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Abstract In this paper, the problem of optimal quantization is solved for uniform distribu-
tions on some higher dimensional, not necessarily self-similar N−adic Cantor-like sets. The
optimal codebooks are determined and the optimal quantization error is calculated. The ex-
istence of the quantization dimension is characterized and it is shown that the quantization
coefficient does not exist. The special case of self-similarity is also discussed. The condi-
tions imposed are a separation property of the distribution and strict monotonicity of the
first N quantization error differences. Criteria for these conditions are proved and as special
examples modified versions of classical fractal distributions are discussed.
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1 Introduction

The optimal quantization of probability distributions was first discussed by electrical engi-
neers in the 1940’s as a problem arising out of signal processing and data compression. The
aim is to determine the best approximation of a d−dimensional probability distribution ν

by a discrete one, containing at most n supporting points. The approximation will always be
generated by a set α on Rd , consisting of at most n points. This set α is called codebook
and with r > 0 and the Euclidean norm ‖ · ‖, the error distance is defined by

Ψα,r(ν) =
∫

min
a∈α
‖ x−a ‖r dν(x). (1)

Subsequently, the n−optimal quantization error for ν of order r is denoted by

Vn,r(ν) = inf{Ψβ ,r(ν) : β ⊂ Rd ,card(β )≤ n}, (2)

? This work contains and generalizes some parts of the authors doctoral thesis (cf. [16])
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where card denotes cardinality. The set α is called n−optimal set (or n−optimal codebook)
for ν of order r, ifΨα,r(ν) =Vn,r(ν). The problem of optimal quantization is to determine for
every integer n ∈ N = {1,2, ..} all n−optimal sets and to calculate the optimal quantization
error Vn,r(ν).

A good overview to the theory of optimal quantization and its historical development
is presented by Gray and Neuhoff [9]. For a comprehensive mathematical treatment of the
problem, the reader is referred to Graf and Luschgy [5], [7]. A more applied approach to the
subject, stressing aspects of information theory and signal processing, can be found in the
book of Gersho and Gray [3].

Although under weak assumptions an n−optimal codebook exists for every integer n (cf.
[5], Theorem 4.12), the non-convex nature of the n−optimal quantization problem makes
it difficult to determine the n−optimal codebooks and the optimal quantization error. For
nonsingular distributions, exact solutions were found only in some special cases (cf. [5],
chapter 4.4, 5.2).

In the singular case, Graf and Luschgy [4] solved the quantization problem for the classi-
cal self-similar Cantor distribution. Subsequently, for more generalized Cantor distributions,
which are not necessarily self-similar, among other results the optimal codebooks were de-
termined by Kesseböhmer and Zhu [15]. Kreitmeier [17] extended this codebook result to a
class of Cantor distributions, including the classical one studied by Graf and Luschgy.

Because exact solutions are difficult to find, the aim is to get high-rate asymptotics for
the optimal quantization error. To this end, we consider the sequence

(
r log(n)

− log(Vn,r(ν))

)
, which

was introduced by Zador [23]. If n tends to infinity, the strict positive limit (if it exists) is
called quantization dimension and denoted by Dr(ν). If the quantization dimension exists,
the question arises whether or not the sequence

(
n

r
Dr(ν) Vn,r(ν)

)
has a strict positive and

finite limit. If yes, it is called quantization coefficient and denoted by Qr(ν).
If the distribution ν is absolute continous with respect to the d-dimensional Lebesgue

measure and
∫

xr+δ dν(x) < ∞ for some δ > 0, then the quantization dimension exists and
equals d. The quantization coefficent exists under these conditions as well. This result goes
back to Zador [22] , respectively Bucklew and Wise [1]. A complete proof was given by
Graf and Luschgy (cf. [5], Theorem 6.2).

