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1. Introduction 

The diffusion of innovations has been an important field of research for decades, because 

product and process innovations are major sources for creative destruction (Banbury & Mitchell, 

1995). In the last couple of years, widely-accepted explanatory frameworks—namely Epidemic and 

Probit diffusion models (Geroski, 2000)—were extended in the direction of induced diffusion. 

Induced diffusion of innovations tackles aspects how e.g. regulators intervene into the diffusion 

procedure in order to artificially boost adoption-speed and adoption-level (Diaz-Rainey, 2009). 

Concern in this research area developed due to recent inducements of ‘Green’ innovations: Climate 

protection initiatives and CO2 abatement goals require fast and widespread diffusion of e.g. 

organic fuel E10, photovoltaic, electric vehicles, and combined heat and power. ‘Green’ 

innovations are typically disruptive and may cause competitive advantages for economies 

(Christensen, 2000; Christensen, Suárez, & Utterback, 1998). But design of effective and efficient 

inducements is difficult. Wrong decision making may cause non-adoption and/or uncontrollable 

costs. 

One important ‘Green’ innovation is Smart Metering. Smart Meters allow frequent measurement 

processes within energy supply infrastructure enabled by Information- and Communication-

Technology. E.g. in terms of electricity, Smart Meters will replace conventional Ferraris meters. 

Other applications are gas and water supply. Smart Metering is a major prerequisite to evolve the 

conventional energy grids into sustainable Smart Grids (Brophy Haney, Jamasb, & Pollitt, 2009; 

Kester, Burgos, & Parsons, 2009). These grids enable load-dependent feed-ins of decentralized 

energy sources like photovoltaic and plug-in (hybrid) electric vehicle batteries as well as large-

scale power plants like offshore wind-farms and Desertec (World Economic Forum, 2009). 

Diffusion strategies for Smart Metering differ geographically and depend on environmental, 

technological, regulatory, and cultural drivers. Adoption results range from almost zero (e.g. 

Germany) to nationwide deployments (e.g. Italy). A variety of countries induce the diffusion 

through monetary grants, informational interventions, and state-aided large-scale pilot projects, e.g. 

the United States, Australia, and China. Other countries liberalized the metering market in order to 

promote competition and consumer demand for Smart Metering tariffs. Especially Germany, the 

Netherlands, and Great Britain try to induce adoption through liberalization. These three countries 

are comparable regarding their liberalized energy markets (Pollitt, 2009) and face similar obstacles 

in the inducement of Smart Metering diffusion (Vasconcelos, 2008). Finally, diffusion proceeds too 
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slowly in these three countries and jeopardizes the fulfilment of the European Directive of 80% 

spatial diffusion until 2020 (European Parliament, 2006). 

Objective of this doctoral thesis is to compile, predict, and evaluate policy options to induce the 

diffusion of Smart Metering with a focus on the German market. Results contribute to the 

discussion, how Germany´s regulator Bundesnetzagentur can shape new regulatory frameworks in 

order to tackle adoption barriers and induce diffusion. From a methodical perspective, network 

effects (Rogers, 1976) as well as adopter heterogeneity (Herbert, 2006; Rogers, 2003) are critical 

requirements for a model that simulates innovation diffusion. Agent-based models are well-suited 

to handle the complexity of both requirements (Gordon, 2003; Rahmandad & Sterman, 2008). 

These capabilities are critical factors within innovation diffusion research and make Agent-based 

modeling a promising venue for developing new diffusion theory (Macy & Willer, 2002; Rand & 

Rust, 2011; Zenobia, Weber, & Daim, 2009). In order to derive regulatory recommendations, we 

develop a feasible methodology based on maturity requirements in Chapter 2. Then, design and 

build of a corresponding Agent-based model to simulate policy induced diffusion of innovations 

follows in Chapter 3. Finally, methodology and model are applied to the German Smart Metering 

market in Chapter 4. All three Chapters 2, 3 and 4 contribute to literature and were submitted to 

scientific Journals as exclusive Essays. 

Chapter 2 contains a methodical Essay, focusing on empirical validation techniques in the 

context of Agent-based modeling. It establishes fundamental requirements for the predictive 

models in Chapter 3 and 4. Validity is crucial to evolve simulation ‘toys’ into useful research 

‘tools’ in order to enable the prediction of policies. A holistic maturity matrix that aggregates 

common empirical validation taxonomies is developed and applied to an innovation diffusion 

example. Results will show that in terms of validation, one size does not fit all purposes. The best-

suited validation approach depends on the model’s objective and the availability of data. 

Chapter 3 develops an endogenous supply-demand model to simulate innovation diffusion. 

Empirical validation is approached based on the findings from Chapter 2. The model includes both 

major diffusion concepts (Epidemic and Probit) and allows scenario-based simulation of 

inducements. Three inducements are tested in the model: Market liberalization, information 

policies, and monetary grants. Adoption forecasts are analyzed in terms of effectiveness (speed and 

level) and efficiency (costs and welfare) in order to evaluate chances and risks of each intervention 

scenario. A set of ten propositions concludes the findings. 

Chapter 4 picks-up validity-, model-, and policy-related findings from Chapter 2 and 3 in order 

to map the German Smart Metering market. Special focus is on consumer demand processes to 

locate demand-side barriers and drivers. Findings highlight weaknesses in current regulatory 
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requirements due to disadvantages in consumer acceptance and policy effectiveness. A ‘cash-for-

clunkers’-program is discussed to tackle major barriers for adoption and boost diffusion through 

synergies of pricing and promotion interventions. 

Overall concluding remarks as well as future research directions based on the most important 

findings are presented in Chapter 5.  
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2. Maturity Levels in Empirical Validation
1
 

2.1 Abstract 

Diverse empirical validation taxonomies have been published in the context of Agent-based 

modeling. Validity is crucial to evolve garbage-in/garbage-out ‘toys’ into useful research ‘tools’. 

But the amount of taxonomies as well as methodical discrepancies confuses academia and slows 

down its circulation in literature. We tackle these obstacles in this study. We explain, compare, and 

apply popular validation techniques and aggregate them into a holistic framework: The maturity 

matrix. It covers nine maturity levels, ranging from simple grounding to complex input-output 

calibration. Stepwise validation of an exemplary innovation diffusion model showcases each 

maturity level applied. We conclude our findings in six propositions. Basically, the best-suited 

validation approach depends on the model’s objective and the availability of data. One size does 

not fit all. Explanatory models may reduce validation effort by using statistical approximations, 

while predictive models rely on accurate parameter-matching. We explain microdata calibration in 

detail. It is rarely discussed in literature but leads to highest validity. Benefits particularly exist in 

computational economics due to the availability of data. A combined use of microdata and Data 

Mining enables modelers to keep models simple, without losing the ability to analyze complex 

output time-series. 

2.2 Introduction 

Agent-based models are simple reconstructions of complex real-world systems (Moss, 2001). 

They simulate decision-making entities that perform behavior rules in a virtual environment 

(Bonabeau, 2002). As a research methodology, it has been established in different research areas 

during the past 20 years (Heath, Hill, & Ciarallo, 2009). Research contribution originates from 

emergent and immergent effects (Edmonds, 2010) as well as from behavioral and structural target 

system analyses (Zeigler, Praehofer, & Kim, 2005). Key capability is the handling of numerous 

input factors to reconstruct complex systems and complex behavior (Edmonds, 2001b). This opens 

a broad range of applications, as Epstein (2008) concludes: Prediction is most important, others are 

explanation and education.2 

                                                           
1  Rixen, M. & Weigand, J. (2012). Maturity Levels in Empirical Validation. Unpublished manuscript. 
2  See http://ccl.northwestern.edu/netlogo/models for various examples. These models can be executed online in the 

browser without installation. Further models can be downloaded from http://www.openabm.org/models. 
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Handling of complexity is a key strength, but also a major source for errors and critique. 

Complexity inflates the model and leads to over-parameterization: First, due to a high number of 

variables. Second, because of assumptions and randomizations in the configuration among these 

variables. Both aspects decrease replicability and significance of Agent-based models (Axelrod, 

1997; Galán et al., 2009; Leombruni & Richiardi, 2005). To address increasing number of 

variables, academia adopted the keep-it-simple principle of Axelrod (2003). Models that base on 

simple rules and few configuration parameters are superior regarding interpretation and replication 

(Batten, 2000). They do not necessarily produce simple results. In contrast, simple predictors 

frequently result in complex behavior, if they are executed in a multi Agent environment. But how 

strong do stylized attributes correlate with real-world characteristics? Is real-world behavior of 

individuals as rational and simple as in the artificial world? How lifelike are simulation 

assumptions, behavior, and estimations? 

Empirical validation addresses these questions. It reduces discrepancies between model and 

target system and is critical for the model´s significance. Empirical validation avoids stupid 

garbage-in/garbage-out simulations based on assumptions and randomizations. Even numerous 

parameters could be used in a complex model, as long as these parameters are validated with real-

world data. Empirical validation is a frequent subject and hot topic in the scientific community. A 

variety of techniques have been published (a comprehensive review follows in section 2.3). 

Nevertheless, these techniques differ in... 

─ scope (e.g. direct input calibration vs. indirect output validation), 

─ granularity (e.g. use of aggregated time-series vs. empirical microdata), 

─ accuracy (e.g. anecdotic knowledge vs. empirical data), 

─ effort (e.g. simple random distribution vs. complex matching of variables), 

─ naming (input/output validation, direct/indirect calibration, internal/external validation etc.). 

Objective of this paper is to review popular validation techniques, identify gaps and similarities, 

and develop a holistic framework to clarify the above conflicts. Our framework is structured in 

maturity levels to enable validity evaluations. For instance, validation based on stylized facts 

results in low maturity, while direct calibration with high-granular microdata means high maturity. 

Although microdata calibration leads to superior maturity, it has been rarely discussed in literature. 

We extend current research with detailed explanations on this validation technique. Its application 

is difficult and requires several data preparation steps, but availability of data in the form of 

Scientific-Use-Files and Public-Use-Files makes microdata calibration a promising venue in Agent-

based computational economics. 
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We apply our maturity framework stepwise to an innovation diffusion model in NetLogo. The 

Agent-based paradigm is well suited in the innovation diffusion context. Core capabilities enable 

network effects and Agent heterogeneity, mapping both primary innovation adoption drivers: 

Epidemic learning and attainment of Probit thresholds (Geroski, 2000). Published models typically 

focus on one of both drivers. Our model includes both drivers with co-evolutionary supply-and-

demand through awareness-spread, supplier entry/exit, and Cournot competition. 

The following literature review outlines published validation taxonomies. We re-use these 

taxonomies to describe the development of our maturity matrix in section 2.4. Detailed 

explanations on microdata calibration follow in section 2.5. Section 2.6 applies the maturity levels 

to an innovation diffusion example. We discuss and conclude our findings regarding empirical 

validation, maturity levels, and its application to specific purposes within six propositions in 

sections 2.7 and 2.8. 

2.3 Literature Review 

Agent-based models are simple reconstructions of complex real-world systems (Moss, 2001). 

They simulate decision-making entities that perform behavior rules in a virtual environment 

(Bonabeau, 2002). Galán et al. (2009) present four modeling stages to reconstruct the real-world in 

an executable computer program: Abstraction, design, approximation, and coding. Each of the four 

stages includes specifications to proceed from the target system to a replicable model. Replicability 

is the ability to re-produce and re-execute a model in different frameworks (Wilensky & Rand, 

2007). Grimm et al. (2005) developed the idea of Pattern Oriented Modeling to perform the four 

modeling stages for highly complex ecological models, that challenge modelers through over-

parameterization. In line with common software development methodologies, specifications 

transform real-world observations into functional requirements and finally into executable code. 

Deviations in any of these specifications lead to deviations in the final program and therefore in 

simulation results. Validation is performed in order to avoid or reduce these deviations. 

A valid Agent-based model is well-founded and corresponds accurately to the real-world.3 

Validity is a two-dimensional requirement in the modeling context: Carley (1996) distinguishes 

between internal and external validity. Internal validity focuses on the correctness of the 

programming code. Internal validation ensures a correct implementation of functional requirements 

into computer code (technical design). In literature, it is often referred to as verification to describe 

how well the implemented model corresponds to the conceptual model (Rand & Rust, 2011). Vice 

                                                           
3  See http://en.wikipedia.org/wiki/Validity_(statistics) for definitions and an overview of different terms in the context of 

statistical validity. 
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versa, external validation tackles deviations of model configurations with real-world observations 

(Carley, 1996). It focuses on the validity of parameter calibrations, world conditions, and 

behavioral rules in coherence to the ‘external world’. Empirical data is leveraged for external 

validation. It is a frequent topic in simulation literature and main scope of this paper. From now on, 

any reference to validation/validity means external validation/validity. 

Different approaches on empirical validation are mentioned in the literature. Fagiolo, Moneta, 

and Windrum (2007) compare three different taxonomies: The indirect calibration, the Werker-

Brenner, and the history-friendly approach. They differ primarily in the type of utilized data and in 

validation procedures. Indirect calibration is performed in an iterative approach, focusing on ex-

post comparison cycles of model outcomes with real-world data. The ex-ante Werker-Brenner 

approach includes the use of historical knowledge, while the history-friendly approach adds casual 

and anecdotic knowledge. 

Carley (1996) distinguishes between four validation methods: Grounding, calibrating, verifying, 

and harmonizing. Grounding is a basic approach to match expectations with general model results. 

For example, a technology diffusion simulation is grounded if adoption time-series show the 

typical ‘S’-shape curve as discussed in the widely accepted General Bass Model. Calibrating is 

similar to the above mentioned indirect calibration approach: Initial conditions and rules are fine-

tuned in iterative cycles unless outcomes match real-world observations. Verifying extends 

calibrating to predictive outcomes of the model, where availability of empirical statistics is limited. 

Finally, harmonization includes all three approaches plus comparisons of simulation outcomes with 

results from differential equation calculations. 

Tesfatsion (2010) promotes a distinction between descriptive output validation, prescriptive 

output validation, and input validation. Descriptive output validation matches available real-world 

data with model outcomes. Prescriptive output validation utilizes the same process but different 

data: Yet-to-be-acquired real-world data is required. Input validation utilizes available empirical 

statistics to calibrate initial conditions in the Agent-based model. 
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Fig. 1. Data generation and validation procedures (Fagiolo et al., 2007; Galán et al., 2009; Marks, 2007; Tesfatsion, 

2010) 

 

Fig. 1 summarizes a variety of important publications on validation in Agent-based modeling. It 

recaps the four modeling stages of Galán et al. (2009) and extends them with the comparison of 

data generating processes of Fagiolo et al. (2007): The real-world data generating process 

(rwDGP) and the model data generating process (mDGP). The mDGP tries to map the rwDGP, e.g. 

in order to explain it or predict future developments. The figure visualizes the idea of validation in 

the middle of both procedures. We distinct two different validation-scopes and adopt the terms 

input validation and output validation of Tesfatsion (2010) to describe them. Input validation 

focuses on the input factors (Agent characteristics, environmental parameters, and behavior rules), 

while output validation compares the model´s output time-series with empirically measured real-

world time-series. As Marks (2007) summarizes, these input and output comparisons may result in 

five different states (see Table 1 combined with the visualization in the center of Fig. 1): 

 

Table 1. Comparisons and comparison outcomes (Marks, 2007) 

No. Condition Evaluation 

I No intersection between R and M The model is useless. 

II R is equivalent to M (M⇔R) The model is complete and accurate. 

III Intersection is not null The model is useful, to some degree. Yet it is both incomplete and inaccurate. 

IV M is a proper subset of R (M ⊂ R) All the model’s behaviors are correct (match historical behaviors). It is accurate but 

incomplete. 

V R is a subset of M (R ⊂ M) All historical behavior plus some additional behaviors were exhibited. The model is 

complete but inaccurate. 
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The modeler´s ultimate goal is state II, where model and real-world are equivalent. A few Agent-

based models—e.g. in energy market simulations—come close to this state, as they reach an 

accurate match of input parameters and output time-series. States III, IV, and V normally occur. 

Distinctions in validation-scale drive the outcome: Small-scale validation picks only a few 

parameters and/or empirically validates with low granular data. Large-scale validation tries to 

compare as many parameters as possible with high granularity. Maximum granularity can be 

reached with the use of empirical microdata, technical specifications, and geographical coordinates. 

We conclude this literature review with an example of the famous Sugarscape model by Epstein 

and Axtell (1996).4 The model explains wealth distribution. Input factors are defined by parameters 

that characterize the environment (number of Agents, distribution of sugar, etc.) as well as Agent 

heterogeneity (metabolism rate, maximum age, etc.). Behavioral rules determine the Agent´s search 

for places with additional sugar and their movement to this better position. Input validation would 

compare these input factors with initial conditions and behavior in the real-world. Key performance 

indicators (KPIs) track periodic changes and accumulate them to output time-series, e.g. the 

distribution of wealth among Agents. Output validation would compare these time-series with 

empirical data and iteratively re-calibrate the mDGP, until model output matches real-world output. 

2.4 Maturity matrix for empirical validation 

2.4.1 Development of the maturity matrix 

The review of validation techniques presented no dominant approach that fits for all models. 

Modelers select diverse taxonomies, driven mainly by the model´s objective and availability of 

empirical data. The variety of different approaches delays the acceptance of Agent-based modeling 

among academia and complicates its circulation in scientific literature. Journal reviewers and 

readers who are unfamiliar with the Agent-based methodology can hardly follow each validation 

approach and evaluate the validity of parameters and Agent behavior. 

This paper tackles the confusing variety of taxonomies. Our objective is the development of a 

holistic maturity framework that re-uses existing methods and categorizes them according to key 

drivers that influence decisions for specific methods. A holistic framework will help to identify 

‘white spots’ that have not been discussed in literature and will create a common vocabulary. It will 

allow comparisons of published techniques to show their similarities and discrepancies. It will 

support modelers to choose the best-suited technique. Finally, the maturity matrix will help 

                                                           
4  See http://sugarscape.sourceforge.net or http://ccl.northwestern.edu/netlogo/models/Sugarscape1ImmediateGrowback 

for examples. 
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reviewers and readers to evaluate the validity of published models and compare them to their 

expectations. 

We already identified two vital maturity dimensions in our literature review that differentiate 

common validation taxonomies: Validation-scope and validation-scale. Validation-scope tackles 

the point of comparison to real-world data. Two foundational directions exist (see Fig. 1): Input 

validation and output validation. The Werker-Brenner approach and Tesfatsion´s input validation 

methods belong to the first category. The indirect calibration, Carley´s calibrating, and 

Tesfatsion´s output validation belong to the second category and determine an ex-post approach. 

The second maturity dimension that was derived from literature is validation-scale. It includes the 

magnitude and the granularity that is applied during validation. We use a straightforward 

distinction and categorize between small-scale and large-scale validation methods. Small-scale 

approaches validate only a subset of parameters with the use of low granular data (e.g. casual and 

anecdotic knowledge or statistical approximations). Carley´s grounding and the history-friendly 

approach belong to this category. Large-scale approaches validate most or all parameters and apply 

high-granular data (e.g. empirical microdata). 

 

 

Fig. 2. Maturity matrix for empirical validation in Agent-based modeling 
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Nine levels divide validation-scope and validation-scale into a strict maturity ranking (see Fig. 

2). These levels range from M-0 (no validation) to M-8 (matching). Its two-dimensional structure 

(scope and scale) aligns with common validation practices and was arranged based on the 

following orders: 

─ Validation-scope > Validation-scale: Scope is the primary dimension. Scale is secondary. The 

reason that makes scope the dominant dimension is the fact that scope is driven by the 

model´s overall objectives and therefore constitute a fundamental direction. Contrariwise, 

scale is usually determined by availability of data and the effort a modeler is willing to invest 

into validation. Scope keeps static, while scale is more flexible and may change during the 

modeling process. 

─ Input validation > Output validation: Input validation leads to higher maturity than output 

validation. Input is advantageous, because parameters and behavior are directly calibrated. 

Output validation calibrates input factors indirectly in an iterative manner, until output time-

series match empirical outcomes. It leaves more room for errors and deviations. Difficulties 

incline with increasing numbers of parameters: Which parameter needs to be adjusted, if 

output time-series differ? 

─ Small-scale validation > No validation: Any validation is advantageous. Non-validated 

parameters and assumed behavior decrease explanatory power and allows misinterpretation. 

Even configurations upon anecdotic knowledge (e.g. the expectation that variable x must be 

greater than variable y) increases maturity.  

─ Large-scale validation > Small-scale validation: Large-scale validation is superior because it 

leaves less room for errors and deviations. The nature of bottom-up emergent effects causes 

even small deviations to accumulate to varying results on a macro level. 

Naming conventions for the maturity matrix were partly adopted from literature. We adopted 

Carley´s grounding as well as the direct/indirect calibration naming conventions. We introduced 

approximation to describe small-scale input validation practices of models that use random 

distributions to approximate model and real-world conditions. We introduced matching to describe 

the highest maturity level. We adopted the term from computer science in the context of Data 

Quality: Matching is performed to compare any available data field (highest granularity level) with 

each other, primarily to identify and cleanse duplicates. Similar objectives apply to maturity level 

M-8 since as many variables as possible are validated to mirror the real-world inside a virtual 

duplication. 
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2.4.2 Validation-scope details 

Input and output validation differ entirely in their practical approach. Input validation is a 

bottom-up approach that directly calibrates input factors. Vice versa, output validation modifies the 

same input factors, but indirectly from top-down. Aggregated model output (top) triggers 

adjustments of input factors (down). Iterative adjustments are beneficial due to the deep knowledge 

a modeler gains from trial-and-error activities. Root-causes, emergent effects, and basic 

sensitivities are routinely discovered. However, modelers are free to decide which parameter they 

want to adjust. They are able to adjust parameters until simulations result in the way they want it to. 

This bias is problematic in terms of maturity and makes output validation a less feasible option for 

predictive purposes. Input validation leads to smaller biases and reduces the modeler´s freedom to 

influence model behavior. It leaves less space for (mis-) interpretation and assumptions. 

Modelers are not flexible in choosing their validation-scope. Model objectives and availability of 

empirical data determine the selection. In terms of model objectives, we distinct between two 

fundamental directions: 

─ Prediction: Predictive models rely on input validation. Detailed output time-series are their 

primary research contribution, which leads to conflicts if these time-series were accurately 

calibrated a priori during output validation. Additionally, yet-to-be-acquired empirical data in 

line with Tesfatsion´s (2010) prescriptive output validation taxonomy would be necessary. We 

will follow-up on these aspects in section 2.7, where we will discuss best-suited maturity 

levels per model objective. One special predictive configuration exists, in which large-scale 

output validation is necessary (baseline in scenario analyses). 

─ Explanation: Explanatory models map target system procedures in order to educate about 

general observations (e.g. occurrences of traffic jams) or specific research issues (e.g. 

heterogeneity impacts in innovation adoption). It is critical that the output is similar to real-

world observations. Therefore, output validation is well-suited for explanatory models. 

Availability of data determines the scope-selection as well. In principle, all input factors in 

Agent-based models can be directly validated with empirical data: Agent characteristics (e.g. 

income based on census data), behavior rules (e.g. purchase behavior based on price-dependent 

purchase probabilities), and environmental conditions (e.g. local dispersion based on geographical 

data). But published models confirm that validation of behavior rules and environmental conditions 

is challenging. They are usually simplified and contain assumptions. E.g. a fixed number of Agents 

populates a chessboard-like world and interact with bordering Agents. This setup is frequently used 

across academia, but it is rarely directly calibrated. Grimm et al. (2005) discuss the idea of Pattern 

Oriented Modeling in this context. Availability of empirical microdata in the form of Public-Use-
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Files and Scientific-Use-Files enable highly-validated input conditions in the context of Agent-

based computational economics. 

A combined application of input and output validation combines benefits from both taxonomies 

and is advantageous through checks and balances. Checks and balances originate from the principle 

that both input and output validation tackle the same input factors. The output validation can be 

checked against input validation results and vice versa. Furthermore, parameters that have already 

been validated through direct input calibration, narrow down the list of parameters that need to be 

adjusted during output validation iterations. Two major obstacles exist: First, input and output 

validation may result in conflicts and leaves the modeler with the decision which configuration is 

valid. Nevertheless, these conflicts may end up in research contribution. Second, the validation 

effort may incline exponentially, because both techniques tackle the same parameters and any re-

adjustment jeopardizes already finalized validations. E.g. an adjustment of a single (directly 

calibrated) parameter makes former output validations useless, since new output time-series 

mismatch the old time-series. We will apply a special sequence in our stepwise example in section 

2.6 to explain how efforts can be limited (direct calibration first, followed by indirect output 

validation). 

2.4.3 Validation-scale details 

Scale is our second maturity dimension. We distinguish between three states: No validation, 

small-scale, and large-scale. Validation magnitude and granularity are primary drivers.  Magnitude 

relates to the number of validated input factors. Granularity evaluates the level of detail of the 

applied empirical data. The following refinements explain each state in detail:  

─ No validation: Related models contain only non-validated parameters and behavior. Not even 

anecdotic knowledge is used. Models in this category are rare and mostly used for educational 

purposes, e.g. in tutorials that explain a modeling software and its functionalities. 

