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Chapter 1

Introduction

Commodities are consumable physical assets that play a central role in economic

growth and welfare. Trading in physical assets often involves high transaction

costs. For this reason, trading in commodities takes place primarily in futures

markets. Futures contracts reflect expectations of market participants regarding

future spot prices and are subject to the interaction of demand and supply for

different delivery dates. Intertemporal consumption smoothing is facilitated by

inventories, which can absorb disruptions in demand or supply. Accordingly,

there exists a close relationship between spot and futures markets and inventory

levels. Commodity derivatives, like futures contracts, have the function of making

commodity risks tradable and allowing for a more efficient risk allocation.

From a portfolio management perspective, commodities are frequently consid-

ered to have an attractive risk-return profile. Analyzing the properties of com-

modities as an asset class, it is usually found that adding commodity investments

to a portfolio leads to a more efficient asset allocation. Often, a significant diver-

sification potential of commodities is noted due to a low or negative correlation

with other traditional asset classes. Furthermore, commodities are found to have

the property of being a good inflation hedge. Studies regarding the benefits from

commodity investments comprise the work of, e.g., Bodie and Rosansky (1980),

Rudolf et al. (1993), Jensen et al. (2000, 2002), Mulvey et al. (2004), Gorton

and Rouwenhorst (2006), Erb and Harvey (2006), Miffre and Rallis (2007), and

Geman and Kharoubi (2008).
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In comparison to other financial markets, commodity markets exhibit sev-

eral peculiarities. From a financial perspective, e.g., storage and transportation

costs and the perishability of goods hinder the application of standard arbitrage

relationships for the valuation of commodity contingent claims. Furthermore,

commodity price dynamics are regularly characterized by mean-reversion and

can display jumps and high levels of volatility – due to scarcity for a commodity

while demand is relatively inelastic, for example. The special nature of commodi-

ties implies that their price dynamics exhibit some unique characteristics which

need to be considered when deciding about hedging strategies or when valuing

commodity contingent claims. Thereby, a thorough understanding of commodity

price dynamics is important for hedgers and investors alike. Chapter 2 of this

thesis is devoted to highlighting and discussing these aspects.

A further stylized fact of commodities is that price movements in many com-

modity markets show significant seasonal patterns. The seasonal behavior of

commodity price dynamics can be induced either by the demand or by the sup-

ply side. Prominent examples are weather-related demand patterns for energy

commodities and the varying supply of agricultural commodities according to

harvesting cycles. As such, seasonality is present at the price level and, further-

more, many commodity markets contain a strong seasonal component in volatil-

ity. While seasonality at the price level and its implications for the valuation of

commodity futures is widely recognized and relatively well understood, literature

considering seasonality in volatility is very limited. This doctoral thesis aims

to shed light on the seasonal variations in volatility and their implications for

commodity derivatives prices.

It is of vital importance that the pronounced seasonal variations in volatility

be taken into account, for both risk management and the pricing of commod-

ity derivatives. This thesis concentrates on the latter aspect and contributes to

the literature concerning the valuation of commodity contingent claims. Since

assumptions regarding volatility are especially important for options prices, this

thesis focuses on the role of seasonal volatility for the pricing of commodity op-

tions.

Motivated by the observation of these pronounced seasonal patterns in volatil-

ity, we propose different commodity derivatives valuation models, which capture
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this seasonal behavior. Using extensive data samples of commodity options, we

empirically study the pricing accuracy of the presented models. In a first study,

we generalize one- and two-factor models by allowing for time-varying, seasonal

volatility. In a second study, we propose a stochastic volatility model where the

variance process contains a seasonal component. We contribute to the literature

by documenting the importance of seasonal volatility and, most importantly, by

presenting how this can be considered in commodity options pricing models.

Organization of the Thesis

Chapter 2 reviews the literature on commodity price dynamics and the valuation

of commodity derivatives. It comprises two main parts: First, we discuss the

theoretical background and empirical observations with regard to the relationship

between commodity spot and futures contracts and their price dynamics. Second,

we give a comprehensive overview of valuation models for commodity derivatives.

In this manner, Chapter 2 identifies the research gap in the literature which will

be addressed in the empirical studies presented in Chapters 3 and 4. In these

studies, the importance of the seasonal behavior of commodities for the pricing

of commodity futures options is analyzed.

Specifically, Chapter 3 considers the extension of one- and two-factor spot

price models by including deterministic time-dependent components in order to

take the seasonal behavior of commodities into account. While a deterministic

seasonal component at the price level can be neglected in terms of options pricing,

this is not true for the seasonal pattern observed in the volatility of commodity

prices. Analyzing an extensive sample of soybean and heating oil options, we find

that the inclusion of an appropriate seasonality adjustment significantly reduces

pricing errors and yields more improvement in valuation accuracy than increasing

the number of stochastic factors.

In Chapter 4, we extend this analysis and propose a stochastic volatility model

where the drift term of the variance process captures the observed seasonal pat-

tern in volatility. This framework allows us to derive semi closed-form pricing

formulas for the valuation of options on commodity futures in the spirit of Hes-

ton (1993). We empirically study the impact of the proposed seasonal stochastic

volatility model on the pricing accuracy of natural gas futures options. Our
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results demonstrate that allowing stochastic volatility to fluctuate seasonally sig-

nificantly reduces pricing errors for these contracts. We conclude that seasonality

in volatility is an important aspect to consider when valuing these contracts.

Chapter 5 contains concluding remarks and presents potential directions for

further research.



Chapter 2

Commodity Price Dynamics and

Derivatives Valuation: A Review

2.1 Introduction

Commodity markets and commodity price dynamics are of fundamental impor-

tance for many industries. A profound understanding of these markets is impor-

tant for production companies seeking to hedge unwanted commodity exposures

and for investors considering commodities as investments. Thereby, financial

markets, e.g. for commodity futures and options, serve as a means to make risks

tradable and to allow for an efficient allocation of commodity price risks among

market participants.

Hedging commodity exposures as well as valuing commodity contingent claims

requires a thorough knowledge of the commodities’ price behavior. Since com-

modity contingent claims are based on consumable physical assets, commodity

markets differ from other financial markets, as we explain in this chapter. This

implies that it is generally not possible to apply standard equity models to com-

modity markets. Hence, an individual literature stream, both theoretical and

empirical in nature, evolved to foster the understanding of commodity markets

and the valuation of their instruments. This chapter gives an overview of the lit-

erature on commodities and in particular on the valuation of commodity deriva-

tives. Thereby, we proceed as follows. In a first step, the empirically observed

price behavior of commodities is presented and corresponding economic rationals
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are discussed in Section 2.2. Building on these ideas, models for the valuation

of commodity derivatives are discussed thereafter in Section 2.3. Section 2.4

concludes and contains directions for further research.

2.2 Theoretical Background and Empirical Price

Behavior

Distinct from most other asset classes, commodities exhibit certain peculiarities

which are in the center of interest in this section. Trading in commodity spot

markets is limited due to extremely high transaction costs. Therefore, trading

and price discovery take place primarily in the futures1 markets. In the following,

the discussion will focus on the shape of the futures curves, the mean-reverting

behavior of commodity prices, the relationship between time to maturity and the

volatility of futures contracts, and the role of seasonality.

2.2.1 Backwardation and Contango

The most well-known peculiarity of commodity markets is the fact that futures

curves, which display prices of futures contracts for different maturities, can either

be upward or downward sloping. Thereby, the situation when futures prices are

below the current spot price is called backwardation, while a futures curve which is

upward sloping for increasing times to maturity is referred to as being in contango.

Figure 2.1 illustrates different shapes of futures curves observed over the course of

the last years for crude oil futures traded at the New York Mercantile Exchange

(NYMEX). Besides the situation of backwardation and contango, futures curves

can also exhibit a humped shape as it becomes apparent in Figure 2.1. Moreover,

the shape of the term structure of futures prices is changing over time.

1Since forward and futures prices are the same for non-stochastic interest rates and in the
absence of credit risk, the terms can be used interchangeably for our discussion focusing on
the market risk of commodities. Since our data employed for empirical considerations consists
of futures prices, we will generally speak of futures contracts. See Cox et al. (1981) for a
discussion regarding the relationship between forward and futures prices.
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Figure 2.1: Different Shapes of Futures Curves for Crude Oil

This figure illustrates different shapes of futures curves for light sweet crude oil (WTI) futures

observed at the following dates: September 11, 2007 (backwardation); May 24, 2010 (contango);

July 3, 2008 (humped). The crude oil futures at the NYMEX are traded in USD per barrel.

Prices are from Bloomberg.
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A very popular metric to describe the shape of the futures curve is the basis,

which is defined as2

Basis = Spot Price− Futures Price. (2.1)

The basis is positive when the market is in backwardation and negative when

the market is in contango. Naturally, changes in the shape of the futures curve

have important consequences for risk management and investment decisions and,

therefore, have been in the center of interest in numerous studies.

The literature trying to explain the shapes of commodity futures curves is

traditionally divided into two broad strands. The theory of storage, originally

proposed by Kaldor (1939), Working (1949), Brennan (1958), and Telser (1958),

focuses on the aspects of inventories and the benefits of holding the physical

commodity. In contrast, the hedging pressure literature, going back to Keynes

(1930) and his rationales for normal backwardation, concentrates on the role of

risk premia.

Keynes’ original theory of normal backwardation is based on the assumption

that hedgers hold on average a short position in the futures market, e.g. a com-

modity producer who wants to secure a certain price level for future deliveries.

Since these market participants are willing to pay a risk premium in order to

hedge their positions, the price of a futures contract will be a downward biased

estimator of future spot prices in the normal backwardation framework. Since

the assumption of hedgers being on average net short might not be universally

appropriate, the theory is generalized in the sense that futures prices may carry

either a positive or a negative risk premium depending on the net position of

hedgers as proposed by Cootner (1960).

Dusak (1973), Breeden (1980), and Hazuka (1984) examine the role and exis-

tence of risk premia in commodity markets in capital asset pricing model frame-

works and obtain mixed results. In addition to these studies of systematic risk

as determinant of futures risk premia, there exists a vast amount of literature

on the role of hedging pressure as determinant of risk premia or a combination

of both systematic risk and hedging pressure. Important studies in these direc-

2See Geman (2005), p. 14.
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tions comprise the work of Stoll (1979), Chang (1985), Hirshleifer (1989, 1990),

Bessembinder (1992), and de Roon et al. (2000). Recently, risk premia on electric-

ity forward markets have been analyzed by Bessembinder and Lemmon (2002),

Longstaff and Wang (2004), and Ronn and Wimschulte (2008). Considering the

heterogeneity of the obtained results, it can be summarized that the role and

the determinants of risk premia in commodity futures markets yet need to be

explored in greater detail and are subject to an ongoing debate.

Contrary to the risk premium literature, there is general agreement on the ideas

of the theory of storage. The theory of storage relates spot and futures contract

prices to inventories while emphasizing that holding the physical asset implies

costs but also certain benefits. Accordingly, the so called convenience yield is

in the center of interest, which is defined by Brennan and Schwartz (1985) as

follows:

“The convenience yield is the flow of services that accrues to an owner

of the physical commodity but not to the owner of a contract for future

delivery of the commodity.”

Usually, the notion of convenience yield refers to the net convenience yield, which

equals the gross convenience yield less the costs of carriage for holding the phys-

ical asset, comprising, e.g., storage and transportation costs. The convenience

yield can be interpreted to be similar to a dividend yield on a stock, but in a

more comprehensive sense, where the value is not of direct monetary nature but

arises, e.g., from the flexibility in the production process. Owning the physical

commodity has a value to meet unexpected demand and to avoid production

disruptions. Telser (1958) describes that there is an implied timing option of

holding commodities in inventory rather than being dependent on the market

and potentially being confronted with unfavorable price developments. Articles

building on rational intertemporal consumption decisions in order to explain the

relation between inventories and the shape of the futures curve include the work

of Deaton and Laroque (1992, 1996), Chambers and Bailey (1996), Chavas et al.

(2000), and Routledge et al. (2000).

According to the theory of storage, the relationship between spot and futures

prices can be described by

F (T ) = S e(r−y)T (2.2)
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when assuming a constant net convenience yield y and risk-free rate r. F (T ) is

the price of a futures contract with maturity T and S denotes the current spot

price. Consequently, when the benefits of holding the physical asset (convenience

yields) are higher than the financing costs (interest rates), the futures curve will

be in backwardation, while the futures curve will be in contango when interest

rates exceed the net convenience yield.

Naturally, following supply and demand arguments, a negative relationship

between inventory levels and prices exists. Furthermore, benefiting from com-

modities held in stock, i.e. exercising the implied real option and earning a

convenience yield, is more likely when inventories are low. Hence, the theory

of storage predicts a negative relationship between inventory levels and conve-

nience yields. This is confirmed, e.g., by the empirical study of Fama and French

(1987). The relationship between inventory levels and the shape of the futures

curve is shown in Figure 2.2 for copper futures traded at the London Metal Ex-

change (LME). As implied by the theory of storage, the futures curve exhibits

a negative basis (contango) when inventory levels are high and a positive basis

(backwardation) when inventory levels are low. Thereby, the substantial eco-

nomic importance of the convenience yield in periods of scarcity is reflected in

the futures curves showing a high positive basis in dollar terms. Combining,

on the one hand, the negative relationship between inventory levels and prices

and, on the other hand, the negative relationship between inventory levels and

convenience yields, it becomes clear that price level and convenience yields are

positively correlated.

Inventory levels play an important role not only with regard to the shape of the

futures curve but also with regard to the volatility of commodity prices. Many

commodity markets are characterized by occasional sharp price spikes due to

scarcity as discussed by Deaton and Laroque (1992). When inventory levels are

low and there exists scarcity for a commodity, supply disruptions or unexpected

changes in demand cannot be absorbed and lead to higher price fluctuations

(Fama and French, 1988). Hence, inventory levels and price volatility tend to be

negatively correlated. This relationship has been subject to extensive analyses by

Fama and French (1987), Ng and Pirrong (1994), Litzenberger and Rabinowitz

(1995), Geman and Nguyen (2005), and Geman and Ohana (2009). Since at
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Figure 2.2: Inventory Levels and Basis for Copper Futures

This figure shows the relationship between inventory levels and the basis for copper futures traded

at the LME from January 1995 to December 2010. Here, the basis is defined as the price of the

3-months futures (as a proxy for the spot price) less the price of the 27-months futures contract.

Copper futures traded at the LME are traded in USD per tonne; the inventory is specified in

kilotonnes (kt). All data are from Thomson Reuters Datastream.

the same time lower inventory levels usually imply a higher price, the observed

correlation between commodity prices and volatility is often positive.3 This con-

trasts the findings for equity markets which usually exhibit a negative correlation,

traditionally explained by the leverage effect.4

2.2.2 Mean-Reversion

Due to the interaction of demand and supply, commodity markets typically ex-

hibit a mean-reverting price behavior. Prices will spike up when shortages occur,

3See, e.g., the results of the empirical study for the natural gas market in Section 4.4.1.
4Empirical studies on the leverage effect include the work of Christie (1982) and Cheung (1992).
For more recent discussions challenging the traditional leverage explanation, refer to Figlewski
and Wang (2000), Bollerslev et al. (2006), and Hasanhodzic and Lo (2010).



2. Commodity Price Dynamics and Derivatives Valuation:
A Review 12

leading to higher investments in production facilities or causing more producers

to enter the market, which will then lead to a higher supply, even though with

a certain lag in time. The higher supply will then bring prices down again and

vice versa.

In their seminal work, Bessembinder et al. (1995) provide strong evidence for

the presence of mean-reversion in commodity markets. Based on the idea that

mean-reversion can be explained by the positive correlation between price level

and convenience yield, they essentially test if investors expect spot prices to be

mean-reverting under the risk-neutral measure. Following the arguments of the

theory of storage, decreases in inventory will lead to higher spot prices while

the futures price does not change as much since the resulting higher convenience

yield has an offsetting effect. Since futures prices reflect the market participants

expectations regarding future spot prices, this implies the anticipation of a mean-

reverting price behavior.

Subsequently, several studies elaborated on the question if commodity prices

follow a random walk or if they are indeed mean-reverting. For a broad sample

of different commodity markets, Barkoulas et al. (1997) employ unit root tests

in their analysis and obtain results which favor the random walk model over

the mean-reversion model for most commodities. In contrast, Schwartz (1997)

finds strong mean-reversion for the crude oil and copper markets. For the same

markets, Casassus and Collin-Dufresne (2005) provide strong evidence for conve-

nience yields being a function of spot prices which explains mean-reversion under

the risk-neutral measure. Outlining that traditional unit root tests have only very

low power for these applications, Andersson (2007) proposes a test on the basis

of hedging errors and concludes that commodity prices are better described by a

mean-reversion model than by a random walk. Similarly, Bernard et al. (2008)

find that mean-reversion models better capture the dynamics of commodity spot

and futures prices. In a recent study, Tang (2010) finds that commodity prices

are mean-reverting but prices are reverting to a time-varying long-run mean and

not to a constant mean.

While the economic rationales and the obtained empirical evidence provide

strong support for the presence of mean-reversion in commodity prices, it is un-

clear if prices revert to some constant or to some stochastic equilibrium level.



2. Commodity Price Dynamics and Derivatives Valuation:
A Review 13

Accordingly, different approaches can be found in the literature concerning the

modeling of commodity price dynamics. For example, the one-factor model

of Schwartz (1997) is based on the constant mean assumption while, e.g., the

model of Schwartz and Smith (2000) explicitly assumes the long-term mean to

be stochastic.

Overall, it can be concluded that mean-reversion is an important property

which needs to be considered when analyzing the behavior of commodity prices.

2.2.3 Samuelson Effect

Another stylized fact of commodity markets which received considerable attention

in the academic literature is the observation that volatility of futures prices tends

to increase when the contracts come closer to expiration. Since Samuelson (1965)

was the first to give a theoretical explanation for this observed price behavior, this

phenomenon is commonly referred to as the Samuelson effect or the Samuelson

hypothesis.5

The theoretical argument of Samuelson (1965) is that futures prices react more

quickly to new information when they are close to expiration since spot and

futures prices have to converge when the futures contract matures. Hence, new

information will primarily impact the short-end of the futures curve and will

influence long-term contracts only to a lower extent. This property of commodity

futures has important implications for hedging strategies and options pricing.

