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Abstract 

The emergence and spread of antimicrobial resistance (AMR) is still an unresolved problem 
worldwide. The most visible effect of AMR, healthcare-associated infections (HAIs), imposes a 
substantial financial burden on the healthcare system through exacerbation or prolongation 
of illness and subsequent in-hospital treatment. The impact of the emergence and spread of 
AMR, however, is not limited to an increase in the number of HAIs. AMR also impacts patients 
who do not become infected. As in-hospital resistance patterns change over time, rationale 
weighting induces decision-makers to adjust their behaviour in order to provide the best 
possible treatment in a changing environment of resistance. In settings where resistant 
organisms are prevalent, for instance, physicians routinely change empirical antibiotic therapy 
in accordance to the relevant resistance indicator, leading to differences in costs, dosing 
schedules, and/or side-effect profiles. 

The effects of such resistance-induced antibiotic substitution effects are highly relevant in 
intensive care units (ICUs) where treatment failure often has severe consequences. In ICU 
settings, first line antibiotic therapy is highly standardized and widely empiric. On the other 
hand, there is a limited number of reserve antibiotics, whose prices and/or side effects are 
substantially higher than first-line therapy. We hypothesize that a rise in resistance to first line 
agents increases demand for the respective reserve agents. In order to provide first estimates 
of these resistance-induced substitution effects, we conducted a panel data regression 
analysis on monthly antibiotic use and resistance data from 66 ICUs between 2001 and 2012. 

We chose an estimation using unit-fixed effects and selected combinations of first line agents 
and their substituting reserve agent in accordance with an expert opinion-guided and pre-
defined set of variables. The investigated reserve antibiotics (Carbapenems, Glycopeptides 
and Linezolid) represent a large part of all reserve antibiotics and on average 15% of all 
prescribed antibiotics. 

The findings of the three core regressions support the hypothesis that demand for antibiotics 
significantly increases when lower level resistance rises. For some regressions the lagged 
effect of resistance is also significant, supporting the conjecture that part of the substitution 
effect is caused by physicians changing antibiotic choices in empiric treatment by adapting 
their resistance expectation to new information on resistance prevalence. In contrast, there 
is no lagged effect related to the occurrence of methicillin-resistant Staphylococcus aureus 
(MRSA). This may be explained by the availability of rapid testing, which is increasingly used 
to immediately screen patients for MRSA, commonly resulting in definitive therapy being 
promptly available. 

The results are robust to different specifications of the empirical model, and the findings imply 
that expectations play an important role in the demand for antibiotics. For policy makers, an 
important finding may be that the availability and accuracy of information about prevalence 
of pathogens and resistance rates can increase treatment optimality by allowing physicians to 
efficiently balance the trade-off of resistance and treatment success.



1. Introduction 

The emergence and spread of antimicrobial resistance (AMR) is still an unresolved problem 

worldwide. The most visible effect of AMR, healthcare-associated infections (HAIs), are 

considered the most frequent adverse event in health care delivery (European Centre for 

Disease Prevention and Control 2008). HAIs caused by multidrug-resistant bacteria impose a 

substantial financial burden on the healthcare system through exacerbation or prolongation 

of illness and subsequent in-hospital treatment (Smith et al. 2005; Shorr 2007; Kaier et al. 

2008). This direct medical and financial burden of AMR has been described in a large basket 

of empirical studies (Maragakis et al. 2008). It was however recently postulated that the 

current state of research is incomplete and strongly underestimates the true burden of 

resistance (Smith and Coast 2012; Smith and Coast 2013). Specifically, it was argued that “the 

reason that current estimates of the cost of resistance are modest is that they are based 

loosely on the ‘incremental’ cost related to the extra treatment of resistant over susceptible 

primary infections” (Smith and Coast 2012, p. 3), and that “… antibiotic resistance has fallen 

victim to evidence-based policy making [because] health economists have been unable to 

show that antibiotic resistance costs enough to be a health priority.” (Smith and Coast 2013, 

p. 1). 

A comprehensive evaluation of the burden of AMR requires an understanding of the 

determinants and impact of antibiotic prescription patterns as the key driver of resistance 

(Monnet et al. 2004; Kaier et al. 2009). Application of antibiotics incurs negative externalities 

by increasing AMR and thereby lowering the overall efficacy of antibiotics to combat bacterial 

infections (Laxminarayan and Brown 2001). A key aspect of this negative externality is that by 

inducing resistance, contemporary antibiotic use alters the likelihood of future treatment 
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success of an agent (Phelps 1989; Elbasha 2003; Kaier and Frank 2010). If antibiotic application 

regimes remained unchanged this means that a rise in resistance would cause an increase in 

treatment failures (French 2010). However, as in-hospital resistance patterns change over 

time, rationale weighting induces decision-makers to adjust their behaviour in order to 

provide the best possible treatment in a changing environment of resistance. Wang and 

Lipsitch (2006) show conceptually that physicians face a dynamic trade-off in their treatment 

decisions between maximizing treatment success by choosing the most potent antibiotic on 

the one hand, and the goal of preserving the efficacy of reserve agents to be able to treat 

severe infections in the future on the other hand. The optimal choice therefore crucially 

depends on the likelihood of treatment success as determined by the prevailing resistance 

rates. 

In the available literature, resistance-induced adjustment reactions are often postulated as 

having a major influence on modern health care delivery (Howard et al. 2001; Howard et al. 

2003; Howard 2004; Laxminarayan and Malani 2007; Smith and Coast 2012; Smith and Coast 

2013), but rarely addressed in empirical works (Howard 2004; Filippini and Masiero 2012). The 

implications of this substitution effect are highly relevant for the hospital and specifically the 

intensive care sector where treatment failure often has severe consequences and resistance 

selection pressure is more intense than in the outpatient settings (French 2010). Although 

some studies mention the effect as a determinant of antibiotic demand (Filippini and Masiero 

2012; DiazGranados et al. 2008; Huttner et al. 2013) there as of yet exists, to the best of our 

knowledge, no empirical analysis on the resistance elasticity of antibiotic demand in the 

hospital sector. 
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2. The model 

This section builds on preliminary works on antibiotic choice among physicians (Howard 2004; 

Wang and Lipsitch 2006; Filippini and Masiero 2012). The model is an adaption and extension 

of the one presented by (Howard 2004). For simplicity, physicians and patients are treated as 

being one and the same in order to avoid agency issues. The utility for every patient receiving 

drug 𝑗𝑗, 𝑗𝑗 ∈ {1, … 𝐽𝐽} may be 𝑣𝑣𝑗𝑗  and is defined as a function of the resistance level of drug 𝑗𝑗, 𝑟𝑟𝑗𝑗, 

the cost of drug 𝑗𝑗, 𝑐𝑐𝑗𝑗, as well as the excess cost of treatment failure 𝑝𝑝𝑓𝑓 through exacerbation 

or prolongation of illness and subsequent in-hospital treatment. Accordingly, the expected 

utility of patients receiving drug 𝑗𝑗 may be formulated as follows: 

(1) 𝑣𝑣𝑗𝑗 = �1 − 𝑟𝑟𝑗𝑗��−𝑐𝑐𝑗𝑗� + 𝑟𝑟𝑗𝑗�−𝑐𝑐𝑗𝑗 − 𝑝𝑝𝑓𝑓� = −𝑐𝑐𝑗𝑗 − 𝑟𝑟𝑗𝑗𝑝𝑝𝑓𝑓 

The cost of antibiotic j, 𝑐𝑐𝑗𝑗 can now be divided into internal and external cost so that 𝑐𝑐𝑗𝑗 =  𝑝𝑝𝑗𝑗 +

𝑒𝑒𝑒𝑒𝑗𝑗. The internal cost 𝑝𝑝𝑗𝑗 includes all treatment-related expenditure such as the drug price and 

the costs of administering the drug. External costs are given by 𝑒𝑒𝑒𝑒𝑗𝑗. This accounts for the 

societal burden that each antibiotic j causes by increasing resistance and thereby lowering the 

overall efficacy of antibiotics (Herrmann and Gaudet 2009). The model can therefore be 

extended into: 

(2)  𝑣𝑣𝑗𝑗 = �1 − 𝑟𝑟𝑗𝑗��−𝑝𝑝𝑗𝑗 − 𝑒𝑒𝑒𝑒𝑗𝑗� + 𝑟𝑟𝑗𝑗�−𝑝𝑝𝑗𝑗 − 𝑒𝑒𝑒𝑒𝑗𝑗 − 𝑝𝑝𝑓𝑓� = −𝑝𝑝𝑗𝑗 −  𝑒𝑒𝑒𝑒𝑗𝑗 − 𝑟𝑟𝑗𝑗𝑝𝑝𝑓𝑓 

Please note that this formulation applies only in instances of empirical antibiotic therapy 

where the physician does not know whether the patient is infected with a resistant strain. In 

addition to the drug-specific aspects of resistance, this formulation may be further extended 

with patient-specific consequences of receiving drug 𝑗𝑗. Let 𝜀𝜀𝑖𝑖𝑖𝑖 be a vector capturing drug 
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interactions, side effects, convenience and other drug characteristics that vary by patient. 