─ Small-scale: Related models calibrate with the use of random distribution. These 

approximations are frequently used in Agent-based simulations (Wilensky, 2010). The 

modeler´s intention is to validate efficiently, with low effort but acceptable validity. 

─ Large-scale: Related models match real-world conditions as accurate as possible. Maximum 

effectiveness with minimum space for deviations is the modeler´s intention. High-granular 

data is applied. If possible, validation includes all Agent characteristics, world conditions, and 

behavior rules. Missing empirical data is substituted by sensitivity analyses to avoid 

assumptions and approximations. Large-scale validation burdens modelers with high 

validation effort. 
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An alignment of validation-scale with model expectations is crucial. Deterrent examples exist 

especially in the context of predictive models, which try to predict time-series although their 

parameters are not validated or only small-scale validated. Missed expectations will jeopardize the 

acceptance of Agent-based modeling. Fig. 3 visualizes the three states on the scale-axis of the 

maturity matrix. Our three graphs and four examples (income calibration) should guide modelers to 

evaluate their model´s validity requirements. The maturity matrix distinguishes between 

taxonomies that utilize microdata (raw or aggregated) and taxonomies that use randomized 

distributions. Models which base upon large-scale validation are superior in maturity. Nevertheless, 

their outcomes and the significance of produced results do not necessarily differ. E.g. microdata 

calibration and statistical approximations will result in equal outcomes, if real-world data is 

normally distributed. In this case, modelers can calculate arithmetic means and standard deviations 

from empirical data and approximate with high validity. 

 

 

Fig. 3. Scale-axis of the maturity matrix with four input calibration examples 

 

The trade-off between validation effort and level of validity leads to a non-trivial selection of the 

best-suited validation approach. As in the context of validation-scope, the taxonomy selection is 
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modeling, high granularity and broad magnitudes are important. Empirical microdata is directly 

applied or aggregated into intervals to validate as many input factors as possible. Vice versa, 

explanatory models may reduce validation effort. E.g. the Sugarscape model utilizes random 

distribution of parameters to produce explanatory results. The number of validated parameters is 
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data challenges modelers with the question: Why is the corresponding variable, that cannot be 
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validated, important? Non-validated and unimportant parameters should be removed or replaced in 

line with the keep-it-simple principle. 

Large-scale validation burdens modelers with high validation effort. Depending on the model, it 

may massively increase the requirement for computational power. Especially output validation is 

impossible without the support of huge computational power that allows thousands of iterations in 

sensitivity analyses. The number of iterations rises exponentially with the number of input factors. 

Furthermore, output time-series typically include contingency effects due to random Agent 

selection, random dispersion, and other iteratively varying parameters. Various iterations per model 

configuration are necessary to factor-out these effects. Section 2.7 will follow-up on this aspect 

with calculation examples. 

2.5 Microdata calibration 

Although microdata calibration leads to highest maturity levels, it is rarely discussed in the 

literature. Different obstacles prevent researchers to take huge validation efforts into account. They 

would need to drill-down to high-granular records and integrate them into their models. This 

section extends current research and defines microdata, discusses advantages and limitations of 

microdata calibration, and explains procedures to integrate microdata into Agent-based models. 

Microdata contain high-granular empirical study results with the highest level of detail: Non-

aggregated records, e.g. survey answers of individual respondents. A suitable definition especially 

for census microdata was published by the Minnesota Population Center. It defines microdata as a 

composition “[…] of individual records containing information collected on persons and 

households. The unit of observation is the individual. The responses […] are recorded in separate 

variables. […] Microdata are inherently flexible. One need not depend on published statistics […]. 

Users can generate their own statistics from the data in any manner desired, including individual-

level multivariate analyses.” (Minnesota Population Center, 2010). In terms of microdata validation 

and in line with the above definition, we understand microdata as empirical outcomes with 

information stored on a single record level without aggregation. The one-to-one relationship to the 

unit of interest is crucial, e.g. relations to individuals, households, or companies. Publication of 

microdata is popular in the context of census surveys. Other examples are transportation statistics 

and driving patterns, political election results, geographic information, and company statistics. Due 

to their coherence to real-world persons and/or households, data privacy is a major concern. In 

principle, records are made anonymous and often chopped to a representative sample to enable 

public use (so called Public-Use-Files). Bigger samples exist for scientific purposes (so called 

Scientific-Use-Files). Data privacy laws regulate access to certain files. Microdata are frequently 
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distributed in flatfiles (.txt or .csv) or proprietary formats that allow direct import into statistic 

analysis tools like SPSS or SAS. Flatfiles are well compressed and do not contain any syntax-

overhead like SQL structures. In contrast, proprietary file formats enable quick imports due to 

included data models. 

Four key strengths characterize microdata calibration. These strengths determine its 

attractiveness and use-cases. Additional validation effort pays off in computational models that 

benefit from one or more of these capabilities. Heterogeneity of Agents is the root cause for most 

advantages in the application of microdata calibration. Three of the four strengths pay off 

especially during input validation. Only the first strength relates to output validation as well. The 

four strengths are: 

─ Highest level of validity: Calibration with the use of microdata ensures a one-to-one 

relationship to real-world characteristics. The model maps target system states accurately (see 

comparison outcome II in Fig. 1), while other calibration techniques with the use of random 

distributions lead to discrepancies to the target system (see results III to V in Fig. 1). Biggest 

advantages occur if real-world distributions are unsteady.  

─ Static initial configuration: Random distributions and dispersions vary with every simulation 

repetition. E.g. a specific geographic area might be filled with Agents in the first repetition, 

while the same area could be empty in the second repetition. Integration of microdata enables 

static starting points in each repetition. Predictive models that imply sensitivity analyses 

and/or comparisons of specific snapshots (e.g. census from year 2000 vs. year 2010) profit 

most from this strength. 

─ Diverse parameters per Agent: Microdata include several variables per record. E.g. census 

files typically contain hundreds of variables. This fact allows the creation of heterogeneous 

Agents with various characteristics. Especially econometric models that integrate different 

real-world parameters benefit from this strength. E.g. a single microdata file can be used to 

calibrate household size, income, location, and other attributes. Nevertheless, modelers do not 

need to factor-in all microdata variables in the model´s behavior rules. Section 2.6 will present 

a model that focuses on one parameter (primary attribute), without losing the ability to 

perform Data Mining on various other variables (secondary attributes). 

─ Correlations between variables: In addition to diverse parameters per Agent, the correlations 

between these parameters can be transferred into the model. E.g. the two variables income and 

employment-status might correlate, because employed Agents receive higher income than 

unemployed Agents. This correlation gets lost if both parameters were distributed 

independently without the use of microdata. 
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Despite these advantages, the integration of microdata includes extra requirements and 

limitations that drive validation effort. One aspect is the availability of microdata. Specific data that 

fits the model´s purpose is required. Data privacy is one of the major barriers for a widespread 

distribution of microdata. Another aspect are comprehensive data preparation, integration, and 

encapsulation steps that are necessary. Fig. 4 visualizes these steps. It also presents a screenshot of 

a typical comma-separated census microdata extract. Each row contains the information about one 

respondent. The first line is the heading that contains identifiers. For instance, ‘ef1’ could be a 

variable that contains the city, normalized via references (e.g. ‘01’ = Berlin, ‘02’ = Munich, etc.). 

Typically, those references are described in separate metadata descriptions. Metadata includes 

column names, technical formats (e.g. numbers, strings, etc.), field lengths, and reference lists. 

 

 

Fig. 4. Microdata preparation, integration, and calibration processes 
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a common source for syntax errors and miscalculations. Not to be mixed up with zeros and 

spaces. 

─ Default values: Surveys contain questions that are irrelevant for respondents and are skipped. 

Furthermore, answers may have been refused. Although these kind of information might be 

valuable for researchers, special treatments are required to ensure an error-free integration into 

the model. E.g. a net income of ‘9999’ means ‘question skipped’ instead of ‘9999€ per 

month’. 

─ Character set: Microdata and model files may differ in their character set (e.g. Unicode, 

ANSI, ASCII, etc.) and require harmonization. 

─ Language settings: Special characters could be in use as separators. Flatfiles frequently use 

commas to separate values (therefore ‘.csv’ files: Comma separated values), while in many 

countries commas are used as decimal points. 

Data integration is the objective in step II. Prepared data is made available within the modeling 

tool and within the model. The level of complexity in this step depends on data characteristics and 

flexibility of the modeling tool. Well-prepared data could be loaded easily by copy/paste, although 

the tool is inflexible in terms of importing functionalities. Contrariwise, difficulties might occur if 

high-volume record-sets are squeezed into the model, even if tool functionalities offer built-in 

importing capabilities. In the best case, both model and tool allow iterative repetitions of the 

simulation without reloading data. In the worst case, reloading is necessary in advance of each 

repetition, which usually takes a huge amount of time. The use of small sub-samples is an effective 

way to reduce programming time and test cycle durations within the modeling stage. In this stage, 

human interaction is mandatory and support via batch mode functionalities is limited. 

As already mentioned at the beginning of section 2.4.2, input and output validation differ 

entirely in their practical approach (see step III). During input validation, microdata information is 

distributed among encapsulated objects (the Agents). In principle, each Agent receives the 

information stored in each line from the original textfile. This procedure means direct calibration. 

For example, a census file may include age, income, and employment status per survey answer. 

Empirical calibration enables the modeler to create each Agent with these parameters. Validation 

includes not only the distribution across all Agents, but also the correlation of parameters per 

Agent. Input validation tasks differ per modeling software. The appendix includes two examples 

that present encapsulation procedures in NetLogo. In contrast to input validation, output validation 

is performed as sensitivity analyses in order to match output time-series with the integrated 

microdata time-series. Iterative cycles repeat the simulation with varying input parameters until 

both time-series match. This procedure means indirect calibration. E.g. innovation diffusion 
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microdata may contain monthly diffusion figures that can be compared to periodic output figures of 

the model. Complexity through several input parameters will make numerous iterations necessary, 

until sensitivity analyses result in a suitable configuration. 

Microdata input calibration enables researchers to perform Data Mining on output time-series. 

Enabler is the availability of numerous variables on a micro-level. Typically and in line with the 

keep-it-simple approach, only a small share of all variables might be queried by behavior rules. The 

majority of variables is ignored. Still, these secondary variables might correlate to outcome 

indirectly due to dependencies on their primary counterparts. E.g. income could be an important 

behavior input, which depends on employment status and education. With the use of Data Mining, 

correlations between attributes and their influence on simulation outcomes can be discovered. A 

combined use of microdata calibration and Data Mining supports modelers in a traditional conflict: 

Simple models with few variables contribute best to scientific discussions (Axelrod, 1997). In 

contrast, these simple models often exclude important influencing factors observed in the real-

world (Leombruni & Richiardi, 2005). A combination of microdata calibration with Data Mining 

enables modelers to handle the tradeoff between Axelrod´s keep-it-simple principle and the 

creation of holistic but complex models: Behavioral rules can focus on important (primary) 

attributes, while dependencies through other variables (secondary) can still be analyzed during ex-

post Data Mining. Our innovation diffusion model in section 2.6 presents a Data Mining example: 

Rogers´s five adopter classifications (Innovators, Early Adopters, etc.) are used to cluster adopters. 

Arithmetic means per cluster produce insights how Agent heterogeneity affects adoption decisions. 

2.6 Example: Validating an innovation diffusion model 

In this section, we apply the developed maturity matrix to an Agent-based model. We validate 

the model stepwise by following our two dimensions validation-scope and validation-scale. The 

replicable NetLogo model including code files, documentation, and screenshots are available on 

http://www.openabm.org/model/2682. A stepwise video documentation called ‘9 Maturity levels in 

Empirical Validation - An innovation diffusion example’ is available online at 

http://www.youtube.com/watch?v=qa8KFSKggH4. 

2.6.1 Innovation diffusion in Agent-based simulations 

We apply the maturity matrix to a model that simulates product-agnostic innovation diffusion. 

As Geroski (2000) concludes, the Epidemic model and the Probit model were established during 

the past 60 years as primary diffusion theories. Epidemic spread of information (network effects) 

drives adoption in Epidemic theory (Rogers, 1976). Contrariwise, utility and positive benefit/cost 
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thresholds drive adoption in Probit theory. Heterogeneity of adopters is an important influencing 

factor in the Probit context (Rogers, 2003). Both models result in an ‘S’-shaped cumulative 

diffusion curve. Bass (1969) derived a logarithmic diffusion pattern based on time-series for 

consumer durables: The General Bass Model. Fig. 5 visualizes this logarithmic growth rate 

combined with both diffusion models as well as Roger´s five adopter categories. The categories 

allow analyses with respect to Agent heterogeneity.  Adopters within these five groups are divided 

by adoption timing and differ in several characteristics: In their use of communication channels, 

readiness to assume risk, and social affiliation (Rogers, 2003). 

 

 

Fig. 5. Diffusion drivers, ‘S’-curve and adopter categories (Geroski, 2000; Mahajan, Muller, & Srivastava, 1990) 
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Probit theories in Agent-based models. E.g. Cantono and Silverberg (2009) describe a percolation 

model in the context of eco-innovations. 
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exit decisions as well as market quantity and price. Put simply, diffusion proceeds if interactions 

distribute awareness (Epidemic effect) and rivalry reduces the market price (Probit effect). 

Adoption drives supply-side rivalry and vice versa rivalry determines pricing and therefore 

adoption. This is important, since intensifying supplier competition has been identified as important 

influencing factor (Gatignon & Robertson, 1989). It is frequently mentioned in diffusion literature, 

but rarely modeled in Agent-based simulations. Our paper extends current research by including all 

three forces in a single model: Epidemic, Probit, and competition. Widely accepted Cournot 

competition theory is used to model entry, supplier conduct, and price. We will showcase the 

importance of endogenous demand-supply co-evolution. Endogeneity between competitive 

dynamics and market evolution is under-researched (Safarzyńska & van den Bergh, 2010; 

Soberman & Gatignon, 2005). 

2.6.2 Structure and procedures 

Eleven steps sequentially divide the simulation. A loop contains the repeated calculations per 

time-step. One loop-repetition represents one simulation period and equals one real-world year. 

The loop is performed iteratively until the exit condition is reached. This condition is a complete 

shakeout, meaning that all firms left the market. The loop-calculations can be classified into 

demand-side and supply-side calculations. Fig. 6 plots the end-to-end flowchart in Unified 

Modeling Language (UML). 

 

 

Fig. 6. UML flowchart of model procedures 
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over time: At the beginning, all Agents are unaware (subset Iunaware). They turn aware if they receive 

an interaction (subset Iaware). Constants and attributes are set. Table 2 presents all constants, 

attributes, and variables. Constants and attributes are static per experiment. Variables change 

periodically, e.g. price p. 

 
Table 2. Parameter overview 

Parameter Type Description Value Comment 

N Constant Population (no. of consumers) 10,936 Equals the no. of records in census microdata file 

Cvar Constant Variable costs 270€  

Cfix Constant Periodic fixed costs 40,000€  

M Constant Periodic mass media interactions 200 … 800 Is validated indirectly in output sensitivity analyses 

H Constant Probability of word-of-mouth interaction 0 … 1 Is validated indirectly in output sensitivity analyses 

n(i) Attribute Consumer i´s no. of neighbors µ=10.5 Is validated indirectly in output sensitivity analyses 

z(i) Attribute Consumer i´s individual price sensitivity  Is validated directly in input calibrations 

a Variable Slope-factor of demand function  Demand function: f = a * p + b 

b Variable Constant-factor of demand function  Demand function: f = a * p + b 

q Variable Output quantity of each supplier   

p Variable Market price   

w Variable Supplier´s individual profit   

s Variable No. of suppliers  s = 0 is used as the trigger to stop the simulation 

 

 

Demand-side calculations: The adoption-loop begins on the consumer-side with a simulation of 

external (mass media) and internal interactions (word-of-mouth). Epidemic spread of awareness is 

the core driver in Epidemic theory. It assumes diffusion to be sparked off by mass media 

interactions, followed by epidemic rise in word-of-mouth, causing the typical ‘S’-shaped curve. 

External and internal interactions trigger the awareness of consumers in line with theory. 

Periodically, a fixed amount of M consumers are randomly selected to simulate mass media 

interactions. In addition, word-of-mouth interactions trigger awareness through imitation. Adopters 

of former periods (subset Iadopters) drive these internal interactions. H determines the probability of 

one adopter to interact periodically with one unaware consumer within his individual ‘Small 

World’. All interaction-receivers turn aware and are added to subset Iaware. The number of aware 

consumers can be measured as: 

∑ Iaware (t) = ∑ Iunaware { 1, 2, ...,  M } + H * ∑ Iunaware { 1, 2, ..., Iadopters } 

with n(i) of Iadopters ≥ 1 . 

(1) 

Iaware builds the foundation to calculate the eminent demand function f = a * p + b. It integrates 

both diffusion theories by using price thresholds z(i) of aware consumers Iaware to calculate demand. 

To calculate f, all Agents are sorted by z(i) in descending order. Then, a linear regression analysis 

calculates slope a and constant b with y-value z(i) and the x-value being the order position. 
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Supply-side calculations: We utilize Cournot theory to calculate competitive dynamics. Cournot 

competition is a widely accepted economic theory that explains an oligopolistic industry structure 

in which companies compete on the quantity of output they produce (Besanko, Dranove, & 

Shanley, 2007). Suppliers share same parameters. This simplifies our model in line with the keep-

it-simple principle. Firms produce a homogeneous product, have market power, share identical cost 

structures, try to maximize profits, and do not cooperate. Suppliers compete in quantities. An 

essential assumption is ‘Cournot conjecture’: Each supplier maximizes profit w based on the 

expectation that its own output quantity decision will not have an effect on the decisions of its 

rivals. Suppliers assume their rival´s quantities to be the same as their own quantity and take the 

quantity of its competitors as a given. Market price p is set at a level such that demand equals the 

total quantity produced by all suppliers. We begin with the calculation of output quantity q in 

dependence of the number of suppliers s: 

q(s) = ( b - Cvar ) / ( -a * ( s + 1 ) ) . (2) 

Followed by the calculation of market price p for each q- and s-combination: 

p(q,s) = a * ( q * s ) + b . (3) 

Knowledge of q and p across all possible supplier situations s allows us to calculate individual 

profits w: 

w(p,q,s) = ( ( p(q,s) - Cvar ) * q(s) ) - Cfix . (4) 

We now know profit w in case s suppliers compete in the market. Strategic decision making 

implies that suppliers enter the market to earn profits (w ≥ 0). Negative profits (w < 0) cause 

competitors to leave. As many profitable suppliers as possible enter the market: s increases step-by-

step until another entry would lead to negative profits. Decreasing market potential reduces s and 

shakeout begins. Order of entry and exit are modeled according to Klepper´s (2002) survival 

patterns. Earlier entrants are assumed to stay longer in the market. With complete shakeout (s = 0), 

the exit condition is reached and calculations stop. 

Demand-side calculations (if s > 0): After the final decision on the number of suppliers s, the 

next step randomly selects the total market quantity of q * s adopters from the Agentset Iaware whose 

willingness-to-pay is greater than or equal to market price p: 

Iadopters = { 1, 2, ..., q * s } with z(i) ≥ p and Iadopters ϵ Iaware . (5) 

The residual aware Agents who were not selected are added to Inonadopters. Non-adopters are not 

eligible for further adoptions. 
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2.6.3 Simulation results 

The software NetLogo is used to execute the model.6 NetLogo is popular among educational 

modelers due to strengths in usability and documentation (Railsback, Lytinen, & Jackson, 2006). 

The use of Logo as modeling language is a major difference to other tools like MASON and Repast, 

which base on common software development frameworks, e.g. JAVA, Python, C++, or .NET. As 

most modeling tools, it lacks out-of-the-box capabilities for the import of high-volume microdata 

and is restricted due to the principle that the programming code is stored in a single file. Two code 

examples in the appendix should prove NetLogo´s capabilities to integrate high-volume data-sets. 

Fig. 7 presents a screenshot of non-validated simulation results. M = 100 and H = 1 were 

arbitrarily set. Random calibration of willingness-to-pay with z(i) < 3,000€ resulted in µ(z(i)) = 

1,499€. Overall, 21 time-steps (0 … 20) were performed until all suppliers left the market (s = 0). 

Blue adopters and yellow non-adopters populate the ‘World’ (top-left). The Industry Lifecycle 

shows that up to six suppliers competed in the market. Rivalry induced price reductions below 

700€. Cumulative supplier profits confirm the impact of timing and order of entry on firm 

profitability in growth markets (Parker & Gatignon, 1996): Pioneers spark off innovation diffusion, 

survive competition until complete shakeout, and earn extraordinary profits. Followers enjoy free-

rider benefits but need to handle fierce competition. Late entrants face decreasing market potential 

due to saturation, survive only a few periods, and earn only small profits. In the innovation 

adoption context, market potential explicitly decreases when the ‘S’-curve crosses the point of 

inflection. Firms leave the market and shakeout begins. 

 

 

Fig. 7. Simulation results without input or output validation 

 

Both widespread impact theories for the diffusion of innovations—namely Epidemic and 

Probit—are confirmed within simulation results: Diffusion evolves when mass media kicks off 

initial awareness of Innovators and Early Adopters who adopt and cause Epidemic spread of 

                                                           
6  See http://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software for comparisons of modeling tools. 
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awareness through word-of-mouth interactions (network effects). The demand-curve shifts to the 

right (not displayed), appealing more suppliers to enter the market. Monopoly evolves to an 

oligopoly. Intensifying rivalry reduces the market price, leading to inclining adoption ratios due to 

the attainment of more Probit price thresholds. Shakeout begins when the ‘S’-shape proceeds to the 

point of inflection and demand saturation shifts the demand curve back to the left. 

2.6.4 Empirical validation 

The main purpose of this example is the application of our maturity matrix in a stepwise 

validation sequence. We perform both input and output validation, focusing on three configurable 

input factors of the model: Willingness-to-pay z(i) for input validation; Mass media frequency M 

and word-of-mouth probability H for output validation. The validation order is determined by our 

preceding comments from sub-section 2.4.3, in which we discussed potential rework effort that 

occurs if large-scale output validation is performed in advance of input validation. Therefore, we 

begin with small-scale output validation (grounding) in order to constitute a baseline. We then 

switch over to input validation and perform the four different techniques from Fig. 3. Finally, we 

switch back to output validation and perform large-scale sensitivity analyses in order to match M 

and H with detailed Innovator/Imitator-ratios from the General Bass Model. A discussion on the 

underlying idea to ‘divide and conquer’ and the applied sequence will follow in section 2.7 (jump 

to Fig. 12 for a helpful preview). 

Grounding (M-1): Cumulative and non-cumulative diffusion are utilized as output validation 

time-series. An exclusive focus on cumulative diffusion would make any parameter recalibration 

unnecessary, because it already presents the typical ‘S’-shape adoption progress (see Fig. 7) in line 

with the General Bass Model. Taking non-cumulative diffusion as a second time-series into 

account, M and H need to be adjusted to map anecdotic diffusion knowledge: Innovation through 

mass media sparks-off diffusion during the first periods, while Imitation through word-of-mouth 

spreads awareness epidemically afterwards. We recalibrate M from 100 to 300 to increase the force 

of Innovation. Vice versa, we reduce H from 1 to 0.5 to engage a smaller impact of Imitation (see 

Fig. 8). The maturity level of the model evolves from M-0 to M-1. In case we would pursue general 

explanatory objectives with the model, maturity would be satisfactorily and we could finish the 

validation process. 
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Fig. 8. Initial small-scale output validation (grounding) 

 

The initial grounding of a model is vital to create a baseline configuration that incorporates 

boundaries for parameter ranges and behavior rules. These boundaries are eminent for sensitivity 

analyses, because a too broad parameter space would require tremendous amounts of iterations. 

Furthermore, the boundaries are vital prerequisites for internal validation steps, because otherwise 

modelers can hardly discover code errors. E.g. the correct functioning of Cournot competition 

cannot be evaluated within internal validation cycles, if M/H-settings were too low to attract rivals 

to enter the market. 

