[
yt rt δt vt

]>. Besides accounting for stochastic commodity prices, the firm will also need
to formulate expectations about the demand shock at the time of decision making. This expectation of
E

[
ΠOF
t

]
is numerically evaluated using a Gaussian quadrature with 20 integration points.

After generating an appropriate number of commodity price paths using the transition equation of a
given commodity price model (please refer to Appendix A.2), the program in Equation 3.3 is solved via
backward recursion in a four-dimensional state space, which takes into account the commodity prices,
inventory levels, futures positions entered in the previous period, and time. For inventories and futures
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positions, we use an appropriate discretization, denoted by I and F , respectively, which ensures that
all feasible actions of the firm lead to states of the system that fall within the domain of the state space.
The convergence of the valuation algorithm with respect to the number of price simulations and the
inventory discretization is discussed in Section 3.6.1. An overview of the LSMO procedure is given by
Algorithm 1.

The program is initialized in the final period T of the decision horizon as shown by Step 1 of
Algorithm 1. Since the firm will neither purchase physical material, due to the production time of one
period, nor enter futures contracts in the final period, Equation 3.3 can be simplified to obtain final period
utility:

UT (pT | iT , sT , fT−1 ≡ 0) = max
pt ≥0

{uT (pT | iT , sT )}. (3.5)

Terminal utility is maximized by setting optimal prices for each realization of the commodity price
process, initial inventory level, and futures position traded in the previous period. The numerical
optimization procedure used to determine optimal decisions is discussed at the end of this section. In
period t = T − 1, the firm makes both procurement and pricing decisions. However, since there is
no physical procurement in the next period, there is no hedging in that period. Note that f ∗

T−1 = 0 is
optimal even though the salvage value of inventory is proportional to the commodity price in the final
period and λ ≥ 0. Intuitively, as the firm effectively holds a long position in physical material, only
a short futures position would reduce profit volatility arising from the salvage value in period T . As
we exclude the possibility of short sales, f ∗

T−1 = 0 is the utility maximizing policy. In turn, any policy
fT−1 > 0 increases profit volatility and downside risk without contributing to expected profits under the
risk-neutral measure.

Once the terminal contribution is initialized, we proceed with the backward recursion in Step 2 of
Algorithm 1, which is based on a two-step procedure. In Part A, we determine the continuation values
E [Ut+1 (·) | xt ], corresponding to each future state of inventories and hedging positions, conditional on
the respective current state. Similarly to the LSM algorithm, this prediction step is performed based on a
least squares regression of future utility on the current vector of commodity prices xt for each inventory
and hedging state. Note that we perform separate regressions for each inventory level and futures hedge,
instead of including these in the regression as this leads to more stable regression estimates.4 The
regression-based estimation of conditional expected future utility is further discussed in the subsequent
section.

In Part B of Step 2, the utility maximizing policy is chosen such that the sum of current period profits,
the downside risk adjustment, and expected future utility is maximized. At time t = T − 1, . . . , 1, the
continuation value depends on the procurement and pricing decision and for periods t = T − 2, . . . , 1
it depends, additionally, on the hedging decision. In particular, the amount of material purchased in
the present period directly affects the expected starting inventory level in the following period and unit

4 This is in line with Boogert and de Jong (2008), who find that the numerical stability of the LSM algorithm deteriorates
in the context of gas storage valuation, if volume levels are included in the regression prediction. Instead, they suggest to
run separate regressions for each volume level.
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selling prices have an impact on expected demand and leftover inventory in the current period, which
is carried over to the next period. As the state of future utility is a function of the starting inventory
level in a given period, it follows that the pricing and procurement decision affect the continuation
value. Similarly, today’s hedging decision determines future financial cash flows and expected utility.
Whenever a policy {pt, bt, f t} is evaluated that leads to a future inventory level or futures hedge position
between two points on the discretization I and F , the continuation value corresponding to this policy is
interpolated using one of the interpolation methods k = {linear, cubic, spline}. Given the current and
expected future utility for each evaluated decision {pt, bt, f t}, we select the utility maximizing decision
{p∗t , b

∗
t , f ∗t } for each current state of the commodity price, inventory, and hedging position. Next, we

continue the recursion.
When the recursion terminates at t = 1, the utility maximizing policy today (t = 0) is implicitly

defined by Ut=1. In particular, assuming zero starting inventory and no previous hedging activity, the
present value of expected future utility at time t = 0 is given by:

U0 (b0, f0 | s0) = ΠO
0 (b0 | s0) + e−rt∆E

[
U1

(
p∗1, b

∗
1, f ∗1 | s0, i1 = b0, f0

)]

≈ ΠO
0 (b0 | s0) +

1
Nx

Nx∑
i=1

e−rt∆U1
(
p∗1, b

∗
1, f ∗1 | si,1, i1 = b0, f0

)
, (3.6)

where ∗ denotes the optimality of a decision with respect to future expected utility. As there are no sales
in period t = 0, only b0 and f0 have to be chosen. Since b0 corresponds to the beginning inventory in
the next period, b∗0 and f ∗0 are easily determined as the maximizers of the sum of cash outflows today,
resulting from material purchases, and the expected discounted continuation value that is implied by
today’s procurement and hedging decision. The expectation of future utility with respect to x0 is simply
given as the mean over all commodity price paths in period t = 1.

The numerical optimization over pt , bt , and f t is performed using a grid search method, where Ut (·)

is first evaluated by enumerating over a coarse grid of policies, which is refined in subsequent iterations.
p∗t , b

∗
t , and f ∗t are selected such that Ut is jointly maximized. To speed up the optimization procedure,

the objective function may be vectorized and evaluated in parallel for all different states at a given time
step.

A formal proof of the joint concavity of Ut with respect to pt , bt , and f t is omitted, however, it is
numerically established that Ut is a jointly concave function of the decision variables. When multiple
maximizers of Ut exist, we select the lexicographically smallest solution. In the optimization, the model
can be vectorized to a large extent and allows for parallel computing in all dimensions except the backward
recursion in time.

3.5.2 Estimation of continuation values

As the use of the LSM algorithm is relatively novel in the literature on procurement and inventory control
problems, we provide a more detailed description of this method in the context of multi-factor commodity
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Table 3.1: Parameters

Time horizon (yrs.) T 1 Demand shock volatility σd 3
Time step (months) ∆ 4 Inventory constraint imax 30
Number of price paths Nx 5,000 Unit storage cost ϕ 5%
Unit labor cost wt 1.5 Downside risk aversion λ 1
Economies of scale γ 0.05 Commodity price (t = 0) s0 8
Salvage value (%) Φ 60% Interest rate (t = 0) r0 0.02
Demand intercept a 60 Convenience yield (t=0) δ0 0.05
Price elasticity η 5 Variance (t = 0) v0 0.05

Commodity prices are log-normally distributed under the one-factor model. Calibrated parameters of the one-
factor and multi-factor cost processes are given in Appendix A.2. The demand shock is normally distributed:
Ψ ∼ N (0, σd).

price dynamics below. Formally, under the LSM algorithm, continuation values are approximated by

Ct = e−rt∆E [Ut+1 (·) | xt ] ≈
K∑
k=0

βk,t fk (xt ) , (3.7)

where fk , k = 0, . . . , K refers to a set of basis functions evaluated for all paths i = 1, . . . , Nx of xi,t
and βk,t denote the corresponding regression coefficients determined by a linear least squares fit of
Equation 3.7:

{βk,t}K0 = argmin
{βk, t}K0

Nx∑
i=1


Ct −

K∑
k=0

βk,t fk
(
xi,t

)

2

. (3.8)

With respect to the choice of basis functions fk , the most common approach follows from the original
article by Longstaff and Schwartz (2001), suggesting the use of a constant, the first three powers of
each state variable, and their first-order cross products. In the case of the four-factor SRCV model, this
approach yields a total of 19 basis functions. However, as pointed out by Boogert and de Jong (2011),
in a multi-factor setting it is particularly important to ensure that regressions are performed in a stable
manner. In their research on gas storage valuation under multi-factor gas price dynamics, the authors
report problems with matrix inversion when using a complete set of polynomials of order three, whereas
a complete set of polynomials of order two underperformed. In order to obtain a set of basis function that
yields both high explanatory power and stable matrix inversion, we follow Boogert and de Jong (2011)
and adopt the following procedure.

First, let m denote the matrix of regressors, where m :=
[
1, x, x2, . . . , xn

]
so that only the log-spot

price is considered as an explanatory variable. We begin to determine the optimal order n by staring
with a high value, which is decreased until the conditional number of m>m crosses a pre-set threshold.
In the case of a one-factor model, the resulting specification is used. For a multi-factor model, we next
seek to improve the predictive accuracy by adding additional state variables to m. Other than Boogert
and de Jong (2011), we do not use a greedy heuristic but evaluate an ex-ante specified set of meaningful
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Figure 3.1: Convergence of valuation algorithm.

configurations for m, where the optimal configuration m∗ yields the best least squares fit, while satisfying
the restriction on the conditional number of m. Within the set of possible configurations, we consider
different subsets of state variables, powers, and cross products up to order four. The choice of simple
powers instead of Laguerre, Hermit, or Chebyshev polynomials is motivated by Boogert and de Jong
(2011).

3.6 Results

In this section, we report the results of numerical studies on (a) the convergence of the valuation algorithm,
(b) optimal policy decisions and the value of flexibility, (c) the influence of different commodity price
models on valuation results, (d) the implications of risk aversion, and (e) the sensitivity of results to input
parameters. Unless otherwise specified, we use parameters from Table 3.1 and the one-factor model of
input costs.

3.6.1 Convergence of valuation algorithm

As a first step, we ascertain that valuation results converge to a stable solution and determine the necessary
number of commodity price paths and discretization points in the inventory and hedging state space.
Figure 3.1a illustrates valuation results for a varying number of commodity price paths. Accordingly,
1,000 simulations are sufficient to reach a stable solution in the present numerical setting. This is true
both for the four-factor SRCV process and the one-factor S model. In Figure 3.1b, we investigate the
necessary number of discretization points on the inventory and hedging state space to achieve stable
valuation estimates under different approximations of the continuation value. The results indicate that
seven discretization points may suffice under spline interpolation, allowing for a smaller state space,
faster computation, and lower memory usage compared to cubic and spline methods.
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Figure 3.2: Ut : expected present value of utility, bt : physical spot procurement quantity, pt : unit selling price,
f t : number of futures, st : cost realization in period t, it : initial inventory level.

3.6.2 Optimal policy

Optimal policy decisions are shown in Figure 3.2. In particular, we illustrate the expected present value
of utility as a function of today’s hedging and procurement decision in part (a) and the state dependent
pricing, purchasing, and hedging policies for an exemplary future period in panels (b), (c), and (d),
respectively. Today’s optimal procurement and hedging decision is implicitly defined by (a) as the utility
maximizing policy. A lower quantity of spot procurement is suboptimal as it leads to lost sales, while
a higher quantity creates both high storage costs and an increased risk of overage at the end of the
planning horizon. With respect to the hedging decision, it is shown that futures can increase utility;
however, excessive hedging beyond the scale of operational needs turns the firm into a speculator on the
commodity price, which creates downside risk that decreases utility. The optimal spot purchase quantity
for a given futures hedge is a non-linear, decreasing function in the number of futures entered. Thus,
physical inventory and financial hedging are strategic substitutes, which is in line with Kouvelis et al.
(2013), who demonstrate that in multi-period problems, financial hedging can decrease inventories. As
time progresses, the state of commodity prices and the new inventory level become observable. Optimal
unit selling prices are decreasing in the current inventory level and initially increasing in the commodity
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Table 3.2: Valuation results for different degrees of flexibility and demand volatility

Setting σd = 0 σd = 0.5 σd = 3 σd = 6

U V V aR U V V aR U V V aR U V V aR

(1) p̄ , b̄ 11.9 21.7 -7.9 9.5 19.1 -9.7 3.3 8.1 -6.4 0.0 0.0 0.0
(2) p∗, b̄ 11.9 21.7 -7.9 10.5 19.5 -7.5 4.6 9.4 -5.2 0.7 4.4 -6.8
(3) p̄ , b∗ 20.8 26.1 9.8 19.3 24.4 8.7 11.7 17.6 4.0 7.1 10.8 3.9
(4) c+, b∗ 8.9 18.7 6.3 8.6 18.3 6.0 6.0 14.2 2.3 3.9 10.0 0.0
(5) p∗ , b∗ 22.3 31.5 10.8 21.3 30.1 10.4 15.6 23.0 8.0 10.4 16.2 6.1

(6) p∗, b̄, f ∗ 21.1 21.7 20.3 19.6 19.9 19.7 11.7 12.0 11.9 5.1 5.3 5.3
(7) p̄ , b∗, f ∗ 24.9 26.2 24.7 23.1 24.5 22.9 15.0 17.7 12.7 8.8 11.4 6.7
(8) c+, b∗, f ∗ 12.5 19.0 10.2 12.2 18.5 10.1 9.3 14.3 8.3 6.5 10.4 5.1
(9) p∗ , b∗, f ∗ 27.6 31.7 25.7 26.3 30.4 24.2 19.1 23.2 16.5 12.5 16.3 9.8

U: present value of expected utility, V : present value of expected profits corresponding to U , V aR: 5th percentile
of cash value distribution as an indicator of downside risk. ∗ shows that the variable is dynamically adjusted in
every period, − indicates that the variable is fixed and set once at the beginning of the planning horizon. c+ refers
to cost-plus-pricing. Commodity price volatility is set to σs = 0.3, which is denoted in per cent p.a. and not in
absolute terms as σd .

price. When inventories are low, high prices align the level of demand with supply, creating high margins
for the low quantity of units that is available for sale. In turn, it is optimal to promote sales by lowering
prices when inventories are high, in order to reduce carrying costs and the risk of excess stock at the end
of the planning horizon. In some instances, prices may even be discounted below the level of current
production costs as the sales proceeds exceed the expected salvage value of excess stock received in the
final period. Unlike under non-stochastic costs (see, e.g., X. Chen & Simchi-Levi, 2004a), the utility
maximizing price not only depends on the state of inventory but also exhibits a positive relationship with
input costs. An exception to this rule occurs in states that are characterized by a combination of both high
costs and inventories, where prices become independent of the cost process. Here, high inventory levels
are expected to be sufficient to satisfy future demand or raw material prices are prohibitively high. In
either case, the firm will cease to procure material, which renders profits and optimal prices independent
of the cost state. The spot procurement and hedging volumes are decreasing in the inventory level and
the commodity price. As an illustration of the mechanics behind these policies, consider the following
example. For a given state of inventory, low costs correspond to low profit maximizing prices and
relatively high current and future expected demand. This drives down current inventories and increases
the need for new physical material to satisfy future demand. To gain protection against future cost
volatility, the financial hedging volume rises accordingly. In turn, when inventory levels are sufficiently
high to satisfy current and future demand, little new material is needed and the exposure to future cost
uncertainty is low, resulting in minor hedging activity.
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Figure 3.3: Value of flexibility and demand volatiliy. ∆E [U] refers to the change in expected utility resulting
from managerial flexibility under a given policy. For instance, p∗ represents the strategic value of introducing
dynamic pricing from the perspective of a firm that currently operates under a fixed price and fixed quantity policy
(p̄, b̄). ∆E [V ] and ∆E [V aR] denote the value of flexibility in terms of profits and units of VaR, respectively. This
figure corresponds to Table A.1 shown in Appendix A.1.

3.6.3 Managerial flexibility

In this section, we compare valuation results under several operating strategies, characterized by different
degrees of managerial flexibility. Results are reported for a range of demand and cost volatilities to
illustrate the sensitivity of the value of managerial flexibility in different market environments. In order
to improve the comparability of results, the same set of random numbers is used in the evaluation of
each operating strategy. In Table 3.2, we report the present value of expected utility (U) at time t = 0,
the corresponding present value of expected profits (V ), and the value at risk (VaR) as a measure of
downside risk. Here, we define the VaR as the 5th percentile of the profit distribution or, in other words,
the level of discounted profits that will be exceeded in 95% of cases. Thus, under this interpretation of
VaR, high values correspond to low downside risk. The demand volatility levels reported in Table 3.2
(σd = [0.5, 3, 6]) correspond to approx. 4%, 26%, and 52% of average expected periodic demand when
the firm chooses p, b, and f dynamically and when σd = 0. Note that σd refers to the level of demand
shock volatility in absolute terms. With respect to the operating policies, superscript − indicates that
the respective decision variable is fixed, i.e., it is set at the beginning of the planning horizon, such that
the expected present value of utility is maximized, and cannot be altered in response to the realization
of future uncertainty. In the special case of b̄, the firm decides on a fixed ordering lot size upfront and
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Table 3.3: Valuation results for different degrees of flexibility and commodity price volatility

Setting σs = 0.05 σs = 0.15 σs = 0.3 σs = 0.5

U V V aR U V V aR U V V aR U V V aR

(1) p̄ , b̄ 8.2 9.8 5.4 5.4 9.1 -1.5 3.3 8.1 -6.4 0.1 8.1 -17.2
(2) p∗, b̄ 10.3 11.9 7.4 7.4 11.2 0.0 4.6 9.4 -5.2 1.7 9.7 -14.9
(3) p̄ , b∗ 11.9 12.7 9.6 11.1 13.3 6.6 11.7 17.6 4.0 14.4 23.6 3.6
(4) c+, b∗ 11.0 12.4 7.7 8.7 12.8 3.9 6.0 14.2 2.3 5.4 14.3 2.4
(5) p∗ , b∗ 13.3 14.5 10.0 13.3 16.8 8.0 15.6 23.0 8.0 20.1 33.5 8.1

(6) p∗, b̄, f ∗ 11.9 11.9 11.8 11.8 11.9 11.8 11.7 12.0 11.9 11.6 12.9 12.4
(7) p̄ , b∗, f ∗ 12.6 12.7 12.4 13.0 13.9 12.6 15.0 17.7 12.7 19.3 24.8 14.2
(8) c+, b∗, f ∗ 12.0 12.4 11.9 11.5 13.0 11.2 9.3 14.3 8.3 8.3 15.3 7.3
(9) p∗ , b∗, f ∗ 14.4 14.5 14.3 15.4 16.8 14.7 19.1 23.2 16.5 26.0 33.9 20.4

U: present value of expected utility (t=0), V : present value of expected profits corresponding to U , V aR: 5th
percentile of cash value distribution as indicator of downside risk. ∗ shows that the variable is dynamically adjusted
in every period, − indicates that the variable is fixed and set once at the beginning of the planning horizon. c+

refers to cost-plus-pricing. Volatility of the demand shock is set to σd = 3 in absolute terms.

orders either the fixed lot size or, if the inventory constraint is violated, the closest feasible quantity,
i.e., bt = min{b̄, imax − it}. Superscript ∗ indicates that a variable is dynamically adjusted to the state
of commodity prices and inventory in the sense of Figure 3.2. c+ refers to a cost-plus-pricing scheme,
where a predetermined margin is added to the raw material and production cost to arrive at the periodic
selling price in every period. We compare nine different operating strategies: (1)-(5) refer to different
pricing and procurement settings without the ability to hedge, while strategies (6)-(9), additionally,
involve dynamic hedging with futures.

