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Abstract

This paper looks at the strong consistency of the ordinary least squares (OLS) esti-
mator in a stereotypical macroeconomic model with adaptive learning. It is a com-
panion to Christopeit & Massmann (2017, Econometric Theory) which considers the 
estimator’s convergence in distribution and its weak consistency in the same setting. 
Under constant gain learning, the model is closely related to stationary, (alternating) 
unit root or explosive autoregressive processes. Under decreasing gain learning, 
the regressors in the model are asymptotically collinear. The paper examines, first, 
the issue of strong convergence of the learning recursion: It is argued that, under 
constant gain learning, the recursion does not converge in any probabilistic sense, 
while for decreasing gain learning rates are derived at which the recursion con-
verges almost surely to the rational expectations equilibrium. Secondly, the paper 
establishes the strong consistency of the OLS estimators, under both constant and 
decreasing gain learning, as well as rates at which the estimators converge almost 
surely. In the constant gain model, separate estimators for the intercept and slope 
parameters are juxtaposed to the joint estimator, drawing on the recent literature on 
explosive autoregressive models. Thirdly, it is emphasised that strong consistency 
is obtained in all models although the near-optimal condition for the strong consis-
tency of OLS in linear regression models with stochastic regressors, established by 
Lai & Wei (1982), is not always met.
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1 Introduction
This paper looks at the strong consistency of the ordinary least squares (OLS) estimator in a
stereotypical macroeconomic model with adaptive learning. It is a companion to Christopeit &
Massmann (2017), hereafter referred to as CM17, which considers the estimator’s convergence
in distribution and its weak consistency in the same setting. The following paragraphs serve as
macroeconomic motivation of the econometric model considered in this paper. They draw in
parts on the introductory remarks in CM17, which is recommended for more details.

There is a long tradition in macroeconomics to explain an observed variable of interest yt
by an expectational term as well as by so-called driving variables. To fix ideas, consider the
following model class:

yt = βyet|t−1 + δxt + εt, t = 1, 2, . . . (1)

where yet|t−1 denotes agents’ expectations about yt based on the information available at time
t − 1, the observed driving variable xt is exogenous, and εt denotes an error term. Many
seminal models fit into this class: the classical cobweb model, see e.g. Bray & Savin (1986), the
aggregate supply model by Lucas (1973), and the New Keynesian Phillips curve (NKPC), cf.
Clarida, Galí & Gertler (2000).

In much of the literature the expectational term yet|t−1 is considered unobserved. It is tradi-
tionally specified via rational expectations, an approach that is now, however, frequently seen
as imputing too much knowledge to economic agents. The alternative assumption of agents be-
ing boundedly rational and forming their expectations via adaptive learning has recently gained
popularity amongst macroeconomists, see Sargent (1993, 1999) and Evans & Honkapohja (2001).
The basic idea underlying all adaptive learning procedures is that agents employ an auxiliary
model, or so-called perceived law of motion, to form expectations. One way to specify this
auxiliary model is to posit that its functional form corresponds to the rational expectations
equilibrium yt = αxt+ εt, where α = δ/(1−β), and that agents replace the unknown parameter
α by some estimate at−1 based on information Ft−1. Typically, they are assumed to estimate
the parameter α by a recursive procedure of the form

at = at−1 + γt
xt
rt

(yt − at−1xt) (2a)

rt = rt−1 + γt
(
x2
t − rt−1

)
, (2b)

where γt is some weighting, or gain, sequence. This updating algorithm can be viewed as
generalising the recursive least squares estimator of α, which has γt = 1/t and whose rt is the
sample second moment of xt. At the same time, (2) is a special case of a stochastic approximation
algorithm, see Lai (2003) and Kushner (2010) for an overview of this large literature. With this
learning scheme, agents’ expectation will be given by yet|t−1 = at−1xt and the resulting so-called
actual law of motion, or data generating process (DGP), is (2) coupled with

yt = βat−1xt + δxt + εt. (3)

The purpose of the present paper is to examine whether the OLS estimators of the parameters
β and δ in structural models such as (3), with at given in (2), are strongly consistent. This is
of interest since the empirical estimation of learning models of this class has recently gained
popularity amongst researchers and policy makers; see for instance the New Keynesian Phillips
curve models estimated by Milani (2007) and Chevillon, Massmann & Mavroeidis (2010), the
European Central Bank’s New Multi-Country Model by Dieppe, González Pandiella, Hall &
Willman (2013), the inflation model by Malmendier & Nagel (2016) and the model of stock
market volatility by Adam, Marcet & Nicolini (2016). Yet the econometrics of adaptive learning
models is still in its infancy and it is not in general clear on which econometric principles
these empirical implementations are built. Our companion paper CM17 is one of the first
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comprehensive attempts to examine the asymptotic behaviour of an econometric estimation
procedure in models such as (2)-(3). In particular, for the same special case of the model that
is also considered in the present paper, the authors show that the OLS estimator of the model
parameters δ and β remains weakly consistent for most parameter constellations, although the
estimator’s asymptotic distribution is highly non-standard in almost all settings. One of the
main conclusions of that research is hence that care must be taken when inference in models
with adaptive learning is conducted.

In the present paper, the issue of almost sure (a.s.) convergence of the OLS estimator of β
and δ is investigated. Apart from being of theoretical interest in its own right, a.s. convergence
is also indispensable for the analysis of the long-run behaviour of trajectories.

Before the OLS estimators can be analysed the asymptotic behaviour of at needs to be
examined. The latter, in turn, is contingent on the specification of the gain sequence γt. This
paper considers two different types of gain: a constant gain, i.e. γt = γ > 0, and a decreasing
gain sequence, such that γt ↘ 0. The choice of gain sequence has immediate repercussions on
the dynamics of at, see e.g. Benveniste, Métivier & Priouret (1990). In particular, with constant
gain learning, it is well-known that at does not in general converge to α. As opposed to that,
with decreasing gain learning, the convergence at → α does hold with probability one under
suitable summability assumptions on γt, see below. These two gain specifications are popular in
the macroeconomics literature due to their intuitive appeal, for a decreasing gain is tantamount
to assuming that agents end up being rational in the limit while they learn ad infinitum under
constant gain. Moreover, the estimation of α based on a constant gain recursion is equivalent to
a forecast formed by exponential smoothing. This procedure is frequently argued to be plausible
for boundedly rational agents, in the same way as is a recursive least squares forecast constructed
with the decreasing gain sequence γt = 1/t. Irrespective of the economic interpretation, a central
ingredient to our analysis of the OLS estimator will be not the mere convergence of at but rather
the rate at which it converges, if indeed it does. Section 2 therefore contains a comprehensive
treatment of this issue.

Reconsider the structural equation in (1). Most models in the macroeconomics literature
presume that β ∈ (0, 1), yet there are some that also consider negative values: see, for example,
Evans, Honkapohja, Sargent & Williams (2013) and Brock & Hommes (1997) who analyse
cobweb-type models with −0.5 < β < 1 and β < −1, respectively. The gain sequence γt in (2)
is specified to be

γt =
{
γ
γ/t

(4)

for constant and decreasing gain learning, respectively, where γ > 0. To see the motivation for
this choice, note that, for a decreasing gain sequence, a set of summability conditions guaran-
teeing the convergence of at to α is

∑
t γt = ∞ but

∑
t γ

2
t ln2 t < ∞, provided that β < 1, cf.

Kottmann (1990) and Christopeit & Massmann (2010) for details. These conditions would in
fact suggest considering sequences γt = γ/tη, with η ∈ (1/2, 1]. Yet it is to be expected that the
case η = 1 exhibits a behaviour that is furthest removed from that in the constant gain case,
obtained by setting η = 0. Our choice of gain sequences can hence be seen as covering the two
extremes on a behavioural continuum without introducing a further parameter η.

With the at given by (2), the structural equation in (3) is a linear regression model with pre-
determined stochastic regressors. In the 1950s and 60s research on this model was a byproduct
of more general investigations in adaptive systems control theory. From the 1970s onwards, it
has become a subject in its own right and an extensive literature has grown around many statis-
tical issues pertaining to such models. An excellent account of the developments is given in Lai
(2003). Besides asymptotic distribution theory for various estimators, their a.s. or strong con-
vergence played a prominent part. One focus was on the performance of the OLS estimators of
β and δ, at least for models in which autocorrelation of the error terms was no issue. The results
that, to our knowledge, still represent the current state of the art for the strong convergence of
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the OLS estimator are those by Lai & Wei (1982a); but see also Lai & Wei (1982b), Wei (1985)
and Christopeit (1986), the latter for the general semimartingale model. As to be expected,
the sufficient conditions for models with stochastic regressors are more restrictive than those for
deterministic regressors. A brief account of these results is given in Christopeit & Massmann
(2012). Concerning our model, it will turn out that for some cases of both constant and de-
creasing gain learning the near optimal sufficient condition established in Lai & Wei (1982a) is
not satisfied. Nevertheless strong consistency of the OLS estimators of β and δ always obtains.

For constant gain learning, the model to be estimated is basically an autoregressive model of
order one with a constant term. There is a vast literature on the strong consistency of the OLS
estimator in general autoregressive models. Most of it, however, considers models without an
intercept, cf., e.g., Lai & Wei (1983) and Lai & Wei (1985). As will be seen, the existence of an
unknown intercept can make a considerable difference to the analysis. In the past, autoregressive
models with intercept have frequently been treated within the framework of identification and
control of dynamic systems, namely as input-output systems with a single constant input, cf.
Lai & Wei (1982a, Section 3). This framework could be used for establishing a.s. convergence
rates for the norm of the joint, i.e. bivariate, OLS estimator of θ = (β, δ). Since, however, the
theory for input-output systems allows for a variety of different input classes, such as feedback
controls, one cannot expect to obtain “optimal” results for the model of interest. More recently,
Nielsen (2005) presents a thorough investigation of a class of vector autoregressive models with
deterministic terms in its own right. In addition, that class encompasses stationary, unit root
as well as explosive models. It is therefore the approach by Nielsen that is used below for
deriving the speed of convergence of the norm of the joint OLS estimator. Yet, in general,
the convergence speed of the slope estimator can be expected to be different from that of the
intercept. To capture that difference, the rate of convergence of the separate OLS estimators
of β and δ is also established in this paper. The convergence rates of both joint and separate
estimators are presented and compared in Section 3.1.

For decreasing gain, the asymptotic second moment matrix is singular. This is due to the
fact that the regressor at converges a.s. to the constant α. This violation of the Grenander
condition, cf. Grenander & Rosenblatt (1957), may affect the rates of weak convergence of
the OLS estimator, see Phillips (2007) and CM17. Yet it does not pose any problem if one is
concerned with a.s. convergence. The strong consistency of the OLS estimators in the decreasing
gain model is derived in Section 3.2.

In order to keep the analysis tractable, a simple special case of (2)-(3) is considered in
this paper: it is assumed that xt = x is a constant. The resulting toy model will lay bare
the difficulties arising from the feedback of the expectation formation process to the structural
equation. When the regressors are constant, rt = x2 is the stationary solution of (2b) such
that, for any starting value r0, limt→∞ rt = x2. For constant gain learning, this is true whenever
γ ∈ (0, 1), while for decreasing gain it holds for all γ > 0. Without loss of generality, we may
then assume that x = 1, any other value of x merely requiring that the variance of εt be changed
from, say, σ2 to σ2/x2. Working with this stationary solution for rt, the recursion in (2) reduces
to at = at−1 + γt (yt − at−1) while the structural equation in (3) becomes

yt = δ + βat−1 + εt. (5)

Substituting yt into at, the dynamics of at may also be written as

at = (1− ct) at−1 + γt (δ + εt) , (6)

where we have defined ct = (1− β) γt. With our choice of γt in (4), ct becomes

ct =
{
c
c/t

(7)
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where
c = (1− β)γ. (8)

Recall that, for decreasing gain, β < 1 and any γ > 0 is admissible. As a consequence, c > 0.
For constant gain, as opposed to that, γ ∈ (0, 1) while β and, consequently, c may take any
value.