Total utility, 𝑉𝑉𝑖𝑖𝑖𝑖 is then  

(3) 𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑗𝑗 − 𝜀𝜀𝑖𝑖𝑖𝑖 = −𝑝𝑝𝑗𝑗 −  𝑒𝑒𝑒𝑒𝑗𝑗 − 𝑟𝑟𝑗𝑗𝑝𝑝𝑓𝑓 − 𝜀𝜀𝑖𝑖𝑖𝑖 

When analysing the choice between two antibiotics, for instance, demand for drug 1 is then 

(4) 𝐷𝐷1 = 1 − 𝐹𝐹(𝑉𝑉2 − 𝑉𝑉1) = 1 − 𝐹𝐹(−𝑝𝑝2 − 𝑟𝑟2𝑝𝑝𝑓𝑓  − 𝑒𝑒𝑒𝑒2 − 𝜀𝜀𝑖𝑖2 + 𝑝𝑝1 + 𝑟𝑟1𝑝𝑝𝑓𝑓 +  𝑒𝑒𝑒𝑒1 + 𝜀𝜀𝑖𝑖1) 

Rewriting this and assuming that agent 1 is a reserve antibiotic1, while 2 represents a first line 

antibiotic, gives: 

(5) 𝐷𝐷1 = 1 − 𝐹𝐹((𝑝𝑝1−𝑝𝑝2) + (𝑟𝑟1 − 𝑟𝑟2)𝑝𝑝𝑓𝑓 + (𝑒𝑒𝑒𝑒1 − 𝑒𝑒𝑒𝑒2) + (𝜀𝜀𝑖𝑖1 −  𝜀𝜀𝑖𝑖2)) 
                (>0)         (<0)            (>0)            (>0)  

This illustrates that the demand for drug 1 may be seen as a trade-off between the differential 

characteristics of antibiotic 1 and 2; namely the drug prices (𝑝𝑝1 − 𝑝𝑝2), the expected costs of 

treatment failure (𝑟𝑟1 − 𝑟𝑟2)𝑝𝑝𝑓𝑓, the external effects (𝑒𝑒𝑒𝑒1 − 𝑒𝑒𝑒𝑒2), and the expected number of 

patient-specific side effects (𝜀𝜀𝑖𝑖1 − 𝜀𝜀𝑖𝑖2). The first term is assumed to be positive, as agents of 

lower activity are usually cheaper both in terms of direct medication and indirect 

administration costs. Being a defining feature of reserve antibiotics the difference between 

the resistance levels is negative. The external costs are assumed to be higher for the reserve 

antibiotics, as their use exacerbates resistance towards treatment options of last resort, 

severely affecting intensive care medicine. Therefore it is generally suggested that reserve 

antibiotics be used prudently so as to preserve their activity for severe cases (Wang and 

Lipsitch 2006). Finally, reserve agents often cause stronger side effects than non-reserve 

antibiotics. 

1 Reserve antibiotics are agents which have activity against a broad range of pathogens and, most importantly, 
little resistance to face. 
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From equation (5) it can be seen that stronger agents are only used if the positive effect of a 

higher probability of treatment success as given by the resistance difference outweighs the 

negative aspects of higher internal and external costs as well as stronger side-effects. Keeping 

all other things equal, it can then be shown that a rise in resistance to first line agents (𝑟𝑟2) 

increases demand for the reserve agents, while a rise of resistance to them (𝑟𝑟1) decreases 

demand. Given their nature as antibiotics of last resort, however, resistance to them (𝑟𝑟1) may 

be of minor impact when analysing the demand for reserve antibiotics. The cost of treatment 

failure (𝑝𝑝𝑓𝑓) enhances the benefit of switching to a reserve antibiotic, thereby positively 

influencing the level of demand for drug 1 at a given resistance difference. 

In ICU settings, first line antibiotic therapy is highly standardized and widely empiric (Meyer 

et al. 2010). On the other hand, there is a limited number of reserve antibiotics, whose prices 

and/or side effects are substantially higher than first-line therapy. Assuming differences in 

drug prices and expected side effects as constant over time, the reduced form demand 

function for uses of reserve antibiotics 𝑞𝑞𝑅𝑅 over time 𝑡𝑡 is shown in Formula (6) making 

estimation based on aggregated product-level data feasible. 

(6) 𝑞𝑞𝑅𝑅𝑅𝑅 = 𝛽𝛽0 + 𝛽𝛽1𝑟𝑟𝑅𝑅𝑅𝑅 + 𝛽𝛽2𝑟𝑟𝐹𝐹𝐹𝐹 + 𝑢𝑢𝑡𝑡 

In detail, 𝑟𝑟𝑅𝑅𝑅𝑅 is the clinically relevant resistance level of the reserve antibiotic while 𝑟𝑟𝐹𝐹𝐹𝐹 is a 

vector of the resistance levels for the most relevant first-line antibiotics and pathogens, to 

which the reserve antibiotic may be seen as antibiotic of last resort. 𝑢𝑢𝑡𝑡 represents the error 

term. The demand function for uses of reserve antibiotics 𝑞𝑞𝑅𝑅 over time 𝑡𝑡 in different settings 

𝑘𝑘 may be specified analogously: 

(7) 𝑞𝑞𝑅𝑅𝑅𝑅 = 𝛽𝛽0 + 𝛽𝛽1𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅 + 𝛽𝛽2𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑢𝑢𝑘𝑘𝑘𝑘 + 𝑒𝑒𝑘𝑘𝑘𝑘 

𝑢𝑢𝑘𝑘𝑘𝑘  now represents the between-entity error, while 𝑒𝑒𝑘𝑘𝑘𝑘 represents the within-entity error. 
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3. Empirical Analysis 

3.1. Data 

To identify the resistance-elasticity of antibiotic demand, a panel data regression analysis is 

conducted on data from German intensive care units (ICUs) between 2001 and 2012. 

Understanding the relationship between resistance and antibiotic administration is 

particularly important in intensive care, where high application density and immune-

weakened hosts create both high selection pressure and higher morbidity from infections 

(French 2010). The analysis exploits a unique dataset collected by the Surveillance System of 

Antibiotic Use and Bacterial Resistance in Intensive Care Units (SARI). Starting in 2001, the 

project has gathered monthly data on resistance rates and antibiotic use for participating ICUs 

in Germany.2 The dataset contains 144 time periods, with a total of 66 ICUs from 35 hospitals 

reporting data.3 

Resistance rates are calculated by dividing the amount of resistant isolates by the amount of 

all tested isolates. This measure is useful when investigating the evolution of resistance in 

pathogens and is important for decision-making in empiric therapy, as it gives the probability 

that a substance applied will work (Meyer et al. 2013). Pooled resistance densities and 

resistance rates against a substance class were calculated by constructing weighted averages 

over the individual resistance variables. Application density (AD) is the amount of Defined 

Daily Doses (DDD) per 1000 patient days.  

2 For a detailed description of SARI and the methods employed in data collection see Meyer et al. (2010). 
3 The panel is unbalanced, with only 11 participating ICUs reporting data every month, the median being 85 

months (appendix table A1). Data is collected on doses of all antibiotics used, resistance rates of 13 pathogens 
towards relevant substances, and patient days per month. See appendix table A2 for the pathogen-resistance 
combinations collected. 
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Insert Figure 1: Share of Reserve Antibiotics 

The average antibiotic application density increased from 1240 DDD per 1000 patients in 2001 

to 1500 in 2012. The selection of agents used has changed markedly in that time period. Figure 

1 shows the use of reserve antibiotics as a share of overall antibiotic application. It increased 

from 7% in 2001 to more than 22% in 2012. This increase is mostly driven by the nearly 

threefold increase in application of carbapenems, agents which are active against most gram-

negative pathogens. Administration of linezolid and daptomycin, which are used to treat 

severe infections with resistant gram-positive pathogens, has also significantly increased 

during the period. This shift in prescription patterns, and particularly the threefold increase in 

the share of reserve antibiotics, warrants an analysis of whether this was justified by 

indication. First line drugs are generally preferable treatment choices if pathogen 

susceptibility is equal. Assuming rational actors, this suggests that the increase in high level 

antibiotics use would either be caused by a change in pathogen epidemiology towards 

inherently more resistant types, or by an increase in resistance towards lower level agents 

while pathogen population is unchanged. Facing treatment failure in definitive medication or 

expecting it in empiric therapy, physicians might then switch to reserve agents to ensure 

treatment success. There is no available corresponding data that would allow inference on 

pathogen prevalence, but figures on pathogen susceptibility do show that resistance against 

many agents previously administered in severe cases has increased in the last years. In gram-

negative pathogens, resistance towards third-generation cephalosporins and 

fluorochinolones has risen more than twofold between 2001 and 2012, rendering them 

increasingly ineffective for treatment. Third-generation cephalosporins and fluoroquinolones 

are broad spectrum antibiotics routinely used to treat severe gram-negative infections in 

hospitals. Together, they account for 20-25% of all agents applied in ICUs, and this share has 
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remained fairly stable over time. Carbapenems are often the antibiotic of choice if these 

agents are expected or known to face resistance in treating gram-negative pathogens (Frank 

and Tacconelli 2012). The increase in the use of highly active gram-negative last resort agents 

like carbapenems might then be explained by physicians substituting away from less potent 

antibiotics like cephalosporins in empiric and definitive treatment. Figure 2 shows how the 

increase in resistance to cephalosporins and fluorochinolones coincides with a similar increase 

in carbapenem applications.4 

Insert Figure 2: Carbapenem use and resistance of gram-negatives 
pathogens to third gen. cephalosporins and fluoroquinolones 

Similar trends can be observed for high level resistance in gram-positive pathogens and use of 

reserve antibiotics. Figure 3 shows the correlation of linezolid use and vancomycin resistance 

in enterococcus (VRE), the most prevalent form of glycopeptide resistance in intensive care. 

Although glycopeptides themselves may be considered a reserve antibiotic for the treatment 

of, among others, MRSA, linezolid is considered a last resort antibiotic replacing glycopeptides 

in some specific cases. Although glycopeptide resistance is at very low levels compared to 

other agents, it has increased in the last years and has become particularly critical in the form 

of VRE. 

