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Abstract

This dissertation assesses investment decisions in container shipping. To under-
stand the current state of the industry, key characteristics and challenges, such
as overcapacity, eroding margins due to low freight rates, long investment lead
times, and frequent changes in alliance structure are introduced.

The nature of the industry motivates the application of real options, hence
a real options investment model in oligopolistic competition is presented. An
analytic solution in continuous time as well as a dynamic programming solu-
tion in discrete time are derived. The model takes into account an endogenous
price function, fuel-efficient investment, endogenous lead times, and endoge-
nous price formation in the secondary vessel market. This allows to study
the impact of competitive intensity, number of players, volatility, fuel-efficiency,
lead time, and variable cost on optimal capacity. An investigation of optimal in-
vestment policies shows that strategic action increases firm value and strategic
alliances might help alleviate some of the industry’s challenges.

Since the container shipping market is characterized by frequent alliance
changes, the performance of the real options model in the context of a coopera-
tive shipping game is assessed. Extending the coalition structure value concept
it can be shown that, compared with discounted cash flow, the real options trig-
ger performs better, especially in light of high competitive intensity and freight
rate volatility while not exhibiting substantial disadvantages in other settings.
A further assessment of a number of drivers for alliance instability finds that al-
liance complexity cost, freight rate volatility, and competitive intensity increase
alliance changes.

To verify the investment approach, a characterization of the container freight
rate is provided with an empirical Autoregressive Integrated Moving Average
(ARIMA) model. It can be observed that the freight rate exhibits a negative
relationship with capacity deployment; hence the oligopoly price function is
confirmed. Based on the freight rate characterization, a back testing of the
real options investment approach is provided. It shows that if players had
applied the presented approach, capacities would have decreased and rates
improved. A number of limitations of the real options approach are identified,
i.e. substantial impact of volatility expectation, potentially induced cyclicality
from trigger approaches, and the timing impact of investment and divestment
lead times.

The implications of this research are that strategic action in the container ship-
ping industry is worthwhile and understanding the market specifics (such as
competitive intensity, volatility, and freight rate characterization) is very impor-
tant. Container carriers should add a real options approach to their investment
toolkit and keep an eye on potential overcapacity. Finally, entering strategic
alliances is suggested, but complexity should be avoided.
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1
Introduction

1.1 motivation

An obsession with scale to drive down costs and the defense of market share,
rather than a focus on the bottom line, drive the desire for ever larger, more fuel

efficient vessels.

—Odell (2012) Financial Times

1.1.1 Industry perspective

The shipping industry is an industry of superlatives. Container, bulk, and
tanker vessels are an integral part of global supply chains, transporting raw
materials and finished goods that are necessary for daily life across the world.
In 2015 alone, world seaborne trade amounts to 54 trillion cargo ton-miles.

Figure 1.1: World seaborne trade

Source: UNCTAD (2015), 2015 numbers are a forecast

Figure 1.1 shows that world seaborne trade has grown by 3.8 percent in the
past 15 years. The container share has drastically increased over the years
(2000: 10.3 percent; 2015: 16.6 percent), in terms of cargo-ton miles it has almost
tripled.

1



2 introduction

As of April 2016, there are 5,173 cellular containerships (Alphaliner 2016)
and the world’s largest containership, the “Mediterranean Shipping Company
(MSC) Oscar”, has a nominal capacity of 19,224 Twenty-Foot Equivalent Units
(TEU). This container vessel is 395.4 meters long and 59 meters wide; it corre-
sponds to the size of more than 3 soccer fields (Stackhouse 2016).

Despite the impressive superlatives, players in the shipping industry have
suffered from a number of challenges and have been under constant pressure
in the past years. The world financial crisis in 2009 has shown how closely
the fate of the shipping industry is tied to economic growth. And even before
that, the industry had experienced market cycles of different length and size
(Stopford 2010). From a regulatory perspective, a number of challenges are
ahead: Carbon Dioxide (CO2), ballast water, and local air pollution require-
ments are to be introduced by governments and the International Maritime
Organization (IMO).

All of that combined with capital-intensive, long-term investments make it
a very challenging situation to form rational and sustainable investment deci-
sions. Especially since freight rate indices have only been introduced to con-
tainer shipping in the 21st century, market participants are still trying to find
the right approaches to use market intelligence to support their decision pro-
cesses. As a consequence, decision making in the industry has not been purely
rational. This has led to a mismatch of supply and demand, and finally an im-
mense amount overcapacity (Bendall 2010, Rousos and Lee 2012, Scarsi 2007).

The Financial Times (Odell 2012) provides an appropriate summary of the
situation: players in the industry are literally “obsessed” with scale and mar-
ket share; strategic, rational investment decisions can only be observed to a
limited extent. Therefore, it is obvious that this is an extremely interesting in-
dustry; and given the outlined situation and characteristics, it is an ideal basis
for further research with respect to investment methods.

1.1.2 Personal perspective

As a management consultant, I worked on several engangements within the
logistics industry. Personally, I think the projects with players within the con-
tainer shipping industry were most challenging and most rewarding. I am
enthusiastic about the industry and have been overwhelmed by the sheer size
of container vessels which I have come across during my visits to the ports of
Hamburg, Hong Kong, Singapore, and Antwerp.

Discussions at a number of research conferences as well as frequent talks
with practitioners, researchers, and consultants familiar with container ship-
ping have encouraged me that this is a relevant and exciting topic.

I believe there are a lot of highly interesting and relevant questions to be
asked within the spectrum from network design, port operations, fleet deploy-
ment, all the way across to shipping investment. With this thesis, I want to
contribute a model theoretic, empirical, and strategic perspective to this indus-
try.
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1.1.3 Desired impact

The key motivation for this dissertation is to have impact on research and man-
agement. In this work, I aim to fulfill the following objectives:

• Understand the current situation of the shipping industry and which chal-
lenges market participants are facing

• Characterize investment decisions and which financial and non-financial
factors are relevant

• Develop a real options model for shipping investment

• Model investment decisions in the presence of dynamic coalition structure

• Assess the nature of the container freight rate

• Test the validity of the investment model empirically

The key contribution is that researchers can build on the insights (e.g. the
continuous-time and discrete-time real options investment game models or the
ARIMA freight rate characterization) to create further investment models in
shipping or unrelated industries. Managers can add the models or parts thereof
to their investment toolkits to make better, more informed investment decisions.

1.2 the container shipping industry

The objective of this Section is to embed this dissertation into the broader con-
text of the shipping industry. I provide an overview of the value chain in
shipping, present key figures, and add a regulatory perspective.

1.2.1 Value chain

In this work, I consider ship yards, ship owners, ship operators, freight for-
warders, Beneficial Cargo Owners (BCOs), and regulators as key participants
of the shipping investment value chain (Figure 1.2). The BCO as end customer
wants to ship goods from an origin to a specified destination. This can be
achieved by short or long-term contracts with a freight forwarder, or, for large
volumes, directly with a ship operator. The freight forwarders may be char-
acterized as the interface between BCOs and carriers. They handle most of
the adminstrative tasks related to the shipments but can go as far as to or-
ganize door to door service, e.g. by providing further inland transport. The
cost for the shipping service is determined by the freight rate. The China Con-
tainerized Freight Index (CCFI) which was introduced in 2003 and Shanghai
Containerized Freight Index (SCFI) (introduced in 2009) are industry-wide ac-
cepted freight rate indices. BCOs and freight forwarders represent the demand
side of the container shipping market.

On the supply side, ship operators (so-called carriers) provide the shipping
service. In liner shipping, schedules are published in advance and carriers
operate vessels on network strings. For example, a network string “Asia-Europe



4 introduction

(AE1)” by Maersk connects Kobe in Japan with Bremerhaven in Germany. It has
10 additional port calls in Japan, China, Hong Kong, Malaysia, Egypt, UK, and
the Netherlands. This is complemented with a feeder service, for example to
allow transshipment from Thailand or transshipment to other ports in the UK.
This particular string is operated with comparatively small vessels of the S Type
with 8,500 TEU capacity (Maersk 2016a).

Figure 1.2: Value chain in container shipping

Vessel operators usually manage a portfolio of owned and chartered vessels.
An owned vessel is on the operator’s balance sheet and can be characterized as
a long-term investment. In the case of chartering, a ship owner finances a vessel
and makes a short or long-term charter contract with an operator. Charter
contracts can have durations of variable length. In order to fulfill peak demands,
vessels may be chartered for only a few months. For example, Maersk secured a
5,576 TEU vessel from Diana Containerships for 6 to 9 months at a charter rate
of 14,750 USD per day (Alphaliner 2015a). New ultra-large vessels are normally
chartered on a long-term basis. For example, the “YM WELLNESS”, a 14,080

TEU vessel was ordered by ship owner Seaspan and chartered to the shipping
operator Yang Ming on a 10 year contract (Alphaliner 2015e). An indicator of
the current charter prices is represented in the various Time Charter (TC) rates,
for example as provided by Clarksons (2013c).

Ship owners or owner-operators place orders with ship yards. Since vessels
are a high involvement, long-term, expensive investment, ship owners normally
codevelop ship classes with ship yards and buy a number of ships of the same
design. An example is the Maersk Triple-E class which has been built 20 times
from 2012 to 2015 and specifically designed for cutting CO2 emissions, greater
fuel efficiency, and improved vessel recycling (Maersk 2016b).

Finally, the container shipping industry is overseen by the IMO and individ-
ual countries’ regulators. The IMO is continuing to provide new regulation
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with respect to air pollution from ships, ballast water management, and ship
recycling (c.f. Section 1.2.3).

In this thesis, the focus is on the investment decision made by operator-
owners of container vessels. The decision of whether to charter or to own a
vessel is not considered.

1.2.2 Key figures

Capacity

Despite a number of economic crises, the container shipping industry has ex-
hibited steady growth throughout the first 15 years of the 21st century. In the
years 2000 to 2015, the number of container ships has almost doubled (Figure
1.3). As of 2015, Clarksons (2016) counts 5,132 registered containerships.

Figure 1.3: Container shipping capacity development 2000-2015

Source: Clarksons (2016)

At the same time, the average ship size in the market has significantly in-
creased, from 1,702 TEU in 2000 to 3,558 TEU in 2015; hence it has more than
doubled within 15 years. This is mainly driven by the ultra-large container-
ships which have been put into service in the recent years in an attempt to gain
economies of scale (c.f. Section 1.1.1).

The combination of more ships and higher average capacity has led to a more
than four-fold increase in total market capacity; in 2015 total container shipping
capacity amounted to 18.2 million TEU.

Market share

In terms of market share, the container shipping industry is concentrated. As
shown in Figure 1.4, the top 10 players control more 61.7 percent of the mar-
ket share1. Furthermore, all top 10 players - except for Hamburg Süd - are

1Note that this number assumes that assets of the recent merger between CSCL and COSCO
have not been pooled yet.
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organized in different shipping alliances. Shipping alliances are a collaboration
between players in the industry. The standard definition is a joint service of-
fering based on vessel sharing agreements, but it can also take on a less strong
collaboration, such as slot charter agreements (Slack et al. 1996).

Figure 1.4: Container shipping market shares

Source: Alphaliner (2016)

The two largest players in the industry, APM-Maersk and MSC, are cur-
rently operating jointly as the 2M alliance and achieve a combined market
share of 27.7 percent. The G6 alliance with a 16.7 percent market share con-
sists of Hapag-Lloyd, Orient Overseas Container Line (OOCL), Mitsui Osaka
Shosen Kaisha Lines (MOL), American President Lines (APL), Nippon Yusen
Kabushiki Kaisha (NYK), and Hyundai. CKYHE with 15.9 percent stands for
the first letters of China Ocean Shipping Company (COSCO), K Line, Yang
Ming, Hanjin, and Evergreen. Finally, the Ocean 3 alliance with 14.8 percent
consists of CMA CGM, China Shipping Container Lines (CSCL), and United
Arab Shipping Company (UASC). In summary, more than 75 percent of the
global container shipping capacity is in the hands of 4 major alliances.

1.2.3 Regulatory perspective

Container shipping has a strong impact on the environment and as a conse-
quence, especially the IMO as well as the EU and the USA have introduced and
intend to introduce further regulations.

The polar code is a set of safety and environmental guidelines with respect to
Arctic and Antartic shipping. To ensure safe navigation in potentially danger-
ous waters as well as protect the remote environment from pollution, the polar



1.3 industry dynamics 7

code has been adopted by the IMO. It is put into in effect for newbuildings
from January 2017, for existing ships from January 2018.

Furthermore, there a number of guidelines with regards to ship design and
operational measures to avoid CO2, Sulfur Dioxide (SO2), and Mono-Nitrogen
Oxides (NOx). For example, the share of sulphur in bunker fuel needs to be
reduced to 0.5 percent until 2020. In Emission Control Areas (ECAs), such as
the Baltic Sea, there are even stricter restrictions (2015: 0.1 percent).

For large vessels, it is common to use ballast water tanks in order to ensure
stable sailing conditions. However, this is a threat to the ocean’s ecosystem
since non-native organisms can be introduced into different parts of the world.
Hence, there are a number of IMO regulations that aim at avoiding transferring
aquatic organisms across regions (UNCTAD 2015).

1.3 industry dynamics

Since the financial crisis of 2009, the situation of the container shipping industry
has further deterioriated. In this section I explore the additional challenges of
the industry, describe the reactions of players, and explain how this has affected
the industry as a whole.

1.3.1 Overcapacity and low freight rates

While world container trade in cargo ton-miles has been growing on average by
7.2 percent per year (Figure 1.1), total container capacity has grown by 9.8 per-
cent per year (Figure 1.3). These highly aggregated figures are a first indicator
that container shipping players have built up overcapacity in the past 15 years.

Figure 1.5: Development of CCFI

Source: SSE (2016)

Taking a closer look at one of the leading market indices, the CCFI, it becomes
apparent that overcapacity - in combination with low demand resulting from a
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number of ecomonic crises - has led to historically low freight rates. Figure 1.5
shows that after its introduction in 2003 with a value of 1,000 the CCFI exhibited
a number of cycles before hitting values of less than 800 in the aftermath of the
2009 financial crisis. It seemed to recover through 2010 and 2011 but remained
much more volatile. After a short period of stability in 2014 and 2015, it hit its
all-time low in the beginning of 2016 with no signs of recovery yet.

1.3.2 Reactions of players

At prevailing freight rate levels, it is impossible for shipping companies to op-
erate profitably in the market. Hence, players have chosen to cope with over-
capacity and low freight rates in three ways: (1) slow steaming to improve fuel
consumption and keep utilization of vessels high, (2) improve fuel efficiency of
vessels, and (3) lay up additional vessels to reduce active market capacity.

Slow steaming is motivated by the fact that the fuel consumption rate of
oceangoing vessels increases exponentially with vessel speed. Hence, when fac-
ing high bunker fuel cost, low demand, and low freight rates shipping players
employ slow steaming. Due to higher transit times, available supply is reduced
and can alleviate overcapacity. Due to the exponential relationship between
speed and fuel consumption, vessel operators can reduce their operating cost
substantially (Meyer et al. 2012). There is also an environmentally friendly side
effect. Cariou (2011) shows that slow steaming has cut emissions by about 11

percent over the years 2008 to 2010.
The challenging market environment has boosted the research and develo-

ment of so-called “eco-ships”. Those vessels have never generations of engines,
improved hull designs, and innovative coatings. At low steaming speeds, newer
generations of ships can achieve combined fuel reductions of up to 30 percent
(Lomar 2012, Notteboom and Cariou 2009, Visser 2011).

Figure 1.6: Development of container vessel layup pool

Source: Alphaliner (2012, 2014b, 2015b,c, 2016)
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Finally, shipping players have reduced the amount of deployed vessels or
even canceled entire strings on their networks. This has led to high amounts
of idle capacity. Figure 1.6 shows the development of the layup pool over time.
Currently, the layup pool is again at levels comparable to the 2009 financial cri-
sis. As of April 2016, there is 1.48 million TEU idle capacity which corresponds
to 7.4 percent of the worldwide cellular fleet (Alphaliner 2016).

1.3.3 Effects

This situation has had adverse effects on the shipping companies and sev-
eral players were facing bankruptcy (Barnato 2016). It resulted in government
bailouts and further consolidation, both in terms of mergers and acqusitions
and in terms of container shipping alliances.

Hapag-Lloyd had to be bailed out by the German government in 2009 with
a 1.2 billion EUR loan guarantee due to significant losses resulting from over-
capacity (CityAM 2009). Neptune Orient Lines (NOL) was acquired by CMA
CGM in 2015 (Shingleton 2016); COSCO and CSCL announced their merger in
2015 (Alphaliner 2016). According to Notteboom (2016), this will impact con-
tainer shipping alliances once more: Ocean alliance (CMA CGM, China COSCO
Container Lines (COSCOCS), OOCL, and Evergreen) and THE alliance (Han-
jin, MOL, K Line, Yang Ming, NYK, and Hapag-Lloyd) are expected to start
operations in 2017 while only 2M (Maersk and MSC) will remain in its current
state.

In summary, the container shipping industry moved further away from per-
fect competition (bulk shipping as described by Pirrong (1992)) to a more
oligopolistic market with a few, dominant players. This is an ideal setting to
work with real options investment games in cooperative and non-cooperative
markets with an endogenous oligopoly price function.

1.4 structure of the dissertation

Chapter 2 discusses that the container shipping industry is challenging due to
market cycles, capital-intensive investments, supply-demand imbalances, and
market concentration. This has led to overcapacity and margin erosion. Invest-
ment decisions are not solely driven by true intrinsic value, but also by fuel
efficiency, networks, funding sources, regulation, vessel sizes, and asset prices.
A container industry-specific real options investment model in oligopolistic
competition is developed. It takes into account an endogenous price function,
fuel-efficient investment, endogenous lead times, and endogenous price forma-
tion in the secondary vessel market. I provide an assessment on how optimal
capacity is influenced by competitive intensity, number of players, volatility,
fuel-efficiency, lead time, and variable cost. Moreover, I investigate optimal
investment policies. It turns out that strategic action increases firm value and
that it is worthwhile to consider alliances. Additionally, players in the market
should consider retrofitting old vessels for fuel economy in economic down-
turns and using new, fuel-efficient vessels for capacity expansion in market
upswings.
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In Chapter 3, I discuss the role of container shipping alliances and their
changing composition over the past years. With the intent of examining the mer-
its of a real options trigger approach in light of a cooperative industry, I extend
the coalition structure value concept. Compared with discounted cash flow the
real options trigger performs best, especially in light of high competitive inten-
sity and freight rate volatility. It does not exhibit substantial disadvantages in
other market scenarios and has no substantial negative impact on coalition sta-
bility or market concentration. I quantify impact of competitive intensity, lead
time, alliance complexity cost, and freight rate volatility on industry capacity,
cash flow to players, alliance stability, and industry concentration. As conse-
quence, I encourage shipping players to apply real options trigger approaches
to strategic capacity investments.

Chapter 4 provides an empirical characterization of the container freight rate
for the Asia to Europe trade lane with an ARIMA model. It can be shown
that the freight rate has autoregressive properties and there is a negative re-
lationship between capacity deployment and freight rate. This confirms the
assumption of an endogenous oligopoly price function for the container ship-
ping market. I further test the empirical performance of a real options invest-
ment approach. For the time period 2012 to 2016 I find that capacity would
have declined and rates improved, had shipping carriers applied a real options
framework. The real options approach, however, potentially induces cyclical-
ity and is strongly dependent on the assumption of forward-looking market
volatility. In summary, the application of the real options trigger is beneficial
from an empirical perspective, albeit one needs to keep in mind that the market
needs to be small enough to allow for signaling or needs a capacity regulator.

Chapter 5 summarizes the dissertation and reflects on the objectives pre-
sented in Section 1.1.3. Managerial implications as a consequence of the three
main chapters as well as an outlook on future research are presented.



2
Investment into container shipping capacity: A real options approach in
oligopolistic competition1

2.1 introduction

“Rough seas ahead for container shipping industry” was the title of a CNBC
news item that aired in April 2015. It seems the container shipping industry
was indeed facing historical challenges. Several players were facing bankruptcy
and struggled to make money with transportation services (Barnato 2016). One
year later, however, the situation has even further deteriorated: the SCFI has hit
his all-time low since introduction in 2009 (414 USD/TEU in March 2016) while
capacity in the market has continued to rise (SSE 2016).

Facing challenges to this large extent, players in the industry need to draw
more attention to their capacity investments. They should assess the viability
of strategic investment, assess optimal capacity and how it is influenced and
finally design optimal investment policies over time. The intention of this re-
search is to shed light on these issues and show how - by consideration of a
real options investment model in oligopolistic competition - investment policy
can be improved.

2.1.1 Challenges of the shipping industry

The shipping industry is a challenging environment, because players are ex-
posed to market cycles, the high capital intensity of investments, supply-demand
imbalances and market concentration.

The ocean freight market has experienced market cycles since the start of
modern sea trade; in the past decades, however, these cycles have varied sig-
nificantly in terms of length and amplitude (Stopford 2010). Investments into
freight vessel capacity are capital-intensive and have a long-term horizon of
20-30 years. These investments are usually undertaken by shipowners with
the backing of long-term charter contracts. For example, the Vicente Pinzon
(4,800 TEU) was recently put into service by Alianca de Navegacao (part of the
Oetker group among Hamburg-Süd and others). It had originally been ordered
by Ship Finance International (SFI) for 57.5 million USD, backed by a seven year
charter contract with Hamburg Süd (26,250 USD per day). After delivery de-
lays, however, SFI walked away from the contract and Hamburg-Süd assumed
direct ownership of the vessel (Alphaliner 2014f).

An analysis of time charter rates, new orders as well as idle fleet in the
container shipping sector (Figure 2.1) shows that strong ordering during time
charter rate hikes has - repeatedly - led to high capacity delivery in low rate

1Rau and Spinler (2016b): Rau, P., Spinler, S. (2016). Investment into container shipping
capacity: A real options approach in oligopolistic competition. Transportation Research Part E:
Logistics and Transportation Review, 93, 130-47. Presented at EURO 2015 Conference, Glasgow.
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environments. As of September 2014, idle capacity for container ships has
dropped to 1.3 % of total fleet (vs. 3.9 % in September 2013). However, with
the start of the winter period, more empty sailings are expected to occur and
the amount of idle capacity is expected to increase (Alphaliner 2014d).

Figure 2.1: Analysis of time charter rates, new ordering and idle fleet

Sources: Alphaliner (2014c), Clarksons (2013b,c)

It can be argued that under- and over-supply situations occur frequently in
shipping markets due to non-optimal investment timing. For example, the
boom years from 2001 to 2008, when daily earnings increased strongly, led
to supply demand imbalances in the 2009 recession (Syriopoulos 2010). One
reason for non-optimal investment timing is shortcomings in current methods
to evaluate sea freight capacity investments; for example, current Discounted
Cash Flow (DCF) methodologies do not capture flexibility in investment timing.
Non-optimal investment timing and sizing has resulted in strong growth in the
capacity market (Bendall 2010). At the end of 2013, there were 5,115 container
vessels (+4.9 % p.a. since 1999) with an average capacity of 3,349 TEU (+5.0 %
p.a. since 1999) (Clarksons 2013c).

