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Abstract

The regulation of rail network access is a key component of the EU

policy that aims to strengthen rail markets. Two specific regulations

are proposed: (i) a priority for long-distance (freight) services and

(ii) a scarcity premium. Based on a congested network with two rail

links, numerical simulations demonstrate that total surplus can be

greater under the priority rule, which depends on the network charge

per train-kilometer. Consumer surplus, on the other hand, is always

greater under the priority rule, while fixed network-cost recovery is

easier to achieve if a scarcity premium exists.
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1 Introduction

The current framework for the regulation of access to incumbents’ rail net-

works has been set by the EU Directive 2001/14 ". . . on the allocation of

railway infrastructure capacity and the levying of charges for the use of rail-

way infrastructure . . . ." According to that directive, rail network providers

should serve train operating companies with capacity in return for a mini-

mum access charge. It can occur that the demand for certain segments of

the rail network exceeds the capacity limit for given minimum access charges;

following the EU’s diction, these segments are congested. In the case of a

congested network segment, the directive proposes the use of a scarcity pre-

mium. However, if a scarcity premium is not used, capacity allocation may

also be based on a priority rule. In its White Paper on Transport 2010, the

European Commission promotes a specific priority rule that favors freight

over passenger services. This priority rule aims to shift long-distance freight

traffic from road to rail.

The main contribution of this paper is to identify the policy implications

of regulation regimes that include a priority for long-distance (freight) ser-

vices or a scarcity premium. Since it is difficult to derive general analytical

results, our findings are mainly based on numerical simulations. We find that

a priority for long-distance services can increase total surplus if the network

charge per train-kilometer reaches great levels. This is because the network

charge is greater for long-distance services, which creates a disadvantage for

long- relative to short-distance services that can, at least partly, be compen-

sated by a priority for long-distance services. By contrast, a scarcity premium

can increase total surplus if the charge per train-kilometer is at low levels

because its effect on long-distance services is of less importance in this sce-

nario. The simulation results are clear-cut with respect to consumer surplus;
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consumer surplus is always greater under the priority for long-distance ser-

vices. This indicates that, in reality, the introduction of a scarcity premium

may have a strong negative effect on rail customers because it is supposed

to increase the rail service charges. Fixed network cost recovery may how-

ever be much easier to achieve with a scarcity premium. Overall, we find

that no regime dominates the other one in all respects. Hence, there is no

clear-cut ranking between a priority rule or a scarcity premium from a policy

viewpoint.

Our model includes a simple network with two rail links; one link is con-

gested due to given network conditions. Congestion implies delays that are

costly for customers (missed business meetings or interruptions in the produc-

tion process) and train operating companies (penalty payments to customers

and overtime premiums to employees). Since delays are increasing in the

amount of services on a given network, an upper limit for services (capacity

limit), which we consider as given, is used to control delays and delay costs.1

Note that, in our framework, congestion occurs in situations where services

are below the capacity limit, which is in contrast to the EU’s notion of con-

gestion.2 This is because we follow a stationary-state congestion approach

that is common for congestion models related to air and road transport mar-

kets and that, in our opinion, provides a realistic picture of rail markets as

well.3

Moreover, we consider a vertical structure with a monopolistic infras-

tructure provider and train operating companies (TOCs) under perfect com-
1Capacity limits are used to control delays and also for safety reasons.
2See Nash (2005) for a discussion of congestion, congestion charges, scarcity, and

scarcity charges or, respectively, scarcity premiums.
3Basso and Zhang (2008) and Brueckner and van Dender (2008) use steady-state con-

gestion models in a context of airport markets. Mun and Ahn (2008) and Verhoef (2008)
use steady-state congestion models in a context of road transport markets.
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petition. For many situations at hand, this is an unrealistic assumption.

However, there are some market segments, in particular in the area of rail

freight services, where the assumption of a competitive market is quite real-

istic. For example, in Germany the long distance rail freight markets from

the North Sea ports (Hamburg, Bremen) to the cities in the South-West of

the country and to Italy are served by many different companies competing

for customers. Note that the concept of perfect competition between TOCs

is useful to abstract away from the effect of market structure on the inter-

nalization of self-imposed delays, which has been extensively studied in the

area of air transport.4 On the demand side, there is one group of customers

that demands short-distance rail services, while a second group demands

long-distance rail services.

Finally, we consider two regulation regimes for the allocation of limited

network capacity. In any of these two regimes the network charge includes

a given component that is linear proportional to travel distances, which is

similar to the simple network charges per train-kilometer that are common

in Europe (Nash, 2005). However, if for the given network charge demand

exceeds the capacity limit, one regime favors long-distance services over short-

distance services, while the other regime exactly balances demand and ca-

pacity supply by the introduction of a scarcity premium.