Early studies which find evidence for the Samuelson effect include the work

of Castelino and Francis (1982), Anderson (1985), Milonas (1986), Khoury and

Yourougou (1993), Ng and Pirrong (1994), and Galloway and Kolb (1996). Espe-

cially for agricultural commodity markets, empirical evidence for the Samuelson

effect is strong while there is mixed evidence for other commodities. In recent

studies, Movassagh and Modjtahedi (2005), Mu (2007) and Suenaga et al. (2008)

document the Samuelson effect in the natural gas market. Figure 2.3 shows the

historical term structure of volatility for crude oil futures calculated over the time

period January 2000 to November 2010. It becomes clear that futures contracts

5Alternatively, the notion of the maturity effect is used by some authors. Even though the
maturity effect in the volatility of futures prices is named after Samuelson (1965), this was not
the focus of Samuelson’s article. For a discussion, refer to Bessembinder et al. (1996).
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Figure 2.3: Term Structure of Volatility in Crude Oil Futures

This figure shows the volatility of light sweet crude oil (WTI) futures for different maturities

traded on the NYMEX during the time period from January 2000 to November 2010. Volatilities

are calculated as annualized standard deviations of returns in the individual maturity categories.

Futures prices used for the calculations are from Bloomberg.

close to expiration are far more volatile than contracts with a long time to ma-

turity. For stock markets and other financial markets, the Samuelson hypothesis

is usually rejected.6

Fama and French (1988) confirm that for the markets of industrial metals

spot prices are more volatile than prices of futures contracts. However, when

inventory levels are high, they find that spot price shocks are reflected one for one

in futures prices. This is also consistent with the equilibrium model of Routledge

et al. (2000). This model shows that the conditional volatility for short-term

contracts can be lower than for longer maturity contracts when inventory levels

6For example, Grammatikos and Saunders (1986) and Chen et al. (1999) find no support for
the Samuelson effect for currency futures and futures on the Nikkei index, respectively.
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are sufficiently high and, hence, the probability of a stock-out in the short-run is

low.

Bessembinder et al. (1996) argue that the Samuelson effect will only be present

in markets with a negative co-variation between changes in the spot price and

slope changes of the futures curve (changes in the convenience yield). Hence,

this is often referred to as the negative variance hypothesis. This hypothesis

is consistent with price mean-reversion due to the positive correlation between

commodity prices and convenience yields as predicted by the theory of storage

and outlined in Section 2.2.2. While this is applicable for commodities where the

owner of the physical asset earns a convenience yield, it does generally not hold

true for financial assets. Accordingly, Bessembinder et al. (1996) find support for

the Samuelson effect for agricultural commodities and crude oil and to a lower

extent for metals. In contrast, they find no support for the Samuelson effect on

financial markets.7

2.2.4 Seasonality

Supply and demand for commodities are driven by fundamental factors, which

often follow seasonal cycles. For many agricultural commodities, supply obeys

specific harvesting cycles and is especially dependent on the weather. After the

harvest, inventory levels and thus supply are high while prices tend to be rel-

atively low. In contrast, preceding the harvest, inventory levels are low and

commodities will exhibit higher prices due to their scarcity. Whereas for agri-

cultural commodities a seasonal price pattern is induced primarily by the supply

side, seasonality for some energy markets, in particular natural gas and heating

oil, originates mainly from the demand side. For heating oil and natural gas, de-

mand is higher in the cold season and, therefore, prices tend to be higher during

the heating period.8

7Contrary to Daal et al. (2006), who find only very weak evidence in favor of the negative
variance hypothesis of Bessembinder et al. (1996), Duong and Kalev (2008) find strong support
for the hypothesis in their study.

8The discussion here focuses on seasonality induced by persistent economic factors while there
might additionally be seasonality in the sense of a day-of-the-week or a turn-of-the-year effect
as discussed by, e.g., Gay and Kim (1987) and Lucey and Tully (2006). Also, there is evidence
for increased volatility due to the periodic release of market reports as documented for the
natural gas markets by Linn and Zhu (2004).
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Whereas seasonality is prevalent on many agricultural, animal product, and

energy commodity markets, evidence for the markets of metals or crude oil is

weak. In particular for the agricultural commodities, inventory levels vary over

the course of the calendar year and, thus, the observed seasonality in prices is also

consistent with the theory of storage. For example, Fama and French (1987) find

a strong seasonal variation in convenience yields for most agricultural and animal

products but not for metals. Sørensen (2002) documents pronounced seasonal

patterns in prices for the soybean, corn, and wheat markets, while Manoliu and

Tompaidis (2002) find strong seasonal effects in natural gas prices.

Even though the presence of known seasonal price patterns would imply arbi-

trage opportunities on other financial markets, this is not necessarily the case for

commodities. While market participants anticipate that, e.g., grain prices will

subsequently increase after one year’s harvest until prior to next year’s harvest,

storage costs and the perishability of goods preclude exploitation of this price

pattern by the means of cash-and-carry arbitrage.

In addition to a seasonal variation in the price level, many commodity markets

exhibit a seasonal pattern in volatility. Price uncertainty and, thus, volatility is

the highest shortly before the harvest for agricultural commodities. In turn,

during the winter, usually little new information enter the market and prices

tend to be less volatile. In contrast, high demand fluctuations for heating oil and

natural gas are more often observed during winter when weather shocks occur. In

combination with a relatively inelastic supply, this is the economic rationale for

the observed seasonal pattern in volatility of natural gas and heating oil prices

showing the highest variations during the winter months.

In his study, which comprises primarily agricultural commodities, Anderson

(1985) finds seasonality to be the primary factor leading to variations in volatil-

ity and to be more important than the Samuelson effect. Choi and Longstaff

(1985) document a seasonal variation in volatility for soybean futures. Kenyon

et al. (1987), Milonas (1991), and Karali and Thurman (2010) find a statistically

significant seasonal pattern in volatility for the soybean, corn and wheat markets.

Also, Streeter and Tomek (1992), Richter and Sørensen (2002), and Geman and

Nguyen (2005) analyze seasonal volatility for the soybean market. In an empir-
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ical study based on inventory data, Geman and Nguyen (2005) document that

volatility is an inverse function of inventory levels.

Another market which received considerable attention in the literature is the

market for natural gas. Mu (2007) discusses how weather affects natural gas price

volatility and documents a strong seasonal pattern. Similarly, Suenaga et al.

(2008) and Geman and Ohana (2009) find that price volatility on the natural gas

market is significantly higher during winter than during summer and explain this

by the higher demand variability during the cold season and declining inventory

levels, which is in agreement with the theory of storage. Besides heating oil and

natural gas, electricity is another energy commodity exhibiting a strong seasonal

behavior not only with regard to an annual price pattern but also with regard to

intra-week and intra-day fluctuations.9

Additionally, Doran and Ronn (2005) observe a seasonal pattern in market

prices of volatility risk for natural gas. Extending this analysis, Doran and Ronn

(2008) show that natural gas and heating oil markets exhibit a strong seasonal

component in volatility and also in volatility risk premia. In a related study, Trolle

and Schwartz (2010) find evidence, even though statistically not significant, for

a seasonal variation in risk premia in the case of natural gas.

2.3 Valuation Models for Commodity

Derivatives

Over the last years, an extensive literature on the modeling of commodity price

dynamics has emerged. In contrast to the previous section, the focus of this

section rests on the valuation of financial contracts rather than on the analysis

of commodity markets’ fundamentals. Most of the considered commodity deriva-

tives pricing models follow the same principles: Relevant risk factors are identified

and, next, the dynamics of these factors, e.g. prices, convenience yields or interest

rates, are exogenously specified.10 This then allows to derive prices for contin-

9Refer to Lucia and Schwartz (2002) and Cartea and Villaplana (2008) for studies on the
seasonal behavior of electricity prices.

10For latent factor models, often no interpretation of the factors is provided or an interpretation
is attempted afterwards based on the obtained empirical results.



2. Commodity Price Dynamics and Derivatives Valuation:
A Review 18

gent claims on the modeled underlying. This contrasts the idea of equilibrium

models like, e.g., the model of Bessembinder and Lemmon (2002) or the model of

Routledge et al. (2000) where convenience yield is derived endogenously. Instead,

reduced-form Gaussian models are widely used for valuation purposes since they

often allow for closed-form pricing formulas for futures and European options.

A very popular model for options pricing, especially among practitioners, is

the model of Black (1976). When relying on the Black (1976) framework for the

valuation of commodity futures, it is assumed that the cost of carry formula holds

and that net convenience yields are constant. While this model is very tractable

and easy to implement, it is unable to capture the observed price dynamics of

commodity futures due to its simplifying assumptions. Describing the futures

price dynamics only by a geometric Brownian motion does not capture commodity

price properties like changes in the futures curves’ shape, mean-reversion or the

Samuelson effect. Subsequently, more sophisticated models were developed in the

literature. An overview of different term structure models for commodities can

also be found in Lautier (2005).

2.3.1 Spot Price Models

Naturally, the current spot price is a major determinant of the price of a futures

contract. Accordingly, many models follow the approach to exogenously specify

a stochastic process for the spot price dynamics and derive prices of futures

contracts with respect to this spot price dynamics. Thereby, the price of a futures

contract equals the expected future spot price under the risk-neutral measure.

Models following the approach of modeling the stochastic dynamics of the spot

price are therefore referred to as spot price models. Since spot prices have a high

explanatory power for futures prices, the most common models to describe the

commodity price dynamics are spot price models.

Brennan and Schwartz (1985) are the first to present a valuation model which

is based on the spot price dynamics and considers convenience yields. In their

model, convenience yield is simply modeled as a deterministic function of the spot

price. The one-factor model of Brennan and Schwartz (1985) can be seen as the

starting point for most of the valuation models which were developed since then.
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In their model, the spot price is assumed to follow a geometric Brownian motion.

Accordingly, their model is neither able to capture the empirically observed mean-

reversion behavior of commodity prices, nor does it consider the Samuelson effect.

To overcome these shortcomings, a mean-reverting Ornstein-Uhlenbeck pro-

cess instead of a geometric Brownian motion is a prevalent choice to describe the

spot price dynamics. A popular model following this approach is the one-factor

model of Schwartz (1997), where the log spot price follows an Ornstein-Uhlenbeck

process. However, a problematic property of one-factor models, which is unwar-

ranted by empirical observations, is that all futures prices are perfectly correlated

since there is only one source of uncertainty. In general, one-factor models seem

not to be able to capture the empirical properties of commodity futures price

dynamics as pointed out by, e.g., Schwartz (1997). For this reason, several ex-

tensions have been presented in the literature introducing one or more additional

stochastic factors.

A very popular class of models are convenience yield models, which assume

that the convenience yield follows a stochastic process instead of being constant

or deterministic. The inclusion of convenience yield as an additional stochastic

factor to explain commodity price dynamics is in line with the theory of storage.

The other important class of models describes the spot price or its logarithm as

the sum of stochastic factors, hence latent factor models. In general, introducing

additional factors allows for a greater flexibility with regard to the dynamics of the

term structure of futures prices and the term structure of volatilities. However,

it comes at the cost of additional complexity.

Convenience Yield Models

The Gibson and Schwartz (1990) model is the first two-factor model for the pricing

of commodity derivatives. The model dynamics rely on a joint diffusion process of

the spot price and the net convenience yield. It is based on the idea that the spot

price and the convenience yield together can explain the futures price dynamics.

While a geometric Brownian motion is assumed for the spot price dynamics, the

convenience yield is described through an Ornstein-Uhlenbeck process. Thereby,

the mean-reversion property of commodity prices is induced by the convenience

yield process. In this model framework, the market price of convenience yield risk
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needs to be estimated. Utilizing a two-factor model with stochastic convenience

yield as proposed by Gibson and Schwartz (1990), Schwartz (1997) finds that the

inclusion of the second stochastic factor greatly improves the ability to describe

the empirically observed price behavior of copper, crude oil, and gold.

Furthermore, Schwartz (1997) presents a three-factor model where additionally

interest rates are modeled as a stochastic factor. However, stochastic interest

rates seem not to enhance futures pricing accuracy significantly. In particular,

for commodity derivatives with a short time to maturity, interest rates are only

of minor importance.

All the presented mean-reversion models endogenously produce a term struc-

ture of volatilities according to the Samuelson hypothesis. However, they differ

in important ways. In the two- or three-factor models, volatility converges to

some fixed level when the maturity approaches infinity. In contrast, futures price

volatility converges to zero in the one-factor model of Schwartz (1997).

Convenience yield models have been extended in several ways, e.g. by consid-

ering jumps or stochastic volatility. Thereby, the Gibson and Schwartz (1990)

and Schwartz (1997) models serve as the starting point and are reference mod-

els for, e.g., Hilliard and Reis (1998) and Yan (2002). Furthermore, Cortazar

and Schwartz (2003) extend the work of Schwartz (1997) by introducing a third

stochastic factor, the long-term return of the spot price. The presented models

can be extended and generalized not only in terms of the spot price dynamics

but also with regard to the assumptions concerning convenience yields. For ex-

ample, Casassus and Collin-Dufresne (2005) present a three-factor model where

convenience yield can be dependent on the other two factors, namely spot prices

and interest rates. In a related study, Liu and Tang (2011) present a three-factor

model which captures an observed heteroskedasticity in the convenience yield.

Latent Factor Models

A different approach to modeling the convenience yield is taken by Schwartz and

Smith (2000) who describe the log spot price as the sum of two latent factors. The

first factor is termed the long-term equilibrium price which follows a geometric

Brownian motion while the second factor captures short-term deviations from

the long-term equilibrium trend and is modeled through an Ornstein-Uhlenbeck
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process reverting to zero. Schwartz and Smith (2000) show that this model is

equivalent to the stochastic convenience yield model of Gibson and Schwartz

(1990) in the sense that the state variables of one model can be represented by a

linear combination of the state variables of the other model.

The so called short-term/long-term model of Schwartz and Smith (2000) is

often preferred for empirical studies since it is econometrically advantageous. In

particular, it eases an estimation of the model parameters based on Kalman filter

techniques, which became the standard approach in the literature.11 Specifically,

the two factors are more orthogonal than in a stochastic convenience yield model

expressed by a much lower correlation.12 Furthermore, the two factors are only

related through their correlation. This contrasts the convenience yield models

where the convenience yield directly enters the spot price process, which com-

plicates the analysis of each factor’s influence. As the convenience yield models,

the latent factor models can capture the Samuelson effect and the mean-reversion

property of commodity prices.

The framework of the short-term/long-term model can easily be extended to in-

corporate additional factors. Several models subsequently presented in the litera-

ture build on the influential work of Schwartz and Smith (2000) and utilize a latent

factor framework. For example, Sørensen (2002) and Lucia and Schwartz (2002)

incorporate seasonal components. A generalized N-factor model for commodity

prices is presented by Cortazar and Naranjo (2006). Paschke and Prokopczuk

(2010) generalize the model of Schwartz and Smith (2000) by developing a model

where the short-term deviations from the long-term equilibrium are described

by the means of a continuous autoregressive moving average (CARMA) process

instead of utilizing an Ornstein-Uhlenbeck process, which is a special case of the

CARMA process.

Similar to the Schwartz and Smith (2000) model, Korn (2005) presents a

model where both stochastic factors follow mean-reverting processes. Hence,

commodity futures prices are stationary in contrast to the non-stationarity in the

short-term/long-term model of Schwartz and Smith (2000). He claims that the

11For example, Schwartz (1997), Schwartz and Smith (2000), Sørensen (2002), Manoliu and
Tompaidis (2002), Geman and Nguyen (2005), and Liu and Tang (2011) use Kalman filter
techniques in their estimations.

12Refer to Schwartz and Smith (2000) for a discussion on this issue.
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proposed specification facilitates an improved pricing performance for long-term

crude oil futures contracts.

In general, the assumptions regarding the long-term futures price level are

different in the presented models. In contrast to the one-factor model of Schwartz

(1997), the long-term mean is stochastic in the two-factor model of Schwartz and

Smith (2000) and follows a geometric Brownian motion.

2.3.2 No-Arbitrage Models of the Futures Curve

Since in spot price models futures prices are derived endogenously according to

the spot price dynamics, these models do not necessarily fit the observed term

structure of futures prices. An alternative approach avoiding this problem is

found in no-arbitrage models of the futures curve. Here, the term structure of

commodity futures serves as an input and the stochastic movement of the term

structure is described according to no-arbitrage ideas. Hence, futures price models

are in similar spirit as the no-arbitrage term structure models for interest rates

as proposed by Ho and Lee (1986) and Heath et al. (1992). Early models for

commodities in this framework were proposed by Reisman (1992) and Cortazar

and Schwartz (1994).

Miltersen and Schwartz (1998) develop a general model for options pricing

when interest rates and convenience yields are stochastic. Similar to the concept

of forward rates in interest rate models, they propose the concept of forward

and future convenience yields and derive a model along the lines of Heath et al.

(1992). Similarly, Miltersen (2003) outlines a model which matches the current

term structure of futures prices and of futures volatilities. He implements his

model according to the ideas of Hull and White (1993). Crosby (2008) presents

an arbitrage-free model which is consistent with the initial term structure of

futures prices and includes jumps. However, the proposed model requires Monte

Carlo simulation techniques for valuation purposes.

2.3.3 Jumps

In order to account for sudden price changes, jumps can be considered in the

stochastic process of the commodity price. Especially for financial contracts with
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an asymmetric payoff profile like options, jumps can have an important price

effect. For example, Hilliard and Reis (1999) compare the pricing performance

of the standard Black (1976) model and the Bates (1991) jump-diffusion model

for soybean futures options and find that the jump-diffusion model yields a sig-

nificantly better pricing performance. Similarly, Koekebakker and Lien (2004)

propose a modified version of the Bates (1991) model and find for the wheat

market that their model yields a better pricing performance than other models

neglecting a jump component.

With regard to valuation models particularly for commodity markets, Hilliard

and Reis (1998) propose a model which allows for jumps in the spot price process

in addition to spot price, convenience yield and interest rates being stochastic.

While the incorporated jump component in their model is very important for

the valuation of commodity futures options, it has no influence on futures and

forward prices. Yan (2002) proposes a model for the valuation of commodity

derivatives which considers simultaneous jumps in spot price and volatility while

also allowing volatility to be stochastic. Again, these extensions are found to

be of high importance for options pricing but are irrelevant for the valuation of

commodity futures.

The incorporation of jumps is especially important for financial contracts writ-

ten on electricity as underlying. Due to the non-storability of electricity, cash-

and-carry is usually not possible, which can lead to extreme price spikes when

demand is unexpectedly high. Accordingly, jumps have been considered for elec-

tricity markets in several studies, e.g. by Deng (2000), Benth et al. (2003), Cartea

and Figueroa (2005), Geman and Roncoroni (2006), Benth et al. (2007), Seifert

and Uhrig-Homburg (2007), Nomikos and Soldatos (2008), and Cartea et al.

