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Introduction

1. Motivation

A dynamic economic environment is characterized by uncertainty about microeconomic changes in

the competitive landscape (strategic uncertainty) and exogenous macroeconomic developments (market

uncertainty). Some European governments used to erect high (administrative) barriers shielding cer-

tain “natural monopolies” from competitive entry (e.g., telecommunications, electricity and gas utility

sectors). Lately, these governments had to enforce in national laws directives of the European Union

and implement deregulation schemes, opening up certain economic activities to new, potentially foreign,

market participants. These moves have led to higher competitive intensity in the industries concerned.

Following liberalization and deregulation of Western economies, only a limited number of industries have

remained protected, whereas most companies wage fiercer competition in their respective economic sec-

tors. At the same time, some other sectors traditionally characterized by a large number of companies

have undergone significant consolidation, resulting in oligopoly situations with a reduced number of play-

ers. These two concurrent phenomena — liberalization and continuing consolidation — have increased

the emphasis corporate managers should put on strategic uncertainty, the emergence of consolidated

oligopolies (and the disappearance of monopolies) paving the way for higher degree of strategic inter-

actions. Investment has been a focus of analysis in economics, finance, and operations management.

They typically have long-term consequences and need to be analyzed by means of dynamic optimization

techniques. Investment decisions are made at a stage where future market developments are uncertain.

Owing to this, corporate managers have a higher incentive to properly assess market uncertainty when

making a choice amongst strategic options. Strategy revision is both advised and necessary for an indus-

try to sustain itself or evolve. Firms unable to adapt to actual developments, pursuing instead objectives

that prove irrelevant over time, are doomed to fail.

At the heart of industry dynamics lies the investment challenge under uncertainty. Investing involves

sacrificing current consumption in expectation of future benefits. The theory of corporate finance is meant

to examine this basic tradeoff in the presence of partly unrecoupable investment costs and nonperfectly

predictable future developments. The most commonly accepted theory in capital budgeting to assess,

value, and compare investment alternatives is the net present value approach (NPV) that consists in

discounting future expected cash flows at a discount rate accounting for risk adjustment. This view is

based on the premises that the plan of managerial actions is deterministic and set once and for all. While

market uncertainty is factored in through the risk-adjusted discount rate, the flexibility management has

is typically ignored. In many cases, corporate managers might revise their decisions in view of the actual

realization of market development (vs. its expected realization). The assumption of full commitment

to a given action at certain future time is rigid and not realistic in most industries. If a manager

invests today in a project, she is not necessarily committed to a given deterministic plan of actions,

scaling up production in case of (unexpected) demand upsurge or scaling it down (or even closing the

production plant) in downside situations. A firm’s payoff function is typically convex on the upside and

concave on the downside. This calls for a valuation approach accommodating asymmetric claims. An

alternative to NPV is to discount certainty-equivalent cash flows at the risk-free rate rather than the

actually expected cash flows at a risk-adjusted rate. Option-pricing theory or contingent claims analysis,

which is based on this alternative approach, permits the valuation of asymmetric claims. This theory
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2 INTRODUCTION

stems from the seminal work of Bachelier (1900), Samuelson (1965), Black and Scholes (1973), and

Merton (1973), who popularized the use of stochastic calculus to value financial instruments. Cox and

Ross (1976) and Harrison and Kreps (1979) formulated the risk-neutral valuation approach to financial

assets, complementing earlier models with a more intuitive interpretation and implementation of the

underlying principles. Merton (1992) and Duffie (2001) provide a broad overview of dynamic asset

pricing in continuous time. It is now standard practice in finance and strategy to interpret real investment

opportunities as being analogous to financial options. This view is well accepted among academics and

practitioners alike and is the core of real options analysis (ROA). ROA is actually the extension of

option-pricing theory to real investment situations (Myers, 1977). This approach effectively allows one

to capture the dynamic nature of decision making because it factors in management’s flexibility to revise

and adapt strategy in the face of market uncertainty. For this reason, ROA is allegedly more appropriate

than other capital-budgeting techniques. Dixit and Pindyck (1994) and Trigeorgis (1996) provide a good

overview on ROA.

In oligopolistic industries, firms have also trouble predicting how rivals will behave forming instead

beliefs about their likely behaviors. A theory that helps characterize consistent beliefs and predict which

strategies opponents will most likely follow is needed to analyze such situations. Game theory is used

to frame strategic interactions emerging in conflict situations involving parties with different objectives.

Game theory attempts to mathematically capture behavior in strategic situations, or games, in which

an individual’s success in making choices depends on the choices of others through the influence on

one another’s welfare. Following Myerson (1991), game theory studies “mathematical models of conflict

and cooperation between intelligent rational decision makers.” A decision-maker is rational if she makes

decisions consistently in pursuing her own objectives, generally in maximizing the expected value of

her payoff valued on a certain utility scale. She is intelligent if she knows everything known to the

modeler and can make any inference that he can make (in constrast with models of perfect competition).

Noncooperative game theory assumes that firms cannot form binding contracts. Fudenberg and Tirole

(1991) provide a large overview on noncooperative game theory. The theory of industrial organization,

by employing techniques from game theory, helps give prescriptive guidance into how firms should react

when faced with competition. Tirole (1988) is considered a key reference. Dynamic games used in

standard industrial organization assume deterministic developments, ignoring the fact that, in reality,

predictions about, e.g., market developments often fail. Fudenberg and Tirole (2002) summarizes a

number of dynamic models of industrial organization. Başar and Olsder (1999) present dynamic game

theory.

A proper theory of investment should consider both perspectives concurrently, leveraging on corpo-

rate finance and industrial organization. Unfortunately, real options analysis and industrial organization

have developed somewhat independently: standard corporate finance elaborates solely on exogenous

uncertainty, while industrial organization intends to predict how firms (should) react when faced with

strategic uncertainty. One objective in this thesis is to bridge this gap. Not surprisingly, researchers with

background in financial economics have already tended toward the inclusion of game-theoretic consid-

erations into their existing valuation framework, and researchers from industrial organization and game

theory have refined their models with techniques more commonly used in financial economics. There

is, however, a trend toward refinement of the deterministic game-theory models and incorporation of

stochastic dynamics. Both perspectives ultimately serve to derive better insights into industry dynamics

under both market and strategic uncertainty. These two perspectives rely on concepts from dynamic

optimization: Finance theory — building upon stochastic control — is primarily concerned with “moves

by nature,” while dynamic game theory focuses on dynamic optimization problems involving multiple

players. Since the mid-1990s, a perceptible trend toward this definition has fostered the emergence of

a new class of models, namely “option games.” Smit and Trigeorgis (2004) discuss this problem with

discrete-time real option techniques, whereas Grenadier (2000b) and Huisman (2001) examine a number
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of continuous-time models. Chevalier-Roignant and Trigeorgis (2011) provide an introduction to both

types of “option games.” A large overview of the literature is provided in Chevalier-Roignant, Flath,

Huchzermeier, and Trigeorgis (2011) or Chapter 7 of the monograph.

2. A dynamic, continuous-time approach to investment

Investment analysis is essentially a dynamic problem. Many factors may influence the behavior of

dynamical systems. Some are exogenous to decision-makers, others are under their controls. Under

uncertainty whereby a random noise or disturbance affect the evolution of the dynamical system, the

decision maker must take into account these random deviations when working out her optimal decisions.

This generic framework is fairly descriptive of the issues arising for investment under uncertainty. While

the general approach followed here is to keep the assumptions as weak as possible, assumptions that are

more restrictive are made in those places where the tradeoff between the losses in generality and the

reduction in mathematical complexity appears to be favorable. One such assumption is that of decisions

are made dynamically in continuous time. Continuous-time analysis, which contributed greatly to the

enhancement of mathematical economics, is based on the following twin assumptions:

(i) the underlying economic phenomena (e.g., asset price movements) take place continuously;

(ii) decision-makers can act continuously in time.

In stochastic analysis, the procedure of approximating discrete-time Markov chains that describe eco-

nomic phenomena by Markov processes with continuous sample paths (Itô diffusions) is useful because

the mathematical methods associated with a continuum generally lend themselves more easily to analyt-

ical treatment than those associated with discrete-time processes. Karatzas and Shreve (1991) provide

a mathematically rigorous overview on the mathematics of Itô calculus for diffusion processes. The twin

assumptions of continuous-time analysis lead to intertemporal investment policies — characterized by

use of optimal control techniques — that are relatively simpler, richer, and more theoretically elegant

than those derived from the corresponding discrete-time models. Of course, any continuous decision-

making process is an abstraction from physical reality. However, if management makes decisions on a

regular basis with negligible periods between decision “rounds,” then the continuous-time solution will

be a reasonable approximation to the discrete-time decision-making policy. Whether or not the length of

time between actions is short enough for the continuous-time solution to provide a good approximation

must be decided on a case-by-case basis. If one desires to concentrate on long-term trends rather short-

term, immaterial perturbations — as standard in neoclassical economics, whereby short-run business

cycles and conjunctural unemployment are neglected — continuous-time analysis provides a reasonable,

easy-to-handle setting.

A noted tool in control theory is the celebrated approach developed by Bellman (1957) known as

dynamic programming. Dynamic programming provides a general methodology to solve optimization

problems — possibly involving stochastic processes — based on the recursive nature of the objective

function. At the core of dynamic programming lies Bellman’s principle of optimality stating that: “an

optimal policy has the property that, whatever the initial action, the remaining choices constitute an

optimal policy with respect to the subproblem starting at the state that results from the initial action.”

In discrete time, it is possible to derive the Bellman equation linking the current values received at time

t and t + 1. In continuous time, dynamic programming involves the derivation of a partial differential

equation known as the Hamilton-Jacobi-Bellman (HJB) equation. Under certain conditions, the HJB

equation admits a closed-form solution. Dynamic programming makes it possible to reduce a complex,

dynamic problem into a series of simpler, static optimization problems. Mathematical finance generally

provides a large and rich area of application of stochastic control techniques in continuous time. Two

subjects have been particularly addressed in the literature on investment under uncertainty: the optimal

timing of a lump-sum investment, modeled as a perpetual American call option (e.g., McDonald and

Siegel, 1986) and the problem of capital accumulation under uncertainty as part of the literature on
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marginal Tobin’s q (e.g., Abel, 1983; Abel and Eberly, 1994). To approach the investment problem, we

will extend notions and techniques derived from stochastic optimal control theory in continuous time to

multiplayer settings, in so-called stochastic differential games.

Game theory adopts a different perspective to optimization, whereby the focus is on the formation

of beliefs about rivals’ strategies. In this context, dynamic game theory (see Başar and Olsder, 1999) is

rich enough to help frame and solve dynamic investment problems. In continuous time, the literature on

differential games (see Isaacs, 1965; Dockner, Jorgensen, Van Long, and Sorger, 2000) provides the right

modeling tools to approach capital-accumulation games, whereby a state is assumed to evolve continu-

ously in time according to a known differential equation. Such dynamic games of capital accumulation

include Spence (1979), Fudenberg and Tirole (1983), and Reynolds (1987). Another subfield of dynamic

industrial organization involves so-called “games of timing,” whereby firms decide on the appropriate

investment timing under competition. In games of timing, two polar types of equilibria might occur:

preemption or war of attrition. The theory of timing games has been considerably improved through the

seminal work of Reinganum (1981a; 1981b) and Fudenberg and Tirole (1984). Reinganum assumes pre-

commitment to a given investment path and demonstrates that the Nash equilibrium involves sequential

investments by the firms or “diffusion.” Fudenberg and Tirole (1984) refine the strategy space to allow for

endogenous firm roles by developing a mixed-strategy framework in continuous time and thereby describe

how preemption affect investment timing under competition. In both capital-accumulation games and

games of timing, the definition of the strategy space is delicate. As Kreps and Spence (1984) note: “one

should not allow precommitment to enter by the back door [...] If it is possible, it should be explicitly

modeled [...] as a formal choice in the game.” In such models, one should generally look for closed-loop

or Markov perfect equilibria.

Table 1. Classification of optimization approaches a

Time dimension One player Several players

Static Mathematical programming Static game theory

Dynamic Optimal control theory Dynamic game theory

a Adapted from Başar and Olsder (1999, p.2).

Table 1 classifies the different approaches to optimization. Optimal control and dynamic game

theories have been developed in parrallel at their inception at RAND Corporation in the 1950s. Unfor-

tunately, these two theories have undergone separate developments since. The branch of optimal control

extended its numerous notions and tools to stochastic environments, while dynamic games have been

mostly developed in deterministic environments. In other words, stochastic optimal control does not ad-

dress strategic interactions. Since mainstream ROA draws from stochastic control, a key feature specific

to real assets is often ignored — namely, the interplay or strategic interactions taking place among (real)

option holders. Many industries are characterized by imperfect competition where a oligopolistic firms

have sufficient market power to influence each other’s payoff. The inadequate treatment of competitive

dynamics among (real) option holders remains one of the most compelling research gaps in real options

analysis (Trigeorgis 1996, p. 376). In short-term competition (static games), the payoff a firm can ex-

tract from the market is affected by rivals’ (instantaneous) actions. In long-term competition (dynamic

games), present action alternatives may be affected by previous play thereby potentially creating path-

dependencies. The oversight of competition may result in misestimating the value of strategic options

and in suboptimal investment policies. Strategies that have long-term consequences on the industry

structure may be best assessed by use of dynamic game theory. As we follow an economic analysis in

continuous time, the relevant subset of game theory are stochastic differential games for which control

theorists have analyzed a subclass of solutions in the set of Markov perfect equilibria. Stochastic dif-

ferential games leverage on the advantage of differential games while also allowing for state equations
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that involve random perturbations (a stochastic differential equation) as standard in continuous-time

real options models. This lead to mathematical complexity that need be addressed in continuous-time

models dealing with strategic investment under uncertainty.

3. Organization of the monograph

Preliminary discussions about the underlying mathematical tools are necessary building blocks for

further developments. Part I addresses in detail the modeling challenges and provide way to overcome

them. Part II discusses briefly the benchmark cases of monopoly and perfect competition. Part III offers

three contributions to the theory of finance and economics dealing with investment under uncertainty

and competition. Readers with expert knowledge on continuous-time real options analysis may skip

Parts I and II and go to Part III directly.

In Part I, Chapter 1 elaborates on the investment frictions that explain why investment decisions

have long-term consequences and need to be analyzed by use of dynamic optimization techniques. Be-

sides, it sets up a number of assumptions used throughout the manuscript. Chapter 2 formally discuss

the dynamic modeling of random exogenous economic phenomena by use of notions and techniques from

Itô calculus. Chapter 3 presents dynamic optimization tools used when decision makers can act contin-

uously in time and face uncertain developments; it effectively provides an account of stochastic control

techniques. Dynamic game theory can be viewed as the extension of optimal control theory to settings

involving several interactive players. Building upon notions and tools discussed in Chapter 3, Chapter

4 presents briefly the subset of game theory — used in the sequel — known as stochastic differential

games.

In Part II, Chapter 5 addresses the benchmark case of monopoly with a focus on costly reversibility

and investment lags. Chapter 6 discusses the social optimum derived by a central planner (and imposed

to decentralized firms) and its connection with the investment behaviors in perfect competition.

Part III discusses imperfect competition involving oligopolist firms. Part III is composed of three

papers — submitted to refereed journals — that deals with imperfect competition under uncertainty. We

put a focus on the information firms possess at the time they make their investment decisions. The first

paper (Chapter 7) discusses a market-entry game under uncertainty. In oligopolies, market entries (lumpy

investments) obtain to take place sequentially under uncertainty regardless of whether or not firms can

observe (and react to) their rivals’ moves. Besides, unlike the case in which firms disregard competition

(the myopic or open-loop case), entry does not occur in a socially optimal manner when firms condition

their moves on competitors’ actions. Chapter 8 discusses a capital-accumulation game under uncertainty

with the help of techniques from the literature on stochastic differential games. In this chapter, we

derive the stationary Markov perfect equilibrium for a dynamic, infinite-horizon capacity investment

game in which profits are subject to industry shocks. Finally, Chapter 9 provides an overview of recent

contributions to the literature on strategic investment under uncertainty and categorize the research

streams. We highlight in this chapter managerial insights about the nature of the competitive advantage

(first vs. second-mover advantage), the manner in which information is revealed, firm heterogeneity,

capital increment size, and the number of competing firms.

Figure 1 on the following page represents the structure of the monograph, highlighting the interde-

pendences among the chapters and sections.
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4. Mathematical notations

For easy reference, we provide an indicative list of symbols used throughout the manuscript. Ap-

propriate definitions or descriptions will be given in the sequel. At places, these symbols may be used in

other contexts than indicated below.

Probability and stochastic analysis. Ω represents the set of all states of the world, with outcome ω ∈ Ω.

F is a σ-algebra. ν and υ are measures. P is a probability measure and E[] is the expectation operator

under P. F = {Ft}t≥0 is a filtration. Random variables and stochastic processes are generally noted

by upper-case letters. Some capital letters are used for specific types of processes. X stands for a d-

dimensional stochastic process that describes an industry shock whose realizations are not influenced by

the participating parties (other than the pseudo-player, nature). Y is a n-dimensional process whose

realizations describe the state of a given dynamical system at a given time; the evolution of this “state

process” can be partly influenced by players’ (previous) actions. X and Y are the state spaces. The

lower-case letters x ∈ X and y ∈ Y are used as arbitrary realizations and initial state value of the

processes X and Y respectively. B denotes the standard Brownian motion. A is a bounded-variation

process. M is a square-integrable martingale. ξ is used as the cumulative investment process. 〈·, ·〉 is

the operator for quadratic covariation, while 〈·〉 applies for quadratic variation. µ(·) and σ(·) are the

drift and diffusion terms of a stochastic process. β1 and β2 are the positive and the negative roots of the

fundamental quadratic of Brownian motion. D is the infinitesimal generator. τ ∈ T is a stopping time

and T is the set of admissible stopping times.

Functional analysis. f , f(·) or x 7→ f(x) corresponds to a function that maps x to f(x). Ck is the space

of k times continuously differentiable functions. The partial derivative or gradient of a Ck-function f

with respect to the argument x is noted ∇xf or fx. The second-order derivative or Hessian is fxx. 1 is

the indicator function. ◦ is used for compound functions.

Description of a dynamical system or game. t and s are used as time indexes. T is used for the time

horizon (finite or infinite) of a control problem. S is the salvage value function. J stands for the payoff

function; V for the value function. v is used for the value of a marginal unit of capital. i and j are

generalized used as indexes (e.g., matrix dimension) but more specifically serve as subscripts to refer to

players in a game.“Players” with subscript −i refer to all other players except player i. Γ is the symbol

used for describing a game. λ is a Lagrange multiplier (shadow price). α is an arbitrary control. ψ are

used for open-loop controls; φ for Markov controls.

Production, capacity, and investment. D stands for the inverse demand function. k represents the capital

stock held by a firm (or a group of firms). The process K = {Kt}t≥0 describes the capital stock evolution.

κ(·) is the investment cost function. I is the magnitude/rate of investment. π(·) is the reduced-form

profit function.

Miscellaneous. , means “is defined by.” The positive part of a number is a+ , max {a, 0} with a ∈ R;

its negative a− , max {−a, 0}. > is used for the transpose of a matrix. tr is used for the trace of a

square matrix. R is used for the real line.
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Theoretical Foundations





CHAPTER 1

Production, Capacity, and Investment

Investment is a dynamic problem that should be analyzed using techniques from dynamic optimiza-

tion. A number of “frictions” explain why investment decisions cannot be properly analyzed by use of

simple mathematical programming instruments. In the following, we intend to give a brief account of

these frictions — without being exhaustive.

To smooth out the exposition throughout the monograph, we discuss a number of assumptions that

together simplify the analysis of dynamic models presented herein. We describe first the microeco-

nomic environment of a firm and discuss next some key assumptions. The modeling of the exogenous

environment via stochastic processes is addressed in the subsequent chapter.

1. Investment frictions

The reasons why investments need to be analyzed by means of dynamic optimization techniques rely

on a number of frictions discussed herein.

Costly reversibility or investment sunkness. Resource specificity and unknown resource quality are the

principal factors explaining investment sunkness. Capital investments are often firm-specific (e.g., mar-

keting, advertising costs) or industry-specific (e.g., a gold-mine has no alternative use). Besides, shocks

affecting firms are often (partly) industry-specific: in cases of economic downturn, there is limited oppor-

tunity for an operating firm to sell an industry-specific asset to a rival that faces the same bearish market.

Potential buyers may have trouble assessing the quality of a specific “experience good,” estimating it at

the average market quality. The owner of an above-average item will be reluctant to sell at a reduced

price, altering the average quality and the equilibrium market price for the worse. This describes the

common lemons problem (see Akerlof, 1970). Investments in new workers may also be partly irreversible

because of high costs of hiring, training, and firing. Employees have gained thanks to their education

and over their career path skills specific to a given function or industry. Taking account of this specificity

and the lack of instantaneous adaptiveness of workers, some regulatory bodies impose sunk firing costs

to avoid herratic hiring/firing waves. Sunkness may also stem from other sources. Government regula-

tions or social conventions may also create a form of country specificity. Multinational firms sometimes

face administrative hindrance in reallocating their funds away from high-cost countries. Empirical data

as analyzed by Ramey and Shapiro (2001) suggests that the assumption of irreversibility of capital is

realistic at least for some industries. This real-world feature can be captured in economic analysis by

considering a kinked-adjustment cost function (as discussed in the following). Irreversible investment

has been extensively studied as part of the real-options literature since the mid-1980s.

Indivisibility of capital or investment lumpiness. There is an ongoing debate concerning the best approach

to model investment problems, the polar cases being the assumption of one-time lump-sum investment

and that of incremental capacity investment. McDonald and Siegel’s (1986) deferral option model involves

a single lumpy investment. Starting with Pindyck (1988), a subset of the literature on real options

analysis examines investment in perfectly divisible capital stocks (e.g., capacity level or workforce) under

convex capital-adjustment costs, so that firms can invest or divest by any infinitesimal increment. As

Pindyck (1988) suggests, the assumption that firms can continuously and incrementally add capital is

extreme as most investments are lumpy. This approach has nevertheless convenient analytical elegance,

which explains its success for research purposes. The presence of lumpiness makes it difficult to choose

11
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between a “capacity-leading” and “capacity-lagging” strategy (see Figure 1). In case of “capacity-

leading” strategy, demand shortages never occur. Following a “capacity-lagging” strategy, capacity is

never under-utilized. Capacity lagging has the advantages of eliminating capacity-coverage risk, being less

dependent on accurate forecasting, and delaying capital expenditures. In a single-firm, single-product

setting, the choice is a combination of these cases. At the macroeconomic level, all resources can be

reasonably assumed to be infinitely divisible. At the microeconomic level, this assumption may not hold

for all resources; it may nevertheless be justified to achieve analytical tractability.

Firm´s capacity stock
K

Capacity leading

Capacity lagging

t

Expected (linear) demand growth

Figure 1. Capacity leading vs. capacity lagging

Nonconvexity of the adjustment cost function. In the presence of fixed adjustment costs or economies of

scale, the adjustment cost function can be concave. At the firm level, making any capacity adjustment

may involve some managerial fixed costs. Mathematically speaking, this creates a discontinuity of the

adjustment cost function at 0.

Time-related constraints (e.g., discrete decision times, time-to-build delays, information lags). Herein,

we conduct a continuous-time economic analysis to concentrate on a number of issues. A possible

interpretation of discrete-time analysis compared to continuous-time models is that decision makers make

short-run commitments they cannot revise over a period of fixed length considered. From this perspective,

decision making at discrete intervals can be considered an investment friction. The value of the discrete-

time investment policy is then benchmarked with (i) the continuous-time equivalent and (ii) a variant

where firms commit indefinitely (assessing their policy based on the expected developments) and cannot

revise their actions in view of actual realizations. Completion delays or time-to-build constitute a second

category of time-related constraints. As firms may have trouble implementing their managerial decisions

over a very short period of time, they have to commit to certain investment paths and assess their

investment policies based on truncated expectations about the future. Besides, information lags may

play a role. Even if firms could implement their decisions instantaneously, they could still have trouble

gathering all relevant information on a short notice. Here, information lags may refer to two payoff-

relevant factors: the exogenous market environment and the endogenous industry state. Economists

often analyze the polar cases of negligible or infinite information lags. In case of infinite information

lags for the market environment, a stochastic analysis loses its relevance since dispersions around the

expected market development are not observed. In dynamic problems, the assumption of negligible
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versus infinite information lags gives rise to two distinct state spaces discussed later: open-loop versus

closed-loop strategies.

Throughout the monograph, we discuss in detail some of these frictions, with focus on costly re-

versibility and information lags.

2. Reduced-form profits

The market-clearing price D : X × Q → [0,∞) depends on the realization of some (exogenous)

market shock x ∈ X = R and the (endogenous) industry output q ∈ Q = R+. Assume that the inverse

demand function is twice continuously differentiable in the shock and differentiable in the industry

output; formally, D belongs to the function class ∈ C2,1(R × R+). D is nonnegative, decreasing and

concave in the output q ∈ Q, and increasing in the shock. Two types of inverse demand functions are

commonly used. The linear demand function takes the form

(2.1) D(x, q) , ax− bq,

with a, b ∈ R++, while the isoelastic demand function involves the price-elasticity of demand η (> 1) and

reads

(2.2) D(x, q) , xq− 1
η .

We introduce a production technology as a mapping g : Rd 7→ R+ from a given capital stock k ∈ Rd

to a certain (nonnegative) output q ∈ R+. Suppose g ∈ C2
(
Rd
)

and let gk stand for the first-order

derivative or gradient of the production function with respect to k ∈ Rd; it corresponds to the column

vector

gk =


gk1

...

gkd

 ,

with ki denoting a generic component of k ∈ Rd. Usually, the production output is assumed to increase

componentwise with the capital stock (gki > 0 for i = 1, · · · , d) but marginal returns are decreasing

or g is strictly concave in each component (gkiki < 0 for i = 1, · · · , d). For convenience, the capital

stock k is often assumed one-dimensional. Figure 2 depicts an example of a production function with

declining marginal returns. In dynamic model, production technologies g : R → R that exhibit a

constant return-to-scale are widely used, since this assumption ensures that the firm produces at full

capacity q = g(k) = k.

We are eventually interested in the static reduced-form economic profit π(x, k) received when x ∈ X
is the realized shock value and k ∈ Rd is the industry capital stock. “Reduced-form” profits are used in

economics as a modeling device that enable one to “black-box” static strategic interactions into a profit

function with a known functional form. The aim is to simplify the analysis of dynamical systems and

concentrate instead on purely dynamic aspects. Here, the reduced-form profit is a function of parameters

that evolve stochastically over time. We could also consider variable production costs c(·), obtaining for

the reduced-form profit

(2.3) π(x, k) = D (x, g (k)) g (k)− c (g (k)) .

In such a case, the variable cost function typically has a number of restrictions, such as convexity, to

ensure a well-behaved profit function. The profit π(·, ·) is increasing and twice continuously differentiable

in x. It is concave in each component of k ∈ Rd. Examples 1 and 2 provide examples of reduced-form

profit functions. As discussed in Example 2, the reduced-form profit can be regarded as the outcome of

an instantaneous optimization problem where variable inputs, such as labor or raw materials, are chosen

optimally, holding the level of capital fixed.

Example 1 (From Bertola and Caballero, 1994). If the firm’s production and demand function have

constant elasticity, the reduced-form profit function obtains as π(x, k) = xkα, with α ∈ (0, 1).
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Output
 g 

 g    0kg     0kkg  andwith

kCapital stock

Figure 2. Declining marginal returns (one-dimensional case)

Example 2 (From Abel and Eberly, 1997; McDonald and Siegel, 1985). Suppose the (exogenous)

market shock realization is x ∈ X . A firm holding a capital stock k ∈ R employs l units of labor for a fixed

wage of w per unit. The output it produces (before optimization) is given by a Cobb-Douglas production

function, g̃(l, k) , lα k1−α, with α ∈ (0, 1). In the short term, the firm cannot change its capital stock

but may adjust its workforce. The static maximization program faced by the firm reads

π(x, k) = max
l∈R+

{
xlαk1−α − wl

}
,

which is concave in l. Set θ ≡ (1 − α)−1 ∈ (0, 1). From the first-order condition, we have l∗ =

kw−θ (1− 1/θ)
θ
xθ. By substitution, it obtains after a few algebra steps

π(x, k) = g(k)xθ

where g(k) = ξk and ξ = (θ − 1)−1w1−θ (1− 1/θ)
θ
. In the above, ξ xθ represents the marginal revenue

product of capital πk(x, k), i.e., the total revenue change due to a unit increase in capital.

In economics, the Inada conditions (see Inada, 1963) impose restrictions on the shape of a production

function g : R+ → R+ to guarantee the stability of an economic growth path in a neoclassical economics:

(i) no output is produced if the firm holds no capital: g(0) = 0;

(ii) the function is continuously differentiable: g ∈ C2(R+);

(iii) the function is strictly increasing in the shock x ∈ X : gk(k) > 0;

(iv) marginal returns are decreasing: gkk(k) < 0;

(v) the limit of the derivative at 0 is not finite: limk→0 gk(k) =∞;

(vi) the limit of the derivative towards positive infinity is 0: limk→∞ πk(k) = 0.

According to Barelli and de Abreu Pessa (2003), the Inada conditions imply that the production function

must be asymptotically Cobb-Douglas.
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3. Capital adjustment decisions

Consider n ∈ N incumbents firms are operating at time t. Each holds a one-dimensional capital

stock, with firm i having unknown capital stock Ki
t(ω) ∈ R at time t (on path ω ∈ Ω).1 Capital is

homogenous among firms. The aggregate industry capital stock at time t is Kt(ω) =
∑n
i=1K

i
t(ω). The

industry capital stock evolution is described by a stochastic process K = {Kt}t≥0. This capital stock

may erode over time (depreciation). We consider two state equations for the accumulation of capital

over time.

3.1. Capital accumulation dynamics. Consider first the capital accumulation equation proposed

by Solow (1956) and Swan (1994). At any instant t, firm i can adjust its capital stock by a magnitude

Iit : if Iit > 0, the decision corresponds to the common understanding of investment; Iit < 0 is tantamount

to a divestment; if Iit = 0, the firm stays put. Dixit and Pindyck (1994) argue that divestment can be

interpreted as an investment as well since when a firm, e.g., closes down a plant, it incurs a certain fixed

cost so as to limit operating costs and ultimately enjoy higher profits. The capital stock depreciates at

a fixed proportional rate λ ∈ R+ per time unit. Following Leibnitz’s notations, the capital stock evolves

pathwise according to the differential equation

(3.1a) dKi
t(ω) =

(
Iit(ω)− λKi

t(ω)
)

dt.

Newton notations are generally preferred in the deterministic case, the differential equation reading

(3.1b) K̇i
t(ω) = Iit(ω)− λKi

t(ω).

An alternative to Solow-Swan capital accumulation dynamics is offered by Ramsey (1928):

(3.2) K̇i
t(ω) = g

(
Ki
t(ω)

)
−Di

t(ω)− λKi
t(ω),

where g : R → R is a production technology with marginal return to scale and Di
t(ω) represents the

quantity sold at time t. In this case, capital accumulates as a result of intertemporal relocation of unsold

output g
(
Ki
t(ω)

)
−Di

t(ω), with unsold output being reintroduced in the production process.2

Note that eventhough the capital stocks are random variables, the equation describing their evolution

are pathwise deterministic in the cases of equations (3.1) and (3.2)

3.2. Capital-adjustment costs. Managerial decisions may be costly to implement for two main

reasons: (i) the required resources may not be readily available; and (ii) the firm may incur extra costs

to overcome organizational rigidities. Two groups of adjustment cost functions are commonly considered

in economics: convex and concave adjustment cost functions. We here specialize on one-dimensional

capital stocks.

3.2.1. Convex adjustment costs. Abel and Eberly (1994) distinguish three types of costs possibly

incurred by a firm undertaking gross investment (or divestment):

(i) Purchase and resale prices: Capital can be purchased at a unit price of κ̄ > 0 and sold at a

(unit) salvage value of κ > 0.3 In other words, the capital-adjustment cost depends solely on

1To reduce mathematical complexity, we here consider a one-dimensional capital stock. Considering multiple resources

would require to examine whether the resources are complements or substitutes in addition to the factors analyzed herein.

Eberly and Van Mieghem (1997) examine the problem faced by a monopolist with multiple resources (or a portfolio of

capital stocks).
2Cellini and Lambertini (2008) prove that the type of capital accumulation dynamics considered matters in oligopoly

differential games of capital accumulation. The capital accumulation rule à la Solow-Swan gives rise to a weakly time

consistent open-loop equilibrium, while Ramsey’s dynamics yields strong time consistency or perfection of the open-loop

equilibrium.
3In case of infinite planning horizon where firms have no possibility to revise their investment decisions once taken, κ̄

can be thought as comprising both investment cost and the perpetuity value of subsequent fixed cash flows; κ include the

savings stemming from variable and fixed costs foregone to operate which are bound to be decommissioned.
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the investment size I. This cost function is of the kinked piece-wise linear form

(3.3) κ : I 7−→ κ̄ I+ + κ I−,

where I+ , max {0; I} (investment) and I− , max {0;−I} (divestment). To avoid arbitrage,

the capital purchase price must exceed (or be equal to) the salvage value (κ̄ ≥ κ). If the latter

relationship does not hold, the firm could massively invest in capacity and divest immediately

earning infinite profit. The linear adjustment-cost function (3.3) is (weakly) convex and takes

the value zero when there is no investment. κ(·) is twice differentiable everywhere except at

zero. This adjustment cost function is widely used in economics and operations research (e.g.,

inventory and cash management). Figure 3 depicts this adjustment cost function.

(ii) Managerial fixed costs: Implementing a certain decision within an organization may be costly.

Such (nonnegative) costs are independent of the level of investment and are incurred every time

investment or divestment takes place. Such costs are captured by the cost function

(3.4) κ1(I) , κ+1{I>0} + κ−1{I<0},

where 1 denotes the indicator function.

(iii) Adjustment costs: These costs, denoted by κ2(I, k), are nonnegative and minimal when the

firm stays put (no investment takes place). κ2(·, k) is assumed continuous and strictly convex

in I on R.4 It is everywhere twice differentiable (with respect to I) except possibly at I = 0.

Slope

Capacity adjustment ( )I

κ

κSlope

Cost

( )Iκ

Figure 3. Kinked piecewise-linear capital-adjustment cost function

In some applications, we use an augmented adjustment cost function made of the three cost types

discussed above, namely,

(3.5) k(I, k) = κ(I) + κ1(I) + κ2(I, k) .

The augmented investment cost function is continuous, strictly convex and twice differentiable with

respect to I everywhere except possibly at I = 0.

Example 3 (From Abel and Eberly, 1997). Consider the (augmented) investment cost function

involves two components: (i) κ(I) = κI, κ ∈ R+ stands for the (equal) purchase and resale prices of

4The partial derivative of the adjustment-cost function with respect to the investment goes to infinity as investment

goes to infinity (limI→∞
∂κ2
∂I

(I,K) =∞ ), and this partial derivative goes to negative infinity as investment goes to negative

infinity (limI→−∞
∂κ2
∂I

(I,K) = −∞ ).
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capital, κ = κ̄ = κ̄ and (ii) κ2(I) = κ2I
2n

2n−1 , with κ2 ∈ R++ and n ∈ N∗, is a convex cost of adjustment.

That is,

k(I) = κ I + κ2 I
2n

2n−1 .

Abel and Eberly (1997) prove that, given this investment cost function, the optimal investment rate may

be negative. When n = 1, k(I) = κ I + κ2 I
2 corresponds to the quadratic investment cost case.

3.2.2. Concave adjustment costs. The assumption of concavity for the adjustment cost function

allows to capture economies of scale. Consider for now the situation where the firm can only expand its

capital stock but not reduce it. Luss (1982) gives two popular adjustment cost functions that exhibit

such scale economies. These are the (strictly concave) power cost function of the form

(3.6) κ (I) = κ1 × Iα, α ∈ (0, 1) , I ∈ R+,

and the fixed charged cost function (in its single resource version)

(3.7) κ(I) =

{
0 if I = 0,

κ0 + κ1I if I > 0,

or some combinations of both. Concave capital-adjustment cost functions are rarely used in economic

analysis since the maximization program does not necessarily exhibit concavity. In the subsequent, we

will consider convex adjustment cost functions and oftentimes the kinked piecewise linear cost function

of equation (3.3).

4. References

Van Mieghem (2003) identifies costly reversibility, indivisibility of capital, and the presence of

economies of scale (nonconvexity of the adjustment cost function) as investment frictions. We con-

sider here time constraints and imperfect competition as additional frictions. Abel and Eberly (1994)

distinguish different types of adjustment costs incurred by firms when they undertake gross investment

or divestment.





CHAPTER 2

Stochastic Calculus

Throughout the manuscript, we introduce market uncertainty by considering an exogenous industry

shock whose realizations are distributed according to a given, a priori known probability law. One of

the twin assumptions of continuous-time analysis is that the dynamical system evolves continuously in

time. To introduce randomness in continuous time, we employ notions and techniques from stochastic

(Itô) calculus. In Section 1, we set the premises for the definition of stochastic processes in continuous

time. Section 2 defines stochastic integrals with an emphasis on Itô integrals and discusses the celebrated

Itô-Doeblin formula. We elabore in Section 3 on a commonly used family of stochastic processes, Itô

processes, that are Markov processes with continuous sample paths. Section 4 provides references.

1. Randomness and stochastic processes

Consider a nonempty set Ω. A canonical element ω ∈ Ω is an outcome or sample. 2Ω is the set

of all subsets in Ω. The absolute complement of a set A in ω is Ac , Ω \ A or, equivalently saying,

Ac , {ω ∈ Ω | ω /∈ A}. The empty set is ∅ = Ωc. A tribe F — also known as σ-field or σ-algebra —

satisfies the following properties: (i) F ∈ 2Ω with Ω ∈ F , (ii) if A ∈ F , then Ac ∈ F (in particular

∅ ∈ F ), and (iii) if A,B ∈ F , then A ∪B ∈ F . An element A of F is a measurable set. In probability,

a measurable set A ∈ F is called event. The smallest tribe containing all open sets of Ω is the Borel set,

denoted B(Ω). The pair (Ω,F ) with Ω finite is referred to as a measurable space.

Suppose two measurable spaces (Ω,F ) and (Ω′,F ′). A function X : Ω → Ω′ is measurable if

X−1(F ′) ⊆ F . Note that the notions of measurable set or measurable function require no measure but

a tribe. In probability theory, a measurable function is called random variable. For each ω ∈ Ω, X(ω) is

the realization of the random variable. If (Ω′,F ′) = (Rn,B (Rn)), the random variable X is said to be

F -measurable.

On a measurable space (Ω,F ), a measure is a function ν : F → R such that (i) the empty set has

measure zero or ν(∅) = 0, (ii) ν(A) ≥ 0 for all measurable sets A ∈ F , and (iii) for disjoint measurable

sets Ai, ν(
⋃∞
i=1Ai) =

∑∞
i=1 ν(Ai), a property known as countable additivity. If ν(Ω) <∞, the measure is

finite. A measure ν satisfies a monotonicity property, namely if A,B ∈ F with B ⊆ A, then ν(B) ≤ ν(A).

The triple (Ω,F , ν) is a measure space. A proposition holds ν-almost everywhere (a.e.) if the set of

elements for which the property does not hold is a null set, i.e., if there exists a set A ∈ F with ν(A) = 0

such that the proposition holds on Ac. A measure υ defined on F is absolutely continuous with respect to

ν if ν(A) = 0 implies υ(A) = 0. We may at places proceed to a change of measures. The Radon-Nikodym

theorem states that, on a measurable space (Ω,F ), if a measure υ is absolutely continuous with respect

to an another measure ν, there exists a unique nonnegative F -measurable function ξ such that, for each

measurable set A ∈ F ,

υ(A) =

∫
A

ξ dν,

where the integral is understood in the Lebesgue-Stieltjes sense. The measurable function ξ = dυ/dν is

the Radon-Nikodym derivative or density of υ with respect to ν. If ν(A) > 0 implies υ(A) > 0, then the

measures ν and υ are said to be equivalent.

On the measurable space (Ω,F ), a probability measure is defined as a measure P : F → [0, 1] such

that P[Ω] = 1. The triple (Ω,F ,P) is called probability space. Under probability measure P, an event A ∈
F “has probability” P[A]. A measurable set A ∈ F is called P-null set if P(A) = 0. A probability space

19
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is complete if a subset of a P-null set is necessary a P-null set of F . If an event A is such that P[A] = 1,

then A is said to hold P-almost surely (a.s.). Consider (Ω′,F ′) = (Rn,B (Rn)). On the probability

space (Ω,F ,P), a F -measurable random variable X : Ω → Rn implies a certain measure, PX , such

that, for all A ∈ B(Rn), PX(A) =
(
P ◦X−1

)
[A] = P[ω ∈ Ω | X(ω) ∈ A]. A random variable is defined

independently of a probability measure. PX is the distribution of the random variable X; it is uniquely

defined by the joint distribution function F (·) where F (x) = P[ω ∈ Ω | Xi(ω) ≤ xi, 1 ≤ i ≤ n]. F (·) is

positive-valued and increasing in each variable xi. Besides, limxi→−∞ F (x) = 0 and limxi→∞ F (x) = 1.

Under probability measure P, the expectation of the random variable X : Ω → Rn is defined as the

Lebesgue-Stieltjes integral

E[X] ,
∫

Ω

X(ω) dP(ω) =

∫
Rn
x dF (x) .

Two random variables X and Y , with distribution functions FX(·) and FY (·), are independent and iden-

tically distributed (i.i.d.) if they are mutually independent, FX,Y (x, y) = FX(x)FY (y), and have the same

probability distribution, FX = FY . According to the central limit theorem, the probability distribution

of the sum or average of i.i.d. random variables with finite variance approaches a normal distribution.

Suppose now PX is absolutely continuous with respect to the Lebesgue measure. By the Radon-Nikodym

theorem, there then exists a nonnegative Lebesgue-measurable function f , corresponding to the density

of the random variable X, such that

PX(A) =

∫
A

f(x) dx, A ∈ B(Rn) .

Equivalently, we have

F (x) =

∫ x1

−∞
· · ·
∫ xn

−∞
f(z1, · · · , zn) dz1 · · · dzn.

Consider a random variable X : Ω → Rn and a function g : Rn → R+. Then, g ◦ X : Ω → R+ or

simply g(X) is also a random variable. Its expectation (if finite) is

E[g (X)] ,
∫
Rn
g(x) dF (x) .

If the random variable X admits a density function f , the expectation of g(X) is

E[g(X)] =

∫
Rn
g(x) f(x) dx.

What if the function g takes negative values or changes signs? Here, g : Rn → R. We may then

decompose, for every x ∈ Rn, the realization g(x) into its positive part g(x)
+ , max {0, g(x)} and

its negative part g(x)
− , max {0,−g(x)}. The decomposition, g(x) = g(x)+ − g(x)−, is unique. If

E
[
g (X)

+
]

and E
[
g (X)

−
]

are finite, then g ◦X is integrable and its expectation is

E[g(X)] ,
∫
Rn
g(x)

+
dF (x)−

∫
Rn
g(x)

−
dF (x) .

For two random variables X and Y , the covariance is defined by composition as

Cov(X,Y ) , E
[
(X − E[X]) (Y − E[Y ])

>
]
.

The variance of a random variable X is Var(X) , Cov(X,X).

Thanks to the Radon-Nikodym theorem, one might proceed with a change of probability measures,

say P and Q. EP (resp., EQ) is the expectation operator under probability measure P (resp., Q). Suppose

Q is absolutely continuous with respect to P. Then, the Radon-Nikodym derivative ξ = dQ/dP exists, so

that, for any random variable X, the equality EQ[X] = EP[ξX] holds. Consider, on the probability space

(Ω,F ,P), a subtribe G of F , i.e., G ⊆ F . Suppose the measure Q is absolutely continuous with respect

to P on G . The conditional expectation of X given G — denoted E[X | G ] — is then the Radon-Nikodym

derivative ξ.

