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Abstract

This paper develops a tractable model of third-degree price discrim-
ination in airline markets that features two types of passengers with
different time valuations, carriers in Cournot competition and a con-
gested infrastructure. We find that price discrimination always leads
to a loss of social welfare when, in the first stage, the congestion charge
is chosen to maximize welfare by incorporating carriers’ behavior in the
second stage. We also show that the welfare loss can be small if, in the
process of choosing the optimal airport charges, carriers were treated
as atomistic.
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1 Introduction

This paper investigates the effect of third-degree price discrimination on
social welfare (consumer and producer surplus), focusing on airline mar-
kets. Airlines are a frequently used example for markets where price dis-
crimination is prevalent (e.g. Borenstein 1985, Dana 1999/1999a and Cowan
2007). Special elements of airline markets, besides price discrimination, are
that they incorporate a vertical structure with a monopolistic, congested
infrastructure—namely, airport—and oligopolistic carriers. The main objec-
tive of this paper is to demonstrate how third-degree price discrimination
affects social welfare in airline markets and how fare structures change the
welfare-optimal airport congestion charge relative to a scenario with uniform
fares.

The effect of monopolistic price discrimination on welfare is well under-
stood for scenarios with independent demands and without externalities.
Here, price discrimination can have two effects: 1) it affects welfare because,
with price discrimination, marginal utilities are no longer the same between
consumers; and 2) it changes outputs. This second effect can outweigh the
first negative welfare effect if the output effect of price discrimination is pos-
itive in sign. Varian (1985) showed that price discrimination reduces welfare
when output is not increasing relative to the output under uniform pricing
for both the independent demands and interdependent demands. The out-
put effects of price discrimination depend on the curvature of demand func-
tions, which have been analyzed by Robinson (1933), Schmalensee (1981) and
Holmes (1989). More recently, by assuming independent demands, Aguiree,
Cowan and Vickers (2010) derived conditions for the curvature of demand
functions that are informative with respect to the welfare effect of price dis-
crimination.

Demands are, however, interdependent in airline markets. To see this,
consider two groups of passengers, business and leisure passengers. The
distinction between business and leisure passengers is useful for three rea-
sons: 1) business passengers often exhibit a lower price elasticity of demand
than leisure passengers; 2) business passengers have a greater value of time
than leisure passengers (e.g. Morrison 1987, Morrison and Winston 1989, US
Department of Transportation 1997, and Pels et al. 2003); and 3) business
passengers book their flights relatively late so that airlines can price discrim-

inate between business and leisure passengers by advanced-purchase rebates



(e.g. Stavins 2001 and Hazledine 2006).! Following Robinson’s (1933) dic-
tion, the business-passenger market is called the “strong” market and the
leisure-passenger market the “weak” market. Fares in the strong market are
denoted by ps and fares in the weak market by p,, with ps > py,. Since
airport capacity is limited, passengers buy a ticket and also experience de-
lays at the airport (e.g. Daniel 1995, Brueckner 2002, Mayer and Sinai 2003,
Morrison and Winston 2007). The “full price” of traveling is, therefore, deter-
mined by the sum of the fare and the (per passenger) congestion costs. These
congestion costs are determined by the product of the per-passenger delay
(which is assumed to be the same for all passengers), denoted by C' > 0, and
the values of time. Denoting the time values by vs and v,, for the two passen-
ger types, the full prices can then be written as ps + vsC and p,, + v,,C, and
in the demand equilibrium the marginal utility of traveling is equal to the
full price for every passenger. Assuming a positive relationship between de-
lay C' and passenger numbers, and a negative relationship between marginal
utilities and passenger numbers, then an increase in the number of leisure
passengers will increase the full price of business passengers, and thus reduce
their travel demand, when fares are given. Similarly, an increased number
of business passengers reduces the leisure passengers’ travel demand, which
illustrates the demand interdependencies.

A further consequence arising from the difference in time valuations is
that marginal utilities of passengers differ in the welfare maximum. Czerny
and Zhang (2011) showed, with two passenger types of different time val-
uations, that a uniform fare leads to the first-best solution; consequently,
price discrimination with respect to full prices is necessary to reach the first-
best outcome. The economic intuition for this result is that a passenger’s
congestion effect on all the other passengers is independent of her own time
valuation; thus, the congestion externality to be internalized by fares to pas-
sengers is independent of the passenger type. By contrast, marginal costs do
depend on the passenger’s time valuation and they are different for business
and leisure passengers in the welfare maximum for this reason, which is also
true for marginal utilities in the welfare maximum.

