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Abstract

We consider a public and congested airport served by airlines that may

have market power, and two types of travelers with different relative

values of time. We find that in the absence of passenger-type-based

price discrimination by airlines, it can be useful to increase the airport

charge so as to protect passengers with a great relative time value

from excessive congestion caused by passengers with a low relative

time value. As a result, the socially efficient airport charge can be

substantially higher than what we learned from the recent literature

on congestion pricing with non-atomistic airlines.
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1 Introduction

Air transport has realized impressive growth during the last several decades

and is expected to grow at high rates in the future. This development is

however not paralleled by a respective increase in airport capacity; airport

congestion management is therefore of growing importance. One way to man-

age congestion is to increase airport charges, thereby reducing the capacity

demand, until the socially optimal level of congestion is reached, which we

shall call “airport congestion pricing.” The optimal charge that achieves this

objective is however not easy to identify in the case of airports. We concen-

trate on three important aspects of air transport business that complicate

this identification. First, air transport markets include a vertical structure

with airports in the upstream market and airlines in the downstream market.

Second, airlines at congested airports usually are not perfectly competitive

but oligopolistic. Third, passengers may not be a homogenous group of indi-

viduals but differ with regard to their values of time in a situation with traffic

delays. Regarding time valuation, Morrison (1987), Morrison and Winston

(1989) and Pels et al. (2003), among others, presented empirical evidence

that business passengers have a greater value of time than leisure passengers.1

Taking the first two aspects into consideration, recent analytical work, in-

cluding Brueckner (2002), Pels and Verhoef (2004), Zhang and Zhang (2006),

Basso and Zhang (2008) and Brueckner and van Dender (2008), finds that

monopoly or oligopoly airlines may themselves internalize congestion and as

a consequence, the (socially) optimal airport charge should be reduced from

the level computed assuming airlines are atomistic (like individual drivers on
1Furthermore, according to the US Department of Transportation’s guidelines of 1997,

business passengers’ travel time should be valued at 100 percent of the wage, while the
leisure passengers’ travel time at 70 percent of the wage.
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a road).2 More specifically, consider a public and congested airport which is

served by n symmetric airlines. With the airport choosing charges to max-

imize welfare (sum of consumer surplus and the airline and airport profits)

prior to airlines’ Cournot competition, the recent literature finds a negative

relationship between the optimal airport charge and airline market concen-

tration or equivalently, market shares (1/n). There are two reasons for such

a relationship. First, airlines partly internalize marginal congestion costs if

these are self-imposed, which depends on market shares. This leads to a

general rule that implies an inverse relationship between the optimal airport

charge and market concentration. Second, as pointed out by Pels and Ver-

hoef (2004) and others, there is a “market power” effect: Since equilibrium

airfares increase in market concentration, the airport charge should be small

or even negative so as to induce low airfares downstream, thereby correcting

for market power at the airline level.

The present paper follows this analytical literature but incorporates the

third aspect of air transport business into the analysis. Specifically, we con-

sider two types of travelers (rather than just a single passenger type as is

in the literature) one of which has a higher value of time than the other.

To focus on the effect of passenger types on the optimal airport charge, we

assume away the possibility of price discrimination based on passenger types

so airlines charge all passengers a single ticket price. We find that it can be

useful to increase the airport charge so as to protect passengers with a great

relative time value from excessive congestion caused by passengers with a

low relative time value. Furthermore, our results demonstrate that the effect

of passenger types can dominate the market-power effect with non-atomistic

airlines. Here, the carriers would under-supply the output of high-time-value
2See Daniel (1995) for earlier work on the internalization idea.
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passengers relative to the socially efficient level, owing to a single ticket price

being charged. Our analysis also shows that the relationship between the

optimal airport charge and the differences in time valuation is not clear-cut,

however. This is because passengers with a great time value should not be

protected with higher airport charges if their net benefits of flying—that

is, their gross benefits net of congestion costs which, for given total traffic

volume, increase in passengers’ value of time—are small.

We note that the existence of passenger types with different time val-

ues can provide an explanation for an empirical situation that seems to be

inconsistent with self-internalization. This is of special interest because, in

contrast to the theoretical results discussed above, the empirical findings with

regard to the relationship between internalization and market concentration

are mixed. Brueckner (2002) and Mayer and Sinai (2003) find positive evi-

dence for the internalization of self-imposed congestion costs, whilst Daniel

(1995) and Daniel and Harback (2008) reject self-internalization based on

their empirical results. Morrison and Winston (2007) conclude, empirically,

that the welfare loss would be small if, in the process of choosing the optimal

airport charges, airline market shares would be ignored (i.e. carriers were

treated as atomistic even though they are non-atomistic). Our results imply

that the existence of passenger types with different time values can reduce

the welfare loss when the airport charge is not corrected for market shares,

which is consistent with Morrison and Winston’s conclusion. As such, our

results may provide a theoretical explanation for their empirical results.