In the case of singular distributions, the situation is different. For self-similar distribu-
tions, satisfying the so-called open set condition, Graf and Luschgy [6] have shown that
the quantization dimension exist. Pötzelberger [21] proved the existence of the quantiza-
tion coefficient, if the self-similar distribution satisfies the strong separation condition and a
non-arithmetic condition. Using other methods, Graf and Luschgy have extended this result
by replacing the strong separation condition with the open set condition (cf. [8], Theorem
4.1). For singular distributions which are not self-similar, Lindsay gave an example for the
non-existence of the quantization dimension (cf. [19], Example 5.5). Later on, the existence
of the quantization dimension for distributions on (not necessarily self-similar) Cantor-like
sets was systematically studied and characterized by Kesseböhmer and Zhu [15], Kreitmeier
[17] and Zhu [24].

In this paper, we will solve for natural N ≥ 2 the quantization problem for uniform
distributions on one- or higher dimensional, not necessarily self-similar N−adic Cantor-like
sets.

In section 3, for every n≥N the n−optimal codebooks are determined and a formula for
the n−optimal quantization error is proved (cf. Theorem 1). The existence of the quantiza-
tion dimension is characterized (cf. Proposition 4) and under weak assumptions we show that
the quantization coefficient does not exist (cf. Proposition 5). Although the formula for the
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quantization dimension is a special case of the results of Zhu [24], the class of distributions
considered in this present paper is not completely embraced by the one studied in [24] (cf.
section 3.2). In the self-similar case, we get a more explicit formula for the optimal quanti-
zation errors and determine the set of accumulation points of the sequence

(
n

r
Dr(ν) Vn,r(ν)

)
.

In our proofs, the conditions imposed are a separation property of the uniform distribution
on the Cantor-like set and strict monotonicity of the first N differences of optimal quantiza-
tion errors. Both conditions will be analyzed in detail in section 3.3. To this end, we need
some results about optimal quantization for Borel probabilities, uniformly concentrated on a
disjoint union of balls with equal radius. These facts are denoted and proved in section 2 and
interesting on its own. To show the applicability of our results from section 3, we discuss in
section 5 the optimal quantization of the uniform distribution on modified versions of several
classical fractal probabilities, e.g. Cantor distribution and uniform distribution on Sierpinski
gasket. For the whole paper, we denote ω as a finite subset of Rd with card(ω) = N.

2 Uniformly separated probabilities

In this section, we study probability distributions which are uniformly concentrated on a
disjoint union of N balls with equal radius. If the radius is small enough, then for n≥ N the
n−optimal codebooks have a separation property (cf. Definition 2), studied below in detail.
Moreover, we derive an upper bound for the difference between the optimal quantization
errors of the uniformly separated probability on the balls and the uniform distribution on the
ball centers. Let d ∈ N and α be a nonempty finite subset of Rd . We call

W (a|α) :=
{

x ∈ Rd :‖ x−a ‖= min
b∈α
‖ x−b ‖

}
the Voronoi cell of a with respect to α . Let x ∈ Rd and l > 0. Let

B(x, l) := {z ∈ Rd :‖ x− z ‖≤ l}

be the closed ball with center x and radius l > 0. Let ν be a Borel probability measure on
Rd . Recall ω ⊂ Rd with card(ω) = N ≥ 2.

Definition 1 The distribution ν is called uniformly (l,ω)− separated, respectively (l,ω)−separated
in short notation, if the balls (B(x, l))x∈ω are pairwise disjoint and
ν(B(x, l)) = 1

N for every x ∈ ω.

Let n ∈ N and r > 0. The set of all n-optimal codebooks for ν of order r is denoted by
Cn,r(ν). Let α ∈Cn,r(ν). For x ∈ ω let

α(x) = α ∩B(x, l)

and
α(x) = {a ∈ α : W (a|α)∩B(x, l) 6= /0}.

Clearly, α(x)⊆ α(x). With

dmin(ω) := min{‖ x− y ‖: x,y ∈ ω;x 6= y}

we define the minimal distance in ω .
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2.1 Properties of the optimal codebooks

If n≥ N, the calculation of the n−optimal quantization error of ν simplifies considerably, if
{α(x) : x ∈ ω} becomes a partition of α , i.e. if

α(x)∩α(y) = /0 (3)

for every x,y ∈ ω with x 6= y. Due to the importance of this property we make the following
definition.