Other economists considered alternative ways to design railway auctions

in more general capacity limited (but uncongested) networks (Brewer and

Plott, 1996; Nilsson, 1999; Parkes, 2001; Parkes and Ungar, 2001 and Nilsson,

2002; for an overview see Borndörfer et al., 2006). However, to our knowledge,

there is no paper that investigates a priority for long-distance services and
4The issue of self-internalization in congestible and oligopolistic air transport markets

has been investigated by Brueckner (2002), Zhang and Zhang (2006), Baake and Mitusch
(2007), Daniel and Harback (2008) and Brueckner and van Dender (2008).
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a scarcity premium from the policy perspective available until now. We

therefore believe that our analysis can contribute to a better understanding

of the economic effects that are implied by the current European rail policy.

The structure of this paper is as follows. Section 2 presents the basic

model set-up. Section 3 considers rail services when priority is attached to

long-distance services, while Section 4 considers rail services under a scarcity

premium. Section 5 compares outcomes under regimes I and regime II from

a policy perspective. Section 6 offers conclusions.

2 The Model

We consider a railway line that connects three cities A, B, and C. The dis-

tances between A and B as well as B and C are normalized to one. The

infrastructure is used to provide rail services (passenger or freight) between

cities. Rail services going into different directions can be operated indepen-

dently. We can therefore concentrate on one direction. Figure 1 illustrates.

We start by describing the demand side. There are customers of type 1

and 2. Type 1 customers demand short-distance services between cities A

and B, while type 2 customers demand long-distance services between cities

A and C (via city B). Short-distance services may include passenger transport

and long-distance services freight transport. Since travel distances between

cities are normalized to one, the travel distance for long-distance services

is exactly twice as large as the one for short-distance services. We do not

consider short-distance services between B and C to reduce the complexity of

the analysis. The main insights are however unaffected by this simplification.
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- -A B C
congested not congested

Figure 1: A railway line connecting three cities, A, B, and C. By
assumption, the AB segment is congested, while the BC segment
is uncongested even at a price of zero.

The amount of short-distance services is denoted by q1 ≥ 0 and the

amount of long-distance services by q2 ≥ 0. Setting aside congestion cost,

type i’s inverse demand is

Pi = ai − bi qi (1)

with ai, bi > 0 and i = 1, 2.

We follow a stationary-state congestion approach and assume that delays

only occur on the AB segment because of given rail network conditions (see

Figure 1). Average delay costs (total delay costs divided by the total amount

of short- and long-distance services), denoted by Ψ, are linear proportional

to the total amount of short- and long-distance services with

Ψ = q1 + q2, (2)

which implies convex delay costs

(q1 + q2) Ψ = (q1 + q2)
2. (3)
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Delay costs are borne by customers, and customers consider Ψ as given.5 To

control delays (and for safety reasons) there is an upper limit for the total

amount of rail services. This capacity limit is denoted by q̄ > 0 and implies

q1 + q2 ≤ q̄. (4)

Turning to the supply side, we take a simplified approach that allows us

to analyze the effects of network regulation in a direct way. Our aim is to

model the joint effects of regulation concerning (i) network access charges

and (ii) the allocation rule for granting access to scarce parts of the net-

work (bottlenecks). In any of the regulatory regimes considered here, the

regulated normal network access charge is linear proportional to the travel

distance and given. The charge per distance unit is denoted by p ≥ 0. Ther-

fore, the charge for short-distance services is p and that for long-distance

services is 2p because the distances between cities are normalized to 1. Fixed

network costs are denoted by F > 0. The marginal costs of the infrastruc-

ture provider and TOCs are constant and normalized to zero. Then, the

customers’ rail charge would coincide with p for short-distance services and

2p for long-distance services due to our assumption of perfect competition

between TOCs and given that no other infrastructure charge besides p ex-

ists. However, depending on the regulatory regime under consideration, an

additional infrastructure charge can exist. In this paper, we concentrate on

two regulatory regimes denoted by I and II.

Under regime I there is only the price variable p and the allocation rule

that allocates scarce parts of the network to long-distance services first. In
5In reality, delays will also increase costs of rail companies due to increased energy and

staff costs or penalty payments to customers. The assumption that delays are borne by
customers is however without loss of generality.
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contrast, regulatory regime II allows to charge a special scarcity premium per

distance unit for the congested line segment only. This surcharge is denoted

by γ ≥ 0. Thus, under regime II, the price for short-distance services is

p + γ and the price for long distance services is 2p + γ. Taking the spirit of

a scarcity premium seriously, we assume that the premium γ is set by the

regulator to balance rail service demand and capacity on the congested line

segment. As a consequence, no other allocation rule is required, since the

surcharge will drive out any excess demand on the AB segment.