The paper is organized as follows: Section 2 presents the basic model and

investigates equilibrium demands of business and leisure passengers. We turn

to airport congestion pricing under the airport-airline vertical structure in

Section 3. After examination of the first-best passenger numbers and airfare,
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the section is divided into three subsections. The first subsection analyzes

airline behavior for a given airport charge, the second analyzes the optimal

airport charge, and the third provides comparative-static results in the busi-

ness passengers’ demand and value of time. Section 4 presents numerical

simulations to illustrate the findings of the previous sections, and Section 5

contains concluding remarks.

2 The Model

2.1 Basic set-up

We start by describing the demand side. Passengers are of two types that are,

in what follows, referred to as business and leisure passengers.3 Let qB denote

the number of business passengers and qL the number of leisure passengers.

Setting aside congestion, the (gross) benefits from air travel are BB(qB) for

business passengers and the benefits are BL(qL) for leisure passengers. The

benefit functions are three times continuously differentiable with B′x > 0 and

B′′x < 0 for x ∈ {B,L}.

There is a single public and congested airport. Average delays, which

are the same for all passengers, are denoted by C(q) with total passengers

q = qB + qL, C ′ > 0 and C ′′ ≥ 0. Passengers take average delays as given.

Denoting the business passengers’ value of time by vB and the leisure pas-

sengers’ by vL with vB ≥ vL(> 0), the inverse demands of business or leisure

passengers can be written as

Px(qB, qL) = B′x(qx)− vxC(q). (1)
3The reference to business/leisure passengers is just for expositional convenience. All

we need for the analysis of this paper is the existence of two types of passengers, one of
which has a higher time value than the other.
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Turning to the supply side, there are n airlines serving the airport and

airline services are homogenous. Let qiB (qiL, respectively) denote the num-

ber of business (leisure, respectively) passengers served by airline i, with

i = 1, 2, . . . , n, and qx ≡
∑n

i=1 qix for x ∈ {B,L}. The airport charges a

price τ per passenger to airlines.4 Other marginal airline costs, including the

airlines’ congestion costs, are constant and normalized to zero. The simpli-

fying assumption on airline costs allows us to concentrate on the effect of the

differences in passengers’ time valuation. In this context, airline profits are

Πi =
∑

x

qix [Px(qB, qL)− τ ], (2)

and social welfare is

W (qB, qL) =
∑

x

[(Bx(qx)− qxvxC(q)], (3)

which is the sum of consumer surplus and the airline and airport profits.

As is common in the literature, the airport-airline vertical structure is

modeled as a two-stage game. In the first stage, the airport chooses τ to

maximize welfare, W , taking into account airline (equilibrium) responses in

stage 2. In the second stage, taking τ as given airlines choose passenger

quantities to maximize Πi (i.e. airlines are in Cournot competition). As

indicated in the introduction, we abstract away from price discrimination; as

a consequence, airlines charge business and leisure passengers a single ticket

price denoted by p.
4Public subsidies are usually not available for airports nowadays, and therefore negative

values of τ may not be realistic. Nevertheless, we consider both positive and negative values
of τ to simplify the analysis. This is also consistent with the practice of the literature.
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2.2 Equilibrium passenger demands

We now derive the demands of business and leisure passengers as a function

of the ticket price p. Since all passengers are charged a single airfare, the

condition PB = PL = p must be satisfied in equilibrium. Substituting p for

Px in inverse demands (1) and rearranging gives the equilibrium conditions

p−B′x + vxC = 0 (4)

for x ∈ {B,L}. We obtain the (equilibrium) demand functions depending on

p, denotedDB(p) andDL(p), by simultaneously solving these two equilibrium

conditions for qB and qL. With Dx(p), the total passenger demand is then

given by DB(p) +DL(p).