Small-scale input validation/Approximation (M-4): We continue our validation journey with 

small-scale input validation of Agent´s individual willingness-to-pay z(i). For this example, we 

assume willingness-to-pay to correlate directly with net income. We calculate arithmetic means for 

net income from census microdata and apply the resulting value of µ = 1,597€ to the model.7 In a 

first step, we keep the linear distribution and simply shift the arithmetic mean to the value derived 

from real-world data (see Fig. 9). Nevertheless, any linear Agent calibration results in huge 

deviations due to the non-linear income distribution in the real-world (see the graph for ‘Microdata 

calibration’ in Fig. 10, which displays an exact plotting of census values). In a second step, we 

therefore shift from a randomized linear distribution to a randomized normal distribution. Although 

µ(z(i)) = 1,597€ keeps unchanged, the number of Agents with a willingness-to-pay between 1,000 

and 2,000€ increases remarkable from 3,600 to 8,500. Simulation results show notable changes as 

well. The demand-curve is much more sensitive in the relevant price range, leading to more 

volatility with regards to the Industry Lifecycle. Diffusion proceeds faster (16 years), peaks in non-

cumulative diffusion are higher (maximum of 1,300 periodic adoptions), and the maximum number 

of rivals increases from six to eight. The maturity level of the model evolves from M-1 to M-4. In 

case we would pursue special explanatory objectives—e.g. demand-curve shifts due to co-

                                                           
7  We prepared the German census files ‘Mikrozensus 2002’ for this simulation example. It is available online at 

http://www.forschungsdatenzentrum.de/bestand/mikrozensus/cf/2002/index.asp. It contains an original amount of 

25,137 records on person-level. We stripped these to 11,655 householders and finally received a subset of 10,936 rows 

after standardizing and cleansing. 

Output validation

Small-scale Large-scaleNo validation

Random setup with M = 100 and H = 1 Grounded setup in line with General Bass Model

with M = 300 and H = 0.5
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evolution of awareness and competition—maturity would be satisfactorily and we could finish the 

validation process. 

 

Fig. 9. Input validation sequence from small- to large-scale 

 

Large-scale input validation/Aggregated direct calibration (M-7): Randomized linear and 

normal distributions are highly efficient calibration techniques. But their effectiveness is limited if 

real-world distributions are neither linear nor bell-shaped. Especially predictive models require 

effectiveness through highly accurate and static calibrations. E.g. with the current random normal 

distribution, only a few Agents with z(i) > 2,000€ exist. Predictive scenario analyses with low 

competition and high market prices would result in unrealistic and misleading outcomes. We tackle 

this issue in our third input validation step. We aggregate microdata net income into 24 clusters, 

count the number of records per cluster, and transfer the results into NetLogo by creating as many 

Agents per interval as counted from microdata. E.g. if 100 microdata records included a net income 

between 2,000 and 2,300€, we create 100 Agents with a random net income between 2,000 and 

2,300€ in the simulation. Calibrations result in a close coherence to real-world microdata (see Fig. 

9). The maturity level of the model evolves from M-4 to M-7. 

Large-scale input validation/Microdata calibration (M-7): One-to-one mapping of single 

microdata records and modeled Agents is the objective in the fourth and final input validation step. 

Instead of aggregated clusters, net income from 10,936 microdata rows is directly integrated into 

the NetLogo model. Validation effort is notably higher, but three arguments to accept this 

additional effort exist: First, validity reaches its maximum level, which may be required in specific 

predictive situations. Second, Agent calibrations are entirely static in every iteration. Third, 

additional variables (in addition to net income) can be integrated into the model, including their 

real-world distributions and correlations across each other. The eligibility of these reasons varies. 

E.g. economic models most likely profit from additional analytics (third reason). Data Mining on 

adopter categories will showcase related benefits in our innovation diffusion example at the end of 

this section. Reasons one and two gain relevance in predictive simulations that tackle specific 

markets, networks, or environments. E.g. energy markets and logistic chains.   

Input validation

Small-scale Large-scale

Linear distribution Normal distribution Microdata calibrationAggregated calibration

No validation

Linear distribution
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NetLogo lacks built-in functionalities to integrate high volumes of empirical data. In principle, 

two possible integration alternatives exist: Direct integration into the programming code and 

external integration through the import of textfile content. Both alternatives as well as their 

strengths and weaknesses are explained in the appendix. In our example, the total amount of 

imported data contained 10,936 rows with 16 variables each. This is still an acceptable volume to 

integrate the data directly into the programming code. Net income is the only primary attribute, 

utilized for direct calibration of willingness-to-pay. The set of 15 secondary attributes included 

demographical information (e.g. age, gender) and socio-economic information (e.g. education and 

employment details). We will showcase Data Mining examples at the end of this section. 

Large-scale output validation/Matching (M-8): We switch back to output validation and tackle 

the maximum maturity level M-8. Indirect calibration fine-tunes the model. Objective is an exact 

matching of output time-series with real-world observations—in this case the General Bass Model. 

Indirect calibration differs from grounding in terms of methodology and effort. Sensitivity analyses 

repeat the simulation numerous times with varying parameter settings until model output and real-

world output match. We introduced two error-variables for tracking the deviation of the model´s 

periodic diffusion through Innovation and Imitation in comparison to General Bass Model time-

series. Error-variables cumulate the quadratic deviations of actual and target values. M and H were 

re-calibrated iteratively until all ratios match (see Fig. 10) and error-variables were minimal. 

Although we focus exclusively on M and H as input factors, more than 500,000 repetitions had to 

be performed to reach this state. 100 repetitions per configuration were necessary to factor-out 

contingency effects and output dynamics due to random Agent selections (we will follow-up on 

these desirable dynamics in section 2.7).  

 

 

Fig. 10. Large-scale indirect output calibration according to General Bass Model results 

 

The maturity level of the model evolves from M-7 to the maximum M-8. Now it could be used 

for all types of predictive purposes. E.g. forecasting the yearly adoption figures of the technology 

or analyzing the impact of different policy interventions to induce diffusion. We conclude this 

Output validation

Small-scale Large-scale

Sensitivity analyses

No validation
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example by showcasing the advantages of combining microdata calibration with Data Mining. Data 

Mining in commercial marketing typically connects behavioral statistics with individual 

characteristics of prospects, customers, or lost customers. Through microdata calibration we are 

able to generate similar statistics, because each of the 10,936 Agents offer an empirically validated 

demographical and socio-economic background based on 16 encapsulated variables. Agent 

behavior differs in several measures, e.g.: 

─ Awareness: Agent turned aware yes/no? Through mass media interactions or word-of-mouth? 

In which point of time? 

─ Adoption: Agent adopted the innovation yes/no? Was it Innovation or Imitation? In which 

point of time? Induced how many other Agents to turn aware/to adopt? Adoption price? 

 Data Mining on detailed statistics adds value to the interpretation of simulation outcomes. 

Autonomous behavior and related influencing factors can be analyzed in more detail. Comparisons 

between influencing factors enable predictions and explanations of Agent behavior. Table 3 

displays exemplary Data Mining results. Statistics include micro-level indicators, e.g. varying 

Agent states (all/adopters/Rogers adopter categories), as well as different macro-level outcomes, 

e.g. diffusion-level and diffusion-speed. Varying n(i) values per diffusion-speed of ‘All consumers’ 

is a nice example of contingency effects. Net income statistics confirm anecdotic diffusion 

knowledge: Innovators accept high prices, while the majority of consumers adopt when prices fall. 

Income is generally lower with high diffusion-levels, caused by fiercer competition. If more rivals 

step in, stronger price reductions induce adoptions of consumers whose willingness-to-pay would 

lead to non-adoption in situations with less competition. The number of neighbors n(i) confirms 

Epidemic theory. If mass media interacts with Agents who are surrounded by many Agents, more 

follow-up interactions through word-of-mouth will cause diffusion to proceed faster. Laggards 

have fewer neighbors, include smaller probabilities to receive an interaction, and therefore adopt at 

the end of the innovation lifecycle. Table 3 displays two secondary attributes to show the capability 

of microdata calibration to exclude certain parameters from behavior rules without losing the 

ability to include them in complex ex-post analytics. The number of weekly working hours as well 

as apartment size correlate with net income. These correlations influence final statistics per adopter 

category. 
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Table 3. Exemplary Data Mining results 

Agent characteristics All consumers All adopters Adopter categories 

Innovators Early 
Adopters 

Early 
Majority 

Late 
Majority 

Laggards 

Diffusion-level Net income (in €) 

 72% 1,597 1,822 2,294 1,813 1,760 1,765 2,007 

 73% 1,597 1,805 2,007 1,818 1,751 1,760 1,974 

 74% 1,597 1,802 1,976 1,824 1,748 1,754 1,969 

 75% 1,597 1,794 1,933 1,827 1,721 1,759 1,976 

Diffusion-speed No. of neighbors 

 17 years 10.49 10.58 10.52 10.75 10.88 10.58 9.86 

 18 years 10.47 10.57 10.45 10.78 10.85 10.56 9.82 

 19 years 10.47 10.56 10.47 10.76 10.84 10.56 9.79 

 20 years 10.45 10.54 10.44 10.72 10.82 10.55 9.79 

 21 years 10.40 10.44 10.27 10.62 10.59 10.53 9.81 

Secondary attributes:        

 No. of weekly working hours 38.89 39.77 40.31 39.82 39.60 39.61 40.27 

 Apartment size (in m²) 88.81 92.72 96.19 93.08 91.72 91.83 95.87 

 

 

Data Mining on secondary attributes could be used for different explanatory and predictive 

purposes. E.g. demand forecasts could help marketing managers with the optimization of marketing 

campaigns. Product managers could profit from target group analyses and include related needs and 

behavior findings into product development and product marketing activities. Finally, the enabler 

for all these benefits is microdata calibration. As Axelrod (2003, p. 6) states: “The complexity of 

agent-based modeling should be in the simulated results, not in the assumptions of the model.”  

2.7 Discussion and propositions 

This section discusses our most important findings from sections 2.3 to 2.6 and summarizes 

them in six propositions. Authors frequently state that their Agent-based model is empirically 

validated, but the term is flexible as the contradictory approaches in this paper show. How do 

validation approach and model´s objective fit? Which input factors have been validated? How 

accurately were real-world data integrated? We suggest other researchers could leverage our 

maturity matrix to answer these questions. We compare validation methods and derive their 

maturity based on potential tolerances of validated figures, deviations per repetition of the same 

model, and discrepancies to the real-world. These comparisons are perhaps our most valuable 

research contribution. Discussions on benefits and challenges per taxonomy allow modelers to 

select the most promising method in terms of effectiveness (validity) and efficiency (validation 

effort). Furthermore, readers of Agent-based studies are equipped with a scorecard to evaluate 

applied validation techniques and ultimately understand the author’s intention to choose one 

method instead of another. 
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As our stepwise innovation diffusion example shows, validation approaches differ remarkably in 

terms of effectiveness and efficiency. Complex microdata calibration causes huge validation efforts 

and makes numerous iterations (e.g. sensitivity analyses) challenging compared to simple 

randomized configurations. Nevertheless, both approaches may result in equal time-series in case 

of linear or normal empirical data distributions. Furthermore, many models do not profit from 

sophisticated and highly accurate microdata validation, because their primary objective is to 

explain emergent effects from the bottom-up. These models require only low maturity levels. 

Grounding is the best-suited taxonomy. Maturity requirements are difficult to standardize. 

Minimum requirements differ per model, as our explanations and examples show. We derive 

proposition P1 from these findings: 

 

P1: Validation requirements differ between Agent-based models. The best-suited empirical 

validation approach depends on (i) the model´s objective and (ii) the available empirical data. 

 

We used a straightforward distinction between two fundamental modeling objectives: 

Explanation and prediction. These two objectives cover the majority of published Agent-based 

models. Epstein (2008) discusses a variety of further objectives, e.g. the guidance of data collection 

and the training of practitioners. In order to cover a broad range of applications, we split the two 

categories into more detailed sub-categories. Fig. 11 visualizes these sub-categories and presents 

our maturity-related conclusions:  
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Fig. 11. Maturity requirements per model objective 

 

Explanatory models explain specific real-world observations in a virtual environment. The 

Agent-based paradigm is well-suited to explain a huge variety of observations, because many real-

world effects emerge from the bottom-up: Traffic jams, stock market crashes, epidemics, climate 

change, search engine algorithms, game theory, and other effects.8 We distinguish between two 

types of explanatory objectives: 

─ General: Explanation of general knowledge usually includes only a small number of 

parameters. Modelers focus on high-level results and not on the exact figures, e.g. the 

occurrence of an ‘S-’shaped innovation diffusion curve. Small-scale output validation 

(grounding) is adequate. 

─ Specific: Tackling of differentiated real-world observations requires proper input factors in 

order to isolate causal chains. Typically, very specific validation data is utilized to match 

model outcomes exactly with empirical statistics. E.g. researchers use specific explanatory 

Agent-based models to re-engineer, explain, and showcase emergent effects they previously 

measured in their own empirical studies.  

We derive proposition P2 from our findings: 

 

                                                           
8  See http://ccl.northwestern.edu/netlogo/models and http://www.openabm.org/models for various examples. 
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P2: Explanatory models require lower maturity levels compared to predictive models. 

Output validation is best-suited to validate explanatory models. 

 

On the contrary, models for predictive purposes embody fundamentally different validation 

requirements. Such models are characteristically more complex and include a higher number of 

parameters, because complex real-world activities should be mapped as realistic as possible. 

Furthermore, the significance of model outcomes relies completely on the model´s maturity level. 

Predictive models are useless without high validity, because (Agent-based) simulations simply 

calculate pre-configured procedures based on pre-configured variables. Garbage-in, garbage-out. 

Researchers need to validate all relevant input factors or need to decide which input factors could 

base on assumptions without jeopardizing the credibility of the model. As with explanatory models, 

validity requirements differ between sub-categories. They basically belong to one of the following 

types: 

─ Scenario analyses: A fully validated baseline configuration constitutes a basic setup. Further 

configurations that diverge in one or more parameters constitute scenarios. Scenario results 

are compared to the baseline. Typical applications are policy simulations and varying market 

conditions (best case, worst case, etc.). 

─ Forecasting: Only one focused model configuration is used to forecast future developments. 

Typically, unique empirical data is applied to answer very specific research questions. E.g. the 

yearly diffusion of an eco-innovation. 

─ Sensitivity analyses: Models include two sets of input factors. First, a set of validated 

calibrations that determine fundamental model behavior. Second, a set of non-validated 

parameters that is iteratively changed within a pre-defined parameter space. E.g. a biologic 

model that simulates epidemics could be repeated with various population densities, until the 

threshold reaches a critical mass for contagion effects. 

Predictive models rely on high validity through input validation. Three of the four key strengths 

of microdata calibration apply only with input validation. Output validation is naturally less 

important or even contradictory, due to the fact that researchers are interested in detailed values of 

output time-series. Large-scale output validation reduces the ability to predict developments and 

measure unexpected outcomes, because developments and outcomes were configured a priori. 

‘You get what you measure’. Researchers would jeopardize their main reason to build a predictive 

model through comprehensive output validation. One exception exists, as our stepwise innovation 

diffusion example shows: The baseline calibration in the context of scenario analyses. Baselines 

need to be as realistic as possible with the highest level of validity. Extensive validation is 
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mandatory. Scenarios build upon the baseline with varying input factors in order to tackle research 

questions that analyze the impact of these variables. Behavior rules are rarely changed. We derive 

our conclusions for predictive models in proposition P3: 

 

 P3: Predictive models require higher maturity levels compared to explanatory models. 

Input validation is best-suited to validate predictive models. 

 

The achievement of high maturity levels is challenging. It requires huge validation efforts, as our 

stepwise example confirms. Missing importing capabilities in Agent-based simulation software 

further complicates the process. We suggest researchers to follow a ‘divide and conquer’ approach. 

Our maturity matrix serves as a sub-structure. In a first step, the non-validated model (M-0) should 

be grounded (M-1). Grounding is the best starting point. It enables modelers to… 

─ evaluate the effectiveness of the model (is it qualified to fulfill the proposed 

explanation/prediction purpose?), 

─ perform internal validations (are functional requirements correctly transformed into 

executable code?), 

─ bound parameter configurations to plausible ranges (good preparation of input validation 

steps), 

─ evaluate the influence of each input factor (how strong does each factor drive model 

outcomes?), 

─ gain insight about causal chains within the model, and 

─ perform plausibility checks for scenario analyses (do outcomes change in the expected way if 

specific parameters change?). 

Most researchers perform simple output validation instinctively. Their preliminary expectations 

usually base on anecdotic knowledge. In addition, identification of functional errors in the 

programming code (internal validation) is almost impossible without grounding. E.g. a model could 

run forever, because the programming code for stop commands contains errors (internal validation 

necessary) or because empirically calibrated stop triggers mismatch simulation thresholds (external 

validation necessary). Without grounding that bounds parameter settings, the modeler can hardly 

distinct both root-causes. 

The next steps of the ‘divide and conquer’ approach focus on input validation (M-4 and M-7). 

We propose modelers to finish all input validation stages before switching back to output 

validation. Fig. 12 visualizes this suggestion in an overall sequence. We already explained the two 

primary reasons why input validation should be finalized in advance of large-scale output 
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validation in section 2.4: First, parameters are directly calibrated within input calibrations and 

therefore lead to higher validity. This is critical in case of conflicting calibrations, if output 

validation leads to different configurations than input validation. In these cases, the direct input 

configuration should be applied. Second, even small changes of input factors (variables, behavior, 

and world conditions) require a repetition of the entire large-scale output validation procedure. In 

contrast, direct calibrations are stable setups. Changes in one parameter will not affect the validity 

of other parameters. Our proposed sequence helps modelers to reduce rework to a minimum.  

 

 

Fig. 12. Proposed ‘divide and conquer’ validation sequence 

 

Matching (M-8) is the final step. Only a few reasons to perform both large-scale input and large-

scale output validation exist. As in our example, configuration of a baseline configuration is the 

most frequent reason. It is challenging mainly because of three reasons. First, yet-to-be-acquired 

data is often necessary to validate predictive models, as Tesfatsion (2010) describes in her 

prescriptive output validation. Second, time-consuming sensitivity analyses need to be performed 

in order to identify the ‘sweet spot’ configuration that best-matches real-world data. Depending on 

the number of input factors, several thousand or even millions of iterations are necessary. E.g. our 

sensitivity analyses on two variables (H between 0.2 and 0.8 in intervals of 0.05 and M between 

200 and 600 in steps of 1) and with 100 repetitions per configuration to factor-out contingency 
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required more than 520,000 model executions. About 6,000 runs per hour could be performed on a 

laptop with Intel Core i5 processor (4 kernels and therefore 4 parallel runs) and 4 gigabyte RAM. 

Overall runtime was 3.5 days. Even worse, huge proportions of sensitivity results become useless if 

any input factor is changed (rework). Third, further challenges arise if there is not a single ‘sweet 

spot’ but multiple, which is very often the case. The researcher needs to pick one configuration to 

promote it as the optimum setup. Proposition P4 concludes the explained sequence and its 

underlying trade-off between effectiveness (validity) and efficiency (validation effort): 

 

P4: Modelers should ‘divide and conquer’ their validation steps. An effective and efficient 

validation sequence (i) starts grounding, (ii) then focuses on direct input calibration, (iii) and 

finishes with indirect output calibration. 

 

Avoided rework and higher validity are not the only advantages of input validation compared to 

its output-related equivalent. Researchers should ask themselves why they selected Agent-based 

modeling as their research methodology. The majority of answers will stress bottom-up analyses, 

emergent behavior, and parallels of emergent effects in the real-world. Many Agent-based models 

profit from Agent heterogeneity and network effects (Agent interactions). Without at least one of 

these two aspects, other methodologies may be better suited, e.g. linear algebra (Rahmandad & 

Sterman, 2008). Heterogeneity and network effects naturally and intentionally lead to deviations in 

output time-series. Contingency is a determining factor in this context. Especially random Agent 

selections lead to instable and unexpected results. E.g. innovation diffusion evolves slowly in our 

example, if Agents with low adoption probability and small neighbor-counts are randomly selected 

during the first simulation periods. Vice versa, diffusion skyrockets if these potential Innovators 

and Early Adopters included opposite characteristics. A vivid example for instability is the ‘Wolf 

Sheep Predation’ model9: Sometimes sheep survive; sometimes wolves outlast sheep and then die 

due to missing prey. Sheep/wolf-population ratios may rotate in the process. We evaluate these 

dynamics to be highly desirable in Agent-based modeling. Large-scale output validation requires 

stable results and jeopardizes these dynamics. Modelers could be misguided through indirect 

calibration and induced to eliminate dynamics and contingency. A compromise is included in our 

example: We keep the dynamics in emergent behavior and accept varying error-factors (deviations 

between model output and the General Bass Model). Output validation is performed on the 

arithmetic mean from 100 repetitions per configuration. We derive proposition P5 from our 

findings: 

                                                           
9  See http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation. 
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P5: Input validation is superior in balancing validity and emergent dynamics. Arithmetic 

means from numerous repetitions enable output validation despite contingency and 

instability of outcomes. 

 

We devoted huge parts of this paper to microdata calibration. This highly accurate and granular 

method is rarely discussed from a methodical perspective, although it has been applied in several 

predictive occasions. We see great potential for microdata calibration to perform large-scale input 

validation in the context of Agent-based computational economics. Availability of empirical data is 

one driver, as our census data example shows. Another driver originates from the fact that 

microdata calibration results in the highest level of validity. A third driver arises from the conflict 

between input factor complexity and the requirement for simple and replicable models. Microdata 

calibration enables modelers to adopt the keep-it-simple principle and use only a few validated 

input parameters (primary attributes) without losing the ability to analyze further and potentially 

correlating parameters (secondary attributes). Our innovation diffusion example encapsulates 16 

census variables to configure and validate a comprehensive socio-economic background per Agent. 

Only one attribute triggers simulation outcomes. We perform Data Mining on micro-level output 

time-series like in commercial marketing. Data Mining gains insights about correlations between 

autonomous behavior and individual attributes of Agents. A split into primary and secondary 

attributes enables modelers to focus on a handful important primary variables without losing the 

opportunity to display impacts of secondary characteristics. Extensive ways to slice results are 

possible without inflating the model (e.g. split into adopter categories and their characteristics). 

Similar to large-scale output validation, Data Mining requires numerous simulation repetitions to 

generate solid results, because contingency effects influence model outcomes. These effects, e.g. 

random Agent selection as in our example, vanish after hundreds or thousands of simulation 

repetitions. We derive our last proposition P6 from microdata findings: 

 

P6: Calibration with the use of high-granular microdata leads to highest validity. It is best-

suited in the context of direct input validation. A combined application with Data Mining on 

output time-series helps researchers to keep models simple. 

 

A few limitations and follow-up discussions need to be considered. Our maturity evaluations try 

to cover a broad range of applications and include a straightforward categorization into small-scale 

and large-scale validation techniques. Two questions arise: First, where is the exact boundary 

between small- and large-scale? Our distinction is guided by our approach to work with or without 
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microdata, which offers a solid borderline. In contrast, the number of validated parameters is a 

vague distinction. How many variables need to be validated to consider a model to be large-scale 

validated? 50%? 75%? 100%? The second fundamental questions relates to the order of maturity 

levels. We clearly distinct between two dimensions and assume input validation leading to superior 

maturity compared to output validation. But is input validation always dominant? This may be 

questionable in some occasions. E.g. is large-scale output validation (M-2) less mature than 

approximation (M-3)? Another discussion point is the integration of cross-validation into the 

maturity matrix. Cross-validation compares a model with other models and may result in empirical 

validation, if the counterpart has been externally validated (Rand & Rust, 2011). 

With regards to microdata calibration, we see particular necessity to develop standardized 

procedures and functionalities to integrate microdata into Agent-based simulation tools. The 

immense data preparation, integration, and encapsulation efforts build huge obstacles for the 

adoption of this promising validation technique. Our step-by-step example covers just a few 

preparation activities. Other data may require extensive and more complex cleansing, enrichment, 

normalization, and/or formatting steps. Handling of high-volume record-sets exponentially 

increases the complexity across these activities. The import of huge record-sets is almost 

impossible with many software tools. Slow file-read functionalities and the unnecessary need to 

reload microdata afore each simulation repetition make sensitivity analyses virtually impossible. In 

order to promote the integration of microdata without explicit software functionalities, we provide 

two coding alternatives in the appendix. One alternative integrates the data directly into the model 

code, resulting in a remarkable acceleration of encapsulation procedures and experiment 

repetitions. 

2.8 Conclusion 

This study outlines a variety of external validation techniques for Agent-based models. 

Empirical validation is a major concern across academia, but comparisons between techniques are 

rarely published and under-researched. Fundamental sub-structures that are based on a holistic 

view are missing. There is demand for such reviews and frameworks since validity is one driver for 

its circulation of Agent-based methodologies in literature. Reviewers and readers typically face 

challenges in… 

─ estimating validation requirements per model, 

─ understanding the applied validation approach itself, 

─ evaluating potential alternative taxonomies and their pros and contras, and 

─ estimating the resulting level of validity. 
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This paper tackles these issues and reviews, compares, and categorizes different approaches in 

order to promote the Agent-based methodology. We develop a maturity matrix to create an 

underlying sub-structure that embodies two decisive factors: Validation-scope and validation-scale. 

Furthermore, we explain the nine maturity levels in detail, discuss compatible applications, 

underpin our concept through the stepwise validation of an innovation diffusion example, and 

conclude our findings in the form of six propositions. 