Table 3.2 shows that dynamic operating strategies, such as (5) and (9) generally outperform strategies
that are characterized by a lower degree of flexibility as, for instance, the static policy (1). It stands
out that the policies involving cost-plus-pricing in row (4) and (8) perform poorly compared to fixed
or dynamic pricing schemes. In fact, the fully static strategy (1) leads to superior expected utility than
policy (4) when demand volatility is low. However, when σd is relatively high, dynamic purchasing
(b∗) helps the firm to manage inventory more effectively in response to demand shocks, explaining the
superiority of strategy (4) compared to (1). Thus, it follows as a managerial insight that protecting a
fixed margin under price elastic, volatile demand and stochastic costs can lead to inferior performance
compared to dynamic pricing and even a fixed price policy. Generally, we may notice that U , V , and
V aR are decreasing functions of demand volatility, which increases the risk of excess stock at the end
of the planning period. As a result, less material is stored, leading to more frequent stock-outs and lost
revenue. Figure 3.3 shows a non-exhaustive overview of the value of managerial flexibility associated
with different operating strategies. From left to right, we assess the value of stand-alone pricing (p∗)
and procurement flexibility (b∗) as well as the joint value of flexibility without hedging (p∗, b∗) and with
hedging (p∗, b∗, f ∗). Also shown are conditional flexibility values, which refer to the marginal value
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of adding flexibility to an existing operating strategy. For instance, the value of introducing dynamic
pricing, when the firm currently follows a fixed price but dynamic procurement strategy, is denoted by
p∗ |b∗. In some instances, it may be more logical to interpret the value of flexibility as an economic cost
of inflexibility. For instance, a manager might need to understand the economic cost of making a fixed
price commitment for the coming year. Assuming that the firm follows a dynamic procurement strategy
but does not engage in financial hedging, the economic cost of the price commitment corresponds, again,
to p∗ |b∗. A number of observations are worth highlighting. First, the cash value of dynamic pricing and
purchasing is increasing in the level of demand volatility. Second, dynamic procurement and pricing are
strategic complements. For instance, suppose σd = 0 and the firm procures the same static quantity of
material in every period (b̄). Then, profit maximizing prices are identical in every period and the ability
to revise prices dynamically has no value. When, σd > 0 dynamic pricing is valuable in so far as it
allows to mitigate the effect of unexpected demand shocks. This is depicted in Figure 3.3 for strategy p∗.
However, under a fully dynamic procurement strategy, where optimal inventory levels are affected by
cost and demand volatility, utility maximizing prices can differ in every state and period (see Figure 3.2).
This leads to a higher value of dynamic pricing than under a static procurement policy as illustrated in
Figure 3.3 (comparing p∗ and p∗ |b∗ ). Third, consider the value of hedging. Intuitively, futures help to
improve VaR but add little to expected profits. Thus, the increase in utility resulting from futures hedging
is mainly explained by the reduction in downside risk.

We repeat the above analysis for different levels of commodity price volatility instead of demand
volatility and report the results in Table 3.3 and Figure 3.4. Similarly to Xiao et al. (2015), we find that
commodity price volatility can lead to an increase in expected profits. As pointed out by the authors this
can be explained by the ability of the firm to react to changes in the environment. In this way, a firm is
able to extract high profits when costs are low, overcompensating low profits that arise when costs are
high. While Table 3.3 shows that the present value of expected profits (V) is monotonically increasing in
cost volatility under several strategies, this is not necessarily the case for utility. Here, an increase in cost
volatility can be associated with higher downside risk, which is not overcompensated by an increase in
profit expectations. This effect is particularly pronounced under the cost-plus-based pricing strategies (4
and 8), where utility is decreasing in volatility throughout. The degree to which downside risk leads to a
decrease in utility for higher levels of cost volatility is controlled by the absolute level of downside risk
aversion λ. When the firm is able to engage in financial hedging, utility becomes more resistant to cost
volatility (e.g., comparing strategy 2 and 6). Under strategies (7) and (9) utility is even monotonically
increasing in cost volatility. This positive relationship between utility and cost volatility under financial
hedging can be explained by the firm’s ability to benefit from an increase in the profit expectation caused
by volatility, while limiting the risk of downside losses using futures. In fact, strategies (6), (7), and (9)
exhibit an increase in VaR, i.e., a reduction in downside risk, for higher levels of volatility, which is in
line with the value of hedging shown in Figure 3.4.
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Figure 3.4: Value of flexibility and cost volatility. ∆E [U] refers to the change in expected utility resulting from
managerial flexibility under a given policy. For instance, p∗ represents the strategic value of introducing dynamic
pricing from the perspective of a firm that currently operates under a fixed price and fixed quantity policy (p̄, b̄).
∆E [V ] and ∆E [V aR] denote the value of flexibility in terms of profits and units of VaR, respectively. This figure
corresponds to Table A.2 in Appendix A.1.

3.6.4 Commodity price model

In the context of inventory control models, the stochastic behavior of procurement costs are typically
modeled based on Markovian one-factor models. However, as discussed above, such models may vastly
oversimplify the complex dynamics observed in many commodity markets in reality. In this section, we
address the question to what extent the use of more realistic multi-factor commodity price processes may
affect valuations, policy rules, and improve expected performance.

Table 3.4 provides a comparison of valuation results for different commodity price models. Valuation
results are based on the empirically calibrated parameter set as reported in Appendix A.2. The results
suggest that S undervalues the firm, while the SRCV process leads to the highest valuations throughout.
In fact, the present value of expected profits (V) under SRCV dynamics exceeds the valuation under S
by 15.1%. This difference is considerable given the relatively short one-year planning horizon of this
example. Allowing for a stochastic convenience yield and, therefore, a more realistic representation of
spot and futures price dynamics, increases the valuation by 8.6% compared to the one-factor model.
The additional presence of stochastic interest rates decreases the valuation by 1.2% compared to the
SC model. Finally, accounting for stochastic volatility has a positive effect on the present value of
expected profits, increasing the valuation by 7.4% compared to the SRC model. This can be attributed
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Table 3.4: Sensitivity of valuation results to commodity price process

Price process U s.e. V s.e. VaR s.e.

S 19.370 0.055 23.646 0.073 16.645 0.067
SC 20.727 0.062 25.674 0.078 17.238 0.090
SRC 20.427 0.065 25.359 0.075 16.885 0.106
SRCV 21.601 0.077 27.224 0.120 17.680 0.121

U: utility, V : expected present value of profits, V aR: 5th percentile of profit distribution. Reported are the
mean and standard error of valuation estimates over 10 valuation runs with different random number seeds. Each
valuation is based on 10,000 simulated commodity price paths. Parameters of the inventory model and the price
processes are reported in Table 3.1 and Appendix A.2, respectively. Note that results for S do not correspond to
Table 3.2 and Table 3.3, as different σs values are used.

to higher spot price volatility arising under the SRCV model and the ability of the firm to exploit times
of high volatility as discussed in Section 3.6.2. However, the increase in utility resulting from stochastic
volatility is disproportionately lower (5.7%) due to the higher degree of downside risk resulting from a
more volatile cost process.

While Table 3.4 illustrates that valuations can differ considerably under different assumptions about
the cost process, it is as yet unclear to what extent simplifying assumptions about cost dynamics lead to
suboptimal decision making. To address this question, we consider the following situation in Figure 3.5a.
Suppose a naïve firm assumes that commodity prices follow the one-factor (S) model. Based on this
assumption, we calculate decision rules for this firm using the empirically calibrated parameter set of the
S model. We will refer to this policy as the naïve policy. Next, suppose that in reality commodity prices
follow one of the multi-factor models (SC, SRC, or SRCV) rather than the S model. We then conduct
simulations of the inventory system, where commodity prices are sampled from respective multi-factor
models but naïve policy rules are applied in each state of the system. The goal is to ascertain whether
policy rules derived under the commonly used one-factor model lead to good approximations for optimal
policies when commodity prices follow more complicated dynamics in reality. Figure 3.5a depicts the
percentage improvement in the present value of expected profits (V), downside risk (VaR), and standard
deviation of profits (Std) that arise when policy rules are obtained using the true data generating process
(SC, SRC, or SRCV) instead of the naïve one-factor model. The results indicate slight improvements
in terms of expected profits and profit volatility (+0.2% and -0.8%, respectively, when SRCV is the
true model) and significant improvements in terms of downside risk. When costs are sampled from
the SRCV model, VaR is 10.6% higher if operating policies are based on the true process instead of
the one-factor model. Moreover, note that the reduction in downside risk does not come at the cost of
reduced upside potential as the 95th percentile of the profit distribution under the true model also exceeds
the corresponding naïve percentile (+0.2%). We observe that under the naïve policy, the firm initially
purchases too much physical material, while charging low prices. Thereafter, this tendency is reversed
and the naïve policy leads to little physical inventory and high prices. Considering the average over all
simulated paths, periodic procurement quantities deviate by up to 3.6% from the optimal level, prices
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(c) Estimation error in the one-factor model
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Figure 3.5: Specification and estimation error. Panel (a): V denotes the present value of expected profits, V aR
refers to the 5th percentile of the profit distribution, and Std is the standard deviation of V . Panel (b): V aR is
normalized with respect to the median of the SRCV output. Panel (c): subscript c and s refer to the convenience
yield (q0) and standard deviation parameter (σs) of the one-factor model, respectively. Vc denotes, for instance,
the sensitivity of V with respect to estimation error in c. Panel (d): boxplot of utility estimates from 100 valuation
runs based on bootstrapped parameter sets.

by 1%, and futures positions by 9%. As the planning horizon is increased from one to two years, not
only downside risk is significantly higher under the naïve model but also the expected present value
of profits is 1.48% lower when SRCV is the true model. This suggests that neglecting the stochastic
nature of interest rates, the convenience yield, and volatility in the calculation of optimal policy rules can
lead to increased downside risk and profit volatility in the short-term and, additionally, diminish profit
expectations over a longer planning horizon. This insight partly contradicts the commonly held belief
that a one-factor Wiener process is generally well-suited in the context of short-term inventory control
problems (see, e.g., Berling & Rosling, 2005).

In Figure 3.5b, we show an extension of the previous analysis. Instead of comparing policies from
different true models (SC, SRC, SRCV) to the naïve policies implied by the S process, we now assume
SRCV to be the true data generating process and evaluate the step-wise impact of neglecting stochastic
interest rates, convenience yields, and volatility in the calculation of operating policies on downside risk.
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The results are based on 10 simulation runs with different random number seeds, where each simulation
is based on 50,000 commodity price paths. The boxplot in Figure 3.5b depicts the output of these 10
simulation runs. It is shown that VaR tends to be highest when policies are derived from the true data
generating SRCVmodel. As the stochastic nature of volatility, interest rates, and the convenience yield is
neglected in the calculation of operating policies using the SRC, SC, and S model, respectively, downside
risk steadily increases (VaR decreases). A similar pattern arises for the expected reward-to-risk ratio
(V/STD), which decreases monotonically as more sources of risk are neglected and profit volatility rises.

While it is evident that the use of multi-factor models can help to reduce downside risk and profit
volatility without sacrificing profit expectations, more complicated models are often prone to calibration
error. In order to understand the effect of model estimation error on procurement risk management,
we assess the sensitivity of valuation results to estimation error in different models below. First, we
investigate the impact of estimation error in the convenience yield (q0) and volatility parameter (σs)

of the one-factor model on expected profits, downside risk, and profit volatility. Similarly to the above
analysis, we conduct a simulation of the inventory system using commodity prices that are sampled
using the true dataset but policy rules derived under incorrect parameters. In particular, we assume 5%
and 30% to be the true values for q0 and σs, respectively, and apply a radius of five percentage points
to the true values in order to obtain new, over- and underestimated parameter sets. Valuation results
based on the mis-estimated and true parameter set are then compared and displayed in Figure 3.5c in
terms of percentage deviation from optimal values. It is evident that estimation error mainly impacts
VaR, while expected profits and profit volatility remain comparatively unaffected. This result can be
explained as follows. An overestimated convenience yield leads to an underestimated drift and futures
price, resulting in excessive futures hedging and higher exposure to commodity price volatility. As a
result, downside risk and profit volatility increase. The effect of overestimated volatility is similar as it
causes the firm to enter too many futures contracts. In turn, when either parameter is underestimated the
firm under-hedges, resulting in above optimal commodity price exposure and an increase in downside
risk. The magnitude of these effects, however, can vary under different numerical settings. For instance,
when the true volatility level is 20% instead of 30%, the effect on VaR is -16.9% instead of -5.3% for the
same five percentage points in estimation error.

Finally, we are interested in the potential impact of empirical estimation error on expected utility.
To this end, we generate 100 sample paths of weekly data over a time horizon of 10 years with a given
commodity price model using the empirically estimated parameter set. Subsequently, the model is
re-calibrated to each of the sample paths and the resulting 100 bootstrapped parameter sets are used to
revalue the inventory model. Figure 3.5d shows the range of resulting utility estimates along with the
valuation estimate implied by the empirically determined parameter set. Accordingly, we do not find
multi-factor models to exhibit higher susceptibility to estimation error than the standard Wiener process.
In fact, the range of valuation results is smallest under SRCV cost dynamics.
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Figure 3.6: Risk aversion, hedging, and the distribution of profits. Panel (a): λ = 1 for both SRA and DSRA.
V is the present value of profits. Demand is deterministic (σd = 0). The mean refers to the risk-neutral profit
distribution (mean = 31.7). Mean values for DSRA and SRA are 31.7 and 28.1, respectively. Panel (b):, V AR
refers to variance and V ARD refers to semi-variance, where the threshold is the expected unhedged profit (31.7).
f ∗0 is the optimal hedge in t = 0.

3.6.5 Risk aversion and hedging

So far, the argument of downside risk aversion (DSRA) and the utility function suggested in Section 3.3
have been little justified. In this Section, we discuss the impact of DSRA on the shape of the profit
distribution and provide a comparison of results to symmetric risk aversion (SRA) and risk neutrality
(RN).

Figure 3.6a provides a comparison of the profit distribution arising under optimization with DSRA,
SRA, and RN. Here, SRA is obtained as a simple manipulation of Equation 3.5, where {·, 0}+ is
replaced by the absolute value of any deviation from expected operating profits (| · |). The result of this
comparison is twofold. First, one may notice that the probability mass at the left tail of the distribution
is considerably lower when the model is optimized under either DSRA or SRA, compared to the case
of RN. This reiterates that financial hedging in conjunction with optimization under risk aversion can
reduce downside risk significantly. Second, the potential of realizing high profits is preserved to a greater
extent under DSRA compared to SRA. However, the degree to which this is the case depends on the
value of λ. Generally, low levels of λ coincide with higher expected profits and volatility, whereas high
λ values reduce volatility at the expense of expected profits. While different risk aversion levels may
be justified depending on corporate risk preferences, we choose λ = 1 for the purpose of numerical
examples in this study. The influence of optimization under DSRA on the reward-to-risk profile of
profits is illustrated by Figure 3.6b. In particular, today’s utility maximizing hedging decision ( f ∗) also
corresponds approximately to the maximum ratio of expected profits to profit variance (V/V AR) and
downside variance (V/V ARD). In contrast, if the model is solved under risk-neutrality, the firm will not
exploit the benefits of hedging and experience substantially lower profit expectations per unit of volatility
risk.
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Table 3.5: Sensitivity of valuation results to model parameters

∆t U imax U η U γ U Φ U

1/2 1.00 5 1.00 4.8 1.00 0.01 1.00 0.10 1.00
1/3 1.53 10 1.52 4.9 0.85 0.05 1.23 0.30 1.02
1/4 1.85 20 1.96 5.0 0.71 0.10 1.42 0.50 1.04
1/6 2.20 30 2.02 5.1 0.59 0.20 1.63 0.80 1.09
1/12 2.41 40 2.03 5.2 0.48 0.50 1.85 1.00 1.14

ϕ U c0 U S0 U r0 U δ0 U

0.01 1.00 0.50 1.00 3 1.00 0.01 1.00 0.01 1.00
0.05 0.80 1.00 0.75 5 0.56 0.02 0.90 0.05 1.08
0.10 0.62 1.50 0.54 8 0.10 0.05 0.65 0.10 1.19
0.15 0.48 2.00 0.37 10 0.01 0.08 0.44 0.15 1.30
0.20 0.26 5.00 0.15 15 0.00 0.10 0.33 0.20 1.43

Reported is the sensitivity of expected Utility (U) to variation in selected model inputs. For further reference refer
to Table 3.1. Utility is normalized to one with respect to the first value of a given input. Commodity prices are
assumed to follow the S process with parameters given in Appendix A.2. The sensitivity of results to volatility is
addressed in Table A.2 and, thus, not considered here.

3.6.6 Parameter sensitivity
In this section, we investigate the sensitivity of valuation results to variation in model inputs. The
output is summarized in Table 3.5. In line with expectations, utility (U) is increasing in the number of
decision making dates per year. For instance, by revising decisions quarterly instead of semi-annually,
expected utility can be improved by 85%. The corresponding effect on downside risk is even greater,
amounting to a 166% increase in VaR. However, the marginal gain from more frequent decision making
is diminishing. For instance, doubling the number of policy revisions per year from 6 to 12, leads to
a comparatively low increase in utility of 9.5%. U is concave in the available storage capacity imax as
low storage capacity constrains periodic sales and strategic material purchasing. The value of marginal
storage is decreasing as the capacity becomes sufficient to handle typical demand and cost scenarios.
Price elasticity of demand (η) has a negative relationship with expected utility and profits. An increase
in η reduces profit margins and lowers the firm’s ability to pass on cost increases. Production economies
of scale (γ) and the salvage value (Φ) both show a positive relationship with utility. However, the impact
of Φ is relatively low, given the firm’s ability to keep excess inventory to a minimum through dynamic
pricing. Storage costs (ϕ), unit labor costs (c0), and the initial commodity price (S0) exhibit a negative
relationship with utility. The impact of S0 is particularly pronounced, since demand can drop to zero
once the product becomes prohibitively costly. The current interest rate r0 has a negative effect on U

through the commodity price drift, inventory carrying costs, and the discount rate. Finally, the initial
convenience yield δ0 is positively related to U as it lowers the spot price drift, expected material costs,
and futures prices. However, a high convenience yield may, at the same time, be a symptom of expected
physical supply shortages, which are not taken into account in the present model. If an increase in δ0 is
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associated with a higher probability of material shortages and lost sales, the effect on U is ambiguous
and possibly even negative.

3.7 Conclusion
We study a periodic review, single-item, multi-period inventory model in the presence of demand risk
and multi-factor commodity price dynamics. This problem formulation is the first to address the joint
pricing, purchasing, and financial hedging problem under risk aversion. Also new to the literature on
procurement risk management is the desirable feature of our model to allow for multi-factor commodity
price dynamics, which are relevant in a multitude of industrial contexts.

This study leads to the followingmain conclusions. First, adopting an integrated pricing, procurement,
and financial hedging policy can increase expected utility and profits substantially, while reducing
downside risk compared to operating strategies with a lower degree of flexibility. Second, a risk-averse
firm may profit from an increase in commodity price volatility both in terms of utility and profits
under a dynamic pricing and procurement strategy. However, while expected profits are monotonically
increasing in cost volatility under dynamic procurement strategies, this is not always true for utility due
to the corresponding increase in downside risk. We provide the unique insight that even a risk-averse
firm may benefit from cost volatility, when a futures hedge can be implemented. The opposite is true for
demand risk under production lead time. Since the firm has to make sourcing and production decisions
before demand is observed, utility and expected profits are decreasing in demand volatility. However,
dynamic procurement and pricing policies can mitigate the negative impact of demand risk. Moreover,
the marginal value of introducing pricing and purchasing flexibility can be increasing in both cost and
demand risk. Third, we find that different assumptions about the stochastic commodity price process
can have significant implications for the valuation of expected profits. In this context, a commonly used
one-factor Wiener process can undervalue the firm by as much as 15% over a one-year planning horizon.
Moreover, operating policies derived under naïve assumptions about cost dynamics may result in higher
downside risk and profit variance compared to optimal policies.

The present model may be extended in a number of ways. For instance, as firms may offer multiple
products involving different but potentially correlated input costs, an interesting extension of our model
might address the jointly optimal PRM strategy for multiple business units that takes diversification
effects into account. Another useful extension is the introduction of financial options as available
hedging instruments. In particular, the asymmetric payoff profile of financial options may allow for
an increase in utility under downside risk aversion. In this context, an analysis of optimal strike price
selection may be a fruitful addition. Finally, time-variation in the price elasticity of demand and demand
learning resemble interesting aspects that are left to future research.



4
Dynamic procurement, pricing, and hedging in a
two-product firm under cost and demand risk

The content presented in this chapter is based on Schöne, Spinler, and Birge (2016a).