3 Regime I: Priority to Long-Distance Services

In a first step, it is useful to ignore q̄ (and γ) and determine the equilibrium

demands for short- and long-distance services depending on p. Allocation is

considered thereafter.

3.1 The demands under a non-binding capacity limit

Customers pay a service charge but they also bear the delay cost Ψ. So,

there is a ‘full price’ for rail services denoted by ρI
i with ρI

1 = p + Ψ and

ρI
2 = 2p+Ψ.6 Letting Di denote the equilibrium demand of type-i customers

in a scenario without a binding capacity limit, it is useful to distinguish

three cases: (i) D1, D2 > 0, (ii) D1 ≥ 0 and D2 = 0 and (iii) D2 ≥ 0 and

D1 = 0. These demands are piecewise defined in p, and the relevant parts

are separated by the following two critical levels of p,

p1 =
a1 (1 + b2)− a2

b2 − 1
and p2 =

a2 (1 + b1)− a1

1 + 2 b1
. (5)

6Oum, Zhang and Zhang (2004) introduced the concept of a full price in a context with
air traffic delay.
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Letting ∆X denote X|y=y′′ −X|y=y′ and ∆y denote y′′ − y′ with y′′ 6= y′, we

obtain the following results.

Lemma 1 If a capacity limit is absent (q̄ →∞), a unique set of equilibrium

demands (D1, D2) exists with

∆Di

∆ai

≥ 0 and
∆Di

∆aj

≤ 0 (6)

for all i = 1, 2 and j 6= i. Moreover, if b2 ≤ 1,

∆D1

∆p
=


≥ 0 for p ∈ [p1, p2]

0 for p < p1

≤ 0 for p > p2,

(7)

and if b2 > 1, ∆D1/∆p ≤ 0 for all p ≥ 0, while ∆D2/∆p ≤ 0 always holds

true.

Proof See Appendix A. �

The comparative-static results in (6) demonstrate the relationship be-

tween delay and demands. They show that a decreasing demand for short-

distance services would increase the demand for long-distance services and

vice-versa (∆Di/∆aj ≤ 0). This is because a reduced demand in one mar-

ket segment reduces delays, which increases the demand in the other market

segment.

Lemma 1 also shows that the relationship between p andD1 is ambiguous,

while the relationship between p and D2 is clear-cut and negative. This

is because a change of p hits long-distance traffic twice as much as short-

distance traffic. Type 2 customers will thus react quite strong to an increase

of p. Then, since delays have decreased, it might even happen that the

demand for short-distance services increases (though p has increased).
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Figure 2: Demands D1 and D2. Parameters: a1 = a2 = 5/2, b1 =
2, b2 = 4/5.

Figure 2 illustrates the equilibrium demands D1 and D2 when capacity

constraints do not exist. The demands are separated into two parts, indicated

by a dashed vertical line at p = p1. Parameter values are a1 = a2 = 5/2, b1 =

2, b2 = 4/5 (this specific numerical instance is used throughout the paper

to illustrate outcomes under regimes I and II). Observe that ∆D1/∆p > 0

holds for all p ≤ p1 in this instance because b2 = 4/5 < 1 (see Lemma 1).

In contrast, the slope of the demand for long-distance services, ∆D2/∆p,

is always negative. In the next section we introduce the capacity limit q̄

and consider railway allocation under regime I, which gives priority to long-

distance services.

3.2 Rail services under regime I

Total demand D1 + D2 can exceed the capacity limit q̄. In this section, we

consider regime I and assume that, in the case of excess demand (D1 +D2 >
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q̄), the rail network provider prefers long-distance services over short-distance

services. Regime I includes two-stages.

Stage 1: Customers of type 1 and 2 report their demand for short-distance

services and long-distance services for a given price p to the TOCs. The

aggregated demand reports are denoted by DI
i . Then, TOCs forward reports

(DI
1, D

I
2) to the rail network provider.

Stage 2: For given demand reports DI
i and a given capacity limit q̄, the rail

network provider allocates capacity to type-2 customers first. The remaining

capacity is then allocated to type-1 customers.

We assume that customers correctly anticipate the priority rule in the

second stage and that they do not overstate demand in the sense that they

do not demand services that are unavailable under the given priority rule

and capacity constraint. For example, DI
i > q̄ will not occur under this as-

sumption. Letting qI
i denote the allocation under regime I, qI

i = DI
i therefore

always holds. This is to reduce complexity but does not limit the validity of

our main insights.

Note that the demand report DI
2 can be greater than D2. This is because

the priority rule imposes different constraints on the specific amounts of

long- and short-distance services. The constraint is q2 ≤ q̄ for long-distance

services. By contrast, the constraint is q1 ≤ q̄−q2 for short-distance services.

