Optimal quantization for the one-dimensional uniform distribution with Rényi -α-entropy constraints

  • We establish the optimal quantization problem for probabilities under constrained Rényi-α-entropy of the quantizers. We determine the optimal quantizers and the optimal quantization error of one-dimensional uniform distributions including the known special cases α = 0 (restricted codebook size) and α = 1 (restricted Shannon entropy).

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Wolfgang Kreitmeier
URN:urn:nbn:de:bvb:739-opus-16983
Document Type:Preprint
Language:German
Year of Completion:2009
Date of Publication (online):2009/10/19
Publishing Institution:Universität Passau
Release Date:2009/10/19
Tag:Rényi-α-entropy; optimal quantization; uniform distribution
GND Keyword:Entropie <Informationstheorie>; Maßtheorie; Quantisierung <Nachrichtentechnik>
Source:This is a preprint of an article accepted for publication in Kybernetika ISSN 0023-5954 The original publication is available at http://www.kybernetika.cz/content.html
Institutes:Fakultät für Informatik und Mathematik / Mitarbeiter Lehrstuhl/Einrichtung der Fakultät für Informatik und Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Classification:60-XX PROBABILITY THEORY AND STOCHASTIC PROCESSES (For additional applications, see 11Kxx, 62-XX, 90-XX, 91-XX, 92-XX, 93-XX, 94-XX) / 60Exx Distribution theory [See also 62Exx, 62Hxx]
62-XX STATISTICS / 62Hxx Multivariate analysis [See also 60Exx] / 62H30 Classification and discrimination; cluster analysis [See also 68T10]
94-XX INFORMATION AND COMMUNICATION, CIRCUITS / 94Axx Communication, information / 94A17 Measures of information, entropy
94-XX INFORMATION AND COMMUNICATION, CIRCUITS / 94Axx Communication, information / 94A29 Source coding [See also 68P30]
open_access (DINI-Set):open_access
Licence (German):License LogoStandardbedingung laut Einverständniserklärung

$Rev: 13581 $