Putting the setup in a nutshell, the model we consider in this paper is (5)-(6), with γt and
ct given in (4) and (7), respectively. The parameters estimated by OLS are β and δ, the value
of γ is assumed known. We also make the following maintained assumption:
Maintained assumption. The εt are independently and identically distributed (i.i.d.) with
mean 0 and variance σ2.

To summarise our findings, this paper is the first to consider the question of strongly consis-
tent OLS estimation in regression models with adaptive learning. In particular, it makes three
main contributions to the literature: First, we derive the rates at which at converges almost
surely to α in the decreasing gain learning model, i.e. the almost sure rates at which agents
learn to be rational. To the best of our knowledge, this has not been attempted before. Sec-
ondly, we establish the strong consistency of the OLS estimators of δ and β in the constant
and decreasing gain learning models as well as the rates at which they converge almost surely.
Again, this is a novel undertaking and will be of use when interest lies on the long-run behaviour
of trajectories. Thirdly, we relate our results to the available literature. The comparison of our
convergence rates in the constant gain setting to those derived by Nielsen (2005) is of particular
interest. Moreover, it is instructive to find in passing that the aforementioned near optimal
sufficient condition by Lai & Wei (1982a) is not satisfied in some of our models.

It will be plain that the analysis of this model is far from trivial. The obvious extension to
models with time-varying regressor sequences xt is therefore beyond the scope of the present
paper. Similarly, assuming agents’ expectations in the structural equation (1) to be forward-
looking, i.e. replacing yet|t−1 by yet+1|t, introduces economic as well as econometric complications
and is left to future research. Lastly, regarding γ to be unknown changes the structure of
the setup fundamentally since it would make the model nonlinear in the parameters. The
repercussions likely to arise from these extensions are discussed in CM17.

The outline of the paper is as follows: The asymptotics of at for the model in (5)-(6) are
examined in Section 2, both for constant and decreasing gain learning. Subsequently, the strong
consistency of the OLS estimators of β and δ is proved in Section 3, again for both learning
types. Our results based on the alternative approach inspired by the work by Nielsen (2005) is
also contained in Section 3. Section 4 concludes. The proofs of all theorems and corollaries are
relegated to Appendices A-C.

All convergence statements are of the almost sure (a.s.) type unless otherwise indicated.

2 Asymptotic behaviour of at

2.1 Constant gain

In this section, we consider the asymptotic behaviour of at under the assumption that agents
employ a constant gain learning algorithm to produce their forecasts. Put differently, the model
under examination is (5)-(6) while the constant gain sequence in (4) is γt = γ such that ct = c
in (7). As a result, the dynamics of at can be written as

at = (1− c) at−1 + γ (δ + εt) (9)

where c = (1− β) γ as in (8).
It is well-known in the literature that constant gain recursions do not in general converge to

the rational expectations equilibrium (REE). In particular, the precise limiting behaviour of at
as given in (9) is derived in Theorem 1 of CM17 and depends crucially on parameter c since,
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(i) if 0 < c < 2, the process at is a stable autoregression,

(ii) if c = 0, at follows a random walk with drift while, if c = 2, it follows an alternating
random walk with drift,

(iii) if c < 0 or c > 2, at in (9) is an explosive autoregressive process.

Seminal papers on autoregressive processes that CM17 appeal to and extend are Lai & Wei
(1985) for the stationary ergodic case, Chan & Wei (1988) for the (negative) unit root case, and
Phillips & Magdalinos (2008) as well as Wang & Yu (2015) for the explosive case.

The following reproduces Theorem 1 of CM17 for convenience.

Result 1 (Christopeit & Massmann (2017, Theorem 1)).

(i) If 0 < c < 2 then at converges in distribution to the law of the stationary solution, i.e. to
the invariant distribution. This is nondegenerate with mean α and positive variance.

(ii) If c = 0 then at is a random walk with drift δγ and

at = γδt+ o(t) a.s..

If, instead, c = 2 then at is an alternating random walk with drift 2α and

1
σγ
√
t
at

d→ N (0, 1) .

(iii) If c < 0 or c > 2 then (1− c)−t at converges with probability one and in L2 to a nondegen-
erate limit with mean Ea0 − α.

Clearly, for no value of c, and hence for no combination of β ∈ R and γ ∈ (0, 1), does at
converge to the REE α in any probabilistic sense. Agents will thus not be rational in the limit
but learn ad infinitum.

2.2 Decreasing gain

Consider now the model under decreasing gain, i.e. γt = γ/t in (4) and ct = c/t in (7). Conse-
quently, the recursion of at in (6) becomes

at =
(

1− c

t

)
at−1 + γ

t
(δ + εt) (10)

where, again, c = (1− β)γ, see (8).
As mentioned in the introduction, for β < 1 and γ > 0, the mere convergence of at to α

follows easily from well-known results on recursive algorithms. However, for our analysis of the
strong consistency of the OLS estimator in Section 3, we will need the exact rates of convergence
of at.

Note that the dynamics of at in (10) are highly nonstandard: First, at is autoregressive of
first order with a time-varying coefficient that is intrinsically local-to-unity. The behaviour of
models of this kind has been analysed by, for instance, Phillips (1987) and Phillips & Magdalinos
(2007). Secondly, the impact of the intercept δ and of the disturbance εt on at tends to zero for
large t. In the limit, at is thus constant. Finally, at is generated by what Solo & Kong (1995)
call a long memory algorithm.

It is shown in Theorem 1 below that at converges almost surely to the REE α for all com-
binations of β and γ. The rates of convergence are, however, different for the three regimes
c > 1/2, c = 1/2 and c < 1/2. The proof of the theorem is presented in Appendix A.
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Theorem 1. For decreasing gain with gain sequence γt = γ/t, strong consistency of at holds at
the following rates.

(i) For c > 1/2,

lim sup
t→∞

√
t

ln2 t
|at − α| = σγ

√
2

2c− 1 .

(ii) For c = 1/2,

lim sup
t→∞

√
t

ln t ln3 t
|at| = σγ

√
2.

(iii) For c < 1/2,
lim
t→∞

tc (at − α) = u.

u has a continuous distribution function.

It is plain that, as c decreases, the convergence of at to α gets progressively slower. The value
c = 1/2 can be interpreted as a boundary separating ‘good’ from ‘poor’ asymptotic behaviour
of at, in the sense of speed of convergence. For an intuition of this boundary, the reader is
referred to the exposition in CM17. The value of 1/2 indeed figures prominently in the con-
text of weak convergence of stochastic approximation algorithms, see the results in Benveniste,
Métivier & Priouret (1990, Theorem 3 on p. 11 and Theorem 13 on p. 332) which, in turn, is
used by Marcet & Sargent (1995) and Evans & Honkapohja (2001). The threshold of 1/2 is also
reminiscent of a similar boundary discussed in Evans, Honkapohja, Sargent & Williams (2013).

It is of interest to compare the convergence rates in Theorem 1 with those valid for weak
convergence of at − α, cf. Theorem 3 in CM17. For c > 1/2, the additional ‘path taming’
sequence (ln2 t)−1/2 corresponds to the passage from a central limit theorem (CLT) to a law of
the iterated logarithm (LIL). As to be expected, this ‘path taming’ sequence is slower, namely
(ln3 t)−1/2, for c = 1/2. For c < 1/2, all convergence concepts coincide.

3 Strong consistency of the OLS estimator

3.1 Constant gain

In this section we are concerned with the OLS estimation of β and δ in

yt = δ + βat−1 + εt (11)

under constant gain learning. As argued in Section 2.1,

at = (1− c) at−1 + γ (δ + εt) (12)

does not converge to the REE for any value of c = (1−β)γ. There is hence no issue of asymptotic
collinearity in (11)-(12).

It is shown in Section 2.2 of CM17 that the OLS estimator θ̂T = (δ̂T , β̂T )′ of θ = (δ, β)′ in
(11) is, up to a constant of proportionality, equal to that of θ∗ = (δ∗, β∗)′ in the autoregressive
model

a∗t = δ∗ + β∗a∗t−1 + γεt, (13)

provided that δ∗ = γδ as well as β∗ = 1 − c and the initial values of the two sequences at and
a∗t are the same. Put differently,

θ̂T − θ = γ−1
(
θ̂∗T − θ∗

)
. (14)
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By transforming the model in this fashion, we arrive at a first order autoregressive model with
drift. Such models may be considered as special cases of input-output systems, for which there
exists a vast literature, cf. e.g. Ljung (1977) for a seminal paper. However, when applied to our
setting, this literature usually involves a restriction on the slope parameter. More importantly,
it only provides a rate for the bivariate (henceforth called joint) estimator θ̂T , i.e. a rate for its
norm. For instance, by considering a single input ut = 1 and lag length k = 1 the model in
Lai & Wei (1982a, Section 3) is an AR(1)-model with intercept. Their Theorem 2 then provides
a joint rate for the stable and the unit root case, except for intercept zero. We will pursue this
joint estimation approach on the basis of a more recent paper by Nielsen (2005), which allows
to cover also the explosive case.

On the other hand, some reflection shows that the speed of convergence of the estimator
of the slope may be quite different from that of the intercept. In view of this observation, the
joint approach will only produce rates valid for the slower of these estimators, which – not
surprisingly – is that of the intercept. To take account of this difference and to obtain individual
‘optimal’ rates, we also pursue the separate estimation approach, treating the one-dimensional
formula for each estimator on its own. This allows us to make use of the powerful martingale
convergence theorems found in the literature, cf. Lai & Wei (1982a) and Wei (1985).

In the sequel, we will start with the separate approach in Section 3.1.1 and then consider
the joint approach in Section 3.1.2.

3.1.1 Separate estimation of the parameters

Consider the separate OLS estimators of β∗ and δ∗ in (13), namely

β̂∗T =
∑T
t=1(at−1 − a−T ) (at − aT )

AT
,

δ̂∗T = aT − β̂∗Ta−T ,

where

aT = 1
T

∑T

t=1
at, a−T = 1

T

∑T

t=1
at−1,

A0
T =

∑T

t=1
a2
t−1, AT =

∑T

t=1

(
at−1 − a−T

)2
= A0

T − T
(
a−T

)2
.

Theorem 2 and Corollary 1 below will summarise the properties of the OLS estimators of
the original slope β and intercept δ, see (11). The proofs, however, are conducted in terms of
the starred model, see Appendix B. The main argument of the proofs consists in determining
the rate of convergence of the slope estimator. In the process, the aforementioned martingale
convergence theorems will be used as well as laws of large numbers (LLNs) and results of the
LIL-type. The convergence rate of the intercept estimator will follow from that of the slope,
taking account of the LIL. As will be plain, the behaviour of both estimators depends crucially
on the relative magnitude of β and γ.

The case distinctions in Theorem 2 and Corollary 1 are phrased in terms of the parameter c
and correspond to the original at in (12) being a stable, unit root or explosive process; see also
the discussion in Section 2.1 above. They are equivalent to properties of the transformed a∗t in
(13), as indicated by the parameter β∗:

|β∗| < 1 ⇔ 0 < c < 2,
β∗ = 1 ⇔ c = 0,
β∗ = −1 ⇔ c = 2,
|β∗| > 1 ⇔ c < 0 or c > 2.
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A special role is played by the scenario β∗ = 1∧δ∗ = 0, corresponding to β = 1∧δ = 0 or indeed
c = 0 ∧ δ = 0, in which case no result is available. See also the comments on this combination
of parameter values in Section B.1.1.3.

Theorem 2. Strong consistency of the OLS estimator β̂T of the slope parameter β holds at the
following rates.

(i) Stable case: 0 < c < 2. If E |εt|α <∞ for some α > 2,√
T

ln2 T

(
β̂T − β

)
= O(1).

If only second moments exist, then√
T

(lnT )1+η

(
β̂T − β

)
= o(1)

for all η > 0.

(iia) Unit root case: c = 0 ∧ δ 6= 0. If E |εt|α <∞ for some α > 2,√
T 3

ln2 T

(
β̂T − β

)
= O(1).

If only second moments exist, then√
T 3

(lnT )1+η

(
β̂T − β

)
= o(1)

for all η > 0.

(iib) Unit root case: c = 2. If E |εt|α <∞ for some α > 2,

T

(ln2 T )3

(
β̂T − β

)
= O(1).

If only second moments exist, then

T

(lnT )1+η

(
β̂T − β

)
= o(1)

for all η > 0.