Hence, short-distance services exist if and only ifDI
2 < q̄. The crucial element

here is that, when the capacity constraint binds, an increase of long-distance

services reduces short-distance services by exactly the same amount. And,

in this situation, long-distance services can be increased but average delay

costs Ψ remain constant. This is different in a situation where the capacity

constraint is not binding and where an increase of long-distance services will
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not reduce short-distance services by exactly the same amount. This implies

the following allocations.

Lemma 2 (i) Under regime I, long-distance services are

qI
2 = min

{
max

{
a2 − 2p− q̄

b2
, D2

}
, q̄

}
. (8)

and short-distance services are

qI
1 = min

{
D1, q̄ − qI

2

}
. (9)

(ii) The sign of ∆qI
1/∆p is unclear, while ∆qI

2/∆p ≤ 0 is always true.

Proof See Appendix B �

Recall that full prices are determined by p and Ψ. Since a change in p

affects the demand for long-distance services and Ψ, the relationship between

qI
1 and p is ambiguous.

Figure 3 illustrates rail services under regime I, qI
i , depending on p and

for a given capacity limit q̄ = 1/2 (all other parameter values are equal to the

ones used in Figure 2). Demand functions in a situation with q̄ → ∞, Di,

are indicated by dashed lines. In this instance, the capacity limit is binding

for all p < 1. Observe that constellations with qI
2 > D2 exist for p < 1. This

is because, in this situation, Ψ is unaffected by an increase of long-distance

services, which increases the demand for long-distance services relative to a

situation without a binding capacity limit. For this reason, DI
2 > D2 can

happen when the capacity constraint becomes binding.7

7This is related to the results obtained by Brueckner (2009) and Basso and Zhang
(2010), who found that the first-best optimal price for airport slots would be greater than
the first-best optimal congestion charge.
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Figure 3: Services qI
i for q̄ = 1/2. Dashed lines indicate demands Di.

Note that short-distance services in (9) and long-distance services in (8)

determine the amount of short- and long-distance services, but they ignore

rationing of individuals inside customer segments. The rationing of individu-

als inside customer segments will however become an issue when we consider

total surplus (profits plus consumer surplus) or consumer surplus in Section

5.

4 Regime II: Scarcity Premium

Regime I includes a priority rule that favors long-distance services over short-

distance services in a situation with excess demand, and excess demand oc-

curs if, for a given price p, D1 +D2 exceeds q̄. One possibility to avoid excess

demand from the beginning is to introduce a scarcity premium γ ≥ 0 that

is charged in addition to the service charge, which is the case under regime

II. The charge for short-distance services then becomes p + γ and that for

long-distance services becomes 2p+γ. Since customers pay the service charge
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but also bear delay cost Ψ, demand is determined by the ‘full prices’ denoted

by ρII
i with ρII

1 = p + γ + Ψ and ρII
2 = 2p + γ + Ψ. Regime II also includes

two stages:

Stage 1: Customers of type 1 and 2 report their demand for short-distance

services and long-distance services for a given p and depending on γ to the

TOCs. The aggregated demand reports are denoted by DII
i (γ). Then, the

TOCs forward reports (DII
1 (γ), DII

2 (γ)) to the rail network provider.

Stage 2: The rail service provider chooses γ ≥ 0 to balance the total demand

and the capacity limit, which implies the scarcity premium

γII

 = 0 for DII
1 (0) +DII

2 (0) ≤ q̄

∈ {γ : DII
1 (γ) +DII

2 (γ) = q̄} for DII
1 (0) +DII

2 (0) > q̄.
(10)

It is useful to distinguish between four cases:

(1) DII
1 (0) +DII

2 (0) < q̄,

(2) DII
1 (γII) +DII

2 (γII) = q̄ and DII
1 (γII), DII

2 (γII) > 0,

(3) DII
1 (γII) = q̄ and DII

2 (γII) = 0, and

(4) DII
1 (γII) = 0 and DII

2 (γII) = q̄.

These cases imply the following outcomes.

Lemma 3 (i) Under regime II, the scarcity premium is

γII = max {0,
a2b1 + a1b2 − b2(p+ q̄)− b1(2p+ q̄ + b2q̄)

b1 + b2
, (11)

a1 − p− (1 + b1) q̄, (12)

a2 − 2p− (1 + b2) q̄} , (13)

14



short-distance services are

qII
1 =



D1 for γII = 0

a1 − a2 + p+ b2q̄
b1 + b2

for γII = (11)

q̄ for γII = (12)

0 for γII = (13),

(14)

and long-distance services are

qII
2 =



D2 for γII = 0

a2 − a1 − p+ b1q̄
b1 + b2

for γII = (11)

0 for γII = (12)

q̄ for γII = (13).

