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1 Introduction

In his seminal publication to the field of growth optimal strategies, Kelly (1956) has

outlined how a receiver of a noisy signal with information on the outcome of a game

can use that information to his advantage in gambling. The work of John L. Kelly

was inspired by his Bell Laboratories colleague Claude Shannon and his pioneering

work on information theory (Shannon, 1948). Shannon discovered a formula for the

maximum rate of transmission of a noisy channel which Kelly applied to gambling1.

This being the first application of that formula to an investment situation, gamblers

and investors alike subsequently used what became known as the Kelly criterion for

investing and risk management.

Breiman (1961) provided the rigorous mathematical proves of the findings that

Kelly (1956) presented. Breiman showed that the use of the Kelly criterion to de-

termine risk taking entails logarithmic utility. While logarithmic utility had already

been proposed by Daniel Bernoulli in 1738 (Bernoulli, 1954)2, much of 20th century

academic interest was triggered by the publications of Kelly (1956) and Breiman

(1961) who described that the maximization of logarithmic utility in wealth maxi-

mizes the long-run growth rate of wealth. While economists have questioned growth

optimal strategies and the underlying assumption of logarithmic utility (Samuelson,

1979), a wealth of successful applications and research in support of it has been

developed (Ziemba, 2015).

Portfolio theory as presented by Markowitz (1952, 1959) has become the corner-

stone of portfolio selection and the common basic description of an investor is that

of a mean-variance optimizer. In this framework, a broad set of concave utility

functions is permissible. While its compatibility with a wealth of utility functions

makes mean-variance analysis attractive, it essentially is a single-period concept

and its generalization to multi-period problems is not straightforward. Optimal

multi-period solutions to mean-variance problems for arbitrary utility functions are

clearly desirable, but difficult to obtain. For advocates of the pure theory of expected

utility maximization it is hard to accept this difficulty as an argument to restrict

utility functions, particularly if only logarithmic utility is used. Nevertheless, the

1See Poundstone (2005) for an enlightening and entertaining discussion of the history of gam-
bling and the Kelly criterion.

2Bernoulli (1954), published in Econometrica, is a translation and reprint of the original latin
language article published 1738 in Papers of the Imperial Academy of Sciences in Petersburg V.
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difficulty or even unavailability of theoretically optimal solutions to multi-period

mean-variance problems without restrictive assumptions on utility functions and re-

turn distributions is certainly a factor that encouraged research on growth optimal

strategies.

In this dissertation we focus on comparing growth optimal strategies and my-

opic mean-variance optimization, which uses the myopic assumption also in settings

where myopia does not yield theoretically optimal solutions. We contribute to the

existing work on mean-variance optimization by investigating the loss in wealth and

the deterioration in performance measures that the myopic assumption can cause.

We compare the myopic mean-variance investor with a growth optimal Kelly in-

vestor and a fractional Kelly investor to illustrate the lower wealth accumulation

and performance. The inspiration to this research goes partly back to Markowitz

(1976) who outlines that there is a point on the single-period efficient frontier be-

yond which one finds portfolios that exhibit greater volatility in the short run, but

less return in the long run. This point is the long run growth optimal portfolio

and all portfolios that entail more risk taking than the growth optimal portfolio are

dominated by the growth optimal portfolio as the time horizon converges to infinity.

First, this dissertation presents a review of theory and applications of growth

optimal strategies and the Kelly criterion to provide fundamental knowledge and

an overview of what has been done in previous research. Second, this disserta-

tion presents a simulation study on overbetting of myopic mean-variance investors.

Overbetting refers to risk taking beyond growth optimal, which induces increased

short term volatility and reduced long term growth. We find that a constraint

which requires the myopic mean-variance investor to not exceed growth optimal

risk taking increases investor performance and prevents bankruptcy in discrete time

multi-period asset allocation problems with normally distributed returns. Third,

this dissertation presents results for 80 years of stock market investing of a growth

optimal investor and a myopic mean-variance investor. Thereby we extend the ex-

isting simulation-based work on growth optimal strategies in two ways. First, we

use real-world data and have our investor allocate his assets at each decision point

given some estimates for next period return obtained as moving averages from past

data only. Second, we compare the performance of our growth optimal investor with

that of a myopic mean-variance investor who bases his asset allocation decisions on

the same parameter estimates. We find that both, the growth rate of wealth and

the performance measures achieved by our growth optimal investor substantially

surpass those of our myopic mean-variance investors.



2 Growth Optimal Strategies and the Kelly

Criterion: A Review of Theory and

Applications1

2.1 Introduction

Growth optimal strategies refer to investment policies which maximize the expected

log growth rate of wealth. In the long run, such policies asymptotically outperform

any other investment policy in many respects. Applied to an infinite sequence of

investments, a growth optimal strategy accumulates asymptotically more wealth

than any different investment strategy. Applied to a finite sequence of investments,

a growth optimal strategy maximizes the expected growth rate of wealth and never

risks ruin. It tends to accumulate wealth quickly, but it exhibits substantial risk

taking and thus high volatility in the wealth path. From an expected utility theory

viewpoint, growth optimal strategies maximize logarithmic utility. In order to apply

a growth optimal strategy in practice, the underlying investment opportunity must

be favorable, meaning the expected return must be positive and the maximum losses

must be finite.

Modern research on growth optimal strategies originated with the independent

papers of Kelly (1956) and Latané (1959), which both suggest strategies to maximize

the expected long run growth rate of wealth in multi-period investment situations,

which is the compound return. With reference to Kelly (1956), the growth optimal

wager became also known as the Kelly criterion. Since Kelly and Latané, growth

optimal strategies have been applied in various fields in finance. Growth optimal

strategies and the Kelly criterion have predominantly been used in asset pricing,

risk management and capital growth problems in investing and gambling.

When portfolio theory as established by Markowitz (1952, 1959) was not yet

widely accepted as the premier model of financial markets, growth optimal strategies

and logarithmic utility models have been considered a viable alternative to portfolio

theory. While portfolio theory comes with restrictive assumptions on the probability

distribution of returns, logarithmic utility models instead restrict utility functions.

However, when the acceptance of the expected utility maxim by von Neumann

1This chapter is based on the homonymous working paper Winselmann (2017a).
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and Morgenstern (1944) as the criterion for rational choice among risky ventures

became more widespread, the initial excitement of the finance community about

logarithmic utility models for financial markets decreased. The capital asset pricing

model of Sharpe (1964) and Lintner (1965) gained widespread acceptance in the

finance community due to its compatibility with a broad range of utility functions,

while logarithmic utility models were deemed an inadequate foundation for asset

pricing. Despite this demise and some initial imprecise theoretical treatment of

their asymptotic properties when time horizons are finite (Samuelson, 1969, 1979),

growth optimal strategies are successfully used since half a century by practitioners

and academics alike.

Over time and especially in earlier literature, different authors used different

terms to refer to growth optimal strategies. In recent publications, the terms

Kelly criterion (Rotando and Thorp, 1992; MacLean et al., 2010b; Luo et al., 2014)

as well as Kelly strategies seem to prevail (MacLean et al., 1992; Thorp, 2006;

MacLean et al., 2010c; Davis and Lleo, 2013). Further terms that are used to refer

to growth optimal strategies and the Kelly criterion include capital growth model

or capital growth theory (Hakansson, 1971a; Bicksler and Thorp, 1973; Hakans-

son and Ziemba, 1995; MacLean and Ziemba, 2006), maximum geometric mean

strategy and average-compound-return criterion (Samuelson, 1971), growth optimum

model (Roll, 1973; Kraus and Litzenberger, 1975), maximum-expected-log (MEL)

rule (Markowitz, 1976), geometric mean criterion (Ophir, 1978; Latané, 1978), and

fortunes formula (Poundstone, 2005; MacLean et al., 2011). The growth optimal

portfolio is also frequently referred to as the numeraire portfolio in asset pricing

applications (Long, 1990; Bajeux-Besnainou and Portait, 1997).

In this paper we wish to add to the debate and systematically review existing

research and applications. This paper is organized as follows. First, we explain the

Kelly criterion and review the basic literature on the Kelly criterion. This includes a

discussion of the expected utility foundations of the Kelly criterion and the critique

brought forward against it. Second, we review applications and discuss additions.

This covers the fields of portfolio choice and asset pricing, risk and risk management,

as well as investing and gambling. We conclude with critical remarks and directions

for future research.

2.2 The Kelly criterion

In his seminal publication to the field of growth optimal strategies, Kelly (1956)

applies the information theory work of Shannon (1948) to a gambling situation.
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Kelly outlines how a receiver of an uncertain private information, which provides him

with an edge over the bookmaker, can use this information for profitable gambling.

He formulates a strategy which maximizes long-run wealth growth for an infinite

series of favorable games.

Kelly’s inspiration for the research question came from a widespread fascination

in gambling2. At the time of Kelly’s publication, sports betting on distant events

was offered by bookmakers all over the United States, despite being illegal in most

states. The bookmakers were dependent on wire services that provided them with

timely information on the end and the results of games. If customers were able to

obtain information on the outcome of a sports event earlier than the bookmakers,

they could make arbitrage profits at the expense of the bookmaker by placing bets

on contestants who already won.

Kelly (1956) assumes a gambler who receives some noisy private information on

the outcome of a gamble before the bookmaker. Kelly’s gambler is able to place

a bet given the private information he receives before the bookmaker is informed

that results are available and thus closes betting. If the private information was

entirely reliable, the optimal strategy of the gambler would be to bet as much as

he can. But information transmission at the time of Kelly was slow and blurry,

meaning that information transmitted under time pressure is uncertain. In accor-

dance with the information theory developed by Shannon (1948), Kelly assumes

that the private information of the gambler is transmitted over a noisy channel.

According to information theory, information received through a noisy channel does

not have an unambiguous meaning, but it rather has a probabilistic meaning and

the sum over the probability of all possible meanings equals one. The receiver of

some uncertain information on the results of a sports event has an edge over a yet

uninformed bookmaker. Although he cannot be entirely sure what the result is,

he can update his probability believes and bet accordingly. Kelly (1956) solves the

problem of maximizing the long run growth rate of wealth given uncertain private

information. Based on the information theory of Shannon, Kelly derives a formula

that determines the fraction of wealth to be bet in order to maximize long-run

wealth growth in an unending sequence of favorable investments. This formula later

became known as the Kelly criterion. Applied to finite sequences of investments,

the investment strategy proposed by Kelly maximizes the expected growth rate of

wealth. The noisy channel assumed by Kelly is a specific example of a source of an

2See Poundstone (2005) for an enlightening and entertaining discussion of the history of pro-
fessional gambling and the link of gambling and the Kelly criterion.
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W0

W1 = f(1− 100%)W0 + (1− f)W0

= (1− f)W0
W2 = f(1− 100%)W1 + (1− f)W1

= (1− f)W1 = (1− f)2W0

W2 = f(1 + 100%)W1 + (1− f)W1

= (1 + f)W1 = (1 + f)(1− f)W0

W1 = f(1 + 100%)W0 + (1− f)W0

= (1 + f)W0
W2 = f(1− 100%)W1 + (1− f)W1

= (1− f)W1 = (1− f)(1 + f)W0

W2 = f(1 + 100%)W1 + (1− f)W1

= (1 + f)W1 = (1 + f)2W0

Figure 2.1: Binomial tree depicting the wealth development for two sequential
Bernoulli trials where each success returns 100% on the invested fraction f
of wealth and each failure results in a loss of the invested fraction of wealth

edge in gambling, but the mathematics developed by Kelly apply in the same way

to any favorable investment opportunity.

2.2.1 Computation of the growth optimal wager

The investment problem that Kelly (1956) presented concerns a gamble with a binary

outcome. Assume there are two possible outcomes, either success or failure. A

success results in a return of +100% and a failure results in a return of −100% on

the investment, meaning the investment situation is a double-or-nothing game. Such

games are referred to as Bernoulli trials. Let S denote the number of successes and

let L denote the number of failures in N sequential investments with N = S + L.

The investor wealth WN after N investments is then given by

WN = (1 + f)S(1− f)LW0 (2.1)

where f denotes the constant fraction of wealth invested in each round and W0

denotes initial wealth. The binomial tree in figure 2.1 visualizes the wealth process
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for the first two sequential investments. Kelly (1956) is credited with the idea to

maximize the long run log growth rate of wealth G given by3

G = lim
N→∞

1

N
log

WN

W0

(2.2)

Substituting into equation 2.2 the formulation for WN/W0 that we obtain from

dividing equation 2.1 by W0, we obtain

G = lim
N→∞

[
S

N
log(1 + f) +

L

N
log(1− f)

]
(2.3)

Let p now be the probability of a success and q = 1 − p be the probability of a

failure, so that as N →∞ we have p = S
N

and q = L
N

. Thus equation 2.3 becomes

G = p log(1 + f) + (1− p) log(1− f) (2.4)

and setting the derivative of G with respect to f equal to zero we find

G′ =
p

1 + f
− 1− p

1− f

=
2p− f − 1

(1 + f)(1− f)
!

= 0
(2.5)

from which follows that the long run growth optimal fraction of wealth to wager in

each trial f ∗ is given by

f ∗ = 2p− 1

= p− q
(2.6)

The growth optimal fraction of wealth to wager became known as the Kelly crite-

rion. It can be generalized to games with uneven payoff where D units are won for

every unit invested. Thorp (1984) shows that for such investment situations with a

positive expectation, meaning p > 0 and pD − q > 0, the growth optimal wager is

f ∗ = Dp−q
D

.

Thorp (1969, 2006) discusses the use of the Kelly criterion in gambles with contin-

uous distributions of outcomes. Rotando and Thorp (1992) provide a generalization

of the Kelly criterion to continuous distributions and a stock market example in

3Kelly (1956) shows that the maximum attainable G is equal to the transmission rate of a
noisy channel defined by Shannon (1948), which means that a gambler will be able to generate
return equal to the rate of transmission of the channel providing him with private information.
The analogy to Shannon’s information theory was of inspiration and principle concern to Kelly, but
his discovery of a formula for the growth optimal level of risk taking and the implied logarithmic
utility is today of much more interest to research than the equality to rate of transmission.
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discrete time with normally distributed returns. Compared to later research which

frequently combines growth optimal strategies with rather complex risk management

approaches involving multiple assets and heuristics, Rotando and Thorp (1992) pro-

vide an intuitive and accessible introduction to the mathematics of growth optimal

wagers.

2.2.2 Expected utility theory foundations

While Kelly (1956) maximizes the long term growth rate of wealth, economists rather

resort to utility functions to model the risk preferences of investors. From expected

utility theory we know that expected utility is the correct criterion for rational

investors to choose among risky alternatives (von Neumann and Morgenstern, 1944).

A rational investor would not necessarily maximize wealth, as Kelly (1956) suggests,

but he would maximize expected utility. The investment behavior in gambling is

only one specific display of the risk preferences of a rational investor, and his risk

preferences in gambling should equal his risk preferences in any other investment

situation with uncertainty.

Breiman (1961) provides the mathematical foundations to the work of Kelly (1956)

and thereby reconciles it with expected utility theory. Breiman rigorously proves

that the utility function underlying the strategy proposed by Kelly is log utility in

final wealth. An investor with logarithmic utility in final wealth pursues exactly

the strategy that Kelly (1956) finds to result in maximum long run capital growth,

namely the myopic maximization of the single period expected log growth rate of

wealth. The expected utility function that a Kelly investor maximizes is

EU = E [log(WN)] (2.7)

By the properties of the logarithm function, it can be shown that a Kelly investor

does not need to solve a complex multi-period problem, but that an optimal policy

for a Kelly investor is myopic. Let rn be the portfolio return in period n.

E [log(WN)] = E

[
log

(
W0 ∗

N∏
n=1

(1 + rn)

)]

= log(W0) +
N∑
n=1

E [log(1 + rn)]

(2.8)

Equation 2.8 shows that logarithmic utility induces myopic investment behavior

and that the optimal investment policy is to maximize the expected log growth rate
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of wealth in each period independent of all other periods. When the portfolio to be

held in period n is chosen, Wn−1 is known and log(Wn−1) is a constant as far as this

choice is concerned (Markowitz, 2014).

Breiman (1961) does not only provide the rigorous proof that logarithmic utility

is the underlying utility function of the growth optimal strategy proposed by Kelly

(1956), but Breiman also proves that an investor who maximizes expected logarith-

mic utility in final wealth asymptotically accumulates more capital than any other

investor. In more technical terms, Breiman (1961) establishes that independent of

the distribution of returns, the final wealth W ∗
N accumulated under a growth op-

timal strategy Λ∗ will asymptotically be infinitely larger than the final wealth WN

accumulated under any essentially different strategy Λ, which is not asymptotically

close to Λ∗. If a non-terminating growth optimal strategy Λ∗ achieves wealth W ∗
N

after N plays and a strategy Λ achieves wealth WN , then there exists a limit for

W ∗
N/WN and limN→∞(W ∗

N/WN) =∞. The optimal strategy Λ∗, which is the max-

imization of the expected logarithm of final wealth, asymptotically dominates any

other essentially different strategy, both in terms of the final wealth and the time

required to reach some distant wealth goal.

Before Breiman (1961), Latané (1959) introduces logarithmic utility to finance

independent of Kelly (1956) and argues that it has superior long-run properties,

meaning that it ensures highest long run wealth growth. Neither of these authors

has though been the first to imply logarithmic utility. The idea that there must

be a diminishing marginal utility of wealth and that a logarithmic function might

be appropriate to describe it can be traced back as far as to Daniel Bernoulli in

1738 (Bernoulli, 1954)4, who describes a logarithmic utility function and applies it

to solve the St. Petersburg paradox. Although Kelly and Latané were not the first

scholars to propose logarithmic utility, their work is recognized as an important step

to apply logarithmic utility to problems in finance and bring it back into modern

academic discussion.

Investor preferences are in later research rather represented more broadly by the

family of isoelastic utility functions, of which logarithmic utility is a special case.

The family of isoelastic utility functions is defined as

U =

W 1−γ−1
1−γ ∀ γ 6= 1

log(W ) ∀ γ = 1
(2.9)

4Bernoulli (1954), published in Econometrica, is a translation and reprint of the original latin
language article published 1738 in Papers of the Imperial Academy of Sciences in Petersburg V.
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where γ denotes risk aversion. γ = 1 represents the special case of logarithmic utility,

which can be established by virtue of l’Hôpital’s rule. Mossin (1968) discusses multi-

period portfolio policies and establishes the conditions under which myopic portfolio

choice is optimal. Mossin finds that with isoelastic utility, the investor preferences

are such that a stationary policy and complete myopia are optimal. Isoelastic utility

functions exhibit the property of constant relative risk aversion, which is a necessary

and sufficient condition for myopia being optimal (Mossin, 1968). Hakansson (1971b)

confirms the results of Mossin (1968) for logarithmic utility, but clarifies that myopia

is only optimal for isoleastic utility in general if independence of period by period

returns is assumed. Logarithmic utility induces complete myopia even when yields

over periods are nonindependent.

The results of Mossin are used by Samuelson (1969), who investigates lifetime

portfolio selection by dynamic stochastic programming in discrete time. Samuelson

finds that isoelastic utility and independence of returns over time splits the Ramsey-

Phelps savings problem (Phelps, 1962) and the portfolio selection problem into two

distinct problems. The decision which fraction of wealth to consume and which

fraction of wealth to invest becomes independent of time and the level of wealth,

meaning that consumption and investment will be constant fractions of wealth in

each period. Also, the portfolio decision of how much to invest into a risky asset

versus a risk free asset becomes independent of consumption, time and the level

of wealth. Samuelson (1969) thereby rebuts the idea that risk tolerance decreases

towards an investor’s end of life and proves this for all isoelastic utility functions.

Merton (1969, 1971) presents equivalent findings for the continuous time setting.

Logarithmic utility and—if independence of returns over time is assumed—isoelastic

utility thus render optimal portfolio policies myopic, which is a desirable property

for practical applications. For any other set of assumptions and utility functions,

myopia in multi-period problems does not lead to optimal outcomes. Multi-period

problems that cannot be treated as myopic have to be either solved recursively or

heuristically. Recursive approaches to multi-period portfolio problems are complex

and computationally intensive. In addition, they frequently require assumptions

on numerous future parameters5 that are yet unknown today and difficult—if not

impossible—to estimate (Kolm et al., 2014).

A differently styled defense of logarithmic utility is provided by Sinn (2003). The

argument is that in the biological selection process, expected utility maximization

5See Chopra and Ziemba (1993) for an investigation into the effects of errors in parameter
estimates on portfolio choice.
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under a logarithmic preference function is dominant in the sense that a population

with any other risk preference will disappear relative to a population with logarith-

mic preferences for economic decisions under uncertainty. In the limit, as time goes

to infinity, this will occur with a probability that approaches certainty. A similar

argument is made by Amir et al. (2005) in the context of financial markets.

2.2.3 Fractional Kelly strategies

The risk taking suggested by growth optimal strategies is often perceived as high,

meaning that the wealth path is somewhat rough and the volatility of wealth levels

over time is high. In order to reduce risk, fractional Kelly strategies have been

suggested. Fractional Kelly refers to investing a specific fraction of the full Kelly

growth optimal wager, such as one half or one quarter, in order to increase security at

the expense of growth. MacLean et al. (1992) credit Friedmann (1982) to have been

the first to use fractional Kelly strategies in an unpublished manuscript, although

already Breiman (1961) and Thorp (1969) mentioned that systematically lower than

growth optimal risk taking in repeated gambles results in a reduced expected growth

rate of wealth and less volatility in the wealth path.