To capture exogenous uncertainty, one needs a mathematical model for the occurrence, at each

moment after an initial time, of a random phenomenon. A stochastic process is a collection of random
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variables X = {Xt}t≥0, with t being generally interpreted as a time index. A realization of the stochastic

process at time t is X(ω, t) or Xt (ω). For any sample ω ∈ Ω, the function X(ω, ·) is called the sample path

or trajectory of the process associated with the outcome ω ∈ Ω. The temporal feature of a stochastic

process suggests a flow of information, whereby at any instant t, one can refer to past, present, and

future. A filtration is a family of tribes F , {Ft}t≥0 such that Ft ⊆ Fs ⊆ F for t < s. This family

captures how information arrives or how uncertainty resolves as time passes, whereby information cannot

decrease over time.1 Given a stochastic process, the simplest — but not only — choice of filtration is

the one generated by the process itself, namely FX =
{
FX
t

}
t≥0

, where the tribe FX
t , σ(Xs; 0 ≤ s ≤ t)

captures the history or former realizations of the process X up to time t. Set Ft+ ,
⋂
s>t Fs and

Ft− ,
⋃
s<t Fs. A filtration F is right (resp., left) continuous if Ft+ = Ft (resp., Ft− = Ft). A

stochastic process is adapted to the filtration F, or F-adapted, if the realization Xt(ω) is Ft-measurable

for all t. The assumption of adaptedness (to the filtration) simply states that no foresight about the

future economic developments is permitted; it is grossly equivalent to the non-anticipativity constraint

in operations research. The existence of a stochastic process is closely related to the filtration considered.

We call (Ω,F ,F,P) the filtered probability space. A filtered probability space satisfies the usual

conditions if (Ω,F ,F,P) is complete, F0 contains the P-null set in F , and the filtration F is right-

continuous. Each Xs for s > t is a random variable defined on the measurable space (Ω,Ft). Pt denote

the conditional probability as the restriction of P to Ft ⊆ F . The conditional expectation operator

defined on the probability space (Ω,Ft,Pt) is Et = E[· | Ft].

The time index can be discrete, continuous, finite, or infinite. Here, we consider random phenomena

in continuous time. Recall that a function f admits a left limit (resp., right limit) at (t if t belongs to the

support of f and) f(t−) , lims↑t f(s) (resp., f(t+) , lims↓t f(s)) exists. A function f is left-continuous

(resp., right-continuous) at t if f(t) = f(t−) = lims↑t f(s) (resp., X(t) = f(t+) = lims↓t f(s)) exists.

The function is continuous at t only if f(t) , lims→t f(s) or f(t) = f(t−) = f(t+). f is discontinuous

at t if f(t) 6= f(t−) or f(t) 6= f(t+). We denote the jump at t by ∆f(t) = f(t) − f(t−). A process

with right-continuous sample paths for t ≥ 0 and left limits for t > 0 is called a càdlàg or RCLL process,

where “càdlàg” stands for the French abbreviation of “continue à droite avec limites à gauche” or “Right

Continuous with Left Limits. If X is right-continuous and E
[
X2
t

]
< ∞ for all t ≥ 0 a.s., the process X

is square-integrable. A process is continuous or has continuous sample paths if X (ω, ·) is a continuous

function for almost every ω ∈ Ω. A process X = {Xt}t≥0 is increasing if X(ω, ·) is increasing almost

everywhere.

The notion of Markov or stopping time plays a prominent role in stochastic analysis. It is a random

variable τ : Ω → R+, adapted to the filtration F, such that the event {ω ∈ Ω | τ(ω) ≤ t} ∈ Ft for all

t ≥ 0. In other words, the determination of whether “stopping” has occurred by time t can be made

based on the information Ft that has been made available up to time t, without anticipation of the

future. In particular, suppose the process X = {Xt}t≥0 is continuous with X0 = x ∈ X with X ⊆ Rd

almost surely and consider a closed set A ⊂ X . The stopping time τAx (ω) , min {t ≥ 0 | Xt(ω) ∈ A}
(resp., τAx (ω) , min {t ≥ 0 | Xt(ω) /∈ A}) at which the process enters (exits) the set A is a first-hitting

time (first exit time).

A stochastic process X = {Xt}t≥0, with E [|Xt|] <∞ for t ≥ 0, is called F-martingale – or martingale

as shorthand – if E [Xt+∆ | Ft] = Xt for all ∆ > 0 and t ≥ 0 P-a.s. In other words, when considering

martingales, the best estimate or the expected value of a future random variable is its current value (as of

time t). A process X is a submartingale if E [Xt+∆ | Ft] ≥ Xt and a supermartingale if E [Xt+∆ | Ft] ≤
Xt for all ∆ ≥ 0 and t ≥ 0 P-a.s. Loosely speaking, martingales correspond to the “constant functions” of

probability theory, while submartingales and supermartingales are the “increasing” and the “decreasing

functions” respectively: on the probability space (Ω,Ft,Pt), the fucntion ∆ 7→ E[Xt+∆] is constant for a

1For infinite-horizon problems, let F∞ denote the smallest tribe on Ω that contains all events in Ft, ∀t ≥ 0. Without

loss of generality, we shall assume F∞ = F .
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martingale, increasing for a submartingale, and decreasing for a supermartingale. A martingale is both

a supermartingale and a submartingale. Martingales are an essential building block of modern finance

theory, being key to the foundation of risk-neutral pricing for complete markets that preclude arbitrage

opportunities (see Harrison and Kreps, 1979).

2. Stochastic integration and Itô-Doeblin formula

Stochastic calculus is a branch of mathematics that operates on stochastic processes. Here, we

present a number of concepts and techniques (e.g., stochastic integral, Itô-Doeblin formula) that are

widely used in mathematical economics and finance. Our goal in this section is to give a meaningful

definition of an integral in stochastic environments, as well as a number of properties and formula for

applications of stochastic calculus.

The fundamental theory of calculus gave rise to the concept of integration and differential equations.

We give a brief overview on Stieltjes integrals and the classical change-of-variable formula in Section 2.1.

In Section 2.2, stochastic integration allows to extend such analyzes to situations involving continuous

stochastic processes. We discuss a number of properties of the “quadratic variation” in Section 2.3. The

change-of-variable formula for stochastic processes, namely Itô-Doeblin formula, is discussed in Section

2.4 for the case of continuous semimartingales.

2.1. Stieltjes integration. Stieltjes integration generalizes Riemann and Lebesgue integration,

preserving the many advantages of these notions in a more general measure-theoretic framework. We here

give a brief account of Riemann-Stieltjes integrals. Consider an interval [0, t] equipped with a partition

Π(m) = {t(m)
0 , · · · , t(m)

2m }, where 0 = t
(m)
0 < · · · < t

(m)
k < · · · < t

(m)
2m = t. The norm or mesh of the

partition Π(m) is the length of the longest of these subintervals, that is ‖Π(m)‖ = max1≤k≤m ‖t(m)
k −t(m)

k−1‖.
We shall consider a sequence (Π(m))∞m=1 of such partitions and assume, for simplicity, that t

(m)
k = kt/2m.

As m increases, the partition becomes “finer,” with the mesh converging to limm→∞ ‖Π(m)‖ = 0.

The pth-order variation (p > 0) of a function g is given by

〈g〉(p)(t) , lim
m→∞

2m∑
k=1

∣∣∣g(t(m)
k )− g(t(m)

k−1)
∣∣∣p .

The first variation 〈g〉(1)
is called total variation, while the 〈g〉(2)

is the quadratic variation. A function

with finite total variation is said to be of bounded or finite variation. Assume that g is of bounded

variation on [0, t] and consider a continuous function f . Let t̂
(m)
k−1 ∈ [t

(m)
k−1, t

(m)
k ] for every k = 1, · · · , 2m.

Then, the conditions for the existence of a Riemann-Stieltjes integral are satisfied, with∫ t

0

f(s) dg(s) , lim
m→∞

2m∑
k=1

f(t̂
(m)
k−1)

∣∣∣g(t(m)
k )− g(t(m)

k−1)
∣∣∣ .

The functions f and g are respectively called the integrand and the integrator. In the following example,

we give a sufficient condition for this integral to exist.

Example 4 (Differentiable integrator). Assume the integrator g is continuously differentiable on

[0, t] or g ∈ C1([0, t]). By the mean value theorem, there exists t̂
(m)
k−1 ∈ [t

(m)
k−1, t

(m)
k ] ⊂ [0, t] such that

gt(t̂
(m)
k−1) =

g(t
(m)
k−1)− g(t(m)

k )

t
(m)
k−1 − t

(m)
k

,

where gt(·) is the first-order derivative of g with respect to t. The first variation is then

〈g〉(1)
(t) = lim

m→∞

2m∑
k=1

∣∣∣gt(t̂(m)
k−1)

∣∣∣ ∣∣∣t(m)
k−1 − t

(m)
k

∣∣∣ ,
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where gt(·) is integrable. By Riemann integration,

〈g〉(1)
(t) =

∫ t

0

|gt(s)|ds <∞,

i.e., the total variation is finite. Consider now the quadratic variation. First, 〈g〉(2)
(t) ≥ 0 for all t ≥ 0.

Besides, by the mean-value theorem and Riemann integration

〈g〉(2)
(t) = lim

m→∞

2m∑
k=1

|gt(t̂(m)
k−1)|2 (t

(m)
k−1 − t

(m)
k )2

≤ lim
m→∞

∥∥∥Π(m)
∥∥∥× lim

m→∞

2m∑
k=1

|gt(t̂(m)
k−1)|2 |t(m)

k−1 − t
(m)
k |

≤ lim
m→∞

∥∥∥Π(m)
∥∥∥× ∫ t

0

|gt(s)|2 ds

Therefore, by the envelope theorem, the quadratic variation of a continuously differentiable function

〈g〉(2)
(t) is zero for all t ≥ 0. In the present case with a continuously differentiable integrator, the

Riemann-Stieltjes integral corresponds to the Riemann integral,∫ t

0

f(s) gt(s) ds.

We now extend the analysis to a certain class of càdlàg processes. A process A has “variation finie”

or bounded variation if, for all t > 0 and almost every path ω,

〈A〉(1)
(ω, t) , lim

m→∞

2m∑
k=1

∣∣∣A(ω, t
(m)
k )−A(ω, t

(m)
k−1)

∣∣∣ <∞.

The total variation process 〈A〉 = {〈A〉(1)
t }t≥0 is increasing. A bounded-variation process can be de-

composed as the difference between two continuous, increasing, adapted processes A+ =
{
A+
t

}
t≥0

and

A− =
{
A−t
}
t≥0

with A+
0 = A−0 = 0 a.s., that is At = A+

t −A−t for all t ≥ 0. From the previous discussion,

a stochastic integral with a bounded variation process A as integrator can be readily defined. Consider

an F-adapted integrant H = {Ht}t≥0 with continuous sample paths. Here, the stochastic integral is

defined “pathwise”’ by a Riemann-Stieltjes integral as∫ t

0

Hs(ω) dAs(ω) = lim
m→∞

2m∑
k=1

H
t̂
(m)
k

(ω)
∣∣∣At(m)

k

(ω)−A
t
(m)
k−1

(ω)
∣∣∣ .

For a bounded-variation process, we have by definition
∫ t

0
|dAs (ω)| <∞ for all t ≥ 0. A formula, known

as the change-of-variables formula, is particularly useful for Riemann-Stieltjes integral.

Theorem 1 (Change-of-variable formula). Consider a function f ∈ C1(R) and a continuous,

bounded-variation process A. Then, (i) the process {f(At)}t≥0 has bounded variation and (ii) the follow-

ing change-of-variables formula holds:

f(At) = f(A0) +

∫ t

0

fa(As) dAs, or df(At) = fa(At) dAt.

Proof. Since f ∈ C1(R) and A is a continuous process, s 7→ fa(As(ω)) is both continuous and

bounded within the interval [0, t] on each path ω ∈ Ω. Therefore, the Stieltjes integral
∫ t

0
fa(As(ω)) dAs(ω)

is well defined pathwise. By the mean-value theorem,

2m∑
k=1

∣∣∣f(A
t
(m)
k

(ω))− f(A
t
(m)
k−1

(ω))
∣∣∣ =

2m∑
k=1

fa(A
t̂
(m)
k

(ω))
∣∣∣At(m)

k

(ω)−A
t
(m)
k−1

(ω)
∣∣∣

The result obtains by convergence (m→∞). �
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The above analyses cannot be readily extended to process with unbounded (total) variation, as com-

monplace in stochastic calculus. This thus calls for an appropriate theory of integration. An equivalent

change-of-variables formula also exists in the stochastic case. Itô (1942) defined such a stochastic integral

for the case with a standard Brownian motion as integrator. Kunita and Watanabe (1967) follow a more

general approach with square-integrable martingales.

2.2. Stochastic integration. Consider a F-adapted process H = {Ht}t≥0 and an interval [0, t],

equipped with a sequence of partitions Π(m) = {t(m)
0 , · · · , t(m)

2m } with 0 = t
(m)
0 < · · · < t

(m)
2m = t. If a

stochastic integral exists with respect to the càdlàg process X = {Xt}t≥0, we denote it IXt (H).

Consider a first category of integrands. A process H(m) is a (strictly) simple, elementary, or step

process if there exists a partition Π(m) such that H
(m)
s (ω) = H

(m)
k−1 (ω) if s ∈ (t

(m)
k−1, t

(m)
k ], where the

random variable H
(m)
k is F

t
(m)
k

-measurable. In other words, the process evolves by steps, being constant

over (short) time intervals. We can then decompose H
(m)
s as

(2.1) H(m)
s (ω) = H

(m)
0 (ω)1{0} (s) +

2m∑
k=1

H
(m)
k−1 (ω)1

(t
(m)
k−1,t

(m)
k ]

(s) .

For a simple process H(m), we define an stochastic integral as the linear combination

(2.2) IXt (H(m)) ,
2m∑
k=1

H
(m)
k−1(ω)[X

t
(m)
k

(ω)−X
t
(m)
k−1

(ω)].

The above definition involves no convergence. Besides, it is easy to show that if the integrator X is a

martingale, the stochastic integral for simple integrands is also a martingale.

We want to extend the definition of the stochastic integral beyond simple processes, to a larger class

of integrants. To do that, we have to be more restrictive on the admissible integrators. Among càdlàg

processes, semimartingales turn out to be good integrators. A continuous semimartingale X = {Xt}
admits a representation

(2.3) Xt = x+At +Mt, ∀t ≥ 0

where X0 = x a.s., M = {Mt}t≥0 is a (local) martingale and A = {At}t≥0 is a F-adapted, bounded-

variation process. The construction of stochastic integrals for more general integrant process H consists

in approximating H by a sequence of simple processes (H(m))∞m=1, whereby, for s ∈ [0, t], the random

variable H
(m)
s is characterized in equation (2.1). Heuristically, the stochastic integral IXt (H) is the limit

of the stochastic integral IXt
(
H(n)

)
defined for simple processes H(m). Formally, if the stochastic integral

IXt (H) is well defined, then there exists a sequence of random variables IXt
(
H(m)

)
defined in equation

(2.2) that converges in probability to IXt (H), i.e., for all ε > 0,

lim
m→∞

P
[
|IXt (H(m))− IXt (H) | ≥ ε

]
= 0.

The characterization of the random variables H
(m)
k−1 in equation (2.1) matters for the definition of the

stochastic integral IXt (H). Set

H
(m)
k−1 = εH

(m)

t
(m)
k−1

+ (1− ε)H(m)

t
(m)
k

.

If ε = 1, the stochastic integral IXt (H) is an Itô integral ; we denote it

“IXt (H) =

∫ t

0

Hs−(ω) dXs(ω) ”, or “IXt (H) =

∫ t

0

Hs− dXs.”

Alternatively for ε = 1
2 , the stochastic integral is the Fisk-Stratonovitch integral, denoted

“

∫ t

0

Hs ◦ dXs.”

When Merton first applied techniques from stochastic calculus in financial economics, he preferred the use

of the Itô integral to that of the Fisk-Stratonovich integral. The Itô integral is allegedly more suitable
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to economic problems, since “a Stratonovich-type formulation of the underlying price process implies

that traders have a partial knowledge about future asset prices that the nonanticipating character of the

Itô process does not” (Merton, 1998, footnote 6). As noted, H
(m)
k−1 must be F

t
(m)
k−1

-measurable, which

is ensured by the definition of the Itô integral. The Fisk-Stratonovitch integral finds applications in

engineering but rarely in economics or operations research. Subsequently, we will not discuss this type

of stochastic integral.

We now review a number of properties that the Itô integral IXt (H) inherits from the stochastic

integral IXt (H(m)). First, H 7→ IXt (H) is a linear mapping for all t ≥ 0: IXt
(
αH1 + βH2

)
= αIXt

(
H1
)

+

βIXt
(
H2
)
. Besides, if X is a semimartingale, Itô integral IX(H) is a semimartingale as well. Similarly,

if the integrator X = M is a martingale, IM (H) is a martingale, namely E
[
IMt+∆(H) | Ft

]
= IMt (H) for

all t ≥ 0 and IM0 (H) = 0 a.s. The Itô integral with a martingale as integrant can thus capture the white

noise of the phenomenon around its expected trend. For square-integrable martingales, we have

E
[(∫ t

0

Hs dMs

)2

| F0

]
= E

[ ∫ t

0

H2
sd 〈M〉s | F0

]
,

a property known as Itô isometry. If the integrator A is a bounded-variation process, the stochastic

integral IAt (H) coincides with the Stieltjes integral defined pathwise.

So far, we have not considered which class of integrands admit a stochastic integral representation.

First, the integrand H must be adapted to the filtration generated by the semimartingale X. Since

we defined above the stochastic integral as the limit of sums, the integrand is required to satisfy some

smoothness conditions. The space of left-continuous processes with right limits, namely “càglàd” pro-

cesses, is sufficient to prove, e.g., Itô-Doeblin formula or in some applications of stochastic differential

equations. In some situations a more general approach to integrands is also wishable. This generalization

proceeds in a manner roughly equivalent to how Lebesgue integrals extends the Riemann integral. The

class of integrands for which the stochastic integral can be extended consists of so-called locally-bounded

predictable processes (See Protter, 2003, Chapter IV for more detail).2

2.3. Quadratic variation. We mentioned previously the importance of the notion of variation in

the definition of Stieltjes integrals. In stochastic analysis, a major role is played by second-order measures

of variation. The cross-variation or quadratic covariation of two semimartingales X and Y is the process

〈X,Y 〉 = {〈X,Y 〉t}t≥0
defined by

〈X,Y 〉t , lim
m→∞

2m∑
k=1

[X
t
(m)
k

(ω)−X
t
(m)
k−1

(ω)] [Y
t
(m)
k

(ω)− Y
t
(m)
k−1

(ω)].

The following theorem gives an alternative characterization for cross-variation processes.

Theorem 2 (Cross-variation). For two semimartingales X and Y ,

(2.4) 〈X,Y 〉t = XtYt −
∫ t

0

Xs−dYs −
∫ t

0

Ys−dXs −X0Y0.

Equation (2.4) leads to an integration-by-parts formula for continuous semimartingales, namely∫ t

0

XsdYs = XtYt −X0Y0 −
∫ t

0

Ys dXs − 〈X,Y 〉t .

2The predictable σ-algebra is the smallest tribe generated by all “càglàd” processes. All processes that are measurable

with respect to this tribe are called predictable.
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Proof. We drop the dependence on ω ∈ Ω for notational compactness. Let Stk−1
, [Xtk −Xtk−1]

[
Ytk − Ytk−1

]
.

After a few algebra steps, we obtain

S
t
(m)
k−1

= X
t
(m)
k

Y
t
(m)
k

−X
t
(m)
k−1

Y
t
(m)
k−1

−X
t
(m)
k−1

[Y
t
(m)
k

− Y
t
(m)
k−1

]− Y
t
(m)
k−1

[X
t
(m)
k

−X
t
(m)
k−1

]

2m∑
k=1

S
t
(m)
k−1

= X
t
(m)
m
Y
t
(m)
m
−X

t
(m)
0
Y
t
(m)
0

+

2m∑
k=1

X
t
(m)
k−1

[Y
t
(m)
k

− Y
t
(m)
k−1

] +

2m∑
k=1

Y
t
(m)
k−1

[X
t
(m)
k

−X
t
(m)
k−1

].

The left-hand term converges to 〈X,Y 〉t. Equation (2.4) then results from the definition of the Itô

integral (with semimartingales as integrator). �

The quadratic variation of a semimartingale — obtained from specializing (2.4) — is

(2.5) 〈X〉(2)
t = X2

t − 2

∫ t

0

Xs− dXs −X2
0 .

For the cross-variation process, the following property holds.

Theorem 3. For two semimartingales X and Y , the polarization formula holds:

〈X,Y 〉(2)
t =

1

4

[
〈X + Y 〉(2)

t − 〈X − Y 〉
(2)
t

]
Proof. From equation (2.4),

〈X + Y 〉(2)
t =X2

t + Y 2
t + 2XtYt − 2

∫ t

0

Xs−dXs − 2

∫ t

0

Ys−dXs

− 2

∫ t

0

Xs−dYs − 2

∫ t

0

Ys−dYs −X2
0 − Y 2

0 − 2X0Y0,

〈X − Y 〉(2)
t =X2

t + Y 2
t − 2XtYt − 2

∫ t

0

Xs−dXs + 2

∫ t

0

Ys−dXs

− 2

∫ t

0

Xs−dYs + 2

∫ t

0

Ys−dYs −X2
0 − Y 2

0 + 2X0Y0.

Therefore,

〈X + Y 〉(2)
t − 〈X − Y 〉

(2)
t = 4

[
XtYt −

∫ t

0

Ys−dXs +

∫ t

0

Xs−dYs −X0Y0

]
.

�

The process 〈X,Y 〉 is continuous and of bounded variation. The operator 〈·, ·〉 plays the role of an

inner product in stochastic calculus and is a bilinear form on the space of semimartingales.3 If M and

N are independent or orthogonal, 〈M,N〉 = 0.

Consider a continuous, square-integrable martingale M = {Mt}t≥0 with starting value M0 = 0 a.s.

We can refine the characterization of the quadratic variation for continuous square-integrable martingales.

Theorem 4 (Quadratic variation process for continuous square-integrable martingales). For a

square-integrable martingale M , 〈M〉 = {〈M〉t}t≥0
is the unique adapted, continuous, increasing pro-

cess of bounded variation for which M2 − 〈M〉 is a martingale and 〈M〉0 = 0.

Proof. From equation (2.5), 〈M〉t = M2
t − 2

∫ t
0
Ms−dMs −M2

0 . By the martingale preservation

theorem, 2
∫ t

0
Ms−dMs is a martingale. Therefore, M2 − 〈M〉 must be a martingale. �

We have almost surely

〈M〉(p)t (ω) =


∞ if p ∈ (0, 2) ,

<∞ if p = 2,

0 if p > 2.

3Consider semimartingales, X,Y , and Z and α, β ∈ R. The operator 〈·, ·〉 is a bilinear algebra if 〈αX + βY, Z〉 =

α 〈X,Z〉+ β 〈Y, Z〉 and 〈X,Y 〉 = 〈Y,X〉.
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The sample paths of continuous square-integrable martingales are quite different from “ordinary” con-

tinuous functions. Despite its continuity, M(·, ω) has unbounded total variation and therefore is not

differentiable anywhere on R+. Besides, Stieltjes integrals with a square-integrable martingale as in-

tegrator cannot be properly defined, nor the standard change-of-variable formula cannot be readily

employed. The first remark motivates our earlier digression where we defined stochastic integrals for

continuous semimartingales. We now turn to the second task. Note that square-integrable martingales

have a bounded quadratic variation. All variations of higher order (p > 2) are zero. We will see that

second-order terms typically matters in the appropriate change-of-variable formula.

2.4. Itô-Doeblin formula. Since standard differentiation approaches do not apply for a number

of stochastic processes, an alternative change-of-variable technique, known as Itô-Doeblin formula, need

be derived.4 For the sake of generality, we consider multivariate functions. The space of functions

f : Rd × R+ → R that are twice continuously differentiable in the state and continuously differentiable

in time is noted C2,1
(
Rd,R+

)
. For notational simplicity, we denote, for f ∈ C2,1

(
Rd,R+

)
, the partial

derivatives by

ft =
∂f

∂t
; fx =


∂f
∂x1

...
∂f
∂xd

 ; fxx =


∂2f
∂x2

1
· · · ∂2

∂x1∂xd
... ∂2f

∂xi∂xj

...
∂2f

∂xd∂x1
· · · ∂2f

∂x2
d

 .

where ∂f
∂xi

: Rd × R+ → R is the first-order partial derivative of f with respect to xi, and ∂2f
∂xi∂xj

:

Rd × R+ → R the second-order partial derivative with respect to xi and xj , for i, j = 1, · · · , d. The

function fx, as the d-dimensional vector of differential operators, is the gradient of f , while fxx, as the

square (d× d) matrix of second-order partial derivatives of f , is the Hessian.

The use of Itô-Doeblin formula generally requires “sufficiently smooth” functions of stochastic pro-

cesses and involves the quadratic (co)variation of the integrator. We state Itô-Doeblin formula for

twice-continuously differentiable functions of continuous semimartingales. Itô-Doeblin formula states

that a “smooth function” of a continuous semimartingale is a continuous semimartingale and provides

its decomposition.

Theorem 5 (Itô-Doeblin formula for continuous semimartingales). Let f belong to the C2,1
(
Rd,R+

)
function class and X =

(
X1, · · · , Xd

)
be a continuous d-dimensional semimartingale with X0 = x ∈ Rd

a.s. Then, {f(Xt, t)}t≥0 is a continuous semimartingale solving the stochastic differential equation

f(Xt, t) =f(x, 0) +

∫ t

0

ft(Xs, s) ds+
∑
i

∫ t

0

fxi(Xs, s) dXi
s

+
1

2

∑
i,j

∫ t

0

fxixj (Xs, s) d
〈
M i,M j

〉
s

In an informal differential form, the above is expressed as:

df(Xt, t) = ft(Xt, t) dt+
∑
i

fxi(Xt, t) dXi
t +

1

2

∑
i,j

fxixj (Xt, t) d
〈
M i,M j

〉
t
.

Proof. We intend to give some hints at how to derive Itô-Doeblin formula. Consider the one-

dimensional case for simplicity. Taylor’s Theorem asserts that for f ∈ C2(R)

f(y)− f(x) = f ′(x) (y − x) +
1

2
f ′′(x) (y − x)

2
+R(x, y) ,

4In fact, Doeblin (1940) and Itô (1951) independently discovered this formula. Doeblin’s variant was lost for almost

60 years until the early 2000s. The term “Itô’s lemma” has become standard in financial economics. To pay tribute to

both authors we employ the modern name variant.
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with |R(x, y)| ≤ r (|y − x|) (y − x)
2
, where r (·) is an increasing function with limu↓0 r(u) = 0. Consider

a partition Π(m) of the interval [0, t]. Then (dropping the dependence on ω)

f(Xt)− f(X0) =

2m∑
k=1

f ′
(
X
t
(m)
k−1

)(
X
t
(m)
k

−X
t
(m)
k−1

)
+

1

2

2m∑
k=1

f ′′
(
X
t
(m)
k−1

)(
X
t
(m)
k

−X
t
(m)
k−1

)2
+ R(m),

where

R(m) ,
2m∑
k=1

R
(
X
t
(m)
k

, X
t
(m)
k−1

)
.

The first right-hand term converges to the Itô integral
∫ t

0
f ′(Xs−) dXs, while the second term converges

to the Stieltjes integral
∫ t

0
f ′′(Xs−) d 〈X〉s. The third term is majored by

R(m) ≤
{

sup
k
r
( ∣∣∣Xt

(m)
k

−X
t
(m)
k−1

∣∣∣ )}× 2m∑
k=1

(
X
t
(m)
k

−X
t
(m)
k−1

)2
.

The first left-hand term converges to zero with m, while the second left-hand term converges to the (finite)

quadratic variation 〈X〉t. Hence, R(m) → 0. Itô-Doeblin’s formula for continuous semimartingales

obtains by convergence in probability. �

A number of variations of Itô-Doeblin formula allow for more general integrators (e.g., discontinuous

semimartingales) or less smooth functions. Such extensions include Itô-Tanaka formula, Itô-Tanaka-

Meyer formula, Bouleau-Yor formula, and Foellmer-Protter-Shirayev formula.5

3. Itô processes

We now explore a certain family of continuous semimartingales, Itô processes, that are built upon

the standard Brownian motion. The standard Brownian motion is fundamental because it serves as a

building block to construct all continuous martingales and a multitude of continuous Markov processes.6

We first elaborate on the Markov property to stress the importance of Itô processes. A stochastic

process X defined on a filtered probability space (Ω,F ,F,P) is said to have the weak Markov property

if

P [f(Xt+∆) | Ft] = P [f(Xt+∆) | Xt] , ∀∆ ≥ 0.

A process with this property is called Markov process. In other words, for a Markov process, the condi-

tional probability distribution of future states depend only upon the present state, the past affecting the

future only through the present state. When one analyzes financial markets, the Markov property is the

mathematical translation of the weak form of the Efficient Market Hypothesis (EMH) as formulated by

Samuelson (1965) and Fama (1965). In weak-form efficiency, future asset prices cannot be predicted from

technical analysis of historical asset prices or other past data. The Markov property can be generalized

to stopping times. A process X is said to have the strong Markov property if, for each stopping time τ

(with τ <∞ a.s.),

E[f (Xτ+∆) | Fτ ] = E[f (Xτ+∆) | Xτ ] .

The strong Markov property implies the weak Markov property but not inversely. Lévy processes are

prototypic strong Markov processes. A càdlàg process X = {Xt}t≥0 is a Lévy process if (i) X0 = 0 a.s.,

(ii) for any 0 ≤ t1 < · · · < tn <∞, Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent, and (iii) for any s < t,

Xt − Xs is equal in distribution to Xt−s. In other words, a Lévy process is any càdlàg process with

“stationary independent increments,” whereby Lévy processes generalize the notion of independent and

5Harrison (1985), Chapter 4, and Karatzas and Shreve (1991), Chapter 3, discuss some of the extensions.
6The standard Brownian motion was first studied by Bachelier (1900) and Einstein (1905). Lévy (1965) carried out a

brilliant study of its sample paths and had much influence on the subsequent research on stochastic processes. Karatzas

and Shreve (1991), Chapter 3 establish that all continuous martingales can be constructed from the standard Brownian

motion.
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identically-distributed (i.i.d.) random variables. The most well-known Lévy processes are the standard

Brownian motion and the Poisson process.

We provide first a definition of the one-dimensional standard Brownian motion and extend it to

allow for multiple (finite) dimensions.7 In the one-dimensional case, a standard Brownian motion is a

continuous, adapted process B = {Bt} such that:

(i) B0 = 0 a.s.;

(ii) Bt+∆ −Bt is independent of the tribe Ft;

(iii) for ∆ > 0, Bt+∆ −Bt is normally distributed with mean zero and variance ∆.

A d-dimensional process B =
(
B1, · · · , Bd

)>
is a multidimensional Brownian motion if the processes

Bi =
{
Bit
}

are one-dimensional Brownian motions that are mutually independent, i.e.,
〈
Bi, Bj

〉
= 0 if

i 6= j a.e. The standard Brownian motion has a number of properties that make it suitable for economic

analysis. It is a Lévy process, namely, it has stationary independent increments. It satisfies both the

weak and the strong Markov property. Finally, it is a continuous (square-integrable) martingale. It

has unbounded variation but bounded quadratic variation, given by Lévy Characterization Theorem.8

Stochastic integration with respect to the standard Brownian motion is permitted.

Theorem 6 (Lévy Characterization Theorem). The quadratic covariations of a multidimensional

Brownian motion B =
(
B1, · · · , Bd

)
are

〈
Bi, Bj

〉
t

= δijt, where δij is Kronecker delta

δij =

{
1 if i = j,

0 if i 6= j.

Proof. The case i 6= j obtains from the definition of a multidimensional standard Brownian motion.

For the one-dimensional Brownian motion, consider the process defined by Mt = B2
t − t for t ≥ 0. We

have Mt+∆ −Mt = B2
t+∆ −B2

t −∆. Since B is a martingale, E [Bt+∆Bt | Ft] = BtE [Bt+∆ | Ft] = B2
t .

Thus,

E [Mt+∆ −Mt | Ft] = E
[
B2
t+∆ − 2Bt+∆Bt +B2

t −∆ | Ft

]
= E

[
(Bt+∆ −Bt)2 | Ft

]
−∆.

By definition of Brownian motion (variance), E [Mt+∆ −Mt | Ft] = 0 for all t ≥ 0. �

We first look at the one-dimensional Itô process. Assume a process X = {Xt}t≥0 such that the

random variable

(3.1a) Xt = x+

∫ t

0

µ(Xs, s) ds+

∫ t

0

σ(Xs, s) dBs,

is well defined for all t ≥ 0. Here, µ : R × R+ → R and σ : R × R+ → R correspond to the drift and

volatility of the process. We say that the process X solves the stochastic differential equation (SDE)

(3.1b) dXt = µ(Xt, t) dt+ σ(Xt, t) dBt.

For simplicity, we shall use µt as shorthand for the random variable µ(Xt, t) and σt for σ(Xt, t). The

term µt corresponds to the expected rate of change of X = {Xt}t≥0 over the next infinitesimal small

instant. σ2
t is the instantaneous rate of change in the variance.

7The definitions of a standard Brownian motion and a Wiener process differ in some respects. The definition we

provide corresponds to the definition of a Wiener process. Rigorously speaking, a Brownian motion is defined as a square-

integrable F-martingale such that E
[

(Mt+∆ −Mt)
2 | Ft

]
= ∆ for ∆ > 0. The Lévy characterization theorem — discussed

next — implies that both definitions describe the same mathematical object.
8Lévy Characterization Theorem has a stronger implication that suggested in Theorem 6. It asserts that if M is a

continuous martingale such that M0 = 0 and 〈M〉t = t (or E
[
M2
t

]
= t), then M is a Brownian motion.
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Consider now a d-dimensional Brownian motion B =
(
B1, · · · , Bd

)>
. A drift µ =

(
µ1, · · · , µn

)>
can be defined as a n-dimensional vector of functions µi : Rd ×R+ → R. A diffusion σ is a n× d matrix

of functions σij : Rn × R+ → R, denoted

σ =
(
σij
)

=


σ11 · · · σid

... σij
...

σn1 · · · σnd

 .

with rows σi =
(
σi1, · · · , σid

)
and vectors σj =

(
σ1j , · · · , σdj

)>
. By extension to the one-dimensional

Itô process, a n-dimensional Itô process X =
(
X1, · · · , Xn

)>
, with starting value x ∈ Rn a.s, solves a

systems of n stochastic differential equations (one for each Xi)

dXi
t = µi(Xt, t) dt+ σi(Xt, t) dBt.

In compact form, X =
(
X1, · · · , Xn

)>
solves the (multidimensional) stochastic differential equation

(3.2) dXt = µ(Xt, t) dt+ σ(Xt, t)
>

dBt.

At places, we use matrix notations. The trace of a square (d× d) matrix, A = (aij)1≤i,j≤d is defined

as the sum of the elements on its main diagonal, namely

tr 〈A〉 = a11 + a22 + · · ·+ add =

d∑
i=1

aii

The trace is only defined for a square matrix. A norm on the space of matrices is ‖A‖ ,
√

tr 〈AA>〉 for

any matrix A.

Stochastic differential equations are generalizations of ordinary differential equations with the in-

clusion of a random, white noise term driven by the standard Brownian motion. There are different

notions of solutions to the stochastic differential equation (3.2) depending on the roles played by the

underlying filtered probability space and Brownian motion. We will primarily discuss strong solutions

to (3.2). Before proceeding with sufficient conditions for the existence of a solution of (3.1a), we need

to define a number of concepts. A function f : Rd → R is Lipschitz continuous if there exists a constant

M ∈ R+ such that, for any x, y ∈ Rd,

‖f(x)− f(y)‖ ≤ M ‖x− y‖

Lipschitz continuity is thus a smoothness condition that is stronger than regular continuity because the

Lipschitz condition limits the speed with which a function can change. In the one-dimensional case,

Lipschitz continuity states that the slope will never be steeper than a certain number c. A function f

satisfies a growth condition if there is a constant M such that, for any x ∈ Rd and any time t,

‖f(x)‖2 ≤ M
(

1 + ‖x‖2
)
.

This condition ensures that the function f does not “explode.” Sufficient conditions for the existence of

a solution of (3.1a) are given in the following theorem.

Theorem 7 (Sufficient conditions for existence and uniqueness of Itô process). Consider a process

X = {Xt}t≥0 with X0 = x a.s.. X solves (3.2) if the following conditions are jointly satisfied:

(i) the processes {µt}t≥0 and {σt}t≥0 are F-adapted;

(ii) the processes {µt}t≥0 and {σt}t≥0 are finite-variation processes;

(iii) the functions µ and σ are Lipschitz continuous in x;

(iv) the functions µ and σ satisfy the growth condition in x.

Proof. See Øksendal (2007), Section 5.2. �
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For strong solutions, the filtered probability space (Ω,F ,F,P) and the F-Brownian motion are given

a priori. For weak solutions, they are parts of the solution. Note that the coefficients in equation (3.2)

do not depend on the outcome ω explicitly, only implicitly through the solution X = {Xt}t≥0.

Since Itô processes satisfy the (strong) Markov property, employing such processes to model an

exogenous shock may help avoid the “curse of dimensionality.” This explains the success of Itô processes

in economics and operations research. The Itô process covers a broad family of stochastic processes used

in economic analysis.9 The arithmetic Brownian motion (ABM) solves

(3.3) dXt = µ dt+ σ dBt,

with constant drift µ and diffusion σ. The geometric Brownian motion (GBM) follows

(3.4) dXt = µXt dt+ σXt dBt;

The arithmetic Ornstein-Uhlenbeck (OU) process has the the stochastic differential equation representa-

tion

(3.5) dXt = η
(
Xt − X̄

)
dt+ σ dBt,

where the constant η describes the speed or strength of reversion toward the long-term mean X̄. The

geometric Ornstein Uhlenbeck follows

(3.6) dXt = ηXt

(
Xt − X̄

)
dt+ σXt dBt.

An alternative mean-reverting process (used by, e.g., Sick, 1995; Tsekrekos, 2010) solves:10

(3.7) dXt = η
(
Xt − X̄

)
dt+ σXt dBt.

Itô-Doeblin formula given in Theorem 5 for continuous semimartingales can be specialized to Itô

processes.

Theorem 8 (Itô-Doeblin formula applied to Itô process). Consider a d-dimensional Itô process

X = {Xt}t≥0 and a function f ∈ C2,1
(
Rd,R+

)
. Then, {f(Xt, t)}t≥0 is an Itô process solving the

stochastic differential equation

df(Xt, t) =

[
ft(Xt, t) + µ>t fx(Xt, t) +

1

2
tr
〈
σtσ
>
t fxx(Xt, t)

〉]
dt+ fx(Xt, t)

>
σt dBt.

For a one-dimensional Itô process, the stochastic differential equation simplifies to

df(Xt, t) =

[
ft(Xt, t) + µtfx(Xt, t) +

1

2
σ2
t fxx(Xt, t)

]
dt+ σtfx(Xt, t) dBt.

Proof. Consider the multidimensional case. We decompose the semimartingale X = {Xt}t≥0 as

X = x + A + M ; here, A is a bounded-variation process with At =
∫ t

0
µ(Xs, s) ds and M is a square-

integrable martingale with Mt =
∫ t

0
σ(Xs, s) dBs. Given that 〈·, ·〉 is a bilinear form, we obtain from

Theorem 5

f (Xt, t) =f(x, 0) +

∫ t

0

ft(Xs, s) ds+

∫ t

0

fx(Xs, s)
>
µs ds+

∫ t

0

fx(Xs, s)
>
σs dBs

+
1

2

∑
i,j≥1

∫ t

0

fxixj (Xs, s)σ
i
s σ

j
s d
〈
Bi, Bj

〉
s
.

Theorem 8 now results from Lévy’s Characterization theorem 6 according to which
〈
Bi, Bj

〉
s

= δijs. �

9See the Appendix of Chevalier-Roignant and Trigeorgis (2011) for a detailed discussion of these processes.
10Following Tsekrekos (2010), the mean-reverting process in equation (3.7) is more plausible than the geometric OU

process of equation (3.6) as a market-clearing price. Since X reverts in the long-term to the mean X̄, one should require

that the price of any number of goods, say n of them, should revert to nX̄ in the same manner. In other words, it seems

reasonable to require that the drift and diffusion of any mean-reverting process used as a candidate market-clearing price

must be homogeneous functions of degree one of the pair
(
Xt, X̄

)
.
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At places, it is useful to estimate the expected change in the value of Itô process {f(Xt, t)} over

an infinitesimal time interval. The infinitesimal generator D is the appropriate operator to achieve this

goal:11

(3.8) Df(Xt, t) , lim
∆↓0

Et[f (Xt+∆, t+ ∆)]− f (Xt, t)

∆
.

The following theorem permits to characterize the infinitesimal generator as a second-order differential

operator if f ∈ C2,1
(
Rd,R

)
.

Theorem 9 (Infinitesimal generator). Consider an Itô process associated with the drift vector µ =(
µ1, · · · , µd

)>
and diffusion matrix σ = (σij). If f ∈ C2,1

(
Rd,R

)
,

Df(Xt, t) = ft(Xt, t) + µtfx(Xt, t)
>

+
1

2
tr
〈
σtσ
>
t fxx(Xt, t)

〉
.

Proof. Consider f ∈ C2,1
(
Rd,R

)
. Let L denote the second-order operator given by

L f(Xt, t) = ft(Xt, t) + µtfx(Xt, t) +
1

2
tr
〈
σtσ
>
t fxx(Xt, t)

〉
.

From Itô-Doeblin formula (Theorem 8),

f(Xt+∆, t+ ∆) = f(Xt, t) +

∫ t+∆

t

L f(Xs, s) ds+

∫ t+∆

t

fx(Xs, s)
>
σs dBs

The third right-hand term is a martingale with starting value 0. Hence,

(3.9) Et[f(Xt+∆, t+ ∆)] = f(Xt, t) + Et

[∫ t+∆

t

L f(Xs, s) ds

]
The theorem obtains by the mean-value theorem. �

Using the infinitesimal generator notation, Itô-Doeblin formula in case of Itô processes becomes

df (Xt, t) = Df(Xt, t) dt+ fx(Xt, t)σ
>
t dBt.

The expected value of a sufficiently smooth function of an Itô process at a stopping time is given by

Dynkin’s formula.

Theorem 10 (Dynkin’s formula). Consider an admissible stopping time τ (with E0[τ ] <∞) and a

function f ∈ C2
(
Rd
)
. If X is a time-homogenous Itô process or diffusion, then

E0 [f (Xτ )] = f(x) + E0

[∫ τ

0

Df (Xs) ds

]
Proof. Readily obtains from Theorem 9 extended to stopping times. �

4. References

Karatzas and Shreve (1991) provides a rigorous, detailed discussion of Brownian motion and gen-

erally continuous semimartingales. Karatzas and Shreve (1991), Chapter 3, discuss generalization of

Itô-Doeblin’s formula to less “smooth” functions (with continuous martingales as integrator). Protter

(2004), Chapter 2, define stochastic integrals with respect to (non necessarily continuous) semimartin-

gales.

11Two definitions of the infinitesimal generator exist in the literature. One applies to time-homogenous Itô processes

or diffusion, while the second allows the function to depend on time as well. To avoid a multitude of notations, we

take the second approach, being understood that the first-order derivative with respect to time drops in the operator for

time-homogeneous settings.



CHAPTER 3

Stochastic Control

As noted in the introduction, continuous-time analysis relies on the twin assumptions that economic

phenomena take place in continuous time and that decision makers can act at any instant within a time

interval. In this chapter, we discuss mathematical concepts useful for the modeling of random changes

in continuous time. Now, we want to proceed with determining how to model and solve the problem

of determining how agents decide optimally in a continuous-time setting. Control theory is a branch of

applied mathematics concerned with determining, over a certain (finite or infinite) period of time, optimal

decisions and state values for a given dynamic system (under an appropriate optimality notion). Optimal

control theory was initially developed to support needs for military applications during the “cold war;”

Not surprisingly, two independent approaches were followed, one in the Soviet Union (Pontryagin) and

the other in the US (Bellman). Since its inception, control theory has offered a rich toolkit to economic

researchers because it provides way to solve single-agent dynamic optimization problems. Optimal control

in continuous time and stochastic environment is often called stochastic control.

The chapter is organized as follows. In Section 1, we describe the structure of a typical stochastic

control problem. Section 2 discusses different types of control functions used in dynamic problems and

develops the notion of time consistency. Section 3 describes distinct approaches to solve stochastic control

problems. Section 4 presents a number of dynamic problems that have a different structure but can be

solved with use of instruments borrowed from control theory as well. Section 5 provides references. In

Chapter 4, we will extend the analysis to allow for multiple players, as part of continuous-time dynamic

game theory.

1. A dynamic problem

We examine first a problem over a known planning period [0, T ] with finite horizon T > 0. Suppose

a standard one-dimensional Brownian motion B = {Bt}t≥0 and a filtered probability space (Ω,F ,F,P).