Next, we conduct comparative statics of demand functions DB and DL

as well as average congestion delays C with respect to airfare p. Totally dif-

ferentiating equilibrium conditions (4) with respect to p and using Cramer’s

rule to solve for dqB/dp gives

D′B(p) =
dqB
dp

=
1

Ψ
det

−∂ (p−B′B + vBC)
∂p

∂ (p−B′B + vBC)
∂qL

−∂ (p−B′L + vLC)
∂p

∂ (p−B′L + vLC)
∂qL



=
1

Ψ

 B′′L︸︷︷︸
< 0

+ (vB − vL)C ′︸ ︷︷ ︸
≥ 0

 (5)

where

Ψ ≡ det

∂ (p−B′B + vBC)
∂qB

∂ (p−B′B + vBC)
∂qL

∂ (p−B′L + vLC)
∂qB

∂ (p−B′L + vLC)
∂qL


= B′′BB

′′
L − (vLB

′′
B + vBB

′′
L)C ′ > 0. (6)
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As indicated, the numerator in (5) consists of two terms with opposite signs

and hence its sign is ambiguous. As a consequence, the relationship between

the business passenger demand and airfare is also ambiguous. In contrast,

the similar procedure for deriving dqL/dp yields a clear-cut result:

D′L(p) =
dqL
dp

=
1

Ψ
(B′′B − (vB − vL)C ′) < 0. (7)

Summing (5) and (7) further yields

D′B(p) +D′L(p) =
d(qB + qL)

dp
=

1

Ψ
(B′′L +B′′B) < 0. (8)

Inequality (8) then implies dC/dp < 0. These comparative-static results are

summarized in Lemma 1:

Lemma 1 The sign of D′B(p) is ambiguous but D′L(p) < 0, D′B(p)+D′L(p) <

0 and dC(DB(p) +DL(p))/dp < 0.

Lemma 1 shows that while the effect of airfare on the number of leisure

(business) passengers is negative (ambiguous), the effect on the number of

total passengers is clear-cut and negative. As can be seen from (8), this total

effect is dictated by the property of downward-sloping demands with respect

to “full prices” (i.e. ticket plus delay costs), rather than the distribution of

business/leisure passenger mix. Hence, an increase in p will reduce total pas-

sengers and, consequently, congestion delays C. As a result of falling delays,

the effect of a fare increase on quantities qx is ambiguous in principal. It

turns out however that in our setting, the ambiguity exists only for the case

of business passengers. For leisure passengers a fare increase will, as can be

seen from (7), depress their demand due to both a downward-sloping de-

mand and a shift to business passengers who have a high time value relative
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to leisure passengers. On the other hand, the reduction in delays is valued

more by business passengers which, holding the fare unchanged, stimulates

their demand. The net effect of the fare rise for the business-passenger de-

mand will, as seen from (5), depend on which effect—the downward-sloping

demand vs. the demand stimulation from reduced congestion—dominates.

These comparative-static results are intuitive because of the great value of

time of business passengers relative to leisure passengers.

3 Effect of Passenger Types on Optimal Air-

port Charges

Before investigating the optimal airport charges under the vertical structure,

we discuss the first-best (“welfare optimal”) passenger numbers and airfare.

The first-best passenger numbers, denoted (q∗B, q
∗
L), are determined by the

first-order conditions ∂W/∂qx = 0, or using (3) by

B′x − vxC(q)− (q∗BvB + q∗LvL)C ′ = 0 (9)

for x ∈ {B,L}. Further, substituting Dx(p) for qx in (3) gives the welfare

as a function of airfare p, W (DB(p), DL(p)). The welfare-optimal airfare is

determined by the following first-order condition:

dW

dp
=
∑

x

[B′x − vxC − (DBvB +DLvL)C ′]D′x = 0. (10)
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Observe that this condition includes the two first-order conditions in (9),

which are multiplied by D′x. Using the equilibrium demands with regard to

p, condition (10) can be rewritten as

[p∗ − (DB(p∗)vB +DL(p∗)vL)C ′] · (D′B +D′L) = 0. (11)

Since D′B +D′L < 0 by Lemma 1, the first-best airfare then reduces to

p∗ = (DB(p∗)vB +DL(p∗)vL)C ′. (12)

The first-best airfare in (12) has a clear interpretation. Before we turn

to this interpretation, note that the total congestion costs are given by

(vBqB + vLqL)C(q) and that the marginal congestion costs depend on the

passenger type with

∂

∂qx
(vBqB + vLqL)C(q) = vxC + (vBqB + vLqL)C ′. (13)

Observe that the first term (and only the first term) on the right-hand side

(RHS) is deducted from the marginal passenger benefits to come up with

the inverse passenger demands in (1). This part is therefore internalized by

passengers, while the second term on the RHS of (13) is not. For this reason,

we call this second part the external part of the marginal congestion costs.

Then, p∗ in (12) exactly equals the external part of the marginal conges-

tion costs at the welfare optimum. Notice that this induces the first-best

passenger numbers because p∗ = PB(DB(p∗), DL(p∗)) = PL(DB(p∗), DL(p∗))

satisfies the first-order conditions (9).