The justification of such strategies is not as straightforward as that of full Kelly

strategies. MacLean and Ziemba (1999) argue that the theoretical justification of

fractional Kelly strategies can be made using a continuous time approach with the

assumption of lognormal assets. MacLean et al. (2005) further point out that for

lognormal investments η-fractional Kelly wagers correspond to using power utility,

such as the isoelastic utility function presented in equation 2.9 above, where η =
1
γ
. Ziemba (2015) argues that this result can also serve as an approximation for

non-lognormal assets. Davis and Lleo (2013) review the literature on fractional

Kelly strategies in continuous time. MacLean et al. (1992) refer to fractional Kelly

strategies in discrete time settings with normally distributed returns as an effective

trade-off of growth versus security, although not fully efficient. MacLean et al.

emphasize their ease of computation as a principal argument for the use of fractional

strategies in investment situations where they are theoretically suboptimal.

Davis and Lleo (2010) define fractional Kelly strategies differently in order to

obtain optimal results also for non-lognormal asset. Davis and Lleo build on their

earlier work (Davis and Lleo, 2008) and extend Kelly and fractional Kelly strategies

to benchmark oriented asset management as well as asset and liability management.

In the benchmarked case, the spectrum of chosen portfolios lies between the repli-

cation of the benchmark and the full Kelly growth optimal portfolio for η-fractional

Kelly strategies with 0 ≤ η ≤ 1. Davis and Lleo (2013) investigate the conditions
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that ensure optimality of fractional Kelly strategies when assets are non-lognormal.

Davis and Lleo find that optimality of fractional Kelly strategies can be ensured by

having the definition of fractional Kelly strategies coincide with the fund separation

theorem of the underlying problem.

2.2.4 Critique of the Kelly criterion and logarithmic utility

We have outlined above that the utility foundation of the Kelly criterion and growth

optimal strategies is logarithmic utility. For any investor whose utility function is

not logarithmic, it is not utility maximizing to pursue a full Kelly strategy, although

the wealth accumulation of this strategy asymptotically dominates that of any other

strategy in the long run. The statement that full Kelly is only optimal if utility is

logarithmic may seem obvious, but it has been at the center of a heated discussion in

numerous publications and so were also the asymptotic properties of growth optimal

strategies. This section provides an overview of critique brought forward against the

initial imprecise treatment of the asymptotic properties of growth optimal strategies

and the attempted generalization of logarithmic utility.

Some early advocates of logarithmic utility based models of financial markets

have either implied that the utility function of all investors can be approximated

by logarithmic utility, or sidelined utility theory in general. Rubinstein (1976) ex-

plicitly states a preference for models that restrict utility functions over models

that restrict return distributions. Latané (1959) is criticized for advocating growth

optimal strategies as an alternative to expected utility maximization (Samuelson,

1969; Ophir, 1978). These views encountered fierce opposition from proponents of

expected utility theory. Samuelson opposed growth optimal strategies on grounds

of the view that individuals have different risk preferences and that the approxi-

mation of all individuals’ risk preferences by logarithmic utility is poor, regardless

of whether or not it has computational advantages or desirable asymptotic proper-

ties in the long run (Samuelson, 1969, 1971, 1979; Merton and Samuelson, 1974).

Some mathematical deficiencies of early papers on growth optimal strategies and

the theoretical arguments against the generalization of logarithmic utility brought

forward by Samuelson are fully accepted by proponents of growth optimal strategies

today (MacLean et al., 2010b), but the partly implied conclusion that growth opti-

mal strategies are generally without merit is rejected. MacLean et al. (2010b) and

Ziemba (2015) suggest that because Samuelson objected to growth optimal strate-

gies and pointed at deficiencies in selected authors works, the field of growth optimal

strategies in general has received less attention by researchers than it deserves.
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Notably Latané (1959), but also some other proponents of the maximization of

the geometric mean have been criticized for a too lose application of the law of large

numbers or the central limit theorem (Samuelson, 1971). Indeed, a growth opti-

mal strategy asymptotically dominates the wealth accumulation of any essentially

different strategy only as the length of the sequence of re-investments approaches

infinity. Careful attention has to be paid to the asymptotic nature of this property.

As Samuelson (1971) points out, this does not imply that growth optimal strate-

gies are optimal for any finite time horizon. The only case where growth optimal

strategies are indeed optimal for finite time horizons is, from an expected utility

point of view, the case of logarithmic utility—and in this case the reasoning is quite

different. Growth optimal strategies are not optimal for logarithmic utility because

they are growth optimal, but because they maximize expected utility (Samuelson,

1979). A series of published replies and counter-replies to Latané (1959) by Ophir

(1978, 1979) and Latané (1978, 1979) has centered on a related issue. As correctly

pointed out in these replies, growth optimal strategies do not maximize the long

run growth rate, but the mathematical expectation of the long run growth rate.

They do not maximize terminal wealth, but in the long run they lead to an almost

certainly higher terminal wealth than any different strategy. The favorable proper-

ties of growth optimal strategies are asymptotic, and for them to materialize with

certainty the length of the time horizons has to converge to infinity.

As Rubinstein (2006) puts it, the asymptotic properties of growth optimal strate-

gies appear so attractive that some researchers have falsely conjectured that max-

imization of the expected logarithm of final wealth and thus the geometric mean

is the best long-run strategy for any investor. At least since Mossin (1968) we

know that this conjecture is mistaken. The maximization of the expectation of the

geometric mean return is only optimal if utility is logarithmic. Proponents of log-

arithmic utility praise it for its analytic and computational ease as well as for its

superior performance in some practical applications and for its lower sensitivity to

estimation errors than portfolio theory. These aspects have to be traded off against

the theoretical arguments of Samuelson, as the maximization of the expectation of

the geometric mean return either requires an investor who pursues some objective

outside expected utility theory, or it requires the restrictive assumption of logarith-

mic utility. Fama and MacBeth (1974) reach mixed conclusions on whether or not

the stock market is from an empirical perspective dominated by growth optimal

investors. Fama and MacBeth tend to reject the hypothesis that logarithmic utility

is the prevalent utility function in the price formation process. Notwithstanding,

growth optimal strategies find numerous applications in finance.
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2.3 Applications

Based on the research findings outlined in the previous section, applications of

growth optimal strategies have emerged. In this section we review applications

presented in the literature from the inception of modern research on growth optimal

strategies starting with Kelly (1956) until today. We cluster research in three broad

areas. These are portfolio choice & asset pricing, risk management, and investing.

Portfolio choice and asset pricing refers firstly to the initial attempts to develop

capital market models that build on logarithmic utility of investors and secondly

to more recent approaches which use the growth optimal portfolio as a numeraire

portfolio to simplify complex asset pricing problems. Risk management refers to

research that discusses the risk in the form of volatility in the wealth path and final

wealth that growth optimal strategies exhibit, as well as to the avoidance of investor

ruin that a maximization of the expected geometric growth rate entails. Investing

refers to more practical applications in gambling and investing alike. Gambling and

investing are essentially equivalent from a mathematical point of view. The ex-

ploitation of card-counting strategies in black jack is equivalent to the exploitation

of suspected stock market anomalies.

2.3.1 Portfolio choice and asset pricing

At the outset of portfolio theory (Markowitz, 1952, 1959), some academics considered

it a deficiency of the model that it did not suggest a specific portfolio to an investor,

but only gave him a set of efficient portfolios among which he ought to decide himself

in order to maximize his expected utility (Roy, 1952; Latané, 1959). In addition,

Markowitz’ portfolio theory was a single period concept that proved to be difficult

to extend to multi-period time horizons that more accurately reflect the real life

problem of investors (Markowitz, 1959, 1976). The interested reader is referred to

Steinbach (2001) for a more encompassing review of mean-variance models.

Samuelson (1969) analyses discrete time formulations and Merton (1969, 1971)

analyses continuous time formulations of portfolio choice problems. Despite con-

stituting important advancements, both do not provide a solution for discrete time

problems when utility functions are not of the isoelastic type. Also, Samuelson

(1969) requires the assumption of independence of returns over time, which faces

severe challenges in real-world applications. Both, the fact that logarithmic utility

based models recommend a specific asset allocation to investors (Latané, 1959) and

the fact that logarithmic utility models suggest investment decisions that are optimal

for multi-period time horizons without further restrictive assumptions (Breiman,
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1961) added to their appeal. These perceived advantages were motivation to the

attempts to use logarithmic utility based models as premier models of financial

markets. Hakansson argues in favor of the logarithmic utility based growth opti-

mum model for two reasons. Firstly, Hakansson (1971b) investigates the properties

of growth optimal strategies—such as consistency with expected utility theory if

log utility is assumed, decreasing absolute risk aversion with respect to variance,

and investor survival—which he finds to be well suited for a portfolio model. Sec-

ondly, Hakansson (1971c) remarks that the myopic property of the logarithmic utility

function is desirable given the difficulty to estimate future yields and correlations.

Hakansson (1971a) reemphasizes these arguments and presents a simulation study

of wealth accumulation in the intermediate run. After only six periods, he finds the

growth optimal strategy to be highly likely to outperform other strategies, while

being less likely to encounter investor ruin. Based on the entirety of his findings,

Hakansson considers the mean-variance model to be severely compromised by the

capital growth model.

Roll (1973) discusses evidence on the growth optimum model. Starting with the

line of arguments presented by Hakansson (1971a), Roll emphasizes the investor ruin

that a sequence of re-investments in single-period mean-variance efficient portfolios

can bring. From today’s perspective, knowing that investor ruin in multi-period

mean-variance problems frequently stems from incorrect applications of the single-

period mean-variance framework to multi-period horizons, the publication by Roll

highlights the challenges that the extension of mean-variance analysis to multi-

period problems brought at that time. Further, Roll (1973) finds in an empirical

investigation that the results of mean-variance analysis and the growth optimum

model can be close to indistinguishable when the utility function used in mean-

variance analysis is a quadratic approximation to the logarithm function. Kraus and

Litzenberger (1975) confirm the findings of Roll (1973) in a more general setting.

Bicksler and Thorp (1973) compare growth optimal strategies with State Preference

Theory (Arrow and Debreu, 1954) and the Capital Asset Pricing Model (Sharpe,

1964; Lintner, 1965). Bicksler and Thorp build on Roll (1973) and support his

findings with further numerical evidence obtained from simulation results for the

distribution of final wealth over different time horizons.

Fama and MacBeth (1974) emphasize that while the growth optimum model and

mean-variance analysis were often presented as two distinct and theoretically incom-

patible approaches, they actually are not. Fama and MacBeth (1974) empirically

investigate whether the theoretical properties of growth optimal portfolios are con-

sistent with the properties of observed portfolios that real world investors actually
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hold. They test two hypotheses. The first hypothesis is that the price-formation

process is dominated by growth optimizers, which they cannot reject. The second

hypothesis is that the market portfolio is the growth optimal portfolio, for which

Fama and MacBeth find mixed evidence. While the hypothesis cannot be rejected

on the basis of standard significance tests, a detailed examination of the data and

comparison of portfolios does suggest structural differences, with the market port-

folio being systematically less risky than the growth optimal portfolio. Fama and

MacBeth interpret their results as evidence against Roll’s (1973) interpretation of

his empirical findings.

Rubinstein (1976) calls for logarithmic utility based models to become the pre-

mier models of financial markets. Most models require simplifying assumptions.

The simplifying assumption of logarithmic utility models is that utility is restricted

to be logarithmic. Portfolio theory usually is used in connection with restrictive

assumptions concerning the probability distribution of returns. Rubinstein (1976)

argues that models with restrictive assumptions on utility functions are superior to

those with restrictive assumptions on probability distributions.

Markowitz (1976) takes a decisive step to reconcile the literature on the growth

optimal model with mean-variance analysis. By then, mean-variance analysis had

become more widely accepted and so was the notion that investor preferences ought

to be modeled by utility functions. Markowitz (1976) emphasizes that the growth

optimal portfolio choice is one of the possible portfolio choices along the single-

period efficient frontier and all portfolio choices that take more risk than the growth

optimal portfolio are dominated by the growth optimal portfolio when the time

horizon converges to infinity. Markowitz welcomes the insights of growth optimal

strategies and considers them to add value to his theory of portfolio selection by

indicating the maximum level of risk that a “conservative investor” (Markowitz,

1976) should take if the time horizon is long.

The concept of stochastic dominance has been the basis of a further attempt to

create a theory of security prices. Jean (1980) establishes a link between stochas-

tic dominance and growth optimal strategies. Similarities between growth optimal

portfolios and stochastic dominance portfolios are reviewed and connected to ear-

lier findings of Hakansson (1971a,b). Jean (1980) proposes to use the geometric

mean maximization algorithms which were developed in the field of growth optimal

strategies to further explore stochastic dominance portfolios. Jean finds that a geo-

metric mean ranking is a necessary condition for any stochastic dominance ranking

of portfolios, albeit not a sufficient condition for stochastic dominance.
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Academic work on using the growth optimal portfolio in asset pricing has since

then continued. Notable efforts include the use of a numeraire portfolio in deriva-

tives pricing, risk management, portfolio optimization (Platen, 2006). Long (1990)

introduces the numeraire portfolio as a portfolio relative to which all other assets

can be priced. The numeraire portfolio is equivalent to the growth optimal portfolio

for a given list of assets. Long (1990) distinguishes the numeraire portfolio from

the growth optimal portfolio as the application he intends is to simplify the rep-

resentation of asset prices by expressing prices relative to the numeraire portfolio,

which may be done for a limited set of assets in which case the numeraire portfo-

lio is not growth optimal with respect to the market at large. Bajeux-Besnainou

and Portait (1997) review the literature on the numeraire portfolio, the properties

of the portfolio, and the extensive links it has to the continuous-time versions of

multiple capital market theories. Platen (2006) extends the work of Long (1990)

and develops a framework for asset pricing which is based on the numeraire ap-

proach. Platen (2006) uses the growth optimal portfolio as numeraire portfolio for

asset prices and finds this portfolio to be a combination of the market portfolio and

the savings account. Du and Platen (2014) use the growth optimal portfolio based

benchmark approach of Platen (2006) to manage risk in the form of not perfectly

replicable contingent claims. Platen and Rendek (2011) approximate the growth

optimal portfolio by naive diversification and show their approximation to perform

better and be more stable over time than a sample-based Markowitz mean-variance

approach, which is found to be highly sensitive to estimates changing over time.

Baldeaux et al. (2015) use the benchmark approach of Platen to price long-dated

currency derivatives. Baldeaux et al. find that under their stochastic volatility

model, when calibrated to real data, the risk neutral approach fails while the bench-

mark approach performs better. In the light of this result, they conclude that the

long standing practice to adopt the risk neutral pricing paradigm may be unsuitable

particularly for long-dated derivatives.

The recent publications on growth optimal strategies and the closely related nu-

meraire portfolio show that the stream of research which uses the growth optimum

portfolio in asset pricing and portfolio choice is as vivid as it has been in the early

days after the initial publications by Kelly (1956) and Latané (1959). We note that

in more recent literature the perspective has changed. Current literature does not

present the growth optimum model as theoretically superior to Markowitz’ portfolio

theory. The attempt is not to overcome limitations of portfolio theory with a new

model. Instead, the compatibility of both models and the mean-variance efficiency

of the growth optimal portfolio is emphasized. The growth optimal portfolio is either
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used as a benchmark risk/return combination, or it is used as an easier to obtain

and more stable portfolio than those that can be obtained from portfolio theory

under real-world constraints.

2.3.2 Risk and the Kelly criterion

One of the properties of growth optimal strategies is that, while the volatility in final

wealth is high, they never risk ruin (Latané, 1959). A higher than growth optimal

level of risk taking leads to increased short term variance and reduced expected

long-term growth (Breiman, 1961; Markowitz, 1976). Taking twice as much risk

as growth optimal is proven to yield high fluctuations of wealth around the initial

wealth with an expected long term growth rate of zero (Thorp, 1984).

The relation of risk and the Kelly criterion is ambiguous. On the one side, Kelly

strategies are known to be risky. From an expected utility theory point of view,

Kelly strategies are only optimal when utility in final wealth is logarithmic. The

logarithmic utility function is the low risk aversion γ = 1 member of the family of

isoelastic utility functions (equation 2.9) and it is less risk averse than the majority of

individuals is suggested to be (Markowitz et al., 1994). On the other side, the Kelly

criterion is known as a risk management tool to prevent excessive risk taking, also

known as overbetting, which is seen as a principal cause of hedge fund desasters and

gambler’s ruin (Thorp, 1984; Ziemba and Ziemba, 2013). Aucamp (1978) correctly

remarks that the avoidance of ruin is not a property specific to Kelly strategies, but

that any strategy with a geometric mean rate of return ≥ 1 avoids ruin and so does

the maximization of the geometric mean in the presence of correct believes of the

probability distribution of outcomes.

The risk of Kelly strategies in the form of high volatility in final wealth outcomes

can be shown in simulation studies. The first published simulation study on the

Kelly criterion and growth optimal strategies is Bicksler and Thorp (1973), who

simulate terminal wealth for different investor time horizons and leverage. They

find that the difference between maximum and minimum terminal wealth outcomes

is huge already after short time horizons of 10 to 40 periods and that terminal

wealth repeatedly is below initial wealth, but always positive. Bicksler and Thorp

confirm that higher leverage does not necessarily lead to higher mean final wealth.

Instead, exceeding a certain level of leverage can harm wealth growth, which is in

line with theory (Breiman, 1961). Applying the growth optimal concept to realistic

stock market return distribution data, Bicksler and Thorp find the growth optimal

portfolio to be highly leveraged. Hausch and Ziemba (1985) simulate growth optimal

strategies in horse racetrack betting and extend the work of Bicksler and Thorp
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(1973) with simulations with longer horizons and with the addition of fractional

Kelly strategies. All studies find high growth rates of wealth, but also substantial

volatility of terminal wealth outcomes for finite time horizons. MacLean et al. (2011)

provide an overview and extension of simulation studies on the medium and long

term performance of Kelly strategies. MacLean et al. (2011) asses the performance of

growth optimal strategies by determining the probabilities of achieving some wealth

goal versus loosing some fraction of wealth with full and fractional Kelly wagers.

Rubinstein (1991) takes a more applied perspective and analyses investments into

the stock market following a growth optimal strategy. Rubinstein finds that while

the Kelly strategy eventually accumulates more wealth than other strategies, it

requires long time horizons to outperform other strategies with high probability.

Common other strategies investigated in the paper are the all-cash and all-stock

strategy, for which Rubinstein finds that the required time horizon to outperform

these strategies with 95% certainty is 208 and 4,700 years, respectively. Rubinstein

builds on earlier research by Leibowitz and Krasker (1988), who found that for

an all-stock portfolio it takes 123 years to outperform an all-bond portfolio with

95% probability, assuming lognormal returns with mean excess return of 2.5% and

volatility of 18%. It is worth noting that the rather low excess return assumption

considerable adds to the length of the time horizon.

From expected utility theory we know that every rational investor should maxi-

mize his expected utility. One might argue that following this route would render

growth optimal strategies as a risk management tool obsolete, as all investors only

take the risk that maximizes their expected utility. In practice, this is doubtful for

at least two reasons. Firstly, it would require investors to act purely rational. But

instead, Las Vegas is much rather filled with risk seekers who enjoy the thrill of

gambling, than with rational utility maximizes in the sense of von Neumann and

Morgenstern (1944). Studies find that also racetrack bettors are risk seekers (Ali,

1977). Secondly, it would require that scientifically exact maximization of expected

utility is always possible. Reality is different and uncertainty about input param-

eters frequently renders exact maximization of expected utility impossible. In line

with this, Michaud (1989) claims that mean-variance optimizers are estimation er-

ror maximizers. For these reasons, the Kelly criterion is known as a powerful risk

management tool in professional gambling and investing (Thorp, 1984; Poundstone,

2005). The growth optimal level of risk taking can be a helpful guidance for any

investor or gambler who faces a favorable investment situation. In the presence of

parameter uncertainty, a combination of growth optimal strategies with robust op-

timization approaches which account for possible parameter estimation errors can
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provide helpful guidance in risk management. Exceeding the growth optimal level

of risk taking may endanger financial survival and reduce long term growth. Ziemba

and Ziemba (2013) and Ziemba (2015) assert that Long Term Capital Management

and most other hedge fund disasters are rooted in higher than growth optimal risk

taking and that the use of the Kelly criterion as a risk management tool could have

helped to prevent these disasters.

A practical limitation in the computation of the growth optimal level of risk

taking is that it requires the probability distribution of outcomes. Using a flawed

approximation or erroneous parameter estimates for the probability distribution of

outcomes naturally distorts the result. Correct estimation of tail risk is essential

in order to be able to meaningfully use the Kelly criterion to prevent excessive risk

taking that decreases long term growth and may endanger financial survival.

2.3.3 Kelly strategies in gambling and investing

Hausch et al. (1981) investigate the efficiency of the market for racetrack betting in

horse races. A betting scheme for place and show bets is developed, which builds on

the logarithmic utility approach of Kelly strategies. The betting scheme is shown

to be profitable, which demonstrates a market inefficiency in the market for race-

track betting, contradicting earlier work that suggested there were no inefficiencies

large enough to be profitable to exploit (Snyder, 1978). Ziemba and Hausch (1985)

extend the work of Hausch et al. (1981) with the addition of fractional Kelly strate-

gies and with the study of the effect of transaction cost in the form of the track

take. Transaction costs, such as the track take, make investment opportunities less

favorable and the growth optimal level of investment decreases accordingly. Hausch

and Ziemba (1990) study arbitrage opportunities if different odds are offered by

different bookmakers, in their case racetracks that allow betting on horse races that

take place elsewhere. A growth optimal betting model is developed to exploit the

arbitrage opportunities that different odds offer.