This paper explores airline price discrimination by incorporating con-
gestion effects and passenger types when all markets are served. A two-

stage game is considered, where the airport congestion charge is chosen to

'Nocke et al. (2011) analyze advance-purchase discounts in the digital economy.



maximize social welfare in the first stage. In the second stage, symmetric
carriers engage in Cournot competition. To analyze the effect of price dis-
crimination, it is assumed that carriers simultaneously and independently
choose passenger numbers in the strong and the weak market subject to a
price-difference constraint (price-difference constraints have also been used
by, e.g., Schmalensee 1981, Holmes 1989 and Aguiree, Cowan and Vickers
2010). In this scenario, a price difference of zero replicates the carrier equi-
librium under uniform pricing. This describes a situation where each carrier
chooses its total number of passengers but where the share of business and
leisure passengers is determined by the uniform airfare. The non-binding
price-difference constraint replicates the laissez-faire result with price dis-
crimination. This describes a situation where it is assumed that each carrier
can determine its number of business passengers separately from its num-
ber of leisure passengers as it would be the case when the carriers would be
active in two separate markets. Business and leisure passenger markets are
not fully separated under price discrimination, however, because congestion
links the two markets.

A straightforward but important result of our analysis is that, in the
subgame-perfect equilibrium, price discrimination always leads to a loss of
social welfare relative to the absence of price discrimination. This is be-
cause, by the “right” choice of the congestion charge, the first-best solution
can always be reached under uniform fares and only under uniform fares. It
is also shown that the second-best discriminating fare in the strong market
always exceeds the first-best uniform fare, while the second-best discrimi-
nating fare in the weak market is always lower than the first-best uniform
fare in the subgame-perfect equilibrium. This complements the findings of
Holmes (1989), who considered a differentiated Bertrand oligopoly and also
found that price discrimination leads to a higher price in the strong market
and a lower price in the weak market. The effect of price discrimination
on welfare and fare structures is more difficult to predict when the conges-
tion charge is considered as given. In this scenario, parameter constellations
exist where welfare is increased by price discrimination although output is
reduced relative to the absence of price discrimination. Moreover, parame-

ter constellations exist where price discrimination increases fares in both the



strong and weak markets, which stands in contrast to the results derived by
Holmes.?

With respect to the congestion charge, it is shown that the welfare-
optimal congestion charge can be higher than what would be expected when
all passengers would have the same time valuations. Furthermore, the ef-
fect of differences in time valuation on the congestion charge is independent
of whether carriers engage in price discrimination or charge uniform fares.
This shows that the relationship between time valuations and infrastructure
congestion charges found by Czerny and Zhang (2011)—who concentrated
on uniform fares—is robust with respect to the carriers’ pricing behavior.

The paper is organized as follows. Section 2 presents the model specifica-
tions based on general functional forms. Section 3 analyzes the equilibrium
fares and passenger numbers when the infrastructure charge is given. Spe-
cific functional forms and numerical instances are further used to show that
price discrimination can reduce the total number of passengers and improve
social welfare at the same time. Section 4 demonstrates that the first-best
outcome can only be reached under uniform pricing. This section further
elaborates on the welfare-optimal congestion charge and shows that, in the
subgame-perfect equilibrium, fares in the strong market are increased by
price discrimination, while fares in the weak market are reduced. Section 5

contains concluding remarks.

2 The Model

Consider an origin-destination air travel market. Passengers are partitioned
in two groups: the first group is called the strong market and the second
group the weak market. Let g5 denote the passenger number in the strong
market and g, the passenger number in the weak market. Setting aside con-
gestion, passenger utilities (gross benefits from travel) in the strong market
are Bs(gs) and passenger utilities in the weak market B, (g, ). Utility func-
tions are three times continuously differentiable with B, > 0 and B/ < 0 for
all z € {s,w}.

There is a single, public infrastructure-provider (airport) in the upstream
market with limited capacity supply. A consequence of the limited capacity

is that passengers incur congestion delays at the airport. The average delays

2Strict application of Robinson’s (1933) diction would then mean that both markets
are strong and a weak market does not exist.



depend on ¢, the total number of passengers (¢ = ¢s + qu), and are denoted
as C'(q) with C" > 0 and C” > 0. Average delays C are, thus, increasing
and convex in the number of total passengers, and are constant over all
passengers. The values of time depend, on the other hand, on passenger
types: Denoting the value of time in the strong (weak, respectively) market
by vs (vy, respectively), we have vs > v, (> 0).

Customers are served by n symmetric carriers in the downstream mar-
ket that provide homogenous services. Let ¢s; (quwi) denote the number of
passengers in the strong (weak) market who are carried by carrier 7, with
i=1,2,...,nand g = Y i~y qu for x € {s,w}. Carriers charge a price
denoted by ps to passengers in the strong market and a price p, to pas-
sengers in the weak market (think of advanced-purchase rebates for leisure
passengers). Passengers consider average delays as given; thus, there is a
“full price” of traveling, denoted 7, that is composed of the fare and delay
costs: 1y = pp + v,C, for x € {s,w}. Assuming B! = 7, in the demand

equilibrium and rearranging yields inverse demands

for z € {s,w}. Since OP,/dq, = —v,C' < 0 for z, y € {s,w}, the inverse
demands in (1) are interdependent. (Here, and below, if the indices x and y
appear in the same expression, then it is to be understood that y # x.)
Infrastructure behavior and carrier behavior are modeled as a two-stage
game. In the first stage, the infrastructure provider (airport) chooses a per-
passenger fee 7 to maximize social welfare. As all the infrastructure-related
costs are to be abstracted away from our analysis, 7 is charged to carriers
to internalize congestion externality, and thus may be referred to as the
congestion charge.? In the second stage, carriers choose quantities g and
Gwi simultaneously and independently to maximize profit; that is, carriers are

4 Carriers’ operating costs are normalized to zero

in Cournot competition.
and so the congestion charge 7 is the only cost for carriers. The subgame

perfect equilibrium of the game will be examined.

