The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 115
Back to Result List

Bridging the Realism Gap for CAD-Based Visual Recognition

  • Computer vision aims at developing algorithms to extract high-level information from images and videos. In the industry, for instance, such algorithms are applied to guide manufacturing robots, to visually monitor plants, or to assist human operators in recognizing specific components. Recent progress in computer vision has been dominated by deep artificial neural network, i.e., machine learning methods simulating the way that information flows in our biological brains, and the way that our neural networks adapt and learn from experience. For these methods to learn how to accurately perform complex visual tasks, large amounts of annotated images are needed. Collecting and labeling such domain-relevant training datasets is, however, a tedious—sometimes impossible—task. Therefore, it has become common practice to leverage pre-available three-dimensional (3D) models instead, to generate synthetic images for the recognition algorithms to be trained on. However, methods optimized over synthetic data usually suffer a significant performanceComputer vision aims at developing algorithms to extract high-level information from images and videos. In the industry, for instance, such algorithms are applied to guide manufacturing robots, to visually monitor plants, or to assist human operators in recognizing specific components. Recent progress in computer vision has been dominated by deep artificial neural network, i.e., machine learning methods simulating the way that information flows in our biological brains, and the way that our neural networks adapt and learn from experience. For these methods to learn how to accurately perform complex visual tasks, large amounts of annotated images are needed. Collecting and labeling such domain-relevant training datasets is, however, a tedious—sometimes impossible—task. Therefore, it has become common practice to leverage pre-available three-dimensional (3D) models instead, to generate synthetic images for the recognition algorithms to be trained on. However, methods optimized over synthetic data usually suffer a significant performance drop when applied to real target images. This is due to the realism gap, i.e., the discrepancies between synthetic and real images (in terms of noise, clutter, etc.). In my work, three main directions were explored to bridge this gap. First, an innovative end-to-end framework is proposed to render realistic depth images from 3D models, as a growing number of solutions (especially in the industry) are utilizing low-cost depth cameras (e.g., Microsoft Kinect and Intel RealSense) for recognition tasks. Based on a thorough study of these devices and the different types of noise impairing them, the proposed framework simulates their inner mechanisms, comprehensively modeling vital factors such as sensor noise, material reflectance, surface geometry, etc. Able to simulate a wide panel of depth sensors and to quickly generate large datasets, this framework is used to train algorithms for various recognition tasks, consistently and significantly enhancing their performance compared to other state-of-the-art simulation tools. In some cases, however, relevant 2D or 3D object representations to generate synthetic samples are not available. Considering this different case of data scarcity, a solution is then proposed to incrementally build a representation of visual scenes from partial observations. Provided observations are localized from one to another based on their content and registered in a global memory with spatial properties. Simultaneously, this memory can be queried to render novel views of the scene. Furthermore, unobserved regions can be hallucinated in memory, in consistence with previous observations, hallucinations, and global priors. The efficacy of the proposed mnemonic and generative system, trainable end-to-end, is demonstrated on various 2D and 3D use-cases. Finally, an advanced convolutional neural network pipeline is introduced, tackling the realism gap from a novel angle. While most methods addressing this problem focus on bringing synthetic samples—or the knowledge acquired from them—closer to the real target domain, the proposed solution performs the opposite process, mapping unseen target images into controlled synthetic domains. The pre-processed samples can then be handed to downstream recognition methods, themselves purely trained on similar synthetic data, to greatly improve their accuracy. For each approach, a variety of qualitative and quantitative studies are detailed, providing successful comparisons to state-of-the-art methods. By proposing solutions to bridge the realism gap from either side, as well as a pipeline to improve the acquisition and generation of new visual content, this thesis provides a unique perspective on the challenges of data scarcity when building robust recognition systems.show moreshow less