Clark and Ziemba (1987) investigate possibilities to exploit the turn-of-the-year

effect using growth optimal strategies. They measure risk by the probability to

reach some multiple of wealth before halving wealth as well as by the probability of

reaching some level of wealth before ruin. Note that the possibility of ruin stems from

estimation risk. If the probability believes were correct, growth optimal strategies

would result in the probability of ruin being zero. Clark and Ziemba (1987) find

that during the time period 1977-1987 the turn-of-the-year effect at multiple stock

exchanges offered various possibilities to establish profitable trading strategies. All

strategies aim at exploiting the historically higher gains that stock markets exhibit
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in the month of January. Several publications have since dealt with explaining the

turn-of-the-year effect (Ritter, 1988; Lakonishok and Smidt, 1988) and exploiting

it (Ziemba, 1994, 2012). An overview of literature on this topic and various other

calendar anomalies is provided in Ziemba (2011, 2012).

MacLean et al. (1992) investigate the growth versus security trade-off offered by

fractional Kelly strategies. While in their discrete time setting fractional Kelly

strategies are not theoretically optimal, MacLean et al. consider them to be ef-

fective, meaning that they compensate a loss of expected growth with a gain in

security. They measure security by the probability to double wealth before halving

it. MacLean et al. (1992) apply fractional Kelly strategies to Blackjack, horse rac-

ing, lotteries, and stock market anomalies such as the turn-of-the-year effect. As for

any Kelly strategy, it is crucial to have a game with a positive expectation, i.e. to

obtain an edge over the casino, bookmaker, or any other counterpart. In Blackjack,

the edge over the casino can be obtained from techniques such as card-counting.

MacLean et al. state that the edge of a successful card counter varies from −10% to

+10% which he can translate into an average edge of about 2% by wagering more

when the card deck is favorable. They find that the probability to double wealth

before halving it is 67% for full Kelly and 89% for half Kelly, which provides 75% of

the expected growth rate of full Kelly. In horseracing, the edge comes from market

anomalies and irrational bettors (Hausch et al., 1981). The market for horseracing

follows a particular and complex set of rules, of which Hausch and Ziemba (1995)

provide an extensive overview and illustrate favorable betting strategies. In lotto

games, MacLean et al. (1992) find the edge to be much smaller and it can mostly

be obtained from betting on unpopular numbers. Over all numbers, the expected

return per $1 wagered is only $0.4 to $0.5. While the amounts of wins are very high,

the probabilities of wins in lotto games are extremely small. Even for the more at-

tractive lotto regimes, such as Canada’s 6/49, MacLean et al. find Kelly strategies to

be barely attractive to investors since the optimal wagers are fractions of wealth in

the range of one dollar per hundred thousand dollar to one million dollar of investor

bankroll. While the probability of tenfolding wealth before halving it is attractively

high at 95% with a one quarter fractional Kelly strategy, MacLean et al. find that it

would take several trillion lottery plays, meaning several billions of years, to achieve

this wealth increase. For less favorable lotto regimes in other markets the prospects

are even substantially worse, if profitable betting is possible at all. MacLean and

Ziemba (1999) and Bain et al. (2006) extend the analysis of MacLean et al. (1992)

with further details on specific investment opportunities, such as particular horse

races.
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MacLean et al. (2004) consider the discrete time problem of investment in risky

assets with the objective of achieving maximum capital growth while controlling for

downside risk with either value at risk or drawdown constraints. Discrete approx-

imations of the lognormal distributions of asset returns are used. MacLean et al.

develop a heuristic which reduces the number of possible outcomes of their three-

asset universe to four equally likely scenarios and their proposed algorithm returns

an optimal solution to the constrained capital growth problem given the selected

scenarios. An additional algorithm to find optimal strategies that trade off growth

for security is presented. MacLean et al. (2004) find that for high levels of risk con-

trol, the optimal strategy becomes increasingly conservative towards the end of the

planning horizon. A growth optimal strategy is optimal for low levels of risk control

while investment strategies deviate increasingly from the growth optimal strategy

as risk control is tightened. MacLean et al. (2004) find fractional Kelly strategies to

be generally not optimal in their discrete time capital growth problem with security

constraints.

MacLean et al. (2005) study the performance of fractional Kelly strategies in a

continuous time setting with jointly lognormal asset prices with random parameters.

Investment risk is represented by a geometric Brownian motion asset price model

with random rates of return. The risk that MacLean et al. control for in this

study is primarily estimation risk. At each re-balancing time, a Bayes estimator of

distribution parameters is defined. The proposed algorithm does not use periodic

re-balancing, but rather re-balances when control limits are violated which indicate

that asset returns develop inconsistent with their estimates. MacLean et al. (2005)

chose to minimize time-to-wealth goals under the restriction of not falling below some

wealth threshold with a given probability. The wealth goal approach is compared

with a periodic re-balancing expected utility maximization approach and found to

be superior, which is mainly attributed to the control-limit induced re-balancing as

opposed to re-balancing at fixed time intervals.

MacLean et al. (2006) study the investment of capital in risky assets in a con-

tinuous time setting, where asset prices again follow a geometric Brownian motion

model with drift and stochastic parameters. The investment problem is composed

of two separate problems, one is the optimal growth portfolio and the other is the

fraction of wealth to invest in order to control risk. The distribution of future asset

returns is estimated from past data and upper and lower boundaries for the wealth

process are defined. Re-balancing times are random and re-balancing is induced

by violation of the upper or lower boundary of the wealth process, indicating that

the trajectory of wealth is not proceeding as anticipated and parameter estimates
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require revision. Control limits are determined heuristically. MacLean et al. (2006)

find their dynamic investment system to be effective and find it to provide results

superior to pure value-at-risk or conditional value-at-risk based risk management.

Firstly, this adds to a body of research that is increasingly critical towards value-

at-risk based risk management, such as Basak and Shapiro (2001). The proposition

of an alternative risk management approach based on growth optimal strategies

with control limits as presented in MacLean et al. (2006) is novel. Secondly, as in

MacLean et al. (2005), also MacLean et al. (2006) find fixed period re-balancing to

yield inferior results compared to control-limit induced rebalancing.

Real-world constraints and risk control render capital growth problems difficult

or impossible to solve exactly and optimally. Luo et al. (2013) develop a dynamic

portfolio management model based on a simulated annealing algorithm to solve

capital growth problems under real world constraints. A drawdown approach to

risk management is presented, which is shown to be able to reproduce a variety

of common risk measures such as the risk of ruin, variance measures, and shortfall

measures. Luo et al. (2014) abstract further from the drawdown constraint and

present a more general application of the simulated annealing algorithm for optimal

capital growth.

MacLean et al. (2015) study capital growth problems when asset price dynamics

are regime-dependent and follow a defined geometric Brownian motion within each

regime. While value-at-risk constraints are frequently formulated for end of horizon

wealth, this research uses a value-at-risk constraint that has to be met at each point

in time with a convex shortfall penalty for violations. This ensures that not only the

probability of losses, but also the size of losses is penalized. A deterministic program

is developed to calculate optimal wagers at discrete points in time. MacLean et al.

(2015) find the convex penalty function to smooth the wealth path and provide an

effective trade off between risk and capital growth.

A different stream of research attempts to explain the investment behavior that

investors exhibit in practice. The portfolios of endowments and renowned investors

frequently exhibit a high concentration in single investments as well as long term

returns superior to those of stock markets. Ziemba (2005) claims that the observed

portfolios and investment decisions of such investors resemble those of full or frac-

tional Kelly strategies more than any other investment approach. Gergaud and

Ziemba (2012) and Ziemba (2015) extend the analysis with additional data and re-

confirm the findings of Ziemba (2005) with respect to both, the high concentration in

single positions that portfolios of great investors tend to exhibit and the consistently

high performance. Great investors in these papers refers to investors such as John
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Maynard Keynes, who managed the King’s College endowment, or Warren Buffet

and Berkshire Hathaway, as well as George Soros and his Quantum fund. Ziemba

(2015) finds that the investment behavior and performance of these investors can

hardly be explained with anything but Kelly strategies.

2.4 Conclusion

In this paper we review the Kelly criterion and growth optimal strategies. We present

a breadth of applications, specifically in the fields of asset pricing, risk management

and capital growth problems. We maintain that attempts to use log utility models

as premier models of financial markets and as alternative to portfolio theory are

efforts of past research. Today, the compatibility of the growth optimum approach

with portfolio theory is emphasized instead and the growth optimal portfolio is

presented as one possible portfolio on the efficient frontier. What remains of the

growth optimal approach in the field of asset pricing is centered around the idea

of the numeraire portfolio and the benchmark approach. In risk management, the

primary usefulness of growth optimal strategies and the Kelly criterion is to prevent

overbetting. While the use of investment policies tied to logarithmic utility has been

debated, we shown that multiple successful applications to capital growth problems

exist. The computational ease and the lower sensitivity to estimation errors are

among the principal advantages of investment policies based on logarithmic utility

in final wealth. While growth optimal strategies may not exhibit the full theoretical

beauty and comprehensiveness of expected utility theory, it remains important to

emphasize both, the feasibility and the partly superior results that these strategies

yield under real world constraints.



3 Using the Kelly Criterion to Protect Wealth

Growth in Myopic Multi-Period Mean-Variance

Portfolio Selection1

3.1 Introduction

The mean-variance analysis of Markowitz (1952) and his seminal publication on

portfolio theory (Markowitz, 1959) provide the fundamental basis for portfolio se-

lection. Although originally cast in a single-period framework, both academia and

practice until today widely use mean-variance analysis also in multi-period settings.

As true multi-period formulations of mean-variance problems are complex, a com-

mon approach is to assume myopia despite the analytic shortcomings of the myopic

assumption (Basak and Chabakauri, 2010). While Samuelson (1969) and Merton

(1969, 1971) have presented settings in which myopic behavior is optimal, Roll (1973)

has pointed to the existence of single-period mean-variance efficient portfolios which

bring about investor ruin in an infinite sequence of re-investments. Markowitz (1976)

notes that portfolios exist which are from a utility perspective optimal for a single-

period horizon, but in the long run cause increased volatility in an investor’s wealth

path at the expense of long term growth. In this paper we investigate an effect

similar to that observed by Roll (1973) and Markowitz (1976) and show how the

performance of myopic mean-variance investors can be improved by constraining

them to not exceed growth optimal risk taking.

Markowitz (1976) argues that a “Kelly-Latané point should be considered the up-

per limit for conservative choice among E-V efficient portfolios”2. At that time

portfolio theory was known, but not yet uncontested. The single-period framework

on which much of Markowitz’ work is based prompted early criticism on the ap-

plicability of portfolio theory to real world situations. Authors such as Hakansson

(1971b,c), Bicksler and Thorp (1973) and Rubinstein (1976) argue that given the

shortcomings of portfolio theory, rather the growth optimum model and generalized

logarithmic utility should be the premier model of financial markets. The fact that

portfolio theory was essentially a single period concept and not straightforward to

1This chapter is based on the homonymous working paper Winselmann (2018).
2Markowitz (1976) uses E for mean return and V for variance of returns



Using the Kelly Criterion to Protect Wealth Growth in
Myopic Multi-Period Mean-Variance Portfolio Selection 26

generalize to multi-period problems was already acknowledged by Markowitz (1959),

whose seminal publication on portfolio theory includes a much-ignored chapter on

the long run. Despite the early criticism, mean-variance analysis has become the

cornerstone of portfolio selection. The growth optimum model and generalized log-

arithmic utility have since been covered with the dust of time. With them, the work

on growth optimal strategies of Kelly (1956) and Latané (1959) have disappeared

from academic discussion.

Samuelson (1969) analyses discrete time formulations of portfolio choice prob-

lems and Merton (1969, 1971) analyses the respective continuous time equivalents.

While their works constitute important advancements of lifetime portfolio selection

problems, both require restrictive assumptions on utility functions and return dis-

tributions. Samuelson assumes isoelastic utility and independence of returns over

time and Merton in his continuous time approach obtains explicit solutions only

for utility functions with hyperbolic absolute risk aversion and geometric Brownian

motion asset prices, which again entails independence of returns over time. Solu-

tions for discrete time multi-period problems when utility functions are not of the

isoelastic type or returns are not independent over time have not been obtained.

Steinbach (2001) provides an encompassing survey of mean-variance optimization

both in single period and multiperiod settings with a distinct focus on how objective

and constraints play together in the various settings.

The assumption of independence of returns over time faces severe challenges in

real-world applications. Financial time series data for example frequently exhibits

conditional heteroscedasticity. A common justification to still use the myopic as-

sumption is that the loss in expected utility from errors caused by additional model

complexity and parameter estimation outweigh the gain from theoretically optimal

investing (Brandt, 2009; DeMiguel et al., 2009). Theoretically, hedging demands

are only zero when investment opportunities are either constant over time or un-

headgable, where unheadgeable means that the variation in returns is entirely inde-

pendent of past returns (Brandt, 2009), or when utility is of the logarithmic type

(Hakansson, 1971b).

Given the complexity of mean-variance analysis in multi-period settings, it took

close to half a century until Li and Ng (2000) presented an analytically optimal

solution to multi-period mean-variance problems and an expression of the efficient

frontier for multi-period mean-variance problems. Li and Ng achieve their break-

through result by using embedding techniques to overcome the nonseparability in

the sense of dynamic programming of the variance of wealth expression in multi-

period mean-variance problems. Further advancements have followed the work of
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Li and Ng. Zhu et al. (2004) introduce risk control over bankruptcy and present an

analytically optimal solution to a multi-period mean-variance problem in discrete

time. Zhu et al. follow the embedding scheme of Li and Ng to solve the variance

control problem. Wu and Li (2011) investigate a multi-period mean-variance port-

folio selection problem with regime switching and uncertain exit time and present

a closed form solution using embedding techniques. Wu and Li (2012) derive the

closed form optimal strategy and efficient frontier in the presence of an additional

stochastic cash flow component and regime switching. Wu et al. (2014) generalize

Wu and Li (2011) to a setting where exit time is dependent on the state of the

market. Cui et al. (2014) extend Li and Ng (2000) to a setting with a no shorting

constraint which in a discrete time setting implies a piecewise quadratic value func-

tion. These and many other related advancements have—at least from a theoretical

perspective—substantially advanced our ability to solve multi-period mean-variance

problems analytically and optimally.

An equilibrium based approach to solve multi-period mean-variance problems is

presented in Basak and Chabakauri (2010) who investigate a dynamic mean-variance

problem in a Markovian setting and present an explicit time-consistent solution using

dynamic programming and the Hamilton-Jacobi-Bellman equation. Björk et al.

(2014) extend the work of Basak and Chabakauri (2010) from constant risk aversion

to state dependent risk aversion.

In practice, multi-period models are rarely used for a variety of reasons. In order

to determine an optimal strategy for multi-period portfolio selection, return and

risk estimates for all periods are required at t = 0. Apart from the impracticability

and often unavailability of such estimates, multi-period models are computationally

intensive. Moreover, such models are frequently not compatible with real world

constraints (Kolm et al., 2014). As a consequence, multi-period problems are in

academia and industry often modeled as series of myopic single-period decisions,

despite the resulting investment decisions not being theoretically optimal (Basak

and Chabakauri, 2010).

Markowitz (1976) has pointed to the relevance of the work of Kelly (1956) and

Latané (1959) when applying myopic single-period mean-variance analysis to multi-

period problems. What he refers to as the “Kelly-Latané point” on the efficient

frontier is the growth optimal portfolio. The choice of portfolios with, from a single

period perspective, higher arithmetic mean returns results in greater volatility of

investor portfolio returns over time and less long run investor wealth growth.

This paper contributes to the literature by investigating how the “Kelly-Latané

point” can be applied to myopic mean-variance investor risk taking decisions in
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multi-period asset allocation problems in order to protect long run growth. We

include a risk free asset and thus move from the efficient frontier of Markowitz

(1952) to the capital market line of Tobin (1958). We present a two asset case

with a risk free asset and a risky asset, for which we assume normally distributed

returns. We compare the investment decisions of a growth optimal investor with

those of a mean-variance optimizer. For both investors the decision variable is the

fraction of wealth to invest into the risky asset given the mean and the variance

of next period’s returns. For the implementation of the growth optimal investor

we follow Rotando and Thorp (1992), who have presented an application of the

Kelly criterion to the stock market. The Kelly criterion was originally formulated

for gambles with binomial outcomes. The generalization of Rotando and Thorp

applies the Kelly criterion to the stock market where wealth and stock prices much

rather have continuous distributions of outcomes. We find that by constraining the

risk taking choice of the myopic mean-variance investor to not exceed the growth

optimal level of risk taking, both Sharpe ratio and long run wealth growth of the

mean-variance investor can benefit.

3.2 Asset allocation decisions

In our capital growth problem in the presence of uncertainty, investors decide at each

decision point how to allocate capital between a risky and a risk free asset. This

is equivalent to making investment decisions along the capital market line (Tobin,

1958). We assume risky asset returns at time t to be normally distributed with

mean µt and standard deviation σt. We further assume that mean and standard

deviation are the primary return characteristics of interest that investors employ

to choose between portfolios. These assumptions fit the so-called “CAPM world”

of Markowitz (Markowitz, 1959). In the multi-period problem which we present as

an application, the distribution parameters µt and σt at some future point in time

may be different from today3. We do not require the assumption of independence of

returns over time since our mean-variance investor by definition is myopic and the

growth optimal investor with log utility is indifferent to that assumption.

We model a growth optimal investor and a mean-variance investor to analyze

their capital allocation decisions and contrast their performance in a multi-period

investment problem. The growth optimal investor considers the entire distribution

3A simple example explains why this fits reality: assume you ask capital market experts in
the middle of a tranquil and stable bull market phase for an estimate of next month’s expected
return and volatility of the S&P500 index. Now, assume a turbulent market phase—say, Lehman
Brothers went bankrupt the day before—and you ask the same experts again. You will most likely
get a significantly different consensus estimate for both, expected return and volatility.
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of returns in his optimization problem at each point in time. Mean-variance analysis

as pioneered by Markowitz in contrast has a normal distribution of returns built-in

as an assumption. In the utility maximization problem of the mean-variance investor

we only find the mean and the variance, but not the probability density function

itself. We thus have both investors on a level playing field when we assume normally

distributed returns with mean µt and standard deviation σt as the assumptions and

parameters underlying both investors’ asset allocation decisions are identical.

In our analysis we follow Rotando and Thorp (1992) and assume discrete returns

to be normally distributed. They acknowledge that the log-normal distribution—

and thus normally distributed continuous time returns—may provide a superior fit

to real-world stock returns, but given that the assumption of log-normal returns

makes the computations for the growth optimal investor much more cumbersome,

they proceed with normally distributed returns which they find to also be a reason-

ably close approximation to stock market returns. To ensure that returns are on a

meaningful interval, they cap the tails of the normal distribution.

On a more theoretical level, the argument for the log-normal distribution gener-

ally is that it allows to aggregate returns over time easily. In contrast, the argument

for the normal distribution is that it allows to aggregate normally distributed asset

returns to a portfolio return which then itself is normally distributed. This is not

the case for log-normal asset returns as the weighted sum of correlated log-normal

random variables is not log-normally distributed, but its distribution can only be

approximated (Campbell and Viceira, 2002; Lo, 2012). This provides good reason

to not work with log-normal returns in mean-variance analysis unless one uses con-

tinuous time—which we do not, since continuous time does not fit the constraints

of a real-life investor who re-balances his portfolio in discrete time intervals.

In our two asset case the decision variable at time t is the weight in the risky

asset ωt ≥ 0, which determines the asset allocation between a risk free asset with

certain return rf,t and a risky asset with normally distributed returns with mean µt

and standard deviation σt. A weight of ωt = 0 represents 100% of investor wealth

invested in the risk free asset at time t, and ωt = 1 represents 100% of investor

wealth invested in the risky asset. We assume that leverage in the form of ωt > 1

is possible, and that the investors can borrow and lend at the rate of return of the

risk free asset. We assume the risky asset to have a positive expected excess return

over the risk free asset, and thus a short position in the risky asset with ωt < 0 will

never be an optimal decision for any investor. To ease computations, we assume the

risk free rate rf,t to be zero. From rf,t = 0 follows that the return rt is equal to the
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excess return over the risk free rate and the mean return µt is equal to the mean

excess return. Further, we assume that the investors incur no trading cost.

3.2.1 Growth optimal investor

The strategy pursued by the growth optimal investor is to maximize the expected

log of wealth (Kelly, 1956; Latané, 1959; Samuelson, 1969). By the properties of the

log function, the multi-period problem decomposes into a sequence of independent

single period problems and the optimal policy is to maximize the expected logarithm

of single period wealth growth at each decision point (Mossin, 1968). Any essentially

different strategy can analytically be proven to yield inferior long run wealth growth

(Breiman, 1961; Hakansson, 1971b).

Let Wt be the investor’s wealth at the end of period t. T denotes the time horizon.

EU denotes an expected utility function and E is the expectation operator. The

investor portfolio discrete return in period t is given by rp,t. Equation 3.1 shows,

that it is the same for a growth optimal investor to either maximize the expected

log of his final wealth WT , or to maximize the expected log growth rate of his wealth

in each period.