In this chapter, we study the joint inventory management, pricing, and financial
hedging problem of a risk-averse, two-product firm facing cost and demand risks
in each market. Both types of risk are respectively correlated and we account
for the possibility of stockout-based cross-demand between individual divisions to
capture the potential substitutability/complementarity of items. Physical material
is purchased from the spot market and the firm has access to futures, call and put
options associated with each input cost for financial hedging. The firm dynamically
maximizes inter-period, mean-variance utility over a multi-period horizon. Based
on this model, we make two contributions to the existing literature: (i) we provide
analytical solutions to the firm’s inventory, dynamic pricing, and hedging problem.
Whenever a financial hedge is implemented, the inventory and pricing policy is
myopic, while the hedging decision is not; (ii) based on a numerical study, we
show that cross-divisional risk correlations as well as unilateral changes in cost or
demand volatility can affect optimal policies in both divisions and the potential for
natural hedging. Moreover, dynamic pricing and financial hedging can contribute
to mean profit under the risk-neutral measure, which is due to the real option value
of operational flexibility and inventory reduction, respectively. Finally, financial
hedging may lower physical inventory and prices in a multi-period setting with a
monotonically increasing magnitude in the level of absolute risk aversion.

4.1 Introduction
In the wake of unprecedented volatility observed across commodity markets in recent years, thorough
risk management practices have become imperative for industrial organizations today. However, under-
standing and managing a firm’s exposure to multiple sources of risk can be a complex task in practice.

61
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This is particularly true for large, multi-divisional organizations facing not only the aggregated risk of
input cost volatility in different markets but also the added uncertainty of customer demand risk in a
potentially interdependent product portfolio.

According to Fisher and Kumar (2010), treating these different risks in isolation can not only lead to
suboptimal risk control but may even increase net risk exposure. For instance, different business units
might hedge opposite sides of the same risk and leave the potential for natural hedging inherent in lowly
correlated risks unexploited. Moreover, operational flexibility can constitute a powerfulmeans of hedging
that is often overlooked when financial hedging decisions are not concerted with other functional units
such as the procurement, inventory management, and sales department. For instance, holding physical
raw material inventory offers a similar hedge against future cost volatility as a long futures position.
Hence, a decision to hold more raw material in response to, for example, higher demand volatility or due
to the intent to increase service levels, can necessitate an offsetting decrease in the long futures position
of the financial hedging portfolio. In other cases, the sales department may be able to pass an increase
in raw material costs partly through to the customer, resulting in a much lower effective exposure to raw
material costs than potentially suspected by the risk management department. Moreover, the operational
flexibility inherent in dynamic pricing and inventory management may create valuable real options that
do not only mitigate a firm’s risk exposure but also contribute to profitability (Billington, Johnson, &
Triantis, 2002; Xiao et al., 2015). A popular example in this context is Hewlett-Packard, who adopted
an integrated risk management strategy involving a portfolio sourcing approach, dynamic pricing, and
financial hedging that resulted in $425 million in cost savings over a 6-year period. More generally,
the value-enhancing nature of hedging is confirmed by the theoretical models of C. W. Smith and Stulz
(1985) and Froot et al. (1993) as well as empirical and practical evidence (e.g., Allayannis & Weston,
2001; MacKay & Moeller, 2007; and Tevelson et al., 2007).

However, while the economic importance of effective hedging appears undisputed in a wide business
context, there is yet little research addressing the integration of operational and financial riskmanagement,
particularly in a multi-divisional organization facing multiple, correlated risks. Along these lines, Xiao
et al. (2015) are the first to study an inventory control model of a risk-neutral firm with multi-sourcing
(spot and forward) and dynamic pricing under cost and demand risk. Schöne et al. (2016b) extend their
work accounting for downside risk aversion and multi-factor commodity price dynamics, however, both
models focus on a single product firm, leaving the interplay between multi-divisional operations, net risk
exposure, and optimal hedging policies to future research.

We address this gap and study the jointly optimal pricing, procurement, and financial hedging policy
of a risk-averse, two-product firm seeking to maximize inter-period, mean-variance utility over a multi-
period horizon. Each division is exposed to a different input cost risk and sources physical, storable
material from the spot market. As financial hedging instruments, the firm has access to futures, call,
and put options tradeable in each market. We further allow for stockout-based cross-demand between
individual divisions to capture the potential substitutability/complementarity of the offered items, which
may create cross-divisional demand interdependencies (e.g., Zhang, Zhang, Zhou, Saigal,&Wang, 2014).
This setting closely resembles a multitude of practical business cases such as, for instance, the road bike
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industry, where several manufacturers offer both carbon fiber and aluminum frames. While the profits
earned by each of these segments are subject to the different raw material costs, well-equipped aluminum
bikes are generally viewed as substitutes for low-end carbon fiber bikes, which creates the possibility of
dynamic substitution behavior depending on availability. Another example is the electrical equipment
industry, where firms such as General Electric offer a wide range of conductors with different rawmaterial
cost exposures (for example, the aluminum or copper price) (Onstad, Obayashi, & Shamseddine, 2016;
Pryor, Schlobohm, & Brownell, 2008).

To the best of our knowledge, this is the first research to address the topic of integrated operational
and financial risk management in a multi-item setting, allowing us to make two contributions to the
existing literature: (i) we analytically characterize the firms dynamic inventory and pricing decision,
where prices are obtained as function of the jointly optimal stocking factor. Moreover, we adapt the
results of Kouvelis et al. (2013) to provide a closed form solution to the firm’s multi-contract hedging
problem; (ii) we supplement our analytical results with a numerical study to develop further intuition
for our findings. This leads to the following four main insights: (a) both the correlation of input costs
and demand randomness between divisions can affect profits, utility, and optimal policy. For instance,
higher correlations of both types decrease utility but raise inventory and prices of the unhedged firm
under stockout-based substitutability of items; (b) also, the optimal financial hedge is affected by the
correlation of both cost and demand randomness. The former influences the natural hedge arising from
mutually offsetting input costs and, thus, influences the variance minimizing hedging portfolio. The latter
has an impact on expected leftover inventory, which serves as an operational hedge that can substitute a
long futures position; (c) dynamic pricing and financial hedging become increasingly important means
for profit variance reduction as the correlation of input cost rises and the potential for a natural hedge
disappears. However, besides variance reduction, operational flexibility in the form of dynamic pricing
and financial hedging can contribute to mean profit due to real option value and inventory reduction,
respectively; (d) financial hedging may lower physical inventory and prices in a multi-period setting with
amonotonically increasing impact in the level of absolute risk aversion. This agrees with themulti-period
results of Kouvelis et al. (2013) but is in contrast to the one-period findings of, e.g., Agrawal and Seshadri
(2000) and X. Chen et al. (2007).

4.2 Literature review
This work relates to four streams of literature: first, the integration of operational and financial risk
management under input cost volatility; second, commodity risk management in supply chains; third,
joint pricing and inventory management under demand risk; and, fourth, inventory mangement in the
presence of multiple items. An excellent review of the first two themes can be found in Kleindorfer
(2009, 2010) and for a comprehensive literature survey of the third stream, we refer to X. Chen and
Simchi-Levi (2012). A recent review of the fourth category is provided by Murray, Gosavi, and Talukdar
(2012) and Zhang et al. (2014), who address the specific class of multi-product newsvendor problems
allowing for interdependent demand due to substitution/cross-selling of items. We will proceed with a
non-exhaustive review of these literature streams.
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With respect to the integration of operational and financial hedging under stochastic costs, our work
is closely related to Kouvelis et al. (2013), who are the first to study the integrated inventory and
financial hedging decision in a multi-period setting with cost and demand risk as well as mean-variance
inter-period utility. The sourcing decision spans both spot and forward procurement and the firm has
access to futures and options as financial hedging instruments. In contrast to our study, they consider
a fixed-price, single-item setting, which can clearly neither account for natural hedging opportunities
arising from imperfectly correlated procurement costs nor demand interdependencies resulting from
cross-selling effects. More recently, the studies of Xiao et al. (2015) and Schöne et al. (2016b) have
incorporated dynamic pricing as part of an integrated hedging strategy. Xiao et al. (2015) study the joint
dynamic pricing and inventory decision in a single-item periodic review model with dual sourcing (spot
and forward) under cost and demand risk. They show that dynamic pricing can mitigate cost and demand
risk and allows the risk-neutral firm to benefit from cost volatility in terms of expected profit. Schöne
et al. (2016b) extend the work of Xiao et al. (2015) by incorporating risk aversion and multi-factor
cost dynamics, showing that even a risk-averse firm can benefit from cost volatility under operational
flexibility and financial hedging. However, besides using single-item models, both studies do not allow
for financial options as hedging instruments, which have been shown to improve profit variance control
when combined with a futures hedge (Kouvelis et al., 2013). Previous, more distantly related work on
joint optimization of operational and financial hedging in a multi-period setting appears to be sparse,
comprising the work of J. E. Smith and Nau (1995), X. Chen et al. (2007), and Zhu and Kapuscinski
(2011), which is reviewed by Kouvelis et al. (2013). Single period models of financial hedging and
inventory/capacity investment problems include the work of Gaur and Seshadri (2005), Oum, Oren, and
Deng (2006), Ding et al. (2007), Bodily and Palacios (2007), Caldentey and Haugh (2009), Chod et al.
(2010). More recently, Okyay, Karaesmen, and Ozekici (2015) consider the financial hedging decision,
when the randomness in demand and supply is correlated with the financial market.

In the context of joint pricing and inventory management, the class of newsvendor models has
attracted widespread attention as it forms the building block for multi-period inventory and capacity
planning as well as supply contract design problems. We will first consider research focusing on the
single-period, single-item case. For an excellent review of the early stage research in this branch, we
refer to Federgruen and Heching (1999). Among the studies cited therein, Whitin (1955) is the first
to study a price-setting newsvendor, where the probability distribution of demand depends on the unit
selling price. This formulation is refined by Mills (1959), who explicitly specifies the mean demand as
a function of the selling price. Petruzzi and Dada (1999) further explore the implications of additive
and multiplicative demand and extend their results to a multi-period setting, where leftover inventory is
carried to the subsequent period. In the absence of cross-selling, optimal prices in our model coincide
with the single-period, additive demand case in Petruzzi and Dada (1999). Agrawal and Seshadri (2000)
extend the work of Petruzzi and Dada (1999) by incorporating risk aversion in the form of a concave
utility function of the retailer into the joint pricing and inventory decision. Y. Chen et al. (2009) introduce
CVaR as the optimization criterion and Xu (2010) incorporate emergency procurement under a CVaR
criterion. A variant of the price-setting newsvendor is studied by Yang, Shi, and Zhao (2011), where the
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firm’s objective is to maximize the probability of achieving both a profit and a revenue target.
Contrary to the single-period models discussed above, multi-period problems may either: (1) admit

a myopic pricing and inventory decision that arise when individual periods are separable, for example,
requiring that all leftover inventory is salvaged at the end of a given time period; or (2) treat the pricing
decision as a dynamic variable that is altered in response to the realization of inventory levels or input
costs over time. In the latter of these classes, the optimal price no longer reflects a single decision but
is rather characterized as a decision rule, taking the dynamic state of the system as an input. Besides
the studies of Xiao et al. (2015) and Schöne et al. (2016b) cited above, the literature on multi-period
inventory models with dynamic pricing and stochastic demand include Federgruen and Heching (1999),
the finite and infinite horizon models of X. Chen and Simchi-Levi (2004a, 2004b), Monahan, Petruzzi,
and Zhao (2004), Bisi and Dada (2007), and X. Chen et al. (2007), who extend the work of Agrawal
and Seshadri (2000) to a multi-period setting, including setup costs and financial hedging. Finally, we
mention J. Chen and Bell (2009), who study the impact of customer returns on price and inventory
decisions in a single and multi-period setting.

Similarly to the literature on single-item models, research on multi-product settings has become
abundant. In our review, we will focus on studies that are related to this paper either through the
presence of dynamic pricing or demand interdependencies between items. Within the literature stream
on joint pricing and inventory management with multiple items, Aydin and Porteus (2008) provide
a model with price-based substitution comparing a variety of consumer choice/demand models with
multiplicative uncertainty but without capacity constraints. Dong, Kouvelis, and Tian (2009) study the
dynamic pricing and inventory problem with substitute products under a multinomial logit model of
consumer choice. We also refer the reader to their literature review on dynamic pricing in a single and
multi-item context. J. Shi, Zhang, and Sha (2011) suggest a model with independent demand and additive
uncertainty that allows for quantity discounts and multiple capacity constraints. More recently, Murray et
al. (2012) integrate both cross-price elasticities and side constraints in a model that yields integer-valued
product quantities. Similarly to the single period literature on target setting, C. Shi, Zhao, and Xia (2010)
study the price and quantity decision for multiple different divisions that are incentivized by profit targets.
Finally, our work is related to the literature on fixed price models featuring stockout-based substitution
along the lines of Parlar and Goyal (1984), Khouja, Mehrez, and Rabinowitz (1996), and several later
variants, which are reviewed by Zhang et al. (2014). It is also related to the multi-item newsvendor model
with cross-selling of Zhang et al. (2014) and the literature on assortment planning with stockout-based
substitution, including the work of S. A. Smith and Agrawal (2000), Honhon, Gaur, and Seshadri (2010),
and the research cited therein.

4.3 Two-product model
We consider the dynamic pricing, hedging, and inventory decision of a two-product firm facing volatile
input costs and price-dependent, random end-product demand. The firm dynamically maximizes inter-
period utility over a multi-period planning horizon, which explicitly takes cash flow correlations across
periods into account (Alexander & Sobel, 2006; Kouvelis et al., 2013). The two products offered by the
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firm are indexed i ∈ {1, 2} and may be viewed as substitutes or complements. The sequence of events
is as follows. At the beginning of each time period t = 0, . . . ,T , the firm observes a vector of current
market prices for each of the commodity inputs ct =

[
ci,t, cj,t

]
, where j , i, and decides on the vector

of raw material purchase quantities qt =
[
qi,t, qj,t

]
, end-product selling prices pt =

[
pi,t, pj,t

]
, and the

hedging strategy vector ht =
[
hi,t, hj,t

]
, where hi,t =

[
hk
i,t,1, . . . , h

k
i,t,Ni

]
is itself a vector containing the

quantities of all Ni hedging instruments traded in market i and k indicates the type of the nth contract.
Thus, to be clear, we denote by ht a vector containing the concentrated sequences of hi,t and hj,t . We use
this notation for the concentration of two vectors throughout this paper. The types of hedging instruments
available to the firm are further discussed below. Once the above decisions are made, the raw material in
each division is processed into end-products according to a make-to-order strategy to meet the uncertain
demand. Upon stockout of either product, unsatisfied demand may promote or decrease demand for the
second item depending on the substitutability/complementarity of items. Demand that remains unmet
after cross-selling is lost and excess inventory is carried over to the subsequent period. In the absence
of transaction costs, the model can be rewritten as if the firm always started the next period with zero
on-hand inventory. This allows us to treat the periodic raw material stocking decision as being equivalent
to the firm’s inventory level. We will use this property in our following exposition and further discuss
the equivalence of both formulations below.

The random, standalone demand for product i in a given period is given by Di = yi (pi) + εi, where
yi (pi) = ai − bipi. ai > 0 and bi > 0 are constants and ε denotes a random shock, defined on the range
[A, B] with a probability density function f (·) and cumulative distribution function F (·). Further, we
denote by µd the mean vector and by Σd the covariance matrix associated with the two shock terms
εi. As customers may view product i as a substitute or complement of product j, we introduce the term
effective demand from Zhang et al. (2014), to account for possible cross-selling effects between the two
divisions. Accordingly the effective demand for product i is given by De

i = Di + β ji
(
D j − qj

)+
, where(

D j − qj

)+
is the shortage of product j and β ji ∈ [−1, 1] represents the fraction of unserved demand in

division j shifting to product i, which we refer to as the cross-selling coefficient. Here, it is implicitly
assumed that the fraction of customers willing to shift to division i when facing a stockout in division j

is independent of the relative product prices in each division. This assumption is relaxed in Section 4.5.
If β ji > 0, the two products are viewed as substitutes so that a shortage of product j leads to an increase
in effective demand for product i as a fraction of customers β ji, who would have preferred product j

will switch to product i. If instead β ji < 0 products are complements so that a shortage in one of the
products induces a decrease in demand for the second product. If, β ji = 0 we have no cross-selling
effects. Note that the term cross-selling is used somewhat loosely throughout this chapter and does not
refer to the common practice of selling additional products to an existing customer but rather pertains to
the stockout-based demand interdependence between divisions and the resulting revenues. The effective
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number of units sold by division i for the different demand/inventory scenarios is given by

sei =




Di if Di ≤ qi, D j ≤ qj

Di +
[
qi − Di, β ji

(
D j − qj

)]−
if Di ≤ qi, D j > qj

qi otherwise.

(4.1)

The first case in Equation 4.1 describes a situation, where the raw material inventory of each division
is sufficient to satisfy individual demand and no cross-selling takes place. The overage and underage in
division i is then given by xo,neti = qi− sei . In the second case, we have overage of product i and a shortage
of product j. The cross-demand from product j changes effective sales of product i by the minimum of
cross-demand and the excess inventory of product i that can be deployed to satisfy the additional demand
arriving from division j. Clearly, if the products are complements, the cross-demand contribution from
product j is negative. However, both effective demand and effective sales are bound from below by
zero. If the excess inventory in division i is sufficient to cover the cross demand from division j, i.e.,
qi − Di ≥ β ji

(
D j − qj

)
, the net overage of product i is given by xo,neti = qi −

[
Di + β ji

(
D j − qj

)]
. If,

instead, cross-demand exceeds the overage of product i, we have a net underage of xu,neti = −xo,neti units.
The third case summarizes the possibilities that either Di > qi and D j ≤ qj or Di > qi and D j > qj .
Under both circumstances, sales of product i are bound from above by the inventory level qi, however, in
the former case a fraction β ji of the excess demand for product i will shift to division j and is reflected in
the effective sales of product j denoted by sej . To conclude the discussion of demand and sales, note that
the divisions are interconnected in two ways. First, the demand shocks ε affecting the standalone demand
of each product may be correlated by means of a bivariate distribution. Intuitively, this dependency may
reflect common demand drivers for both products such as the economic cycle. Second, the effective
demand for both products is linked through the cross-selling coefficient to capture the substitutability or
complementarity of products from a customer’s perspective.