What do we learn from this paper? First and foremost, we confirm the complexity of the research 

area. A variety of differing validation taxonomies exist, with contradicting impacts per model 

objective. E.g. explanatory models may benefit from large-scale output validation, while the same 

approach jeopardizes the objectives and output dynamics of predictive simulations. ‘One size does 

not fit all’. The best-suited validation approach depends on the model´s objective and the available 

empirical data. We suggest researchers clearly state the model´s purpose, how and why they 

validated each input factor, and how validation affected the outcome. 

Furthermore, we suggest researchers stick with the keep-it-simple approach to avoid over-

parameterization. Too many models contain horrific amounts of parameters. Deterrent examples 

exist: Some models contain such volumes of variables, that these parameters do not fit into the 

paper´s methodology section and fill full-page tables in the appendix. It is virtually impossible to 

validate and/or replicate such models. Handling of complexity is the core capability in Agent-based 

modeling. But its root-cause originates from Agent heterogeneity and network effects, not from 

parameter overflow-handling. We present a microdata calibration technique to showcase a method 

that allows highest validity levels and utilizes core capabilities of Agent-based modeling: 

Heterogeneity, bottom-up economics, and output dynamics. 

2.9 Appendix 

2.9.1 Direct microdata integration in NetLogo 

NetLogo lacks built-in capabilities to integrate high volumes of microdata. In this appendix, we 

present two different ways to create and calibrate Agents based on imported microdata. The first 

way pastes all microdata records into the NetLogo code. No external file is required, therefore this 

method is advantageous if the model should be published on a webserver or needs to be sent via E-

Mail. Performance is a second strength compared to file-read approaches. Setup processes run 

faster, because the code is pre-loaded into the RAM without hard disk input/output activity. This is 

critical in case of sensitivity analyses with thousands of iterations. The following code includes six 
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microdata records with 16 variables per record, creates Agents, and encapsulates one line of 

microdata to each Agent: 

 

set microdata [ 

    [  53  1  1  2  844  52  8  98  -1  5  9  1  1211  400  -1  8  ] 

    [  61  1  8  -1  -1  -1  -1  -1  -1  1  5  4  2374  400  -1  15  ]  

    [  51  2  8  -1  -1  -1  -1  -1  -1  -1  -1  2  1059  10  -1  6  ] 

    [  45  1  1  6  51  20  8  40  -1  1  -1  1  1134  10  0  7  ] 

    [  70  1  8  -1  -1  -1  -1  -1  -1  1  -1  3  1462  10  -1  8  ] 

    [  29  1  1  6  481  45  8  35  -1  1  3  1  1588  10  -1  9  ] 

] 

foreach microdata [ 

    create-turtles 1 [set attributes ?] 

] 

2.9.2 External file integration in NetLogo 

Direct code integration is problematic with huge microdata files and if the data needs to be 

modified. File sizes would explode and NetLogo may collapse. Simple copy/paste integration can 

be utilized with small record-sets. But in computational economics, files typically include huge 

volumes of empirical respondents (rows) and variables (columns). The better option is an external 

file which is loaded during the setup stage of the model. The following code reads the tab-delimited 

text file ‘microdata.txt’, assumes 16 variables per record, and populates the microdata variable until 

the cursor arrives at the end of the text file: 

   

file-open "microdata.txt" 

set temp [] 

while [file-at-end? = FALSE] [ 

  while [length temp != 16] [set temp fput file-read temp] 

  set temp reverse temp 

  set microdata lput temp microdata 

  set temp [] 

] 

file-close 
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foreach microdata [ 

    create-turtles 1 [set attributes ?] 

] 

 

The fifth line includes an important code fragment for high-volume microdata imports: A 

combined use of ‘fput’ and ‘reverse’ commands. This command increases importing performance 

radically, because NetLogo uses singly linked lists (see NetLogo manual for detailed information). 

On low-performance hardware or with data tables exceeding hundreds of megabytes, ‘fput’ and 

‘reverse’ are necessary to enable acceptable performance. 
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3. Policy Induced Diffusion of Innovations
10

 

3.1 Abstract 

Three policies to induce innovation diffusion were simulated: Market liberalization, information 

policies, and monetary grants. Varying options for targeting, timing, and scaling were tested across 

these interventions. Adoption forecasts differ in effectiveness (speed and level) and efficiency 

(costs and welfare). One size does not fit all. Informational interventions accelerate adoption, but 

loose effectiveness in monopolies and with late timing. Monetary grants boost speed and level, but 

policy costs as well. Market structure is critical: Interventions in closed markets primarily favor the 

monopolist. Intensifying competition is an effective and efficient diffusion driver. Ten propositions 

conclude our findings. Regulators should combine policies to gain synergies and utilize strategic 

decision making of suppliers. Methodically, a product agnostic and empirically validated Agent-

based model is applied. Consumers adopt due to Epidemic awareness-spread and attainment of 

Probit price thresholds. Suppliers act strategically upon Cournot competition. Supply-demand co-

evolution integrates both actors endogenously. Video documentation and public availability of the 

model should encourage other researches to replicate. 

3.2 Introduction 

Diffusion of innovations has been an important field of research for decades, focusing on 

product and process innovations as major sources for creative destruction (Banbury & Mitchell, 

1995). A variety of solid explanation models, drivers, and categorization frameworks have been 

developed (Geroski, 2000). These frameworks typically build upon empirical observations to 

explain autonomous adoption procedures. But in the last couple of years, a new research area was 

established: Induced diffusion of innovations. Regulators actively intervene in the diffusion 

procedure in order to artificially boost adoption-speed and adoption-level (Diaz-Rainey, 2009). 

Concern in this research area was developed due to recent inducements of ‘Green’ technologies: 

Climate protection initiatives and CO2 abatement goals require fast and widespread diffusion of 

e.g. organic fuel E10, photovoltaic, electric vehicles, and combined heat and power. ‘Green’ 

innovations are typically disruptive and may cause competitive advantages for economies 

(Christensen, 2000; Christensen et al., 1998). But design of effective and efficient inducements is 

                                                           
10  Rixen, M. & Weigand, J. (2012). Policy Induced Diffusion of Innovations. Unpublished manuscript. 
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difficult. Wrong decision making may cause non-adoption and/or uncontrollable costs. For 

instance, the German regulator Bundesnetzagentur failed to induce Smart Metering diffusion 

through market liberalization, because no competition developed. Contrariwise, its feed-in tariff 

approach pushed photovoltaic too effective: Diffusion synergies through extensive media coverage 

and economies of scale cause out-of-control policy costs. Allocation of these costs substantially 

increases electricity bills of every household. In general, policy makers typically face obstacles 

selecting the optimal intervention... 

─ type (e.g. market liberalization, information policy, monetary grant, or some combination 

thereof), 

─ targeting (e.g. geographical focus or adopter subgroup), 

─ timing (start-time and duration), 

─ scale (e.g. small vs. large magnitude). 

This paper´s objective is to evaluate policy options to induce adoption. We utilized an 

empirically validated and integrated demand-supply model that bases upon widely accepted 

diffusion models (namely Epidemic and Probit) as well as economic theory (Cournot competition). 

Utilizing Agent-based modeling enabled us to combine consumer adoption drivers in the form of 

network effects and adopter heterogeneity with strategic decision making of suppliers. Addressing 

a common shortfall in previous innovation work, we close the loop between innovation diffusion 

and industrial organization theory and verify the endogeneity between market evolution and 

competitive dynamics (Soberman & Gatignon, 2005). 

Scenario and sensitivity analyses give insight on different policy options as well as targeting-, 

timing-, and scaling-options. Results focus on their effectiveness (speed and level) and efficiency 

(policy costs and welfare effects). Findings contribute to the ongoing discussion about which policy 

framework is best-suited per innovation diffusion scenario. A variety of further scenarios isolate 

specific adoption drivers, confirm their impact, and guide future research on new and promising 

policy options. Our predictions should support lawmakers in the design of effective and efficient 

policies that leverage competitive dynamics, boost adoption-speed and -level, and combine 

interventions to gain synergies. 

We begin with literature reviews on adoption drivers that guided our methodology and policy 

design. Section 3.4 elaborates the Agent-based model. Section 3.5 presents simulation results and 

ten propositions on effective and efficient policies. Section 3.6 includes a discussion of the results. 

In section 3.7 we provide some concluded remarks and present future research directions.   
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3.3 Literature Review 

Innovation diffusion has been an interdisciplinary field of research for several decades. In 1969, 

Bass published a common pattern for the adoption of innovations (Bass, 1969). It was based on 

generalizations of empirical diffusion data for consumer durables, e.g. fridges, TVs, tumble driers, 

and air conditioners. His General Bass Model describes cumulative adoption as an ‘S’-curve (see 

Fig. 13). This scheme was developed further in later works (Bass, Krishnan, & Jain, 1994; Mahajan 

& Muller, 1979; Mahajan, Muller, & Bass, 1995a). Two indicators measure the performance in this 

scheme: Speed and level of adoption. In this study, we utilize both indicators to evaluate 

effectiveness of policy options to induce diffusion. Induced diffusion tackles questions of how 

regulatory interventions accelerate the adoption process (speed) and how they increase the long 

term penetration rate (level) (Diaz-Rainey, 2009). Consumer durables with short product lifecycles, 

high risk to be imitated, and/or huge development effort rely on fast speed. A quick attainment of 

the critical mass is crucial: From this point, enough individuals adopted the new product to induce 

a self-sustaining continued adoption (Rogers, 2003). On the contrary, level describes the 

innovation´s penetration rate (a.k.a. saturation). Some products gain huge shares in the target 

market, e.g. Microsoft Windows. While others, e.g. Linux, attract specific subgroups and reach only 

small levels. Target groups and their adoption timing are primarily determined by heterogeneity of 

adopters. Rogers established five adopter categories that describe and explain impacts of 

heterogeneity on adoption decisions (Mahajan et al., 1990). These five categories are divided by 

adoption timing (see Fig. 13). Adopters in each category differ in several characteristics, e.g. in 

their communication channels, readiness to assume risk, and social affiliation (Rogers, 2003). 

 

Fig. 13. Diffusion drivers, ‘S’-curve and adopter categories (Diaz-Rainey, 2009; Mahajan et al., 1990) 
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Our objective is to extend current diffusion research by simulating policies. We arrange the 

policy design in this study by the fundamental influencing factors that drive speed and level of 

adoption.  Depending on the direction of influence, these factors can also lead to the formation of 

barriers hinder adoption. Geroski reviews according fundamental influencing aspects (Geroski, 

2000). We conclude that state-of-the-art models as well as effective and efficient policies require to 

embody Epidemic and Probit aspects: 

─ Epidemic: Information transmission through network effects is vital in Epidemic models. 

Learning drives adoption. The ‘S’-shape results from contagion effects in interactions. 

Awareness rises exponentially when word-of-mouth of Innovators and Early Adopters trigger 

the awareness of residual buyers (Rogers, 2003). The General Bass Model is a famous 

Epidemic model. Bass explains the ‘S’-shape occurrence through a shift from external 

influence (mass media) to internal influence (word-of-mouth) (Mahajan et al., 1990). We 

setup scenarios with informational policies that induce external interactions. 

─ Probit: Probit models stress benefit-cost-thresholds, a.k.a. Probit thresholds. Utility drives 

adoption. Attainment of positive benefit-cost-ratios creates demand. The ‘S’-shape is 

explained via normal distribution of Probit thresholds in combination with price reductions 

over time (Geroski, 2000). For instance, costly phone tariffs prevent cutting edge cell phones 

to diffuse. Adoption kicks off when cheaper tariffs are launched that match willingness-to-pay 

of the mainstream. Frequent sources for price reductions are learning curves and economies of 

scale. Search costs, switching costs and opportunity costs may influence perceived utility. 

Economic risk and technical complexity create barriers that postpone the adoption or even 

cause resistance of potential adopters (Kleijnen, Lee, & Wetzels, 2009). We setup scenarios 

with monetary policies in the form of purchase bonuses for consumers. 

Supplier competition is another influencing factor in the innovation adoption process. 

Intensifying competition induces adoption, leading to a more rapid and higher level of diffusion 

(Gatignon & Robertson, 1989). It is rarely mentioned in literature compared to Epidemic and Probit 

models which appear frequently. We see competition not as a third driver, because the influencing 

root-causes are cost and price reductions since suppliers compete in quantities or price (Robertson 

& Gatignon, 1986). Competition models and Probit models are very similar. We see competition as 

an important building block to calculate market quantities and prices in diffusion models. Our 

paper extends current research by including all three forces in a single model: Epidemic, Probit, 

and competition. Contribution is leveraged by the use of widely accepted Cournot competition 

theory to model entry, supplier conduct, and price. Market structure is critical. A shift from 
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Monopoly to Oligopoly causes sales to take off (Bayus, Kang, & Agarwal, 2007). As a result, we 

incorporate market liberalization as one policy option. 

Examples of models that factor-in Epidemic and Probit effects exist. E.g. Cantono and 

Silverberg describe a diffusion model in the context of eco-innovations (Cantono & Silverberg, 

2009). Nevertheless, current models lack competitive supply-side dynamics, although findings 

showcase the importance of an endogenous relationship between supply and demand: Epidemic 

consumer awareness-spread increases sales potential, firm entries become profitable, rivalry ends 

up in Probit effects leading to innovation adoption (Vettas, 1998). Endogeneity arises when 

adoptions trigger the awareness of other potential adopters. These endogenous links between 

competitive dynamics and market evolution are under-researched (Safarzyńska & van den Bergh, 

2010; Soberman & Gatignon, 2005). We explicitly tackle these links in our model to contribute 

current research via supply-side dynamics. 

Timing and order of entry drive firm profitability in growth markets (Aaker & Day, 1986; Lilien 

& Yoon, 1990). Consideration of first-mover advantages and follower strategies is crucial to 

understand competitive dynamics (Klepper, 1996, 2002). Pioneers spark off innovation diffusion 

and have long-term impact on adoption-speed and -level. Followers enjoy free-rider benefits but 

need to handle fierce competition (Parker & Gatignon, 1996). Late entrants face decreasing market 

potential due to saturation. But competitive dynamics and its driving forces on innovation diffusion 

are not limited to market entry. Market saturation and market exit decisions correlate. In the 

innovation adoption context, market potential explicitly decreases when the ‘S’-curve crosses the 

point of inflection. In line with the Industry Lifecycle, firms leave the market and shakeout begins 

(Gort & Klepper, 1982; Klepper, 2002). We analyze these under-researched endogenous links in 

our simulation. 

In methodical terms, integration of network effects (Rogers, 1976) as well as adopter 

heterogeneity (Herbert, 2006; Rogers, 2003) are critical model requirements. Providing an 

advantage over differential equation models, Agent-based models are able to handle the complexity 

of both requirements (Gordon, 2003; Rahmandad & Sterman, 2008). These capabilities are critical 

factors within innovation diffusion research and make Agent-based modeling a promising venue 

for developing new diffusion theory (Macy & Willer, 2002; Rand & Rust, 2011; Zenobia et al., 

2009). Published models confirm the advance praise and showcase effective ways to combine both 

requirements in explanatory simulations (Cantono & Silverberg, 2009). 

Agent-based modeling became widespread in numerous scientific areas during the last 20 years 

due to progress in computer hardware and software (Heath et al., 2009). An Agent-based model is a 

conglomerate of decision-making entities and behavioral rules, simulated in a shared environment 
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(Bonabeau, 2002). Autonomous Agents inspect their current state time step per time step and act 

based upon predefined behavior rules. Analyses on input/output histories and transitions within the 

model give insights about micro behavior and macro system results (Zeigler et al., 2005). 

Simulations contribute to scientific discussions via analysis of emergent and immergent effects 

(Edmonds, 2010): 

─ Micro on Macro: How do shifts in individual behavior affect the overall system? 

─ Macro on Micro: If environmental conditions change, in which way does individual Agent 

behavior evolve? 

Handling of numerous input variables to reconstruct complex systems and complex behavior is a 

key capability of Agent-based models (Edmonds, 2001a; Holland & Miller, 1991). This advantage 

opens a wide range of applications in several disciplines including Economics, Social Sciences, and 

Biology. As Epstein summarizes, different reasons for Agent-based modeling exist: Prediction is 

the most important, others include explanation and education (Epstein, 2008). Many published 

models simulate ‘Homo oeconomicus’ attitudes. Epstein´s and Axtell´s Sugarscape model is a 

famous example in this category (Epstein & Axtell, 1996). Stock market crashes, spread of 

epidemics, appearances of traffic jams and panic escape behavior are further applications. 

However, the use of Agent-based models is not limited to human-Agents, as examples in supply 

chain management, climate change and search engine algorithms prove. 

Handling of complexity is a key strength of the Agent-based paradigm, but it is also a major 

source for errors and critique (Axelrod, 1997; Galán et al., 2009; Leombruni & Richiardi, 2005). 

An increasing number of variables, rules, and conditions lead to difficulties in replicability and 

validity, often described as over-parameterization. Replicability is the ability to re-produce and re-

execute models in different frameworks (Rahmandad & Sterman, 2008). It is a fundamental 

requirement to produce reliable simulation results. Simplicity avoids over-parameterization. 

Modeling approaches based upon simple rules and few configuration parameters are superior in 

terms of interpretation and replication. They do not necessarily produce simple results. In contrast, 

simple predictors frequently result in complex behavior, if they are executed in a multi Agent 

environment. Axelrod´s KISS principle (‘keep it simple, stupid’) best describes this widely accepted 

methodology within the scientific community (Axelrod, 1997). “The complexity of agent-based 

modeling should be in the simulated results, not in the assumptions of the model.” (Axelrod, 1997, 

p. 6). Validity is a two-dimensional requirement: Internal validity focuses on the model´s 

correctness in terms of simulation (programming) code. External validity, a frequent subject and 

hot topic in literature, targets the matching of simulation configuration with real-world 

observations (Carley, 1996). Validity in our model comes through the integration of empirical data 
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and the ‘grounding’ with solid models and theories, like the use of Cournot competition and the 

General Bass Model. External validity is crucial to avoid crude input-output simulations and to 

build meaningful models for policy analyses. 

3.4 The Model 

3.4.1 Objective, assumptions, and policy design 

Our model´s objective is to simulate innovation adoption within an integrated demand-supply 

environment that allows an evaluation of policies.11 The underlying demand function links demand 

and supply in a multi Agent-based simulation. The function is determined by learning status 

(awareness for the product) and individual price thresholds (willingness-to-pay) of consumers. 

Furthermore, the function drives market entry and exit decisions as well as quantity and price. Put 

simply, diffusion proceeds if interactions distribute awareness (Epidemic effect) and rivalry 

reduces the market price (Probit effect). Adoption drives supply-side rivalry and vice versa rivalry 

determines pricing and therefore adoption. 

We utilize Cournot theory to calculate competitive dynamics. Cournot competition is a widely 

accepted economic theory that explains an oligopolistic industry structure in which companies 

compete on the quantity of output they produce (Besanko et al., 2007). Suppliers share same 

parameters. This simplifies our model and reduces overall complexity in line with the KISS 

principle. Firms... 

─ produce a homogeneous product (no differentiation), 

─ do not cooperate (no collusion), 

─ have market power (each output decision affects market price), 

─ define their output quantity simultaneously, 

─ maximize profits, 

─ share identical cost structures (variable and fixed costs). 

Simulation of policies is crucial since induced diffusion is in scope of our analysis. Regulators 

face different decisions in policy design. Our analysis is guided by four dimensions: Type, 

targeting, timing, and scale of intervention. Type defines the kind of policy: Market liberalization, 

information policies to educate consumers, monetary grants in form of purchase bonuses, or 

                                                           
11  The NetLogo code and screenshots are available on http://www.openabm.org/model/2609. A video documentation 

“Policy induced diffusion of innovations” is available online at http://www.youtube.com/watch?v=9jNTl7TloLM. 

Code extracts are listed in the appendix of this paper. 
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combinations thereof. Eight predefined scenarios measure this dimension (see Table 6). Targeting 

tackles the decision of which target group should be in scope for the issued policy. Anybody? A 

regional subgroup? Consumers with small income, little spending power, and low probability to 

adopt? Six different targeting options are included in our model. Timing of intervention is the third 

dimension. Timing includes the point of time as well as the duration of intervention. Scale is the 

fourth dimension and describes the magnitude: The number of periodically educated consumers 

within info policies and the size of purchase bonuses within monetary interventions. We leverage 

sensitivity analyses to measure impacts in the timing and scale dimensions. 

Policy outcomes are evaluated in two directions: Effectiveness and efficiency. Effectiveness is 

primarily measured via acceleration (adoption-speed) and saturation effects (adoption-level) (Diaz-

Rainey, 2009). An effective policy initiates consumers to adopt earlier and/or induces consumers, 

who would not adopt without the intervention, to adopt. Efficiency measures the trade-off between 

policy effectiveness and associated costs. For instance, policies may boost adoption-speed and -

level remarkably, but generate extraordinary costs. Evaluations include policy costs as well as 

welfare effects in terms of consumer surplus and supplier surplus. 

3.4.2 Structure and procedures 

We explain the model´s functioning stepwise. Twelve steps sequentially divide the simulation 

process. The first and last steps bracket a loop that contains the repeated calculations per time-step. 

These calculations can be classified into three blocks: Demand, supply, and adoption. One loop-

repetition represents one simulation period. The loop is performed in an iterative manner until an 

exit condition is reached. Fig. 14 plots the end-to-end process flowchart in Unified Modeling 

Language (UML). 
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Fig. 14. UML flowchart of model procedures 

 

The simulation starts with initial configurations that populate the ‘World’ with a set of N = 

10,000 consumer Agents I = { 1, 2,…, N } and 20 supplier Agents. Global constants and scenario 

constants are calibrated. Global constants remain unchanged across experiments, while the three 

scenario constants determine our eight predefined scenarios. Table 4 presents all constants and 

variables. In distinction to constants, variables are calculated periodically and drive periodic 

outcomes, e.g. market price p. 

Consumer Agents change their status: At the beginning, all Agents are unaware (subset Iunaware). 

They turn aware if they receive a mass media or word-of-mouth interaction (subset Iaware). 

Innovation gives initial impulses while imitation sparks off widespread diffusion. The General 

Bass Model is applied to empirically validate these communication processes. In line with common 

coefficient estimates from empirical data, we calibrated a coefficient of innovation (a.k.a. external 

influence or advertising effect) of 0.03 and a coefficient of imitation (a.k.a. internal influence or 

word-of-mouth effect) of 0.38 (Mahajan et al., 1995a). The coefficient of imitation is indirectly 

calibrated through local dispersion measured by the individual number of neighbors n(i) in the 

Agent´s ‘Small World’. It represents the environment of surrounding Agents to interact with. A 

screenshot in the appendix visualizes the resulting communication activity (chart ‘Awareness 

Spread’). If an Agent receives an interaction and turns aware, he decides in the same period 

whether to adopt (subset Iadopters) or not (subset Inonadopters). The decision is driven by the Agent´s 

individual price sensitivity z(i) and actual market price p. We assume that net income and price 

sensitivity correlate and use net income distribution from census microdata to empirically validate 
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z(i) in line with general assumptions of Probit theory and Adopter characteristics (Geroski, 2000; 

Rogers, 2003). 

 
Table 4. Parameter overview 

Parameter Type Description Value Comment 

N Global const. Population (no. of consumers) 10,000  

Nexit Global const. Exit condition (no. of consumers) 1,000 Simulation ends if 90% of consumers are 

aware 

Cvar Global const. Variable costs 30€  

Cfix Global const. Periodic fixed costs 1,000€  

D Global const. Periodic mass media interactions 225 Empirical validation via General Bass Model 

z(i) Global const. Consumer i´s individual price sensitivity µ=1,307€ According to real-world income distribution 

n(i) Global const. Consumer i´s no. of neighbors µ=5.5 Empirical validation via General Bass Model 

L Scenario const. Market liberalization 1 or 0 L = 0 if monopolistic; L = 1 if liberalized 

M Scenario const. Additional artificial mass media interactions 0 or 225 M = 0 is default; M = 225 includes info. policy 

G Scenario const. Consumer´s purchase bonus 0€ or 200€ G = 0€ is default; G = 200€ includes grant  

f Variable Demand function with f=a*p+b   

a Variable Slope-factor of demand function   

b Variable Constant-factor of demand function   

q Variable Output quantity of each supplier   

p Variable Market price   

w Variable Supplier´s individual profit   

s Variable No. of suppliers   

 

 

Demand-side calculations: The adoption-loop begins on the consumer-side with a simulation of 

external (mass media) and internal interactions (word-of-mouth). Spread of awareness is the core 

driver in Epidemic theory. It assumes diffusion to be sparked off by mass media interactions, 

followed by epidemic rise in word-of-mouth causing the typical ‘S’-shaped curve (see Fig. 13). 