3While in many real cases public subsidies are not available for infrastructure providers
because of limited public funds, negative values of 7 may still be considered in our context
so as to simplify some of the analysis.

4Empirical studies by, e.g., Brander and Zhang (1990) and Oum, Zhang and Zhang
(1993) provide support for the assumption that Cournot competition prevails in the airline
market.



To compare outcomes under uniform pricing and price discrimination, a
“price-difference constraint” is imposed. This constraint implies that passen-
gers in the strong market are charged with a premium determined by ¢ > 0
relative to the fare charged to passengers in the weak market (ps = py + @).
In this scenario, uniform pricing is considered when ¢ = 0, while (strict)
price discrimination occurs when ¢ > 0. Moreover, if ¢ > 0 and the price-
difference constraint is non-binding, this replicates the laissez-faire outcome.
Observe that ¢ determines the differential between fares in the strong and

weak markets (rather than the level of fares).

3 Carrier Price Discrimination

3.1 General functional forms

This section examines the second-stage subgame. Carrier i’s profit can be

written, from (1), as
' = gui [Pr(gs, quw) — 7) (2)

fori=1,...,n. In stage 2, carriers choose quantities ¢s; and ¢,; to maximize
their profits ITI* under the price-difference constraint g = 0 fori = 1,...,n,
with g = ¢ — (Ps— P,) and ¢ > 0. The associated Lagrangian can be written
as

L =T"+ Ny (3)

for i = 1,...,n, where \' are Lagrange multipliers. Assume that A\’ > 0,
which implies that carriers want to charge passengers in the strong market
with a higher fare than passengers in the weak market.

To save notation, subscripts xi indicate, in the remainder of the paper,
partial derivatives with respect to q,; for z € {s,w} (e.g. II\; = 9II'/dqy;
and 1T, ;, = 011 /0qy;10qy;). Assume that the Cournot-Nash equilbrium

quantities are determined by the carriers’ first-order conditions
I + A'gei = 0, (4)

with
Hii = (B; —v,C — T) + (B;/ — vxC’) Qui — QyivyC', (5)



gsi = —BI + (vs —vy) O and  gyi = Bl + (vs — vy) C’ (6)

fori=1,...,nand z, y € {s,w}. The first equation in (6) is positive in sign,
while the second equation is ambiguous in sign when vg > v,,. To ensure the
existence of solutions for each carrier’s choice of passenger numbers, assume
that the second-order conditions are satisfied (i.e., the bordered Hessians are
negative definit), which holds true when

Liisi Lowwi i

det | @i = @i

stwi wiwi  Jwi

>0 (7)
gsi gw@' 0

is satisfied for i = 1,...,n (e.g. Gravelle and Rees 2004).

Equilibrium outcomes are obtained by simultaneously solving the first-
order conditions in (4) for ¢ = 1,...,n. Since g,; = g4 (here, and below, if
the indices 7 and j appear in the same expression, then it is to be understood

that j # 1), the stability condition for the Cournot equilibrium is satisfied

when
L+ (n—1) "%siisj Ll + (n—1) "gszwg] si
Sp=det | 2l +(n— 1)312153 L + (0= 1) Z’Jnug gwi | >0 (8)
Nngsi NGwi 0

fori=1,...,n in equilibrium (Zhang and Zhang 1996), which is assumed to
hold. The comparative-static results of passenger numbers, full prices and

prices with respect to the infrastructure charge are given in Lemma 1:

Lemma 1 An increase of the congestion charge has the following effects:
(i) It can increase or reduce the number of passengers in the strong market
only if vs > vy, while it always reduces the number of passengers in the weak
market and the total number of passengers (sum of passengers in the weak
and the strong market). (ii) It increases passenger fares in both the weak and

strong markets.
Proof See Appendix A. |

The implications of this lemma for the relationship between the congestion

charge and the full prices, 7, are straightforward.



The comparative-static results stated in Lemma 1 are independent of
whether the laissez-faire scenario (price discrimination) or uniform pricing is
considered.” They do depend on the difference in time valuation, however.
More specifically, a nonnegative relationship between congestion charge 7
and passenger numbers in the strong market can occur only if passengers
in the strong market exhibit a greater value of time than passengers in the
weak market (i.e., when vg > v,,). This is because an increase in 7 always re-
duces the number of passengers in the weak market. A negative relationship
between 7, (full price in the strong market) and 7 can, therefore, exist when
passengers in the strong market exhibit a sufficiently high value of time. To
be precise, this occurs when vy > v, — Bl /C" (see Appendix A).