The airport does not directly control airfares but only controls the airport

charge. This is because airfares are determined by airlines, which take the
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airport charge as given. In what follows, we examine the welfare-optimal

airport charge in our two-stage game by backward induction.

3.1 Airline behavior

In the second stage each airline chooses quantity qi to maximize its profit,

so we first specify airline profits in terms of quantity. For the total airline

supply it holds
∑

x

∑
i qix = q. Substituting the sum by the total equilibrium

demand DB(p)+DL(p) and solving for p gives the equilibrium airfare, which

depends on the total number of passengers and is denoted by P (q). After

substituting P (q) for Px in (1), we can rewrite airline profits (2) as

Πi = qi [P (q)− τ ] (14)

with qi = qiB + qiL. Expression (14) gives a carrier’s profit in terms of

quantities q1, q2, . . . , qn.

The Cournot-Nash equilibrium is determined by the first-order conditions

qi P
′ + P − τ = 0. (15)

for i = 1, 2, . . . , n. While the airport charge, τ , represents the marginal cost of

passengers to airlines, the first two terms in (15) give the marginal revenue.

Assume declining marginal revenue for the entire range of interest, which

ensures the second-order conditions for profit maximization and forms part

of the regularity conditions for the existence and uniqueness of the Cournot-

Nash equilibrium. Let qN
i (τ) denote the Cournot-Nash equilibrium, and so

the total equilibrium quantity is qN(τ) = qN
1 (τ)+ . . .+qN

n (τ), which depends

on τ . This in turn yields the equilibrium airfare P (qN(τ)), number of business

passengers DB(P (qN(τ)) and number of leisure passengers DL(P (qN(τ)), all
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of which depend on airport charge τ . The effects of τ on these variables are

given below:

Lemma 2 At the Cournot-Nash equilibrium, dqN(τ)/dτ < 0, dP/dτ > 0

and dDL/dτ < 0, but the sign of dDB/dτ is ambiguous.

Lemma 2 indicates a positive relationship between equilibrium airfare

P (qN(τ)) and airport charge τ . This can be seen as follows: To satisfy the

first-order condition (15), qi must be reduced in response to an increase of τ

given the declining marginal revenue. Then dqN/dτ < 0 follows immediately,

which further implies dP/dτ > 0 by Lemma 1 (which shows a negative rela-

tionship between total passengers DB +DL and p). The other relationships

indicated in Lemma 2 follow from the dP/dτ > 0 result together with the

results obtained in Lemma 1.

3.2 The optimal airport charge

Back to the first stage of the game, the public airport chooses τ to maximize

social welfare taking airline behavior into account. Specifically, substituting

Dx(P (qN(τ)) for qx in (3) gives welfare depending on τ ,W (DB(P (qN(τ))), DL(P (qN(τ)))).

The resulting welfare-optimal charge is characterized by the first-order con-

dition,
dW

dτ
=
dW

dp
· dP
dτ

= 0. (16)

This condition is multiplication of two terms: i) the derivative of welfare with

respect to the airfare, which has been given in (10) previously (i.e. the first-

order condition for the optimal airfare p∗); and ii) the derivative of airfare P

with respect to τ . Since dP/dτ > 0 by Lemma 2, the first-order condition

(16) is satisfied if and only if the first-order condition for the optimal airfare,

(10), is satisfied. This gives rise to:
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Proposition 1 The welfare-optimal airport charge, τ ∗, leads to the first-best

airfare p∗ and passenger numbers (q∗B, q
∗
L).

We now examine the nature of airport congestion charges. Since τ ∗ leads

to the welfare-optimal outcome (Proposition 1) and the airline market is

symmetric, the optimal airport charge can be rewritten as

τ ∗ = p∗ + qN
i P ′ = p∗ +

1

n
q∗P ′ (17)

where 1/n is the airlines’ market shares. We further manipulate the airport

charge in (17) so as to obtain a more transparent picture about the effect of

passenger types. Letting ε denote the (positive) elasticity of total demand,

DB +DL, with respect to p—that is, ε ≡ −(D′B +D′L) · p/(DB +DL)—and

rearranging (17) gives rise to:

τ ∗ = p∗
(

1− 1

n

1

ε∗

)
. (18)

The optimal airport charge in (18) exhibits two properties. First, it is in-

versely related to airline market shares, 1/n: when n → ∞, the optimal

airport charge is equal to the external part of the marginal congestion costs

or, respectively, to the welfare-optimal airfare p∗. So, p∗ equals the optimal

airport charge in an atomistic airline market. In the remainder of the paper,

we therefore refer to p∗ as the optimal airfare or, respectively, the atomistic

airport charge. With this second interpretation, p∗ will serve us as one bench-

mark for the airport charge in a context where two types of travelers with

different values of time exist. Second, τ ∗ is inversely related to the inverse

demand elasticity of passengers, 1/ε∗.5

5This reproduces the results obtained by Zhang and Zhang (2006) who elaborate on
the single-type passenger model. Also see, for example, Daniel (1995), Brueckner (2002),

