Refine
Document Type
- Conference Proceeding (8)
- Article (4)
- Doctoral Thesis (1)
Has Fulltext
- no (13)
Is part of the Bibliography
- no (13)
Keywords
Institute
This experimental work deals with the preparation and investigation of PEM fuel cell electrodes, which are obtained using Graphene Related Material (GRM) serving as catalyst support material for platinum nanoparticles. The applied GRM belong to the group of carbon nanofibers and exhibits a helical-ribbon structure with dimensions of 50 nm in diameter and an average length up to a few µm. Furthermore, utilized GRM provide a superior graphitisation degree of about 100 %, which leads to both high corrosion resistance and low ohmic resistance. Material stability plays one of the main roles for long term fuel cell operation, whereby a great electrical catalyst contact combined with high specific surface area yields in high fuel cell performances.
Prior to GRM dispersion and deposition onto a gas diffusion layer, the graphene structures are functionalized by oxygen plasma treatment. Through this step, functional oxygen groups are generated onto the GRM outer surface providing an improved hydrophilic behaviour and facilitating the GRM suspension preparation. In addition, the oxygen groups act as anchors for platinum nanoparticles which are subsequently deposited onto the GRM surface through a pulse electrodeposition process.
Membrane electrode assemblies produced with the prepared electrodes are investigated in-situ in a PEM fuel cell test bench.
This work deals with the preparation and investigation of polymer electrolyte membrane fuel cell (PEMFC) electrodes, which are obtained using gas diffusion layers coated with graphene related material (GRM) serving as a catalyst support for platinum nanoparticles. PEMFC electrocatalysts have been prepared by pulsed electrochemical deposition of platinum particles from hexachloroplatinic acid. Prior to GRM decoration with platinum, the graphene structures are functionalized by oxygen plasma treatment. This leads to oxygen containing functional groups on the GRM outer surface, providing an improved hydrophilic behavior, thus favoring the Pt deposition process. Membrane electrode assemblies (MEAs) with the so prepared electrodes are investigated in-situ in our fuel cell test system. Polarization plots (in-situ cell performance) using these MEAs have been tested under different operational conditions.
This experimental work deals with the preparation and investigation of PEM fuel cell electrodes, which are obtained using Graphene Related Material (GRM) serving as catalyst support material for platinum nanoparticles. The applied GRM belong to the group of carbon nanofibers and exhibits a helical-ribbon structure with dimensions of 50 nm in diameter and an average length up to a few µm. Furthermore, utilized GRM provide a superior graphitisation degree of about 100 %, which leads to both high corrosion resistance and low ohmic resistance. Material stability plays one of the main roles for long term fuel cell operation, whereby a great electrical catalyst contact combined with high specific surface area yields in high fuel cell performances.
Prior to GRM dispersion and deposition onto a gas diffusion layer, the graphene structures are functionalized by oxygen plasma treatment. Through this step, functional oxygen groups are generated onto the GRM outer surface providing an improved hydrophilic behaviour and facilitating the GRM suspension preparation. In addition, the oxygen groups act as anchors for platinum nanoparticles which are subsequently deposited onto the GRM surface through a pulse electrodeposition process.
Membrane electrode assemblies produced with the prepared electrodes are investigated in-situ in a PEM fuel cell test bench.
The present paper presents one- and two-step approaches for electrochemical Pt and Ir deposition on a porous Ti-substrate to obtain a bifunctional oxygen electrode. Surface pre-treatment of the fiber-based Ti-substrate with oxalic acid provides an alternative to plasma treatment for partially stripping TiO2 from the electrode surface and roughening the topography. Electrochemical catalyst deposition performed directly onto the pretreated Ti-substrates bypasses unnecessary preparation and processing of catalyst support structures. A single Pt constant potential deposition (CPD), directly followed by pulsed electrodeposition (PED), created nanosized noble agglomerates. Subsequently, Ir was deposited via PED onto the Pt sub-structure to obtain a successively deposited PtIr catalyst layer. For the co-deposition of PtIr, a binary PtIr-alloy electrolyte was used applying PED. Micrographically, areal micro- and nano-scaled Pt sub-structure were observed, supplemented by homogenously distributed, nanosized Ir agglomerates for the successive PtIr deposition. In contrast, the PtIr co-deposition led to spherical, nanosized PtIr agglomerates. The electrochemical ORR and OER activity showed increased hydrogen desorption peaks for the Pt-deposited substrate, as well as broadening and flattening of the hydrogen desorption peaks for PtIr deposited substrates. The anodic kinetic parameters for the prepared electrodes were found to be higher than those of a polished Ir-disc.
The energy transition towards renewable energies for the overall energy supply (electricity, heat, mobility, etc.) is already well advanced and the further expansion is planned. The volatility of renewable energies is being addressed by the hydrogen technology. However, there is still a need for optimization of the cost-efficient reconversion of stored energy in the form of hydrogen, e.g. in applications for decarbonization of the power grid or of the mobility sector. For instance, the cost of an automotive low-temperature polymer electrolyte membrane fuel cell (PEMFC) must be lowered by reducing the platinum loading and the lifetime must be further improved to achieve the competitiveness of this technology.
The aim of the present thesis was to develop membrane electrode assemblies (MEAs) with ultra-low platinum loading, high performance and increased lifetime for the use in PEMFCs. They are fabricated by an innovative MEA preparation process based on the pulse electrodeposition of platinum (Pt) using carbon nanofibers (CNFs) as a catalyst support with enhanced resistance to carbon oxidation reaction.
The design of the MEA preparation process and the development of ultra-low Pt-loaded anodes and cathodes was the starting point of this thesis. It was found that the Pt/CNF catalyst used on the anode side had better characteristics than a commercial Pt/C catalyst, since the same power output of 0.525 W cm-2 was obtained with 10 .....
Since high costs restrict the wide-range implementation of green hydrogen production capacities based on proton exchange membrane water electrolysis (PEMWE), efforts on cost reduced components need to be made. Beside the necessary noble metal catalyst, the membrane material is a main cost driver. In this work, a novel glass fibre reinforced PFSA/ssPS composite membrane is investigated as an alternative to widely used Nafion®. These membranes are processed into membrane-electrode-assemblies (MEAs) in conjunction with catalyst-coated substrates, prepared via electrochemical catalyst deposition. This approach is promising to reduce costs due to less expensive raw materials and due to increasing catalyst utilization by graded catalyst layers. Characterisation of the components and entire MEAs was performed ex-situ as well as in-situ via PEMWE operation.
In this experimental work polymer electrolyte membrane fuel cell (PEMFC) electrodes are analysed, which are prepared by the use of two sorts of carbon nano fibres (CNF) serving as support material for platinum nano particles. Those CNFs, which are heat treated subsequently to their production, have a higher graphitisation degree than fibres as produced. The improved graphitisation degree leads to higher electrical conductivity, which is favourably for the use in PEMFC electrodes. Samples have been analysed, in order to determine graphitisation degree, electrical conductivity, as well as morphology and loading of the prepared electro catalyst. Membrane electrode assemblies manufactured from prepared electrodes are analysed in-situ in a PEM fuel cell test environment. It has been determined that power output for samples containing CNFs with higher graphitisation degree is increased by about 13.5%.