(iii) Explosive case: c < 0 or c > 2. Assuming only second moments,

|1− c|T

T 1/2+η

(
β̂T − β

)
= o(1) (15)

for all η > 0. If E |εt|α < ∞ for some α > 2, (15) remains valid, with O(1) instead of
o(1), for η = 0.

The following corollary summarises the behaviour of the intercept estimator.

Corollary 1. Strong consistency of the OLS estimator δ̂T of the intercept δ holds at the follow-
ing rates.
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(i) Stable case: 0 < c < 2. If E |εt|α <∞ for some α > 2,√
T

ln2 T

(
δ̂T − δ

)
= O(1).

If only second moments exist, then√
T

(lnT )1+η

(
δ̂T − δ

)
= o(1)

for all η > 0.

(iia) Unit root case: c = 0 ∧ δ 6= 0. If E |εt|α <∞ for some α > 2,√
T

ln2 T

(
δ̂T − δ

)
= O(1).

If only second moments exist, then√
T

(lnT )1+η

(
δ̂T − δ

)
= o(1)

for all η > 0.

(iib) Unit root case: c = 2. Same as in case (iia).

(iii) Explosive case: c < 0 or c > 2. Assuming only second moments,

T 1/2−η
(
δ̂T − δ

)
= o(1) (16)

for all η > 0. If E |εt|α < ∞ for some α > 2, (16) remains valid, with O(1) instead of
o(1), for η = 0.

As is to be expected, the rate of the slope estimator is throughout at least as good as that
of the intercept estimator, with equality holding in the stable case.

Let us compare the rates in Theorem 2 and Corollary 1 with the corresponding rates for weak
convergence as obtained in Theorem 2 of CM17. In all cases, the strong consistency rates are
basically those needed for weak convergence, corrected (i.e. divided) by some sequence rT ↗∞.
For the nonexplosive cases, the sequences are of the form rT = (ln2 T )m/2 or rT = (lnT )p ,
depending on whether the innovations εt possess higher than second moments or not. In the
stable case (m = 1), this corresponds to the transition form the CLT to the LIL.

Since the proofs make use of theorems that are valid for general martingale difference se-
quences, it may be expected that for i.i.d. error terms some results may be weakened, in the
sense that the (ln2 T )m/2-corrections may also work if only second moments are assumed. This
is true, for instance, in the stable case, in which a LIL for stationary ergodic processes by Stout
(1970) can be applied, see Section B.2.3.

3.1.2 Joint estimation of the parameters

The second approach for estimating θ = (δ, β)′ in (11) employs recent results derived in Nielsen
(2005) on the rates of convergence of the studentised version

τT = M
1/2
T

(
θ̂∗T − θ∗

)
(17)
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of the OLS estimator of θ∗ in (13), where MT is the sample second moment matrix of the
regressor (1, a∗t−1):

MT =
(

T
∑T
t=1 a

∗
t−1∑T

t=1 a
∗
t−1

∑T
t=1 a

∗2
t−1

)
.

Given rates for ‖τT ‖, the idea is to find sequences of numbers χT s.t.

χT
∥∥∥M−1/2

T

∥∥∥ ‖τT ‖ = O (1) (18)

where ‖A‖ = λ
1/2
max (A′A) denotes the spectral norm of A. In view of (14) and (17) the sequence

of numbers χT will then satisfies
χT (θ̂T − θ) = O(1). (19)

Note that (18) involves calculating norms of the inverse M−1/2
T . This amounts to estimating

the minimal eigenvalue of MT since∥∥∥M−1/2
T

∥∥∥2
= λmax

(
M−1
T

)
= 1
λmin (MT )

so that (18) turns into
χT√

λmin (MT )
‖τT ‖ = O (1) .

Hence this approach is tantamount to investigating the asymptotic behaviour of the minimal
eigenvalues λT = λmin (MT ) and to finding sequences of numbers χT s.t.

χT
‖τT ‖√
λT

= O (1) .

As a further complication, the rates of the two components of θ̂T can (and will in the majority
of cases) be different, so that (19) will only exhibit the behaviour of the worse of the two
parameters.

Applying this approach to the starred model and then transforming back to the original one
we obtain the following result. The proof is relegated to Section B.3.

Theorem 3. Assume that E |εt|α < ∞ for some α > 2. Then strong consistency of the joint
OLS estimator θ̂T holds at the following rates.

(i) Stable case: 0 < c < 2. √
T

ln2 T

(
θ̂T − θ

)
= O(1).

(ii) Unit root case: For both c = 0 and c = 2,√
T

lnT
(
θ̂T − θ

)
= O(1).

(iii) Explosive case: c < 0 or c > 2.

T 1/2−ρ
(
θ̂T − θ

)
= o(1)

for every ρ > 1/α.

Note that, in contrast to the separate approach in Section 3.1.1, the case of c = 0 ∧ δ = 0
is covered in this theorem. It is, however, special in the sense that it is not covered by Nielsen
(2005) such that the proof follows a different route, see the discussion in Section B.3.
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3.1.3 Comparison

Before comparing Theorem 2 and Corollary 1 on the one hand and Theorem 3 on the other,
recollect the following: First, the joint approach yields the rates for the bivariate OLS estimator
θ̂T = (δ̂T , β̂T ).Hence the rate of θ̂T cannot be better than that of the worse of its two constituents.
Secondly, since when estimating the parameters separately the rate of the slope is always better
than that of the intercept it appears reasonable to compare the rate of the latter, cf. Corollary
1, to the joint rate. Thirdly, Theorem 3 actually assumes the existence of somewhat higher
than second moments, see Result 3 in Section B.3, so that only the corresponding results in the
corollary need to be considered.

For the stable case, both approaches yield the same rates. For the unit root case with
non-vanishing intercept, the rate of the intercept in Corollary 1 is better than the joint rate
Theorem 3. For the explosive case, the separate rate is T 1/2 and therefore better than the joint
rate, which is T 1/2−η, for η > 1/α and E |εt|α < ∞. Note that if only second moments are
assumed separate estimation yields the rate T 1/2−η, for all η > 0. In the joint approach, this
would formally correspond to the case α =∞, i.e. bounded error terms.

Actually, Nielsen (2005) not only considers the asymptotics of the studentised version of the
OLS estimator but also presents rates for the OLS estimator itself, see Theorem 2.5 loc. cit..
Applied to our model, they are as follows:

1. β̂T − β = O
(√

T/ lnT
)
,

2. θ̂T − θ = o
(
T 1/2−ρ

)
for all ρ > 1/α.

Both results are valid only for a nonzero intercept. They constitute omnibus rates across all
possible cases and might be of interest if no a priori knowledge about the size of the slope is
available. For a fair comparison these rates ought to be compared to corresponding omnibus
rates based on Theorem 2 and its corollary. For the slope, this is the rate for the stable case,
namely

√
T/ ln2 T . For both parameters simultaneously, this is the rate of the explosive case,

which is also T 1/2−ρ for all ρ > 0. Both are faster than those in Nielsen (2005).

3.2 Decreasing gain

Consider now OLS estimation of δ and β in

yt = δ + βat−1 + εt (20)

under decreasing gain learning, i.e. with at is given by

at =
(

1− c

t

)
at−1 + γ

t
(δ + εt)

see (10). Recall that the strong consistency of at is given by Theorem 1. That of the OLS
estimator of β in (20) is presented in the following theorem, whose proof can be found in
Appendix C. As in the context of weak consistency of β̂T in CM17, only the cases c < 1/2 and
c > 1/2 are considered. The boundary case of c = 1/2 does not seem amenable to our methods
and is left to future research.

Theorem 4. For decreasing gain with gain sequence γt = γ/t, strong consistency of the OLS
estimator β̂T of the slope parameter β holds at the following rates.

(i) For c > 1/2,

lim
T→∞

√
lnT

(ln2 T )1+η

(
β̂T − β

)
= 0
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for every η > 0. If, in addition, E |εt|α <∞ for some α > 2, this may be sharpened to√
lnT
ln3 T

(
β̂T − β

)
= O(1).

(ii) For c < 1/2, √
T 1−2c

(lnT )1+η

(
β̂T − β

)
= O(1).

for every η > 0. If, in addition, E |εt|α <∞ for some α > 2, this may be sharpened to√
T 1−2c

ln2 T

(
β̂T − β

)
= O(1).

Let us compare the convergence rates in Theorem 4 to those established in the context of
the weak consistency of β̂T in CM17. It was found in their Theorem 4 that,

(i) for c > 1/2, AT = Op(lnT ) and

(ii) for c < 1/2, AT = Op(T 1−2c).

It is hence plain from Theorem 4 above that the ‘path taming’ sequences are given by (ln2 T )−(1+η)

and (lnT )−(1+η), respectively.
A comparison of Theorems 1 and 4 reveals that there is a trade-off between the convergence

rates of at and the β̂T . For a further discussion of this issue, see CM17.
As a byproduct, rates of consistency for the OLS estimator of the intercept δ are easily

obtained from the formula
δ̂T − δ = (β̂T − β)a−T + εT .

In view of the LIL, any normalising sequence χT should satisfy

χT

√
ln2 T

T
= O(1). (21)

It is apparent that all rates exhibited for the slope in Theorem 4 satisfy (21). Therefore, we
have the following result.

Corollary 2. Strong consistency of the OLS estimator δ̂T of the intercept δ holds at the same
rates as for the slope.

3.3 Comparison with Lai & Wei

Let us return to the point raised in the introduction that strong consistency may obtain despite
the near optimal sufficient condition established by Lai & Wei (1982a) being violated. Denote
by λmax (T ) and λmin (T ) the maximal and the minimal eigenvalue, respectively, of the second
moment matrix of the regressors (1, at−1). Applied to our simple regression model (5), the
Lai-Wei condition then amounts to

lnλmax (T ) = o (λmin (T )) , (22)

under the additional assumption that E|εt|α <∞ for some α > 2.
It is shown in Section B.4 that, for constant gain learning, condition (22) is satisfied in the

stable and unit root case. In the explosive case, however, the condition is violated:

lnλmax
λmin

→ 2 ln |β|.

14



Nevertheless, strong consistency is established in Theorems 2 and 3.
For decreasing gain, (22) is satisfied for c < 1/2 but violated for c > 1/2. In the latter case,

lnλmax
λmin

→ 2c− 1
γ2σ2 ,

see Section C.4. Yet Theorem 4 shows that the OLS estimator is strongly consistent.

4 Conclusion
This paper derives the strong consistency of the OLS estimators in a stereotypical macroeco-
nomic model with constant and decreasing gain adaptive learning. The rates are obtained at
which the estimators converge. In addition, the asymptotic behaviour of the learning recursion
is examined in the process: For decreasing gain learning, the almost sure rates at which the
learning recursion converges to the rational expectations equilibrium are derived, while it is ar-
gued that for constant gain learning no convergence to the equilibrium takes place. Interestingly,
the best sufficient conditions the for strong consistency of the OLS estimator currently available
in the literature are not met in some of the models we consider.
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A Proof of Theorem 1
The proofs proceed along similar lines as those followed in CM17, and may be considered al-
most sure (a.s.) convergence counterparts of the weak convergence results obtained there. In
particular, they rely on the decomposition of at exposed in Appendix B.1 loc. cit.. Yet instead
of central limit theorems (CLTs) use will be made of appropriate strong laws of large numbers
(LLNs) and laws of the iterated logarithm (LILs).

Reconsider the recursion of at in (10). Passing from at to a#
t = at − α and remembering

that α = δ/ (1− β) = γδ/c, it follows that a#
t obeys the dynamics

a#
t =

(
1− c

t

)
a#
t−1 + γ

t
εt (A.1)

and the DGP in (5) takes the form

yt = α+ βa#
t−1 + εt. (A.2)

Since, henceforth, we will be working exclusively with a#
t , let us rename a#

t as at for notational
simplicity.

A.1 c > 1/2
For didactic reasons it seems favourable to split the proof into two cases: c > 1 and 1/2 < c ≤ 1.