Insert Figure 3: Linezolid use and Vancomycin resistance in Enterococcus (VRE) 

3.2. Econometric Approach 

The preliminary evidence presented above suggests that the substantial change in 

prescription patterns towards more powerful agents could be a result of resistance-induced 

substitution effects, as hypothesized. Antibiotic administration decisions by doctors are made 

4 This relationship has been demonstrated in an analysis of the same dataset by Meyer et al. (2010).   
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with respect to unit level resistance rates rather than aggregate figures, so that an aggregate 

perspective may yield an incomplete picture. We therefore analyse the relationship between 

resistance and antibiotic applications at the respective unit levels. Exemplary for the 

hypothesized substitution effect, Figure 4 shows the correlation between third generation 

cephalosporin resistance and carbapenem use for a university hospital ICU over a 24 month 

period.5 The two lines show a clear, yet not perfect, positive correlation.  

Insert Figure 4: Resistance and Antibiotic application  
over time for an exemplary ICU for 24 months 

For the econometric estimation of the effect we conduct a panel data regression analysis. To 

account for unobserved level differences in antibiotic prescription patterns and resistance 

rates, we use a fixed effect estimation to disentangle the between-unit differences from 

dynamic within effects. This differences out any unobserved time invariant factors such as ICU 

size, location, and general patient structure that might systematically influence the level of 

antibiotic use and resistance of a unit in all years.  

Table 1 gives the descriptive statistics of the main variables in a panel data context. It shows 

the overall mean of variables as well as between and within section variation.6 As within-ICU 

substitution effects are the focus of the present work we chose an estimation using unit fixed-

effects.7  

Insert Table 1: Descriptive Panel Statistics 

5 For illustrative purposes this naturally only shows a fraction of the sample, as only one unit and a time excerpt 
is shown. Plotting correlations in a large panel data context is not graphically feasible.    

6 On average, variables change substantially over time in each unit, and this variation is larger than the differences 
of averages between units. The within unit variation gives the deviation from unit averages. Minima are 
therefore negative. 

7 Hausman tests were performed and showed fixed effect consistency against random effects. 
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Three main regressions are conducted in which we analyse the substitution effects towards 

the use of reserve antibiotics. The first investigates the influence of resistance in gram-

negative pathogens on the application of carbapenems. The main independent variables are 

the pooled resistance rates against third-generation cephalosporins, pooled resistance against 

second and third generation fluoroquinolones, and resistance to piperacilin/tazobactam. The 

second and third regressions analyse the resistance-induced substitution in gram-positive 

antibiotics. Glycopeptide use is investigated with respect to oxacillin resistance in S. aureus 

(MRSA) and incidence of coagulase-negative Staphylococcus (CNS).8 CNS are almost always 

resistant to all beta-lactamase resistant penicillins and generally require stronger agents for 

treatment. Finally, we regress linezolid application density on MRSA incidence and 

vancomycin resistance in Enterococcus (VRE). 

The antibiotics on the left hand side are substitutes for the explanatory variables’ substance 

classes in face of increasing resistance. The combinations were chosen based on a review of 

in-hospital antibiotic guidebooks, which list pathogen-specific first-, second-, and third-line 

choices for antibiotic therapy in face of increasing resistance (Frank and Tacconelli 2012; 

Bundesärztekammer 2009). Additionally, an infectious disease physician was consulted for in-

hospital expertise.9 Inclusion of specific resistance rates on the right hand side therefore took 

place according to a pre-defined set of variables of clinical relevance in line with expert 

opinion. The investigated antibiotics represent a large percentage of reserve antibiotics and 

8 The incidence is given by the tested isolates. A crucial assumption therefore is that the number of tested isolates 
presents a valid figure for CNS incidence. This was confirmed by an infectious disease specialist of the SARI 
group. 

9 Theoretically, other antibiotics would also be worth investigating with respect to a change in prescription 
patterns and resistance rates. However, data availability limited the analysis to the three mentioned above. 
As resistance rates for lower level substances such as Penicillins, or first and second generation Cephalosporins 
are not or only selectively collected in the data set, an analysis of the substitution effects between first and 
second line agents is not feasible (see appendix table A2 for the tested resistance rates). Colistin and Tigecyclin 
were not tested due to a lack of data variation, as these agents are so rarely used that more than 90% of 
observations are zero. 
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on average 15% of all prescribed antibiotics. Analysing the resistance-induced substitution 

effect in the application of these high level agents can help understand the general 

endogeneity of resistance and antibiotic use and its implications for antibiotic demand. 

As the dataset contains monthly observations over a 12 year period, it is necessary to consider 

the time-series nature of the panel and discuss serial correlation and non-stationarity.10 If 

error terms are serially correlated, then standard errors are inconsistent. Using the panel data 

test for serial correlation as suggested by Wooldridge (2002) and implemented by Drukker 

(2003), the null hypothesis of no first-order autocorrelation in the error terms could not be 

rejected for all three regressions. In addition, a Fisher type unit-root test for panel data, as 

proposed by Choi (2001), did not find evidence of non-stationarity in the included variables.11 

There is however some evidence for dependent variable autocorrelation of first order (see 

appendix Table A3) and some individual time series are stationary. To account for this, we use 

a dynamic panel model with first order autoregressive disturbance terms.12 

Another issue is whether or not the resistance rates can be assumed to only influence the 

antibiotic prescription choice in the current period t. As outlined above, part of the resistance-

induced substitution is likely to be caused by a change in expectation of resistance in empiric 

therapy as physicians update information about prevailing resistance rates.13 The information 

10 This is often called a time series cross-sectional dataset, as the time dimension is far more dominant than in 
many other microeconometric panel data. This has distinct implications for the regression analysis. See Beck 
and Katz (2011) for a discussion of the general property of this type of dataset. 

11 However, these were aggregate figures and the Fisher type panel unit root test is a weak test that merely 
implies that at least one process is stationary (Appendix Table A2). Following Pesaran (2012), Augmented 
Dickey-Fuller tests were additionally conducted for each variable and panel separately. This showed that, 
although a unit root cannot be rejected for some individual time series, most series are stationary nonetheless.  

12 We chose not to use a lagged dependent variable approach as this could obfuscate the investigated effect 
when lags of the independent variables are added. Including lagged dependent variables into a fixed effects 
model additionally biases coefficients Nickell (1981). Although Arellano and Bond (1991) developed a widely 
used GMM instrumental variable estimation to solve this problem for small microeconometric datasets , there 
are distinct issues that arise in a large cross-sectional time series context (Judson and Owen 1999). 

13 Investigating the same dataset Meyer et al. (2010)) note that most antibiotic administrations are likely to be 
empiric, as the mean ICU stay is merely 4 days. 
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flow regarding resistance could be delayed, so that resistance rates might influence antibiotic 

application in subsequent periods. When testing this the significant effect was restricted to 

the first two periods, so that as a general rule the effects of the explanatory resistance rates 

were additionally estimated using a simple finite distributed lag model for two periods. It is 

likely that demand for an antibiotic is not only influenced by the resistance rates to first-line 

level agents, but also by its own resistance as suggested in the model above. As the antibiotics 

investigated already are reserve agents, however, there often are no other options when own-

resistance increases. Additionally, the prevalent resistance rates are comparatively low. 

Regressions analysing the own-resistance elasticity were performed but showed no significant 

effect and did not alter the main coefficients of interest. Including a contemporaneous own-

resistance variable would by construction be endogenous, as antibiotic use influences 

resistance as well. A lagged variable of own-resistance would on the other hand introduce 

collinearity issues arising from the inclusion of multiple lagged variables on the right hand side. 

These variables are therefore not included. 

The baseline AR(1) distributed lags fixed effect regression model to identify the resistance 

induced substitution effects is then: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝑹𝑹𝑎𝑎𝑎𝑎𝑎𝑎𝜷𝜷1𝑎𝑎 + 𝑹𝑹𝑎𝑎𝑎𝑎𝑎𝑎−1𝜷𝜷2𝑎𝑎 + 𝑐𝑐𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖 

with     𝑢𝑢𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑢𝑢𝑖𝑖𝑖𝑖−1 + 𝜀𝜀𝑖𝑖𝑖𝑖 

𝑌𝑌𝑖𝑖𝑖𝑖 is the application density of the investigated antibiotic used in unit i and month t.14 𝑹𝑹𝑎𝑎𝑎𝑎𝑎𝑎 is 

a (1 x A) vector of the pooled resistance rates or resistance densities of antibiotic class a, a ∈ 

{1,2,…,A}, for unit i, i ∈ {1,2,…,N} at time t, t ∈ {1,2,…,T}. The main coefficients of interest are 

14 These and the following notations are largely adapted from Wooldridge (2010) 
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thus the (A x 1) vectors 𝜷𝜷1𝑎𝑎 and 𝜷𝜷2𝑎𝑎, which measure the induced substitution effect of 

resistance in antibiotic a in period t and t-1 respectively. As discussed above, it is reasonable 

to assume that time invariant factors are somehow correlated with the explanatory variables. 

The unit fixed-effect 𝑐𝑐𝑖𝑖 is therefore estimated to remove all time invariant heterogeneity 

between the units.15 Finally, 𝑢𝑢𝑖𝑖𝑖𝑖 gives the autoregressive error term while 𝜀𝜀𝑖𝑖𝑖𝑖 is the 

idiosyncratic error term for unit i and time t. 