(2009).13 Thereby, different aspects of the market characteristics can be consid-

ered. For example, Nomikos and Soldatos (2008) present a model in which jumps

are driven by seasonality, whereby jump intensity and jump size are dependent

on the time of the year.

13Since classical arbitrage arguments are hindered due to the non-storability of electricity, a
no-arbitrage model framework might be unfavorable for the valuation of electricity futures
contracts as argued by, e.g., Muck and Rudolf (2008). An alternative is found in equilibrium
models, which do not model the price dynamics directly but rather rely on fundamental factors
as presented by Bessembinder and Lemmon (2002), Barlow (2002), Cartea and Villaplana
(2008), and Pirrong and Jermakyan (2008).
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2.3.4 Constant, Deterministic, and Stochastic Volatility

In the popular spot price models of Schwartz (1997) and Schwartz and Smith

(2000), the state variables follow stochastic processes with a constant volatil-

ity. Due to their mean-reversion properties, these models nevertheless imply that

volatility varies with the time to maturity of futures contracts, i.e. they en-

dogenously capture the Samuelson effect. However, several authors questioned

the constant volatility assumption for the state variables proposing either de-

terministic variations in volatility or describing volatility through an additional

stochastic process.

Deterministic variations in volatility comprise in particular seasonal patterns

which can be expected to repeat on a regular basis due to fundamental factors

like harvesting cycles or demand patterns. Furthermore, for a model where the

Samuelson effect is not taken into account implicitly, allowing volatility to be a

function of the futures’ time to maturity is a way to adjust for this. For example,

Doran and Ronn (2005) follow this approach since they directly model the dynam-

ics of the futures price instead of the spot price and, hence, the Samuelson effect

does not arise implicitly from the spot price dynamics. Similarly, Koekebakker

and Lien (2004) propose a model of the futures price dynamics in which they

consider time-dependent volatility to capture the Samuelson effect and seasonal

variations. They document the high importance of such time-varying volatility

in a numerical example for wheat options.

Following the rationales of the theory of storage, a positive relationship be-

tween volatility and convenience yield exists. This is true since commodity prices

and convenience yields are high when inventory levels are low, while at the same

time volatility tends to be higher and vice versa. According to this idea, Nielsen

and Schwartz (2004) present a model in which the spot volatility is a function of

the convenience yield level. The proposed model is a generalization of the Gibson

and Schwartz (1990) model. Nielsen and Schwartz (2004) argue that reliable and

accurate information on inventory levels is not readily available and, therefore,

decided not to model inventory levels explicitly but rather describe the volatility

of the spot price process through its relationship to the convenience yield. In con-

trast, Geman and Nguyen (2005) present a model where they include scarcity as
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a separate state variable and the volatility of the spot price is a function thereof

and is, thus, stochastic.

Stochastic volatility models for commodities are also presented in Deng (2000)

and Yan (2002). Both describe the volatility dynamics through a square root

process as in Heston (1993). Additionally, they consider jumps in both spot price

and spot volatility. As with jumps, the assumptions regarding volatility are es-

pecially important for options pricing and often irrelevant for the valuation of

futures as in the model of Yan (2002). Stochastic volatility models which addi-

tionally acknowledge a seasonal variation are proposed by Richter and Sørensen

(2002) and Geman and Nguyen (2005).

While introducing a stochastic process for the volatility of the spot price in the

popular setting of spot price models is a natural step, it significantly complicates

the valuation of commodity derivatives. No closed-form solutions for futures and

options on futures are available in, e.g., the models of Richter and Sørensen (2002)

and Geman and Nguyen (2005). Accordingly, this numerical burden hampers

real-world applications. To approach this difficulty, Hikspoors and Jaimungal

(2008) present spot price models where the volatility of the spot price follows a fast

mean-reverting Ornstein Uhlenbeck process and for which they derive asymptotic

prices for commodity futures and options on futures.

Recently, more general stochastic volatility models were presented by, e.g.,

Hughen (2010) and Trolle and Schwartz (2009). In particular, Trolle and Schwartz

(2009) present a Heath, Jarrow, and Morton (1992)-style model which takes un-

spanned volatility into account.14 In an empirical study of the crude oil market,

they find that two volatility factors are needed to describe options prices and that

these factors are largely unspanned by the futures contracts.

Even though the assumptions regarding volatility are especially important for

option prices, empirical studies based on commodity futures options prices are

rare. Particularly, the literature lacks analyses regarding the options pricing

accuracy of proposed valuation models.

14Unspanned volatility implies that volatility risk cannot be completely hedged by a position
in the underlying security.
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2.3.5 Seasonality

Considering the strong seasonal patterns on many commodity markets, Sørensen

(2002) extends the model of Schwartz and Smith (2000) and includes a deter-

ministic seasonal component to describe the seasonal variations in price levels.

Thereby, the log spot price is the sum of a deterministic calendar time dependent

trigonometric function and two latent factors as in Schwartz and Smith (2000).

He considers the markets for soybeans, corn, and wheat and finds strong support

for the inclusion of the proposed seasonality adjustment. Similar approaches

can also be found in, e.g., Richter and Sørensen (2002) and Geman and Nguyen

(2005).

In general, describing a seasonal pattern by trigonometric functions has the ad-

vantage that only few additional parameters are needed and, additionally, trigono-

metric functions are continuous in time. Seasonal dummy variables represent

a different modeling approach as used, e.g., by Manoliu and Tompaidis (2002)

and Todorova (2004). While this approach offers the advantage of being very

flexible, a higher number of parameters is usually needed and the approach is

more sensitive to outliers potentially distorting the obtained results as pointed

out by Lucia and Schwartz (2002). Lucia and Schwartz (2002) present one- and

two-factor models which are extended by a deterministic component to capture

market regularities like working and non-working day effects as well as the sea-

sonal behavior of electricity prices during the calendar year. In their study, they

utilize both dummy variables as well as a trigonometric function approach. In

her paper, Todorova (2004) proposes a model where seasonality is not modeled

deterministically but as a distinct third stochastic factor in addition to the latent

two-factor short-term/long-term model.

All these studies rely on a spot price model framework where seasonality enters

the dynamics of the spot price. Based on the seasonal spot price dynamics,

futures prices which are consistent with these assumptions and reflect the seasonal

behavior can be derived. A different approach is presented by Borovkova and

Geman (2006), who propose a model where the first state-variable represents the

average forward price instead of the spot price. The second factor should capture

changes in the shape of the forward curve and, thus, changes in the convenience

yield. Additionally, a deterministic seasonal premium is considered. Hence, in
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contrast to other models, they model seasonality as a function of the future’s

maturity date and not with respect to seasonal changes in the spot price over

time until the future’s expiration.

As discussed in Section 2.2.4, many commodity markets exhibit seasonal vari-

ations not only in the price level but also in volatility. To account for this,

Richter and Sørensen (2002) and Geman and Nguyen (2005) include a seasonal

component to govern volatility in their stochastic volatility models. Analogous

to modeling seasonality in the price level, the seasonal pattern in volatility is

described through trigonometric functions. This approach has also been adapted

in subsequent studies, e.g. in Koekebakker and Lien (2004) and Geman and

Ohana (2009). The market for electricity is also characterized by strong sea-

sonal variations in volatility as acknowledged for example in the model of Cartea

and Villaplana (2008) where the seasonality is captured by a dummy variable

specification.

2.3.6 Further Extensions

Regime-switching models for commodity prices are based on the idea that there

exist distinct regimes which are characterized through different price dynamics.

For example, Fong and See (2002) and Vo (2009) analyze the price behavior on the

crude oil market by the means of regime-switching models for volatility and find

that price dynamics switch between high and low volatility regimes. When valu-

ing commodity derivatives, regime-switching can be used not only to characterize

regimes with regard to volatility; different regimes can be characterized, e.g., by

different jump intensities as proposed by Cartea et al. (2009) or by completely

distinct processes as in Chen and Forsyth (2010). Furthermore, Nomikos and

Soldatos (2008) propose a jump-diffusion model which considers regime-switching

in the long-run equilibrium level according to a seasonal variable. In their study,

the regimes are a high and a low water level regime since the level in water reser-

voirs is an important determinant for the analyzed hydropower-dominated elec-

tricity market of Scandinavia. While in these regime-switching models a change

to a different regime is an exogenous event occurring with a certain probability,

Ribeiro and Hodges (2005) present a model where the spot price dynamics switch
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between two distinct processes depending on the current spot price level being

above or below a critical threshold.

Another fact which has important implications for risk management and es-

pecially for the valuation of commodity spread options is that many commod-

ity markets are closely related and that there are dependencies between these

markets. This is especially true for agricultural and energy markets where e.g.

heating oil, gasoline and other products are produced from crude oil. In fact,

energy markets are often not only related, they are co-integrated as pointed out

by Asche et al. (2003) and Paschke and Prokopczuk (2009). Accordingly, Paschke

and Prokopczuk (2009) propose a continuous time multi-factor model which inte-

grates price dynamics of related commodities in a single model. Also, due to the

co-integration between crude oil and heating oil prices, Dempster et al. (2008)

propose to model the spread between the two commodities directly instead of

modeling the price dynamics of the individual commodities when valuing, e.g.,

crack spread options.15

2.4 Conclusion

Commodity markets are characterized by some unique stylized facts which re-

ceived a significant amount of attention in the academic literature. Understand-

ing and taking into account these peculiarities like mean-reversion, the Samuelson

effect, convenience yields or seasonality is crucial for the analysis of commodity

price dynamics. Naturally, these unique characteristics are of utmost importance

for risk management decisions and for the valuation of commodity derivatives.

With regard to valuation models for commodity derivatives, we discussed dif-

ferent approaches and developments in the literature with a particular emphasis

on questioning if and how the peculiarities of commodity markets are taken into

account. Interestingly, most of the literature considers only the markets for com-

modity futures while options on these contracts received relatively little atten-

tion. Accordingly, when assessing the properties and the pricing performance of

15The crack spread is the price spread between a commodity and a derivative of this commodity,
for example the price spread between crude oil and heating oil.
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commodity valuation models, the analysis often concentrates only on commodity

futures markets.

Naturally, the assumptions regarding volatility are of much higher importance

for the valuation of options than for the valuation of futures contracts. Hence,

correctly modeling the volatility dynamics will play a significant role in any option

pricing application. Despite the fact that seasonal variation in volatility is a

well-known property of many commodity markets, there exists only very limited

literature on how to account for this in a valuation model.

The following two essays contribute to the literature by being the first studies

on the role of seasonal volatility concerning the pricing accuracy of commodity

option pricing models. In particular, in Chapter 3, we incorporate seasonality in

a deterministic volatility setting of spot price models. In Chapter 4, a stochastic

volatility model which takes seasonal volatility into account is presented. The

role of seasonality in volatility and its influence on option pricing accuracy of

the proposed valuation models will be analyzed in extensive empirical studies for

different commodity markets.



Chapter 3

Seasonality and the Valuation of

Commodity Options

3.1 Introduction1

Commodity options have a long history. One of the first usages was documented

by Aristotle, who reported in his book Politics (published 332 B.C.) a story about

the philosopher Thales, who was able to make good predictions on the next year’s

olive harvest, but did not have sufficient money to make direct use of his fore-

casts. Therefore, Thales bought options on the usage of olive presses, which were

available for small premiums early in the year. When the harvest season arrived,

and the crop yield was, as expected by Thales, high, olive presses were in huge de-

mand, and he was able to sell his usage options for a small fortune.2 In contrast,

modern commodity options, as we know them today, are quite recent innovations.

The first commodity options traded at the Chicago Board of Trade (CBOT) were

live cattle and soybean contracts, both introduced in October 1984.3 As distin-

guished from the ancient contracts, modern commodity options are generally not

1This chapter is based on a homonymous paper co-authored by Marcel Prokopczuk and Markus
Rudolf.

2See Williams and Hoffman (2001), Chapter 1. The interested reader might also refer to the
translated original text, e.g. Aristotle (1981), p. 88–90, where Aristotle refers to the strategy
of Thales as a ‘money-spinning device’.

3See the CME Group website: www.cmegroup.com.
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written on the commodity itself, but on a futures contract. This ensures liquidity

of the underlying, as most of the trading takes place in the futures market.

When considering the pricing of commodity options contracts, the special fea-

tures of these markets should be taken into account. One of the earliest, and

perhaps today’s most popular commodity options pricing formula among practi-

tioners, was derived by Black (1976). Black’s formula can basically be regarded

as a straightforward advancement of the well-known Black and Scholes (1973)

stock options pricing formula, taking into account the fact that no initial outlay

is needed when entering a futures position. However, other stylized facts present

in commodity markets are not considered in Black’s approach. These issues have

been addressed in more recent research. Gibson and Schwartz (1990), Brennan

(1991), Ross (1997), and Schwartz (1997) point out that the dynamics of supply

and demand result in a mean-reverting behavior of commodity prices. Schwartz

(1997) tests three different model variants, incorporating mean-reversion (a one-,

two-, and three-factor model), in terms of their ability to price futures contracts

on crude oil, copper, and gold. All of these commodities belong to the part of

the commodity universe not showing seasonality in their price dynamics.4

Seasonality can be considered as another stylized fact of many commodity

markets, distinguishing them from traditional financial assets. The seasonal be-

havior of many commodity prices has been documented in numerous studies, e.g.

Fama and French (1987), and, thus, should be considered in a valuation model.

Sørensen (2002) considers the pricing of agricultural commodity futures (corn,

soybeans, and wheat) by adding a deterministic seasonal price component to the

two-factor model of Schwartz and Smith (2000). Similarly, Lucia and Schwartz

(2002) and Manoliu and Tompaidis (2002) consider the electricity and natural gas

futures markets, respectively. Furthermore, Dempster et al. (2008) analyze the

crack spread between heating oil and crude oil. Thus, the modeling of seasonality

at the price level is relatively well understood.

When it comes to options pricing, price level seasonality is, however, of no

importance. In a standard setting, the deterministic component of the price pro-

4More recent advancements in pricing commodity futures contracts include, e.g., Casassus and
Collin-Dufresne (2005) and Paschke and Prokopczuk (2010).
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cess does not enter the options valuation formula.5 However, as noted by Choi

and Longstaff (1985), there exists a second type of seasonality which can have a

great influence on the value of a commodity option. As the degree of price uncer-

tainty changes through the year, the standard deviation – i.e. the volatility of a

commodity futures’ return – shows strong seasonal patterns. A good example is

provided by most agricultural markets, where the harvesting cycles determine the

supply of goods. Shortly before the harvest, the price uncertainty is higher than

after the harvest when crop yields are known to the market participants resulting

in a seasonal pattern in volatility in addition to the price level seasonality.

Surprisingly, the impact of seasonal volatility on commodity options valuation

has attracted very little academic attention. Due to the lack of available options

data, Choi and Longstaff (1985) do not conduct any empirical study. Richter and

Sørensen (2002) and Geman and Nguyen (2005) consider the soybean market and

acknowledge the time-varying volatility by including a deterministic component

in their model, but do not study the impact on the models’ options pricing per-

formance.

We contribute to the literature by filling this gap. Two commodity pricing

models, a one-factor and a two-factor model, are extended by allowing for sea-

sonal changes of volatility throughout the calendar year. These models are esti-

mated using an extensive sample of options prices for two different commodity

markets. First, we consider soybean options traded at the CBOT. Being the

biggest agricultural derivatives market, soybean contracts provide a prominent

example of a commodity with seasonality effects mainly induced from the supply

side of the market. Second, we study the impact of seasonalities on heating oil

options traded at the New York Mercantile Exchange (NYMEX). In contrast to

the soybean market, the seasonality in this market is mainly driven by the de-

mand side. The considered options pricing models are calibrated on a daily basis

5Intuitively, this can be seen by the fact that the deterministic price seasonality only affects
the drift of the underlying. As the risk-free hedge portfolio must earn the risk-free rate,
the price seasonality cannot have any influence on the option price. More formally, this
argument can be seen in the model description in Section 3.3. One should note, however, that
a predictable component in the price process might have an influence on the estimation of the
model parameters. If one estimates the volatility using a historical time series of asset prices,
one must clearly account for seasonal price variations as changes in the mean return affect the
variance. As we estimate our model implicitly using option prices, this problem does not arise.
See also Lo and Wang (1995) on this issue.
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and then tested with respect to their in- and out-of-sample pricing performance.

Our results show that the pricing performance can be greatly improved by includ-

ing seasonality components in the volatility. This demonstrates that considering

the seasonality of volatility is of great importance when dealing with options or

option-like products in seasonally behaving commodity markets.

The remainder of this chapter is organized as follows. Section 3.2 provides an

overview of seasonality in commodity markets in general and the two considered

markets in particular. In Section 3.3, we describe the considered model dynam-

ics and provide futures and options valuation formulas. Section 3.4 describes

the sample of options data and the estimation procedure employed, while the

empirical results of our study are presented in Section 3.5. Section 3.6 contains

concluding remarks.

3.2 Empirical Evidence on Seasonality in

Commodity Markets

Hylleberg (1992) defines seasonality as “... the systematic, although not neces-

sarily regular, intra-year movement caused by the changes of the weather, the

calendar, and timing of decisions, directly or indirectly through the production

and consumption decisions made by agents of the economy. These decisions are

influenced by endowments, the expectations and preferences of the agents, and the

production techniques available in the economy.”

Following this definition, agricultural commodity markets clearly show sea-

sonal patterns induced by the supply side mainly due to harvesting cycles, the

perishability of agricultural goods, and the effects of weather. In contrast, many

energy commodity markets show seasonal patterns induced from the demand side,

which are due to regular climatic changes as well as regular calendar patterns,

such as holidays.6 Furthermore, inventories of these commodity markets undergo

a seasonal pattern. Thus, the presence of seasonality in commodity markets is

also predicted by the theory of storage (Kaldor (1939), Working (1949), Brennan

6In the case of electricity markets, varying demand levels induce regular intra-day and intra-
week price patterns in addition to a calendar year effect as shown by Longstaff and Wang
(2004) and Lucia and Schwartz (2002), respectively.
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(1958), and Telser (1958)), which states that the convenience yield and, thus, the

commodity price are negatively related to the level of inventory.

In this chapter, we consider two commodity markets: soybeans and heating

oil. The soybean market is the largest agricultural commodity market in the

world, whereas heating oil is, together with gasoline, the most important refined

oil product market.7

Although not the main focus of this essay, we first provide empirical evidence

on seasonal patterns at the price level to draw a complete picture with respect

to seasonality in the two considered markets. In order to illustrate the seasonal

pattern at the price level, we consider front-month futures prices as an approxi-

mation of spot prices. We standardize each daily price observation relative to the

annual average. Thereby, we obtain a price series describing the price pattern for

each year considered in our sample which spans January 1990 to December 2009.