The effects of price discrimination on passenger numbers and fares are

given below:

Proposition 1 (i) If the demands are non-linear, the effect of price discrim-
ination on passenger numbers in both the strong and weak markets as well
as total number of passengers can be positive or negative in sign. (ii) If the
demands are linear and vs = vy, price discrimination does not change the
total number of passengers relative to uniform pricing, while price discrim-
ination reduces the total number of passengers when vs > vy,. (iit) If price
discrimination reduces the total number of passengers, fares in the strong

market are increased by price discrimination relative to the uniform fare.
Proof See Appendix B. |

The implications of parts i and ii of Proposition 1 for full prices are again
straightforward. Furthermore, these parts extend the results obtained by
Robinson (1933) and Cheung and Wang (1997) who found, after abstracting
away from externalities, that the equilibrium demand is independent of price
discrimination when functions are linear.

Although Proposition 1 is illuminating, the effects of price discrimination
on passenger numbers, full prices and fares are still difficult to predict. For
example, price discrimination can have a positive or negative effect on fares
in both the strong and weak markets at the same time when the demands
follow non-linear functional forms. These findings differ from the results ob-

tained by Holmes (1989) who found that, relative to uniform pricing, price

°In a similar setting, uniform pricing has been analyzed by Czerny and Zhang (2011).



discrimination leads to a higher price in the strong market and a lower price
in the weak market. It is, however, difficult to directly compare these sets of
results because this paper considers homogeneous products, Cournot compe-
tition and externalities, while Holmes concentrates on differentiated products

and Bertrand competition and abstracts away from externalities.

3.2 Specific functional forms

To illustrate the relationships between fares and passenger numbers under
price discrimination and uniform pricing, this part introduces specific func-
tional forms and provides numerical instances. Suppose that there are two

carriers (n = 2), and passenger benefits are

Bs:aqs—%sqg and Bw:qw—%‘]qi (9)
with @ = bs = 2 and b, € {1/10,1}. The choke price in the strong market
exceeds the choke price in the weak market in this instance. On the other
hand, the marginal utility function in the strong market is relatively steep
compared to the marginal utility function in the weak market. Assume
further that average delays are given by C' = g5 + ¢, and that 7 = 1/3 and
Uy = 1.

Two scenarios are considered. One scenario concentrates on the outcomes
under laissez-faire, where ¢ is assumed to be such that it implies A\* = 0 for
i =1,...,n in equilibrium. This scenario is indicated by d (for “discrimina-
tion”). The second scenario concentrates on uniform pricing (¢ = 0) and is
indicated by u (for “uniform”).

Figure 1 displays equilibrium passenger numbers under laissez-faire and
uniform pricing for b, = 1/10.6 Observe that the effect of price discrimina-
tion on the total number of passengers is clear-cut and negative (¢¢ + ¢¢ <
q¥ + g%) because utilities in (9) imply linear demands in the full prices, p,.
By contrast, the effect of price discrimination on passenger numbers in the
strong market or the weak market can be positive or negative, depending on

the time valuations.

SAll figures are displayed for the relevant ranges of vs, where passenger numbers and
Lagrange multipliers are nonnegative.
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Figure 1: Equilibrium passenger numbers when 7 is given. Pa-
rameters: a = bs = 2,by, = 1/10,v, = 1,n =2 and 7 = 1/3.
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Figure 2: Equilibrium welfare differential when 7 is given. Pa-
rameters: a = bs = 2,b, = 1/10,v, = 1,n =2 and 7 = 1/3.
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Figure 3: Equilibrium passenger fares when 7 is given. Parame-
ters: a =bs =2,by, = 1,0, =1,n=2and 7 =1/3.
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It is illuminating to consider the welfare effects of price discrimination

in this scenario. Social welfare depends on passenger numbers and can be

qa
W = Z (/0 P, dg, — qxvxC'> (10)

with z € {d,u}. Figure 2 displays the welfare under uniform pricing minus

written as

welfare under laissez-faire (W* — W) implied by the passenger numbers in
Figure 1. Observe that welfare under differentiated fares can be higher than
welfare under uniform fares. This is because a carrier’s choice of passenger
numbers imposes congestion effects on its rival carriers. As a consequence,
the total number of passengers in equilibrium can be too large from the
welfare perspective. Since price discrimination reduces the total number of
passengers in the current scenario, this can reduce congestion externalities
and lead to higher welfare. The setting considered in this paper, therefore,
extends the results derived by Schmalensee (1981) and Varian (1985), who
abstracted away from externalities and found that a reduction of the total
number of customers always implies welfare losses. For this welfare result
(welfare can be higher under price discrimination) to hold, it is crucial that
the congestion charge is given—as is to be shown in the following section,
this welfare result does not hold in the subgame-perfect equilibrium.

Figure 3 displays equilibrium fares under laissez-faire and uniform pric-
ing for b, = 1. This figure shows a clear-cut and nonnegative relationship
between price discrimination and fares in the strong market (see Proposi-
tion 1). The effect of price discrimination on fares in the weak market can,
however, be positive or negative, which again depends on time valuations.
Thus, price discrimination can increase fares in both the strong and weak
markets at the same time. The intuition is that carriers reduce passenger
numbers in the weak market in order to reduce delays and charge greater
fares in the strong market. This stands in contrast to the results derived by
Holmes (1989), who concentrates on differentiated Bertrand oligopoly and
abstracts away from externalities, however.

