Refine
Year of publication
Document Type
- Article (33)
- Conference Proceeding (14)
Keywords
- HVOF (2)
- AEM-Electrolysis (1)
- Additive manufacturing Directed energy deposition-arc 316L stainless steel Corrosion behavior Electrochemical corrosion (1)
- Cavitation; Corrosion; Laser remelting; Self-fluxing alloys; Stellite 6 (1)
- Cr3C2-NiCr (1)
- Electrodeposition (1)
- Erneuerbare Energien (1)
- Hydraulic compression, Carbon Nano Fibers, PEM Fuel Cells, Catalyst utilization (1)
- Hydrogen evolution reaction (1)
- Kohlenstoff-Nanoröhre (1)
Institute
Since the 1980’s, against the backdrop of global warming and the decline of conventional energy resources, low emission and renewable energy systems have gotten into the focus of politics as well as research and development. In order to decrease the emission of greenhouse gases Germany intents to generate 80% of its electrical energy from renewable and low emission sources by 2050. For low emission electricity generation hydrogen operated fuel cells are a potential solution. However, although fuel cell technology has been well known since the 19th century cost effective materials are needed to achieve a breakthrough in the market.
Proton Exchange Membrane Fuel Cells with Carbon Nanotubes as Electrode Material
At the Westphalian Energy Institute of the Wesphalian University of Applied Sciences one main focus is on the research of proton exchange membrane fuel cells (PEMFC). PEMFC membrane electrode assemblies (MEA) consist of a polymer membrane with electrolytic properties covered on both sides by a catalyst layer (CL) as well as a porous and electrical conductive gas diffusion layer (GDL).
For PEMFC carbon nanotubes (CNT) have ideal properties as electrode material concerning electrical conductivity, oxidation resistance and media transport. CNTs are suitable for the use as catalyst support material within the CL due to their large surface in comparison to conventional carbon supports. Furthermore, oxygen plasma treated CNTs show electrochemical activity referred to hydrogen adsorption and desorption, which has been shown by cyclic voltammetry in 0.5 M sulfuric acid solution. According to the PEMFCs anode a GDL coated with oxygen plasma activated CNTs has promising properties to significantly reduce catalyst content (e.g. platinum) of the anodic CL.
This study examines the effect of elevated printing speeds (100–600 mm/s) on the dimensional accuracy and tensile strength of PLA components fabricated via fused deposition modeling (FDM). To isolate the influence of printing speed, all other parameters were kept constant, and two filament variants—natural (unpigmented) and black PLA—were analyzed. ISO 527-2 type 1A specimens were produced and tested for dimensional deviations and ultimate tensile strength (UTS). The results indicate that printing speed has a marked impact on both geometric precision and mechanical performance. The optimal speed of 300 mm/s provided the best compromise between dimensional accuracy and tensile strength for both filaments. At speeds below 300 mm/s, under-extrusion caused weak layer bonding and air gaps, while speeds above 300 mm/s led to over-extrusion and structural defects due to thermal stress and rapid cooling. Black PLA yielded better dimensional accuracy at higher speeds, with cross-sectional deviations between 2.76% and 5.33%, while natural PLA showed larger deviations of up to 8.63%. However, natural PLA exhibited superior tensile strength, reaching up to 46.59 MPa, with black PLA showing up to 13.16% lower UTS values. The findings emphasize the importance of speed tuning and material selection for achieving high-quality, reliable, and efficient FDM prints.
Abstract
This study signifies the development and characterization of a composite material with a metallic matrix of aluminum reinforced with a steel mesh, utilizing centrifugal casting technology. An evaluation was conducted to ascertain the influence of the formulation process and the presence of the insert on the mechanical behavior with regard to tensile strength. The aluminum matrix was obtained from commercial and scrap alloys, elaborated by advanced methods of degassing and chemical modification. Meanwhile, the steel mesh reinforcement was cleaned, copper plated, and preheated to optimize wetting and, consequently, adhesion. The structural characterization was performed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy analyses (EDX), which highlighted a well-defined interface and uniform copper distribution. The composite was produced by means of horizontal-axis centrifugal casting in a fiberglass mold, followed by cold rolling to obtain flat specimens. A total of eight tensile specimens were examined, with measured ultimate tensile strengths ranging from 78.5 to 119.8 (MPa). A thorough examination of the fractured specimens revealed a brittle fracture mechanism, devoid of substantial plastic deformation. The onset of failures was frequently observed at the interface between the aluminum matrix and the steel mesh. The use of SEM and EDX investigations led to the confirmation of the uniformity of the copper coating and the absence of significant porosity or interfacial defects. A bimodal distribution of tensile strength values was observed, a phenomenon that is likely attributable to variations in mesh positioning and local differences in solidification. A correlation was established between the experimental results and an analytical polynomial model, thereby confirming a reasonable fit. In sum, the present study provides a substantial foundation for the development of metal matrix composites with enhanced performance, specifically designed for challenging structural applications. This method also demonstrates potential for recycling aluminum scrap into high-performance composites with controlled microstructure and mechanical integrity.