In the next step, we calculate average values of the annual patterns to derive

the historical seasonal pattern of the two considered commodities. Following the

economic rationales outlined above, we expect soybean prices to increase before

the harvests in South America and the United States, which take place during

spring and summer.8 In the case of heating oil, we expect the price to increase

during the fall when demand is higher relative to the spring and summer months.

These expected price patterns can be observed in Figure 3.1, which displays the

estimated seasonal price paths.

As discussed in the introduction, this essay focuses on a second type of season-

ality present in the price dynamics of commodity markets. According to Anderson

(1985), the volatility of commodity futures prices will be high during periods when

new information enters the market and significant amounts of supply or demand

uncertainty are resolved.9 For heating oil, this is the case during the winter when

heating is needed. In agricultural markets, this is true shortly before and during

7Details on these markets can be found in Geman (2005). The seasonal behavior of prices
is documented by Milonas (1991), Frechette (1997), and Geman and Nguyen (2005) for the
soybean market, and Girma and Paulson (1998) and Borovkova and Geman (2006) for the
heating oil market.

8South America, in particular Argentina and Brazil, and the United States are the world’s
biggest producers of soybeans.

9Note that there exists a second effect on volatility which is usually referred to as the “Samuelson
effect” because it was first introduced by Samuelson (1965). This effect describes the empirical
fact that the volatility of futures increases as maturity approaches, which can be explained
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Figure 3.1: Seasonal Pattern of Futures Prices

This figure shows the seasonal pattern of front-month futures prices from January 1990 to De-

cember 2009 for soybeans and heating oil. The empirical figure was derived by first standardizing

every observed price relative to the annual average and second taking the average of the price

patterns of the considered years. Prices are from Bloomberg.
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the harvesting period. Information regarding the subsequent harvest becomes

available during this time, causing a higher fluctuation in prices, while a min-

imum is typically reached during the winter months. These effects have been

documented empirically for various commodity markets.10

To analyze seasonality in volatility in the soybean and heating oil markets, we

calculate two different types of volatility: historical and option implied volatility.

To obtain historical (realized) volatilities for the two considered commodities, we

first calculate daily returns for the front-month futures prices during the same

sample periods. In the next step, the daily returns are grouped by their ob-

servation months separately for each year. The standard deviation of the daily

returns is then calculated for each observation month and annualized to make the

results easier to interpret. We then take the average values of volatilities in the

different calendar months of the calculated time series to obtain an estimation

of the average volatility with regard to the time of the year. These historical

volatility estimates are displayed in Figure 3.2. One can clearly observe that the

realized volatility varies considerably throughout the year, ranging from 17% to

30% in the case of soybeans, and 27% to 48% in the case of heating oil. The

shapes of the patterns are very similar to the ones observed for the price level.

Furthermore, Figure 3.2 shows that the seasonal volatility pattern can be rea-

sonably approximated by a trigonometric function which serves as motivation for

the valuation models presented in the next section.

Besides historical volatilities, the volatilities implied in options prices are of

interest since they reflect how market participants assess the future volatility

pattern. For that reason, we compute implied volatilities employing the stan-

dard model of Black (1976).11 The obtained implied volatility estimates are then

grouped by the options’ months of maturity, and average values are calculated

as shown in Figure 3.3. Again, it can be observed that a trigonometric function

works reasonably well to describe the seasonal volatility pattern. Furthermore,

the seasonal pattern of implied volatilities is very similar to the pattern of his-

by decreasing supplier flexibility. The Samuelson effect is implicitly accounted for by the
commodity pricing models considered in this study.

10See Anderson (1985), Choi and Longstaff (1985), Khoury and Yourougou (1993), Suenaga
et al. (2008), and Karali and Thurman (2010) on seasonality in the volatility of commodity
prices.

11The options data set used is described in Section 3.4.
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Figure 3.2: Seasonal Pattern of Historical Volatility

This figure shows the seasonal pattern of front-month futures volatilities from January 1990 to

December 2009 for soybeans and heating oil. Furthermore, the seasonal volatility pattern was

approximated by a trigonometric function as proposed for the price dynamics of the considered

models (see Section 3.3). The historical volatilities were derived by first grouping the daily

returns by observation month and calculating their standard deviation for each year separately

and second taking the average of the annualized standard deviations of the considered years.

Prices are from Bloomberg.
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Figure 3.3: Seasonal Pattern of Implied Volatility

This figure shows the seasonal pattern of the implied volatilities of futures options grouped by

maturity month. The sample spans July 29, 2004 to June 22, 2009 for soybeans and from Oc-

tober 21, 2004 to October 2, 2009 for heating oil. Furthermore, the seasonal volatility pattern

was approximated by a trigonometric function as proposed for the price dynamics of the con-

sidered models (see Section 3.3). The implied volatilities were derived by first transforming the

American style options into European style options according to the approximation suggested by

Barone-Adesi and Whaley (1987), and second calculating the implied volatilities by the Black

(1976) formula. Only ATM options (90% ≤ S/K ≤ 110%) with 6 to 120 days to maturity were

considered. Prices are from Bloomberg.
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torical volatilities.12 Please note that the considered time period is different to

the analysis of historical volatilities, as the available options data cover a shorter

period of time compared to the futures data set available, and, therefore, the

level of the volatilities is somewhat different. Still, the overall picture of a strong

seasonal pattern, with volatility reaching a maximum in late summer and early

fall and a minimum in winter for soybeans and vice versa for heating oil, remains

the same.

3.3 Valuation Models

In this section, we describe the dynamics of the pricing models used in the empir-

ical study. We then provide the futures and European options pricing formulas.

3.3.1 Price Dynamics

Due to the interaction of supply and demand, commodity prices are usually con-

sidered to exhibit mean-reversion characteristics.13 We consider two main model

specifications, both of which include mean-reverting behavior; however, the two

differ with respect to the assumptions regarding the long-term equilibrium price

of the considered commodity. All models are specified directly under the risk-

neutral measure. This approach is motivated by the observation of Schwartz and

Smith (2000) and Geman and Nguyen (2005) that the market price of risk can

only be estimated with very low precision from derivatives data. As the focus

of our study is options pricing, we prefer to work directly under the risk-neutral

measure making a change of measure dispensable.

The first model we consider is a one-factor model in which the logarithm of

the spot price, lnSt, of a commodity is assumed to follow an Ornstein–Uhlenbeck

process with seasonality in level and volatility. Thus, the long-term equilibrium

12Doran and Ronn (2008) also find a seasonal variation in implied and historical volatility levels
for natural gas and heating oil.

13See, e.g., Brennan (1991), Gibson and Schwartz (1990), and Schwartz (1997) on the mean-
reverting behavior of commodity prices.
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price is assumed to be deterministic. Let

lnSt = Xt + s(t), (3.1)

where s(t) is a deterministic function of time capturing the seasonality of a com-

modity’s price level. Note that this component is added for the sake of complete-

ness only. As it has no impact on option prices, which are the subject of the

study in this essay, we refrain from specifying the function s(t) explicitly.

Let ZX
t be a standard Brownian motion. The stochastic component Xt is

assumed to follow the dynamics

dXt = κ(µ−Xt)dt+ σXe
φ(t)dZX

t , (3.2)

with κ > 0 denoting the degree of mean-reversion towards the long-run mean µ of

the process. The volatility of the process is characterized by σX and the function

φ(t), which describes the seasonal behavior of the asset’s volatility. In contrast

to s(t), φ(t) impacts the price of an option by directly affecting the underlying

asset’s volatility. Considering the empirical volatility patterns in Figures 3.2 and

3.3, we follow Geman and Nguyen (2005) and specify the function φ(t) as

φ(t) = θ sin(2π(t+ ζ)) (3.3)

with θ ≥ 0 and ζ ∈ [−0.5, 0.5] in order to ensure the parameters’ uniqueness.

Thereby, January 1 serves as the time origin. We refer to this model as Model

1-S throughout the rest of the chapter, indicating it as a one-factor model with

seasonal volatility.

The proposed one-factor model is closely linked to existing commodity pricing

models. By setting φ(t) = 0 and s(t) = 0, the model nests the one-factor model

proposed by Schwartz (1997).14 Thus, the model of Schwartz (1997) serves as a

natural benchmark and will be referred to as Model 1.15

14Note that Schwartz (1997) also considers two- and three-factor models in his study.
15The proposed model can also be considered as a simpler version of the model considered by
Geman and Nguyen (2005), who studied the influence of inventory levels on the pricing of
futures contracts. As our main purpose is to investigate the benefits of modeling seasonality
of volatility in the context of empirical option pricing, we keep the model parsimonious to
enhance implementation and interpretation.
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In the second model considered, the assumption regarding the long-term equi-

librium price level is changed. Following the ideas presented by Schwartz and

Smith (2000), a second latent risk factor is added, representing the fact that

uncertainty about the long-term equilibrium price exists in the economy. The

following model will be refered to as Model 2-S, i.e. a two-factor model with

seasonal volatility. Let

lnSt = Xt + Yt + s(t), (3.4)

with

dXt = µdt+ σXe
φ(t)dZX

t , (3.5)

dYt = −κYtdt+ σY dZ
Y
t , (3.6)

where s(t) is again a deterministic function of time capturing seasonality effects

at the price level. The first stochastic component Xt describes the non-stationary

long-term equilibrium price process. The parameter µ captures the drift and σX

together with the deterministic function φ(t) capture the volatility of the process.

As for the one-factor model, φ(t) governs the seasonality of volatility and is again

assumed to be described by Equation (3.3). The zero mean Ornstein–Uhlenbeck

process Yt captures short-term deviations from the long-term equilibrium. The

parameter κ > 0 governs the speed of mean-reversion, while σY governs the

volatility of the process. ZX
t and ZY

t are standard Brownian motions with in-

stantaneous correlation ρ.

Note that for φ(t) = 0 and specifying s(t) accordingly, the model is identical

to the model proposed by Sørensen (2002). When also imposing s(t) = 0, one

obtains the well-known two-factor model of Schwartz and Smith (2000), which we

call Model 2 throughout the chapter. This model has been studied extensively

and, thus, provides an ideal basis to build on our empirical analysis.16

One might argue that more complex pricing models exist compared to the

ones we use in this study – for example, these models might include jumps or

16Note that, although not labeling one of the factors as convenience yield, Schwartz and Smith
(2000) showed that their latent factor approach is equivalent to the two-factor model of
Gibson and Schwartz (1990), which explicitly models the convenience yield. As the latent
factor model of Schwartz and Smith (2000) is more convenient for estimation, it is usually
preferred in empirical studies.
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stochastic volatility.17 However, as our main focus is on the influence of the impact

of deterministic changes of volatility on the pricing of options, we decided to

employ well-established and understood models as benchmarks for our empirical

study.

3.3.2 Valuation of Futures and Options

As the price dynamics are directly specified under the risk-neutral measure, the

futures price is equal to the expected spot price at the contract’s maturity.18 Since

all state variables are normally distributed, the spot price follows a log-normal

distribution. Thus, conditional on information available at time zero, the futures

price with maturity T at time zero, denoted by F0(T ), is given by

lnF0(T ) = lnE[ST ]

= E[ln(ST )] +
1
2
Var[ln(ST )].

(3.7)

For the one-factor model, Model 1-S, the futures price is therefore given by19

lnF0(T ) = e−κTX0 + µ(1− e−κT ) + s(T )

+1
2
σ2
X

T∫
0

e2θ sin(2π(u+ζ))e−2κ(T−u) du.

(3.8)

Analogously, the futures price in the two-factor model,Model 2-S, can be obtained

as

lnF0(T ) = X0 + µT + Y0e
−κT + s(T ) + 1

2
σ2
X

T∫
0

e2θ sin(2π(u+ζ)) du

+(1− e−2κT )
σ2
Y

4κ
+ σXσY ρ

T∫
0

eθ sin(2π(u+ζ))e−κ(T−u) du.

(3.9)

Similarly, the value of a European option on a futures contract can be immedi-

ately calculated as the expected pay-off discounted at the risk-free rate r. There-

17Refer to, e.g., Geman and Nguyen (2005) for a model with stochastic volatility and Hilliard
and Reis (1998) for a jump-diffusion model.

18See, e.g., Cox et al. (1981).
19For more detailed information on the pricing formulas for futures and options presented in
this section, please refer to the Appendix in Section 3.7.
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fore, the price of a call option, with exercise price K and maturity t written on a

future with maturity T at time zero, is given by c0 = e−rtE[max(Ft(T )−K, 0)].

As all state variables are normally distributed, the log futures price lnFt(T )

is also normally distributed. The variance σ2
F (t, T ) of lnFt(T ) for Model 1-S is

given by

σ2
F (t, T ) = σ2

X e−2κ(T−t)

t∫
0

e2θ sin(2π(u+ζ))e−2κ(t−u) du, (3.10)

and for Model 2-S by

σ2
F (t, T ) = σ2

X

t∫
0

e2θ sin(2π(u+ζ)) du+
σ2
Y

2κ
e−2κ(T−t) (1− e−2κt)

+ 2σXσY ρ e−κ(T−t)
t∫
0

eθ sin(2π(u+ζ)) e−κ(t−u) du.

(3.11)

Thus, Ft(T ) follows a log-normal distribution and European option pricing for-

mulas can be obtained by following the arguments provided in Black (1976).

Therefore, the price of a European call option is given by

c0 = e−rt
(
F0(T )N(d1)−KN(d1 − σF (t, T ))

)
, (3.12)

where r denotes the risk-free rate which is assumed constant, N denotes the

cumulative distribution function of the standard normal distribution, and d1 is

defined as

d1 =
ln(F0(T )/K) + 1

2
σ2
F (t, T )

σF (t, T )
. (3.13)

The formula of a European put can be derived accordingly and is given by

p0 = e−rt
(
KN(−d1 + σF (t, T ))− F0(T )N(−d1)

)
. (3.14)

Note that, by the inclusion of seasonal volatility, the resulting pricing formulas are

only semi-analytical, i.e. the remaining integral has to be computed numerically;

this can be done with high speed and precision.
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3.4 Data Description and Estimation Procedure

3.4.1 Data

The data set used for our empirical study consists of daily prices of American

style options and corresponding futures contracts written on soybeans and heat-

ing oil. All data are obtained from Bloomberg. In the case of soybeans, the data

set includes prices for call and put options on futures traded at the CBOT ma-

turing between January 2005 and November 2010. CBOT soybean futures and

options are available for seven different maturity months: January, March, May,

July, August, September, and November. For the heating oil options, the data

set includes prices for call and put options traded at the NYMEX with matu-

rity months between January 2005 and December 2010. Heating oil futures and

options are available with maturities in all twelve calendar months.

Several exclusion criteria were applied when constructing our data set. In

order to avoid liquidity related biases, we only consider options with strike prices

between 90% and 110% of the underlying futures prices. Following Bakshi et al.

(1997), we furthermore only consider options with at least six days to maturity

for the same reason. Due to discreteness in the reported prices, we excluded

options with values of less than $ 0.50. Additionally, price observations allowing

for immediate arbitrage profits by exercising the American option are excluded

from our sample.

Since we want to assess the effects of seasonal volatility, it is necessary to

ensure that the seasonal pattern over the course of the calendar year is reflected

in our data. Hence, prices for options maturing in the various contract months

need to be available. Taking this into account, the time periods for our empirical

study extend from July 29, 2004 through June 22, 2009 for the soybean options,

and October 21, 2004 to October 2, 2009 for the heating oil options.

Tables 3.1 and 3.2 summarize the properties of our data set consisting of daily

put and call options prices. The data set covers a total of 156,129 observations

for the soybean options, and 475,472 observations for the heating oil options.

The considered observations consist of options within different moneyness and

maturity categories. When the price of the futures contract is between 90%

and 95% of the option’s strike price, call (put) options are considered as out-
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Table 3.1: Sample Description of Soybean Futures Options

This table shows average prices for the soybean options data set grouped according to moneyness

and time to maturity for both call and put options. The numbers of observations are reported

in parentheses. Prices are obtained from Bloomberg for the period from July 29, 2004 to June

22, 2009.

Call Options Days-to-Expiration
S/K <60 60–180 >180 Subtotal

ITM 1.05–1.1 $ 76.45 $ 96.74 $ 108.74
(3,753) (4,312) (7,728) (15,793)

ATM 0.95–1.05 $ 36.94 $ 66.77 $ 83.11
(9,740) (11,069) (19,967) (40,776)

OTM 0.9–0.95 $ 15.29 $ 42.26 $ 58.28
(4,734) (6,401) (11,525) (22,660)

Subtotal (18,227) (21,782) (39,220) (79,229)

Put Options
ITM 0.9–0.95 $ 85.86 $ 110.47 $ 117.87

(4,440) (5,442) (10,476) (20,358)

ATM 0.95–1.05 $ 39.13 $ 67.08 $ 84.23
(9,660) (10,636) (19,459) (39,755)

OTM 1.05–1.1 $ 13.44 $ 36.69 $ 56.14
(3,861) (4,678) (8,248) (16,787)

Subtotal (17,961) (20,756) (38,183) (76,900)

Total (36,188) (42,538) (77,403) (156,129)

of-the-money (in-the-money). Both call and put options are considered to be

at-the-money when the price of the futures contract is between 95% and 105%

of the option’s strike price. When the price of the futures contract is between

105% and 110% of the option’s strike price, call (put) options are considered as

in-the-money (out-of-the-money). Options with less than 60 days to expiration

are considered to be short-term, while those with 60 to 180 days to expiration are

medium-term and options with more than 180 days to expiration are long-term
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Table 3.2: Sample Description of Heating Oil Futures Options

This table shows average prices for the heating oil options data set grouped according to mon-

eyness and time to maturity for both call and put options. The numbers of observations are

reported in parentheses. Prices are obtained from Bloomberg for the period from October 21,

2004 to October 2, 2009.

Call Options Days-to-Expiration
S/K <60 60–180 >180 Subtotal

ITM 1.05–1.1 $ 18.76 $ 24.92 $ 32.04
(13,597) (23,244) (15,549) (52,390)

ATM 0.95–1.05 $ 9.52 $ 16.67 $ 23.73
(35,417) (65,530) (52,460) (153,407)

OTM 0.9–0.95 $ 4.29 $ 10.89 $ 18.33
(17,600) (35,863) (25,873) (79,336)

Subtotal (66,614) (124,637) (93,882) (285,133)

Put Options
ITM 0.9–0.95 $ 19.57 $ 28.08 $ 38.25

(10,421) (13,852) (6,174) (30,447)

ATM 0.95–1.05 $ 9.40 $ 16.50 $ 23.51
(29,785) (44,513) (28,530) (102,828)

OTM 1.05–1.1 $ 3.95 $ 9.78 $ 16.16
(13,430) (25,282) (18,352) (57,064)

Subtotal (53,636) (83,647) (53,056) (190,339)

Total (120,250) (208,284) (146,938) (475,472)

contracts. Interest rates used in our empirical study are the 3-month USD Libor

rates published by the British Bankers’ Association.