The fixed effects remove the time invariant unobserved heterogeneity, but do not account for 

unobserved time specific effects that influence all cross-sections. Events like the market entry 

of daptomycin in 2006 might for example systematically influence the prescription of linezolid 

and glycopeptides, as it presents a therapeutic substitute. To account for this and other 

unobservable time specific effects like seasonality that could systematically influence 

antibiotic use or resistance rates, we additionally present a two-way error component fixed 

effect model by calculating time fixed effect. The remaining identifying variation to explain 

antibiotic demand is then the differential dynamics of resistance rates across ICUs. We 

moreover added a third specification including a time trend. All three specifications are 

separately calculated with and without lagged independent variables for comparison.  

3.3. Results 

Table 2 gives regression results for carbapenem use. Resistance to 3rd generation 

cephalosporin has a significant contemporaneous effect in the one way error component 

model. A one percentage point increase in 3rd generation cephalosporin resistance increases 

carbapenem application density by .43%. This is a moderate effect considering the substantial 

15 The fixed effects model is estimated with a least squares dummy variable (LSDV) approach to be able to obtain 
consistent R2 in Stata. 
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increase in prevalence of cephalosporin resistance over time. There is no significant effect of 

the lagged variable. The strong aggregate correlation as depicted in figure 2 then possibly 

reflects mostly between-unit differences rather than within effects. Moreover, once time fixed 

effects or a time trend are estimated this effect disappears, suggesting that the measured 

effect could for example be due to events simultaneously affecting all ICUs or an underlying 

trend that is independent of the hypothesized effect. Apart from third generation 

cephalosporins only resistance to Piperacillin/Tazobactam has a significant contemporaneous 

effect in the first model. No effect is found for second and third generation fluoroquinolone 

resistance.  

Insert Table 2. Resistance Elasticity of Carbapenem Use 

The picture is different for the regressions on Linezolid use as summarized in table 3. Both 

MRSA and VRE rates significantly influence the application density of Linezolid in all six 

specifications. In the one-way error component distributed lag model there is an estimated 

0.72% rise in Linezolid use when MRSA rates increase by one percentage point. An analogous 

rise in VRE rates is associated with a 1.58% increase in linezolid application, which is a 

considerable effect in light of the average prevalence of VRE of around 9% in 2012. VRE in the 

previous period also exhibits a statistically and economically significant effect on the 

application density of around 1.35% per one percentage point increase. In contrast, MRSA 

rates do only show a small lagged effect in the model without time effects. Adding period fixed 

effects to the model slightly reduces the impact of MRSA while coefficients on VRE are roughly 

half the magnitude, suggesting that some of the effect may have been caused by unobserved 

time effects. 

Insert Table 3. Resistance Elasticity of Linezolid use 
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The results for glycopeptide use are given in table 4. Both contemporaneous MRSA rates and 

CNS incidence have a statistically significant impact on glycopeptide use. However, only CNS 

has a significant lagged effect. The magnitude is similar across all specifications and varies 

from about 0.37% to 0.5% for the effect of a one percentage point increase in MRSA rates, 

and from 0.15% to 0.2% for the effect of a 1% rise in CNS incidences, while the lagged effect 

for CNS is around 0.1%. It is noteworthy that, in contrast to the other regressions, including 

period fixed effects or a trend variable does not alter results relevantly, suggesting that the 

estimates do in fact exclusively reflect dynamic within-unit effects of the relation between 

resistance and antibiotic use irrespective of time effects. 

Insert Table 4. Resistance Elasticity of Glycopeptide use 

4. Discussion 

The results of the three core regressions seem to support the hypothesis that demand for 

reserve antibiotics significantly increases when lower level resistance rises. For some 

regressions the lagged effect of resistance was also shown to be significant. This supports the 

conjecture that part of the substitution effect is caused by physicians changing antibiotic 

choices in empiric treatment by adapting their resistance expectation to new information on 

resistance prevalence. It is plausible that this transmission is not instantaneous. The 

resistance-induced substitution effect caused by adapted definitive treatment can conversely 

only plausibly be explained by the contemporaneous resistance rates. In this respect demand 

responsiveness to MRSA may be systematically different to other pathogens as rapid testing 

is increasingly used to immediately screen patients for MRSA, so that definitive therapy is 

often possible within a short time period (Harbarth et al. 2006). This may explain why, in 

contrast to other resistance rates, there was no lagged effect of MRSA in most specifications.  
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A critical issue with the dataset is that the variables for linezolid and glycopeptide use present 

a corner solution outcome.16 Being reserve agents, many of the observed unit-month 

observations pile up at zero.17 This is in general adequately addressed by a Tobit regression 

model to account for the non-continuous nature of the dependent variable. In addition to the 

linear regression analysis with fixed effect discussed above, we therefore applied two further 

methods for the regressions on linezolid and glycopeptide use. An unconditional Tobit model 

with unit dummy variables is generally considered to be biased. However, Greene (2004) 

shows this bias to be negligible in larger panels even at a degree of censoring around 50%. 

Consisting of 66 Units, the coefficients should therefore be fairly accurately estimated. 

Additionally, Honore (1992) developed a Tobit fixed effect estimation, whose implementation 

however is limited in the available specifications. The results for the Tobit regressions using 

the two approaches are provided in the appendix in Tables A5 and A6. The specification was 

limited to a static model as introducing dynamic effects further complicates consistent 

estimation (Honoré 1993). Available models for dynamic fixed effects Tobit estimations as in 

Honoré (1993) are not yet implemented in econometric software packages. Both estimations 

produced fairly similar results, and the average partial effects are almost identical to linear 

fixed effects estimations in a static specification and only marginally differ from the results 

presented here. Only for the effect of VRE on Linezolid use does the Tobit model present a 

significantly larger estimate. 

Another potential issue underlying the regressions specification above concerns the resistance 

measurement. In the context of the presented model of resistance-induced antibiotic 

substitution it is argued that in empiric therapy a physician chooses an antibiotic with respect 

16 See Wooldridge (2010)) for a discussion of the difference between corner solution outcomes and actual data 
censoring. 

17 For Carbapenems 7,6%, for Linezolid 44%, and for Glycopeptides 28% of observations are zero . 
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to the probability of treatment success among other things. This was assumed to be accurately 

represented by the resistance rate variable, which gives the number of resistant isolates to all 

tested isolates. It therefore indicates the probability of encountering resistance when 

targeting a pathogen with a specific substance. However, it can be argued that, rather than 

the actual likelihood of resistance, it is the awareness of resistance cases that influences the 

physician’s drug choice in empiric therapy. To make a rational choice based on the probability 

of resistance the physician would require up-to-date information on prevailing resistance 

rates. This assumption may be too strong. Instead, antibiotic choice could be influenced by 

the physician’s awareness of resistance cases in his unit. Resistance density, which gives the 

resistant isolates per 1000 patient days, would then be a more appropriate measurement.18 

To test the results above for robustness we additionally conducted the regressions using 

resistance density variables instead of resistance rates. The results are given in tables A7 – 

A19 in the appendix.  

The results for Carbapenem use differ in that fluoroquinolone resistance can now be shown 

to significantly influence application of carbapenems in all specifications when using 

resistance density measures. The effect is however fairly small at less than 0.1% increase in 

application for a 1% increase in resistance density. Lagged MRSA rates can moreover be shown 

to significantly influence linezolid and glycopeptide application while other variables are 

similar with respect to significance and direction of the effect.19 It is not evident where this 

difference stems from, but potentially for fluorochinolone resistance and MRSA it is less the 

resistance rate than the prevalence of cases that influences antibiotic treatment decisions. 

18 Nonetheless, for the resistance induced substitution in definitive as opposed to empiric treatment, the 
resistance rate is a more adequate measure as it gives the likelihood that for a given pathogen the blood test 
will reveal that a specific substance is ineffective, therefore necessitating a stronger agent. 

19 A direct comparison of the magnitude of the coefficients between the two resistance measures is not 
meaningful as one is the percentage point elasticity while the other gives the percentage change elasticity. 
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This certainly makes sense for MRSA as it is the most prevalent and known resistant pathogen 

in the intensive care setting, so that physician may be more sensitive to an increase in these 

cases.  

A potential caveat in all regressions is cross-resistance, which can cause collinearity in the 

explanatory variables. If resistance towards one substance class is accompanied by resistance 

to another, it is hard to disentangle the two effects in a regression. This could possibly explain 

why, in contrast to the preliminary conjecture, fluoroquinolone resistance rates cannot be 

shown to influence carbapenem consumption when cephalosporin and 

piperacillin/tazobactam resistance is accounted for. The exclusion of third generation 

cephalosporin and piperacillin/tazobactam resistance in the regression of Table 2, for 

instance, leads to a significant point estimate of 2nd and 3rd generation fluoroquinolone 

resistance. A one percentage point increase in resistance is then accompanied by an 

approximate 0.38% (p<0.01) increase in carbapenem use in the one-way error component 

model (Appendix Table A10).  

A crucial assumption concerning the nature of the panel data is that its unbalancedness is not 

due to systematic reasons. Data gaps may bias the results, if their occurrence is correlated to 

the idiosyncratic error terms. Likewise, if time series are later added or retracted selectively 

for time varying characteristics, outcomes are biased in a similar manner. Moreover, the 

unbalanced nature of the data could pose a problem if the process of reporting data itself 

influences prescription behaviour in the respective unit. In the last decades, for instance, it 

has been shown that the existence of a surveillance system itself prevents nosocomial 

infections (Haley et al. 1985; Pittet et al. 2005; Gastmeier et al. 2006; Pittet et al. 2005). If SARI 

participation leads to increased efforts to record and report resistance rates within the ICU, 

then the resistance-responsive antibiotic prescription patterns may be systematically 
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different for units that have been part of the panel for a longer time than for newly added 

ones. Self-selection can also prevent causal inference if ICUs decide to participate in the 

program or leave it for reasons correlated with the time varying unobserved effect. The 

researchers collecting the data have however confirmed that to the best of their knowledge 

there are no systematic patterns that cause the unbalancedness, but rather that 

administrative issues are at the root. 