In contrast to the bulk shipping market, which is characterized by perfect
competition (Pirrong 1992), container shipping is much more concentrated: the
top 10 operators control more than 60 % of worldwide TEU capacity (Alpha-
liner 2014g). Hence, the actions of single companies do matter in terms of price
and market share. Moreover, price adjustments (up and down) are not always
in line with supply-demand fundamentals; at the same time, the price elasticity
of long-distance container shipping demand is very low since no substitutes
are available at a comparable cost.

2.1.2 Investment decisions in shipping

Investment decisions in shipping are driven by a number of factors. On the one
hand, the true intrinsic value of a project - based on time charter or freight rate
earnings and lifetime of a ship, along with potential embedded real options - is
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relevant and drives decisions. On the other hand, factors such as fuel efficiency,
network considerations, sources of funding, regulation, vessel sizes, and asset
prices also play an important role.

First, new generations of ships offer substantial fuel savings of up to 30 %
which mostly benefit the carriers. Hence, substantial operational cost advan-
tages allow carriers to replace ships earlier and to gain a competitive advan-
tage from operating newer ships. Second, carriers serve customers in networks.
For example, the CMA CGM “French Asia Line 16" runs from Kaohsiung via
Shanghai, Tanjung Pelepas, and other ports to Hamburg. The 13,800 TEU ships
sail on a published weekly schedule and need 57 days for a round trip. The
10 vessels associated with the string are operated by CMA CGM’s strategic
partner Evergreen (CMA-CGM 2014). This means that a minimum number
of ships needs to be deployed to serve a network string; it also means that,
in case of vessel sharing agreements or alliance membership, investment de-
cisions need to be aligned with strategic partners. Third, since the financial
crisis and bankruptcies of shipping funds, sources of financing have changed.
KG funding (closed-end shipping funds in Germany) is almost nonexistent and
large shipping banks are reducing exposure; this makes financing vessel pur-
chases more difficult and forces ship buyers to rely more on equity and debt
capital markets as well as private equity investment. Fourth, substantial reg-
ulatory changes are expected: ballast water, air pollution, and overall CO2

targets are expected to change in the decades to come, calling for retrofitting
and new investment. Fifth, in terms of vessel sizes, the Panama canal expan-
sion, the building of the Nicaragua canal and increased port sizes around the
world are changing size requirements. This will favor investment into larger
ships, while Panamax ships (4,000-5,099 TEU, about 20 % of total capacity) will
be increasingly scrapped. Currently, one of the largest container ship designs
is the Maersk Triple E class with a capacity of 18,340 TEU. These very large
ships are optimized for slow steaming and provide significant fuel efficiency
savings - when fully utilized. They are deployed on Asia-Europe routes since
the volumes are sufficient and their size still allows them to cross the Suez
Canal. Finally, new and secondary market prices are currently at historic lows
and drive vessel purchases contrary to supply-demand fundamentals (expert
interviews conducted in 2013 and 2014, Alphaliner (2013b, 2014g), Clarksons
(2013a)).

2.1.3 Research questions

The objective of this paper is to develop a real options investment model in
oligopolistic competition to evaluate investment decisions in shipping. The
research questions that guide this research are:

• Under what conditions is strategic behavior in the container shipping
industry beneficial?

• What is the optimal capacity in an oligopolistic shipping market and how
is it influenced by factors such as competitive intensity, number of com-
petitors, freight rate volatility, fuel efficiency, lead time, and variable cost?
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• What are optimal policies for undertaking investments in the container
shipping industry over time?

The structure of the paper is as follows. Section 2.2 reviews existing real
options literature on maritime investment and oligopoly models and details the
contribution of this research. Section 2.3 introduces a continuous-time model
and shows general insights. Section 2.4 presents the detailed, discrete-time
model and shows results. Section 2.5 is a discussion of managerial implications
from the model results and Section 2.6 concludes the paper as well as suggests
areas of future research.

2.2 literature review

The DCF methodology has been considered the standard approach to maritime
investment appraisal (Evans 1984, Gardner et al. 1984). However, since there
is substantial freight rate volatility as well as a need to capture the value of
managerial flexibility, we choose to apply Real Options Analysis (ROA) in this
paper. Several contributions to maritime shipping (Bendall and Stent 2003, Ben-
dall 2010, Bendall and Stent 2005, 2007, Dixit and Pindyck 1994, Goncalves
1992) have successfully applied ROA to liner and bulk shipping investment
problems. The motivation is that the nature of shipping investment decisions
- irreversibility of investment, uncertainty about future cash flows, and man-
agerial flexibility - can be represented more accurately in a ROA context. We
hence outline literature on real options application to shipping as well as on
real options in game-theoretic oligopoly.

There are a number of related, very interesting approaches to shipping in-
vestment and deployment decisions. From a more macro-level perspective, Al-
izadeh and Nomikos (2007) look at shipping investment strategies on the basis
of trading rules and fundamental analysis. They find that, especially for big-
ger used ships, strategies based on earnings-price ratios perform better than
buy and hold strategies. A similar approach is taken by Cullinane (1995) who
applies financial market concepts (Markowitz portfolio theory) to dry bulk ship-
ping. He finds that shipping investment analysis should take a portfolio per-
spective and incorporate the respective risk measures. From a more micro-level
perspective, Mossin (1968) derives a decision rule with respect to when vessels
should be put into layup or put back into operation. Under the assumption
of stationary, stochastic revenues, the author derives critical freight rate values
that depend on cost of operation, cost of layup, and switching cost. Ng (2015)
studies the actual vessel deployment decision of carriers in light of demand
uncertainty. The model considers dependencies between shipping demands on
different routes.

2.2.1 Real options application to shipping

One of the first applications of real options to a shipping investment prob-
lem is presented by Goncalves (1992). Goncalves (1992) shows a methodology
for real options valuation in the bulk shipping industry, which is considered
to be characterized by perfect competition, and uses both a continuous-time
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and a discrete-time model to derive optimal chartering investment policies for
shipowners. Dixit and Pindyck (1994) build upon that and apply real options
theory for entry and exit decisions in the tanker industry.

Bendall and Stent (2003) introduce a real options framework to evaluate the
additional value of flexibility in a capacity expansion decision at a shipping
company. The authors later extend their 2001 short sea shipping model (Ben-
dall and Stent 2001) to capture the flexibility of the real options inherent in the
shipping operations. They model a two-port feeder service with four vessels
which has the option to buy a fifth ship. Using both DCF and real options
models, they show how real options analysis can capture the additional flexi-
bility of the shipping operations, i.e., the option to charter the fifth ship out in
case the market deteriorates (Bendall and Stent 2005). In a later step, Bendall
and Stent (2007) assess the value of a portfolio of real options and find that
a higher volatility of underlying projects increases real options values, that a
higher number of alternative strategies increases the value added of the options,
and that the higher the correlation between the underlying assets, the less net
value is added by a single option in the portfolio.

Pires et al. (2012) apply the concept of real options to the valuation of an
abandonment option, answering the question of whether to own or charter a
vessel. Dikos (2008) creates an equilibrium model covering aggregate invest-
ment behavior in the tanker new building market and proves the validity of
the “option value multiple" hypothesis, i.e. that the real options value of an
investment project is an adequate statistic to describe aggregate investment de-
cisions. Further Dikos and Thomakos (2012) empirically show that investors
in oil tanker capacity systematically assign value in waiting. Jørgensen and De
Giovanni (2010) present a valuation method for different styles of time charter
contracts with purchase options, so-called TC-POPs. They propose a single-
factor continuous-time model on which the spot freight rate is the only source
of uncertainty. Based on this model they apply contingent claims valuation to
price TC-POPs of European, American, and Bermudan style by deducting ei-
ther closed-form valuation formulas or, for the more complex option styles, by
applying numerical methods.

2.2.2 Real options in game-theoretic oligopoly

Chevalier-Roignant et al. (2011) synthesize strategic investment under uncer-
tainty and provide a comprehensive overview of relevant real options mod-
els. They subdivide the research streams into lumpy investment decisions,
incremental capacity expansion, and complex investment decisions under un-
certainty and competition. In terms of modeling competitive activity, the au-
thors point out that - when it comes to explaining the incentives of firms facing
market entry decisions - game-theoretic, endogenous approaches are more ap-
propriate than models that assume anticipated or random Poisson arrivals of
competitors. Azevedo and Paxson (2014) provide an overview of the evolution
of real option game models. They argue that while many problems have been
addressed with real options games, there is a need for consideration of multiple
sources of uncertainty. Further, they suggest - in an effort to avoid overcomplex-
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ity - a distinction between micro (from company perspective) and macro (from
policy maker perspective) level models.

With regards to game theory in real options investment, Williams (1993) de-
velops a game-theoretic model for more than two players and derives a Nash
equilibrium for real estate investment. He finds that - with increasing compe-
tition - options are exercised earlier. Leahy (1993) shows that the introduction
of competition into irreversible investment models does not necessarily affect
the timing. He shows that a myopic firm faces the same investment trigger
as a firm that correctly anticipates competitive action; however, the size of the
investment will be different. Baldursson (1998) develops a game-theoretic real
options investment model to study the price of a perishable commodity in an
oligopolistic industry. He considers different initial sizes of firms and provides
a numerical solution. Grenadier (2002) is one of the first to present a real op-
tions investment model with an in-depth analysis of competitive action. The
author finds that competition has a significant impact on a firm’s exercise strate-
gies, since a higher degree of competition leads firms to invest earlier because
of fear of pre-emption. Hence, the value of the option to wait in a real options
framework decreases when there are more competitors in the model. Gkochari
(2015) estimates the competitive dynamic equilibrium in the dry bulk shipping
market on the basis of the Grenadier (2002) model and finds that a reduction
of order lead time reduces the investment trigger value.

Aguerrevere (2003) extends the aforementioned model of irreversible invest-
ment (Grenadier 2002) by introducing a utilization factor and allowing firms to
handle their usage of the assets in a flexible way, i.e., units of capacity can be
shut down at no cost. Additionally, he considers variable cost. He finds that
more uncertainty as well as increasing construction lags incentivize firms to in-
stall more capacity. Moreover, he discovers that firms might invest in additional
capacity even if their current assets are underutilized. Based on this previous
work, Aguerrevere (2009) uses a real options model to explain how companies’
investment decisions impact their asset returns. He finds that the asset returns
of firms in competitive industries are more volatile in low demand scenarios,
while firms in markets with a higher concentration will have riskier returns
with high demand. In his explanation, this divergence results from the effects
of competition on the value of growth options. Armada et al. (2011) develop
a model that consists of strategic players and hidden competitors. The strate-
gic players are in a leader-follower setting while the hidden rivals increase the
level of competition in the market. The authors find that the presence of hidden
rivals has a significant impact on value functions and optimal triggers of the
strategic players. Ruiz-Aliseda and Wu (2012) model entry and exit decisions in
cyclical markets and show how entry and exit patters are different from those
obtained by the assumption of a geometric Brownian motion. An application
of this model to the shipping context can be found in Balliauw (2015).

2.2.3 Research contributions

Our research can be positioned at the intersection of two well developed streams
in the literature which we outline in the previous Subsections. On the one
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hand, there is real options theory in (container) shipping where either the as-
sumption of perfect competition needs to be made or competitive interaction
is modeled via random Poisson arrival. On the other hand, there is a research
stream related to real options investment models in oligopolistic competition
in related industries, such as real estate or bulk shipping. The key differences
between bulk and container shipping are that for liner shipping, demand is
infinitely divisible (to the size of single containers) and carriers adhere to pub-
lished schedules, hence the assumption of perfect competition does not hold.
For bulk shipping, demand is indivisible and the market is more competitive
(Pirrong 1992).

Our work is partially in response to Chevalier-Roignant et al. (2011) who call
for research efforts based on discrete-time approaches that allow to better take
into account industry characteristics. This is particularly important since in-
vestment decisions in the container shipping industry are driven by a number
of unique characteristics such as oligopolistic competition with an endogenous
price function, regulation and fuel efficiency, endogenous lead times as well as
correlated secondary markets. Those factors are currently not captured well
by established investment appraisal methods. The assumption of oligopolistic
competition (as opposed to perfect competition) is of paramount importance
because it introduces strategic action into the framework (an individual player
can actually influence price formation with capacity decisions). Fuel efficiency
impact is of high importance due to two reasons: regulatory uncertainty and
bunker fuel considerations. While the former is driven by CO2 targets and IMO
regulations in the next decades, bunker fuel cost are likely to impact running
costs of container shipping carriers already today. Finally, the different ship-
ping markets are correlated, i.e. production lead times for new vessels tend to
increase in times of high order pipelines, and secondary market prices decrease
in times of low freight rates.

We thus argue that the design of a novel modeling framework for investment
in the container shipping industry is necessary, especially since this framework
allows us to take into account oligopolistic competition as well as address con-
tainer shipping industry specifics (endogenous price function, fuel-efficient in-
vestment alternatives, endogenous lead times, endogenous price formation in
the secondary market for ships). The necessity for a fresh look at container
shipping investment has been also pointed out by Lau et al. (2013) who call for
increased research efforts to explain and counter excess capacity and persistent
overinvestment.

Based on this gap in research, we contribute a better understanding of the
investment dynamics in the container shipping industry by drawing on two
real options investment models: one approach in continuous-time and one ap-
proach in discrete time. The continuous-time approach extends previous re-
search by incorporating variable cost in the investment trigger and allows us to
generate insights on optimal investment timing under the assumption of order
lead times. It further allows to compare different scenarios of competitive inten-
sity, number of players, volatility, and variable cost. Our discrete-time approach
is the first to combine an endogenous oligopoly price function, fuel-efficient
investment alternatives, endogenous lead times as well as an endogenous sec-
ondary market for ships.
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Our valuation framework for the container shipping industry permits us to
perform the following analyses: first, we test whether strategic action (as op-
posed to being a myopic player2) increases firm value. Second, we study in de-
tail how competitive intensity, variable cost, and different fuel efficiency rates
impact optimal capacities and respective investment timing. Third, we assess to
what extent fuel-efficient investment is beneficial in different market scenarios
and how it relates to retrofitting.

2.3 continuous-time model

By making a number of assumptions (e.g. infinitely divisible output, endoge-
nous price function) it is possible to derive first insights into the investment
decision in shipping in continuous-time; especially with respect to the impact
of number of firms, competitive intensity, variable cost, and volatility on the
investment trigger (and, hence the timing of investment).

Continuous-time investment models have been developed in the bulk ship-
ping context by Goncalves (1992) and Gkochari (2015). The approach taken
by Gkochari (2015) builds on Baldursson (1998), Grenadier (2002), and Leahy
(1993), uses the real options approach to investment under uncertainty and has
been used to prove the approach’s validity for bulk shipping. The disadvantage
of the continuous-time approach is that in order to retain a closed-form invest-
ment trigger solution, the number of extensions and considerations of specific
shipping industry characteristics is limited. A discrete-time approach allows
to incorporate shipping industry characteristics such as fuel efficiency, layup
pool, divestment including a secondary market, and endogenous lead time in
a straightforward manner.

Our objective is to explore both approaches. Since the continuous-time ap-
proach has been extensively studied by Gkochari (2015), we introduce the ap-
proach and derive implications for our research questions, especially with re-
gards to the changes of the investment trigger with respect to different levels
of competition, variable cost, and volatility. In a second step we formulate
an investment model in discrete time and solve it via Dynamic Programming.
The exploration of both approaches allows us to derive synthesized managerial
recommendations from two modeling perspectives.

Due to oligopolistic competition, the payoff from option exercise is endoge-
nous, hence the starting point is an endogenous price process wich is driven
by a Geometric Brownian Motion (GBM) X(t) and the industry supply Q(t) =∑n
i=1 qi(t); defined as

p(t) = X(t)Q(t)−
1
γ , (2.1)

where γ is the elasticity parameter, n is the number of players and qi is the
capacity of an individual player.

Under the assumption of infinitely divisible output and full capacity utiliza-
tion, it is possible to derive a firm value in Nash equilibrium. This means that

2According to Leahy (1993), a myopic firm will assume that the industry capital stock re-
mains fixed forever. It will only optimize within its own action and state space based on its own
Bellman equation.
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each firm chooses its output process to maximize its value given the strategies
of competitors. As a consequence of the myopic firm principle3 (Leahy 1993)
it is possible to simplify accordingly. The optimal policy can be shown to be
a trigger policy (Grenadier 2002). To introduce lead time into the model, we
need to define committed capacity as Q(t) = C(t) +N(t), where C(t) is current
installed capacity and N(t) is the capacity under construction. Applying a de-
mand curve transformation to satisfy the oligopoly assumptions the investment
trigger becomes

X∗ = vκe
(r−µ)κQ

1
γ , (2.2)

where κ is the lead time, Q denotes total industry capacity, γ is the competitive
intensity, µ is the drift term of the geometric Brownian motion and r is the
risk-free rate. The term vκ is given by

vκ =
[
(
β

β− 1
)(

nγ

nγ− 1
)(r− µ)(η+ ce−rκ

1

r
)
]
, (2.3)

where β is the fundamental quadratic, n is the number of players, η are invest-
ment cost and c is the variable cost component. The optimal policy is given by
the investment trigger, hence we deem it insightful to find the first order deriva-
tions of the trigger with respect to elasticity γ, number of players n, volatility σ,
and variable cost c. We find that the investment trigger decreases with a higher
number of firms but increases with increasing competitive intensity, increasing
variable cost, and increasing volatility (Appendix A.1).

2.4 discrete-time model

2.4.1 Model assumptions

In the following paragraphs we describe the discrete-time model assumptions
in detail. Please refer to Table 2.1 for a full list of parameter values.

Market regime and capacity

In the discrete-time model we assume that three firms interact in a strategic
oligopoly to allow for computational efficiency. From a practical perspective,
this can be considered a focus on the top three container operators in the mar-
ket: APM-Maersk, MSC, and CMA-CGM. They achieve a 37.1 % combined
market share (Alphaliner 2014g). Industry capacity Q is defined as the sum of
the 3 firms’ individual capacities q1,q2,q3 in TEU terms. We assume an aver-
age ship size of 12,000 TEU; for calculation of cash flows we assume that one
ship’s capacity can be sold every two months, i.e. implementing a round-trip
time of 60 days. We allow for a capacity bandwidth between three and ten ves-
sels per player in the market model. We refer to Cullinane and Khanna (1999)
for an account of economies of scale and variable cost. They show that for

3Leahy (1993) shows that the introduction of competition into irreversible investment models
does not necessarily affect the timing. He shows that a myopic firm faces the same investment
trigger as a firm with correct anticipation of competitive action, however, the extent of the invest-
ment will be different.
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larger ships 300 USD per TEU can be assumed on the Europe-Far East market.
Since we choose to look at round trip voyages, we assume variable cost of 600

USD including backhaul.

Table 2.1: Discrete-time model assumptions

Parameter Value

Number of time periods T = 15

Delivery interval κ = 6 months

Volatility of underlying GBM σ = 0.3

Drift of underlying GBM µ = 0.05

Time step dt = 1/6 years

Starting freight rate p = 1, 500 USD

Interest rate r = 0.1

Gross Domestic Product (GDP) factor ω = 1.1

GDP expectation G = 1.04

Variable cost c = 600 USD

Layup cost cl = 240 USD

Investment cost conventional ηconv = 70m USD

Investment cost fuel efficient ηfe = 80m USD

Scrap value of divestment function B = 8m USD

Midpoint of divestment function p0 = 1, 500 USD

Ceiling of divestment function D = 32m USD

Steepness of divestment function k = 0.01

Fuel efficiency gain ε = 0.3

Price function

The players in the market are subject to an endogenous, constant-elasticity price
function p(t) = XQ− 1

γωG, that depends on the capacity deployed in the mar-
ket Q (assuming an elasticity factor γ), a random shock term X, a GDP factor
ω, and the GDP expectation G. As a starting point, we assume an all-in rate of
p = 1, 500USD per TEU including backhaul4. Container shipping lines can only
change capacity in the long run, due to published schedules. Hence, lines strive
to fill their capacity even if they have to offer substantial discounts. During an
economic downturn (low GDP expectation), this leads to enormous pressure
on prices, which can translate into operational losses (Fakhr-Eldin and Notte-
boom 2012). The random shock term is governed by a geometric Brownian
motion (drift, interest rate, and volatility are detailed in Table 2.1); this is in line
with previous shipping industry-related work by Adland and Cullinane (2006),
Adland and Strandenes (2007), Bendall and Stent (2005, 2007), Gkochari (2015),

4We refer to the SCFI (SSE 2016). Its long-run headhaul average is about 1,000 USD, we
assume that 50 percent of the rate can be achieved on backhaul, hence all-in rate of 1,500 USD.
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Goncalves (1992), Koekebakker et al. (2007), Sødal et al. (2008). Possible alterna-
tives are geometric mean reversion (Tvedt 1997, 2003), the Ornstein-Uhlenbeck
process (Bjerksund and Ekern 1995), or the assumption of stochastically cyclical
markets (Balliauw 2015, Ruiz-Aliseda and Wu 2012). Note that a positive drift
in the GBM is an assumption from a long-term perspective; a full calibration
to the past five years of freight or time charter rates could also justify a zero
percent drift assumption. We have tested our model with a zero percent drift
assumption and find consistent firm value and policy results, albeit results in
absolute terms are lower due to the more pessimistic GBM assumption. We
further assume that GDP expectations have a linear impact on the freight rate
given by parameters G and ω.

Information asymmetry

In the strategic oligopoly, we assume that current installed capacity is known
to all market participants since this information is widely available through
information providers such as Alphaliner or Clarksons Shipping Intelligence
Network. We assume that order pipeline and idle capacity are private informa-
tion. This is somewhat of an abstraction from reality since some information
providers publish order books and track idle fleet. However, for simplicity and
since carriers can better control information dissemination for these items (e.g.
financing structure through private equity), we choose to keep it private.

Investment

We further assume that there is an investment opportunity to buy either fuel
efficient or conventional vessels. The purchase of a fuel efficient vessel will
be associated with an investment cost markup and an operating cost benefit
(30 percent). For example, the UASC paid a 10 % markup on vessels with the
ability to burn liquefied natural gas (Alphaliner 2013d). Fuel efficient ships are
so-called “eco-ships" with newer engines, improved hull design and innovative
coatings (Lomar 2012, Notteboom and Cariou 2009, Visser 2011). These features
can lead to combined fuel savings of up to 30 % at 18 knots steaming speed
(Bergmann 2012, Hoifodt 2011). Conventional investment can refer to ships of
older design or simply to used assets that do not provide the fuel efficiency
savings. In this calibration, we assume a purchase price of 70 million USD for
conventional vessels and 80 million USD for fuel-efficient vessels. We assume
that buying in larger quantities will lead to a discount on all units purchased,
i.e. a 10 or 30 percent discount for 2 or 3 ships, respectively.