The closed- or semi closed-form solutions presented for the different valuation

models in Section 3.3 are only available for European style options. However,

all options in our data set are American style contracts. To deal with this issue,

we follow the approach taken by Trolle and Schwartz (2009). Using the ana-

lytical approximation of the early exercise premium developed by Barone-Adesi
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and Whaley (1987), we transform each American option price into its European

counterpart.

The approach of Barone-Adesi andWhaley (1987) relies on the constant volatil-

ity Black (1976) framework. The seeming inconsistency of this approach with the

valuation models described above is remedied by the fact that each option is trans-

formed separately. Therefore, the price characteristics regarding the influence of

maturity, moneyness, volatility, and so on should be reflected in the transformed

prices as well.20

Furthermore, it should be noted that the early exercise feature is of minor

importance in our study. For the soybean futures options, the average correction

for the early exercise feature is only 0.68% for both call and put options. In the

case of the options on heating oil futures, the average premium for early exercise

is estimated to be 0.32% for the call options and 0.30% for the put options.

3.4.2 Model Estimation

The four different valuation models presented in Section 3.3 are the subject of

our empirical analysis. In order to compare these model specifications with re-

gard to their ability to price commodity options, we need to specify the models’

parameters. While contract characteristics like the maturity and strike price of

the options to be priced are given and the price of the underlying asset and the

risk-free rate are observable, the model parameters are not. They need to be

estimated from market data.

To do this, we employ an option-implied parameter estimation approach rather

than relying on historical estimation, as the forward-looking implied estimation

of option valuation model parameters can be regarded as standard in both the

academic literature and in practice. The four models are re-estimated on a daily

basis and only the most liquid at-the-money (ATM) options with strike prices

between 95% and 105% of the corresponding futures price are used for the es-

timation, which make up slightly more than half of our overall sample. Hence,

we are able to assess the models’ in-sample fit as well as the models’ ability to

consistently price the cross-section of options out-of-sample.

20See also Trolle and Schwartz (2009) for a discussion regarding the justification of this ap-
proach.
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In the case of the soybean options, the minimum number of contracts used for

the estimation is 27, while the average number is 65. For the heating oil options,

the minimum number of observable ATM prices is 15,21 while on average 206

observations are used for the estimation. The maximum number of parameters to

be estimated is six parameters for the two-factor seasonal volatility model, Model

2-S. Thus, it is ensured that for each observation day the number of observable

prices is not less than the model parameters to be estimated.

Parameters are estimated by numerically minimizing a loss function describing

the pricing errors between theoretical model prices and observed market prices.

As common in the literature, we use the root mean squared error (RMSE) as the

objective function.22

Theoretical model prices are obtained by using the formulas for pricing call

and put options on futures contracts presented in Equations (3.12) and (3.14).

Accordingly, the parameters to be estimated for Model 1 are Φ ≡ {κ, σX}, and
for the extended one-factor model, Model 1-S, Φ ≡ {κ, σX , θ, ζ} must be es-

timated. The standard two-factor model, Model 2, requires the estimation of

Φ ≡ {κ, σX , σY , ρ}, while the parameters Φ ≡ {κ, σX , σY , ρ, θ, ζ} must be esti-

mated for Model 2-S in order to additionally take the seasonal pattern of the

volatility into account. The procedure to obtain the parameter estimates Φ∗
t for

every observation date t can be summarized as follows:

Φ∗
t = argmin

Φt

RMSEt(Φt) = argmin
Φt

√√√√ 1

Nt

Nt∑
i=1

(P̂t,i(Φt)− Pt,i)2. (3.15)

Thereby, Pt,i is the observed market price of option i out of Nt option prices

used for the estimation at time t and P̂t,i(Φt) is the theoretical model price based

on a set of parameters Φt. Parameters are not allowed to take values inconsistent

with the model frameworks. In detail, the following restrictions were applied:

21One should note, however, that there are only 15 out of the 1244 days with less than 50
observations.

22See, e.g., Bakshi et al. (1997). A different approach would have been to minimize the relative
root mean squared errors (RRMSE). Since the RMSE minimizes dollar pricing errors rather
than percentage pricing errors, it gives in-the-money options relatively more weight compared
to the RRMSE.
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κ, σX , σY > 0 and ρ ∈ (−1, 1). Furthermore, the parameters governing the

seasonal pattern of volatility were restricted to ensure their uniqueness: θ ≥ 0

and ζ ∈ [−0.5, 0.5].23

3.5 Empirical Model Comparison

In this section, we report the results of our empirical study. First, we briefly

discuss the implied parameter estimates, and then present the in-sample and out-

of-sample pricing results of the valuation models when both including seasonal

volatility and excluding it. We end the section with an analysis of the pricing

errors and a robustness check of the obtained results.

3.5.1 Estimated Parameters

The mean values and standard errors of the daily re-estimated implied parameters

for the soybean and heating oil options are reported in Tables 3.3 and 3.4, respec-

tively. Although the standard errors are reasonably small, it should be noted that

the obtained parameter estimates are far from being constant over time. This

observation, however, is not peculiar to our study. For example, time-varying

parameter estimates when estimating models implicitly have been observed by

de Munnik and Schotman (1994) in the case of term structure models and Bak-

shi et al. (1997) in the case of equity index options. As a robustness check we

repeat the study by estimating parameters using one week of options data, see

Section 3.5.5.

3.5.2 In-Sample Model Comparison

For each day, we calculate the model prices of each option given by the respective

valuation model and the implied parameter values and compare them with their

observed counterparts. It is worth noting that this is only a true in-sample test

for the ATM options, as only these contracts have been used for the parameter

23For the numerical estimation of the parameters, ρ was limited to −0.999 and 0.999, and for
κ, σX , and σY the lower boundaries of 0.001 were assumed. Furthermore, 10 was used as an
artificial upper boundary for the parameters in the numerical estimation procedure.
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Table 3.3: Implied Parameter Estimates: Soybean Options

This table reports the mean values and standard errors [in brackets] of the implied parameter

estimates for the soybean options data. For the estimation, the cross-section of observed ATM

options with 0.95 ≤ S/K ≤ 1.05 is used. Implied parameter estimates are obtained by minimiz-

ing the root mean squared errors (RMSE) between observed market prices and theoretical model

prices. The models are re-estimated daily.

Model 1 Model 1-S Model 2 Model 2-S

κ 0.3331 0.4782 1.1743 2.3184
[0.0127] [0.0200] [0.0696] [0.0817]

σX 0.3231 0.3321 1.4080 0.2713
[0.0027] [0.0030] [0.0612] [0.0168]

σY - - 1.6203 0.5375
- - [0.0619] [0.0178]

ρ - - −0.5487 −0.1580
- - [0.0182] [0.0230]

θ - 0.1488 - 1.3985
- [0.0031] - [0.0500]

ζ - −0.2073 - −0.1448
- [0.0065] - [0.0070]

estimation. For the in-the-money (ITM) and out-of-the-money (OTM) contracts

one might speak of an out-of-sample test, although not with respect to time, but

with respect to moneyness.

As the models without seasonal volatility are nested in their counterparts with

seasonal volatility, a higher number of parameters must result in a better in-

sample model fit for the latter ones. In contrast, Model 1-S and Model 2 are

not nested in each other, and it will be interesting to see what in-sample gain in

valuation precision can be achieved by incorporating seasonal volatility versus a

second stochastic factor.

Tables 3.5 and 3.6 display the in-sample results. We report average pricing

errors according to two different error metrics: the root mean squared error,

RMSEt =
√

1
Nt

∑Nt

i=1(P̂t,i − Pt,i)2, and the relative root mean squared error,

RRMSEt =
√

1
Nt

∑Nt

i=1(
P̂t,i−Pt,i

Pt,i
)2. Thereby, Pt,i is the observed market price of
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Table 3.4: Implied Parameter Estimates: Heating Oil Options

This table reports the mean values and standard errors [in brackets] of the implied parameter

estimates for the heating oil options data. For the estimation, the cross-section of observed

ATM options with 0.95 ≤ S/K ≤ 1.05 is used. Implied parameter estimates are obtained by

minimizing the root mean squared errors (RMSE) between observed market prices and theoretical

model prices. The models are re-estimated daily.

Model 1 Model 1-S Model 2 Model 2-S

κ 0.5836 0.6201 2.2694 2.2756
[0.0161] [0.0131] [0.0858] [0.0779]

σX 0.4122 0.4125 0.9187 0.2940
[0.0037] [0.0036] [0.0344] [0.0164]

σY - - 1.2090 0.5261
- - [0.0376] [0.0165]

ρ - - −0.3369 −0.0079
- - [0.0203] [0.0216]

θ - 0.1137 - 1.0694
- [0.0037] - [0.0430]

ζ - 0.1755 - 0.1946
- [0.0074] - [0.0071]

option i, P̂t,i is the theoretical model price, and Nt is the number of observations

at date t. As RMSE was employed as the objective function in the estimation,

it is most appropriate to compare the in-sample fit with respect to this error

metric.24 However, due to the non-linear pay-off profile of options contracts, it

is also interesting to see how this relates to relative pricing errors. Furthermore,

we present the results for the nine different maturity and moneyness brackets.

Comparing the models’ pricing fit between the soybean and heating oil options,

one can observe that the RMSE for the former is substantially higher in every

instance. However, this is a direct consequence of different trading units and

price levels of the underlying assets.25 When considering RRMSE, the errors for

24See Christoffersen and Jacobs (2004) on the selection of appropriate error metrics.
25The average price of the front-month futures during the considered time periods is $ 820.08
for soybeans and $ 198.79 for heating oil.
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heating oil are still smaller than for the soybean options, but the difference is

smaller than for the RMSE.

The overall RMSE yields $ 4.51 for Model 1, $ 3.83 for Model 1-S, $ 4.19 for

Model 2, and $ 3.44 for Model 2-S for the soybean options. The corresponding

values for the heating oil options are $ 0.67, $ 0.53, $ 0.56, and $ 0.48. In both

cases, the models incorporating seasonal volatility outperform their counterparts

which do not include this adjustment. Interestingly, Model 1-S, the one-factor

model with seasonality adjustment, yields lower errors thanModel 2, the standard

two-factor model. Thus, allowing for seasonally varying volatility seems to be

more important than adding additional stochastic factors.

Considering the different moneyness categories, the ranking of the models is

retained. The OTM and ITM RMSE are slightly higher than their ATM coun-

terparts for soybeans, while for heating oil the ITM RMSE is slightly lower.

Naturally, the RRMSE increases for OTM and decreases for ITM options. In

both markets, the RMSE is increasing along the maturity brackets. This can be

regarded as a direct consequence of the higher average prices of longer maturity

options in our sample, as can be seen in Tables 3.1 and 3.2. The RRMSE does

not show any clear pattern with respect to maturity.

3.5.3 Out-of-Sample Model Comparison

The most conclusive way to compare different valuation models with respect to

their pricing accuracy is their out-of-sample performance. We thus proceed as

follows: on each day, we compare the observed market prices with the respective

model prices using the parameters estimated on the previous day. Using this

approach, only information from the previous day enters the model evaluation.

As for the in-sample comparison, we report the results for RMSE and RRMSE,

for OTM, ATM, and ITM options, and for the three considered maturity brackets.

The results are provided in Table 3.7 for the soybean contracts, and in Table 3.8

for the heating oil contracts.

The overall RMSE for the four models are $ 4.86, $ 4.33, $ 4.63, and $ 4.05 for

the soybean sample, and $ 0.75, $ 0.63, $ 0.66, and $ 0.60 for the heating oil sample.

Compared to their in-sample counterparts, one can observe that these errors are
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higher which is, of course, not surprising. More importantly, the ranking of the

four models remains identical to the in-sample case: the models including seasonal

volatility outperform their counterparts with constant volatility. Again, the one-

factor model including seasonality, Model 1-S, even beats Model 2, the two-factor

model without seasonality, in terms of RMSE and RRMSE.

Inspecting the results with respect to moneyness and maturity, it becomes ev-

ident that the ranking of the models remains the same in almost all cases and

for both the RMSE and the RRMSE criterion. Only in the case of short-term

OTM options can we observe one exception for soybeans, where the relative error

for Model 2 is marginally lower than for Model 1, and one exception for heating

oil where Model 2 performs better than Model 1-S. Notably, the seasonal volatil-

ity model variants always beat their constant volatility counterparts. Overall,

the obtained results indicate that both a second stochastic factor and seasonal

volatility are important for increasing the pricing accuracy of the models. Com-

bining these components in Model 2-S yields the best out-of-sample performance

in every case.

Lastly, to see whether the observed differences are also statistically signifi-

cant, we perform Wilcoxon signed-rank tests to compare several model variants.

Tables 3.9 (Soybeans) and 3.10 (Heating Oil) present the percentage reductions

of the RMSE when introducing a seasonal volatility component (upper part)

and when adding a second stochastic factor (lower part). The non-parametric

Wilcoxon signed-rank statistic tests whether the median of the differences is sig-

nificantly different from zero.

One can observe that incorporating seasonal volatility reduces the RMSE in

every instance, i.e. for both markets, both models, in-sample and out-of-sample,

for every maturity bracket, and for every moneyness category at a 1% significance

level. To keep the presentation manageable, we do not report the ITM and OTM

results separately; however, they do not deviate qualitatively from the results

presented. The out-of-sample pricing errors of all options for the one- and two-

factor models are reduced by 11.04% and 12.61% for the soybean options, and

by 15.33% and 9.42% for the heating oil options, respectively. The greatest

improvements are observed for short-term heating oil contracts, with a maximal

improvement of 28.17% for the ATM options and the one-factor model.
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The introduction of the second stochastic factor also significantly improves the

pricing accuracy. Only the out-of-sample results in the soybean case for options

with a short time to maturity are less substantial: the observed improvements

are small and, although statistically significant, economically less important.

Overall, our empirical findings provide clear evidence for the benefits of valu-

ation models including a seasonal adjustment to the volatility specification when

considering the pricing of soybean and heating oil futures options. The inclu-

sion of such a component, which is very simple from the modeling point of view,

greatly improves the in-sample and, most importantly, the out-of-sample pricing

accuracy.

3.5.4 Analysis of Pricing Errors

We want to further understand the structure of remaining pricing errors and

therefore analyze these in more detail. Due to the seasonal pattern of volatility

which is documented in Section 3.2, we expect the models without seasonality ad-

justment (Model 1 and Model 2 ) to underestimate the prices of options contracts

maturing in high-volatility months and overestimate the prices in low-volatility

months. For the extended seasonal volatility models (Model 1-S and Model 2-S )

we expect that this systematic mispricing with respect to maturity months is sub-

stantially reduced, although most likely not perfectly, as the seasonal structure

is modeled in a rather restrictive parametric form.

Let PEt,i denote the absolute out-of-sample pricing errors, i.e. PEt,i = P̂t,i −
Pt,i. Again, Pt,i denotes the observed market price of option i at time t and P̂t,i

is the corresponding model price. Figure 3.4 displays the mean absolute pricing

errors depending on the options’ maturity months for soybean and heating oil

options and for the four valuation models. As expected, we can observe a strong

seasonal pattern in the pricing errors with respect to the maturity months for the

case of constant volatility, i.e. Model 1 and Model 2. Allowing volatility to be

seasonal substantially reduces this systematic mispricing.

In particular, for soybeans, it can be observed that until July the mean pricing

errors are positive in the case of the models without seasonal volatility. This

means that these models overestimate the price as the model volatility is higher
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Figure 3.4: Out-of-Sample Mean Pricing Errors by Maturity Months

This figure shows the mean absolute pricing errors for each contract month of the soybean and

heating oil futures options in our data set. The pricing errors are defined as the difference

between theoretical model and observed market prices, where model prices are calculated out-

of-sample based on parameters estimated on the previous day for the four different valuation

models.
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than the actual one for these maturity months. In contrast, pricing errors from

August on, in particular for Model 1 and Model 2, are strongly negative since

actual volatility spikes up and exceeds the annual average once the harvest in

the US commences. In the case of heating oil, one can observe the same inverse

relationship between actual implied volatility (see Figure 3.3) and changes in

pricing errors over the different maturity months.

To study the relationship of pricing errors and other contract specific factors,

we run the following regression:

PE = β0 + β1CALL+ β2MAT + β3MON + β4MON2 + β5Feb

+β6Mar + β7Apr + β8May + β9Jun+ β10Jul + β11Aug

+β12Sep+ β13Oct+ β14Nov + β15Dec+ ϵ.

(3.16)

The considered independent variables include a constant, a dummy variable for

call options (CALL) which takes the value 1 for calls and 0 for puts, the time

to maturity in years (MAT ), the moneyness of the option (MON), and the

moneyness squared (MON2). Furthermore, to capture the maturity month effect

documented above, dummy variables for all contract months but January are

included.26

The results of the regression analysis are summarized in Table 3.11. Signifi-

cance of the coefficients is evaluated based on heteroscedasticity-robust t-statistics

computed by the method of Newey–West.

The coefficients of the CALL variable are negative and significant at the 1%

level for heating oil while not being significant for soybeans. The time to maturity,

MAT , seems to be negatively related with the pricing errors for the majority of

specifications. The coefficients for moneyness and moneyness squared are all

highly significantly positive (MON) and negative (MON2), respectively. This

indicates a “smile effect” across strikes which is not captured by the models.

Most of the maturity month dummies are significant for all model specifi-

cations and for both soybeans and heating oil options.27 As noted above, the

trigonometric seasonality function is not able to remove the seasonality effect en-

26Since for soybeans there are no contracts with maturity in February, April, June, October,
or December, these terms are dropped in the soybean case.

27Please note that the month dummies capture the pricing errors relative to the January con-
tract since there is no dummy for January.
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tirely. However, the size of the coefficients for the different maturity months is

substantially reduced.

Finally, the reported values of the adjusted R2 show how much of the variation

in pricing errors can be explained by the applied regression model. In this context,

a lower R2 implies a lower systematic pricing error. In the case of soybeans,

when introducing seasonal volatility, the adjusted R2 decreases from 0.0519 to

0.0237 and from 0.0387 to 0.0163 for the one- and two-factor models, respectively.

For heating oil, the adjusted R2 is reduced from 0.0546 to 0.0312 for the one-

factor models and from 0.0458 to 0.0322 for the two-factor models. Hence, the

model extensions, accounting for seasonal volatility patterns, reduce systematic

mispricing.