Consider a d-dimensional state space Y ⊆ Rd, where Yt ∈ Y describes the state of the dynamic system

at time t. Y = {Yt}t≥0 is the state process; Y (ω, ·), is called state trajectory or path. Y is the space

consisting of all permissible state trajectories, with Y ∈ Y. The state of the system is almost surely

known at the outset with Y0 = y ∈ Y and evolves going onwards according to a certain known law of

motion — e.g., a difference or differential equation — possibly depending on previous state realizations

and past “actions” meant to alter the dynamical system. At each time, the decision maker has a set

A ⊆ Rn of actions she can chose from.1 Over the period [0, T ], the decision maker earns a certain profit

characterized by a running profit function π : Y × [0, T ]×A→ R. At the end of the planning horizon (if

finite), the decision maker receives a certain salvage value, as given by a terminal reward, scrap value,

or salvage value function S : Y × R+ → R. At time t, the decision maker knows which scenario has

occurred among the set of all possible scenarios Gt; the characterization of the tribes Gt ⊆ FY,α
t — where

FY,α
t , σ (Ys, as; 0 ≤ s ≤ t) — determines the information structure of the problem.

A control or strategy is a complete contingent plan of actions, conditional on available information,

that indicates which action to take at each and every state and time. Formally, a control α is a random

function that maps Ω× [0, T ] into A. To stress the influence of the strategy choice on the state evolution,

we shall denote Y α = {Y αt }t≥0. The distinction between static actions and controls as a contingent plan

1The set might be the same over all stages or depending on the state trajectory in more advanced settings.

33
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of actions is essential to the understanding of dynamic problems. The set of “admissible” controls or

strategies over [0, T ] is A[0,T ] or A as shorthand. In the present case, we consider an equation of motion

of the form

(1.1) dY αt = µ(Y αt , t, at) dt+ σ(Y αt , t, at) dBt; Y α0 = y,

where µ : Y × [0, T ] × A → Rd is a controled drift function and σ : Y × [0, T ] × A → Rd a controled

diffusion function. For existence and uniqueness, we assume that the drift and the diffusion processes are

F-adapted and have finite variations and that µ and σ are Lipschitz continuous and satisfy the growth

condition (see Theorem 7, page 25). The decision maker chooses a control α∗ to maximize its payoff.

Given a (known) initial state y ∈ Y , the payoff of a given admissible control α is defined as

(1.2) J(y, 0, α) = E0

[∫ T

0

π(Y αt , t, at) dt+ S(Y αT , T )

]
.

We denote such a control problem by Γ (y, 0). The objective function in equation (1.2) with π(·, ·) 6= 0

and S(·, T ) 6= 0 is said to be of the Bolza form. If S (·, T ) = 0 and π (·, ·) 6= 0, it has the Lagrange

form, whereas if π (·, ·) = 0 and S (·, T ) 6= 0, it is of the Mayer form. It is well known and easy to show

that these three problems are mathematically equivalent. The value received in optimum for initial state

y ∈ Y is

(1.3) V (y) = V (y, 0) , sup
α∈A

J (y, 0, α) = J (y, 0, α∗) .

Such an α∗ is called optimal control. The path Y ∗ generated by the optimal control α∗ is the optimal

state trajectory. (α∗, Y ∗) is the optimal pair.

2. Types of controls

So far, we provided a loose description of the information structure and the strategy space. In

applied control literature, a control function α : Ω × [0, T ] → A is often called decision rule. Several

types of admissible controls or strategies are considered. We rank them below in terms of increasing

computational complexity:

• Deterministic or open-loop controls involve strategies of the form α : [0, T ]→ A, where α(ω, t) =

α(t) for all t ∈ [0, T ];

• Markov controls are functions α of the form α : Y × [0, T ]→ A. The decision maker’s choice at

time t depends only on the current value of the state. If α : Y → A, the control is stationary

Markov ;

• The decision maker may have information about the true state value that is partial, delayed,

or “noisy” (affected by some random disturbances). In such a case, the control strategy must

be adapted to a “biased” filtration of histories. This situation relates to the filtering problem;

• Closed-loop controls involve strategies α : FY,α
t → A that take into consideration the entire

observed state trajectory, i.e., FY,α
t = σ(Ys, as; 0 ≤ s ≤ t). In other words, a closed-loop

strategy is adapted to the filtration.2

Closed-loop strategies are more general but are less tractable. In closed-loop strategies, the decision

makers can condition their actions (when called upon to act) on the observed sequence of actions and state

realizations. In contrast, open-loop strategies do not depend on past observations and/or previous play

and instead set ex ante a certain investment path to be pursued regardless of the actual developments.

Given an initial state y ∈ Y , a Markov control α ∈ A is admissible if there exists a unique regulated

or controled Itô process Y α that solves the stochastic differential equation (1.1). In other words, the

state trajectory Y α resulting from a particular control must be well defined (strong solution). Markov

2The optimal control literature is not consistent in defining feedback strategies. Sometimes, the notion is used to

describe closed-loop strategies as defined above or Markov strategies. To avoid confusion, we decide not to use this notion

further.
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strategies are decision rules in which the choice of a player’s current action is conditioned on current

time and vector space y ∈ Y . By introducing the Markovian assumption, one assumes that the history

of state realizations and actions is not relevant for the choice of action at time t but only the present

consequences as reflected in the current value of the state. The use of Markovian strategies is a natural

choice in the set-up of state-space problems or games where the history until time t is summarized in

the value of the state vector y ∈ Y .

Even though an optimal strategy constitutes an optimal solution in its control class, some solutions

might be preferred due to certain appealing properties. A refinement scheme helps select among strat-

egy candidates that are optimal in a certain control class. A noted refinement scheme imposes time

consistency of the preferred optimal solution. Two forms may be considered: the weak and strong form.

Consider the control problem Γ[0,T ] over the time interval [0, T ]. α∗[0,T ] ∈ A[0,T ] is an optimal solu-

tion within the class A[0,T ] of controls. Let α[s,t] ∈ A[s,t] be the strategy played over the time interval

[s, t] ⊆ [0, T ]. Γβ[s,t] is a truncation of Γ[0,T ] to the interval [s, t], whereby the decision maker follows

strategy β outside the time interval [s, t]. A strategy α∗ ∈ A is weakly time consistent if its reduction to

the time interval [t, T ], α∗[t,T ], solves the continuation control problem Γα
∗

[t,T ] generated by itself, i.e., by

α[0,t), for all t ∈ (0, T ]. A strategy α∗ ∈ A is strongly time consistent if its reduction to the time interval

[t, T ], α∗[t,T ], constitutes an optimal solution of the continuation control problem Γβ[t,T ] generated by any

other strategy β[0,t), for all t ∈ (0, T ]. Both of these refinements assert that for an optimal solution to

be time consistent, the decision maker should have no reason, at any future stage, to deviate from the

adopted strategy. The strong form requires in addition that, even in case the actions taken or the state

trajectory are different from what was initially expected, the players should have no reason to deviate

from their prescribed actions going forwards. Trivially, the strong form implies the weaker one. In de-

terministic control problems, an optimal open-loop control is weakly but not necessarily strongly time

consistent. In contrast, an optimal Markov control satisfies both time consistency forms. Here, it makes

no material difference which type of control is selected. The notion of time consistency has application

to both optimal (one-player) control problems as well as their extensions to multi-player settings as part

of dynamic game theory. In stochastic control problems, however, a stand-alone decision maker should

have the possibility to react to deviations from an expected market development. In dynamic games,

if a rival may take actions over the course of the game that differ from what was initially expected, a

player should be in a position to change her course of actions. In stochastic environments, a policy that

is strongly time consistent should be preferred as at a future time a state realization might deviate from

the state value that the decision maker planned to attain, owing to some random perturbations. When

dealing with single-agent dynamic optimization problems under uncertainty, mathematical economists

thus prefer Markov controls among possible admissible controls. In stochastic environments, strong time

consistency of the solution is ensured if one employs dynamic programming. According to the principle

of optimality, “an optimal policy has the property that, whatever the initial state and control are, the

remaining decisions must constitute an optimal policy with regard to the state resulting from the first

decision” (see Bellman, 1957). In other words, the agents are supposed to act optimally on every trajec-

tory of the state. In dynamic games, strong time consistency is achieved if the selected Nash equilibrium

is also perfect : players are required to act optimally as part of a Nash equilibrium both on and off

the equilibrium path. If the information structure allows economic agents to condition their actions on

previous realizations, as in closed-loop strategies, then the resulting strongly time consistent policy may

yield stronger predictions and reduce the set of optimal strategy candidates. In most cases, strongly

time consistent solutions are best because agents are typically assumed to face negligible information

lags. However, weakly time consistent policies are fine and easier to determine when information lags

are infinite or agents precommit (thanks, e.g., to a binding contract) to a certain path of actions.



36 3. STOCHASTIC CONTROL

3. Solution approaches

Two approaches are usually followed to solve optimal control problems: dynamic programming and

the maximum principle. We first provide heuristics for the Hamilton-Jacobi-Bellman equation, a par-

tial differential equation used in dynamic programming. For the deterministic (resp., stochastic) case,

dynamic programming leads to a first-order (resp., second-order) partial differential equation (PDE)

together with a final boundary condition for the value function. We then discuss the stochastic maxi-

mum principle, which provides a set of necessary conditions. Alternatively, the deterministic maximum

principle (resp., stochastic maximum principle) characterizes the solution by a maximum condition and

two (resp., three) ordinary differential equations (resp., stochastic differential equations) for the state

and the adjoint processes, together with boundary conditions for the initial value of the state process

and the terminal value of the adjoint process.

3.1. Dynamic programming. A standard approach in control theory exploits the recursive, em-

bedded nature of the problem. The subproblem Γ (Yt, t) is embedded or concatenated in the whole initial

problem Γ (y, 0). We denote restriction of a given admissible Markov strategy α[0,T ] ∈ A[0,T ] to the

subproblem Γ (Yt, t) by α[t,T ] ∈ A[t,T ].

At the end period T , the subproblem Γ(YT , T ) is trivial, as given by the reward function:

(3.1a) V (YT , T ) = S (YT , T ) .

At a prior instant t, consider a short time interval of length ∆. If the agent takes an action a ∈ A at time

t, it is presumably committed to it until time t + ∆. After this time, the agent faces no commitment

constraint and can take action at any instant. For infinitesimal time interval, the continuation payoff is

J
(
Yt, α[t,T ]

)
= lim

∆↓0

{
π(Yt, t, α(t)) ∆ + Et

[∫ T

t+∆

π(Ys, s, α(s)) ds+ S(YT , T )

]}
= lim

∆↓0

{
π(Yt, t, α(t)) ∆ + Et

[
J
(
Yt+∆, t+ ∆, α[t+∆,T ]

)]}
by the law of iterated conditional expectations. By taking the supremum,

V (Yt, t) = lim
∆↓0

max
a∈A

α[t+∆,T ]

{
π(Yt, t, a) ∆ + Et

[
J
(
Yt+∆, t+ ∆, α[t+∆,T ]

)]}
= lim

∆↓0
max
a∈A

{
π(Yt, t, a) ∆ + max

α[t+∆,T ]

Et
[
J
(
Yt+∆, t+ ∆, α[t+∆,T ]

)]}
= lim

∆↓0
max
a∈A
{π(Yt, t, a) ∆ + Et[V (Yt+∆, t+ ∆, αt+∆)]}

Hence, dividing the above equation by ∆ (> 0), the optimality condition becomes:

lim
∆↓0

max
a∈A

{
π(Yt, t, a) +

Et[V (Yt+∆, t+ ∆)]− V (Yt, t)

∆

}
= 0.

For tractability, one generally conjectures that V ∈ C2,1(Y × [0, T )). Using the infinitesimal generator

notation, one obtains:

(3.1b) max
a∈A
{π(Yt, t, a) + DV (Yt, t)} = 0

with boundary (terminal) condition (3.1a). Under certain circumstances, the maximum might be at-

tained, in which case we note

π(Yt, t, α
∗(t)) + DV (Yt, t) = 0, t ∈ [0, t) .

This partial differential equation (PDE) is the continuous-time variant of the Bellman equation.

It is called Hamilton-Jacobi-Bellman or HJB equation. The existence of a unique solution is often

difficult to prove because the Markov control depends on the value dynamics without usually being

an explicit function. The existence of well-behaved solutions in a continuous-time setting is delicate

and we shall focus mainly on sufficient conditions. We can conjecture an optimal Markov control policy
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φ : Y ×[0, T ]→ A that solves equations (3.1a)–(3.1b) and attempt to verify its optimality. A “verification

argument” implies that if one finds a (twice continuously differentiable) solution to the HJB equation

(4.5), then that solution must equal the value function of the control problem, whereby the control that

solves the HJB equation. Under strategy φ, the optimum state trajectory, Y ∗, solves the stochastic

differential equation

dYt = µ(Yt, t, φ(Yt, t)) dt+ σ(Yt, t, φ(Yt, t)) dBt; Y0 = y a.s.

The above analysis also works under certain condition to infinite-horizon problems, whereby the boundary

condition is replaced by a transversality condition, such as:

(3.1c) lim
T→∞

EV (XT , T ) = 0.

Note that the above tranversality condition is satisfied when one introduces a (positive) discount rate.

3.2. Maximum principle. The stochastic maximum principle builds upon Pontryagin’s dynamic

optimization approach. Originally, the approach – which involves a dual process called adjoint process

– was developed for deterministic environments. The maximum principle provides a set of necessary

conditions for the optimal state trajectory and the corresponding adjoint equation. The original formu-

lation of the maximum principle involved open-loop controls but, as noted, in deterministic, one-agent

setting, the values obtained under the different class of controls do not differ. The maximum can be

either proved directly by use of variational arguments or indirectly as an extension of the (first-order)

HJB equation. Since the inception of Pontryagin’s maximum principle, research has been undertaken to

allow for Markov controls and find an equivalent maximum principle applying in stochastic environments.

We, here, build upon the (second-order) HJB equation derived previously.

3.2.1. Deterministic maximum principle. Consider first the deterministic (one-player) case whereby

the optimal open-loop control policy is noted ψ : [0, T ] → A. Here, the payoff function under finite

control horizon reads

(3.2) J (y, t, α) =

∫ T

0

π (Yt, t, α(t)) dt+ S (YT , T )

with Y0 = y ∈ Y ⊆ Rn and state equation

(3.3) ẏ(t) = µ(y, t, α(t)) t ∈ [0, T ] .

For the sake of argumentation, we now digress and consider that the decision maker intends to

maximize at each instant t ∈ [0, T ] her utility flow π (Yt, t, α(t)) in a static manner. The state equation

(1.1) imposes then a set of (n) constraints on the optimization program. In static optimization, a

Lagrange multiplier corresponds to the increase in the value of the objective function due to the relaxation

of a given constraint. With each state (y, t) ∈ Y × [0, T ], we associate an adjoint or costate variable,

λ1(y, t), of the same dimension as y ∈ Y that corresponds to a vector of n Lagrange multipliers. In other

words, the costate variable is a dual representing the marginal cost of violating the constraints imposed

by the state equation. A dynamic equivalent of the Lagrangian of a static optimization problem is the

current-value Hamiltonian function defined as a real-valued function H:

(3.4) H(t, y, a, λ1) , π(t, y, a) + λ1(y, t)
>
µ(t, y, a) .

By differentiation the Hamiltonian function (3.4) it obtains a new statement of the state equation, namely

(3.5) ẏ(t) = Hλ1
(t, y, a, λ1) .

In the deterministic case, the HJB equation is a first-order partial differential equation:

Vt(y, t) = max
a∈A

{
π(y, t, a) + Vy(y, t)>µ(y, t, a)

}
.

Considering the Hamiltonian in equation (3.4), we may state the HJB equation as

(3.6) Vt(y, t) = max
a∈A

H(y, t, a, Vy(y, t)).
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Therefore, the optimal open-loop control, ψ (·), satisfies at each time t ∈ [0, T ] the maximum condition:

(3.7) ψ(t) ∈ arg max
a∈A

H (t, y, a, λ1(t)) .

Equation (3.6) expresses that on the optimal state trajectory the equality λ1 (y, t) , Vy(y, t) always

holds. The costate vector λ1(y, t) should then be interpreted as the first-order derivative or gradient of

the value function V (y, t), namely

(3.8) λ1(y, t) =


∂V
∂y1

(y, t)
...

∂V
∂yn

(y, t)

 .

The costate variable λ(y, t) has thus an interesting economic interpretation. It corresponds to a shadow

price or marginal value of the resource, namely the rate of change in value with respect to a change in

the resource (state variable). In other words, in equilibrium it represents the highest hypothetical price

a decision maker would be willing to pay for an additional, infinitesimal unit of the state variable (at

time t in state y).

The merit of the maximum principle lies in the economic interpretation of the maximum condition.

For a dynamical system, the control a taken at a given instant t ∈ [0, T ] should not be aimed at

maximizing the instantaneous profit π(y, t, ·). If, at each instant t ∈ [0, T ], the decision maker maximizes

the direct instantaneous contribution π(Yt, t, ·) over A, she would not necessarily maximize the overall

intertemporal payoff J(y, ·) over A because the static program π(Yt, t, ·) fails to reflect, at time t ∈ [0, T ],

the intertemporal effect of the control choice α(t) on the state equation (1.1). By using the shadow price

of the state we can explicitly consider the dynamic tradeoff in a new static optimization program, the

one given by the Hamiltonian function of equation (3.4). The Hamiltonian H(y, t, a) offers a simple way

of altering the instantaneous objective function π(Yt, t, a) to take into account the future consequences of

the choice of the control. The amount H(y, t, a) signifies the sum of the direct contribution π(y, t, a) to the

overall profit and the accumulation rate µ(t, y, a) of the marginal value of the resource, λ1(y, t). In other

words, the second term, λ1(y, t)>µ(y, t, a), represents the indirect instantaneous monetary contribution

to the payoff, as each additional unit of state yields a value increase of λ1(y, t) dollars and µ(y, t, a) units

are added in total. H(y, t, a) is thus the total instantaneous contribution, where the second term properly

values the indirect effect. According to the maximum condition (3.7), the decision marker desires to make

this sum as large as possible and is faced with the static maximization problem H(Yt, t, ·, λ1(Yt, t)) at each

instant t ∈ [0, T ] she is allowed to act. The maximum principle thus decouples the dynamic optimization

problem (3.2) in the interval [0, T ] into a set of static maximization problems indexed by t ∈ [0, T ],

namely the Hamiltonian maximization programs (3.6).

The maximum principle also characterizes the dynamics of the dual variable via the adjoint equation.

By differentiating totally the expression in equation (3.8), we obtain on the optimal path

λ̇(t) =
dVy
dt

(y(t), t) = Vyy(y(t), t)
>
ẏ(t) + Vyt (y(t), t)

= Vyy (y(t), t)
>
µ (y(t), t, ψ(t)) + Vyt(y(t), t) .

For V sufficiently smooth, we have Vyt = Vty. The above yields

λ̇(t) = −Hy (t, y, ψ(t), λ(t)) .(3.9)

The adjoint equation (3.9) also has a useful economic interpretation. A marginal unit of capital yields a

direct, instantaneous marginal return πy(y, t, a). Besides, it generates in the next period an extra change

in state µy(y, t, a), each unit being currently valued at λ1. The change in shadow price, λ̇1(t), is like a

capital gain expressed in present value terms. On the optimal path, the total marginal return as the sum

of these components should be zero. In other words, on the optimal state trajectory, the shadow price
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takes on values that do not permit a pure or excess return from holding the stock. The adjoint equation

(3.9) expresses an intertemporal no-arbitrage condition. By integrating the adjoint equation, it obtains

λ(t) = −
∫ T

t

Hy(Ys, s, as, λs) ds+ Sy(YT , T ) .

The last term expresses that the price λ1(T ) of a unit of capital at time T is its marginal salvage

value Sy(YT , T ). The above simply means that, along the optimal state trajectory, the (instantaneous)

depreciation rate of the shadow price is the sum of its contribution to paid-out profit, πy (t, Y ∗t , α
∗
t ), and

its contribution to the enhancement of the marginal value of the resource, µy (t, Y ∗t , α
∗
t ). The maximum

principle relates to the so-called duality principle: “maximizing the total value amounts to minimizing

the total depreciation of the marginal value.” The adjoint function λ1(·) evolves backwards in time,

solving the adjoint equation – an ordinary differential equation – provided a given terminal condition,

namely

(3.10) λ1(T ) = Sy(T, Y ∗t ) .

The system consisting of the the state equation (3.5), the adjoint equation (3.9), and the maximum

condition (3.7) is referred to as an extended Hamiltonian system. The deterministic maximum principle

asserts that the Hamiltonian system provides a set of necessary conditions that characterize the optimal

triple (Y ∗, ψ, λ∗). If certain convexity conditions hold, the Hamiltonian system characterizes an optimal

control. To obtain a sufficiency theorem, we generally make additional convexity assumptions.

3.2.2. Stochastic maximum principle. In the above statement of the deterministic maximum prin-

ciple, the presence of an adjoint process that evolves backward in time makes the extension of the

maximum principle to stochastic environments nontrivial because of the nonanticipativity constraint

(F-adaptedness). Besides, we need to refine the space of admissible controls to Markov controls to cir-

cumvent the problem of time inconsistency involved with open-loop controls. The (recent) advent of

backward stochastic differential equations (BSDE) – SDE with terminal boundaries – provided a nat-

ural framework for handling this problem. The key computational issue is that the adjoint equations

are solved backwards but their solutions are required to be nonanticipative. Recall that the objective

function for the stochastic case reads

J(y, 0, α) = E

[∫ T

0

π(Y αt , t, α(t)) dt+ S(YT , T ) | y

]
,

subject to state equation (1.1). We introduce new adjoint variables together with their adjoint equations

that are involved in the formulation of the stochastic maximum principle. We now generalize the notion

of the Hamiltonian to a stochastic environment. A time t and state y, the current-state generalized

Hamiltonian is defined as:

H (y, t, a, λ1, λ2) , π(y, t, a) + λ1(y, t)
>
µ(y, t, a) +

1

2
tr
〈
σ(y, t, a)

>
λ2(y, t)σ(y, t, a)

〉
,(3.11)

= H(y, t, a, λ1) +
1

2
tr
〈
σ(y, t, a)

>
λ2(y, t)σ(y, t, a)

〉
The first term on the right-hand side of equation (3.11) was already consider for the deterministic

Hamiltonian function (3.4). As noted it signifies the sum of the expected direct contribution to the

overall profit and the expected accumulation rate of the marginal value of the resource. The second

term is new. It reflects the riskiness of the venture, i.e., it represents the reduction/addition in expected

marginal value of the resource due to the decision maker’s uncertainty about the anticipated change in

resource. This third term is called risk-adjustment. If V is convex (in case, e.g., the decision maker is

risk-averse), the risk-adjustment effect reduces the value of current-value generalized Hamiltonian. The

opposive holds if V is concave.
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Assume the Markov control policy φ is optimal. Using the notations of equation (3.11), the second-

order HJB equation (3.1) becomes

(3.12) Vt(y, t) = max
a∈A

H (y, t, a, Vy(y, t) , Vyy(y, t)) .

The maximum condition is thus

(3.13) φ(y, t) ∈ arg max
a∈A

H (y, t, a, λ1, λ2) .

Besides, from equation (3.12), the first-order adjoint variable should be interpreted as the gradient of the

value function V (y, t), λ(y, t) = Vy(y, t). By differentiating the current-state Hamiltonian in equation

(3.11) with respect to λ1, it obtains

(3.14) Hλ1
(y, t, a, λ1, λ2) = µ(y, t, a) .

The adjoint variable λ1 corresponds in the deterministic case with the so-called shadow price. Nonethe-

less, in a stochastic environment, the marginal value alone may not be able to fully characterize the true

contribution/influence of the control on the objective function. One has to introduce another variable

to reflect the uncertainty or risk factor in the system. It similarly obtains from (3.11)

(3.15) Hλ2(y, t, a, λ1, λ2) =
1

2
σ(y, t)

>
σ(y, t) .

It follows from (3.8) that

(3.16) λ2(y, t) =
∂λ1

∂y
(t) = σ(y, t, a)Vyy(y, t) .

In other words, λ2 is the instantaneous standard deviation of the depreciation rate of the random shadow

price.

We want to derive a system of stochastic differential equations describing the optimal state trajectory

Y ∗ = {Y ∗t }t≥0 and adjoint equations λ1 and λ2 on the optimal path. From equation (3.14), the optimal

state trajectory {Y ∗t }t≥0 solves the forward stochastic differential equation

(3.17) dYt = Hλ1
(Yt, t, φ (Yt, t) , λ1, λ2) dt+ σ(Y ∗t , t, φ (Yt, t)) dBt,

subject to Y0 = y ∈ Y a.s. From HJB equation (3.17) and Itô-Doeblin formula,

dVy(Yt, t) = DVy(Yt, t) dt+ Vyy(Yt, t) + σ(Yt, t, a) dBt,(3.18)

where D is the infinitesimal generator. Equivalently stated, the first-order adjoint equation is a backward

stochastic differential equation given by

(3.19a) dλ1(Yt, t) = Dλ1(Yt, t) dt+ λy(Yt, t) + σ(Yt, t, a) dBt,

with transversality condition

(3.19b) λ1(T ) = −Sy(YT , T ) .

To account for the influence of the control on the diffusion coefficient, we consider an additional

second-oder adjoint equation, given by

dλ2 (t) =−
{
λ2 (t)

>
µy (y, t, a) + λ2(y, t)

>
µy(y, t, a) +

n∑
j=1

σjy(y, t, a)
>
λj2(y, t)σjy(y, t, a)

+

n∑
j=1

σjy(y, t, a)
>

Λj2(y, t) + Λj2(y, t)σjy(y, t, a) +Hyy(y, t, a, λ1, λ2) dt+

n∑
j=1

Λj2(y, t) dBjt

}
(3.20a)

with terminal condition

(3.20b) λ2 (T ) = −Syy(YT , T ) .

In the above the unknown is a pair of processes (λ2,Λ2) that must be F-adapted.

A stochastic Hamiltonian system consists, along with the maximum condition (3.13), of a n-dimensional

forward SDE (3.17) for the original state equation and two adjoint n-dimensional backward SDEs —
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one for each adjoint variable. The stochastic maximum principle asserts that under certain conditions,

there exists for every admissible Markov control costate trajectories λ1 and λ2 such that the maxi-

mum condition (3.13), (backward stochastic differential) adjoint equations (3.19a) and (3.20a), and the

transversality conditions (3.19b) and (3.20b)are satisfied almost everywhere.

Proposition 1 (Stochastic maximum principle). Suppose the Markov control φ∗ solves the dynamic

optimization problem Γ(y, 0). Then, there exist a state trajectory Y ∗ = {Y ∗t }t≤0 and adjoint processes

λ∗1 and λ∗2 such that for each t ∈ [0, T ]:

(i) the maximum condition (3.13) is satisfied on the optimal state trajectory;

(ii) Y ∗ solves equation (3.17) with initial boundary condition Y ∗0 = y a.s.;

(iii) λ1 solves equation (3.19a) with terminal boundary condition (3.19b);

(iv) λ2 solves equation (3.20a) with terminal boundary condition (3.20b).

4. Other stochastic control problems

Stochastic control theory is richer than sketched previously. A number of situations encountered in

mathematical economics correspond to refinements of the control problem defined previously.

4.1. Cauchy problem and Feynman-Kac representation. Consider first the polar case in

which no control is exercised and the horizon is finite and of known duration. As before, we assume,

on a filtered probability space (Ω,F ,F,P), a d-dimensional Itô process X that solves the stochastic

differential equation (3.1) and such that X0 = x ∈ X a.s. A function r : X × [0, T ]→ R+ determines for

each state the discount rate. The value function — which is of the Bolza type — reads

(4.1) V (x, t) = E

[∫ T

t

Dx,t(s)π(Xs, s) ds+Dx,t(T )S(XT ) | x, t

]
,

where D stands for the stochastic discount factor:

(4.2) Dx,t(s) , exp

(
−
∫ s

t

r(Xs, s) ds

)
, s ∈ [t, T ] .

According to the Feynman-Kac theorem (see proof in Karatzas and Shreve, 1991, 5.7.C), as long as the

solution of (4.1) is sufficiently smooth, there exists a correspondence between that value and the solution

of a certain Cauchy problem. Here, the Cauchy problem consists in finding a function V , in the class

C2,1(X , [0, T ]), that solves the partial differential equation

(4.3a) r(x, t)V (x, t) = π(x, t) + DV (x, t) ,

everywhere on X × [0, T ) and also satisfies the terminal condition

(4.3b) V (XT , T ) = S(XT ) .

More precisely, the Feynman-Kac theorem gives a probabilistic solution, namely (4.1), to the functional

analysis problem of equations (4.3a)–(4.3b). It also asserts that the value function (4.1) admits a func-

tional representation (4.3a)–(4.3b).

The Feynman-Kac solution to the Cauchy problem is oftentimes used in mathematical economics and

continuous-time finance (see, e.g., Duffie, 2001). In economic terms, equation (4.3a) states an equilibrium

condition to be satisfied in each state x ∈ X and at each time t ∈ [0, T ): the required return on value

r(x, t)V (x, t) must equate the instantaneous reward flow π(x, t) plus any additional capital gain flow

DV (x, t). This equilibrium condition is relatively restrictive: it asserts that this equality holds not only

on the optimal state path but also on all other feasible state trajectories. The Black-Scholes-Merton

partial differential equation can be derived and interpreted in this light; this p.d.e. corresponds to

equation (4.3a) in the Cauchy problem, with no dividend payment or π = 0 (Mayer form). Thereby, the

salvage value function (4.3b) is given by the payoff function of a European call option with strike price

I, S(x) = (x− I)
+

. In some other cases, the Feynman-Kac partial differential equation (4.3a) can be
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used as the basis for a (implicit or explicit) finite-difference numerical scheme that describes an asset

price dynamics (see e.g., Brennan and Schwartz, 1977).

4.2. Autonomous problem. We would also like to discuss problems with infinite-horizon (T =∞)

where S = 0 and the functions π, µ, σ, and α do not depend on time. Such problems — called autonomous

— are often easier to solve analytically that their counterparts with finite horizon and time-dependent

processes and controls. We consider a (constant) discount rate r (> 0) and a state equation

dYt = µ(Yt, a) dt+ σ(Yt, a) dBt,

with Y0 = y ∈ Y a.s. and Y = Rn. We use “tilde” for time-homogenous functions. The profit function

is π(y, t, a) = e−rtπ̃(y, a). We now consider the payoff function

J
(
Yt, t, α[t,∞)

)
= E

[∫ ∞
t

e−rs π̃(Ys, as) ds | Yt
]

subject to state equation (1.1) and Y0 = y a.s. The value to the decision maker — if it exists — is

V (y) = maxα∈A J(y, 0, α). As noted the presence of a discount rate ensures that the transversality

condition (3.1c) is satisfied. In this case, it is natural to consider stationary Markov controls. Define the

time-homogenous payoff and value functions by

J̃(y, α) , E
[∫ ∞

0

e−rtπ̃(Yt, α(t)) dt | y
]

and Ṽ (y) , max
α∈A

J̃(y, α) .

We have J (Yt, t, α) = e−rtJ̃(Yt, α). By taking the supremum, it follows V (y, t) = e−rtṼ (y), the latter

function admitting as first- and second-order derivatives Vt(y, t) = −re−rtṼ (y), Vy(y, t) = e−rtṼy(y),

and Vyy(y, t) = e−rtṼyy(y). The infinitesimal generator yields now

DV (y, t) = Vt(y, t) + Vy(y, t)
>
µ(y, a) +

1

2
tr
〈
σ(y, a)

>
Vyy(y, t)σ(y, a)

〉
= −re−rt Ṽ (y) + e−rtṼy(y)

>
µ(y, a) +

1

2
e−rttr

〈
σ(y, a)

>
Ṽyy(y)σ(y, a)

〉
.

The HJB equation in (3.1b) is then

max
a∈A

{
e−rtπ̃(y, a)− re−rt Ṽ (y) + e−rtṼy(y)

>
µ(y, a) +

1

2
e−rttr

〈
σ(y, a)

>
Ṽyy(y)σ(y, a)

〉}
= 0.

Multiplying the above expression by ert yields a time-homogenous variant of the HJB equation:

r Ṽ (y) = max
a∈A

{
π̃(y, a) + Ṽy(y)

>
µ(y, a) +

1

2
tr
〈
σ(y, a)

>
Ṽyy(y)σ(y, a)

〉}
.

This second-order partial differential equation has wide application in economics and continuous-time

finance.

4.3. Random control horizon and optimal stopping. The problem may involve a random

control horizon. Consider a given open set A ⊆ Y . Y = {Yt}t≥0 solves again the stochastic differential

equation (1.1) with Y0 = y /∈ A. Pathwise, the time at which the state enters the set A for the first time,

noted τ(ω, α) , inf {t ≥ 0 | Y αt (ω) ∈ A}, depends on the control α chosen by the decision maker via the

influence of the control on the state trajectory Y α(ω, ·). In this case, the objective function is

J(y, 0, α) = E
[ ∫ τ(α)

0

π(Y αt , t, α) dt+ S
(
τ(α) , Yτ(α)

)
| F0

]
.

In the above, the control influences the stopping time τ(α) only indirectly via the controled state evo-

lution. Alternatively, the controller may decide directly on the control horizon — via the choice of a

stopping time τ in an admissible set T — as part of an controlled optimal stopping problem; here, an

optimal pair of control and stopping time (α∗, τ∗) verifies

V (y, 0) = max
α∈A
τ∈T

E
[∫ τ

0

π(t, Y αt , α(t)) dt+ S(Yτ , τ) | y
]
.
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In most cases studied in economics, the state space is one-dimensional (Y ⊆ R) and the payoff function

is

J(y, 0, α,T ) = E
[∫ τ

0

Dy(t)π(Y αt , t, α(t)) dt+Dy(τ)S(Yτ , τ) | y
]
,

where the discount factor function Dy(·) is a time-homogenous variant of (4.2). If the value function is

sufficiently smooth, a heuristic argument implies the HJB equation

(4.4) 0 = max
a∈A
{S(y, t)− V (y, t) ;−r(y, t) V (y, t) + π(y, t, a) + DV (y, t)} .

We face an optimal stopping problem if the decision maker exercises no control (α) on the state.

In this case, we denote the (one-dimensional) exogenous shock process by X. The HJB equation here

simplifies to

(4.5) 0 = max {S(x, t)− V (x, t) ;−r(x, t) V (x, t) + π(x, t) + DV (x, t)} , (x, t) ∈ X × [0, T ] .

where the second-order infinitesimal generator is

DV (x, t) = Vt(x, t) + µ(x, t) Vx(x, t) +
1

2
σ(x, t)

2
Vxx(x, t) .

One generally considers an autonomous version of the optimal stopping problem. Here, in state

x ∈ X , the HJB equation reads

(4.6) 0 = max

{
S(x)− V (x) ;−r(x) V (x) + π(x) + µ(x)Vx(x) +

1

2
σ(x)

2
Vxx(x)

}
.

The optimal stopping problem involves solving the ODE (4.6) or PDE (4.5) subject to certain boundary

conditions.

If the decision-maker may impose additional boundary conditions, optimal stopping involves solving

a “free boundary problem” associated with such ODEs and PDEs. When, for an autonomous problem,

we concentrate on stationary Markov controls, it is reasonable to partition the state space into an optimal

stopping region Z = {x ∈ X | S(x) = V (x)} and a continuation region X \ Z. The boundary of the set

Z is ∂Z. HJB equation (4.6) and the terminal condition then correspond to the Dirichlet problem:

r(x)V (x) = π(x) + µ(x)Vx(x) +
1

2
σ(x)

2
Vxx(x) , x /∈ Z(4.7a)

V (x) = S(x) , x ∈ Z.(4.7b)

Boundary condition (3.7b) is often called value-matching condition. The random variable τ∗ : ω 7→
τ(ω) = inf{t ≥ 0 | Xt(ω) ∈ Z} is the optimal first-entry time in Z. If the initial state x ∈ Z, the firm

stops right at the outset almost surely. An optimality condition often encountered in optimal stopping

problems impose a constraint on the first-order derivative, Vx, of the value function (see, e.g., Dumas,

1991). More precisely, this condition — known as smooth-pasting, high contact, or smooth-fit principle

— states that Vx is continuous at the boundary z of the continuation set X = R. The smooth-pasting

condition can be heuristically obtained from the envelope theorem. Let V (x, z) be the solution of the

optimal-stopping problem. τ∗(ω) , inf {t ≥ 0|Xt(ω) ≥ z} is the first time on path ω ∈ Ω that the process

X exceeds the upper threshold z. Following the value matching condition, for x ∈ Z and especially for

x = z, the firm is indifferent between exercising no control earning V (x, z) and stopping receiving S(x).

By total differentiation with respect to z, we have Vx(z, z) + Vz(z, z) = Sx(z). Since z is optimally

chosen, Vz(z, z) = 0. Hence, the smooth-pasting condition:

(4.7c) Vx(z, z) = Sx(z) .
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4.4. Other control problems. A case of interest is the (stochastic) linear quadratic case, where

the state equation is linear in the state and control and the objective function is quadratic in both the

state and the control. Closed-form solutions are often obtained for such control problems.

Consider now a control in the form of a càdlàg process ξ with bounded variation and such that

E[|ξ|T ] < ∞. The process ξ is made of a continuous part ξc and a pure-jump part ξj . On a given

path ω ∈ Ω, a jump occuring at time s is noted ∆ξs(ω) , ξs(ω) − ξs−(ω), with the pure-jump part

of the control being ξjt (ω) ,
∑

0≤s≤t ∆ξs(ω). The continuous part is uniquely decomposed into an

absolutely continuous part ξac and a singularly continuous part ξsc, ξc = ξac + ξsc. Singular control

deals with problems involving an additive control term in the stochastic integral that characterizes the

state evolution:

Yt = y +

∫ t

0

µ(s, Ys) ds+

∫ t

0

σ(s, Ys) dBs + ξ(t) , t ∈ [0, T ] .

As noted, the control ξ is not necessarily absolutely continuous with respect to the Lebesgue measure

but it has bounded variations. This leads to some technical issues that will be discussed in Chapter 5.

For the general singular control problem, the objective function is

J(y, 0, ξ) = E
[ ∫ T

0

{
π(Yt, t) + fac(t) ‖ξ̇ac(t) ‖

}
dt+

∫ T

0

fsc(t) |dξsc(t)|

+
∑

∆ξt 6=0

l (∆ξt, t) + S(YT , T ) | F0

]
,

where ‖·‖ and |·| are the measures generated by the total variations of ξac and ξsc. If ξ is a pure jump

process, i.e., if ξac = ξsc = 0, we face an impulse control problem. Here, equivalently, a decision maker

may change, at distinct stopping times {τi}, the state value by a discrete amount from an initial value

Y (ω, τi−) to a new value Y (ω, τi) with associated cost l (τi(ω) ,∆ξτi(ω)). Stochastic singular control and

optimal stopping are related in the one-dimensional case, as proved in Karatzas and Shreve (1984) and

discussed further in Chapter 5. In ergotic control problems, the decision maker desires to optimize a

long-run average performance criterion:

lim
T→∞

max
α∈A

1

T

∫ T

0

E[π(Yt, t, αt) | y] dt.

5. References

Harrison (1985), Dixit (2002), and Stokey (2008) summarize useful properties on several continuous-

time processes and discuss how to apply them in economic contexts involving stochastic control models.

Merton (1992) and Duffie (2001) apply notions of stochastic control to mathematical finance. Øksendal

(2007) elaborates on the different types of controls. Başar and Olsder (1999) define the notion of weak
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CHAPTER 4

Dynamic Game Theory

Game theory is the branch of applied mathematics aiming at describing and predicting behaviors

in environments in which actors are interdependent and have potentially conflicting objectives. Thus

described, game theory may help derive insights in all social sciences and beyond, with applications in

economics, political sciences, sociology, psychology, law, biology. We herein provide a brief account of

game theory focusing on those notions and solution concepts that are most relevant to our research. In

particular, we discuss differential games which are state-space games cast in continuous time and which

share common characteristics with control problems.

The chapter is organized as follows. In Section 1, we describe what constitutes a normal-form

game with a focus on defining (stochastic) differential games. Section 2 discusses the a critical model

assumption relating to the choice of information structure or strategy space. In Section 3, we briefly

present two solution concepts used in dynamic game theory: Nash equilibrium and perfect Markov

equilibrium. Sections 4 and 5 discuss, respectively, (nonzero-sum) differential and stochastic differential

games. Section 6 gives references to advanced literature on dynamic game theory.

1. Game description

A game in normal form has three basic elements:

(i) a set of players N = {1, . . . , n} with an arbitrary player noted i ∈ N ;

(ii) a strategy set Ai for each player i ∈ N ;

(iii) a payoff function J i for each player i ∈ N .

A game consisting of these three elements is represented by Γ =
{
N, (Ai)i∈N ,

(
J i
)
i∈N

}
. A player is an

individual, firm, entity, or actor that makes decisions. An additional pseudo-player, such as nature, may

be considered to account for or explain outside exogenous factors. This is the case in stochastic environ-

ments where “nature” selects the state of the world at random irrespective of the players’ actions. In

most cases, the probability distribution of nature’s moves is known to players. A strategy is a contingent

plan of actions for all possible time and history/state. Let αi ∈ Ai denote firm i’s pure strategy and Ai

player i’s strategy set. By convention, α−i represents the strategies played by all other players except i.

A strategy profile α encompasses the strategies pursued by all the players, namely α =
(
α1, · · · , αn

)T
.

A = ⊗ni=1Ai is the strategy space. Each strategy combination, α ∈ A , results in a specific expected

payoff for each player, J i(α). Here, all players know the structure of the strategic form and know that

their opponents know it, and know that their opponents know they know it, and so on ad infinum. In

other words, the structure of the game is common knowledge.

Dynamic games model strategic situations involving a certain notion of time. They have been exten-

sively used in industrial organization but are loosely defined mathematical objects when one considers

the choice of the strategy space. In dynamic game theory (see, e.g., Başar and Olsder, 1999), the formal

description of the game — understood as a dynamical system — and the definition of the appropriate

strategy space play a key role. To avoid the curse of dimensionality potentially occurring when the

entire game history affects the current situation and action choices, a modeler may adopt more restric-

tive assumptions about the game evolution. In a state-space game, a (n-dimensional) variable describes

at any particular instant t the state Yt ∈ Y ⊆ Rn of the game together with a state equation that

45
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describes the evolution of the dynamical system over time. In other words, the payoff-relevant influ-

ence of past events and actions are assumed adequately summarized in the state variable. A differential

game is a state-space game considered in continuous time, whereby the states evolve following a set

of differential equations. Differential games originated in the work of Isaacs (1965) as an extension of

optimal control theory considered in continuous time, whereby analytical tools, such as the maximum

principle or dynamic programming, are also utilized. Differential games constitute a class of decision

problems wherein the evolution of the state is described by a differential equation and the players may

act continuously throughout a time interval. Formally, a differential game — expressed in normal form

Γ =
{
N, (Ai)i∈N ,

(
J i
)
i∈N

}
— involves

(i) A set of players N = {1, · · · , n};
(ii) A time interval [0, T ] of specified duration (not necessarily finite);

(iii) A strategy set Ai for each player i, where a strategy αi ∈ Ai is understood as a contingent plan

of actions where αi(t) is the action taken at time t ∈ [0, T ];

(iv) A trajectory space of the game Y, with an element {Yt}t≥0 ∈ Y being a permissible trajectory

of the game. For each time t ∈ [0, T ], the state Yt is located somewhere in the state space

Y ⊆ Rn;

(v) A differential equation, known as the state equation, describing the state trajectory of the game

(1.1) ẏ(t) = µ(y, t, α(t)) =
(
µ1(y, t, α(t)) , . . . , µn(y, t, α(t))

)>
where the action profile at time t ∈ [0, T ] is α(t) = (α1(t), · · · , αn(t))

>
and Y0 = y =(

y1, · · · , yn
)> ∈ Y ;

(vi) Functions πi : Y ×A→ R and Si : Y → R for each player i such that the payoff function J i

J i(y, α) ,
∫ T

0

πi(Yt, t, α(t)) dt+ Si(YT )

is well defined.

Başar and Olsder (1999) provide a wide overview over dynamic game theory with focus on differential

games, while Dockner, Jorgensen, Van Long, and Sorger (2000) present a number of applications of

differential games in economics and management science. When the state evolution is affected by a noise

factor and the state equation is a stochastic differential equation of the form

(1.2) dYt = µ(y, t, α(t)) dt+ σ(y, t, α(t)) dBt,

one deals with stochastic differential games. In a game with simultaneous play, all players choose their

strategy at the outset so that no player enjoys an informational advantage over its player. If one player

chooses her strategy before the other and commits to it, the information structure and strategy space

are affected. Such games involving hierarchical play are called Stackelberg games. Differential games can

also accommodate hierarchical play if the leader selects her strategy at the outset forming consistent

beliefs about how the follower will react over time to its commitment.