Lead time

In order to model the delivery time of roughly 1.5 years (Alphaliner 2014e),
we assume that one third of the outstanding order pipeline will be delivered
every six months. Since, in reality, the lead time is endogenous and depends on
the orderbook (Adland and Strandenes 2007), we implement delivery delays in
case the order pipeline of a single player exceeds 8 vessels.
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Layup and divestment

We assume that vessels can be put into layup. The carrier will incur layup cost
which are a share of the variable cost (40 percent). Those laid up units can
also be sold in a secondary market which is dependent on the freight rate. We
express the functional relationship by a sigmoid function

λ =
D

1+ e−k(p−p0)
+B (2.4)

where B is the scrap value (8 million USD), the sum ofD and B is the maximum
attainable secondary market value (40 million USD), p is the current freight rate
in USD per TEU, p0 defines the midpoint of the function (1,500 USD per TEU)
and k = 0.01 is the steepness of the curve. The intuition here is that since freight
rates and asset prices are correlated, sales prices in tough market environments
will be under strong pressure (Luo and Fan 2011).

2.4.2 Model formulation

The discrete-time model evaluates the actions of three strategic firms. The
model considers 15 time increments (each respresents 2 months) with a salvage
value which assumes that operations will remain unchanged forever, assuming
discounting. Thus, once every 2 months investment decisions are made on the
basis of the prevailing freight rate expectations. This is plausible since from
a charter perspective, a two-month contract is normally the shortest duration
possible. Due to the dimensionality of the model, we restrict the analysis to 2.5
years. The focus of our analysis is the optimal investment policy and its impact
via delivery of units on capacity and firm values. Since we can observe decision
and delivery within 18 months, we argue that the analysis time window of 2.5
years is sufficient.

Figure 2.2 illustrates the model setup. This covers all eight dimensions of
the real options tree, a summary of the profit functions, a graphical represen-
tation of the optimal policy Nash equilibrium as well as the recursive dynamic
programming equations.

Every period, each of the firms observes the random shock term which is
governed by a geometric Brownian motion. The state update for the demand
shock shall be approximated with a binomial, discrete-time process based on
the options valuation logic by Cox et al. (1979) (for details, refer to Appendix
A.2). We choose a discrete-time approach for modeling the stochastic under-
lying since the continuous-time approach introduced in the previous chapter
cannot accommodate all the necessary characteristics of the investment oppor-
tunities. A Monte Carlo option pricing model as introduced by Boyle (1977)
would be a valid alternative, since it would provide us with even more flexi-
bility with regards to design of the investment decision; however, in this case
we would consider the additional computation time needed not worth the ad-
ditional flexibility. The salvage value is defined as the perpetuity of operating
income

J1T (X,q1,q2,q3,L1,Pconv1 ,Pfe1 , f) =
πops − πlayup

r− µ
(2.5)
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where L is the current Layup pool, P is the current pipeline, f the number of
fuel efficient ships, πops the operating profit and πlayup the layup cost.

Each firm observes its current capacity and it knows its current layup pool
and pipeline which can be impacted by deliveries of outstanding orders. The
firm has the potential to order either conventional or fuel efficient vessels. De-
livery occurs every six months while always one third of the capacity on order
is delivered and automatically put into layup (from where it can be put into
service). The current conventional vessel pipeline Pconvt , fuel efficient vessel
pipeline Pfet , and layup pool Lt are hence defined by

Pconvt = Pconvt−1 −
Pconvt−1

3
,∀t = 6, 12, 18 (2.6)

Pfet = Pfet−1 −
Pfet−1
3

,∀t = 6, 12, 18 (2.7)

Lt = Lt−1 +
Pconvt−1 + Pfet−1

3
,∀t = 6, 12, 18, (2.8)

subject to constraints set by the model, such as maximum allowable layup ca-
pacity and delivery delays dependent on the order pipeline. Each firm then has
the choice of ten different courses of action given the actions of the competition
(Table A.1). The resulting profit function for each period translates into the
following Bellman equation

J1t(X,q1,q2,q3,L1,Pconv1 ,Pfe1 , f) =

max
Icap,Ilayup,IPconv ,IPfe

E
[
πops1 − πlayup1 − πinv1 + πdiv1

+αJ1t+1(X,q1,q2,q3,L1,Pconv1 ,Pfe1 , f)
]

(2.9)

where α is the period discount factor, I is the decision variable, and Icap, Ilayup,
IPconv and IPfe define its impact on current capacity, layup pool and the two
order pipelines, respectively. πinv and πdiv denote in- and outflows from in-
vestment and divestment, respectively. Profit from operations is given by

πops1 = q1(XQ
− 1
γωG− max(q1 − f, 0)c1 − min(f,q1)c1(1− ε)) (2.10)

withQ = q1+q2+q3, q1 = q1t−1 + Icap1 , q2 = q2t−1 +D2 and q3 = q3t−1 +D3
where D2 and D3 stand for possible capacity decisions of firms 2 and 3, namely
add one unit (+1), do nothing (0) or sell one unit (−1). The number of active
fuel efficient ships is defined by f and the fuel efficiency gain in operating cost
is given by ε. Layup cost is defined as

πlayup1 = (Lt + Ilayup1)cl (2.11)

where cl is the cost of having one unit in the layup pool during one time period.
Investment cost are defined as

πinv1 = ηconvθIPconv1 + ηfeθIPfe1 (2.12)
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with purchasing price η dependent on whether a vessel is fuel efficient and θ
as a factor that considers economies of scale in purchasing vessels. Divestment
costs depend on the proceeds from sales of units λ in the secondary market
given by the Sigmoid function in Equation (2.4) and are defined as

πdiv1 = −min(λIcap1 , 0). (2.13)

Technically, the discrete-time model is implemented in Matlab using back-
ward induction. Every time period, the value of all ten strategies is calculated
given the competitive action that can be observed, namely addition, removal,
or keeping of capacity. The resulting Nash equilibrium is identified within a
three-dimensional investment game and then applied to the detailed strategies
of each firm. The firm values as well as the resulting optimal policies are stored
in an array for every period.

The strategic firm 3 can be defined to be a myopic firm. In this case, the firm
will assume that the industry capital stock remains fixed forever. It will only
optimize within its own action and state space based on its own Bellman equa-
tion (Leahy 1993). We, however, derive the resulting payoffs in the competitive
equilibrium separately.

2.4.3 Strategic vs. myopic behavior

Based on Leahy (1993) a myopic firm is defined as a player that assumes in-
dustry capital stock to be fixed forever. Naturally, the myopic player’s objec-
tive function will not be impacted by competitive investment. Hence, we find
that the myopic player’s perceived firm value is monotonically increasing in
capacity installed, that is the player would always want to increase capacity
irrespective of competitive action.

Figure 2.3: Firm value in oligopoly (3 players) vs. duopoly + myopic firm

If we derive the resulting payoffs, however, depending on the capacity, the
two players perform differently (Figure 2.3). At γ = 1.0 and an optimal capacity
of 10 units, the strategic firm will be valued higher. The myopic firm’s better
performance in cases below optimal capacity is a consequence of the myopic
player’s constant desire to increase capacity in contrast to the strategic nature
of the other players. Hence, if from an economical perspective a strong increase
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of capacity is necessary, complete ignorance of competitive action leads to a
slightly faster capacity adjustment. If competitive intensity is lower, i.e. γ = 1.1,
we see a similar effect. We conclude that strategic action pays off as long as
firms operate near optimal capacity.

2.4.4 Impact of competition: intensity and number of players

We consider competition from two perspectives: the intensity (or elasticity)
γ and the number of players n. The demand elasticity γ has a substantial
impact on the propensity to invest. The price function is defined as p(t) =

X(t)Q(t)−
1
γωG(t), hence it is a constant-elasticity demand function. If addi-

tional investment has a too strong negative effect on the price, firms will choose
not to undertake investment at all.

In previous literature, we find a relatively broad bandwidth of γ values in
constant elasticity inverse demand models. In an analysis of economies of
scale in an imperfect competition setting, Perry (1984) uses elasticity values
between 0.5 and 2.0. In an analysis of road pricing, Santos et al. (2000) work
with elasticities between 0.2 and 0.7. In his time-to-build real options model,
Grenadier (2000) uses an elasticity value of 1.2 while in the option exercise
games contribution, Grenadier (2002) uses an elasticity value of 1.5. In line with
the mentioned work we have calibrated our model with values for γ between
1.0 and 1.4. Restricting the analysis to this range of parameter values allows
us, additionally, to understand the differences with respect to Grenadier (2000)
who uses γ = 1.2.

In order to check for anomalies in the results for different γ and σ combina-
tions, we show the value of optimal capacity in Table A.2. We find that, for the
most part, firm values are monotonically increasing in σ and γ. Hence, we illus-
trate that our calibration with γ values between 1.0 and 1.4 delivers consistent
results within the volatility bounds.

We calibrate the discrete-time model with parameters set in Table 2.1. To
derive implications regarding the impact of the number of players we study
a number of market settings, namely monopoly, duopoly, 3-firm oligopoly as
well as duopoly plus a myopic firm. For all regimes, a relevant capacity band-
width between three and ten ships is assumed. We choose this bandwidth to
achieve effective computation times while still being able to illustrate all rel-
evant investment decisions and capacity evolutions in the state space of the
model.

The main results for the discrete-time model are the solutions of the Bellman
equation and optimal strategy maps given different evolutions of the stochastic
shock term X. Figure 2.4 shows the duopoly value of firm 1 given different
capacities of firm 2. In general, we find a plane that shows the highest firm
values for a low firm 2 capacity. There is a maximum for firm 1 capacity (if firm
2 has 3 ships, it turns out to be 8 ships) which does not remain constant when
increasing firm 2 capacity. From a graphical perspective, firm value decreases
and optimal capacity increases when capacity of firm 2 increases. The optimal
capacity for firm 1 (given firm 2 has 10 ships) is hence also 10 ships, because
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Figure 2.4: Firm value of duopoly firm 1 given different capacities of firm 2

firm 2’s higher capacity affects the industry price through the endogenous price
function.

The discrete-time model illustrates that a higher number of competitors leads
to higher optimal capacity. Figure 2.5 shows that when moving from a monopoly
regime to a 3-firm oligopoly, optimal capacity rises substantially. For elasticity
values of γ = 1.0 we find an optimal monopoly capacity of 7 ships, which cor-
responds to a firm value of 2.70. If we move into the duopoly regime with
standard capacities of 6 and 4 ships for firm 1 and 2, respectively, we find that
the optimal capacities are 8 and 10 ships and would be valued at 2.58 and 2.04.
In the oligopoly case with standard capacities of 6, 4, and 3 ships the optimal
capacities are always 10 ships with firm values of 2.64, 2.17, and 1.97. Even
if we were to assume the lowest possible capacities, optimal capacities would
sum up to 7 in the monopoly, 17 in the duopoly, and 27 in the oligopoly.

An analysis of the duopoly results for robustness with regards to investment
cost and divestment revenue reveals that changes in these factors do affect
the firm value results. Figure 2.6 shows the firm value for different sets of
investment cost and divestment revenue. Apart from the base case calibration,
we define a best case with 10 percent lower investment cost (and 10 percent
lower divestment revenue factors B and D to ensure consistency). We further
define two less favorable sets with 10 and 20 percent increase, respectively.

We find that the most favorable set (Set 1) leads to the highest firm value,
albeit not statistically significant. Overall, the differences are not substantial,
however, if we compare capacities and respective firm values at optimal capac-
ity across the four sets. The intuition here is that a change in investment and
divestment parameters may shift the firm’s value function to higher or lower
values but does impact optimal capacity only to a small extent. This leads us
to conclude that the model is robust to changes in investment and divestment
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Figure 2.5: Firm values for different market settings at t=1

Calibration with γ = 1.0

Figure 2.6: Firm value of duopoly firm 1 for different investment cost and divestment
revenue

Set 1, 2, 3, and 4: ηconv = 63, 70, 77, 84 m USD; ηfe = 72, 80, 88, 96 m USD; B =

7.2, 8.0, 8.8, 9.6 m USD; D = 28.8, 32.0, 35.2, 38.4 m USD
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parameters. From Figure 2.6 we further learn that the slope of the value curves
- even for varying investment and divestment parameters - is relatively flat and
hence the penalty for misalignment (not acquiring the optimal capacity) is low,
i.e. the average penalty for 1 ship deviation from optimal capacity amounts
to 3.2 percent, 0.6 percent, 5.0 percent, and 1.4 percent, for Sets 1,2,3, and 4,
respectively.

2.4.5 Duopolistic capacity and firm values

To capture the effect of changes in variables to the key results of the model,
the optimal capacity and associated firm value, we employ a two-level factorial
design based on Box et al. (2005). The output measures are the optimal capacity
of firms 1 and 2, Y1 and Y2, as well as the associated values F1 and F2. The two
firms have the same cost structure, but we derive the optimal capacity and value
of firm 1 given that firm 2 has a capacity of 4 ships. For the values of firm 2 we
assume a capacity of 6 ships at firm 1. The independent variables chosen are
volatility Xσ (σ+ = 0.5,σ− = 0.2), fuel efficiency impact Xε (ε+ = 0.4, ε− = 0.2),
elasticity Xγ (γ+ = 1.1,γ− = 1.0) and variable cost Xc (c+ = 500, c− = 700). We
choose a relatively narrow bandwidth of γ values since the impact of elasticity
on the results is very strong. For higher γ values, the optimal capacity results
would surpass the allowed capacity bandwidth of three to ten ships. Table A.3
shows the experimental matrix for the 2n factorial design.

Given the different parameter settings, we find the optimal capacity and as-
sociated values of firms 1 and 2 for each of the 16 factorial model runs. It
turns out that, due to relatively high variety, in some cases optimal capacity
will reach ten, which is the capacity bandwidth constraint. We assume that
the five highest order interactions (123, 124, 134, 234, 1234) are due to noise and
use them as a reference set to derive the standard error. We adopt this logic
from Box et al. (2005). The intuition here is the sparsity-of-effects principle.
Using this principle, it can be argued that only main effects and low-order in-
teractions have a significant impact on factorial design experiments. Hence, in
experiments without a reference set, the highest-order interactions most likely
have no explanatory power, but represent random noise. We can calculate the
standard error by averaging the 5 squared highest-order interactions. The stan-
dard errors turn out to be SE(Y1) = 0.40, SE(Y2) = 0.25, SE(F1) = 24.72 and
SE(F2) = 24.98 (firm values quoted in USD million). We perform a t-test at 90 %
confidence level and five degrees of freedom. Table A.4 provides the estimated
effects and the standard error for the four dependent variables σ (1), ε (2), γ (3)
and c (4).

We find that higher volatility (σ = 0.5) increases optimal capacity and respec-
tive value for both firms, however, it is only statistically significant for Y2, F1,
and F2. For the fuel efficiency impact, the results with regards to optimal ca-
pacity and firm value are not significant. Assume a player that is at or near
optimal capacity. The incentive to invest into fuel efficient capacity would be
rather low, since additional investment would drive down prices by adding to
industry capacity. If a player’s current capacity, however, is significantly lower
than the optimum, the fuel efficiency impact becomes more pronounced since
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additional investment is worthwhile and even more profitable if fuel efficient
capacity is chosen. This is why in the optimal strategy maps, fuel efficiency
savings will actually drive the investment behavior of the players, especially if
they are far away from the optimum. The impact of the elasticity γ is positive
on capacities, hence a higher γ value leads to higher optimal capacity (statis-
tically significant for Y1). Directionally, higher γ values do also increase firm
values, however, we cannot identify statistical significance (positive effect for
F1, very close to zero for F2). With regards to variable cost, we find that a
more favorable variable cost position increases optimal capacity and increases
the respective firm value with statistical significance.

In terms of combination effects, we find that high volatility in combination
with higher fuel efficiency gains decreases optimal capacity for firm 2. We
also find that high γ along with high volatility increases firm 1 capacity sig-
nificantly. Moreover, high volatility with low variable cost drives down firm
2 capacity significantly. For firm 2 we also find a combination effect in which
low variable cost with high fuel efficiency decreases firm value, but in combi-
nation with high γ it actually increases firm value. We furthermore find that
the combination of high elasticity and low variable cost decreases firm 1 value
significantly.

2.4.6 Optimal investment policies

In order to evaluate optimal investment policies resulting from the discrete-
time model, we create so-called optimal strategy maps. The strategy maps
show the optimal firm policy over time for all possible evolutions of the shock
term X. The optimal strategy maps are created by keeping all parameters in the
Bellman equation (see Equation (2.9)) constant except for the shock term and
then simulating optimal action going forward. The optimal strategy maps take
into account path dependencies, such as order pipelines or layup pool.

Lemma 2.4.1 High competitive intensity (low γ) leads to replacement investment
while low competitive intensity (high γ) drives expansion.

The optimal strategy map (Figure 2.7) shows that with a low γ value (high
elasticity), firms will not invest in positive market scenarios but only make
replacement investments to safeguard profitability in the downside cases (e.g.
order 2 or 3 fuel efficient units in periods 2 or 3 and sell old vessels upon de-
livery of the new fleet in case the rate development is not positive). At a γ
value of 1.2 we find that “do nothing" becomes optimal since upstate invest-
ments are hindered by the price effect but overall higher profitability does not
justify investment in the down states. Hence, we observe only late-stage invest-
ment from period 8 on. When γ is increased to 1.4, investment in the upside
scenarios becomes more likely.

Lemma 2.4.2 Minimum level of efficiency gains required to consider the fuel efficient
investment alternative

In Figure 2.8 we find that for a rather low level of efficiency impact, the ship-
ping player should only invest in conventional capacity. Only if the efficiency
impact is larger than 30 percent, the fuel efficient alternative can be justified.



2.5 managerial implications 31

Lemma 2.4.3 Higher fuel efficiency effect can trigger strategy difference between re-
placement and capacity expansion

From Figure 2.8 we further learn that if the fuel efficiency impact is at 30

percent, replacement investment is worthwhile, i.e. ordering fuel efficient ships
in negative market scenarios and use them as replacement to safeguard cost. If
the efficiency impact is substantial, however, we find that also early capacity
expansion in positive market developments can be justified.

We assume that the mentioned fuel efficiency savings can be achieved by
three main factors: engine technology, hull design, and innovative paints. New
engines are more efficient in general and can better accommodate today’s rel-
atively low steaming speeds of about 20 knots (conventional vessels were de-
signed for steaming speeds above 20 knots (Alphaliner 2013c, Notteboom and
Cariou 2009)). For an analysis of economic considerations with regards to ocean
vessel speed, refer to Magirou et al. (2015). This also holds true for hull design,
which has become more aerodynamic (Bergmann 2012, Lomar 2012). Innova-
tive paints can help smooth the hull of ships and further reduce water resistance
(Visser 2011). The overall impact of the measures can be an up to 30 % reduc-
tion of fuel consumption (Hoifodt 2011). To a certain extent, ships can also be
retrofitted to be more fuel efficient, especially with regards to paints and po-
tentially engines. Even changes in hull are possible but may be limited due to
sleek hull forms originally designed for higher speeds (Alphaliner 2013a).

2.5 managerial implications

We find that two competition-relevant measures impact optimal capacity, firm
values, and the investment trigger: Those measures are the number of players
n and the intensity of competition (elasticity) γ. The results we derive are as
follows: an increasing number of players n (going from monopoly to oligopoly)
leads to higher optimal capacities, lower individual firm values as well as ear-
lier investment. An increase in intensity of competition γ, however, decreases
optimal capacity while also decreasing firm value. Note that in the former case,
the sheer presence of more players in the market drives the optimal capacity
upward. The fear of preemption leads players to try to capture an advantage
from being a first mover in capacity addition. In this case, the steeper slope
of the demand function decreases optimal capacities. The implication of this
is that a shipping player’s objectives with regards to the two dimensions of
competition should be to keep n low while trying to increase γ.

Minimizing n could not only be achieved by preventing new entry, but also
by entering - in accordance with anti-trust laws - vessel sharing agreements and
alliances. This should include joint investment and deployment decisions on
selected routes (especially with strong price reaction to capacity) and could help
to reduce overall capacity in the market and create more value for the players.
Improving the γ of the industry and/or selected trade lanes demands two steps.
Firstly, market players should understand the concept of elasticity well and
use tools for regular measurement. This would include the weekly tracking of
competitive investment and vessel deployment on a trade lane level. Using that
information, firms can better anticipate competitive activity and investment
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impact on freight rates. An analysis of supply-demand gap and elasticity on
a trade lane basis should be carried out to develop fleet sizing strategies. In
markets with strong price reaction it might make sense to delay investment in
order to safeguard profitability, whereas in markets with less pronounced price
reaction, preemptive investment may be worthwhile. In a second step, players
can work on actually improving γ. Since container shipping is a commodity
market, differentiation is difficult. However, frequency of service and access
to ports are factors that can potentially impact γ. The introduction of “Daily
Maersk" is an example of differentiation by increased frequency (Zhang and
Lam 2015).

From the discrete-time model we can learn that if the price markup of fuel ef-
ficient vessels is justified by sufficient operating cost advantages, firms should
start investing into fuel efficient capacity. When the fuel efficiency impact is
rather low, replacement investment should be preferred; when the fuel effi-
ciency impact is very substantial, new investment should be considered. This
implies that from a strategic point of view, investment into fuel efficient capac-
ity should always be preferred as long as prices are justified. Players should
retrofit vessels in economic downturns, since retrofitting can bring some fuel
efficiency savings without changing the overall capacity and impacting market
prices, especially in low γ markets. If very substantial fuel efficiency savings
can be achieved, for example with the introduction of completely redesigned
hull and engine combinations, players should invest in new capacity, especially
if freight rates are expected to increase. Overall, a higher flexibility in capacity
decisions is required to have enough action space in economic downturns. In
the light of this model we refer to the option of ending charter contracts at short
notice, moving vessels to alternative markets, or taking vessels out of active ca-
pacity to conduct fuel efficiency retrofits. The mentioned investment strategy
would help to maintain cost-competitiveness while complying with regulatory
standards.

An individual firm can benefit from higher volatility if it is sufficiently flex-
ible in its capacity decisions, i.e., if it is able to sell units at reasonable prices.
Of course, overall unnecessary volatility in the market should be avoided, for
example by carefully studying price effects of new investment or by avoiding
unnecessary General Rate Increases (GRIs) without supply-demand justifica-
tion. Nevertheless, players should make sure that they are able to cope with
increased freight rate volatility, e.g. they should use flexible charter contracts
for peak capacity.

A lower variable cost position leads to higher optimal capacity as well as
higher overall firm values. In addition to fuel efficiency savings, players should
constantly monitor their variable cost position and find levers for improvement.
From a ship owner’s perspective (without considering bunker fuel) this mostly
includes personnel, maintenance, insurance, and operating supplies.

Finally - and most importantly - from a comparison of myopic and strategic
firms in discrete-time we find that - if operating near optimal capacity - it is
financially advantageous to be strategic. Hence, players in the shipping indus-
try should behave strategically and we strongly recommend that they focus on
the above-mentioned recommendations with respect to the number of players
n and the intensity of competition γ.
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2.6 conclusion

The shipping industry is characterized by cyclicality, and strong ordering has
created oversupply in a market with eroding margins. This paper shows that
existing oligopolistic competition models can be used to model investment de-
cisions in the shipping industry with embedded real options. Discussing the
analytic model by Grenadier (2002) and running a detailed discrete-time model,
we generate new insights regarding firm values, investment triggers, and opti-
mal strategy maps. We find that a higher number of competitors leads to lower
firm values but more investment, and conclude that players should enter into
vessel sharing agreements and/or alliances. Further, we find that the impact
of elasticity - the price reaction to new capacity - is substantial and should be
part of investment decisions. We show that fuel efficiency retrofitting can help
in negative market developments while substantial innovations should be used
for capacity expansion. Individual firms can benefit from freight rate volatility
if their fleet-sizing approach is sufficiently flexible. Firms should work on their
variable cost position to remain competitive in the market. Finally, we find
that it is financially advantageous to be strategic, and that understanding the
market and monitoring competition are key.