(15)

(ii) γII > 0 implies

∆(p+ γII)

∆p
≤ 0 and

∆(2p+ γII)

∆p
≥ 0. (16)

(iii) The sign of ∆qII
1 /∆p is unclear, while ∆qII

2 /∆p ≤ 0 holds true.

Proof See Appendix C. �

Observe that γII > 0 implies a negative relationship between the short-

distance charge and p, while the relationship between the long-distance charge

and p is positive due to Lemma 3. This is because a change of p hits type-2

customers twice as much as type-1 customers.

Figures 4 and 5 illustrate the service charges and allocations under regime

II. They are based on the same numerical instance as Figures 2 and 3, which

illustrate demands Di or, respectively, allocations under regime I. Figure 4

depicts the total service charges under regime II (sum of the service charge
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Figure 4: Total service charges under regime II with q̄ = 1/2.
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Figure 5: Allocations under regimes I (dashed lines) and II (solid
lines) with q̄ = 1/2.
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and scarcity premium) depending on p and illustrates the relationship be-

tween the service charges and p.

Figure 5 illustrates rail services under regimes I (dashed lines) and II

(solid lines). It shows that, relative to regime I, short-distance services are

extended at the expense of long-distance services under regime II (in this

instance, γII > 0⇒ qII
1 > qI

1 and qII
2 < qI

2).

5 Regime I Versus Regime II

5.1 General considerations

We can find the following general relationship between services under regimes

I and II:

Proposition 1 qI
1 ≤ qII

1 and qI
2 ≥ qII

2 holds true for all p ≥ 0.

Proof A priority attached to long-distance services cannot increase the amount

of short-distance services compared to a situation where a scarcity premium

exists. On the other hand, the introduction of a scarcity premium can in-

crease the amount of short-distance services but cannot increase the amount

of long-distance services compared to a situation where priority is attached

to long-distance services. �

It hence turns out that the priority rule is effective in promoting long-distance

services compared to a scarcity premium.

We now turn to the relative performance of regimes I and II. From a

policy viewpoint, total surplus or consumer surplus are relevant measures

to evaluate rail services, and we use both measures to compare allocations.
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We also touch the issue of cost recovery, since cost recovery is of critical

importance for many regulators.8

The rail service provider’s revenue is always given by

R(q1, q2) = (p+ γ) q1 + (2p+ γ) q2 (17)

with γ = 0 under regime I and γ = γII under regime II. Excess demand may

only occur under regime I, and total surplus or consumer surplus depends

on the amount of short- and long-distance services but, in this situation,

also on the rationing rule for individuals inside each customer group. In the

following, we use the efficient-rationing rule, which implies that customers

who value services most are served first. Under this rule, consumer surplus

becomes

Sk(q1, q2) =
2∑

i=1

(∫ qi

0

Pi(xi)dxi − ρk
i qi

)
(18)

for all k ∈ {I, II}. Furthermore, the regulator’s objective function is

V k(q1, q2) = Sk(q1, q2) + βR(q1, q2) (19)

with β ∈ {0, 1}.9 If β = 1, consumer surplus and profits are provided with

the same weight and thus total surplus is relevant. If β = 0, the regulator

concentrates on consumer surplus.

It is difficult to derive general analytical results with respect to the relative

performances of regimes 1 and 2. One can however find simple illustrative in-
8Given their complexity, Ramsey-optimal network charges are however beyond the

scope of this paper.
9The objective function in (19) is similar to the one considered by (Baron and Myerson,

1982) except that we concentrate on the limiting cases β ∈ {0, 1} (Baron and Myerson
consider a continuous variation of β ∈ [0, 1]) and do not include subsidies or taxes.
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stances to show that the effects of regimes I and II on total surplus, consumer

surplus and revenues are highly ambiguous in all cases.

For instance, assume that there are two customers 1 and 2 where one

demands a short-distance service with a benefit of 14 and the other customer

demands a long-distance service with a benefit of 12. Only one customer can

be served due to a capacity limit, and benefits are net of delay costs (which

are equal for customers 1 and 2). Furthermore, take p = 3 as given. In this

instance, customer 2 would be served under regime I where long-distance

services are preferred over short-distance services. In contrast, a scarcity

premium of γII = 6 resolves excess demand under regime II to the benefit

of customer 1. In this instance, total surplus is greater under regime II. In

contrast, consumer surplus is greater under regime I. Note that this result

on consumer surplus would change if the benefit of the short-distance service

would exceed a value of 15.