The findings show that demand for antibiotics is responsive to underlying resistance rates. 

This necessarily gives an incomplete picture of the total demand for antibiotics, as other 

factors such as disease epidemiological, pharmacological aspect, and antibiotic prices were 

not taken into account. However, as the analysis was restricted to intensive care units, it is 

likely that compared to other in- and outpatient settings, treatment success, as given by the 

susceptibility of pathogens to a substance, plays the most important role in demand for 

antibiotics.  

5. Conclusion 

The major aim of this study was to analyse the demand characteristics of antibiotics in the ICU 

setting. To test whether actual and expected pathogen resistance influences antibiotic 

demand, we conducted a panel data analysis to quantify resistance-induced substitution 

effects. The hypothesis that increasing resistance in first-line agents increases the use of 

reserve agents was generally supported by the results, although not for all analysed resistance 

rates. For some antibiotics, resistance in the previous period was also shown to significantly 

influence antibiotic prescription patterns. This supports the conjecture that part of the 

substitution effect is caused by an adapted resistance expectation in empiric treatment rather 

than a changed administration in definitive therapy after tests have revealed the susceptibility 
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of the pathogen. The findings suggest that the substantial increase observed in reserve 

antibiotic application can at least partly be explained by an increase in resistance to first and 

second-line agents. By and large, the results were shown to be robust to different 

specifications of the empirical model.  

The findings imply that expectations play an important role in the demand for antibiotics as 

physician do not know a pathogen’s antibiotic susceptibility in empiric therapy. This has gained 

little attention in the context of antibiotic resistance and stewardship. For policy makers, an 

important implication of this is that the availability and accuracy of information about 

prevalence of pathogens and resistance rates can increase treatment optimality by allowing 

physicians to efficiently balance the trade-off of resistance and treatment success (Kollef 

2000). This may be reflected in the increase in surveillance efforts across the world.20 

Improving diagnostic methods in terms of accuracy and speed can also increase treatment 

efficiency by allowing prompt, definitive treatment based on pathogen and susceptibility 

information (Klein et al. 2007). 

Economically, the findings imply that resistance can increase costs by causing a substitution 

towards stronger agents, which are often more expensive in direct terms. This effect was 

analysed by Howard (2004) for the outpatient sector. In intensive care settings, indirect costs 

of stronger medication, such as more expensive administration procedures and additional 

necessary care, are likely to play a larger role. To accurately account for the full burden of 

resistance, it is necessary to incorporate the direct and indirect costs of stronger medication 

caused by the substitution effect.  

20 See e.g. ECDC (2013), GERMAP (2014) and WHO (2014). 
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For the modelling of antibiotic resistance the analysis suggests that antibiotic use is 

endogenous with respect to resistance, as argued by Howard (2004). Apart from the biological 

effect that use exacerbates resistance, it is resistance that in turn crucially influences the use 

of antibiotics. Neglecting this prevalence-dependent behaviour in antimicrobial prescribing 

can overstate resistance predictions to a specific substance Howard (2004). Empirically, it was 

shown that econometric methods can be a fruitful tool for the analysis of the dynamic relation 

between antibiotic use and resistance in a panel data context, so as to isolate causal dynamic 

effects and to quantify responsiveness.  

Please note that the conducted empirical analysis rests on some simplifying assumptions 

about the process of in-hospital antibiotic prescription and the microbiological relation 

between antibiotic use and resistance. This level of abstraction, albeit necessary in this 

context, can neglect important other determinants of the antibiotic prescription process. It is 

therefore important to interpret the presented results cautiously in context of the complex 

incentive structures present in the medical sector. Nonetheless, the economic and 

econometric approach to modelling antibiotic demand with respect to susceptibility has 

presented some useful insights into a topic which is of critical importance to the future of 

medical care, public health, and the economy. 
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Figures and Tables 

Figure 1: Share of Reserve Antibiotics 

 

Figure 2: Carbapenem use and resistance of gram-negatives pathogens towards third gen. 
cephalosporins and Fluoroquinolones 
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Figure 3: Linezolid use and Vancomycin resistance in Enterococcus (VRE) 

 

Figure 4: Resistance and Antibiotic application over time for an exemplary ICU for 24 months 
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Table 1: Descriptive Panel Statistics  

Variable Category Mean sd min max obs 

Total Antibiotic Use AD overall 1395,35 604,69 0,00 10079,20 5506,00 
 between  385,35 718,16 2653,78 66,00 
 within  482,74 -501,53 9577,67 83,42 

Carbapanem use (AD) overall 146,85 140,21 0,00 1726,36 5506,00 
 between  99,98 7,79 558,61 66,00 
 within  107,07 -264,78 1708,77 83,42 

Glycopeptide use (AD) overall 43,77 64,01 0,00 2168,92 5506,00 
 between  45,14 3,78 233,42 66,00 
 within  53,90 -102,24 2177,51 83,42 

Linezolid use (AD) overall 30,25 47,06 0,00 977,01 5234,00 
 between  24,26 0,60 130,19 66,00 
 within  40,61 -82,76 978,39 79,30 

VRE (RR) overall 0,03 0,11 0,00 1,00 4779,00 
  between  0,05 0,00 0,25 65,00 
 within  0,10 -0.22 1.01  73,52 

3rd gen Cephalosporin Res. (RR) overall 0,17 0,18 0,00 1,00 5339,00 
 between  0,09 0,04 0,47 66,00 
 within  0,16 -0,30 1,09 80,89 

2nd and 3rd gen. Fluorochinolone overall 0,18 0,22 0,00 2,00 5311,00 
Resistance (RR) between  0,11 0,04 0,60 66,00 
 within  0,20 -0,42 2,04 80,47 

Resistance to  overall 0,18 0,22 0,00 2,00 5311,00 
Piperacillin/Tazobactam (RR) between  0,11 0,04 0,60 66,00 
 within  0,20 -0,42 2,04 80,47 

MRSA (RR) overall 0,18 0,20 0,00 1,00 4925,00 
 between  0,11 0,06 0,50 66,00 
 within  0,18 -0,22 1,12 74,62 

CNS incidence overall 0,26 0,28 0,00 1,00 5054,00 
 between  0,12 0,05 0,51 66,00 
 within  0,26 -0,25 1,13 76,58 
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Table 2: Resistance elasticity of carbapenem use 

Dependent Variable Unit Fixed Effects  

Carbapenem AD (log) 1 2 3 4 5 6 

Resistance to 3rd gen.  0.430*** 0.428*** 0.117 0.080 0.160 0.137 
Cephalosporin [0.173 - 0.686] [0.164 - 0.692] [-0.138 - 0.372] [-0.182 - 0.343] [-0.091 - 0.411] [-0.122 - 0.395] 

 (t-1)  0.237*  -0.116  -0.074 

  [-0.030 - 0.504]  [-0.381 - 0.150]  [-0.335 - 0.187] 

Joint Significance of both 
 periods (p-value) 

 0.002  0.558  0.483 

Resistance to 2nd and  0.128 0.192* 0.103 0.112 0.063 0.090 
3rd gen. Fluoroquinolones [-0.053 - 0.309] [-0.007 - 0.390] [-0.075 - 0.281] [-0.083 - 0.306] [-0.115 - 0.240] [-0.103 - 0.283] 

 (t-1)  0.023  -0.084  -0.081 

  [-0.176 - 0.222]  [-0.278 - 0.110]  [-0.274 - 0.112] 

Joint Significance of both 
 periods (p-value) 

 0.163  0.292  0.391 

Resistance to Piperacilin/  0.193* 0.304*** 0.086 0.133 0.117 0.185* 
Tazobactam [-0.016 - 0.402] [0.084 - 0.525] [-0.119 - 0.291] [-0.084 - 0.350] [-0.087 - 0.320] [-0.029 - 0.399] 

 (t-1)  0.149  0.059  0.064 
  [-0.074 - 0.372]  [-0.160 - 0.278]  [-0.152 - 0.280] 

Joint Significance of both 
 periods (p-value) 

 0.017  0.450  0.219 

Trend Variable     0.012*** 0.011*** 

     [0.011 - 0.013] [0.010 - 0.013] 

Constant 4.257*** 4.179*** 0.258 0.979*** 3.398*** 3.452*** 
 [4.211 - 4.303] [4.117 - 4.241] [-0.416 - 0.931] [0.333 - 1.626] [3.313 - 3.482] [3.362 - 3.543] 

Joint Significance of all 
independent Variables (p-
value) 

0.000 0.000 0.159 0.164 0.000 0.088 

Time Fixed Effects No No Yes Yes No No 

N 4,792 4,503 4,792 4,503 4,792 4,503 

R2 0.01 0.01 0.11 0.11 0.07 0.06 

Notes: The regressions include monthly data on the application density (AD) of carbapenems (Imipenem, meropenem, ertapenem and 
doripenem) from 2001 – 2012. Resistance is measured as the resistance rate: resistant isolates as a proportion of all tested isolates. 
All included resistance rate are for gram-negative pathogens only. The 95% confidence intervals are given in brackets.  
*** Significant at the 1 percent level. 
** Significant at the 5 percent level. 
* Significant at the 10 percent level. 
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Table 3. Resistance elasticity of linezolid use 