From this approach in a non-cooperative game-theoretic oligopoly, we can
draw very relevant insights. Since we observe that the liner shipping industry is
currently in a phase of strong consolidation with the extensive use of shipping
alliances, a logical next step would be to investigate investment decisions from
the perspective of cooperative game theory. It would be highly interesting to
study how the consolidation of the industry into alliances impacts competition,
investment behavior, service levels, and freight rates. Moreover, it would be
desirable to extend current investment models in continuous-time and discrete-
time to incorporate stochastic variable cost and stochastic fuel prices.





3
Alliance formation in a cooperative container shipping game: performance
of a real options investment approach1

3.1 introduction

In their battle to safeguard profitability in a market characterized by overca-
pacity and eroding margins, container shipping players have been increasingly
seeking to establish cooperation in the form of strategic alliances. This process
led to a point where 71.8 percent of global shipping capacity would have been
in the hands of 3 large alliances (P3, G6, and CKYHE) - had the Chinese Min-
istry of Commerce not stepped in2; prohibiting the formation of the P3 alliance
by Maersk, MSC, and CMA-CGM which would have had a global market share
of about 37 percent (Alphaliner 2014a, MOFCOM 2014).

Not only from a regulatory perspective, but even more from an investment
standpoint, players and policymakers in the shipping industry need to ask
themselves a number of questions: How stable is the current alliance struc-
ture in the industry? When, and for which reasons is it appropriate to seek
new partners? How should investment be evaluated in light of a dynamic
coalition structure? To what extent should and can we collaborate on capacity
investments? We intend to shed light on a number of those questions with this
research effort.

3.1.1 Challenges of the shipping industry

Players in the container shipping industry are operating in a challenging mar-
ket environment. They face market cycles (Stopford 2010), supply-demand
imbalances (Rau and Spinler 2016b, Syriopoulos 2010), high capital intensity of
investments, and market concentration (Alphaliner 2014g) - in contrast to bulk
shipping which can be characterized by perfect competition (Pirrong 1992).

A possible explanation for non-optimal investment timing and sizing is short-
comings in investment evaluation methods (Bendall 2010). The DCF method-
ology is seen as the primary tool for ocean freight capacity investment (Evans
1984, Gardner et al. 1984), even though it fails to take into account uncertainty
and managerial flexibility (Bendall 2010). One possible alternative is ROA (Ben-
dall 2010, Rau and Spinler 2016b). Its merits are to be outlined in this research
effort.

1Rau and Spinler (2016a): Rau, P., Spinler, S. (2016). Alliance formation in a cooperative
container shipping game: performance of a real options investment approach. Unpublished
Working Paper. Presented at INFORMS 2015 Annual Meeting, Philadelphia.

2Extract from official statement (MOFCOM 2014): “Upon review, the Ministry of Commerce
believes that the establishment of the network center may lead to the formation of a compact
association by Maersk, MSC and CMA CGM, and have effects of excluding or restricting compe-
tition on the container liner shipping market for the Asia-Europe route. Therefore, the Ministry
of Commerce has decided to prohibit the concentration of undertakings."

37
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From the beginnings of sea trade, carriers chose to cope with their situation
by forming conferences, alliances, or other means of cooperation. The Calcutta
conference in 1875 was a starting point and further conferences on the most
important trade routes were soon to be established. A liner shipping conference
can be defined as an agreement between a number of shipping companies that
provides for a fixed transportation service on a specific route with joint pricing.
Conferences had been under legal scrutiny for antitrust reasons; with the Ocean
Shipping Reform Act of 1998 they ceased existing (Sjostrom 2010, Thanopoulou
et al. 1999).

In the 1990s, the shipping industry went through a paradigm shift as the
first strategic alliances - Grand Alliance and Global Alliance - were established
(Midoro and Pitto 2000). In the past 20 years, however, the formation of al-
liances has been very unstable and various studies show that up to 80 percent
of alliances fail (Song and Panayides 2002). Even during the years 2011 to
2015, there have been several changes to the alliance setup in container ship-
ping. Figure 3.1 shows that in 2011, there were three major alliances, namely
CKYH (11.3 percent market share), Grand Alliance (9.2 percent), and The New
World Alliance (8.5 percent). 2014 would see a consolidation of 71.8 percent
of the market to only three alliances, i.e. P3 (37.1 percent), G6 (18.0 percent),
and CKYHE (16.7 percent). Since this structure had been rejected by Chinese
authorities (though approved by the Federal Maritime Commission), as of 2015,
there were four alliances, which are 2M (18.4 percent), Ocean 3 (14.7 percent),
G6 (18.4 percent), and CKYHE (17.0 percent). Throughout 2016, the alliance
structure has remained unchanged so far despite the merger of COSCO and
CSCL. The 2016 acquisition of NOL (APL) by CMA-CGM will, however, lead
to further changes since the European Commission’s approval of the merger is
conditional on NOL (APL) leaving the G6 alliance (Shingleton 2016).

Investment decisions in shipping are not only driven by intrinsic values, but
also by fuel efficiency, network considerations, funding sources, regulation, ves-
sel sizes, and asset prices (Rau and Spinler 2016b). The changing nature of coali-
tion structures in today’s shipping market adds another layer of complexity to
the investment decision.

3.1.2 Resulting market dynamics

As the substantial consolidation in the market is still relatively new, the effects
on the market dynamics have not yet completely materialized. Leach (2015)
argues that some beneficial cargo owners expect prices to rise due to more
tightly managed capacity, integrated services and networks. This, in turn, will
have an effect on ports. Smaller ports might have to accommodate larger ships
while typical hubs might experience significantly more traffic.

Midoro and Pitto (2000) conclude that alliance formation has been relatively
unstable in the end of the 19th century; from Figure 3.1 we argue that this has
remained valid until today. Hence, from a carrier perspective, it will be critical
to keep alliances stable. Ways to improve stability are creation of mutual trust
(Lu et al. 2006) or reduction of organizational complexity by reducing number
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of partners, differentiating roles and contributions, and coordinating sales and
marketing (Midoro and Pitto 2000).

3.1.3 Research objectives

The literature on shipping has provided a comprehensive account of (1) how
the characteristics of the shipping industry have favored alliance formation, (2)
what the general motivation and drivers are for entering an alliance; (3) that
collaboration in the shipping industry is necessary; (4) and that challenges in
investment decisions can be addressed by real options methods. However, the
performance of investment approaches in a cooperative market setting has - to
our best knowledge - neither been model-theoretically evaluated nor empiri-
cally been tested. From a managerial perspective it is essential to make invest-
ment decisions that do not only take into account the inherent characteristics
of the shipping industry, but also the changing coalition structure.

Our model uses cooperative game theory to reflect crucial aspects of the
container shipping industry. It allows for a choice in terms of investment ap-
proach, i.e. real options trigger, individual DCF, and collective DCF approach.
Our main hypothesis is that a real options trigger investment approach per-
forms comparatively best, especially in light of high competitive intensity and
high freight rate volatility. It does not affect coalition stability and market con-
centration negatively or exhibit disadvantages in other market scenarios. We
quantify the impact of competitive intensity, lead time, alliance complexity cost,
and freight rate volatility on average industry capacity, cash flow to players, al-
liance stability, and industry concentration.

The structure of the paper is as follows. Section 3.2 reviews existing literature
on shipping alliances, game theory in shipping, and optimal coalition structure
as well as details the contribution of this research. Section 3.3 introduces our
simulation model and Section 3.4 develops hypotheses. In Section 3.5 we show
the results and discuss them from a managerial perspective. Section 3.6 con-
cludes the paper and suggests areas of future research.

3.2 literature review

3.2.1 Shipping alliances

Collaboration in the shipping industry has a long tradition: Sjostrom (2010)
presents an account of shipping alliance history from historic conferences up
to today’s strategic alliances and extends to liner shipping competition prac-
tices: predatory pricing (prevent entry), loyalty contracts with shippers, price
discrimination, as well as price and output fixing. An account of the recent sit-
uation of the industry is given by Panayides and Wiedmer (2011) who present
a review and integration into literature of liner shipping structure, types of
alliances, objectives, stability, and success as well as discuss the structure and
services of liner shipping companies as well as global strategic alliances.

Glaister and Buckley (1996) assess the motivation for alliances. They define
alliances as (equity) joint ventures with strategic and operational coordination
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and provide a comprehensive literature review on reasons for alliances: risk
sharing, economies of scale, technology transfer, shaping competition, govern-
ment policy, international expansion, vertical integration, and consolidation of
market position. They further identify alliance likelihood drivers in a factor
model, i.e. partner size, location of alliance, contractual form, industry group,
and nationality of partner. Lu et al. (2006) evaluate the CKYH alliance with
the Delphi method and find that business niches, service coverage extensions,
and more service frequency are key drivers for alliances. They again find that
mutual trust is the most important basis for collaboration and conclude that the
importance of alliances in the shipping industry will continue to rise. Agarwal
(2007) lists motivations for alliance formation: (i) consolidation of manufactur-
ing sector, (ii) capital intensity, (iii) larger ships, (iv) low product differentiation,
(v) high frequency of service due to just in time production, (vi) increasing
global reach, and (vii) defending “home turf". Zhang and Lam (2015) study
the effect of “Daily Maersk" (offering absolute reliability along with late fees)
on other shipping players. They find that the most promising mitigation action
taken by other players is the formation of further alliances to increase service
frequencies.

A more critical view is suggested by Alix et al. (1999) who present a case
study on CP ships who performed well as a focused niche market player and
focused on growth through acquisition instead of playing “the alliance game".
Midoro and Pitto (2000) assess alliance stability and argue that alliance for-
mation has been a very unstable, repeated process so far. They identify orga-
nizational complexity as key driver for instability and suggest to reduce the
number of partners, differentiate roles and contributions, and coordinate sales
and marketing.

The impact of alliances is studied by Cariou (2002) who finds that alliance
effects are mainly economies of scale (bigger vessels), operational synergies
(better allocation of vessels), and market control. Slack et al. (2002) conduct
an empirical examination of developments in liner shipping with regards to
alliances and consider 3 features: transformation of services, evolution of fleet,
and port calls. They find that alliances increase uniformity in the industry
(service number and frequencies, largest ships in joint alliance services, and
more port calls to “important" ports). Moreover they find pooling of assets and
higher service integration. Houghtalen et al. (2011) create a microeconomic
model to analyze the impact of strategic alliances. They find that the alliance
benefits increase with network size and fleet capacity.

Adding an anti-trust perspective, Lam et al. (2007) conduct a structure, con-
duct and performance analysis in the liner shipping industry and find that even
though high market concentration is present (top 10 players have a greater than
60 percent market share), no abuse of market power can be observed. They
rather call the collaboration a “joint effort to survive".

3.2.2 Game theory in shipping alliances

From the perspective of core theory, it is possible to argue that some form of
collusion is necessary in industries that do not have a competitive equilibrium.
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These industries are characterized by divisible and stochastic demand, fixed
supply in large increments and cost of having idle assets (Bittlingmayer 1982,
Telser 1985, Zhao 2007).

Specifically for the shipping industry, Sjostrom (1989) argues that price and
output fixing can solve the empty core problem. He finds that core theory is
more valid than cartel theory in shipping; market settings that appear to be car-
tels are sometimes rather an empty core solution. Pirrong (1992) distinguishes
between bulk and liner shipping. He finds that bulk shipping is characterized
by perfect competition while he can explain collusion in liner shipping with
core theory due to indivisible cost but divisible demand. More recently, Yang
et al. (2011) assess stability of alliances with core theory. They consider new
phenomena such as joint service through pooling and mega ships and find that
it is necessary to collude in order to avoid overcapacity, react to market changes
more flexibly, and earn higher profits. They further find that if a sub-alliance
is more profitable than an alliance, alliances will be unstable due to an empty
core.

There is another literature stream around resource allocation in shipping al-
liances. Doi et al. (2000) create a linear program for resource allocation with
the objective of overall alliance profit. The author argues that incentives are
necessary to encourage alliance-conform behavior but assumes distribution of
incentives without central decision maker. Agarwal (2007) provides a further
Linear Programming (LP) algorithm to allocate alliance benefits in the core.
Moreover, Agarwal and Ergun (2010) formulate a service network design LP
model to motivate collaboration. Among other results, they find that compli-
mentary partners are more likely to form stable alliances, e.g. freight forwarder
and carrier.

More conceptually, Song and Panayides (2002) apply a cooperative game
theory framework to liner shipping alliances. They provide an overall game
theory basis as well as liner shipping examples and conclude that the goal to
achieve a stable core is almost impossible in the shipping industry.

3.2.3 Optimal coalition structure

Cooperative game theory aims at optimal allocation of profits to alliance mem-
bers. With the solution concepts Shapley value and core, for example, the
optimal payoff structure can be derived. Based on that, Shenoy (1979) presents
a game-theoretic approach on coalition formation from a static perspective.

Owen (1977) introduces the Coalition Structure (CS) value as a modification
to the Shapley value, arguing that a priori collaboration might impact the opti-
mal coalition outcome. Hart and Kurz (1983) build on that to consider endoge-
nous formation of coalitions. They argue that a two-step approach is needed to
solve the coalition structure problem: first, it is necessary to find the optimal
outcome among coalitions, then within each of the coalitions. They apply the
CS value, namely evaluate the players’ prospects and find stable coalitions by
looking at the concept of “strong equilibrium". The concept of CS value has
been implemented to solve various problems in research. Rothkopf et al. (1998)
apply the concept to combinational auctions, e.g. FCC radio spectrum auctions.
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They develop an algorithm to solve the CS value for a large number of possi-
ble combinations. Sandholm et al. (1999) argue that finding the optimal coali-
tion structure is NP-complete and present a further algorithm that performs
better. Rahwan (2007) provides a helpful overview over coalition generation
algorithms.

Konishi and Ray (2003) introduce a dynamic Process of Coalition Formation
(PCF) with creation, change, and liquidation of coalitions. They assume that
the future value of coalitions is endogenous and study equilibrium PCFs.

3.2.4 Contribution of this research

Our contribution is the examination of the real options trigger approach in an
industry characterized by alliances that are subject to frequent changes. Earlier
contributions focus on investment in (static) competitive markets or exclude the
investment problem from the analysis (i.e. focus on alliance motivation, drivers,
or stability). We incorporate the component of dynamic coalition formation in
our analysis and provide further support for the merits of the real options
trigger approach by comparing its performance with the currently established
investment appraisal method: DCF.

Our cooperative game theory model further allows for consideration of dif-
ferent volatility, intensity of competition, alliance complexity cost, and order
lead time scenarios. We can draw relevant insights on capacity, cash flow, in-
dustry concentration, and alliance stability. From a managerial perspective, we
show that our investment approach not only leads to a lower industry capacity
(and hence can help alleviate the problem of overcapacity in the industry) but
also to higher cash flows for the players.

3.3 model formulation

We develop a cooperative shipping game with up to seven players. By taking on
the perspective of the individual container ship carriers in the industry, we can
apply straightforward rules on investment, alliance formation, and operational
items. We build the system up from the single agent perspective to then derive
implications on the whole simulated container shipping market. This is an
analogy to agent-based modeling and simulation where sophisticated systems
are modeled by looking at characteristics and behaviors of individual agents
(Macal and North 2010). The simulation model is a market simulation with 120

increments (every 2 months) and hence covers 20 years. It consists of 4 main
parts: initialization/state update, the coalition formation process, investment
decisions, and earnings realization.

3.3.1 Assumptions

Trade lane and capacity

The basis of our simulation model is a specific shipping trade lane, i.e. Shanghai
to Rotterdam with up to seven carriers who may decide on how much capacity
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to offer and on whether to enter an alliance. In terms of capacity, we look at
all departures for June and July 2015 for the route Shanghai to Rotterdam, due
to an average round trip time of 2 months this corresponds to the bimonthly
increments (Table B.1).

Freight rate and variable cost

The freight rate in the market model is endogenous, i.e. dependent on the
capacity available in the market. The uncertainty of the freight rate process
is driven by a geometric Brownian motion. As a starting point, we assume a
long-run freight rate of USD 2,000 per TEU including backhaul based on the
Shanghai Containerized Freight Index (SSE 2016).

Figure 3.2: Variable cost and ship size distribution for Shanghai-Rotterdam sailings

Source: http://www.jocsailings.com, own analysis

We assume variable cost to be dependent on ship size and set the break-even
rate to 900 USD at average ship size on the considered route which turns out to
be 12,400 TEU (Cullinane and Khanna 1999, Gkonis and Psaraftis 2009, Richter
2015) (Figure 3.2). We assume that ships can be temporarily laid up to reduce
operating expenses to 320 USD/TEU (Howley and McCabe 2009).

Investment opportunity

For the investment opportunity we assume an investment cost of 8,250 USD
per TEU which is in line with recent orders: Seaspan 10,000 TEU ships ordered
in April 2015 for 90 million USD each and CMA CGM, OOCL and MOL 20,000

TEU ships ordered in February and April 2015 for 150 million USD each (Al-
phaliner 2015d). Ship purchases are assumed to be financed with a mix of debt
and equity. There is an equity requirement dependent on alliance status and a
geometric debt degression by 5 percent. We also assume that with more players
in an alliance, larger ships will be ordered (Table B.2).
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Table 3.1: Model parameters

Symbol Parameter Value

β Fundamental quadratic

γ Elasticity 1.8

∆t Time step 1/6 years

ε Scaling factor 0.1

η Calibration parameter

κ Inv. lead time 18 months

µ Drift term 0.05 p.a.

σ Volatility 15 percent p.a.

τ Time index in forecast model

φ Norm. dist. random number

A Stirling number

a Number of players in coalition

c Variable cost

Ca Alliance complexity cost 600,000 USD per period

Cd Debt service payment

CI Equity part of investment cost

Cl Layup cost 320 USD per TEU

Cr Interest cost

CS Coalition structure

d Debt service 0.05 p.a.

f Number of ships ordered

g Variable cost parameter 900,000

h Variable cost parameter -2,700,000

I Investment cost 8,250 USD per TEU

i Number of coalitions

M All possible coalition structures

n No. of players 5

NPV Net present value

p0 Starting freight rate 2,000 USD

Qt Capacity

q Player capacity

r Interest rate 0.10 p.a.

s Average ship size

T Willingness to switch threshold 3 periods

V Value

Xt Random shock term

X∗ Investment threshold

Z Coalitions per player
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Alliance formation

Players may choose to enter a container shipping alliance with one or more
players. The optimal alliance status is based on an alliance prospects forecast
that depends on investment pipeline, freight rate forecast, alliance complexity
cost, alliance benefits as well as current capacity and variable cost. The freight
rate forecast consists of a linear trend forecast plus an alliance markup due
to higher flexibility and network penetration. The membership in an alliance
is expected to improve pricing due to sales and marketing coordination and
improved schedules (Lu et al. 2006, Zhang and Lam 2015). Once there has been
a deviation from the optimal alliance status for 3 consecutive time periods, new
alliances will form. There are coordination costs that increase linearly with the
number of players in an alliance as the organizational complexity is expected
to increase (Midoro and Pitto 2000).

3.3.2 Initialization/state update

To initialize the model, we first generate a random GBM path for the following
120 periods. The return of the GBM per period is given by

Xt

Xt−1
= µ∆t+ σφ

√
∆t, (3.1)

where µ is the drift3, ∆t is the time step, σ is the volatility, and φ a normally
distributed random number. Note that σ, r, and µ are converted to correspond
to bimonthly terms.

In all periods (except for the first period in each simulation run) we perform
a state update. The order pipelines are updated based on investments in the
previous period. Furthermore, deliveries are added to the current capacity
of players. The final available capacity for the period is derived by applying
changes in the layup pool. With that, the freight rate for the period can be
realized as

pt = XtQ
−1
γ

t , (3.2)

where Qt is total industry capacity, Xt is the random shock term driven by
Equation (3.1), and γ measures competitive intensity.

3.3.3 Coalition formation process

Key element of the simulation model is the coalition formation process. Since
we apply the coalition structure value (Hart and Kurz 1983, Rahwan 2007,
Rothkopf et al. 1998), we first need to create all possible coalition structures.

3Note that the 5 percent drift assumption (c.f. Table 3.1) might be considered comparatively
optimistic given that freight rates have constantly decreased in the past years. For the freight
rate process in this article we rely on an oligopoly price function (negative relationship between
fleet size and freight rate). Hence, when estimating the drift term, we need to correct for the
increase in fleet size and can justify a positive drift term. We have tested our model for different
drift terms (µ =0.075, 0.05, 0.025, 0, -0.025) and find that the structure of the results remains
consistent.
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According to Sandholm et al. (1999), the number of coalition structures is the
Stirling number of the second kind

A =

n∑
i=1

Z(n, i), (3.3)

where Z(n, i) = iZ(n − 1, i) + Z(n − 1, i − 1), Z(n,n) = Z(n, 1) = 1; n is the
number of players and i is the number of coalitions. Hence, in order to create a
full enumeration it is necessary to (1) count the number of coalition structures
by adding the new player to each of the existing coalitions and (2) add the
new player into a coalition of its own. Using the full enumeration of possible
coalition structures, we solve for the optimal coalition structure

CS∗ = arg max
CS∈M

V(CS) (3.4)

where M are all possible coalition structures and V(CS) is the value of a coali-
tion structure CS and defined by

V(CS) =

20∑
τ=1

[
p(τ,CS)− c(τ,CS)

]
q(τ,CS)−Ca(τ,CS)−Cl(τ,CS)−Cr(τ,CS)

(3.5)

where c is variable cost, q is individual player capacity, Ca is alliance complex-
ity cost, Cl is layup cost, and Cr is interest cost. τ is the time index in the
forecast period of 20 periods and the freight rate is given by

p(τ,CS) =
[pt − p0

t
τε+ p(t)

][
1+ 0.1(1− e−a(CS))

]
, (3.6)

where t is the time step, p0 is the model starting rate, ε is a scaling factor, and
the term on the right hand side is an alliance markup dependent on the number
of players a in the respective coalition structure CS.. The intuition here is
that alliance membership can improve pricing due to higher flexibility, network
penetration, and coordination (c.f. Section 3.3.1). The size of the improvement,
however, shows decreasing returns to scale. Variable cost are given by

c(τ,CS) =
g ln(s(τ,CS)) − h

s(τ,CS)
(3.7)

where g,h are constants and s(τ,CS) is the average ship size of the coalition.
The capacity q(τ,CS) is forecasted by taking into account current pipelines,

alliance complexity cost Ca(τ,CS) are increasing linearly with the number of
players a, layup cost Cl(τ,CS) depend on the layup pool at τ = 0, and interest
cost Cr(τ,CS) are calculated on outstanding debt (geometric debt repayment).
We assume that - even though CS∗ can change rather rapidly - in reality, players
will be reluctant to switch to different alliances every other period. Hence, we
implement a threshold for the willingness to switch alliance membership; that
means players will only change their alliance membership if the alliance setup
has been non-optimal for three periods.
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3.3.4 Investment decisions

Shipping players in our model have the opportunity to order 1, 2, or 3 ships
in each period. To shed light on the impact of investment appraisal choice, we
study three different investment approaches: a real options trigger policy, an
individual DCF model, and an alliance-based, collective DCF model.