Let E
[
Πt

(
qt, pt, |ht−1, ct

)]
denote the firm’s profit in period t, given the raw material cost vector ct

and the previous period hedging decision ht−1, when the firm procures qt units of raw material from
the spot market, sets end-product prices of pt , and enters into ht financial derivatives. As discussed
above, we make the assumption of zero transaction costs associated with the procurement and sale of raw
materials, which allows us to treat all excess inventory at the end of a given period as if it was sold back
to the spot market and not carried over to the next period. As a result, the firm will start every period
with zero on-hand inventory, which preserves the mathematical tractability of the model. This treatment
of inventory is similar to Kouvelis et al. (2013). The end-of-period resale price of excess inventory is
equivalent to the raw material price at the beginning of the subsequent period and is, therefore, uncertain
at the time of procurement. This guarantees the equivalence of our formulation to the case where excess
inventory is carried forward. In fact, both the resale value and the risk associated with the market value
of inventory are captured by our model. The sales proceeds from returning excess inventory are counted
as part of current period profit. Formally, the firm’s divisional and total profits are given, respectively,
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by

E
[
πi,t

(
qi,t, pi,t |qj,t, hi,t−1, ci,t

)]
= pi,tEε

[
sei,t

]
− ci,tqi,t (4.2)

+ αθEc
[
ci,t+1 |ci,t

]
Eε

[
xo,neti,t

]
− γiEε

[
xu,grossi,t

]
+ φi,t

(
hi,t−1, ci,t

)
,

E
[
Πt

(
qt, pt, |ht−1, ct

)]
=

2∑
i=1
E

[
πi,t

(
qi,t, pi,t |qj,t, hi,t−1, ci,t

)]
, (4.3)

where Eε and Ec denote the expectation operators with respect to the demand shocks and raw material
cost. In the remainder of our exposition, wewill omit the subscripts of the expectation operators. Similarly
to Chapter 3, we use the assumption of a "partially complete" market, where the probability measure
associated with E is a combination of the risk-neutral probability measure on commodity spot prices and
the firm’s subjective probabilitymeasure on demands. For a discussion of the influence of risk-neutral vis-
à-vis physical commodity price expectations in a PRMsetting, we refer toKouvelis et al. (2013). The term
E
[
sei

]
reflects the expected revenue of division i and ci,tqi,t refers to the total raw material procurement

cost of material i in period t. α = e−r∆ is the period discount factor and∆ denotes the length of a time step.
θ ∈ (0, 1) captures the economic holding cost of excess inventory. The expected salvage value per unit of
overage is given by the expected rawmaterial price at the end of the current period, which is equivalent to
the price at the start of the next period: E

[
ci,t+1 |ci,t

]
. As discussed above, E

[
xo,neti,t

]
denotes the expected

quantity of excess inventory net of units cross-sold to the second division. γiE
[
xu,grossi,t

]
captures the

cost of underage, where γi > 0 is a per unit penalty cost. The superscript net and gross indicate whether
or not cross-selling is accounted for. Finally, φi,t

(
hi,t−1, ci,t

)
is the cash flow from all financial hedging

instruments traded in market i. Here, we generally follow the notation of Kouvelis et al. (2013), which
is extended where necessary to capture the presence of multiple markets in our model. As discussed
above, we denote by hk

i,t−1,n ∈ R the quantity of hedge k = { f , c, p} traded in market i at the beginning
of period t −1, where n is an index to distinguish between individual trades if multiple instruments of the
same type k are used simultaneously in a given market. With respect to the three hedging instruments
available to the firm, f denotes a futures contract and c and p refer to a call and put option, respectively.
χk,n

(
ci,t

)
is the payoff function for contract type k. Note that strike prices traded in each market

can be different, as one might indicate by adding an index i to the payoff functions and strike prices,
however, we omit this additional notation for simplicity. The net payoffs for each contract type k at time
t are: χ f ,n

(
ci,t+1

)
= ci,t+1 − E

[
ci,t+1 |ci,t

]
, χc,n

(
ci,t+1

)
=

(
ci,t+1 − Kc,n

)+
− E

[(
ci,t+1 − Kc,n

)+
|ci,t

]
,

and χp,n
(
ci,t+1

)
=

(
Kp,n − ci,t+1

)+
− E

[(
Kp,n − ci,t+1

)+
|ci,t

]
. All contracts have a maturity of one

period. If the firm trades multiple derivatives in a given market, the payoff from financial hedging
becomes the sum of cash flows from all individual trades. Thus, as mentioned above, for market i

we have φi,t
(
hi,t−1, ci,t

)
= h f

i,t−1,1 χ f ,n
(
ci,t

)
+

∑Ni,c

n=1 hc
i,t−1,n χc,n

(
ci,t

)
+

∑Ni,p

n=1 hp
i,t−1,n χp,n

(
ci,t

)
and

Φt (ht−1, ct ) = φi,t
(
hi,t−1, ci,t

)
+ φ j,t

(
hj,t−1, cj,t

)
. By Ni,c and Ni,p, we denote the number of call and

put options traded in market i, respectively, and Ni = 1 + Ni,c + Ni,p is the total number of derivatives
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used in market i. Note that any hedging strategy of the firm will always include the futures contract
(Kouvelis et al., 2013).

A convenient notation for the profit function in Equation 4.2 follows from Petruzzi and Dada (1999)
and the earlier work of Ernst (1970) and Thowsen (1975). Accordingly, let zi = qi − yi (pi), implying
that Di − qi = εi − zi. If E [εi] = 0, zi can be interpreted as the amount of inventory that is held in
excess of the expected number of units sold, for a given pricing decision pi, which is also referred to
as safety stock. It follows that the optimal stocking decision for product i is given by q∗i = yi

(
p∗i

)
+

z∗i , i.e., the expected number of units sold at the optimal price p∗i plus a level of safety stock for
protection against demand volatility. We provide the profit function obtained after this substitution
step, πi,t

(
zi,t, pi,t, hi,t |z j,t, hi,t−1, ci,t

)
, along with further explanation in Section B.6 of the Appendix.

Similarly to Petruzzi and Dada (1999), we can next rewrite the expected operating profit for product i,
as the sum of a certainty equivalent profit P (Mills, 1959) and a risky component, referred to as the loss
function L (Silver & Peterson, 1985). While P is unaffected by demand risk, it remains subject to the
uncertain input costs c. The total periodical profit of division i (E

[
πi,t (·)

]
), additionally, includes a third

component, which accounts for the cash flow from the financial hedge traded in the previous period.
Thus, we have

E
[
πi,t

(
zi,t, pi,t |z j,t, hi,t−1, ci,t

)]
= P

(
pi,t |ci,t

)
− L

(
zi,t, pi,t, |z j,t, ci,t

)
+ φi,t

(
hi,t−1, ci,t

)
, (4.4)

where

P
(
pi,t |ci,t

)
=

(
pi,t − ci,t

) [
yi

(
pi,t

)
+ µd,i

]
(4.5)

and

L
(
zi,t, pi,t, |z j,t, ci,t

)
=

[
ci,t − αθE

[
ci,t+1 |ci,t

] ] (
Λ
i
11 + Λ

i
10

)
+

(
pi,t + γi − ci,t

) (
Λ
i
00 + Λ

i
01

)
−

[
pi,t − αθE

[
ci,t+1 |ci,t

] ]
Xi j

(4.6)

Here, we redefine the cross-selling quantity using Λ-notation as Xi j =
(
Λi

10, β jiΛ
j
01

)−
, which is the

expected number of units cross-sold from division i to j, representing the minimum of cross-demand
and available cross-supply or, in other words, the minimum of overage in product i and cross-demand for
product i from division j, when there is a shortage in product j. Similarly, X ji =

(
Λ

j
10, βi jΛ

i
01

)−
is the

expected number of units cross-sold from division j to i, when product i is out of stock. Before turning
to an explanation of Λ in our notation of the loss function, we will provide an intuitive interpretation of
L. Similarly to the standard newsvendor model, the first two terms in Equation 4.6 capture the overage
cost of excess raw material inventory, net of its expected salvage value, and the underage costs associated
with expected shortages of product i, respectively. These are unaffected by interdependencies between
the two products arising from cross-selling. The third term captures the unit revenue of cross-selling net
of the raw material salvage value that is given up when the resource is used in the production process
and marketed as an end-product. Cross-selling revenue is interpreted as a negative loss to the firm.
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A

εi, B

ε j, B

zi

z j

Λi
01, Γ

i
01, εi > zi

Λ
j
10, Γ

j
10, ε j ≤ z j

Λi
11, Γ11, εi ≤ zi

Λ
j
11, Γ11, ε j ≤ z j

Λi
00, Γ00, εi > zi

Λ
j
00, Γ00, ε j > z j

Λi
10, Γ

i
10, εi ≤ zi

Λ
j
01, Γ

j
01, ε j > z j

Figure 4.1: Shown are the four possible demand scenarios (quadrants) arising under two jointly distributed demand
shocks εi and ε j , given the stocking decisions zi and z j . The shocks are defined on the range [A, B]. Γ refers to
the probability of a given scenario, where, e.g., Γi01 = Γ

j
10 and Λ reflects the expected overage or underage quantity

of item i and j.

The optimality of using inventory to satisfy cross-demand compared to salvaging the raw material is
addressed by Lemma 2. In the absence of cross-demand (βi j = 0), the third term is zero and Equation 4.6
simplifies to the expression for L in Petruzzi and Dada (1999), where the disposal cost −h is replaced by
the market resale price αθE

[
ci,t+1 |ci,t

]
.

The expected overage and underage quantities in each division are denoted by Λ. The superscript
indicates whether we are counting the expected units of product i or j in a given demand scenario.
The subscript is an indicator of overage or underage in each division, where 1 denotes overage and 0
underage. The first digit refers to the product indexed in the superscript, while the second digit indicates
the inventory status of the other product. For instance Λi

10 refers to the expected overage quantity of
product i, when there is overage in division i and underage in j. Conversely, Λj

10 denotes the expected
overage quantity in division j, when division i is facing a shortage. Finally, Λi

01 refers to the expected
shortage quantity of product i, when we have overage in product j. In order to simplify the notation, we
omit the time index t from Λ, which always refers to the current time period t. A complete illustration
of possible inventory scenarios and the corresponding notation in terms of Λ is given by Figure 4.1. A
formal definition of Λ is relegated to Section B.1 of Appendix B. Labeling the quadrants of Figure 4.1,
Q1 − Q4 in clockwise direction, beginning at A, Q1 refers to the scenario where the firm has leftovers
in both divisions since the stocking decision exceeds the demand shock realization, i.e., εi < zi and
ε j < z j . The probability of this scenario is labeled Γ11 and the corresponding expected overage quantity
of, for instance, product i is Λi

11. The interpretation of Q2 − Q4 is analogous. In Q3, we have a
shortage in both products, while Q2 and Q4 reflect the asymmetric cases with overage in one product and
underage in the other. Under Λ-notation for expected overage and underage quantities, we redefine the
expected gross overage quantity in division i as xo,grossi = Λi

11 + Λ
i
10 and the expected gross underage

quantity as xu,grossi = Λi
00 + Λ

i
01. The corresponding quantities net of cross-selling are denoted by
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xo,neti = xo,grossi − Xi j and xu,neti = xu,grossi − X ji.
Next, we can simplify the firm’s profit function for the final period of the planning horizon t = T + 1.

Facing no demand, the firm neither purchases raw material (qT+1 ≡ 0) nor hedges or sets end-product
prices. Thus, the profit earned by each division reduces to the hedging payoff resulting from the
derivatives traded in the previous period T . The total profit is then given by

ΠT+1
(
qT+1 ≡ 0|hT , cT+1

)
=

2∑
i=1

φi,T+1
(
hi,T , ci,T+1

)
= ΦT+1 (hT , cT+1) . (4.7)

As discussed in Section 3.3 of the previous chapter, firms may have various incentives for risk reduction,
which are indirectly captured by our model through a corporate utility function. In particular, we follow
Kouvelis et al. (2013) and adopt an inter-period mean-variance utility function, which accurately captures
cash flow correlations across periods. The use of a total risk measure V (·), as opposed to measures of
systematic risk, is justified by Hodder and Dincer (1986), who argue that total risk is typically the main
concern of managers. The firm’s, utility function, conditional on ct , is given by

E
[
Ut

(
zt, pt, ht |ht−1, ct

)]
= Et



T+1∑
m=t

α(m−t)
Πm (·)


−
λ

2
Vt



T+1∑
m=t

α(m−t)
Πm (·)


, (4.8)

where Πt follows from Equations 4.3 and 4.4.

4.4 Optimal policy
In this section, we characterize the optimal pricing, inventory, and hedging policy for the multi-product
firm in a given period t and discuss an extension of stockout-based cross-demand formulation that
accounts for price differences between the two items.

Our goal is to maximize the expected present value of utility with respect to the decision vectors
zt, pt , and ht :

max
zt ∈[A,B],pt ∈R≥0,ht ∈R

E
[
Ut

(
zt, pt, ht |ht−1, ct

)]
. (4.9)

In order to be able to solve the firm’s optimization problem via dynamic programming, it must be
accounted for the failure of the iterated expectations property for mean-variance objectives and the
resulting time-inconsistency of optimal policy. Using the law of total variance, we can rewrite the
firm’s conditional utility function from Equation 4.8 in recursive form, which ensures the applicability
of dynamic programming and time-consistency (Basak & Chabakauri, 2010). The recursive utility
function, conditional on ct , is then given by

Ut (·) = Et [Πt (·) + αUt+1 (·)] −
λ

2
Vt


Et [Πt (·)] + Et+1



T+1∑
m=t+1

α(m−t)
Πm (·)




. (4.10)

Note that the current period profit Πt is part of the expectation and variance term due to the uncertain
salvage value of excess inventory that is received at the end of a given period t. Since the end of period t
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coincides with the beginning of period t + 1, it is only of notational not economical interest whether the
salvage value is assigned to the current or next period.

As the firm faces no risks in the final period, Equation 4.10 simplifies to Equation 4.7 at time T + 1.
Note also, while all decision variables are chosen simultaneously, the effective time of ht is in the
subsequent period t + 1, when the hedging contract matures. We proceed with the optimal pricing
decision summarized by Lemma 1.

Lemma 1. The optimal pricing decision for division i, denoted by p∗i,t , is determined uniquely as a
function of the jointly optimal stocking factor zt :

p∗i,t
(
z∗t |ci,t

)
= p0

i,t

(
ci,t

)
−
Λi

00 + Λ
i
01 − Xi j

2bi
,

where p0
i,t

(
ci,t

)
=

(
ai + bici,t + µd,i

)
/2bi maximizes the certainty equivalent profit P

(
pi,t |ci,t

)
provided

by Equation 4.5.

Proof. See Appendix B.2.

Petruzzi and Dada (1999) refer to p0 as the optimal riskless price. They also provide a detailed discussion
of the relationship between the riskless price and the optimal price under demand risk in the context
of both additive and multiplicative demand. In the absence of cross-selling, that is, when βi j = 0, the
pricing decision of the multi-product firm simplifies to the single-product solution given in Petruzzi and
Dada (1999). Note that this holds true even in the presence of correlated demand shocks, i.e., when
Cov

(
εi, ε j

)
, 0. In particular, if β ji = 0, Xi j = 0 and the quantity Λi

00 +Λ
i
01 is independent of z j as the

marginal density of εi is independent of ε j under bivariate normal demand risk.
Next, we establish that the firm’s utility, given the vector of optimal prices determined by Lemma 1,

E
[
Ut

(
zt, p∗t , ht |ht−1, ct

)]
, is unimodal with respect to the stocking decision zt . This is summarized by

Proposition 1.

Proposition 1. The jointly optimal inventory and pricing policy of division i in a multi-product firm is
to stock q∗i,t = yi

(
p∗i,t

)
+ z∗i,t units of raw material and set prices p∗i,t according to Lemma 1. Moreover,

there exists a γ̄i such that under the condition γi > γ̄i, z∗t =
[
z∗i,t, z∗j,t

]
is the unique solution to the

following system of first order conditions on the interval [A, B], for i = 1, 2 and j , i

∂E
[
Ut

(
zt, p∗t , ht |ht−1, ct

)]
∂zi,t

:
(
p∗i,t + γi − ci,t

) (
Γ00 + Γ

i
01

)
−

(
ci,t − αθE

[
ci,t+1 |ci,t

] ) (
Γ11 + Γ

i
10

)

+
∂Xi j

∂zi,t
p∗i,t +

∂X ji

∂zi,t
p∗i,t − αE

[
Ω

i
3 |ct

]

− λ Cov
(
Ω

i
1,Ω

i
2 |ct

)
= 0, (4.11)
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where

Ω
i
1 =

T+1∑
m=t+1

α(m−t−1)
Πm

(
z∗m, p∗m, |h∗m−1, cm

)

+ θ
[
ci,t+1

(
Λ
i
11 + Λ

i
10 − Xi j

)
+ cj,t+1

(
Λ

j
11 + Λ

j
10 − X ji

)]
, (4.12)

Ω
i
2 =

Ni∑
n=1

∂hk
i,t,n

∂zi,t
χk,n

(
ci,t+1

)
+

N j∑
n=1

∂hk
j,t,n

∂zi,t
χk,n

(
cj,t+1

)

+ θci,t+1
(
Γ11 + Γ

i
10

)
−Ωi

3, (4.13)

Ω
i
3 = θ

[
ci,t+1

∂Xi j

∂zi,t
+ cj,t+1

∂X ji

∂zi,t

]
, (4.14)

and ∂Xi j/∂zi,t and ∂X ji/∂zi,t are given by Lemma 3 in Appendix B.2. The hedging related derivatives
∂hk

i,t,n/∂zi,t and ∂hk
j,t,n/∂zi,t are provided by Lemma 4 of the above appendix.

Proof. See Appendix B.3.

We will proceed by first giving an interpretation of the inventory policy given by Proposition 1 and then
discuss the uniqueness of z∗t and the relevance of γ in this context.

Equation 4.11 can be interpreted in three parts. The first line is similar to the standard newsvendor
solution consisting of the expected overage and underage costs, where the unit salvage value is given
by the conditional expectation of the discounted raw material price after accounting for storage costs
αθE

[
ci,t+1 |ci,t

]
. In the absence of cross-selling and risk aversion (βi j = 0, λ = 0), the remainder of

Equation 4.11 is zero. The second line captures the sensitivity of cross-selling revenue with respect to
zi,t , net of the corresponding change in salvage value (represented by Ωi

3) that occurs, when excess raw
material is utilized to serve cross-demand instead of being sold back to the market. The third term is
relevant for the risk-averse firm and accounts for the variance-related sensitivity of utility to changes in
zi,t . This term can be both positive or negative, depending on the influence of physical inventory on
profit variance and, thus, utility. For instance, in the last time period of the planning horizon t = T ,
there is no raw material procurement in the subsequent period t = T + 1. Thus, an increase in zi,t will
create higher expected leftovers and greater variance of the corresponding salvage value, which exerts
a negatively influence on utility. However, in previous time periods t < T , excess inventory can serve
as an operational hedge against volatile future procurement costs. Here, expected profit variance can be
decreasing in the amount of physical inventory on hand, resulting in a negative relationship between zi,t
and expected profit variance. Given this intuition, it is never optimal for the risk-neutral firm to choose
a negative safety stock at time t < T ; however, for a sufficiently high degree of absolute risk aversion,
the reduction in expected leftovers and profit variance can render z∗t < 0, particularly at the end of the
horizon, when there is no procurement in the next period.



74 CHAPTER 4. DYNAMIC PROCUREMENT RISK MANAGEMENT IN A TWO-PRODUCT FIRM

As suggested by Proposition 1, the existence of a unique optimal inventory policy z∗ solving Equa-
tion 4.11, requires suitable conditions on γi. If βi j > 0 and γi < γ̄i, where γ̄i denotes a critical value,
Equation 4.11 may have two, practically undesirable solutions. In particular, it can be optimal for the firm
to pursue a highly asymmetric procurement strategy, inducing an expected stockout in the less profitable
division, while satisfying the resulting price inelastic excess demandwith cross-selling from the second di-
vision at a potentially higher price. It may also be the case that only the more profitable product is offered.
To rule out these possibilities, wemay impose the condition that the direct costs associatedwith an induced
stockout in division i are greater than or equal to the resulting gross cross-selling profit of division j. That
is (pi + γ̄i − ci)Λi

01 ≥
[
pj − αθE

[
cj,t+1 |ct

] ]
X ji ⇔ γi ≥ γ̄i = βi j

[
pj − αθE

[
cj,t+1 |ct

] ]
− (pi − ci). In

the remainder of this study, γi is set sufficiently high to guarantee the uniqueness of z∗t . Thus, in our main
analysis, the constraint on γ is non-binding and γ can be treated as a parameter. This practice has no
effect on the general conclusions of this study. For the purpose of completeness, we provide the optimal
operating policy under a binding constraint on γi in Corollary 2 of Proposition 1 in Appendix B.4.

Next, we address the question when cross-selling is utility enhancing for the firm. While cross-selling
can generate additional revenues, the consumption of raw material for this purpose is not costless. On
the one hand, the firm forgoes a salvage value of each unit of raw material that is used up to serve
cross-demand. On the other hand, there is an economic value associated with excess inventory that
results from its role as an operational hedge against future cost uncertainty. It follows that cross-selling
is optimal whenever resulting revenues exceed corresponding costs. We summarize the optimality of
cross-selling in Lemma 2.