To come up with a nonnegative relationship between the total number of
passengers and price discrimination, nonlinear demand functions need to be

introduced (see Proposition 1 again). Suppose that the functional form of

12



T ds qQu q DPs Pw Ns TNw

Uniform pricing 0.100 0.628 0.028 0.657 0.413 0.413 1.005 0.971
Laissez-faire 0.100 0.554 0.106 0.660 0.333 0.499 1.093 0.894

Table 1: Equilibrium outcomes when the demand in the strong
market is concave and the congestion charge is given. Parame-
ters: vy = 18/20,v,, = 17/20,n = 3.

passenger benefits in the weak market remains unchanged, but that passenger

benefits in the strong market are determined by

7 1
By=—qs— = ¢". 11
50— 30 (11)

Suppose further that vy = 18/20, v, = 17/20, n = 3 and 7 = 1/10. This
setting implies a strictly concave passenger demand in the strong market.
Table 1 shows that the total number of passengers increases from 0.657 to

0.660 following a move from uniform pricing towards laissez-faire.

4 The Welfare-optimal Congestion Charge

4.1 Welfare-optimal fares under price discrimination

The congestion charge is chosen in the first stage of the game. Before inves-
tigating this charge, price discrimination with respect to fares and full prices
is discussed from the viewpoint of welfare maximization. To write welfare as
a function of fares ps and p,,, solve simultaneously the equilibrium conditions
ns = B. and n, = B, for s and ¢,. Assume that this yields the unique
demand of passengers in market x, denoted D,, for z € {s,w}. Welfare can

then be rewritten as
o o
W = / Dy dy + / Dy dz + psDg + puwDayy, (12)
7]5 w

where the lower limits of integration are the full prices, 15 and 7, to incorpo-
rate congestion costs. The welfare-optimal fares are obtained by maximizing

& =W + ug, where p is a Lagrange multiplier.

13



Assume that the welfare-optimal fares are determined by the first-order

conditions oD
& = (ps — (vsDs + vy Dy) C/) Wf —u=0 (13)
and
1\ 0D
L = (pw - ('Ust + 'Uwa) C ) W +u =0, (14)

where the subscripts indicate whether the partial derivatives are taken with
respect to ps or p, (ie. & = 0.2 /0py for x € {s,w}). To ensure the
existence of a solution, assume that the bordered Hessian for this problem

denoted by WV is negative definit. More specifically,

LSS LS’U) gS
U = det | Loy Luw gw | == [Wow + Wsw + Wes + W] >0
s Juw 0

by assumption.
To understand the welfare effect of price discrimination, it is useful to
have a closer look at the congestion costs. The total congestion costs are

given by (vsqs + vwqw) C, while the marginal congestion costs are

aaqx [(vsqs + Vwqw) C] = v,C + T (15)
for x € {s,w} with T' = (vsqs + vwqw) C’. This shows that marginal conges-
tion costs are greater for passengers in the strong market than for passengers
in the weak market, because vs > v,,. Moreover, the first term (and only
the first term) on the RHS of (15) is deducted from the marginal passenger
benefits to reach the passenger demands in (1). This term is, hence, inter-
nalized by passengers, while the second term on the RHS of (15), T', is not
internalized. I', therefore, determines the external part of the marginal con-
gestion costs (e.g. Czerny and Zhang 2011). Denoting the welfare-optimal
uniform fare by p* and welfare-optimal discriminating fares by pg and pfu,
then there is a close relationship between T' and p*, p? and p¢, as described

in the following proposition:

Proposition 2 When vs > vy, (i) the uniform fare that is determined by
the external part of the marginal congestion costs yields the first-best outcome

(i.e. p* = T*), and (ii) the second-best discriminating fare in the strong

14



market exceeds the first-best fare, while the second-best discriminating fare

in the weak market is smaller than the first best-uniform fare (i.e. p? > p* >
d
Piw)-

Proof See Appendix C. |

It is well known that welfare losses can occur when the same good is
sold at different prices (e.g. Robinson 1933 and Schmalensee 1981). In our
context with delays and different values of time, full prices are different in
the welfare maximum (p* + vsC* > p* + v,C*). However, to reach the
first-best solution, passengers still have to be priced equally by carriers in
order to reach the welfare maximal allocation because the externality, ', is
independent of the passenger type. The relationships between optimal fares
under uniform pricing and price discrimination derived here thus extend the
results obtained by Holmes (1989), who abstracted away from externalities
and concentrated on profits (not welfare).

The infrastructure provider does not directly control fares but only con-
trols the congestion charge. This is because fares are determined by carriers,
who take the congestion charge as given in their second-stage Cournot ri-
valry. In what follows, the welfare-optimal congestion charge in the two-stage

game is identified by backward induction.

4.2 The second-best congestion charge

Section 3 concentrated on a given congestion charge. In this section, stage
one is analyzed, where the carriers’ equilibrium behavior in stage two is
anticipated correctly by the infrastructure provider and 7 is chosen to max-
imize welfare. Welfare as a function of congestion charge 7 can be obtained
substituting fares p, by demands P, and equilibrium passenger numbers ¢Z
for g, (z € {s,w} and z € {u,d}) in welfare function (12).