2. Information structure and strategy space

As noted, in dynamic settings, one needs to specify the information structure and stategy space of

the decision makers as part of the modeling stage. In a differential game, at each time t ∈ [0, T ], a tribe

G i
t determines the information gathered by player i over the time interval [0, t]. Specification of the tribe

G i
t for each t ∈ [0, T ] characterizes the information pattern of player i. The collection of the information

patterns of all players determines the information structure of the game. In economic terms, the choice

of the information structure determines which information is effectively collected by players over time

and whether the players may react to new information over the game play.1 In other words, one specifies

1One often distinguishes various types of information structure, such as perfect, incomplete, or imperfect information.

Here, we assume common knowledge about the strategy space and payoff functions but consider informational issues relating

to the conditioning of the control function.
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upon what information a player conditions her strategy. The largest reasonable choice of information

pattern for each player i is the tribe FY,α
t , σ(Ys, as; 0 ≤ s ≤ t) generated by the whole history of state

realizations and action choices. At places, the tribe FY,α
t may be untractable to allow the modeler

to characterize a well-behaved economic phenomena. In that case, we need to be more restrictive on

describing the tribe G i
t for all t ∈ [0, T ] and player i ∈ N .

In dynamic games, the assumption concerning the information structure is intimately related to the

hypothesized strategy space. This model assumption is the counterpart in case of dynamic games of the

choice of control class in one-player control problems.

A strategy αi : Ω × [0, T ] → A is permissible if it precludes foresight, i.e., if the function αi(·, t) is

measurable with respect to FY,α
t for all t ∈ [0, T ]. In other words, if a player follows such a closed-loop

strategy, she can condition, at each time t ∈ [0, T ], her actions on the whole past play of the game as

summarized in the tribe FY,α
t . Employing closed-loop strategies is the less restrictive strategy space

choice and is best in most dynamic games when information lags are negligible. Defining strategies in

closed-loop form is often involved and possibly leading to an untractable model. This explains the success

of alternative approaches.

We may assume, as the other extreme, that the players use a minimum of information and base their

strategy only on the time that has elapsed so far, namely that players employ open-loop strategies.

Ultimately, what particular action a player takes depends on calendar time only, the decision maker

disregarding all information other than time. In other words, an open-loop strategy is a precommitment

to a certain investment path, pursued regardless of the investment choices made by rivals. Open-loop

strategies are static in a sense since they do not allow genuine strategic interactions over the game

play. A natural question is then whether a device may endogenously justify the credibility of these

commitments. In settings where a reduced number of players interact, modeling the strategic conflict

via open-loop strategies is ill-advised and may even lead to wrong predictions. There are, however, some

arguments in favor of open-loop strategies. An obvious reason is that players may lack any information

other than time or face infinite information lags. If the planning horizon is short, an open-loop strategy

could represent a rigid strategy for short-term operational and tactical planning. It could also be used

as an approximation in a game with a large number of small players where strategic interactions have

no material influence on each other’s welfare. Following Fudenberg and Levine (1988), as the number

of players grows, the outcome of the closed-loop equilibria — which is a priori derived based on less

restrictive assumptions — converges to open-loop equilibria. In industrial organization, the open-loop

equilibrium thus provides a good prediction for oligopolies with a large number of firms; This latter

situation resembles perfect competition in microeconomics.

Inbetween the two polar cases of closed-loop and open-loop strategies, a player may condition her action

choice on the current value of the state Yt ∈ Y and the current time t ∈ [0, T ]. Such controls are called

Markov strategies. If they depend on the state value but not on time, they are called stationary Markov

strategies. Markov strategies help strike the balance between realistic assumptions and mathematical

tractability. In state-space games — of which differential games are a subset — the previous action

history is adequately summarized in the current state vector. In other words, the game history is not

relevant for the choice of action at time t but only the consequences of past actions as reflected in the

current state value. In such state-space games, the Markov assumption — which is not stronger than

the closed-loop assumption — is a natural choice of strategy class.

3. Solution concepts

In problems involving a single decision maker, optimality has no ambiguous meaning. In contrast,

the notion is not uniquely defined in multi-player decision settings. In games, a solution concept defines

a certain notion of optimality according to which players behave and prescribes criteria an equilibrium

strategy profile α∗ should fulfill. If such a strategy profile exists, player i receives value V i = J (α∗).
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A solution concept is thus a methodology for predicting players’ behavior intended to determine the

strategies that maximize each player’s payoff. In game theory, players’ rationality is typically considered

common knowledge. Rationalizability, introduced by Bernheim (1984) and Pearce (1984), is considered

a fundamental solution concept. Based on the weak assumption that the game structure is common

knowledge and that players are rational, it predicts that a player will not play a strategy that is not

a best response to some beliefs about her opponents’ strategies. By iteration, we can narrow down

the set of strategies that could be reasonably played (so-called rationalizable strategies). By design,

rationalizability makes weak predictions owing to a generally large set of rationalizable strategies. To

obtain stronger predictions, one may impose assumptions beyond common knowledge of rationality.

Nash’s (1951) equilibrium concept is usually preferred because the latter equilibrium solution has the

advantage of existing for a larger class of games. A strategy profile α =
(
α∗i , α

∗
−i
)

is Nash equilibrium if,

for any player i ∈ N ,

J i
(
α∗i , α

∗
−i
)
≥ J i

(
αi, α

∗
−i
)
, ∀αi ∈ Ai.

We can interpret the Nash equilibrium in terms of best-reply correspondances or reaction functions. Let

R(α−i) denote firm i’s best responses to her rivals’ strategies α−i:

R(α−i) =
{
αi ∈ Ai | J i(αi, α−i) ≥ J i(γi, α−i) , ∀γi ∈ Ai

}
If R(α−i) is a singleton, R(α−i) is a reaction function. We can now re-interpret the Nash equilibrium

notion. In Nash equilibrium, each player formulates her best response to the other players’ optimal

decisions; that is, α∗i ∈ R
(
α∗−i

)
. Nash (1951) proved that every finite nornal-form game has (at least)

one Nash equilibrium in mixed strategies. This result is proved by applying Kakutami’s fixed-point

theorem to the players’ best response sets. When multiple Nash equilibria exists, one may use refining

schemes to narrow down the set of equilibria to those equilibria that fulfull additional requirements, such

as perfection. Subgame perfection was introduced by Selten (1975) in the framework of an extensive

form (with subgames). A Nash equilibrium α∗ is subgame perfect if, for every history, the restriction of

the strategy profile to the continuation game constitutes a Nash equilibrium of the continuation game.

Subgame perfection generalizes our notion of strongly time consistency to multiplayer settings. The

notion of Nash equilibrium is widely used in dynamics games whereby one may distinguish different

strategy space.

When we restrict the strategy spaces to open-loop strategies, we have an obvious applications of

this equilibrium concept. The profile ψ =
(
ψ1, . . . , ψn

)
of open-loop strategies ψi : [0, T ] → A, i ∈ N ,

is an open-loop equilibrium if a Nash equilibrium profile α∗ =
(
αi∗, α−i∗

)
exists and is given by the

open-loop strategy α∗i (t) = ψi(t). The Nash equilibrium in a game modeled with Markov strategies is

called Markov Nash Equilibrium.2 The profile φ =
(
φ1, . . . , φn

)
of Markov strategies φi : Y × [0, T ]→ A,

i ∈ N , is called a Markov Nash equilibrium if a Nash equilibrium α =
(
αi∗, α−i∗

)
exists and is given by

the Markov strategy αi∗(t) = φi(Yt, t). By determining a nondegenerate Markov Nash equilibrium one

makes the assumption that the state variable can be observed and that the players can condition their

actions on these observations.

Dynamic games of complete information are often solved by means of the subgame-perfect Nash

Equilibrium solution concept that is strongly time consistent and precludes empty threats. The Markov

Perfect Equilibrium concept captures the same idea of subgame perfection but does not explicitly re-

fer to the extensive form of the state-space game. Denote by Γ(y, t) the normal-form game Γ ={
N, (Ai)i∈N , (Ji)i∈N

}
in state y ∈ Y at time t. A Markov Nash Equilibrium φ =

(
φ1, . . . , φn

)
is

Markov perfect if the strategy profile φ is a Markov Nash equilibrium of Γ(y, t) for all (y, t) ∈ Y × [0, T 〉.
In other words, for every (y, t) ∈ Y × [0, T 〉, the game Γ(y, t) admits a Markov Nash equilibrium

α[t,T ] = (α1
[t,T ], . . . , α

n
[t,T ]) such that αi(ω, s) = φi(Ys, s), for all i ∈ N and (Ys, s) ∈ Y × [0, T ]. The

2A Markov Nash Equilibrium is often referred to as a feedback or closed-loop equilibrium (see Fudenberg and Tirole,

2002).
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restriction of Markov perfection prescribes a credible rule to determine the actions of players i not only

along the equilibrium path Y ∗ = {Y ∗t }t≥0 but also for all other trajectories in Y.

Again, the choice whether to look for an open-loop Nash or a Markov perfect equilibrium in a

differential game is part of the modeling stage. Ultimately, one should consider the srategy space and

solution concept that best describe the situation at hand.

4. Nonzero-sum differential games

Isaacs (1965) discusses differential games (i.e., with deterministic state equation) in the context of

two-player, zero-sum games. In zero-sum games, the fixed-point strategies for which the game has a

value are obtained by the minmax theorem. If zero-sum games are good to describe situations arising in

military conflicts, they have limited applicability in economics. Starr and Ho (1969) extend the theory of

differential games to nonzero-sum games with n players, discussing the difficult question of determining

the right solution concept that emerges in such a situation (e.g., minmax, Nash equilibrium, or Pareto

optimum). In the general nonzero-sum, n-player differential game, player i’s payoff for strategy profile

α at time t and in state y ∈ Y is:

J i(y, t, α) =

∫ T

t

πi (Y αs , s, α(s)) ds+ Si (Y αT , T ) , t ∈ [0, T ]

subject to the deterministic state equation (1.1) on page 40. In Nash equilibrium, firm i’s value in state

(y, t) ∈ Y × [0, T ] is

V i(y, t) , max
αi

[t,T ]
∈A i

[t,T ]

J i(y, t, αi[t,T ], α
−i
[t,T ])

As usual, we denote the first-order derivatives of the value function by V it = ∂V i/∂t and V iy = ∂V i/∂y.

Consider first that the profile of Markov strategies φ =
(
φi, φ−i

)
form a Markov Nash equilibrium.

In Nash equilibrium, a player assumes that rivals will follow their Nash equilibrium strategies. For

notational simplicity, we denote

µ̄i
(
y, t, ai

)
= µi

(
y, t,

(
ai, φ−i(y, t)

))
,

so that the state equation (1.1) on page 40 now reads ẏ(t) = µ̄i
(
y, t, ai

)
. Likewise, we rewrite the

instantaneous utility flow:

π̄i
(
y, t, ai

)
= πi

(
y, t,

(
ai, φ−i(y, t)

))
.

Firm i’s payoff function when rivals follow their MNE strategies φ−i is then

J̄ i
(
y, t, αi

)
=

∫ T

t

π̄i
(
Ys, s, α

i(s)
)

ds+ Si(YT , T ) , t ∈ [0, T ] .

By convention, J̄ i
(
y, αi

)
= J̄ i

(
y, 0, αi

)
. By definition, the profile φ =

(
φi, φ−i

)
of strategies φi : Y ×

[0, T ] → Ai is a Markov Nash equilibrium if, for each player i ∈ N , there exists a strategy αi that

maximizes J̄ i(y, ·) provided that (i) the state equation (1.1) is satisfied with initial condition Y0 = y ∈ Y

and (ii) the optimal action at time t ∈ [0, T ] and state Yt(ω) ∈ Y is given by αi(t) = φi (Yt(ω) , t). The

above optimization program appears to be similar to a one-player problem under the assumption that

firm i’s rivals follow strategies φ−i. In the deterministic case, the HJB equation reads

Vt(y, t) = max
ai∈Ai

{
π̄i
(
y, t, ai

)
+ V iy (y, t)

>
µ̄i
(
y, t, ai

)}
.

We introduce a set of co-state variables λi1 =
(
λi11 , · · · , λin1

)>
and define player i’s Hamiltonian function

Hi:

Hi
(
y, t, a, λi1

)
= πi (y, t, a) + λi>1 µ(y, t, a) = πi (y, t, a) +

n∑
j=1

λij1 µ(y, t, a) .
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As before, assume rivals follow their Nash equilibrium strategies. We then have the following variant of

the Hamiltonian function

H̄i
(
y, t, ai, λi1

)
= π̄i

(
y, t, ai

)
+ λi>1 µ̄

(
y, t, ai

)
.

The value functions V i ∈ C2,1(Y , [0, T ]) , i ∈ N are then solutions of the generalized HJB equation

(4.1a) V it (y, t) = max
ai∈Ai

H̄i
(
y, t, ai, V iy (y, t)

)
, i ∈ N,

subject to the terminal boundary condition

(4.1b) V i(y, T ) = Si (y, T ) .

To characterize the Markov perfect equilbrium, one must be able at each (y, t) ∈ Y × [0, T ] to find

a Markov Nash equilibrium φ(y, t) =
(
φ1(y, t) , · · · , φn(y, t)

)
that solves a static, continuous, nonzero-

sum, n-player game with payoff functions H =
(
H1, · · · , Hn

)>
. Finding such a solution is not always

feasible but is possible for an important class of games. A differential game is said to be normal if (i)

it is possible to find such a Markov Nash equilibrium φ for H =
(
Hi, H−i

)
for all (y, t) and (ii) when

equations (1.1) and (4.1a), whereby the controls are given by the Markov rules αi(t) = φi(Y ∗t , t, ) for

all (y, t) ∈ Y × [0, T ], are satisfied. We can also adopt the maximum principle approach for situations

involving n-players. Following this approach, the maximum condition,

φi(y, t) ∈ arg max
ai∈Ai

H̄i
(
y, t, ai, λi1

)
,

is satisfied for all point (y, t) ∈ Y × [0, T ]. A Markov Nash equilibrium must also satisfy, for i ∈ N , the

adjoint equation

λ̇i1(t) = −

∂Hi

∂y

(
y, t,

(
a, φ−i(y, t)

)
, λi1
)

+

n∑
j=1,j 6=i

∂Hi

∂aj
∂φj

∂y
(y, t)

 , t ∈ [0, T )(4.2a)

λi1(T ) = Siy(YT , T ) ,(4.2b)

where ∂Hi

∂y and ∂φj

∂y are, respectively, the gradients of the Hamiltonian and player j’s policy with respect

to the (n-dimensional) state. In the optimal control setting (n = 1), the second term for the adjoint

equation (4.2a) is absent. The adjoint equation is then an ordinary differential equation which is less

computationally involved. In games (n ≥ 2), the adjoint equation admits an additional strategic effect

term that captures the dependence of the remaining (n − 1) players’ strategies on the current value

of the state y. In other words, players care about how their opponents will react to changes in the

state variables. This gives rise to a partial differential equation for the adjoint equation, in contrast

to an ordinary differential equation in case n = 1. The presence of the cross-influence term in the

adjoint equation transforms the adjoint equation from an ordinary differential equation (ODE) into a

system of partial differential equations (PDEs), which are more involved. As evidenced in equation

(4.2a), each player takes account in her objective function Hi of the influence of her actions on the

state, both directly (via ∂Hi/∂y) and indirectly through the influence of the state on the strategies of

the player’s opponents (via ∂Hi/∂aj × ∂φj/∂y). In a deterministic one-player setting, the restriction

to Markov controls is not needed since the optimal open-loop and Markov controls give rise to different

representations corresponding to the same control path.

Among “normal games,” linear-quadratic games are often used in differential games. Such games

are characterized by (i) a state equation that is linear in the state and the control and (ii) an objective

function that is quadratic in the state and the control. For the special case of linear-quadratic game,

Nash equilibrium, minimax, and the Pareto-optimal strategies are obtained by solving sets of ordinary

matrix differential equations, known as Riccati equations.
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5. Stochastic differential games

We presented above how to solve nonzero-sum, n-person differential games. Following the discussion

in Dockner et al. (2000), Chapter 8, we present techniques to solve stochastic differential games, whereby

the state evolution is affected by noisy disturbances. The state equation is now a SDE of the Itô diffusion

type:

(5.1) dYt = µ(Yt, t, at) dt+ σ(Yt, t, at) dBt and Y0 = y ∈ Rn,

where µ and σ satisfy the usual conditions, and B is a standard Brownian motion. If players follow the

strategy profile
(
αi, α−i

)
, player i’s payoff (at the outset) yields

J i(y, α) = E

[∫ T

0

πi(Y αt , t, α) + S (Y αT , T ) | y

]
,

subject to state equation (5.1). We first intend to give sufficient conditions for a Markov Nash equilibrium

to exist. For notational simplicity, let σ̄
(
y, t, ai

)
= σi

(
y, t,

(
ai, φ−i(y, t)

))
. Given her belief about her

rivals’ equilibrium play, player i faces a one-person dynamic optimization problem, Γ̄i(y, 0), which consists

in maximizing the payoff

J̄ i
(
y, αi

)
= max
αi∈Ai

E

[∫ T

0

π̄i
(
Yt, t, α

i(t)
)

dt+ Si (YT , T ) | y

]
,

subject to the state equation (5.1). The profile φ =
(
φi, φ−i

)
of Markov strategies is a Markov Nash

equilibrium of Γ(y, 0) if, for each player i, the strategy αi given by αi(ω, t) = φi(Yt(ω) , t) solves the

dynamic problem Γ̄i(y, 0). Consider a vector of Lagrangian multipliers: λi ,
(
λi1, λ

i
2

)
. Player i’s

current-value stochastic Hamiltonian function is

H i
(
y, t, a, λi

)
, πi(y, t, a) + λi>1 µ(y, t, a) +

1

2
tr
〈
σ(y, t, a)λi>2 σ(y, t, a)

〉
H̄ i

(
y, t, ai, λi

)
, π̄i

(
y, t, ai

)
+ λi>1 µ̄

(
y, t, ai

)
+

1

2
tr
〈
σ̄
(
y, t, ai

)
λi>2 σ̄

(
y, t, ai

)〉
.

Following the dynamic programming approach, player i’s value function V i ∈ C2,1
(
Rd,R+

)
solves for

each (y, t) ∈ Y × [0, T ] the HJB equation

(5.2a) V it (y, t) = max
ai∈Ai

H̄ i
(
y, t, ai,

(
V iy (y, t) , σ̄(y, t, ai)>V iyy

))
,

with boundary condition

(5.2b) V i(YT , T ) = Si (YT , T ) .

In the present stochastic case, we obtain a system of second-order partial differential equations. To

obtain a Markov Nash equilibrium, one must be able at each (y, t) to find a Nash equilibrium for the

static optimization problem H =
(
H i,H −i). Owing to the second-order term in the HJB equation, it

is generally difficult to find closed-form solutions for the value functions V i, unless certain “smoothness”

restrictions are imposed.

We now characterize the Markov perfect equilibrium further. The first-order adjoint equation reads

(5.3a) λ̇i1(t) = −

∂H̄ i

∂y

(
y, t, ai, λi

)
−

n∑
j=1,j 6=i

∂H i

∂aj
∂φj

∂y
(y, t)


with terminal condition

(5.3b) λi1 (T ) = Siy(YT , T ) .

Along the equilibrium path, the maximum condition

φi(y, t) ∈ arg max
ai∈A i

H̄ i
(
y, t, ai, λi

)
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is satisfied for all (y, t) ∈ Y × [0, T ] and every player i. The terms ∂H i/∂aj × ∂φj/∂y capture as before

the strategic effect. The difference with the previous differential game lies in the higher order term in

HJB equation (5.2a).

6. References
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CHAPTER 5

Monopoly

Investment is a major research topic in economics and finance. To simplify the analysis, investment

has been often considered either costlessly reversible or fully sunk (irreversible). In between these polar

cases lies costly reversibility, a subject which has been thoroughly investigated in the literature on real

options analysis. Herein, we briefly present two themes: a monopolist firm may have to decide when to

make a one-time lump-sum investment or how much to invest incrementally at any instant. Section 1

discusses some simple cases of lump-sum investments for a monopolist firm, while Section 2 focuses on

the process of capital adjustments over time. Section 3 gives references to decidated academic works.

1. Investment timing and hysteresis

McDonald and Siegel (1986) sets the benchmark case for the analysis of the timing option. Consider

that a firm may enter a market whose underlying value X = {Xt}t≥0 follows the GBM of equation (3.4).

If it invests at, say, time τ(ω) it incurs an entry cost I. The payoff to the firm if it invests at time τ is

J (x, τ) = E
[
e−rτ (Xτ − I)

+
]
,

where r is a constant discount rate such that r > µ + σ2/2. The decision maker will maximize J (x, ·)
over the set of admissible stopping times T . Here, it is reasonable to assume that the firm will invest

if the underlying project value is sufficiently large to justify the expense of market entry, i.e., higher

than an optimally selected threshold X ∈ X . In Chapter 3, we discussed optimal stopping problems and

derived a relevant HJB equation (see equation 4.5). According to this equation, the value function solves

a partial differential equation,

(1.1) rV (x) = µ xVx(x) +
1

2
σ2 Vxx(x) ,

for x < X, together with a terminal boundary

(1.2) V (x) = (x− I)
+

if x ≥ X. Besides, V should be at least continuously differentiable, obtaining the smooth-pasting

condition

(1.3) Vx(x) = 1.

In the continuation region
(
∞, X

)
, the second-order ordinary differential equation (1.1) has a general

solution of the form

V (x) = A xβ1 +B xβ2 .

β1 and β2 are, respectively, the positive and the negative root of

(1.4) Q(β) = r −
(
µ− 1

2
σ2

)
β − 1

2
σ2β2.

Q(·) is known in the real options literature as the “fundamental quadratic” (see Dixit and Pindyck, 1994,

Chapter 4). It is reasonable to assume that the value function V has a finite right limit at the origin:

V (x)→ 0 as x→ 0. Since xβ2 blows up as x ↓ 0, this suggests that B = 0 and V (x) = A xβ1 if x < X,

55
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the latter expression capturing the option to wait. Hence, it obtains from the value-matching and the

smooth-pasting conditions in equations (1.2) and (1.3), respectively that

X =
β1

β1 − 1
I and A =

(
X − I

)
X
−β1

.

Consequently,

V (x) =
(
X − I

)(x ∧X
X

)β1

, ∀x ∈ R+.

Dixit (1989) analyzes both entry and exit decisions under uncertainty. Suppose a firm has to decide

whether to enter a market or stay out having leeway in selecting the optimal entry and exit times. If

the firm decides to enter at time t, it incurs an investment cost κ but can produce at a unit cost c a

product sold at market price Xt. The price process X = {Xt}t≥0 follows a GBM. Once it has entered,

the firm is allowed to leave the market at a cost κ, with |κ| < κ. We follow the risk-neutral approach

and use a discount rate r (> µ). We have two state variables: the price x ∈ X and a variable l ∈ {0, 1},
which indicates whether the firm is active (l = 1) or not (l = 0). V (x, l) denotes the value associated

with states x ∈ X and l. Here, it seems natural to conjecture that, in state l = 0, the firm will enter the

market if the price is sufficiently large, i.e., if it goes above a certain threshold X. Similarly, if the firm

is active (l = 1), it is sensible to surmise that exit takes place when the price falls below a particular

boundary X.

Consider first the case where l = 0. Then, the HJB equation is

(1.5) 0 = max {−r V (x, 0) + DV (x, 0) ;V (x, 1)− V (x, 0)− κ} ,

where

DV (x, l) = µ x Vx(x, l) +
1

2
σ2 x2 Vxx(x, l) , l ∈ {0, 1} .

Here, according to the HJB equation (1.5), the value function must satisfy a second-order ordinary

differential equation in the continuation region. The second term indicates the value change when the

firm actually enters. In the region
(
−∞, X

)
, the ODE has a solution of the form

V (x, 0) = A0 x
β1 +B0 x

β2 .

where β1 and β2 are the roots of the fundamental quadratic. To ensure that the value function is finite

at x↘ 0, we need B0 = 0.

Consider now the case where l = 1. The HJB equation is

(1.6) 0 = max {(x− c)− r V (x, 1) + DV (x, 1) ;V (x, 0)− V (x, 1)− κ} .

In the continuation region, the homogenous part is the same as before. We now look for a particular

solution, say of the form V (x, 1) = ax+ b. By substitution in the PDE, we have

0 = (x− c)− r(ax+ b) + µ x a,

whence a = 1/ (r − µ) and b = −c/r. Our candidate solution is thus

V (x, 1) = A1 x
β1 +B1 x

β2 +
x

r − µ
− c

r
.

We want to ensure that as the price x grows arbitrarily large, the value function does not go to infinity

as well. To achieve that, we must impose A1 = 0.

We are left with

V (x, 0) = A0 x
β1 , and V (x, 1) =

x

r − µ
− c

r
+B1 x

β2 .

A0 x
β1 is the value of the entry option and B1 x

β2 that of the exit option. From equations (1.5) and

(1.6) as well as smooth-pasting arguments, we can further determine A0, B1, and the cutoff values:

V
(
X, 0

)
= V

(
X, 1

)
− κ and Vx

(
X, 0

)
= Vx

(
X, 1

)
,

V (X, 1) = V (X, 0)− κ and Vx(X, 0) = Vx(X, 1) .
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Unfortunately, this system cannot be solved in closed form. A solution nevertheless exists. Note that the

Mashallian cutoffs for entry and exit, respectively, M , c− rκ and M , c+ rκ. Consider the function

G(·) , V (·, 1)− V (·, 0); G(x) can be written as

G(x) = −A0 x
β1 +B1 x

β2 +
x

r − µ
− c

r
.

From our previous analysis, we obtain the second-order ordinary differential equation

(1.7) rG(x) = (x− c) + µxGx(x) +
1

2
σ2Gxx(x),

which has boundary conditions, G(X) = −κ, G(X) = κ, Gx(X) = Gx(X) = 0, with Gxx(X), Gxx(X) >

0. By substitution in equation (1.7), we obtain X > M and X < M or
(
M,M

)
⊂
(
X,X

)
if σ > 0.

The introduction of uncertainty has the effect of widening the price range of inaction of the firm. When

uncertainty fades away (σ → 0), the triggers under uncertainty converge to the Marshallian cutoffs:

X → c− rX and X → c+ rX.

2. Capital adjustment and marginal Tobin’s q theory

Abel and Eberly (1994) tackle the problem of determining the optimal investment behavior for a

monopolist facing uncertain market developments and costly reversibility. We want to give an account of

their model. In the following, we proceed as follows. Section 2.1 sets the stochastic control problem faced

by the monopolist firm. Section 2.2 provides necessary conditions for the optimal investment policy and

describes the dynamics of the value function. Finally, we discuss several examples from the literature on

investment under uncertainty.

In microeconomic models dealing with investment in capital stocks, the adjustment cost function is

often assumed to be strictly convex. Consider the “augmented version” of the capital-adjustment cost

function in equation (2.1); it is given by

(2.1) k(I,K) = κ(I) + κ1(I) + κ2(I,K) ,

whereby “k(0,K) > 0” captures fixed adjustment costs. k(·,K) is everywhere differentiable with respect

to investment magnitude I, except possibly at I = 0, with the first-order derivative on (−∞, 0) and

(0,∞) denoted by kI(·,K). The left-limit of kI (·,K) at I = 0 is denoted by kI(K) , limI↑0 kI(I,K),

while the right-limit is k̄I(K) = limI↓0 kI(I,K). If kI(K) = k̄I(K), k(·,K) is differentiable at I = 0.

If the adjustment costs are partly sunk, the capital stock Kt (ω) installed at time t may depend on the

whole past history, {Xs(ω) ; 0 ≤ s ≤ t} of the exogenous shock process X.

2.1. Value dynamics under optimal policy. Suppose the industry aggregate shock {Xt}t≤0

follows a time-homogenous Itô process as per equation (3.1). An investment strategy is a capital-

accumulation process ξ. Note the negative (resp., positive) part of ξ by ξ− (resp., ξ+). The processes

ξ− and ξ+ are right-continuous with left limits, nondecreasing, and adapted to the filtration F. Besides,

ξ−(0−) = 0 and ξ+(0−) = 0 almost surely. The sample paths of the process ξ = ξ+ − ξ− have bounded

variations as ξ is the difference between two nondecreasing processes. If the firm pursues the investment

strategy ξ, its capital stock at time t and on path ω ∈ Ω is

(2.2) Kt(ω) = k + ξ+
t (ω)− ξ−t (ω) .

An instantaneous change in capital stock is noted dξt(ω) = ξt(ω)− ξt−(ω). dξt(ω) is a Lebesgue-Stieltjes

differential and cannot properly be interpreted in terms of investment rate since it is not absolutely

continuous with respect to the Lesbegue measure. If it were possible to determine an “investment rate,”

we could define a control policy prescribing to the firm, at each instant ∈ R+, whether to adjust its

capital stock or not (action a = 1 or 0 respectively). and if the firm adjusts its capital stock (a = 1) and

incurs fixed adjustment costs how much to invest or divest (investment rate I). Here, a and I would be

the control variables to be decided upon at each instant. Abel and Eberly (1994) follow this heuristic
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approach. The capital stock of the monopolist, {Kt}t≤0, then evolves pathwise according to (differential)

equation, namely

K̇t = Iit(ω)− λKi
t(ω) ,

with λ being the deprecitation rate. A control is an F-adapted process α = {at; It}t≥0.

The firm’s instantaneous profit at time t on path ω ∈ Ω is driven by its capital stock level Kt(ω) and

the industry shock Xt(ω). At each instant t, the firm receives an unknown revenue flow π(Xt(ω),Kt(ω))

depending on the shock realization Xt(ω) and the current capital stock, Kt(ω). The profit function π

is strictly increasing and twice continuously differentiable in x; it is continuously differentiable, strictly

decreasing, and concave in K. The marginal profit is increasing in the shock πxx > 0; this ensures

that the optimal strategy can be expressed in terms of divestment/investment triggers. We follow the

risk-neutral valuation approach — under the assumption of a complete market that precludes arbitrage

opportunities. The firm faces a common, constant, risk-free rate r. The payoff received at the outset

with initial state (x,K) and when the firm pursues strategy α ∈ A is

(2.3) J(x,K, α) , E
[∫ ∞

0

e−rt {π(Xt,Kt)− at k(It,Kt)} dt | x,K
]
.

The optimal control policy yields, in state (x,K), a value

V (x,K) , max
α

J(x,K, α) .

Given the model assumptions, V is strictly increasing, twice continuously differentiable in the shock.

Besides, Vxk > 0 and Vkk < 0.

We shall focus on Markov controls. We will see that when investment is costly reversible, the optimal

Markov control φ involves lower and upper barriers: in the low region the firm divests; in the intermediary

region, it stays put; in the high region, it invests. Since π(·,K) and V (·,K) are continuous and strictly

increasing in the shock x, we could alternatively consider boundaries in terms of shock, profit, value, or

marginal value. We shall adopt the original approach of Abel and Eberly (1994) involving the marginal

value of capital.

Consider the payoff function (2.3). The resulting HJB equation is a second-order partial differential

equation:

(2.4) (r + λ)V (x,K) = max
a,I
{π(x,K)− a k(I,K) + DV (x,K)} .

The infinitesimal generator D specializes here to

(2.5) DV (x,K) = VK(x,K) (I − λK) + Vx(x,K)µ(x) +
1

2
Vxx(x,K)σ(x)

2
.

Denote the marginal value or shadow price of capital by v(x,K) , VK(x,K). It is the marginal

profitability of an additional unit of capital. {vt}t≥0 with vt = v(Xt,Kt) can be viewed as a controlled

stochastic process. Let’s now differentiate the HJB equation (2.4) by K. The optimal control trajectory

{at, I∗t }t≥0 obtains to satisfy

(2.6) (r + λ) v(x,K) = max
a,I
{πK(x,K)− a kK(I,K) + Dv(x,K)}

In equation (2.6), the left-hand side term, (r + λ) v(x,K), represents the required (gross) return on

the value of the marginal unit of capital. The right-hand side comprises (i) the marginal operating

profit, πK(x,K), (ii) the cost incurred by the firm if it adjusts its capital stock marginally, namely

a kK(I,K), and (iii) the expected marginal instantaneous capital gain, Dv(x,K). Applying the Feynman-

Kac Theorem to equation (2.6) yields

(2.7) v(x,K) = max
α∈A

{
E
[∫ ∞

0

e−(r+λ)t {πK(Xt,Kt)− at kK(It,Kt)}dt | x,K
]}

.

The expected capital gain term Dvs is of second order to reflect the unbounded first but bounded second

variation of the stochastic process {v(Xt,Kt)}t≥0. In the deterministic literature on the q theory of
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investment, a first-order term suffices; it is given by the rate of change in value over time, namely

v̇ = dv/dt . Alternatively, we could look at the dynamics of the shadow price directly in equation (2.7)

instead of the original problem in (2.6).

A case of interest involves a simplified problem where the decision maker can acquire each unit of

capital at a price κ̄ (with no additional adjustment costs) but cannot reduce its capital stock. This

stochastic control problem involves the value function

V (x,K) , max
ξ

E
[∫ ∞

0

e−rtπ(Xt,Kt) dt− κ̄ dξt | x,K
]
.

Karatzas and Shreve (1984) show that the above singular control problem is related to an optimal

stopping problem, called Snell-envelope problem, which consists in selecting, among the set of admissible

stopping times T , the stopping time that solves the optimization problem

max
τ∈T

E
[∫ ∞

τ

e−rtπK(Xt,K) dt− κ̄e−rτ | x,K
]
.

The dynamic optimization problem V(x, k) can be decomposed in a sequence of optimal stopping prob-

lems: rather than deciding how much to invest at any given time, the firm can decide when infinitesimal

particles of capital should be installed (see Bertola, 1998). This mathematical approach is useful and has

been applied to provide further economic intuition to the underlying capital expansion problem. When,

as in the present case, a firm may expand and reduce its capital stock, the “duality” between the two

problems is not readily applicable.

2.2. Characterization of the optimal investment policy. By isolating terms depending on a

and I in the HJB equation (2.4), the maximization program simplifies to the concave problem

(2.8) f(v,K) = max
a,I
{vI − ak(I,K)} ,

where we drop the dependence of the marginal value v on the state (x,K). We examine two cases in turn.

In Case A, the firm invests (a = 1) incurring for sure the fixed adjustment costs and thereby determine

the Markov investment rule. We subsequently compare in Case B if the firm is better off investing —

following the investment rule determined in Case A — or staying put (a = 0).

In Case A, the optimization problem (2.8) becomes

(2.9) fA(v,K) = max
I∈R
{vI − k(I,K)} .

Assume the solution to (2.9) is given by the Markov investment rule φA:

φA(v,K) ∈ arg max
I∈R
{vI − k(I,K)} , (x,K) ∈ X × R.

Note that (i) the program in equation (2.9) is strictly concave in I and (ii) the function k(·,K) is

differentiable in I everywhere on (−∞, 0) and (0,∞). In these regions, a set of first-order conditions

are sufficient to determine the optimal Markov rule. Whenever k(·,K) is differentiable, the first-order

condition is

v = kI
(
φA(v,K) ,K

)
.

The above relationship states that the shadow price of capital, v(x,K), must equal the marginal cost

of investing, kI
(
φA(x,K) ,K

)
whenever investment or divestment takes place. We want to characterize

these two regions in terms of the shadow price of investment. Note that k(·,K) is strictly convex, so that

the first-order derivative kI(·,K) is strictly increasing. Therefore, kI(I,K) < limI↑0 kI(I,K) , kI(K)

for all I ∈ (−∞, 0) and kI(I,K) > limI↓0 kI(I,K) , kI(K) for all I ∈ (0,∞). These two regions are then

equivalent to v(x,K) ∈ (−∞, kI(K)] and v(x,K) ∈
[
kI(K) ,∞

)
, respectively. Theorem 11 characterizes

the optimal Markov strategy φA further.

Theorem 11. The optimal investment intensity φA(·,K) is strictly increasing on (−∞, kI(K)] and[
k̄I(K) ,∞

)
.



60 5. MONOPOLY

Proof. We have kII(·,K) > 0. For the equality v = kI
(
φA(v,K) ,K

)
to hold, φA(·,K) must be

strictly increasing in v. The result for v ∈ [kI(K) ,∞) obtains similarly. �

What happens if the adjustment cost function k(·,K) is not differentiable at I = 0? In this case,

the set (K) ,
(
kI(K) , k̄I(K)

)
is non empty. The optimal investment rule prescribes not to invest:

φ(v,K) = 0 if (K) ,
(
kI(K) , k̄I(K)

)
.

Theorem 12 (Optimal Markov control in Case A). The optimal investment rule in Case A thus

satisfies:

(2.10) φA(v,K) =


< 0 if v ∈ (−∞, kI(K)) [divest]

= 0 if v ∈
(
kI(K) , kI(K)

)
[stay put]

> 0 if v ∈
[
kI(K) ,∞

)
[invest]

We can now consider Case B and discuss whether the firm should stay put to avoid incurring fixed

adjustment costs. For v(x,K) ∈
(
kI(K) , kI(K)

)
, the optimal investment rule in (2.10) prescribes to stay

put, the firm receiving fA(v,K) = −k(0,K) < 0. In Case B, the value −k(0,K) must constitute a lower

bound for f(v,K); otherwise, the firm would choose to adjust capital (a = 1) while scrapping or adding

no capital unit. Outside
(
kI(K) , kI(K)

)
, f(·,K) is continuously differentiable in v. By differentiating

fA(·,K) in equation (2.9) with respect to the shadow price v, it obtains

(2.11) fAv (v,K) = φA(v,K) ,

where the Markov control φA is given in equation (2.10). We denote the optimal Markov invest-

ment rule in Case B by φ. The optimal investment magnitude φ(·,K) = φA(·,K) is increasing out-

side
(
kI(K) , kI(K)

)
. Besides, φ (·,K) is differentiable. Hence, fAvv(v,K) = φAv (v,K) > 0 for all

v /∈
(
kI(K) , kI(K)

)
. fA(·,K) is a convex function attaining its nonpositive minimum −k(0,Ks) for

v ∈
(
kI(K) , kI(K)

)
. Let v(K) and v(K) denote the smallest and largest roots of fA(·,K). From

equations (2.10) and (2.11), fA(·,K) is strictly decreasing in (−∞, v(K)] ⊆ (−∞, kI(K)], strictly in-

creasing in [v(K) ,∞) ⊆
[
kI(K) ,∞

)
, and attain a nonpositive minimum in (v(K) , v(K)). The above

situation is shown in Figure 1 for the case of positive fixed, nonprice adjustment cost, k(0,K) > 0. If

v ∈ (v(K) , v(K)), fA(v,K) ≤ 0, so that the firm should stay put receiving zero. From the above, it

results that the optimal investment behavior in general for Case B is as given in the following theorem.

Theorem 13 (Optimal Markov control).

(2.12) φ(v,K) =


φA(v,K) < 0 if v(x,K) ≤ v(K) [divest]

= 0 if v(x,K) ∈ (v(K) , v(K)) [stay put]

φA(v,K) > 0 if v(x,K) ≥ v(Ks) . [invest]

For any value of v(x, k) in (v(K) , v(K)), investment does not take place. The firm sells capital (“di-

vest”) to prevent the marginal revenue product of capital v from falling below a certain lower profitability

level v(K) and purchases capital (“invest”) to prevent v from rising above an upper profitability level

v(K). The open interval between those thresholds is an inaction region (hysteresis region) where the

firm neither invests nor divests (“stay put” or “waits”). Within the bands v(K) and v(K), the shadow

price process is driven solely by the exogenous shock (i.e., no control is exercised). At the upper barrier

v(K), firms will be indifferent between staying put or expanding capacity, while at the lower barrier

v(K), firms will be indifferent between holding the current level of capital stock constant or downsizing.

Expansion at v(K) and downsizing at v(K) maximize the present discounted value of profits.

Does the function fA(·,K) admit roots or equivalently saying is the hysteresis region (v(K) , v(K))

nonempty?

(i) If k(·,K) is differentiable at I = 0 or kI(K) = k̄I(Ks) and k(0,K) = 0, the function fA(·,K)

has a unique root;
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Figure 1. Convexity of reduced maximization program

Note: We assume k(0,K) > 0.

(ii) If k(0,K) > 0, fA(·,K) has two distinct roots (the differentiability of k(·,K) at I = 0 does not

play a role here);

(iii) If k(·,K) is not differentiable at I = 0 (or kI(K) < k̄I(K) by strict convexity of k(·,K) ∈ C2(R)

) and the fixed cost k(0,K) = 0, fA(·,K) has a continuum of roots extending from v(K) to

v(K).

If there are positive fixed adjustment costs — k(0,K) > 0 in case (ii) — or if k(·,K) is not differ-

entiable at I = 0 — as in case (iii) — the set (v(K) , v(K)) is nonempty. In other words, there is an

inaction or hysteresis region where the firm stays put.

Consider now how the marginal value and capital stock evolve over time. At the outset, with initial

state (X0−,K0−), a discrete adjustment will occur if v(X0−,K0−) /∈ (v(K0−) , v(K0−)). Onwards, as

the underlying stochastic shock X = {Xt}t≥0 follows an unrestricted diffusion process, the investment

and divestment decisions of the firm — as summarized in the control process ξ — implies that the

endogenously determined process for the marginal value {v(Xt,Kt)}t≥0 also follows a diffusion, with

reflecting upper and lower barriers. The optimal policy involves adjusting the capital stock at each

threshold, investing and divesting at the boundaries v(Kt) and v(Kt) respectively. The firm has to be

very fast in adjusting its capital stock to maintain, at time t, the profitability level v(Xt,Kt) within

a certain range (v(Kt) , v(Kt)). Since {v(Xt,Kt)}t≥0 is a diffusion (with positive diffusion term), its

sample paths have infinite first variation: though continuous almost everywhere, these sample paths are

differentiable almost nowhere. At the points of investment or divestment, ξ moves infinitely fast, though

it never increases by a discrete amount (except possibly at the outset): the rate of control is infinite.

Hopefully, control only takes place at distinct moments in time, i.e., never throughout a nonempty time

interval. In other words, this set of points has Lebesgue measure zero. The stochastic control process ξ

is said to evolve in a singular manner: though continuous in the time interval (0,∞), it only increases

on a time set — a collection of distinct points — that have Lebesgue measure zero. Properly speaking,

since ξ is not absolutely continuous with respect to the Lebesgue measure, there is no rate of investment.

Therefore, a naive application of Hamiltonian analysis is not appropriate. The engineering literature,
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however, solves such abstract optimization problems by HJB methods using a limit argument to allow

the rate of control to become infinite.

To summarize, in the presence of a convex adjustment cost the model delivers the conclusion from

Tobin’s (1969) q theory as modified by Abel (1983): in each state (x,K), the investment intensity φ (·,K)

is increasing with the shadow price of capital, v(x,K). With no adjustment cost, the model is the one in

Jorgenson (1963). Namely, if the investment is costlessly reversible in the sense that the purchase and sale

prices for capital are equal — κ = κ such that (v(K) , v(K)) = ∅ for all t almost everywhere — and that

there are no nonprice adjustment costs (k(0,K) > 0), the model produces Jorgenson’s (1963) result: at

each date (in each state), the capital stock K is adjusted to equate the (ever-changing) marginal revenue

product of capital v(x,K) with the (constant) user cost of capital. Investment is completely irreversible

- divestment never occurs - if the adjustment cost for divestment is prohibitively large and the sale price

relatively small. A firm will find appropriate to sell installed capital only if the cost incurred to do so

is negative or if the firm disposes of capital at a posive resale price. If there is no value of I for which

k(I,K) is negative, it will never be optimal for a firm to undertake downsizing initiatives.

Eberly and Van Mieghem (1997) consider dynamic investments in a portfolio of resources under

uncertainty. Under concave operating profit functions and convex adjustment costs, the value function

of the firm’s discounted profits is concave. This implies the existence of a hysteresis zone and the

optimality of invest/stay-put/divest (ISD) policy — as the authors name it. Similar to the above, an

ISD policy indicates that, given the capacities of all resources, the optimal capacity decision for a given

resource is defined by a lower and upper threshold (which depend on all other capital levels). Capacity

is increased to the lower bound if the period’s starting capacity is below it; it is decreased to the upper

bound if starting capacity is above it, and it is kept constant if starting capacity is between the two

bounds.

We now present two cases admitting closed-form solutions that can be subsumed under previous

analysis of capital adjustment decisions.