Even though the DCF approach is still considered the standard approach
in maritime investment, it fails to incorporate industry characteristics, such as
freight rate uncertainty, managerial flexibility, and the oligopoly nature of the
shipping industry (Bendall 2010, Rau and Spinler 2016b). We hence propose
the introduction of a continuous-time real options investment trigger policy in
a discretized form. This approach accounts for freight rate volatility, lead time,
the number of players, and competitive intensity. Real options analysis has
been successfully applied to maritime investment in earlier studies (Bendall
2010, Bendall and Stent 2007, Gkochari 2015, Goncalves 1992, Rau and Spinler
2016b).

3.3.4.1 Trigger policy

The real options investment trigger can be derived by assuming an endogenous
freight rate driven by a geometric Brownian motion and finding the firm value
in Nash equilibrium. For further details refer to Gkochari (2015), Grenadier
(2002), Rau and Spinler (2016b). The investment trigger is

X∗ = vκe
(r−µ)κQ

1
γ (3.8)

where κ is the lead time, Q denotes total industry capacity, γ is the competitive
intensity, µ is the drift term of the geometric Brownian motion and r is the
risk-free rate. The term vκ is given by

vκ =
[
(
β

β− 1
)(

nγ

nγ− 1
)(r− µ)(η+ ce−rκ

1

r
)
]
, (3.9)

where β is the fundamental quadratic, n is the number of players, η are invest-
ment cost and c is the variable cost component. To fit into our discrete-time
framework, we assume that once the freight rate exceeds the threshold, new
investment will be triggered. Investment into two or three ships requires the
freight rate to surpass the threshold by 10 and 20 percent, respectively. Note
that σ, r, and µ are converted to correspond to bimonthly terms.

3.3.4.2 Individual DCF model

The first formal expression of the DCF methodology dates back to the time af-
ter the stock market crash in 1929 (Edwards and Williams 1939, Fisher 1930).
The main assumptions are that the value of a project can be calculated by es-
timation of future cash flows and discounting with an appropriate Weighted
Average Cost of Capital (WACC). By subtracting investment, the Net Present
Value (NPV) can be attained. Generally, a positive NPV implies investment
into a project would be worthwhile; a negative NPV leads to rejection of the
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investment opportunity. The individual DCF model solves the following opti-
mization problem:

NPV∗ = arg max
f∈{0,1,2,3}

60∑
i=1

CFi(CS, f)
(1+WACC)i

− I(f) (3.10)

where f is the number of ships to be purchased and WACC denotes the weighted
average cost of capital. The cash flow of each period i is defined as

CFi =
[
p(i,CS) − c(i,CS,q)

]
q(i,CS, f). (3.11)

Freight rate and variable cost going forward are calculated according to Equa-
tions 3.6 and 3.7.

3.3.4.3 Collective DCF model

As we argue that the alliance status has an impact on investment decisions, we
allow a joint DCF investment approach as a third potential investment method
in our simulation model. The key assumption here is that - rather than esti-
mating future cash flows from an individual firm perspective - in the collective
approach, firms add their prospective cash flows and make a joint investment
decision based on NPV. The ordered ships are allocated to the players based on
their current capacity. The mechanics of the DCF approach are analogous to
Equations 3.10 and 3.11, however, cash flows of the alliance partners are added
and the maximum investment considered is 3 units per player.

3.3.5 Realization of earnings and operational impact

Before realizing period earnings, we assess whether required equity is available
and adjust respective investment decisions. The required equity depends on al-
liance size and is depicted in Table B.2. The intuition is that ships are financed
with a mix of debt and equity. The equity requirement is the share of invest-
ment cost that needs to be paid from retained cash flows. We assume that the
larger the coalition, the stronger the negotiation power towards banks. Hence,
the equity requirement decreases with more alliance partners. We further allow
firms to move 1 unit per period into layup in case variable cost are greater than
the sum of freight rate and layup cost (and vice versa). Realized earnings (cash
flow perspective) are given by

CF(τ,CS) =
[
p(τ,CS) − c(τ,CS)

]
q(τ,CS)

−Ca(τ,CS) −Cl(τ,CS) −Cr(τ,CS) −CI(τ,CS) −Cd(τ,CS),
(3.12)

where CI are investment cost (equity part) and Cd are debt service payments
(geometric debt schedule).

3.4 hypotheses

The input parameters we vary are competitive intensity, order lead time, al-
liance complexity cost, and freight rate volatility. We measure four output
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variables: (1) the average capacity over the measurement period of 120 periods,
(2) the sum of cash flows to the players during the measurement period, (3) the
number of changes in the coalition structure during the measurement period,
and (4) the industry concentration measured by the Herfindahl-Hirschman In-
dex (HHI) at the end of the measurement period. We run the simulation model
with all possible parameter settings and - in combination with an extensive
literature survey - identify the following main hypotheses.

3.4.1 Independent variable variation

Competitive intensity

Due to the application of an oligopolistic price function (Gkochari 2015, Grenadier
2002, Rau and Spinler 2016b) the competitive intensity described by γ has an
impact on the endogenous freight rate rate as well as on the propensity to in-
vest. For a competitive shipping market it can be shown that a higher γ value
(lower intensity of competition) increases optimal market capacity and firm
values (Rau and Spinler 2016b). We further expect that higher competitive in-
tensity will trigger players to consider alliance changes more often. We hence
believe that this will lead to greater instability. This view is in line with Midoro
and Pitto (2000) who show that (1) higher intra-alliance competition and (2) a
higher degree of competition in the surrounding environment lead to instabil-
ity of alliances. This view is also supported by Lu et al. (2006) who identify
competition between partners as a driver for alliance instability.

Hypothesis 1: Lower competitive intensity reduces the number of alliance
changes.

Lead time

As container ships are built to order, delivery times are around 1.5 years4. Typ-
ically, the lead time is endogenous and depends on the order volume at the
shipyards (Adland and Strandenes 2007). We hypothesize about the lead time
impact on HHI. We have not come across previous research that explores the
lead time or construction time impact on industry concentration. There are,
however, two related studies: Lijesen (2004) shows that airlines with shorter
flight times achieve higher market shares; Hendricks and Singhal (1997) show
that delays in new product introduction have a negative effect on firm values.
Along with that, we argue that increasing lead time is likely to lead to lower
industry concentration.

Hypothesis 2: Increasing lead time reduces market concentration.

4For example, ten ultra-large container ships had been ordered by Enesel in July 2012 from
Hyundai Heavy Industries and delivered between September 2013 and October 2014, achieving
an average delivery time of 20 months (Alphaliner 2014e).
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Alliance complexity cost

Midoro and Pitto (2000) argue that a key factor driving instability of liner ship-
ping alliances may be organizational complexity. They suggest that it is impor-
tant to build alliances that are “simple enough to be manageable". We introduce
this complexity argument as alliance complexity cost in the simulation model.
In line with Midoro and Pitto (2000) we expect alliance complexity costs to
increase changes in alliance composition.

Hypothesis 3: Increasing alliance complexity cost increases the number of
alliance changes.

Freight rate volatility

The simulation model’s assumption of a geometric Brownian motion shock
driving the freight rate implies that volatility has a strong impact on rate realiza-
tions. Since it is possible to consider investment from a real options perspective
(cf. Section 3.3.4.1) we expect deferred investment for higher volatilities which
will in turn lead to lower capacity. This view is in line with Grenadier (2002)
who shows that the real options investment trigger increases with volatility,
i.e. asking for a higher freight rate in order to justify investment. Aguerrevere
(2003) further shows that optimal capacity is actually decreasing in volatility.
Rau and Spinler (2016b) show that in an oligopoly market, firm values are in-
creasing in volatility. From a real options perspective, Bendall and Stent (2007)
show that the value of the real option is increasing in volatility.

We hypothesize that in a more volatile market, alliance composition will be
less stable as well. With respect to volatility impact, Midoro and Pitto (2000)
argue that in light of “environmental uncertainty surrounding the activities of
the alliance" stability is likely to suffer.

Hypothesis 4: Increasing freight rate volatility increases the number of al-
liance changes.

3.4.2 Selection of investment approaches

Our goal is to assess whether the application of a real options trigger policy
has advantages over individual and collective DCF approaches. Overall, our
guiding hypothesis is that a real options trigger approach performs compar-
atively best in comparison with DCF approaches, especially in light of high
competitive intensity and high freight rate volatility; while not exhibiting sub-
stantial disadvantages when it comes to other market scenarios as well as in
terms of coalition stability and industry concentration. As the real options
approach takes into account industry characteristics such as freight rate uncer-
tainty and managerial flexibility (c.f. Section 3.3.4), we expect that its financial
performance will be better than the two DCF approaches.

Due to the option nature of the trigger policy (and the way it has been de-
rived according to industry specifications), we expect its performance to be
even better in environments of high competitive intensity, long lead times, and
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high volatility. In high competitive intensity settings we expect the trigger to
perform better due to the fact that it specifically takes into account an endoge-
nous oligopoly price function (Gkochari 2015, Grenadier 2002, Rau and Spinler
2016b).

Hypothesis A: The real options trigger policy leads to higher cash flow, par-
ticularly for high competitive intensity.

In settings of long lead times, we expect the real options trigger to perform
better than the other approaches as it specifically takes lead time into account
(parameter κ).

Hypothesis B: The real options trigger policy leads to higher cash flow, par-
ticularly for long lead times.

Finally, due to its financial option nature, we expect that the real options
trigger is most suitable to accomodate high freight rate volatility.

Hypothesis C: The real options trigger policy leads to higher cash flow, par-
ticularly for high volatility.

3.5 results and discussion

To study the hypotheses about parameter impact and investment approach se-
lection we construct a base case to make all three investment approaches com-
parable in terms of final capacity at the end of the measurement period. We
then conduct a number of analyses with respect to competitive intensity, lead
time, alliance complexity cost, freight rate volatility, and investment approach
selection. The simulation model covers 120 periods which corresponds to a
measurement period of 20 years. We find convergence for 5,000 iterations.

3.5.1 Base case

The assumptions for the fictitious market model (outlined in Section 3.3.1) lay
the foundation for our base case scenario. In order to allow for relative compar-
ison of the three investment approaches, we aim to calibrate them in a way that
will produce equivalent final capacity at the end of the measurement period,
namely 13.6 million TEU. We explicitly choose not to use financial impact as a
base case measure because the financial outputs of the models show a greater
variance than capacity outputs. The calibration parameters are the fictitious in-
vestment cost η for the real options trigger approach and the respective WACC
values for the two DCF approaches.

Figure 3.3 shows final capacity of the three approaches for different values of
the calibration parameters. Capacity is decreasing in both η and WACC and by
a linear regression of the means we are able to derive the following base case
parameter values:

• η = 528.31 USD
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Figure 3.3: Base case final capacities for different η (investment trigger) and WACC
(DCF approaches) values

• WACCind = 12.75%

• WACCcol = 13.60%

Table B.3 shows industry WACC data as of January, 2016. We observe that,
depending on the country, WACC rates for “Shipbuilding and Marine” range
from 4.88 percent (Japan) to 11.38 percent (India) (Damodaran 2016). Our
WACC values are comparatively high, however, we argue that given the risky
nature of the shipping industry, those values are appropriate to answer our
research questions. Note that the base case calibration assumes a very stable
market, i.e. competitive intensity is assumed to be γ = 1.8 and volatility is
set to a value of σ = 0.15. This allows us to show that all three investment
appraisal methods can produce equal results. To derive meaningful and still
consistent results for the container shipping industry we, however, adjust these
values for the analysis section that follows. We choose a higher competitive in-
tensity γ = 1.5 which is in line with previous research (Rau and Spinler 2016b).
We further assume a σ = 0.25 freight rate volatility which is consistent with
historical data of the SCFI Composite (SSE 2016).

3.5.2 Independent variable variation

We use the simulation model to study the hypotheses outlined in Section 3.4.1
by changing independent variables. For this analysis, we choose to apply only
the real options trigger investment approach because it is the focus of our
study. In Section 3.5.3 we apply all three investment approaches to our co-
operative game to study parameter impact and to compare the approaches.
We vary competitive intensity (γlow = 1.2;γmedium = 1.5;γhigh = 1.8), lead
time (κlow = 3; κmedium = 9; κhigh = 15 periods), alliance complexity cost
(Clow = 400, 000;Cmedium = 600, 000;Chigh = 800, 000 USD), and freight
rate volatility (σlow = 0.15;σmedium = 0.25;σhigh1 = 0.35; σhigh2 = 0.45;
σhigh3 = 0.55).
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Competitive intensity

We show the model output for different γ elasticity values in Figure 3.4. We
observe that average capacity and its variance are increasing in γ (Figure 3.5a).
We further see a γ-independent capacity floor. The increase in average capacity
is driven by the endogenous price function, since in a high γ setting, additional
investment has a less detrimental effect on the the freight rate. The increase
in variance - especially in the upside variance - might be driven by the fact
that in very high freight rate settings, a low competition intensity will enable
earlier investment which can in turn lead to higher capacities in later periods.
The capacity floor implies that there is a competition-independent minimum
capacity in the market. The cash flow results are consistent with the capacity
observations (Figure 3.5b). γ has a positive effect on cash flow and its (upside)
variance due to the endogenous price function and early investment.

Figure 3.4: Independent variable variation results for different elasticity values γ
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With respect to the number of changes and the HHI (Figures 3.5c and 3.5d),
we find a decrease in γ. The lower the impact of capacity on the price function,
the more stability we observe (both in terms of absolute changes and their
variance). This is most likely caused by the fact that the incentive to deviate
from an alliance becomes less strong with lower intensity of competition. From
an HHI perspective it seems that in light of high competitive intensity, players
or alliances can make better use of operating cost advantages through ship
size, hence the industry is more concentrated. We can hence confirm that with
lower competitive intensity, alliances are likely to be more stable and accept
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Hypothesis 1. Note that the Median HHI approaches 0.20 in the γ = 1.8 setting
which implies an almost fully balanced industry structure at the end of the
measurement period, even though initial capacities are different (c.f. Table B.1).

In summary, we find that in situations of higher competitive intensity, ca-
pacity is lower and alliances are less stable. From a managerial perspective
choosing the right capacity (i.e. by applying a more appropriate investment
approach such as a real options investment methodology) becomes even more
important. Further, when considering alliances - especially if related to a certain
trade lane with high competitive intensity - the higher tendency for instability
needs to be kept in mind when negotiating an alliance.

Lead time

With respect to the lead time effect (Figure 3.5) on industry concentration, we
make the observation that starting from a very short lead time (3 periods) to-
wards a medium lead time (9 periods), we find a slight decrease in industry
concentration. We hence find support for Hypothesis 2. We also observe a
decrease in variance of HHI values. This is most likely caused by the loss of
flexibility from longer lead times.

Figure 3.5: Industry concentration (HHI) for different lead times
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As a consequence, with shorter lead times players can improve their com-
petitive position. One way to secure a competitive advantage in the shipping
industry could be to secure delivery slots at shipyards or a higher focus on
chartering vs. own investment.

Alliance complexity cost

From Figure 3.6 we further learn that alliance complexity cost are a driver for
alliance instability. The alliance complexity cost increase linearly with the num-
ber of players in an alliance. The incentive to leave or change an alliance rises
with higher alliance complexity cost. Hence, the more complex the collabora-
tion (number of players, location, network complexity), the higher the instabil-
ity. We accept Hypothesis 3.

From a managerial perspective, alliance complexity cost play an important
role for alliance stability. Hence, the following factors need to be considered
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Figure 3.6: Number of changes in the coalition structure for different values of alliance
complexity cost
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when forming new alliances: “scope of alliance activities; environmental uncer-
tainty surrounding these activities; and adequacy of skills and competencies
within the alliance" (Midoro and Pitto 2000).

Freight rate volatility

With respect to freight rate volatility, Figure 3.7 shows clear evidence that al-
liances are likely to change more often in light of higher volatility and hence
we accept Hypothesis 4. Note that when moving to extreme volatility parame-
ter values, we observe that the extent of the median increase becomes less. This
is most likely due to the fact that there is a maximum number of manageable
alliance changes, even for extremely volatile markets.

Figure 3.7: Number of changes in the coalition structure for different volatility levels
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In volatile market environments, the right choice of alliance membership be-
comes paramount since the incentive to leave an existing alliance is likely to
become much stronger if it is not well aligned with the expectations of the
player.
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3.5.3 Selection of investment approaches

We can address Hypotheses A-C by comparing outputs for the three differ-
ent investment approaches. We observe that the resulting distributions are
skewed but similar across investment approaches. We choose to apply the
Mann-Whitney test instead of a t-test to evaluate the statistical significance of
the results. If we assume that the distributions of the different results are similar
and there is only a shift in location, this test can be described as corresponding
to a test of the difference in medians (Hart 2001).

From Figure 3.8 we observe5 that the real options trigger approach leads to
lowest average capacity (Figure 3.9a), a higher cash flow to the players (Figure
3.9b) and no observable difference in number of alliance changes (Figure 3.9c).
Both the real options trigger and the individual DCF approaches deliver a simi-
lar level of industry concentration; the collective DCF approach, however, leads
to a strong increase in HHI (Figure 3.9d). The increase in HHI can be explained
by the fact that - in the collective DCF investment approach - firms form an
investment decision together, have more relaxed equity constraints, and share
the resulting fleet after delivery.

Figure 3.8: Investment approach comparison (1=Real options trigger, 2=Individual
DCF, 3=Collective DCF)
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5Note that both Figure 3.8 and the statistical tests in Table B.4 are based on a simulation run
with standard parameters, i.e. γ=1.8, κ=9, and σ=0.25.
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The statistical test (Table B.4) finds significance for all values. Note that even
though the median changes are zero, the mean rank of the real options trigger
approach is higher. This means that the distribution of alliance changes across
all 5,000 model iterations is on a higher level. Hence, the real options trigger
exhibits a higher number of changes.

In terms of cash flow impact (Figure 3.9) we find that the real options trigger
approach performs well across the board, but is better in markets with high
competitive intensity (Figure 3.10a). Hence, we accept Hypothesis A. For short
lead times, the real options trigger approach performs extremely well, but for
long lead times (Figure 3.10b) the difference between the approaches becomes
smaller. That means we need to reject Hypothesis B. However, it should be
noted that even when approaching longer lead times, the real options invest-
ment trigger approach still performs better than the other approaches. Finally,
we find support for Hypothesis C since the real options trigger cash flow to the
players is substantially increasing in volatility (Figure 3.10c). The differences be-
tween the results from the investment trigger vs. the individual DCF approach
are statistically significant (Tables B.5, B.6, and B.7).

The real options trigger approach performs well across the board and has
distinctive advantages in volatile and competitive markets. Hence, the more
volatile and competitive a market, the stronger we encourage alternative in-
vestment approaches, such as the proposed real options trigger approach or
other approaches that can capture the shipping industry-specific characteris-
tics, namely freight rate uncertainty and competitive intensity.

3.6 conclusion

With this research effort, we address some of the questions that arise in light of
the challenges of the shipping industry: overcapacity and eroding margins, re-
peatedly changing strategic alliances, and non-trivial investment decisions. We
propose a cooperative game theory simulation model that allows us to compare
different investment approaches in light of varying competitive intensity, lead
time, alliance complexity cost, and freight rate volatility. We confirm that com-
petitive intensity, alliance complexity cost, and freight rate volatility are drivers
for alliance changes.

Overall, we find that - especially in light of high volatility and high com-
petitive intensity - the choice of investment approach is key. The proposed
real options investment approach by Gkochari (2015), Grenadier (2002), Rau
and Spinler (2016b) offers a substantial financial advantage that increases with
volatility and competitive intensity; while only slightly increasing alliance sta-
bility in comparison with traditional DCF approaches.

Avenues for further research could be an empirical back testing of the real
options investment approach with a long timeframe of industry data. We also
suggest the further exploration of the effect of lead time on industry concentra-
tion.
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Figure 3.9: Investment approach comparison cash flow (1=Real options trigger, 2=Indi-
vidual DCF, 3=Collective DCF)

(a) Different elasticity (gamma) levels: 1.2, 1.5, and 1.8

(b) Different lead time levels: 3, 9, and 15 time periods

(c) Different volatility levels: 0.15, 0.25, 0.35, 0.45, and 0.55





4
Real options investment in container shipping: An empirical view on
capacity and rate development1

4.1 introduction

4.1.1 Container freight rates at historical low

Operating in the container shipping industry has never been particularly easy.
Freight operators have ever since faced changing market cycles (Stopford 2010),
highly capital-intensive investments (Rau and Spinler 2016b), supply-demand
imbalances (Syriopoulos 2010), and a market that is far from perfect competi-
tion (Pirrong 1992). Since the beginning of the year 2015, the rates on the SCFI
have dropped significantly and are currently at historically low levels. In March
2016, the SCFI Composite Index has dropped to the lowest value since introduc-
tion, namely 414 USD per twenty-foot equivalent unit (TEU) (SSE 2016).

Figure 4.1: SCFI and deployment for Asia to Europe over time
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Source: Alphaliner (2012, 2014b, 2015b,c, 2016), SSE (2016)

Looking at rates and capacity deployment for the popular Shanghai to Eu-
rope route in Figure 4.1, the decrease in rates is even more pronounced. One

1Rau and Spinler (2016c): Rau, P., Spinler, S. (2016). Real options investment in container
shipping: An empirical view on capacity and rate development. Unpublished Working Paper.
Presented at INFORMS 2016 International Conference, Waikoloa.
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TEU freight from Shanghai to Europe is currently sold at a rate of of 271 USD
(April 22nd, 2016). Part of this drop may be attributed to lower fuel prices
since SCFI values are quoted including Bunker Adjustment Factor (SSE 2016).
However, even with the usage of very large vessels, it is close to impossible to
even cover variable cost for this sort of voyage.

From Figure 4.1 we further find that in line with decreasing freight rates,
capacity deployment has been increasing. This data suggests two hypotheses
that we want to explore in detail: (1) the oligopoly price function which states
that the higher the capacity, the lower the rate (Rau and Spinler 2016b) holds for
container shipping, and (2) the container shipping industry is suffering from
overcapacity.

