The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 2762
Back to Result List

Effect of Feedstock Powder Intrinsic Characteristics on the Tribological Behavior of Inductively Remelted NiCrBSi Flame-Sprayed Coatings

  • Ni-based alloys are among the materials of choice in developing high-quality coatings for ambient and high temperature applications that require protection against intense wear and corrosion. The current study aims to develop and characterize NiCrBSi coatings with high wear resistance and improved adhesion to the substrate. Starting with nickel-based feedstock powders, thermally sprayed coatings were initially fabricated. Prior to deposition, the powders were characterized in terms of microstructure, particle size, chemical composition, flowability, and density. For comparison, three types of powders with different chemical compositions and characteristics were deposited onto a 1.7227 tempered steel substrate using oxyacetylene flame spraying, and subsequently, the coatings were inductively remelted. Ball-on-disc sliding wear testing was chosen to investigate the tribological properties of both the as-sprayed and induction-remelted coatings. The results reveal that, in the case of as-sprayed coatings, the main wear mechanisms were abrasive, independent of powder chemical composition, and correlated with intense wear losses due to the poor intersplat cohesion typical of flame-sprayed coatings. The remelting treatment improved the performance of the coatings in terms of wear compared to that of the as-sprayed ones, and the density and lower porosity achieved during the induction post-treatment had a significant positive role in this behavior.

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Roxana Muntean, Petru-Cristian Valean, Norbert KazamerORCiD, Ion-Dragos Utu, Gabriela MargineanORCiD, Viorel Aurel Serban
DOI:https://doi.org/10.3390/lubricants11090363
Parent Title (English):Lubricants MDPI
Document Type:Article
Language:English
Year of Completion:2023
Date of first Publication:2023/08/26
Publishing Institution:Westfälische Hochschule Gelsenkirchen Bocholt Recklinghausen
Release Date:2024/09/05
Tag:NiCrBSi coatings; flame spraying; induction remelting; wear resistance
Volume:2023
Issue:11 / 9
First Page:363
Institutes:Fachbereiche / Maschinenbau, Umwelt- und Gebäudetechnik
Licence (German):Es gilt das Urheberrechtsgesetz
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.