Example 5 (From Abel and Eberly, 1997). Consider the investment cost function from Example 3

in Chapter 1, k(I) = κ I + κ1 I
2n

2n−1 . This cost function does not depend on the level of capital held and

involves no fixed nonprice adjustment costs (k(0) = 0). In this case, the simplified optimization program

in equation (2.9) reads

fA(v,K) = fA(v) = max
I∈R

{
(v − κ) I − κ1 I

2n
2n−1

}
The program is concave and differentiable everywhere in I (including at I = 0). From the first-order

condition, the optimal investment rule is

φ(v,K) = φ(v) =

(
2n− 1

2nκ1

)2n−1

(v − κ)
2n−1

.

In the above equation, it is readily apparent that the firm adjusts its capital stock if the marginal value

of capital, v(x,K), exceeds the purchase (and resale) price of capital κ. In the quadratic case (n = 1),

the optimal investment policy is characterized by

φ(v) =
v − κ
2κ1

=

{
< 0 if v < κ [divest]

≥ 0 if v ≥ κ. [invest]

The above case describes costlessly reversible investments.

We now consider an example that makes it possible to derive — under certain restriction for the

production function — the value to the firm that may adjust its capital stock K = {Kt}t≥0 in reaction

to exogenous market shocks X = {Xt}t≥0.
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Example 6 (From Dixit and Pindyck, 1994, Chapter 11). Consider that X = {Xt}t≥0 follows the

geometric Brownian motion of equation (3.4), with µ < r. Denote by δ , r − µ (> 0) a measure of the

opportunity cost of waiting. Besides, capital does not depreciate or λ = 0 in equation (3.1). The variable

production costs are negligible. The technology offers constant returns to scale. The reduced-form profit

flow reads π(x,K) = xπ(K) in state (x,K). Consider investment perfectly irreversible with κ(I) = κI

for I ≥ 0; here, kI(K) = κ. The optimal investment policy in equation (2.12) becomes

φ (v) =

{
= 0 if v(x,K) ≤ κ,
> 0 if v(x,K) > κ.

For v(x,K) ≤ κ, as no investment takes place (Is = 0), equation (2.4) becomes Feynman-Kac formula:

rV (x,K) = x π(K) + Vx (x,K)µ x+
1

2
Vxx (x,K)σ2 x2.

The general solution to this ordinary differential equation has the form

V (x,K) = A(K)xβ1 +B(K)xβ2 +
π(K)

δ
x;

here, β1 (> 0) and β2 (< 0) are, respectively, the positive and the negative root of the fundamental

quadratic function Q(·) in (1.4). The constant expressions A(K) and B(K) are determined by boundary

conditions. To ensure that the value function V is finite as x approaches zero, we set B(K) = 0 as

β2 < 0. Denote by X(K) the (optimal) upper boundary for the shock that triggers investment. We now

have

VK(x,K) = AK(K) xβ1 +
πK(K)

δ
x.

The value-matching condition states that v
(
X̄(K)

)
= VK

(
X̄(K)

)
= κ, which yields now

AK(K) X(K)
β1 +

πK(K)

δ
X(K) = κ.

The third boundary condition is the super-contact condition, a second-order condition for instantaneous

control problem (Dumas, 1991). It is

vx
(
X(K) ,K

)
= β1AK(K)X(K)

β1−1
+
πK(K)

δ
= 0

From the previous equations, we obtain the threshold shock value X(K) together with the threshold shadow

price v(K)

X(K) =
δκ

πK(K)
Π∗ ⇔ v(K) = X(K)

πK(K)

δ
= Π∗,

where Π∗ = β1

β1−1 . The optimal investment policy is

φ(v,K) =

{
0 if v(x,K) < v(K) [wait]

> 0 if v(x,K) ≥ v(K). [invest]

The investment policy prescribes to wait until the marginal value of an additional unit of capital

exceeds the required investment cost by the multiple Π∗ > 1. By substitution, it obtains afer a few algebra

steps,

AK(K) = −
(
πK(K)

δβ1

)β1
(
β1 − 1

κ

)β1−1

(< 0)

Note that A(K)xβ1 is the value, in state (x,K), of the subsequent call options on future capital additions.

As the marginal return is declining, the term AK(K) (< 0) corresponds to the opportunity cost of capital

addition when the firm already holds K units of capital. We want to obtain a well-defined value for

A(K):
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A(K) =

∫ ∞
K

[−AK(k)] dk,

=

(
β1 − 1

κ

)β1−1(
1

δβ1

)β1
∫ ∞
K

πK(k)
β1 dk.

For the integral to converge, πK(K) must decrease sufficiently rapidly. To ensure that the production

function satisfy the Inada conditions, we consider a Cobb-Douglas production function, which leads us to

consider the reduced-form profit function of Example 1 in Chapter 1 where π(K) = Kα; πK(K) = αKα−1,

α ∈ (0, 1). For convergence of the integral, β1 (α− 1) > 1. In other words, the elasticity α must be

sufficiently less than one or the marginal return diminishes at a sufficiently quick rate.

3. References

McDonald and Siegel (1986) analyze under uncertainty when a firm should enter a market if it has

no possibility to reverse its investment decision once it is operating in the market. Dixit (1989) analyzes

the problem of entry and exit, generalizing insights obtained in McDonald and Siegel (1986). Relaxing

the assumption of fixed lump sizes and considering instead perfectly divisible capital stocks may be

advisable to achieve analytical elegance. Tobin (1969) analyzed the problem of capital accumulation in a

deterministic setting; here, the optimal investment rate increases with the ratio of the market value to the

replacement cost of the firm’s capital (average q). Abel (1983) and Abel and Eberly (1994, 1996) modify

the framework of Tobin to a stochastic environment. This variant of Tobin’s q approach is referred to as

marginal q in investment theory.



CHAPTER 6

Social Optimality, Myopia, and Perfect Competition

A standard approach employed in economics to derive the equilibrium in perfect competition is to

consider the problem of optimal resource allocation faced by a benevolent social planner. This logic

applies in the context of investment under uncertainty as well. We here present some results concerning

the social optimum and perfect competition under uncertainty, with a focus on the notion of myopic

Nash equilibrium. Following Leahy (1993), there exists a connection between the aggregate behaviors of

myopic firms and the competitive benchmark, a property known as optimality of myopia.

In Section 1, we derive the social optimum. In Section 2, we determine a number of equilibrium

properties of the myopic Nash equilibrium. Section 3 discusses the connection between the social op-

timum, the myopic Nash equilibrium, and perfect competition. In Section 4, we introduce completion

delays (of fixed, known duration) in a perfect-competition setting and explain how a modeler may derive

the perfect competition equilibrium by a “simple” change of state space. Section 5 provides references

to related academic works.

1. Social optimum

The equilibrium in perfect competition is connected with the problem faced by the social planner,

whereby the social optimum is the solution of a one-agent dynamic optimization problem. We first

discuss the stochastic control problem faced by the social planner. As before, we concentrate on trigger

policies.

A firm’s profit depends on the aggregate capital stock held in the industry. For simplicity, we consider

a one-dimensional capital stock k ∈ R+. Suppose an exogenous shock — modeled as a diffusion — affects

a firm’s profit. If the exogenous state is x ∈ X ⊆ R and the industry capital stock k, the market-clearing

price is D(x, k) with D(x, 0) = 0 for all x ∈ X . The inverse demand function D ∈ C2,2(X ,R+) is

increasing in the shock and concave in the capital stock. In state (x, k), the variable production costs

are c(x, k). π(x, k) , D(x, k) − c(x, k) is a firm’s instantaneous (reduced-form) profit obtained in state

(x, k). Besides, the firms employ a constant-returns-to-scale production technology, so that the firms

produce at full capital (or g(k) = k). Assume investments and divestments can be made instantaneously

with no fixed adjustment cost other than the purchase or resale price; the investment cost function is of

the kinked piece-wise linear form:

(3.3) κ : I 7−→ κ̄ I+ + κ I−.

In other words, the firm may acquire capital at unit cost κ̄ or scrap unused capital units for a price of κ.

To preclude arbitrage opportunities, we assume κ < κ̄. We simplify the analysis and assume that capital

does not depreciate (λ = 0).

We now look at the aggregate problem faced by the social planner. As usual, the consumer surplus

corresponds to the area under the demand curve; it is given by

U(·, k) ,
∫ k

0

D(·,K) dK.

The marginal social utility is Uk(·, k) = D(·, k). The total variable production costs is

C(·, k) ,
∫ k

0

c(·,K) dK.

65
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The flow of social operating surplus is thus

Π(·, ·) , U(·, ·)− C(·, ·) .

U(·, ·), resp. C(·, ·), is concave, resp. convex, in its second argument. Π(·, ·) is decreasing and concave in

k; it inherits the continuity and integrability properties of D and c. The social surplus and firm profits

are connected via the relationship

Π(·, k) =

∫ k

0

π(·,K) dK.(1.1)

In other words, the marginal social contribution of an additional unit of capital is the profit of an atomic

firm: Πk(·, k) = π(·, k). The following example gives a specific case of social surplus function used in real

options analysis.

Example 7 (From Grenadier, 2000b). Consider a firm that produces at full capacity faces isoelastic

demand D(x, k) = x k−1/η of equation (2.2). Production costs are negligible. The social surplus is given

by

Π(x, k) =

∫ k

0

x K−1/η dK = x

[
Kg(1,η)

g(1, η)

]k
0

= x
kg(1,η)

g(1, η)
,

with g(1, η) , 1− 1/η.

From a dynamic perspective, the social planner receives at each instant t a social surplus Π(Xt(ω) ,Kt(ω))

depending on the shock realization Xt(ω), and the prevalent aggregate industry capital stock, Kt(ω).

X = {Xt}t≥0 and K = {Kt}t≥0 are stochastic processes. In this case, the (singular) control of the social

planner is the unique process ξ that describe the capital stock evolution beyond the initial stock, namely

Kt(ω) = k + ξt(ω) .

Equivalently, ξt(ω) can be viewed as the cumulated investment flows that occured before time t. The

positive (resp., negative) part of ξ is noted ξ+ (ξ−). The decomposition ξ , ξ+−ξ− is unique, whereby the

processes ξ+ and ξ− are left-continuous, nondecreasing and their sample paths have bounded variations.

Ξ is the space made up of such processes. The social planner adjusts the industry capital stock with a

view to maximizing expected social surpluses. Investment in capital stock has no effect on the mean and

variance coefficients µ(x) and σ(x) of the diffusion. The objective function of the social planner is:

(1.2) J(x, k, ξ) = E
[∫ ∞

0

e−rtΠ(Xt, k + ξt) dt−
∫ ∞

0

e−rtκdξ−t −
∫ ∞

0

e−rtκ̄dξ+
t | x, k

]
,

where the two last integrals are understood (pathwise) as Lebesgue-Stieljes integrals. If a social optimum

exists, it yields value

(1.3) S(x, k) , max
ξ∈Ξ

J(x, k, ξ) .

Alternatively, the social planner may decide not to invest at all. The perpetuity value of social surpluses

if the industry capital stock stays at its initial level k is

(1.4) Ŝ(x, k) = J(x, k, 0) = E
[∫ ∞

0

e−rtΠ(Xt, k) dt | x, k
]
.

The social optimum is characterized by a system of equations (1.5a)–(1.5c) that the value function S(x, k)

must satisfy. In the low-demand region, i.e., if (x, k) ∈ {(x, k) | x ≤ X(k)}, we have

(1.5a)

{
Sk(x, k) = κ,

Skx(x, k) = 0.

Besides, the ordinary differential equation

(1.5b) r S(x, k) = Π(x, k) + µ(x)Sx(x, k) +
1

2
σ(x)

2
Sxx(x, k)
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must be satisfied in the hysteresis region, i.e., if (x, k) ∈
{

(x, k) | x ∈
(
X(k) , X(k)

)}
. Finally, for high

demand, i.e., if (x, k) ∈
{

(x, k) | x ≥ X(k)
}

,

(1.5c)

{
Sk(x, k) = κ,

Skx(x, k) = 0.

2. Myopic Nash equilibrium

A strategic firm takes account of the impact of future investments on its value function. Firm i

maximizes its value and assuming rational capital adjustments by its rivals, receives at time t project

value

(2.1) V (x, k) , max
ξi∈Ξi

E
[∫ ∞

0

e−rtπ (Xt,Kt) dt− e−rtκdξi−t − e−rtκ̄dξi+t | x, k
]
.

One way to approach the oligopoly problem is to consider the notion of myopia in investment behaviors.

A myopic firm is farsighted in calculating present values but shortsighted in that it decides as if the

price process were not affected by other firms’ investments. The myopic firm has static expectations

regarding the capital stock but rational expectations for the exogenous shock fluctuations. A myopic

firm is shortsighted and invests as if no further investment were to occur in the industry, i.e., as if Kt will

remain fixed at its current level k for all t ∈ R+. It behaves rationally under this restriction, receiving

for initial state (x, k)

(2.2) V̂ (x, k) , max
ξi∈Ξi

E
[∫ ∞

0

e−rtπ(Xt, k) ds | x, k
]
.

Consider first an oligopoly with n symmetric firms (n < ∞) producing a single, homogeneous,

nonstorable good. Each firm i adopts an investment strategy ξi. Firm i’s capital stock and the industry

capital stock at time t (on path ω ∈ Ω) are, respectively,

Ki
t(ω) = ki + ξit(ω), and Kt(ω) = k +

n∑
i=1

ξit(ω).

We note the strategy profile by ξ =
(
ξi, ξ−i

)
. At places, Kt is a n-dimensional random variable. The

payoff to firm i is

(2.3) J i(x, k, ξ) , E
[∫ ∞

0

e−rtπi(Xt,Kt) dt−
∫ ∞

0

e−rtκdξi−t −
∫ ∞

0

e−rtκ̄dξi+t | x, k
]
.

Firm i choses its investment strategy ξi to maximize its payoff. A Nash equilibrium in myopic strategies

is a n-tuple
(
ξ1∗, · · · , ξn∗

)
such that, for each player i ∈ N ,

ξi∗ ∈ arg max
ξi∈Ξi

J
(
x, k; ξi, ξ−i∗

)
.

Since the market-clearing price generally declines following investment, a firm will invest for values

greater than the perpetuity value of capital in order to cover (partly) sunk capital-adjustment costs.

Denote by v̂i(X(k) , k) the upper level of profitability that triggers investment and v̂i(X(k) , k) the

divestment trigger. Since the capital-adjustment cost function in equation (3.3) is not differentiable at

I = 0, the hysteresis set (X(k) , X(k)) is nonempty. The value received by firm i if a Nash equilibrium in

myopic strategies exists is V̂ i(x, k). In the hysteresis set, the marginal value v̂i(x, k) solves the ordinary

differential equation

(2.4a) rv̂i(x, k) = πiki(x, k) + µ(x) v̂ix(x, k) +
1

2
σ(x)2 v̂ixx(x, k), x ∈

(
X(k) , X(k)

)
.

At the boundaries of the hysteresis set, we have by value matching

(2.4b)

v̂i
(
X(k) , k

)
= κ,

v̂i(X(k) , k) = κ
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Optimality is obtained by the high-contact or super-contact conditions

(2.4c)

v̂ix
(
X(k) , k

)
= 0,

v̂ix(X(k) , k) = 0.

We consider, in Examples 8 and 9, two cases of myopic Nash equilibria that admit closed-form

solutions.

Example 8 (From Grenadier, 2002). Assume the n firms expand their capital all at the same time

and in the same proportion with dξit = dξt/n, with no possibility of scrapping. Assume a constant-

returns-to-scale production technology and the isoelastic demand function

D(x, k) = x k−1/η,

with η > 1. Firm i has negligible production costs and faces a profit function π(x, k) = D(x, k) ki.

The multiplicative demand shock X follows the geometric Brownian motion of equation (3.4), with δ ,
r−µ (> 0). β1 and β1 are the positive and negative roots of the fundamental quadratic in equation (1.4).

We assume η > β1. Firm i’s marginal profit obtained from increasing its capital stock is

πki(x, k) = xg
(
si, η

)
k−1/η,

where si , ki/k is firm i’s market share and g
(
si, η

)
, 1 − si/η. The differential equation (2.4a) then

specializes to

rv̂i(x, k) = x g
(
si, η

)
k−1/η + µ x v̂ix(x, k) +

1

2
σ2 x2 v̂ixx(x, k),

which, in the hysteresis region, has a solution of the form

v(x, k) =
πki(x, k)

δ
+A(k)xβ1 +B(k)xβ2 .

To ensure finiteness of the value function at the origin (limx↓0 v(x,K) = 0), we must have B = 0. From

the value-matching condition (2.4b) at the upper trigger,

X̄(k) g
(
si, η

)
k−1/η

δ
+A(k)X(k)

β1 = κ̄.

Applying the super-contact condition (2.4c) to the general solution, it follows

g
(
si, η

)
k−1/η

δ
+ β1A(k)X(k)

β1−1
= 0 ⇔ A(k) = −

X(k)
1−β1 g

(
si, η

)
k−1/η

δβ1
.

Substituting the expression for A(k) back, it results

g
(
si, η

)
k−1/η

δ

[
X(k)− X(k)

1−β1

β1

]
= κ̄,

eventually obtaining (cf. Grenadier, 2002, equation 21)

X(k) = Π∗ g
(
si, η

)
κ δ k

1
η ⇔

X(k) g
(
si, η

)
k

1
η

δκ
= Π∗

with Π∗ , β1/(β1 − 1). The closed-form solution for the marginal value function is

v(x, k) =
πki(x, k)

δ
−
πki
(
X(k) , k

)
δβ1

(
x ∧X(k)

X(k)

)β1

.

Example 9 (From Baldursson, 1998). Consider the capital-adjustment cost function (3.3) with

κ = 0. Firm i faces linear demand (equation 2.1 with a = 1) and has unit production cost c. X =

{Xt}t≥0 follows the geometric Brownian motion as per equation (3.4). Firm i’s profit function is
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π(x, k) = (x− bk) ki − cki, obtaining marginal profit πki(x, k) = x − 2bki −
∑
j 6=i bk

j − c. To en-

sure that limx↓0 v(x,K) = 0, B(k) = 0. Solving for the value-matching and the super-contact conditions,

(2.4b) and (2.4c), gives

X(k) = Π∗
δ

r

(
c+ r + 2bki + bki

)
,

and the marginal value function

v(x, k) =
−2bKi − bk−i − c

r
+
x

δ
− xβ1

δβ1X(k)
.

3. Perfect competition

The analysis of investment behaviors in perfect competition is typically build upon the premises that

capital is perfectly divisible. Thereby, one does not explicitly look at the number of incumbents firms

but rather consider atomic firms that each holds an negligible share of the aggregate industry capital

stock with no material influence on the price-setting process.

In perfect competition, the industry capital stock process ξ is not a decision parameter of the atomic

firm. It only reflects the belief about the change in the industry capital stock. Recall that a stopping

time is a mapping τ : Ω → R+ that do not allow foresight into the future, namely {τ(ω) ≤ t} ∈ Ft

for all t ≥ 0. For an arbitrary investment process ξ, the stopping times τ(k) , inf
{
t ≥ 0

∣∣ξ+
t > 0

}
and

τ(k) , inf
{
t ≥ 0

∣∣ξ−t > 0
}

indicate, respectively, when capital is added and reduced for the first time.

A change in the capital stock occurs for the first time at (stopping) time τ(k) , τ(k) ∧ τ(k). We can

decompose the payoff function (2.3) as

J(x, k, τ, ξ) =E
[ ∫ ∞

t

e−rt
{
π(Xt,Kt) dt− κdξi−t − κ̄dξi−t

}
| x, k

]
=E
[ ∫ τ(k)

0

e−rtπ(Xt, k) ds+

∫ ∞
τ(k)

e−rtπ
(
Xt, k

i + ξit
)

dt−

e−rτ(k)κ1{τ(k)=τ(k)} − e−rτ(k)κ1{τ(k)=τ(k)} | x, k
]

=V̂ (x, k) + γ(x, k),

where the term

γ(x, k) , E
[ ∫ ∞

τ(k)

e−rt
[
π (Xt,Kt)− π

(
Xt,Kτ(k)

)]
ds− e−rτ(k)κ1{τ(k)=τ(k)}

− e−rτ(k)κ1{τ(k)=τ(k)} | x, k
]
.

Suppose a strategy profile ξ =
(
ξi, ξ−i

)
and payoff functions J i1, J2, J

i
3 : ⊗ni=1Ξi → R. J2(·) is called

fictitious objective function if there exists J i3(·) such that J i1(ξ) = J2(ξ) + J i3
(
ξ−i
)
. Suppose now the

n-tuple ξ∗ maximizes J2(·). Then,

sup
ξi∈Ξi

J i1
(
ξi, ξ−i∗

)
= sup
ξi∈Ξi

J2

(
ξi, ξ−i∗

)
+ J i3

(
ξ−i∗

)
= J2(ξ∗) + J i3

(
ξ−i∗

)
.

Hence, ξ∗ is a Nash equilibrium. In other words, if a strategy profile ξ maximizes the fictitious objective

function J2 (·), then ξ is a Nash equilibrium of the game Γ =
{
N, (Ξi)i∈N , (J

i
1)i∈N

}
.

From the above, we obtain:

ξi∗ ∈ arg max
ξi∈Ξi

V (x, k)⇔ ξi∗ ∈ arg max
ξi∈Ξi

V̂ (x, k).

The above establishes the duality between the myopic firm’s problem and the social planner’s, stating

that myopic investors invest at the same time(s) as a social planner would do. Although a competitive

firm’s deferral option is worthless, the option is still valuable for society as a whole. The issues raised in

real options analysis do not disappear in perfect competition, they are simply shifted to the aggregate.
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We now investigate the investment strategy a benevolent social planner would impose on decen-

tralized firms. To a given social planner’s strategy choice ξ, we associate the stopping times τ(k) ,
inf
{
t ≥ 0 | ξ+

t > 0
}

and τ(k) , inf
{
t ≥ 0 | ξ−t > 0

}
that indicate respectively when investment and di-

vestment takes place. Note the equivalence for t ∈ R+ between τ(ω,K) < t and ξ+
t (ω) > K on the one

hand and τ(ω,K) < t and ξ−t (ω) > K on the other hand.

The myopic case is easier to handle. Applying Itô-Doeblin formula and considering the drift part,

we have

DX,KΠ(x, k) = Πk(x, k)dK + µ(x) Πx(x, k) +
1

2
σ(x)2 Πxx(x, k)

From Dynkin’s formula, we have

E
[
Π(Xt,Kt) | x, k

]
= Π(x, k) + E

[∫ t

0

DxΠ(Xs,Ks) ds | x, k
]

+ E
[∫ t

0

∫ ∞
k

π(Xs,K) dK ds | x, k
]

= E[Π(Xt,Kt) | x, k] +

∫ ∞
k

E
[∫ t

0

π(Xs,Ks) ds | x, k
]

dK.

Applying Fubini’s theorem, we have

E
[ ∫ ∞

0

e−rtΠ(Xt,Kt) dt | x, k
]

=

∫ ∞
0

e−rtE[Π(Xt,Kt) | x, k] dt

=

∫ ∞
0

e−rtE[Π(Xt, k) | x, k] dt+

∫ ∞
k

E
[∫ t

0

π(Xs,Ks) dt | x, k
]

dK

Applying Dynkin’s formula, we now obtain:

(3.1) S(x, k) = Ŝ(x, k) +

∫ ∞
k

V̂ (x,K) dK.

The second right hand term captures the effect of investment and divestment to maintain at each time

the social profit within a certain range of profitability. The socially optimal investment process ξ is

expressed in terms of the optimal myopic investment policy. The social surplus obtained by a benevolent

social planner equals the social surpluses earned when selfish, myopic investors invest and divest at

their optimal thresholds. The payoff to the central planner is obtained by integrating the payoffs to the

atomic firms. The social planner’s problem can be seen either as a one-player stochastic control problem

where the social planner adjusts the industry capital stock to maximize the expected social surpluses (see

Section 1), or it can be seen as a series of stochastic control problems where each myopic firm chooses

its investment and divestment triggers to maximize its own value (see Section 3).

Back and Paulsen (2009) prove that the myopic Nash equilibrium does not correspond to the Markov

perfect equilibrium, because overinvestment is a profitable deviation. As the market share of a firm

decreases, however, the myopic equilibrium yields a value which converges to the firm value under perfect

competition.

4. Completion delays

Grenadier (2000a) extends the model by Leahy (1993) to allow for completion delays. At the first

sight, completion delays may cause a certain path dependency that altogether affect the investment

strategy choice of a firm; a firm might be reluctant to invest in capital in favorable situations if it knows

that it will have soon new capital units at disposal. Future market-clearing prices {D(Xs,Ks)}s≥t
would depend not only on the expectations about the shock realizations {Xs}s≥t conditional on current

information Xt but also on past decisions relating to future additions to the capital stock. To know the

arrival times of units under construction, firms need to remember the investment decisions over the past

D years. At any time t, one considers both the units of capital Kt(ω) that are completed and already
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available for production and the units that are currently under construction Dt(ω). In other words,

Dt(ω) is the number of units that have begun construction during the time interval (t−D, t] if t > D

or (0, t] otherwise. At any time t, the social planner needs to know the current state of the shock Xt(ω)

and the current capital stock Kt(ω) because both Xt(ω) and Kt(ω) determine current (reduced-form)

profit flow. However, it must also consider the number of units in the pipeline Dt and the times at which

these units will be completed: Tt(ω) ,
{
s ∈ [t−D, t)

∣∣KD
t (ω) > KD

t−(ω)
}

memorizes when investment

decisions have been taken on a given path ω ∈ Ω. These factors affect the social surpluses over the

ensuing D years. The relevant states are Xt(ω), Kt(ω), Dt(ω), and Tt(ω). For notational simplicity, we

set Yt(ω) = (Xt(ω),Kt(ω), Dt(ω), Tt(ω)).

This time dependency might make it impossible to pin down a well-defined solution to the control

problem. The apparent difficulty in deriving optimal controls in such situations is that the state space

can be of infinite dimension and Markov policies would be biased. Especially, the set Tt(ω) may be

of infinite dimension. Without time to build, the payoff-relevant states are simply Xt(ω) and Kt(ω).

Unless the model can be converted into one of finite dimension, the standard solution techniques cannot

be employed. The amount and arrival times of units currently “in the pipeline” are relevant because

they will affect the market prices over the ensuing D years of construction. The social planner’s problem

is

(4.1) S(y) , max
ξ∈Ξ

E
[∫ ∞

0

Π(Xt,Kt) dt−
∫ ∞

0

e−rtκdξ−t −
∫ ∞

0

e−rtκdξ+
t

∣∣∣∣y] .
One can simplify the state space by adding a new state variable coined “committed capacity.” The latter

state corresponds to the aggregation of already existing capital stocks and capital units in the pipeline.

The solution approach is thus to consider an artificial industry in which all units currently in the

pipeline are assumed to be completed. In this industry, two states are relevant for determining the future

optimal controls: the current realization of the shock Xt(ω) and the total supply of committed capital.

Let kD denote the committed capital, i.e., KD
t (ω) = Kt(ω) + Dt(ω). Note that Kt(ω) = KD

t−D(ω) for

t > D on path ω ∈ Ω. Knowledge of the current shock value Xt(ω) and of the level of committed capacity

KD
t (ω) obtains to be sufficient to determine the equilibrium investment strategy. This transformation

of the state space was demonstrated by Bar-Ilan and Strange (1996) in a model of production capacity

with time to build. Because a firm starting construction will not receive economic profits for D years, the

firm decides based on profits to be received from D years onwards. The decision to build a new unit of

capacity is analogous to the decision to exercise a call option on an asset D (> 0) years from completion.

Here, in contrast to the standard real options competitive equilibrium approach, where the process of

the actual marginal values follows a diffusion process with reflections, the expected value prevailing at

completion D years from now follows such a diffusion.

Consider again the social surplus in equation (4.1) obtaining

S(y) = E

[∫ D

0

e−rtΠ(Xt,Kt) dt

∣∣∣∣∣y
]

+ max
ξ[D,∞)

E
[∫ ∞

D

e−rtΠ(Xt,Kt) dt− e−rtκdξ−t − e−rtκdξ+
t

∣∣∣∣y](4.2)

The choice of strategy ξ[D,∞) by the social planner does not affect the social surplus Π(Xt,Kt) over

the interval (0, D) since newly added capital units are not yet available. The second right-hand side

term in equation (4.2) does depend on the current level of committed capital units KD
t (ω) but not the

state Tt(ω) because in D years all units currently under construction will then be completed. Therefore,

some information in Yt(ω) are not needed. Considering a state set Y ′t (ω) =
(
Xt(ω),KD

t (ω)
)

is sufficient

without loss of information. Equation (4.2) can be transformed into

S(y) = E

[∫ D

0

e−rtΠ(Xt,Kt) dt

∣∣∣∣∣y
]

+ max
ξ[D,∞)

E
[∫ ∞

D

e−rtΠ(Xt,Kt) dt−
∫ ∞
D

κdξ−t −
∫ ∞
D

κdξ+
t

∣∣∣∣y′]

= S(x, k, 0, ∅)− E

[∫ D

0

e−rtΠ(Xt,Kt) dt

∣∣∣∣∣y′
]

+ E

[∫ D

0

e−rtΠ(Xt,Kt) dt

∣∣∣∣∣y
]
.
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Thus, to derive the optimal investment policy ξ∗ for S(y), we can turn the simpler problem S(y′). In

other words, the original problem has been transformed into a simpler, Markov state space problem in

an artificial economy.

5. References

Based on the rational-expectation framework introduced by Lucas and Prescott (1971), Leahy (1993)

sets the perfect-competition benchmark for continuous-time analysis of investment in (infinitely divisi-

ble) capital stock, allowing firms facing kinked piecewise capital-adjustment cost function to invest and

divest. Leahy proves the social optimality of myopia in perfect competition: myopic firms invest at

the same time as firms ignoring potential future capital stock changes would. Dixit (1991) discusses a

perfect-competition model in lines with Leahy (1993). Baldursson (1998) considers a similar problem

employing the approach of a fictitious social planner. Baldursson and Karatzas (1996) consider capital

expansion in a very general set-up for the underlying stochastic processes and build upon the connec-

tion between singular control and optimal stopping. Grenadier (2000b) introduces completion delays

in the setting of Leahy (1993). Grenadier (2002) considers an oligopoly where n firms adopt a myopic

investment behaviors. Back and Paulsen (2009) prove that the equilibrium in Grenadier (2002) fails

Markov perfection and prove the perfect competition equilibrium is perfect. Grenadier (2000b) employs

a real options approach to derive dynamic equilibrium for perfect competition for a market subject to

time-to-build.
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We considered so far strategic considerations as being inconsequential. When real options are avail-

able to a few firms, such an approach is ill advised. The benchmark cases have been studied with use of

techniques from stochastic control theory. In the following three chapters — each a research contribution

submitted to a refereed journal — we investigate generalizations of the previous insights to situations

involving multiple firms that hold similar investment opportunities, called shared options. Most models

of irreversible investment in perfectly or imperfectly competitive markets (see, e.g., Grenadier, 2002;

Baldursson, 1998) have adopted a mixed open-loop/Markov approach without explicitly referring to it

and without properly discussing the implications of the assumed information structure. They consider

myopic strategies and use the Nash equilibrium as the appropriate solution concept to derive their market

equilibrium.

In Chapter 7, we provide a review over other contributions addressing the intersection of investment

under uncertainty and industrial organization; this overview is aimed at categorizing and relating the

research streams. We highlight there managerial insights concerning the nature of competitive advantage

(first- versus second-mover advantage), the manner in which information is revealed, firm heterogeneity,

capital increment size, and the number of competing firms. Finally, we conclude and discuss research

avenues yet to be explored to extend the reach of contribution in this literature. Chapter 8 discusses a

market-entry game under uncertainty. Chapter 9 investigates strategic interactions in a setting where

competing firms have to decide on how much to invest or divest.



CHAPTER 7

Strategic Investment under Uncertainty: A Synthesis

Abstract. Investment is a central theme in economics, finance, and operations management. Tradi-

tionally, the focus of analysis has been either on assessing the value of flexibility (investment under uncer-

tainty) or on describing commitment effects in competitive settings (industrial organization). Research

contributions addressing the intersection of investment under uncertainty and industrial organization

have become numerous in recent years. In this paper, we provide an overview aimed at categorizing and

relating these research streams. We highlight managerial insights concerning the nature of competitive

advantage (first- versus second-mover advantage), the manner in which information is revealed, firm

heterogeneity, capital increment size, and the number of competing firms.

1. Introduction

Investment theory seeks to equip decision makers with quantitative tools for assessing investment

projects. As emphasized by ?, the development of valuation models featured three stages. In static

models, an investment project is completely described by a specified stream of expected cash flows with

no managerial flexibility. A noted method anchored in this perspective is the “discounted cash flow” ap-

proach. In dynamic models, projects can be actively managed in response to the resolution of exogenous

uncertainty. This approach is embedded in decision-tree analysis, stochastic dynamic programming, sto-

chastic programming, and real options analysis (ROA). Dixit and Pindyck (1994) and Trigeorgis (1996)

address such issues using the tools of stochastic dynamic programming and contingent claims analysis.

Even though the theory has been refined over time to incorporate many real-world features, the lack of

explicit consideration given to strategic interactions often creates a partial picture in competitive set-

tings. del Sol and Ghemawat (1999) highlight the risk of ignoring competition in investment decisions.

In combined real options and game-theoretic models, firms can presumably condition their decisions not

only on the resolution of exogenous uncertainties but also on the (re)actions of outside parties (e.g.,

competitors). Future cash flows can be understood as the payoffs of a game involving several decision

makers and “nature.” The third approach — commonly called option games — was first proposed in

the early 1990s and has received attention in academia ever since. Option games analysis examines

the trade-off that arises, under uncertainty, between managerial flexibility and commitment in dynamic

competitive settings.

A firm can effectively make an early strategic investment that alters the later game structure by

inducing asymmetry among firms. In deterministic settings, the sign of the strategic effect depends on

the intent of the commitment and the type of competitive reaction.1 Early “overinvestment” is optimal

when the strategic effect is positive: when the entry of rivals acts as a negative externality for incumbents,

committing to an irreversible investment typically has a positive strategic effect because the leading firm

acquires a first-mover advantage and can foreclose the market to potential entrants. When the strategic

effect is negative, however, a firm should refrain from investing. In stochastic settings, uncertainty

may erode the incentive to make a sunk investment given that future prospects are risky. Any initial

investment decision requires the committing firm to weigh the opportunity cost of a commitment against

1Fudenberg and Tirole (1984) decompose the drivers that affect the sign of the strategic effect. An investment is either

“tough” or “soft” depending on whether the investment is meant to make the rival worse or better off, respectively. If firm

(re)actions are “strategic substitutes,” then firm j will respond “less” to an aggressive action by firm i. Conversely, firms’

(re)actions can be “strategic complements.”

75
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the expected future strategic benefits resulting from it. Dealing with such a dilemma is commonplace

in business practice, and decision makers therefore require appropriate tools. Dyson (2000) suggests

that operational research should provide a means for such strategic decision making. Ferreira, Kar, and

Trigeorgis (2009) stress the relevance of option games analysis for strategic management formulation.

This paper provides an overview of the literature and stresses new insights from a selection of

articles.2 We classify these research contributions and structure the paper as follows. Section 2 deals

with lumpy investment decisions — for example, whether or not to enter a market. Section 3 addresses

capital expansion models wherein it is recognized that firms may continuously adjust their capital stocks

(e.g., capacity). Section 4 deals with more complex investment problems in which several investment

decisions are intertwined. Section 5 summarizes the results, emphasizes key managerial insights, and

offers suggestions for future research.

2. Lumpy investment decisions: Entry, improvement, and exit

2.1. Exogenous competition and random entry. An early approach modeled competition ex-

ogenously and helped identify certain major drivers. Trigeorgis (1991) studies the impact of competition

on investment timing using standard ROA techniques for the geometric Brownian motion (GBM),

(2.1) dXt = µXt dt+ σXt dBt,

for drift parameter µ, volatility σ, and B = {Bt}t≥0 a standard Brownian motion.3 “Competitive

arrivals” may reduce the value of a firm’s own investment opportunity by taking away significant market

share. Such competitive entries are modeled as either anticipated or random Poisson arrivals. The former

case is analogous to an increased constant opportunity cost of waiting, whereas the latter reflects the

risk of a sudden drop in profitability; both interpretations suggest earlier investment. This framework

is limited in that it does not explain what drives competitors’ entry decisions. An endogenous, game-

theoretic approach explaining the incentives of firms to enter is more appropriate.

2.2. Discrete-time analysis of new-market models. A common practice in operational re-

search and industrial organization is to assume that decision makers decide at discrete moments in time.

Applied to option games, this approach provides an intuitive introduction to some key insights derived

in more complex settings.

Spencer and Brander (1992) consider a duopoly with quantity competition and characterize in closed

form the trade-off between flexibility and commitment. Demand is linear and subject to an additive

stochastic shock Xt (demand intercept):

(2.2) P (Xt, Q) = Xt −Q,

where Q = qi + qj is the total industry output and where the random variable Xt has mean a (the

standard demand intercept parameter) and variance σ2. Firms’ cost functions are linear, with variable

production cost c = ci = cj . In a Stackelberg setting, the leader – say, firm i – may precommit to a

choice of output prior to uncertainty resolution or may instead play a Cournot game after Xt is realized.

In equilibrium, firm i precommits if the demand variance is sufficiently low – namely, if σ2 < (a− c)2/8.

With higher variance, the flexibility to adjust output after uncertainty is resolved is more valuable than

committing to secure a first-mover advantage. The authors then allow both firms to decide whether they

will commit. Three game structures may result from the first-stage commitment game: (i) only one firm

commits (Stackelberg game), (ii) both commit (committed Cournot game), or (iii) neither does (flexible

2Grenadier (2000b) and Huisman (2001) introduce the subject in continuous time, whereas Smit and Trigeorgis (2004)

mainly deal with discrete-time models. Chevalier-Roignant and Trigeorgis (2011) discuss both modeling approaches. Boyer,

Gravel, and Lasserre (2004) review the literature but do not stress commonalities of the models. Huisman, Kort, Pawlina,

and Thijssen (2004) are restrictive in their scope, focusing on lumpy problems in continuous time.
3Throughout, we follow the risk-neutral valuation approach under the assumption of a complete market that precludes

arbitrage opportunities (see Cox and Ross, 1976; Harrison and Kreps, 1979).



2. LUMPY INVESTMENT DECISIONS: ENTRY, IMPROVEMENT, AND EXIT 77

Cournot game). In the symmetric cost case with pure strategies, either both firms commit or neither

does – that is, we have equilibrium (ii) or (iii).4 From a firm welfare perspective, the committed Cournot

game is detrimental because both firms are affected by demand uncertainty yet have no opportunity

to adjust their output. Even so, this outcome may obtain in equilibrium for sufficiently low variance,

σ2 < (a − c)2/8: both firms strive to secure the lucrative leader role, which results in the inefficient

equilibrium (ii). For σ2 > 7(a−c)2/36, the advantage from output flexibility dominates the commitment

advantage and so (iii) obtains in equilibrium. In the intermediate region, the two Nash symmetric

equilibria (ii) and (iii) coexist.

Smit and Ankum (1993) use a binomial lattice to analyze a duopoly investment game. Their results

corroborate some (analytical) findings of Spencer and Brander (1992). Inefficient mutual preemption

may arise when firms try to become the leader, yet firm asymmetry can result in a natural ordering

or sequencing of firms’ investment. Although the numerical approach provides only limited economic

intuition, it does allow one to investigate richer model settings. Zhu and Weyant (2003b,a) use a similar

approach to investigate the effect of information asymmetry on investment games for the case in which

one of the two firms ignores its rival’s production cost.5 For simultaneous commitment decisions, the

authors derive results in line with those of Spencer and Brander (1992). If investment decisions are

made sequentially, then information may be revealed depending on the order of investments. If the less-

informed firm moves first, no new information is revealed to its rival. However, if the better-informed

firm invests first, its rival learns the production cost of the leader. This gives rise to strategic learning

that may dampen the preemption effect.

2.3. Continuous-time analysis of new-market models. Whereas the discrete-time modeling

approach is readily implementable, continuous-time models generally provide more clear-cut economic

interpretations. Next we discuss such models under the premise that no firm is active at the outset.

2.3.1. Complete-information case. Dixit and Pindyck (1994) propose a continuous-time symmetric

duopoly model that simplifies the original approach of Smets (1991). An investment opportunity is

available to firms i and j at a fixed (sunk) investment cost I. The stochastic profit function consists

of a deterministic reduced-form profit — denoted πL in monopoly or πC in duopoly, πL > πC — and

a multiplicative shock X that follows a GBM, as in Equation (2.1), starting at level X0. The common

discount factor is r. Since firm payoffs depend on the firms’ entry decisions, the situation is analogous

to a multiplayer optimal stopping problem. For sequential investments, the follower is faced with a

single-agent optimal investment timing problem. The follower’s (gross) value if it enters at level x is

VF (x) ≡ xπC/δ with δ ≡ r−µ. Following the standard real options approach (see McDonald and Siegel,

1986), the follower’s entry threshold XF is obtained such that

(2.3)
VF (XF )

I
= Π∗ or

πCXF

I
= Π∗ (r − µ) ,

where

(2.4) Π∗ ≡ β1

β1 − 1
(> 1)

and

(2.5) β1 ≡
−
(
µ− 1

2σ
2
)

+

√(
µ− 1

2σ
2
)2

+ 2rσ2

σ2
(> 1) .

The term Π∗ can be interpreted as a required profitability level that must be exceeded by the return on

the investment project, VF (XF )/I, in order for the firm to invest. The follower’s value F (·) as a function

4However, if the firms’ marginal costs are asymmetric or privately known (incomplete information) then an asymmetric

Bayesian Nash equilibrium, in which the more cost-efficient firm invests first, may arise endogenously. This helps illustrate

how a static competitive (e.g., cost) advantage can create a dynamic strategic advantage.
5The analysis in Zhu and Weyant (2003a) focuses on a single decision point, whereas that in Zhu and Weyant (2003b)

consider multiple time steps in an approach similar to the one used in Smit and Ankum (1993).



78 7. STRATEGIC INVESTMENT UNDER UNCERTAINTY: A SYNTHESIS

of the initial demand level X0 is

(2.6) F (X0) =

{
VF(X0)− I if X0 ≥ XF [invest],

E0

[
e−kτF

]
[VF(XF )− I] if X0 < XF [wait].

Here E0

[
e−kτF

]
= (X0/XF )β1 is an expected discount factor and τF = inf{t ∈ R+ | Xt ≥ XF } is a

random variable indicating the first time the barrier XF is reached from below. A firm entering the

market early on, a leader, earns monopoly rents XtπL as long as the demand shock remains below XF .

After the follower’s entry, the firms will form a duopoly, each earning XtπC . Hence, the value of being

the leader can be expressed as

L(X0) =

VF (X0)− I if X0 ≥ XF ,

VL(X0)− I + E0

[
e−kτF

]
[VF (XF )− VL(XF )] if X0 < XF ;

(2.7)

here VL(x) ≡ xπL/δ. Upon the follower’s entry at random time τF , the leader “exchanges” its monopoly

perpetuity value VL(XF ) for the duopoly perpetuity value VF (XF ). Figure 1 plots the values of leader

and follower as a function of the state regions considered. At XP , firms are indifferent between the

leader and the follower role. For low initial values X0 < XP , the leader value is lower than the follower

value; no entry will occur in this demand region. In (XP , XF ), there is an incentive to invest as leader

because the leader’s value exceeds the follower’s. As a result, each firm plans to invest an ε-increment

Only leader

invests

Both

invest

No

investment

leader value

L(X0)

follower value

F(X0)

L(·)

F(·)

-I

X0

XP XF

Figure 1. Values of leader and follower in duopoly (Dixit and Pindyck, 1994)

earlier than its rival. The firms thereby dissipate the first-mover advantage L(·) > F (·). Preemptive

behaviors are no longer profitable when firms are indifferent between the leader and the follower roles

at XP .6 This phenomenon corresponds to the rent equalization principle explained by Fudenberg and

Tirole (1985) in a deterministic setting. In the intermediate region, (at least) one firm invests;7 for large

values X0 > XF , both firms operate in the market. Here option premia are positive for both firms, but

the threat of preemption will cause the leader to invest earlier than in the monopoly case.8

6The subscript P in XP stands for “preemption.”
7As shown by Huisman and Kort (1999), an undesired simultaneous investment outcome (“coordination failure” or

“mistake”) may result from strategic interaction with positive probability if X0 ∈ (XP , XF ).
8Joaquin and Butler (2000) and Dias and Teixeira (2010) discuss new-market models with asymmetry in terms of

production costs. Joaquin and Butler take an open-loop, pure-strategy approach; Dias and Teixeira use a closed-loop,

mixed-strategy approach and prove that Joaquin and Butler’s open-loop equilibrium obtains for a large cost differential.