4.1.2 Impact on container shipping industry

The deteriorating market situation influences behavior in the container ship-
ping industry in 3 ways. First, it has been reported that liner shipping compa-
nies are facing bankruptcy since - despite a recovery in the world economy -
players are suffering from high amounts of debt and excess capacity as a result
of ordering booms in the past years. Some players even had to shed non-core as-
sets to ensure sufficient liquidity (Barnato 2016). Second, capital expenditures
for container vessels have significantly declined, especially when it comes to
smaller market participants (Barnato 2016). Third, the industry is in the middle
of a strong trend towards consolidation. In the past years, strategic alliances
have evolved drastically (Rau and Spinler 2016a) and further consolidation has
been driven by mergers and acquisitions. For example, in April 2016, the Eu-
ropean Commission approved the acquisition of NOL by CMA CGM. This will
not only impact services but lead to a new alliance composition. As part of the
merger, NOL needs to leave the G6 alliance (Shingleton 2016).

4.1.3 Research objectives

A number of authors argue that non-optimal investment methods and/or tim-
ing have triggered overcapacity in the shipping industry and container ship-
ping in particular (Bendall 2010, Lau et al. 2013, Rousos and Lee 2012, Scarsi
2007). Gkochari (2015) shows that a real options trigger approach performs
well for bulk shipping. Rau and Spinler (2016a) show with simulations that
this approach is valid for container shipping as well and argue that it should
be preferred over the traditional DCF approaches. So far, the validity of the
real options trigger approach has not been shown in container shipping from
an empirical perspective. We aim to provide new insights on container freight
rates and real options investment in container shipping by asking the following
research questions:

• How can an oligopoly container freight rate be empirically characterized?

• To what extent does the oligopoly price function hold for container ship-
ping?
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• How would shipping players have performed in the past five years if they
had utilized a real options approach for their investment projects?

The structure of this paper is as follows: Section 4.2 reviews existing liter-
ature on empirical resarch in shipping, capacity investment in shipping, and
the real options trigger approach as well as explains the contribution of this re-
search. Section 4.3 introduces the empirical ARIMA model to characterize the
container freight rate and Section 4.4 shows the industry back testing of the real
options approach. In Section 4.5 we provide a discussion of the results. Section
4.6 concludes with managerial recommendations and suggests areas for further
research.

4.2 literature review

We position our research into existing literature and reflect on previous contri-
butions with respect to investment decisions in shipping, empirical research in
bulk and liner shipping, and the development of real options investment mod-
els in shipping. Moreover, we explain how our econometric model and industry
back testing fills a gap in research as well as detail the contribution of this arti-
cle. A comprehensive overview of the current state of research is provided by
Lee and Song (2016). The authors argue that overcapacity and low freight rate,
among others, present challenges for the container shipping industry and call
for further research in container shipping.

4.2.1 Investment decisions in shipping

A number of research contributions have argued that investment decisions in
shipping are biased and the still prevalent DCF methodology might not cap-
ture the nature of the investment problem accordingly. Scarsi (2007) argue
that in the bulk shipping business shipowners ignore or underestimate market
trends and follow their intuition, hence do not exhibit rational behavior. In
some cases, players imitate competitors’ strategy. The authors list as poten-
tial reasons lack of experience, managerial culture, decision making attitude,
and company structure. Bendall (2010) argues that the traditional DCF analy-
sis does not take into account managerial flexibility. In the container shipping
context, this may lead to a misinterpretation of the investment opportunity, for
example since the investor might have the option to expand the number of
ships on a specific route or - depending on income development - discontinue
service on a given route or in a region altogether. Rousos and Lee (2012) argue
that besides monetary factors, there are other, non-financial determinants for
shipping investment. They apply analytical hierarchy process and Multicriteria
Decision Making (MCDM) to create an investment proposal model that accepts
non-financial and financial inputs. They argue that decision making in shipping
is biased since there are non-financial inputs. They show that MCDM indeed
works and find that an optimal tradeoff between net present value, internal
rate of return, risk profile, and the decision maker’s psychology can explain
shipping investment adequately. In a meta analysis of 282 papers on container
shipping published between 1967 and 2012, Lau et al. (2013) find that so far,
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research was focused around three key topics: (1) the East-West transport axis,
(2) practical, daily shipping activities, and (3) quantitative analysis even though
it is hard to obtain reliable data. The authors call for a change in the research
to focus on well-being of the world community as well as increase research
efforts to explain and counter excess capacity and persistent overinvestment in
the container shipping industry.

4.2.2 Empirical research in bulk shipping

With respect to bulk shipping investment, Alizadeh and Nomikos (2007) eval-
uate the performance of trading strategies in sale and purchase for dry bulk
ships. They use price and charter ratios from 1976 to 2004 and estimate a price
earnings ratio as investment decision criterion. They find that price-earnings-
ratio strategies outperform buy and hold strategies due to high volatility in
the large vessel markets. Gkochari (2015) tests the real options approach by
Grenadier (2002) in the dry bulk shipping industry. By estimating the compet-
itive dynamic equilibrium in the market she explains boom-and-bust cycles in
shipping and finds that a reduction of order lead time reduces the investment
trigger value.

In terms of freight rate, Xu et al. (2011) study the relationship between time-
varying volatility and change in supply fleet. They find that change in fleet size
positively affects freight rate volatility, but in a nonlinear way. The methods
employed are AR-GARCH and GMM regression. Alizadeh (2013) investigate
the relationship between price volatility and trading volume in the shipping
forward freight market from 2007 to 2011. Applying VaR and GARCH methods,
they find a momentum effect in which higher capital gains in the market lead to
more transactions. Alizadeh and Muradoglu (2014) find by regression analysis
that changes in freight rates can predict stock index returns for the United
States because they carry information. They name three key reasons: (1) freight
rates take on an international and hence more comprehensive view, (2) the data
is available instantly, and (3) shipping demand leads production and hence
has a timing advantage. Dai et al. (2015) apply a multivariate GARCH model
to capture volatility spillover effects across vessel and freight markets. They
confirm the existence of volatility spillovers between the markets.

4.2.3 Empirical research in liner shipping

With respect to liner shipping freight rates, Cariou and Wolff (2006) find that
there is a Granger causal relationship between average bunker price and bunker
adjustment factor. They further find that the time charter rate has a causal
effect on the average freight rate. This relationship can, however, only be found
for Westbound rates. The effect on Eastbound rates is not significant due to
trade imbalances. Luo et al. (2009) run an econometric model for the container
shipping market. They analyze freight rates, demand, and capacity. Under
the assumption of a freight rate governed by demand and capacity interactions,
exogenous trade, and endogenous capacity (increased by orders proportional to
profits) they are able to replicate market fluctuation for 1980-2008 and provide
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a prediction. They use a Cobweb model for market clearing and can explain
more than 90 percent of the variations in fleet capacity and freight rate.

Hsiao et al. (2013) assess return lead-lag and volatility transmission effects
in bulk and container shipping markets. They compare the Baltic Dry Index
(BDI) with the CCFI with the goal to gain insights that can be used to hedge.
They mention three important differences between the markets: (1) type of
goods transported, (2) contract duration, and (3) price formation, i.e. perfect
competition vs. oligopoly. They conduct cointegration and Granger causality
tests and split their data into pre, during, and post 2008 financial crisis datasets.
They find that there is no significant relationship before the crisis. During the
crisis, the BDI is ahead of the CCFI, most likely from market pressure due to
high competition. After the crisis, the CCFI is ahead of BDI which might be
explained by a better and quicker response to the economic recovery due to the
“sticky-up” nature of container freight rates.

Lun et al. (2013) apply demand chain management to liner shipping. They
mention three shipping industry specifics: (1) high fixed cost, (2) low service
differentiation, and (3) a concentrated number of players. With a 1996-2007

Clarksons dataset, they use structural equation modeling to test a number of
relationships between demand, fleet size, rate, newbuilding price, secondary
market price, and scrap price. The results confirm expectations; for example
increasing fleet size puts pressure on rates. Nielsen et al. (2014) add a perspec-
tive to forecasting container freight rates since they argue the limited number
of previous studies have two main shortcomings, i.e. capacity cannot react fast
enough and only world-aggregated rates are taken into account. They develop
an econometric container freight rate forecast model by looking at the relation-
ship of individual company rates vs. global market rates. They consider de-
mand, capacity, seasonality, GRIs, and the SCFI as explanatory variables, partly
with time lags. Their forecast model performs well and achieves the objective
of 5 percent Mean Absolute Percentage Error (MAPE) within a 6 weeks forecast
period.

In terms of (excess) capacity, Cullinane and Khanna (1999) develop a cost
model for container ships to assess the tradeoff between economies of scale at
sea from large ships and diseconomies of scale in ports due to higher handling
effort. They find that economies of scale in container shipping are highly de-
pendent on port productivity and argue that the optimal ship size is 8,000 TEU.
Fusillo (2003) argue that container shipping is close to a natural monopoly and
that as a result of core theory, excess capacity is an issue due to lumpy invest-
ment, especially if there is no form of cooperation. As reasons for why excess
capacity has improved very little over the past decades, they isolate strategic
entry deterrence for the top four players and, more importantly, lumpiness of
investment. Yip et al. (2012) apply a structure, conduct and performance frame-
work to liner shipping and develop a functional specification of the relationship
between capacity and market share as an S-Curve. For the period from 1997 to
2008, they find evidence for scale economies and diseconomies.

With respect to investment, Fan and Luo (2013) analyze ship investment and
choice behavior for liners with binary choice and nested logit models from
1999 to 2009. They find that - for small players - expansion decisions are mostly
driven by the market, i.e. high demand, high demand growth, or high TC rates.
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At the same time, large players tend to use expansion as a means of maintaining
market share. They further find that companies who do more chartering tend
to expand less frequently. Bragoudakis et al. (2013) find that the shipping crisis
(low rates and layup) has strong impact on the Greek economy and shipping
due to the slow response of supply. They find that anticyclicality in investment
declined after 2006.

4.2.4 Real options models for shipping investment

Real options analysis can better incorporate shipping industry specifics, such
as irreversibility of investment, cash flow uncertainty, and flexibility in decision
making; hence a research stream has emerged. A detailed literature review of
real options in shipping and game-theoretic real options models can be found
in Rau and Spinler (2016b); we provide a summary here.

Goncalves (1992) is the first to apply real options analysis to bulk shipping.
Dixit and Pindyck (1994) extend this work to assess tanker industry decisions.
Bendall and Stent (2007) contribute a number of articles with respect to real
options analysis in short sea container shipping and find that real options mod-
els can capture ship investment better. Dikos (2008) shows the validity of the
real options hypothesis and Pires et al. (2012) apply real options analysis to the
decision on whether to own or charter. Gkochari (2015) finds that a real options
game based on Grenadier (2002) can successfully be applied to bulk shipping.
Rau and Spinler (2016b) develop a real options game model in continuous and
discrete time and (Rau and Spinler 2016a) test its validity in a simulation. They
find that the real options trigger approach performs comparatively better than
a DCF approach, especially if volatility and competitive intensity are high.

4.2.5 Literature gap and contribution

We believe there is a gap in research due to a number of reasons. First, several
authors have pointed out that the (container) shipping industry suffers from
shortcomings in investment methods and overcapacity (Bendall 2010, Rousos
and Lee 2012, Scarsi 2007) and call for additional research efforts in this par-
ticular area (Lau et al. 2013, Lee and Song 2016). Second, a lot of research
has focused on bulk and tanker shipping, in part due to better availability of
time series data. However, with the introduction of the CCFI and SCFI indices
(SSE 2016), data availability has improved and opened new avenues of research.
Third, during our extensive literature survey, we have not come across any
articles that analyze how fleet or capacity deployment impact autoregressive
freight rates or empirically test real options game approaches within the con-
text of container shipping.

We argue that with this research effort, we are able to contribute a deeper
understanding of the container freight rate and its dependency on fleet deploy-
ment by conducting an ARIMA regression model on SCFI with deployment
data from the past 5 years. Another contribution to the literature stream for
real options shipping investment is the empirical verification of a proposed in-
vestment approach as well as the identification of prerequisites and limitations
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of the approach: for example the substantial impact of volatility expectation,
potentially induced cyclicality from trigger approaches, and the timing impact
of investment lead times.

Our research has clear implications for practitioners. We foster a better un-
derstanding of container freight rates and how players can work to improve
their situation. With the real options trigger approach and the industry back
testing, we present a ready-to-use investment approach that can be added to a
shipping player’s investment decision toolkit.

4.3 empirical characterization of the freight rate

With this Section, we aim to empirically characterize the container freight rate
for the trade lane Asia to Europe. Even though data availability for container
shipping remains comparatively low, we present relevant data sources, explain
the motivation for ARIMA modeling, as well as present an ARIMA model with
and without regressors.

4.3.1 Data

To characterize the freight rate empirically we rely on time series data that
captures freight rates, capacity deployment, and shipping demand. In the fol-
lowing, we present an overview of the available sources. For our analysis, we
choose the SCFI for the Asia to Europe trade lane in monthly increments to
represent the freight rate since it has the largest panel and and is suitable for
the trade lane under investigation. In terms of capacity, we choose to work
with the capacity deployment for the Asia to Europe trade lane as published by
Alphaliner. For a cross-check for demand impact, we rely on weekly shipping
demand on the trade lane provided by Alphaliner.

4.3.1.1 Freight rate data

The SCFI was introduced in 2009 and is a widely accepted freight index. For
example, it is used for publications of the United Nations Conference on Trade
and Development, such as the Review of Maritime Transport (UNCTAD 2015).
This index reflects the actual spot rate in USD per TEU for 15 trade lanes orig-
inating in Shanghai on a weekly basis. The index panel includes 22 liner ship-
ping companies as well as 17 shippers and freight forwarders (SSE 2016).

A possible alternative is the CCFI which has been first published with a start-
ing value of 1,000 in 1998. The index contains of 14 trade lanes originating in
China and data is provided by a freight rate formulation committee which is
made up of 22 Chinese and foreign shipping companies (SSE 2016). Current
index values for SCFI and CCFI can be obtained from the Shanghai Shipping
Exchange (SSE) website while a full time series with up to weekly granularity
can be obtained from several data providers. Clarksons SIN, for example, pro-
vides weekly data from October 2009 (SCFI) or March 2003 (CCFI) until today.

Shipping rates for a multitude of origin-destination pairs can also be ob-
tained from Drewry Container Freight Rate Insight (Drewry 2016). However,
in contrast to SCFI and CCFI, rates are only available on a subscription basis,
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are usually available on a bimonthly basis only and tend to rather show a long-
term development of rates as opposed to SCFI and CCFI, which are linked to
short-term market developments, such as demand and capacity deployed.

4.3.1.2 Capacity data

The weekly capacity deployment on the trade lanes Far East to Europe, Far
East to North America, and Europe to North America, is reported in the Al-
phaliner Monthly Monitors (Alphaliner 2012, 2014b, 2015b,c, 2016). It is based
on the nominal vessel capacity and estimated on the first of every month. Slow
steaming is not captured in the analysis. A full dataset is not available for
purchase, however, it is possible to gather the actual figures from January 2011

until today from several Alphaliner Monthly Monitor reports. Data points from
January 2009 until December 2010 are only available in charts, hence we extract
those graphically.

Alternatively, Clarksons Shipping Intelligence Network (SIN) publishes the
total fleet development by number of ships, total capacity, and total deadweight
tonnage. Monthly data points are available from January 1996. The data is
based on registered container ships and does not allow for a segmentation by
trade lane or region (Clarksons 2016).

4.3.1.3 Demand data

Alphaliner provides monthly demand data for both Far East to Europe and Far
East to US trades. Data from January 2009 until today can be collected from
a number of Alphaliner Monthly Monitors (Alphaliner 2012, 2014b, 2015b,c,
2016). An alternative would be demand data by Global Insight or a regression
between demand and GDP of importing countries.

4.3.2 Model selection

The goal for our research is to characterize the freight rate price function by
estimating an econometric model to assess factor importance on freight rate
(e.g. fleet size, deployment, demand). As a starting point, we take the oligopoly
price function

pt = Q
−1
γ

t Xt (4.1)

where pt is the current freight rate, Qt is the current deployed capacity, γ is the
elasticity (intensity of competition), and Xt is a random shock term.

After evaluating a number of options, we select an ARIMA model to cap-
ture the autoregressive part of the SCFI with Asia to Europe Deployment as a
regressor within the time frame October 2009 until Februay 2016, i.e. 77 data
points2. A descriptive time series analysis in Figure 4.2 reveals non-stationarity
of SCFI data as well as a significant autocorrelation. Linear regression methods

2Note that an ARIMA model on the CCFI Asia to Europe index with Deployment as regres-
sor would be a viable alternative. We have conducted a full-scale ARIMA analysis and found
that while in this case, the ARIMA terms would be significant, we cannot establish a significant
relationship between deployment and freight rate.



4.3 empirical characterization of the freight rate 69

Figure 4.2: Time series chart of SCFI Shanghai to Europe
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would not be able to capture those effects, hence we apply an ARIMA model.
ARIMA stands for Autoregressive integrated moving average, it is a class of
time series models. ARIMA(p,d,q) classifies the model: p refers to the order of
the autoregressive model, d to the degree of differencing to achieve stationar-
ity, and q refers to the order of the moving average model (Asteriou and Hall
2007, Box et al. 1976, Nau 2016). Decisive advantages of the ARIMA model
are that it captures the autocorrelation of the time series well and the regres-
sor is significant. However, the increased complexity, especially in contrast to
straightforward regression models, may be seen as a disadvantage.

Naturally, there are other options as well. A correlation analysis with a num-
ber of potential freight rate drivers such as bunker fuel price, layup capacity,
total fleet, secondary market vessel prices, newbuilding vessel prices, time char-
ter rates, GDP, demand, deployment, and purchasing manager index would be
straightforward in the analysis and can help identify freight rate drivers3. How-
ever, this approach would not capture the autoregressive part of the SCFI time
series and the isolation of an elasticity γ would be difficult. Lun et al. (2009)
have conducted such an analysis for the container shipping market, albeit with
a limited number of drivers.

A multiple regression model with five significant factors (secondary market
vessel prices, new built vessel prices, demand, purchasing manager index, de-
ployment) from October 2009 to May 2015 would show the relevant drivers for

3We have conducted this analysis for the timeframe October 2009 until May 2015 and found
that, among others, layup pool and time charter rates are negatively correlated, total fleet and
GDP are highly positively correlated, bunker price does not have significant correlations, and
freight rates and deployment are negatively correlated.
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the freight rate and present a straightforward methodology. However, it does
not capture the autoregressive part of SCFI data and the adjusted R2 would not
exceed 0.50.

An ARIMA model with a longer timeframe to capture the CCFI global index
with total fleet as regressor (March 2003 to October 2015) would still capture
the autocorrelation of CCFI data well, but in addition to the ARIMA complexity,
the fleet regressor is not significant and a trade lane focus is not possible.

4.3.3 ARIMA analysis

We conduct a full-scale ARIMA analysis with the SCFI Shanghai to Europe for
the time period October 2009 to February 2016. We check for seasonality, take
natural log and first differences to achieve stationarity, and estimate the model.
We compare different models for fit, identify remaining crosscorrelations of
error terms and finally estimate an ARIMA (0,1,3) model with monthly capacity
deployment on the Asia to Europe trade lane as regressor.

4.3.3.1 Seasonality

Within the SCFI data we do not see a strong sign of seasonality. The monthly
subplot in Figure 4.3 shows a large bandwidth of index values for the respective
months, but there is no clear indication of seasonality. Directionally, we find
that there seem to be slightly higher rates in the first months of the year as well
as in July and August. Based on those observations, we choose to not control
for seasonality in the ARIMA model.

Figure 4.3: Monthly subplot of SCFI Shanghai to Europe
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4.3.3.2 Stationarity

In order to be consistent with the structure of the oligopoly price function, we
translate the time series into natural log terms. This transformation alone does
not lead to stationarity since we see a significant negative trend in the series.
Stationarity is achieved when mean, variance, and covariances are constant
over time (Asteriou and Hall 2007). Figure 4.4 is the first difference of the time
series and fulfills the three characteristics required for stationarity4. Further
differencing does not improve the level of stationarity.

Figure 4.4: Time series chart of SCFI Shanghai to Europe, natural log terms, first differ-
ence
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4.3.3.3 Estimate ARIMA model

From Figure 4.4 we conclude that a potential starting point would be a mov-
ing average model with 3 coefficients, i.e. an ARIMA (0,1,3) model. The
Autocorrelation Function (ACF) has a clear spike at lag 3, hence we need to
include 3 coefficients. Furthermore, we see a gradual decay in the Partial Auto-
correlation Function (PACF) which indicates a moving average process (Aster-
iou and Hall 2007).

The fitted model is depicted in Figure 4.5. A first graphical observation leads
to the conclusion that the moving average model performs very well in the
first two thirds of the time series. For the last part - which is characterized
by significantly higher volatility - there is a stronger deviation between fitted

4Note that the SCFI Asia to Europe is highly volatile, hence also higher degrees of differenc-
ing cannot fully eliminate the increasing variance over time.
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Figure 4.5: Fitted ARIMA(0,1,3) model of SCFI Shanghai to Europe
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model and original time series. The coefficients, standard error and goodness
of fit statistics are given in Table C.1. We find that the freight rate estimate
depends on the past 3 forecast errors, in negative terms, albeit only θ3 (moving
average term third order) is statistically significant. The R2 value - here defined
as the squared correlation between fitted model and original data series - is
0.73.

4.3.3.4 Model performance

A good ARIMA fit can be established by performing 4 checks: (1) the parameter
of the longest lag is significant, (2) ACF and PACF of remaining forecast errors
are all insignificant, (3) the performance in key goodness of fit measures is
good compared to other potential models, and (4) there are no remaining cross-
correlations (Asteriou and Hall 2007, Box et al. 1976, Nau 2016).

Table C.1 shows that the coefficient for the longest lag θ3 is significant, hence
a reduction of coefficients is not feasible. The ACF and PACF of the remain-
ing forecast errors are - except for the very high lag 14 - not significant. A
comparison of the 4 key goodness of fit measures5 across 10 possible model
settings reveals that the ARIMA (0,1,3) and the ARIMA (3,1,0) models perform
comparatively best (Table C.2). The second difference models do not perform
very well. A crosscorrelation analysis between error terms of the model with

5We consider the Akaike Information Criterion (AIC), the Akaike Information Criterion for
small sample sizes (AICc), the Bayesian Information Criterion (BIC) and the squared correlation
between fitted model and original data series (R2). For AIC, AICc, and BIC a lower number
indicates a better fit while a higher R2 indicates a better fit.
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deployed capacity and demand on the Asia to Europe trade lane in monthly
terms (Figures 4.7a and 4.7b) reveals that while demand seems to not have a
significant influence on the errors, capacity deployment should be considered
as a regressor for the ARIMA model.

Figure 4.6: Crosscorrelation of ARIMA(0,1,3) residuals
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4.3.3.5 ARIMA with deployment as regressor

Entering capacity deployment on the Asia to Europe trade lane as regressor into
the ARIMA (0,1,3) model improves model fit. Figure 4.7 shows the original
data series with the fitted model. We find a statistically significant negative
relationship between deployment and freight rate (c.f. Table C.3). All of the
goodness of fit measures have improved as well.