  • Die Computer Vision strebt an, Algorithmen zum Extrahieren hochwertiger Informationen von Bildern und Videos zu entwickeln. In der Industrie werden solche Algorithmen beispielsweise angewendet, um Fertigungsroboter zu steuern, um Betriebe visuell zu überwachen, oder um Mitarbeiter bei der Erkennung bestimmter Komponenten zu unterstützen. Die kürzlichen Fortschritte im Bereich Computer Vision wurden von tiefen künstlichen neuronalen Netzen dominiert. Diese Methoden des maschinelles Lernens (Machine Learning) simulieren die Art und Weise, in der die Information in unseren biologischen Gehirnen verarbeitet wird und in der unsere neuronale Netze sich anpassen und aus Erfahrung lernen. Damit diese Methoden zur genauen Ausführung komplexer visueller Aufgaben befähigt werden, müssen sie mit einer großen Anzahl von annotierten Bildern trainiert werden. Die Erhebung und Kennzeichnung entsprechender Trainingsdatensätze ist jedoch eine langwierige und manchmal sogar unmögliche Aufgabe. Deswegen ist es zur gängigen Praxis geworden, stattdessenDie Computer Vision strebt an, Algorithmen zum Extrahieren hochwertiger Informationen von Bildern und Videos zu entwickeln. In der Industrie werden solche Algorithmen beispielsweise angewendet, um Fertigungsroboter zu steuern, um Betriebe visuell zu überwachen, oder um Mitarbeiter bei der Erkennung bestimmter Komponenten zu unterstützen. Die kürzlichen Fortschritte im Bereich Computer Vision wurden von tiefen künstlichen neuronalen Netzen dominiert. Diese Methoden des maschinelles Lernens (Machine Learning) simulieren die Art und Weise, in der die Information in unseren biologischen Gehirnen verarbeitet wird und in der unsere neuronale Netze sich anpassen und aus Erfahrung lernen. Damit diese Methoden zur genauen Ausführung komplexer visueller Aufgaben befähigt werden, müssen sie mit einer großen Anzahl von annotierten Bildern trainiert werden. Die Erhebung und Kennzeichnung entsprechender Trainingsdatensätze ist jedoch eine langwierige und manchmal sogar unmögliche Aufgabe. Deswegen ist es zur gängigen Praxis geworden, stattdessen die vorhandenen 3D-Modelle zur Generierung synthetischer Bilder einzusetzen, damit die Erkennungsalgorithmen mit Hilfe dieser Bilder trainiert werden. Allerdings, bei der Anwendung auf die realen Zielbilder, erleiden die Methoden, die durch synthetische Daten angepasst wurden, einen erheblichen Leistungsabfall. Dies geschieht aufgrund der Realismuslücke (Realism Gap), das heißt durch die Diskrepanzen zwischen synthetischen und realen Bildern (hinsichtlich von Rauschen, Störungen usw.). In meiner Arbeit wurden drei Hauptrichtungen untersucht, um diese Lücke zu schließen. Zuerst wird ein innovatives End-to-End-Framework vorgeschlagen, um realistische Tiefenbilder von 3D-Modellen zu rendern, denn immer mehr Lösungen (insbesondere in der Industrie) verwenden kostengünstige Tiefen-Kameras (z. B. Microsoft Kinect und Intel RealSense) für die Erkennungsaufgaben. Aufgrund einer gründlichen Untersuchung dieser Geräte und der verschiedenen Arten von Rauschen, die dem Aufnahmen beeinträchtigen, simuliert das vorgeschlagene Framework deren innere Mechanismen, indem Schlüsselfaktoren wie Sensorrauschen, Reflektionsgrade der Materialien, Oberflächengeometrie usw. umfassend modelliert werden. Dieses Framework ist in der Lage eine breite Palette von Tiefensensoren zu simulieren und schnell große Datensätze zu generieren. Dies wird eingesetzt, um die Algorithmen für verschiedene Erkennungsaufgaben zu trainieren und deren Leistung im Vergleich zu anderen hochmodernen Simulationsmethoden konsistent und erheblich zu verbessern. In manchen Fällen sind jedoch keine relevanten 2D- oder 3D-Objektdarstellungen zur Erzeugung von synthetischen Bildern verfügbar. Ausgehend von dieser Problematik des Datenmangels wurde eine Lösung vorgeschlagen, in der die Rekonstruktion von visuellen Szenen aus Teilbeobachtungen schrittweise durchgeführt wird. Die Bilder werden anhand ihres Inhalts in Bezug zueinander lokalisiert und in einer globalen Gedächtnisstruktur mit räumlichen Eigenschaften registriert Gleichzeitig kann dieses Gedächtnis abgerufen werden, um neuen Ansichten der Szene zu rendern. Darüber hinaus können bisher unbeobachtete Regionen in Übereinstimmung mit früheren Beobachtungen, Halluzinationen und globalen Vorwissen im Gedächtnis halluziniert werden. Die Wirksamkeit des vorgeschlagenen, durchgehend trainierbaren mnemonischen und generativen Systems, wird anhand von verschiedenen 2D- und 3D-Anwendungsfällen demonstriert. Schließlich wird eine auf Convolutional Neural Networks (CNNs) basierte weiter entwickelte Pipeline vorgestellt, die die Realismuslücke aus einem neuen Blickwinkel angeht. Während die meisten Methoden, die sich mit diesem Problem befassen, sich darauf konzentrieren, synthetische Datenproben (bzw. daraus erworbenes Wissen) näher an die echte/reale Zieldomäne zu bringen, führt die vorgeschlagene Lösung den umgekehrten Prozess durch, indem ungesehene Zielbilder in den kontrollierten synthetischen Domänen abgebildet werden. Die vorbehandelten Datenproben können dann für die nachgeschalteten Erkennungsalgorithmen übergeben werden, die selbst anhand der ähnlichen synthetischen Daten trainiert wurden, um deren Genauigkeit deutlich zu verbessern. Für jeden Ansatz werden verschiedene qualitative und quantitative Studien durchgeführt, um mit sie den neuesten Methoden zu vergleichen. Insgesamt werden in dieser Arbeit Methoden zur Überbrückung der Realismuslücke auf beiden Seiten sowie eine Lösung zur Verbesserung der Erfassung und Generierung neuer visueller Inhalte beschrieben. Daher bietet diese Dissertation eine neuartige Perspektive auf die Herausforderungen der Datenknappheit bei der Entwicklung robuster Erkennungssysteme.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Benjamin Planche
URN:urn:nbn:de:bvb:739-opus4-8361
Advisor:Harald Kosch
Document Type:Doctoral Thesis
Language:English
Year of Completion:2020
Date of Publication (online):2020/11/13
Date of first Publication:2020/11/13
Publishing Institution:Universität Passau
Granting Institution:Universität Passau, Fakultät für Informatik und Mathematik
Date of final exam:2020/07/07
Release Date:2020/11/13
Tag:computer vision; domain adaptation; machine learning; realism gap; visual understanding
Page Number:xx, 152
Institutes:Fakultät für Informatik und Mathematik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
open_access (DINI-Set):open_access
Licence (German):License LogoCreative Commons - CC BY-SA - Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International