Consider a second instance where customer 1’s benefit of the short-distance

trip drops to 10, while customer 2’s benefit of the long-distance trip remains

constant at 12. In this instance, customer 2 is served under regime I, which

maximizes total surplus. On the other hand, a scarcity premium of γII = 6

resolves excess demand to the benefit of customer 1 again, which now re-

duces total surplus and consumer surplus. Recall that the full price is always

greater for long-distance services because p is charged twice in the case of

long-distance services, which distorts allocation under regime II and leads to

a loss of total surplus in this second instance.

Note that, in both instances, revenues are greater under regime II because

γII > p holds true in each instance. However, in reality we are supposed to

find constellations where the revenues raised by γ would not be sufficient

to cover the foregone revenues that could be raised by p. Hence, even with
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respect to revenues, the ranking of regimes I and II is unclear from a theo-

retical viewpoint. To shed some light on the relative performance of regimes

I and II, we present numerical simulations in the next section.

5.2 Numerical simulations

To obtain a more general picture about total surplus, consumer surplus and

revenues under regimes I and II, we generated 50 pairs of inverse demands

for short- and long-distance services. Each pair of inverse demands requires

the choice of 4 parameters denoted by a1l, b1l, a2l and b2l where l = 1, . . . , 50

indicates the specific numerical instances. These parameters were drawn from

a random process that follows a uniform distribution with support [0, 3].

Pairs where the allocation of rail capacity is equal under regimes I and II

were sorted out to obtain a sharp picture of the differences between the

regimes. Furthermore, we arbitrarily set q̄ = 1/2 and F = 1/4. The average

amount of short- or long-distance services over all 50 observations is denoted

by q̄k
i = 1/50

∑50
l=1 q

k
il, the average consumer surplus is denoted by S̄k =

1/50
∑50

l=1 S
k(qk

1l, q
k
2l), and the average total surplus is denoted by T̄ S

k
=

1/50
∑50

l=1[S
k(qk

1l, q
k
2l) + R(qk

1l, q
k
2l)]. The outcomes are illustrated in Figures

6 and 7.

Figure 6 displays services under regime I (dashed lines) and regime II

(solid lines) depending on p. Since regime I favors long-distance services over

short-distance services, q̄I
1 ≤ q̄II

1 and q̄I
2 ≥ q̄II

2 always holds (see Proposition

1). Furthermore, there is a negative relationship between the amount of

long-distance services and p under both regime I and regime II, while the

relationship between short-distance services and p is unclear (see Lemmas 2

and 3).
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Figure 6: Services under regime I (dashed lines) and regime II
(solid lines) with q̄ = 1/2 depending on p.
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Figure 7: Average consumer surplus, S̄k, and average total sur-
plus, T̄ Sk, under regime I (dashed lines) and regime II (solid
lines) with q̄ = 1/2 and F = 1/4 depending on p.
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Figure 7 displays the values of S̄k and T̄ S
k that are associated with

the rail services displayed in Figure 6. In the previous subsection, we used

simple examples to demonstrate that the consumer-surplus effect of a scarcity

premium is ambiguous in theory. On the one hand, a scarcity premium

may imply that customers who exhibit a greater value for rail services are

provided with capacity, which can increase consumer surplus. On the other

hand, a scarcity premium increases the full price of traveling, which can

work into the other direction and reduce consumer surplus. Despite these

ambiguous theoretical effects, Figure 7 shows that consumer surplus can be

consistently greater under regime I than under regime II (S̄I ≥ S̄II holds for

all p ≥ 0). Moreover, observe that, for great values of p, consumer surplus

is greater under regime I than under regime II though the choice of regimes

has no effect on the allocation of rail capacity in this area at all. Hence, the

introduction of a scarcity premium may not always change services but can

still increase the full price and reduce consumer surplus. Altogether, these

numerical results indicate that customers are better-off under regime I.

By contrast, simulation results with respect to total surplus are ambigu-

ous. If p takes great values, total surplus is greater under regime I, while total

surplus is greater under regime II if p takes low values. Recall that p hits

long-distance traffic twice as hard as short-distance traffic. This creates a

relative disadvantage for long-distance services under regime II that depends

on the level of p (the greater p, the greater is this disadvantage). Since this

effect disappears when p = 0 holds true, total surplus reaches its maximum

under regime II in exactly this situation. Under regime I, on the other hand,

the relative disadvantage created by p is partly compensated by the priority

for long-distance services, which provides an explanation for the ambiguous

results with respect to total surplus.
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Figure 7 can also be used to analyze revenues and cost recovery under

regimes I and II. Note that average profits can be determined by the difference

V̄ k − S̄k. For example, if V̄ k − S̄k = 0 holds true, revenues exactly cover the

overall fixed costs 50F . The effect of regimes I and II is, again, ambiguous

in theory. Since regime II favors long-distance services over short-distance

services, revenues raised by p are greater under regime I than under regime II.