Assume that the welfare-optimal choice of 7 under price discrimination
is determined by the first-order condition

aw  __ dP; dPy,

15



To understand how the choice of 7 is related to the welfare-optimal passenger
fares, recall that dPs/dr = dP,/dr in equilibrium, since ¢ is exogeneous.
The first-order condition in (16) can, therefore, be rewritten as

dP,

(Ws + Wy) d—: =0. (17)

Since the second factor is nonzero, Wy + W,, = 0 at the welfare maximum.
Summing the equations in (13) and (14) also yields Wy + W,, = 0, which
shows that the welfare-optimal congestion charge leads to welfare-optimal
fares (7¢ — p? and p?). Recall that Proposition 2 states that a uniform fare

d

is required to yield the first-best welfare result. Since 7% exactly reproduces

fares (p?, pd), it directly follows:

Proposition 3 When vy > vy, and carriers engage in price discrimination,
the welfare-optimal congestion charge does not reach the first-best welfare

result.

Since the first-best solution can only be reached under uniform pricing,
this section concentrates on the second-best congestion charge that maxi-

mizes welfare under price discrimination (¢ > 0).

Proposition 4 When vs > vy, the second-best congestion charge is given

by

R 1 4 (qg + q’lcll}) BB, + (qug - qfiB{é) (vs = vw)C” (18)
" n(BY + BY) |
Proof See Appendix D. |

The optimal congestion charge in (18) is inversely related to market
shares (1/n). For instance, when n — oo, the optimal congestion charge
is equal to the external part of the marginal congestion costs, I'*. Moreover,
since n — oo implies an atomistic market structure, fares in the strong mar-
ket and fares in the weak market are determined by the congestion charge
and thus p¢ = p& = I'Y = I'*, yielding the first-best result by Proposition
2. Two reasons can be identified for the relationship between the optimal
congestion charge and market shares: first, carriers wholely or partly inter-
nalize marginal congestion costs if these are self-imposed (e.g. Brueckner
2002).” Second, as pointed out by Pels and Verhoef (2004) and others,

"Begun with Brueckner (2002)’s seminal paper, the literature on airport congestion
pricing includes, among others, Pels and Verhoef (2004), Zhang and Zhang (2006), Basso
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there is a “market power” effect: When elasticities are finite so that equi-
librium fares increase in market concentration, the congestion charge should
be small or even negative so as to induce low fares downstream, thereby
correcting for carrier market power. While the elasticities of demand with
respect to the full price is generally finite in reality, researchers (for example,
Brueckner and van Dender 2008, Brueckner 2009 and Basso and Zhang 2010)
have considered models with perfectly elastic demands so as to concentrate
their analysis on pure congestion pricing. With perfectly elastic demands
(B! — 0 for x € {s,w}), 7% can reduce to the “pure congestion pricing part”
(1—1/n)T%

As indicated earlier, the existing literature on infrastructure congestion
pricing mainly concentrates on a single type of passengers. To elaborate on
the effect of passenger groups, suppose that vs = v,,. In this instance, the
second term on the RHS of (18) is clear-cut in sign and is negative, which
implies the existence of an upper limit for the optimal congestion charge
determined by (1 —1/n)I'?. By contrast, if vs > vy, then 7¢ > (1 — 1/n)I'?

when p ;
(¢ +q4) BYBy,
(@dB! — ¢ BY) C"

Vs — Uy > — (19)

Thus, with the difference in time valuation, (1—1/n) T'¢ cannot be considered
as an upper limit for the optimal congestion charge anymore. Since this result
holds for all ¢ > 0, it is true under uniform pricing as well as under price
discrimination. This shows that the result obtained by Czerny and Zhang
(2011), who concentrated on uniform fares and showed that an increase in 7
can increase welfare by protecting high-time-value passengers from excessive
congestion caused by low-time-value passengers, is also true when airlines
price discriminate.

A natural upper limit for the optimal congestion charge is given by the
fare in the strong market. This is because carrier profits are nonnegative
in equilibrium, which implies 7¢ < pg. On the other hand, rearranging the

equilibrium condition in (4) for = w and \* = 0 yields

1
< P+ — [ (Bl =€) 4f — vaglC'] < P, (20)
n

and Zhang (2008) and Brueckner and van Dender (2008). See Daniel (1995) for earlier
work on the internalization idea.
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T ds qQu q DPs Pw Ns TNw

Uniform pricing 0.249 0.284 0.342 0.626 0.523 0.523 1.086 1.055
Laissez-faire 0.252 0.236 0.365 0.601 0.606 0.446 1.147 0.957

Table 2: Outcomes at the subgame-perfect equilibrium when the
demand in the strong market is concave. Parameters: v, =
18/20, vy, = 17/20,n = 3.

which shows that the fare in the weak market is an upper limit for the
optimal congestion charge in the laissez-faire scenario (¢ > 0 and \' = 0).

Summarizing the above discussion yields:

Proposition 5 When vs > vy, (i) the optimal congestion charge can be
higher than what would prevail when passengers were treated as of a single
type, which is independent of price discrimination; and (ii) fares in the weak

market are an upper limit for the welfare-optimal congestion charge.