Lemma 2. It is utility enhancing for the multi-product firm to serve an additional unit of cross-demand
in division j with excess stock i in a given period t < T + 1, when the generated revenue exceeds the
associated economic costs, i.e., when

pi − αθE
[
ci,t+1 |ct

]
− λθ Cov

(
ci,t+1,Ω

i
1 |ct

)
> 0, (4.15)

where Ωi
1 is a decreasing function of Xi j , given by Proposition 1. Hence, the absolute value of Cov (·) is

decreasing in Xi j . The above condition is always satisfied for the risk-neutral firm and for the risk-averse
firm when a single- or multi-contract hedge can be implemented. In the absence of financial hedging,
cross-selling may decrease utility of the risk-averse firm if −λθ Cov

(
ci,t+1,Ω

i
1 |ct

)
> pi,t − θci,t > 0.

Since Cov
(
ci,t+1,Ω

i
1 |ct

)
> 0 in the final time period T , this can be true at any time t < T .

Proof. See Appendix B.2.

As stated by this lemma, cross-selling is generally utility enhancing for the hedged firm but the economic
implications of resulting inventory reduction have to be understood if a financial hedge is unavailable. In
fact, when excess inventory is particularly valuable as an operational hedge against future procurement
cost uncertainty, the risk-averse firm should rather hold and trade excess raw material for a salvage value
at the end of the current period. Since there is no procurement in the final time period t = T + 1, excess
inventory at time T cannot be used to offset future purchase cost volatility and, thus, looses its value as
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an operational hedge. Instead, reducing excess inventory by means of cross-selling lowers the salvage
value and profit variance, resulting in a positive effect on utility. For the same reason, cross-selling is
always value enhancing in a single-period setting and for a risk-neutral firm.

Having discussed the optimal pricing and inventory policy, which we refer to as the operational
decisions of the firm, we next analyze the optimal corresponding financial hedging strategy. Here, the
firm’s goal is to minimize the expected variance of future firm-wide profits generated by both divisions.
In contrast to a single-product firm, facing only one risky input cost, the multi-product firm’s profits are
subject to volatility in each market and the possibility of correlated risks. Thus, the optimal hedging
policy is not determined as the sum of individual decisions made by each division but rather constitutes
a firm-wide integrated strategy that takes cross-divisional interdependencies into account and ultimately
addresses the firm’s net-exposure to future cost volatility. In our model, risks from cost volatility can
arise in two forms. First, the value of leftover raw material in each division is a linear function of the
underlying raw material price and fluctuates accordingly. Second, in time periods t < T , when there
is raw material purchasing in the subsequent period, future profits generally exhibit a jointly convex,
decreasing shape with respect to raw material costs. The former, linear risk can be perfectly hedged by
a short futures position matching the amount of expected leftovers in size. To hedge the latter, possibly
non-linear risk, a theoretically optimal hedge consisting of futures contracts alone can only be realized
with continuous rebalancing of the hedging position, exploiting the local linearity of profits. In the
absence of frequent rebalancing, an optimal hedge should also comprise call and put options with a
continuum of strike prices. Finally, in constructing the optimal financial hedge, it should be recognized
that the market value of leftover raw material inventory does not only resemble a source of risk but
also serves as an operational hedge with a payoff profile equivalent to a long futures position that can
mitigate future procurement cost risk. We analyze both a single-contract hedge, where the firm trades
only one futures contract in each market and a multi-contract hedge, where the firm can additionally
enter into N i

c call and N i
p put options. Without loss of generality, we require the assumption that these

financial contracts are not replicating each other. Our solution and notation for the optimal single- and
multi-contract hedging policy are closely related to the multi-contract hedge given in Proposition 5 of
Kouvelis et al. (2013), which we extend to the multi-market case. We summarize the optimal hedging
policy of the multi-product firm in Proposition 2.

Proposition 2. The jointly optimal financial hedging policy of the multi-product firm at time t < T is
given by

h∗t = [Σt (ct )]−1 Ψt
(
z∗t , ct

)
(4.16)

where ht =
[
hi,t, hj,t

]
and hi,t =

[
h f
i,t,1,h
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i,t,1,. . ., hc

i,t,Ni,c
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i,t,1,. . .,h
p
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]
is the quantity vector

associatedwith instruments traded inmarket i. Σt (ct ) is the covariancematrix, conditional on ct , of ci,t+1,(
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(
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)+
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)
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(
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,Ψ
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(
z∗t , ct
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, where Ψi (z∗t , ct ) = [

ψi
f ,t,1,ψ

i
c,t,1,. . .,ψ

i
c,t,Ni,c

, ψi
p,t,1,. . .,ψ

i
p,t,Ni,p

]
and, for

instance, ψi
c,t,n = −θ Cov

(
χc,n

(
ci,t+1

)
, xo,neti ci,t+1 + xo,netj cj,t+1 |ct

)
− Cov

(
χc,n

(
ci,t+1

)
,Πt+1 |ct
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.
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xo,neti,t =
(
Λi

11 + Λ
i
10 − Xi j

)
is the net overage of division i andΠt+1 denotes the present value of expected

future profitsΠm (·) for m = t+1, . . . ,T +1 under optimal policy decisions z∗m, p∗m, and h∗m−1. In the final
period T , the hedging portfolio simplifies to a short futures position in each market: h∗i,T = −θxo,neti,T .

Proof. See Appendix B.3.

Similarly to Kouvelis et al. (2013), we find that the optimal financial hedging strategy in period T

consists only of a short futures position in each market with a volume corresponding the respective
amount of expected excess inventory: xo,neti,T . For periods t < T , the optimal hedge includes a futures
contract and several call and put options in each market, however, the best single-contract hedge is a
futures contract. In our model, a multi-contract hedge leads to the same optimal, myopic inventory
and pricing policy as a single-contract futures hedge. This is because once a futures contract is traded,
inventory loses its role as an operational hedge, which is fully replicated by the futures contract. Thus,
allowing for additional options will not alter the stocking and pricing decision. In the absence of financial
hedging, the inventory and, hence, the pricing decision are not myopic as they depend on the variance of
future profits, which in turn depends on all future optimal decisions.

4.5 Price elastic cross-demand
In the above analysis, the stockout-based cross-demand is independent of the relative prices of each
product and a fixed fraction of consumers βi j was assumed to shift demand to item j , i, when item i

is unavailable. This leads to cross-demand of Di j = βi jΛ
i
01 units. In line with the assumption of price

sensitive customers, however, cross-demand may be alternatively modeled as a decreasing function of
the price difference between the two alternatives: βi jΛi

01 − η
(
pj − pi

)
. Here, βi j > 0 can be interpreted

as the fraction of unserved customers for whom product j resembles a generally feasible alternative. If
both products have the same price, all of these customers shift from i to j. However, when the substitute
product is more expensive (pj > pi), cross-demand is decreasing in the price difference with a slope
η > 0. On the contrary, if pj < pi some additional customers (up to

(
1− βi j

)
Λi

01), for whom the product
j is generally not an attractive alternative, may compromise and still purchase the substitute j due to its
lower price compared to the unavailable primary choice i. This behavior is consistent with empirical
evidence of, for example, Gruen, Corsten, and Bharadwaj (2002), who conduct a worldwide study of
consumer responses to stockouts in a retail context. Under the suggested demand model, the expected
number of units cross-sold from division j to i is now X p

ji =
[
Λ

j
10, Dp

ij

]−
, reflecting the minimum

of overage in product j that is available for sale and price elastic cross-demand for product j from
division i, denoted by Dp

ij . To ensure that Dp
ij is economically meaningful, we impose two conditions on

cross-demand. First, Dp
ij is bound from above by the expected stockout quantity in a respective division

(Dp
ij ≤ Λ

i
01). This ensures that substitution in our model remains stockout-based and, therefore, that at

most every unserved customer will purchase the substitute product. Second, the price differential in Dp
ij

can drive cross-demand to zero but cannot change the sign thereof, i.e., η
(
pj − pi

)
≤ βi jΛ

i
01 for i = 1, 2

and j , i. Taking these conditions into account, we obtain the following piecewise definition for price
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elastic cross-demand

Dp
ij =




βi jΛ
i
01 −

(
βi j − 1

)
Λi

01 = Λ
i
01 if η

(
pj − pi

)
<

(
βi j − 1

)
βi jΛ

i
01 − η

(
pj − pi

)
if

(
βi j − 1

)
≤ η

(
pj − pi

)
≤ βi jΛ

i
01

βi jΛ
i
01 − βi jΛ

i
01 = 0 if η

(
pj − pi

)
> βi jΛ

i
01.

(4.17)

Generally, if p∗i,t , p∗j,t , the firm’s optimal pricing, stocking, and hedging decision deviate from Proposi-
tion 1 under price elastic cross-demand. An important difference to the price inelastic base case model
arises from the new dependence of excess raw material on the pricing decision, which creates a link
between prices, operational hedging, and profit variance of the unhedged firm. We summarize the firm’s
best operating policy under price elastic cross-demand in the following proposition.

Proposition 3. In the presence of price elastic cross-demand, Dp
ij , the firm’s operating policy is as

follows. The pricing decision is implicitly given by the subsequent system of first order conditions for
i = 1, 2 and j , i

∂E
[
Up
t

(
zt, pt, ht |ht−1, ct

)]

∂pi,t
: ai + µd,i − bi

(
2pi,t − ci,t

)
−

(
Λ
i
00 + Λ

i
01 − X p

ij

)

+
∂X p

ij

∂pi,t
pi,t +

∂X p
ji

∂pi,t
pj,t − αE

[
Ω

i
5 |ct

]
+ λ Cov

(
Ω

i
1,Ω

i
5 |ct

)
= 0, (4.18)

where Ωi
1 is given as part of Proposition 1 with Xi j being replaced by X p

ij and

Ω
i
5 = θ

*
,

∂X p
ij

∂pi,t
ci,t+1 +

∂X p
ji

∂pi,t
cj,t+1+

-
. (4.19)

Up
t (·) denotes the firm’s utility function (from Equation 4.8) under price elastic cross-demand, where

Di j is replaced by Dp
ij . The stocking and hedging decision, z∗t and h∗t , are determined in analogy to

Proposition 1 and Proposition 2, respectively, where Xi j is replaced by X p
ij . The partial derivatives of

X p
ij with respect to p and z are provided by Lemma 5 in Appendix B.2. To guarantee the uniqueness of

p∗t , we require γi > γ̂i. Both the critical value γ̂i and the optimal policy under a binding constraint on
γ̂i, where γi = γ̂i, are provided by Corollary 3 in Appendix B.4.

Proof. See Appendix B.3.

It is not straightforward to solve the firm’s pricing problem explicitly for pi,t and pj,t if η , 0 due to
the above discussed interdependence between prices, excess inventory, and profit variance. If the firm
is risk-neutral or a futures hedge can be implemented, the variance related part of Equation 4.18 can be
disregarded for the pricing decision. We provide the resulting optimal pricing policy in the following
corollary of Proposition 3.
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Corollary 1. The firm’s optimal pricing policy under price elastic cross-demand Dp
ij in the presence of ei-

ther risk-neutrality (λ = 0) or any optimal hedging strategy involving the futures contract (Proposition 2)
is given by

p∗i,t
(
z∗t |ci,t

)
= p0

i,t

(
ci,t

) 2bi
2bi + η

−
Λi

00 + Λ
i
01 − β jiΛ

j
01 − αE

[
Ωi

5 |ct
]

2bi + η
, (4.20)

where Ωi
5 is given as part of Proposition 4.18.

Clearly, if the price elasticity of cross-demand η = 0, Dp
ij = Di j and the model simplifies to the base

case formulation. It follows that Proposition 3 simplifies to Proposition 1.
We will contrast the results obtained under the price elastic specification of cross-demand to the base

case model in Section 4.6. As we will show, while price elastic cross-demand reduces the expected
cross-selling quantity and revenue, the general findings, managerial implications, and intuition of our
model are unaffected by this extension. We will, thus, focus primarily on the simpler base case model
in the numerical analysis hereafter. Nonetheless, if the price difference between the offered alternatives
i and j is significant, the resulting effect on substitution behavior, expected revenues, and optimal
stocking levels can become an important factor in practice. This may be particularly relevant in the
context of volatile input costs, driving the selling prices of each item. We mention, as an example,
the trend of copper/aluminum substitution in several industries, where aluminum-based products have
become attractive substitutes for significantly more expensive copper-based alternatives, where the lower
conductivity, flexibility, and durability of aluminum is acceptable (see, for example, Onstad et al., 2016).

4.6 Numerical study
In this section, we provide a numerical study that complements the analytical results of this paper. We
consider the following numerical setup. The planning horizon is set to one year T = 1 and the length of
each time step is ∆ = 1. Thus, our example spans two operating periods, consisting of the initial time
period t = 0 and one future period. At time t = T + 1, all outstanding derivatives mature but there is
no operating business activity. The two divisions are characterized by a symmetric set of parameters,
allowing us to omit the subscript i from all parameters. For the base case, the demand curve parameters
for each division are set to a = 10, b = 2, and βi j = β ji = 0.8. Each demand shock ε is an i.i.d normal
random variable with mean µd = 0 and standard deviation σd = 1.5. (ε1, ε2) are jointly bivariate normal
with correlation ρd = 0.5. The raw material input costs follow a bivariate geometric Brownian motion
(GBM) given by ci,t+∆ = ci,te

((
r−δ− 1

2σ
2
c, i

)
∆+σc, iWi, t

)
, where c1,0 = c2,0 = 1.5, the risk free interest rate is

r = 0.05, the convenience yield net of storage costs in both markets is δ = −0.10, the cost volatility in
each market is σc = 0.3, and E

(
dWi,t, dWj,t

)
= ρc∆, where the instantaneous correlation is ρc = 0.5.

Inventory holding costs are set in line with the market to θ = eδ∆, unit stockout costs are γ = 2, and the
level of absolute risk aversion is λ = 0.1.

As the ability of our model to capture the specific aspects of optimal risk management in a multi-
divisional context is a central contribution of this paper, we lay the focus of the following numerical study
on the ramifications of cross-divisional effects such as the risk correlations. For a broader sensitivity
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analysis in a dynamic pricing, purchasing, and financial hedging model, we refer to Schöne et al. (2016b),
who investigate a single-product setting. The remainder of this Section is organized as follows. First, we
analyze the impact of demand and cost interdependencies between the two divisions on expected utility,
profits, and inventory dynamics in the absence of financial hedging. We then discuss how inventory
levels are affected by financial hedging and risk aversion. Finally, we address the influence of different
hedging strategies on profit variance. In this stylized two-period model we can compute conditional
expectations by integrating over the transition density of the bivariate GBM, where the second period
optimization is nested in the first period expectation. When applications require additional time periods,
it is straightforward to solve the model by means of dynamic programming.

4.6.1 Impact of risk correlations

The two divisions of the firm are interconnected both through correlated demand and cost risk as well as
the possibility of stockout-based cross-selling. Figure 4.2 depicts the impact of variations in the demand
and cost correlation on utility, profits, and inventory dynamics when products are substitutes (βi j = 0.8).
With respect to the demand correlation, panel (a) shows a decline in profits and utility for higher levels
of ρd, which reflects a loss of cross-selling opportunities. This is explained by panel (c). A higher ρd
lowers the probability that a stockout in one division can be absorbed by excess inventory in the second
division as both divisions are more likely to face a stockout at the same time. Although, the firm slightly
increases inventory levels (q∗) in each division to mitigate the higher risk of facing a net stockout, this
can not fully compensate the lost revenue from a decline in Xi j . Since utility differs from profits only by
a multiple of profit variance, it is clear that U0 < Π0 for any positive level of profit variance across the
range of ρd.

While we do not plot the variance along with utility and profits for better readability, it is interesting
to note that variance initially increases and then decreases in ρd. As discussed above, the firm purchases
more raw material when ρd increases, leading to a greater exposure of future profits to cost variance.
However, at the same time the portion of leftover inventory that is used to serve cross-demand decreases
quickly as ρd rises, resulting in higher gross overage and salvage value, which provides an operational
hedge against future cost volatility. This effect is responsible for the declining profit variance at higher
demand correlations.

Similarly to the demand correlation, ρc has a negative effect on utility and profits of the unhedged,
risk-averse firm. On the one hand, a low correlation of input costs creates a natural hedge for the multi-
product firm since situations with high costs and low profits in one division tend to be mitigated by lower
costs and higher profits in the second division. Thus, as costs are increasingly correlated, this natural
hedge disappears, resulting in a concave increase in overall profit variance and lower utility. In order to
counteract this effect, it is optimal to hold more physical inventory and thereby create a higher quantity of
expected leftovers, which serve as an operational hedge against future cost volatility. Thus, an increase
in input cost correlations raises optimal inventory levels and ultimately leads to a higher service level,
reflected in a lower expected net stockout quantity. This is shown by panel (d) of Figure 4.2. However,
while this strategy can partly mitigate the increase in profit variance, holding inventory is associated with
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an economic cost that reduces expected total profits.
Next, we consider the sensitivity of results, presented by Figure 4.2, to variations in risk aversion and

βi j . Under risk-neutrality (λ = 0) U0 = Π0. While panel (a) is not further affected, the impact of ρc
on utility is significantly weakened. Nonetheless the negative relationship prevails. This is because an
increase in ρc leads to a higher risk-neutral probability that the cost processes in both markets move in
the same direction, creating a higher likelihood that an extreme scenario occurs. When the expected loss
in a high cost scenario outweighs the profit increase in a low cost scenario, expected profits will decrease
as the probability of extreme scenarios rises. Finally, the interpretation of results in panel (c) remains
unaffected by risk-neutrality and the inventory related variables shown in panel (d) are independent of
ρc when λ = 0. Instead of setting λ = 0, we now address the case where the two items are complements
with cross-demand coefficient βi j = −0.8. With respect to ρc the sensitivities shown by panel (b) and (d)
remain unaffected. However, the impact of ρd on the variables in panels (a) and (c) is reversed with the
exception that the cross-selling quantity Xi j remains a decreasing function of ρd. For instance, profits
and utility become an increasing function of the demand correlation. Intuitively, when there is little
demand for either product, complementarity implies an adverse demand effect for the second product.
Thus, when ρd is low, there is a high probability that either of the products shows little demand and
negatively affects sales of the second product leading to low overall sales. Finally, in the absence of
cross-demand (βi j = 0), utility, profit, and inventory dynamics reported in panel (a) and panel (b) are
independent of ρd. The sensitivity of results to ρc as shown in panels (b) and (d) remains unaffected
with the exception that Xi j = 0 so that xu,net = xu,gross. Generally, for a given value of ρd, utility is
monotonically increasing in βi j . If items are substitutable (βi j > 0), higher values of βi j imply that a
greater proportion of unsatisfied demand can be addressed with the secondary item, creating additional
revenue. On the contrary, with complementary products (βi j < 0), a stockout in one item adversely
affects demand for the second item with a magnitude that is increasing in | βi j |.

4.6.2 Risk aversion and financial hedging

When the firm has access to a futures market associated with each of the raw material inputs, the role
of inventory as an operational hedge can be perfectly replicated by a long futures position. Thus, the
additional presence of options in the hedging portfolio has no further impact on inventory in our model.
Figure 4.3a depicts the optimal futures hedge for different levels of cost and demand correlation. The
optimal futures quantity reflects the sum of two components: first, a short position to hedge the risk in the
resale value of excess inventory and, second, a long position for protection against future procurement
cost volatility. In the presence of financial hedging, the salvage value related short position is independent
of ρc and takes a value of -1.74 in this example. The long position is increasing in ρc in order to mitigate
the increase in profit variance that occurs when the natural hedge inherent in lowly correlated costs
disappears. This also explains the positive and concave net futures position shown by panel (a) of
Figure 4.3. Our results further indicate a negative relationship between the demand correlation across
business units when βi j > 0 and the optimal futures position in each market. As shown by Figure 4.2c,
a higher demand correlation leads to an increase in inventory levels q and expected net overage xo,net .
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Figure 4.2: Sensitivity of utility, profits, and inventory to risk correlations. Variables are normalized to one
and reflect time period t = 0. The notation is as follows. U: expected total utility, Π: expected total profit,
q∗: optimal inventory level, xu,net : expected net underage (net of cross-selling), xo: expected net overage, Xi j :
expected cross-selling quantity, xu,gross1 = xu,net1 + X21: expected overage excluding cross-selling, p∗: unit selling
price. U and Π reflect the entire firm; the inventory and pricing related variables refer to division i = 1. In this
numerical setup both divisions are symmetric.