External and internal interactions trigger the awareness of consumers in our model. Periodically, D 

consumers are randomly selected and added to subset Iaware: 

 Iaware (t,D) = Iunaware { 1, 2, ...,  D } . (6) 

In case of an active information policy, M-additional consumers turn aware: 

Iaware (t,M) = Iunaware { 1, 2, ...,  M } . (7) 

Word-of-mouth interactions trigger awareness through imitation. Adopters of former periods 

(subset Iadopters) interact periodically with one unaware consumer within their ‘Small World’:  These 

consumers turn aware and are also added to subset Iaware: 

Iaware (t,n) = Iunaware { 1, 2, ..., Iadopters } with n(i) of Iadopters > 0 . (8) 

Altogether, these three subsets define the periodic subset of aware consumers: 

Iaware (t) = Iaware (t,D) + Iaware (t,M)  + Iaware (t,n) . (9) 
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Iaware builds the foundation to calculate the eminent demand function f with f = a * p + b. First, 

all Agents are sorted by z(i) in descending order. Second, a linear regression analysis to define 

slope a and constant b is performed. The y-value is z(i), the x-value is the order position. The 

following example illustrates the calculation of one period. We assume six aware consumers { z(1), 

z(2), z(3), z(4), z(5), z(6) } with z(Iaware) = { 100, 80, 60, 40, 20, 0 }. Linear regression gives slope 

a = -20 and constant b = 120. Demand function equals f = -20 * p + 120. 

Supply-side calculations: The following steps simulate strategic decision making of suppliers 

with Cournot linear algebra (Besanko et al., 2007). Suppliers compete in quantities. Demand 

function f links supply and demand. An essential assumption is ‘Cournot conjecture’: Each supplier 

aims to maximize profit w based on the expectation that its own output quantity decision will not 

have an effect on the decisions of its rivals. Suppliers assume their rival´s quantities to be the same 

as their own quantity and take the quantity of its competitors as a given. Market price p is set at a 

level such that demand equals the total quantity produced by all suppliers. We begin with the 

calculation of output quantity q in dependence of the number of suppliers s: 

q(s) = ( b - Cvar ) / ( -a * ( s + 1 ) ) . (10) 

Followed by the calculation of market price p for each q-s-tuple: 

p(q,s) = a * ( q * s ) + b . (11) 

Knowledge of q and p across all possible supplier situations s allows us to calculate individual 

profits w: 

w(p,q,s) = ( ( p(q,s) - Cvar ) * q(s) ) - Cfix . (12) 

From this point, we know how much profit w each supplier would generate in case s suppliers 

compete in the market. Strategic decision making implies that competitors enter the market to earn 

profits. Negative profits (w < 0) cause firms to leave. One exception is important: In ‘M’-scenarios 

with non-liberalized markets, one monopolist serves the market (s = 1). Entries are not allowed. In 

‘C’-scenarios with competition, as many profitable suppliers as possible enter the market: s is 

increased step by step until another entry would lead to negative profits. We pick up the above 

example with six aware consumers and assume a monopolistic market with Cvar = 0€ and Cfix = 

30€. The monopolist maximizes its profits at one half market quantity (q = 3): 

w(1) = ( ( 60 - 0 ) * 3 ) - 30 = 150 . (13) 

Market liberalization would cause two additional competitors to step in: 

w(2) = ( ( 40 - 0 ) * 2 ) - 30 = 50 and w(3) = ( ( 30 - 0 ) * 1.5 ) - 30 = 15 . (14) 
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Any additional entrant would generate losses: w(4) = -1.2. Thus, strategic decision making prevents 

this rival to enter and s is set to s = 3. As the example shows, competitive impact is radical. The 

evolution from monopoly to duopoly shrinks firm´s profits from 150 to 50 and ends up at 15 in the 

final instance (s = 3). The same procedure is applied to calculate exit decisions. Decreasing market 

potential reduces s and shakeout begins. One assumption includes the order of entry: According to 

Klepper´s survival patterns, earlier entrants are assumed to stay longer in the market compared to 

later entrants (Klepper, 2002). The first mover never leaves the market, because we do not allow to 

reduce s below s = 1. This may result in losses at the very beginning and/or the end of the 

simulation, when awareness and adoption is too low to cover fixed costs. But innovation diffusion 

would be impossible if all suppliers exit and nobody sells the innovation. 

Adoption calculations: After the final decision on the number of suppliers s, the next step 

randomly selects the total market quantity of q * s adopters from Iaware whose willingness-to-pay is 

greater than or equal to market price p: 

Iadopters = { 1, 2, ..., q * s } with z(i) ≥ p and Iadopters ϵ Iaware . (15) 

Residual aware Agents who were not selected are added to Inonadopters. Non-adopters are not eligible 

for further adoptions: 

Inonadopters = Iaware - Iadopters . (16) 

The periodic loop is repeated until the exit condition Nexit is reached. While other simulations 

typically set a maximum simulation runtime as exit condition, we can use awareness as a well-

suited exit trigger. The simulation loops until the number of residual consumers is lower than 1,000 

consumers: Iunaware < Nexit . 

The simulation ends with the calculation of key performance indicators (KPIs). KPIs are eminent 

to evaluate the outcome of each experiment. All KPIs have in common that they are calculated at 

the final time step when the exit condition becomes active. Table 5 explains our KPIs and how we 

used them to evaluate experiment outcomes. 
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Table 5. Key performance indicators 

KPI Description Calculation Interpretation 

LEVEL Cum. innovation diffusion after the final time step Iadopters / N How many consumers adopted? 

SPEED No. of time steps until exit condition is reached Max (t) How fast was the adoption 
procedure? 

FIRST No. of initial competitors (‘First Movers’) in t = 0 s (t = 0) How attractive was the market 

initially? 

MAXSU Maximum no. of suppliers across all time steps Max (s) How intensive was rivalry at the 

peak? 

PRICE Average adoption price across all adopters ∑ p / Iadopters How intensive was rivalry over the 
lifecycle? 

CPLUS Consumer surplus of adopters ∑ ( z(i) - p ) How did consumers profit from the 

policies? 

SPLUS Supplier surplus (measured as cumulative profits) ∑ ( ( p - Cvar ) * q ) - Cfix How did supplier(s) profit from the 

policies? 

PCOST Cumulative policy costs (scenario specific)1,2 ∑ ( Iadopters(t) * G ) + ( M * 250 ) How much did the issued policies 
cost? 

1 Monetary grants are accumulated only for adopters who received the grant. 
2 Assumption: Information policies cause periodic costs of M * 250€. The 250€ are derived as follows: The average market price across 
all competitive scenarios and across all simulated periods is 828€. We assume a 30% advertising share of total product price which leads 

to about 250€ in product-related advertising costs. 

3.4.3 Simulation execution 

We executed the model in NetLogo. It is a widely used Agent-based simulation tool. It is very 

professional in its appearance, documentation and usability and therefore popular among 

educational users (Railsback et al., 2006). Since random dispersion and random selection of 

consumers cause contingency effects, we perform numerous iterations to factor-out these 

contingency effects. Values presented in the results section are arithmetic means across 1,000 

repetitions per experiment. Information policies are modeled as additional artificial mass media 

interactions M that increase awareness. Monetary grants G are modeled as an increase of 

consumer´s price sensitivity z(i). E.g. if Agent i with z(i) = 1,000€ receives a purchase bonus G = 

200€, i will adopt at any market price p ≤ 1,200€. 

3.5 Results 

3.5.1 First dimension: Type of intervention 

Different intervention-types provide regulators with tools to induce diffusion. Our arsenal covers 

market liberalization, information policies, and monetary grants across eight predefined scenarios 

(see Table 6). M and C constitute baselines for monopolistic and competitive market structures.12 

Comparisons between both structures measure liberalization impacts. Fig. 15 and Table 6 present 

                                                           
12  We refer to a non-liberalized market as monopoly or monopolistic and describe liberalized markets as competition or 

competitive. However, flexible entry and exit of suppliers may cause liberalized markets to constitute monopolistic 

market structures if s = 1. 
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results across the eight predefined scenarios. Fig. 15 focuses on the visualization of periodic 

diffusion and its influencers awareness and competition. Table 6 shows end results based on our 

KPIs. LEVEL and SPEED measure policy effectiveness. Efficiency is evaluated by PCOST, 

CPLUS, and SPLUS. Other KPIs primarily measure competitive dynamics. 

 

 

Fig. 15. Cumulative diffusion, awareness, and Industry Lifecycle across the eight predefined scenarios 

 

All eight predefined scenarios show typical ‘S’-shaped diffusion, nevertheless they differ 

considerably in effectiveness and efficiency. In general, diffusion evolves when mass media kicks 

off initial awareness of Innovators and Early Adopters who adopt and cause further spread of 

awareness through word-of-mouth interactions (network effects). Demand-curve shifts to the right, 

appealing more suppliers to enter in case of liberalized markets. Monopoly evolves to an oligopoly. 

Synergies occur: Intensifying rivalry reduces market price p, which increases adoption ratios and in 

turn awareness. Shakeout begins when the ‘S’-shape proceeds to the point of inflection and demand 

saturation shifts the demand curve back to the left. 

 
Table 6. Configuration and KPIs across the eight predefined scenarios 

Scenario Description L M G LEVEL 

in % 

SPEED 

in years 

FIRST 

in firms 

MAXSU 

in firms 

PRICE 

in € 

CPLUS 

in T € 

SPLUS 

in T € 

PCOST 

in T € 

M Monopoly baseline 0 0 0 36 33 1.0 1.0 1,194 3,195 1,697 0 

MI Info policy in monopoly 0 225 0 36 19 1.0 1.0 1,218 3,210 2,252 1,139 

MG Purchase bonus in monopoly 0 0 200 40 29 1.0 1.0 1,304 3,564 2,635 797 

MIG Combined policy in monopoly 0 225 200 40 17 1.0 1.0 1,331 3,581 3,088 1,825 

C Competition baseline 1 0 0 50 21 1.0 3.6 947 4,763 593 0 

CI Info policy in competition 1 225 0 55 13 2.1 4.8 825 5,357 466 762 

CG Purchase bonus in competition 1 0 200 61 16 1.8 4.8 871 6,285 547 1,225 

CIG Combined policy in competition 1 225 200 65 11 3.0 6.0 766 6,937 348 1,977 
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Market liberalization: The above mentioned processes showcase Soberman´s and Gatignon´s 

ideas on supply-demand endogeneity (Soberman & Gatignon, 2005). But they occur only in 

liberalized markets. A monopolist has no incentive to reduce the price below the profit maximizing 

monopoly prize. Missing rivalry is a burden for consumers. It keeps off price reductions and 

prevents inclining adoption ratios of consumers. As a result, diffusion proceeds faster and attains 

higher levels in liberalized markets: M reaches a LEVEL of 36% after 33 years, while C ends up at 

50% in a SPEED of 21 years. Furthermore, efficiency ratios measure economic benefits in terms of 

CPLUS (consumer surplus) and SPLUS (supplier surplus). C results in a 49% higher consumer 

surplus compared to M and cuts monopolist´s surplus by -65%. Overall welfare (CPLUS + SPLUS) 

exceeds by 9%. We derive proposition P1. 

 

P1: Market liberalization induces diffusion effective and efficiently. 

 

Information policy: The second intervention-type forces suppliers to educate consumers. 

Scenarios MI and CI map this educational activity through a duplication of periodic awareness 

interactions. Surprising results occurred. Info policies are partly ineffective in monopolies, but 

highly effective in competition: LEVEL keeps unchanged in closed markets, whereas C predicts an 

increase from 50 to 55%. SPEED increases notably in both market structures, indicating that info 

policies generally accelerate diffusion of innovations. While effectiveness is limited in non-

liberalized markets, it is an effective and efficient tool in competition. Awareness shifts the demand 

curve, appeals more firms to enter, and amplifies rivalry in terms of quantity and price setting. 

Quicker adoption and higher adoption are striking examples how policy makers may utilize 

supplier conduct to induce diffusion, described by Robertson, Gatignon, and Vettas (Gatignon & 

Robertson, 1989; Robertson & Gatignon, 1986; Vettas, 1998). The effect is measurable through 

FIRST and MAXSU. PCOST and welfare KPIs underline the efficiency-boost of such educational 

stimuli. Consumer surplus rises by 67%, overall economic welfare by 7%. We derive our 

proposition P2. 

 

P2: Info policies accelerate diffusion efficiently. Diffusion-level increases if info policies 

induce competition. 

 

Discrepancies between outcomes stress the importance that policy makers need to decide about 

their primary inducement objective first: SPEED or LEVEL? 
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Monetary grants: Our 200€-bonus releases its effectiveness in any market structure. SPEED and 

LEVEL excel the baselines. But mechanisms differ: In an open market, bonuses induce market 

potential and intensify competition in favor of the consumer. Awareness and adoption interact 

synergistically. In closed markets, the monopolist skims the higher sales potential and increases 

market price by half of the consumer´s purchase bonus. The monopolist´s surplus rises. From a 

working principle, purchase bonuses increase adoption probability at a given market price, because 

more aware consumers will accept the price. Real-world examples exist especially among eco-

innovations, when purchase bonuses were released as an economic recovery instrument during the 

financial crises. E.g. as ‘Cash-for-Clunkers’ programs in the automotive sector. 

Generally speaking, a monetary intervention is an effective open market policy but favors 

primarily the monopolist in a non-liberalized environment. Efficiency depends on the grant´s scale. 

Costs accumulate non-linearly, because bonuses are paid out with each adoption decision. We 

derive propositionP3. We pick up a discussion on the trade-off between scale and related costs in 

section 3.5.4. 

 

P3: Monetary grants effectively induce speed and level of diffusion. Efficiency is limited to 

liberalized markets.  

 

Combined interventions: The primary objective of combinations is to gain synergies between 

inducements. But these synergies occurred only in liberalized markets. Synergies between rising 

awareness and intensifying competition induce SPEED and LEVEL stronger compared to all other 

predefined scenarios. Rivalry is engaged earlier with a higher maximum number of competitors 

entering the market. Price slumps quickly. Fierce competition cuts supplier profits while consumer 

profits rise. Overall welfare is highest in this scenario. On the contrary, no synergies occur in MIG. 

SPEED increases like in MI, whereas LEVEL and PRICE match MG results. The monopolist gains 

huge surpluses. The duplication of policy costs indicates that a combined intervention is 

disadvantageous from a benefit-cost-perspective. We derive proposition P4. 

 

P4: Synergies of combined policies are limited to liberalized markets. 

3.5.2 Second dimension: Targeting of intervention 

Policy makers use targeting to tackle the heterogeneity of adopters and limit interventions to 

specific subgroups. This ‘cherry picking’ may reduce policy costs (less recipients) and/or addresses 

certain adoption barriers (e.g. low income). Simulation results measure impacts in both positive and 
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negative directions. There is limited potential to increase effectiveness and efficiency, but there is 

much potential to reduce them with wrong targeting. We identified only one advantageous 

targeting option per policy. Regulators should apply it carefully. Table 7 explains our six targeting 

conditions and presents results for competitive markets. 

 
Table 7. Targeting impact in competitive markets 

Tar-
geting 

Consumers … Information Policy  Monetary Grant 

 LEVEL 

in % 

delta 

in % 

SPEED 

in years 

delta 

in % 

PCOST 

in T € 

delta 

in %  

LEVEL 

in % 

delta 

in % 

SPEED 

in years 

delta 

in % 

PCOST 

in T € 

delta 

in % 

all without targeting 

(= CI/CG) 

55 0 12.5 0 762 0  61 0 16.2 0 1,225 0 

z- with low willingness- 
to-pay z(i) 

54 -1 13.1 4 793 4  64 5 15.3 -6 681 -44 

z+ with high willingness- 

to-pay z(i) 

56 3 12.0 -4 730 -4  49 -19 21.4 32 594 -52 

n- with small no.  

of neighbors n(i) 

55 0 12.4 -1 755 -1  56 -9 18.4 14 601 -51 

n+ with large no. 
of neighbors n(i) 

53 -3 15.2 21 912 20  56 -9 18.3 13 594 -51 

area in specific 

geographical region 

52 -5 17.6 40 1,045 37  53 -14 19.7 21 290 -76 

Notes: 
We measured virtually no difference between market structures. We therefore chose CI and CG results to be displayed in this table. 

The ‘delta’ columns display the relative deviation to predefined scenario results CI respectively CG. 

Negative SPEED delta values are advantageous (acceleration). 

 

z+ is the only advantageous option with info policies. Targeting of consumers with z(i) above 

average of µ = 1,307€ results in slight 2-3% improvements across LEVEL, SPEED, and PCOST. 

This subgroup includes high adoption probability. As more consumers adopt early, awareness 

spreads faster. Contrariwise, other targeting options—especially a regional focus (area)—slow 

down circulation of interactions. We derive proposition P5. 

 

P5: Targeting of consumers with high adoption probability and spatial dispersion increase 

info policy effectiveness and efficiency. Additional execution costs may jeopardize the small 

benefits in the real-world. 

 

Targeting includes higher saving potentials with monetary grants. PCOST slump as the number 

of grant-receivers shifts from 6,100 to between 3,400 (z-) and 1,450 (area). But again, only one 

option increases policy effectiveness: z- tackles consumers with low willingness-to-pay who would 

not adopt otherwise and induce them to adopt. We derive proposition P6. 

 

P6: Targeting of consumers with low adoption probability increases effectiveness and 

efficiency of monetary grants. 
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Both propositions P5 and P6 contradict. Combined interventions face regulators with the 

challenge to de-couple targeting of both interventions. If this is not possible, they should solely 

focus on z- targeting: Grant-related z- benefits excel info policy-related z+ benefits. Furthermore, 

z+ causes strong negative effects applied with monetary grants. 

We performed data mining on micro-level characteristics to gain insights on targeting drivers. In 

line with Rogers (Rogers, 2003) and Mahajan et al. (Mahajan et al., 1990), we measured adopter 

heterogeneity through discrepancies in Probit and Epidemic characteristics. Fig. 16 visualizes 

statistics per adopter category in the C-scenario, explaining why z-options (huge gaps across 

categories) affect diffusion stronger than n-options (small gaps). Furthermore, the figure displays 

the empirically validated shift from innovation to imitation. 

 

 

Fig. 16. Adopter characteristics per category in scenario C 

3.5.3 Third dimension: Timing of intervention 

Policy makers need to decide about policy start-time and duration. Sensitivity analyses measure 

clear results across all scenarios: Early interventions are superior in effectiveness and efficiency. 

Almost linear correlations between start-time and effectiveness ratios exist. On the contrary, 

duration correlates in a non-linear fashion with LEVEL and SPEED. Small durations increase 

effectiveness, while long durations are counterproductive in terms of efficiency. LEVEL in the MI-

scenario keeps unchanged and is the only exception. We derive propositions P7 and P8. 

 

P7: Early policy start-times increase their effectiveness and efficiency. 

 

P8: Short policy durations increase their efficiency. 

 

Keeping policy costs in mind, lawmakers do best if they intervene early and over a short 

timeframe. E.g. an info policy issued at the beginning and executed over a period of just ten years 

1.500

1.550

1.600

1.650

1.700

1.750

1.800

1.850

1.900

1.950

2.000

Innovators Early 

Adopters

Early 

Majority

Late 

Majority

Laggards

Average price threshold z(i) in €

4,6

4,8

5,0

5,2

5,4

5,6

5,8

6,0

Innovators Early 

Adopters

Early 

Majority

Late 

Majority

Laggards

Average no. of neighbors n(i)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Innovators Early 

Adopters

Early 

Majority

Late 

Majority

Laggards

Innovation (mass media) Imitation (word-of-mouth)

Average share of awareness-spread



Chapter 3: Policy induced diffusion of innovations 66 

 

 

boosts SPEED from 33 to 24 in the MI scenario with a 65% less policy costs. These findings are in 

line with earlier publications on Epidemic models that stress external influence through mass media 

to create initial awareness impulses (Mahajan et al., 1990). 

Timing is most important in competitive markets and with opening of markets. Inducements gain 

synergies from more intense competition in case they are released before the Industry Lifecycle 

reaches its climax. CI, CG, and CIG Industry Lifecycles in Fig. 15 indicate these synergies: Early 

timing shifts the rivalry-peak to an earlier and higher maximum. These effects are crucial with 

respect to market liberalization. Late liberalization reduces market potential for entrants. Early 

liberalization (t < 9) engages three or four rivals to compete (measured via MAXSU), whereas late 

liberalization (t > 11) reduces MAXSU to two suppliers. 

3.5.4 Fourth dimension: Scale of intervention 

Appropriate scale is important due to trade-offs between policy costs and policy effectiveness. 

Small magnitudes are cheaper, but could be ineffective. Large scales might burn money. 

Predictions differ strikingly between KPIs and confirm our findings from the type-dimension: 

LEVEL is little (CI) or not (MI) scalable with informational inducements (see Fig. 17; the x-axis is 

calibrated to predefined scenario configurations. 0% are the default values M = 225 and G = 200€). 

Contrariwise, declining slopes indicate good scalability to trigger SPEED in both market structures. 

In terms of monetary grants, LEVEL correlate in a linear fashion and with high sensitivity. 

SPEED-slope is slightly progressive. Taking efficiency into account, regulators face inclining 

PCOST-slopes for grants and declining slopes with info policies. Policy-related costs are higher in 

monopolies due to longer execution durations compared to competitive markets. No scalability 

synergies occurred within combined intervention scenarios. We derive propositions P9 and P10. 

 

P9: Info policy effectiveness and efficiency decrease as intervention-scale increases. 

Scalability is low. Small-scale info policies efficiently accelerate diffusion. 

 

P10: Monetary grants are highly scalable to induce speed and level of diffusion. Efficiency 

decreases as intervention-scale increases. 
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Fig. 17. Scale-sensitivity for LEVEL, SPEED, and PCOST 

 

In sum, SPEED is best induced via educational policies, while LEVEL is best induced by 

monetary grants. Policy makers should decide on the objective first (SPEED or LEVEL) and then 

pick best-suited interventions. Authorities can rely on the effectiveness and scalability of monetary 

inducements. This applies at any stage in the innovation lifecycle, as timing results showed. Rising 

and upward-sloping PCOST is a trade-off every lawmaker needs to consider. Targeting should be 

applied to minimize costs and boost efficiency. Monetary grants are the tool of choice to leverage 

scalability and induce diffusion sharply. But regulators need to take huge surplus imbalances into 

account in non-competitive markets: Monopolists profit massively from large-scale bonuses. 

3.5.5 All dimensions: Forecasting, optimization, and validation of propositions 

In this subsection, we forecast inducement effectiveness and efficiency across all four 

dimensions. Then, we reuse these forecasts to optimize parameter configurations, search for ‘sweet 

spots’, and validate our propositions. 

(Agent-based) Simulations excel other methodologies through the ability to perform numerous 

repetitions with varying parameter settings (Holland & Miller, 1991). Scenario and sensitivity 

analyses enable lawmakers to test policy configurations in a virtual environment to forecast the 

success of inducements. E.g. in the context of innovation diffusion, the attainment of politically 

committed levels within given timeframes. Ongoing target-actual-comparisons and early warnings 

for deviations help lawmakers during the execution, e.g. to re-evaluate strategies in time. Fig. 18 

visualizes LEVEL-PCOST-forecasts in our model. 12,000 configurations factor-in both market 

structures, timing of liberalization, targeting, start-time, duration, and scale settings. Regulators 

would design policies by setting a minimum LEVEL and/or SPEED and then select the most 

efficient configuration setup. PCOST differ notably: In our example, 90% in LEVEL could be 
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induced with PCOST between 3 and 9.5 million €. Even with massive inducements, adoption-

levels in monopolies fall far short of competition.  