Definition 2 Let n be an integer and n ≥ N. The (l,ω)-separated distribution ν is called
separately quantizing, if relation (3) holds for every n−optimal codebook α ∈Cn,r(ν).

Let B,C ⊂ Rd be arbitrary sets and

d(B,C) := inf{‖ x− y ‖: x ∈ B,y ∈C}

be the distance between these two sets. For x ∈ Rd we simply denote d(x,B) instead of
d({x},B). With conv(B) we indicate the convex hull of B, with B its topological closure.

For any Borel measurable set A ⊂ Rd with ν(A) > 0, let ν(·|A) = ν(A∩·)
ν(A) be the con-

ditional distribution of ν w.r.t. A. The support of ν is denoted by supp(ν). The following
Proposition states a sufficient condition for ν to be separately quantizing and a formula for
the optimal quantization error.

Proposition 1 Let n ∈ N and n≥ N. Let r ≥ 1. Assume that ν is (l,ω)−separated.

(a) Let ν be separately quantizing. Then α(x) = α(x) for every x ∈ ω . The n−optimal
quantization error can be written as

Vn,r(ν) = ∑
x∈ω

∑
a∈α(x)

ν(W (a|α)∩B(x, l))V1,r(ν(·|W (a|α)∩B(x, l))).

For the special case n = N,

VN,r(ν) =
1
N ∑

x∈ω

V1,r(ν(·|B(x, l))).

(b) If dmin(ω) > 10l, then ν is separately quantizing. Moreover, if r > 1, then additionally
to (a), (

1+
1
N

)
VN,r(ν) < VN−1,r(ν). (4)

Proof Let n≥ N, r ≥ 1 and α ∈Cn,r(ν).
(a) Let x ∈ ω . First we will show that α(x) ⊂ α(x). To this end let a ∈ α(x). From the
definition we get

W (a|α)∩B(x, l) 6= /0.

Using property (3) we deduce

W (a|α)∩
⋃

z∈ω\{x}
B(z, l) = /0.

Due to ν(
⋃

z∈ω B(z, l)) = 1 and [5], Theorem 4.1 we obtain

0 < ν(W (a|α)) = ν(W (a|α)∩B(x, l)), (5)
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which yields
conv(supp(ν(·|W (a|α)))⊂ B(x, l). (6)

According to [5], Theorem 4.1., we have {a} ∈C1,r(ν(·|W (a|α))). The application of [5],
Remark 4.6 (a) yields a ∈ conv(supp(ν(·|W (a|α))). From (6) we get a ∈ B(x, l). Hence,
a ∈ α(x). As already stated, the converse inclusion α(x)⊂ α(x) is obvious. Thus, we have
α(x) = α(x).

Next, we will prove the two equations for the n−optimal quantization error. From [5],
Lemma 3.3 and [5], Theorem 4.2 we get

Vn,r(ν) = ∑
a∈α

ν(W (a|α))V1,r(ν(·|W (a|α))).

With (3) and (5) we obtain

Vn,r(ν) = ∑
x∈ω

∑
a∈α(x)

ν(W (a|α))V1,r(ν(·|W (a|α)))

= ∑
x∈ω

∑
a∈α(x)

ν(W (a|α)∩B(x, l))V1,r(ν(·|W (a|α)∩B(x, l))).

From α(x) = α(x) for every x∈ω we deduce the first equation in Proposition 1. If n = N we
have card(α(x)) = card(α(x)) = 1 for every x ∈ ω . Hence, we get from the first equation,

VN,r(ν) =
1
N ∑

x∈ω

V1,r(ν(·|B(x, l))).

(b) Let dmin(ω) > 10l.