Since excess inventory is an operational hedge substituting a long futures position, it follows that the
futures hedge should be lower when ρd is high. When βi j = 0, the financial hedging decision is
independent of ρd but maintains a similar relationship with ρc.

Part (b) of Figure 4.3 illustrates the impact of financial hedging on inventory levels and prices under
different degrees of risk aversion. Generally, inventory levels are most affected by financial hedging
when λ is high and remain unaffected under risk-neutrality. Further, we find that hedging can lower
prices and reduce inventory in our multi-period model. With respect to the impact on inventory, this is
in line with Kouvelis et al. (2013), who point out the difference of this result to earlier research of, e.g.,
X. Chen et al. (2007) and Zhu and Kapuscinski (2011). However, unlike in any other period, hedging
raises inventory levels in the final period, which is consistent with the research on one-period models of,
e.g., Ding et al. (2007) and Gaur and Seshadri (2005). As mentioned above, this is attributable to the
fact that there is no future procurement at the end of the planning horizon, which could be hedged with
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Figure 4.3: Financial hedging, interdependent business units, and inventory. All variables are reported for the
initial time period t = 0 and product i = 1, which is equivalent to j in this numerical setup. The hedging strategy
is a single-contract futures hedge. Adding options to the hedging portfolio does not affect inventory/prices. The
notation is explained in the footnote of Figure 4.2.

excess inventory. Instead, higher inventory levels lead to an increase in expected salvage value, which
drives profit variance. Thus, in the absence of financial hedging the firm would prefer a lower inventory
level in the final period.

Without the possibility of hedging, risk aversion generally lowers prices and inventory in the final
period when βi j = 0. This is consistent with the single-period models of, e.g., Xu (2010) and Agrawal
and Seshadri (2000) under additive demand. However, when βi j , 0, asymmetric costs in each division
can lead to adverse optimal stocking levels, prices, and cross-selling flows. For higher levels of λ this
tendency is amplified such that risk aversion can both increase or decrease prices and inventory levels,
depending on the relative procurement cost in each division. For instance, the high cost division chooses
a relatively low inventory level and charges higher prices than the low cost division. In this situation, an
increase in λ leads to an over-proportionate decrease in optimal inventory in the high cost division and
higher expected shortages. It follows from Lemma 1 that an increase in Λ1

00 + Λ
1
01 − X12 leads to lower

optimal prices. For the multi-period setting our results differ from the above cited single-period studies
as we find that higher values of λ increase optimal prices regardless of cross-selling. This is due to
the positive relationship between λ and physical inventory, which is increasingly used as an operational
hedge under higher risk aversion. As a result expected underage declines, decreasing Λ1

00 + Λ
1
01 − X12

and, thus, driving up prices.
Next, we address the impact of four different hedging strategies on profit variance and utility for

different levels of the cost correlation. First, we consider a fixed price (FP) policy, where the optimal
selling price for each product is determined at the beginning of the planning horizon and cannot be
altered in response to changes in future procurement costs and stocking levels. However, when costs
are prohibitively high, the firm may choose to cease operation. Under the FP policy there is also no
financial hedging. Second, the DP strategy refers to dynamic pricing. Similarly to FP, there is no
financial hedging but the firm can revise prices in the next period contingent upon the state of input costs
and stocking quantities according to Lemma 1. Third, we analyze dynamic pricing in conjunction with
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Figure 4.4: Variance reduction under operational and financial hedging. Shown is the absolute level of profit
variance reduction for different hedging strategies denoted by k vis-à-vis the fixed price policy (FP).

futures hedging (DP+F) and, fourth, dynamic pricing together with multi-contract hedging (DP+MC). In
this strategy, the financial hedge contains one futures and between 35 and 45 call and put options in each
market.1 Figure 4.4 shows a comparison of profit variance levels arising under DP, DP+F, and DP+MC
compared to the comparatively static FP policy. We report the absolute level of variance reduction
for better readability but also address the level of variance reduction in relative terms below. For an
exemplary level of ρc = 0.5, DP reduces profit variance by 13%, DP+F by 94%, and DP+MC by 99.8%
relative to the absolute level of profit variance under FP (2.21). All hedges become more important as the
cost correlation increases and the natural hedge inherent in the multi-division business disappears. The
futures hedge allows to perfectly hedge the variance resulting from the market value of excess inventory
and the linear risk in future profits. As future profits are jointly convex in the two input costs, the MC
hedge, additionally, provides better control over the non-linear variation in future profits. Further, we
observe that including options in a hedging strategy is most valuable when ρc is high. As previously
discussed, a futures hedge is optimal in a single-period setting, where the only hedgeable risk results from
the salvage value of excess stock. Besides the mitigating effect of the above hedging strategies on profit
variance, they can also contribute to mean profit. In this stylized two-period setting and for ρc = 0.5,
DP raises profit expectations by 1.3% and DP+F by 2.4%. The benefit of DP over FP is clear, allowing
the firm to charge profit maximizing prices in each future cost scenario. While the futures hedge does
not directly contribute to mean profit under the risk-neutral measure, it allows the firm to reduce physical
inventory previously held as an operational hedge, resulting in lower storage costs and higher profits.

Next, we provide a note on the impact of financial hedging on Figure 4.2, which depicts the sensitivity
of utility and inventory dynamics to changes in the demand and cost risk correlations. First, the way ρd
influences the firm is little altered by financial hedging so that the general interpretation of panels (a) and
(c) remains unchanged. Since the role of physical inventory as a hedging instrument is fully replicated by

1 The theoretically optimal hedge involving a continuum of strike prices allows for a perfect hedge. Our hedge in this
example reduces profit variance by 99.3-99.8%.
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Figure 4.5: Inventory levels and asymmetric divisions. Shown are the effects of a change in demand and cost
volatility, in division i = 2 on inventory levels in both divisions. The percentage change of volatility is measured
relative to the base case volatilities σd,2 = 1.5 and σc,2 = 0.3. Volatilities in division i = 1 are unchanged:
σd,1 = 1.5 and σc,1 = 0.3. Both graphs refer to the initial time period t = 0 and hedging is not available (h∗t = ~0).

a futures position, ρc no longer affects the inventory level and related variables in Figure 4.2d. Depending
on the extent to which profit variance can be hedged, utility is equivalent to profit in panel (b).

4.6.3 Price elastic cross demand
With respect to the influence of price elastic cross demand on the pricing, inventory, and hedging decision,
we find the following. If customers are price sensitive when making a substitution decision, expected
cross-demand declines and cross-selling becomes a less effective means of mitigating stockouts. To
compensate this effect, the firm chooses a higher safety stock, leading to a reduction in gross underage
(xu,gross) and a less significant decrease in net underage (xu,net ). Prices increase and the effect on
expected raw material excess stock is positive. This implies an increase in the optimal futures hedging
position in the final period/single-period and a possible decrease in any previous period, when excess
inventory substitutes a long futures hedge against future input cost volatility.

4.6.4 Asymmetric divisions
While it was assumed in the above analysis that both divisions are characterized by an identical set of
parameters, we finally address the case of asymmetric divisions with respect to selected parameters. For
instance, in line with expectations, we find that under different input costs, the high cost division will
choose lower safety stock, higher prices, and a lower futures hedge, leading to a lower service level and
a higher expected cross-selling quantity from the low cost to high cost division than vice versa. We
also observe that changes in both cost or demand volatility in one division can have implications for
optimal inventory levels, prices, and hedging decisions in both divisions. For example, we show the
impact of a change in cost and demand volatility on optimal inventory levels in Figure 4.5, when the
products are dynamically substituted with coefficient βi j = 0.8, the firm is risk-averse, and financial
hedging is not available. As shown by panel (a), an increase in demand volatility in one division tends
to decrease inventory in the other division, facing no change in demand volatility. This is attributable to
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the higher amount of expected excess inventory in the more volatile division and the resulting effect on
profit variance. By reducing inventory, the second division partly mitigates this effect on variance. In the
presence of risk-neutrality or financial hedging, also the division facing no volatility increase will choose
a slightly higher inventory level, which is driven by an increase in cross-demand originating from the
high-volatility division to the low-volatility division. The effect of an asymmetric change in cost volatility
on inventory levels is shown by panel (b). For instance, if the cost volatility in one division increases,
the inventory level in this division declines in order to mitigate the higher salvage value variance. Due
to the dynamic interdependence of demand between divisions and the impact of a change in inventory
on profit variance, the optimal strategy for the second division facing no change in cost volatility is to
increase inventory in order to absorb the higher stockout-based cross-demand originating from the more
volatile division. If a futures hedge can be traded, the higher variance of expected salvage value resulting
from additional inventory is hedged by the futures contract and no longer affects the stocking decision.
Finally, we note that, while demand volatility exhibits a negative relationship with utility and profits, cost
volatility may indeed increase utility of the risk-neutral or hedged firm. This is attributable to managerial
flexibility, which allows the firm to react to changes in costs in a way that, in the expectation, high profits
generated in low-cost scenarios more than outweigh low profits arising under high cost realizations. This
is in line with the results of Xiao et al. (2015) and Schöne et al. (2016b).

4.7 Conclusion
In this paper, we study the jointly optimal inventory management, pricing, and financial hedging decision
of a risk-averse, two-product firm facing multiple cost and demand risks, which can be correlated across
divisions. Our model further accounts for the possibility of stockout-based cross-demand reflecting the
substitutability/complementarity of items. Within this framework, we offer new insights with regard to
the interplay between operational and financial hedging decisions and provide implicit solutions for the
firm’s jointly optimal pricing, inventory, and hedging policy.

Our findings, which are summarized in the introduction, generally show that in the presence of
interconnected cost and demand risks between divisions, effective risk management does not only require
cross-functional decision coordination between, for instance, the procurement and finance department
but also necessitates an information exchange and decision alignment across divisions. For instance, to
choose an appropriate financial hedge, the risk manager needs to estimate the firm-wide net risk exposure,
which depends on the variability and correlation of procurement costs as well as operational hedging
measures such as price adjustments and physical raw material inventory in each division. While this
insight is consistent with the practical evidence of, for example, Fisher and Kumar (2010), this research
is among the first studies to provide a quantitative analysis of the interplay between multiple cost and
demand risks in an organization and the optimal operational and financial risk management strategy.

However, while the interdependencies among different organizational divisions should not be over-
looked in policy making, we finally summarize a number of cases, where the presence of risk correlations
does not affect optimal decision making, allowing managers to treat different organizational divisions
as separate units. For instance, in the absence of cross-demand effects, the correlation in demand ran-
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domness (ρd) does no longer influence prices and inventories of either division. Yet, without financial
hedging, the cost correlation ρc is still relevant for the inventory levels, which can provide an operational
hedge against input cost risk. Once a futures hedge can be implemented, inventory and prices are no
longer affected by the correlation of input costs, however, the hedging decision itself remains a function
of ρc as it accounts for the natural hedge inherent in future profit, which is driven by the cost correlation.
In a single-period setting without cross-demand, both operational and financial hedging decisions are
independent of demand and cost correlations, resulting in separable optimal policies for each division.
In this case, the operational decision simplifies to a price-setting newsvendor problem (e.g.,Petruzzi &
Dada, 1999), where the market value of excess inventory can be hedged with an offsetting short position
in the futures market.

Interesting extensions of ourmodel include, for instance, the investigation of different demandmodels,
such as the multinomial logit model of consumer choice, which is widely used in industry. It is also
useful to allow for a more flexible cost structure of each offered product so that an item is no longer
manufactured from a single commodity input but rather requires a mix of different raw materials with
potentially stochastic price evolution. We leave these topics to future research.



5
Summary and outlook

5.1 Summary
Driven by the rapid expansion in emerging markets and the vast trading activities of hedge funds, pension
funds, and large financial institutions, commodity prices reached new all-time peaks in the recent past,
before tumbling to historic lows amid global recessionary fears and political crises. This unprecedented
level of volatility observed across commodity markets has contributed to equally dramatic swings in the
profitability of firms engaged in the extraction, refinement, or processing of commodities alike (Fisher
& Kumar, 2010). As a result, the topic of effective risk management has gained greatly in importance
among executives in several industries. According to a survey of manufacturing companies conducted by
PwC (2009), 86% of senior executives regard commodity price risk as being important to a company’s
financial performance, while admitting shortcomings in the management thereof. While procurement
risk is traditionally managed by the purchasing function with an emphasis on the availability and quality
of supply, practical evidence has shown that firms successfully operating in today’s environment adopt a
more integrated PRM approach involving the concerted management of inventories, prices, and financial
hedging activities (PwC, 2009). However, in line with the above cited survey, the successful implementa-
tion of a firm-wide, integrated PRM program entails management challenges. First, quantifying a firm’s
exposure to rawmaterial cost risk necessitates a sound understanding of the stochastic commodity market
dynamics. Second, given an estimate of the firm’s exposure to different sources of risk, such as cost and
demand volatility, executives face an intricate optimization problem over their operational and financial
decision variables with the ultimate goal to reduce profit variance, while maintaining attractive business
opportunities. Despite the economic importance of effective risk management in practice, quantitative
research on jointly optimal operational and financial PRM strategies is scarce. In fact, to the best of our
knowledge, Kouvelis et al. (2013) and Xiao et al. (2015) are the only authors to provide much needed
insights at this time. In the attempt to shed further light on the topic of operational and financial risk
management under commodity price uncertainty, this thesis contributes three self-contained studies to
the existing literature, which extend the available research on commodity price modeling and the above
articles in several directions.

In Chapter 2, we develop a four-factor maximal affine stochastic volatility model of commodity prices,
which is consistent with various specific characteristics observed in storable, non-seasonal commodity

87



88 CHAPTER 5. SUMMARY AND OUTLOOK

markets. The model is extensively tested in the copper market using historical data of the futures term
structure and corresponding American call options, written on the futures contracts. Based on this study,
we assess the model performance with respect to pricing and hedging financial derivatives and provide
structural insights into the copper market with respect to, among others, the historical rate of mean
reversion, the stochastic evolution of the implied long-term spot price level, and the stochastic behavior
of volatility. The model is not only theoretically consistent with many aspects specific to commodity
markets but also exhibits superior pricing and hedging performance to different benchmark models
in the market of copper derivatives. Therefore, our four-factor model provides a solid basis for both
the valuation of financial and real assets as well as the optimization of procurement risk management
decisions under commodity price risk.

Turning towards the question of how to optimally align operational decisionmaking, such as inventory
management and pricing, with financial hedging activities under commodity price risk in Chapter 3, we
develop a mathematical model of a stylized risk-averse industrial firm facing commodity price risk and
stochastic, price sensitive demand. The firm obtains physical material from the spot market and has
access to the associated futures market for financial hedging. We provide a flexible, simulation-based
optimization algorithm to solve the firm’s inter-temporal dynamic inventory management, pricing, and
hedging problem under realistic commodity price, interest rate, net convenience yield, and volatility
dynamics. Optimal policies are obtained as a contingency plan, indicating the optimal decision for any
given state of future raw material costs and inventory levels. This representation provides actionable
managerial intuition for the interdependence of operational and financial decision making under uncer-
tainty. Moreover, we illustrate the value of managerial flexibility in responding to changes in a risky
environment and stress the economic cost of committing to restrictive supply contracts. We highlight the
importance of taking into account the stochastic nature of interest rates, the cost of carry, and volatility
in the optimization of PRM decisions and discuss the implications of model estimation error. Finally,
we provide an extensive sensitivity analysis of expected performance to critical parameters and discuss
the effect of risk aversion and financial hedging on the distribution of cash flows.

The single-product model is subsequently extended in Chapter 4 to capture not only the aspect
of cross-functional decision coordination between the procurement/inventory management, sales, and
finance function but also account for the necessary cross-divisional alignment of actions that facilitates
a firm-wide optimization of rewards and risks. Similarly to the single-product model, we consider an
industrial context, where raw material is processed into end-products, which are sold to price sensitive
customers under stochastic demand. Each of the divisions can face different but respectively correlated
cost and demand risks. Moreover, we allow for dynamic cross-selling between the two divisions in
order to account for the possible complementarity/substitutability of items. The firm has access to a
futures, call, and put options market associated with each of the input commodities and can trade an
extensive hedging portfolio for variance reduction in each market. By dynamically choosing the financial
hedge, inventory levels, and prices, the firm dynamically maximizes mean-variance inter-period utility
over a multi-period time horizon. Within this framework, we are able to obtain analytic solutions to
the firm’s PRM problem and provide numerical examples to develop managerial intuition. Within this
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context, we focus primarily on the specific aspects of PRM with multiple product lines, which extend
our insights from Chapter 3. In particular, we analyze the impact of cross-divisional risk correlations on
the company’s optimal strategy and discuss the effect of unilateral changes in the market environment in
one business unit on the entire firm. Moreover, we investigate the impact of risk aversion and financial
hedging on expected performance and operational decision making and analyze the effectiveness of
different hedging strategies for risk reduction.

While the optimization models presented in Chapter 3 and Chapter 4 of this thesis represent abstrac-
tions from the more complex reality, the derived understanding and intuition of the central trade-offs,
driving forces, sensitivities, and interdependencies involved in joint operational and financial risk man-
agement can, nonetheless, be understood as an important building block for managerial decision making
in practice.

5.2 Outlook
Within the context of integrated risk management, we see several fruitful directions for future research.
Apart from the desirable extensions outlined in Sections 2.4, 3.7, and 4.7, we emphasize the following
four topics for further investigation.

First, the operationalization of the theoretical results developed in this thesis and by other related
studies constitutes the foundation for exploiting the potential value inherent in integrated riskmanagement
in practice. Thus, the derivation of actionable heuristics from theoretically optimal policies resembles a
valuable contribution to existing research that facilitates the transfer of theoretical results into practice.
In this context, also the evaluation of theoretical risk management models based on real world business
data could enrich the stylized results of this dissertation by providing more realistic estimates of the
expected benefits of integrated PRM in practice.

Second, the models presented in Chapter 3 and Chapter 4 can be extended in several directions.
For instance, while we focus on the specific implications of commodity price and demand risk in this
dissertation, internationally operating firms are certainly exposed to additional sources of risk such as
volatility in the foreign exchange market. Since commodities are usually denoted in US$, European firms
may, for example, not only need to account for currency risk in the valuation of their foreign revenues
but also depend on the US$ exchange rate through raw material procurement costs. Therefore, currency
risk can contribute to a company’s net risk exposure and should be accounted for in an integrated risk
management strategy. The idea of capturing the complete risk profile of an organization then leads to
the topic of allowing for a suitable correlation structure among the different risks and the mathematically
tractable implementation of this complex setting.

Third, another interesting extension of the PRM models of this thesis pertains to the presence of
competition. Particularly in the context of price adjustments, managers might fear competitors’ reactions
to a change in prices and ultimately the risk of triggering a price war. A practical example highlighting the
competitive aspects of risk management is the case of Southwest Airlines, which adopted an aggressive
financial hedging program between 1999 and 2005 allowing the firm to expand, while competitors were
facing bankruptcy (Tevelson et al., 2007). This illustrates the potential reward of hedging and, at the
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same time, the risk of foregoing the implementation of a risk management strategy, when the competition
is hedged. In order to account for the strategic effects of risk management decisions, competition may be
introduced in the models of Chapter 3 and Chapter 4 by accounting for the best response of competing
firms in the optimization process.