4.3 Specific functional forms

Specific functional forms are used to further analyze the relationship between
the welfare-optimal congestion charge and price discrimination. For instance,
the specifications in (9) together with C' = g5 + ¢, imply

drd Vg — Uy

o < 21
dé bet by =0 (21)

for bg, by, > 0. Thus, the first-best congestion charge under uniform pricing
exceeds the second-best congestion charge under price discrimination when
demands are linear. By contrast, under the alternative specification of ben-
efits in the strong market in (11) (which lead to a concave demand in the
strong market) and if vy = 18/20, v, = 17/20 and n = 3, a move from uni-
form pricing towards price discriminations slightly increases the congestion
charge 77 from 0.249 to 0.252 (see Table 2). These observations lead to:

Proposition 6 When vs > vy, the effect of price discrimination on the

welfare-optimal congestion charge can be positive or negative.
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Figure 4: Ratios of the congestion charge and marginal external
congestion costs. Parameters: a = 8/5,b,, = 1/20,n = 2,v,, = 1.

Vs

Figure 5: Total passenger numbers. Parameters: a = 8/5,b,, =
1/20,n = 2,v, = 1.
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Figure 6: First-best fares and fares under laissez-faire. Parame-
ters: a =8/5,by, = 1/20,n = 2,v,, = 1.
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The relationship between the first-best outcomes and the outcomes in
the laissez-faire scenario is illustrated in the following. Suppose that the
functional forms described in (9) and with C' = g5 + ¢, hold for parameters
a = 8/5,b, = 1/20,n = 2 and v, = 1. To understand the relationship
between marginal external congestion costs I' and the congestion charge T,
note that the optimal congestion charge in (18) implies 7*/p* < 1/2 when
Vs = Uy. By contrast, Figure 4 shows that parameter constellations exist,
where 7*/p* > 1/2 or, respectively, 7¢/T% > 1/2 when vs > v, (= 1). This
shows that it can be useful to increase the congestion charge to a level that
exceeds the external marginal congestion costs when passenger groups with
different values of time exist, which can occur under both uniform pricing
and under price discrimination. Such an increase in 7 is to protect high-
time-value passengers from excessive congestion caused by low-time-value
passengers (Czerny and Zhang 2011).

Figure 5 displays total passenger numbers ¢; + ¢}, and qgl + ql‘f, as a
function of vs. This figure illustrates that price discrimination can lead
to a greater total number of passengers. Recall that price discrimination
reduces welfare relative to uniform pricing under the conditions considered
in this paper. Figure 5 provides an example for a scenario where price
discrimination reduces total welfare although total output is higher under
price discrimination. This is consistent with the findings of Schmalensee
(1981) and Varian (1985), who found that a necessary, but not sufficient,
condition for price discrimination to increase social welfare is that output

increases.

5 Concluding Remarks

We developed a tractable model with two groups of passengers, interdepen-
dent demands and congestion externalities, which we used to analyze the
welfare effects of carrier price discrimination and infrastructure congestion
pricing. We showed that price discrimination always leads to a loss of social
welfare when, in the first stage, the congestion charge is chosen to maximize
welfare and, in the second stage, carriers are in Cournot competition. The
reason is that the first-best result can be implemented by the “right” choice

of the congestion charge given that carriers charge uniform fares to passen-
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gers. By contrast, the first-best result cannot be reached given that carriers
charge discriminating fares.

It is also shown that the effect of price discrimination on fares is difficult
to predict when the infrastructure charge is considered as given. The effect
of price discrimination on fares is clear-cut in the subgame-perfect equilib-
rium, however: the discriminating fare charged to passengers in the strong
market always exceeds the first-best uniform fare, while the discriminating
fare charged to passengers in the weak market is always smaller than the
first-best uniform fare. Finally, with respect to the congestion charge for the
case of multiple passenger types, it can be welfare-enhancing to increase the
congestion charge to a level that exceeds the external marginal congestion

costs, which is true under both uniform and discriminating fares.

A  The Proof of Lemma 1

By Cramer’s rule

1 (zi +(n-1)Zi ) Jsi

p stwi siwj
q n i )
dij =z det | 1 <$;mm +(n-1) .,mem) wi (22)
0 NGwi 0
n2
= (B4 BY) (Bl + (0 v)C), (23)

—1

which is ambiguous in sign only if vy > v,,. On the other hand, both

2
Yo T (BY+ BL) (B!~ (s — )0 (24)
and )
d(qzsd‘: Qw) _ _% (B;/ + BZ])Q (25)

are negative in sign.
To derive the relationships between fares and the infrastructure charge,
recall that P; = P, + ¢ and, thus, dPs/dr = dP,/dr. More specifically,
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the relationships in (23), (24) and (25) together with inverse demands in (1)
yield
dP, 2

=L (BI+ BY) [BUBL - (Blvg + Blw,) C'] >0 (26)

for x € {s,w}.