EU = E [log(WT )]

= E

[
log

(
W0 ∗

T∏
t=1

(1 + rp,t)

)]

= log(W0) +
T∑
t=1

E [log(1 + rp,t)]

(3.1)

We see that the optimal decision policy is myopic. Neither the level of wealth

nor the growth rate of wealth of any previous or subsequent period influences the

portfolio return rp,t which is solely driven by investor risk taking at time t. Optimal

solutions for growth optimal strategies are obtained without recursion and without

the need for parameter estimates for more than one future period.
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Let G(ωt) denote the expected log growth rate of investor wealth in period t as a

function of the weight in the risky asset ωt at time t. With G(ωt) = E [log(1 + rp,t)]

we obtain

maxEU = max

[
log(W0) +

T∑
t=1

G(ωt)

]

= log(W0) + max
ωt

T∑
t=1

G(ωt)

(3.2)

as the initial endowment W0 is a constant and does not influence the optimal

decision policy. The optimal weight in the risky asset of the growth optimal investor

can thus be obtained from

argmax
ωt

[
log(W0) +

T∑
t=1

G(ωt)

]
= argmax

ωt

[
T∑
t=1

G(ωt)

]

To model our growth optimal investor, we follow Rotando and Thorp (1992), who

have outlined an application of the Kelly criterion (Kelly, 1956) to the stock market.

The original Kelly criterion is used to achieve maximum growth in an infinite series

of risky investments with binomial outcomes. It is asymptotically optimal, meaning

that only if the length of a sequence of risky investments converges to infinity it will

dominate any essentially different strategy with certainty (Breiman, 1961). Starting

from the binomial case of the original Kelly criterion, Rotando and Thorp (1992)

present a generalization to a normal distribution of outcomes. In the remainder of

this section we briefly summarize those results of their work, which are relevant here

and introduce our notation. We will not reproduce the entire derivation and refer

the interested reader to the original paper for a more thorough understanding.

From our assumption rf,t = 0 follows that the portfolio return in each period is

given by rp,t = ωtrt. Rotando and Thorp (1992) then find the expected log growth

rate of wealth G(ωt) to be

G(ωt) =

∫ B

A

log(1 + ωtrt)ψ(rt)drt (3.3)

where rt is assumed to follow a normal distribution density function ψ(rt) on the

interval [A,B], with A = µt − φσt as lower limit and B = µt + φσt as upper limit.

φ thus determines the width of the interval in which realized returns lie. Rotando
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and Thorp use φ = 3 and work with yearly excess return data and rebalancing.

The tails of the normal distribution have to be cut in order to obtain meaningful

results, given that a positive probability of infinite losses is not only unrealistic for

stock market investments, but also incompatible with a growth optimal strategy.

For a positive probability of infinite losses, the growth optimal wager will always

converge to zero (Rotando and Thorp, 1992). The probability density function of

excess returns ψ(rt) is defined as

ψ(rt) =

ht + 1√
2πα2

t

e−(rt−µt)2/2α2
t ∀A ≤ rt ≤ B

0 ∀rt < A ∨ rt > B
(3.4)

where ht and αt are required to preserve the desired properties of the probability

density function ψ(rt) in the presence of cut tails. The parameter ht is needed to keep

the value of the integral under the normal distribution density function
∫ B
A
ψ(rt)drt

equal to one. We use ht to add back on the interval [A,B] the area that was cut

in the tails. Adding ht is comparable to adding the cut tail area back in the form

of a rectangular box under the normal distribution density function on the interval

[A,B]. The cut tail area is given by 1−
∫ B
A
N (µt, αt). Excess returns are defined to

be normally distributed with mean µt and standard deviation σt. Cutting the tails

reduces the observed standard deviation. In order to preserve the desired standard

deviation σt, Rotando and Thorp introduce αt with αt > σt. They numerically

determine the value of αt for which excess returns rt on the interval [A,B] have the

observed standard deviation σt. This is the case when

σ2
t =

∫ B

A

r2
tψ(rt)drt − µ2

t

as the expected value of squared excess returns E[r2
t ] can be written as an integral

with respect to the underlying probability measure and ψ(rt) is the probability

density function. Having defined αt, we can compute ht from

ht ∗ (B − A) = 1−
∫ B

A

N (µt, αt)

where (B −A) can be imagined as the width of a rectangle and ht as the height.

Applying the probability density function ψ(rt) from equation 3.4 to equation 3.3

yields the formulation for the expected log growth rate of wealth G(ωt) in equation
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3.5, which is the objective function that a growth optimal investor seeks to maximize

in each period.

G(ωt) =

∫ B

A

log(1 + ωtrt)

[
ht +

1√
2πα2

t

e−(rt−µt)2/2α2
t

]
drt (3.5)

The integration required to set G′(ωt) = 0 and to determine the growth optimal

weight in the risky asset is non-elementary and cannot be done explicitly (Rotando

and Thorp, 1992). We numerically optimize G(ωt) with respect to ωt and obtain

the value ωt for which G(ωt) has its maximum. We call this optimum the growth

optimal weight in the risky asset ωgot , where go is used as a superscript to denote

growth optimal, in contrast to mv which we use for the mean-variance investor. At

each decision point, which is the beginning of each period t, we determine the asset

allocation of the growth optimal investor, expressed as ωgot , given some µt and σt.

3.2.2 Mean-variance investor

The mean-variance investor derives utility from gains in wealth, but suffers disu-

tility from losses and volatility. Preferences for mean-variance investors are either

assumed to be given as a function of mean and variance or they are analytically

derived from expected utility theory. Both approaches are taken in the literature

and good overviews are available elsewhere (Campbell and Viceira, 2002; Brandt,

2009; Markowitz, 2014).

Let rp,t be the return on the investor portfolio in period t and σp,t be the standard

deviation of investor portfolio returns. Let γ denote the level of risk aversion of the

investor. We assume the mean-variance preferences of the investor to be described

by the following expected utility function.

EUt = E[rp,t]−
γ

2
σ2
p,t ∀γ > 0 (3.6)

The investor thus acts myopic and maximizes his expected utility EUt in each

period t according to equation 3.6, which is a common textbook function for expected

utility. The mean-variance investor’s expected utility maximizing weight in the risky

asset is known to be given by (Campbell and Viceira, 2002; Alexander, 2008)

ωmvt =
µt − rf,t
γσ2

t

(3.7)
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where µt is the expected return on the risky asset and σt is the standard deviation.

We use ωmvt with mv as a superscript to denote the optimal value for the mean-

variance investor. From equation 3.7 we see, that the mean-variance investor’s

weight in the risky asset depends on the expected excess return over the risk free

rate, and not on the total return of the assets. The nominator µt − rf,t represents

the expected excess return. Throughout this paper we assume a risk free rate of

zero, rf,t = 0, and thus the expected return µt is equivalent to the expected excess

return.

The expected utility function in equation 3.6 and the resulting optimal weight

in the risky asset entail quadratic von-Neumann-Morgenstern utility, which may be

considered undesirable as it implies increasing absolute risk aversion (Brandt, 2009).

Notwithstanding, it is convenient and commonly used in academia and practice.

Either, it is assumed to describe the preferences of an investor exactly4, or some

different investor preferences are stated, but a utility function similar to equation 3.6

is used as an approximation to investor preferences. Markowitz (1959) in his seminal

work on portfolio theory has already suggested such approximations and concluded,

that quadratic approximations work well for returns in the range of −30% and

+40%. A substantial body of research has evolved on mean-variance approximations

to expected utility. Levy and Markowitz (1979) is one of the most prominent works

in support of it. They find that expected utility approximations based on quadratic

utility work very well especially for power utility, which is also confirmed by Pulley

(1983). Kallberg and Ziemba (1983) generalize this finding for a broader set of utility

functions if time horizons are short. Markowitz (2014) reinforces his earlier findings

and their validity. While he embraces the advantages of other utility functions to

describe investor preferences, he still emphasizes that these other utility functions

can be well approximated with quadratic utility, especially as the translations of

other utility functions into mean-variance formulations often come with restrictive

assumptions on the return distribution or require their own kind of approximations.

Consequently, mean-variance preferences of the form stated in equation 3.6 are a

common approach in practice and academia to obtain mean-variance approximations

to expected utility. Our model of the mean-variance investor thus is consistent with

formulations commonly used in practice and academia.

4See for example Markowitz (1959); Brandt and Santa-Clara (2006); Sun et al. (2006); DeMiguel
et al. (2009); Basak and Chabakauri (2010) as well as most standard textbooks.
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3.3 Theoretical considerations

Our aim is to employ the growth optimal weight in the risky asset as an upper limit

for mean-variance investor risk taking to protect long run wealth growth and perfor-

mance. First, we discuss why higher than growth optimal risk taking can be harmful.

Second, in order to understand the asset allocation decisions of both investors, we

present their respective investment decisions as functions of the mean excess return

with fixed standard deviation and as functions of the standard deviation with fixed

mean excess return. Third, we present the investment decisions of both investors in

mean-variance space and highlight where excessive risk taking occurs.

3.3.1 Overbetting

A growth optimal investor acts to maximize expected long run wealth growth.

Breiman (1961) proves that the final wealth W ∗
T accumulated under a growth op-

timal strategy Λ∗ will asymptotically be infinitely larger than the final wealth WT

accumulated under any essentially different strategy Λ, which is not asymptotically

close to Λ∗. Let a non-terminating growth optimal strategy Λ∗ lead to wealth W ∗
T

after T plays and let an essentially different strategy Λ lead to wealth WT . Then

almost surely there exists a limit for W ∗
T/WT and limT→∞(W ∗

T/WT ) =∞ (Breiman,

1961).

The growth optimal weight in the risky asset ωgot is always the weight that leads

to the asymptotically highest long run wealth growth. Any lower ωt choice will lead

to a wealth path with a lower variance but also lower final wealth. Any higher ωt

choice, which literature frequently refers to as overbetting, will lead to a wealth path

with a higher variance but lower long run wealth growth (MacLean et al., 1992). A

special case of higher ωt choice constitutes 2ωgot . It can be proven analytically that

using twice the growth optimal weight in the risky asset leads to high fluctuations

of wealth around the initial wealth with an expected long run growth rate of zero

(MacLean et al., 2010c).

The detrimental effect of overbetting in a multi-period context has already been

mentioned at the outset of portfolio theory. Markowitz (1959) in his seminal mono-

graph on portfolio theory discusses the difference between arithmetic and geometric

returns and explains how a series of investments with a positive expected arithmetic

return can lead to virtually certain bankruptcy in the long run.

To illustrate the argument of Markowitz (1959), let us assume there are two

investment opportunities X and Y, each with two possible outcomes of equal prob-

ability. Investment X either has a return of -25% or +75%, giving it an expected
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return of +25%, and investment Y either has a return of -50% or +150%, giv-

ing it an expected return of +50%. Investment X has a geometric mean return of√
(1− 25%)(1 + 75%)− 1 = 14.6% and investment Y has a geometric mean return

of
√

(1− 50%)(1 + 150%) − 1 = 11.8%. The lower geometric mean return of the

investment with higher arithmetic mean return highlights the damage that variance

in arithmetic returns does to long term wealth accumulation, which is correctly

measured by geometric returns (Ziemba, 2005). This effect is more obvious if one

includes an investment that may suffer a total loss. Assume there also is investment

Z, which has either a return of −100% or +200%. Albeit the arithmetic mean is

+50%, the geometric mean is
√

(1− 100%)(1 + 200%)−1 = −100% and if all money

is re-investment indefinitely, bankruptcy is virtually certain. A single occurrence of

the −100% outcome wipes out all capital.

From the examples above, we see that variance in arithmetic discrete returns re-

duces wealth growth in multi-period asset allocation problems. In the heat of the

academic discussion about the advantages and disadvantages of using the Kelly crite-

rion and growth optimal strategies (Samuelson, 1969; Hakansson, 1971b; Samuelson,

1971; Roll, 1973; Rubinstein, 1976), Markowitz has therefore asserted that it is rea-

sonable to warn “an investor against choosing E-V efficient portfolios with higher

E and V but smaller E log(1 + r) [...] on the grounds that such higher E-V combi-

nations have greater variability in the short run and less return in the long run”5

(Markowitz, 1976). In the same publication Markowitz refers to the point with

approximate maximum E log(1 + r) as the “Kelly-Latané point”, which “should be

considered the upper limit for conservative choice among E-V efficient portfolios”.

The Kelly criterion and growth optimal strategies might provide valuable infor-

mation to a myopic mean-variance optimizer. Namely, that if he chooses portfolios

that are riskier than the growth optimal portfolio, he might be maximizing his ex-

pected utility in a myopic one period context, but at the same time he might accept

variance in portfolio returns over time that reduce the long term growth he realizes.

This would be straightforward and not of interest, if single period and multi-period

problems were clearly separated and applied in a mathematically correct way in their

respective domains. Recalling the frequent modeling of multi-period mean-variance

problems as series of myopic single-period decisions (Basak and Chabakauri, 2010),

the remark of Markowitz (1976) becomes relevant. Markowitz’ argument was based

on the efficient frontier, but it is just as valid for the capital market line that we

obtain when a risk free asset is introduced.

5Markowitz uses E for expected excess return and V for variance of returns.
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3.3.2 The weight in the risky asset

In this section, we analyze for which risky asset returns a myopic mean-variance

investor chooses an asset allocation that is beyond growth optimal. We first discuss

the asset allocation decisions of the growth optimal investor and the mean-variance

investor individually, and then compare both investors. This makes us understand,

what combinations of next period risky asset mean return µt and variance σ2
t lead

the mean-variance investor to take a higher weight in the risky asset than growth

optimal. We show that myopic mean-variance optimizers particularly take excessive

risk when the expectation for next period risky asset returns is favorable, i.e. when

the expected excess return on the risky asset µt is high and variance of risky asset

excess returns σ2
t is low. As before, we assume a risk free rate of zero. We use

values for risky asset mean excess return on the interval [1%, 15%] and values for

standard deviation of risky asset excess returns on the interval [5%, 20%]. Historic

yearly stock market excess returns and standard deviation commonly are in this

range. The yearly excess return on U.S. stocks over the last 30 years has been on

average 8.4% and the standard deviation has been 15%6.

3.3.2.1 Growth optimal investor

We have outlined the modeling of the growth optimal investor in section 3.2.1.

Underlying assumption of our model is that discrete returns are normally distributed

on the interval [A,B], with A = µt−φσt and B = µt+φσt. The required parameters

to fully specify the distribution of next period risky asset returns and to determine

the growth optimal weight in the risky asset are the expected mean excess return

µt, the standard deviation σt, and φ, which determines the width of the permissible

interval for realized risky asset returns. We define φ = 4 for our analysis, meaning

that a deviation of 4σt to the left and right of µt is the minimum and maximum

permissible risky asset excess return realization.

To illustrate the risk taking behavior of the growth optimal investor, we set the

mean excess return on the risky asset to 8.4% and calculate the growth optimal

weight in the risky asset for 50 different values of standard deviation of risky asset

returns on the interval [5%, 20%]. The resulting weights in the risky asset are shown

in figure 3.1a. Weights in the risky asset for φ = {3, 4, 5} are shown. The axis

showing the weight in the risky asset is log scaled to better visualize results. The

growth optimal risky asset weight in figure 3.1a decreases as the value of φ increases,

i.e. as the tails of the distribution get longer. This is due to the possibility of higher

6U.S. research returns data (French, 2016).
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losses, which have a more detrimental effect on wealth growth than the positive

effect of the possibility of higher gains. Also, the maximum weight in the risky asset

ωt for which the possibility of bankruptcy yet is zero decreases as φ increases. In

figure 3.1a we see that ceteris paribus as the standard deviation of risky asset returns

increases, the growth optimal risk taking decreases and asymptotically approaches

zero. The growth optimal risk taking asymptotically increases towards infinity as

the standard deviation of risky asset returns decreases. It reaches infinity when

the interval [A,B] is strictly non-negative, i.e. µt ≥ φσt and thus for all return

realizations possible on ψ(rt) we have rt ≥ 0. This is intuitive as it is certainly

optimal to employ infinite leverage when the worst case excess return is zero.

Figure 3.1b shows the growth optimal weight in the risky asset for 50 different

values of risky asset mean excess return on the interval [1%, 15%] and 15% standard

deviation. Again we see the optimal weight in the risky asset decrease as φ increases,

making the interval wider on which realized returns can lie. We see the optimal

weight in the risky asset increase as risky asset excess return on the interval [1%, 15%]

increases. The weight in the risky asset asymptotically increases towards infinity

as the risky asset mean excess return increases towards the level where no negative

risky asset excess return realizations have a positive probability, i.e. where µt ≥ φσt

and thus rt ≥ 0. The growth optimal weight in the risky asset decreases to zero as

the mean excess return on the risky asset decreases to zero.

3.3.2.2 Mean-variance investor

Relevant input for the mean-variance investor are three parameters: the risky asset

mean excess return µt, the standard deviation of returns on the risky asset σt, and

the risk aversion parameter γ. Based on these three parameters, the mean-variance

investor described in section 3.2.2 determines his utility maximizing allocation of

assets between the risk free asset and the risky asset with normally distributed

returns.

To illustrate the risk taking behavior of the mean-variance investor, we again set

the mean excess return on the risky asset to 8.4% and calculate his weight in the

risky asset for 50 different values of standard deviation of risky asset returns on

the interval [5%, 20%]. The resulting weights in the risky asset are shown in figure

3.1c. Weights in the risky asset for multiple values of risk aversion γ are shown. We

see the weight in the risky asset decrease as risk aversion increases. As standard

deviation of risky asset returns on the interval [5%, 20%] increases, we observe the

mean-variance investor risk taking decrease. Equation 3.7 in section 3.2.2 shows that
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(a) Weight in risky asset chosen by growth
optimal investor for risky asset mean excess
return of 8.4% and 50 values of risky asset

std. dev. on the interval [5%, 20%]

(b) Weight in risky asset chosen by growth
optimal investor for risky asset std. dev. of

15% and 50 values of risky asset mean
excess return on the interval [1%, 15%]

(c) Weight in risky asset chosen by mean-
variance investor for risky asset mean excess
return of 8.4% and 50 values of risky asset

std. dev. on the interval [5%, 20%]

(d) Weight in risky asset chosen by mean-
variance investor for risky asset std. dev. of

15% and 50 values of risky asset mean
excess return on the interval [1%, 15%]

Figure 3.1: Investor’s chosen weight in the risky asset for various
combinations of risky asset mean excess return and standard deviation;

growth optimal investors for different values of return distribution width φ
and mean-variance investors with different values of risk aversion γ are shown

the mean-variance investor’s weight in the risky asset is, ceteris paribus, inversely

proportional to the variance of risky asset returns σ2
t .

Figure 3.1d shows the weight in the risky asset of the mean-variance investor for 50

different values of risky asset mean excess return on the interval [1%, 15%] and 15%

standard deviation of risky asset returns. Again we see the weight in the risky asset

decrease as the risk aversion parameter γ increases. We see risk taking increase as

risky asset excess return on the interval [1%, 15%] increases. Equation 3.7 shows that

ceteris paribus the mean-variance investor’s weight in the risky asset is proportional
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Figure 3.2: Surface plot of growth optimal investor (black grid) and mean-
variance investor (grey surface, γ = 3) weight in the risky asset for different

values of risky asset mean excess return µt and standard deviation σt

to the mean excess return. As the mean excess return increases towards infinity

ceteris paribus, the weight in the risky asset also increases to infinity. The weight in

the risky asset decreases to zero as risky asset mean excess returns decrease to zero.

3.3.2.3 Comparison of risk taking preferences

We now compare the risk taking of both investors presented above. Our aim is to

better explain, for which combinations of risky asset mean excess return, standard

deviation and mean-variance investor risk aversion the mean-variance investor ex-

hibits higher than growth optimal risk taking. We do not simply plot the risk taking

depicted in figure 3.1 into combined graphs. While that would indeed show us some

data points where the mean-variance investor exceeds growth optimal risk taking,

we would yet gain little understanding which combinations of risky asset mean ex-

cess return and standard deviation generally lead to higher than growth optimal

risk taking. As the required numerical work to obtain the growth optimal weight in

the risky asset precludes the formulation of a closed form solution, we resort to a

surface plot that visualizes investor risk taking.

We present a three dimensional graph with mean excess returns and standard

deviation in the x-y plane and investor risk taking as the z-axis. This graph allows

us to visualize for what combinations of mean excess return and standard deviation

the mean-variance investor takes more risk than the growth optimal. We plot two

surfaces in the graph, where one surface shows the mean-variance investor’s choice of
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weight in the risky asset and the other surface shows the growth optimal investor’s

choice of weight in the risky asset, both as a function of the mean excess return

and the standard deviation of returns. To obtain the required data, we compute the

weights in the risky asset of both investors for 50 different values of excess returns on

the interval [1%, 15%] and 50 different values of standard deviations on the interval

[5%, 20%], which is 2,500 data points for each investor. Figure 3.2 presents both

investors’ risk taking choices. The mean-variance investor’s weight in the risky asset

is plotted as a grey surface and the growth optimal investor’s weight in the risky

asset is plotted as a black grid. We see that an area exists, where the mean-variance

investor’s weight in the risky asset exceeds that of the growth optimal investor. This

area of mean-variance investor overbetting covers favorable market conditions with

high mean excess return and low standard deviation.

To simplify the result, let us abstract from the exact weight in the risky asset that

the investors take. Instead, let us only concentrate on whether or not the mean-

variance investor exhibits higher than growth optimal risk taking. The z-axis, which

shows the weight in the risky asset in figure 3.2, therefore collapses into a binary

result: overbetting or no overbetting. In figure 3.3 we show this simplified result for

four mean-variance investors. As above, the mean excess return is on the interval

[1%, 15%] and the standard deviation is on the interval [5%, 20%].