Similarly, Takashima, Goto, Kimura, and Madarame (2008) use a new-market model to analyze technology choices for
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Bouis, Huisman, and Kort (2009) extend the duopoly model just described by considering a larger

number of symmetric firms that have the option to (irreversibly) enter a new market. A multiplicative

shock X that follows the GBM of Equation (2.1) affects the profit streams, where the deterministic

profit components πn are decreasing in the number of incumbents n. To derive their main insights, the

authors focus on the three-firm case and provide numerical analysis for larger oligopolies. Investment

thresholds in case of sequential equilibria are derived in an analogous fashion. The investment trigger

of the first and the second entrant, X1 and X2, are determined by rent equalization. If the triopoly

profit is reduced, the third entrant will invest later and set a larger investment trigger X3. The second

investor then has an incentive to invest earlier because it can enjoy duopoly rents longer, thus leading

to a decrease in X2 by rent equalization. The first investor then faces earlier entry by the follower and

enjoys monopoly profits for a shorter period; hence its entry threshold X1 is increased. The opposite

direction of the change between X2 and X3 on the one hand, and between X1 and X2 on the other hand,

is referred to as the accordion effect. Note also that the leader in the three-firm case invests after the

leader in duopoly yet before the monopolist; therefore, increased competition (three firms rather than

two) actually delays rather than hastens investment. For larger oligopolies, Bouis, Huisman, and Kort

argue that the number of expected future entrants is critical (especially whether this number is odd or

even) and illustrate how the accordion effect sustains.

Weeds (2002) analyzes a patent race between duopolists and the effect of competitive pressure on

firms’ research activities. Two symmetric firms have the opportunity to launch a research and devel-

opment (R&D) project at a cost I. The first firm to succeed gains an exclusive patent while the other

firm is left with nothing. Firms face two sources of uncertainty: the patent value evolves as the GBM of

Equation (2.1), and the research outcome is random with mean Poisson arrival rate λ.9 A firm’s R&D

strategy implies a trigger XF at which research activity is initiated. The follower’s investment threshold

XF is such that

(2.8)
XF

I
= Π∗

r + 2λ− µ
λ

.

Equation (2.8) resembles Equation (2.3) but with an adjustment for the Poisson arrival (and with profit

flow normalized to unity). The leader’s threshold XP is obtained from rent equalization. Weeds also

derives the optimal behavior imposed by a social planner in two related, cooperative settings: (A) two

identical research units with launch cost I and success arrival rate λ; and (B) one common large research

institute with doubled launch cost 2I and success arrival rate 2λ. In case A, the social planner would

optimally choose to phase research: one firm initiates research when the patent value reaches a threshold

XL ∈ (XP , XF ) that maximizes the leader’s value; the other firm begins conducting research later, when

the threshold X ′F = XF · (r+ λ− µ)/(r− µ) > XF is first attained. Because the follower participates in

the potential research success of the leader, it waits for a patent profitability that is larger than in the

competitive case. In case B, the large research institute commences research activities — at threshold

XC ∈ (XF , X
′
F ) — later than would a follower in a competitive setting.

Mason and Weeds (2010) assume that the follower’s investment can create both positive and negative

payoff externalities, where the type of the payoff externality affects the equilibrium outcome. The authors

derive conditions for the existence of a simultaneous investment equilibrium in which both firms invest

simultaneously at a later threshold XS than the preemptive threshold XP . In the presence of negative

externalities, the threshold XP is increasing in volatility σ but is bounded from above while XM (the

monopolist threshold), XF , and XS are increasing without bound in σ. Under positive externalities,

power generation investments. Kong and Kwok (2007) analyze a new-market model where duopolist firms face asymmetric

investment costs and revenues; the authors investigate the effects of these asymmetries as well as the presence of negative

versus positive externalities on the type of investment schedules: open-loop, preemptive, and simultaneous. We discuss

similar effects for investment in an already existing market in Section 2.4.
9Weeds (2002) assumes that the project value at time 0 is below I; therefore, simultaneous investment at the outset

is precluded as an equilibrium.
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however, the leader investment threshold can actually decrease with higher volatility. This latter result

stands in sharp contrast to the standard ROA story.

2.3.2. Incomplete-information case. Lambrecht and Perraudin (2003) consider the effect of incom-

plete information on investment policies. Consider a duopoly where firm j selects an investment trigger

Xj .
10 Here, firm i conjectures a distribution function Fj(·), with density fj(·), for its rival’s trigger Xj .

Firm i can update its beliefs in view of whether its rival invests at new, higher levels X̂t ≡ {Xs | 0 ≤ s ≤ t}
with conditional distribution function Fj(· |X̂t). The market is incontestable once a leader has entered.

Upon entry at level x, the leader’s gross value is VL(x) = x/δ. Given the risk of preemption, firm i’s

optimal investment threshold Xi
P is such that

(2.9)
VL(Xi

P )

Ii
= Π∗′ or

Xi
P

Ii
= Π∗′ (r − µ) ,

where the profitability index of (2.4), applying for myopic firms, is adjusted for the hazard rate hj(x) =

xfj(x) / [1− Fj(x)] (≥ 0):

Π∗′ ≡ β1 + hj(X
i
P )

β1 − 1 + hj
(
Xi
P

) ∈ (1,Π∗] .

Owing to information asymmetry, the threshold Xi
P is located between the full preemption threshold

(zero net present value threshold with associated profitability index 1) and the myopic threshold Xi
L

(with profitability index Π∗). The presence of incomplete information thus preserves some option value

of waiting (Π∗′ > 1). In particular, assume that no firm knows the exact realization of its rival’s

investment cost but that each firm has a prior belief G(·). Since there exists a mapping from firm j’s

investment cost Ij to its investment threshold Xj(Ij), it follows that, in a perfect Bayesian equilibrium,

an exercise strategy involves a map from the distribution G(·) of Ij to the distribution Fj(·) of the

rival’s entry trigger. For a special case of Pareto distribution for G(·), a closed-form solution obtains for

the mapping from I to the optimal trigger Xi
P . Hsu and Lambrecht (2007) build upon Lambrecht and

Perraudin’s (2003) model and examine a patent race where a potential entrant has complete information

about the incumbent but the latter does not know the realization of the challenger’s entry cost.

Nishihara and Fukushima (2008) consider a duopoly where profits are subject to a multiplicative

shock that follows the GBM described in Equation (2.1). The firms face asymmetric entry costs Ii

and Ij : firm i does not know its rival’s cost realization Ij but does know the cost’s distribution. By

assumption, firm i is necessarily the leader (firm j cannot profitably operate as a leader). Firm j may

nevertheless enter at a later point, earning πjC > 0 and driving firm i out of the market. The follower

threshold XF solves a single-player optimization problem. Under perfect information, the leader invests

in the demand region
(
XL, XL

)
. Because firm i cannot be preempted, the lower investment trigger XL

is selected irrespective of the follower’s actions. The value of the upper bound XL reflects the possibility

that firm i might be driven out of the market when firm j invests. Given incomplete information, firm

i forms a belief for the upper threshold X̃L. If X̃L > XL, then firm i will invest at high demand levels

and will promptly be driven out of the market by its rival. But if X̃L < XL, then firm i will forgo a

profitable investment opportunity in the region (X̃L, XL). Firm i’s decision not to invest for low demand

remains unaffected by the presence of information asymmetry.

Hoppe (2000) and Thijssen, Huisman, and Kort (2006) consider a timing game in which the prof-

itability of the project is uncertain. Both firms have an initial belief p0 ∈ [0, 1] that the project is good.

After a firm has invested, the project profitability becomes immediately known to both firms: these

information spillovers may create a second-mover advantage. Hoppe (2000) considers a duopoly in which

the belief is exogenously given, fixed, and common knowledge. Preemption (and rent equalization) takes

place if the probability of success is high. The timing game switches from a preemption game to a war

of attrition as this probability decreases. In Thijssen et al. (2006), Poisson signals convey information

about the project’s profitability: a“good” signal indicates a profitable project whereas a “bad” signal

10The analysis can also be extended to n firms.
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indicates a project that will generate a loss. Firms update their belief pt in view of new Poisson ar-

rivals and the rival’s investment decisions. If the quality and quantity of the signals is sufficiently high,

the first-mover advantage dominates: the industry equilibrium exhibits preemption. Yet if information

spillovers overwhelm the first-mover advantage then, at least initially, a war of attrition prevails. In this

case, more competition does not necessarily lead to greater social welfare. Décamps and Mariotti (2004)

discuss a similar problem for firms with asymmetric information about their rivals’ investment costs.

In Grenadier (1999), each firm receives an independent, private signal about a parameter that drives

the project value. A private signal is informative but imperfect, so firms condition their investment

strategies not only on their private signals but also on information conveyed by rivals’ observed investment

decisions. Firms are assumed to know the distribution of their rivals’ signals but not their realizations.

Firms with signals that are more informative will invest earlier, often in a suboptimal manner. Situations

where firms invest immediately — because their private information is overwhelmed by the information

conveyed by others — may arise endogenously. Such situations are called “information cascades.”

2.4. Improvement. Huisman and Kort (1999) provide an advanced analysis of cases in which firms

are already operating in a given market yet contemplate investing I in order to improve their current

profit flows (a so-called existing-market model). Firm i’s stochastic profit consists of two components: a

multiplicative exogenous shock X = {Xt}t≥0 (modeled as the GBM of Equation 2.1) and a nonnegative,

deterministic, reduced-form profit under some industry structure. At the outset, firms earn profit π0.

Upon making a new investment, a firm may earn a higher incumbency profit πL > π0. Firms’ investments

typically impose a negative externality on their rivals’ profit (by a known discrete amount). Once the

leader has invested, the follower experiences a lower profit, πF < π0, as long as it has not itself invested.

Once both firms have invested, they make duopoly profits with πC ∈ (π0, πL). Note that the value

increment from leadership, πL − π0, is greater than the value increment received by the follower upon

investing, πC − πF . These differences drive the somewhat different results for existing-market models

as compared with the new-market models analyzed in Section 2.3.1. Firms’ value functions account

for the different industry structures that the firms experience. Huisman and Kort identify two distinct

equilibrium scenarios for a symmetric duopoly. The first one, which we have already encountered, involves

a preemptive investment sequence wherein the leader’s investment threshold XP is determined by rent

equalization: L(XP ) = F (XP ). In a second equilibrium scenario, firms implicitly agree to invest at a later

time that maximizes joint value as part of tacit collusion.11 They pursue this collaborative approach if

they fear the loss of existing rents. If cash flows are highly volatile then firms are reluctant to invest early,

which makes tacit collusion likely to prevail. The probability of each industry structure is endogenously

determined. Huisman and Kort (1999) and Thijssen, Huisman, and Kort (2002) extend Fudenberg and

Tirole’s (1985) strategy and equilibrium definitions to allow for stochastic changes in the environment.

Pawlina and Kort (2003) apply such techniques to study a situation where duopolist firms compete in

quantities and may replace their existing technology for a more cost-effective one. Demand is linear (per

Equation 2.2) with an additive shock that follows the GBM of Equation (2.1). As before, investments

may take place either in sequence (preemption) or simultaneously (tacit collusion) depending on demand

characteristics. Although the profit functions are convex in the uncertain demand parameter, increased

volatility always favors a delayed technology replacement regardless of equilibrium type. The underlying

assumption of GBM enables the authors to study the expected time until replacement and to analyze

the impact of uncertainty.

Grenadier (1996) develops a duopoly model involving completion delays that provides insights into

the behavior of property developers. Two symmetric real estate developers have opportunity to increase

11This equilibrium was already identified by Fudenberg and Tirole (1985): if the payoffs from late and joint investment

are sufficiently high then there exists a continuum of tacit collusion equilibria, one of which coincides with the cooperative

(Pareto) optimum.
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their profit stream by refurbishing their building for an investment outlay of I.12 During the D years

until completion, the owner receive no rents from the building. The follower’s threshold XF , which is

obtained by standard techniques, satisfies

(2.10)
VC(XF )

I ′
= Π∗e−δD or

πCXF

I ′
= Π∗ (r − µ) ;

here Π∗ is as given in (2.4) and I ′ is the total opportunity cost of investing — that is, investment cost I

plus the value πF /δ of the forgone perpetual income stream from the old building. For low values of the

process (below XP ), the follower’s value strictly exceeds the leader’s and no improvement takes place.

For intermediate values [XP , XF ), only a single firm decides to invest; in this case, each firm is equally

likely to become the leader.13 For large process values [XF ,∞), both firms invest. The tacit collusion

scenario may occur for certain parameter values of the underlying process. The real estate market is often

characterized by sudden large development efforts (investment cascades) or building booms in the face

of declining demand and property values (recession-induced construction booms). Grenadier determines

factors that explain such anomalies: the occurrence of investment cascades is driven by market volatility,

and completion delay is the major reason behind recession-induced construction booms.

Pawlina and Kort (2006) analyze the effects of firm heterogeneity on optimal timing (asymmetric

investment costs). The advantaged firm pays I upon entry but its rival faces a higher investment cost

αI (α ≥ 1). As shown in Figure 2, three types of equilibria may arise depending on the magnitude

of the first-mover advantage πL/πC , and the level α of firm asymmetry. Preemptive equilibria, which

are characterized by rent equalization, emerge for moderate asymmetry. Cooperative equilibria, which

involve simultaneous investments at a socially optimal later time, obtain for sufficiently homogeneous

firms that have no real possibility of gaining a first-mover advantage. Sequential (open-loop) equilibria,

Asymmetry
ofDegree



Sequential
investment

Joint
investment

Preemptive
investment

investment

First-mover cost advantage L C 

Figure 2. Equilibrium regions (Pawlina and Kort, 2006)

in which the advantaged firm does not fear preemption and invests at the monopolist threshold, obtain

for high levels of asymmetry. The latter type of equilibrium is specific to the asymmetric case. The

relationship between firm values and the degree of asymmetry among firms is not clear-cut: a higher

degree of homogeneity may give rise to less efficient industry equilibria for both firms owing to preemption

effects.

12Grenadier (1996) departs from standard existing-market assumptions by assuming that profits π0 and πF are not

subject to the multiplicative shock X.
13Like Dixit and Pindyck (1994), Grenadier (1996) assumes that the leader is selected by the flip of a fair coin.

Huisman and Kort (1999) point out that this result holds only if X0 < XP ; if X0 ∈ (XP , XF ], then there is a positive

probability that a duopoly emerges immediately. This outcome is not desirable from the viewpoint of the two firms and

constitutes a “coordination failure” or “mistake.”
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2.5. Repeated lumpy capacity expansions. In the cases considered so far, each firm had a

single investment opportunity. Boyer, Lasserre, Mariotti, and Moreaux (2004) and Boyer, Lasserre, and

Moreaux (2010) consider, in continuous time, a duopoly where symmetric firms may sequentially add

capacities in lump sums. Firms initially have low capacities, and the The only possible equilibrium at

initial stages of the industry involves preemption. As a result of this preemption, the first industry-wide

investment occurs earlier than the socially optimal time (from the viewpoint of industry participants).

This distortion implies riskier entry and lower expected returns. Rent equalization occurs irrespective

of the volatility or speed of market development. When firms already hold substantial capacity, tacit

collusion may be sustainable as an industry equilibrium because firms fear the loss of existing rents; such

equilibria are more likely in highly volatile or fast-growing markets.14 The possibility of collusion is more

attractive to symmetric firms than to asymmetric ones. Boyer et al. (2004) assume that reduced-form

profits are the outcome of Bertrand price competition, whereas Boyer et al. (2010) consider Cournot

quantity competition.

Murto, Näsäkkälä, and Keppo (2004) consider, in discrete time, the case where firms can expand

capacity by a lumpy amount ∆Q at a cost I. The authors use stochastic dynamic programming and

Monte Carlo simulation to derive a numerical characterization of the equilibrium outcome. Demand is

isoelastic,

(2.11) π (Xt, Qt) = Xt ·Q−1/η
t ,

with constant elasticity η > 1. The investment trigger X
(
qit, Qt

)
is increasing in firm i’s total installed

capacity qit. Therefore, a smaller firm is more likely than a larger one to respond to small demand shocks

by expanding capacity. The authors analyze a form of firm asymmetry whereby one firm invests in

smaller lumps but for a larger unit cash outlay. Despite its higher investment cost per capacity unit, this

firm may be better off because it can react more quickly to changes in demand and is less vulnerable to

decreases in demand.

Novy-Marx (2007) allows for (a continuum of) asymmetric firms that differ in their initial capacities,

where the logarithms of the capacities are uniformly distributed between the largest and the smallest

firm. The assets produce a nonstorable output stream Qt that is sold at the market-clearing price

Pt ≡ P (Xt, Qt), and each firm realizes a revenue π
(
Xt; q

i
t, Qt

)
= qitPt. Inverse demand is isoelastic

(Equation 2.11), and the shock follows a GBM (as in Equation 2.1). A firm with capacity q can redevelop

at a cost of I(q) = qγ (γ > 1), although doing so involves an increasing cost-to-scale ratio. Redevelopment

requires abandoning the profit stream from the current assets in place. In equilibrium, a firm with

capacity qi expands to κqi when the market-clearing price reaches a certain (upper) threshold P̄
(
qi, Q

)
.

Both the intensity and the timing of redevelopment depend on the parameter κ (> 1). Remarkably, κ is

industry specific and stationary, which ensures that the distribution of capacities is preserved over time.

At any point, the next firm to expand capacity will be the smallest firm. Simultaneous investment does

not occur, and firm heterogeneity results in a natural ordering of firm investments.

Carlson, Dockner, Fisher, and Giammarino (2010) study the effect of rivals’ expansion and con-

traction options on incumbent firms’ risk exposure. Heterogenous duopolists face isoelastic demand of

Equation (2.11) and the shock follows the GBM of Equation (2.1). The firms may expand or contract

capacity (by lump sums) in response to market realizations. A rival’s investment decisions act as a

natural hedge against variation in the exogenous state variable: growing demand may induce a rival’s

capacity expansion and thus limit the firm’s upside potential; a bearish market increases the likelihood of

a rival’s contraction in capacity, reducing the firm’s downside risk. These effects must considered when

using peer betas to proxy a firm’s risk.

14In such a context, the conventional real options result — that high volatility leads to postponing investment — is

reinforced because higher volatility may result in a switch from the preemption equilibrium to a tacit collusion equilibrium

involving later investment and higher values.
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2.6. Exit. Fine and Li (1989) supplement deterministic models of exit (e.g., Ghemawat and Nale-

buff, 1985; Fudenberg and Tirole, 1986; Ghemawat and Nalebuff, 1990) by allowing for the stochastic

decline of a duopoly market. The authors show (in discrete time) that, owing to “jumps” in the demand

process, the sequence of exit is not unique.

Sparla (2004) analyzes, in continuous time, the divestment or exit of duopolists when firms face a

stochastically declining market. At the outset, firms compete in the marketplace and earn π0. As soon

as one firm (the leader) divests, its profits drop to πL < π0 and the profit of its rival (the follower) rises

to πF > π0. Once both firms have divested, each earns πC ∈ [πL, π0). At the time of divestment, the

drop in gross profit for the follower is lower than that for the leader, πF − πC < π0 − πL; this creates a

second-mover advantage. For exit situations, we have πL = πC = 0. The multiplicative shock (a GBM

in Equation 2.1) evolves at such a low rate µ < 1
2σ

2 that it eventually becomes optimal for the firms to

exit. When a firm exits, it receives a salvage value S > 0.15 If a firm has already exited the market,

then its rival, the “follower,” becomes a monopolist with (gross) value VF (x) = xπF /δ. The follower’s

exit problem is of a decision-theoretic nature: its divestment threshold XF satisfies

(2.12)
VF (XF )

S
= Π∗ or

πFXF

S
= Π∗ (r − µ) ,

where Π∗ is the profitability level that must be attained. It is given by

(2.13) Π∗ ≡
β2

β2 − 1
,

where

β2 ≡
−
(
µ− 1

2σ
2
)
−
√(

µ− 1
2σ

2
)2

+ 2rσ2

σ2
(< 0) .

In this war of attrition or chicken game, both firms have an incentive to wait until the rival exits and

subsequently operate as a monopolist, or until market conditions deteriorate to such an extent that

both firms are better-off leaving the market, regardless of their rival’s action. In the unique symmetric

perfect equilibrium in mixed strategies, both firms exit simultaneously the first time the threshold XF

in Equation (2.12) is reached from above. When firms have asymmetric production costs, a second

equilibrium may also obtain: the high-cost firm exits first and the low-cost firm later. Under moderate

cost differences, both types of equilibria coexist. If the degree of heterogeneity is sufficiently high, the

“diffusion” equilibrium prevails. Murto (2004) considers asymmetry in terms of production scale. The

exit threshold of the leader is XL, such that

(2.14)
VL(XL)

S
= Π∗ or

π0XL

S
= Π∗ (r − µ) ;

here VL (x) = xπ0/δ, and the follower’s threshold is again given by Equation (2.12). For a given degree

of firm heterogeneity, the equilibrium — whereby the smaller firm exits first at XL and the largest firm

(j) later at XF < XL — is unique if the volatility is sufficiently low, but under increased uncertainty it

will coexist with an equilibrium that has the reverse ordering. The first exit sequence will also prevail

when the largest firm is sufficiently larger (for a given volatility level).16

15For enhanced comparability, we simplify Sparla’s (2004) model by assuming exit rather than partial closure and by

using a single aggregated salvage value S. Both Sparla (2004) and Murto (2004) decompose the salvage value into cost

savings made upon exiting the market and costs incurred to effect the exit (e.g., layoff costs).
16Unfortunately, these models cannot be readily compared. Sparla (2004) formulates the problem with mixed strate-

gies, whereas Murto (2004) uses pure (Markov) strategies and stopping sets. In the symmetric case, Murto (2004) obtains

two equilbria involving a sequence of exits (i.e., the firms are interchanged with respect to their position as leader and

follower).



3. INCREMENTAL CAPACITY EXPANSION 85

3. Incremental capacity expansion

Another stream of research focuses on situations characterized by firms that can increase their

capacity (or, more generally, their capital stock) by infinitesimal increments. As Pindyck (1988) suggests,

this approach is extreme (since most investments are lumpy) but does offer the convenience of analytical

elegance.17 Section 3.1 discusses oligopoly models of incremental capacity expansion, and Section 3.2

elaborates on the social optimality of “myopic” investment strategies under perfect competition.

3.1. Oligopoly. Grenadier (2002) describes a symmetric oligopoly with n firms. Profit streams are

affected by a fairly general aggregate shock modeled as a diffusion process:

(3.1) dXt = µ(Xt) dt+ σ(Xt) dBt,

where µ(Xt) and σ(Xt) are, respectively, the drift and diffusion terms and where B = {Bt}t≥0 is a

standard Brownian motion. Each firm possesses qit units of capacity at time t and can increase capacity

incrementally at any time at a cost of I per capacity unit. Building new capacity requires D years

until completion. Given constant returns to scale and negligible production cost, firms produce at full

capacity and sell at the market-clearing price Pt ≡ P (Xt;Qt), where Qt =
∑
i q
i
t is the total industry

output. If we assume symmetric investment strategies, then the firms expand simultaneously and in the

same proportion; that is, dqit = dqt = dQ/n. The equilibrium implies an upper trigger for the price

level P̄ (Q) ≡ P
(
X̄(Q) , Q

)
at which the firms will increase their aggregate capacity by dQ. For D > 0,

the firms will trigger investment at time t based not on the current price level Pt but rather on their

expectation concerning the price at time t+D. Grenadier (2002) formulates the problem in a tractable

way. If the shock follows the GBM of Equation (2.1), then the investment trigger X̄(Q) satisfies

(3.2)
P
(
X̄(Q) , Q

)
+ Q

nPQ
(
X̄(Q) , Q

)
I

= Π∗ (r − µ) ;

here the numerator on the left-hand side is the firm’s marginal profit at the investment trigger. For

isoelastic demand in Equation (2.11), this marginal profit is given by X̄(Q) [(nη − 1) /nη]Q−1/η. Closed-

form solutions also exist for several combinations of the arithmetic or geometric Brownian motion and

square-root process with the linear or the isoelasticity demand function. As the market approaches

perfect competition, option values become less valuable.

Aguerrevere (2003) extends Grenadier’s (2002) model by considering capacity utilization u as a

strategic variable. Demand is linear and the production cost function is quadratic in u. Aggregate

industry capacity is increasing in the number of firms but remains finite under perfect competition

(n → ∞). The level of capacity utilization is independent of the number of firms. The output price

paths exhibit mean reversion due to discretion in the capacity utilization rate, with significant spikes

during times of extremely high capacity utilization. Owing to time-to-build delays, completion of capacity

expansion is preceded by a phase of high utilization and high prices. Moreover, the investment lag also

leads to an ambiguous effect of increased volatility σ on the optimal level of capacity held and still

under construction (“committed capacity”). If construction is instantaneous, then committed capacity

is strictly decreasing in σ: firms can be surprised only by low levels of demand yet can always respond

to high levels. Consequently, lower capacity levels are optimal. In contrast, if time-to-build is strictly

positive then firms face the risk of having too little installed capacity on hand in buoyant markets. This

is most likely in situations with high demand and high σ and firms have an incentive to hold reserve

capacity.18 Hence, committed capacity is decreasing in σ for sufficiently low demand (underutilization is

more likely) but increasing for high demand (firms anticipate capacity shortage and expand).

17Such models rely on instantaneous control techniques, whereas the models discussed previously deal with impulse

controls.
18The utilization discretion is key for this argument. In a setting of constant utilization, firms will not hold reserve

capacity.
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Aguerrevere (2009) uses Aguerrevere’s (2003) model to examine a firm’s systematic risk (beta), which

is determined as a function of the riskiness of the assets in place and of its expansion options. Weights

are determined based on the present values of assets in place and of expansion options. An expansion

option beta obtains to be constant (independent of industry capacity, demand level, and the number of

firms), whereas the beta of assets in place is increasing in the number of firms.19 As in Grenadier (2002),

the value of expansion options decreases with the number of firms. Assets in place are generally less

risky when demand is high, since then capacity utilization is increased. In particular, the beta of assets

in place is zero when demand reaches the capacity expansion threshold. At this point, the firm’s beta

is solely determined by the weight and beta of expansion options. Because expansion options are more

valuable in more concentrated markets, a firm’s beta under conditions of high demand is decreasing in

the number of firms. But with low demand (and correspondingly a low value of expansion options), the

firm beta is mostly driven by the beta of assets in place; therefore, a firm’s beta under low demand is

increasing in the number of firms.

3.2. Myopia and social optimality. Building upon the rational expectations framework, Leahy

(1993) sets the benchmark case for continuous-time analysis of (infinitely divisible) capital stock expan-

sion and scrapping under perfect competition. A large market is composed of infinitesimal firms that

decide on entry and exit. Firms face an uncertain price P (Xt, Qt) as a function of the capacity held in

the industry Qt and a demand shock X = {Xt}t≥0 modeled as a diffusion. Even if the demand shock

follows an (unrestricted) diffusion process, the entry and exit of infinitesimal firms implies that the price

process {Pt}t≥0, which is endogenously determined, is also a diffusion process, with reflecting lower and

upper barriers P (Q) and P (Q). Each firm’s entry and exit thresholds also coincide with these barriers.

In equilibrium, the firms’ Markov investment strategies exhibit some form of myopia in that firms invest

at the same time as would a firm that ignores potential future capacity expansions. In comparison with

the investment strategy formulated by a social planner and imposed on decentralized firms, myopic in-

vestment policies are socially optimal.20 Grenadier (2000a) extends Leahy’s (1993) model to allow for

completion delays.

Baldursson and Karatzas (1996) consider capacity expansion and allow for stochastic processes that

are not necessarily of the diffusion type. The correspondence between perfect competition, myopic

strategies, and social optimality is again established based on a probabilistic approach to stochastic

control theory that relies on the connection between singular control and optimal stopping theory. This

approach helps identify the model’s relation to lumpy investment problems.

Baldursson (1998) discusses both expansion and downsizing. The result that obtains in the Nash

equilibrium is compared with the choice of a social planner through the use of a “fictitious” objective

function. The author proposes a general model for the inverse demand function (price as a function of

shock and capacity). Some special cases admit closed-form solutions.

Back and Paulsen (2009) challenge the assumption underlying myopic investment behaviors. The

authors discuss the appropriateness of the Nash or open-loop equilibrium concept employed in most

models of oligopoly and perfect competition (e.g., Baldursson and Karatzas, 1996; Baldursson, 1998;

Grenadier, 2002). Open-loop strategies allow firms to respond to the resolution of uncertainty with

respect to the exogenous shock but do not allow firms to respond to the observed actions by rivals.

Optimal open-loop strategies must form a Nash equilibrium as part of the open-loop equilibrium. Back

and Paulsen (2009) discuss that if firms could, in effect, respond to their rivals’ actions (i.e., could

formulate closed-loop strategies) then the equilibrium strategies derived by Grenadier (2002) would not

19Since capacity is increasing in the number of firms and since utilization is constant, it follows that aggregate output

adapts more rapidly in a more competitive market. Thus, assets in place are riskier because their cash flows are more

sensitive to demand shocks.
20Leahy (1993) also points out that the impossibility of increasing one’s capital by (infinitely) small amounts might

explain the emergence of excess returns for firms behaving myopically (in lumpy investment models). Dixit (1991) discusses

a perfect competition model along the lines of Leahy (1993).
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be perfect.21 Formulating the dynamic capacity expansion problem in closed-loop strategies is difficult;

nonetheless Back and Paulsen manage to show that, in the limit, the perfect competition outcome derived

in Leahy (1993) is part of a (perfect) closed-loop equilibrium.

4. Complex investment decisions under uncertainty and competition

So far we have considered models that focus solely on the timing of investment, exit, expansion,

or contraction. In reality, firms rarely limit their investment strategy to determination of the entry

or expansion time. They often determine the staging of entry, the appropriate scale of production,

the type and quality of product and so on. For simplicity, one frequently abstracts from market entry

strategy in order to focus on the timing issue, which explains why most option games adopt this simple

perspective. However, richer situations have also been explored. Section 4.1 discusses strategic growth

options whereby the attractiveness of an early investment may depend on the opportunity it creates for

the future. Section 4.2 explores the issues involved in compound option settings under competition, and

Section 4.3 presents models in which firms decide on multiple criteria (multidimensional strategy sets).

4.1. Strategic growth options. Kulatilaka and Perotti (1998) assess the possibility of a firm

making an early commitment investment that confers greater “capability” to take advantage of future

growth opportunities. Such early investment opportunities are “strategic growth options.” Demand is

linear (as in Equation 2.2) with Xt distributed on (0,∞). Firms select the quantity they supply. A firm’s

early investment helps to reduce variable production cost from C to c < C at a sunk investment cost

I. For a given industry structure, the profit functions are convex in demand Xt because firms respond

to improved market conditions by increasing output and prices. A strategic investment leads to greater

convexity of ex post profits than in the case without early investment. In the original symmetric case, both

firms invest as duopolists in the second stage if Xt ≥ C. In an asymmetric Stackelberg game, the leader’s

(ex post) entry threshold is c. The disadvantaged firm would earn πC(Xt; c, C) = (Xt − 2C + c)
2
/9 in

an asymmetric Cournot duopoly; it will invest only if Xt ≥ 2C − c. In other words, in the intermediate

demand region, c ≤ Xt ≤ 2C−c, the leader ends up in a monopoly position.22 Each firm’s profit function

is continuous and increasing in Xt. For simplicity, we normalize c to zero. The leader assesses the net

expected gain GD(X0) from commitment, which is given by

GD(X0) = E0

[
πC(Xt, C) 1{Xt≥C} −

{
πC(Xt, C) 1{Xt≥2C} + πL(Xt, 0) 1{Xt<2C}

}]
− I.

A unique threshold level XD makes the Stackelberg leader indifferent between committing or not,

GD(XD) = 0. If demand exceeds XD, then the strategic investment should be undertaken. The Stack-

elberg leader’s profit function is “more convex,” which favors overinvestment. The gross expected value

of the strategic growth option thus increases with uncertainty. However, since the payoff function in

GD(·) is neither convex nor concave, it follows that the overall net effect of uncertainty is ambiguous.

The incentive to precommit depends critically on the magnitude of the competitive (cost) advantage

gained from committing. For large strategic effects, higher dispersion will tend to decrease XD and

thereby encourage commitment. For weak strategic effects, increased volatility deters precommitment.

Kulatilaka and Perotti then consider the special case where Xt is log-normally distributed and obtain

Black–Scholes-like closed-form solutions. If simultaneous precommitment is allowed, then a number of

situations may emerge in the first stage: simultaneous commitment, simultaneous inaction, or precom-

mitment by only one firm resulting in either monopoly or asymmetric Cournot duopoly. The firms may

use mixed strategies; three regions for the mixed strategies are distinguished for which boundaries are

obtained at indifference points. For low demand value, no firm precommits. For high demand, both

firms invest to reduce their production cost. For intermediate demand, the strategies are fully mixed.

21A firm that pursues the equilibrium open-loop strategy, while its rivals may revise their strategy choice over time,

would run the risk of being preempted.
22The authors implicitly assume that asymmetric Cournot duopolists cannot mix their second-stage entry strategies.
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Smit and Trigeorgis (2001, 2007, 2009) discuss similar problems by utilizing a framework adapted

from Fudenberg and Tirole (1984). Using simulations, the authors assess different R&D strategies and

infrastructure investment decisions in competitive environments. In contrast to Kulatilaka and Perotti

(1998), Smit and Trigeorgis consider American-type options and consider situations where the strategic

effect is positive because strategic actions are complements (as in price competition) and where the

commitment is beneficial to the rival (“soft commitment”).

4.2. Staged investment appraisal and sleeping patents. Completion delays affect the (opti-

mal) investment strategies of firms. For R&D projects (or in bio-tech, IT, and oil exploration), the length

of such delays is rarely known in advance owing to uncertain innovation success. Weeds (2000) examines

this source of uncertainty and its impact on the duopolist’s adoption of technology. The firm invests in

research with the aim of acquiring a patent that will give it exclusive access to a new market. If the

innovation is successful, then the firm has the option to make an additional sunk investment to adopt

the new technology. The entire R&D investment opportunity can be assessed as a compound option

where the value of the (first-stage) research option derives, in part, from the (second-stage) commercial

investment option. The framework provides a rational explanation for the existence of sleeping patents

— that is, patents acquired but kept in a standby or “sleep” mode. Policy makers typically regard sleep-

ing patents as anticompetitive devices employed by dominant firms to erect entry barriers (blockaded

entry). However, in the context described by Weeds, sleeping patents may arise when options coexist

with completion uncertainty and there is no need for incumbent firms to coordinate their actions. By re-

stricting a firm’s ability to let patents sleep, antitrust authorities may actually reduce — via compulsory

licensing — option values and weaken firms’ incentives to conduct research in the first place.

Lambrecht (2000) derives optimal investment strategies for two symmetric firms sharing the option

to make a two-stage sequential investment under asymmetric information on the rival’s profit. In the

first stage, each firm is competing to acquire a patent that will enable it to proceed to the second stage

(commercialization). Lambrecht derives conditions under which inventions are likely to be patented

without being put to immediate commercial use. Sleeping patents are more likely to exist in an R&D

portfolio when interest rates are low, when volatility is high, and/or when the second-stage cost is high

relative to the first-stage cost.

Miltersen and Schwartz (2004) analyze patent-protected R&D investment projects under imperfect

competition in the development and commercialization of the product. Competition in R&D may not

only increase production and reduce prices but may also shorten the time needed to develop the product

and increase the probability of a successful development. These benefits to society are offset by increased

R&D investment costs in oligopolistic markets and lower aggregate value of all R&D investment projects.

4.3. Hybrid investments. In Section 2 we discussed lumpy investment situations where the main

problem was the optimal timing of an investment outlay. Huisman and Kort (2009) allow firms to choose

optimally their capacity and production scale when they enter the market. Demand is linear and subject

to a multiplicative shock modeled as the GBM of Equation (2.1):

(4.1) D(x,Q) = x (1− bQ) .

Firms always produce at full capacity. Each firm pays an investment cost I per unit of capacity. Assume

that the leader has chosen quantity QL and consider now the follower. Applying the standard techniques

reveals that the follower’s investment trigger X∗F (QL), as a function of the leader’s quantity, must satisfy

(4.2)
V (X∗F (QL))

I
(1− bQL) =

β1 + 1

β1 − 1
;

where V (x) = x/δ and β1 is as given in (2.5). The next step is to study the leader’s behavior. Given

the initial state X0, the follower will invest later if the leader sets QL such that X∗F (QL) > X0; this

is an “entry deterrence” strategy. Alternatively, the leader may “accommodate entry” by allowing the

follower to invest immediately. The attractiveness of each strategic stance depends on the initial state
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of the process, X0. For endogenous firm roles, the leader invests at XP in capacity Q∗L(XP ) and the

follower invests later at XF in capacity QF (Q∗L (XP )); thus, the preemption point XP is implicitly given

by L(XP ) = F (XP , Q
∗
L (XP )). For low volatility, the follower chooses a higher capacity than the leader

and conversely for high volatility. Compared with the model without capacity choice, the monopolist

and the follower invest later in more capacity for high volatility and the leader invests earlier in a higher

capacity. Pennings (2004) examines entry timing, quality choice, and pricing in a vertically differentiated

duopoly. Here Xt, the number of customers at future time t, is unknown, with X = {Xt}t≥0 following

a GBM as in Equation (2.1). Firm profits and investment costs depend on the selected product quality

s: a firm’s profit (investment cost) is increasing and concave (convex) in s. For tractability, the author

assumes linear consumer utility U with uniformly distributed taste. The investment cost is given by

I(s) = αsγ , with γ > Π∗. In a Stackelberg game, the leader (firm i) decides on its investment trigger

Xi
L and product quality si as well as on the monopoly and duopoly prices piL and piC . The follower

(firm j) chooses the entry trigger Xj
F , the product quality sj , and the duopoly price pjC . The level of

demand in each industry structure follows from market-clearing mechanisms and depends on the chosen

prices and product qualities. A set of first-order conditions characterizes firms’ optimal choices in terms

of price, quality, and entry time. Under these assumptions, closed-form solutions exist. For low levels of

volatility, firms have an incentive to invest immediately — in which case the leader supplies a product

of higher quality than its rival’s. For higher degrees of uncertainty, firms delay investments. In this

case, the follower invests later for a better quality: sj = κsi with κ > 1. Finally, the degree of product

differentiation is increasing with uncertainty because ∂κ/∂σ > 0.

5. Conclusion and outlook

Van Mieghem (2008) considers the timing of investment and capacity sizing to be key elements of an

operations strategy. In this paper, we described a number of research contributions that provide guidance

on these issues in the face of uncertainty and competition. Table 3 summarizes the characteristics of

these models. In Section 5.1, we highlight key managerial insights derived in the literature on strategic

investment under uncertainty. We then provide an outlook for future research in Section 5.2.

5.1. Summary of key managerial insights. Many applications in operations management are

meant to refine existing economic models, but they often fail to consider strategic interactions. Decades

ago, Porter (1980) noted the importance of industry structure in determining optimal investment strate-

gies. He identified economic and technological uncertainty, competitive (e.g., cost) advantage, capital

divisibility, first-mover advantages, and competition intensity (number of incumbents) as major drivers.

Taken together, the works discussed in this paper suggest that firms should consider the seven following

factors when devising their investment strategies.

Static competitive advantage Pawlina and Kort (2006) demonstrate that, in a duopoly, a firm with a large

comparative advantage (e.g., lower investment cost) may enter the market or expand production with

little fear of preemption. Firm heterogeneity can thus explain a natural market entry sequence wherein

each firm formulates its investment strategy myopically and selects the best entry time as a monopolist

would. This sequence is also socially optimal from the viewpoint of the firms. The sequence is reversed

in divestment situations: the stronger firm ends up as a monopolist after its weaked rival has exited (see

Murto, 2004; Sparla, 2004).

First- versus second-mover advantage The existence of a first-mover advantage generally gives rise to

preemption. As shown by Mason and Weeds (2010), however, the presence of second-mover advantages

may mitigate the risk of preemption. Cottrell and Sick (2002) point out that managers often tend to

underestimate second-mover advantages and consequently invest too early.

Complete versus incomplete information As emphasized by Lambrecht and Perraudin (2003), information

asymmetry is not necessarily detrimental to firms because the risk of preemption may thereby be reduced.
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Uncertainty about research outcomes may also affect investment behavior: information spillovers in terms

of learning externalities may give rise to a second-mover advantage.

Size of capacity increments The size of the lump sums that firms can invest affects their responsiveness to

economic changes. As underscored by Murto et al. (2004), the possibility of investing in smaller capacity

increments may justify incurring higher (unit) investment costs.23

Capacity utilization and returns to scale As demand declines, firms reduce capacity utilization to protect

against downside risks. When demand is high and new capacity is not yet available, firms may choose

high utilization levels despite increasing marginal costs. These effects, well illustrated in Aguerrevere

(2003), may explain why output prices often exhibit mean reversion.

Number of competitors Preemption is more intense in highly concentrated markets, as demonstrated by

Bouis et al. (2009). If the number of firms is large, then myopic investment behavior can be optimal as

shown by Leahy (1993) and Back and Paulsen (2009). This property eases the quantitative analysis of

oligopolies with a large number of incumbents (see Grenadier, 2002).

Completion delays Completion delays may explain why certain behaviors persist even under market

conditions that prove earlier decisions wrong. Following Grenadier (1996), we can explain real estate

construction booms in recession times from this perspective. According to Aguerrevere (2003), volatility

may lead completition delays to have an ambiguous effect on aggregate capacity.

5.2. Directions for future research. Trigeorgis (1996) and del Sol and Ghemawat (1999) identify

the inadequate treatment of strategic interactions in the analysis of investment under uncertainty as a

significant gaps in the research literature. Although some of these gaps have been bridged, there remain

many avenues yet to be explored. Information is a prime example. Dynamic strategic interactions are

not systematically considered in the strategy space (open-loop versus closed-loop). The literature on

(stochastic) differential games may help address this issue. Moreover, often firms initially ignore certain

characteristics of the underlying market (e.g., the growth rate) but manage to learn it over time: this

perspective on information revelation is central to filtering theory and strategic experimentation. In the

literature on option games, strategy choices are generally defined in a very simple manner (e.g, solely

in terms of timing). Yet real-life investment strategies encompass many other aspects, such as network

design. The modeling approaches described in Section 4.3 hold some promise for future development.

Most papers in this literature have considered horizontal competition in a given market. However, other

parties along the value chain also represent threats or opportunities in investment situations, which

means that the analysis of vertical competition is also a viable research field. The extensive research in

operations management that deals with this subject may provide a good starting point. Most papers

have been concerned with deriving analytical results at the expense of applicability. To increase the

relevance of option games for management practice, new decision-making tool kits — suggested, for

example, by Ferreira et al. (2009) — should be developed. This could be achieved by increasing research

efforts dedicated to discrete-time approaches and by developing multiplayer stochastic programs and

simulation tools. This is a promising approach to the improvement of investment decision-making tools

for operational research.

23? analyze the effect of uncertainty on the value of divisibility in a nonstrategic context.
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Figure 3. Summary of selected contributions





CHAPTER 8

Market-Entry Sequencing under Uncertainty

Abstract. At the early stages of industry development, before operating in the market, firms may

identify an opportunity to enter yet wait for the market to grow sufficiently (to justify the expense of

market entry). We model this problem and show that, in oligopolies, market entry involving lumpy

investments takes place in sequence under uncertainty regardless of whether or not firms can observe

(and react to) their rivals’ moves. Unlike the case in which firms disregard competition (the myopic or

open-loop case), entry does not occur in a socially optimal manner when firms condition their moves on

competitors’ actions. Thus, additional information about rivals’ play may lead to social loss.

1. Introduction

It is standard practice in finance and strategy to interpret real investment opportunities as being

analogous to options. This view is well accepted among academics and practitioners alike and is the core

of real options analysis (ROA). It allows one to capture the dynamic nature of decision making because

it factors in management’s flexibility to revise and adapt strategy in the face of market uncertainty. This

approach is summarized in the works of Dixit and Pindyck (1994) and Trigeorgis (1996).