 

 

Fig. 18. LEVEL-PCOST-forecasts across all dimensions 

 

We use the same forecasts to optimize policy parameter settings and find ‘sweet spots’. These 

optimizations need to perform at least as good as the equivalent predefined scenario in LEVEL, 

SPEED, and PCOST. Results stress four striking findings. First, optimizations for LEVEL and for 

SPEED show identical configurations. In other words: Optimization for LEVEL is also an 

optimization for SPEED and vice versa. LEVEL and SPEED interrelate. This is the reason why we 

group both optimizations in Table 8. Second, statistics predict huge improvements compared to 

predefined scenarios: PCOST reduces up to -74% (with LEVEL and SPEED capped). LEVEL 

increases up to 23% (PCOST and SPEED capped). SPEED is accelerated by up to -44% in runtime 

(PCOST and LEVEL capped). Third, all optimizations use z- for informational and z+ for 

monetary targeting. Start-time is set to the earliest point of time t = 0. These settings confirm our 

findings in dimensions two and three. Fourth, there is no dominant configuration that maximizes 

both effectiveness and efficiency—the latter in terms of PCOST and welfare. Regulators still need 

to set objectives especially if intervention costs are budgeted.  
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Table 8. Optimization of policy design for LEVEL, SPEED, and PCOST 

Scen. Optimized for … Configuration Simulation results 

  M G Duration LEVEL  SPEED  PCOST  MAXSU CPLUS SPLUS 

  index1 in € in years in % Δ² in years Δ in T € Δ in firms in T € in T € 

MI PCOST 720  3 38% 6% 19 0% 540 -53% 1 3,163 2,424 

 LEVEL/SPEED 870  5 39% 9% 16 -17% 1,088 -5% 1 3,201 2,662 

MG PCOST  170 16 40% 0% 29 0% 179 -77% 1 3,232 2,256 

 LEVEL/SPEED  370 no limit 49% 23% 22 -23% 774 -3% 1 3,605 3,306 

MIG PCOST 750 180 3 40% 0% 17 0% 610 -67% 1 3,166 2,686 

 LEVEL/SPEED 970 680 3 51% 28% 10 -42% 1,823 0% 1 4,030 4,214 

CI PCOST 800  1 57% 4% 13 0% 200 -74% 7 5,797 351 

 LEVEL/SPEED 760  4 61% 12% 9 -28% 760 0% 7 6,442 250 

CG PCOST  160 no limit 61% 0% 16 0% 502 -59% 4 5,800 563 

 LEVEL/SPEED  290 no limit 73% 19% 14 -14% 1,181 -4% 5 7,080 468 

CIG PCOST 580 260 3 65% 0% 9 -17% 825 -58% 7 6,848 279 

 LEVEL/SPEED 1230 390 3 75% 15% 6 -44% 1,969 0% 9 8,417 283 

Notes: 
Late liberalization is not displayed because C results would occur. Configurations include z+ targeting for informational and z- targeting 

for monetary interventions. Start-time of all interventions is year 0. All optimized configurations must reach a minimum in LEVEL, 

SPEED, and PCOST of predefined scenario results. 
1 Mass media interactions M are measured as the periodic number of consumers to interact with.  
2 Delta is calculated between the optimization and predefined scenario results. See Table 6 for predefined scenario outcomes. 

 

 

In a final step, we utilized the optimized configurations from Table 8 to validate our propositions 

within the boundaries of our model. We assume our ten propositions (derived in isolated 

dimensions) to be validated, if optimized settings (across dimensions) are in line with these 

propositions. In sum, six propositions are confirmed, two are only partly confirmed, and two are 

rejected: 

─ Comparisons of optimized monopolistic scenarios with its competitive equivalents confirm 

proposition P1. Liberalized markets excel monopolies in both effectiveness and efficiency. 

Policy makers should consider market liberalization as a preliminary requirement in advance 

of any other inducement. 

─ Proposition P2 is only partly confirmed. Competition is a primary efficiency-driver, but MI 

shows surprising and contradicting results: A large-scale short-timed informatory policy 

slightly increases LEVEL to 39%. We conclude that even without competition, info policies 

may induce diffusion-level. 

─ Proposition P3 is confirmed. MG and CG show the effectiveness of purchase bonuses, but 

efficiency is limited to CG. The monopolist is the profiteer in closed markets. 

─ Proposition P4 is only partly confirmed. No synergies exist in monopolistic markets: MIG is 

only an accumulation of MI- and MG-inducements. In CIG, the increase in MAXSU indicates 

synergies, but LEVEL- and PCOST-outcomes reject these indications. Furthermore, too many 

influencing factors (especially targeting) determine CIG-results to fully validate P4. 
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─ Both targeting propositions P5 and P6 as well as start-time proposition P7 are confirmed, 

because all optimized scenarios embody corresponding configurations: z+ respectively z- 

targeting and start-times of t = 0. 

─ Proposition P8 is rejected by scenario CG. Short durations do not generally optimize 

efficiency. CG is optimized through a small scale in combination with a long duration. 

─ Proposition P9 is rejected. Optimizations indicate scalability (M between 580 and 1,230), but 

only in combination with short intervention durations. In fact, all relevant optimized scenarios 

included large-scale info policies. 

─ Proposition P10 is confirmed. Monetary grants are highly scalable with trade-offs in 

efficiency. Optimizations show a wide range of configurations (G between 160 and 680€) and 

outcomes in terms of costs and welfare.  

3.5.6 Further scenarios 

We analyzed a variety of further scenarios that were not mentioned in the above sections. 

Objective was to isolate specific drivers, confirm observations, and further validate our findings. 

The relevance of intensifying competition was tested in entry barrier scenarios. Adding fixed entry 

barrier costs to the C scenario results in less supplier entries and less intensive rivalry. SPEED and 

LEVEL decrease in line with barrier-magnitudes, until barriers completely prevent suppliers to step 

in. From this point, output equals M. 

Supply-side bonus scenarios evaluated subsidies for suppliers. We reduced variable costs instead 

of consumer price thresholds. Identical SPEED and LEVEL results as in MG and CG occured. The 

modified cost structure leads to price reductions in the same amount as purchase bonuses affect 

consumer´s willingness-to-pay. Suppliers pass their cost advantage to the consumer via lower 

prices. In the real-world, this is questionable because of ‘homo oeconomicus’ attitudes and profit 

maximization strategies. 

Low innovation scenarios inspected the impact of Agent heterogeneity on competitive dynamics. 

We reduced the coefficient of innovation (see section 3.4.2) from 0.03 to 0.01 and less. With many 

innovations, the coefficient is smaller than 0.01 (Mahajan et al., 1995a). Such configurations led to 

slower diffusion (as expected), but also to high deviations in competitive dynamics. Surprisingly, 

MAXSU ranged between one and four suppliers. Without any other changes in parameter settings, 

one iteration ends up in a highly competitive market with four competitors while the next iteration 

creates a monopoly. The root-cause is Agent heterogeneity in terms of z(i) and n(i). If random 

Agent selection of initial mass media interactions chooses consumers with high adoption 

probability and many neighbors, then diffusion sparks-off. Co-evolution of adoption, awareness, 
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and demand-curve entices more suppliers to step in. A discussion how suppliers may utilize this 

supply-demand endogeneity for strategic positioning is included in the following section. 

Further optimization configurations were tested without the general requirement to perform at 

least as good as the predefined configuration in all three KPIs. For example, we tested which 

LEVEL can be reached with the same budget in PCOST without SPEED requirements. 

Optimizations resulted in extreme values for all parameters. E.g. large-scale info policies (M > 

1,500) with durations of just one year. PCOST was massively reduced by -90% with small-scale 

but efficiently targeted purchase bonuses. All findings contributed to the proposition-validity-check 

from section 3.5.5. 

We performed continuously repeated purchases with varying periodic ratios of consumers, who 

lose their adoption or non-adoption status and turn unaware again. The underlying idea is that in 

reality, many innovations are repurchased after a certain timeframe. E.g. cell phones are replaced 

after 24 months. Main focus of analyses was the Industry Lifecycle. The number of suppliers 

increased at the beginning, but repurchases prevented market potential to fade away completely. In 

line with literature (Klepper, 2002), a long-term supply and demand equilibrium evolved without a 

complete shakeout. 

3.6 Discussion 

The successful reproduction of adoption drivers confirms Agent-based modeling being a 

promising methodology for diffusion research in line with literature (Macy & Willer, 2002; Rand 

& Rust, 2011; Zenobia et al., 2009). We used it to predict implications of inducement stimuli based 

on effectiveness and efficiency ratios. The Agent-based paradigm is well-suited to combine key 

diffusion drivers, namely network effects, adopter heterogeneity, and competition. Nevertheless, its 

explanatory power depends on rigorous implementation of functional requirements. We evaluate 

the following modeling requirements as critical: 

─ KISS: Simplicity avoids over-parameterization and allows readers to interpret results. Simple 

micro-level behavior already causes complex and unforeseeable macro-level outcomes 

(Axelrod, 1997). Our endogeneity findings provide good examples: Without changes in 

parameter settings, the number and timing of market entries differ per iteration, leading to 

unforeseeable outcomes. Arithmetic means across numerous iterations are necessary to derive 

propositions. Many published models fall far short from the KISS-requirement. How should 

readers understand the model´s functioning, if its input parameters need to be explained in the 

appendix, because number and complexity are too high to explain them in the main text? 
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─ Empirical validation: Generally speaking, simulations are pre-configured input-output 

calculations based on a priori-defined rules. Input drives output. Garbage-in, garbage-out. 

Without the validation with empirical data and solid frameworks (e.g. Cournot competition, 

the General Bass Model, and Rogers adopter categories), simulations are just conglomerates 

of assumptions—toys and not tools (Edmonds, 2010). Explanatory power and real-world 

generalizations are limited. 

─ KPIs: Bottom-up economics and emergent effects are essentially main concerns for Agent-

based modelers. Selection, explanation, and tracking of end-to-end KPIs are crucial to 

understand how micro-level actors cause accumulated outcomes. However, a majority of 

published innovation diffusion models reduce their results analysis to macro-level metrics—

typically the diffusion-level. Our study presents a set of balanced metrics that allow diagnoses 

from the bottom-up. Welfare ratios (e.g. CPLUS) accumulate impacts of individual adoption 

decisions. Competition ratios (e.g. MAXSU) measure how individual decisions and Agent 

heterogeneity change market conditions. In the final instance, high-level diffusion ratios (e.g. 

LEVEL) consolidate experiment outcomes in contrastable figures. 

Our endogenous demand-supply integration is perhaps the most valuable extension of current 

diffusion research. Published diffusion models typically focus on Epidemic drivers. Changes in 

price, adoption ratios, and other Probit aspects often base on randomness and are rarely linked to 

demand-side evolution. We presented a methodical approach to link demand with supply, Epidemic 

theory with Probit theory, and diffusion research with Industrial Organization. This allows us to 

define propositions and suggest ideas how policy makers can leverage these links in a co-

evolutionary context. Furthermore, we contribute to research issues at the boundaries of market 

evolution and competitive dynamics (Bayus et al., 2007; Soberman & Gatignon, 2005). Our model 

is capable to simulate the bi-directional linkage of market evolution and competitive dynamics: 

Awareness and heterogeneity of consumers drive market potential, which determines supplier 

conduct. Vice versa, supplier entry/exit decisions and pricing trigger adoption ratios and therefore 

emergence of market potential. Put simply, supplier have the ability to create their own demand 

(verifying Vettas (1998)). In the context of commercial launches, they should embed co-

evolutionary impulses into competitive strategies: Intensive communication, lead-user targeting, 

and low pricing lead to quick uptake in sales. Market potential evolves quickly, resulting in 

economies of scale, lock-in effects, and entry barriers for rivals. But this strategy will appeal many 

competitors to step in, leading to intensive competition and slump in profits. This makes first 

movers extraordinary profitable, while followers enjoy free-rider effects, because the innovation is 

already well-known (Lilien & Yoon, 1990). Contrariwise, firms may choose the opposite strategy 
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(skimming). They scale communication down and profit from high mark-ups over a long period of 

time, until market potential slowly evolves and new rivals appear. We measured various impacts of 

such skimming strategies on supplier and consumer surplus in our model, e.g. in the context of 

market liberalization (efficient) and monetary grants in monopolies (inefficient). Fig. 19 highlights 

these findings in relation to order of entry and market structure. It plots a typical profit and survival 

pattern in the competitive scenario CI as well as average periodic profits across the eight 

predefined scenarios (see Fig. 15 supplementary). In line with Klepper´s propositions (Klepper, 

1996, 2002), firm survival in our model depends on order of entry: Two first movers earn superior 

profits. Two followers earn less and survive only a few years. Firm 5 enters during the awareness 

peak, earns infinitesimal profits, and exits after two years. Policy makers may utilize these 

constraints to induce diffusion via intensifying competition and to avoid welfare losses by money 

transfers to a monopolist.    

 

 

Fig. 19. Survival and profitability in a CI iteration and periodic supplier profits in predefined scenarios 

 

Use of an awareness-driven exit threshold instead of fixed simulation runtimes—as in formerly 

published models—extends research to diffusion-speed. An important finding is the correlation 

between SPEED and LEVEL across all policy types. Any intervention that accelerates diffusion, 

increases its level—and vice versa. Regardless of this coherence, policy designers need to settle on 

the overall inducement objective (SPEED or LEVEL?), because efficiency differs remarkably per 

stimulus. Market liberalization is effective and efficient. We propose regulators to set the stage for 

competition first and then add other inducements if necessary. Interventions are amplified through 

demand-supply synergies in competitive markets. Inducements that stimulate rivalry are superior in 

efficiency. The Industry Lifecycle helps to issue policies in the growth phase of the ‘S’-curve. This 

is the ideal timing to gain rivalry synergies. 
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In the real-world, monetary grants are the most likely inducement-option. A typical reason is 

supply-side lobbying—our measurements on supplier´s surpluses in these scenarios explain why 

(see Fig. 19). We propose regulators to extend their stimulus-arsenal with information policies. In 

competitive market structures, they induce diffusion with less costs and risks. However, if 

monetary grants are required, they should be paid out to consumers directly. Real-world ‘Cash-for-

Clunker’ programs are good examples how policy designers can include optimized targeting, 

timing, and scale to improve policy effectiveness and efficiency. In addition, these programs are 

typically escorted by awareness-boosts due to intensive media coverage. 

Policy outcomes present typical ‘S’-curves across all scenarios. Bottom-up analyses confirm 

both Epidemic and Probit aspects as important adoption drivers. In line with Geroski´s roundup 

(Geroski, 2000), we measured Epidemic awareness-spread to be the primary driver that causes the 

‘S’-curve. The attainment of Probit thresholds is secondary, as results in monopolies without price 

reductions show. Nevertheless, this proportion may change with different innovations. In contrast 

to other published models, ours is product agnostic and empirically validated by using the General 

Bass Model. The following three ‘Green’ technology examples discusses shifts in Epidemic-Probit-

importance and should help policy makers, researchers, and other readers to replicate our model 

with different configurations: 

─ Organic fuel E10: Diffusion stagnates despite savings for car drivers. Consumers are unsure if 

their car might suffer damage. Awareness is the primary barrier and negative press boosts 

resistance. Educational policies are best suited to induce adoption. 

─ Electric vehicles: Media coverage is high. Consumer´s awareness is high. But Probit 

thresholds constitute adoption barriers. Many countries introduced purchase premiums to 

induce diffusion. These are best suited to induce adoption. 

─ Smart Metering: Digital online metering is a critical components for intelligent energy 

networks (‘Smart Grids’). Furthermore, direct consumption feedback reduces energy 

consumption and contributes to CO2 abatement. Obstacles exist in the form of missing 

awareness and mismatched Probit thresholds: Innovative energy tariffs are unknown and 

expensive.  

Two limitations restrict the explanatory power of our model. First, use of Cournot competition 

reduces heterogeneity of suppliers. Competitors incorporate identical cost curves, entry barriers, 

and competitive strategies. This approach reduces complexity and utilizes a widely accepted 

economic model. But other publications pointed out the relevance of firm heterogeneity (Herbert, 

2006; Klepper, 1996, 2002). Order of entry is one root-cause for heterogeneity. Early movers face 

different challenges as followers (see Fig. 19). Heterogeneity causes competitive advantages and 
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determines competitive strategies. Second, consumer adoption processes are simplified in a two-

stage awareness/decision-making process. Furthermore, this process is performed only once per 

Agent. Non-adopters do not turn aware again in later periods. In the real-world, consumers may 

receive several interactions until they ultimately adopt. 

3.7 Conclusion and future research 

Epidemic and Probit diffusion theories were combined in an Agent-based model to simulate 

policy induced innovation adoption. We extended current diffusion research by adding Cournot-

based supplier behavior to tackle demand-supply co-evolution showcasing Soberman´s and 

Gatignon´s dependencies between market evolution and competitive dynamics (Soberman & 

Gatignon, 2005). Scenario and sensitivity analyses identified primary adoption drivers and enabled 

us to derive ten propositions for effective and efficient policy design. Effectiveness was measured 

via diffusion-speed and -level, efficiency via cost- and welfare-impacts. 

Simulation results underline that one policy does not fit in all situations. Market liberalization is 

a dominant strategy. Intensifying competition is an effective and efficient adoption driver, while 

closed markets primarily favor the monopolist. Information policies typically accelerate adoption. 

Monetary grants boost both speed and level. Policy makers must not underestimate synergies 

across inducements as well as supply and demand endogeneity to keep control over policy costs.  

Future research should address our limitations and extend our model with supply-side 

heterogeneity and Schumpetrian dynamics. Creative destruction and leapfrogging could be added 

by R&D and disruptive innovations (Christensen, 2000; Christensen et al., 1998; Herbert, 2006). 

Incumbents would need continuous improvements to stay competitive across business cycles and 

changing consumer requirements (Aaker & Day, 1986; Banbury & Mitchell, 1995). Looking 

beyond this paper, flexibility of Agent-based modeling allows the tackling of several 

microeconomic paradigms. For instance, individual cost curves, economies of scale, mergers and 

acquisitions, competitive strategies, and firm survival patterns.13 Agent-based modeling is a 

powerful toolbox. Nevertheless, modelers need to avoid over-parameterization. Any extension or 

additional parameter will increase complexity and handicap replicability. Keep it simple! 

                                                           
13  See (Safarzyńska & van den Bergh, 2010) for a review on demand-supply co-evolution building blocks. 
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3.8 Appendix 

3.8.1 Screenshot of NetLogo user interface 

 

Fig. 20. NetLogo user interface showing C-scenario results 

3.8.2 NetLogo model code 

The following NetLogo code is an extract of the original code. It displays the awareness-, 

demand function-, Cournot competition-, and adoption processes. The full code, code 

documentation, and video documentation are available on: http://www.openabm.org/model/2609. 

 

;Mass media interactions 

ask n-of D consumers [if color = white [set color yellow]] 

 

;Word-of-mouth interactions 

ask consumers with [color = blue] [ask n-of 1 consumers-on neighbors [if color = white [set color 

yellow]]] 
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;Calculation of demand function 

let data-list sort-by [?1 > ?2] [zi] of consumers with [color = yellow] 

let indep-var remove-item 0 (n-values (length data-list + 1) [?] ) 

let matrixvariable matrix:from-column-list (list data-list indep-var) 

set b item 0 (item 0 matrix:regress matrixvariable) 

set a item 1 (item 0 matrix:regress matrixvariable)  

 

ifelse L = False [set s 1] [ ;Check if market is liberalized 

  while [w >= 0] [ 

    set s s + 1 

    let q ((b - Cvar) / ((-1 * a) * (s + 1))) ;Individual output quantities 

    set p (b + (a * (q * s))) ;Market price 

    set w (((p - Cvar) * q) - Cfix) ;Individual profits 

    if s >= 1 AND w < 0 [set s s - 1] 

] ] 

 

;Select adopters 

ask n-of (q * s) consumers with [zi >= p and color = yellow] [ 

  set color blue 

  set CPLUS CPLUS + (zi - p) 

] 

   

;Residual aware adopters turn into non-adopters 

ask consumers with [color = yellow] [set color red]  
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4. Agent-based Simulation of Consumer 

Demand for Smart Metering Tariffs
14

 

4.1 Abstract 

An Agent-based model simulates consumer demand for Smart Metering tariffs. It utilizes the 

General Bass Model and Rogers´s adopter categories to locate demand-side barriers and drivers. 

Integration of empirical census microdata enables a validated socio-economic background for each 

consumer. The key performance indicators diffusion-speed and diffusion-level measure the 

effectiveness of regulatory interventions to induce diffusion. Pricing, promotion, and quantity-

regulation policies are tested. Scenario results emphasize the impact of both Epidemic and Probit 

effects. Speed of adoption is mainly triggered via interactions and consumer awareness. Level of 

diffusion primarily depends on pricing, willingness-to-pay, and cost-benefit-thresholds. Data 

mining on Agent´s attributes highlight weaknesses in current regulatory requirements due to 

disadvantages in consumer acceptance and policy effectiveness. A ‘cash-for-clunkers’-program 

could tackle major barriers for adoption and boost diffusion through synergies of pricing and 

promotion interventions. 

4.2 Background 

Worldwide, Information- and Communication-Technology revolutionizes the energy supply 

infrastructure. A surging hunger for energy in combination with an increase in climate protection 

initiatives pushes the development and usage of ‘green’ innovations and business models. Smart 

Grids enable load-dependent feed-ins of decentralized electricity sources like photovoltaic and 

plug-in (hybrid) electric vehicle batteries as well as large-scale power plants like offshore wind-

farms and Desertec (wik-Consult & FhG Verbund Energie, 2006; World Economic Forum, 2009). 

A major prerequisite for this revolution and therefore key for sustainable power grids is Smart 

Metering (Brophy Haney et al., 2009; Bundesministerium für Wirtschaft und Technologie, 2007; 

Kester et al., 2009). An Advanced Metering Infrastructure allows frequent measurement processes 

through Information- and Communication-Technology. Advanced Metering Infrastructure replaces 

legacy infrastructures with conventional Ferraris meters. Electricity, gas, and water consumption 

                                                           
14 Rixen, M. & Weigand, J. (2012). Agent-based Simulation of Consumer Demand for Smart Metering Tariffs. 

Unpublished manuscript. 
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patterns and costs can be visualized in real-time with direct feedback to consumers via in-home 

displays and online or mobile applications. Bi-directional communication capabilities integrate 

metering results into grid control, especially for intermittent generators and reserves. Vice versa, 

households participate in Demand Response programs and receive price signals or event-based 

triggers to control home appliances, e.g. air conditioners, fridges or pool-pumps. Pilot projects 

successfully prove Advanced Metering Infrastructure´s economic and ecologic benefits (European 

Smart Metering Alliance, 2010). Complexity of benefit drivers rapidly extended during the past 

years: Having discussed transparency and Demand Response five years ago, we now tackle 

Microgrids, the integration of plug-in (hybrid) electric vehicle charging infrastructure or heat-

power-combinations. 

Smart Meter diffusion is an example of ‘cleaner’ innovation diffusion. Rollout strategies differ 

geographically with adoption results ranging from almost zero (e.g. Germany) to nationwide 

deployments (e.g. Italy). Germany, the Netherlands, and Great Britain are comparable regarding 

their liberalized energy markets (Pollitt, 2009) and demand-oriented consumer-focused rollout 

strategy (Vasconcelos, 2008). Rollout strategy choice depends on environmental, technological, 

regulatory and cultural drivers: “One size does not fit all” as the World Economic Forum (2009, p. 

3) states. Two approaches exist: 

─ Push: State-aided market push and therefore induced diffusion with focus on large-scale pilot 

regions (e.g. United States, China, Australia) 

─ Pull: Liberalization of the metering market in order to promote competition and consumer 

demand (especially Germany, the Netherlands, Great Britain) 

A ‘Push’-strategy is typically superior in speed and level of diffusion due to strict rollout 

policies. In contrast, the intention of a ‘Pull’-strategy is to promote competition, prevent monopoly 

prices, and induce innovations (Wissner, 2009). Most important, consumers should actively 

demand the new technology. Experiences in pilot projects confirm the importance of customer 

centricity. High consumer acceptance leads to high Demand Response and therefore drives societal 

benefits (Neenan & Hemphill, 2008). Missing consumer acceptance is a major threat. Customers 

need to become co-creators of value (Honebein, Cammarano, & Donnelly, 2009). Finally, the 

choice between a ‘Push’- or ‘Pull’-approach includes a tradeoff between speed and coverage of 

diffusion on the one hand and expected higher benefits through consumer acceptance on the other. 

Objective of this paper is to simulate the diffusion of Smart Metering in Germany in different 

policy scenarios. An Agent-based model is designed to forecast consumer purchase behaviour and 

gain insights about adoption barriers and drivers. Results contribute to the discussion, how 
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Germany´s regulator Bundesnetzagentur can shape new regulatory frameworks in order to tackle 

adoption barriers and promote diffusion. 

4.3 Literature review 

4.3.1 Diffusion of innovations 

Innovation diffusion has been an interdisciplinary field of research for more than 60 years. 

Important contributions came from Bass and Rogers: In 1969, Bass published a common pattern 

for the adoption of innovations (Bass, 1969). It was based upon a generalization of empirical 

diffusion data for consumer durables, e.g. fridges, TV sets, tumble driers, and air conditioners. The 

General Bass Model describes cumulative adoption of innovations as an ‘S’-shaped curve (see Fig. 

21). This scheme has been tested and proved in later works (Bass et al., 1994; Mahajan & Muller, 

1979; Mahajan et al., 1995a) Furthermore, Bass offered insights about the shift from mass media 

communication to word-of-mouth advertising as a primary driver for adoption (see Fig. 21). Rogers 

focused his publications on commonalities and distinctions between adopters. He established five 

adopter categories (see Fig. 21). They differ primarily in the point of time for adoption, influenced 

by their use of communication channels, readiness to assume risk, and social affiliation (Rogers, 

2003). Marketers need to consider implications of both models in order to tap the full market 

potential of innovations, because market conditions and target groups evolve over time. 

 

 

Fig. 21. The General Bass Model and Rogers´s adopter categories (Mahajan et al., 1995a) 

 

Two key performance indicators are suitable to measure the success of market entries: Speed and 

level of adoption (Diaz-Rainey, 2009). Higher speed results in a steep increase in market share. 