14



To identify the effect of passenger types on τ ∗, assume, for a moment, that

vB = vL ≡ vs and BB = BL ≡ Bs (s for “single” type). This scenario is the

same as a situation where only a single passenger type exists (all passengers

are of type s) and implies

ε∗s = −(D′B +D′L)
p∗

q∗
=

vsC
′

vsC ′ −
B′′s
2

, (19)

where the first equality follows from the definition of ε and the second equality

follows from the use of (8), (6), (12), vB = vL ≡ vs and BB = BL ≡ Bs.

Observe that the RHS of (19) is greater than 0 and less than 1, but that the

limit of εs is equal to 1 for B′′s → 0. Note that B′′s → 0 implies that airlines

have no market power in the sense that the “full price”, P + vsC, is fully

determined by marginal benefits. Then, in this single-type situation, τ ∗s can

be obtained by substituting ε∗s for ε∗ in (18).

There is a unique constellation where airline charges reproduce p∗ though

τ = 0, that is, no regulatory intervention is required in this constellation

because airlines choose prices just right from the social viewpoint. This is

when n = 1 and εs = 1 (i.e. B′′s → 0), which represents a situation with a

monopoly airline that possesses no market power. No intervention is due in

this situation because, first, all the congestion costs will be internalized by

the monopolist and there would be no room for congestion tolls to be levied.

Second, the airport charge need not correct for market power by subsidizing

airline operations because passenger demand is perfectly elastic in the full

price.6 In contrast, if εs = 1 and n > 1, full internalization cannot always be

Pels and Verhoef (2004), Basso and Zhang (2008) and Brueckner and van Dender (2008)
who obtained similar results with different model settings.

6While the elasticities of demand with respect to the full price is generally finite in
reality, researchers (for example, Brueckner and van Dender, 2008; Brueckner, 2009; and
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achieved and therefore the optimal airport charge becomes positive, that is

τ ∗s = p∗[1− (1/n)] > 0.

Furthermore, if (0 <)εs < 1 and n = 1, congestion costs are perfectly

internalized but the airline market power exists. As a result, the optimal

airport charge becomes negative, that is, τ ∗s = p∗[1− (1/ε∗s)] < 0. Thus, for

the general single-passenger type case (i.e. with εs < 1 and n ≥ 1) we have

τ ∗s < p∗[1− (1/n)] or equivalently,

τ ∗s
p∗

< 1− 1

n
, (20)

and consequently τ ∗s < p∗. The upper limit for τ ∗s /p∗, given by the RHS of

(20), will serve us as a second benchmark for the two passenger-types case.

Turning to the case with two passenger types where vB > vL, the optimal

airport charge is determined by (17). In contrast to the single passenger-type

case where ε∗s < 1, with two passenger types parameter constellations can

occur that imply ε∗ > 1. To see this, ε∗ > 1 is, by using the definition of ε,

(8), (6) and (12), equivalent to

ε∗ = − B′′L +B′′B
B′′BB

′′
L − (vLB′′B + vBB′′L)C ′

(vBq
∗
B + vLq

∗
L)C ′

q∗B + q∗L
> 1. (21)

Manipulation of inequality (21) then yields

(
q∗B

q∗B + q∗L
− B′′L
B′′B +B′′L

)
(vB − vL) > − B′′BB

′′
L

(B′′B +B′′L)C ′
. (22)

Note that the RHS of inequality (22) is strictly positive. As a consequence,

when vB = vL, the inequality won’t hold and hence ε∗ = ε∗s ≤ 1 as indicated

above. On the other hand, when vB > vL, constellations exist such that

Basso and Zhang, 2010) have considered models with perfectly elastic demands so as to
concentrate their analysis on pure congestion pricing.
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inequality (22) holds. Consider, for example, the specific functional forms

used in Section 4 below. If we let a > 1, b = 1/5 and vB is large enough

relative to vL(= 1), then (22) can be shown to hold (see further illustration in

Section 4). As a result, we have ε∗ > 1 and hence by (18), τ ∗ > p∗[1− (1/n)],

which is in contrast to the result of the single passenger type given in (20).