A.1.1 c > 1

It is shown in Appendix B.1.2 of CM17 that, for c > 1, we may write the solution of (A.1) in
the form

at = O
(
t−c
)

+ γ (ξt + ηt) , (A.3)

cf. (B.21) loc. cit.. Here

ξt = 1
tc
vt, ηt = 1

tc
wt, (A.4a)

vt =
t∑
i=1

εi
i1−c

, wt =
t∑
i=1

Oti(1)
i2−c

εi. (A.4b)

The Oti(1)-terms are deterministic. As to ξt, it follows from the integral comparison theorem
(ICT), see Apostol (1974, Proposition 8.23), that the predictable quadratic variation of vt is
given by

〈v〉t = σ2∑t

i=1
i2(c−1) = σ2

2c− 1 t
2c−1 +O(1). (A.5)
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Hence 〈v〉∞ = limt→∞ 〈v〉t = ∞ a.s.. Therefore, by the LIL for sums of independent random
variables proved in Chow & Teicher (1973),

lim sup
t→∞

|vt|√
2 〈v〉t ln2 〈v〉t

= 1.

As a consequence,

lim sup
t→∞

|vt|√
t2c−1 ln2 t

= σ

√
2

2c− 1
so that

lim sup
t→∞

√
t

ln2 t
|ξt| = σ

√
2

2c− 1 (A.6)

and hence ξt → 0.
Turning to ηt, it follows again from the ICT that

Ew2
t =


O
(
t2c−3) for c > 3/2,

O (ln t) for c = 3/2,
O(1) for c < 3/2.

Therefore, by monotone convergence, for c > 1,

E
∞∑
t=1

tη2
t <∞. (A.7)

In particular, this means that √
t |ηt| = o(1). (A.8)

(A.3) together with (A.6) and (A.8) then shows that

lim sup
t→∞

√
t

ln2 t
|at| = σγ

√
2

2c− 1 . (A.9)

A.1.2 1/2 < c ≤ 1

For this case, we need the more refined decomposition

at = O
(
t−c
)

+ γ
(
ξ′t + η′t

)
+O(t−(1+c)), (A.10)

where now

ξ′t = 1
tc
v′t, η′t = 1

tc
w′t, (A.11a)

v′t =
t∑
i=1

θi
εi
i1−c

, w′t = 1
t

t∑
i=1

Oti(1)
i1−c

εi. (A.11b)

Here the θi are deterministic coefficients satisfying limt→∞ θi = 1. In Appendix B.1 of CM17 the
two different representations (A.3) and (A.10) were introduced to treat the two cases c < 1/2
and c ≥ 1/2 separately. Actually, (A.10) remains valid for c ≤ 1, and we need it here to handle
this case, since the approach taken above for c > 1, which is based on the representation (A.3),
does not work.

For the proof we need the following lemma.
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Lemma 1. Consider the sums

Rt =
t∑
i=1

σ2
i and St =

t∑
i=1

θ2
i σ

2
i .

Suppose that θi → 1 and R∞ =∞. Then

St
Rt
→ 1.

The proof runs along familiar lines like, e.g., that of the Kronecker lemma.
The predictable quadratic variation of v′t is given by

〈
v′
〉
t = σ2∑t

i=1
θ2
i i

2(c−1). (A.12)

Since 〈v〉∞ = ∞ a.s. continues to hold for 1/2 < c ≤ 1 and θi → 1, it follows from Lemma 1
that

lim
t→∞

〈v′〉t
〈v〉t

= 1, (A.13)

so that
lim
t→∞

〈v′〉t
t2c−1 = σ2

2c− 1 .

Hence, arguing as above, we find that (A.6) remains valid with ξt replaced by ξ′t. Turning to η′t,
since

Ew′2t = 1
t2
O(1)

t∑
i=1

i2(c−1) = O
(
t2c−3

)
,

we find that
Eη′2t = Ew

′2
t

t2c
= O

(
t−3
)
.

Therefore
E
∞∑
t=1

tη′2t = O(1)
∞∑
t=1

t−2 <∞,

and, a forteriori, (A.7) and (A.8) remain valid for η′. This proves (A.9) for 1/2 < c ≤ 1.
For later use, cf. the proof of Theorem 4, we need the asymptotic behaviour of aT . But this

follows easily from (A.9) since

|aT | ≤
1
T

T∑
t=1
|at| = O(1) 1

T

T∑
t=t0

√
ln2 t

t
= O

√ ln2 T

T

 (A.14)

since ∫ T

t0

√
ln2 t

t
dt = 2

√
T ln2 T +O(

√
T ).

A.2 c = 1/2
We go back to the decomposition (A.10). Comparing (A.12), for c = 1/2, with

〈v〉t = σ2∑t

i=1
i−1 = σ2 ln t+O(1),

it follows from Lemma 1 that 〈
v′
〉
t = σ2 ln t+O(1).

19



Hence, by the LIL,

lim sup
t→∞

|v′t|√
ln t ln3 t

= σ
√

2 (A.15)

and

lim sup
t→∞

√
t

ln t ln3 t

∣∣ξ′t∣∣ = σ
√

2. (A.16)

As for η′t,

Ew′2t = O (1) 1
t2

t∑
i=1

1
i

= O

( ln t
t2

)
.

Therefore
E
∞∑
t=1

tη′2t = E
∞∑
t=1

t

(
w′t
t1/2

)2
= O(1)

∞∑
t=1

ln t
t2

<∞,

so that √
tη′t = o(1). (A.17)

It then follows from (A.10) together with (A.16) and (A.17) that

lim sup
t→∞

√
t

ln t ln3 t
|at| = σγ

√
2.

A.3 c < 1/2
Our starting point is again (A.10). By Kolmogorov’s LLN,

lim
t→∞

tcξ′t = lim
t→∞

v′t =
∞∑
i=1

θi
εi
i1−c

= v′ (A.18)

is finite with probability one. As to η′t,

Ew′2t = O (1) 1
t2

t∑
i=1

i2(c−1) = O
(
t−2
)
,

so that
E
∞∑
t=1

(
tcη′t

)2 = E
∞∑
t=1

w′2t <∞.

Therefore, with probability one,
lim
t→∞

tcη′t = 0. (A.19)

The O (t−c)-term in (A.10) is actually of the form a0B0t
−c, see equation (B.18) of CM17, where

a0 is the initial value of a#
t and B0 = e−(cE0+C0). Here E0 is the Euler constant, and C0 may be

calculated from

C0 = − lim
t→∞

t∑
n=1

[
c

n
+ ln

(
1− c

n

)]
.

Summarising, we find that
lim
t→∞

tcat = u = a0B0 + γv′. (A.20)

The limit also takes place in L2, so that u is an L2-variable with mean a0B0. Moreover, v′ and
hence u has a continuous distribution function, cf. CM17 on this issue.

As to aT , we have

aT = 1
T

T∑
t=1

at = 1
T

T∑
t=1

t−c (tca+ o(1))

= u

1− c
1
T c

+ o
(
T−c

)
. (A.21)
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B Proof of Theorems 2 and 3

B.1 Prerequisites

Most of the proofs in Appendix B are based on the following twomartingale convergence theorems
(MCTs). They are valid for all solutions (independent of the initial value) of the AR(1)-model
with drift, whatever the slope and the intercept may be. Since some of the results presented
below seem not to be completely standard and might be of some interest also outside the scope
of our focus we formulate them in a neutral terminology, starting with the AR(1)-model

yn = µ+ λyn−1 + εn (B.1)

which will replace (13) throughout Appendix B. The MCTs concern the almost sure asymptotic
behaviour of (local) martingales of the form

un =
n∑
k=1

yk−1εk, (B.2)

when the yn are predictable with respect to the past εn. The decisive point is that the predictable
quadratic variation

A0
n =

∑n

k=1
y2
k−1 (B.3)

of un satisfies
lim
n→∞

A0
n =∞ (B.4)

with probability one. Since in our context we only deal with i.i.d. εn and consider only predictable
solutions yn of (B.1) for which (B.4) holds, we will cite the MCTs only for this special case.
Actually, they are valid for more general martingale difference sequences εn, in which case the
expectations in the assumptions of the theorems below have to be replaced by the corresponding
conditional expectations.

The following two results are given in Chow (1965) and Wei (1985), respectively. See also
Lai & Wei (1982a).

MCT 1 (Chow (1965)).
n∑
k=1

yk−1εk = o

[√
A0
n (lnA0

n)1+η
]

(B.5a)

for all η > 0. If E |εn|α <∞ for some α > 2, this may be sharpened to
n∑
k=1

yk−1εk = O

[√
A0
n lnA0

n

]
. (B.5b)

MCT 2 (Wei (1985)). If, in addition to E |εn|α <∞ for some α > 2,

y2
n = o

[(
A0
n

)γ]
(B.6)

for some 0 < γ < 1, then
n∑
k=1

yk−1εk = O

[√
A0
n ln2A0

n

]
. (B.7)

In the proofs of Theorems 2 and 3, the a.s. behaviour of the basic statistics

y−n = 1
n

∑n

k=1
yk−1, (B.8)

A0
n =

∑n

k=1
y2
k−1, (B.9)

An =
∑n

k=1

(
yk−1 − y−n

)2 (B.10)
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will be of fundamental importance. In particular, they determine the behaviour of the derived
statistics

A0
n

An
, ϕ

(
A0
n

)
, ψ

(
A0
n

)
and y−n

An
.

The latter appear explicitly in our representation of the OLS estimator. The functions ϕ and ψ
are given by

ϕ (x) =
√

x

(ln x)1+η and ψ (x) =
√

x

ln2 x
. (B.11)

In passing, note the trivial but useful formula

An = A0
n − n

(
y−n
)2
. (B.12)

B.1.1 Path properties

To evaluate the a.s. asymptotic behaviour of these statistics we need to know the path properties
up to second order of the solution process yn. These will be reported below together with sketches
of their proofs.

B.1.1.1 Stable case.

(i) Basic statistics:

lim
n→∞

y−n = lim
n→∞

yn = µ

1− λ, (B.13a)

lim
n→∞

1
n
A0
n = τ2, with τ2 = σ2

1− λ2 + µ2

(1− λ)2 , (B.13b)

lim
n→∞

1
n
An = σ2

1− λ2 . (B.13c)

(ii) Derived statistics:

lim
n→∞

A0
n

An
= τ2

σ2/ (1− λ2) = 1 + µ2

σ2
1 + λ

1− λ = r, (B.14a)

lim
n→∞

ϕ (n)
ϕ (A0

n) = τ−1 for all η ≥ 0, (B.14b)

lim
n→∞

ψ (n)
ψ (A0

n) = τ−1, (B.14c)

lim
n→∞

n
y−n
An

= µ

σ2
1 + λ

1− λ = r − 1. (B.14d)

These properties follow readily from the well-known ergodic behaviour of the stationary solution
to (B.1) and carry over to any other (causal) solution.

Remark B.1. For the stable case, condition (B.6) is satisfied provided E |εn|α < ∞ for some
α > 2. This can be seen as follows. By Lai & Wei (1985, Theorem 1), any solution y0

n of the
homogeneous model satisfies (

y0
n

)2
= o

(
n2β

)
for every β > 1/α.

Since the inhomogeneous solution yn differs from y0
n at most by a constant, this remains true

for yn. On the other hand, by (B.13b), A0
n = nτ2 (1 + o(1)) . Hence, for every γ,

y2
n

(A0
n)γ = n2β−γo(1).
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Letting β ↘ 1/α, we find that for all 2/α < γ < 1 finally 2/α < 2β < γ < 1, so that 2β− γ < 0.
As a consequence, the LIL-type MCT 2 is valid:

n∑
k=1

yk−1εk = O
[√

n ln2 n
]
.

B.1.1.2 Explosive case. The causal solution is

yn = λny0 + µ
λn − 1
λ− 1 + λnmn,

with
mn =

∑n

i=1
λ−iεi.

By Kolmogorov’s LLN, the martingale mn converges a.s. and in L2 to some finite limit m:

m = lim
n→∞

mn =
∑∞

i=1
λ−iεi, (B.15)

and
Var (m) = σ2

λ2 − 1 .

Remark B.2. m has a continuous distribution, cf. Remark A.1 in CM17.

The following path properties are then immediate consequences.

(i) With probability one and in L2

lim
n→∞

λ−nyn = y0 +m+ µ

λ− 1 . (B.16)

If y0 is independent of (εn)n≥1 , then the distribution of the limit is continuous.