We have computed the weight in the risky asset for four mean-variance investors

with different degrees of risk aversion. For each mean-variance investor we have

shaded in grey the area where he allocates a higher fraction of wealth to the risky

asset than the growth optimal investor. We find that the low risk aversion mean-

variance investor with γ = 1 overbets for all depicted combinations of mean excess

return and standard deviation. For the mean-variance investors with γ = {2, 3, 4}
we note overbetting in the upper left of the graph, which means for combinations of

higher mean excess return and lower standard deviation. In figure 3.3 we see that

the area in which overbetting occurs shrinks when the mean-variance investor risk

aversion parameter increases. Initially, it moves further to the upper left. For γ = 4,

it finally dwindles to a small band that roughly lies between the point with 10%

mean excess return and 5% standard deviation and the point with 15% mean excess

return and 7.5% standard deviation. Taking a closer look at the three dimensional

plot in figure 3.2 before, we see that at the very left of the graph the extent by

which the mean-variance investor overbets is not at its maximum. Rather, for a

mean excess return of 15%, it starts to reduce again as standard deviation finally

decreases towards 5%. This is driven by the growth optimal investor’s weight in the

risky asset increasing towards infinity as no negative return realization on ψ(rt) in
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(a) Mean-variance investor with γ = 1 (b) Mean-variance investor with γ = 2

(c) Mean-variance investor with γ = 3 (d) Mean-variance investor with γ = 4

Figure 3.3: Overbetting of mean-variance investors with four
different values of risk aversion γ; grey color indicates areas of

risky asset mean excess return and standard deviation where mean-
variance investors exhibit higher than growth optimal risky asset weight

the interval [A,B] is possible. This effect takes place in extremely favorable market

conditions with very low standard deviation of returns and comparatively high mean

returns, which at least for stock markets we deem unrealistic.

Note that for γ = 3 the grey shaded area in figure 3.3c covers the same area of

mean excess return and standard deviation combinations, for which in figure 3.2 the

grey surface lies above the black grid. Figure 3.3c and figure 3.2 both depict the

overbetting of the γ = 3 mean-variance investor.



Using the Kelly Criterion to Protect Wealth Growth in
Myopic Multi-Period Mean-Variance Portfolio Selection 43

3.4 Application example

In section 3.3.1 we have discussed the theoretical effects of overbetting and in section

3.3.2.3 we have shown that mean-variance investor overbetting indeed occurs if risk

aversion is low. In this section we investigate with simulation studies the effect that

overbetting has on wealth accumulation and investor performance. We demonstrate

in Monte Carlo simulations the negative effect of overbetting on wealth growth and

investor performance in multi-period investing.

First, we present a simulation with constant investment opportunities where the

investors choose an asset allocation expressed in fractions of wealth that remain

constant over all periods. We find that higher than growth optimal risk taking can

lead to high final wealth outcomes if time horizons are finite, but also results in

frequent bankruptcy of mean-variance investors and in lower Sharpe ratios.

Second, we present a simulation with stochastic investment opportunities which

we deem closer to real life multi-period investment problems. We again find that

the use of the growth optimal weight in the risky asset as an upper limit for mean-

variance investor risk taking does increase the Sharpe ratio and can protect mean-

variance investors form bankruptcy.

3.4.1 Constant investment opportunities

We assume a risky asset with a return of 8.4% and a standard deviation of returns

of 15.0%. These values correspond to the last thirty years of yearly stock market

returns observed by French (2016) in his U.S. research returns data set. We assume

the return distribution of the risky asset to be given by ψ(rt) in equation 3.4 in

section 3.2.1. We cut the tails at ±4σ, which we deem a reasonable interval for

stock market returns. We run 1,000 Monte Carlo simulation with 100 periods each

and let our growth optimal and mean-variance investors allocate assets between the

risky asset and the risk free asset. We compute average final wealth and average

Sharpe ratios (Sharpe, 1966, 1994) of the investors to compare their performance.

For the growth optimal investor we find the weight in the risky asset to be 1.94,

meaning that a growth optimal investor invests 194% of his wealth in the risky asset

and borrows an amount equal to 94% of wealth at the risk free rate to finance his

position in the risky asset. The mean-variance investor asset allocation depends on

his level of risk aversion. His investment into the risky asset is shown in table 3.1.

We see that the mean-variance investor with γ = 2 is closest to the growth optimal

level of risk taking at 188% and all investors with γ < 2 take more risk than growth

optimal.
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Table 3.1: Weight of the risky asset in mean-variance investor portfolios in percent
of wealth; investment levels > 100% are enabled by borrowing at the risk free rate

Risk aversion γ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Wealth invested
in risky asset 751% 375% 250% 188% 150% 125% 107% 94%

The resulting average final wealth and average Sharpe ratios that our investors

achieve during the simulation are shown in figure 3.4. On the x-axis we have the

mean-variance investor risk aversion parameter γ = {0.25, 0.5, ..., 4.0}. For each of

these values we have conducted the above described 1,000 Monte Carlo simulations

with 100 periods each. On the y-axis we have either average final wealth or average

Sharpe ratios.

Average final wealth values over 1,000 simulation runs are shown in figure 3.4a.

We see the growth optimal investor achieve final wealth levels slightly above one

million after 100 periods, starting from an initial wealth of 1 unit. The fluctuations

in the growth optimal investor’s average final wealth are due to different sets of

random return realizations being drawn in the simulation runs. The mean-variance

investor’s average final wealth is low for high values of risk aversion and increases

as the risk aversion decreases. We see that the average final wealth for overbetting

mean-variance investors with 0.75 ≤ γ ≤ 1.75 surpasses that of the growth optimal

investor. The aggressively overbetting mean-variance investors with γ ≤ 0.5 have

negative levels of average final wealth which in figure 3.4a are omitted.

We know that the growth optimal strategy Λ∗ asymptotically dominates any es-

sentially different strategy Λ in terms of wealth accumulation as the time horizon

converges to infinity. In contrast, figure 3.4 suggests that some overbetting mean-

variance investors surpass the average final wealth of the growth optimal investor. A

more detailed investigation of the high average final wealth of the overbetting mean-

variance investors reveals that not all investors survive. Table 3.2 shows details. The

mean-variance investor with γ = 2 does not experience bankruptcy during any of

the 1,000 simulations runs. All overbetting mean-variance investors of lower risk

aversion experience bankruptcy7 at least during some simulation runs. The mean

variance investors with γ ≤ 0.5 experience bankruptcy during all 1,000 simulation

runs. Surviving mean-variance investors with γ < 2 achieve extremely high maxi-

mum final wealth levels. We define maximum final wealth as the highest final wealth

that an investor achieved over our 1,000 simulation runs. The very high levels of

7We define an investor to be bankrupt if Wt ≤ 0 for any t ∈ {1, ..., T} and in such case regard
the first negative wealth occurrence as the respective investors final wealth.
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(a) Average final wealth of growth optimal and mean-variance investor

(b) Average arithmetic and geometric Sharpe ratio (SR) for growth
optimal investor (GO) and mean-variance investor (MV)

Figure 3.4: Average final wealth (a) and average arithmetic and geometric Sharpe
ratio (b) of growth optimal and mean-variance investors with different values
of risk aversion 0 < γ ≤ 4 over 1,000 simulation runs with 100 periods each

final wealth that some of the overbetting mean-variance investors achieve result in

average final wealth levels that surpass those of the growth optimal investor.

Table 3.2 shows that the final wealth levels of our investors are extremely diver-

gent. Minimum and maximum final wealth levels over our 1,000 simulations lie far

apart. These results are in line with other studies that investigate long term capital

growth in multi-period problems (Ziemba and Hausch, 1985; MacLean et al., 1992;

MacLean and Ziemba, 1999; MacLean et al., 2010a, 2011). Mean-variance investor
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Table 3.2: Final wealth and bankruptcies of mean-variance investors
and growth optimal investors in 1,000 simulation runs with

both, time horizons of 100 and 200 periods length

Investor final wealth over 1,000 simulation runs with ...
...100 periods each ...200 periods each

Min Avg Max Bankrupt Min Avg Max Bankrupt

MV with γ = 0.5 NA NA NA 1000/1000 NA NA NA 1000/1000
MV with γ = 1.0 NA 5.0e+11 3.5e+14 588/1000 NA 1.5e+19 1.7e+22 869/1000
MV with γ = 1.5 NA 5.8e+7 5.1e+9 60/1000 NA 3.7e+16 3.1e+19 115/1000
MV with γ = 2.0 22.6 2.0e+6 2.4e+8 0/1000 6.5e+4 2.7e+12 6.5e+14 0/1000
MV with γ = 2.5 28.3 1.5e+5 1.5e+7 0/1000 8.8e+3 6.9e+10 5.3e+13 0/1000
MV with γ = 3.0 15.5 2.0e+4 1.5e+6 0/1000 4.4e+3 4.1e+8 5.5e+10 0/1000
MV with γ = 3.5 19.0 6.0e+3 4.4e+5 0/1000 3.4e+3 3.9e+7 8.7e+9 0/1000
MV with γ = 4.0 9.0 2.4e+3 6.8e+4 0/1000 2.2e+3 3.7e+6 1.3e+8 0/1000

Growth optimal 18.1 4.3e+6 1.4e+9 0/1000 6.9e+4 1.2e+13 1.4e+16 0/1000

NA refers to bankruptcies or negative values of wealth; MV stands for mean-variance investor

risk aversion of γ ≤ 4 is low, but may well be considered realistic (Markowitz et al.,

1994).

Simulations with longer time horizons show that an increasing fraction of over-

betting mean-variance investors experiences bankruptcy. Table 3.2 shows that the

mean-variance investors with γ = 1.0 experiences bankruptcy in 588 of the 1,000

simulation runs when the time horizon is 100 periods. If the time horizon is 200

periods, bankruptcy occurs in 869 of the 1,000 simulations. As the time horizon

increases towards infinity, the fraction of overbetting mean-variance investors that

experience bankruptcy asymptotically increases towards 100%. From the theory of

growth optimal strategies we know, and simulations confirm, that for infinite time

horizons no investor who follows an essentially different strategy exceeds the final

wealth of the growth optimal investor.

We use Sharpe ratios to assess the risk adjusted performance of our investors. For

each simulation run we compute the Sharpe ratio that the investor achieved over

the 100 periods. We divide mean excess return of investor portfolio returns over 100

periods by standard deviation. We follow related literature in that we show both,

the Sharpe ratio calculated from arithmetic means and arithmetic standard devia-

tions and the Sharpe ratio calculated from geometric means and geometric standard

deviations (Ziemba, 2005). Ziemba finds the conclusions of his research, such as the

relative ranking of funds by Sharpe ratio, to be the same for both, the arithmetic

and the geometric Sharpe ratio. He notes that the difference between arithmetic

and geometric Sharpe ratio is a function of return volatility. The geometric mean
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of investor portfolio returns µp,g, where g denotes geometric, over time horizon T is

calculated as

µp,g =

(
T∏
t=1

(1 + rp,t)

)1/T

− 1 = exp

(
1

T

T∑
t=1

log(1 + rp,t)

)
− 1 (3.8)

The geometric standard deviation σp,g over time horizon T is calculated as

σp,g = exp


√∑T

t=1(log 1+rp,t
1+µp,g

)2

T

− 1 (3.9)

which entails that the results are not real numbers if losses in excess of 100% oc-

cur. We therefore set the geometric Sharpe ratio of bankrupt investors to zero8.

While Ziemba (2005) argues that the geometric Sharpe ratio is the more appropri-

ate measure of performance, it clearly has the disadvantage of being more difficult

to understand. Geometric standard deviation is not an intuitive concept.

Figure 3.4b shows the average arithmetic and average geometric9 Sharpe ratios

that our investors achieved in 1,000 simulation runs of 100 periods. When arithmetic

means and standard deviations are used, we find the Sharpe ratios of the growth

optimal investor and the more risk averse mean-variance investors with γ ≥ 2 to be

equal. This is explained by both investors choosing constant points on the capital

market line, where the risk/return trade-off measured by the Sharpe ratio is linear.

This linearity comes to an end when overbetting mean-variance investors experience

bankruptcy. Bankrupt investors experience high volatility, but end with low mean

returns. Mean-variance investors that experience bankruptcy have low or negative

arithmetic mean Sharpe ratios and cause the decline in average Sharpe ratios which

we see in figure 3.4b for γ ≤ 1.7510.

For geometric Sharpe ratios, we see in figure 3.4b that they are generally lower,

which is consistent with related literature (Ziemba, 2005). The reason is that, first,

geometric mean returns are generally smaller than the corresponding arithmetic

mean returns. Second, the geometric standard deviation may even be higher than

8Most of the bankrupt investors do not end with a wealth of exactly zero but instead end
with negative values of wealth. The geometric Sharpe ratios thus should intuitively rather be
negative. As geometric means of time series with losses in excess of 100% cannot be expressed in
real numbers, we set those values to zero instead as the geometric Sharpe ratio approaches zero as
wealth approaches zero. One might argue that reality is even worse.

9Each shown result is an arithmetic average over the 1,000 geometric Sharpe ratios obtained
from our 1,000 simulation runs.

10For γ ≤ 1.5 the difference is visible in figure 3.4b with the naked eye, for γ = 1.75 it is in the
third digit after the comma only.
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the arithmetic standard deviation since high losses translate into high absolute values

of log returns. This explains why the geometric Sharpe ratios of low risk aversion

mean-variance investors are particularly low. Also, this explains why the geometric

Sharpe ratios of the growth optimal investor are lower than those of more risk averse

mean-variance investors with γ ≥ 2.

From this simulation we learn that mean-variance investor overbetting leads to

Sharpe ratios lower than those of the growth optimal investor. In addition, we

learn that mean-variance investor overbetting in a series of favorable investment

opportunities can lead to near-certain ruin. Nevertheless, we note that for finite

time horizons some overbetting mean-variance investors—in our case those with

0.75 ≤ γ ≤ 1.75—can achieve higher average final wealth values than the growth

optimal investor.

3.4.2 Stochastic investment opportunities

Investment opportunities in real life multi-period investment situations over long

time horizons are not constant. For example, stock returns during the 15 years from

2000-2014 had an annual mean excess return of 4.5% and a standard deviation of

17.8%, while stock returns during the 15 years from 1984-1999 had an annual mean

excess return of 12.4% and a standard deviation of 10.7%11. Stochastic investment

opportunities that change randomly as time passes are more realistic and also in line

with related research (Detemple et al., 2003; Nielsen and Vassalou, 2006; MacLean

et al., 2006; Munk, 2008). MacLean et al. (2006) use a Brownian motion asset

pricing model with random parameters and Bayes estimates for the mean return.

Nielsen and Vassalou (2006) present a model where first and second moments of

stock returns change stochastically over time.

We again assume a risk free asset with zero return and a risky asset with normally

distributed return to be available to the investor. The normal distribution of return

is described by equation 3.4 in section 3.2.1. As above, we set φ = 4 and cut the

tails at ±4σt. We again assume a standard deviation of returns of σt = 15.0%.

In contrast to the previous simulation, we now assume µt, the mean excess return

in period t, to change stochastically over time. Let µt be randomly drawn at the

beginning of each period t from µt ∼ N (8.4%, 3.0%).

In each period we first draw the value for the mean excess return µt in that

period and then have both investors decide their asset allocations accordingly. The

investors have no uncertainty regarding µt at time t. Given the values for µt and σt

they can determine their respective allocation of capital to the risky asset in each

11U.S. research returns data (French, 2016).
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Table 3.3: Final wealth and bankruptcies of mean-variance investors
and growth optimal investors in 1,000 simulation runs with

both, time horizons of 100 and 200 periods length and
investment opportunities with changing mean returns

Investor final wealth over 1,000 simulation runs with ...
...100 periods each ...200 periods each

Min Avg Max Bankrupt Min Avg Max Bankrupt

MV γ = 0.5 NA NA 2.3e+18 996/1000 NA NA NA 1000/1000
MV γ = 1.0 NA 2.3e+13 1.5e+16 646/1000 NA 7.4e+20 1.6e+23 889/1000
MV γ = 1.5 NA 1.2e+10 5.4e+12 149/1000 NA 8.2e+17 5.9e+20 249/1000
MV γ = 2.0 NA 2.2e+8 7.9e+10 31/1000 NA 3.2e+14 2.6e+17 36/1000
MV γ = 2.5 NA 1.3e+6 1.1e+8 3/1000 NA 1.7e+11 3.9e+13 5/1000
MV γ = 3.0 91.3 1.8e+5 2.8e+7 0/1000 3.4e+4 5.0e+09 8.6e+11 0/1000
MV γ = 3.5 18.3 3.5e+4 2.1e+6 0/1000 3.2e+3 2.4e+08 2.2e+10 0/1000
MV γ = 4.0 39.8 9.4e+3 4.4e+5 0/1000 2.8e+3 1.9e+07 9.2e+8 0/1000

MV lim γ = 0.5 14.6 3.4e+6 3.2e+8 0/1000 9.3e+2 2.4e+13 1.4e+16 0/1000
MV lim γ = 1.0 3.4 6.9e+6 1.3e+9 0/1000 1.1e+5 5.4e+12 8.5e+14 0/1000
MV lim γ = 1.5 11.3 4.7e+6 5.4e+8 0/1000 2.9e+4 2.4e+13 1.2e+16 0/1000
MV lim γ = 2.0 29.7 8.1e+6 2.8e+9 0/1000 7.3e+5 6.5e+12 4.5e+15 0/1000
MV lim γ = 2.5 30.4 5.9e+5 5.0e+7 0/1000 1.7e+3 8.7e+10 1.7e+13 0/1000
MV lim γ = 3.0 83.2 1.6e+5 2.5e+7 0/1000 3.4e+4 4.9e+09 8.2e+11 0/1000
MV lim γ = 3.5 18.3 3.5e+4 2.1e+6 0/1000 3.2e+3 2.4e+08 2.2e+10 0/1000
MV lim γ = 4.0 39.8 9.4e+3 4.4e+5 0/1000 2.8e+3 1.9e+07 9.2e+8 0/1000

Growth optimal 15.5 7.5e+6 3.1e+9 0/1000 6.9e+4 1.8e+13 1.4e+16 0/1000

NA refers to bankruptcies or negative values of wealth; MV stands for mean-variance investor; MV lim stands for
mean-variance limited investor who never exceeds growth optimal risk taking

period t. The varying values of µt lead our investors to take different asset allocation

decisions in each period. In contrast to the previous simulation, where the fraction

of wealth that the investors allocated to the risky asset in each period was constant

over time, it now changes as µt takes different values. The mean-variance investors

with different values of risk aversion in this simulation thus do not constantly overbet

or underbet, but may oscillate between overbetting and underbetting.

Again, we run 1,000 simulations of 100 periods each for different values of mean-

variance investor risk aversion γ. The results of our simulations with stochastic

investment opportunities are shown in figure 3.5, as well as in table 3.3 which also

contains results for a time horizon of 200 periods. We add one further investor

whose investment behavior can be described as follows. At each decision point, the

investor looks at the weight in the risky asset that the mean-variance investor and

the growth optimal investor use and chooses the lower of these two. We call this

investor the mean-variance limited investor, as his risk taking behavior is that of

a mean-variance investor who accepts the growth optimal weight in the risky asset

as maximum level of risk taking. This investor’s behavior fits the suggestion of

Markowitz (1976) discussed earlier.

Figure 3.5a shows the average final wealth of our investors. The results for mean-

variance and growth optimal investor are similar to those shown in figure 3.4a in
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(a) Average final wealth of growth optimal and mean-variance investor

(b) Average arithmetic and geometric Sharpe ratio (SR) for growth
optimal investor (GO) and mean-variance investor (MV)

Figure 3.5: Average final wealth (a) and average arithmetic and geometric Sharpe
ratio (b) of growth optimal and mean-variance investors with different values
of risk aversion 0 < γ ≤ 4 over 1,000 simulation runs with 100 periods each

and investment opportunities with changing mean returns
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section 3.4.1. We note two main differences. First, the mean-variance investor now

achieves higher average final wealth than the growth optimal investor for γ > 2.25.

In the previous simulation this was the case for γ > 2 only. Second, the average

final wealth levels of all investors are generally higher, which may be easier seen from

table 3.3. The mean-variance limited investor, who never exceeds growth optimal

risk taking, either achieves a lower average final wealth than the other two investors,

or an average final wealth equivalent to the lower of both other investors.

The number of bankruptcies that each investor experiences over the 1,000 simu-

lations is shown in table 3.3. The mean-variance investors with γ = 1.0, 1.5, 2.0, 2.5

experience bankruptcy more frequently than in the previous simulation. Also, the

mean-variance investor with γ = 2.5 experiences bankruptcies during the 1,000 sim-

ulation runs, although his average final wealth is only about a sixth of that of the

growth optimal investor. The mean-variance limited investor does not experience

bankruptcies as he does not exhibit overbetting.

Table 3.3 shows again that as the time horizon increases more overbetting mean-

variance investors experience bankruptcy. Extending the simulation time horizon

to 200 periods we observe the fraction of mean-variance investors who experience

bankruptcy to increase for γ = 1.0, 1.5, 2.0, 2.5. In addition we find the mean-

variance investor with risk aversion γ = 0.75 to achieve an average final wealth below

zero while in our simulation with 100 periods in figure 3.5a this investor achieved

the highest average final wealth. We find mean-variance investors to overbet more

aggressively when investment opportunities are stochastic as they encounter market

states with higher mean returns, which leads to ruin more frequently.

Figure 3.5b shows average arithmetic and geometric Sharpe ratios. We see that

all depicted mean-variance investors achieve lower average arithmetic Sharpe ratios

than the growth optimal investor. In the simulation with constant investment oppor-

tunities in section 3.4.1 figure 3.4b we noted that only overbetting mean-variance

investors achieve lower average arithmetic Sharpe ratios. It is a new result that

the average arithmetic Sharpe ratios are also lower for the non-overbetting mean-

variance investors of higher risk aversion. These lower arithmetic Sharpe ratios are

explained by the variation in the weight of the risky asset that the stochastic in-

vestment opportunities cause. The series of arithmetic returns that mean-variance

investors realize tend to be less smooth than that of the growth optimal investor as

the mean-variance investor risk taking is more volatile. Figure 3.2 in section 3.3.2.3

visualizes the broader range of weight in the risky asset that the mean-variance

investors choose. Our simulation results show that this more volatile risk taking

causes the mean-variance investor to experience lower arithmetic returns than the
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growth optimal investor, while the standard deviation of his series of arithmetic

returns is not correspondingly lower.