Consumer durables with short product lifecycles, high risk to be imitated, and/or significant 
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development effort rely on a fast speed of adoption (Kotler & Bliemel, 2001). A quick attainment 

of the critical mass is crucial. From this point, enough individuals adopted the new product to 

induce a self-sustaining continued adoption (Rogers, 2003). On the contrary, level is measured by 

the share of penetration at a given point of time. Some products gain a significant share in the 

target market, e.g. Microsoft Windows in the market for operating systems. While others, e.g. 

Linux, attract only specific target groups and gain only small shares of the market. 

Several influencing factors drive speed and level of adoption or—in the opposite way—form 

barriers that avoid demand. Most factors can be identified and explained with Epidemic and Probit 

models (Geroski, 2000). Information transmission is the focus in Epidemic models: Awareness 

drives adoption. The typical ‘S’-shaped curve of cumulative adoption is a result of the 

multiplication effect of information transmission. When more and more Innovators and Early 

Adopters own the new product, interactions rise exponentially and trigger the awareness of residual 

buyers. Instead, Probit models stress the importance of benefit-cost-thresholds: Economic 

attractiveness drives adoption. Usually, learning curves and economies of scale determine a 

reduction in marginal cost per unit over time. Attainment of positive benefit-cost-ratios is necessary 

to create demand. High perceived net benefits of innovations accelerate their diffusion, while 

economic risk and technical complexity create significant barriers to postpone the adoption or even 

cause resistance by potential adopters (Kleijnen et al., 2009). 

‘Green’ (or ‘cleaner’, environmental, ecological) technology is a sub-category which gained 

significance during the past years. Related innovations like Smart Meters are capable to reduce 

energy consumption, carbon emissions and/or contribute in other ways to a ‘cleaner’ environment. 

Montalvo (2008) gives an overview of related diffusion studies. As Kemp and Volpi (2008) 

summarize, diffusion of such technologies is not instantaneous but follows an ‘S’-shape curve like 

other innovations. Information transfer, economic attractiveness, and technical complexity impact 

speed and level of diffusion. ‘Green’ technology diffusion models need to consider exogenous 

variables like policies, market structures, and communication effects. Cantono and Silverberg 

(2009) describe an exemplary diffusion model that combines policies and learning curves. 

4.3.2 Smart Meter diffusion and Agent-based models 

‘Green’ innovations research focuses on generation technologies e.g. wind, solar, and biomass 

(Montalvo & Kemp, 2008). Not surprisingly, Smart Meter diffusion is a scarce subject of analysis 

since most countries follow a ‘Push’-strategy where adoption is directly induced. In Germany, the 

Netherlands, and Great Britain, market penetration depends on consumer demand and therefore 

depends on various social and economic factors that can hardly be calculated. As a result, even 
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market researchers contain themselves to communicate forecasts. 

Zhang and Nuttall handle input factor complexity by the use of an Agent-based model (Zhang 

& Nuttall, 2007, 2008). For several years, social scientists, economists, and researchers from other 

disciplines use Agent-based models to simulate markets and communities (Heath et al., 2009). 

Suitable models are capable to reconstruct complex situations and systems with a huge number of 

variables that affect each other (Edmonds, 2001b; Galán et al., 2009). Bonabeau defines Agent-

based models as a “{...} collection of autonomous decision-making entities called agents. Each 

agent individually assesses its situation and makes decisions on the basis of a set of rules. {…}” 

(Bonabeau, 2002, p. 7280). The Agent-based methodology addresses major complexity challenges 

in diffusion research and is therefore “{...} a venue for developing new diffusion theory, an area 

where there has been scant progress for several decades {...}” (Zenobia et al., 2009, p. 339). 

In their Agent-based model, Zhang and Nuttall calculate intelligent meter adoption through 

consumer demand based upon behavioral science (Zhang & Nuttall, 2007). They prove the 

importance of a random lead user selection and benefits of competitive pricing. Their model 

configuration focuses on interaction (Epidemic) and pricing (Probit). Both publications present 

typical ‘S’-shape curves and ‘Lock-In’ effects—situations in which another tariff or vendor 

promises a higher perceived value to the user, but no change is performed due to switching costs. 

The British Department for Business, Enterprise and Regulatory Reform released specific policy 

options which have been tested in the Agent-based model. With regards to requirements from the 

EU Energy Services Directive (European Parliament, 2006), scenarios incorporated the rollout of 

free in-home displays under different market conditions. Results emphasized substantial impacts of 

federal grants. Adoption advanced fastest under subsidized conditions with advantages in an open 

market situation. 

4.3.3 Smart Metering in Germany 

By mid 2010, there is virtually no relevant demand for Smart Metering tariffs in Germany 

(Bundesnetzagentur, 2010). Four major barriers have been identified in empirical studies. These 

barriers slow down diffusion, caused by a mix of postponement and resistance. The first obstacle is 

missing awareness. Intelligent meters are as unknown as their potential benefits or available tariffs. 

The technology is unknown to more than 90% of consumers (Forsa, 2010). Although, informed 

respondents frequently mentioned chances due to better cost control and consumption monitoring 

(Donath, 2009). 

A second obstacle comes with the price sensitivity of consumers related to energy tariffs and 

associated products. Monetary savings are the primary concern for most respondents, e.g. at least 
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monthly savings of 10€ are necessary until 50% of consumers would consider a switch to another 

tariff (Thiemann, Passenberg, & Suer, 2007). Even with great energy conservation and load-

shifting effects, it is very difficult to get a positive net benefit with available Smart Meter tariffs. A 

typical tariff claims installation costs of 80€, additional monthly costs between 8 and 10€ and 

offers just a small discount of 1 or 2 Cents per kilowatthour (kWh) during off-peak timeframes 

(Yello Strom, 2010). 

In addition to benefit-cost-evaluations, switching barriers represent another important obstacle 

for Smart Meter diffusion. 46% of consumers do not switch their tariff and/or supplier due to 

comfort reasons, even if benefits overreach costs (Thiemann et al., 2007). Together with perceived 

risks and low involvement, switching barriers lead to strong ‘Lock-In’-effects and end up in low 

switching rates of less than 5% per year (Bundesnetzagentur, 2009b). 

Data privacy concerns determine the fourth obstacle. Smart Meters collect detailed energy 

usage data in short intervals of 15 minutes and transfer them to a metering company. Other parties 

may receive the information as well, e.g. the Distribution Network Operator or the Retailer. With 

good cause, privacy concerns exists in this context (Deutscher Bundestag, 2009; Karg, 2009). They 

have the potential to spark-off postponement, resistance, or even opposition. The Netherlands faced 

this situation in 2009, when Advanced Metering Infrastructure rollouts were stopped due to data 

privacy concerns (European Smart Metering Alliance, 2010). In Germany, empirical studies proved 

the significant impact of privacy concerns on consumer attitudes: Almost half of respondents 

mentioned related feelings as a major concern (Donath, 2009; Forsa, 2010). 

4.4 The Model 

4.4.1 Consumer adoption process 

In this paper, an Agent-based model maps Germany´s demand-oriented diffusion approach. Two 

types of Agents interact with each other: Consumers and suppliers. Suppliers offer a Smart Meter 

tariff to the consumers. The holistic five-step consumer purchase decision process of Engel, 

Blackwell, and Miniard (1995) is utilized to address a variety of demand-side barriers and drivers. 

The model´s step-by-step-approach combines decision-tree and scoring methodologies (see Fig. 

22). It combines Epidemic (steps 1, 2, and 5) and Probit effects (steps 3 and 4) to simulate 

adoption. The appendix includes the programming code (in NetLogo) for the consumer purchase 

decision process.15 

 

                                                           
15  The NetLogo code and screenshots are available on http://www.openabm.org/model/2592. 
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Fig. 22. Five-step consumer purchase decision process (Engel et al., 1995) 

 

Awareness is a basic requirement for Smart Meter diffusion. It is triggered through interactions 

of suppliers and consumers. Suppliers interact through advertising with the use of mass media, 

consumers interact randomly and in their ‘Small World’, e.g. family, friends and neighbors. 

Formula 17 describes Agent i´s probability PI to receive an interaction in period t: 

 

PIt,i = ( s * A * pi ) + ( r * Bt ) + ( w * Bs,i,t ) . (17) 

 

s   probability to receive a supplier interaction 

A   number of suppliers 

pi  promotion intensity of suppliers 

r  probability to receive a random interaction 

Bt  number of consumers with a Smart Metering tariff in period t 

w  probability to receive an interaction within ‘Small World’ 

Bs,i,t number of Agents with Smart Metering tariff in i´s ‘Small World’ in period t 

  

Agent i continues to the information search, if the number of his interactions exceeds a specific 

threshold. Promotion intensity pi of suppliers (with 0 < pi < 1) determines the probability to include 

each supplier in the ‘Evoked Set’. Agent i proceeds to the evaluation of alternatives, if at least one 

Smart Meter offering was found. Offerings particularly differentiate in pricing. The simulation 

calculates monthly costs for the conventional tariff and subtracts expected monthly costs for the 

Smart Metering tariff (see Formula 18). A positive difference between both options is considered 
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as Agent i´s monthly net savings potential. Agent i´s expected monthly costs with a Smart Meter 

tariff Msm consists of fixed and variable pricing components: 

 

Msm,i = (( 1 - vi  ) * Ci * Pvar ) + Pfix . (18) 

 

vi  Agent i´s electricity conservation potential with Smart Metering 

Ci  Agent i´s monthly electricity consumption in kWh 

Pvar price per kWh of Smart Meter tariff 

Pfix monthly fixed price of Smart Meter tariff 

 

In Germany, Smart Meter tariffs typically include higher fixed costs and lower variable prices in 

contrast to standard tariffs. As a result, large households with high energy consumption profit more 

from these tariffs (Schäffler, 2010). High monthly net benefits increase the probability for positive 

purchase decisions in the fourth step (see Formula 19). Willingness to pay drives Agent i´s 

purchase probability PP: 

 

PPi = 0.05 * ( Mst,i - Msm,I ) . (19) 

 

Mst,i Agent i´s monthly costs with a standard tariff 

Msm,i Agent i´s monthly costs with a Smart Meter tariff 

 

A calibration with 0.05 as the relevant multiplier maps the 50%-probability to switch the tariff 

with 10€ in net benefit, which was observed in empirical studies (Thiemann et al., 2007). 50% of 

households answered that they would switch their tariff in case of a 10€ net benefit. The Agent´s 

status changes in the post purchase phase: He is flagged ‘smart’ and turns from an interaction-

receiver to an interaction-sender. He promotes Smart Metering with word-of-mouth activities in 

random and ‘Small World’ interactions. 

4.4.2 Model calibration and scenarios 

Integration of empirical census microdata of the German Federal Statistics Office (Statistisches 

Bundesamt, 2002) ensures realistic assumptions about Agent parameters. The microdata includes 

empirical study results on the highest level of granularity: Individual statistics or answers per 

respondent. The appendix contains a programming code for the creation of Agents with the use of 
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microdata. Each of the 11,500 modeled Agents features an individual socio-demographic 

background that drives adoption. Primary microdata attributes are housing status and the type of 

boiler installed. Both determine the monthly electricity consumption (Energieagentur NRW, 2006). 

Primary characteristics immediately influence the purchase decision process, as they drive cost-

benefit-evaluations. Secondary microdata attributes, e.g. net income, monthly rent, and apartment 

size represent attributes without direct influence on the purchase decision. Correlation-analyses 

show interdependencies between both categories, especially household size and net income. Ex-

post data mining on adopters gives insight about the ‘average buyer’ in each adopter category. 

Tracking of impacts on the macro system (speed and level of diffusion) or on single Agents 

(arithmetic means of primary and secondary attributes) is key to evaluate barriers, drivers and 

policy effectiveness. 

Different scenarios analyze possible regulatory intervention tendencies. A baseline scenario 

simulates the current state of the market in 2010. Further scenarios differentiate in pricing, 

promotion and quantity-regulation. The quantity-regulation scenario reconstructs current 

requirements of Germany´s regulator Bundesnetzagentur: Smart Meters need to be installed in new 

constructions since 01.01.2010 (Wulf, 2009). Within the model, this policy directly and 

synthetically increases diffusion through induced purchases. 

 

 

Table 9. Parameter space in predefined scenarios 

Variable Baseline Pricing Promotion Quantity 

Fixprice Pfix 18.5€ 10...30€ 18.5€ 18.5€ 

Promotion intensity pi 35% 35% 0...100% 35% 

Induced purchases per timestep 0 0 0 0...10 

 

 

In the model, Agents are randomly distributed with an average of 40 neighbors (= ‘Small 

World’) for each Agent. Awareness is set to zero for all Agents at the beginning, representing one 

major barrier for adoption. All scenarios are simulated over a period of 300 timesteps with a fixed 

number of three suppliers. Individual energy conservation varies randomly between 5 and 10% per 

household (Bundesnetzagentur, 2009a). Monthly fixed costs of 10€ are included for the standard 

tariff. Variable costs per kWh are set to 0.23€/kWh for the standard tariff, the Smart Meter tariff 

includes 0.21€/kWh. 

Apart from the interaction probabilities, the mentioned calibration parameters are adopted from 

real-world market conditions, empirical study results or census microdata. The following three 

interaction probabilities represent assumptions and were calibrated through testing cycles in order 
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to reach full awareness for the technology in the baseline scenario after 300 timesteps (see formula 

17): 

 

s = 0,5%  probability to receive a supplier interaction  

r = 0,2%  probability to receive a random interaction 

w = 1%  probability to receive an interaction within ‘Small World’ 

4.5 Simulation results and discussion 

4.5.1 Overview 

The results and discussion section is structured into three parts: We kick-off with a description of 

macro-level results for the baseline- and intervention-scenarios. Objective is a simulation of the 

empirically validated baseline diffusion as well as evaluations of intervention-effectiveness in 

terms of diffusion-speed and diffusion-level. Then, drill-downs on a micro-level allow an isolated 

view on adoption drivers and how they affect behavior and characteristics of single Agents. For 

instance, we discuss Agent´s individual price thresholds (willingness-to-pay) in relation to 

adoption-timing. In a final step, we close the loop between findings on macro- and micro-level and 

derive implications for efficient policy design. Especially how lead user selections may boost 

diffusion. 

We executed 10,000 iterations for each of the four predefined scenarios (baseline, promotion, 

pricing, and quantity-regulation) over a duration of 300 simulation timesteps. Like in other Agent-

based models, the high number of iterations is necessary to factor-out contingency effects due to 

random Agent selections. Results statistics in this section represent arithmetic means across these 

10,000 iterations. Two global key performance indicators measure the effectiveness of policies on a 

macro-level: 

─ Diffusion-level: Measures the %-rate of adopters vs. non-adopters after 300 timesteps. E.g. 

40% penetration means that after 300 periods, 40% of the consumers purchased the 

innovation. 

─ Diffusion-speed: Measures how quick adoption proceeds. We use the point of inflection on 

the ‘S’-shape diffusion curve to calculate speed of adoption. The point of inflection can be 

tracked via periodic adoptions: The period with the highest number of periodic adoptions is 

the point of inflection (see Fig. 23 left).   

On a micro-level, we utilized Rogers´s five adopter categories (see Fig. 21) to evaluate 

outcomes, drivers, and barriers. Our microdata validation approach attaches two types of attributes 
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to each Agent: Primary and secondary attributes. Primary attributes are used during the adoption-

decision-process (e.g. electricity consumption). Secondary attributes are not involved in the 

process, but may correlate to primary attributes due to empirical validation (e.g. household size 

correlates to electricity consumption). Analyses on both types of attributes per adopter category 

enabled us to derive specific policy implications on Agent-level. E.g. how pricing policies may 

address willingness-to-pay barriers. 

We extended the execution of the four predefined scenarios with sensitivity analyses. 

Sensitivity was measured on both macro- and micro-level results. Objective of sensitivity analyses 

was to evaluate policy efficiency: While diffusion-speed and diffusion-level measure policy 

effectiveness, sensitivity analyses extend related findings with a view on efficiency. For instance, 

how do small-scale promotion policies perform in contrast to large-scale interventions? Related 

findings help policy makers in selecting the most effective type of intervention plus the most 

efficient magnitude. 

4.5.2 Macro-level results and discussion 

The baseline scenario constitutes a foundational, empirically validated model configuration 

based upon real-world market conditions. In this scenario, level of adoption reaches 37% after the 

full runtime of 300 periods (see Fig. 23 right). In other words: Without any interventions by the 

regulator Bundesnetzagentur, only 37% of German households will adopt Smart Meter tariffs in the 

long-run, which falls far short from the targeted 80% by 2020. Interventions are crucial to match 

politically committed levels. 

Baseline results display the general functioning of our Agent-based model in line with Bass´s 

Epidemic diffusion model. The cumulative adoption curve shows the typical ‘S’-shape 

development (see Fig. 23 right). Supplier interactions (mass media) induce initial adoptions of 

Innovators and Early Adopters in the first periods (see Fig. 23 left). The ‘S’-trend is then caused by 

an upswing in adopter interactions between the 50
th
 and 150

th
 timestep: Consumer interactions of 

Innovators and Early Adopters trigger follow-up purchases of Early Majority and Late Majority via 

word-of-mouth. After 125 periods, a maximum of 25 adoptions per period indicate the point of 

inflection for the diffusion curve (see Fig. 23 left). 25 periodic adoptions mean that during one 

timestep, 25 of the 11,500 households successfully perform the purchase decision process and 

adopt the innovation. After the point of inflection, the proportion of positive purchase decisions 

decreases steadily from 25 adoption decisions to 5 purchases in the 300
th
 period. This development 

indicates the impact of Probit adoption drivers in terms of cost-benefit-considerations: Households 

with huge benefits adopt Smart Meter tariffs early, while their counterparts with small benefits 
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frequently decide against adoption. Laggards need several purchase decision ‘attempts’ until they 

finally adopt. 

Tackling one key finding of the baseline scenario, we suggest policy makers to include both 

Epidemic and Probit effects within policy design. Baseline results confirm both rising awareness 

and willingness-to-pay as influencing factors on diffusion-speed and diffusion-level. Interventions 

might be ineffective, when focusing primarily on one of the two dimensions only.   

 

 

Fig. 23. Smart Meter diffusion in the baseline scenario 

 

Baseline measures indicated substantial Probit impacts on diffusion-level. Due to high Smart 

Metering tariff costs (Pfix = 18.5€), only 37% of households adopted the new tariff in the long-term 

(baseline). Therefore one major policy option for Germany´s Bundesnetzagentur is monetary 

interventions that improve household´s benefit-cost-ratios. We test this type of intervention within 

pricing scenarios. Basically, we simulate the influence of varying Pfix on diffusion-speed and 

diffusion-level. Fig. 24 (left) visualizes net savings for each of the 11,500 households in ascending 

order. While 6,000 households suffer losses with the new tariff in the baseline scenario (Pfix = 

18.5€), a reduction of fixed costs to 17€ decreases this share to 3,500. Agent-based simulations 

confirm the impact of monetary interventions. Already a small-scale reduction in fixed costs to Pfix 

= 17€ remarkably boosts diffusion-speed and -level: The point of inflection moves from period 125 

to period 90, while level rises from 37 to 61% (see Fig. 24 right). Vice versa, increases in fixed 

costs cause opposite effects and postpone adoption. Overall, we measured high variance especially 

in diffusion-level in dependence on pricing: Level varies between 5 and 80% in a price-range of Pfix 

= 21.5€ and Pfix = 15.5€. 
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Fig. 24. Smart Meter tariff evaluation and adoption in pricing scenarios 

 

Sensitivity analyses showcase our Agent-based model´s capabilities to support lawmakers in 

efficient policy design. We already know that due to subjections between cost-benefit-evaluations 

and purchase probability, speed and level of diffusion rise in line with price reductions. Sensitivity 

analyses enable us to measure exact Pfix and diffusion result combinations in the interval from Pfix 

between 10 and 30€ (see Fig. 25). Results show high sensitivity between 14 and 20.5€ with a 

spread between 95 and 10% in diffusion-level. The point of inflection as performance indicator for 

speed of diffusion varies between 45 and 230 timesteps. E.g. a monetary intervention that shifts Pfix 

from 18.5€ (baseline) to 14€ would boost diffusion-level from 37 to 95% and speed from 125 

(baseline) to 45 timesteps. As a result, the committed 80% at 2020 deadline could be reached. 

 

 

Fig. 25. Sensitivity analyses in pricing scenarios 

 

We suggest policy makers to investigate whether consumer´s willingness-to-pay is an important 

barrier to adoption. In case these Probit price thresholds form barriers (as in our Smart Metering 
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example), monetary interventions are highly effective methods to induce innovation diffusion. 

They are also highly efficient if consumers are sensitive to small-scale price changes (as in our 

Smart Metering example). 

Another intervention-type is the informational interventional (a.k.a. education policy). We 

already stated the importance of external (mass media) and internal (word-of-mouth) interactions in 

line with the General Bass Model and how these interactions drive awareness and adoption. Within 

the promotion scenarios, we simulate artificial increases in external interactions. Focus is on 

external interactions, because they can be influenced by regulatory directives. In contrast, internal 

word-of-mouth activity can hardly be influenced by lawmakers. Findings contribute to discussions, 

if awareness-barriers can be tackled by external information policies and how these inducements 

impact speed and level of diffusion. 

Promotion scenario results confirm the importance of Epidemic effects on diffusion-speed. 

High promotion intensity effectively induces rapid adoption through a boost in awareness 

interactions. Fig. 26 visualizes diffusion curves in different promotion intensity scenarios. Three 

insights can be derived from the results: First, speed of diffusion is clearly accelerated with high 

promotion intensity. E.g. if promotion intensity is increased from pi = 35% (baseline) to pi = 55%, 

the point of inflection moves from 125 to 100 timesteps. Second, in contrast to monetary 

interventions, informational policies are less scalable due to decreasing efficiency. E.g. a shift from 

pi = 75% to pi = 95% has virtually no effect on diffusion-speed and diffusion-level. Third, 

diffusion curves with promotion intensity below 35% display the importance of external 

interactions to initially spark-off awareness (Bass, 1969; Mahajan, Muller, & Bass, 1995b). Speed 

and level decrease notably. 

 

 

Fig. 26. Smart Meter adoption in promotion scenarios 
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The third-mentioned finding from Fig. 26 underlines that policy makers need to select the 

optimal scale of informational intervention. Again, our Agent-based simulation is capable to 

support scale decisions with the simulation of sensitivity analyses. In order to evaluate the full 

range of magnitudes, we performed sensitivity analyses between pi = 0% and pi = 100%. Fig. 27 

visualized the results. Level rises quickly until 35% in promotion intensity is reached. Only minor 

increases in level succeed above this threshold. In contrast, speed reacts different to variations in 

promotion intensity. Marginal speed of adoption decreases steadily. Slight increases in promotion 

intensity lead to accelerations in speed of diffusion—especially if overall promotion intensity is 

low. 

Promotion scenario findings showcase the relevance of awareness to speed-up diffusion. We 

suggest policy makers to investigate whether missing consumer awareness is a critical barrier to 

adoption (as in our Smart Metering example). In this case, informational interventions form 

effective and efficient policies to accelerate speed of innovation diffusion. However, they might be 

inefficient to artificially push level of diffusion. 

 

 

Fig. 27. Sensitivity analyses in promotion scenarios 

 

Our fourth scenario maps the current regulatory framework to induce Smart Meter diffusion in 

Germany. Since 01.01.2010, the lawmaker requires the installation of Smart Meters in new 

constructions (Bundesnetzagentur, 2010). The quantity-regulation scenarios simulate the outcome 

of such ‘forced adoptions’. This kind of policy directly and synthetically increases diffusion 

through induced purchases, skipping both influencing diffusion drivers: Epidemic spread of 

awareness and Probit willingness-to-pay. 

Surprisingly, quantity-regulation effectively increases both speed and level of diffusion (see 

Fig. 28). Within our preliminary policy design, we expected higher diffusion-level because several 
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consumers would be forced to adopt apart from negative benefit-cost-ratios. But we expected 

diffusion-speed to stay unchanged or only slightly increased, because the number of ‘forced 

adoptions’ is relatively small: E.g. qr = 1 means one synthetic periodic adoption, which is 

relatively small compared to a maximum of about 25 adoptions at the point of inflection (baseline 

scenario). 

 

 

Fig. 28. Smart Meter adoption in quantity-regulation scenarios 

 

Furthermore, sensitivity analyses between qr = 0 (baseline) and qr = 10 underline the 

effectiveness of quantity-regulation policies in terms of diffusion-speed. Speed-measures basically 

display a linear decreasing slope between qr = 0 and qr  = 8 (see Fig. 29 right). This is even more 

surprising, since the actual diffusion-level shows—as expected ex-ante—a declining slope as qr 

increases (see ‘Penetration’-curve in Fig. 29 left). The declining slope originates from the overlap 

between ‘voluntary adopters’ and ‘forced adopters’. High qr increases the probability, that a 

consumer who would have adopted voluntarily during the 300 timesteps, is being forced to adopt. 