Fourth, firms have increasingly large amounts of data at their disposal, which creates tremendous
opportunities with respect to advertising, revenue management, and forecasting to name but a few
examples. While the continuous monitoring of risk exposure is a familiar topic for financial institutions,
the availability of increasingly rich operational data in conjunction with financial market information
allows the extension of revenue management models (see, e.g., Ferreira, Lee, & Simchi-Levi, 2016) to
an integrated PRM framework with information updating based on machine learning techniques. A self-
learning, integrated PRMmodelmay have the key advantage that it can copemore flexiblywith changes in
the market environment, ideally adjusting expectations about costs, volatility, demand, price sensitivities,
and substitution behavior as new information becomes available. Particularly, in the context of pervasive
uncertainty in the global financial market and the permanent risk of disruptive changes in commodity
price and currency dynamics, the capability of flexible and fast adaptation to new circumstances may
ultimately lead to better risk control and a competitive advantage.
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Appendix to Chapter 3

A.1 Valuation of flexibility

Table A.1: Valuation of flexibility for different degrees of demand volatility

Setting σd = 0 σd = 0.5 σd = 3 σd = 6

U V VaR U V VaR U V VaR U V VaR

(10) = (2) - (1) = p∗ 0.0 0.0 0.0 1.0 0.4 2.2 1.3 1.3 1.2 0.7 4.4 -6.8

(11) = (3) - (1) = b∗ 8.9 4.4 17.6 9.8 5.3 18.4 8.4 9.5 10.4 7.1 10.8 3.9

(12) = (5) - (1) = p∗, b∗ 10.5 9.8 18.7 11.8 11.0 20.1 12.3 14.9 14.4 10.4 16.2 6.1

(13) = (9) - (1) = p∗, b∗ 15.7 10.0 33.6 16.7 11.2 33.9 15.8 15.1 22.9 12.5 16.3 9.8

(14) = (5) - (3) = p∗ |b∗ 1.5 5.4 1.1 2.0 5.8 1.7 3.8 5.4 4.0 3.3 5.4 2.2

(15) = (5) - (2) = b∗ |p∗ 10.4 9.8 18.7 10.8 10.6 17.9 11.0 13.6 13.1 9.7 11.8 12.9

(16) = (6) - (2) = f ∗ |p∗, b̄ 9.2 0.0 28.2 9.1 0.4 27.3 7.2 2.6 17.1 4.4 0.9 12.0

(17) = (7) - (3) = f ∗ | p̄, b∗ 4.1 0.1 14.9 3.7 0.1 14.3 3.2 0.1 8.7 1.7 0.6 2.8

(18) = (9) - (5) = f ∗ |p∗, b∗ 5.2 0.2 14.8 5.0 0.2 13.8 3.6 0.2 8.5 2.1 0.1 3.6

This table corresponds to the results shown in Figure 3.3. Row numbers refer to Table 3.2. U: value of flexibility
measured in units of utility, V : cash value of flexibility, V aR: value of flexibility in terms of an increase in the 5th
percentile of V .

A.2 Calibration of commodity price models
In line with the literature on the estimation of term structure models, we use the Kalman filter in
conjunction with quasi-maximum likelihood estimation to obtain estimates of the state variables and
parameters. Below, we provide analytical futures and bond pricing formulas for the SRCV process, the
state space representation for model calibration, and parameter estimates of all models used to generate
the results in the main text.

A.2.1 Futures and bond prices
Defining y (t) = log [S (t)] and applying Itô’s lemma to the spot price process yields the following
dynamics of the log-spot price

dy =
[
r − δ −

1
2

(
σ2
s + v

)]
dt + σsdWs +

√
vdWsv, (A.1)
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Table A.2: Valuation of flexibility for different degrees of commodity price volatility

Setting σs = 0.05 σs = 0.15 σs = 0.3 σs = 0.5

U V VaR U V VaR U V VaR U V VaR

(10) = (2) - (1) = p∗ 2.1 2.1 2.0 1.9 2.1 1.4 1.3 1.3 1.2 1.6 1.6 2.4

(11) = (3) - (1) = b∗ 3.7 2.9 4.3 5.6 4.2 8.1 8.4 9.5 10.4 14.3 15.5 20.9

(12) = (5) - (1) = p∗, b∗ 5.1 4.7 4.6 7.9 7.7 9.5 12.3 14.9 14.4 19.9 25.4 25.4

(13) = (9) - (1) = p∗, b∗ 6.1 4.7 9.0 10.0 7.7 16.1 15.8 15.1 22.9 25.9 25.8 37.7

(14) = (5) - (3) = p∗ |b∗ 1.4 1.8 0.3 2.2 3.5 1.4 3.8 5.4 4.0 5.7 9.9 4.5

(15) = (5) - (2) = b∗ |p∗ 3.0 2.6 2.6 6.0 5.6 8.1 11.0 13.6 13.1 18.3 23.8 23.0

(16) = (6) - (2) = f ∗ |p∗, b̄ 1.5 0.0 4.4 4.4 0.6 11.9 7.2 2.6 17.1 9.9 3.2 27.3

(17) = (7) - (3) = f ∗ | p̄, b∗ 0.7 0.0 2.7 1.9 0.6 5.9 3.2 0.1 8.7 4.9 1.2 10.5

(18) = (9) - (5) = f ∗ |p∗, b∗ 1.0 0.0 4.4 2.1 0.0 6.6 3.6 0.2 8.5 5.9 0.4 12.3

This table corresponds to the results shown in Figure 3.4. Row numbers refer to Table 3.3. U: value of flexibility
measured in units of utility, V : cash value of flexibility, V aR: value of flexibility in terms of an increase in the 5th
percentile of V .

where r is the instantaneous risk-free interest rate and δ refers to the instantaneous net convenience
yield. It is well-known that under the above dynamics of the spot price, the futures price must satisfy the
following Feynman-Kac partial differential equation

1
2

(
σ2
s + v

)
Fyy +

1
2
σ2
rFrr +

1
2
σ2
δFδδ +

1
2
σ2
vvFvv

+ ρsrσsσrFyr + ρsδσsσδFyδ + ρsvσvvFy + ρrδσrσδFrδ

+

[
r − δ −

1
2

(
σ2
s + v

)]
Fy + κr (θr − r) Fr + κδ (θδ − δ) Fδ + κv (θv − v) − Fτ = 0, (A.2)

subject to the boundary condition F (T, 0) = S (T ). It is known that the solution to F is exponential
affine and takes the form

F (t, τ) = exp
[
y (t) + β0 (τ) + βr (τ) r (t) + βδ (τ) δ (t)

]
, (A.3)

where τ = t − T denotes the maturity of F at time t. By substituting F and separating variables, we
obtain the following set of ordinary differential equations for coefficients β0 (τ), βr (τ), and βδ (τ)

β′0 = κrθr βr + κδθδ βδ +
1
2
σ2
r β

2
r +

1
2
σ2
δ β

2
δ + σsσr ρsr βr + σsσδ ρsδ βδ + σrσδ ρrδ βr βδ (A.4)

β′r = 1 − κr βr (A.5)

β′δ = −1 − κδ βδ (A.6)
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with boundary conditions β0 (0) = 0, βr (0) = 0, and βδ (0) = 0. Note that the futures price does
not depend on v. To see this, suppose counter-factually, that F is a function of variance, i.e., F =

exp
[
yt + β0(τ) + βr (τ)rt + βδ (τ)δt + βv (τ)vt

]
. Then let M = β′v = −κv βv +

1
2σ

2
v β

2
v + σv ρsv βv.

However, since M = 0 when τ = 0 and all derivatives of M with respect to τ are zero, βv is identically
zero. It follows that F is independent of v. The solution to Equations (A.4)-(A.6) is given by

βr =
r
(
1 − e−κrτ

)
κr

(A.7)
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1 − e−κrτ

)
− κrτ

)
κ2
r

−
σ2
r

(
4
(
1 − e−κrτ

)
−

(
1 − e−2κrτ

)
− 2κrτ

)
4κ3

r

−
(κδθδ + ρsδσsσδ )

((
1 − e−κδτ

)
− κδτ

)
κ2
δ

−
σ2
δ

(
4
(
1 − e−κδτ

)
−

(
1 − e−2κδτ

)
− 2κδτ

)
4κ3

δ

+ ρrδσrσδ

[ (
1 − e−κrτ

)
+

(
1 − e−κδτ

)
−

(
1 − e−(κr+κδ )τ

)
κr κδ (κr + κδ )

+
κ2
r

(
1 − e−κδτ

)
+ κ2

δ

(
1 − e−κrτ

)
− κr κ

2
δτ − κ

2
r κδτ

κ2
r κ

2
δ (κr + κδ )

]
. (A.9)

The variance of futures returns is a function of maturity given by

σ2
F = σ

2
s + v + β

2
rσ

2
r + β

2
δσ

2
δ + 2 (βr ρsrσsσr + βδ ρsδσsσδ + βr βδ ρrδσrσδ ) , (A.10)

which simplifies to the following spot return variance for τ = 0: σ2
F (T,0) = σ2

s + v. The price of a
discount bond under Ornstein-Uhlenbeck interest rate dynamics is given by

B (r, τ) = exp
[
α0 (τ) − βr (τ) r

]
, (A.11)

where α0 (τ) is

α0 (τ) =
θr

((
1 − e−κrτ

)
− κrτ

)
κr

−
σ2
r

(
4
(
1 − e−κrτ

)
−

(
1 − e−2κrτ

)
− 2κrτ

)
4κ3

r

(A.12)

and βr (τ) follows from Equation A.7.
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A.2.2 State space form

The state space representation involves a transition equation of the state vector and a measurement
equation, which uniquely determines the state vector from a set of measurements. The transition
equation follows from Equation A.1 and the interest rate, convenience yield, and variance process given
in the main text. We use the following set of risk premia to obtain the model dynamics under the
physical probability measure. λ :=

[
λy, λr, λδ, λv

]>
, where λr =

(
θ̂r − θr

)
/σr , λδ =

(
θ̂δ − θδ

)
/σδ ,

and λv =
(
θ̂v − θv

)
/
(
σv
√
v
)
. Next, we use an Euler discretization to arrive at the following transition

equation

Xt+1 = A + BXt + εt, (A.13)

where

Xt =

[
yt rt δt vt

]>
(A.14)

A =
[
λxσs −

1
2σ

2
s κr θ̂r κδ θ̂δ κv θ̂v

]>
(A.15)

B =



1 ∆ −∆
(
λx −

1
2

)
∆

0 1 − κr∆ 0 0

0 0 1 − κδ∆ 0

0 0 0 1 − κv∆



. (A.16)

∆ refers to the size of the discrete time step and εt ∼ N (0, Σt ) is a Gaussian shock vector with the
following instantaneous variance-covariance matrix

ΣtΣ
>
t =



σ2
s + vt ρsrσsσr ρsδσsσδ ρsvσv

ρsrσsσr σ2
r ρrδσrσδ 0

ρsδσsσδ ρrδσrσδ σ2
δ 0

ρsvσv 0 0 σ2
v



∆ (A.17)

In order to link the set of state variables to the observable futures and bond prices, we construct the
following two measurement equations from Equations A.3 and A.11

ln Ft (τn) = β0 (τn) +
[
1 βr (τn) βδ (τn) 0

]
Xt + ωF (A.18)

ln Bt (τn) = γ0 (τn) +
[
0 −γr (τn) 0 0

]
Xt + ωB, (A.19)

where ωF and ωB are Gaussian noise vectors with variances of ξF and ξB, respectively. The variance
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Table A.3: Empirical performance of commodity price processes

A: Pricing performance B: Implied price statistics

Process F1 F3 F12 F24 B1 B3 B12 B24 Mean Std Skew. Kurt.

S 0.74 0.71 - - - - - - 7.89 2.41 0.96 4.66
SC 0.38 0.34 0.49 0.39 - - - - 7.72 2.31 0.94 4.66
SRC 0.43 0.34 0.60 0.46 0.04 0.10 0.26 0.16 7.71 2.30 0.94 4.64
SRCV 0.41 0.34 0.60 0.48 0.04 0.09 0.26 0.16 7.69 2.66 1.07 5.02

Panel A: root mean squared pricing errors are computed from futures and bond prices based on the Kalman filter
prediction of state variables using all time series information up to the previous week. F1 refers to the one-month
futures pricing error and B1 to the one-month discount bond pricing error. Other maturities are denoted by analogy.
Panel B: statistics are computed over 100,000 simulated commodity prices after one year. The initial values for
the market state vector are: s0 = 8, r0 = 0.02, q0 = 0.05, and v0 = 0.05 and correspond the numerical setting used
in the main text.

process (vt ) is estimated with the GARCH(1,1) inferred futures return variances corresponding to each
futures maturity in the sample. The respective measurement function is constructed from Equation A.10

vart (τn) = Ω0 (τn) +
[
0 0 0 1

]
Xt + ωvar, (A.20)

where

Ω0 (τn) = σ2
s + β

2
rσ

2
r + β

2
qσ

2
q + 2

(
βr ρsrσsσr + βq ρsqσsσq + βr βq ρrqσrσq

)
(A.21)

and ξvar is the variance of measurement noise. Alternatively, the variance process may be estimated
from option prices, however, we prefer the approach advocated here, as it can be easily implemented
without the need for additional data. In order to save parameters, it is assumed that for each series
of measurement data, only one measurement error variance applies to all maturities. Once the EKF is
implemented, wemaximize the likelihood function of the Kalman filter by first applying the Nelder-Mead
algorithm and subsequently switching to the gradient-based BFGS algorithm for efficiency.

A.2.3 Estimation results
A comparison of the pricing performance and implied return distribution of each process to historical
observations is given by Table A.3. In panel A, we report the root mean squared pricing errors (RMSE)
of realized and one-week ahead predictions of the futures and bond prices. Panel B shows summary
statistics describing the commodity price distribution implied by the four different models after one year.
Calibrated parameters are reported in Table A.4 and an illustration of the estimated state variables under
SRCV dynamics is given by Figure A.1. Note that we calibrate the S process to short-term futures only as
the use of long-term futures will lead to an underestimated value of the volatility parameter σs. This due
to the Samuelson effect, which refers to the empirical observation that futures return variance is declining
in contract maturity. As all futures returns in the term structure are perfectly correlated in a one-factor
model, long-term futures will lead to a downward bias in the estimated spot volatility. However, at least



96 APPENDIX A. SUPPLEMENT TO CHAPTER 3

2000 2003 2007 2011 2014 2000 2003 2007 2011
2.5

3

3.5

4

4.5

5
(a) Spot price

Estimate

Realized price

2000 2003 2007 2011 2014 2000 2003 2007 2011
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
(b) Interest rate

Estimate

1M LIBOR

2000 2003 2007 2011 2014 2000 2003 2007 2011
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
(c) Convenience yield

Estimate

Historically implied

2000 2003 2007 2011 2014 2000 2003 2007 2011
0

0.2

0.4

0.6

0.8

1
(d) Variance

Model estimate

GARCH(1,1) estimate

Figure A.1: Estimated and realized state variables of the SRCV model. (a) shows the spot price estimate
and the short-term futures price as an approximation for the spot price. In panel (c), the historically implied
convenience yield is calculated using the one-month and three-months futures and the following approximation:
δt ≈ rt − (ln (Ft (τ2)) − ln (Ft (τ1))) / (τ2 − τ1).

two futures are considered in order to infer information about the convenience yield.
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Table A.4: Parameter estimates of commodity price model

Parameter SRCV SRC SC S

λs 0.166 (0.263) 0.435 (0.260) 0.349 (0.198) 0.279 (0.259)
κr 0.042 (0.003)* 0.039 (0.003)* 1.000 - 1.000 -
θr 0.104 (0.004)* 0.105 (0.004)* r0 - r0 -
θ̂r 0.000 (0.044) 0.000 (0.047) r0 - r0 -
κδ 0.883 (0.018)* 0.856 (0.018)* 1.019 (0.019)* 1.000 -
θδ 0.008 (0.002)* 0.011 (0.004)* 0.000 (0.003) δ0 -
θ̂δ 0.048 (0.084) 0.008 (0.073) -0.006 (0.055) δ0 -
κv 1.824 (0.331)* 1.000 - 1.000 - 1.000 -
θ̂v 0.083 (0.012)* 0.000 - 0.000 - 0.000 -
σs 0.311 (0.003)* 0.361 (0.010)* 0.368 (0.008)* 0.297 (0.010)*
σr 0.007 (0.000)* 0.007 (0.000)* 0.000 - 0.000 -
σδ 0.291 (0.008)* 0.239 (0.009)* 0.275 (0.009)* 0.000 -
σv 0.080 (0.004)* 0.000 - 0.000 - 0.000 -
ρsr 0.170 (0.065)* 0.213 (0.054)* 0.000 - 0.000 -
ρsδ 0.995 (0.003)* 0.867 (0.013)* 0.862 (0.010)* 0.000 -
ρsv -0.033 (0.006)* 0.000 - 0.000 - 0.000 -
ρrδ 0.199 (0.064)* 0.196 (0.057)* 0.000 - 0.000 -
ξF 0.000 (0.000)* 0.000 (0.000)* 0.000 (0.000)* 0.001 (0.000)*
ξB 0.000 (0.000)* 0.000 (0.000)* - - - -
ξvar 0.002 (0.000)* - - - - - -

Log-likelihood 34,540 26,396 9,383 3,482

Reported are the parameter estimates obtained from the Kalman filter and quasi-Maximum likelihood estimation.
Standard errors are in parenthesis and ∗ indicates significance at the 95% level. SRCV is estimated with futures,
interest rate, and GARCH(1,1) variance data as discussed above. SRC is estimated with futures and interest rate
data. SC and S are estimated with futures data only, where only the 1-month and 3-months contracts are used for
the calibration of S. Given the use of different input data for each model, log-likelihood function values are not
directly comparable across models.
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Appendix to Chapter 4

B.1 Definitions

Definition 1. The expected overage and underage quantities are given byΛi
11 =

∫ z1
A

∫ z2
A (zi−ui) f (u1, u2) du1du2,

Λi
10 =

∫ zi
A

∫ B
z j

(zi − ui) f
(
ui, u j

)
duidu j , Λi

01 =
∫ B
zi

∫ z j
A

(ui − zi) f
(
ui, u j

)
duidu j , and Λi

00 =
∫ B
z1

∫ B
z2

(ui −

zi) f (u1, u2) du1du2. Further, we haveΛi
0 =

∫ B
zi

(ui − zi) f
(
ui, z j

)
dui andΛi

1 =
∫ zi
A

(
zi−ui

)
f
(
ui, z j

)
dui.

Definition 2. The probabilities corresponding to each demand/inventory scenario, denoted by Γ, are
simply given by the integral over f (·) with integration bounds corresponding to Λ given by Definition 1.
Γ11 =

∫ z1
A

∫ z2
A f (u1, u2) du1du2, Γi10 =

∫ zi
A

∫ B
z j

f
(
ui, u j

)
duidu j , Γi01 =

∫ B
zi

∫ z j
A

f
(
ui, u j

)
duidu j , Γ00 =∫ B

z1

∫ B
z2

f (u1, u2) du1du2, Γi1 =
∫ zi
A f

(
ui, z j

)
dui, and Γi0 =

∫ B
zi

f
(
ui, z j

)
dui.

B.2 Lemmas and proofs

Lemma 3. ∂Xi j/∂zi,t and ∂X ji/∂zi,t have the following piecewise definitions, reflecting the four cases of
possible cross-selling quantities. If β jiΛj

01 ≤ Λ
i
10 and βi jΛ

i
01 ≤ Λ

j
10, ∂Xi j/∂zi,t = β jiΛ

j
0, ∂X ji/∂zi,t =

−βi jΓ
i
01, If β jiΛ

j
01 ≤ Λ

i
10 and βi jΛ

i
01 > Λ

j
10, ∂Xi j/∂zi,t = β jiΛ

j
0, ∂X ji/∂zi,t = −Λ

j
1, If β jiΛ

j
01 > Λ

i
10

and βi jΛ
i
01 ≤ Λ

j
10, ∂Xi j/∂zi,t = Γi10, ∂X ji/∂zi,t = −βi jΓi01, If β jiΛ

j
01 > Λi

10 and βi jΛ
i
01 > Λ

j
10,

∂Xi j/∂zi,t = Γi10, ∂X ji/∂zi,t = −Λ
j
1. Note that while discontinuous derivatives can generally pose

challenges in numerical optimization, our analysis shows that the problem is sufficiently smooth to
converge using conventional, gradient based optimization methods.