(ii) Basic statistics:

nλ−nyn →
λ

λ− 1 (y0 +m) + λµ

(λ− 1)2 = κ, (B.17a)

nλ−2ny2
n →

λ2

λ2 − 1

[
y0 +m+ µ

λ− 1

]2
= v2. (B.17b)

Note that v2 is a random variable > 0 a.s..

The proof is obtained from (B.16) by applying the Toeplitz Lemma to ξn = λ−nyn (for (B.17a))
and to ξ2

n = λ−2ny2
n (for (B.17b)).

(iii) Derived statistics:

lim
n→∞

λ−2nA0
n = v2, (B.18a)

lim
n→∞

A0
n

An
= 1, (B.18b)

lim
n→∞

ϕ
(
λ2n)

ϕ (A0
n) = 1

v
for all η ≥ 0, (B.18c)

lim
n→∞

nλn
y−n
An

= κ

v2 . (B.18d)
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Sketch of proof. (B.18a) is just (B.17b). (B.18b) follows from An = A0
n−n (y−n )2 and n (y−n )2 =

O
(
λ2n/n

)
. (B.18c) is a consequence of

A0
n = v2λ2n (1 + o(1)) , lnA0

n = (1 + o(1)) lnλ2n,

1
ϕ (A0

n)2 =
(
lnA0

n

)1+η

A0
n

=
(
lnλ2n)1+η

λ2n
1
v2 (1 + o(1)) .

(B.18d) follows from (B.17a) together with (B.18a) and ( B.18b).
Remark B.3. Unlike in the stable case, (B.6) does not hold. This is clear since y2

n ∼ λ2n, A0
n ∼

λ2n, so that
y2
n

(A0
n)γ ∼ λ

2n(1−γ),

with the exponent on the right hand side being positive for all 0 < γ < 1. Therefore there is no
need to consider the statistic ψ

(
A0
n

)
.

B.1.1.3 Unit root case.
Case 1: λ = 1, µ 6= 0.
The solution to (B.1) in this case is the random walk with drift

yn = y0 + nµ+
∑n

k=1
εk. (B.19)

(i) Basic statistics:

lim
n→∞

yn
n

= µ, (B.20a)

lim
n→∞

1
n
yn = µ

2 , (B.20b)

lim
n→∞

1
n2 y

2
n = µ2

3 . (B.20c)

The proof is again a direct consequence of (B.19) and the Toeplitz Lemma.

(ii) Derived statistics:

lim
n→∞

1
n3A

0
n = µ2

3 , (B.21a)

lim
n→∞

A0
n

An
= 4, (B.21b)

lim
n→∞

√
n3

(lnn)1+η
1

ϕ (A0
n) = 31+η/2

µ2 for all η ≥ 0, (B.21c)

lim
n→∞

√
n3

ln2 n

1
ψ (A0

n) =
√

3
µ2 , (B.21d)

lim
n→∞

n2 y
−
n

An
= 3

2µ. (B.21e)

Sketch of proof. (B.21a) is just (B.20c). The rest follows from

A0
n = n3µ

2

3 (1 + o (1)) ,

lnA0
n = 3 lnn+O(1) = (1 + o(1)) 3 lnn,

ln2A
0
n = (1 + o(1)) ln2 n,

n2 y
−
n

An
= y−n /n

An/n3

together with (B.20b).
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Remark B.4. For λ = 1, µ 6= 0, condition (B.6) is fulfilled since

y2
n

(A0
n)γ ∼

n2

n3γ = n2−3γ

tends to 0 for every 2/3 < γ < 1. Therefore MCT 2 is valid.

Case 2: λ = 1, µ = 0.
In this case, yn is a random walk. For the first two moments, we have the following estimates:

lim sup
n→∞

1√
2n ln2 n

|yn| ≤
2
3σ (B.22)

and

lim sup
n→∞

1
2n2 ln2 n

A0
n ≤ σ2, (B.23a)

lim inf
n→∞

ln2 n

2n2 A
0
n = σ2

8 . (B.23b)

(B.22) follows from the LIL by applying a straightforward extension of the Toeplitz Lemma (re-
placing ‘lim’ by ‘lim sup’) together with the ICT, partial integration and a calculus version of the
Toeplitz Lemma. As to (B.23), both properties are cited in Lai & Wei (1982a, Example 2). The
first is a consequence of the LIL, whereas the second is based on a theorem by Donsker & Varad-
han (1977, page 751). The problem is that 1/A0

n = O
(
n−2 ln2 n

)
and n |y−n |

2 = O
(
n2 ln2 n

)
, so

that Qn = n |y−n |
2
/A0

n = O((ln2 n)2). This makes it impossible to determine the behaviour of
An = A0

n (1−Qn) .

Case 3: λ = −1.
As is easily shown, yn differs from the alternating random walk y0

n without drift only by a
constant:

yn =
{
y0
n + µ for n odd,
y0
n for n even. (B.24)

Apparently, the a.s. asymptotic behaviour of the paths is governed by the LIL.

(i) Mean:

lim
n→∞

1
n

∑n

k=1
yk−1 =

{
µ
2 for n odd,
0 for n even. (B.25)

Proof. The proof takes up an idea in the proof of Theorem 2 in Appendix A.3 of CM17. Since
the initial value does not play any role, we assume that y0 = 0. Then

y0
n = (−1)n S̃n,

where we have introduced the random walk

S̃n =
∑n

k=1
ε̃k with ε̃k = (−1)k εk.

Then ∑n

k=1
y0
k−1 =

∑n

k=1
(−1)k−1 S̃k−1 = σnS̃n −

∑n

k=1
σkε̃k.

The last equality follows by partial summation, with

σk =
∑k

j=1
(−1)j−1 =

{
1 if k odd,
0 if k even.

Then, by the LLN,
lim
n→∞

1
n

∑n

k=1
y0
k−1 = 0

The assertion then follows from (B.24).
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(ii) 2nd moments:

lim sup
n→∞

1
2n2 ln2 n

A0
n ≤ σ2, (B.26a)

lim inf
n→∞

ln2 n

2n2 A
0
n ≥

σ2

2 . (B.26b)

We encountered (B.26) essentially in (B.23) where, however, yn was a random walk: yn =
Sn =

∑n
k=1 εk. In the present case, since the asymptotic behaviour of the second moments is

independent of the drift and the sign, the behaviour of A0
n is governed by that of S̃n. (B.26a)

is then a consequence of the LIL, which continues to hold when passing from Sn to S̃n by the
already mentioned LIL for martingale difference sequences of Chow & Teicher (1973) and thus
remains valid for S̃n. As to (B.26b), it is based on a theorem of Donsker & Varadhan (1977,
page 751), which assumes i.i.d. shocks, in which case

lim inf
n→∞

ln2 n

2n2 A
0
n = σ2

8 . (B.27)

At any rate, for symmetric εn, S̃n is again a random walk of i.i.d. shocks so that (B.27) holds for
such error terms. It can, however, be shown that at least (B.26b) is satisfied for non-symmetric
ε̃k .

(B.26) carries over to An. For the first inequality, this follows trivially from An ≤ A0
n. For

(B.26b), it is a consequence of (B.25), which implies that |y−n | = O(1) and therefore

ln2 n

2n2 An = ln2 n

2n2 A
0
n −

ln2 n

2n
∣∣y−n ∣∣2 = ln2 n

2n2 A
0
n + o(1). (B.28)

(iii) Derived statistics:

A0
n

An
= O

[
(ln2 n)2

]
, (B.29a)

ϕn
ϕ (A0

n) = O (1) with ϕn = n√
(lnn)1+η ln2 n

, for all η ≥ 0, (B.29b)

ψn
ψ (A0

n) = O (1) with ψn = n

ln2 n
, (B.29c)

|y−n |
An

= O

( ln2 n

n2

)
. (B.29d)

Proof. Ad (B.29a).

1
(ln2 n)2

A0
n

An
=

1
2n2 ln2 n

A0
n

ln2 n
2n2 An

= Pn
Qn

,

lim sup
n→∞

1
(ln2 n)2

A0
n

An
≤ lim supn→∞ Pn

lim infn→∞Qn
≤ 8.

Ad (B.29b). Denote αn = 2n2 ln2 n, βn = (ln2 n) /2n2. Then

lnA0
n = lnαn + ln

(
α−1
n A0

n

)
= (1 + o(1)) 2 lnn+ ln

(
α−1
n A0

n

)
or

lnA0
n

2 lnn = (1 + o(1)) + ln
(
α−1
n A0

n

)
2 lnn (B.30)

By (B.26a),
lim sup
n→∞

ln
(
α−1
n A0

n

)
≤ ln σ2, (B.31)
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so that ln
(
α−1
n A0

n

)
is bounded from above. On the other hand, since the left hand side of (B.30)

is positive for n large enough, ln
(
α−1
n A0

n

)
/2 lnn is also bounded from below. Therefore

lnA0
n

2 lnn = O (1) . (B.32)

Coming to (B.29b) and making use of (B.32) and (B.26b), we may write

1
ϕ (A0

n)2 =
(
lnA0

n

)1+η

A0
n

= β−1
n

(
lnA0

n

)1+η

β−1
n A0

n

= β−1
n (2 lnn)1+η

(
lnA0

n

2 lnn

)1+η

O (1)

= (2 lnn)1+η ln2 n

2n2 O (1) .

This shows (B.29b) with
ϕn = n√

(lnn)1+η ln2 n
.

Ad (B.29c). By (B.32), denoting the O (1)-term by Cn and noting that Cn > 0 for n large
enough,

ln lnA0
n

2 lnn = ln2A
0
n − ln2 n− ln 2 = lnCn

or
ln2A

0
n

2 lnn = 1 + ln 2 + lnCn.

Since the left hand side is positive for n large enough, lim infn→∞ lnCn ≥ − (1 + ln 2) . As a
consequence,

ln2A
0
n

2 ln2 n
= O (1) . (B.33)

Making use of (B.32) and (B.26b), we may then write

1
ψ (A0

n)2 = ln2A
0
n

A0
n

= β−1
n

ln2A
0
n

β−1
n A0

n

= β−1
n (2 ln2 n) ln2A

0
n

2 ln2 n
O (1)

= (ln2 n)2

n2 O (1) .

This shows (B.29c) with
ψn = n

ln2 n
.

Ad (B.29d). This is a straightforward consequence of (B.25) and (B.26b) together with
(B.28).

Remark B.5. If E |εn|α <∞ for some α > 2, it follows from (B.26b) that

1
A0
n

= O

[ ln2 n

n2

]
.

On the other hand, by the LIL, y2
n = O (n ln2 n) . Therefore

y2
n

(A0
n)γ = (ln2 n)1+γ

n2γ−1 O(1),

so that for every 1/2 < γ < 1 (B.6) will be satisfied.
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B.1.2 Eigenvalues of the moment matrix

Consider the second moment matrix of the regressor (1, yn−1) in (B.1):

Mn =
(

n ny−n
ny−n A0

n

)

Its eigenvalues (EVs) are given by

λmax = n+A0
n

2
[
1 +

√
1− 4Dn

]
, (B.34a)

λmin = n+A0
n

2
[
1−

√
1− 4Dn

]
, (B.34b)

with

Dn = nA0
n − (ny−n )2

(n+A0
n)2 .

Note that both eigenvalues are real, so that 0 ≤ Dn ≤ 1/4.
In the following, we will report the eigenvalues for the different cases and give brief sketches

of the proofs. We will make use of the corresponding path properties established in Section
B.1.1.

B.1.2.1 Stable case. Then
1
n
A0
n → τ2, y−n →

µ

1− λ
and

Dn =
1
nA

0
n − (y−n )2(

1 + 1
nA

0
n

)2 → D = σ2/ (1− λ)2

(1 + τ2)2 .

Therefore

lim
n→∞

1
n
λmax = λ+ = 1 + τ2

2
[
1 +
√

1− 4D
]
,

lim
n→∞

1
n
λmin = λ− = 1 + τ2

2
[
1−
√

1− 4D
]
.

B.1.2.2 Explosive case. Then

λ−2nA0
n → v2, n2λ−2n (y−n )2 → κ2.