3.5.5 Robustness Check

As a robustness check with respect to the daily estimation approach, we repeat

the entire study on a weekly basis, i.e. we estimate model parameters using a

week of option prices and consider the pricing of the next week’s options in the

out-of-sample analysis. Naturally, pricing errors are higher, but the overall result

of the ranking of the different models remains unchanged.

Due to space constraints, we do not report detailed results, but summarize the

main findings. For the complete data set, the in-sample (out-of-sample) reduction

of RMSE due to the introduction of seasonal volatility is 12.21% (7.00%) for the

one-factor and 11.74% (5.06%) for the two-factor model. In the case of heating

oil, the reductions are 15.40% (7.13%) and 9.30% (3.91%) for the one- and two-

factor model, respectively. All these reductions are significant at the 1% level.

The introduction of a second stochastic factor reduces the overall RMSE in the

soybean sample by 6.77% (3.79%) and by 6.27% (1.78%) for the model without

and with seasonal volatility, respectively. Thereby, it is worth noting that the

error reductions for the short-term contracts are not significant, fostering the

impression that the second stochastic factor is more important in explaining the

dynamics at the long end of the futures curve. For heating oil, the two-factor

models show a RMSE which, in comparison to the one-factor models, is reduced

by 12.36% (5.77%) for the case without seasonal volatility and by 6.04% (2.50%)
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for the case with seasonal volatility. Again, these results are significant at the

1% level. The reductions in pricing errors are, with few exceptions, significant

for all time to maturity and moneyness brackets.

3.6 Conclusion

In this chapter, we study the impact of seasonally fluctuating volatility in com-

modity markets on the pricing of options. These seasonal effects are well-known

in the literature, but their impact on commodity options pricing has never been

investigated. We extend two standard continuous time commodity derivatives

valuation models to incorporate seasonality in volatility. Using an extensive data

set of soybean and heating oil options, we compare the empirical options pricing

accuracy of these models with their constant volatility counterparts. The results

show that incorporating the stylized fact of seasonally fluctuating volatility sig-

nificantly improves options valuation performance and is more important than

introducing a second stochastic factor. This leads to the conclusion that season-

ality in volatility should be accounted for when dealing with options on seasonal

commodities.

Future research could extend our results in various ways. With respect to

the modeling of seasonality, it might be worth investigating which parametric

assumption performs best for different markets. Compared to the trigonomet-

ric approach taken in this chapter, one might model this component in other

ways, e.g. by using simple step functions, allowing for more complex seasonality

patterns while relying on a higher number of parameters. As a next step, the

importance of seasonality in a stochastic volatility setting can be analyzed. It is

not clear what fraction of the fluctuation in volatility can be captured by season-

ality and what fraction remains stochastic. The next chapter, emphasizes this

and presents a stochastic volatility model which takes into account seasonality in

the variance process.
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3.7 Appendix

As outlined in Section 3.3, the logarithm of the spot price is defined as lnSt =

Xt + s(t) and lnSt = Xt + Yt + s(t) for the one- and two-factor models, respec-

tively. Applying Ito’s Lemma to Equation (3.2) and to Equations (3.5) and (3.6),

respectively, yields for the one-factor model, Model 1-S,

lnSt = X0e
−κt + µ(1− e−κt) + σX

t∫
0

eθ sin(2π(u+ζ))e−κ(t−u) dZX
u + s(t) (3.17)

and for the two-factor model, Model 2-S,

lnSt = X0 + µt+ σX

t∫
0

eθ sin(2π(u+ζ)) dZX
u

+Y0e
−κt + σY

t∫
0

e−κ(t−u) dZY
u + s(t).

(3.18)

The mean and variance of lnSt can be obtained for the one-factor model as

E[ln(St)] = X0e
−κt + µ(1− e−κt) + s(t) (3.19)

and

Var[ln(St)] = σ2
X

t∫
0

e2θ sin(2π(u+ζ))e−2κ(t−u) du (3.20)

and for the two-factor model as

E[ln(St)] = X0 + µt+ Y0e
−κt + s(t) (3.21)

and

Var[ln(St)] = σ2
X

t∫
0

e2θ sin(2π(u+ζ)) du+ (1− e−2κt)
σ2
Y

2κ

+2σXσY ρ
t∫
0

eθ sin(2π(u+ζ))e−κ(t−u) du.

(3.22)

Since all state variables are normally distributed, the logarithm of the spot

price is also normally distributed. Our model is formulated directly under the

risk-neutral measure, so the price of the futures contract equals the expected spot
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price. For the one-factor model, the futures price is therefore given by

lnF0(T ) = lnE[ST ]

= E[ln(ST )] +
1
2
Var[ln(ST )]

= X0e
−κT + µ(1− e−κT ) + s(T )

+1
2
σ2
X

T∫
0

e2θ sin(2π(u+ζ))e−2κ(T−u) du

(3.23)

and for the two-factor model by

lnF0(T ) = X0 + µT + Y0e
−κT + s(T ) + 1

2
σ2
X

T∫
0

e2θ sin(2π(u+ζ)) du

+(1− e−2κT )
σ2
Y

4κ
+ σXσY ρ

T∫
0

eθ sin(2π(u+ζ))e−κ(T−u) du.

(3.24)

Analogous to Schwartz and Smith (2000), we refer to lnFt(T ) in terms of the

time t state variables. Applying this to (3.23) and (3.24), all terms except the

state variables are deterministic and defined as constant c. Hence, the variance

σ2
F (t, T ) of lnFt(T ) for the one-factor model can be derived as

σ2
F (t, T ) = Var[lnFt(T )]

= Var[Xte
−κ(T−t) + c]

= σ2
X e−2κ(T−t)

t∫
0

e2θ sin(2π(u+ζ))e−2κ(t−u) du,

(3.25)

and for the two-factor model as

σ2
F (t, T ) = Var[Xt + Yte

−κ(T−t) + c]

= σ2
X

t∫
0

e2θ sin(2π(u+ζ)) du+
σ2
Y

2κ
e−2κ(T−t) (1− e−2κt)

+ 2σXσY ρ e−κ(T−t)
t∫
0

eθ sin(2π(u+ζ)) e−κ(t−u) du.

(3.26)



Chapter 4

Seasonal Stochastic Volatility:

Implications for the Pricing of

Commodity Options

4.1 Introduction1

Trading in commodity derivatives markets has experienced a tremendous growth

over the last decade. Increased volatility of commodity prices created the need for

efficient risk management strategies. This is especially true for energy markets, as

energy is a critical input factor for many industrial firms. The ability to efficiently

manage these price risks has direct consequences for the profitability of firms and

economic growth. Commodity options provide a powerful risk management tool,

but accurately pricing these contracts is not a trivial task as the main input factor,

the volatility, is not observable. Therefore, the accurate modeling of volatility in

these markets is of critical importance.

Although many commodities exhibit significant seasonal variations, most of

the existing literature concerning the pricing of commodity contingent claims

solely considers the crude oil market or other markets without seasonality, such

as copper or gold. Brennan and Schwartz (1985), Gibson and Schwartz (1990),

Schwartz (1997), Schwartz and Smith (2000), and Casassus and Collin-Dufresne

1This chapter is based on a homonymous paper co-authored by Marcel Prokopczuk and Markus
Rudolf.
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(2005) develop one-, two-, and three-factor models in a constant volatility frame-

work and study the empirical performance for pricing crude oil, copper, gold, and

silver futures.

Sørensen (2002) adds a seasonal component at the price level to the constant

volatility two-factor model of Schwartz and Smith (2000) and applies it to the

wheat, corn, and soybean markets. Similarly, Manoliu and Tompaidis (2002) and

Cartea and Williams (2008) apply this model to the US and UK natural gas

futures market, respectively.

Back et al. (2010) extend this work by allowing the volatility to vary season-

ally.2 They show that considering seasonality in the volatility greatly improves

the pricing performance for heating oil and soybean options. However, all the

previously outlined work assumes that volatility is deterministic which is clearly

a very strong assumption as it cannot generate the volatility smile, which is also

observed in commodity markets.3

Trolle and Schwartz (2009) develop a Heath, Jarrow, and Morton (1992)-type

stochastic volatility model for the pricing of commodity futures and options but

do not consider seasonality as they apply their model only to the crude oil mar-

ket. The only articles allowing for seasonal and stochastic volatility we are aware

of are Geman and Nguyen (2005) and Richter and Sørensen (2002), who consider

the pricing of soybean futures and options. However, their models only facilitate

pricing formulas for futures and options that are computationally very burden-

some. Accordingly, they do not study the options pricing ability of their models

at all.

In this essay, we suggest an extension of the Heston (1993) stochastic volatility

model that reflects the seasonal nature of volatility. In contrast to the models

proposed by Geman and Nguyen (2005) and Richter and Sørensen (2002), our

model has the crucial advantage of enabling us to compute option values in an

efficient way which is of significant importance if one wants to apply the model

in practice. This fact allows us to empirically study the pricing performance of

our model using an extensive data set of options prices.

2See also Chapter 3.
3See, e.g., Trolle and Schwartz (2009) and Liu and Tang (2011).
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Figure 4.1: Historical Volatility of Natural Gas Futures

This figure shows historical volatilities of natural gas front-month futures from January 1997 to

December 2010. The historical volatilities were derived by calculating the annualized standard

deviation of the daily returns for each observation month. Prices are from Bloomberg.

Our model is applicable to every commodity market exhibiting seasonality in

volatility. In our empirical analysis, we focus on the natural gas market, which is a

prominent example of a market with stochastic and seasonal volatility. Historical

volatilities of natural gas front-month futures are shown in Figure 4.1. It can be

seen that volatility is far from being constant over time. In fact, volatility seems to

fluctuate stochastically while following a very pronounced seasonal pattern.4 For

energy markets like the natural gas market, weather-induced demand shocks lead

to a higher volatility of futures prices during the winter, whereas for agricultural

commodities, volatility is usually highest during the summer prior and throughout

the harvesting period when inventory levels are low and significant uncertainty

regarding the new harvest is resolved.5

4See also Suenaga et al. (2008) and Doran and Ronn (2008) for empirical studies of the natural
gas market. Both find that volatility is highly seasonal and varies over time.

5Refer to Anderson (1985), Khoury and Yourougou (1993), and Karali and Thurman (2010)
for empirical studies on the seasonal behavior of commodity price volatility.
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We use a large data set of New York Mercantile Exchange (NYMEX) natural

gas options and corresponding futures contracts spanning the time period from

January 2007 to December 2010 which consists of 367,469 option price observa-

tions. Additionally, we employ ten years of futures data spanning the period from

January 1997 to December 2006 to estimate our model under the physical mea-

sure using a Bayesian Markov Chain Monte Carlo (MCMC) approach. In doing

so, we follow Bates (2000) and Broadie et al. (2007) and abstain from a pure

cross-sectional (re)-calibration exercise as in Bakshi et al. (1997) but estimate all

parameters that should be equal under the physical and the risk-neutral measure

from historical data.

The results of our empirical study show that our model is superior for the pric-

ing of commodity options with seasonalities. Compared to the standard stochastic

volatility model of Heston (1993), our model yields substantial improvements in

pricing accuracy. The obtained results are both statistically and economically

significant and consistent for different robustness checks, implying that the pro-

posed seasonal model should be considered when valuing options on commodities

that undergo a seasonal cycle.

The remainder of this chapter is organized as follows. Section 4.2 lays out the

model for pricing options under seasonal volatility. Section 4.3 describes the data

set and the estimation approach. Section 4.4 presents and discusses the empirical

results. Section 4.5 concludes. The Appendix in Section 4.6 contains additional

details on the numerical implementation of the model.

4.2 Model Description

In this section, we present a stochastic volatility model that incorporates a sea-

sonal adjustment of the variance process to capture the empirically observed sea-

sonal behavior of many commodities. After introducing the price and variance

dynamics, we derive the valuation formula for European call options.
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4.2.1 Commodity Futures Price Dynamics

The underlying of almost any exchange traded commodity option is not the

commodity’s spot price but the price of a corresponding futures contract. We

therefore start by specifying the dynamics of the futures price. The alternative

approach would be to make an assumption on the dynamics of the spot price and

derive the futures price dynamics within this model. However, this approach has

the severe disadvantage that it is generally not possible to derive a closed-form so-

lution for the commodity futures price in a stochastic volatility framework, which

hinders the derivation of a computationally efficient options pricing formula.6

The commodity futures price dynamics under the physical measure are as-

sumed to follow

dFt(T ) = µFt(T )dt+ Ft(T )
√
VtdWF,t (4.1)

dVt = κ(θ(t)− Vt)dt+ σ
√

VtdWV,t (4.2)

θ(t) = θ eη sin(2π(t+ζ)) (4.3)

where Ft(T ) is the futures price at t with maturity T and µ is the drift of the

futures price process under the physical measure. Vt is the instantaneous variance

of the futures returns described through a square-root process as used by Cox

et al. (1985), κ is the mean-reversion speed of the variance process, θ(t) is the

long-term variance level to which the process reverts, and σ is the volatility-of-

volatility parameter. WF,t and WV,t are two standard Brownian motions with

instantaneous correlation ρ.

If we set θ(t) to be constant, the model is identical to the stochastic volatility

model of Heston (1993). However, in contrast to Heston’s model, the long-term

variance parameter θ(t) is generalized to be a deterministic function of time. The

long-term mean variance level is assumed to be θ, which is superimposed by a

6The reason that it is not possible to derive a closed-form futures pricing formula is that the spot
commodity is usually assumed to be non-tradable and therefore the market is incomplete (see,
e.g., Schwartz (1997)). Furthermore, empirical studies have demonstrated that a second, mean-
reverting factor is needed to properly price futures contracts. The mean-reversion property
together with volatility being stochastic prohibits the derivation of a closed-form futures pricing
formula (see Richter and Sørensen (2002) and Geman and Nguyen (2005)). In contrast, as
the futures contract is clearly tradable, no mean-reversion can prevail under the risk-neutral
measure as otherwise arbitrage opportunities would exist.
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seasonal component as defined in Equation (4.3). The shape of the seasonal ad-

justment is specified by two parameters: the size of the seasonal effect is governed

by η (amplitude of the sine-function) and ζ (shift of the sine-function along the

time-dimension). To ensure the parameters’ uniqueness, we impose η ≥ 0 and

ζ ∈ [0, 1], while January 1 represents the time origin. In general, the model setup

allows θ(t) to be of any functional form. We use the simple trigonometric func-

tion as it provides a reasonable compromise of good fit to the observed volatility

pattern for many seasonal commodity markets while introducing only two ad-

ditional parameters, facilitating model estimation in empirical applications.7 In

the following, we will refer to this Seasonal Stochastic Volatility Model as SSV

Model. For η = 0, the SSV Model nests a non-seasonal specification of this

Stochastic Volatility Model, labeled as SV Model.

4.2.2 Valuation of Options

To derive the pricing formula for European call options, we change to the risk-

neutral measure. Assuming constant market prices of risk, we obtain

dFt(T ) = Ft(T )
√

VtdW
Q
F,t (4.4)

dVt = [κ(θ(t)− Vt)− λVt] dt+ σ
√

VtdW
Q
V,t (4.5)

θ(t) = θ eη sin(2π(t+ζ)). (4.6)

Thereby, λ denotes the market price of risk for the variance process and WQ
F,t

and WQ
V,t are standard Brownian motions under the risk-neutral measure with

instantaneous correlation ρ. Under the risk-neutral measure, the futures price

has to be a martingale and hence, the price process exhibits a drift of zero.

We have extended Heston’s model by allowing the long-term variance level to

vary over the calendar year in a deterministic fashion. Therefore, the fundamen-

tal partial differential equation is, except for the time dependence, identical to

Heston’s solution. Any claim U on F must satisfy

∂U

∂t
+
1

2
F 2V

∂2U

∂F 2
+[κ(θ(t)−V )−λV ]

∂U

∂V
+
1

2
V σ2∂

2U

∂V 2
+σρFV

∂2U

∂V ∂F
= 0. (4.7)

7We have also tried to use a more complex specification introducing four additional parameters;
however, our empirical results show very little or no benefit from doing so.
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Heston derives a quasi closed-form solution for European call options in terms of

characteristic functions, which for futures contracts is given as

c(F,K, V, T ) = e−r(T−t)[FP1 −KP2] (4.8)

with

Pj =
1

2
+

1

π

∫ ∞

0

Re

[
eiϕ lnKfj(F, V, t, T, ϕ)

iϕ

]
dϕ, j = 1, 2 (4.9)

where c is the price of a European call option on a futures contract F at time t

with strike price K and maturity T ; i denotes the imaginary unit, Re [.] returns

the real part of a complex expression, and fj is a characteristic function.

As shown by Heston (1993) and more generally by Duffie et al. (2000), the

characteristic function solution is of the form

fj = eCj(T−t,ϕ)+Dj(T−t,ϕ)V+iϕ lnF . (4.10)

With τ = T − t, the resulting system of ordinary differential equations (ODE)

for Cj(τ, ϕ) and Dj(τ, ϕ) to be solved reads

∂Dj

∂τ
=
1

2
σ2D2

j − (bj − ρσϕi)Dj + ujϕi−
1

2
ϕ2 (4.11)

∂Cj

∂τ
=κθ(τ)Dj (4.12)

where u1 =
1
2
, u2 = −1

2
, b1 = κ+ λ− ρσ, and b2 = κ+ λ.

The important aspect to note is that only the second, simple ODE is affected

by our model extension as the long-term variance level does not appear in the

first ODE. Consequently, the solution of Equation (4.11) remains unchanged from

Heston’s solution and is given by

Dj(τ, ϕ) =
bj − ρσϕi+ d

σ2

[
1− edτ

1− gedτ

]
(4.13)
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with

g =
bj − ρσϕi+ d

bj − ρσϕi− d
(4.14)

d =
√
(ρσϕi− bj)2 − σ2(2ujϕi− ϕ2). (4.15)

The solution of Equation (4.12) can be expressed by means of the hyperge-

ometric function. However, we found that a direct numerical integration is the

fastest way to solve this ODE while maintaining high precision.8 In general, it

should be noted that the proposed model extension is well tractable with regard to

its computational demand, rendering real-world applications feasible. Details on

the implementation are given in the Appendix. Prices for European put options

can easily be obtained through the put-call-parity.

4.3 Data Description and Estimation Procedure

4.3.1 Data

For our empirical study, we use a data set consisting of daily prices of physically

settled natural gas futures and American style options written on these futures

contracts traded at the NYMEX. A short position in the futures contract commits

the holder to deliver 10,000 million British thermal units (mmBtu) of natural gas

at Sabine Pipe Line Co.’s Henry Hub in Louisiana. Prices are quoted as US dollars

and cents per mmBtu. Delivery has to take place between the first and the last

calendar day of the delivery month and should be made at an uniform daily and

hourly rate.9 As interest rates, we use the 3-month USD Libor rates published

by the British Bankers’ Association. All data are obtained from Bloomberg.