With respect to the model checks, the highest lag remains significant and also
ACF and PACF or remaining forecast errors are - except for the high lag 14 -
insignficant. In comparison with other candidate models, the ARIMA (0,1,3)
and ARIMA (3,1,0) models still perform best as shown in Table C.4. We cannot
find a significant remaining crosscorrelation with demand on the selected trade
lane. We conclude that the ARIMA (0,1,3) model with deployed capacity as a
regressor, in monthly terms, is the appropriate characterization of the SCFI Asia
to Europe freight rate process.

4.3.4 Derivation of freight rate formula

In order to apply the insights from the ARIMA analysis, we need to derive the
respective freight rate formula in the following. We are using an ARIMA(0,1,3)
model and the general characterization is

∆1 lnyt = θ1ut−1 + θ2ut−2 + θ3ut−3 +ψ∆1 lnQt + ln εt (4.2)

where yt is the freight rate for period t, ∆1 is the first difference operator, ut−i
is the forecast error from period t− i, θi is the moving average coefficient for
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Figure 4.7: Fitted ARIMA(0,1,3) model with capacity deployment as regressor
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the respective lag i, ψ is the regression coefficient, Qt is the capacity deployed
in period t, and εt is the iid error term.

Denoting ŷt as freight rate forecast, this can be simplified to

yt = yt−1

(yt−1
ŷt−1

)θ1(yt−2
ŷt−2

)θ2(yt−3
ŷt−3

)θ3( Qt

Qt−1

)ψ
εt. (4.3)

If we define εt = Xreal,t, yt = pt, and ψ = − 1γ , the price function can be
expressed as

pt = Q
− 1
γ

t Xreal,tpt−1

(pt−1
p̂t−1

)θ1(pt−2
p̂t−2

)θ2(pt−3
p̂t−3

)θ3( 1

Qt−1

)− 1
γ

. (4.4)

The intuition behind this empirical characterization in Equation (4.4) is that,
in contrast to the originally hypothesized freight rate process from Equation
(4.1), the freight rate is also driven by last period’s freight rate, the forecast
errors from the last 3 periods and last period’s deployed capacity on the trade
lane.

4.4 industry back testing of real options approach

Our goal is to assess the effect of an innovative investment approach on de-
ployed capacity and realized freight rate for a container shipping trade lane.
We develop an industry back testing model that covers the time period from
January 1st, 2012 until April 1st, 2016. Based on the observed starting capac-
ity in the market, we formulate investment and divestment decisions with the
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continuous-time real options investment model by Rau and Spinler (2016b). We
calibrate the real options investment trigger from an individual player perspec-
tive, taking into account the variables (e.g. interest rate, deployed capacity) at
the time of decision making. We estimate realized freight rate with the ARIMA
model we obtain in Section 4.3.

4.4.1 Real options trigger

The real options investment model is outlined in Rau and Spinler (2016b). It
follows the continuous-time real options approach to investment under un-
certainty by Gkochari (2015), Baldursson (1998), Leahy (1993), and Grenadier
(2002). The key assumptions are infinitely divisible output, an endogenous
oligopoly price function, and full capacity utilization. A geometric Brownian
motion (GBM) Xt and the industry supply Qt =

∑n
i=1 qi,t drive the endoge-

nous price process

pt = XtQ
− 1
γ

t , (4.5)

where γ is the elasticity parameter, n is the number of players and qi is the
capacity of an individual player.

It is possible to derive a firm value in Nash equilibrium, i.e. each players
chooses capacity given the potential strategies of others. Applying the myopic
firm principle (Leahy 1993), it is possible to show that the optimal policy is a
trigger policy. The trigger policy6 is characterized by

X∗ = vκe
(r−µ)κQ

1
γ , (4.6)

where κ is lead time, µ the drift term of the geometric Brownian motion, and r
the risk-free rate. The term vκ is given by

vκ =
[( β

β− 1

)( nγ

nγ− 1

)(
r− µ

)(
η+ ce−rκ

1

r

)]
, (4.7)

where n is the number of players, η are investment cost and c is the variable
cost component. β is the fundamental quadratic

β =
−(µ− 1

2σ
2) +

√
(µ− 1

2σ
2)2 + 2σ2r

σ2
(4.8)

with freight rate volatility σ. The trigger solution can be applied to investment
and divestment. To capture the difference in investment cost and lead times,
we hence define ηinv and ηdiv as well as κinv and κdiv.

4.4.2 Calibration assumptions

To formulate investment decisions, we calibrate the real options trigger with
Equations (4.6), (4.7), and (4.8). Table 4.1 shows a complete list of parameters.
We provide details and explanations in the following subsections.

6Note that the trigger policy changes over time. For better readability we, however, omit
subscript t in the following formulaic expressions
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Table 4.1: Overview of parameters and assumptions

Symbol Parameter Value at t = 1 Assumption/source

β Fundamental quadratic Real options model

γ̂ Elasticity 0.3247 Regression analysis

γ Elasticity 0.2801 ARIMA model

∆i Difference operator ARIMA model

εt iid error term ARIMA model

ηinv Inv. cost 19,099 USD Cost of 1 TEU per month

ηdiv Div. cost 12,348 USD Proceeds from 1 TEU p.m.

θ1 Moving average -0.1527 ARIMA model

θ2 Moving average 0.0548 ARIMA model

θ3 Moving average -0.2714 ARIMA model

κinv Inv. lead time 19 months Alphaliner (2013c)

κdiv Div. lead time 6 months Schedule announcement

µ Drift term 0 ARIMA assumption

νκ Part of trigger Real options model

ξi Capacity factor AMM

σ Volatility 5 percent Base case assumption

ψ Regression coefficient ARIMA model

a Variable cost parameter 357,595.63 Economies of scale

b Variable cost parameter -2,700,000 Economies of scale

c1 Variable cost 659.7 USD 10 percent margin

Eci,t pre-2012 capacity Delivery ordered pre-2012

Esi,t pre-2012 ships Deletion decided pre-2012

Ni,t Nominal capacity AMM

n No. of players 20 2012 market structure

oi,t Orders and removals Real options model

pt Price process 733 USD Oligopoly price function

Qt Deployed cap. 1,489,960 TEU Monthly revenue terms

qi, t Individual player capacity Monthly revenue terms

r1 Interest rate 0.14 percent ECB (2016)

si,t Average ship size AMM

snew New capacity 15,000 TEU Assumption

ut Forecast error ARIMA model

vi,t Number of ships AMM

Xrealt Rate realization shock 1.19 ARIMA model

Xdect Decision making shock 7.6 E21 Oligopoly price function

X∗divi,t Divestment threshold Real options model

X∗invi,t Investment threshold Real options model

yt Price process ARIMA model

All values in monthly terms unless otherwise indicated
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4.4.2.1 Capacity

We segment the total n = 20 players on the Asia to Europe container ship-
ping trade lane into 7 strategic players and 13 non-strategic players which are
summarized as “other”7 (Figure 4.8). We identify the total nominal capacity
by player Ni,t from Alphaliner Monthly Monitor (AMM) reports “Main Car-
riers - Breakdown of Capacity Operated by Trade” (Alphaliner 2012, 2014b,
2015b,c, 2016). The total number of ships vi,t is obtained from AMM “Global
Capacity Deployment Breakdown by Trade” and the carrier split is estimated by
cross-referencing with the container ship register (Clarksons 2012). We further
identify weekly deployed capacity qi,t and Qt from AMM “East-West Trade
Deployment”.

The capacity factor ξi shown in Figure 4.8 is carrier-specific. It is the conver-
sion factor from nominal, installed capacity to weekly capacity offered on the
trade lane. A low value means that with a given nominal capacity, a carrier
can achieve a higher weekly capacity offering. We assume this to be a strategic
characteristic of the individual player and keep it constant over the time period
of the analysis.

4.4.2.2 Investment

We assume that there is an investment opportunity to purchase up to three
additional vessels per month based on the investment trigger solution (Section
4.4.1). We discretize the investment trigger solution as follow: if the shock
term surpasses the investment threshold by up to ten percent, one vessel will
be ordered; for up to 20 percent and more than 20 percent, 2 or 3 ships will
be ordered, respectively. We represent this by the parameter oi,t which takes
positive values for investment and negative values for divestment.

The ship size for new investment is snew = 15, 000 TEU and we assume
an investment lead time of 19 months. Due to the lead time, the investment
decisions based on the real options model impact market capacity only at the
end of 2013. We, therefore, consider realized capacity additions (Eci,t for TEU
capacity and Esi,t for number of ships) based on pre-2012 investment decisions
for the first 19 months of our back testing model. We derive this by comparing
carrier nominal capacity8 between January 1st, 2012 and August 1st, 2013. We
assume capacity additions to be linearly distributed across the 19 months.

We further assume that investment cost ηinv is the cost of supplying one
TEU of monthly revenue capacity. To derive the investment cost, we consider
recent orders by Seaspan and CMA CGM (10,000 TEU for 90 million USD and
20,000 TEU for 150 million USD) (Alphaliner 2015d) to derive investment cost
of 8,250 USD per nominal TEU. We apply the average capacity factor of ξ = 9.26
(Figure 4.8) which results in 76,395 USD per weekly TEU. Dividing by 4, we can
represent monthly revenue capacity with 19,099 USD per TEU.

7For the “other” players, we assume the actual capacity development that has been observed
in the market; we do not model real options investment decisions.

8Based on weekly AMM deployment, capacity factor ξi (weekly to nominal) assumed to be
fixed.
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4.4.2.3 Divestment

We discretize the divestment opportunity as follows: if the shock term sur-
passes the investment threshold by up to 20 percent, one vessel will be removed.
If it surpasses the trigger by more than 20 percent, two vessels will be sold. The
inherent logic is that every 6 months, a full string (8 ships with weekly service,
60 round trip days) can be removed. That means, on average, 1.33 ships per
month are removed from the market throughout a longer time of suboptimal
market conditions. The ship size for divestment corresponds to the average
player capacity. We assume a divestment lead time of 6 months due to an-
nouncement of schedules. We consider realized ship removals for the first 6

months of 2012 (analogous to Section 4.4.2.2).

Figure 4.9: Two-step regression for endogenous secondary market

We further assume that players can sell all their assets and exit the container
shipping market on the considered trade lane. They can later re-enter the mar-
ket with the investment opportunity outlined in Section 4.4.2.2.

For divestment income ηdiv, we assume that it is the gain of removing
one TEU of monthly revenue capacity. The conversion between nominal and
monthly revenue capacity is analogous to Section 4.4.2.2. However, we assume
an endogenous secondary market. The secondary market value is taken from
Clarksons (2016) and represents 10 year old Panamax vessels. We estimate its
value in a two-step regression (Figure 4.9): First, SCFIlag16 explains the sec-
ondary market index from Clarksons. We find in a cross-correlation analysis
that lags above 10 months are significant and achieve the highest R2 (0.39) at
lag 16. This may be attributed to the lead time from realizing low freight rates
to putting capacity up for sale and finally an even later reflection on the sec-
ondary market values. Second, the secondary market index and secondary
market prices are highly correlated, hence we can extrapolate Panamax val-
ues from our estimated freight rates. Values for ηdiv range between 3,944 and
32,714 USD per TEU per month.
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4.4.2.4 Variable cost

We model variable cost following Rau and Spinler (2016a) and assume a cost
function that decreases in ship size

c =
a ln(s) − b

s
, (4.9)

where s denotes the average ship size and a,b are parameters that determine
the shape of the curve. We calibrate the parameters to result in a 10 percent
profit margin at average ship size of 9,030 TEU. Based on an SCFI rate of 733

USD per TEU on January 1st, 2012, this amounts to c = 659.7 USD.

4.4.2.5 Drivers of geometric Brownian motion

We assume the European Central Bank marginal lending facility as variable
interest rate throughout the back testing period (ECB 2016). The drift of the
geometric Brownian motion underlying the investment trigger is zero, since
stationarity implies that the process is reverting to a constant mean (Asteriou
and Hall 2007).

4.4.2.6 Competitive intensity

To measure competitive intensity, we assume that the oligopoly price function
(Equation (4.1) holds. The parameter γ̂ can be estimated with a linear regression

lnpt = −
1

γ̂t
lnQt + lnXdec,t, (4.10)

where pt is the value of the SCFI Asia to Europe, Qt is the deployed capac-
ity according to Alphaliner, Xdec,t is the random decision making shock term.
The regression data is shown in Figure 4.10 and we find a value for γ̂ = 0.32.
Since this is calculated from a player perspective, we consider freight rate and
deployment data from October 1st, 2009 (SCFI introduction) until January 1st,
2012 (starting point of back testing model). This market is much more compet-
itive than previously assumed markets (cf. Gkochari (2015), Grenadier (2002),
Rau and Spinler (2016a,b)), however, according to shipping practitioners this
trade lane is one of the most competitive markets in the container shipping
industry.

4.4.2.7 Freight rate volatility

Freight rate volatility in container shipping has been considerably high in the
past years. Figure 4.11 shows a comparison of the volatility of returns for the
major container freight indices. It is a volatility measurement on a rolling basis,
i.e. the value depicted for October 1st, 2011 is the standard deviation of the
past 24 monthly returns. On average since October 2011, monthly volatility
is between 4.4 percent (CCFI composite index) and 28.8 percent (SCFI Asia to
Europe). This corresponds to annualized values from 15.2 to 99.7 percent.

As a consequence, an endogenous modeling of the SCFI Asia to Europe
volatility is not feasible. Therefore, we run a base case analysis with a σ = 5
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Figure 4.10: Regression model for γ̂

Figure 4.11: Volatility analysis for major container freight indices: rolling 24 months
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percent monthly volatility and add a sensitivity analysis to show the model
performance on different volatility levels.

4.4.3 Shock terms

We can differentiate between two different shock terms: (1) the decision making
shock term Xdec,t and (2) the freight rate realization shock term Xreal,t. The
decision making shock term Xdec,t is estimated by the regression outlined in
Section 4.4.2.6 from a player perspective. The formulaic expression is as follows:

Xdec,t =
pt

Q
− 1
γ̂

t

(4.11)

We assume it is calculated from a player perspective, i.e. assuming no prior
knowledge of the ARIMA nature and its parameters but rather taken the oligopoly
price function (Rau and Spinler 2016b) as given. In the back testing model, this
shock term is compared with the investment and divestment thresholds X∗invi,t
and X∗divi,t . Its evolution is depicted in Figure 4.13a.

Figure 4.12: Stochastic shock terms
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(b) Freight rate realization

The freight rate realization shock term Xreal,t is shown in Figure 4.13b. It
represents the uncertainty in the market which cannot be explained by the
ARIMA model:

Xreal,t =
pt

Q
− 1
γ

t pt−1

(
pt−1
p̂t−1

)θ1(pt−2
p̂t−2

)θ2(pt−3
p̂t−3

)θ3(
1

Qt−1

)− 1
γ

(4.12)

When estimating freight rates based on real options trigger capacity decisions,
we apply the value of Xreal,t to Equation 4.4.

4.4.4 Model structure

The back testing model has 4 key calculation steps for every monthly decision
making interval. It covers the time period from January 1st, 2012 until February
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1st, 2016. The 4 steps are: (1) initialization, (2) estimation of real options trigger,
(3) investment decisions, and (4) state update.

4.4.4.1 Initialization

Nominal capacity Ni,t and number of vessels vi,t are initialized based on last
period’s state update (for t=1 starting values from Figure 4.8 are used). De-
ployed industry capacity is calculated by

Qt =

n∑
i=1

(Ni,tξi). (4.13)

Average ship size is calculated by si,t =
qi,t
vi,t

. The realized freight rate can be
estimated by Equation (4.4).

4.4.4.2 Estimation of real options trigger

The real options investment and divestment triggers X∗invi,t and X∗divi,t can be
estimated by Equations (4.6), (4.7), and (4.8). The variables that change over
time within the trigger equations are Qt, ηdivt , and ci,t. ηdivt is defined by the
2-step regression in Figure 4.9 while the variable cost follow

ci,t =
a ln(si,t) − b

si,t
. (4.14)

4.4.4.3 Investment decisions

We compare investment triggers with the decision making shock term Xdect
to make optimal investment decisions. The decision making shock term is
calculated with Equation (4.11). In line with the assumptions in Section 4.4.2.2,
we derive values for oi,t depending on the distance to the trigger.

4.4.4.4 State update

Finally, nominal capacity Ni,t and number of ships vi,t are updated to reflect
capacity changes:

Ni,t+1 = (oi,t−κinv)
+snew + (oi,t−κdiv)

−si,t + Eci,t +Ni,t (4.15)

vi,t+1 = (oi,t−κinv)
+ + (oi,t−κdiv)

− + Esi,t + vi,t. (4.16)

4.5 results and discussion

4.5.1 Base case

In our base case analysis we assume a constant volatility of σ = 5 percent
in monthly terms (annualized: 17.3 percent). Figure 4.13 shows the nominal
capacity development of the back testing model in comparison with actual total
nominal capacity on the Asia to Europe trade lane. The back testing model
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results are segmented into the seven strategic players and the total of the 13 non-
strategic players. Note that the back testing model covers the time period until
April 1st, 2016. The following data points are a forecast based on investment
and divestment decisions as well as the ARIMA freight rate characterization
but without consideration of the stochastic shock term Xrealt .

Figure 4.13: Capacity development in base case

The application of the real options trigger would see all players’ capacities
to drop significantly since the real options trigger’s optimal capacity level is
lower than 2012 market capacity. Furthermore, large players and players with
low variable cost dominate the market while very small players would com-
pletely exit the trade lane. Since we allow for reentry with a better variable
cost position (snew = 15, 000 TEU), small players would re-enter and build up
significant capacity by the end of 2015. The first minimum capacity of 2.4 mil-
lion TEU nominal is realized in June 2014 and at this point freight rates have
recovered to an extent that new investment is triggered. This new investment
is delivered throughout 2015 and 2016. It seems that a cyclicality is introduced
into the capacity developments. This may result from the different lead time
levels for investment and divestment.

With respect to freight rates, we find that the decrease in capacity driven by
the real options investment trigger would have had a positive effect on rates
(back testing freight rate), even in the suboptimal market environment of 2014

and 2015. Given the high competitive intensity (γ = 0.28) the capacity reduction
effect is substantial and leads to very freight rate levels up to 4,000 USD per
TEU. While this may appear extreme at first sight, the intuition is as follows:
in periods of overcapacity, competition leads to low freight rates near or below
variable cost. In terms of scarcity of capacity, however, freight rates are oriented
at the shippers’ willingness to pay.

The induced cyclicality in the capacity market is also reflected in freight rates.
We find that rates would return to low levels in the middle of 2015 again. Re-
ducing capacity throughout 2016 could lead to another increase in rates, albeit
the impact of potential random shocks cannot be part of the forecast.
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Figure 4.14: Freight rate development in base case

4.5.2 Sensitivity analysis for different volatilities

From a sensitivity analysis with different volatilities (Figure 4.16a) we learn
that capacity development is highly dependent on the volatility assumption.
For a σ close to zero (V = 0.001), the real options approach would suggest a
strong increase in capacity to almost twice the starting capacity. In a predictable
market where the oligopoly price function of Equation (4.1) holds, this could
be a valid approach. In the highly competitive and volatility ARIMA market
of the Asia to Europe trade lane, this is not feasible. The opposite extreme
- a monthly volatility of σ = 10 percent - would see a constant reduction of
capacity for the first 3 years before any kind of investment would appear in
nominal or deployed capacity.

Figure 4.15: Capacity and freight rates for different volatilities
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(b) Freight rate development

Note: Capacity depicted is the sum of all strategic players’ nominal capacity, “other”
players not included.
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The V=0.075 case shows an interesting development: the very strong capac-
ity reduction in the first months allows players to trigger comparatively early
investment (vs. the less volatile base case with V=0.05). This illustrates the
advantage of the real options trigger in adjusting flexibly to changing market
circumstances.

The effect on freight rates is shown in Figure 4.16b. The freight market is a
clear reflection on the capacity development over time. While a strong decrease
in capacity would see rates go to excessive levels, the low volatility cases and
associated overinvestment would create pressure on freight rates.

4.5.3 Sensitivity analysis for different lead times

A sensitivity analysis with respect to investment lead time is shown in Figure
4.16. For very long lead times (L = 31, solid line) we find that for the most
part, only a capacity reduction can be observed. A slight increase in capacity
is shown in 2015. Moving to shorter lead times, we find that the timing of the
first realized capacity addition is 6 months earlier for every lead time difference
of 6 months. Looking at the evolution of strategic capacities (other capacity is
not considered in Figure 4.16), we find that if investment and divestment lead
time are similar, strategic capacity is strongly reduced in 2016. This is driven by
a decrease in the decision making shock term (c.f. Figure 4.13a). For the long
lead time scenarios, investment pipelines compensate the reduction triggered
by the low shock term in 2016. In summary, the longer the lead time or the
mismatch between lead times for investment and divestment, the more difficult
to appropriately adjust to changing market situations.

Figure 4.16: Capacity development for different lead times
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4.6 conclusion and managerial recommendations

In conclusion, we find that the container freight rate has autoregressive proper-
ties and vessel capacity (deployment on a trade lane) has a significant impact
on the container freight rate. Consequently, the oligopoly price function as-
sumed by Rau and Spinler (2016b) holds from an empirical perspective, albeit
correctly characterized by an ARIMA(0,1,3) model with deployment as regres-
sor. The implication is that models to capture freight rates require methods
that can capture autocorrelation. Capacity deployment decisions directly af-
fect rates; hence capacity reduction can help safeguard margins for container
shipping lines.

Given the real options investment approach outlined in Section 4.4.1, con-
tainer market capacity on the Asia to Europe trade lane is significantly too
high. The application of a real options trigger approach to investment and di-
vestment would have seen capacities strongly decline and freight rates recover.
Hence, players in this market should consider to significantly remove capacity.
This decision could be supported by an analysis of value destruction of layup
vs. freight rate loss due to overcapacity deployed. The real options approach
should further be added to the investment decision toolkit at liner shipping
companies.

The real options trigger model works for a bandwidth of different volatility
values, but the impact on resulting capacity is substantial. From a practical
perspective the estimation of a realistic market volatility is critical to the charac-
terization of optimal investment and divestment policies. Furthermore, a mis-
match between investment and divestment lead time or long lead times reduce
the ability to react to changing market circumstances. It is therefore important
to have access to short-term peak capacity to ensure that long-term pipelines
do not lead to capacity additions at inappropriate times.

There are a number of potential concerns to keep in mind: First of all, the
difference in investment and divestment lead times induces cyclicality in the re-
sults. Further, a joint reduction of capacity might only be possible if the market
is either small enough to allow for signaling or a regulator steps in. If not, the
industry will be facing a prisoner’s dilemma situation. Finally, the alignment
of incentives is potentially unclear: while shipping companies would clearly
benefit from freight rates above variable cost, exporting economies might not
since low freight rates may be considered an export stimulus.

Avenues of future research are the exploration of cyclicality effects due to
different lead times in trigger policy solutions as well as the identification of
potential countermeasures. The incorporation of the ARIMA price function
in the real options framework would be an interesting extension. A further
possible extension would allow for consideration of adjacent trade lanes to shift
deployed capacity within a liner shipping company’s network.





5
Summary and Outlook

Container shipping plays an existential role for global supply chains by en-
abling reliable transportation service at low cost. It turns out that this indus-
try of superlatives - with vessels that can carry up to 20,000 TEU and total
transported 9 trillion cargo-ton miles in a single year - is facing a number of
unprecedented challenges.