B The Proof of Proposition 1

To derive the comparative-static results with respect to price discrimination
(¢), it is helpful to denote

Ci = Qing,ng - qin;/BZ;/ + (QisB;// + inBg;/) ('Us - 'Uw) C’

_)\7, [B;/BZ}, _|_ B;”B,Z) _|_ (B;” _ BZ},) (Us _ Uw) C/] (27)

for i = 1,...,n. Observe that ¢’ is zero when the (inverse) passenger
demands with respect to the full price are linear (i.e. when BY = 0 for
x € {s,w}).

To establish part i, note that the relationship between the number of

passengers in the strong market and price discrimination is determined by

das _
d

| s

) [(fﬁnwz +(n—1) fﬁnwy) 9si — ("zﬂslzwz +(n—1) "gszzu,j) Gwi),
(28)

[1]

with

uin'wi = _QSivsC//+2 (BZ; - Uwcl)+(B1/1Iz/ - UwC”) Qwi"")‘i [BZ;/ + (vs — vw) C”]v

(29)
If}iwj = —q5vsC" + Bl —v,,C" + (BZ}' — UwC”) Gui+ N [BZ}’ + (vs — vy) C’”],
(30)

siiwi = — (vs + V) ' — (gsivs + quivw) C" + X\ (vs — vw) " (31)

and
gsiiwj = _USC/ - USCHQSi - Qwiva” + AZ (Us — Uw) C//. (32)
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The relationship between the number of passengers in the weak market and

price discrimination is determined by

d w 7 P i 7
a%b = Eﬁ (Lisi + (n—1) gsisj) Guwi — (Lisi + (n—1) gwisj) gsi]. (33)

with

Ll =2 (Bg' — USC/) +qis B —(qisvs + Qi) O+ N [—B;" + (vs — Vo) C’"],

(34)
iﬂjisj = Bl —v,C" + (B — v,C") qsi — quivwC" + Y (=B + (vs — vy) C"]
(35)

and
.iﬂi}isj = —5i0sC" — 0 C" = Qv C" + N (vs — vy) C”. (36)

The two relationships in (28) and (33) are ambiguous in sign. The ambiguous
effects of price discrimination on the number of strong passengers and weak
passengers is shown by numerical simulations in Section 3.2 (Figure 1).
The change in the total number of passengers depending on price dis-
crimination is determined by
s + v d; @) _ {304 BL) (00— ) O' 4 (] (37)

)

‘ 3

(1]

A positive (negative) relationship between the total number of passengers

and price discrimination occurs when
' < (>) (BY + BY) (vs — vy) C. (38)

To establish part ii, recall that (* = 0 when inverse demands are linear.
If further vs — vy, = 0, the RHS of (37) reduces to 0. On the other hand, if
inverse demands are linear and vs — vy, > 0, the RHS of (37) is negative in
sign.

To establish part iii, it is useful to distinguish between the two situations
where price discrimination reduces or, respectively, increases the number of
passengers in the weak market. If the number of passengers in the weak
market is reduced and the total number of passengers is reduced, price dis-
crimination increases fares in the weak and, hence, in the strong market. On
the other hand, if the number of passengers in the weak market is increased

by price discrimination, the number of passengers in the strong market must
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have been decreased because the total number of passengers is supposed to
decrease by price discrimination. Thus, fares in the strong market must be

greater under price discrimination in this situation as well.

C Proof of Proposition 2

To establish part i, substitute (vsqs + vy qw) C’ by T in the first-order condi-
tions in (13) and (14). Solving these conditions for fares yields

Opz
aD, "

pe =1+ (39)
for x € {w,l}. Since ¢ > 0 implies ps > py, the RHSs of (39) imply u <0,
and since p is the shadow price of price discrimination and negative in sign,
price discrimination reduces welfare. Thus, welfare reaches its maximum for
¢ = 0 when carriers charge a uniform fare to all passengers (i.e. when ¢ = 0).
Since ¢ = 0 leads to p = 0, (39) implies that the (single) welfare-optimal
fare, denoted by p*, is given by I'*.

To establish part ii, Cramer’s rule can be applied to obtain

0 W -1
Cf@s = sdet| 0 Wi 1| =g Wawt W) >0 (40)
-1 1 0
and dpu 1
% =T (Was + W) < 0. (41)

This directly implies p? > p* > p? for ¢ > 0.

D Proof of Proposition 4

The first-order condition in (16) can be rewritten as

dW g’ g’ (¢t + ¢2)
— Pd S Pd wo_ d B d w /' S w =0. 42
dr s or o or (4505 + giyvw) € or 0 (42)
Denote 4 )
0q%. /0T
. = i 4
= B + ) w
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with

By + (vs —v0)C’ Bl — (vs — vy,)C’

Qs = B+ BI and a, = B+ Br , (44)
where ag is ambiguous in sign, ay, is positive in sign and o + ay, = 1.
Rewriting the first-order condition in (42) yields
aspd + aypl, =T (45)

One can show that asg!; + g, = 0. Multiplying the derivative in (4) by

Qg, summing up and manipulating, therefore, yields

ity =150 G0 ) (G ) (10)

Deducting (45) from (46) and rearranging, finally, leads to the second-best
congestion charge in (18), which holds for ¢ > 0.
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