Hence A0
n = v2λ2n (1 + o(1)), (ny−n )2 = λ2n (κ2 + o(1)

)
, and

nDn = A0
n − n (y−n )2

(1 +A0
n/n)2 = λ2nv2

(1 +A0
n/n)2 (1 + o(1)) ∼ v2

(λ−n + λ−nA0
n/n)2 → 0

since
1
n
|λ|−nA0

n = |λ|
n

n
λ−2nA0

n →∞.

As a consequence, the maximal EV is

lim
n→∞

λ−2nλmax = v2. (B.35)

For the minimal EV, use the square root expansion
√

1 + x = 1 + x

2 +O
(
x2
)

28



to obtain

λmin = n+A0
n

2
[
1−

√
1− 4Dn

]
= n+A0

n

2
[
1−

(
1− 2Dn +O

(
D2
n

))]
= Dn

(
n+A0

n

)
+
(
n+A0

n

)
O
(
D2
n

)
. (B.36)

Making use of the path properties,

1
n

(
n+A0

n

)
Dn = A0

n − n (y−n )2

n+A0
n

= λ2nv2

n+A0
n

(1 + o(1)) = v2

λ−2nn+ λ−2nA0
n

(1 + o(1))→ 1,

1
n

(
n+A0

n

)
D2
n → 0,

(B.36) yields, for the minimal EV,
1
n
λmin → 1.

Remark B.6. (B.35) implies that limn→∞ n
−1 lnλmax → 2 ln |λ| , which is in accordance with

Nielsen (2005, Corollary 7.2) and Lai & Wei (1985, Corollary 2). Note, however, that these
results concern the explosive process yn without intercept, so that, transferred to our case, they
just say something about the asymptotic behaviour of the one-dimensional matrix A0.

n . Therefore,
Nielsen’s result that also limn→∞ n

−1 lnλmin → 2 ln |λ| applies only to an at least 2-dimensional
explosive process.

B.1.2.3 Unit root case.

Case 1: λ = 1, µ 6= 0.
In this case,

n2Dn =
1
n3A

0
n −

(
1
ny
−
n

)2

(
1
n2 + 1

n3A0
n

)2 →
µ2

3 −
(µ

2
)2(

µ2

3

)2 = 3
4µ
−2

In particular, since Dn → 0,

1
n3
n+A0

n

2
[
1 +

√
1− 4Dn

]
= 1
n3A

0
n (1 + o(1))

and the maximal EV satisfies
1
n3λmax →

µ2

3 .

For the minimal EV, note that

1
n

(
n+A0

n

)
Dn =

(
2
n3
n+A0

n

2

)
n2Dn →

1
4 ,

1
n

(
n+A0

n

)
D2
n → 0.

It then follows from (B.36) that the minimal eigenvalue satisfies

1
n
λmin →

1
4 .

Case 2: λ = 1, µ = 0.
In this case, the formulas (B.34) fail since the behaviour of Dn cannot be derived from the path
properties in B.1.1.3. We therefore pass to the equivalent formulas

λ± = 1
2

[
A0
n + n±

√
(A0

n − n)2 + 4p2
n

]
,
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where we have put pn = ny−n . Since n/A0
n = O(ln2 n/n) and pn/A0

n = O(
√

(ln2 n)3 /n) by virtue
of (B.22) and (B.23b), we may write

λ± = 1
2

A0
n + n±A0

n

√(
1− n

A0
n

)2
+ 4

(
pn
A0
n

)2


= 1
2

[
A0
n + n±A0

n

√
1 + o(1)

]
= 1

2
[
A0
n + n±A0

n (1 + o(1))
]
.

Hence

λmax = A0
n (1 + o (1)) ,

λmin = n

2 (1 + o (1)) .

Case 3: λ = −1.
Since A0

n/n→∞,

Dn ≤
nA0

n

(n+A0
n)2 = A0

n/n

(1 +A0
n/n)2 → 0

and
λmax =

(
n+A0

n

)
(1 + o(1)) .

Therefore, making use of the results in Section B.1.1.3, the maximal EV satisfies

lim sup
n→∞

1
2n2 ln2 n

λmax ≤ σ2,

lim inf
n→∞

ln2 n

2n2 λmax ≥
σ2

2 .

In (B.36), we have
1
n
Dn

(
n+A0

n

)
= A0

n − n (y−n )2

n+A0
n

=
1− n

A0
n

(y−n )2

1 + n
A0

n

.

Since n/A0
n → 0 and y−n = O(1),

1
n
Dn

(
n+A0

n

)
→ 1.

As a consequence, for the minimal EV,

lim
n→∞

1
n
λmin = 1.

B.1.3 Generalities

As announced in Section 3.1, we are concerned with the estimation of the parameters in the
transformed model (13). In the notation adopted for Appendix B, this means OLS estimation
of the parameters in (B.1). Above, we distinguished two alternative approaches:

The separate approach makes use of the representations of the OLS estimator for the single
parameters already introduced in Section 3.1.1. In the notation adopted for this Appendix,
these are

λ̂n =
∑n
k=1 (yk−1 − y−n ) (yk − yn)∑n

k=1 (yk−1 − y−n )2 ,

µ̂n = yn − λ̂ny−n
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or, in the form to be used below,

λ̂n − λ = un
An
− y−n
An

∑n

k=1
εk, (B.38a)

µ̂n − µ = (a− ân) y−n + εn, (B.38b)

with un as in (B.2).
The joint approach investigates the 2-dimensional OLS estimator θ̂n = (µ̂n, λ̂n)′ of θ =

(µ, λ)′ . As carried out in Section 3.1.2, it is based on recent convergence results of its studentised
version τn, in terms of which

θ̂n − θ = M−1/2
n τn. (B.39)

Here Mn is the moment matrix

Mn =
(

n ny−n
ny−n A0

n

)
. (B.40)

The first approach will be treated in Section B.2, the second in Section B.3.

B.2 Proof of Theorem 2

B.2.1 Estimation of the slope

B.2.1.1 Generalities. Starting with (B.38a), write λ̂n − λ in the form

λ̂n − λ = un
A0
n

A0
n

An
− y−n
An

∑n

k=1
εk = ϕ−1

(
A0
n

)
Un

A0
n

An
− Vn, (B.41)

where we have introduced

Un = un√
A0
n (lnA0

n)1+η
, Vn = y−n

An

∑n

k=1
εk

and ϕ (x) as in (B.11). We may then apply MCT 1 to obtain that Un = O (1) for every η > 0.
If E |εn|α < ∞ for some α > 2, then η = 0 is admitted. If even (B.6) is satisfied, then we may
apply the stronger MCT 2 to find that

Un = un√
A0
n ln2A0

n

is O(1). In this case, ϕ(x) can be replaced by ψ (x) from (B.11).
As a consequence, if one is interested in deterministic convergence rates for λ̂n−λ, then one

should investigate the sequence χ
(
A0
n

)
, with χ either of the functions ϕ or ψ, and try to find a

sequence of numbers χn s.t.

χn
χ (A0

n)
A0
n

An
= O(1), (B.42a)

χnVn = O(1). (B.42b)

Then it will hold that

χn(λ̂n − λ) = Un
χn

χ (A0
n)
A0
n

An
− χnVn = O(1). (B.43)

Sufficient conditions for (B.42a) are
χn

χ (A0
n) = O(1), (B.44a)

A0
n

An
= O(1). (B.44b)
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As to (B.42b), write

χnVn = χn
y−n
An

∑n

k=1
εk = χn

√
n ln2 n

y−n
An

√
1

n ln2 n

∑n

k=1
εk.

By the LIL, a sufficient condition for (B.42b) to hold is

χn
√
n ln2 n

y−n
An

= O (1) . (B.45)

B.2.1.2 Stable case. Here we will make use of the results in Section B.1.1.1. If E |εn|α <∞
for some α > 2, (B.6) is satisfied, cf. Remark B.1, and we may apply MCT 2 and χ = ψ. Making
use of (B.14) we see that χn = ψ (n) will satisfy both (B.44) and (B.45).

If one assumes only finite 2nd moments, one has to make use of MCT 1 and χn = ϕ (n) will
do.

B.2.1.3 Explosive case. Here the results in Section B.1.1.2 come into action. According to
Remark B.3, we cannot apply MCT 2 but must be content with MCT 1. Making use of (B.18),
it is easily shown that

χn = ϕ
(
λ2n

)
= |λ|n

n1/2+η

satisfies all conditions (B.44) and (B.45). If E |εn|α < ∞ for some α > 2, we may even choose
η = 0.

B.2.1.4 Unit root case. Here we will make use of the result in Section B.1.1.3.

Case 1: λ = 1, µ 6= 0.
By Remark B.4, (B.6) is satisfied if higher moments exist. By (B.21),

χn =

√
n3

ln2 n

will satisfy (B.44) and (B.45).
If only α = 2 is assumed, then we have to use MCT 1 and

χn =
√

n3

(lnn)1+η , η > 0.

Case 2: λ = 1, µ = 0.
Cf. the discussion in Section B.1.1.3.

Case 3: λ = −1.
Since (B.6) is satisfied, cf. Remark B.5, for α > 2, (B.29c) yields

n

ln2 n

1
ψ (A0

n) = O(1).

This suggests
χ′n = n

ln2 n

as a candidate for the normalising sequence. However, in view of (B.29a), (B.44b) is not satisfied.
This may be compensated by choosing

χn = n

(ln2 n)3 = χ′n
(ln2 n)2 ,
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which will satisfy (B.42a) and (B.42b) (with χ = ψ).
If only second moments are assumed,

χn = n√
(lnn)1+η ln2 n

will do.
Collecting the results, we obtain, in the notation used in this appendix, Theorem 2.

Theorem 2. Strong consistency of the OLS estimator λ̂n of the slope parameter λ holds at the
following rates:

(i) Stable case: |λ| < 1. If E |εn|α <∞ for some α > 2,√
n

ln2 n
(λ̂n − λ) = O(1). (B.46)

If only second moments exist, then√
n

(lnn)1+η (λ̂n − λ) = o(1).

for all η > 0.

(iia) Unit root case: λ = 1 and µ 6= 0. If E |εn|α <∞ for some α > 2,√
n3

ln2 n
(λ̂n − λ) = O(1).

If only second moments exist, then√
n3

(lnn)1+η (λ̂n − λ) = o(1).

for all η > 0.

(iib) Unit root case: λ = −1. If E |εn|α <∞ for some α > 2,

n

(ln2 n)3 (λ̂n − λ) = O(1).

If only second moments exist, then
n√

(lnn)1+η ln2 n
(λ̂n − λ) = o(1).

for all η > 0.

(iii) Explosive case: |λ| > 1. Assuming only 2nd moments,

|λ|n

n1/2+η (λ̂n − λ) = o(1) (B.47)

for all η > 0. If E |εn|α < ∞ for some α > 2, (B.47) remains valid, with O(1) instead of
o(1) for η = 0.
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B.2.2 Estimation of the intercept

Remember that
µ̂n − µ = (λ̂n − λ)y−n + εn.

Hence any rate φn for which φn(µ̂n − µ) = O(1) should satisfy

φnεn = O(1), (B.48a)
φn(λ̂n − λ)y−n = O(1). (B.48b)

In view of the LIL, (B.48a) means that

φn
ψ (n) = O(1). (B.49a)

(B.49a) rules out all rates tending faster to infinity than ψn = ψ (n) . Also, if χn is the rate for
λ̂n according to Theorem 2, then (B.48b) becomes

φn(λ̂n − λ)y−n = χn(λ̂n − λ)φn
χn
y−n = O(1).

Therefore a second sufficient condition for φn to qualify as rate is

φn
χn
y−n = O(1). (B.49b)

B.2.2.1 Stable case. Since y−n = O(1), both φn = ϕ (n) and φn = ψ (n) from Theorem 2(i)
will do according to the dichotomy established there.

B.2.2.2 Explosive case. By Theorem 2(iii), χn = |λ|n /n1/2+η. Since nλ−ny−n → κ, cf.
(B.17a),

φn = n1/2−η

will do for every η ≥ 0:

φn
χn
y−n = n1/2−η n

1/2+η

|λ|n
λn

n
(κ+ o(1)) = O(1),

which shows (B.49b). (B.49a) is trivially satisfied.