Standard ROA, however, has not adequately addressed strategic interactions. The exercise decisions

of a financial option holder have little impact on the underlying asset’s value dynamics. Since mainstream

ROA draws from contingent-claims analysis (based on financial options), a key feature specific to real

assets is often ignored — namely, the interplay or strategic interactions taking place among (real) option

holders. This oversight may result in misestimating the value of strategic options and in suboptimal

investment policies. The inadequate treatment of competitive dynamics among (real) option holders

remains one of the most compelling research gaps (Trigeorgis 1996, p. 376). Bridging this gap requires

concurrently taking into account both market and strategic uncertainties via the combined use of ROA

and game theory.1

In modeling multistage, multiplayer problems, one has to consider the possibility that players will

react optimally in the future, conditional on the information they gather over time.2 In order to analyze

strategic interactions in multistage deterministic settings, one often distinguishes two types of information

structures. In closed-loop strategies, the players can condition their actions (when called upon to play)

on the observed sequence of rivals’ moves. In contrast, open-loop strategies do not depend on rivals’

previous play and instead set ex ante a certain investment path to be pursued regardless of the rivals’

decisions. If the information structure allows players to condition their actions on previous plays, as in

closed-loop strategies, then the subgame-perfect solution concept may yield stronger predictions.3 Nash

1Smit and Trigeorgis (2004) discuss discrete-time option games, whereas Grenadier (2000b) and Huisman (2001)

examine a number of continuous-time models. Chevalier-Roignant and Trigeorgis (2011) provide an overview of both types

of “option games.”
2This has different implications depending on whether a single player is faced with deviations from an expected market

development or multiple players must predict what will be the outcome of strategic interactions over time. The first case is

characterized by Bellman’s principle of optimality, whereby the agent acts optimally in every (exogenous) state of the world;

the second case is characterized by subgame perfection, whereby players act optimally (as part of a Nash equilibrium) both

on and off the equilibrium path.
3In most cases, perfect equilibria are best because most dynamic games assume negligible information lags between

a player’s move and rivals’ observations. However, Nash equilibria in open-loop strategies are best when information lags

are infinite or firms are precommitted to a certain path of investment. See Fudenberg and Tirole (1991) for further details.

93
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equilibria in open-loop strategy profiles often fail to be subgame perfect when firms can observe (and

react to) their rivals’ moves.4 The open-loop approach is often employed in economic analysis when many

small players cannot condition their play on their opponents’ actions. Fudenberg and Levine (1988) have

shown that, as the number of players increases, the outcome of a perfect equilibrium in closed-loop

strategies converges to a Nash equilibrium in open-loop strategies. Therefore, the Nash equilibrium in

open-loop strategies provides a good benchmark and reasonable predictions for large oligopolies when

firms formulate their strategy in isolation and their decisions do not materially affect the decision making

of rivals.

The distinction between open-loop and closed-loop strategies has not always been clear in the emerg-

ing literature on “option games.” Several authors (e.g., Leahy, 1993; Baldursson and Karatzas, 1996;

Baldursson, 1998) have examined investment behavior in (perfectly) competitive markets under uncer-

tainty where firms use capital stock as a control variable and may increase that stock by a small amount

(infinitely divisible capital).5 These models assume that the Nash equilibrium (in open-loop strategies) is

the appropriate solution concept and do not discuss which information structure is the most descriptive

of the dynamic game considered. A new strand in the literature (see, e.g., Back and Paulsen, 2009;

Novy-Marx, 2009) considers perfect equilibria in an oligopoly where firms make incremental capital in-

vestments. In contrast, several real options models (see, e.g., Smets, 1991; Grenadier, 1996; Huisman and

Kort, 1999) have been developed in a duopoly setting and examine lumpy investments under closed-loop

strategies.

In this paper, we address a discrete or lumpy investment decision in the context of an oligopoly,

examining whether firms should enter the market now or later.6 This problem was previously studied

in the field of industrial organization previously by Reinganum (1981a,b); Gilbert and Harris (1984);

Fudenberg and Tirole (1985), and Reynolds (1987). However, these authors assume a deterministic mar-

ket environment. In this paper, we link the two previous approaches by exploring optimal market-entry

strategies that allow for uncertainty in market development as modeled by stochastic (Itô) processes. To

the best of our knowledge, only Bouis et al. (2009) have addressed oligopoly (more than two firms) and

lumpy investment. Our setting and modeling approach differs from theirs which uses numerical analysis

to study the investment behaviors in large oligopolies. Here we shall deal concurrently with an exogenous

shock and endogenous market-entry decisions.

The paper is organized as follows. Section 2 sets up the problem faced by would-be market entrants

and presents the model assumptions. Section 3 examines the investment timing problem in a new market

under uncertainty and demonstrates that investment takes place in sequence regardless of whether or

not firms can condition their decision on previous rivals’ moves. The open-loop equilibrium in Section

3.1 describes an oligopoly with a large number of incumbents (i.e., perfect competition); the closed-loop

duopoly model is discussed in Section 3.2. Section 4 compares the market-entry sequences with the

socially optimal benchmark, confirming that only the open-loop market-entry sequence is necessarily

socially optimal; in the closed-loop case, where firms can observe and react to their rivals’ previous

moves, the market-entry sequence need not be socially optimal. Section 5 concludes.

4In open-loop models there is a single proper subgame (the game as a whole); this explains why the Nash equilibrium

in open-loop strategies is subgame perfect if firms cannot condition their actions on rivals’ play.
5As noted by Pindyck (1988), the assumption that firms can continuously add incremental amounts of capital is an

extreme one; in fact, most business problems involve discrete or lumpy investment decisions.
6In reality, firms typically do not limit their market-entry strategy solely to determination of the entry time; rather,

they determine the staging of entry, the appropriate scale of production, the type of product to manufacture, etc. For

simplicity, economists frequently abstract market-entry strategy to focus on the timing issue in isolation.



2. MODEL SETUP AND ASSUMPTIONS 95

2. Model setup and assumptions

We consider settings to involve complete information on historic market developments and firm in-

vestment decisions and in which (option-holding) firms have common priors about the probabilities of (fu-

ture) exogenous events (homogeneous expectations). Consider the filtered probability space (Ω,F,F ,P),

where the filtration F ≡ {Ft}t≥0 is a family of “tribes” that allow perfect recall: Ft ⊆ Fs for all s > t.

The tribe Ft denotes for the possible histories (information set) on which the decision maker bases

her decision at time t; the information set keeps track of the exogenous market development and the

evolution of industry structure. For tractability, we restrict ourselves to a Markov environment where

the latest (i.e., current) state (shock and industry structure) is a sufficient statistic on which firms can

condition their decision making.7 We consider an oligopoly with n identical firms, where each firm has

an infinitely lived investment option (modeled as a perpetual American call, as in McDonald and Siegel

1986) but where no firm is active in the marketplace at the outset. When new firms enter the market,

they incur a positive lumpy (sunk, exogenous) investment cost I.

Assume the market is subject to an exogenous (F-adapted8) shock {Xt}t≥0 that follow a time-

homogenous Itô process characterized by the stochastic differential equation

(2.1) dXt = µ(Xt) dt+ σ(Xt) dBt,

where z = {zt}t≥t0 is a standard Brownian motion and the process starts at X0 = x almost surely.9

This process covers a fairly broad family of stochastic processes used in economic analysis, such as

geometric Brownian motion and Ornstein–Uhlenbeck process. Assume that the drift process exhibits

a long-term positive growth. The state of the industry structure is captured by an integer-valued (F-

adapted) nondecreasing process m = {mt}t≥0 that indicates the number of incumbent firms as of time

t.

The revenue function r(·, ·) of an incumbent firm at time t depends on the current value of the

exogenous shock and also on the number of incumbent firms:

ρ : R×N→ [0,∞).

The (stochastic) revenue function is Ft-measurable, twice continuously differentiable, and nondecreasing

in the shock; it is also decreasing in the number of incumbent firms. Denote the cost incurred by an

incumbent firm at time t by

c : R×N→ [0,∞).

The cost function c (·, ·) also is Ft-measurable, twice continuously differentiable, and nondecreasing in the

shock. When new entrants arrive, this cost might be reduced owing to spillover effects, best practices, or

asset sharing with competitors. On the other hand, the cost might increase in the number of incumbent

firms in response to higher demand for inputs.10 The instantaneous profit flow π (·, ·) ≡ ρ(·, ·)− c(·, ·) to

an incumbent is Ft-measurable, twice continuously differentiable, and strictly increasing in the shock.

However, it is strictly decreasing in mt because competitive arrivals are viewed as a negative externality.

7This restriction enables us to reduce the state space and avoid the “curse of dimensionality” by allowing the use of

Markov strategies (i.e., strategies based on the latest values of states).
8An F-adapted process is Ft-measurable for all t ∈ R+. The assumption of adaptedness to the filtration means that

no foresight about the future economic development is permitted; this is equivalent to the non–anticipativity constraint in

operations research.
9For technical reasons (existence conditions), assume further that the drift and the volatility processes (µ : R → R

and σ : R → R, respectively) are F-adapted and have finite variations and, assume there exist constants M,M′ ∈ R+

such that: (i) |µ(Xt)| + |σ(Xt)| ≤ M (1 + |Xt|), for all Xt ∈ R, t ≥ 0 (linear growth condition); (ii)
∣∣µ(X1

t

)
− µ

(
X2
t

)∣∣ +∣∣σ(X1
t

)
− σ

(
X2
t

)∣∣ ≤ M′
∣∣X1
t −X2

t

∣∣, for all X1
t , X

2
t ∈ R, t ≥ 0 (Lipschitz condition).

10If c(·, ·) were decreasing in mt, we would assume that the decrease in c (·, ·) is strictly less than the decrease in ρ (·, ·).
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We assume that risk-neutral firms face a constant, risk-free rate r that is common to all market

participants (including the central planner).11 Assumption 1 reflects the market’s incipience, with no

firm investing or operating at the outset. Firms that have not yet entered the market are not affected

by rivals’ investment decisions.

Assumption 1. No firm is active at the outset (m0 = 0), and none has an incentive to immediately

invest:

E0

[∫ ∞
0

e−rsπ (Xs, 1) ds− I
]
< 0.

The operator Et[·] is used henceforth as shorthand for E
[
·
∣∣∣h̃t], that is, the expectation conditional

on the (payoff-relevant) history h̃t ≡ (Xt,mt).

3. Market-entry sequencing

We now show that regardless of whether or not firms can condition their action on previous moves

(closed-loop versus open-loop strategies), the equilibrium market entries are characterized by a time

sequencing or ordering of the firms. We first examine a large oligopoly in which firms do not observe

their rivals’ play (open-loop strategies). We then discuss the preemption that arises when firms observe

their rival’s move in a duopoly model (closed-loop strategies). This latter approach has been formulated

by Dixit and Pindyck (1994) for a multiplicative shock that follows a geometric Brownian motion and

(implicit) mixed strategies. We shall derive an analogous result for the general Itô process with related

behavioral strategies.

3.1. Market-entry sequencing for open-loop strategies. As already noted, the Nash equilib-

rium in open-loop strategies is a good approximation for large oligopolies. To adapt the game-theoretic

notion of open-loop strategies (developed in a deterministic environment) to a setting where market fea-

tures evolve stochastically, we must refine the notion of open-loop strategies to account for the exogenous

shock. In this context, an investment policy is a decision rule based solely on the observed resolution of

market uncertainty over time but not on the sequence of moves in the industry.12 This assumption is

reasonable in some circumstances, since it may be easier to gather information about the prospects of a

given market than about rivals’ likely competitive moves.

Definition 1. An investment policy is a decision rule that maps, for every possibly state x ∈ R of

the shock, an action ait ≡ ai(x) ∈ Ai(ht) ⊆ {0, 1}. Here, ait indicates whether firm i operates (1) or not

(0), and Ait is the stage action set.

An investment policy is a pure strategy — that is, a map from the information set (where the payoff-

relevant history is the value of the exogenous shock in the Markov environment) to actions (to “enter”

or “not”). Investment is assumed to be irreversible, so the firm continues to operate indefinitely once

investment takes place. Given the infinite planning horizon, Bellman’s principle of optimality prescribes

that the existence of a fixed threshold level Xi that partitions the state space for the exogenous shock such

that (−∞, Xi) is the inaction region and [Xi,∞) is the action region. We can thus simplify the strategy

formulation and define it as selecting the investment threshold Xi, rather than specifying the mapping in

Definition 1. We associate to this threshold Xi a (F-adapted) stopping time τi ≡ inf {t ≥ 0 | Xt ≥ Xi} at

11The assumption of risk neutrality can be relaxed if arbitrage opportunities in the market do not exist and the market

is complete. Along the lines of Cox and Ross (1976) and Harrison and Kreps (1979), we could replace the drift in the

stochastic differential equation (2.1) by the one that is prevalent in a risk-neutral environment. In this case, B would be a

standard Brownian motion under the equivalent martingale measure.
12In this sense, an investment policy is open-loop with respect to the filtration of the strategy space but closed-loop

with respect to nature’s moves.
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which investment occurs.13 The assumption of irreversibility makes it possible to relate the stage action

ait in Definition 1 to the stopping time τi via the relationship

ait = 1{t≥τi}, t ≥ 0,

where 1 is the indicator function. The process that indicates the number of incumbent firms at time t

is m = {mt}t≥0, where mt =
∑n
i=1 a

i
t. Given Definition 1, we can now define the Nash equilibrium in

investment policies for a generic payoff function F i(·, ·). Let X−i denote the strategy profile of all firms

except firm i.

Definition 2. The profile of investment policies X∗ = (X∗1 , . . . , X
∗
n) is a Nash equilibrium if and

only if, for each firm i = 1, . . . , n,

F i
(
X∗i , X

∗
−i
)
≥ F i

(
Xi, X

∗
−i
)
, ∀Xi ∈ R.

If a firm were to enter the market immediately, then it would receive (at time t)

(3.1) W (Xt,mt) = Et
[∫ ∞

t

e−r(s−t)π (Xs,ms) ds− I
]
.

3.1.1. Myopic behavior in large oligopolies. The investor’s present expected value when firm i decides

to enter the market at time τi is given by

(3.2) V i0 (Xi, X−i) = V i(x;Xi, X−i) ≡ E0

[∫ ∞
0

e−rsaisπ(Xs,ms) ds− e−rτiI
]
.

Here {ms}s≥0 evolves over time with the arrival of new firms in the marketplace. For a given profile of

investment policies by rivals X−i, firm i chooses its investment policy to maximize its payoff V i0 (Xi, X−i).

Determining the Nash equilibrium in investment policies corresponds to the multiplayer optimization

problem

(3.3) V i0
(
X∗i , X

∗
−i
)
≡ sup
Xi∈R

V i0
(
Xi, X

∗
−i
)
, ∀i = 1, . . . , n.

Here firm i takes account of the impact of future investments on its value function when formulating its

optimal strategy. We then refer to i as a strategic firm.

In contrast, a myopic firm ignores the investments of other players in its maximizing behavior. In

other words, it invests as if no other investment occurs in the industry. The value that myopic investors

expect to receive (i.e., their beliefs about payoff) is

(3.4) vi0(Xi) = vi(x;Xi) ≡ E0

[∫ ∞
0

e−rsaisπ(Xs,mτi) ds− e−rτiI
]
.

The number of incumbents in equation (3.4) is hypothetized to remain constant (at level mτi) after firm

i’s entry, whereas the strategic firm’s maximization problem in equation (3.2) takes account of future

firm arrivals. Because firm arrivals induce negative externalities on the incumbent firm’s profit, the

myopic firm believes to it is entitled to a higher value than is a strategic firm for the same strategy

profile X = (Xi, X−i). This may be expressed formally as follows:

V i0 (Xi, X−i) ≤ vi0(Xi) <∞, ∀X = (Xi, X−i) ∈ Rn.

Both V i (·; ·, ·) and vi (·; ·) are increasing in x. The myopic firm behaves rationally under the restriction

that the effects of rivals’ investments on its value can be ignored. In this case, the optimal strategy solves

the following problem:

(3.5) vi0 (X∗i ) ≡ sup
Xi∈R

vi0 (Xi) , ∀i = 1, . . . , n.

Proposition 2 establishes that both strategic and myopic firms follow the same Nash equilibrium strate-

gies. The intuition behind this claim involves the strategic firm’s taking into account a (negative) value

13The finiteness of the first-hitting time typically involves conditions on the drift of the exogenous shock process

{Xt}t≥0. These conditions are specific to the case considered.
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component that is not material for strategy formulation. This property simplifies the underlying prob-

lem, allowing one to derive the Nash equilibrium investment policy profiles of strategic firms based on

the myopic firm’s simpler value functions of equation (3.4).

Proposition 2. In a Nash equilibrium in investment policies, a strategic firm formulates the same

investment policy as a myopic firm.

Proof. Define CE(·, ·) ≡ V i0 (·, ·) − vi0 (·), where CE denotes competitive erosion. From equations

(3.2) and (3.4), it follows that

CE(Xi, X−i) = E0

[∫ ∞
0

e−rsais {π (Xs,ms)− π (Xs,mτi)} ds

]
= E0

[∫ ∞
τi

e−rs {π (Xs,ms)− π (Xs,mτi)} ds

]
.

Assume a weak ordering of firms, with firm i investing at τi < ∞ (and firm i + 1 at τi ≤ τi+1 < ∞),

such that i = mτi firms are operating in the time interval [τi, τi+1]. Then

CE(Xi, X−i) = E0

[ ∫ τi+1

τi

e−rs {π(Xs, i)− π(Xs, i)} ds

+

∫ ∞
τi+1

e−rs {π(Xs,ms)− π(Xs, i)} ds

]
= E0

[ ∫ ∞
τi+1

e−rs {π(Xs,ms)− π(Xs, i)} ds

]
.(3.6)

This shows that CE(Xi, X−i) depends not on Xi but only on X−i, so CE(Xi, X−i) = CE(X−i) and

V i0 (Xi, X−i) = vi0 (Xi) + CE(X−i). Furthermore, since the profit is decreasing in the number of firms,

we have CE(X−i) ≤ 0. The term CE(X−i) can thus be interpreted as the competitive value erosion

incurred by the (strategic) investor. Following Slade (1994), call vi0 (·) the fictitious objective function.

Observe that CE(X−i) does not affect the optimizing behavior of the strategic firm i:

X∗i ∈ arg max
Xi∈R

V i0
(
Xi, X

∗
−i
)
⇐⇒ X∗i ∈ arg max

Xi∈R
vi0(Xi) .

�

Proposition 2 can now be used to derive sufficient conditions for the Nash equilibrium based on the

value function of the myopic firm in equation (3.4). These conditions are summarized in Proposition

3. For tractability, we omit the dependence of the value functions on the information set and on the

investment trigger X∗i .

Proposition 3. Firm i’s optimal investment policy X∗i must solve the following system of equations:

rvi −Dvi = 0,(3.7a)

vi
∣∣
x=X∗i

= W i
∣∣
x=X∗i

,(3.7b)

vix
∣∣
x=X∗i

= W i
x

∣∣
x=X∗i

,(3.7c)

lim
x→0

vi(x;X∗i ) = 0.(3.7d)

The term Dvi in equation (3.7a) corresponds to the expected capital gain over an infinitesimally

small time interval. It is given by

Dvi ≡ lim
h→0

Et
[
vit+h

]
− vit

h

= vixµ(Xt) +
1

2
vixxσ(Xt)

2
.(3.8)
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Here vix and vixx indicate respectively the first- and second-order derivatives of vi0 with respect to X0 = x

(D is the infinitesimal generator in stochastic calculus). Equation (3.7a) is the Hamilton–Jacobi–Bellman

(HJB) equation. Equation (3.7b) is the value-matching condition; it prescribes that, at the time of

optimal exercise, the firm is indifferent between investing now (and receiving W ) and waiting (and

receiving obtaining value vi). The “smooth pasting” condition represented by equation (3.7c) ensures

that the first-order derivative of the value function is continuous at the optimal threshold. Finally,

condition (3.7d) implies that the value function does not “explode” when the underlying shock has a low

value. These conditions are fairly standard in real options analysis.

Proof. The proof is equivalent to that for the Stefan problem in optimal stopping theory as derived

by Peskir and Shiryaev (2006), for example. �

3.1.2. Market-entry sequencing as Nash equilibrium. We have characterized the optimal Nash in-

vestment policies formulated by option-holding firms, but we have not yet characterized the timing of

when market entry takes place. We next examine whether firms enter simultaneously, sequentially, or

sequentially but with clustering effects.

Without loss of generality, we assume a weak ordering of investment with firm i denoting the ith

investor. From equation (3.2), it follows that

(3.9) V i0 (Xi, X−i) = E0

[
n∑
k=i

∫ τk+1

τk

e−rsπ (Xs, k) ds− e−rτiI

]
,

where (by convention) τn+1 ≡ ∞.

Proposition 4. Given a weak ordering of market-entry times, each firm has a unique optimal

threshold X∗i . The thresholds for i = 1, . . . , n are distinct, and investment takes place in sequence.

Formally:

0 < τ∗1 < · · · < τ∗n <∞,
where τ∗i = inf {t ≥ 0 | Xt ≥ X∗i }.

Proof. We know that vi0(·) is strictly increasing in
[
X∗i−1, X

∗
i+1

]
, so the function

(3.10) L vi ≡ rvi −Dvi

is also strictly increasing. Here Dvi is as defined in equation (3.8), and by equation (3.7a) we have

L vi
∣∣
x=X∗i

= 0. To see that X∗i ∈
(
X∗i−1, X

∗
i+1

)
, evaluate (3.10) at Xi = X∗i−1. Since L vi is strictly

increasing L v
∣∣
x=X∗i−1

< 0. Similarly, it follows that L vi
∣∣∣
x=X∗i+1

> 0 at Xi = X∗i+1. The threshold X∗i

(characterized by the conditions in Proposition 3) is the unique maximum of vi0(·) in
(
X∗i−1, X

∗
i+1

)
. �

Proposition 5. The Nash equilibria in investment policies are characterized by the following prop-

erties.

(i) The set (n-tuple) of market-entry thresholds X∗ = (X∗1 , . . . , X
∗
n) where X∗i , i = 1, . . . , n, solves

equations (3.7a)—(3.7d), is a Nash equilibrium in investment policies.

(ii) There are in total n! Nash equilibria in market-entry policies, and each is characterized as a

permutation of the market-entry thresholds in part (i).

Proof. See Appendix I. �

It cannot be readily predicted which Nash equilibrium is the most likely to occur among the n!

equilibria of Proposition 5.14 Example 10 considers a special case involving a multiplicative shock that

follows the geometric Brownian motion and admitting a closed-form solution.15

14If firms were asymmetric, then we could reasonably predict that the more likely investment sequence would be the

socially optimal one by employing focal-point or commonsense considerations.
15Proposition 5 is derived for the fairly general case of when the profit functions are twice continuously differentiable

in the shock and are subject to a shock that follows a time-homogeneous Itô process. Existence of an analytical solution to
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Example 10. Suppose the shock {Xt}t≥0 follows the geometric Brownian motion

dXt = µXtdt+ σXtdBt,

where µ, σ ∈ R+ and µ < r. The shock enters the profit function multiplicatively: π(Xt,mt) = Xtπ (mt)

for all Xt ∈ R+ and all mt ∈ N. Then the optimal (Nash equilibrium) threshold X∗i for the ith market

entrant, i = 1, . . . , n, is such that

X∗i
π(i)

δI
=

β1

β1 − 1
.

Here δ ≡ r − µ > 0, and β1 is the positive root of the “fundamental quadratic” given by

β1 ≡
1

2
− µ

σ2
+

√(
1

2
− µ

σ2

)2

+ 2
r

σ2
(> 1) .

When firms pursue the Nash equilibrium investment policies, the value function for a (strategic) firm

i = 1, . . . , n is

(3.11) V i0
(
X∗i , X

∗
−i
)

=

(
X0

X∗i

)β1
(
X∗i

π(i)

δ
− I
)

+ CE
(
X∗−i

)
,

where the last competitive erosion term is

CE
(
X∗−i

)
=

n∑
m=i+1

(
X0

X∗m

)β1

X∗m

(
π(m)− π(m− 1)

δ

)
(≤ 0) .

Proof. In the case of geometric Brownian motion, it follows from equations (3.7a) and (3.8) that

the solution solves the second-order differential equation

rvi − µXtv
i
x +

1

2
σ2X2

t v
i
xx = 0.

This equation has solutions of the form

vi(x;Xi) = Axβ1 +Bxβ2 ,

where A and B are constants to be determined and

β2 ≡
1

2
− µ

σ2
−

√(
1

2
− µ

σ2

)2

+ 2
r

σ2
(< 0) .

From the boundary conditions (3.7b)—(3.7d), one can derive the closed-form solutions. According to

(3.7d), B = 0. By (3.7b) and (3.1), we have vi(X∗i ;X∗i ) = A(X∗i )β1 = X∗i
π(i)
δ − I and so

(3.12) A = (X∗i )
−β1

[
π(i)

δ
X∗i − I

]
.

From (3.7c), it follows that vix(X∗i ;X∗i ) = Aβ1 (X∗i )
β1−1

= π(i)
δ . By (3.12),

β1

[
(X∗i )

β1−1−β1+1 × π(i)

δ
− (X∗i )

β1−1−β1 I

]
=
π(i)

δ
.

Therefore, X∗i = δI
π(i)

β1

β1−1 . The value of the strategic firm is obtained by specializing equations (3.2) and

(3.6). �

Proposition 6 establishes that early entrants into an emerging market are better-off than later en-

trants. It is interesting that, although firms are assumed to be symmetric, they receive asymmetric

values in equilibrium (open-loop approach).

this problem is not ensured generally but only under restrictive assumptions for the process and the profit function. The

geometric Brownian motion is standard in economic analysis because it is fairly descriptive of problems faced by economic

agents and often yields closed-form solutions.
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Proposition 6. In a Nash equilibrium in investment policies, firms’ equilibrium values decline

monotonically with their order of entry: an earlier investor is better-off (on average) than a later market

entrant. Hence there exist early-mover advantages V i0 (X∗) > V j0 (X∗) , i < j.

Proof. For two firms i and j, assume a weak ordering of investments with firm i investing earlier

than firm j, so that X∗i < X∗j or τ∗i < τ∗j . It then follows from the uniqueness of the maximum X∗i and

the definition of the Nash equilibrium in (5) that

V i0
(
X∗i , X

∗
j , X

∗
−i,j
)
> V i0

(
X∗j , X

∗
j , X

∗
−i,j
)
.

Because firms are symmetric, we have

V i0
(
X∗j , X

∗
j , X

∗
−i,j
)

= V j0
(
X∗j , X

∗
j , X

∗
−i,j
)
,

≥ V j0 (X∗) .

The last inequality follows because firm j is not worse-off if firm i invests later (at X∗j > X∗i ). �

It may seem counterintuitive that symmetric firms receive asymmetric values in Nash equilibrium

(with open-loop investment policies) and that firms do not struggle to become the first investor. These

results stem frm the assumption that firms act myopically and do not revise their strategy over time.

For closed-loop strategies, as discussed next, results may well differ because firms can react to their

opponents’ moves.

3.2. Market-entry sequencing for closed-loop strategies. In the Section 3.1, we assumed

that the investment option was available to a large number of firms, so that potential entrants could

not observe their rivals’ moves. This assumption was sufficient for the Nash equilibrium in investment

policies to be a reasonable solution concept and to provide the most accurate prediction concerning the

industry dynamics. The optimal investment triggers were selected myopically in that they were not

linked to the investment decisions of future entrants (thus, firms behaved as if they were the last investor

to enter the market or like a monopolist with an exclusive right to enter). In this section, we look at

the problem where (exogenous) entry barriers exist that prevent more than two firms from entering the

market.

Next, we briefly summarize what happens when firms devise investment strategies that are closed-

loop with respect to the filtration of (both) the strategy and the state space, as opposed to strategies

that are open-loop with respect to the strategy space.16

3.2.1. Markov perfection in investment strategies. From a game-theoretic viewpoint, investment poli-

cies (as formulated in Definition 1) are pure strategies whereby players select an investment path
{
ait
}
t≥0

in response to the actual development of a market shock but ignore the industry structure evolution

{mt}t≥0. Fudenberg and Tirole (1985) have shown that, in a deterministic duopoly setting, closed-loop

investment strategies cannot be considered in a similar manner (i.e., via pure strategies). Only random-

ization allows us to give theoretical explanations for certain effects that are heuristically expected, such

as preemption or a war of attrition.

In some circumstances or subgames, the pure-strategy formulation for deriving what to do (a binary

decision) in each state of the world fails to result in a unique Nash equilibrium in pure actions; this

failure is due to the lack of convexity of the instantaneous discrete action set. Hence, “convexifying” the

instantaneous action set may help solve this problem by randomization and the formulation of market-

entry strategies as behavioral strategies in continuous time. A behavioral strategy specifies a probability

16This problem has been discussed heuristically in Dixit and Pindyck (1994, Chap. 9) for the case of a multiplicative

shock that follows a geometric Brownian motion. Here, we derive a solution for a general shock — not necessarily multi-

plicative — that follows a time-homogenous Itô process. For a discussion close to ours but employing mixed strategies, see

Thijssen, Huisman, and Kort (2002).
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distribution ∆Ai
(
h̃t

)
over pure actions Ai

(
h̃t

)
for each history path h̃t = (Xt,mt), where the probability

distributions for different histories are independent.17

Definition 3. A behavioral market-entry strategy is a decision rule that maps every possible history

h̃t = (Xt,mt) to a mixed action αit ≡ αi
(
h̃t

)
∈ ∆Ai

(
h̃t

)
⊆ [0, 1].18 The mixed action αit measures

the instantaneous probability of investing in the short time interval [t, t+ h] in state h̃t as h approaches

zero.19

Because investment is irreversible, the mixed action set may change over an industry’s evolution.

Formally, ∆Ai(h̃t) ∈ {1} after firm i’s entry. In light of Definition 3, we can pin down the appropriate

solution concept — namely, Markov perfect equilibrium.

Definition 4. A Markov perfect equilibrium (MPE) is a profile of Markov investment strategies

α∗ = (αi∗t , α
j∗
t )t≥0 that form a perfect equilibrium; in other words, (αi∗s , α

j∗
s )s≥t is a Nash equilibrium

for all h̃t, t ≥ 0.20

We consider next the values of strategic firms. The value of a leader investing at time t is

(3.13) L(Xt) ≡ Et

[∫ τF

t

e−r(s−t)π(Xs, 1) ds+

∫ ∞
τ∗F

e−r(s−t)π(Xs, 2) ds− I

]
,

where X∗F is the threshold at which the follower enters and τ∗F = inf {t ≥ 0 | Xt ≥ X∗F } is the follower’s

entry time. The value of the follower (at time t) is

(3.14) F (Xt) ≡

 Et
[ ∫∞

τ∗F
e−r(s−t)π(Xs, 2) ds− e−r(τ∗F−t)I

]
if Xt ≤ X∗F ,

Et
[ ∫∞

t
e−r(s−t)π(Xs, 2) ds− I

]
if Xt > X∗F .

Alternatively, the option-holding firms might decide to invest at the same time, which would result in

the following value of simultaneous immediate investment:

(3.15) M(Xt) ≡ Et
[∫ ∞

t

e−r(s−t)π(Xs, 2) ds− I
]
.

For t ≥ τF , we have M(Xt) = F (Xt).

Proposition 7. Given that no firm invests at the outset (Assumption 1), the profile of symmetric

market-entry strategies α∗ = (αi∗t , α
j∗
t )t≥0 written as

α∗(x) = αi∗(x) = αj∗(x) =


0 if x ∈ (−∞, X∗P ) [don’t invest for low values],

φ(x) if x ∈ [X∗P , X
∗
F ) [mix for intermediate values],

1 if x ∈ (X∗F ,∞) [invest for high values],

where

(3.16) φ(·) =
L(·)− F (·)
L(·)−M(·)

∈ [0, 1]

17A behavioral strategy differs from a mixed strategy in that a mixed strategy determines a probability distribution

over pure strategies (i.e., over mappings from information sets to actions). A behavioral strategy randomizes, perhaps

degenerately, the action of the player in each state. Kuhn’s (1953) theorem establishes an equivalence between these two

definitions of randomization (mixed and behavioral strategy) under certain conditions. In both cases, the action sets may

differ for different histories h̃t.
18Fudenberg and Tirole (1985) and Thijssen, Huisman, and Kort (2002) provide an alternative formulation using

mixed strategies in continuous time rather than behavioral strategies. These authors consider a cumulative distribution

function representing the cumulative probability that firm i has invested in state h̃t or at any previous time, and αit is

a “probability of atoms” — a sort of density function. The equivalence between the definitions of mixed strategy and

behavioral strategy in such settings is rigorously shown by Touzi and Vieille (2002).
19Here αit is the limit (as the time length h approaches zero) of the discrete-time mixed-action measures in strategic-

form games. When αit > 0, the firm invests immediately and enters the market.
20The equilibrium strategy profile must be adapted to the payoff-relevant history filtration. For a formal definition of

MPE, see Maskin and Tirole (2001).
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constitutes a unique Markov perfect equilibrium in investment strategies. The thresholds X∗F and X∗P are

such that the following statements hold.

(i) X∗F solves the system

rF −DF = 0,(3.17a)

F
∣∣
x=X∗F

= W
∣∣
x=X∗F

,(3.17b)

Fx
∣∣
x=X∗F

= Wx

∣∣
x=X∗F

,(3.17c)

lim
x→0

F (x) = 0.(3.17d)

(ii) X∗P solves the system

rL−DL = 0,(3.18a)

L
∣∣
x=X∗P

= W
∣∣
x=X∗P

,(3.18b)

L (X∗P ) = F (X∗P ) ,(3.18c)

lim
x→0

L(x) = 0.(3.18d)

Proof. See Appendix II. �

The equilibrium strategy described in Proposition 7 is interpreted as follows. In the period prior to

the preemption time τ∗P , there is no incentive for either firm to invest, so both firms stay out (αit = αjt =

0). In the period immediately after the preemption time τ∗P , one firm in the industry will invest first. At

the optimal preemption time τ∗P , each firm is indifferent between being the leader and being the follower

(i.e., L(X∗P ) = F(X∗P )) and the probability of investment for each firm at the optimal preemption time

τ∗p is given by αiτ∗P
= αjτ∗P

= 0. For t greater than the follower’s optimal time of investment, both firms

will operate in the marketplace with the second entrant “following suit”. The only possible equilibrium

is characterized by a sequence in which one of the firms invests at time τ∗P and the other at a later time

τ∗F > τ∗P . The probability of being the leader in the duopoly market is exactly one half. Proposition 8

summarizes these two properties.

Proposition 8. The Markov perfect equilibrium established in Proposition 7 has the following prop-

erties.

(i) Investment takes place in sequence:

X∗P < X∗F or τ∗P < τ∗F .

(ii) Each (symmetric) firm has a one-half probability of being the leader in the duopoly market —

that is, of entering at time τ∗P .

Proof. See Appendix III. �

The discussion so far has concerned a Markov perfect equilibrium in the case of a duopoly. Bouis

et al. (2009) consider a similar problem in the case of a larger number of symmetric oligopolistic firms.

The authors consider a multiplicative shock that follows the geometric Brownian motion in the context

of reduced-form (deterministic) profits π(n) that decrease in the number of incumbent firms n. An

equilibrium arises where all firms invest sequentially.21 The investment trigger of market entrants (except

for the last one) is determined by “rent equalization.”22 Therefore, the inclusion of more option-holding

firms does not critically affect the sequencial occurrence of investments.

21Bouis et al. (2009) formalize explicitly the three-firm case and provide numerical analysis for larger oligopolies. The

authors show that simultaneous investments may also occur if the starting value of the process is large. In our model,

Assumption 1 ensures that such an equilibrium does not arise.
22The authors also demonstrate the existence of an additional effect that they call the accordion effect. In the three-

firm case, if the threshold of the third entrant X∗3 rises, then the second investor has an incentive to invest earlier and

thus enjoy duopoly rents longer, thereby setting a lower threshold X∗2 . The first investor then faces earlier entry by the
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4. Social optimality of myopic market-entry sequencing

We have seen that oligopolist firms invest in sequence. Next, we examine whether the entry decisions

taken by firms acting in their own interest may lead to some form of social optimality. To set a benchmark,

we consider the investment timing decisions that a central planner would impose on (decentralized) firms.

Assume the existence of a given investment threshold choice X = (X1, . . . , Xn) in the social planner’s

admissible strategy set Rn. Then the expected social surplus is given by

(4.1) S(X) = E0

[∫ ∞
0

e−rsΠ (Xs,ms) ds−
n∑
i=1

e−rτiI

]
,

where Π (·, ·) ≡ R (·, ·)− C (·, ·) is the flow of social operating surplus. We have R (·,ms) =
∑ms
i=0 ρ(·, i)

for the flow of consumer surplus (revenues) and C (·,ms) =
∑ms
i=0 c(·, i) for the flow of total production

costs. The relationship between the (net) social benefit and firms’ profits is

(4.2) Π(·,ms) =

ms∑
i=0

[ρ(·, i)− c(·, i)] =

ms∑
i=0

π(·, i) =

n∑
i=0

aisπ(·, i) .

The social planner would choose investment thresholds to maximize the expected social surplus S(X).

Thus, the social planner is faced with a (stochastic) control problem of the form

S(X∗) ≡ sup
X∈Rn

S (X) .

4.1. Oligopoly. Proposition 9 asserts that myopic firms — such as those pursuing open-loop in-

vestment policies — would invest at the time(s) expected by a social planner. Leahy (1993) uses in-

stantaneous (rather than impulse) control to establish an equivalent result in the context of (infinitely

divisible) capacity investment. Here we extend that result to binary (lumpy) market-entry decisions.

Proposition 9. A Nash equilibrium in investment policies (as obtained in Proposition 5) is socially

optimal. That is, S(X∗) =
∑n
i=1 v

i
0(X∗i ).23

Proof. See Appendix IV. �

4.2. Duopoly. Following the analysis in Section 3.2, we show that a social loss arises when in-

vestment options are available to a small number of firms. Proposition 10 establishes that both firms

receive lower payoffs under the Markov perfect equilibrium than under the equivalent Nash equilibrium

in investment policies for two players.24 Proposition 11 then asserts that the first market entry takes

place too early to be socially optimal.

Proposition 10. In terms of expectations, no firm is better-off in the region [X∗P , X
∗
F ] because the

expected value of each firm (including the actual leader) is equal to the value of the follower. In other

words, rents are dissipated (on average).

Proof. See Appendix V. �

second entrant and so enjoys monopoly profits for a shorter time period; its entry threshold is thus increased. The opposite

directions of the change in the “wedges” between X∗1 and between X∗2 and X∗2 and X∗3 is at the core of the accordion effect.
23Whether the sequence of entry is optimal for society as a whole (i.e., both firms and consumers) or for firms

considered jointly is a question that cannot be answered unequivocally here. The answer depends partly on how the

revenue function R(·,mt) is determined. If the optimal choice of revenue is made by a social planner who is looking out

for the interest of all market participants, then the investment sequence would benefit society as a whole. However, if the

planner is concerned solely with the interest of firms, the resulting Pareto optimality might actually be suboptimal from a

social-welfare perspective.
24The two-player Nash equilibrium in investment policies described by Joaquin and Butler (2000) is derived in a setting

where the exchange-rate process is a multiplicative shock and evolves as a geometric Brownian motion, the investment cost

is constant over time, and profit functions are obtained in Cournot quantity competition.
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If firms cannot commit to sticking to their market-entry strategies, then identical firms receive equal

expected values (in equilibrium); this result is some form of “rent dissipation”. The intuition behind this

result is based on the rent-equalization principle determining the preemption point: If one firm planned

to enter as leader at a time t in order to receive a greater value than the follower, then the follower could

increase its value by preempting and investing just before t, at t− ε for small ε. This strategic interplay

would be repeated inducing firms to preempt all the way down to the point X∗P , beyond which there is

no advantage to be gained from preempting.25

Proposition 11. The optimal investment times arising from the MPE are ranked as follows,

τ∗P < τ∗L < τ∗F ,

where τ∗L = inf {t ≥ 0 | Xt ≥ X∗L} for X∗L ≡ arg maxXL∈R L0(XL, X
∗
F ). The first entrant in the (duopoly)

MPE enters earlier, at time τ∗P , and faces riskier returns and a higher probability of going bankrupt than

is socially optimal.

Proof. The second inequality follows from Proposition 4 in the two-firm case. To derive the first

inequality, suppose by way of contradiction that τ∗P ≥ τ∗L. The rent-equalization principle implies that

L(X∗P ) = F (X∗P ). Since the follower’s value is nondecreasing in the shock, we have F (X∗P ) ≥ F (X∗L).

Since F (x) > L(x) for x ∈ (−∞, X∗P ], it follows that F (X∗L) > L(X∗L). Therefore, L(X∗P ) > L(X∗L),

which contradicts the definition of X∗L. The uniqueness of arg maxXL∈R L(XL, X
∗
F ) was established in

Proposition 4. �

In short, because myopic investment policies lead to social optimality (Proposition 9), more knowl-

edge of the competition (closed-loop approach) results in social loss.

5. Conclusion

The choice of an appropriate solution approach (open-loop versus closed-loop) is critical to deter-

mining equilibria in real options models that involve competition under uncertainty. When firms can

observe and react to rivals’ actions, the appropriate solution involves closed-loop strategies and a Markov

perfect equilibrium. However, deriving the MPE in closed-loop strategies is usually more involved than

deriving the Nash equilibrium for the case of open-loop strategies.

If there are no entry barriers and if a large number of firms can enter a growing market (ignoring

rivals’ moves), then the sequence of investments is Pareto optimal (an open-loop equilibrium). A similar

result was shown previously (e.g., Leahy 1993; Baldursson 1998) in a context where firms could invest

incrementally in capital stock but without due reference to the assumed information structure. We have

shown that this outcome applies to lumpy market-entry investments as well. When only a few firms are

protected from new market entry, the sequence of investment is not necessarily Pareto optimal (closed-

loop). In this case, Markov perfection implies investment at an earlier time than the timing a social

planner would impose on the firms.

For sufficiently large oligopolistic industries, the optimal market-entry strategy can be determined

while ignoring potential rivals. The value obtained, however, represents the effect of competition via an

additional (negative) competitive erosion term, as proved in Proposition 2. In the case of a duopoly,

firms that jointly share an investment option are subject to adverse effects that alter their incentive

to erect entry barriers. Restricted availability of the investment option leads to preemption and rent

dissipation (on average). Once both duopoly firms enter, the knowledge that no other firm can arrive

ensures fairly high rents in the marketplace (with no competitive erosion term). This trade-off calls for

25The difference here from the deterministic model in which this rent dissipation was first developed (cf. Fudenberg

and Tirole, 1985) is that deviation from the expected market development scenario could lead to positive rents earned by

the leader in favorable states and to losses if market development falls short of expectations. This is because entry decisions

are now based on expected market development scenarios.
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concurrent consideration of both the preemption risk that arises in industries with only a few firms and

of the endogenous erection of entry barriers to deter further competitive arrivals.

Our modeling approach has proved useful for explaining dynamic market entry timing decisions and

strategic interactions in the case of stochastically growing markets characterized by lumpy investments

under uncertainty. We have adopted a fairly general approach that covers a large number of stochastic

(Itô) processes and many reduced-form profit functions.

Appendices

Appendix I: Proof of Proposition 5. We first deal with part (i). From Proposition 4, we know

that player i has no incentive to select a threshold in
(
X∗i−1, X

∗
i+1

)
other than the X∗i characterized in

Proposition 3. Suppose now that firm i selects an alternative Xi ∈
[
X∗k−1, X

∗
k

]
, k ≤ i, while seeking

profitable deviations from the hypothesized Nash equilibrium. Let τi ≡ inf {t ≥ 0 | Xt ≥ Xi}. We have

V i0
(
Xi, X

∗
−i
)

= E0

[ ∫ τ∗k

τi

e−rsπ(Xs, i) ds+

i−2∑
m=k

∫ τ∗m+1

τ∗m

e−rsπ(Xs,m) ds

+

∫ τ∗i+1

τ∗i−1

e−rsπ(Xs, i) ds+

n−1∑
m=i+1

∫ τ∗m+1

τ∗m

e−rsπ (Xs,m) ds

− e−rτiI
]
.

Selecting Xi to maximize this expression leads to solving the system of equations (3.7a)–(3.7d). This cor-

responds to the previous definition of X∗i . Hence, the value function V0

(
·, X∗−i

)
increases monotonically

on the interval
[
X∗k−1, X

∗
k

]
and reaches a maximum at X∗k .

Similarly, suppose that firm i deviates and selects Xi ∈
[
X∗k , X

∗
k+1

]
for k ≥ i. Then

V i0
(
Xi, X

∗
−i
)

= E0

[ ∫ τ∗k+1

τi

e−rsπ (Xs, k) ds

+

n−1∑
m=k+1

∫ τ∗m+1

τ∗m

e−rsπ (Xs,m) ds− e−rτiI
]
.