The futures data set spans the time period from January 2, 1997 to December

31, 2010, whereas the available options data set spans the period January 3, 2007

to December 31, 2010 and comprises 1,008 trading days. Call and put options and

8In the case of the SV Model, the closed-form solution for this ODE is of the form Cj(τ, ϕ) =
κθ
σ2

[
(bj − ρσϕi+ d)τ − 2 ln

(
1−gedτ

1−g

)]
.

9See the webpage of the CME group, www.cmegroup.com, for details on the contract specifi-
cations.
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the corresponding futures contracts are available with maturities in each calendar

month. Therefore, we use options with delivery months from February 2007 to

December 2011. While trading in the futures contract ceases three business days

prior to the first day of the delivery month, trading in the options written on

this futures contracts ends on the business day before the last trading day of the

futures.

The minimum price fluctuation for the natural gas options is $ 0.001. Due to

this discreteness in reported prices, we exclude options with a price of less than

$ 0.01. Furthermore, following Doran and Ronn (2008) and Trolle and Schwartz

(2009), we exclude options being very close to expiration and long-term contracts

since for these open interest is usually lower and liquidity tends to be low as well,

i.e. we consider options with a maturity of at least 15 and not more than 365

days. For the same reasons, we only consider options with a moneyness between

90% and 110%.

Table 4.1 summarizes the properties of the call and put options comprising

our data set. The total number of observations is 367,469 which we divide in

different moneyness and maturity brackets for the subsequent analysis. We refer

to a call (put) option as out-of-the-money, OTM, (in-the-money, ITM) when

the price of the futures contract is between 90% and 95% of the option’s strike

price. When the price of the futures contract is between 95% and 105% of the

option’s strike price, options are considered to be at-the-money, ATM. Finally,

for futures prices between 105% and 110% of the option’s strike price, call (put)

options are referred to as ITM (OTM). We consider options with less than 60

days to expiration as short-term, options with 60 to 180 days to expiration as

medium-term, and options with 180 to 365 days to expiration as long-term.

The pricing formulas obtained in Section 4.2 are for European options while

the options in our data set are of the American style. To take this aspect into

account, we follow Trolle and Schwartz (2009) and transform each American

option price into its European counterpart by approximating the early exercise

premium using the procedure developed by Barone-Adesi and Whaley (1987).

Since the adjustment is carried out for each option separately, the options’ price

characteristics should not be altered and our analysis should not be affected,

even though the analytical approximation approach of Barone-Adesi and Whaley
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Table 4.1: Sample Description of Natural Gas Futures Options

This table shows average prices for the natural gas futures options grouped according to mon-

eyness and time to maturity for both call and put options. The numbers of observations are

reported in parentheses. Prices are obtained from Bloomberg for the period from January 3,

2007 to December 31, 2010.

Call Options Days-to-Expiration
S/K <60 60–180 180–365 Subtotal

ITM 1.05–1.1 $ 0.7191 $ 1.0140 $ 1.2375
(6,105) (13,082) (15,922) (35,109)

ATM 0.95–1.05 $ 0.4309 $ 0.7490 $ 0.9792
(16,688) (36,902) (41,978) (95,568)

OTM 0.9–0.95 $ 0.2354 $ 0.5318 $ 0.7225
(10,039) (23,028) (23,257) (56,324)

Subtotal (32,832) (73,012) (81,157) (187,001)

Put Options

ITM 0.9–0.95 $ 0.7452 $ 1.0263 $ 1.2171
(7,947) (17,562) (19,728) (45,237)

ATM 0.95–1.05 $ 0.4349 $ 0.7163 $ 0.9423
(16,470) (35,320) (41,109) (92,899)

OTM 1.05–1.1 $ 0.2174 $ 0.4784 $ 0.6989
(7,410) (16,185) (18,737) (42,332)

Subtotal (31,827) (69,067) (79,574) (180,468)

Total (64,659) (142,079) (160,731) (367,469)

(1987) is based on a constant volatility framework in contrast to the present

stochastic volatility setting.10 As we only consider options with a time to maturity

of not more than one year and the considered strike range excludes options which

are deep ITM, the American style feature is of limited importance. Based on the

approximation of Barone-Adesi and Whaley (1987), the average premium for the

10Refer to Trolle and Schwartz (2009) for a more detailed discussion and justification of this
approach.
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right of early exercise amounts to only 0.29% of the options value for calls and

0.28% for puts.

4.3.2 Estimation Approach

Every stochastic volatility model poses a substantial estimation problem as the

volatility path is not observable. Therefore, one needs to estimate not only the

model parameters but also the latent volatility. A standard approach found in

numerous articles is based on a pure cross-sectional calibration, such as in Bakshi

et al. (1997). For each observation date, one minimizes an objective function to

fit the observed option prices on that particular date. This procedure is repeated

for every observation date and, thus, allows the parameters to fluctuate freely

through time, which is, of course, inconsistent with the assumed model dynamics

in which the parameters are assumed to be constant.

To reduce this inconsistency and to make better use of available information,

we follow a different approach which has been suggested by Bates (2000) and

Broadie et al. (2007) and comprises a two-step procedure. The first step consists

of estimating all parameters that should be equal under the physical and the

risk-neutral probability measure using return observations. We therefore make

use of a long time series of data to infer most of the model parameters. Given

these parameters, we use in a second step the cross-section of options data to

estimate the risk premium λ and the current variance level Vt.
11

Since the volatility process is not observable, simple estimation methods such

as maximum likelihood methods cannot be applied for the first step. Therefore,

we follow Jacquier et al. (1994) and Eraker et al. (2003) and apply a Markov Chain

Monte Carlo (MCMC) estimation approach, which is a Bayesian simulation-based

technique. This approach allows us to estimate the unknown model parameters

and the unobservable state variables, i.e. the volatility path, simultaneously.12

11A third possibility is to estimate all parameters jointly from a time series of returns and
options prices, as in Eraker (2004). However, as Broadie et al. (2007) point out, this approach
is hindered by the computational burden and substantially constraints the amount of data
that can be used. For example, Eraker (2004) restricts his analysis to an average of three
options per day.

12For an excellent overview of MCMC estimation techniques with financial applications, see
Johannes and Polson (2006).
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In order to be able to estimate the models, it is necessary to express them in

discretized form. Defining Yt = lnFt and using a simple Euler discretization, we

get13

Yt = Yt−∆t + µ(t)∆t+
√

Vt−∆t ε
Y
t (4.16)

and for the variance process

Vt = Vt−∆t + κ(θ(t)− Vt−∆t)∆t+ σ
√
Vt−∆t ε

V
t . (4.17)

The innovations εYt and εVt are normal random variables, i.e. εYt ∼ N(0,∆t)

and εVt ∼ N(0,∆t) with correlation ρ. The series Yt is constructed by con-

catenating futures prices with different maturity months yielding a series of fu-

tures prices with almost constant maturity. As this price series also contains a

seasonal component, we allow the mean drift to fluctuate seasonally by setting

µ(t) = µ + ϕ sin(2π(t + ξ)). For the SV Model, we set θ(t) = θ and for the

SSV Model we set θ(t) = θ eη sin(2π(t+ζ)). In the following implementation, we

estimate both models using daily data.

The main piece of interest in Bayesian inference is the posterior distribution

p(Θ, V |Y ) which can be factorized as

p(Θ, V |Y ) ∝ p(Y |V,Θ)p(V |Θ)p(Θ) (4.18)

where Y is the vector of observed log prices, V contains the time series of volatility,

Θ is the set of model parameters, p(Y |V,Θ) is called the likelihood, p(V |Θ)

provides the distribution of the latent volatility, and p(Θ) is the prior, reflecting

the researcher’s beliefs regarding the unknown parameters. The MCMC method

provides a way to sample from this high-dimensional complex distribution. The

main idea is to break down the high-dimensional posterior distribution into its

low-dimensional complete conditionals of parameters and latent factors which can

be efficiently sampled from. The output of the simulation procedure is a set of G

draws, {Θ(g), V (g)}g=1:G, that forms a Markov chain and converges to p(Θ, V |Y ).

Given the sample from p(Θ, V |Y ), information about individual parameters can

then be obtained from the respective marginals of the posterior distribution.

13As we work with daily data, the discretization bias is negligible.
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Whenever possible, we use conjugate priors and apply a Gibbs sampler.14 The

basic SV Model is identical to the model analyzed in Eraker et al. (2003); we

therefore follow their prior specifications. The distribution of Vt is non-standard

but can be sampled using a random walk Metropolis algorithm which is calibrated

to yield an acceptance probability between 30% and 50%.15 For the seasonal

parameters, we use a Gibbs sampler with an exponential prior for η, and an

independence Metropolis algorithm with a uniform density over the unit interval

as the proposal density for ζ. We use 100,000 simulations, i.e. G = 100, 000, and

discard the first 30,000 as ‘burn-in’ period of the algorithm.

Given the structural model parameters estimated under the physical measure

according to the MCMC approach, the market price of risk λ and the current

variance level Vt can be inferred from options data in the second step of our

estimation procedure. Thereby, theoretical option prices can be obtained using

the pricing formulas presented in Section 4.2.

The two quantities λ and Vt are estimated by minimizing a loss function cap-

turing the fit between the theoretical model prices and the prices observed at

the market. For robustness reasons, we employ two different objective functions,

both of them popular in the literature: the first metric, e.g. used by Bakshi et al.

(1997), is the root mean squared error of prices ($-RMSE), i.e.

Φ∗
t = argmin

Φt

$-RMSE (Φt) = argmin
Φt

√√√√ 1

Nt

Nt∑
i=1

(P̂t,i(Φt)− Pt,i)2. (4.19)

Hence, squared differences between observed market prices, denoted by Pt,i, and

obtained model prices, P̂t,i(Φt), are minimized. Nt denotes the number of con-

tracts available at date t and Φt = {λ, Vt} the unknown quantities to be estimated.

The second metric, e.g. used by Broadie et al. (2007), is the RMSE of implied

volatilities (IV-RMSE), i.e.

Φ∗
t = argmin

Φt

IV-RMSE (Φt) = argmin
Φt

√√√√ 1

Nt

Nt∑
i=1

( ˆIV t,i(Φt)− IVt,i)2. (4.20)

14See Geman and Geman (1984).
15See Johannes and Polson (2006).
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Here, IVt,i is the implied Black (1976) volatility of the observed market price and
ˆIV t,i(Φt) is the implied volatility of the theoretical model price.

The first approach is more natural as one uses the observed quantities directly

and is therefore ‘model-free’. However, it puts more weight on the more expensive

ITM options and on options having a longer time to maturity. Minimizing the

implied volatility metric provides an intuitive way of weighting all observations

more or less equally.16 In Section 4.4, we present the results for both objective

functions, but base the discussion mainly on the IV-RMSE.

4.4 Results

In this section, we report the results of our empirical study. After discussing the

obtained parameter estimates for the two models, we present in-sample and out-

of-sample results regarding the models’ options pricing performance. At the end

of this section, we provide information on several robustness checks conducted.

4.4.1 Estimated Parameters

In the first step of the estimation procedure, the structural model parameters

are estimated under the physical measure using the time series of futures prices

with the presented MCMC approach. To do this, we have to select a futures time

series. The average time to maturity of our options data set is 170 days, which is

approximately 6 months. Therefore, we use the time series of the futures contract

with 6 months to maturity to estimate our model.

The obtained parameter estimates and the corresponding standard errors are

reported in Table 4.2. Overall, the parameter estimates are of reasonable mag-

nitude. We find a positive correlation ρ of 0.29 and 0.40 between the natural

gas futures price and the variance processes for the SV and the SSV Model,

16For the numerical estimation of the two parameters, Vt was limited to the interval 0 to 10 and
λ was restricted not to exceed an upper boundary of 100 while the lower boundary is given by
−κ to ensure the mean-reversion property of the variance process. One should note, however,
that these artificial boundaries were non-binding in almost all cases. Only the artificial upper
boundary for λ was binding once for the SV Model and never for the SSV Model in the
case of the estimation minimizing implied volatility errors, and for the estimation minimizing
price errors this boundary was binding three times for the SV Model and once for the SSV
Model during the 1,008 trading days in our sample.
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Table 4.2: Physical Measure Parameter Estimates

This table provides MCMC estimates of model parameters using a continuous series of six-

months futures prices from 1997 to 2006. Parameter estimates and standard errors [in brackets]

are the mean and standard deviation of the posterior distributions. The estimation is based on

100,000 replications, the first 30,000 are discarded as burn-in.

SV Model SSV Model

κ 7.7364 2.1748
[2.7110] [1.0762]

θ 0.1037 0.1604
[0.0313] [0.0325]

σ 0.7717 0.5584
[0.1353] [0.0871]

ρ 0.2916 0.3981
[0.0887] [0.0837]

η - 0.3147
- [0.1278]

ζ - 0.4984
- [0.0823]

respectively. This result is in line with Trolle and Schwartz (2010), who also

observe a moderately positive correlation in the case of natural gas, although for

a different time period.

The long-run mean of the variance process, θ, is lower for the SV Model

than for the SSV Model. Specifically, the estimated θ value for the SV Model

corresponds to a long-run average volatility of 32.2%. In the case of the SSV

Model, the obtained parameter estimates translate into a minimum of 34.2%

and a maximum of 46.9% for the time-varying seasonal long-run mean volatility.

On the other hand, the vol-of-vol parameter, σ, is estimated higher for the SV

Model increasing the volatility of the variance process. Therefore, it seems that

the error induced by ignoring the seasonal fluctuations of the variance levels is

captured by a higher variability while inducing a downward bias in the long-term

level estimate.
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Thereby, the estimation result of ζ, the parameter describing the shift of the

seasonality function along the time-axis, implies θ(t) to be the highest in late

September and early October, while reaching a minimum in late March and early

April. This result fits the empirical observations regarding a higher volatility

during the winter than during the summer months by, e.g., Suenaga et al. (2008)

and Geman and Ohana (2009). The economic rationale for this pattern is the

high sensitivity of natural gas prices to weather-related demand shocks during the

winter since supply and demand are relatively price inelastic. The high values of

θ(t) during the fall pull up the volatility, while in early spring, by the end of the

cold season, the drift component brings the volatility down again.

The values of the current volatility
√
V t and the variance risk premium λ,

which are re-estimated daily from the cross-section of observed option prices

in the second step of the employed estimation procedure, are summarized in

Table 4.3. The minimum number of option prices employed for the estimation

procedure on an individual day is 106 while the average number is 365. The

current volatility level for both models, with and without the seasonal component,

is on average approximately around 60%; only when using the $-RMSE as the

objective function does the SV Model yield a slightly higher estimate of 68%.

Table 4.3: Risk-Neutral Measure Parameter Estimates

This table reports mean values and standard errors [in brackets] obtained in the estimation

procedure according to both the IV-RMSE and the $-RMSE criterion for the SV and the SSV

Model. For the estimation, the cross-section of observed natural gas futures options is used as

outlined in Section 4.3. Given the physical measure parameter estimates as reported in Table

4.2, the current volatility level
√
V t and the risk premium λ are estimated for each observation

day during the period January 3, 2007 to December 31, 2010.

IV-RMSE $-RMSE

SV Model SSV Model SV Model SSV Model
√
V t 0.6256 0.5989 0.6795 0.6197

[0.0072] [0.0061] [0.0088] [0.0065]

λ 0.4542 2.9424 1.7451 3.3420
[0.1638] [0.1066] [0.2479] [0.1400]
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Figure 4.2: Estimated Current Volatility Level

This figure shows the obtained current volatility level
√
V t during the considered time period

January 3, 2007 to December 31, 2010 for the SSV Model using the IV-RMSE criterion for

the estimation from the cross-section of observed natural gas futures option prices.

Figure 4.2 shows the obtained path of the current volatility level
√
Vt during

the considered time period for the SSV Model when parameters are estimated

according to the IV-RMSE criterion. Since option prices are very sensitive to the

current volatility level, estimated values of
√
Vt are very similar for the SV and

SSV Models and follow the same pattern over time for both loss function speci-

fications. It becomes obvious that volatility of natural gas varies significantly over

time. Additionally, it can be seen that during the considered time period, 2007

to 2010, realized instantaneous volatility seems to be primarily driven by other

factors like, e.g., the economic downturn and turbulences on the financial markets

rather than by the normal seasonal demand cycle. However, for options pricing

purposes, the market anticipated implied volatility is of relevance, not realized

volatility. Yet, compared to other time periods with a more pronounced seasonal

pattern, the relative performance of the SSV Model could potentially be down-

ward biased and it will be interesting to see how the SSV Model performs in

comparison to the SV Model in our study.
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Figure 4.3: Estimated Market Price of Variance Risk

This figure shows the obtained market price of variance risk λ during the considered time period

January 3, 2007 to December 31, 2010 for the SSV Model using the IV-RMSE criterion for

the estimation from the cross-section of observed natural gas futures option prices.

The average market prices of variance risk, λ, are positive. This is somewhat

surprising since Doran and Ronn (2008) and Trolle and Schwartz (2010) find a

negative market price of variance risk for natural gas. However, one should re-

call that the structural model parameters were estimated out-of-sample under

the physical measure from the time series of futures prices. Therefore, potential

changes in the market environment, and hence model parameters, will be reflected

in the values obtained from the cross-section of options and hinder interpreta-

tion of the absolute values of the obtained risk premium estimates.17 While the

interpretation of the average absolute magnitude of the risk premia is therefore

17In particular, changes in the mean-reversion speed, κ, or in the long-run mean, θ, might be
absorbed by a then biased estimate of the risk premium since the risk-neutral version of the

variance process has a mean-reversion speed of κQ = κ+λ and a long-run mean of θ
Q
= κθ

κ+λ .
When estimating the model under the physical measure for different time periods, one can
indeed observe that the obtained estimates for κ and θ vary somewhat over time, which can
also be seen, e.g., in the study of Trolle and Schwartz (2009) for crude oil.
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hampered due to our out-of-sample setup, one can assess the risk premium dy-

namics over time during the period of our study.

The estimated pattern for λ according to the IV-RMSE criterion is shown in

Figure 4.3 for the SSV Model. Even though this is not the focus of this essay, it

is interesting to note that risk premia are on average far lower during the winter

months than during the summer. For the SV Model, the average risk premium

is -0.75 (-0.57) for the period October to March and 1.64 (4.02) for the period

April to September for the estimation carried out with the IV-RMSE ($-RMSE)

criterion. For the SSV Model, the corresponding values are 1.77 (1.82) for the

winter and 4.10 (4.84) for the summer period. This supports the results of Doran

and Ronn (2005), Doran and Ronn (2008) and Trolle and Schwartz (2010) who

find evidence of a more negative risk premium during the more volatile winter

than during the summer for the natural gas market.