With different passenger types it can thus be useful to charge oligopolistic

airlines a price that exceeds the level of the external part of the marginal

congestion costs. This is in sharp contrast to the notion of Pels and Verhoef

(2004) who argued that the welfare-optimal airport charge is always lower

than the external part of the marginal congestion costs when airline markets

are oligopolistic. The “technical” reason is that greater values of vB shift

the passenger demand downwards, which increases the price elasticity of

business passenger demand and therefore the elasticity of total passenger

demand as well. A more intuitive interpretation, which follows implicitly

from our analysis, is however that greater airfares can be required to protect

business passengers (with a great relative time value) from congestion caused

by leisure passengers who are less sensitive with regard to congestion than

business passengers. But, τ ∗ never reaches the level of the atomistic airport

charge, since τ ∗ < p∗.

Summarizing the above discussion leads to:

Proposition 2 In a context of two types of travelers with different relative

values of time, it can be useful to increase the airport charge so as to protect

passengers with a great relative time value from excessive congestion caused

by passengers with a low relative time value. As a result, the socially efficient

airport charge can be higher than what would prevail if passengers were treated

as a single type but it will never reach the level of the atomistic airport charge.
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3.3 Comparative-static results

We are also interested in the relationship between various optimal variables

(for example, the optimal numbers of business and leisure passengers, optimal

airfares, full prices, optimal airport charges) and the business passengers’

benefits or their value of time. For this reason, we introduce parameter

a (> 0) with
∂B′B(qB)

∂a
≥ 0 (23)

for all qB > 0, where a establishes a positive relationship with the inverse

business passenger demand. We obtain the following comparative-static re-

sults:

Proposition 3 In a context with business passengers having a greater value

of time than leisure passengers, the following clear-cut relationships exist:

dq∗B
da

> 0,
dq∗L
da

< 0,
dq∗B
dvB

< 0 and
dq∗L
dvB

> 0. (24)

In contrast, the relationships

d(q∗B + q∗L)

dz
,
dp∗

dz
and

dτ ∗

dz
(25)

are all ambiguous in sign for z ∈ {a, vB}.

The proof is relatively straightforward but tedious, and is given in Ap-

pendix A. The comparative-static results with regard to a in (24) show that

a positive relationship between a and the optimal number of business passen-

gers exists, while this relationship is negative for leisure passengers. On the

other hand, the comparative static results with regard to the business pas-

sengers’ value of time, vB, in (24) show that a negative relationship between
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vB and the number of business passengers, q∗B, exists, while this relationship

is positive in the case of leisure passengers.

The comparative static results in (25) are ambiguous; hence, there is no

clear-cut relationship between a or vB and the total number of passengers,

q∗B + q∗L, the optimal airfare, p∗, and the optimal airport charge, τ ∗. Take

the relationship between τ ∗ and vB as an example. For low values of vB (but

still greater than vL) an increase of τ can be useful in protecting business

passengers from excessive congestion. The picture changes for great values of

vB. In that situation, it may not be useful anymore to protect business pas-

sengers from congestion because their benefits from flying net of congestion

costs are too small, which altogether provides an economic intuition for the

ambiguous relationships in (25). In the next section, we present numerical

simulations to illustrate the finding of the previous sections.

4 Numerical Simulations

In this section, we first present a specific model on which our numerical

simulations will be based. Second, we present numerical results.

Assume that passenger benefits are

BB(qB) = aqB −
q2
B

2
and BL(qL) = qL − b

q2
L

2
(26)

with

a ∈
[

1 + vB

2 + b
,
1 + 2vB

1 + vB

]
(27)

and b ≥ 0. The lower limit for a ensures that the number of business passen-

gers is non-negative, while the upper limit ensures that the number of leisure
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passengers is non-negative. For the leisure passengers’ value of time it holds

vL = 1 and the business passengers’ value of time is

vB ∈ [a(2 + b)− 1,min{a(2 + b)− 1, 1 + b+
√

2 + 3b+ b2 }]. (28)

The lower limit for vB ensures that the number of leisure passengers is non-

negative. The upper limit ensures that the number of business passengers is

non-negative (this is the case if min{·} equals the first expression) or that

the second-order condition for the welfare optimal passenger numbers are

satisfied (this is the case if min{·} equals the second expression). Average

delays are linear in the passenger number, that is

C(qB, qL) = qB + qL, (29)

while average congestion costs can be non-linear in reality. Furthermore,

Equations (21) and (22) show that the shape of average delays determines

the elasticity of total demand with respect to p, ε, and the critical value of

vB that has to be reached such that ε∗ > 1. However, the main numerical

results presented in this section should remain robust against changes in the

shape of average delays.