The mean-variance limited investor, who never exceeds growth optimal risk tak-

ing, will always at least obtain equally high average arithmetic Sharpe ratios as a

pure mean-variance investor. We thus conclude that an investor who accepts the

arithmetic Sharpe ratio as his primary measure of performance is well advised to

consider the growth optimal weight in the risky asset as an upper limit for risk

taking in multi-period investment decisions.

In figure 3.5b also the average geometric Sharpe ratio12 over 1,000 simulations

is depicted. Four differences to the previously discussed average arithmetic Sharpe

ratio are evident. First, the average geometric Sharpe ratio is generally lower than

the average arithmetic Sharpe ratio. This finding and the reasoning is equal to

the simulation with constant investment opportunities in section 3.4.1. Second, the

performance of overbetting mean-variance optimizers is substantially worse when

performance is measured by the geometric Sharpe ratio instead of the arithmetic

Sharpe ratio. We have seen and explained this in section 3.4.1 before. Third, mean-

variance optimizers with high degrees of risk aversion achieve better geometric mean

Sharpe ratios than growth optimal investors. We have also seen and explained this

in section 3.4.1. Fourth, and this is the most interesting finding from the simulation

with stochastic investment opportunities, we see that the mean-variance limited

investor for 1 < γ < 3 outperforms both, the mean-variance investor and the growth

optimal investor with regards to average geometric Sharpe ratios. The investment

behavior of the mean-variance limited investor does reduce the average final wealth

for risk aversion values of 1 < γ < 3 as we see in figure 3.5a, but it results in

higher average geometric mean Sharpe ratios. Not only, but especially if an investor

accepts the geometric mean Sharpe ratio as his primary measure of performance, he

is thus well advised to consider the growth optimal leverage as an upper limit for

risk taking in multi-period investment decisions.

3.5 Conclusion

We have presented the risk taking behavior of growth optimal investors and myopic

mean-variance investors. The latter keep being used in multi-period settings despite

the shortcomings of the myopic assumption. Comparing both investors’ choice of

weight in the risky asset, we have shown combinations of parameters that result

in mean-variance investor overbetting, where overbetting is defined as higher than

12Each shown result is an arithmetic average over the 1,000 geometric Sharpe ratios obtained
from 1,000 simulation runs.
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growth optimal risk taking which for long term investing results in lower wealth

accumulation but increased volatility of investor portfolio returns over time. The

growth optimal weight in the risky asset can only be determined numerically and

there is no analytic solution that allows us to state which parameter combinations

result in overbetting. We find that combinations of high risky asset mean return

and low standard deviation are particularly prone to overbetting.

We have discussed the effect of overbetting and shown in simulation studies that it

can harm both, mean-variance investor wealth accumulation as well as Sharpe ratio.

While we find that with finite and short investment horizons the expected final

wealth of overbetting mean-variance investors can exceed that of growth optimal

investors, these high final wealth levels come at the expense of lower Sharpe ratios

and with an increased likelihood of investor bankruptcy. Our simulations illustrate

that a series of, from a single period perspective, favorable mean-variance investor

asset allocation decisions can lead to almost certain ruin in the long run. In line with

the theory of growth optimal strategies we note that the probability of bankruptcy

of overbetting mean-variance investors increases with the length of the time horizon.

Our motivation was to follow up on a conjecture made by Markowitz (1976)

pointing to the growth optimal leverage as the upper limit for conservative asset

allocation in mean-variance analysis when long term wealth growth is desired. Our

analysis and simulations have shown that for low values of risk aversion this upper

limit to risk taking can indeed be useful to protect mean-variance investor wealth

growth and is certainly useful to protect performance.



4 A Performance Comparison of Growth Optimal

Strategies and Myopic Mean-Variance

Optimization for 80 Years of Stock Market

Investing1

4.1 Introduction

In this paper we apply a growth optimal strategy to stock market investing. We

investigate how an investor who follows that strategy would have performed in the

stock markets. We compare the growth optimal investor with a myopic mean-

variance investor and discus the benefits and dangers of following either approach.

To our knowledge there exists a broad body of research on the theory of growth

optimal strategies, but comparatively little on their application to real-world invest-

ment situations. We add to the literature by providing novel insights on how growth

optimal strategies perform as an asset management strategy. Simultaneously, we

highlight the deficiencies of the myopic assumption in multi-period mean-variance

optimization when utility functions are not of the isoelastic type.

Growth optimal strategies originated with Kelly (1956) who investigates what bet

size a gambler should choose in favorable games with binomial outcomes in order

to maximize long-run wealth accumulation. Kelly finds the optimal bet size to be

a constant fraction of wealth2. More generally, the term growth optimal strategies

is used for investment policies that aim at maximizing the expected growth rate

of wealth. Kelly (1956) has outlined the intuition of growth optimal strategies in

his application of such a strategy to binomial games and following work has estab-

lished the mathematical foundations and properties of growth optimal strategies.

Breiman (1961) analytically proves that the final wealth W ∗
T accumulated under a

non-terminating growth optimal strategy Λ∗ will asymptotically be infinitely larger

than any other final wealth WT that is accumulated under any strategy Λ which is

not asymptotically close to the growth optimal strategy Λ∗. Breiman (1961) further

finds that the utility function implied by the use of a growth optimal strategy is

logarithmic utility. The Kelly criterion and growth optimal strategies are—at least

1This chapter is based on the homonymous working paper Winselmann (2017b).
2This fraction of wealth is frequently referred to as the Kelly criterion or the full Kelly wager.
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for finite time horizons3—from an expected utility theory perspective only opti-

mal for an investor with logarithmic utility (Mossin, 1968; Samuelson, 1969, 1979).

In contrast to what some authors initially suggested (Bicksler and Thorp, 1973;

Hakansson, 1971b; Rubinstein, 1976), the attractiveness of growth optimal strate-

gies is not rooted in them being a universal concept to describe the risk preferences

of all investors or to explain asset prices, but the attractiveness of growth optimal

strategies is solely rooted in their superior long term wealth accumulation as well

as in their ease of implementation, tractability and increased portfolio stability over

time (MacLean et al., 2006; Platen and Rendek, 2011; Ziemba, 2015).

In contrast to growth optimal strategies, modern portfolio theory and mean-

variance analysis (Markowitz, 1952, 1959) take into account the different utility

functions of individual investors and thus, following the expected utility maxim

of von Neumann and Morgenstern (1944), are better suited than growth optimal

strategies to solve portfolio selection problems for investors with some defined util-

ity function that is not logarithmic. Nevertheless, modern portfolio theory has

originally been developed for a single period framework and its generalization to

multi-period investment problems is not straightforward (Markowitz, 1959).

Comparatively easy to solve is the case where a multi-period investment problem

is solved optimally by treating each period as if it was the last period. In multi-

period problems such behavior of an investor is known as myopic. The conditions

for a myopic strategy to be optimal are presented by Mossin (1968) and used by

Samuelson (1969) in discrete time and Merton (1969, 1971) in continuous time, but

both Samuelson and Merton require restrictive assumptions with regard to utility

functions and return distributions.

Indeed, from the time of the fundamental work of Markowitz it took close to half

a century until an analytic optimal solution for mean-variance analysis in multi-

period portfolio selection was presented by Li and Ng (2000) who derive an analytic

optimal portfolio policy and an expression of the mean-variance efficient frontier for

multi-period mean-variance analysis using embedding techniques. Their model does

not require to restrict utility functions, but it requires the assumption of statistical

independence of return vectors over time. Zhu et al. (2004) present an analytic

optimal solution which additionally considers risk control over bankruptcy. Wu and

Li (2011) follow the same route using embedding techniques and obtain a closed form

solution to a multi-period mean-variance portfolio selection problem with regime

switching and uncertain exit time. Wu and Li (2012) investigate regime switching

3For infinite time horizons, some authors argue that growth optimal strategies are optimal for
any utility function (Markowitz, 1976) while others consider this case irrelevant (Samuelson, 1979).
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with an additional stochastic cash flow component and derive a closed form optimal

strategy and an efficient frontier. Wu et al. (2014) generalize Wu and Li (2011) to a

setting with market state dependent exit time. Cui et al. (2014) amend a no shorting

constraint to the setting used by Li and Ng (2000) and derive semi-analytical results

which imply a piecewise quadratic value function.

Basak and Chabakauri (2010) present an equilibrium based approach to solve

multi-period mean-variance problems. They investigate a dynamic mean-variance

problem in a Markovian setting and present an explicit time-consistent solution

using dynamic programming and the Hamilton-Jacobi-Bellman equation. Basak

and Chabakauri (2010) examine investors with constant risk aversion. Björk et al.

(2014) extend their work to investors with state dependant risk aversion.

Despite the advancements following Li and Ng (2000), the mathematically rigor-

ous application of mean-variance analysis to multi-period asset allocation problems

remains complex and in both academia and practice mean-variance investors in

multi-period asset allocation problems are frequently modeled as myopic (Basak

and Chabakauri, 2010). Practical reasons include the difficulty to accurately es-

timate return and risk for the entire time horizon of the problem at t = 0, the

complexity and computational intensity of true multi-period models, and the lack

of appropriate handling of real-world investor constraints (Kolm et al., 2014). The

loss in expected utility that errors originating from additional model complexity and

estimates cause may also well outweigh the benefit of a theoretically more rigorous

approach (Brandt, 2009; DeMiguel et al., 2009).

Next to exploring the performance of growth optimal strategies for stock mar-

ket investments in general, our analysis in this paper serves well to illustrate the

deficiencies of the myopic assumption by comparing the performance of a myopic

mean-variance investor with that of a growth optimal strategy.

Existing work on the application of growth optimal strategies frequently relies on

simulation studies that contrast the on average high capital accumulation of growth

optimal strategies with the inherent risk of such strategies (Bicksler and Thorp,

1973; Ziemba and Hausch, 1985; Hausch and Ziemba, 1985). Consistent with the

theoretical foundations of growth optimal strategies, all studies show high expected

growth rates of wealth but also substantial volatility of terminal wealth outcomes and

the possibility of high losses for finite time horizons. To reduce risk and volatility,

fractional Kelly strategies have been proposed (Clark and Ziemba, 1987; MacLean

and Ziemba, 1991; MacLean et al., 1992, 2010a; Ziemba, 2015). Fractional Kelly

refers to investing a constant fraction of the growth optimal wager at any decision

point, which increases security at the expense of growth. Other approaches to risk
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control in the context of growth optimal strategies include drawdown constraints

or value at risk (MacLean et al., 2004, 2006), minimum level of wealth constraints

(MacLean et al., 2005) or convex shortfall penalties (MacLean et al., 2015). Next to

rather theoretically-focused contributions to the field of growth optimal strategies,

applications to real market data have been presented. These applications center

around two topics. One is gambling, particularly horse betting (Hausch et al., 1981;

Thorp, 1984; Hausch and Ziemba, 1985; Bain et al., 2006) and the other is the

exploitation of capital market anomalies such as the turn of the year effect (Clark

and Ziemba, 1987; Ziemba, 1994, 2012).

MacLean et al. (2011) discuss the performance of growth optimal strategies. While

the title of their publication4 suggests similarity to our work, MacLean et al. instead

focus on extending the simulation-based findings of Bicksler and Thorp (1973) and

Ziemba and Hausch (1985). They do not test growth optimal strategies with real

world time series data. Additionally, Bicksler and Thorp (1973) and MacLean et al.

(2011) do not state exactly how they model their growth optimal investor, but

they must be using some approximation of the growth optimal asset allocation that

noticeably differs from the actual growth optimal asset allocation, as bankruptcy

occurs for a 0.78-fractional Kelly strategy in MacLean et al. (2011). While this

is not discussed further in their paper, this contradicts a key property of growth

optimal strategies, which is that they never risk ruin (Hakansson, 1971b). In this

paper, we use a formulation for the growth optimal investor presented by Rotando

and Thorp (1992) which rules out investor ruin when no parameter estimation errors

are present.

We extend the existing work on simulation studies of growth optimal strategies in

two ways. First, we employ real-world stock market data to assess the performance

that a growth optimal investor and a myopic mean-variance investor would have

actually achieved. Second, we compare the performance of our growth optimal

investor with that of our myopic mean-variance investor. To our knowledge, neither

the first nor the second has been exhaustively discussed in the literature yet. We do

not only find the wealth accumulation of the growth optimal investor to substantially

surpass that of any mean-variance investor, but also find the growth optimal investor

and fractional Kelly strategies to achieve superior performance measures.

4MacLean et al. (2011) “How does the Fortune’s Formula Kelly capital growth model perform?”
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4.2 The model

We model the investment decisions of a growth optimal investor and a mean-variance

investor for stock market data from 1926 to 2015. Since continuous re-balancing is

impractical, we work in a discrete time setting and our investors take investment

decisions in constant time intervals (Rogers, 2001). At each decision point, which

is the beginning of each period, the investors re-balance their holdings between two

assets. One asset is risk free and the other is risky. Our two-asset setting is thus

equivalent to investing along the capital market line (Tobin, 1958). The risk free

asset is short term government debt and the risky asset is the market portfolio.

We use the stock market aggregate from the U.S. research return data series of

French (2016) as a proxy for return on the market portfolio. Following Rotando and

Thorp (1992), we assume stock market returns to be normally distributed. Rotando

and Thorp acknowledge that the log-normal distribution may provide a superior fit

to stock market returns, but given that a log-normal return distribution makes the

computations for the growth optimal investor much more cumbersome, they proceed

with the assumption of a normal distribution of returns and so do we. In section

4.3.3 we further explore the distribution of returns and confirm that the assumption

of normally distributed returns is reasonable.

In the following, we first introduce the myopic mean-variance investor and we

second introduce the growth optimal investor. Both investors determine their weight

in the risky asset based on the expected value and the standard deviation of the

normally distributed excess returns on the risky asset. Return on the risky asset in

period t is given by rt and the certain return on the risk free asset is given by rf,t.

The expected excess return on the risky asset is given by E[rt−rf,t] and can equally

be written as E[rt]− rf,t and as µt − rf,t. The standard deviation of returns on the

risk asset is given by σt. The decision variable at the beginning of each period t is

the investor’s weight ωt in the risky asset where ωt = 0 represents 100% of wealth

invested in the risk free asset and ωt = 1 represents 100% of wealth invested in the

risky asset. We restrict our investors to not take short positions in the risky asset

and thus ωt ≥ 0 ∀t. We assume that the investors can borrow and lend at the risk

free rate. Values of ωt > 1 indicate that an investor takes a short position in the

risk free asset and invests more than 100% of wealth in the risky asset. Further, we

assume that the investors incur no trading cost.
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4.2.1 Mean-variance investor

Preferences for mean-variance investors can either be assumed to be given or they

can be derived from expected utility theory. Both approaches are frequently used

in the literature (Campbell and Viceira, 2002; Brandt, 2009; Markowitz, 2014). We

treat preferences as given and assume a mean-variance investor that is guided by

EUt = E[rp,t − rf,t]−
γ

2
σ2
p,t (4.1)

where rp,t is the return on the investor portfolio in period t and σp,t is the standard

deviation of the return on the investor portfolio. EU denotes an expected utility

function and E is the expectation operator. The risk free rate is given by rf,t. Risk

aversion is given by γ and is assumed to be constant over time.

The mean-variance investor described in equation 4.1 acts myopic and maximizes

his expected utility EUt in each period t independent of previous and posterior

periods. We can equally express E[rp,t−rf,t] as E[rp,t]−rf,t and the certain risk free

rate thus does not influence optimal decisions. We use the expected excess return

on the risky asset in equation 4.1 for the purpose of more obvious consistency to our

formulation of the growth optimal investor presented later.

The investor portfolio return is driven by the weight in the risky asset that the

investor chooses. We denote the weight in the risky asset in period t by ωt and the

risky asset return by rt. The investor portfolio return rp,t thus can be computed as

rp,t = ωtrt + (1−ωt)rf,t. The investor portfolio excess return is given by rp,t− rf,t =

ωt(rt − rf,t).
To obtain the expected utility maximizing weight in the risky asset, we first sub-

stitute the expected portfolio excess return

E[rp,t − rf,t] = E[rp,t]− rf,t
= ωtE[rt] + (1− ωt)rf,t − rf,t
= ωt(µt − rf,t)

(4.2)

where µt = E[rt] and we second substitute the portfolio variance

σ2
p,t = ω2

t σ
2
t (4.3)
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into equation 4.1, which yields the optimization problem

max
ωt

(
ωt (µt − rf,t)−

γ

2
ω2
t σ

2
t

)
. (4.4)

Setting the derivative of equation 4.4 with respect to ωt equal to zero we obtain

the weight in the risky asset ωmvt which maximizes the expected utility of the mean-

variance investor. We use mv as a superscript to distinguish the optimal risky

asset weights of the mean-variance investor and the growth optimal investor. From

equation 4.4 it can readily be seen that the second derivative can only be negative

which indicates a maximum. This is a standard textbook approach (Campbell and

Viceira, 2002; Alexander, 2008) and the optimal weight in the risky asset ωmvt for

the mean-variance investor is given by

ωmvt =
µt − rf,t
γσ2

t

. (4.5)

At the beginning of each period t, the optimal weight in the risky asset for the

myopic mean-variance investor is thus obtained from the expected excess return on

the risky asset µt − rf,t in period t and its standard deviation σt.

4.2.2 Growth optimal investor

The strategy pursued by a growth optimal investor is to maximize the expected log-

arithm of final wealth. In the literature, this is frequently referred to as the ‘Kelly

strategy’. Breiman (1961) analytically proves that any essentially different strategy

must yield inferior long run wealth growth. From an expected utility theory per-

spective (von Neumann and Morgenstern, 1944), a growth optimal strategy implies

logarithmic utility in wealth. By the properties of the logarithmic utility function,

a multi-period problem decomposes into a sequence of independent single period

problems and myopic portfolio choice is optimal (Mossin, 1968).

Let Wt be investor wealth at the end of period t. T denotes the time horizon. EU

denotes an expected utility function and E is the expectation operator. The investor

portfolio return in period t again is given by rp,t. Equation 4.6 shows that under

logarithmic utility myopic behavior is optimal and that the maximization of the
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expected logarithm of final wealth is equivalent to the single-period maximization

of the expected log growth rate of wealth.

EU = E [log(WT )]

= E

[
log

(
W0 ∗

T∏
t=1

(1 + rp,t)

)]

= log(W0) +
T∑
t=1

E [log(1 + rp,t)]

(4.6)

Rotando and Thorp (1992) have outlined an application of the Kelly criterion

(Kelly, 1956) to normally distributed stock market returns. They illustrate their

mathematical work with a simple stock market application using yearly S&P500

data from 1928 to 1984. Rotando and Thorp (1992) determine ex-post the constant

fraction of wealth that a Kelly investor should have invested into the stock market

from 1928 to 1984 in order to maximize the expected logarithm of excess returns.

The focus of Rotando and Thorp (1992) is the mathematical groundwork required

to generalize the Kelly criterion to continuous distributions of outcomes. Their ex-

ample merely is a thought experiment, as no investor could in 1928 make investment

decisions based on the yet unknown actual parameters of the return distribution of

a future time period. We use the model of Rotando and Thorp in a different setting

which mirrors the situation of an actual investor who has nothing but past data

available to estimate future returns and their volatility. At the beginning of each

period t we compute estimates for return and volatility in that period, based on

which the investor allocates his capital. Thus, in contrast to Rotando and Thorp

(1992), we do not optimize over a past period from an ex-post perspective, but we

backtest with historic data an investment policy that a Kelly investor could have

actually followed. We deal with the inherent uncertainty of parameter estimates

which characterizes real-world investment situations.

In their generalization of the Kelly criterion to normally distributed returns,

Rotando and Thorp (1992) assume returns to follow a normal distribution density

function on the interval [A,B] with A = µt−φσt as lower limit and B = µt +φσt as

upper limit. Rotando and Thorp use φ = 3, which specifies the width of the interval

in which realized returns can lie, and work with yearly excess return data and re-

balancing. We use various values for φ, but assume φ to remain constant over time.

The tails of the normal distribution have to be cut in order to obtain meaningful

results as a positive probability of infinite losses is not only unrealistic for stock
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market investments, but also incompatible with a growth optimal strategy. As A

converges to minus infinity, the growth optimal wager converges to zero (Rotando

and Thorp, 1992). The probability density function ψ(rt) of returns rt is defined as

ψ(rt) =

ht + 1√
2πα2

t

e−(rt−µt)2/2α2
t ∀A ≤ rt ≤ B

0 ∀rt < A ∨ rt > B
(4.7)

where ht and αt are required to preserve the desired properties of the probability

density function ψ(rt) in the presence of cut tails. The parameter ht is used to ensure

that the value of the integral under the probability density function ψ(rt) is equal

to one. The area that we cut in the tails is added back by means of ht. Cutting the

tails not only reduces the area under a normal distribution density function, but it

also reduces the observed standard deviation of the stochastic variable. In order to

maintain the desired standard deviation of returns σt, we employ αt with αt > σt

in equation 4.7. The value of αt which causes the observed standard deviation of

returns rt to be σt can only be obtained numerically. See the original paper by

Rotando and Thorp (1992) and the application presented in Winselmann (2018) for

further details on the derivation of ht and αt.