Dependent Variable: Unit Fixed Effects  

Linezolid AD(log) 1 2 3 4 5 6 

MRSA 0.637*** 0.720*** 0.539*** 0.597*** 0.602*** 0.687*** 
 [0.447 - 0.826] [0.509 - 0.930] [0.352 - 0.725] [0.393 - 0.802] [0.418 - 0.787] [0.484 - 0.889] 

 (t-1)  0.214**  0.147  0.173* 
  [0.005 - 0.423]  [-0.056 - 0.350]  [-0.028 - 0.374] 

Joint Significance of both 
 periods (p-value) 

 0.000  0.000  0.000 

VRE 1.159*** 1.580*** 0.771*** 0.859*** 0.747*** 0.852*** 
 [0.707 - 1.612] [1.080 - 2.080] [0.320 - 1.223] [0.363 - 1.354] [0.301 - 1.193] [0.362 - 1.342] 

 (t-1)  1.346***  0.622**  0.654*** 
  [0.857 - 1.835]  [0.138 - 1.107]  [0.175 - 1.132] 

Joint Significance of both 
 periods (p-value) 

 0.000  0.000  0.001 

Trend Variable     0.019*** 0.018*** 
     [0.017 - 0.021] [0.016 - 0.020] 

Constant 2.030*** 1.947*** 0.639* 0.786** 0.491*** 0.482*** 
 [1.971 - 2.088] [1.870 - 2.025] [-0.008 - 1.287] [0.110 - 1.463] [0.362 - 0.620] [0.337 - 0.627] 

Joint Significance of all in-
dependent Variables (p-value) 

0.000 0.000 0.000 0.000 0.000 0.000 

Time Fixed Effects No No Yes Yes No No 

N 4,224 3,755 4,224 3,755 4,224 3,755 

R2 0.02 0.03 0.14 0.16 0.09 0.10 
Notes: The regression includes monthly data on the application density (AD) of Linezolid from 2001 – 2012. MRSA rates gives the 
proportion of tested S.aureus isolates that are resistant to oxacillin. VRE rates gives the proportion of tested Enterococcus isolates that 
are resistant to vancomycin. Resistance is measured as the resistance rate: resistant isolates as a proportion of all tested isolates. The 
95% confidence intervals are given in brackets. 
*** Significant at the 1 percent level. 
** Significant at the 5 percent level. 
* Significant at the 10 percent level. 
 

  

V 



Table 4: Resistance elasticity of glycopeptide use 

Dependent Variable:        

Glycopeptide AD (log) 1 2 3 4 5 6 

MRSA 0.379*** 0.492*** 0.371*** 0.509*** 0.372*** 0.486*** 
 [0.195 - 0.563] [0.290 - 0.694] [0.184 - 0.557] [0.304 - 0.714] [0.189 - 0.555] [0.285 - 0.687] 

 (t-1)  0.171  0.093  0.168 
  [-0.033 - 0.374]  [-0.114 - 0.299]  [-0.034 - 0.370] 
Joint Significance of both 
 periods (p-value) 

 0.000  0.000  0.000 

CNS 0.226*** 0.241*** 0.222*** 0.228*** 0.237*** 0.248*** 
 [0.145 - 0.306] [0.154 - 0.328] [0.140 - 0.304] [0.140 - 0.316] [0.157 - 0.318] [0.161 - 0.334] 

 (t-1)  0.113**  0.109**  0.120*** 
  [0.026 - 0.200]  [0.021 - 0.197]  [0.034 - 0.207] 

Joint Significance of both 
 periods (p-value) 

 0.000  0.000  0.000 

Trend Variable     0.006*** 0.007*** 
     [0.004 - 0.008] [0.005 - 0.009] 
Constant 2.510*** 2.233*** -0.151 -0.727*** 2.044*** 1.702*** 
 [2.415 - 2.605] [2.084 - 2.382] [-0.664 - 0.362] [-1.236 - -0.218] [1.905 - 2.183] [1.517 - 1.887] 
Joint Significance of all in-
dependent Variables. (p-value) 

0.000 0.000 0.000 0.000 0.000 0.000 

Time Fixed Effects No No Yes Yes No No 
N 4,130 3,553 4,130 3,553 4,130 3,553 
R2 0.01 0.02 0.06 0.08 0.02 0.03 
Notes: The sample includes monthly data on the application density (AD) of glycopetides (Vancomycin and Teicoplanin) from 2001 – 
2012. MRSA rates gives the proportion of tested S.aureus isolates that are resistant to oxacillin. CNS is the incidence of coagulase-
negative staphylococcus as measure in tested isolates. 95% confidence intervals are given in brackets.  
*** Significant at the 1 percent level. 
** Significant at the 5 percent level. 
* Significant at the 10 percent level. 
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Appendix 

Table A1. Panel Structure 

statid: 1, 3, ..., 72 n = 66   

month:1, 2, ..., 144 T = 144    
Distribution of T_i:  min    5%     25%    50%     75%     95%     max                      

       12       12      48        85       125      144      144 
Delta(month) = 1  
Span(month)  = 144 periods   
statid*month uniquely identifies each observation 
 
 
 
Freq.  Percent Cum. |  Pattern 
 ---------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------- 
       11     16.67   16.67 |  111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
        4      6.06   22.73 |  ....................................................................................................................................111111111111…………………………………………………………………………………………………………………………………. 
        3      4.55   27.27 |  ................................................................................................111111111111111111111111111111111111111111111111……………………………………………………………………………………………… 
        2      3.03   30.30 |  ........................................................................................................................111111111111111111111111…………………………………………………………………………………………………………………….. 
        2      3.03   33.33 |  ..................................................................................................................111111111111111111111111111111………………………………………………………………………………………………………………. 
        2      3.03   36.36 |  .................................................11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111………………………………………………. 
        2      3.03   39.39 |  ....................................111111111111111111111111111111111111111111111111111111111111111111111111111111.................................................................................................. 
        2      3.03   42.42 |  ........................111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
        2      3.03   45.45 |  ...111111111111....11...................................................111111111111111111111111111111................................................................................................................................................. 
        2      3.03   48.48 |  ..11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111.............................. ................................................. 
        2      3.03   51.52 |  111111111111111111111111111111111111111111111111111111111111111111..1111111111111111111111111111111111111111111111111111111111111111111111111111… 
        1      1.52   53.03 |  ............................................................................................................................11111111111111.11111............................................................................................................................... 
        1      1.52   54.55 |  ..........................................................................................................................1111111111111111111111............................................................................................................................ 
        1      1.52   56.06 |  ..............................................................................................................1111111111111111111111111111111111................................................................................................................ 
        1      1.52   57.58 |  ............................................................................................................111111111111111111111111111111111.11............................................................................................................... 
        1      1.52   59.09 |  ................................................................................................111111111111.......................................................................................................................................................................... 
        1      1.52   60.61 |  ..........................................................................................1111111111111111111111111111..111111111111111111111111.............................................................................................. 
        1      1.52   62.12 |  ......................................................................................1111111111111111111111111111111111111111111111111111111111........................................................................................ 
        1      1.52   63.64 |  ....................................................................................111111111111111111111111111111111111111111111111111111111111...................................................................................... 
        1      1.52   65.15 |  ........................................................................111111111111111111111111111111111111111111111111111111111111.................................................................................................. 
        1      1.52   66.67 |  .......................................................................1111111111111111111111111111111111111111.1111111111111111....1111111..... .................................................................................. 
        1      1.52   68.18 |  ............................................................11111111111111111111111111111111111111.11111111111111111111111111111111111111111111. ............................................................... 
        1      1.52   69.70 |  ......................................................111111111111111111111111111111............111111111111111111.............................. ................................................................................................. 
        1      1.52   71.21 |  .....................................................111111111111111111111111.111111111111111111111111111111111111111111111111111111111111111111........................................................ 
        1      1.52   72.73 |  .....................................................11111111111111111111111111111111111111111111111111111111111111111111..111111111111111111111.......................................................... 
        1      1.52   74.24 |  ...........................111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111…………………………. 
        1      1.52   75.76 |  .....1111111111111111111111111111111111111111111................................................................................................ ......................................................... ............................................. 
        1      1.52   77.27 |  .....1111111111111111111111111111111111111111111......111111111111111111111111111111............111111111111111111............................. ........................................................ 
        1      1.52   78.79 |  ...111111111111111111111111111111111111111111111111111111111111111111111....................................................................................................................................................... 
        1      1.52   80.30 |  ..111111111111111111111.11...111111111111111111111.111111111111111111111111.11111111111......................................................... .................................................................... 
        1      1.52   81.82 |  ..11111111111111111111111111111111111.1111.1111.111.11111111111111111111111111..11111111111111111111111111.1111111111111111111111111111111111111 
        1      1.52   83.33 |  ..1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111.......................................... ............................................... 
        1      1.52   84.85 |  .1111111111111111111111.111111111111.1111111111111111111111111111111111111111111111111111111111.1111.11111111111111...........1111111111111111.1………………….. 
        1      1.52   86.36 |  .1111111111111111111111111111111.......1.111111111111111....111111111111111111.................................................................. ................................................................................... 
        1      1.52   87.88 |  .11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111................................................ ..................................................... 
        1      1.52   89.39 |  1.1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..................111111111111…………………….. 
        1      1.52   90.91 |  111111..11111111111111111111111111.1111111.........111111111111111111111111111111111111111111111111111111111111111111111111111111111......................................... 
        1      1.52   92.42 |  11111111111.1111111111111111111111111111111..11111111111111111111111111111.....11111111111111111................................................ ............................................................ 
        1      1.52   93.94 |  111111111111111111111111111111111111111111.........111111111111111111111111111111111111111111111111111111111111111111111111111111111.. ................................... 
        1      1.52   95.45 |  11111111111111111111111111111111111111111111111111111111.111111111.............................................................................. ......................................................... .......................... 
        1      1.52   96.97 |  111111111111111111111111111111111111111111111111111111111111.................................................................................... ......................................................... ............................... 
        1      1.52   98.48 |  111111111111111111111111111111111111111111111111111111111111111111111111111111111111111......................................................... ............................................................ 
        1      1.52  100.00 |  11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111.111111111….. 
 ---------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 
       66    100.00         |  XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
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Table A2. Pathogens with collected Resistance Rates  