The scarcity premium, on the other hand, creates a new source for revenues

under regime II. Now, the comparison of profits under regimes I and II in

Figure 7 provides a clear-cut result, revenues are greater under regime II.

This result is based on the observation that V̄ I − S̄I ≤ V̄ II − S̄II holds true

for all p ≥ 0. Clearly, for p close enough to 0, V̄ I − S̄I < 0 will always be

true. It is however interesting to observe that, under regime II, revenues reach

their maximum when p = 0 is satisfied. So, in this instance, a reduction of

p will always increase profits because of the additional revenues raised by an

increase of γII . Overall, this suggests that a scarcity premium may provide

a significant contribution to cost recovery in reality.

6 Conclusions

In this paper, we developed a simple model of a congested and capacity lim-

ited rail network with two links that is used to offer short- and long-distance

services. We considered two regimes to allocate limited network capacity:

(i) a priority attached to long-distance services and (ii) a scarcity premium

that exactly balances demand and capacity. We found that a priority for

long-distance services can increase total surplus if the network charge per

train-kilometer reaches great levels. By contrast, a scarcity premium can

increase total surplus if the charge per train-kilometer is at low levels. The

23



simulation results are clear-cut with respect to consumer surplus, which were

always greater under the priority attached to long-distance services. It also

turned out that fixed network cost recovery may be much easier to reach

under a charging system that includes a scarcity premium.

The simulations are based on a stylized model, and some of the assump-

tions employed may be of critical importance for the results obtained. For

example, total and consumer surplus clearly depends on the rationing of

individuals inside customer groups, and efficient rationing maximizes total

and consumer surplus for given amounts of short- and long-distance services.

Under a priority attached to long-distance services, efficient rationing may

not always be achieved in reality. Our results are therefore likely to over-

state total and consumer surplus obtained under a priority for long-distance

services.

Note that both regimes considered can be affected by ‘misreporting’ in

reality.10 For instance, customers might collude and understate their ‘true’

demand to reduce scarcity premiums. Customers might also (wrongly) de-

clare short- as long-distance services to receive a preferred treatment when

priority is attached to long-distance services. The overall effect of misre-

porting on total surplus, consumer surplus and profits is however difficult to

predict.

Another critical aspect, which we ignored in this paper, is the existence of

intermodal competition. In reality, customers can switch to other modes of

transport such as road, air, or inland water transportation in cases they are

not served by rail service providers or in cases where the rail service charge

is excessive. Hence, to obtain a better understanding of outcomes under
10Brueckner and Verhoef (2010) analyze manipulable congestion tolls.
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different access regulation regimes it would be important to take intermodal

competition into consideration.

Finally, in this paper we considered the network conditions, the capacity

limit and the network charge per train-kilometer as given. By contrast, it is

possible to build new capacity in order to reduce congestion in reality. Fur-

thermore, the choice of the capacity limits and network charges may depend

on the regulation regimes applied and the regulator’s objective function. It

would therefore be useful to extend the current analysis and consider net-

work conditions, capacity limits, and the network charge per train-kilometer

as endogenous variables.

Overall, the research provided in this paper deals with relevant elements

of rail transport markets and provides theoretical evidence on the principles

underlying the relative outcomes under a priority rule or a scarcity premium

from a policy viewpoint. Future research is however required in order to

obtain a more complete picture.

A Proof of Lemma 1

(i) If (D1, D2) > 0 holds true, conditions

P1 = ρI
1 and P2 = ρI

2. (20)

must be satisfied. Solving simultaneously the conditions in (20) implies

D1 =
a1 − a2 + a1 b2 − p (b2 − 1)

b1 + b2 + b1 b2
(21)

and

D2 =
a2 − a1 + a2 b1 − p (1 + 2 b1)

b1 + b2 + b1 b2
. (22)
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(ii) If D1 ≥ 0 and D2 = 0 holds true, conditions

P1 = ρ1 and P2 ≤ ρI
2 (23)

must be satisfied. Substituting q2 by 0 in ρ1 and solving the first condition

in (23) implies

D1 = max

{
0,
a1 − p
1 + b1

}
. (24)

(iii) If D2 ≥ 0 and D1 = 0 holds true, conditions

P1 ≤ ρ1 and P2 = ρI
2 (25)

must be satisfied. Substituting q1 by 0 in ρ2 and solving the second condition

in (25) implies

D1 = 0 and D2 = max

{
0,
a2 − 2 p

1 + b2

}
. (26)