Many components in industry are subjected to high loads during operation and therefore often do not reach their intended service life. Conventional steels frequently do not provide sufficient protection against wear and corrosion. One solution is to coat these components using methods like thermal spraying to apply cermet coatings such as Cr3C2-NiCr or WC-Co-Cr. In light of increasingly strict environmental regulations, more eco-friendly alternatives are needed, especially ones that use little or no Cr, Ni, Co, or W. Another alternative is the recycling of powder materials, which is the focus of this research project. This study investigated whether filter dust from an HVOF system could be used to develop a new coating suitable for use in applications requiring resistance to wear and corrosion. This is challenging as the filter dusts have heterogeneous compositions and irregular particle sizes. Nevertheless, this recycled material, referred to as “Green Cermets” (GCs), offers previously untapped potential that may also be of ecological interest. An established WC-Co-Cr coating served as a reference. In addition to friction wear and corrosion resistance, the study also examined particle size distribution, hardness, microstructure, and susceptibility to crack formation at the interface and inside the coating. Even though the results revealed a diminished performance of the GC coatings relative to the conventional WC-CoCr, they may still be applicable in various industrial applications.
Electrodeposited Mo-rich NiMo catalysts offer enhanced catalytic activity for the alkaline hydrogen evolution reaction (HER) and provide an electrically conductive, binder-free substrate connection, making them promising catalysts for green hydrogen production. However, creating Mo-rich deposits is challenging, as the codeposition process typically favors Ni. Optimal deposition conditions for Mo-rich NiMo catalysts remain insufficiently explored. This article investigates Mo-rich NiMo electrodeposition from an ammonia-free citrate bath using NaSO4 as a chlorine-free support electrolyte. The effects of the deposition parameters, 1) sodium molybdate concentration in the electrolyte, 2) deposition current density, and 3) enhanced mass transport via working electrode rotation on the alkaline HER activity, were studied. The electrodeposits, containing 44–66 wt% Mo, exhibited increased surface area due to a rough, cracked morphology and variable oxygen content of the catalyst. The oxygen content was linked to HER activity, revealing an inhibiting effect. The lowest overpotential of 118 mV at −10 mA cm−2 for the alkaline HER was achieved using an electrolyte with 0.02 mol L−1 sodium molybdate, a deposition current density of 600 mA cm−2, without electrode rotation. Respective samples combined a favorable Ni:Mo ratio comprising 56 wt% Mo content with increased surface area and low oxygen content.
In recent decades, batch hot-dip galvanized (HDG) steel has proven itself in practical applications due to the good corrosion resistance of its components. Despite the importance of the mechanical-load-bearing capacity of these coatings, the wear behavior has, so far, only been investigated very sporadically and not systematically, so a quantification of the wear behavior and statements on the mechanisms are vague. Therefore, two body wear tests with bonded abrasive grain were carried out. Varying the friction rolls, load, and total number of cycles, the wear behavior was investigated. The mass loss and the layer thickness reduction were measured at different intervals. After the test, the microstructure in the cross- section and the hardness according to Vickers (0.01 HV) were evaluated. The results showed that the wear behavior of HDG coatings against abrasive loads can be characterized with the selected test conditions. Initially, the applied load removed the soft η-phase. As the total number of cycles increases, the η- and ζ-phases deform plastically, resulting in a lower mass reduction compared to that expected from the measured layer thickness. The characteristic structure of a batch HDG coating with hard intermetallic Zn-Fe phases and an outer pure zinc phase has demonstrated effective resistance to abrasion.