Lemma 4. The derivatives of the optimal hedging quantity (Proposition 2) with respect to the stocking
decision zi,t are as follows

(a) for the multi-contract hedge we can write the derivative as

∂h∗t
∂zi,t

= −θ [Σt (ct )]−1 ∂Y
∂zi,t

, (B.1)
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where, for an exemplary portfolio of futures and call options, we have

Y =



Cov
(
χ f ,1

(
ci,t+1

)
, xo,neti ci,t+1 + xo,netj cj,t+1 |ct

)
Cov

(
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(
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, xo,neti ci,t+1 + xo,netj cj,t+1 |ct

)
...
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χc,Ni,c

(
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, xo,neti ci,t+1 + xo,netj cj,t+1 |ct
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(
χc,N j,c
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cj,t+1

)
, xo,neti ci,t+1 + xo,netj cj,t+1 |ct

)



. (B.2)

The term Cov
(
χk,n

(
ci,t+1

)
,Π∗

t+1 |ct
)
in h∗t is independent of the myopic stocking decision zi,t , as the

proceeds from salvage stock are counted as part of period t profits. Y reflects the covariance between
the payoff of each traded hedging instrument and the salvage value of excess inventory. The derivative
of the nth element of Y with respect to zi,t is given by

∂yn
∂zi,t

= E
[
χk,n

(
ci,t+1

) [
θci,t+1

(
Γ11 + Γ

i
10

)
−Ωi

3

] ���� ct
]
, (B.3)

where Ωi
3 follows from Proposition 1. The individual derivatives such as ∂hk

i,t,n/∂zi,t can be easily
extracted from the vector valued solution of Equation B.1.

(b) for the single-contract hedge, consisting of one futures position in each market, the term in h∗i,t that
is affected by zi,t is −θxo,neti,t so that ∂h∗i,t/∂zi,t = −∂θxo,neti,t /∂zi,t . The piecewise derivative is defined
in accordance with the possible cross-selling scenarios and the resulting net overage quantities xo,neti,t .
If β jiΛj

01 ≤ Λ
i
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i
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j
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Lemma 5. In part (a) and (b) of this lemma, we provide the partial derivatives of expected price elastic
cross-demand X p with respect to the pricing decision p and the stocking factor z, respectively.

(a) the partial derivatives of X p
ij with respect to p are ∂X p

ij/∂pi,t = −η and ∂X p
ij/∂pj,t = η if

X p
ij = Dp
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(
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)
Λ
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(
pi − pj

)
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j
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ji
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(
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≤ βi jΛ

i
01.

Otherwise, ∂X p
ji/∂pi,t = ∂X p

ji/∂pj,t = 0.

(b) the partial derivatives of X p
ij with respect to zi and z j differ from the price inelastic base case

derivatives provided by Lemma 3 as follows. If X p
ij = Λ

i
10, ∂X p

ij/∂zi = ∂Xi j/∂zi and ∂X p
ij/∂z j =
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∂Xi j/∂z j . If, instead, X p
ij = Dp

ji, we have ∂X p
ij/∂zi = ∂Xi j/∂ziZ
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ij and ∂X p
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p
ij , where
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(B.4)

Similarly, if X p
ji = Λ

j
10, ∂X p

ji/∂zi = ∂X ji/∂zi and ∂X p
ji/∂z j = ∂X ji/∂z j . If X p

ji = Dp
ij , we have

∂X p
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(B.5)

Our analysis shows that the discontinuous demand model and associated piecewise derivatives admit an
implementation with gradient-based solution methods as the problem is sufficiently smooth.

Proof of Lemma 1. The first and second partial derivatives of E [U (·)] with respect to pi are given by
∂E [Ut (·)] /∂pi,t = 2bi

(
p0
i,t − pi,t

)
−

(
Λi

00 + Λ
i
01

)
+ Xi j and ∂2E [Ut (·)] /∂p2

i,t = −2bi, respectively.
Rearranging ∂E (Ut (·)) /∂pi,t yields the optimal price for product i in time period t p∗i,t . It follows from
∂2E [Ut ] /∂p2

i,t that E [Ut (·)] is concave in pi,t admitting a unique maximum at p∗i,t .

Proof of Lemma 2. Equation 4.15 is obtained from the partial derivative ∂U (·) /∂Xi j . Noting that
the discounted expected value of the future raw material price under the risk-neutral measure is
αE

[
ci,t+1 |ci,t

]
= e−δ∆ci,t , we can simplify Equation 4.15 to pi,t − ci,t − λθ Cov

(
ci,t+1,Ω

i
1 |ct

)
> 0.

As the firm should not consider operating under a negative (or zero) gross margin in our model, it holds
that pi,t − ci,t > 0. Now, we address the statements of Lemma 2. Considering the unhedged firm first,
the utility contribution from cross-selling is always positive under risk neutrality (λ = 0). Under risk
aversion (λ > 0) and θ Cov

(
ci,t+1,Ω

i
1 |ct

)
> 0, cross-selling is utility improving as it reduces leftover

inventory in Ωi
1 and, thereby, the value of the covariance term. If instead, θ Cov

(
ci,t+1,Ω

i
1 |ct

)
< 0, the

salvage value of leftover inventory hedges a part of the variance in Πt+1
(
zt+1, pt+1, |ht, ct+1

)
. As cross-

selling reduces leftovers it can increase the covariance term (lower absolute value) and decrease utility.
When a financial hedge is implemented, the role of inventory as an operational hedge is fully replaced
by a futures contract so that the term λθ Cov

(
ci,t+1,Ω

i
1 |ct

)
can be eliminated from Equation 4.15. It

follows that under a positive gross margin cross-selling is always optimal with financial hedging.

Proofs of Lemmas 3-5. These lemmas provide derivatives used in the propositions of this paper. A proof
of these derivatives is omitted.
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B.3 Proofs of propositions
Proof of Proposition 1. First, note that under the jointly optimal inventory and pricing policy, pi,t = p∗i,t
so that in Equation 4.11

∂Ut
(
zt, p∗t , ht |ht−1, ct

)
∂pi,t

∂p∗i,t
∂zi,t

+
∂Ut

(
zt, p∗t , ht |ht−1, ct

)
∂pj,t

∂p∗j,t
∂zi,t

= 0, (B.6)

since ∂Ut
(
zt, p∗t , ht |ht−1, ct

)
/∂pi,t = 0 and ∂Ut

(
zt, p∗t , ht |ht−1, ct

)
/∂pj,t = 0, which follows from the

definition of p∗t as the utility maximizing price. Thus, the partial derivative of Ut (·) with respect zi,t
simplifies to Equation 4.11.

In order to prove the optimality and uniqueness of z∗t , we first establish the concavity of Ut (·) with
respect to zi,t . We then verify the joint concavity of Ut (·) with respect to z∗t and discuss the critical
stockout penalty γ̄i. Noting that αθE

[
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]
= ci,t , the second partial derivative ofUt (·) with respect

to zi,t is
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where Ωi
1 and Ωi

2 follow from Proposition 1 and Ωi
4 = θci,t+1

(
Γ
j
0 + Γ

j
1

)
. Since the firm should only

operate under a positive gross margin, pi,t > ci,t , and γi ≥ 0, the first part of Equation B.7 is neg-
ative. Hence, for the risk-neutral firm it always holds that ∂2E [Ut (·)] /∂z2

i,t < 0. If λ > 0, we
first note that V

(
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)
> 0 so that Equation B.7 is only greater than zero if Cov
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< 0, which is never the case in the final period T , when
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i
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)
> 0. Also if a financial hedge is implemented according to Proposition 2, the firm can

perfectly hedge the covariance between future costs and profits so that Cov
(
Ωi

1,Ω
i
4 |ct

)
= 0. Finally,

for the risk-averse, unhedged firm at time t < T , the above covariance can be negative. For Ut (·) to
be concave with respect to zi in this case, we can rearrange Equation B.7 to show that if ξ < 0, where
ξ =

(
Ωi

2 |ct
)
+ Cov

(
Ωi

1,Ω
i
4 |ct

)
, it must hold that λ <

(
ci,t − pi,t − γi

) (
Γ
j
0 + Γ

j
1

)
/ξ. For completeness,

if Cov
(
Ωi

1,Ω
i
4 |ct

)
> 0, it has to hold that λ ≥ 0, which is true by definition. Our analysis shows that

the above condition is not restrictive in the sense that it is satisfied for a wide set of realistic parameter
values. We can also rewrite this condition in terms of the stockout penalty γi, which must satisfy
γi > ζi = ci,t − pi,t − λξ/

(
Γ
j
0 + Γ

j
1

)
. We find that ζi < γ̄i is similarly satisfied throughout the numerical

study of this paper, where γ̄i = βi j
[
pj − αθE

[
cj,t+1 |ct

] ]
− (pi − ci) follows from Section 4.4. To

establish the joint concavity ofUt (·) with respect to zi,t and z j,t , we verify that det
(
H

(
zi,t, z j,t

))
> 0 ∀t,

which in conjunction with ∂2E [Ut (·)] /∂z2
i,t < 0 concludes this proof.
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Proof of Proposition 2. The first and second partial derivatives of utility with respect to the firm’s
hedging decision are given by

∂E
[
Ut

(
zt, pt, ht |ht−1, ct

)]
∂ht

= −λ
[
Σt (ct ) ht −Ψt

(
z∗t , ct

)]
, (B.8)

and
∂2E

[
Ut

(
zt, pt, ht |ht−1, ct

)]
∂h2

t

= −λΣt (ct ) , (B.9)

respectively. Rearranging Equation B.8 yields the solution to h∗t of Proposition 2. As Σt (ct ) is positive
semidefinite, the second derivative, reflecting the Hessian matrix of the utility function, is negative
semidefinite so that Ut (·) is concave in ht (Kouvelis et al., 2013).

Proof of Proposition 3. The optimal pricing decision under price elastic cross-demand Dp
ij given by

Proposition 3 follows from the first partial derivative of Up
t (·) with respect to p. The second partial

derivative is given by

∂2E
[
Up
t

(
zt, pt, ht |ht−1, ct

)]

∂p2
i,t

= 2 *
,

∂X p
ij

∂pi,t
− bi+

-
− λV

(
Ω

i
5 |ct

)
, (B.10)

whereΩi
5 is given as part of Proposition 3. Since ∂X p

ij/∂pi,t ≤ 0 (from Lemma 5), bi > 0, and V (·) ≥ 0,
Equation B.10 is negative implying thatUp

t (·) is a concave function of pi,t , which is uniquely determined
as a function of the joint stocking factor z∗t . The proof of joint concavity of Up

t (·) with respect to z∗t is
analogous to the proof of Proposition 1.

B.4 Corollaries
Corollary 2. In this corollary of Proposition 1, we discuss the optimal operating (pricing and inventory)
policy under the price inelastic specification of cross-demand and a binding constraint on γi.

In order to obtain a unique solution for z∗t and p∗t , it must hold that γi ≥ γ̄i = pjX ji/Λ
i
01 − (pi − ci).

If this constraint is binding, we substitute γ̄i for γi into the utility function (Equation 4.8), which we
now denote by Ū (·). From the partial derivatives of E

[
Ū (·)

]
with respect to pi and zi, we obtain the

following optimal policies for the pricing and inventory decision

p̄∗i,t
(
z̄∗t |ci,t

)
= p∗i,t

(
z∗t |ci,t

)
+
Λi

00 + Λ
i
01 − β ji

(
Λ

j
00 + Λ

j
01

)
2bi

, (B.11)

where p∗i,t (·) is given by Lemma 1. The joint stocking factor is now obtained as the solution to

∂E
[
Ūt

(
zt, pt, ht |ht−1, ct

)]

∂zi,t
:
∂E

[
Ut

(
zt, pt, ht |ht−1, ct

)]
∂zi,t

+
(
Γ00 + Γ

i
01

) [
ci,t − pi,t − γi + βi j

(
pj,t − αθE

[
cj,t+1 |ct

] )]
, (B.12)
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where ∂E [U (·)] /∂zi follows from Proposition 1. Note that the constant γi, which is replaced by γ̄i in
E
[
Ū (·)

]
, disappears in Equation B.12 once ∂E

[
U (·)

]
/∂zi is substituted. The optimal hedging decision

is analogous to Proposition 2.

Corollary 3. In this corollary of Proposition 3, we address the firm’s optimal operating policy under the
price elastic specification of cross-demand X p

ij =
[
Λi

10, Dp
ji

]−
and a binding constraint on the stockout

penalty.
Similarly to the price inelastic case, uniqueness of z∗t and p∗t under price elastic cross-demand

necessitates that the expected cost from an induced stockout in one division is large enough to at least
offset the gross profit earned by the second division by serving the resulting cross-demand for the
substitute product. Formally, it needs to hold that (pi + γ̂i − ci)Λi

01 ≥
[
pj − E

[
cj,t+1 |ct

] ]
X p
ji, which

leads to a critical value γ̂i =
[
pj − αθE

[
cj,t+1 |ct

] ] X
p
ji

Λi
01
− (pi − ci) and the condition γi ≥ γ̂i. If the

constraint is binding, γ̂i is substituted for γi into the utility function (Equation 4.8), now denoted by Ûp (·).
The optimal operating policy is then implicitly characterized by the partial derivatives ∂E

[
Ûp (·)

]
/∂pi

and ∂E
[
Ûp (·)

]
/∂zi, given by

∂E
[
Ûp
t

(
zt, pt, ht |ht−1, ct

)]

∂pi,t
:
∂E

[
Up
t

(
zt, pt, ht |ht−1, ct

)]

∂pi,t

−


X p
ij +

∂X p
ij

∂pi,t

(
pi,t − αθE

[
ci,t+1 |ct

] )

Λ
j
00 + Λ

j
01

Λ
j
01

+


Λ
i
01 −

∂X p
ji

∂pi,t

(
pj,t − αθE

[
cj,t+1 |ct

] )

Λi
00 + Λ

i
01

Λi
01

= 0, (B.13)

where ∂E [Up (·)] /∂pi follows from Equation 4.18 and

∂E
[
Ûp
t

(
zt, pt, ht |ht−1, ct

)]

∂zi,t
:
∂E

[
Up
t

(
zt, pt, ht |ht−1, ct

)]

∂zi,t

−
(
pi,t − ci,t − γi

) (
Γ00 + Γ

i
01

)

−
(
pi,t − αθE

[
ci,t+1 |ct

] ) *
,

∂X p
ij

∂zi,t
−

Xi jΛ
j
0

Λ
j
01

+
-

Λ
j
00 + Λ

j
01

Λ
j
01

(B.14)

−
(
pj,t − αθE

[
cj,t+1 |ct

] ) 
*
,

∂X p
ji

∂zi,t
+

X jiΓ
i
01

Λi
01

+
-

Λi
00 + Λ

i
01

Λi
01

+ X p
ji

Γ00 + Γ
i
01

Λi
01


= 0.

The partial derivatives of the expected price elastic cross-selling quantity X p with respect to p and z are
given by Lemma 5 in Appendix B.2.
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B.5 Supplement to numerical study
We use the following transition density to compute expectations of the bivariate GBM process:

f (ct, ct+1) =
1

2π∆
√

1 − ρ2
cσ

2
c,1σ

2
c,2c1,t+1c2,t+1

× exp *.
,
−

log
(
c1,t+1

)
− log

(
c1,t

)
− µc,1 (∆)2

2
(
σ2
c,1

) (
1 − ρ2

c

)
∆

+/
-

× exp *.
,
−

log
(
c2,t+1

)
− log

(
c2,t

)
− µc,2 (∆)2

2
(
σ2
c,2

) (
1 − ρ2

c

)
∆

+/
-

× exp *.
,

(
log

(
c1,t+1

)
− log

(
c1,t

)
− µc,1∆

) (
log

(
c2,t+1

)
− log

(
c2,t

)
− µc,2∆

)
ρc

σc,1σc,2
(
1 − ρ2

c

)
∆

+/
-
, (B.15)

where µc,i = r − δi − 1
2σ

2
c,i.

B.6 Derivation of profit function
In this section, we describe the profit function obtained by substituting zi = qi − yi (pi) into Equation 4.2
under integral notation. From this representation, we obtain Equation 4.4, which is the profit function
used throughout our analysis.

Given the definition of zi, we can rewrite the profit of division i in period t from Equation 4.2,
πi,t

(
zi,t, pi,t, hi,t |z j,t, hi,t−1, ci,t

)
, as

E [πi (·)] =
∫ zi

A

∫ z j

A

[
pi

[
yi (pi) + ui

]

+ αθE
[
ci,t+1 |ci,t

]
(zi − ui)

]
f
(
ui, u j

)
duidu j

+

∫ zi

A

∫ B

z j

[
pi

[
yi (pi) + ui

]
+ piXi j

+ αθE
[
ci,t+1 |ci,t

] (
zi − ui − Xi j

) ]
f
(
ui, u j

)
duidu j

+

∫ B

zi

∫ B

A

[
pi

[
yi (pi) + zi

]
− γi (ui − zi)

]
f
(
ui, u j

)
duidu j

− ci
[
yi (pi) + zi

]
+ φi,t

(
hi,t−1, ci,t

)
, (B.16)
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where Xi j =
[
zi − ui, β ji

(
u j − z j

)]−
. The three cases (integrals) in Equation B.16 follow from the

representation of effective sales in Equation 4.1. In particular, in the first case we have overage in both
products, i.e., Di < qi and D j < qj , which is equivalent to writing εi ≤ zi and ε j ≤ z j . As the inventory
levels of each product are sufficient to satisfy the respective demand, we have no cross-demand for
either product, which could arise from a shortage in the second product. Instead, divisional profits are
independent and given by the sum of sales revenues and the expected salvage value of excess inventory.
Under the second integral, we account for the case where εi ≤ zi but ε j > z j , i.e., the situation where
the inventory of product i is sufficient to cover the respective standalone demand Di, while division j

is facing a shortage. As discussed above, some of the customers originally interested in product j may
now purchase product i as a substitute (or purchase neither of the products if they are complementary).
Therefore, the profits of division i are now given by the sum of standalone revenue, the additional sales
proceeds from serving the cross-demand, and the salvage value arising from any net leftovers that remain
after cross demand is served.

The third case reflects the expected profit when both divisions are facing a stockout. As no cross-
selling takes place, divisional profits are independently given as the sum of sales revenue and shortage
costs. Note that when β ji = 0, expectations of εi may simplify to the univariate integral w.r.t ui even in
the presence of correlated demand shocks Cov

(
εi, ε j

)
, 0. This is the case when the marginal densities

of the bivariate demand shock are independent of the correlation coefficient as is the case for, e.g., the
bivariate normal distribution. However, if cross-selling takes place and demand shocks are correlated,
profits of division i depend on the state of demand j, requiring the joint evaluation of both demand shock
expectations.

It is worth noting that we do not assume a reimbursement of stockout penalty costs in division i for
those units of lost demand that are absorbed by cross-selling from division j. If desired, this can be
easily incorporated by adding the following case to Equation B.16, which then, of course, requires an
adjustment of the lower integration boundary in the third integral from A to z j

∫ B

zi

∫ z j

A

[
pi

[
yi (pi) + zi

]
− γi

[
ui − zi − X ji

] ]
f
(
ui, u j

)
duidu j . (B.17)

With this adjustment, shortage penalty costs are incurred based on the net underage quantity after cross-
sales ui − zi − X ji, where X ji =

[
z j − u j, βi j (ui − zi)

]−
. For instance, if the products are substitutes,

cross-selling reduces underage costs of division i by γiX ji > 0, which represents the recovered stockout
penalty corresponding to the fraction of demand that is lost by division i but absorbed by division j. If
the two divisions offer complementary products, βi j < 0 and X ji = βi j (ui − zi) < 0 so that division i

incurs additional shortage costs γi βi j (ui − zi). These reflect the lost sales of product j induced by the
shortage in the complementary product i and are counted as part of the profit in division i. For simplicity,
we do not further consider the possibility of penalty cost reimbursement in this thesis.
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