Benefits in (26) and average delays in (29) imply first-best passenger

numbers

q∗B =
2a+ ab− (vB + 1)

2bvB + b− v2
B + 2vB + 1

and q∗L =
1 + 2vB − a(vB + 1)

2bvB + b− v2
B + 2vB + 1

. (30)

and the airfare

p∗ =
abvB + avB − a− v2

B + vB + 1

2bvB + b− v2
B + 2vB + 1

. (31)
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The optimal airport charge τ ∗ is

τ ∗ = 1 +
1

n

(
(n+ 1) ((ab+ a− 2b− 1)vB − a− b)

2(b+ 1)vB + b− v2
B + 1

− b(a− 1)

b+ 1

)
(32)

and depends on n.

As discussed earlier, the results obtained in the recent literature indicate

that the ratio of the optimal airport charge in an oligopolistic airline market

with the optimal one in an atomistic airline market should be inversely related

with an airline’s market share, that is a negative relationship between an

airline’s market share and the optimal airport charge should exist. Moreover,

Pels and Verhoef (2004) pointed out that it can be useful to further decrease

the degree of internalization so as to correct for market power and price

mark-ups in an oligopolistic airline market. We use Figure 1 to illustrate

that the existence of passengers with different values of time can change the

picture and move the optimal airport charges in an oligopolistic airline market

scenario considerably closer to the level that would hold under atomistic

market conditions. Note that this result can provide some theoretical support

for the empirical findings of Morrison and Winston (2007), who conclude

that the welfare loss would be small if, in the process of choosing the airport

charge, carriers were treated as atomistic even though they are oligopolistic.7

Figure 1 depicts the ratios of the optimal airport charge and the atomistic

airport charge, τ ∗/p∗. The solid horizontal line equals 2/3, which equals the

total market share of any two of the three firms assumed in the example.

Parameters are a = 15/10 (the solid line) or a = 16/10 (the dashed line),

b = 1/5 and n = 3. Functions are shown for the relevant ranges of vB,
7Another explanation is the existence of a dominant airline that competes in a Stack-

elberg fashion with a large number of fringe carriers (see, for example, Daniel, 1995; and
Brueckner and van Dender, 2008). The Stackelberg setting seems however rather restric-
tive compared to the assumption of passenger types with different values of time.
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Figure 1: The ratios of the optimal airport charge and the atom-
istic airport charge, τ ∗/p∗. The solid horizontal line equals 2/3,
which equals the total market share of 2 firms. Parameters:
a = 15/10 (solid line) or a = 16/10 (dashed line), b = 1/5 and
n = 3. Functions are shown for the relevant ranges of vB.
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Figure 2: The optimal passenger numbers, q∗B and q∗L, and the
optimal total passenger number, q∗B + q∗L. Parameters: a = 15/10
(solid line) or a = 16/10 (dashed line), b = 1/5 and n = 3.
Functions are shown for the relevant ranges of vB.
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which are determined by (28). We know from the previous literature that,

with a single group of passengers, the ratio of the optimal airport charge, τ ∗,

and the one in an atomistic setting, p∗, should be less than the total market

share of n− 1 airlines, which is equal to 2/3 for the current instance. Figure

1 reproduces this result because τ ∗/p∗ < 2/3 for vB = 1 (recall that vL = 1).

However, the figure also shows that when vB increases, the value of τ ∗/p∗

may also increase and exceed the level of 2/3 substantially. This effect is

even stronger for a larger value of a (compare the solid line with a = 15/10

with the dashed line with a = 16/10).

Figure 2 depicts the optimal passengers numbers, q∗B and q∗L, and the opti-

mal total passenger number, q∗B +q∗L, for the same parameter constellations as

the ones that we used to plot Figure 1. It shows that the optimal number of

business passengers is decreasing in vB while the optimal number of leisure

passengers is increasing in vB. Observe that the relationship between the

total number of passengers and vB is ambiguous. Altogether, these graphs

illustrate some of our findings in Proposition 3.

5 Concluding Remarks

Our main objective in writing this paper is to analytically explore airport

congestion pricing with two types of travelers, with one type (business pas-

sengers) exhibiting a higher time value than the other (leisure passengers).

We have considered a model with a public and congested airport together

with an oligopolistic airline market. Airlines served two types of passen-

gers, which included business passengers with a great relative value of time

and leisure passengers with a low relative value of time. All passengers are

charged with a single ticket price. We demonstrated that the existence of
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passenger types with different values of time can have a substantial impact

on the choice of airport charges. In this situation, it can be useful to in-

crease airport charges and thus airfares to protect business passengers from

excessive congestion caused by leisure passengers who are less sensitive to

congestion. As a consequence, the welfare-optimal airport charge can exceed

the level of the external part of the marginal congestion costs.