In the polymer electrolyte membrane fuel cells (PEMFC) state of the art, rare and expensive platinum group metals (PGM) or PGM alloys are used as catalyst material. Reduction of PGMs in PEMFC electrodes is strongly required to reach cost targets for this technology. An optimal catalyst utilization is achieved in case of nano-structured particles supported on carbon material with a large specific surface area. In this study, graphitic material, in form of carbon nanofibers (CNF), is decorated with Pt particles, serving as catalyst material for PEMFC electrodes with low Pt loading. As a novelty, the effect of oxygen plasma treatment of CNFs previously to platinum particle deposition has been studied. Electrodes are investigated in respect of the optimal morphology, microstructure as well as electrochemical properties. Therefore, samples are characterized by means of scanning electron microscopy combined with energy dispersive X-ray analysis, transmission electron microscopy, thermogravimetry, X-ray diffraction as well as X-ray fluorescence analysis. In order to determine the electrochemical active surface area of catalyst particles, cyclic voltammetry has been performed in 0.5 M sulphuric acid. Selected samples have been investigated in a PEMFC test bench according to their polarization behavior.
Brazing is a joining process that involves melting a filler metal and flowing it into the joint between two closely fitting parts. While brazing is primarily used for joining metals, it can also be adapted for certain coating deposition applications. The present study investigates the microstructure and corrosion behavior and sliding wear resistance of WC (Tungsten Carbide)-CoCr-Ni reinforced Co-based composite coatings deposited onto the surface of AISI 904L stainless steel using a vacuum brazing method. The primary objective of this experimental work was to evaluate the influence of WC-based particles added to the microstructure and the properties of the brazed Co composite coating. The focus was on enhancing the sliding wear resistance of the coatings while ensuring that their corrosion resistance in chloride media was not adversely affected. The morphology and microstructure of the composite coatings were investigated using scanning electron microscopy (SEM) and phase identification by X-ray diffraction (XRD). The SEM analysis revealed in the coating the presence of intermetallic compounds and carbides, which increase the hardness of the material. The sliding wear resistance was assessed using the pin-on-disk method, and the corrosion properties were determined using electrochemical measurements. The results obtained showed that as the WC particle ratio in the Co-based composite coating increased, the mechanical properties improved, the alloy became harder, and the tribological properties were improved. The evaluation of the electrochemical tests revealed no significant alterations of the manufactured composite in comparison with the Co-based alloys. In all cases, the corrosion behavior was better compared with that of the stainless-steel substrate.
Without proper post-processing (often using flame, furnace, laser remelting, and induction) or reinforcements’ addition, Ni-based flame-sprayed coatings generally manifest moderate adhesion to the substrate, high porosity, unmelted particles, undesirable oxides, or weak wear resistance and mechanical properties. The current research aimed to investigate the addition of ZrO2 as reinforcement to the self-fluxing alloy coatings. Mechanically mixed NiCrBSi-ZrO2 powders were thermally sprayed onto an industrially relevant high-grade steel. After thermal spraying, the samples were differently post-processed with a flame gun and with a vacuum furnace, respectively. Scanning electron microscopy showed a porosity reduction for the vacuum-heat-treated samples compared to that of the flame-post-processed ones. X-ray diffraction measurements showed differences in the main peaks of the patterns for the thermal processed samples compared to the as-sprayed ones, these having a direct influence on the mechanical behavior of the coatings. Although a slight microhardness decrease was observed in the case of vacuum-remelted samples, the overall low porosity and the phase differences helped the coating to perform better during wear-resistance testing, realized using a ball-on-disk arrangement, compared to the as-sprayed reference samples.
Carbon Nanofibers (CNF) are considered to be a promising catalyst support material due to their unique characteristics, excellent mechanical, electrical and structural properties, high surface area and nevertheless, good interaction with metallic catalyst particles. The possibility of preparing CNF decorated with platinum by an electrochemical method was tested, using a hexachloroplatinic bath solution. The experiments were carried out with the aid of a Potentiostat/Galvanostat Ivium Technologies Vertex, in a three – electrode cell. The aim of the present work was to determine the electrochemical surface area (ECSA) of the CNF-Pt catalysts in relation to the functionalization treatment of fibers, using an electrochemical method. ECSA for different functionalized CNF-Pt catalysts was determined by cyclic voltammetry in 0.5 M H2SO4 solution. The highest active surface of platinum was obtained for the samples with CNF functionalized by plasma treatment using 80 W for 1800 s. The obtained results correlate very well with the particles size and distribution of platinum, revealed by scanning electron microscopy (SEM) and the quantity of deposited platinum determined by thermo gravimetrical analysis (TGA) respectively. Cyclic voltammetry (CV) has been proven to be a suitable method for estimation of the ECSA of the electrocatalysts.