Maximizing this program yields the system of equations (3.7a)–(3.7d), so X∗i = X∗k . For Xi > X∗i ,

we have that V i0
(
·, X∗−i

)
is strictly decreasing on each interval of the form

[
X∗k , X

∗
k+1

]
and reaches a

maximum at the left boundary τ∗k , k = 1, . . . , n. Because the value function is continuous at X∗i (owing

to the value-matching conditions), X∗i is the unique maximum. For part (ii), observe that any Nash

equilibrium implies a weak sequencing of market entries. Hence, X∗ and the other permutations of firm

labels in X∗ = (X∗1 , . . . , X
∗
n) are the only Nash equilibria in market-entry thresholds (n! permutations).

Appendix II: Proof of Proposition 7. We need to show that no firm has an incentive to deviate

from the hypothesized MPE of Proposition 7. We shall consider several cases in turn.

Case 1: x < X∗P . Here L (x) < F (x), so investing is a strictly dominated strategy.

Case 2: x ∈ [X∗P , X
∗
F ]. In this case, a coordination problem may arise. The characterization of αi as

the limit (as the time interval approaches zero) of discrete-time mixed action facilitates depiction of the

problem in strategic form, as shown in Figure 1. The value of pursuing the mixed action αit = αi(x)

(while the rival invests with probability αjt = αj(x)) is

V i
(
αi, αj

)
= αiαjM i +

(
1− αi

)
αjF i + αi

(
1− αi

)
Li

+
(
1− αi

) (
1− αj

)
V i
(
αi, αj

)
,

resulting in

V i
(
αi, αj

)
=
αiαjM i +

(
1− αi

)
αjF i + αi

(
1− αj

)
Li

αi + αj − αiαj
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for
(
αi, αj

)
6= (0, 0). Since this expression is concave in αit (i.e.,

∂2V it
∂αi2t

(
αit, α

j
t

)
< 0), the following

first-order condition is both sufficient and necessary for an optimal mixed action to obtain:

∂V i

∂αi
(
αi, αj

)
= 0 ⇐⇒ αi(x) = φi(x) ,

where

φi(·) =
Lj(·)− F j(·)
Lj(·)−M j(·)

.

For identical firms following symmetric behavioral strategies (αit = αjt = αt), the preceding equality

simplifies to

φi(·) =
L(·)− F (·)
L(·)−M(·)

.

Invest Wait

Invest
M j
t (·)

M i(·)
F j(·)

Li(·)

Wait
Ljt (.)

F i(·)
V j(·)

V i(·)

Figure 1. Strategic-form representation of the coordination problem in (X∗P , X
∗
F )

It then follows from equations (3.14) and (3.15) that

M (Xt) = Et
[∫ ∞

t

e−r(s−t)π(Xs, 2) ds− I
]

≤ sup
XF∈R

Et
[∫ ∞

τF

e−r(s−t)π(Xs, 2) ds− e−r(τF−t)I)

]
≤ F (Xt) .

Case 3: x ≥ X∗F . Here the firm has a dominant strategy to invest immediately and receive M(x). For

symmetric firms, the value of the leader and of the follower are equal(ized) for process values higher

than X∗F : L(x) = M(x) = F (x).26 Firm i can do no better than to pursue the prescribed strategy.

Firm i is faced with a decision-theoretic problem. Its optimal entry time is jointly determined by the

HJB equation (3.17a), the “smooth pasting” condition (3.17c), and equation (3.17d). In this case, the

strategy formulated in Proposition 3 is dominant.

Together these results indicate that the strategy profile given in Proposition 7 is a Markov perfect

equilibrium whose uniqueness is shown by Fudenberg and Tirole (1985, Apx. A) in the deterministic

context.

Appendix III: Proof of Proposition 8. We suppose the contrary and then derive a contradiction.

So let X∗P ≥ X∗F . For X∗P > X∗F , since F (X∗P , ·) is nondecreasing in XF it follows that F (X∗P , X
∗
P ) ≥

F (X∗P , X
∗
F ), which means that F (X∗P , ·) is maximized for two distinct trigger values, X∗F and X∗P . This

contradicts the uniqueness of the threshold as established by conditions (3.7a)–(3.7d). If X∗P = X∗F , then

both firms enter at time τ∗P and receive M(X∗P ). Hence there is an investment trigger Xi ∈ (−∞, X∗P )

such that L(Xi, X
∗
P ) > M(X∗P , X

∗
P ) as π(Xs, 1) > π(Xs, 2). Since firms are identical, M (X∗P , X

∗
P ) =

F (X∗P , X
∗
P ). As a result, there is an incentive to invest before the preemption point X∗P but this

contradicts the rent-equalization principle of equation (3.18c). Thus, we have established part (i) of the

proposition.

26In new-market models, L(x) = F (x) = M(x) for all x ≥ X∗F .
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For part (ii), observe that the probability that one of the firms ends up being the leader the first

time Xt is in (X∗P , X
∗
F ) is given by piL = αit

(
1− αjt

)
+
(
1− αit

) (
1− αjt

)
piL; therefore, piL =

αit(1−αjt)
αit+α

j
t−αitα

j
t

for αit, α
j
t 6= 0. Then, in the symmetric case, we have

(5.1) pL = piL = pjL =
1− αt
2− αt

,

which admits a right limit at αt = 0. Part (ii) now follows from equations (3.16) and (3.18c).

Appendix IV: Proof of Proposition 9. By equation (4.2), we have

n∑
i=0

∫ ∞
τi

e−rsπ (·,ms) ds =

n∑
i=0

∫ ∞
0

e−rsaisπ(·,ms) ds

=

∫ ∞
0

e−rs

[
n∑
i=0

aisπ (·,ms)

]
ds

=

∫ ∞
0

e−rsΠ (·,ms) ds(5.2)

because Π (·, 0) = 0. It now follows from Fubini’s theorem and equations (4.1), (5.2), and (3.4) that

S0 (X) = E0

[∫ ∞
0

e−rsΠ (Xs,ms) ds−
n∑
i=0

e−rτiI

]

=

n∑
i=0

E0

[∫ ∞
τi

e−rsπ (Xs,ms) ds− e−rτiI
]

=

n∑
i=0

vi0 (Xi) .

The proposition is obtained by taking the supremum X∗ over Rn.

Appendix V: Proof of Proposition 10. The proof proceeds in two steps: first, we derive the

probability of certain scenarios; then, we calculate the firm’s expected value in the considered region as

the weighted average of values obtained in each scenario. Here we examine the symmetric case.

The probability that a firm becomes the leader in the region [X∗P , X
∗
F ] was obtained in (5.1) as

pL = 1−αt
2−αt . The probability of simultaneous investment, should the process X be located for the first

time in the preemption region [X∗P , X
∗
F ], is equal to pC =

αit
2−αit

. Hence, the value in this region is

V i
(
αi∗, αj∗

)
= pL (L+ F ) + pCM

=
L+ (1− α∗)F − α∗t (L−M)

2− α∗

=
L+ (1− α∗)F − L+ F

2− α∗
= F,

where the second equality follows from the probabilities just described and the third equality from

equation (3.16).



CHAPTER 9

Preemptive Capacity Investment under Uncertainty

Abstract. The incentive to “overinvest” in capital may be eroded in dynamic, competitive settings

if firms face uncertainty and irreversibility. In this paper, we derive the stationary Markov perfect

equilibrium for a dynamic, infinite-horizon capacity investment game formulated in continuous time in

which reduced-form profits are subject to industry shocks. We show that the theory of marginal Tobin’s

q still holds in this setting if the strategic externalities of rivals’ investment are properly accounted for.

1. Introduction

It is standard practice in finance and strategy to interpret real investment opportunities as being

analogous to options. This view is well accepted among academics and practitioners alike and is the core

of real options analysis (ROA), as summarized in the works of Dixit and Pindyck (1994) and Trigeorgis

(1996). ROA has some connection with the literature on marginal Tobin’s q (see, e.g., Abel, 1983; Abel

and Eberly, 1994). Following the latter approach, marginal firm value fluctuates along with industry

shocks as long as the marginal value stays within a certain range of profitability characterized by lower

and upper barriers. When the value process hits one of these boundaries, the firm either invests or

divests, so that the marginal value is reflected off the boundaries.

Since standard ROA draws from contingent-claims analysis based on financial options, a key feature

specific to real assets is often ignored — namely, the interplay or strategic interactions taking place

among (real) option holders. Bridging this gap requires the use of additional notions borrowed from

game theory. Chevalier-Roignant and Trigeorgis (2011) develop further the notion of “option games,”

while Chevalier-Roignant et al. (2011) review the relevant literature. We deal here with a subset of this

literature where firms adjust their capital stocks or production capacity in the face of uncertainty and

competition (see, e.g., Leahy, 1993; Baldursson, 1998; Baldursson and Karatzas, 1996; Grenadier, 2002).

In dynamic problems, one often distinguishes several types of controls or strategies. Open-loop or

precommitment strategies set ex ante a certain investment path to be pursued regardless of the state

realization. In case of closed-loop strategies, the decision makers can condition their actions on the entire

state paths. Inbetween, decision makers can employ Markov or feedback strategies, whereby the current

state value is considered a sufficient statistic for decision making. This latter type of control is typically

employed in standard ROA which builds upon dynamic programming. Such notions originating from

control theory also find application in dynamic game theory, as discussed in Başar and Olsder (1999)

and Fudenberg and Tirole (2002). Capital accumulation games — studied in continuous time by, e.g.,

Spence (1979), Fudenberg and Tirole (1983) and Reynolds (1987) — hinge on the distinction between

these different notions of strategies. These models are typically built as differential games that assume

a deterministically growing market. Spence (1979) cautions:

“Uncertainty may alter the qualitative conclusions drawn here, even if firms are not

risk-averse. Because of the irreversibility, uncertainty acts in part like a further con-

straint on, or cost of, growth. This aspect of the subject is complicated and in need

of further theoretical work as well.”

To the best of our knowledge, this research gap has not been bridged yet. The “option games”

literature dealing with investment in capital stocks has typically overlooked the inclusion of the capital

stock held by rivals in the characterization of the investment strategy, in effect employing strategies

109
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that are open-loop with respect to the industry state (see Leahy, 1993; Baldursson and Karatzas, 1996;

Baldursson, 1998).1 This approach may be ill-advised because Nash equilibria in open-loop strategies

often fail to be subgame perfect (see Fudenberg and Tirole, 1991, section 13.4). An emerging strand in

the literature turns to closed-loop investment strategies instead. Back and Paulsen (2009) show that the

Nash equilibrium obtained in Grenadier (2002) fails subgame perfection and discuss the difficulties in

formulating dynamic capacity-expansion problems in closed-loop strategies. Novy-Marx (2009) derives

closed-loop equilibrium strategies for duopolistic capacity competition under more restrictive assumptions

(than we do). This paper is an attempt to bridge this research gap. We model market uncertainty via

Itô processes as standard in ROA and supplement the analysis with techniques from the literature

on stochastic differential games. We particularly focus on Markov capital-adjustment strategies and

characterize the Markov perfect equilibria. This allows us to quantify the reaction to rivals’ strategic

capacity adjustment decisions and modify the investment rule on marginal Tobin’s q to account for

negative strategic externalities on the firm’s marginal value.

The paper is organized as follows. Section 2 presents the model assumptions. Section 3 discusses

the appropriate choice of strategy space and proposes the use of Markov strategies. Section 4 formulates

the problem with Markov controls and derives the Markov perfect equilibria. Section 5 concludes.

2. Model primitives and assumptions

Consider a complete filtered probability space (Ω,F,P), where the filtration F ≡ {Ft}t≥0 is a family

of “tribes” that satisfies the usual conditions: Fs ⊆ Ft for all s < t, Ft =
⋂
s>t Fs and the P-null

set belongs to F0. The tribe Ft denotes the information available to decision makers at time t. The

market is subject to an exogenous shock X = {Xt}t≥0 modeled as a diffusion. To preclude foresight

about future economic developments, we assume that X is F-adapted, namely that Xt is Ft-measurable

for all t ∈ R+. The process X starts at X0 = x ∈ X almost surely, with X = R for simplicity; X is the

unique (strong) solution to the stochastic differential equation (SDE),

(2.1) dXt = µ(Xt) dt+ σ(Xt) dBt,

where B = {Bt}t≥0 is a standard Brownian motion. For existence, we assume that {µ(Xt)}t≥0 and

{σ(Xt)}t≥0 are F-adapted with finite variations and that µ, σ : R → R are Lipschitz continuous and

satisfy the growth condition. This SDE covers a fairly broad family of stochastic processes used in

economic analysis, such as arithmetic Brownian motion, geometric Brownian motion, the Ornstein–

Uhlenbeck mean-reverting process and the geometric Ornstein–Uhlenbeck process.

We consider a symmetric duopoly, where at time t on path ω ∈ Ω, firm i (j) has capital stock Ki
t(ω)

(Kj
t (ω)).2 Firm i (j)’s initial capital stock is Ki

0− = ki (Kj
0− = kj) almost surely.3 The vector of initial

industry capital stocks is k =
(
ki, kj

)>
, where > denotes the transpose. The realization of the capital

stocks at time t is given by the two-dimensional vector Kt(ω) =
(
Ki
t(ω),Kj

t (ω)
)>

.

At any instant t, firm i can adjust its capital stock, i.e., acquire new capital or sell unnecessary units.

Assume firms face a symmetric, strictly convex capital-adjustment cost function κ : R→ R. The function

κ (·) is differentiable almost everywhere except at I = 0. We denote the (partial) derivative of function

f with respect to argument y by fy(·). κI(·) is the first-order derivative of the capital-adjustment cost

function κ(·). Denote the left (resp., right) limit of κI(·) by κI (resp., κ̄I). Besides, κ(0) = 0. An

1An exception is most lump-sum investment models (see, e.g., Smets, 1991; Grenadier, 1996; Huisman and Kort, 1999)

that do not suffer from the same weakness as they build on Fudenberg and Tirole’s (1985) closed-loop approach.
2To reduce mathematical complexity, we here consider for each firm a one-dimensional capital stock. Considering

multiple resources would require to examine whether the resources are complements or substitutes in addition to the

factors analyzed herein.
3We distinguish between time 0− and 0 because a lump-sum investment usually occurs at time 0 immediately adjusting

the capital stock held.
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example of such an adjustment cost function is the often-used kinked, piecewise linear cost function,

(2.2) κ(I) = κI− + κ̄I+,

with (0 ≤) κ < κ̄ (to preclude arbitrage opportunities) and where, by definition, I+ , max {0, I} and

I− , max {0,−I}. The quadratic investment cost function is

(2.3) κ(I) = aI +
b

2
I2,

with a, b ∈ R+. Function (2.3) is differentiable at I = 0, while function (2.2) is not, having left-limit

κI = κ and right-limit κ̄I = κ̄.

Following Baldursson (1998), an investment strategy is a capital-accumulation process ξi with decom-

position ξi , ξi+−ξi− where the negative and the positive parts of the process, ξi− and ξi+, respectively,

are right-continuous with left-limits, nondecreasing, and F-adapted.4 Besides, ξi+(0−) = ξi−(0−) = 0

almost surely. The process ξi has (pathwise) bounded variation as the difference between two nonde-

creasing processes. Following investment strategy ξi, firm i’s capital stock at time t on path ω ∈ Ω

is

(2.4) Ki
t(ω) = ki + ξi+t (ω)− ξi−t (ω).

An instantaneous change in capital stock is denoted dξt(ω) = ξit(ω) − ξit−(ω). dξt(ω) is a Lebesgue-

Stieltjes differential and cannot properly be interpreted in terms of investment rate since it admits no

time derivative. Similarly to Leahy (1993), the strategy choice has no impact on the exogenous state

dynamics given in equation (2.1).

If it were possible to determine an “investment rate,” we could define — as in capital-accumulation

(differential) games — a control policy prescribing for firm i an investment rate Iit at time t ∈ R+.

An instantaneous change at time t in firm i’s capital stock is then Iit , with the capital stock evolving

according to the ordinary differential equation:

(2.5) K̇i
t = Iit .

The industry-wide shock X = {Xt}t≥0 follows the Itô process of equation (2.1), while the capi-

tal stocks evolve according to equation (2.4). At each instant t, firm i receives an unknown revenue

flow πi(Xt(ω),Kt(ω)) depending on the shock realization Xt(ω) and the prevalent capital stocks of

the rivals, Ki
t(ω) and Kj

t (ω). The profit function πi is strictly increasing and twice continuously

differentiable in x; it is continuously differentiable, strictly decreasing in kj , and concave in ki. We

assume that the marginal profit is increasing in the shock (πikix > 0); this ensures that the opti-

mal strategy can be expressed in terms of divestment/ investment triggers.5 Also assume that the

profit function is submodular, with πkikj < 0. Although not necessary, we can specialize the reduced-

form profit function. Consider, for instance, that the price Pt(ω) that clears the market is given by

Pt(ω) = D
(
Xt(ω),Ki

t(ω) +Kj
t (ω)

)
, where the demand function D(·, ·) is strictly increasing and twice

continuously differentiable in x and strictly decreasing in ki and kj . For negligible production costs, firm

i’s instantaneous profit is kiD
(
x, ki + kj

)
−κ(I), which is increasing and twice continuously differentiable

in x.

Firms are assumed risk-neutral, facing a common, constant risk-free rate r.6 The payoff to firm i if

the strategy profile (ξi, ξj) is followed is

(2.6) J i
(
x, k | ξi, ξj

)
, E

[∫ ∞
0

e−rtπ(Xt,Kt) dt−
∫ ∞

0

e−rtκ
(
dξit
)
| x, k

]
,

4Back and Paulsen (2009), who consider capital expansion only, define an “open-loop strategy” in a similar way as a

nondecreasing F-adapted process ξi+.
5We also impose Inada conditions on the profit function: limki→0 π

i
ki

(x, k) =∞ and limki→∞ πi
ki

(x, k) = 0.
6The assumption of risk neutrality can be relaxed if arbitrage opportunities in the market do not exist and the market

is complete (see Cox and Ross, 1976; Harrison and Kreps, 1979). Introducing capital depreciation in the model would not

add much flavor; it only increases the discount factor by the depreciation rate.
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where the second integral is understood as a (pathwise) Lebesgue-Stieljes integral. The firm adjusts its

capital stock with a view to maximizing expected payoff. If a Nash equilibrium ξ∗ =
(
ξi∗, ξj∗

)
exists,

the value received by firm i in state (x, k) is

(2.7) V i(x, k) , max
ξi

J i
(
x, k | ξi, ξj∗

)
.

Given the model assumptions, V i is strictly increasing, twice continuously differentiable in the shock.

Besides, V ixki > 0 and V ikikj < 0.

In the above definition of strategy space, it is not clear how the arrival of new information about the

rival’s realized capital stock influences the capital adjustment strategy. This point is, however, essential

in pinning down the appropriate strategy space, as discussed below.

3. Strategy-space choice and solution approach

In dynamic problems, the choice of the strategy space is closely related to the hypothesized infor-

mation structure. Two information structures are common in the deterministic control and differential

games literature. Open-loop or precommitment strategies prescribe a certain investment rate at each

time t of the control horizon. Markov strategies enable the decision maker to condition her decision on

the latest value of the state. In deterministic single-agent control problems, this distinction is not mate-

rial since these assumptions lead to different representations of the same optimal policy (see Başar and

Olsder, 1999, 5.6). When competition or uncertainty are involved, the different types of strategies may

lead to different outcomes. The definition of ξi above is not precise enough to describe the hypothesized

information set of player i at each time t. A crucial element in defining the strategy space relates to

the behavioral conjectures on how firm j’s capital-stock adjustments feed back into firm i’s investment

or divestment choices. Fudenberg and Tirole (1985) face a related problem in a deterministic case of

multiplayer optimal investment timing: a player’s strategy defined by a nondecreasing, right-continuous,

[0, 1]-valued function (interpreted as the cumulative probabiliby of investing) is not rich enough to ac-

comodate consideration of dynamic strategic interactions over the play of the game. One should thus

consider as part of a player’s strategy an additional “atoms function” that prescribes a certain intensity

of investment at each time t (on path ω ∈ Ω in the stochastic case).

The literature on incremental capital adjustment under uncertainty and competition fails to describe

the assumed atoms function, relying in effect on the notion of a “myopic firm.” A myopic firm essentially

assumes that there will be no further changes in the industry capital stock other than those arising from

its own investment or divestment decisions. Its value is J i
(
x, k | ξi, 0

)
. Myopic strategies are Markovian

in the exogenous state x but not in rival firm j’s capital stock. If a firm invests according to such a

strategy, it either cannot observe the rivals’ investment behavior or it chooses to precommit to a myopic

investment path as a function of the actual exogenous state realization.

Grenadier (2002, proposition 3) and Back and Paulsen (2009, equation 8) appear to make an attempt

to circumvent the notion of the myopic firm. There, firm i conjectures that, on the equilibrium path, the

rival’s capital stock is a deterministic function of firm i’s capital stock, Kj
t (ω) = h

(
Ki
t(ω)

)
. In the n-firm

case, they explicitly consider K−it (ω) = (n − 1)Ki
t(ω). Then, what seems to be an investment trigger

which depends on the realization of rival’s capital stock K−it (ω) is actually an investment trigger which

depends on Ki
t(ω) solely. In other words, this firm assumes a parallel development of rival’s capital stock

with no possibility for the rival to deviate from the capital-stock development path conjectured by the

myopic firm. This statement is not a derived equilibrium outcome but simply a modeling assumption.

The actual capital stock of firm i’s rival does not feed back into firm i’s investment strategy. Owing

to this behavorial assumption on firm i, the Nash equilibrium in which firms follow the latter type of

strategy turns out to correspond to the “myopic equilibrium” whereby firm i explicitly ignores rival’s

capital-stock adjustments (Grenadier, 2002, section 2). As is standard in real options analysis, the above

investment strategies are Markovian in the exogenous state. They nevertheless fail to allow the rivals’
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actual capital stock to feed back into the firm’s strategy. The literature on stochastic differential games

provides mechanisms to allow states driven by the actions of rivals to influence a firm’s own decisions.

In the next section, we employ such methods.

4. Markov perfect equilibrium

Consider that all states are perfectly observable, including the level of capital stock held by the rival

firm. Introducing an atoms function makes it possible to account for the rival’s capacity adjustments

through the dependence on the states x, ki, and kj . In this case, the history of the game matters only

through the present consequences of all past decisions, as reflected in the state vector (x, k). Because

both the payoffs and the strategies depend on the current state realization, we call this a “state-space”

game. The Nash equilibrium in Markov strategies is a Markov Nash Equilibrium.7 A Markov Nash

equilibrium is perfect if it is a Markov Nash equilibrium for all state vectors
(
x, ki, kj

)
, even those off

the equilibrium path. Setting kj = h(ki) fails to ensure a Nash equilibrium for values of kj off the path

h(ki). Formally, a Markov Nash equilibrium profile is a Markov perfect equilibrium (MPE) if, for all

states
(
x, ki, kj

)
, it holds that

V i(x, k) = max
ξi

J i
(
x, k | ξi, ξj∗

)
,

whereby the investment intensity ξit − ξit− 6= 0 is given by φi(Xt,Kt). Although it is not mathematically

rigorous to define investment rate in the present setting, we can nevertheless use the heuristics in Abel and

Eberly (1994): the change in capital stock is interpreted as analogous to an investment rate I, allowing

the derivation of a Hamilton-Jacobi-Bellman (HJB) equation. We next derive sufficient conditions for

existence of a Markov perfect equilibrium.

Proposition 12. Firm i’s value in state (x, k), V i(x, k), is the solution of the HJB equation

rV i(x, k) = max
Ii∈R

{
πi(x, k)− κ

(
Ii
)

+ V iki(x, k) Ii + V ikj (x, k)φj(x, k) + DxV
i(x, k)

}
,(4.1)

where DxV
i(x, k) indicates an instantaneous value change for an infinitesimal change in the shock with

the operator Dx given by

Dx = µ(x)
∂

∂x
+

1

2
σ(x)

2 ∂2

∂x2
.

Proof. Bellman’s principle of optimality builds upon the recursive nature of the payoff function in

equation (2.6). For a short time interval of length t, the continuation payoff is

J i
(
x, k | ξi, ξj∗

)
≈
{
πi(x, k)− κ(I)

}
t+ E

[
E
[∫ ∞

t

{
πi(Xs,Ks)− κ(I)

}
ds | Xt(ω),Kt(ω)

]
| x, k

]
≈
{
πi(x, k)− κ(I)

}
t+ E

[
J i
(
Xt(ω),Kt(ω) | ξi, ξj∗

)
| x, k

]
By taking the supremum,

V i(x, k) ≈ max
Ii∈R

{[
πi(x, k)− κ(I)

]
t+ max

ξi
E
[
J i
(
Xt(ω),Kt(ω) | ξi, ξj∗

)
| x, k

]}
≈ max

Ii∈R

{[
πi(x, k)− κ(Ii)

]
t+ E

[
V i(Xt(ω),Kt(ω)) | x, k

]}
Dividing the above equation by t (> 0) and taking t→ 0, equation (4.1) obtains, whereby V i is presumed

twice continuously differentiable in x and once continuously differentiable in ki and kj with

lim
t↓0

E
[
V i(Xt(ω),Kt(ω)) | x, k

]
− V i(x, k)

t
= V iki(x, k) Ii + V ikj (x, k)φj(x, k) + DxV

i(x, k) .

�

7Dynamic games of complete information are generally solved by means of the perfect Nash equilibrium solution

concept. We adapt the usual definition of perfection to a state-space game by identifying information sets in the game

with points in the state space.
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It is desirable to give more intuition (via the stochastic maximum principle) concerning the interpre-

tation of HJB equation (4.1) and further characterize the induced optimal behavior. Consider a vector

of adjoint variables for firm i, λi =
(
λii, λij

)>
. Define the deterministic Hamiltonian

(4.2) Hi
(
x, k, Ii, Ij , λi

)
, πi (x, k)− κ(Ii) + λiiIi + λijIj .

Using the notation of equation (4.2) in HJB equation (4.1), player i’s value function V i solves for

each (x, t) ∈ X × R+ the HJB equation

(4.3) rV i(x, k) = max
Ii∈R

{
Hi
(
x, k, Ii, φj(x, k), V ik (x, k)

)
+ DxV

i(x, k)
}
,

where V ik =
(
V iki , V

i
kj

)>
is the gradient of firm i’s value function with respect to the vector of capital

stocks. In other words, the HJB equation (4.1) can be understood as a static optimization problem,

whereby firm i is not only looking at maximizing its current cash flow πi(x, k) − κ
(
Ii
)

but considers

the future, indirect value contribution of its current investment via the shadow price vector λi = V ik .

Here, the rival’s reaction to changing industry capital stock ki 7→ φj(x, k) with k = (ki, kj)> is explicitly

considered when determining the optimal investment intensity φi(x, k) ∈ R. Player i cares about how

his opponent will react to a change in its own capital stock.

Owing to the second-order term in the HJB equation, it is generally difficult to find closed-form

solutions for the value functions V i, unless certain “smoothness” restrictions are imposed. In the present

stochastic case with two players, a system of coupled second-order partial differential equations obtains,

making finding a closed-form solution even more challenging. To obtain a Markov perfect equilibrium,

we must be able at each (x, k) to find a pair
(
φi(x, k) , φj(x, k)

)
that forms a Markov Nash equilibrium

in the static, continuous two-player game with values satisfying (4.3).

To enable characterizing the equilibrium further, denote the marginal value of firm i to a change in its

own capital stock by vi(x, k) , V iki(x, k). At places, for expositional purposes, we drop the dependence

of the shadow price vi on the state (x, k) when no confusion may arise. By isolating terms depending on

Ii in the HJB equation (4.1), the maximum condition simplifies to the static optimization problem

(4.4) f
(
vi
)
, max

Ii∈R

{
viIi − κ

(
Ii
)}

or φi (x, k) = arg max
Ii∈R

{
viIi − κ

(
Ii
)}
.

The problem in equation (4.4) is strictly concave in Ii and κ(·) is differentiable everywhere on (−∞, 0) and

(0,∞). In these regions, a set of first-order conditions is sufficient to determine the optimal investment

rule. When firm i invests or divests (φi(x, k) 6= 0), the MNE strategy in state (x, k) prescribes that

(4.5) vi =
(
κI ◦ φi

)
(x, k) ,

with the symbol “◦” indicating coumpound functions. In other words, when firm i divests or invests, the

Markov Nash equilibrium strategy prescribes to invest up to the level where the marginal cost of adding

capital,
(
κI ◦ φi

)
(x, k), equals the marginal value of capital, vi(x, k). This investment policy is analogous

to the theory prescription on marginal Tobin’s q with the additional consideration of competition in the

market. By the chain rule, it obtains that

vix =
(
κII ◦ φi

)
(x, k)× φix(x, k) .

For a sufficiently smooth function V i, we have V ixki = V ikix, with V ixki > 0 (by assumption). Since κ(·) is

strictly convex (κII > 0) and vix > 0, it obtains that φix > 0 or firm i invests more for improved economic

conditions or vice versa, all other things remaining equal. We readily note an unexpected aspect of

competition on the firms’ reactions to economic shocks. Define

Ri(x, k, Ij) , arg max
Ii∈R

{
Hi
(
x, k, Ii, Ij , V ik (x, k)

)
+ DxV

i(x, k)
}
.

Ri(x, k, ·) is firm i’s reaction function to firm j’s investment intensity. In the Nash equilibrium of the

static game, φi(x, k) = Ri
(
x, k, φj(x, k)

)
. We wish to capture the influence of the shock on the investment
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intensity of firm i. By total differentiation,

dφi

dx
(x, k) =

∂Ri

∂x
+
∂Ri

∂Ij
∂φj

∂x
(x, k)

The second right-hand term captures the strategic effect in reaction to a shock. Since ∂Ri

∂Ij < 0 (strategic

substitute) and ∂φj

∂x (x, k) > 0, the intensity of investment in state (x, k) is decreased for firm i compared

to the myopic situation. The presence of a rival decreases the intensity with which a firm increases

(resp., decreases) its capital stock in response to favorable (resp., unfavorable) industry shocks. This

effect, arising under competition, creates a natural hedge for the firm. By applying the chain rule to

equation (4.5), it obtains

viki(x, k) =
(
κII ◦ φi

)
(x, k)× φiki(x, k),(4.6a)

vikj (x, k) =
(
κII ◦ φi

)
(x, k)× φikj (x, k)(4.6b)

Since V i is concave in ki, φiki < 0 follows from equation (4.6a), so that the firm is less responsive to

a favorable shock when it already has a large capital stock. By submodularity of the profit function

(πikikj < 0), we have vikj < 0. Thus from equation (4.6b), φikj (x, ·) < 0 or the investment intensity of

firm i decreases in the capital stock of its rival, kj . The firm that has the larger capital stock thus can

discipline the smaller firm to refrain from investing. In other words, if a firm increases its capital stock,

rivals react to an increased industry capital stock by reducing their own capital stocks. This preemptive

effect is not captured when one considers myopic strategies.8

It is suitable to partition the state space in terms of hysteresis (wait), investment, and divestment

regions. Since κ(·) is strictly convex, κI(I) < κI for all I ∈ (−∞, 0) and κ̄I < κI(I) for all I ∈
(0,∞). The regions (x, k) where divestment or investment occurs are such that vi(x, k) ∈ (−∞, κI ] and

vi(x, k) ∈ [κ̄I ,∞), respectively. The optimal investment rule prescribes not to invest, φ
(
x, ki

)
= 0, if

vi(x, k) ∈ (κI , κ̄I). The investment policy thus reads:

(4.7) φi (x, k) =


< 0 if vi (x, k) ∈ (−∞, κI ] ,
= 0 if vi (x, k) ∈ (κI , κ̄I) ,

> 0 if vi (x, k) ∈ [κ̄I ,∞) .

If κ(·) is differentiable at I = 0 as in the quadractic case of equation (2.3), then κI = κ̄I and (κI , κ̄I) is

empty. If κ(·) is not differentiable at I = 0 — as in the case of the kinked, linear adjustment cost function

in equation (2.2) — with κI < κ̄I (by strict convexity of the cost function), (κI , κ̄I) is nonempty.

Following the marginal Tobin’s q approach, the investment policy characterized in equation (4.7) is

driven by the marginal value from investing and the marginal cost incurred by the firm upon investing.

The firm “sells” capital (divests) to prevent the marginal revenue product of capital vi from falling below

a certain lower profitability level κI and acquires capital (invests) to prevent vi from rising above an

upper profitability level κ̄I . If the open interval between these thresholds (κI , κ̄I) is nonempty – as in

the case of equation (2.2) – the set of states (x, k) whereby vi(x, k) ∈ (κI , κ̄I) is an inaction or hysteresis

region where the firm neither invests nor divests (“stays put” or waits). Within the bands κI and κ̄I , the

shadow price process is driven solely by the exogenous shock (i.e., no control is exercised). At the upper

barrier κ̄I , firms will be indifferent between staying put or expanding capacity, while at the lower barrier

κI , firms will be indifferent between holding the current level of capital stock constant or downsizing.

Expansion at κ̄I and downsizing at κI maximize the present discounted value of firm i’s profits. Due to

the nature of the problem (singular control), the marginal value is always located inside the hysteresis

(wait) region.9

8In myopic strategies, the optimal myopic strategy is not adapted to the actual evolution of the rival’s capital stock

Kj = {Kj
t }t≥0 and firms assume instead parrallel capital stock development.

9The set of times at which investment or divestment occurs has Lebesgue measure zero, the marginal value process

being located within the bands almost surely. If vi(Xt,Kt−) were outside this region, an instantaneous control of large

intensity ξit − ξit− would adjust the capital stock up or down to ensure that vi(Xt,Kt) is located in (κI , κ̄I).
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Consider next the dynamics of the shadow price. Differentiating HJB equation (4.1) w.r.t. ki yields

(4.8) rvi(x, k) = πiki(x, k) + viki(x, k)φi(x, k) + V ikj (x, k)φjki(x, k) + V ikiki(x, k)φj(x, k) + Dxv(x, k) .

The left-hand side is the required return on the value of a marginal unit of capital. The right-hand side

of equation (4.8) is the expected return; it consists of the marginal operating profit and the marginal

expected gain. Equation (4.8) is thus a no-arbitrage condition to be satisfied at each time and in each

state (x, k) in Markov perfect equilibrium. If a strategy φi(x, k) solves the above maximization problem

of equation (4.8), the equilibrium shadow price process obtains as the solution of a partial differential

equation. The term V ikj (x, k)φjki(x, k) is the strategic effect term: it captures the impact on firm i’s

value from the reaction (capital stock change) by firm j. Since φjki < 0, this term constitutes a negative

externality on the marginal value of incremental investment in capital. Because of the cross influence,

the evolution of the shadow price vi is determined by a system of coupled partial differential equations.

Applying Feyman-Kac formula to equation (4.8), it obtains

(4.9) v(x, k) = E
[∫ ∞

0

{
πiki(x, k) + viki(x, k)

[
φi(x, k) + φj(x, k)

]
+ V ikj (x, k)φiki(x, k)

}
dt

]
.

Consider now how the policy influences the dynamic behavior of the shadow price process. After a

possible initial discrete adjustment at time 0 occurring if the initial state (x, k) is such that vi(x, k) /∈
(κi, κ̄I), the optimal policy of firm i involves adjusting the capital stock process

{
Ki
t

}
t≥0

at the lower and

upper thresholds so the firm sustains a certain level (region) of profitability (κI , κ̄I). The shadow price

evolution thus admits a lower and upper reflecting barrier, whereby the shadow price evolves according

to the partial differential equation (4.8) within the hysteresis region. The determination of the barriers

is affected by the presence of competition in Markov perfect equilibrium.

5. Conclusion

The present modeling approach is useful for analyzing dynamic capacity investment decisions in

industries subject to stochastic growth and competitive dynamics. We adopted a fairly general approach

that covers a large family of stochastic processes used in economic analysis and many reduced-form profit

functions. The characterization of the appropriate strategy space is critical to determining equilibria in

real option models that involve competition under uncertainty. When firms can observe and react to

rivals’ actions over time, the equilibrium solution should form a Markov perfect equilibrium. However,

deriving the Markov Perfect Equilibrium is usually more involved than deriving the myopic equilibrium

since an additional partial derivative obtains in the HJB equation.

In the presence of a convex capital-adjustment cost, the investment rule on marginal Tobin’s q still

holds. If the investment is costlessly reversible, the model produces Jorgenson’s (1963) classic result: at

each date (in each state) the capital stock Ki is adjusted to equate the (ever-changing) marginal revenue

product of capital vi(x, k) with user cost of capital. If the investment costs are partly unrecoupable then

there exists a hysteresis region in which the firm waits to invest or divest. In Markov perfect equilibrium,

these thresholds as well as the intensity of investment are affected by the presence of rivals. The firm

with the larger capital stock disciplines its smaller rival away from investing. Besides, the presence of

competition creates a hedging effect: under competition, a firm invests with less intensity than if it were

ignoring competition.
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1. Contributions to capital budgeting

Investment decisions are generally made at early stages when the intensity of competition is not

known and the market realizations are not yet observed. Since market developments are not perfectly

predictable and managers have flexibility to adapt their decision making to new events, cashflows are

state-contingent and often characterized by asymmetric or skewed probability distribution. Besides,

in the presence of partly unrecoupable investment costs, assessing an investment strategy becomes a

dynamic problem. In this light, valuing an investment opportunity is challenging. From a scientific

perspective, the analysis should be performed with use of tools from dynamic optimization and allow

considerations to market and strategic uncertainty. In real options analysis, a key feature specific to

real assets is often ignored — namely, the interplay or strategic interactions among several firms having

similar real investment opportunities. Continuous-time real options analysis mainly rests on stochastic

control and often fails short of assessing endogenous strategic interdependencies. A proper theory of

investment should thus leverage on both real options analysis and dynamic game theory that together

help solve dynamic games in stochastic environments.

This monograph developed an innovative modeling approach to analyze strategic investment under

uncertainty that should be appealing to the academic community in the areas of (mathematical) eco-

nomics, finance and management science. From the perspective of financial theorists, the monograph

expands real options analysis with the use of dynamic game theory in such a way that researchers can

build upon its content to systematically approach problems of strategic investment under uncertainty.

For researchers in industrial organization, it helps stress how the mainstream results may be invalidated

under uncertainty. The discussion is deeply anchored in new developments made in the literature on

control and game theory.

Strategic investment under uncertainty has not been systematically analyzed from this perspective

before, either in its depth (e.g., information structure, connection with stochastic differential games)

nor in its scope (e.g., lumpy investments and incremental capital adjustments). Grenadier (2000b)

edited an academic book that brings together (published) research contributions that deal with strategy

investment under uncertainty; by its very nature, this work does not provide a consistent frame for

the analysis of investment decisions under market and strategic uncertainty. Huisman’s (2001) doctoral

thesis examines a number of continuous-time models of technology adoption, some of which discussing

R&D adoption timing games. Smit and Trigeorgis (2004) discuss mainly option games but mainly in

a discrete-time setting as a means to raise awareness to these issues among a practitioners’ audience.

While Ziegler (2010) also combines game theory and option pricing, it focuses on applications to the

theory of corporate finance and financial intermediation, such as the design of debt contracts, capital

structure choice, the structure of banking deposit contracts, and the incentive effects of deposit insurance.

Chevalier-Roignant and Trigeorgis (2011) provide a general introduction to “option games,” wherein

both the discrete and the continuous-time perspectives are presented; it is essentially intended to an

audience of nonaverted undergraduate and graduate students in strategy, economics, and finance. In

constrast to these works, we discuss in depth stochastic models where several players interact. We

present in detail the underlying probability concepts and the mathematical dynamic optimization tools

developed in control and game theory. Throughout the manuscript, we have adopted a fairly general

117
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approach involving diffusion processes and a large class of reduced-form profit functions. A key modeling

assumption relates to whether firms react to changes about the market or the industry structure as

new information unfolds. We pointed out that this assumption drives much equilibrium results. As

argued, when firms are nonatomic decision makers with material influence on market developments

(active management), the most reasonable hypothesis is that of closed-loop or Markov strategies.

2. Review of major results

The development of a theory that combines real options analysis with dynamic game theory leads to

mathematical complexity that need be addessed first. Part I presents prerequisite notions and concepts

from economics and applied mathematics. The main objective is to generalize notions and techniques

borrowed from stochastic control theory to multiplayer settings, in so-called stopping and stochastic

differential games. In Part II, we provide a short overview over continuous-time real options analysis

with particular focus on the benchmark cases of monopoly and perfect competition. The core of the

monograph, Part III, consists of three original research contributions offering new insights to the the-

ory of finance and economics dealing with strategy investment under uncertainty. We reviewed recent

research contributions dealing with such problems in Chapter 7 and discussed in detail the problem of

lumpy investment and capital accumulation under competition and uncertainty, in Chapters 8 and 9,

respectively.

More precisely, the review in Chapter 7 helps highlight several managerial insights about the nature

of competitive advantage (first versus second-mover advantage), the manner in which information is

revealed, firm heterogeneity, capital investment size, and the number of competing firms. It also sets a

research agenda.

Chapter 8 discusses a market-entry game under uncertainty, explaining dynamic market entry timing

decisions and strategic interactions in the case of stochastically growing markets. In oligopolies, market

entries obtain to take place sequentially regardless of whether or not firms can observe and react to their

rivals’ moves. Besides, unlike the case in which firms disregard competition, entry does not occur in a

socially optimal manner when firms observe their rivals’ decisions before acting. If there are no entry

barriers and a large number of firms can enter a growing market, firms formulate open-loop strategies;

thereby, the sequence of investments is shown to be Pareto optimal. The value of the early movers are

eroded owing to later market entries by rivals. When only a few firms are protected from new market

entry, the sequence of investment is not necessarily Pareto optimal (closed-loop). In this case, Markov

perfection implies investment at an earlier time than the timing a social planner would impose on the

firms. Restricted availability of the investment option leads to preemption and rent dissipation.

In Chapter 9 on preemptive capacity investment under uncertainty, we discuss capital accumulation

under uncertainty in a setting where firms’ capital expansions act as a negative externality on each

other’s payoff. The model developed herein is solved with the help of techniques from the literature

on stochastic differential games. Deriving the Markov perfect equilibrium is usually more involved than

deriving the myopic equilibrium since an additional partial derivative obtains in the HJB equation. For

a convex investment cost function, the investment rule on marginal Tobin’s q still holds but with an

additional constraint on the value function. If the investment costs are partly unrecoupable then there

exists a hysteresis region in which the firm waits to invest or divest. In Markov perfect equilibrium, the

intensity at which firms invest or divest outside the hysteresis band are affected by the presence of rivals.

A natural hedge effect is shown to exist, whereby firms’ capital stock evolve in a less erratic manner

under competition. In other words, under competition, a firm invests with less intensity than if it were

ignoring competition. Besides, the firm with the larger capital stock disciplines its smaller rival away

from investing.
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3. Future Research Directions

Research efforts can be directed toward applying and extending these results in several directions.

Here a list of areas where further research would be fruitful to achieve enhanced practical and theoretical

contributions:

(1) Impact of information structure on equilibrium. Dynamic strategic interactions are sometimes

ignored in the strategy space especially in models dealing with capacity expansion.

(2) Bayesian learning in investment games. Information about certain characteristics of the un-

derlying market (e.g., the growth rate) may not be readily available at the outset but learned

over time through firms’ exercise strategies.

(3) Focus on timing. In the literature on option games, strategy choices are often defined in a very

simple manner, namely in terms of timing for lumpy investments or for additional atomic capital

units. The objective is to achieve tractability. Yet, real-life investment strategies encompass

many other aspects, such as short-term and long-term competition.

(4) Narrow view on strategic interdependencies. Most papers consider horizontal competition in

a given market, disregarding favorable or detrimental strategic interdependencies with other

value chain parties.

(5) Lack of empirical research and application. Most papers have been concerned with deriving

analytical results at the expense of applicability. To increase practical relevance, new decision-

making tool kits should be developed. Extending stochastic programming to multiple players

would be cumbersome as this approach might give rise to multiple equilibrium solutions.

Throughout our research program, we have highlighted how the choice of an appropriate solution ap-

proach (open-loop versus closed-loop) is critical to determining equilibria in real options models that

involve competition under uncertainty. Beyond observing a gap in the existing literature, we proposed

ways to tackle the informational problem and showed the value and welfare implications of each infor-

mation structure choice. When firms can observe and react to rivals’ actions, the appropriate solution

involves closed-loop strategies and a Markov perfect equilibrium. However, deriving the MPE in closed-

loop strategies is usually more involved than deriving the Nash equilibrium for the case of open-loop

strategies. Since the distinction and the resulting implication were not always clear, researchers in the

relevant literature stream often relied on approaches with an open-loop flavor, effectively discarding cer-

tain interesting dynamic strategic interactions. Our research will hopefully contribute both theoretically

and practically to the literature on strategic investment under uncertainty by developing tools to tackle

the informational problem, a problem recurrent in all related research endeavors.
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