(b1) We will show that α(x)∩α(y) = /0 for every x,y ∈ ω with x 6= y.
To this end, let

ω1 = {x ∈ ω : d(B(x, l),α) > 2l} (7)

and ω2 = ω\ω1. We will prove that

α(x)⊂ B(x,5l) for every x ∈ ω2. (8)

Let x ∈ ω2. Then y ∈ B(x, l) and a ∈ α exist, with

‖ y−a ‖= d(B(x, l),α)≤ 2l.

Let b ∈ α(x). A y′ ∈ B(x, l) exists, with

‖ y′−b ‖= d(y′,α)≤‖ y′−a ‖ .

Thus, we get

‖ x−b ‖ ≤ ‖ x− y′ ‖+ ‖ y′−b ‖
≤ l+ ‖ y′−a ‖
≤ l+ ‖ y′− y ‖+ ‖ y−a ‖
≤ l +2l +2l = 5l,

which yields b ∈ B(x,5l). Thus, relation (8) is proved.
Due to dmin(ω) > 10l we obtain

α(x)∩α(y) = /0 for every x,y ∈ ω2,x 6= y. (9)
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The set ω2 is nonempty because otherwise we would have

Ψω,r(ν)≤ lr < (2l)r < Ψα,r(ν) = Vn,r(ν),

which contradicts card(ω) = N ≤ n. Assertion (b1) is proved, if ω1 = /0. We proceed indi-
rectly and assume that ω1 6= /0. From definition (7) of ω1 we get

Vn,r(ν) = Ψα,r(ν) > ∑
x∈ω1

(2l)r

N
+ ∑

x∈ω2

∫
B(x,l)

d(z,α(x))rdν(z). (10)

Two cases appear.
1. card(ω1)≤ card

(
α\
⋃

x∈ω2
α(x)

)
.

Let β = ω1∪
⋃

x∈ω2
α(x). Obviously

card(β ) ≤ card(ω1)+ card(∪x∈ω2 α(x)) (11)

≤ card(α\∪x∈ω2 α(x))+ card(∪x∈ω2 α(x))

= card(α).

With (10) and ω1 6= /0 we have

Ψβ ,r(ν)≤ ∑
x∈ω1

lr

N
+ ∑

x∈ω2

∫
B(x,l)

d(z,α(x))rdν(z) < Ψα,r(ν).

Together with (11), this contradicts the optimality of α .

2. card(ω1) > card
(
α\
⋃

x∈ω2
α(x)

)
.

Let
ω2,s = {x ∈ ω2 : card(α(x)) = 1}

and
ω2,p = {x ∈ ω2 : card(α(x)) > 1}= ω2\ω2,s.

We will derive in this second case a contradiction as well. To this end, we construct an
alternative codebook β by taking points from

⋃
x∈ω2,p

α(x) and replacing them by ω1. We
will show that β does not contain more points than α , but generates a quantization error less
than the one of α .

From (9), we obtain

card(α) = card

(
α\

⋃
x∈ω2

α(x)

)
+ ∑

x∈ω2

card(α(x)) .

On the other hand, card(α) = card(ω1)+ card(ω2)+(n−N). Thus, we deduce

0 < card(ω1)− card

(
α\

⋃
x∈ω2

α(x)

)
= ∑

x∈ω2

card(α(x))− card(ω2)− (n−N)

= ∑
x∈ω2,p

card(α(x))+ card(ω2,s)− card(ω2)− (n−N)

= ∑
x∈ω2,p

card(α(x))− card(ω2,p)− (n−N)

≤ ∑
x∈ω2,p

(card(α(x))−1).
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Now, let N2,p = card(ω2,p) and {x1, ..,xN2,p}= ω2,p an arbitrary enumeration of ω2,p. Based
on this enumeration, we recursively define the mapping

ϕ : ω2 −→ N0

by

(i) ϕ(x) = 0 for all x ∈ ω2,s,
(ii) for i ∈ {1, ..,N2,p} and with ∑

0
j=1 ϕ(x j) := 0 it is

ϕ(xi) = min

(
card(α(xi))−1,card(ω1)− card(α\

⋃
x∈ω2

α(x))−
i−1

∑
j=1

ϕ(x j)

)

Obviously, ϕ has the following properties

(iii) ϕ(x) ∈ {0, ..,card(α(x))−1} for every x ∈ ω2,p,
(iv) ∑x∈ω2

ϕ(x) = card(ω1)− card
(
α\
⋃

x∈ω2
α(x)

)
.