Rotando and Thorp (1992) have their growth optimal investor maximize excess

returns and we follow their approach. While they denote excess returns by a single

variable s, we instead use rt − rf,t for excess returns and thus our growth optimal

investor’s objective function in equation 4.8 looks slightly different but indeed is

equivalent.

G(ωt) =

∫ B

A

log (1 + ωt(rt − rf,t))ψ(rt)drt

=

∫ B

A

log (1 + ωt(rt − rf,t))

[
ht +

1√
2πα2

t

e−(rt−µt)2/2α2
t

]
drt.

(4.8)

The integration required to set G′(ωt) = 0 and to determine the growth optimal

weight in the risky asset is non-elementary and cannot be done explicitly (Rotando

and Thorp, 1992). We numerically optimize G(ωt) to obtain the value ωgot for which

G(ωt) has its maximum. We call ωgot the growth optimal weight in the risky asset,

where go is used as a superscript to refer to the growth optimal investor. At each

decision point, which is the beginning of each period t, we determine the growth

optimal weight in the risky asset ωgot given some estimates for µt and σt.
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4.3 Data and methodology

To evaluate and compare the performance of myopic mean-variance analysis and

growth optimal strategies in multi-period investing, we backtest both strategies

over an extensive period of stock market returns. We use monthly rebalancing and

parameter estimates obtained from 120 past months of stock market excess return

data as base case. To test the sensitivity of our results to model parameters, we

also present results for different period length and estimation period length as well

as for various values of mean-variance investor risk aversion γ and growth optimal

investor distribution width φ. Lastly, we explore fractional Kelly strategies.

Based on stock market excess return data from 1926 to 2015, we compute the

wealth paths which our mean-variance investor and our growth optimal investor

would have experienced. In order to obtain a wealth path, we proceed as follows.

First, we set the time-invariant parameters. These are the period length, which

determines the frequency of re-balancing, and the number of past periods from

which estimates for next period returns shall be obtained at each decision point.

In addition, we set the time-invariant investor specific parameters φ for the growth

optimal investor and γ for the mean-variance investor. Second, we compute the

estimates for the expected excess return and the volatility of next period returns.

Third, we calculate the weights in the risky asset that both investors chose given the

estimates for next period expected excess return and volatility. Fourth, we determine

investor portfolio returns given the chosen weight in the risky asset and the actual

return realization during that period. Steps two to four are repeated for each period.

Fifth, we obtain both investors’ wealth paths and compute performance measures

such as the Sharpe ratio for both investors.

In the remainder of this section we introduce the data set and present the method-

ology used to obtain estimates. In addition, we take an ex-post perspective and

discuss the retrospective quality of our estimates. We find the standardized real-

ized returns to be reasonably close to normally distributed around our estimated

mean returns, which supports our assumptions on the distribution of returns and

the methodology used to obtain parameter estimates.

4.3.1 Data

We require risk free rate and market return data over a long period. The broader the

aggregate market return proxy is, the better it represents a single risky asset. We

find the U.S. research returns data from Kenneth R. French’s data library (French,

2016) to be the most suitable to our needs. French’s monthly data provides the
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one-month U.S. Treasury bill rate as a proxy for the risk free rate and an aggregate

of several stock indexes as a proxy for the market excess return5. The market return

proxy used in French’s data is broader than in most other data sets and notably

broader than any single index which we could alternatively use.

French’s data set has monthly return data from mid 1926 to end 2015. Table 4.1

provides descriptive statistics of the data set. Over the entire time period covered

by the data set, an imaginary index that started at 1 in mid 1926 would have grown

to 4375 by the end of 2015 which is equivalent to an annualized growth of 9.8%.

This growth splits into a market excess return effect of factor 216 and a risk free

rate effect of factor 20 which represents an annualized growth of 6.2% and 3.4%,

respectively. Annual market returns are in the range of -65% to +154%. The one

year period with the most severe loss was July 1931 to June 1932 and the one year

period with the highest gains directly followed from July 1932 to June 1933.

We do not optimize retrospectively over the entire data set, but instead assume

an investor’s perspective at each decision point. We assume that at any point in

time t we only have knowledge of past market return and risk free rate data until t.

Based on this past data, we compute estimates for next period mean excess return

and variance which the investors use at the beginning of period t to determine their

asset allocation. At the end of period t, we compute the investor portfolio returns

from the weight of the risky asset chosen at the beginning of period t and the actual

market excess return of that period.

4.3.2 Parameter estimates

At each decision point the investors require estimates for next period returns to

decide their asset allocation. We assume return in period t to be normally distributed

with mean µt and variance σ2
t . We follow MacLean et al. (2006) in using moving

averages of past return data as estimates for next period mean return and variance.

Moving averages are calculated from τ past periods.

µ̂t =
1

τ

τ∑
i=1

rt−i

σ̂2
t =

1

τ − 1

τ∑
i=1

(rt−i − µ̂t)2

(4.9)

5French defines the excess return on the market as the “value-weight return of all CRSP firms
incorporated in the US and listed on the NYSE, AMEX, or NASDAQ that have a CRSP share
code of 10 or 11 at the beginning of month t, good shares and price data at the beginning of t, and
good return data for t minus the one-month Treasury bill rate (from Ibbotson Associates)” (French,
2016)
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Table 4.1: Descriptive statistics of U.S. research stock returns data set

Market Risk free1 Market excess2

Return factor mid 1926 to 20153 4375.1 20.2 216.2
Annualized return 9.8% 3.4% 6.2%
Max annual return 154.5% 15.2% 154.2%
Min annual return -65.0% -0.1% -66.3%
Max monthly return 37.8% 1.4% 37.9%
Min monthly return -29.1% -0.1% -29.1%
Volatility of annual return 25.2% 0.0% 25.4%
Volatility of monthly return 5.4% 0.3% 5.4%

1 Risk free rate determined as one month U.S. Treasury bill rate; 2 Excess return of market over
risk free rate; 3 Multiple that a one unit investment in 1926 would have returned end of 2015;
Note: The volatility of the risk free rate return refers to the volatility over time. The risk free rate
does not have any volatility within each period.

Next to the number of past periods τ from which the moving average estimates

are computed, the period length itself requires to be specified. We present results

for different period length. Let our base case be a period length of one month and

τ = 120. With monthly re-balancing and τ = 120, the moving average estimates µ̂t

and σ̂2
t are computed from the 120 monthly returns rt−120 to rt−1, meaning that the

first 10 years of our dataset starting mid 1926 are not available for backtesting as the

first month for which we have 120 past months of data available and for which we

can obtain estimates is July 1936. We can thus compute estimates for 954 months

in the period July 1936 to December 2015 and use this period for backtesting.

4.3.3 Quality of estimates

An important driver of the wealth accumulation and performance of both investors

is the accuracy of estimates. Errors in the estimate for the mean return are partic-

ularly damaging to wealth growth (Chopra and Ziemba, 1993). Estimation errors

in general are known to harm wealth growth significantly more than infrequent

portfolio rebalancing (Rogers, 2001).

The less accurate our estimates are, the more far off is the investment decision

from what the investors would have chosen if the estimates were accurate. For each

pair of mean µ̂t and variance σ̂2
t estimates we only have one realization, namely the

actual return rt of that period. We cannot meaningfully compare our estimates with

a single return realization, but we can assess the quality of our estimates over the

entire time horizon. We compute for each period the distance between the realized

return rt and the mean return estimate µ̂t measured in standard deviations σ̂t. Given
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Figure 4.1: Histogram of deltas between actual return and estimated mean return
with normal distribution graph

that we assume normally distributed returns, the normalized deviations should be

standard normally distributed. We should observe 5% of realized returns rt to be

further than ±2σ̂t from the respective estimated mean µ̂t and 68% of realized returns

rt should be within ±1σ̂t from the respective mean estimate µ̂t.

Figure 4.1 shows the distribution of 954 deviations of actual returns from esti-

mated mean returns measured in estimated standard deviations. Period length is

one month and 120 past months were used to obtain the estimates, which leaves us

with a backtesting period of 954 months or 79.5 years. This is what we above defined

as our base case. We observe slight negative skewness with 31% of returns being

above +0.5σ and while only 28% of returns are below −0.5σ. The highest positive

and negative deviations are at +3.9σ and −5.3σ, respectively. 95% of all deviations

are in the interval [−2σ,+2σ] and 74% of all deviations are in the interval [−1σ,+1σ]

around the mean. Visual inspection of quantile-normal and normal probability plots

support the proximity to normal. We thus conclude that the normal distribution is

a reasonably close approximation of the true distribution of returns in our data set

and that our assumption of normally distributed returns with estimated mean µ̂t

and standard deviation σ̂t is justified.

4.4 Results

We evaluate the performance of the myopic mean-variance investor and the growth

optimal investor by comparing their wealth paths, their final wealth levels, and

their Sharpe ratios. The Sharpe ratio measures the reward-to-variability ratio in

the investor wealth path. The use of Sharpe ratios to assess investor performance
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in the context of growth optimal strategies is in line with previous literature and

particularly multiple publications by Ziemba (Ziemba, 2005; Geyer and Ziemba,

2008; Gergaud and Ziemba, 2012).

We consider an investor bankrupt if his net wealth is below zero at any rebalancing

point. In such cases the investor cannot continue to invest and we consider the

negative wealth of that period as the final wealth of the investor.

We find the growth optimal investor to achieve higher final wealth levels than the

mean-variance investor. This result stands independent of the period length, the

number of periods used to obtain estimates, and the value of mean-variance investor

risk aversion γ. Our results hold for a wide range of values for φ, which for the

growth optimal investor specifies the width of the interval on which realized returns

can lie. Those values of φ for which our results do not hold can be regarded as gross

misspecification of the growth optimal investor model. We find that the growth

optimal investor not only achieves higher final wealth outcomes, but also achieves

higher Sharpe ratios than the mean-variance investor.

4.4.1 Investor wealth paths

In this section we present the wealth paths of two mean-variance investors and two

growth optimal investors. We use monthly rebalancing and return data for the time

span from mid 1926 to end 2015. Estimates for next period mean return and stan-

dard deviation are obtained from 120 months of past data, meaning that investor

wealth paths start in mid 1936. The investors we present are first the mean-variance

investor with the value of risk aversion γ which yields the highest final wealth of any

mean-variance investor and second the growth optimal investor with the value of

return distribution width φ which yields the highest final wealth of any growth op-

timal investor. Third and fourth we present a mean-variance investor and a growth

optimal investor where γ and φ are chosen such that final wealth outcomes are equal.

For these four investors we discuss the Sharpe ratios and other performance mea-

sures. Figure 4.2 shows the wealth paths of these four investors. Table 4.3 presents

performance measures. Our results show that the growth optimal investor performs

better than the mean-variance investor by virtually all performance measures.

Figure 4.2a shows the wealth path of a growth optimal investor with φ = 7.1

and a final wealth of $188, 604 at the end of 2015 for each $1 invested in mid 1936.

The growth optimal investor with φ = 7.1 achieves the highest final wealth of any

growth optimal investor. Figure 4.2b shows the wealth path of a mean-variance

investor with γ = 1.7 and a final wealth of $60, 880 for each $1 invested in mid 1936,
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(a) Growth optimal investor with φ = 7.1 (b) Mean-variance investor with γ = 1.7

(c) Growth optimal investor with φ = 11.1 (d) Mean-variance investor with γ = 2.1

Figure 4.2: Wealth paths of selected investors starting at 1 in mid 1936
with monthly rebalancing and estimation period length of 120 months

which is the highest final wealth of any mean-variance investor. This final wealth is

less than one third of what the growth optimal investor with φ = 7.1 achieves.

Figures 4.2c and 4.2d show the wealth paths of a growth optimal investor and

a mean-variance investor which both achieve a comparable level of final wealth of

$40, 000 for each $1 invested in mid 1936. The growth optimal investor yields this

final wealth level when we set φ = 11.1 and the mean-variance investor yields this

final wealth level when we set γ = 2.1.

The wealth paths in figure 4.2, especially in 4.2c and 4.2d, show that the return

generation of the growth optimal investor is more distributed over the entire time

span from mid 1936 to end 2015, while the mean-variance investor return generation

predominantly occurs in the first half of the time span and particularly from 1950

to 1970. Statistical significance testing confirms this visual finding. The difference

between the first half of period returns versus the second half of period returns is

statistically significant at the 5% level for the mean-variance investor while it is

not statistically significant for the growth optimal investor. The difference between

monthly returns from 1950 to 1970 and all monthly returns before and after that
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Table 4.2: Differences in returns over time and statistical significance

Growth optimal investor φ = 11.1 Mean-variance investor γ = 2.1

Average excess t-test for Average excess t-test for
return p.a. difference return p.a. difference

First half of sample1 15.5%
0.69

21.9%
2.06**

Second half of sample2 11.4% 7.8%

1950 to 19703 23.6%
1.77*

36.3%
2.77***

All other months4 9.8% 7.1%

Notes: Monthly rebalancing, period length 1 month, and estimation period length 120 months
***p < 0.01, **p < 0.05, *p < 0.1
1 07/1936 to 03/1976, the first 477 months; 2 04/1976 to 12/2015, the second 477 months;
3 01/1950 to 12/1970, 252 months; 4 07/1936 to 12/1949 and 01/1971 to 12/2015, 702 months

period is statistically significant for both investors, but only at a higher level for

the growth optimal investor. Table 4.2 shows detailed results. An investigation of

the data shows that between 1950 and 1970 our moving average estimates for stock

market excess returns µ̂t are high while those for volatility σ̂2
t are relatively low.

During this time, both investors weigh the risky asset high in their portfolio, but

the mean-variance investor even more so. It plays to the advantage of the mean-

variance investor that between 1950 and 1960 the average stock market excess return

is particularly high while volatility is rather low, resulting in a steep upward sloping

wealth path. After 1960 stock market volatility increases, while our moving average

estimates µ̂t and σ̂2
t still indicate high returns and relatively low volatility. Given the

high weight in the risky asset that the mean-variance investor chooses, his wealth

path exhibits high volatility from 1960 to 1970. Winselmann (2018) presents a

study on the effects of higher than growth optimal risk taking. Given the harm that

excessive risk taking can cause to investor wealth paths, we attribute the high return

generation of the mean-variance investor between 1950 and 1970 to a combination

of firstly favorable estimates for return distribution parameters that cause his high

risk taking and secondly even more favorable actual market developments during

that time.

The most commonly used performance measures in literature on growth optimal

strategies are the Sharpe ratio and the downside Sharpe ratio (Ziemba, 2005; Geyer

and Ziemba, 2008; Gergaud and Ziemba, 2012). We agree and believe that Sharpe

Ratio and downside Sharpe Ratio are the most appropriate performance measures.

While the downside Sharpe ratio, closely related to the Sortino ratio, seems more

appropriate as it does not penalize positive spikes in returns, its lower dispersion

in literature and its empirically high correlation with the standard Sharpe ratio

(Ziemba, 2005) lets us give preference to the primary use of the standard Sharpe
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Table 4.3: Arithmetic and geometric performance measures
for selected growth optimal and mean-variance investors

Growth optimal Mean-variance

φ = 7.1 φ = 11.1 γ = 1.7 γ = 2.1

Final wealth1 188,604 39,989 60,880 39,934

Arithmetic mean excess return p.a.2 20.4% 13.6% 18.3% 14.8%
Arithmetic standard deviation 39.5% 26.8% 37.8% 30.6%
Sharpe ratio 0.517 0.506 0.484 0.484
Downside Sharpe ratio 0.540 0.528 0.509 0.509
Sortino ratio 0.764 0.746 0.719 0.719
Upside potential ratio 0.633 0.643 0.577 0.577
Calmar ratio3 0.277 0.289 0.242 0.242
Omega 1.536 1.505 1.562 1.562

Geometric mean excess return p.a.4 12.4% 10.3% 10.8% 10.3%
Geometric standard deviation 54.1% 31.9% 51.9% 38.5%
Sharpe ratio 0.229 0.322 0.208 0.267
Downside Sharpe ratio 0.202 0.306 0.181 0.243
Sortino ratio 0.308 0.453 0.276 0.363
Upside potential ratio 0.424 0.520 0.374 0.421
Calmar ratio3 0.169 0.219 0.143 0.167
Omega 1.466 1.477 1.443 1.474

Notes: Monthly rebalancing, period length 1 month, and estimation period length 120 months;
1 Final wealth includes the growth effect of the risk free rate which excess returns exclude;
2 Annualized mean excess return over risk free rate; 3 Calculated as annualized mean return
divided by maximum monthly drawdown; 4 Annualized geometric mean excess return over
risk free rate

ratio. In addition, the standard Sharpe ratio can be considered more appropriate in

a mean-variance context where also upside variance is perceived as risk. Consistent

with Ziemba (2005), we find the Sharpe ratio and the downside Sharpe ratio to yield

the same conclusions and similar absolute values, indicating that indeed downside

volatility and upside volatility in the investor wealth paths are highly correlated.

Table 4.3 presents performance measures computed from arithmetic and geometric

mean and standard deviation. Benchmark return is, where applicable, the risk free

rate. For the arithmetic case, we find that both presented growth optimal investors

outperform the mean-variance investors with regard to the Sharpe ratio and the

downside Sharpe ratio. The growth optimal investors also outperform the mean-

variance investors with regard to the Sortino ratio, the upside potential ratio, and

the Calmar ratio. The mean-variance investors only outperform when Omega is

used to assess performance. The mean-variance investors with γ = 1.7 and γ = 2.1
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achieve identical values for all performance measures. The reason for this equality

is that according to equation 4.5 the risk taking is inversely proportional to the

risk aversion parameter γ. With a change in γ we scale the mean-variance investor

weight in the risky asset and thus the excess returns of every period with the same

factor and consequently observe most performance measures to remain constant.

For the geometric case, we find investment policies which lead to lower final wealth

levels to be favored by the performance measures. The φ = 7.1 growth optimal

investor outperforms the γ = 1.7 mean-variance investor with regard to all perfor-

mance measures and the φ = 11.1 growth optimal investor outperforms the γ = 2.1

mean-variance investor with regard to all performance measures. While geometric

return performance measures tend to favor investment policies that lead to lower fi-

nal wealth levels, they also favor the growth optimal investor over the mean-variance

investor for comparable final wealth levels.

As a robustness check, table 4.A.1 to table 4.A.4 in the appendix break down the

entire time span into five sub-periods of equal length. Table 4.A.1 and table 4.A.2

present the same arithmetic performance measures as table 4.3, but for sub-periods

of 16 years each. Table 4.A.3 and table 4.A.4 contain the respective geometric per-

formance measures. The results support our findings. Both depicted growth optimal

investors achieve consistently superior performance in three out of five sub-periods

while in the first sub-period we see a mixed picture and in the third sub-period,

in which all investors experience losses, the mean-variance investors achieve mostly

better performance measures. In no sub-period we observe both mean-variance in-

vestors to outperform both growth optimal investors by all performance measures.

For those performance measures and periods where the mean-variance investors are

better, we observe smaller differences than where the growth optimal investors are

better.

4.4.2 Robustness to variations in φ and γ

In this section we analyze the effect of changes in mean-variance investor risk aversion

parameter γ and growth optimal investor return distribution width parameter φ.

As before, we assume monthly rebalancing and compute estimates for next period

returns based on 120 past months. Figure 4.3 shows the final wealth outcomes on

the primary axis and the corresponding Sharpe ratios computed from the variance

in the underlying wealth path on the secondary axis. Final wealth outcomes refer

to the wealth level achieved in December 2015 from investing 1 unit in July 1936.

Results for the mean-variance investor are depicted in figure 4.3a. Table 4.4

provides further details. The mean-variance investor achieves a maximum final
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wealth of 60, 880, which corresponds to a geometric mean annual excess growth rate

of 10.8%. The mean-variance investor does not survive for risk aversion γ < 1.3 but

encounters bankruptcy. We define bankruptcy as a negative investor wealth at any

rebalancing point. With values of risk aversion 1.3 ≤ γ < 1.7 we observe the mean-

variance investor to achieve lower final wealth as compared to the less risk averse

γ = 1.7 investor. A detailed study on the reduced wealth accumulation caused by

excessive risk taking is provided in Winselmann (2018). For γ > 1.7 the final wealth

decreases and the geometric Sharpe ratios increase. As discussed in section 4.4.1, we

find the arithmetic Sharpe ratios of our mean-variance investors to be independent

of variations in the risk aversion parameter γ. The Sharpe ratio achieved by the

non-bankrupt mean-variance investors with γ ≥ 1.3 is 0.484.