The issues at hand are substantial overcapacity, low freight rates, regulatory
pressure, capital-intensive investments with long horizon, market cycles, and
consolidation. Combined with only early-stage market transparency, invest-
ment decision making has been far from rational and might have even con-
tributed to further oversupply and deterioriation of container freight rates.

In Chapter 1 I argue that this setting is an ideal basis for researching in-
vestment decisions and working with real options games in cooperative and
non-cooperative markets with an endogenous price function. In this Section I
provide the key insights to the six objectives of this research: (1) understand
the industry and challenges, (2) characterize investment decisions, (3) develop
a real options investment model, (4) model investment decisions in the pres-
ence of dynamic coalition structure, (5) assess the nature of freight rates, and
(6) test the validity of the investment model. Further, I provide a summary of
managerial recommendations and present avenues for further research.

5.1 conclusion

5.1.1 Understand situation and challenges of the container shipping industry

One of the key challenges identified in this work is a mismatch of supply and
demand in container shipping. This can be observed already from high-level
figures where available capacity has increased stronger than actual cargo ton-
miles. But also the reflection in TC and freight rates adds to this point. In
Chapter 2 it shows that players tend to invest at TC rate peak times. Due
to production lead times, however, capacity is delivered in times of low rates.
Effects of the recent investments into ultra-large container ships are slow steam-
ing and high idle capacity. As of 2016, the container layup pool is at 7.4 percent
which corresponds to 2009 post-crisis levels.

Further, it turns out that freight rates are cyclical and heavily depend on
global economic development. Long-term analyses of freight rates are not yet
possible since transparent market indices have only been introduced with the
CCFI in 2003 and the SCFI in 2009. The freight rate volatility has increased
in the past years and reached extreme levels. Depending on index and trade
lane, I observe historical 24-month values between 4.4 (CCFI Composite) and
28.8 (SCFI Asia to Europe) percent, in monthly terms. The freight rates are
currently at historically low levels below variable cost.
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From an investment perspective, the challenge is that vessels purchases are
capital-intensive, long-term investments. A 20,000 TEU vessel can cost 150

million USD (Alphaliner 2015d). Investment into a container vessel usually
has a horizon of more than 20 years; even charter contracts for new capacity
are rarely shorter than ten years.

Increasing regulations endorsed by the IMO are with respect to air pollution,
ballast water management, and specific guidelines on polar shipping. These
regulations have and will have impact on shipping operations and vessel de-
sign.

Finally, shipping players operate in a concentrated market that has further
consolidated in the past years. Currently, the top 10 players have a combined
market share of more than 60 percent. Furthermore, alliance composition has
been very unstable and numerous changes have led to today’s situation where
four alliances have a combined market share of more than 75 percent. Gov-
ernment bailouts, such as Hapag-Lloyd in 2009 and mergers and acquisitions
have further reduced the number of players in the market, hence the container
shipping market is close to being an oligopoly.

5.1.2 Characterize investment decisions

From literature review and expert discussions in Chapter 2 it follows that in-
vestment decisions in container shipping are first and foremost based on the
intrinsic value of the project. The traditional means of investment appraisal is
DCF. The classical approach that dates back to 1929 has a number of shortcom-
ings: no consideration of flexibility in investment timing, future uncertainty, or
investment lead time.

Due to regulatory pressure and the economic need for lower variable cost,
fuel efficiency considerations play a more important role for investment deci-
sions. So-called eco-ships have 3 key characteristics: newer engines that are
optimized for lower steaming speeds and can burn different fuels, improved
hull design, and innovative coatings that lead to efficiency improvements of
up to 30 percent. However, the improved vessels come at a higher price, espe-
cially when equipped with dual-fuel engines that can burn Liquefied Natural
Gas (LNG) in ECAs.

The changing nature of alliance composition adds another layer of complex-
ity to the investment decision. If there are vessel sharing agreements in place,
single players need to not only consider the effect of new investment on the
jointly operated schedules, but also assess the effect on alliance stability.

Moreover, securing funding for vessel purchases has become more difficult.
Since some of the shipping companies were close to bankcruptcy, traditional
banks have been reducing their exposure in the shipping markets. Also KG
(closed-end shipping funds in Germany) funding is not existant any more. Con-
sequently, some players had to sell non-core assets to improve their liquidity.
Shipping investment currently relies more on equity and debt capital markets
as well as private equity investment.

Vessel sizes have changed as well: due to the recent changes to the Panama
canal, significantly larger ships can cross, hence the Panamax vessel size will be
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increasingly scrapped. On feeder markets, Panamax ships are too large; on the
global routes they cannot compete with the economies of scale of ultra-large
container ships.

Finally, low asset prices can drive investment decisions because of investment
timing considerations. Network considerations need to be kept in mind since a
number of equally-sized ships is necessary to set up a network string.

5.1.3 Develop a real options model for shipping investment

In Chapter 2 I argue that real options analysis is very well suited to make in-
vestment decisions in container shipping, primarily due to its ability to capture
freight rate volatility and managerial flexibility. The real options game model
considers an endogenous oligopoly price function where capacity negatively
impacts freight rates. It is possible to derive individual players’ strategies in a
non-cooperative Nash equilibrium. This investment model can be solved ana-
lytically in continuous time and it can be shown that the optimal solution takes
on the form of a trigger policy.

In order to consider more shipping industry characteristics, the model is dis-
cretized. The discrete-time model additionally captures a fuel efficient invest-
ment alternative at a price markup, endogenous lead time, and an endogenous
secondary market. The extended model can be solved with a recursive dynamic
programming approach.

From a number of sensitivity analyses it becomes apparent that competition
impacts shipping investment from two perspectives: first, a higher number of
players leads to higher capacity, lower firm values, and earlier investment. Sec-
ond, higher intensity of competition (given by the relationship between freight
rate and capacity) decreases optimal capacity and firm values. Volatility can
increase firm values if capacity decisions are sufficiently flexible.

With respect to fuel efficiency, optimal strategy over time suggests that for
low savings potential, replacement investment is optimal while with high sav-
ings potential, even capacity expansion will be feasible. The intuition here is
that the fuel efficiency savings can compensate the loss in freight rate resulting
from additional market capacity.

Overall, from a comparison of strategic and myopic investment, I conclude
that it is financially beneficial to make strategic investments, i.e. anticipate
other shipping players’ moves when making investment decisions.

5.1.4 Model investment decisions in the presence of dynamic coalition structure

From an extensive literature survey in Chapter 3, I learn that there are three
main motivations for entering container shipping alliances: (1) a sharing aspect,
(2) a size aspect, and (3) an external aspect. The sharing aspect evolves around
sharing risks and capacity as well as transfering technology. Greater size allows
for economies of scale, global reach, vertical integration, and a higher frequency
of service. External motivations can be government policy and the need to
defend market position in a market under consolidation.
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An analysis of the alliance composition in the past 5 years shows that it has
been a very unstable situation. This confirms previous research which had
identified trust and complexity as key issues. From an anti-trust perspective,
shipping alliances are not considered problematic; one author even points out
that collaboration in shipping is necessary to survive. I further explore this
issue by using the real options trigger solution from Chapter 2 in a cooperative
game setup where players form expectations and decide on membership in
dynamic coalitions.

The guiding hypothesis that the real options trigger performs better than
DCF in terms of cash flow for players can be confirmed. It turns out that the
real options approach performs especially well with high freight rate volatility
and high competitive intensity while not exhibiting substantial disadvantages
in other market scenarios and with respect to stability and concentration.

With regards to the stability argument, I find that increasing competitive
intensity, alliance complexity cost, and freight rate volatility lead to higher in-
stability of container shipping alliances. One interesting finding is also that the
lower the investment lead time, the higher the industry concentration.

5.1.5 Assess the nature of the container freight rate

Compared to bulk shipping where I can find an abundance of empirical re-
search, market transparency in container shipping (freight rates, deployed ca-
pacity, demand, and idle capacity) is still at an earlier stage. Since 2003, the
CCFI serves a freight rate index and Clarksons provides data on container ship-
ping, such as TC rates or total fleet on a global level. Alphaliner provides trade
lane-specific data on capacity deployment and demand as well as measures the
global layup pool.

Using this information an empirical characterization of the container freight
rate is possible, albeit with a limited timeframe. It turns out that the freight
rate has autogregressive properties and can appropriately be described with
an ARIMA(0,1,3) model. Adding the capacity deployment as a regressor is
statistically significant and improves model fit.

The relationship between capacity deployment and container freight rate is
negative. This leads to the conclusion that the endogenous oligoply price func-
tion assumed in Chapter 2 holds, but with autoregressive aspects.

5.1.6 Test the validity of the investment model empirically

To add an empirical perspective to the results from Chapter 3, I provide a
backtesting model that assumes that shipping players would have applied the
proposed real options trigger approach within the timeframe of January 2012

to April 2016. I find that the real options approach would suggest a substantial
reduction of capacity within the analyzed timeframe.

Given the ARIMA freight rate characterization and considering the underly-
ing stochastic shock term this would lead to a recovery of freight rates. Within
the calibration of the investment approach, it turns out that one critical as-
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sumption is the freight rate volatility going forward. The investment approach
is appropriate for a bandwidth of volatility values.

There are 2 potential issues with the application of this investment approach:
Firstly, in order to avoid a prisoners’ dilemma situation when reducing capacity,
one prerequisite is a small market that allows for signaling or a regulator who
oversees capacity reduction. However, there might be an incentive problem
between exporting economies and vessel operators. While governments might
appreciate low freight rates as an export stimulus, shipping players might face
difficult financial situations. Secondly, the approach potentially induces cycli-
cality and long lead times can have a negative impact.

5.2 managerial recommendations

The biggest learning from this research effort is that strategic action in the con-
tainer shipping industry is worthwhile. Strategic action can take on a number
of different forms: understand the market, apply the right investment approach,
tailor the investment strategy, use fuel efficiency improvements, and manage
the market position.

Understanding the market requires a regular measurement of the relation-
ship between the key variables on every major trade lane. This includes assess-
ing the impact of capacity on freight rates with the elasticity parameter γ and
using ARIMA or other appropriate autoregressive time series models to empir-
ically characterize freight rates. The inherent volatility of freight rates needs to
be measured as well as appropriately forecasted.

Based on this trade lane-specific understanding, a real options approach
should be added to the container shipping investment toolkit. This approach
provides a valuable perspective since it can capture managerial flexibility, ex-
plicitly consider lead time as well as use market intelligence (competitive inten-
sity and volatility). This allows to improve investment timing and finding the
optimal capacity.

Since the oligopoly price function holds, having the correct capacity has
a substantial bottom line impact. The investment and deployment strategy
should be tailored to trade lanes and consider supply-demand gap as well as
competitive intensity. In situations of overcapacity, it is essential to assess the
tradeoff between the cost of laying up vessels and the value destruction from
overcapacity due to the oligopoly price function.

At this point in time, specifically, deployed capacity on the trade lane Asia to
Europe should be reduced. The recently finished upgrade of the Panama canal
could be a strategic opportunity to move larger ships to another trade since the
new locks of the Panama canal are able to accomodate vessels with up to 13,000

TEU.
The development of fuel efficient ships is not only a means of complying with

IMO regulations, but can also help to keep cost competitiveness in markets with
high competitive intensity. Replacing conventional ships with fuel-efficient al-
ternatives does not change market capacity and, consequently, does not impact
freight rates, while it provides the operator with lower operating cost.
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Finally, it is important to actively manage the market position. This can
be achieved by creating barriers to entry or improving lead times by securing
early delivery slots at ship yards. Most importantly, however, container oper-
ators should engage in alliances. Alliances are beneficial due to risk sharing,
economies of scale, improved global networks, and a higher service frequency.
Container shipping alliances can be very unstable, especially in markets with
high competitive intensity and volatility, or when complexity cost are high.

Therefore, selective alliance contracts should be considered, for example by
entering Vessel Sharing Agreements (VSAs) on selected routes. Furthermore,
the organization of alliances should be lean; potentially with focus on a limited
amount of partners. Finally, unnecessary volatility should be avoided by care-
fully managing GRIs. In very volatile markets, partner due diligence should be
emphasized.

5.3 future research

The real options investment model at hand should be extended to incorporate
further container shipping industry specifics. For, example the consideration
of stochastic fuel prices would be appropriate given that the oil price devel-
opment, and hence bunker fuel, has exhibited significant uncertainty in recent
years. Furthermore, given the increasing regulatory pressure, adding regula-
tory uncertainty into the investment model could help form optimal strategies
with stricter emission goals or ballast water requirements. Moreover, adding
an adjacent trade lane or even full network perspective with consideration of
different vessel sizes would better address the fact that container ships are fun-
gible. This could help to devise capacity hedging strategies across trade lanes.

The potentially induced cyclicality due to a difference in investment and
divestment lead times should be further explored. A potential remedy would
be the consideration of an extended oligopoly price function, for example by
using the ARIMA characterization that is presented in this work.

To address the topic of overcapacity and make even more practical decisions,
an analytical model of the tradeoff between cost of idle capacity and value
destruction from overcapacity could provide a new perspective on the layup
decision.

Finally, a freight rate characterization for the major trade lanes, using specific
carrier data, would provide an even clearer perspective on competitive intensity
and volatility across different routes. On this basis, a trade lane-specific freight
rate forecasting model that depends on deployed capacity could be developed.

In conclusion, this research effort has shown that a real options investment
approach is appropriate for the container shipping industry. The trigger ap-
proach performs well: both from a simulation and an empirical perspective. It
pays off to be strategic and players in the shipping industry should understand
the competitive dynamics, anticipate competition, make strategic investments,
and collaborate in shipping alliances.
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a.1 derivations of the investment trigger
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a.2 cox-ross-rubinstein model

Xt+1 = pXtu + (1 − p)Xtd with u = eσ
√
∆t, d = e−σ

√
∆t, ud = 1 and p =

er∆t−d
u−d .

a.3 tables

Table A.1: Decisions and their impact on capacity, layup and pipeline

ID Decision Icap Ilayup IPconv
IPfe

1 Sell 1 unit of layup 0 -1 0 0

2 Put 1 unit into layup -1 1 0 0

3 Do nothing 0 0 0 0

4 Reactivate 1 unit from layup 1 -1 0 0

5 Order 1 conventional unit 0 0 1 0

6 Order 2 conventional units 0 0 2 0

7 Order 3 conventional units 0 0 3 0

8 Order 1 fuel efficient unit 0 0 0 1

9 Order 2 fuel efficient units 0 0 0 2

10 Order 3 fuel efficient units 0 0 0 3
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Table A.2: Firm 1 duopoly value at optimal capacity (USD billion)

σ

0.20 0.30 0.40 0.50

γ 1.0 2.67 2.58 2.54 2.65

1.1 2.51 2.55 2.60 2.62

1.2 2.60 2.64 2.65 2.71

1.3 2.68 2.71 2.73 2.79

1.4 2.77 2.79 2.80 2.85

Table A.3: Two-level factorial design with results for duopoly

Run σ ε γ c Y1 Y2 F1** F2**

1 - - - - 8 7 2.3 1.9

2 + - - - 6 9 2.4 2.0

3 - + - - 7 8 2.4 2.0

4 + + - - 7 9 2.4 2.1

5 - - + - 6 7 2.4 1.8

6 + - + - 8 10 2.5 2.0

7 - + + - 7 8 2.4 1.9

8 + + + - 9 10 2.5 2.0

9 - - - + 8 8 2.8 2.3

10 + - - + 8 10 2.8 2.4

11 - + - + 9 10 2.7 2.2

12 + + - + 7 9 2.9 2.4

13 - - + + 10 9 2.8 2.3

14 + - + + 10 10 2.9 2.5

15 - + + + 10 9 2.8 2.4

16 + + + + 10 9 2.9 2.4

*Or more, but limited due to capacity bandwidth; **USD billion

Table A.4: Estimation of the effects

First order effects Second order effects

σ ε γ c σε σγ σc εγ εc γc

1 2 3 4 12 13 14 23 24 34

Y1 - 0.3 1.3 1.8 - 1.0 - 0.5 0.3 - 0.3 0.8

Y2 1.3 0.3 0.3 0.8 - 0.8 0.3 - 0.8 - 0.3 - 0.3 - 0.3

F1* 82.5 8.8 47.0 392.5 8.1 11.0 - 17.6 - 9.1 - 7.6 - 14.5

F2* 103.9 34.3 - 2.4 391.2 - 26.9 - 0.8 - 4.9 4.8 - 50.7 88.8

Numbers in bold are significant at a 90 % confidence level; * USD million
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b.1 tables

Table B.1: Departures Shanghai-Rotterdam for June and July 2015

Operator Capacity Ships Average Size

CMA-CGM 227,940 18 12,663

Hanjin 152,216 13 11,709

Cosco 141,565 11 12,870

Evergreen 100,738 9 11,193

MSC 89,462 7 12,780

China Shipping Group 87,392 7 12,485

Maersk 83,730 6 13,955

Hyundai 76,460 6 12,743

OOCL 66,040 5 13,208

Hapag-Lloyd 52,837 5 10,567

UASC 49,610 4 12,403

MOL 42,000 3 14,000

APL 41,900 3 13,967

CSAV 4,043 1 4,043

Grand Total 1,215,933 98 12,407

Source: http://www.jocsailings.com

Table B.2: Ship sizes and equity requirements

Alliance size 1 2 3 4 5

Ship size ordered 10,000 12,000 14,000 16,000 18,000

Equity requirement 0.20 0.15 0.12 0.10 0.09
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Table B.3: Summary of values for WACC (percent) across different countries for con-
tainer shipping-related industries

Country Shipbuilding and Marine Transportation

China 10.16 10.40

India 11.38 7.90

Japan 4.88 6.97

Europe 8.77 7.66

USA 7.07 8.69

Global 7.63 8.35

Source: Damodaran (2016)

Table B.4: Mann-Whitney test for significance

Cap. Change Cash HHI

Med. Rank Med. Rank Med. Rank Med. Rank

1=ROT 3.9E+06 4,546 0 5,138 1.9E+10 5,576 0.2013 5,347

2= Ind. DCF 4.8E+06 5,455 0 4,863 -4.2E+10 4,425 0.2007 4,654

p value 2.2E-16 8.1E-09 2.20E-16 2.20E-16

Rank = Mean rank, Cap. = Capacity, Med. = Median

Table B.5: Mann-Whitney test for significance with respect to different elasticity levels

γ= 1.2 γ= 1.5 γ= 1.8

Median Rank* Median Rank* Median Rank*

1=ROT -1.3E+09 5,908 1.9E+10 5,576 6.3E+10 5,378

2=Ind. DCF -7.6E+10 4,093 -4.2E+10 4,425 1.4E+09 4,623

p value 2.2E-16 2.2E-16 2.20E-16

*Mean rank

Table B.6: Mann-Whitney test for significance with respect to different lead time levels

κ= 3 κ= 9 κ= 15

Median Rank* Median Rank* Median Rank*

1=ROT 6.8E+10 5,958 2.5E+10 5,638 -1.6E+10 5,368

2=Ind. DCF -3.0E+10 4,043 -4.4E+10 4,363 -6.2E+10 4,633

p value 2.2E-16 2.2E-16 2.20E-16

*Mean rank
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Table B.7: Mann-Whitney test for significance with respect to different volatility levels

σ = 0.15 σ = 0.25 σ = 0.35

Median Rank* Median Rank* Median Rank*

1=ROT 3.9E+10 5,164 2.5E+10 5,640 1.1E+10 6,071

2=Ind. DCF 2.6E+10 4,837 -4.3E+10 4,361 -9.3E+10 3,930

p value 1.4E-08 2.2E-16 2.20E-16

σ = 0.45 σ = 0.55

Median Rank* Median Rank*

1=ROT 3.4E+09 6,387 -2.5E+09 6,620

2=Ind. DCF -1.1E+11 3,614 -1.2E+11 3,381

p value 2.2E-16 2.2E-16

*Mean rank

b.2 model verification and validation

Throughout the development of the simulation model we conduct constant ver-
ification and validation following Gass (1983) and Sargent (2013). In order to
ensure model verification, we constantly check how the conceptual model is
coded in Matlab software. We run checks on several subsystems of the model
such as coalition generation, coalition structure value assessment, or investment
decisions before using the comprehensive simulation for insights generation.
We calibrate the assumptions based on empirical data (c.f. Table 3.1) or clearly
stated assumptions (c.f. Section 3.3.1).

We summarize the validation techniques in Table B.8 and Table B.9 and pro-
vide more details in the following subsections. The framework in which we
present the validation is based on Ritzenhofen et al. (2014).

Figure B.1: Structure of the simulation model
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Figure B.2: Non-aggregated graphs created for each simulation run (illustrative only)

(a) Evolution of investment trigger (b) Coalitions and willingness to switch

(c) Capacity of individual players (d) Number of ships of individual players

(e) Evolution of total cash and debt (f) Layup pool
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Appendix 3

c.1 tables

Table C.1: Coefficients, error terms, and goodness of fit statistics for the ARIMA(0,1,3)
model

θ1 θ2 θ3

Coefficient -0.0749 -0.0329 -0.2947

Standard error 0.1108 0.1255 0.1189

p-value 0.4992 0.7931 0.0132

AIC=0.51 AICc=1.07 BIC=9.83 R2=0.73

Table C.2: Performance of different ARIMA models

ARIMA AIC AICc BIC R2

(1,1,0) 3.25 3.25 7.75 0.71

(2,1,0) 4.40 4.73 11.39 0.71

(3,1,0) (0.27) 0.29 9.05 0.73

(0,1,1) 3.05 3.22 7.72 0.71

(0,1,2) 3.66 3.99 10.65 0.71

(0,1,3) 0.51 1.07 9.83 0.73

(1,2,0) 38.16 38.33 42.80 0.65

(2,2,0) 37.51 37.85 44.47 0.65

(0,2,1) 8.17 8.34 12.81 0.73

(0,2,2) 10.10 10.44 17.06 0.73

Table C.3: Coefficients and error terms for the ARIMA(0,1,3) model with deployment
as regressor

θ1 θ2 θ3 lnD4

Coefficient -0.1527 0.0548 -0.2714 -3.5698

Standard error 0.1186 0.1473 0.1252 1.0770

p-value 0.1978 0.7099 0.0302 0.0009

AIC=-7.79 AICc=-6.94 BIC=3.86 R2=0.76
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Table C.4: Performance of different ARIMA models with capacity deployment as re-
gressor

ARIMA AIC AICc BIC R2

(1,1,0) -6.90 -6.90 -0.24 0.74

(2,1,0) -5.27 -4.70 4.06 0.74

(3,1,0) -7.00 -6.14 4.66 0.76

(0,1,1) -7.23 -6.90 -0.24 0.74

(0,1,2) -5.26 -4.69 4.07 0.74

(0,1,3) -7.79 -6.94 3.86 0.76

(1,2,0) 24.51 24.85 31.47 0.69

(2,2,0) 23.33 23.90 32.60 0.70

(0,2,1) -1.14 -0.80 5.81 0.75

(0,2,2) 0.38 0.95 9.65 0.75
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