There are two critical elements in our model. One is that airlines charge

all passengers with a single ticket price. In practice, airlines price discrimi-

nate between business and leisure passengers. One way is to increase airfares

when departure times get close. This can be an effective way to charge busi-

ness passengers with a higher airfare than leisure passengers because leisure

passengers often book their flights far in advance, which is not necessarily

true for business passengers.8 In this paper, we have abstracted away from

airline price discrimination in order to concentrate on the differences in pas-

senger types with regard to their value of time and the consequences for

airport congestion pricing. This allows us to establish a benchmark case and

is consistent with the uniform pricing case in the literature. The introduc-

tion of airline price discrimination is certainly important (and is consistent

with the existing airline practice) and represents a natural extension of the

analysis presented here. Allowing price discrimination will add significant

complexity to the analysis, while basic insights of the paper should remain

robust.

Another critical element is the consideration of only two values of time.

In practice, many more passenger types with different values of time may

exist. It would therefore be useful to analyze a model that is more general

with regard to the distribution of time values. Overall, the research provided
8Hazledine (2006) argued that airline price discrimination would be based on an inverse

relationship between passengers’ benefits, and the time left before departure time.
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in this paper captures the effect of passenger types on airport congestion

pricing in a simple model with two types, which has not yet been explored

by other economists. However, future research is required to obtain a more

complete picture of the role of passenger types.

A Proof of Proposition 3

To determine the signs of dq∗x/dz, dp∗/dz, and dτ ∗/dz with z ∈ {a, vB}, the

first step is to determine the second partial derivatives of welfare in function

(3), which give

∂2W

∂q2
x

= B′′x − 2vxC
′ − (qBvB + qLvL)C ′′ < 0 (33)

and
∂2W

∂qB∂qL
= −vBC

′ − vLC
′ − (qBvB + qLvL)C ′′ < 0. (34)

We also need the second partial derivatives of welfare in (3) with respect to

qx and z, which give

∂2W

∂qB∂a
=
∂B′B
∂a

> 0,
∂2W

∂qL∂a
= 0,

∂2W

∂qB∂vB

= −C − qBvBC
′ < 0, (35)

and
∂2W

∂qL∂vB

= 0. (36)

Furthermore, we assume that the Hessian of the welfare function, denoted

by Ω, is strictly positive to ensure the existence of solutions for welfare max-

imization.
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Using Cramer’s rule to solve for dq∗B/da yields

dq∗B
da

=
1

Ω
det

− ∂2W
∂qB∂a

∂2W
∂qB∂qL

− ∂2W
∂qL∂a

∂2W
∂q2

L

 =

1

Ω

(
−∂B

′
B

∂a
[B′′L − 2vLC

′ − (qBvB + qLvL)C ′′]

)
> 0, (37)

and solving for dq∗L/da yields

dq∗L
da

=
1

Ω

(
−∂B

′
B

∂a
[(vB + vL)C ′ + (qBvB + qLvL)C ′′]

)
< 0. (38)

Summing (37) and (38) yields

d(q∗B + q∗L)

da
=

1

Ω

(
−∂B

′
B

∂a

)
(B′′L + (vB − vL)C ′) . (39)

Since vB ≥ vL, (39) is ambiguous in sign.

Solving for dq∗B/dvB yields

dq∗B
dvB

= (C + qBC
′) [B′′L − 2vLC

′ − (qBvB + qLvL)C ′′] < 0, (40)

and solving for dq∗L/vB yields

dq∗L
dvB

= − [−(vB + vL)C ′ − (qBvB + qLvL)C ′′] (C + qBC
′) > 0. (41)

Furthermore, summing (40) and (41) yields

d(q∗B + q∗L)

dvB

=
1

Ω
(B′′L + (vB − vL)C ′) (C + qBC

′), (42)

which is ambiguous in sign.
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We turn to airfares and airport charges. For the optimal airfare p∗ in

(12), it holds

dp∗

da
=

(
dq∗B
da

vB +
dq∗L
da

vL

)
C ′′ · d(q∗B + q∗L)

da
(43)

and
dp∗

dvB

=

(
dq∗B
dvB

vB + q∗B +
dq∗L
dvB

vL

)
C ′′ · d(q∗B + q∗L)

dvB

. (44)

Both relationships in (43) and (44) are ambiguous because the signs of d(q∗B +

q∗L)/dz are ambiguous for all z ∈ {a, vB}. Since the optimal airport charge τ ∗

in (17) depends on p∗, the sign of dτ ∗/dz is also ambiguous for all z ∈ {a, vB}.
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