B.2.2.3 Unit root case.

Case 1: λ = 1, µ 6= 0.
Since y−n /n→ µ/2, cf. (B.20b), φn = ψn will do:

φn
χn
y−n =

√
n

ln2 n

√
ln2 n

n3
n

2µ (1 + o(1)) = O(1).

If only 2nd moments exist,

φn =
√

n

(lnn)1+η . (B.50)

Case 2: λ = −1.
The optimal rate χn = n/ (ln2 n)3 from Theorem 2(iib) does not satisfy (B.49a). However, since
y−n = O(1), (B.50) will do.

Gathering the results, we arrive at Corollary 1, in the notation used in this appendix.
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Corollary 1. Strong consistency of the OLS estimator µ̂T of the intercept µ holds at the fol-
lowing rates.

(i) Stable case: If E |εn|α <∞ for some α > 2,√
n

ln2 n
(µ̂n − µ) = O(1).

If only second moments exist, then√
n

(lnn)1+η (µ̂n − µ) = o(1).

for all η > 0.

(iia) Unit root case: λ = 1 and µ 6= 0. If E |εn|α <∞ for some α > 2,√
n

ln2 n
(µ̂n − µ) = O(1).

If only second moments exist, then√
n

(lnn)1+η (µ̂n − µ) = o(1).

for all η > 0.

(iib) Unit root case: λ = −1. Same as in case (iia).

(iii) Explosive case: Assuming only 2nd moments,

n1/2−η (µ̂n − µ) = o(1). (B.51)

for all η > 0. If E |εn|α < ∞ for some α > 2, (B.51) remains valid, with O(1) instead of
o(1) for η = 0.

B.2.3 Stable case revisited

The question whether in some special cases a LIL-type convergence theorem may be available
despite the nonexistence of higher moments seems to have a positive answer at least in the stable
case. Basically, it is the problem of finding LIL-like laws for martingales of the form

Mn =
∑n

k=1
yk−1εk

if only second moments for εn are available. We cite here one reference which is appropriate
for our purposes, namely the following version of a LIL for stationary ergodic processes due to
Stout (1970).

Result 2 (Stout (1970)). Let (Yi)i≥1 be a stationary ergodic stochastic sequence with E{Yi |
Y1, Y2, . . . , Yi−1} = 0 a.s. for all i ≥ 2 and EY 2

1 = 1. Then, with probability one,

lim sup
n→∞

∑n
i=1 Yi√

2n ln2 n
= 1. (B.52)
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In our stable case: Yi = y0
i−1εi, where y0

n is the stationary solution to (B.1). Note that
the stationary solution is used in order to ensure that the resulting process (Yi) is stationary
ergodic. Then EY 2

i = σ4/
(
1− λ2) . Since y0

n−1 and εn are independent, only εn ∈ L2 needs to
be required, cf. Shiryaev (1996, Chapter II, §6, Theorem 6).

(B.52) then ensures that MCT 2 holds without any further assumptions:

lim sup
n→∞

∑n
k=1 y

0
k−1εk√

2n ln2 n
= σ2
√

1− λ2
. (B.53)

Actually, (B.53) is valid for any (possibly nonstationary) solution to (B.1). This is so since
the difference between the two solutions of (B.1) is given by

yn − y0
n = λnu

with u = y0 − y0
0, implying that

n∑
k=1

yk−1εk −
n∑
k=1

y0
k−1εk = u

n∑
k=1

λk−1εk = O(1).

Finally, passing to (−Yi) in (B.52) shows the same behaviour for the lim infn→∞ or, put in a
form needed for the OLS estimator,

lim sup
n→∞

|
∑n
k=1 yk−1εk|√
2n ln2 n

= σ2
√

1− λ2
.

This is just a form of the MCT 2 needed to calculate the rate of convergence in Theorem 2(i).
Hence (B.46) remains valid even if only 2nd moments are required.

B.3 Proof of Theorem 3

Our starting point will be Nielsen (2005, Theorem 2.4), which we cite here because it is of
interest in its own right.

Result 3 (Nielsen (2005)). Assume that E |εt|α < ∞ for some α > 2. Then, except for the
case of λ = 1 ∧ µ = 0, the following holds with probability one:

τn =


O
[
(ln2 n)1/2

]
for |a| < 1,

O
[
(lnn)1/2

]
for |a| = 1,

o [nρ] for |a| > 1,
(B.54)

with the last line being valid for all ρ > 1/α.

The exclusion of the aforementioned case is due to the fact that it violates Assumption 2.3
of Nielsen (2005).

As elaborated in Section 3.1.2, this approach comes down to investigating the asymptotic
behaviour of the minimal eigenvalues λn = λmin (Mn) of the moment matrix Mn and to find
sequences of numbers χn s.t.

χn
‖τn‖√
λn

= O (1) . (B.55)

The minimal eigenvalues λn of Mn are calculated in Section B.1.2. In the consideration of
the individual cases below we will therefore only cite the corresponding result without further
explicit reference.
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B.3.1 Stable case

In this case,
1
n
λn → λ−

for some positive constant λ−. Taking account of (B.54), we obtain

‖τn‖√
λn

=

√
ln2 n

n
O(1),

so that
χn =

√
n

ln2 n

will satisfy (B.55).

Remark B.7. In the stable case, both eigenvalues diverge at the same rate, so that both com-
ponents of θ̂n will have the same rate of convergence.

B.3.2 Explosive case

In this case,
lim
n→∞

1
n
λmin = 1.

Going back to (B.54),
‖τn‖√
λn

= nρ√
n
O(1).

As a consequence,
χn = n1/2−ρ

will satisfy (B.55).

B.3.3 Unit root case

Case 1: λ = 1, µ 6= 0.

It follows that
lim
n→∞

1
n
λmin = 1

4
and, by (B.54),

‖τn‖√
λn

=

√
lnn
n
O(1).

As a consequence,
χn =

√
n

lnn
will satisfy (B.55).

Case 2: λ = 1, µ = 0.
In this case Assumption 2.3 in Nielsen (2005) is violated, so that we cannot apply Result 3.
Nevertheless, the results for Case 2 in Section B.1.2.3 in connection with (B.23a) show that

lnλmax
λmin

= O(1).
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Therefore the fundamental sufficient condition of Lai & Wei (1982a) is satisfied and therefore
their Theorem 1 shows that √

λmin
lnλmax

(
θ̂n − θ

)
= O(1).

For more details cf. the discussion in Section B.4. Since lnA0
n/ lnn = O(1), see (B.32), it follows

that √
n

lnn
(
θ̂n − θ

)
= O(1).

Case 3: λ = −1.
Since

lim
n→∞

1
n
λmin = 1

and ‖τn‖ = O (nρ) , χn may be chosen as in case λ = 1.

Gathering the results we obtain the following theorem.

Theorem 3. Assume that E |εn|α < ∞ for some α > 2 Then strong consistency of the joint
OLS estimator θ̂n holds at the following rates.

(i) Stable case: √
n

ln2 n

(
θ̂n − θ

)
= O(1).

(ii) Unit root case: For both λ = 1 and λ = −1,√
n

lnn
(
θ̂n − θ

)
= O(1).

(iii) Explosive case:
n1/2−ρ

(
θ̂n − θ

)
= o(1)

for every ρ > 1/α.

Remark B.8. One may be tempted to apply the results in Lai & Wei (1985) by writing the
AR(1)-model with intercept in augmented form as

xn = Bxn−1 + en,

with
xn =

(
yn
1

)
, B =

(
λ µ
0 1

)
, en =

(
εn
0

)
.

For the case of λ = 1, B has the double root λ = 1. A formal application of Theorem 3 loc. cit.
would then yield that lim infn→∞ n−1λmin > 0. However, Lai & Wei’s crucial assumption (3.11)
(with p = 2) is not satisfied. Namely,

En = 1
n

n∑
i=1

eie
′
i = 1

n

n∑
i=1

ε2
i

(
1 0
0 0

)
,

so that
En +BEnB

′ = 1
n

n∑
i=1

ε2
i

[(
1 0
0 0

)
+
(
λ2 0
0 0

)]
→ σ2

(
1 + λ2 0

0 0

)
.

The limit matrix is singular, thus violating the requirement that it be regular.
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B.4 Comparison with Lai & Wei

It will be of interest to compare our results with those that can be obtained on the basis of the
seminal paper by Lai & Wei (1982a). They consider the general regression model

yn = θ′xn + εn

with predetermined regressors xn and martingale difference errors εn. Specialised to our case of
i.i.d. errors it is assumed that E |εn|α <∞ for some α > 2. Lai & Wei’s basic Theorem 1 states
that a sufficient condition for strong consistency of the joint OLS estimator θ̂n is that

lnλmax (n) = o (λmin (n)) , (B.56)

where λmax (n) and λmin (n) denote again the maximal and the minimal eigenvalue, respectively,
of the moment matrix

Mn = X ′nXn,

where X ′n = (x1, . . . , xn) . In this case, it will hold that

∥∥∥θ̂n − θ∥∥∥ = O

(√
lnλmax (n)
λmin (n)

)
. (B.57)

Applied to our scenario, xn = (1, yn−1)′ and θ = (µ, λ)′ , so that Mn is just the matrix in (B.40).
Its eigenvalues have been calculated in Section B.1.2, and we will make use of these results to
check condition (B.56) for the various cases.

B.4.1 Stable case

In this case, (B.56) is satisfied and

lnλmax
λmin

= lnn
n

(1 + o (1)) .

Hence (B.56) is satisfied and

χn =
√

n

lnn
is a rate corresponding to (B.57). This rate is slower than that in Corollary 1 and Theorem 3.

B.4.2 Explosive case

In this case,
lnλmax
λmin

→ 2 ln |λ| .

Hence (B.56) is violated. Nevertheless, it is shown in Theorems 2 and 3 that the OLS estimator
is strongly consistent. This shows that condition (B.56) is indeed not necessary. The explosive
case of our model may hence be seen as a counterpart to Lai & Wei’s Example 1.

Remark B.9. Note that in the explosive case the condition

An
lnn →∞

in Lai & Wei (1982b), valid for simple regression models, is satisfied in view of the result in
Section B.1.1.2.
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B.4.3 Unit root case

Case 1: λ = 1.
lnλmax
λmin

= O

( lnn
n

)
.

Therefore (B.56) is satisfied and a corresponding rate is

χn =
√

n

lnn.

This the rate appearing in Theorem 3(ii). Given that the error terms have a moment somewhat
higher than the second, it is weaker than the corresponding rate in Corollary 1.

Case 2: λ = −1.
It was shown in Section B.1.2.3 that

λmax =
(
n+A0

n

)
(1 + o (1)) = A0

n

(
1 + n

A0
n

)
(1 + o (1)) .

Hence, since A0
n/n→∞,

lnλmax = lnA0
n + o (1) .

Making use of (B.32), we find that

lnλmax
lnn = lnA0

n

lnn + o (1) = O(1).

Since λmin = n (1 + o (1)) , (B.56) is satisfied.

Remark B.10. Lai & Wei (1982a, Theorem 2) may be applied to both cases, showing that the
rate for the joint estimator θ̂T is

√
n/ lnn.

C Proof of Theorem 4

C.1 Generalities

As in Appendix A, we will make the calculations in terms of the centred process a#
t = at−α, for

which the corresponding dynamics and the DGP are given by (A.1) and (A.2). As is readily seen,
the OLS estimator β̂T is the same whether calculated with the original at or the transformed
a#
t . Using again the convention of renaming a#

t as at, we are thus from now on working with
the DGP

yt = α+ βat−1 + εt, (C.1)
and the dynamics

at =
(

1− c

t

)
at−1 + γ

t
εt. (C.2)

Note that, with this notational convention, limT→∞ at = 0.
Our procedure will be the same as in Section B.2. In particular, the OLS estimator of β is

β̂T − β =
∑T
t=1

(
at−1 − a−T

)
εt

AT
= RT − VT ,

with

a−T = 1
T

T∑
t=1

at−1, A0
T =

T∑
t=1

a2
t−1, (C.3)

AT =
T∑
t=1

(
at−1 − a−T

)2
= A0

T − T
(
a−T

)2
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and

uT =
T∑
t=1

at−1εt, (C.4)

RT = uT
AT

, VT = a−T
AT

T∑
t=1

εt,

cf. (B.38a). As in Section B.2, the main tool in analysing RT and VT will be the martingale
convergence theorems stated in Section B.1. For the reader’s convenience we restate them here
in the notation for the process at.

