Refine
Year of publication
Document Type
- Conference Proceeding (28)
- Article (25)
- Part of a Book (3)
- Doctoral Thesis (1)
- Report (1)
Is part of the Bibliography
- no (58)
Keywords
Institute
In this work, a novel polymer electrolyte membrane water electrolyzer (PEMWE) test cell based on hydraulic single-cell compression is described. In this test cell, the current density distribution is almost homogeneous over the active cell area due to hydraulic cell clamping. As the hydraulic medium entirely surrounds the active cell components, it is also used to control cell temperature resulting in even temperature distribution. The PEMWE single-cell test system based on hydraulic compression offers a 25 cm2 active surface area (5.0 × 5.0 cm) and can be operated up to 80°C and 6.0 A/cm2. Construction details and material selection for the designed test cell are given in this document. Furthermore, findings related to pressure distribution analyzed by utilizing a pressure-sensitive foil, the cell performance indicated by polarization curves, and the reproducibility of results are described. Experimental data indicate the applicability of the presented testing device for relevant PEMWE component testing and material analysis.
Um die Wasserstofftechnik in Zukunft wirtschaftlich und damit kommerziell am Markt verfügbar werden zu lassen, sind heute noch immer große Forschungs- und Entwicklungsanstrengungen notwendig. Dabei erfordert die Entwicklung von optimierten Komponenten wie beispielsweise der Membran-Elektroden-Einheit (MEA – engl. Membrane Electrode Assembly) für Brennstoffzellen sowie Elektrolyseure reproduzierbare und homogene Prüfbedingungen. Für diesen Zweck ist ein Prüfsystem auf Basis eines von der Westfälischen Hochschule (WHS) patentierten modularen Stackkonzepts mit hydraulischer Verpressung entworfen und realisiert worden. Mit dem hier vorgestellten System ist es möglich, auf Einzelzellenbasis mehrere Proben zum gleichen Zeitpunkt unter identischen Umgebungsbedingungen auf ihre Charakteristik hin zu untersuchen.
Brennstoffzellen gelten in der Forschung als eine der saubersten Technologien zur Stromerzeu-gung. In den Zellen, die meist z.B. so groß sind wie ein Taschenbuch, werden Wasserstoff und Sauerstoff in einer kontrollierten chemischen Reaktion in Wasserdampf umgewandelt. Dabei entstehen elektrische Energie und Wasser. Im Gegensatz zu den meisten anderen Formen der Stromproduktion wird kein Kohlendioxid freigesetzt. Das macht den Wandlungsprozess der Brennstoffzelle sehr umweltfreundlich.
Der Elektroingenieur Prof. Dr. Michael Brodmann von der Westfälischen Hochschule sieht in dieser Technologie die Zukunft mobiler wie stationärer Energieversorgung. Autos mit Elektro-motoren könnten mit Wasserstofftechnik angetrieben, portable Elektrogeräte oder auch ganze Gebäude umweltfreundlich mit Strom versorgt werden. Jedoch ist die Herstellung und Wartung der Brennstoffzellen derzeit sehr teuer, weshalb am Markt Energiewandler auf Basis fossiler Rohstoffe weiterhin dominieren. An diesem Problem arbeitet Brodmann gemeinsam mit Dr. Ulrich Rost. Im Labor des Westfälischen Energieinstituts haben die beiden Forscher eine neue Zelle entwickelt, die effektiver und günstiger ist – und dabei auf ein bewährtes Patent und neue Materialien gesetzt.
A compact and efficient PEM electrolyser stack design based on hydraulic single cell compression
(2019)
This experimental work deals with the preparation and investigation of PEM fuel cell electrodes, which are obtained using Graphene Related Material (GRM) serving as catalyst support material for platinum nanoparticles. The applied GRM belong to the group of carbon nanofibers and exhibits a helical-ribbon structure with dimensions of 50 nm in diameter and an average length up to a few µm. Furthermore, utilized GRM provide a superior graphitisation degree of about 100 %, which leads to both high corrosion resistance and low ohmic resistance. Material stability plays one of the main roles for long term fuel cell operation, whereby a great electrical catalyst contact combined with high specific surface area yields in high fuel cell performances.
Prior to GRM dispersion and deposition onto a gas diffusion layer, the graphene structures are functionalized by oxygen plasma treatment. Through this step, functional oxygen groups are generated onto the GRM outer surface providing an improved hydrophilic behaviour and facilitating the GRM suspension preparation. In addition, the oxygen groups act as anchors for platinum nanoparticles which are subsequently deposited onto the GRM surface through a pulse electrodeposition process.
Membrane electrode assemblies produced with the prepared electrodes are investigated in-situ in a PEM fuel cell test bench.
This work deals with the preparation and investigation of polymer electrolyte membrane fuel cell (PEMFC) electrodes, which are obtained using gas diffusion layers coated with graphene related material (GRM) serving as a catalyst support for platinum nanoparticles. PEMFC electrocatalysts have been prepared by pulsed electrochemical deposition of platinum particles from hexachloroplatinic acid. Prior to GRM decoration with platinum, the graphene structures are functionalized by oxygen plasma treatment. This leads to oxygen containing functional groups on the GRM outer surface, providing an improved hydrophilic behavior, thus favoring the Pt deposition process. Membrane electrode assemblies (MEAs) with the so prepared electrodes are investigated in-situ in our fuel cell test system. Polarization plots (in-situ cell performance) using these MEAs have been tested under different operational conditions.
In this study, a novel design concept for PEMFC (polymer electrolytemembrane fuel cell) stacks is presented with singlecells inserted in pockets surrounded by a hydraulic medium. Thehydraulic pressure introduces necessary compression forces to themembrane electrode assembly of each cell within a stack. Moreover, homogeneous cell cooling is achieved by this medium. First,prototypes presented in this work indicate that, upscaling of cells for the novelstack design is possible without significantperformancelosses. Due to its modularity and scalability, this stackdesign meets the requirements for large PEMFC units.
Hochdruck PEM-Elektrolyse
(2017)