Pathogen Antibiotics 

S. aureus Oxacillin, Vancomycin, Teicoplanin, Ciprofloxacin, 
Linezolid, Tigecyclin, Daptomycin 

S. pneumoniae 
Penicillin, Cefotaxim or Ceftazidim or 
Ceftriaxon,Vancomycin, Erythromycin, Ciprofloxacin, 
Moxifloxacin, Levofloxacin 

CNS Cefoxitin, Vancomycin, Teicoplanin, Tigecyclin 

E. faecalis Ampicillin, Vancomycin, Teicoplanin, Ciprofloxacin, 
Levofloxacin, Moxifloxacin, Tigecyclin, Daptomycin 

E. faecium Ampicillin, Vancomycin, Teicoplanin, Ciprofloxacin, 
Linzolid, Tigecyclin, Daptomycin 

E. coli 
K. Pneunomia 

Cefotaxim oder Ceftazidim or Ceftriaxon, Cefuroxim or 
Cefotiam, Imipenem, Meropenem, Gentamicin, 
Tobramycin, Amikacin, Piperacillin/ 
Betalactamaseinhibitor, Ampicillin/ Sulbactam, 
Amoxicillin/ Clavulansäure, Ciprofloxacin, Levofloxacin, 
Tigecyclin 

E. cloacae 
S. marcescens 

Cefotaxim or Ceftazidim or Ceftriaxon, Imipenem, 
Meropenem, Amikacin, Ciprofloxacin, Levofloxacin, 
Tigecyclin 

Citrobacter Imipenem, Meropenem, Amikacin, Ciprofloxacin, 
Levofloxacin, Tigecyclin 

P. aeruginosa 
Ceftazidim, Piperacillin/Tazobactam, Imipenem, 
Meropenem, Gentamicin, Tobramycin, Amikacin, 
Ciprofloxacin, Levofloxacin, Tigecyclin 

A. baumannii 

Ceftazidim, Cefuroxim or Cefotiam, 
Piperacillin/Sulbactam, Piperacillin/Tazobactam, 
Imipenem, Meropenem, Amikacin, Ciprofloxacin, 
Levofloxacin, Tigecyclin 



Table A3. Dependent Variable Autocorrelation 

Correlation Carbapanem use Carbapenem use (t-1) 

Carbapanem use 1  

Carbapenem use (t-1) 0.6747 1 

Correlation Linezolid use Linezolid use (t-1) 

Linezolid use 1  

Linezolid use (t-1) 0.4327 1 

Correlation Glycopeptide use Glycopeptide use (t-1) 

Glycopeptide use 1  

Glycopeptide use (t-1) 0.4243 1 
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Table A4. Panel Unit Root Tests 

Choi's (2001) combined p-value ADF fisher test     

HO: All panels contain a unit root      H1: At least one panel is stationary 

 
   

Variable category Statistic pValue obs 

Carbapenems (AD) Inverse chi-squared 1023,016541 0,000 5506 

 Inverse normal Z statistic -24,728317 0,000  

 Inverse logit L statistic -34,536419 0,000  

 modified inverse chi-squared P_m 54,838276 0,000  

Glycopeptides (AD) Inverse chi-squared 1471,94873 0,000 5506 

 Inverse normal Z statistic -30,890514 0,000  

 Inverse logit L statistic -49,6152 0,000  

 modified inverse chi-squared P_m 82,468147 0,000  

Linezolid (AD) Inverse chi-squared 1420,76355 0,000 5234 

 Inverse normal Z statistic -30,501421 0,000  

 Inverse logit L statistic -48,094536 0,000  

 modified inverse chi-squared P_m 79,317917 0,000  

Glycopeptide resistance (RR) Inverse chi-squared 1345,41333 0,000 5352 

 Inverse normal Z statistic -30,074745 0,000  

 Inverse logit L statistic -49,991863 0,000  

 modified inverse chi-squared P_m 74,680428 0,000  

3rd gen Cephalosporin resistance (RR) Inverse chi-squared 1304,213745 0,000 5339 

 Inverse normal Z statistic -28,361797 0,000  

 Inverse logit L statistic -44,049156 0,000  

 modified inverse chi-squared P_m 72,144768 0,000  

Fluoroquinolone resistance (RR) Inverse chi-squared 1574,672119 0,000 5311 

 Inverse normal Z statistic -32,429245 0,000  

 Inverse logit L statistic -53,696133 0,000  

 modified inverse chi-squared P_m 88,790329 0,000  

Carbapenem resistance (RR) Inverse chi-squared 1326,415771 0,000 4801 

 Inverse normal Z statistic -28,845137 0,000  

 Inverse logit L statistic -46,823093 0,000  

 modified inverse chi-squared P_m 74,900986 0,000  

Resistance to Piperacilin/tazobactam (RR) Inverse chi-squared 1255,326416 0,000 4925 

 Inverse normal Z statistic -28,137737 0,000  

 Inverse logit L statistic -44,073948 0,000  

 modified inverse chi-squared P_m 70,457901 0,000  

MRSA (RR) Inverse chi-squared 1292,069214 0,000 5054 

 Inverse normal Z statistic -27,235807 0,000  

 Inverse logit L statistic -43,029205 0,000  

 modified inverse chi-squared P_m 72,068474 0,000  

Incidence of CNS Inverse chi-squared 1279,568604 0,000 5506 

 Inverse normal Z statistic -27,502605 0,000  

 Inverse logit L statistic -43,448814 0,000  

 modified inverse chi-squared P_m 70,62796 0,000  

Vancomycin resistance in Enterococcus (RR) Inverse chi-squared 1407,782715 0,000 4779 

 Inverse normal Z statistic -30,768436 0,000  

 Inverse logit L statistic -54,028957 0,000  

 modified inverse chi-squared P_m 82,313805 0,000  
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Table A5. Tobit fixed effects estimation for resistance elasticity of linezolid use 

Dependent Variable Tobit Fixed-Effects Estimation 

Linezolid AD 1 APE 2 

MRSA 1.046*** 0.689*** 1.062 *** 

 (0.652 - 1.439) (0.469 – 0.911) (0.652 - 1.472) 

    

VRE 3.239*** 2.137*** 2.669 *** 
 (2.285-4.193) (1.632 – 2.640) (1.965 – 3.373) 

Joint Significance of all independent variables (p-value) 0.000 0.000 0.000 
N 4,289 4,289 4,289 

R2 0.09  . 
Log-Likelihood -7,173.06   
Notes: The regressions use monthly data on the application density (AD) of Linezolid from 2001 – 2012. MRSA rates gives 
the proportion of tested S.aureus isolates that are resistant to Oxacillin. VRE rates gives the proportion of tested 
Enterococcus isolates that are resistant to Vancomycin. Column 1 gives the results of a Tobit regression using dummy 
variables for each unit. APE gives the Average Partial effects of that estimation. Column 2 presents the results of Tobit 
fixed effect estimator developed by Honoré (1992). The implementation of this estimator is limited in its possible 
specifications and calculated results so that no partial effects or R-squared were estimated. P-values for the joint 
significance of independent variables were calculated using Wald tests. H0 is that the variables do not have an effect.   
*** Significant at the 1 percent level. 
** Significant at the 5 percent level. 
* Significant at the 10 percent level. 
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Table A6. Tobit fixed effect estimation for resistance elasticity of glycopeptide use 

  

Dependent Variable Tobit Fixed-Effects Estimation 

Glycopeptide AD (log) 1 APE 2 

MRSA 0.476*** 0.416*** 0.477*** 
 (0.031 – 0.922) (0.030 – 0.802) (0.135 - 0.818) 

    

Incidence of CNS (log) 0.282*** 0.239*** 0.269*** 

 (0.113- 0.434) (0.103 - 0.376) (0.129 - 0.409) 

    

Joint Significance of all independent variables (p-value) 0.000 0.000 0.000 
N 4,195 4,195 4,195 
R2 0.08   
Log-Likelihood -9,231.53   
Notes: The sample use monthly data on the application density (AD) of Glycopetides (Vancomycin and Teicoplanin) from 
2001 – 2012. MRSA rates gives the proportion of tested S.aureus isolates that are resistant to Oxacillin. CNS is the 
incidence of coagulase-negative staphylococcus as measure in tested isolates. Column 1 gives the results of a Tobit 
regression using dummy variables for each unit. APE gives the Average Partial effects of that estimation. Column 2 
presents the results of Tobit fixed effect estimator developed by Honoré (1992). The implementation of this estimator is 
limited in its possible specifications and calculated results so that no partial effects or R-squared could be estimated and 
no standard-error clustering could be performed. 95% confidence intervals are given in brackets. P-values for the joint 
significance of independent variables were calculated using Wald tests. H0 is that the variables do not have an effect.   
*** Significant at the 1 percent level. 
** Significant at the 5 percent level. 
* Significant at the 10 percent level. 
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Table A7. Resistance Elasticity of Carbapenems (Resistance Density) 