(a) Mean-variance investor with
different risk aversion γ

(b) Growth optimal investor with
different values of φ

Figure 4.3: Final wealth levels and Sharpe ratios for different values of φ and γ
with monthly rebalancing and 120 months estimation period

Figure 4.3b shows results for the growth optimal investor. The highest final wealth

is achieved with φ = 7.1 at 188, 604. Values of φ < 5 cause the growth optimal

investor to experience bankruptcy. Such low values constitute a misspecification

of the actual return distribution as return realizations to the left of −5σ̂t from µ̂t

do occur. Values of 5 ≤ φ < 7.1 result in lower final wealth and lower Sharpe

ratios. Values of φ > 7.1 result in lower final wealth, but higher geometric Sharpe

ratios. From a reward-to-variability ratio perspective, the lower geometric mean

excess returns are thus overcompensated by a decrease in the geometric standard

deviation of returns. The maximum arithmetic Sharpe ratio of 0.517 is achieved for

φ = 7.6. With regard to the arithmetic Sharpe ratios, the decease in arithmetic

standard deviation is insufficient to compensate for the decrease in arithmetic mean

returns for 7.6 < φ. Although being less intuitive than its arithmetic counterpart,
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Table 4.4: Final wealth levels and corresponding Sharpe ratios
of various growth optimal and mean-variance investors

Growth optimal investor Mean-variance investor

Final wealth1 Value of φ Sharpe ratio2 Geometric SR3 Value of γ Sharpe ratio2 Geometric SR3

200, 000 NA4 NA NA NA4 NA NA
188, 604 7.1 0.517 0.229 NA NA NA
150, 000 8.2 0.516 0.267 NA NA NA
100, 000 9.2 0.514 0.293 NA NA NA
60, 880 10.2 0.509 0.310 1.7 0.484 0.208
50, 000 10.6 0.508 0.316 1.9 0.484 0.241
25, 000 12.1 0.501 0.333 2.4 0.484 0.296
10, 000 14.3 0.492 0.349 3.0 0.484 0.335
5, 000 16.5 0.484 0.360 3.5 0.484 0.358
2, 500 19.1 0.477 0.370 4.1 0.484 0.377

Notes: Monthly rebalancing, period length 1 month and estimation period length 120 months; 1 Assuming initial investment
of 1 unit in July 1936; 2 Annualized Sharpe ratio; 3 Annualized geometric Sharpe ratio calculated from annulaized mean
geometric return and annualized geometric standard deviation; 4 Wealth level not achieved for any value of φ or γ

the geometric Sharpe ratio better depicts the trade-off between risk and volatility in

long-term multi-period investment situations. In multi-period problems, arithmetic

mean returns are biased upwards and geometric mean returns are more adequate to

measure performance (Ziemba, 2005).

Table 4.4 compares final wealth outcomes of growth optimal investors and mean-

variance investors in the range of 2, 500 to 200, 000. If the same level of wealth can

be achieved with two different values of γ or φ (left and right of the maximum wealth

in figure 4.3), the higher value is shown in table 4.4 as the lower value constitutes an

inefficient reward-to-variability trade-off. 200, 000 is not achieved by any investor.

Final wealth above 60, 880 is only achieved by growth optimal investors. Table 4.4

shows that the growth optimal investor achieves wealth levels between 5, 000 and

60, 880 with better Sharpe ratios than the mean-variance investor. Especially with

regard to the geometric Sharpe ratio the growth optimal investor outperforms the

mean-variance investor by a substantial margin for high levels of final wealth. For a

final wealth of 50, 000 the respective ratios are 0.316 and 0.241. For a final wealth

of 5, 000 both investors have the same arithmetic Sharpe ratio while the growth

optimal investor still has a slightly better geometric Sharpe ratio. In between 2, 500

and 5, 000 this changes and the mean-variance investor also achieves better geometric

Sharpe ratios. Note that this effect takes place for values of φ > 16.5 and one can

discuss how sensible the use of such values is. In section 4.3.3 we have outlined that

the worst negative deviation from our moving average return estimates has been a

−5.25σ̂t deviation from µ̂t, which was a −23.2% monthly return in October 1987

when Black Monday occurred. It is not a sensible approach to increase the tail length

of the distribution in order to decrease risk taking of the growth optimal investor.
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Rather, distribution assumptions should be made to best accommodate the actual

return distribution and fractional Kelly strategies should be used to accommodate

lower investor risk affinity. In section 4.4.5 we discuss fractional Kelly strategies and

compare them to mean-variance investors with higher risk aversion. In this section

we conclude that our results are fairly robust to variations in φ and γ, unless φ is

increased to heights which we suggest to consider a misspecification of the underlying

return distribution.

4.4.3 Robustness to variations in period length

In order to assess the impact of variations in period length we provide results for bi-

monthly and trimonthly rebalancing in this section. We keep the estimation period

length at 120 months, meaning that mean return and standard deviation estimates

are for bimonthly re-balancing obtained from 60 past two-month periods and for

trimonthly re-balancing they are obtained from 40 past three-month periods. We

observe the same results as in section 4.4.1 and section 4.4.2 above. The growth op-

timal investor achieves higher final wealth outcomes and better reward-to-variability

ratios for high final wealth levels. Tables 4.5 and 4.6 provide a comparison of reward-

to-variability ratios for equal final wealth levels. Figure 4.A.1 in the appendix visu-

alizes the results.

For bimonthly rebalancing, the growth optimal investor achieves a maximum final

wealth that is more than six times higher than that of the mean-variance investor.

Table 4.5 presents the Sharpe ratios and geometric Sharpe ratios for final wealth

levels between 500 and 75, 000 per 1 unit invested in July 1936. The growth optimal

investor achieves higher reward-to-variability ratios for the entire range of values of

final wealth. As we increase values of φ and γ, we observe the margin to narrow and

eventually we would find the mean-variance investor to achieve higher reward-to-

variability ratios, but as argued above in section 4.4.2 such high values of φ can be

considered a misspecification of the underlying return distribution. The appropriate

comparison for mean-variance investors with higher levels of risk aversion are the

fractional Kelly strategies we investigate in section 4.4.5 below. Figure 4.A.1a and

figure 4.A.1b in the appendix depict the results from table 4.5 graphically.

For trimonthly rebalancing we observe a similar picture, but with generally lower

final wealth outcomes and reward-to-variability ratios. The growth optimal investor

achieves a maximum final wealth that is 4.5 times higher than that of the mean-

variance investor. Table 4.6 presents the Sharpe ratios and geometric Sharpe ratios

for final wealth levels between 500 and 30, 000 per 1 unit invested in July 1936.

Figure 4.A.1c and 4.A.1d in the appendix depict the results from table 4.6 graph-
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Table 4.5: Final wealth levels and corresponding Sharpe ratios
of growth optimal and mean-variance investors with bimonthly

re-balancing and estimates from past 120 months’ returns

Growth optimal investor Mean-variance investor

Final Wealth1 Value of φ Sharpe ratio2 Geometric SR3 Value of γ Sharpe ratio2 Geometric SR3

75, 000 NA4 NA NA NA4 NA NA
66, 945 6.0 0.496 0.228 NA NA NA
50.000 6.7 0.492 0.256 NA NA NA
25, 000 7.8 0.482 0.283 NA NA NA
10, 246 9.3 0.471 0.305 2.2 0.444 0.201
5, 000 10.8 0.461 0.316 3.0 0.444 0.279
2, 500 12.8 0.457 0.335 3.7 0.444 0.314
1, 000 16.4 0.452 0.358 4.8 0.444 0.346

500 20.3 0.447 0.372 6.0 0.444 0.367

Notes: Bimonthly rebalancing, period length 2 months and estimation period length 120 months; 1 For an initial investment
of 1 unit in July 1936; 2 Annualized Sharpe ratio; 3 Annualized geometric Sharpe ratio calculated from annualized mean
geometric return and annualized geometric standard deviation; 4 Wealth level not achieved for any value of φ or γ

Table 4.6: Final wealth levels and corresponding Sharpe ratios
of growth optimal and mean-variance investors with trimonthly

re-balancing and estimates from past 120 months’ returns

Growth optimal investor Mean-variance investor

Final Wealth1 Value of φ Sharpe ratio2 Geometric SR3 Value of γ Sharpe ratio2 Geometric SR3

30, 000 NA4 NA NA NA4 NA NA
25, 137 5.4 0.461 0.207 NA NA NA
10, 000 7.5 0.456 0.283 NA NA NA
5, 493 8.6 0.450 0.301 2.3 0.415 0.179
5, 000 8.8 0.449 0.304 2.6 0.415 0.216
2, 500 10.4 0.444 0.322 3.4 0.415 0.271
1, 000 13.1 0.433 0.337 4.6 0.415 0.313

500 16.0 0.422 0.344 5.8 0.415 0.336

Notes: Trimonthly rebalancing, period length 3 months and estimation period length 120 months; 1 For an initial investment
of 1 unit in July 1936; 2 Annualized Sharpe ratio; 3 Annualized geometric Sharpe ratio calculated from annualized mean
geometric return and annualized geometric standard deviation; 4 Wealth level not achieved for any value of φ or γ

ically. For trimonthly rebalancing we find similar results as before for bimonthly

rebalancing. The growth optimal investor achieves higher reward-to-variability ra-

tios for the entire range of final wealth values. Again, the discussion presented above

about higher values of φ and γ holds true. Consequently, we conclude that our re-

sults are fairly robust to variations in period length and do not depend on monthly

re-balancing.

4.4.4 Robustness to variations in estimation period length

We provide this analysis for completeness. We already discussed the quality of our

estimates for monthly returns and an estimation period length of 120 months in sec-
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tion 4.3.3 above, where we found realized returns to be reasonably close to normally

distributed around our estimated mean return µ̂t and our estimated variance σ̂2
t .

This supports the validity of our estimates for next period returns generated from

120 past months of return data. In this section we vary the length of the estimation

period. The results should be treated with care and an analysis of the obtained

estimates similar to that provided for the case of 120 past months in section 4.3.3

is advisable, but is not provided here due to space limitations and the fact that we

have already made our case for 120 months of past data.

Table 4.7: Final wealth and Sharpe ratios of growth optimal and mean-variance
investor for monthly re-balancing and various estimation period lengths

Growth optimal investor φ = 11.1 Mean-variance investor γ = 2.1

Estimation period1 Final wealth2 Sharpe ratio3 Geometric SR4 Final wealth2 Sharpe ratio3 Geometric SR4

90 months 53,453 0.505 0.317 8,217 0.432 0.148
100 months 136,298 0.556 0.371 21,512 0.447 0.220
110 months 88,271 0.539 0.355 55,914 0.487 0.272
120 months 39,989 0.506 0.321 39,934 0.484 0.266
130 months 24,458 0.488 0.307 37,742 0.485 0.287
140 months 11,414 0.455 0.276 15,030 0.448 0.253
150 months 12.778 0.465 0.283 9,719 0.434 0.238

Notes: Monthly rebalancing and period length 1 month; 1 Number of previous months used to obtain estimates for mean and variance of
next period returns; 2 For an initial investment of 1 unit; 3 Annualized Sharpe ratio; 4 Annualized geometric Sharpe ratio calculated
from annualized mean geometric return and annualized geometric standard deviation

We find our results for investor performance to be fairly robust to modifications

of the estimation period length. Table 4.7 shows final wealth outcomes and Sharpe

ratios of two investors with varying estimation period lengths between 90 months

and 150 months. As in section 4.4.1 above, the investors shown here are again the

growth optimal investor with φ = 11.1 and the mean-variance investor with γ = 2.1.

These investors were selected in section 4.4.1 in order to obtain comparable final

wealth outcomes for monthly rebalancing and 120 months estimation period. While

we find consistently better Sharpe Ratios for the growth optimal investor, it is not

surprising that variation in the estimation period length produce a mixed picture for

final wealth outcomes. For an estimation period length of 130 months for example,

the mean-variance investor achieves higher final wealth, albeit with respect to the

Sharpe ratios the growth optimal investor with φ = 11.1 still performs better. The

occasional lead in final wealth that we observe here for the mean-variance investor

is mainly caused by the deliberately low risk taking of the growth optimal investor

with φ = 11.1, which was chosen in section 4.4.1 in order to obtain equal final wealth

outcomes. If we use a growth optimal investor with φ = 9.0 here, we obtain a final

wealth of 61, 845 and an arithmetic Sharpe ratio of 0.496 which clearly outperforms

the mean-variance investor in both dimensions again.
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4.4.5 Fractional Kelly strategies

In our robustness tests above we have varied the parameter φ and obtained different

levels of final wealth for the growth optimal investor, but we should keep in mind

that the purpose of φ is to correctly specify the width of the distribution of returns

expressed in equation 4.7 in section 4.2.2. In contrast to the mean-variance investor

risk aversion parameter γ, φ is not meant to account for investor risk preferences.

While it is important to investigate robustness to changes in φ, it would be a mistake

to vary φ in order to reflect investor risk affinity as this indeed is tampering with

the return distribution assumptions.

High values of φ do not only reduce growth optimal investor risk taking in general,

but in fact they practically also impose a risk taking cap which can be imagined as

follows. For simplicity, assume µ̂t = 1% and σ̂t = 10.1%. If we now set φ = 10,

this effectively constrains the growth optimal investor’s weight in the risky asset

ωgot < 1 as with any higher ωgot ruin would have a positive probability. With φ = 10,

a maximum realized return deviation of ten standard deviations from the mean is

permissible, meaning that the minimum possible return realization is µ̂t−φσ̂t which

in this example is 1% − 10 ∗ 10.1% = −100%. With a positive probability of a

total loss, the growth optimal weight in the risky asset is constrained to ωgot < 1

since it is one of the core properties of growth optimal strategies to never risk ruin

(Hakansson, 1971b). Also, in a stock market application it is unrealistic to attach

positive probabilities to asset returns of −100% and worse.

While φ should be chosen to accurately reflect the distribution of returns, the ap-

propriate means to reduce risk taking rather is to employ fractional Kelly strategies.

Fractional Kelly strategies refer to investing a fixed fraction of the growth optimal

wager. While the growth optimal investment strategy—in the context of fractional

Kelly strategies frequently referred to as full Kelly—is optimal in the sense of being

utility maximizing for the log utility investor, this is not the case for fractional Kelly

strategies. Fractional Kelly strategies are optimal for negative power utility when

assets are lognormal (Ziemba, 2015), but they are not fully optimal for any expected

utility function in a discrete time settings with normally distributed assets. In such

settings, fractional Kelly strategies constitute an approximation and MacLean et al.

(1992) argue that fractional Kelly strategies do indeed provide an effective trade-off

between growth and security, although not being theoretically optimal.

Table 4.8 presents results for the same levels of wealth as table 4.4 in section 4.4.2

above, but instead of growth optimal investors with varying values of φ we here

use φ = 7.1 and generate the lower final wealth outcomes by means of fractional

Kelly strategies. We find fractional Kelly strategies to yield constant arithmetic
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Table 4.8: Final wealth levels and corresponding Sharpe ratios of mean-variance
investors with varying risk aversion and fractional Kelly strategies

Fractional Kelly investor with φ = 7.1 Mean-variance investor

Final Wealth1 Kelly fraction Sharpe ratio2 Geometric SR3 Value of γ Sharpe ratio2 Geometric SR3

200, 000 NA4 NA NA NA4 NA NA
188, 604 1.00 0.517 0.229 NA NA NA
150, 000 0.89 0.517 0.264 NA NA NA
125, 000 0.84 0.517 0.280 NA NA NA
100, 000 0.90 0.517 0.292 NA NA NA
60, 880 0.71 0.517 0.319 1.7 0.484 0.208
50.000 0.68 0.517 0.328 1.9 0.484 0.241
25, 000 0.59 0.517 0.354 2.4 0.484 0.296
10, 000 0.49 0.517 0.383 3.0 0.484 0.335
5, 000 0.42 0.517 0.360 3.5 0.484 0.358
2, 500 0.36 0.517 0.419 4.1 0.484 0.377

Notes: Monthly rebalancing, period length 1 month and estimation period length 120 months; 1 Assuming initial investment of 1
unit in July 1936; 2 Annualized Sharpe ratio; 3 Annualized geometric Sharpe ratio calculated from annualized mean geometric
return and annualized geometric standard deviation; 4 Wealth level not achieved for any value of φ or γ

Sharpe ratios just as mean-variance investors with different degrees of risk aversion.

In the same way as the mean-variance investor risk aversion parameter, the Kelly

fraction scales the weight in the risky asset of the growth optimal investor by a

constant fraction. This causes mean excess return and standard deviation to have a

constant ratio. We find the fractional Kelly investor to be constantly ahead of the

mean-variance investor with regard to arithmetic Sharpe ratios. With regard to the

geometric Sharpe ratio, we also observe the fractional Kelly investor to achieve better

results than the mean-variance investor. In contrast to the results presented in table

4.4 in section 4.4.2 above, the fractional Kelly investor’s geometric Sharpe ratios stay

well ahead of those of the mean-variance investor also for lower levels of final wealth.

Indeed, for lower levels of final wealth fractional Kelly strategies achieve higher

geometric Sharpe ratios than any previously presented investor. Fractional Kelly is

not only with regard to our model a more appropriate approach to reduce risk taking,

but it also produces superior performance measures as compared to increasing φ.

These results are in line with MacLean et al. (1992) who found fractional Kelly

strategies to provide an effective growth versus security trade-off.

4.5 Conclusion

We investigate a two-assets multi-period capital growth problem in discrete time.

The risky asset is represented by the stock market and the return distribution is

estimated from past data. We address two issues. First, we explore the performance

of a growth optimal investor and a myopic mean-variance investor in a sequence

of real world investment situations. Second, we contrast the performance of both
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investors and provide evidence on the deficiencies of the myopic assumption that is

frequently used in mean-variance optimization. We present final wealth outcomes,

wealth paths and performance measures for both investors for 80 years of stock

market investing and find the growth optimal investor to achieve higher performance

measures for a broad set of parameters. Further, we find fractional Kelly strategies

to provide an effective growth versus security trade-off. Model parameters are mean-

variance investor risk aversion, width of the return distribution, period length, and

number of past periods used to obtain estimates for the distribution of next period

returns.

Our results illustrate the deficiencies of the myopic assumption in multi-period

mean-variance analysis. Not only does the growth optimal investor accumulate

more wealth, which was to be expected given the theory behind it, but he also

achieves superior performance measures despite the high volatility in the wealth

path which growth optimal strategies are known for. Our results illustrate that the

suboptimality of the myopic approach to mean-variance optimization should not be

considered a mere theoretical issue, but it indeed matters substantially to investors

when multi-period capital growth is desired.
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4.A Appendix

(a) Mean-variance investor, bimonthly
re-balancing and different risk aversion γ

(b) Growth optimal investor, bimonthly
re-balancing and different values of φ

(c) Mean-variance investor, trimonthly
re-balancing and different risk aversion γ

(d) Growth optimal investor, trimonthly
re-balancing and different values of φ

Figure 4.A.1: Final wealth levels and Sharpe ratios for different values of φ and γ
with 120 months estimation period and bi- or trimonthly re-balancing
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5 Conclusion

In this dissertation we investigate the performance of growth optimal strategies and

myopic mean-variance investing in multi-period investment problems. We present a

stock market applications and employ both, simulations and real-world time series

data. In our simulations we use return distributions which approximately corre-

spond to those observed in stock markets. With this dissertation we contribute to

research first by providing insights on the performance of growth optimal strategies

in real-world investment situations and second by providing insights on the extent

to which the myopic assumption harms wealth accumulation and performance of

mean-variance investors in multi-period investment problems.

Following a brief introduction in chapter 1, we introduce the reader to growth

optimal strategies in chapter 2 and outline their foundations as well as their utility

theory basis. Second, we systematically review past and current literature on the

academic dispute over the merits and demerits of growth optimal strategies. When

portfolio theory was not yet widely accepted, growth optimal strategies and the Kelly

criterion have briefly been considered a premier model of financial markets and a

viable alternative to portfolio theory. Growth optimal strategies were subsequently

deemed inadequate as an asset pricing model, but various examples of successful

investment applications of growth optimal strategies exist. Chapter 2 concludes

with presenting an encompassing review and summary of these applications.

In chapter 3, we present a simulation-based study on investor performance in a

multi-period investment problem. The setting we employ is a two asset case where

at each decision point investors decide the fraction of wealth to invest into a risky

asset versus a risk free asset. We model a growth optimal investor and a myopic

mean-variance investor for which we discuss the respective choice of weight in the

risky asset, the final wealth outcomes and multiple performance measures. Given

the complexity of true multi-period formulations of mean-variance optimization,

mean-variance optimizers are frequently modeled as myopic in multi-period problems

(Basak and Chabakauri, 2010). We investigate the effect of constraining myopic

mean-variance optimizers with quadratic preferences to not exceed growth optimal

risk taking. We find that this constraint in discrete time multi-period asset allocation

problems increases performance and prevents investor bankruptcy.
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In chapter 4, we compare the performance of a growth optimal investor and a

myopic mean-variance investor for 80 years of stock market investing. We present the

wealth paths of these investors had they both invested from 1926 to 2015 according

to their respective preferences in two assets, a stock market aggregate and a risk free

asset. We present fractional Kelly strategies to compare the results of the myopic

mean-variance investor to this derivative of the growth optimal investor. Our results

indicate that the growth optimal investor and fractional Kelly investors outperform

the myopic mean-variance investor by various performance measures.

The insights presented in this dissertation highlight the applicability of growth

optimal investing and fractional Kelly strategies to real-world investment situations.

Not only can a well calibrated growth optimal model achieve high returns, but it

can also achieve high performance measures.

Our comparison with myopic mean-variance investing—in a setting which violates

the conditions outlined by Mossin (1968) and applied by Samuelson (1969) and

Merton (1969, 1971)—highlights the deficiencies of the myopic approach in multi-

period problems. While the myopic assumption is desirable to reduce the complexity

of the underlying problem, it can cause substantial damage to wealth accumulation

and performance if the underlying problem is not solved optimally with myopia.

Substantial research effort has been devoted to multi-period mean-variance prob-

lems in discrete time and the analytic formulation of the mean-variance efficient

frontier for multi-period problems by Li and Ng (2000) in particular has advanced

our knowledge and inspired further research. But despite the work of Li and Ng and

other researchers that followed, the myopic assumption is still used in both literature

and practice. The arguments for its use range from ease of application to estimation

errors entailed by more complex models as well as the incompatibility of theoreti-

cally optimal models with real world constraints. Further research is needed to shed

more light on the deficiencies of the myopic assumption in real world investment

situations as well as on the limitations of other restrictive assumptions with regards

to utility functions and return distributions that more complex models bring about

and let them deviate from real world situations. Additionally, future research could

further explore the performance of growth optimal strategies in a broader range of

investment situations. Both, an extension of our results to multiple risky assets or

risky assets other than the stock market can be made. Advancements in this field

would provide investors with valuable knowledge about the deficiencies of practical

or realizable investment policies versus theoretically optimal investment policies.
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