Therefore large-scale regulatory interventions lead to strong reductions in effectiveness (see gap 

between ‘Actual diffusion-level and ‘Theoretical diffusion-level’ in Fig. 29 left). 

We performed deep-dive analyses to identify and isolate the root-cause of the surprising speed-

increases. The induced speed results from more internal interaction activity of Innovators and Early 

Adopters. Typically, awareness rises slowly due to small numbers of periodic adoptions. E.g. three 

to five periodic adoptions of Innovators induce awareness of other Agents. Even small-scale 

quantity-regulations are relatively large increases in periodic adoptions during the first periods. 

Finally, quantity-regulation is a method to indirectly push word-of-mouth interactions. 

Besides its ability to induce speed and level of diffusion, quantity-regulation comes along with 

negative side effects: A certain number of consumers adopted the Smart Meter tariff, although their 
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individual business case assigns negative benefit-cost-ratios. In other words, these adopters would 

have never adopted voluntarily. Facing additional monthly costs, opposition can be expected from 

these adopter groups. In terms of economic welfare, consumer surpluses decline while producer 

surpluses incline. Policy makers may unintentionally favor skimming strategies of suppliers – 

especially by monopolists in non-competitive market structures. 

 

 

Fig. 29. Sensitivity analyses in quantity-regulation scenarios 

 

We evaluate quantity-regulation in general as well as Germany´s regulatory framework to be 

very risky. ‘Forced adoptions’ may cause long-term consumer resistance (Kleijnen et al., 2009). 

Even if diffusion-speed and diffusion-level is possibly induced, other policy options potentially 

push Smart Meter diffusion more effectively and more efficiently. Pricing and promotion scenarios 

showcased significantly higher adoption speed and level compared to quantity-regulation. 

 
 

Table 10. Diffusion-speed and -level in combined scenarios 

pi Diffusion-level: Penetration rate in %  Diffusion-speed: Timestep of point of inflection 

15.5 17 18.5 20 21.5 15.5 17 18.5 20 21.5 

15 75 50 22 7 2  111 162 244 253 183 

25 79 58 33 13 4  77 112 163 236 229 

35 80 61 37 18 5  62 89 133 195 222 

55 81 63 40 21 7  50 69 103 157 189 

75 81 63 40 23 8  44 63 96 145 188 

95 82 63 40 23 8  44 62 94 158 202 

 

 

In a final step in terms of predefined scenarios, we tested combinations of pricing and promotion 

policies. Table 10 visualized the results. No synergies could be measured regarding the diffusion-

level. On the contrary, speed of diffusion is further accelerated in combined scenarios compared to 
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isolated policies. E.g. if fixes price is reduced to 17€ and promotion intensity increases from 35 to 

55%, diffusion-level increases only from 61 to 63% compared to a price-only reduction. While the 

point of inflection, the key performance indicator for diffusion-speed, moves from period 89 to 69 

compared to a price-only reduction. 

Baseline results displayed the necessity for regulatory interventions and other scenarios 

presented chances and risks as well as effectiveness and efficiency of concrete policy options. We 

learned that Probit barriers are of main concern. Pricing policies are best-suited to address these 

barriers to push Smart Meter diffusion effectively to committed levels. In a final step, we pick up 

one aspect to optimize the execution of policies in terms of efficiency.  

Key concepts in diffusion research include lead users and the critical mass (Rogers, 2003). 

Both affect each other: Lead users spark-off Epidemic spread of information throughout the society 

during the introduction stage. Their influence on diffusion is immense, until a certain number of 

adopters—the critical mass—is reached. From this point, a reversal of the communication-impact 

takes place (see Fig. 21): The innovation becomes mainstream and the ‘average adopter’ drives 

future diffusion. Efficient execution of policies should factor-in lead users and the critical mass to 

efficiently induce diffusion. E.g. temporary monetary interventions may be executed as purchase 

bonuses for lead users who spark-off awareness of other households.  

Zhang and Nuttall (2007) presented an Agent-based model for Smart Meter diffusion which 

showcased the importance of lead users with a focus on geographical dispersion. These findings 

can be confirmed with analyses based upon this Paper´s Agent-based model. Fig. 30 visualizes the 

Smart Meter diffusion-level within two scenarios: The ‘low dispersion’-scenario limits the 

consumer-selection for supplier-interactions to a small geographic area. As an outcome, diffusion 

advances faster in the selected area, but slower on a macro-level. It takes longer until the critical 

mass is reached, with strong negative effects on speed of diffusion. These results match those of 

Zhang and Nuttall. The ‘lead user selection’-scenario switches the consumer-selection for supplier-

interactions to a specific subgroup of Agents. Households in this group benefit above-average from 

Smart Meter tariffs and therefore include higher adoption probability. In addition, they have more 

co-Agents in their ‘Small World’ than the average household. Diffusion statistics present a superior 

development with improved speed and level. In case they adopt, their internal interactions spreads 

awareness stronger compared to the ‘average adopter’. Results show that the critical mass is gained 

quickly through higher periodic purchases during the first 100 timesteps and boosts penetration in 

comparison to the baseline- and ‘low dispersion’ scenarios. We measured three periodic adoptions 

(baseline) or even less (low dispersion) without lead user selection and ten and more adoptions 
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including the selection (see Fig. 30 left). In sum, policy makers can leverage lead user selections to 

increase policy efficiency remarkably across all intervention options.  

 

 

Fig. 30. Adoption within ‘lead user selection’ and ‘low dispersion’ scenarios 

4.5.3 Micro-level results and discussion 

As a major advantage in contrast to other methodologies, Agent-based models enable detailed 

analyses on a micro-level. Each Agent includes his own heterogeneous calibration and acts 

autonomously. In this model, the 11,500 Agent´s socio-economic backgrounds were configured 

with the use of empirical census microdata. We utilize Rogers´s five adopter categories (see Fig. 

21) to analyze and interpret adopter characteristics as well as adopter behavior. Data mining gives 

insight into drivers and barriers for adoption decisions. Comparisons between scenarios, adopter 

categories, segments, or even single Agents enrich the evaluation process for policy options. In 

sum, micro-level statistics will help policy makers to better understand the adoption process and 

will support them in the design of effective and efficient policies. 

We split Agent characteristics into two types of attributes: Primary and secondary attributes. 

Primary attributes are directly involved in the adoption-decision-process (see formula 18 in section 

4.4.1). E.g. vi as Agent i´s electricity conservation potential with Smart Metering and Ci as Agent 

i´s monthly electricity consumption in kWh. Secondary attributes are not directly involved in the 

decision-process. But they may correlate to primary attributes and may be helpful to policy makers 

due to availability of empirical statistics (e.g. net income). Our validation approach leverages 

census microdata to enable empirical validation among a broad range of different attributes. 

Typically, census microdata contain hundreds of attributes. Split into primary and secondary 

attributes ensures one critical Agent-based model requirement: Keep it simple and stupid! The 

Model—respectively the adoption decision process—can be reduced to a few decision variables. 
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Over-parameterization is avoided, without losing the ability to perform complex data mining across 

hundreds of (secondary) attributes. 

We kick-off our micro-level analyses with comparisons among Rogers´s five adopter 

categories. They showcase the impact of Agent heterogeneity and different socio-economic 

backgrounds. Statistics regarding primary attributes present differing Agent characteristics in 

dependence on the adopter category (and therefore adoption timing). As an example, Fig. 31 

visualizes the primary attribute ‘electricity consumption’ per adopter category in the baseline 

scenario. High consumption leads to high Smart Meter tariff benefits and results in higher adoption 

probability (see formula 19 in section 4.4.1). Statistics show that high adoption probability leads to 

earlier adoption. These findings are in line with Probit diffusion theory. Decrease in spread 

(measured in maximum–minimum as well as in upper quartile–lower quartile) indicates increasing 

ability of policy makers and suppliers to identify potential adopters within the pool of residual 

households over time. E.g. laggards may be identified easily in advance, because their primary 

attributes show small but positive benefit-cost-thresholds. 

 

 

Fig. 31. Average electricity consumption per adopter category (baseline scenario) 

 

Table 11 displays a selection of arithmetic means for attributes in the baseline scenario per 

adopter category. In addition, the ‘Total’ column shows the total average across all 11,500 

households (adopters plus non-adopters). Attribute statistics have two aspects in common: First, 

arithmetic means decrease over time. Second, all adopter categories have relatively high means 

compared to the ‘Total’ for all households. The second finding underlines the importance of 

regulatory interventions to push Smart Meter diffusion in Germany. As we have already seen in 

macro-results, only 37% of the 11,500 households will voluntarily adopt the new tariffs in the long-

term. The 37%-share consists of big households with net income above average, as our micro-level 
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statistics show. Especially the gap between averages of specific adopter categories and the ‘Total’ 

stresses the importance of Probit thresholds: Willingness-to-pay and cost-benefit-considerations 

bracket two specific target groups: Consumers that might adopt over time (whose adoption timing 

is primarily determined by Epidemic factors) and others who will never successfully complete a 

purchase process. Effective policies need to tackle these deficits. 

 Primary attributes vary stronger in terms of standard deviation, due to their immediate 

integration into the purchase-decision-tree. Influence of both Epidemic (e.g. size of ‘Small World’) 

and Probit factors (e.g. household size) are noticeable. Secondary attributes are less volatile. While 

some characteristics stay unchanged, strong correlations to primary variables lead to increasing 

variations. 

 
Table 11. Arithmetic means for selected Agent attributes in baseline scenario 

Attributes Total average Innovators Early Adopters Early Majority Late Majority Laggards 

Household size in persons 2.12 3.47 3.43 3.34 3.23 3.16 

Cost of standard tariff in € 65.8 93.5 92.4 89.8 86.8 85.2 

‘Small World‘ size in persons 40.20 40.38 40.40 40.38 40.30 40.24 

Net income1 10.1 12.3 12.3 12.2 12.1 12.0 

Monthly rent in € 317.4 391.4 389.0 386.6 383.5 380.9 

Size of apartment in m² 89.0 106.9 106.7 106.5 105.7 105.1 
1Intervals: 10: 1,700 – 2,000€ per month; 11: 2,000 – 2,300€ per month; 12: 2,300 – 2,600€ per month 

 

 

As mentioned, regulatory interventions are mandatory to increase the expected 37% diffusion-

level to the committed 80% level. We therefore extend the micro-level analyses to the three 

different intervention scenarios: Pricing, promotion, and quantity-regulation. Table 12 presents 

results for two important attributes: Electricity consumption (primary attribute) and net income 

(secondary attribute with strong correlation to purchase probability). Both attributes were selected 

because initial baseline scenario statistics presented adoption barriers first and foremost in terms of 

Probit barriers: Negative benefit-cost-thresholds. Any type of intervention needs to address these 

barriers. The categories Early Adopters and Laggards were chosen to interpret results because of 

their similar size (13.5 and 16% of adopters) and their distance in terms of time (almost start vs. 

final end). 

Statistics in the different pricing, promotion, and quantity-regulation scenarios show parallels to 

macro-level findings: Pricing policies shift adopter means remarkably due to Agent´s high 

sensitivity to price. Significant price reductions shift mean values for Laggards (µ of net income = 

10.8€) close to the ‘Total’ average (µ of net income = 10.1€). The promotion scenario is ineffective 

with respect to Probit characteristics, confirming that this intervention-type may lead to higher 

speed but not to higher diffusion-level.  
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Remarkable findings come from micro-level statistics in the quantity-regulation scenario. 

‘Forced adoptions’ of households with low electricity consumption and low net income lead to 

significant conflicts with Germany´s ‘Pull’-strategy: Consumers with negative benefit-cost-ratios 

are forced to adopt Smart Meter tariffs and face an increase in their monthly bills. The stronger the 

intervention, the closer declines the mean of values for both categories in the direction of the 

‘Total’. In other words: Small households with little net income need to adopt expensive tariffs—

consumer surplus is reduced. 

 
Table 12. Arithmetic means for two Agent attributes in different scenarios 

Scenario Electricity consumption in kWh (µ = 242.8)  Net income1 (µ = 10.1€) 

Pricing Early Adopters Laggards delta  Early Adopters Laggards delta 

15.5€ 310.0 266.7 -14.0%  11.6 10.8 -7.3% 

17€ 330.6 290.3 -12.2%  11.9 11.5 -4.2% 

18.5€ / baseline 358.6 327.0 -8.8%  12.3 12.1 -1.8% 

20€ 385.8 363.5 -5.8%  12.5 12.4 -0.6% 

21.5€ 421.0 408.5 -3.0%  12.5 12.5 0.3% 

Promotion Early Adopters Laggards delta  Early Adopters Laggards delta 

25% 358.6 333.1 -7.1%  12.3 12.1 -1.3% 

35% / baseline 358.6 327.0 -8.8%  12.3 12.1 -1.8% 

45% 358.3 324.1 -9.6%  12.3 12.0 -1.6% 

55% 358.2 322.8 -9.9%  12.3 12.0 -2.0% 

65% 357.7 321.8 -10.1%  12.2 12.0 -2.2% 

75% 358.6 321.5 -10.3%  12.2 12.0 -1.9% 

Quantity-regulation Early Adopters Laggards delta  Early Adopters Laggards delta 

0 / baseline 358.6 327.0 -8.8%  12.3 12.1 -1.8% 

2 339.1 315.1 -7.1%  11.8 11.8 0.0% 

4 327.3 306.4 -6.4%  11.7 11.6 -0.8% 

6 319.4 299.4 -6.3%  11.6 11.4 -0.9% 

8 314.3 293.6 -6.6%  11.4 11.3 -1.0% 

10 308.7 288.5 -6.6%  11.3 11.2 -1.1% 
1Intervals: 10: 1,700 – 2,000€ per month; 11: 2,000 – 2,300€ per month; 12: 2,300 – 2,600€ per month 

4.6 Summary and conclusion 

The model in this paper confirmed the capabilities of Agent-based models to simulate innovation 

adoption behavior and its ability to help policy makers in the design of effective and efficient 

policies. Especially in ‘Pull’-environments with liberalized market structures, in which autonomous 

behavior of consumers cause chances and risks. The five-step adoption-decision-process identified 

both demand-side barriers and drivers. Regulatory interventions were designed, tested, and 

measured on micro- and macro-levels. Widely accepted concepts were utilized, namely the General 

Bass Model and Rogers’s adopter categories. Both Epidemic and Probit effects were be observed 

during the adoption processes. Furthermore, they were verified as major drivers for diffusion. 

The integration of census microdata to create empirically validated socio-economic 

backgrounds of Agents opened a wide spectrum of data mining options. While most Agent-based 
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simulation publications present results only on a macro-level, one key asset of the Agent-based 

methodology itself is its flexibility on an Agent-level. In this example, consumers were clustered 

via Rogers´s generally accepted adopter categories to work out micro-level attribute-statistics. 

Valuable insights could be transferred into policies and target group selections, especially that 

Probit thresholds constitute primary adoption barriers and how quantity-regulation may cause 

consumer resistance. 

Baseline scenario results confirm the necessity to issue regulatory interventions. Otherwise 

committed diffusion-levels will not be reached in Germany. Current quality-regulation 

interventions of Germany´s regulator Bundesnetzagentur might speed-up diffusion in the short-run, 

but it cannibalizes its own customer-centric ‘Pull’-strategy in the long-term. This is an important 

finding, since Bundesnetzagentur is planning a strong enlargement of this policy on rotational 

meter replacements (Bundesnetzagentur, 2010). While pilot regions (especially E-Energy) will give 

insights about technical questions and user acceptance, main demand-side barriers are not 

addressed. In particular: Negative benefit-cost-thresholds and missing awareness. Furthermore, low 

geographical dispersion of pilot regions reduces Epidemic effects and therefore impedes speed and 

level of diffusion. In any intervention scenario, policy makers need to leverage lead user selections 

to enable efficiency of applied policies. 

Scenario and sensitivity analyses nominate pricing interventions as most effective regulatory 

option, with significant influence on speed and level of diffusion. Consumer´s benefit-cost-

concerns are addressed, leading to higher adoption-ratios. In addition, current market conditions 

show deny-delay-degrade attitudes (Kurth, 2009) of suppliers—they do not actively promote Smart 

Meter tariffs. Empirical studies present awareness levels between only 5 and 10% (Donath, 2009; 

Forsa, 2010). Informational policies could induce widespread education of consumers and are 

capable to speed-up diffusion effectively, but are ineffective to increase diffusion-level. Two 

appealing characteristics distinguish educational policies: Lower costs in contrast to pricing 

policies, e.g. executed as a requirement to educate customers with the next electricity bill. And 

voluntary adoption decisions as a major difference to installation obligations in quantity-regulation 

scenarios. An early introduction of informational policies increases their effectiveness due to an 

earlier attainment of the critical mass. 

A ‘cash-for-clunkers’-program for old Ferraris meters may combine pricing and informational 

interventions. As the president of Bundesnetzagentur Kurth (2009) already stated, these kind of 

purchasing bonuses have the potential to increase awareness significantly, shift benefit-cost-

calculations in a positive direction and cause great buy-in of consumers—which might be the most 

important impact. Acceleration of diffusion would cause synergy effects due to supplier´s 
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economies of scale: Comprehensive rollouts lower installation costs, hardware costs, and operating 

costs. A quick phase-out of legacy Ferraris infrastructure would be possible. With respect to the 

overall electricity retail market, a ‘cash-for-clunkers’-program could boost supplier-switching rates 

and therefore intensify competition. Finally, our combined scenario analyses measured no 

synergies in terms of diffusion-level. Only diffusion-speed may increase. The German regulator 

should carefully evaluate combined interventions, since its major objective should be increases in 

diffusion-level to match committed thresholds. 

4.7 Limitations and future research 

Two limitations reduce the significance of this paper´s model and findings. First, the evaluation 

during the purchase decision process is limited to monetary ratios. Although savings represent the 

primary driver, other intentions are capable of inducing demand as well. For example increased 

cost transparency (Donath, 2009; Forsa, 2010). Second, the simulation focuses on the demand-side 

with fixed supply-side-behavior. An extension of the model might include competitive strategies in 

the marketing mix and market entries/exits to fully analyze the impact of liberalized market 

models. Future diffusion research could copy our combined microdata- and purchase-decision-

process-methodology to other situations. For example, driving pattern microdata could be used to 

identify target groups for plug-in (hybrid) electric vehicles. Or a combination of internet usage, 

ecological attitude, employment situation, net income, etc. to create product-agnostic innovation 

diffusion forecast models. 

4.8 Appendix 

4.8.1 Programming code for the consumer decision process in NetLogo 

;step-1 Problem Recognition and step-5 Post Purchase 

;pi promotion intensity 

;s probability to receive a supplier interaction 

;A number of suppliers 

;aw awareness-level (household-specific) 

;sm smart meter flag (household-specific) 

;r probability to receive a random interaction 

;w probability to receive a ‘Small World’ interaction 

 

ask households [ 
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 if random-float 100 < (pi * s * A) [set aw aw + 1] 

if random-float 100 < (count households with [sm = true] * r) [set aw aw + 1] 

if random-float 100 < (count households-on neighbors with [sm = true] * w) [set aw aw + 1] 

] 

 

;step-2 Information Search 

;i temporary variable 

;iss information search success (household-specific) 

 

ask households with [aw > 0 and sm = false] [ 

 repeat A [ 

   if random-float 100 < pi [set iss true] 

 ] 

] 

 

;step-3 Evaluation of Alternatives 

;b Net benefit/savings potential (household-specific) 

;Pfc Fixprice for conventional tariff 

;C Electricity consumption (household-specific) 

;Pvc Variable price for conventional tariff 

;Pfs Fixprice for Smart Meter tariff 

;v Electricity conservation (household-specific) 

;Pvs Variable price for Smart Meter tariff 

  

ask households with [iss = true and sm = false] [ 

 set b (Pfc + C * Pvc) – (Pfs + (1 – v) * C * Pvs) 

] 

 

;step-4 Purchase Decision 

ask households with [iss = true and sm = false] [ 

 if random-float 20 < b [ 

 set sm true 

 ] 

] 
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4.8.2  Programming code for the integration of microdata in NetLogo 

;mc List with microdata 

;att Attributes container (household-specific) 

 

set mc [ 

 [  1  4  170  43  38  32  6  4  2  2  4  3  1800  ] 

 [  1  6  170  40  30  27  7  7  2  2  4  2  1800  ] 

 [  1  8  0  30  30  140  1  2  2  4  4  1  1800  ] 

 [  1  3  105  26  23  15  6  1  2  2  9  5  1800  ] 

 [  1  4  185  51  9  18  5  4  2  4  3  5  2500  ] 

 [  1  4  135  22  15  12  4  4  2  2  2  5  1800  ] 

 [  1  3  160  45  45  21  6  7  2  4  3  4  2500  ] 

… 

] 

set mc shuffle mc 

 

foreach mc [ 

 create-households 1 [ 

   set att ? 

    setxy random-xcor random-pycor 

    …    

  ] 

] 
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4.8.3  Screenshot of simulation user interface in NetLogo 

 

Fig. 32. Screenshot of the Agent-based simulation 
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5. Conclusion 

This doctoral thesis focuses on inducements within the process of innovation diffusion. Chapter 

2 outlines fundamental methodical requirements in order to build explanatory and predictive 

Agent-based models. Comparisons of different validation techniques leads to the maturity matrix—

a holistic framework that helps in matching functional model requirements with feasible external 

validation taxonomies. Finally, the best-suited validation approach depends on the model´s 

objective and the available empirical data. Researchers should clearly state the model´s purpose, 

how and why they validated each input factor, and how validation affected the outcome. Results 

from Chapter 2 determine validation approach and critical model requirements for programming an 

Agent-based model that simulates the diffusion of innovations. Requirements differ remarkably 

between explanatory and predictive model purposes, as the innovation diffusion example 

concludes. 

Chapter 3 contributes to current diffusion research through policy simulations for adoption 

inducements. The underlying Agent-based model is an extension of the example from Chapter 2. It 

combines Epidemic and Probit diffusion theories in an Agent-based model and adds Cournot-based 

supplier behavior to tackle demand-supply co-evolution. A major research contribution from 

Chapter 3 comes with the confirmation of Soberman´s and Gatignon´s dependencies between 

market evolution and competitive dynamics (Soberman & Gatignon, 2005). These dependencies 

drive market liberalization results remarkably and make market liberalization is a dominant 

strategy for regulators. Simulation results underline that one policy does not fit in all situations. 

Intensifying competition is an effective and efficient adoption driver, while closed markets 

primarily favor the monopolist. Information policies typically accelerate adoption. Monetary grants 

boost both speed and level. Policy makers must not underestimate synergies across inducements as 

well as supply and demand endogeneity to keep control over policy costs. 

In Chapter 4, the Agent-based model is further specified in order to map the German Smart 

Metering market. Special focus is on consumer demand, because of the market driven ‘Pull’-

approach to rollout Smart Meters of Germany´s regulator Bundesnetzagentur. A five-step adoption-

decision-process is therefore introduced into the model. Furthermore, a variety of real-world data 

configure model parameters in line with validation requirements from the maturity matrix in 

Chapter 2: Tariff information, supplier´s marketing mixes, and purchase probabilities of 

households. First and foremost, simulation results confirm the necessity to issue regulatory 

interventions for a comprehensive diffusion of Smart Metering tariffs. Induced diffusion is required 
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to attain politically committed deadlines. Scenario and sensitivity analyses nominate pricing 

interventions as most effective regulatory option, with strong influence on speed and level of 

diffusion. Consumer´s benefit-cost-concerns are addressed, leading to higher adoption-ratios. 

Informational policies could induce widespread education of consumers and are capable to speed-

up diffusion effectively, but are ineffective to increase diffusion-level. A ‘cash-for-clunkers’-

program for old Ferraris meters may combine benefits from both pricing and informational 

interventions. 

Overall, induced diffusion of innovations is under-researched and will gain significance in the 

next years, particularly in the context of ‘Green’ technologies. This doctoral thesis explains 

fundamental diffusion theories and their impact on inducements. Simulation results stress the 

preliminary assumption, that different policy options induce adoption through different drivers. 

Informational policies stimulate Epidemic procedures. Monetary grants tackle cost-benefit-

thresholds of Probit theory. Solid models are required to simulate policy effects in the context of 

certain innovations—the Smart Metering example in this thesis is just one example of upcoming 

‘Green’ technologies. Methodical findings contribute to this requirement and guides researchers 

how solidity can be enabled in Agent-based diffusion models. 

Future induced innovation diffusion research should re-use the models programmed for this 

doctoral thesis. Replication would further confirm the applicability of Agent-based modeling in 

diffusion research. The product-agnostic model from Chapter 3 is the best starting point. 

The German regulator Bundesnetzagentur should re-evaluate its Smart Metering diffusion 

strategy and verify adoption actuals (typically outlined in the yearly Monitoringbericht) with 

prognoses from Chapter 4. Regulatory interventions will be required to fulfill diffusion objectives. 

Otherwise, supplier deny-delay-degrade attitudes (Kurth, 2009) and consumer adoption barriers 

will prevent Smart Meters to diffuse.  
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