Furthermore, it is useful to denote a critical level of a1 by ã1 = a2/2, and

to distinguish b2 > 1, b2 < 1, and b2 = 1. The following table shows the

relevance of cases (i)-(iii) depending on b2 and p:

(D1, D2) > 0 D1 ≥ 0, D2 = 0 D1 = 0, D2 ≥ 0

b2 > 1 p ≤ p1, p2 p > p2 = min{p1, p2} p > p1 = min{p1, p2}

b2 < 1 p ∈ (p1, p2] p > p2 ≥ p1 p ≤ p1 ≤ p2 or p1 > p2

b2 = 1 a1 > ã1, p < p2 a1 > ã1, p ≥ p2 a1 ≤ ã1

It is straightforward to obtain the comparative-static results based on the

demands in (21)-(26).
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B Proof of Lemma 2

(i) Two constellations should be distinguished: (a) DI
1 + DI

2 < q̄ and (b)

DI
1 + DI

2 ≥ q̄. In (a), the capacity constraint is not binding and (DI
1, D

I
2) =

(D1, D2) holds true. In (b), the capacity constraint is binding and an increase

of the demand for long-distance services leads to a reduction of short-distance

services by exactly the same amount. In this situation, the demand for

long-distance services is obtained by substituting q1 by q̄ − q2 in the second

equilibrium condition in (20), P2 = ρI
2, and solving for q2. This gives

qI
2 =

a2 − 2p− q̄
b2

. (27)

The allocations in (8) and (9) follow.

(ii) Since the sign of ∆D1/∆p is ambiguous due to Lemma 1, the sign of

∆qI
1/∆p is also ambiguous. Furthermore, since ∆D2/∆p ≤ 0 and the first

derivative of the right-hand side in (27) with respect to p is also negative,

∆qI
2/∆p ≤ 0 follows.

C Proof of Lemma 3

(i) If γ = 0, DII
i (0) = Di for all i = 1, 2. If, in addition, DII

1 (0) +DII
2 (0) ≤ q̄,

qII
i = Di holds for all for all i = 1, 2.

If γ > 0 and DII
1 (γ), DII

2 (γ) > 0 holds true, conditions P1 = ρII
1 and

P2 = ρII
2 must be satisfied. Solving these conditions simultaneously implies

reports

DII
1 (γ) =

a1(1 + b2)− a2 + p− b2(p+ γ)

b1 + b2 + b1b2
(28)
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and

DII
2 (γ) =

a2(1 + b1)− a1 − p− b2(2p+ γ)

b1 + b2 + b1b2
. (29)

If, in addition, DII
1 (0) +DII

2 (0) > q̄ holds true, the scarcity premium implied

by (10) is

γII =
a2b1 + a1b2 − b2(p+ q̄)− b1(2p+ q̄ + b2q̄)

b1 + b2
, (30)

leading to services

qII
1 =

a1 − a2 + p+ b2q̄

b1 + b2
and qII

2 =
a2 − a1 − p+ b2q̄

b1 + b2
. (31)

If DII
1 (γ) > 0 and DII

2 (γ) = 0, condition P1 = ρII
1 must be satisfied.

Solving this condition implies the report

DII
1 (γ) = max

{
0,
a1 − p− γ

1 + b1

}
. (32)

If, in addition, DII
1 (0) > q̄ holds true, the scarcity premium implied by (10)

is

γII = a1 − p− (1 + b1) q̄, (33)

leading to services

qII
1 = q̄ and qII

2 = 0. (34)

If DII
1 (γ) = 0 and DII

2 (γ) > 0, condition P2 = ρII
2 must be satisfied.

Solving this condition implies the report

DII
2 (γ) = max

{
0,
a2 − 2p− γ

1 + b2

}
. (35)
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If, in addition, DII
2 (0) > q̄ holds true, the scarcity premium implied by (10)

is

γII = a2 − 2p− (1 + b2) q̄, (36)

leading to services

qII
1 = 0 and qII

2 = q̄. (37)

Note that γ must be chosen such that qII
1 + qII

2 ≤ q̄ is always satisfied. It

follows that γII is determined by the maximum of 0 or the right-hand sides

of (30), (33) and (36), and quantities are determined by Di or services in

(31), (34) and (37), depending on which case actually determines γII .

(ii) Differentiating (30), (33), and (36) with respect to p leads to

∂γII

∂p
∈ [−2,−1]. (38)

The comparative-static results in (16) follow.

(iii) Since the sign of ∆D1/∆p is ambiguous due to Lemma 1, the sign of

∆qII
1 /∆p is also ambiguous. Furthermore, since ∆D2/∆p ≤ 0 and the first

derivative of long-distance services in (31) with respect to p is also negative,

∆qII
2 /∆p ≤ 0 follows.
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