Dependent Variable Unit Fixed Effects  

Carbapenem AD (log) 1 2 3 4 5 6 

Resistance to 3rd gen.  0.174*** 0.166*** 0.064 0.057 0.081** 0.072* 
Cephalosporin [0.096 - 0.251] [0.087 - 0.246] [-0.014 - 0.141] [-0.022 - 0.136] [0.005 - 0.157] [-0.006 - 0.150] 

 (t-1)  0.102**  -0.012  0.001 
  [0.022 - 0.182]  [-0.092 - 0.068]  [-0.077 - 0.079] 

Joint Significance of both 
 periods (p-value) 

 0.0000  0.345  0.194 

Resistance to 2nd and  0.081** 0.087** 0.093*** 0.088** 0.075** 0.078** 
3rd gen. Fluoroquinolones [0.012 - 0.151] [0.013 - 0.160] [0.025 - 0.161] [0.017 - 0.160] [0.007 - 0.143] [0.007 - 0.149] 

 (t-1)  -0.019  -0.020  -0.029 
  [-0.093 - 0.054]  [-0.092 - 0.052]  [-0.100 - 0.042] 

Joint Significance of both 
 periods (p-value) 

 0.041  0.034  0.053 

Resistance to Piperacilin/  0.045 0.077** 0.022 0.034 0.036 0.056 
Tazobactam [-0.022 - 0.112] [0.008 - 0.146] [-0.043 - 0.088] [-0.033 - 0.102] [-0.029 - 0.101] [-0.011 - 0.123] 

 (t-1)  0.033  0.023  0.021 
  [-0.037 - 0.102]  [-0.045 - 0.091]  [-0.046 - 0.088] 

Joint Significance of both 
 periods (p-value) 

 0.076    0.236 

Trend Variable     0.012*** 0.011*** 

     [0.010 - 0.013] [0.010 - 0.013] 

Constant 4.172*** 4.085*** 0.204 0.942*** 3.337*** 3.387*** 
 [4.119 - 4.225] [4.012 - 4.157] [-0.477 - 0.886] [0.286 - 1.598] [3.249 - 3.425] [3.289 - 3.484] 

Joint Significance of all in-
dependent Variables (p-value) 

0.000 0.000 0.000 0.003 0.000 0.001 

Time Fixed Effects No No Yes Yes No No 

N 4,793 4,505 4,793 4,505 4,793 4,505 

R2 0.01 0.02 0.12 0.11 0.07 0.07 

Notes: The regressions use monthly data on the application density (AD) of Carbapenems (Imipenem, Meropenem, Ertapenem 
and Doripenem) from 2001 – 2012. RD is the resistance density defined as the resistant isolates per 1000 patient days. All 
included resistance rate are for gram-negative pathogens only. P-values for the joint significance of independent variables were 
calculated using Wald tests. H0 is that the variables do not have an effect. The 95% confidence intervals are given in brackets. 
*** Significant at the 1 percent level. 
** Significant at the 5 percent level. 
* Significant at the 10 percent level. 
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Table A8. Resistance Elasticity of Linezolid use (Resistance Density) 

Dependent Variable: Unit Fixed Effects 

Linezolid AD(log) 1 2 3 4 5 6 

MRSA 0.183*** 0.201*** 0.191*** 0.203*** 0.204*** 0.224*** 
 [0.127 - 0.239] [0.141 - 0.261] [0.136 - 0.246] [0.145 - 0.262] [0.150 - 0.259] [0.166 - 0.282] 

 (t-1)  0.062**  0.067**  0.085*** 
  [0.001 - 0.123]  [0.008 - 0.126]  [0.026 - 0.143] 

Joint Significance of both 
 periods (p-value) 

 0.000  0.000  0.000 

VRE 0.471*** 0.537*** 0.312*** 0.298*** 0.305*** 0.295*** 
 [0.329 - 0.614] [0.385 - 0.689] [0.170 - 0.453] [0.148 - 0.449] [0.165 - 0.445] [0.146 - 0.444] 

 (t-1)  0.417***  0.163**  0.177** 
  [0.266 - 0.568]  [0.014 - 0.312]  [0.030 - 0.325] 

Joint Significance of both 
 periods (p-value) 

 0.000  0.000  0.000 

Trend Variable     0.019*** 0.019*** 
     [0.017 - 0.021] [0.017 - 0.021] 

Constant 1.934*** 1.806*** 0.540 0.645* 0.355*** 0.241*** 
 [1.866 - 2.002] [1.708 - 1.905] [-0.114 - 1.193] [-0.047 - 1.336] [0.218 - 0.492] [0.077 - 0.405] 

Joint Significance of all in-
dependent Variables (p-value) 

0.000 0.000 0.000 0.000 0.000 0.000 

Time Fixed Effects No No Yes Yes No No 

N 4,224 3,755 4,224 3,755 4,224 3,755 

R2 0.02 0.03 0.15 0.16 0.10 0.11 
Notes: The regressions includes monthly data on the application density (AD) of Linezolid from 2001 – 2012. RD is the resistance 
density defined as the resistant isolates per 1000 patient days. All included resistance rate are for gram-negative pathogens only. 
95% confidence intervals are given in brackets. P-values for the joint significance of independent variables were calculated using 
Wald tests. H0 is that the variables do not have an effect. 
*** Significant at the 1 percent level. 
** Significant at the 5 percent level. 
* Significant at the 10 percent level. 
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Table A9. Resistance Elasticity of Glycopeptide use (Resistance Density) 

Dependent Variable:        

Glycopeptide AD (log) 1 2 3 4 5 6 

MRSA 0.150*** 0.174*** 0.159*** 0.188*** 0.153*** 0.178*** 
 [0.096 - 0.204] [0.116 - 0.232] [0.105 - 0.214] [0.129 - 0.247] [0.099 - 0.207] [0.120 - 0.236] 

 (t-1]  0.059**  0.045  0.064** 
  [0.001 - 0.117]  [-0.014 - 0.104]  [0.006 - 0.122] 
Joint Significance of both 
 periods (p-value) 

 0.000  0.000  0.000 

CNS 0.218*** 0.230*** 0.215*** 0.218*** 0.230*** 0.236*** 
 [0.138 - 0.299] [0.143 - 0.317] [0.133 - 0.296] [0.130 - 0.306] [0.149 - 0.310] [0.150 - 0.323] 

 (t-1]  0.105**  0.102**  0.112** 
  [0.018 - 0.192]  [0.014 - 0.190]  [0.025 - 0.198] 

Joint Significance of both 
 periods (p-value) 

 0.000  0.000  0.000 

Trend Variable     0.006*** 0.007*** 
     [0.004 - 0.008] [0.005 - 0.009] 
Constant 2.426*** 2.128*** -0.203 -0.756*** 1.944*** 1.565*** 
 [2.327 - 2.525] [1.973 - 2.283] [-0.716 - 0.310] [-1.265 - -0.247] [1.801 - 2.086] [1.374 - 1.757] 
Joint Significance of all 
independent Variables. (p-
value) 

0.000 0.000 0.000 0.000 0.000 0.000 

Time Fixed Effects No No Yes Yes No No 
N 4,130 3,553 4,130 3,553 4,130 3,553 
R2 0.01 0.02 0.07 0.08 0.02 0.03 
Notes: The regressions uses monthly data on the application density (AD) of Glycopetides (Vancomycin and Teicoplanin) from 
2001 – 2012. MRSA rates gives the density of S.aureus isolates resistant to Oxacillin per 1000 patient days. CNS is the incidence of 
coagulase-negative staphylococcus as measured in tested isolates. 95% confidence intervals are given in brackets. P-values for the 
joint significance of independent variables were calculated using Wald tests. H0 is that the variables do not have an effect.  
*** Significant at the 1 percent level. 
** Significant at the 5 percent level. 
* Significant at the 10 percent level 
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Table A10. Resistance Elasticity of Carbapenem use, restricted model 

Dependent Variable Unit Fixed Effects  

Carbapenem AD (log) 1 2 3 4 5 6 

Resistance to 2nd and  0.252*** 0.375*** 0.152** 0.172** 0.122 0.162** 
3rd gen. Fluoroquinolones (0.098 - 0.405) (0.210 - 0.540) (0.000 - 0.303) (0.010 - 0.333) (-0.028 - 0.272) (0.002 - 0.322) 

 (t-1)  0.181**  -0.013  -0.023 

  (0.012 - 0.351)  (-0.179 - 0.152)  (-0.187 - 0.141) 

Joint Significance of both 
 periods (p-value] 

 0.000  0.098  0.110 

Trend Variable     0.012*** 0.012*** 
     (0.011 - 0.014) (0.011 - 0.014) 

Constant 4.328*** 4.290*** -0.066 1.276*** 3.378*** 3.398*** 
 (4.291 - 4.365) (4.244 - 4.336) (-0.900 - 0.768) (0.493 - 2.058) (3.302 - 3.454) (3.318 - 3.477) 

Time Fixed Effects No No Yes Yes No No 

N 5,245 5,023 5,245 5,023 5,245 5,023 

R2 0.00 0.00 0.12 0.12 0.08 0.08 

Notes: The regressions include monthly data on the application density (AD) of carbapenems (Imipenem, meropenem, 
ertapenem and doripenem) from 2001 – 2012. Resistance is measured as the resistance rate: resistant isolates as a proportion 
of all tested isolates. All included resistance rate are for gram-negative pathogens only. The 95% confidence intervals are given 
in brackets.  
*** Significant at the 1 percent level. 
** Significant at the 5 percent level. 
* Significant at the 10 percent level. 
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