MCT 1 (Chow (1965)).
T∑
t=1

at−1εt = o

[√
A0
T

(
lnA0

T

)1+η
]

(C.5a)

for all η > 0. If E |εt|α <∞ for some α > 2, this may be sharpened to
T∑
t=1

at−1εt = O

[√
A0
T lnA0

T

]
. (C.5b)

MCT 2 (Wei (1985)). If, in addition to E |εt|α <∞ for some α > 2,

a2
T = o

[(
A0
T

)γ]
(C.6)

for some 0 < γ < 1, then
T∑
t=1

at−1εt = O

[√
A0
T ln2A0

T

]
.

Arguing as in Section B.2.1.1, we rewrite RT in the form

RT = uT
AT

= χ−1
(
A0
T

)
UT

A0
T

AT
(C.7)

with

(x) = ϕ (x) =
√

x

(ln x)1+η or χ(x) = ψ (x) =
√

x

ln2 x
, (C.8)

UT = uT√
A0
T

(
lnA0

T

)1+η
or UT = uT√

A0
T ln2A0

T

, (C.9)

respectively, according to whether MCT 1 or MCT 2 is applicable.
Following the same logic as in Section B.2.1.1, in order to obtain deterministic convergence

rates for the OLS estimator, our task is then to find sequences of numbers χT such that
χT

χ
(
A0
T

) = O (1) (C.10)

and
χT
√
T ln2 T

ā−T
AT

= O (1) (C.11)

are satisfied. Then, if in addition
A0
T /AT = O(1), (C.12)

it will hold that
χT (β̂T − β) = O (1) . (C.13)

(C.10) to (C.12) are just the conditions (B.44) and (B.45) in Section B.2.1.1.

41



C.2 Asymptotics of A0
T

C.2.1 c > 1/2

We will show that
A0
T

lnT →
γ2σ2

2c− 1 (C.14)

Taking squares in (C.2) (remembering our renaming convention) yields

a2
t =

(
1− c

t

)2
a2
t−1 + γ2

t2
ε2
t + 2

(
1− c

t

)
γ

t
at−1εt.

Multiplying by t and then summing over t we obtain

T∑
t=1

ta2
t =

T∑
t=1

t

(
1− c

t

)2
a2
t−1 + γ2

T∑
t=1

1
t
ε2
t + 2γ

T∑
t=1

(
1− c

t

)
at−1εt. (C.15)

Since (
1− c

t

)2
= 1− 2c

t
+ c2

t2
,

we may write the first term in (C.15) as

T∑
t=1

t

(
1− c

t

)2
a2
t−1 =

T∑
t=1

ta2
t−1 +

[
−2c

T∑
t=1

a2
t−1 + c2

T∑
t=1

1
t
a2
t−1

]

=
T∑
t=1

(t− 1) a2
t−1 +

T∑
t=1

a2
t−1 + [· · · ]

=
T∑
t=1

ta2
t − Ta2

T +A0
T +

[
−2cA0

T + c2
T∑
t=1

1
t
a2
t−1

]

=
T∑
t=1

ta2
t − Ta2

T + (1− 2c)A0
T + c2

T∑
t=1

1
t
a2
t−1.

Returning to (C.15), this means that

T∑
t=1

ta2
t =

T∑
t=1

ta2
t − Ta2

T + (1− 2c)A0
T + c2

T∑
t=1

1
t
a2
t−1 + γ2

T∑
t=1

1
t
ε2
t + 2γ

T∑
t=1

(
1− c

t

)
at−1εt.

Solving for A0
T yields

(2c− 1)A0
T = Ta2

T + c2
T∑
t=1

1
t
a2
t−1 + γ2

T∑
t=1

1
t
ε2
t + 2γuT − 2γc

T∑
t=1

1
t
at−1εt (C.16)

(remember (C.4)). Now bring in the asymptotic behaviour of at established in Theorem 1(i):

at = O

√ ln2 t

t

 , (C.17)

to analyse the individual terms on the right hand side of (C.16). The following properties all
hold with probability one:

(i)
Ta2

T = O (ln2 T ) .
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(ii)
T∑
t=1

1
t
a2
t−1 = O (1)

T∑
t=1

ln2 t

t2
= O (1) .

(iii)
T∑
t=1

1
t
ε2
t = σ2 lnT +O (1) .

This follows from the decomposition νt = ε2
t − σ2, applying Kolmogorov’s LLN to νt:

T∑
t=1

1
t
ε2
t =

T∑
t=1

1
t
σ2 +

T∑
t=1

νt
t

= σ2 lnT +O (1) .

(iv)
T∑
t=1

1
t
at−1εt = O (1)

by the martingale convergence theorem.

Hence
(2c− 1)A0

T = γ2σ2 lnT +O (ln2 T ) + 2γuT . (C.18)

Noting that 〈u〉T = σ2A0
T , we then argue as follows. Suppose that A0

∞ < ∞ on some set Γ of
positive measure. Then, by the martingale convergence theorem, uT converges a.s. on Γ to some
finite limit. Dividing (C.18) by A0

T , we obtain

(2c− 1) = γ2σ2 lnT
A0
T

+ O (ln2 T )
A0
T

+O (1)

= γ2σ2 lnT
A0
T

[
1 +O

( ln2 T

lnT

)]
+O (1) .

On Γ, the right hand side converges to∞, which is impossible since the left hand side is finite. As
a consequence, A0

∞ =∞ with probability one. Again from the martingale convergence theorem
(now the version for martingales with unbounded bracket process) it then follows that

uT
A0
T

→ 0

Dividing (C.18) by A0
T we now obtain

(2c− 1) = γ2σ2 lnT
A0
T

[1 + o (1)] + o (1) .

This shows that
A0
T

lnT →
γ2σ2

2c− 1 (C.19)

with probability one. Going back to (C.3) and noting that

a−T = O

√ ln2 T

T

 , (C.20)

cf. (A.14), we find that
AT
A0
T

= 1 +O

( ln2 T

lnT

)
(C.21)
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and
a−T
AT

= O

 1
lnT

√
ln2 T

T

 . (C.22)

Finally, let us consider condition (C.6). In view of (C.17) and (C.19),

a2
T(

A0
T

)γ = O

( ln2 T

T (lnT )γ
)

= o (1) (C.23)

for all γ.

C.2.2 c < 1/2

Making use of Theorem 1(iii) and the result in (A.21) in Section A.3 it can easily be calculated
that

A0
T = T 1−2c u2

1− 2c (1 + o(1)) (C.24a)

AT = T 1−2cv2 (1 + o(1)) (C.24b)

with v2 = c2u2/ (1− c)2 ((1− 2c) , and

lim
T→∞

A0
T

AT
=
(

1− 1
c

)2
. (C.25)

Also, making use again of (A.21) together with (C.24b), it turns out that

a−T
AT

= 1
T 1−cw (1 + o(1)) (C.26)

with w 6= 0 a.s.. Finally, let us consider condition (C.6). In view of Theorem 1(iii) and (C.24a),

a2
T(

A0
T

)γ = O

(
T−2c

T (1−2c)γ

)
= O

[
T−2c−(1−2c)γ

]
.

Hence (C.6) is fulfilled for all γ > 0.

C.3 Consistency

C.3.1 c > 1/2

We go back to the procedure announced in Section C.1. Straightforward calculation shows that

ϕ
(
A0
T

)
=

√√√√ A0
T(

lnA0
T

)1+η =
√

r lnT
(ln2 T )1+η (1 + o(1)) ,

ψ
(
A0
T

)
=
√

A0
T

ln2A0
T

=
√
r lnT
ln3 T

(1 + o(1)) ,

with r = γ2σ2/ (2c− 1) > 0. In view of (C.10) this yields as candidates for the normalising
sequences χT = ϕT = ϕ (lnT ) or χT = ψT = ψ (lnT ). As to (C.11), it follows from (C.22) that

ϕT
√
T ln2 T

a−T
AT

=
√

lnT
(ln2 T )1+η

√
T ln2 T

1
lnT

√
ln2 T

T
O (1) = O

√(ln2 T )1−η

lnT
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and

ψT
√
T ln2 T

a−T
AT

=
√

lnT
ln3 T

√
T ln2 T

1
lnT

√
ln2 T

T
O (1) = O

√ (ln2 T )2

lnT ln3 T

 .
Hence condition (C.11) is satisfied for both choices of the normalising sequence χT . Condition
(C.12) is satisfied by virtue of (C.21).

Summarising, we arrive at the following conclusions:

(i) If εt has moments up to second order, then the rate of a.s. convergence of the OLS estimator
is ϕT =

√
lnT/ (ln2 T )1+η for every η > 0.

(ii) If E |εt|α <∞ for some α > 2, then also η = 0 will do. However, since condition (C.6) is
satisfied, we may apply MCT 2 to obtain ψT =

√
lnT/ ln3 T as a normalising sequence.

C.3.2 c < 1/2

From the results in Section C.2.2 it readily follows that

ϕ
(
A0
T

)
=

√√√√ A0
T(

lnA0
T

)1+η = w

√
T 1−2c

(lnT )1+η (1 + o(1)) ,

ψ
(
A0
T

)
=
√

A0
T

ln2A0
T

= w′

√
T 1−2c

ln2 T
(1 + o(1))

for some positive random variables w and w′. Hence the deterministic sequences

ϕT =
√

T 1−2c

(lnT )1+η and ψT =

√
T 1−2c

ln2 T

both qualify as candidates for the normalisation of the OLS estimator, in the sense that they
satisfy (C.10). Condition (C.12) is fulfilled in view of (C.25). It remains to verify (C.11). By
(C.26),

ψT
√
T ln2 T

ā−T
AT

=

√
T 1−2c

ln2 T

√
T ln2 T

1
T 1−cO(1) = O

( 1√
T 1−c

)
.

Similarly for ϕT . Finally, as shown above, condition (C.6) is also fulfilled.
Summarising, we arrive at the following conclusions:

(i) If εt has moments up to second order, then the rate of a.s. convergence of the OLS estimator
is ϕT =

√
T 1−2c/ (lnT )1+η for every η > 0.

(ii) If E |εt|α <∞ for some α > 2, then also η = 0 will do. However, since condition (C.6) is
satisfied, we may apply MCT 2 to obtain ψT =

√
T 1−2c/ ln2 T as a normalising sequence.

C.4 Comparison with Lai & Wei

As in Section B, it may be of some interest to check the Lai & Wei condition (B.56). Going
back to Section B.1.2, the formulas for the two eigenvalues are given by

λ± = T +A0
T

2
[
1 +

√
1− 4DT

]
,

with

DT =
TA0

T −
(
Ta−T

)2

(
T +A0

T

)2
.
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C.4.1 c > 1/2

By (C.19) and (C.20),

A0
T = (1 + o(1)) r lnT,(

Ta−T

)2
= ln2 T

T
O (1) ,

with r = γ2σ2/ (2c− 1). Straightforward calculations show that

T +A0
T = T (1 + o(1))

and

DT = r
lnT
T

(1 + o(1)) ,(
T +A0

T

)
DT = (1 + o(1)) r lnT.

Hence, since DT → 0,

λmax = T (1 + o(1)) , lnλmax = (1 + o(1)) lnT.

For λmin, the expansion (B.36) yields

λmin = (1 + o(1)) r lnT.

As a consequence,
lnλmax
λmin

→ r−1.

Thus Lai & Wei’s condition (B.56) is violated. Yet, the OLS estimator is strongly consistent.

Remark C.1. Note that by virtue of (C.19) and (C.21)

AT
lnT → r. (C.27)

Therefore the consistency condition of Lai & Wei (1982b) mentioned above in Remark B.9 is
not satisfied.

C.4.2 c < 1/2

In this case, making use of (C.24a) and (A.21), it turns out that

lnλmax
λmin

∼ lnT
T 1−2cκ

for some finite positive random variable κ, so that the Lai & Wei condition in (B.56) is satisfied.
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