4.4.2 Pricing Performance

Ultimately, we are interested in the pricing accuracy of an options valuation

model. In particular, we want to see how the pricing ability of the SSV Model

incorporating a seasonal drift as the proposed model extension compares to the

nested benchmark stochastic volatility model, the SV Model.

As outlined before, the structural model parameters are estimated from the

time series of futures prices from 1997 to 2006. Since this time period is chosen not

to overlap with the 2007 to 2010 time period for our options pricing application,

no in-sample information is reflected in the obtained structural parameters which

are estimated in the first step of our estimation approach. In the second step,

the current variance level, Vt, and the variance risk premium, λ, are estimated

for each observation day t from the cross-section of observed option prices. Even

though the SSV Model nests its non-seasonal counterpart and is therefore more

flexible, the structural parameters are already determined at this point and only

these two values, Vt and λ, are estimated from the options data – for both models.

In this sense, the models have the same degrees of freedom to fit observed option

prices and the SSV Model will only yield a superior performance if the model

extension picks up valuable information regarding the price dynamics in the first
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step of the estimation. Additionally, these price dynamics need to be persistent

over time. Given the estimated parameters, we construct a time series of pricing

errors according to different error metrics for the two models. Since Vt and λ are

estimated from the option contracts that are used to assess the pricing accuracy,

we will refer to the obtained pricing errors as in-sample pricing errors.

To analyze the pricing accuracy of the two models, we report four different

error metrics: The Root Mean Squared Error of Black (1976) implied volatilities,

IV-RMSE =
√

1
Nt

∑Nt

i=1(
ˆIV t,i − IVt,i)2, the Root Mean Squared Error of option

prices, $-RMSE =
√

1
Nt

∑Nt

i=1(P̂t,i − Pt,i)2, the Relative Root Mean Squared Er-

ror, RRMSE =
√

1
Nt

∑Nt

i=1(
P̂t,i−Pt,i

Pt,i
)2, and the Mean Percentage Error, MPE =

1
Nt

∑Nt

i=1
P̂t,i−Pt,i

Pt,i
. Thereby, Pt,i denotes the observed market price and IVt,i the

implied volatility of option i, P̂t,i is the theoretical model price with implied

volatility ˆIV t,i, and Nt is the number of observations at date t.

As Christoffersen and Jacobs (2004) point out, the most appropriate error

metric to assess the performance of an options pricing model is the one employed

as the loss function during the estimation. Hence, in this study, the IV-RMSE and

the $-RMSE are the error metrics which are at the center of interest. Additionally,

we report the RRMSE to assess the relative pricing errors and the MPE to look

for systematic biases in obtained model prices. All results are reported for the

nine different maturity and moneyness brackets as defined in Section 4.3.

The in-sample results are provided in Tables 4.4 and 4.5 as average pricing er-

rors according to the different metrics over the considered time period from Jan-

uary 3, 2007 to December 31, 2010 for the estimation with the IV-RMSE and the

$-RMSE criterion, respectively. When estimated according to the IV-RMSE, the

resulting overall IV-RMSE is 3.16% for the SV Model and 2.98% for the SSV

Model, while the overall $-RMSE amounts to 6.01 ¢ and 5.59 ¢, respectively.
For the $-RMSE-based estimation, the obtained overall IV-RMSE is 3.73% for

the SV Model and 3.45% for the SSV Model and the $-RMSE is 5.52 ¢ and

5.17 ¢, respectively. As expected, the $-RMSE criterion puts more weight on the

more expensive long-term options in the estimation and, hence, yields lower pric-

ing errors for these contracts. This holds true for all moneyness categories and
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for all error metrics. Conversely, the IV-RMSE criterion leads to lower pricing

errors for the short-term options than the $-RMSE criterion does.

With 7.60% for the SV and 7.11% for the SSV Model, the observed overall

RRMSE is lower when the parameters are estimated according to the IV-RMSE

criterion since the IV-RMSE metric provides a more equal weighting of the op-

tions during the estimation than the $-RMSE and, hence, is more similar to the

RRMSE than the $-RMSE is. Not surprisingly, the RRMSE is higher for OTM

and lower for ITM options.

The MPE results reveal that on average both models tend to slightly overprice

the options in our data set. Particularly, for the estimation with the IV-RMSE

($-RMSE) criterion, the MPE is 0.87% (1.60%) and 0.69% (1.29%) for the

SV and the SSV Model, respectively. Thereby, it is noteworthy that short-

term options are on average overpriced, especially when employing the $-RMSE

criterion for the estimation. In contrast, medium-term options are underpriced,

while long-term options are moderately overpriced. Most importantly, it can be

observed that mispricing is in every instance lower for the model including the

seasonality component. This holds true for both loss functions and for every

maturity and moneyness bracket.

To this point, it can be summarized that the SSV Model outperforms the

SV Model with respect to all four error metrics, for all moneyness and maturity

categories, and for the two different loss functions employed in the estimation.

To see whether these results hold in a true out-of-sample case, we conduct

the following analysis: For each day t, the current variance level Vt and the risk

premium λ are estimated with option price observations as in the previous case.

These estimates are now used to price all options of the subsequent day, t + 1.

Hence, no information from the day of the actual pricing comparison is utilized

when calculating the theoretical option prices.

The out-of-sample results are summarized in Tables 4.6 and 4.7. Naturally,

the obtained average pricing errors are somewhat higher than in the in-sample

case. However, as in the in-sample study, it can be observed that the SSV

Model outperforms the SV Model in every instance. In particular, the overall

IV-RMSE is 3.34% for the SV Model and 3.16% for the SSV Model with

the IV-RMSE-based estimation, while the overall $-RMSE amount to 6.19 ¢ and
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5.77 ¢, respectively. In the case of the $-RMSE-based estimation, the overall

IV-RMSE amount to 3.85% and 3.56% and the $-RMSE to 5.69 ¢ and 5.34 ¢ for

the SV and SSV Model, respectively.

In a last step, we perform Wilcoxon signed-rank tests to inspect whether the

observed differences in the pricing errors are also statistically significant. Specif-

ically, the non-parametric Wilcoxon signed-rank test statistic tests whether the

median of the differences is significantly different from zero. The percentage re-

ductions in pricing errors in terms of IV-RMSE and $-RMSE are provided in

Tables 4.8 and 4.9. It can be observed that the pricing error reductions due to

the proposed model extension are always significant at the 1% level – for both

loss functions, for every moneyness and maturity bracket, and for the in-sample

as well as the out-of-sample study.

When the estimation is based on the IV-RMSE criterion, the inclusion of sea-

sonality in the variance process reduces the in-sample (out-of-sample) IV-RMSE

by 5.75% (5.48%) and the $-RMSE by 7.07% (6.83%). For the $-RMSE-based

estimation, the reduction in terms of IV-RMSE yields 7.49% (7.44%) and in

terms of $-RMSE 6.27% (6.09%). The greatest improvements can be observed

for short-term options when the estimation is carried out with regard to the

$-RMSE criterion: $-RMSE reductions for ATM options amount to 13.82% and

12.92% in the in- and out-of-sample case, respectively.

Overall, we find clear empirical evidence that the proposed model extension

of incorporating a seasonal component in the drift term of the variance process

significantly improves the pricing accuracy for natural gas options.

4.4.3 Robustness Checks

We conducted a number of robustness checks. Due to space constraints, we refrain

from presenting detailed results of these analyses, but summarize them below.

(i) In order to assess the influence of volatility being stochastic on the pric-

ing performance, we compared the stochastic volatility models to the constant

volatility model of Black (1976). We found that the pricing accuracy of the Black

(1976) model is significantly lower compared to the stochastic volatility models.

For example, when estimating the models according to the $-RMSE criterion,
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the overall in-sample IV-RMSE for the Black (1976) model yields 7.51% and the

$-RMSE amounts to 9.16 ¢ in comparison to 3.73% and 5.52 ¢ for the standard

stochastic volatility model, the SV Model. These results confirm that a stochas-

tic volatility setting is necessary to capture the dynamics of natural gas futures

prices.

(ii) Since the structural model parameters, which are obtained out-of-sample

under the physical measure from the historical futures prices, are different for

the SV and SSV Model, the higher pricing accuracy of the seasonal volatility

model might stem from the different parameter set and not from the seasonal-

ity extension. In order to control for this, we repeated the second step of the

estimation procedure and obtained optimal Vt and λ values given the structural

parameter values from the SSV Model while restricting η, the amplitude of the

seasonality function, to be zero. We then compared the pricing accuracy of the

SSV and SV Models when having an identical set of structural parameters with

the only difference being that η is equal to zero for the SV Model. The results

show that the pricing accuracy of the SV Model with these parameters is some-

what improved. Yet, the SSV Model consistently outperforms its non-seasonal

counterpart in terms of both IV-RMSE and $-RMSE for every moneyness and

maturity category, for both the in- and the out-of-sample study. As before, all

results are significant at the 1% level.

(iii) We estimated the current variance level Vt and the variance risk premium

λ according to the RRMSE as loss function as an alternative to the IV-RMSE and

$-RMSE criteria. We found that the obtained results are robust with respect to

this alternative loss function. Furthermore, the observed pricing error reductions

due to the model extension are all significant at the 1% level and are of similar

magnitude as for the other two loss functions.

(iv) As a final robustness check, we divided the data set in four sub-samples

and considered each of the four years covered in our study separately. For the

years 2007 and 2008, the SSV Model consistently outperforms the SV Model

for every error metric, for every moneyness and maturity bracket, and for the

in- and out-of-sample study at the 1% significance level. For the year 2009,

we obtained mixed results and observed that in large parts differences in pricing

errors are economically negligible with the average overall IV-RMSE and $-RMSE



4. Seasonal Stochastic Volatility: Implications for the Pricing of
Commodity Options 97

differences between the two models being less than 1%. A possible explanation

for this could be the extremely high volatility level in 2009 leading to an average

estimate for
√
V t of 82.2% and 79.5% for the SV and SSV Model, respectively

(according to the IV-RMSE loss function).18 Hence, both models imply in the

short-run a declining volatility and yield a negative drift term – regardless of the

seasonality extension. For the year 2010, we found again that the SSV Model

performs significantly better than the SV Model. With very few exceptions,

the seasonality extension leads to lower pricing errors which are economically and

statistically significant. Therefore, we can confirm that the significantly improved

pricing accuracy due to the proposed seasonality extension is also robust in the

sense that the results are not driven by a particular sub-sample.

4.5 Conclusion

Volatility in many commodity markets follows a pronounced seasonal pattern

while also fluctuating stochastically. In this chapter, we extend the stochastic

volatility model of Heston (1993) to allow volatility to vary with the seasonal

cycle. The proposed model framework enables us to derive semi closed-form

solutions for pricing futures options. We then study the empirical performance in

pricing natural gas options. In contrast to other studies, we estimate our model

using not only the cross-section of options prices but also considering the time

series of futures contracts. The empirical results show that the suggested model

indeed increases the accuracy of pricing natural gas contracts, in terms of both

statistical and economic significance.

Finally, we conclude this chapter by outlining areas for further research. Many

financial data exhibit jumps in prices and volatilities. This is also true for many

commodity markets, and especially true for the natural gas market considered

in this study. Extending our model by including jump components is therefore

a natural next step. Compared to equity markets in which the jump frequency

18Indeed, in 2009, we observe the highest historical volatility of front-month futures returns
(75.4%) during the time period 1997 to 2010 which is covered by our data set. Only the year
2001 shows a similarly high volatility level, being well above the average of 57.7%.
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is usually assumed to be constant, one might also consider modeling the jump

intensity according to a seasonal function.
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4.6 Appendix

For the practical application of any options pricing model, computational effi-

ciency and robustness are of high importance. In order to facilitate the imple-

mentation, one can reformulate the valuation formula which was presented ac-

cording to the standard terminology in Section 4.2. For our empirical study, we

employed the characteristic function formulation as proposed, e.g., by Albrecher

et al. (2007) to overcome the branch cut problem with the original solution of

Heston (1993).19 Furthermore, following the idea of Attari (2004), we rewrite the

pricing formula in a way that the ‘Heston-Integral’ in Equation (4.9) has to be

evaluated only once instead of twice and that the integrand contains a square

term in the denominator, causing the integral to converge faster. The obtained

numerically more efficient formula for the price of a European call option on a

futures contract is given by

c(F,K, V, T ) = Fe−r(T−t) − K
2
e−r(T−t) + K

π
e−r(T−t)∫ ∞

0

Re

[
f(ϕ)
i
[cos(ϕ lnK)−i sin(ϕ lnK)]

(ϕ−i)e−r(T−t)−ϕ− 1
ϕ

ϕ2+1

]
dϕ.

(4.21)

The characteristic function has the same form as before and the corresponding

system of ODEs is given by

∂D

∂τ
=
1

2
σ2D2 − (κ+ λ− ρσϕi)D − ϕi+ ϕ2

2
(4.22)

∂C

∂τ
=κ θ(τ)D (4.23)

with τ = T−t. While Equation (4.23) has to be solved numerically,20 the solution

of Equation (4.22) reads

D(τ, ϕ) =
κ+ λ− ρσϕi− d

σ2

[
1− e−dτ

1− ge−dτ

]
(4.24)

19See also Lord and Kahl (2010) on this issue.
20For the SV Model, the solution for Equation (4.23) is given by C(τ, ϕ) =

κθ
σ2

[
(κ+ λ− ρσϕi− d)τ − 2 ln

(
1−ge−dτ

1−g

)]
.
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with

g =
κ+ λ− ρσϕi− d

κ+ λ− ρσϕi+ d
(4.25)

d =
√

(ρσϕi− κ− λ)2 + σ2(ϕi+ ϕ2). (4.26)

Furthermore, the choice of the numerical integration procedure is of high im-

portance for the implementation of any stochastic volatility model. Since the

ODE in Equation (4.23) has to be solved for each evaluation within the numeri-

cal integration scheme of the ‘Heston-Integral’, this double integral is potentially

computationally very costly. In contrast to adaptive methods like Gauss-Lobatto

or the Simpson-Quadrature, a simple trapezoidal integration scheme brings the

advantage that we can span a matrix with integral evaluations which can then be

kept in memory and be called when needed for the next evaluation. Similar to the

caching technique of Kilin (2011), this approach dramatically reduces computing

time for the option valuation in the proposed SSV Model.

In particular, Kilin (2011) notes that the characteristic function is independent

of the strike price and hence should be evaluated only once for each sub-sample of

options having an equal time to maturity. Similarly, only the upper integration

limit τ is different for each maturity sub-sample when solving the ODE in Equa-

tion (4.23). For a given grid of the ‘Heston-Integral’, all evaluations of this ODE

up to the integration limit yield the same values and, hence, it is possible to eval-

uate this integral only once for the longest maturity Tmax and store the obtained

values in the computer’s memory. When evaluating the characteristic function for

options with shorter maturities T , where T < Tmax, the needed function evalua-

tions can be called from the stored values. Interpolation methods can be used if

the matrix of stored values does not contain an evaluation corresponding exactly

to the shorter maturity T . Hence, in our empirical study with an average number

of 365 options with 12 different maturity months for a given observation day, this

yields 12 characteristic function evaluations for the SV Model and one addi-

tional numerical evaluation of the ODE in Equation (4.23) for the SSV Model.

In this fashion, the proposed seasonal model extension can be implemented in a

computationally efficient way similar to the Heston model.



Chapter 5

Conclusion

This doctoral thesis focuses on the valuation of commodity derivatives. In Chap-

ter 2, we lay the foundations of the subsequent analyses by providing a broad

overview of the literature on commodity price dynamics and valuation models.

The unique characteristics of commodities and their implications for the valua-

tion of commodity contingent claims are described. In particular, a seasonal price

behavior can be observed in many commodity markets that is in the center of

interest in this thesis. We present commodity valuation models, which take this

seasonal behavior into account and study the pricing accuracy of these models.

The importance of seasonal variations in volatility for the valuation of commodity

options is analyzed in two empirical studies.

In Chapter 3, we present our first empirical study and investigate the role of

seasonal volatility in the context of one- and two-factor spot price models. The

study considers the soybean and heating oil markets where a seasonal volatil-

ity pattern is induced from harvesting cycles and temperature-related demand

variations, respectively. It is found that the inclusion of a deterministic seasonal

function in volatility significantly reduces options pricing errors. Thereby, the

seasonality adjustment is more important in terms of options pricing accuracy

than adding a second stochastic factor. Furthermore, in a regression analysis of

pricing errors, we document that systematic mispricing of soybean and heating

oil futures options is reduced due to the seasonality adjustment.

Chapter 4 contains our second empirical study on seasonal volatility. In con-

trast to the study in Chapter 3, we follow a different modeling approach and
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specify the price dynamics of the futures contract directly instead of deriving fu-

tures prices from the spot price dynamics. Particularly, we propose a stochastic

volatility model where the long-term mean of the variance process is described

through a seasonal function. The model framework allows for the derivation of

semi closed-form options pricing formulas in the spirit of Heston (1993). In an

empirical study, we apply our model to the natural gas market. The natural

gas market is characterized by high volatility, which evolves stochastically while

following a pronounced seasonal pattern. Due to inelastic demand and supply,

demand variations during the heating period can cause large price changes and

lead to a higher volatility during the cold season. Analyzing an extensive data

set of natural gas futures options, we find that our seasonal stochastic volatility

model yields significantly lower pricing errors than its nonseasonal counterpart.

Overall, we conclude that seasonal variations in volatility need to be considered

when valuing options written on futures for commodities exhibiting seasonality.

This is true for both a spot price model setting with deterministic volatility and

the presented stochastic volatility framework. Naturally, considering seasonality

in volatility is of crucial importance not only for the valuation of commodity

contingent claims but also for hedging strategies and risk management in general.

Future research can extend our analyses in several directions. First, further

commodity markets can be considered in order to document which markets dis-

play a seasonal behavior and to assess the implications for the valuation of deriva-

tives traded in these markets. Second, different parametric assumptions regarding

the seasonality function can be tested. Our proposed models are flexible with re-

gard to the specifications of the deterministic function describing the seasonal

figure. Third, from a modeling perspective, price dynamics can be generalized

by, e.g., the inclusion of jumps, both in price level and volatility. In this context,

the jump intensity can be described according to a seasonal function. However,

balancing flexibility in price dynamics against a model’s complexity and, hence,

risk of misspecification will always be a challenge for empirical applications.
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