DoSeR - A Knowledge-Base-Agnostic Framework for Entity Disambiguation Using Semantic Embeddings

  • Entity disambiguation is the task of mapping ambiguous terms in natural-language text to its entities in a knowledge base. It finds its application in the extraction of structured data in RDF (Resource Description Framework) from textual documents, but equally so in facilitating artificial intelligence applications, such as Semantic Search, Reasoning and Question & Answering. In this work, we propose DoSeR (Disambiguation of Semantic Resources), a (named) entity disambiguation framework that is knowledge-base-agnostic in terms of RDF (e.g. DBpedia) and entity-annotated document knowledge bases (e.g. Wikipedia). Initially, our framework automatically generates semantic entity embeddings given one or multiple knowledge bases. In the following, DoSeR accepts documents with a given set of surface forms as input and collectively links them to an entity in a knowledge base with a graph-based approach. We evaluate DoSeR on seven different data sets against publicly available, state-of-the-art (named) entity disambiguation frameworks. OurEntity disambiguation is the task of mapping ambiguous terms in natural-language text to its entities in a knowledge base. It finds its application in the extraction of structured data in RDF (Resource Description Framework) from textual documents, but equally so in facilitating artificial intelligence applications, such as Semantic Search, Reasoning and Question & Answering. In this work, we propose DoSeR (Disambiguation of Semantic Resources), a (named) entity disambiguation framework that is knowledge-base-agnostic in terms of RDF (e.g. DBpedia) and entity-annotated document knowledge bases (e.g. Wikipedia). Initially, our framework automatically generates semantic entity embeddings given one or multiple knowledge bases. In the following, DoSeR accepts documents with a given set of surface forms as input and collectively links them to an entity in a knowledge base with a graph-based approach. We evaluate DoSeR on seven different data sets against publicly available, state-of-the-art (named) entity disambiguation frameworks. Our approach outperforms the state-of-the-art approaches that make use of RDF knowledge bases and/or entity-annotated document knowledge bases by up to 10% F1 measure.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Stefan Zwicklbauer, Christin Seifert, Michael Granitzer
URN:urn:nbn:de:bvb:739-opus4-3670
Document Type:Preprint
Language:German
Year of Completion:2016
Date of Publication (online):2016/06/21
Date of first Publication:2016/06/21
Publishing Institution:Universität Passau
Release Date:2016/06/21
Tag:Entity Disambiguation; Linked Data; Neural Networks; Semantic Web
Institutes:Fakultät für Informatik und Mathematik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
open_access (DINI-Set):open_access
Licence (German):License LogoStandardbedingung laut Einverständniserklärung