With this mapping ϕ , we take for every x ∈ ω2 a

β (x) ∈Ccard(α(x))−ϕ(x),r(ν(·|B(x, l)))

and define the already mentioned codebook

β = ω1∪
⋃

x∈ω2

β (x).

Now, we prove that Ψβ ,r(ν) < Vn,r(ν).
At first we get the upper bound

Ψβ ,r(ν) ≤ ∑
x∈ω1

lr

N
+ ∑

x∈ω2

∫
B(x,l)

d(z,β (x))rdν(z) (12)

= ∑
x∈ω1

lr

N
+

1
N ∑

x∈ω2

Vcard(β (x)),r(ν(·|B(x, l))).

From (10) and (12), we obtain

Vn,r(ν)−Ψβ ,r(ν) > ∑
x∈ω2

∫
B(x,l)

d(z,α(x))rdν(z)

− 1
N ∑

x∈ω2

Vcard(β (x)),r(ν(·|B(x, l)))+ ∑
x∈ω1

lr(2r−1)
N

=
1
N ∑

x∈ω2

Ψα(x),r(ν(·|B(x, l)))

− 1
N ∑

x∈ω2

Vcard(β (x)),r(ν(·|B(x, l)))+ ∑
x∈ω1

lr(2r−1)
N

.
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From definition (2) of the optimal quantization error, we get

Vn,r(ν)−Ψβ ,r(ν) (13)

> ∑
x∈ω1

lr(2r−1)
N

+
1
N ∑

x∈ω2

(
Vcard(α(x)),r(ν(·|B(x, l)))−Vcard(β (x)),r(ν(·|B(x, l)))

)
= ∑

x∈ω1

lr(2r−1)
N

+
1
N ∑

x∈{z∈ω2:ϕ(z)6=0}

(
Vcard(α(x)),r(ν(·|B(x, l)))

−Vcard(α(x))−ϕ(x),r(ν(·|B(x, l)))
)
.

From property (iii) and (iv) of ϕ , we deduce

card({z ∈ ω2 : ϕ(z) 6= 0}) ≤ ∑
x∈ω2

ϕ(x)

= card(ω1)− card

(
α\

⋃
x∈ω2

α(x)

)
≤ card(ω1).

Inequality (13) thus transforms into

Vn,r(ν)−Ψβ ,r(ν) (14)

>
1
N

(
card(ω1)lr(2r−1)+ ∑

x∈{z∈ω2:ϕ(z)6=0}
(0−V1,r(ν(·|B(x, l))))

)

≥ 1
N

(
card(ω1)lr(2r−1)− ∑

x∈{z∈ω2:ϕ(z)6=0}
Ψ{x},r(ν(·|B(x, l)))

)

≥ card(ω1)
N

(lr(2r−1)− lr)≥ 0.

Property (iv) of the mapping ϕ and (9) implies

card(β ) ≤ card(ω1)+ ∑
x∈ω2

card(β (x))

= card(ω1)+ ∑
x∈ω2

(card(α(x))−ϕ(x))

= card(ω1)+ card

( ⋃
x∈ω2

α(x)

)
−

(
card(ω1)− card(α\

⋃
x∈ω2

α(x))

)
= card(α).

Thus, (14) contradicts the optimality of α . Because each case ends in a contradiction, we
have proved assertion (b1).

(b2) We will prove inequality (4).
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Our approach is to determine two distinguished points from ω for α ∈CN−1,r(ν). Using
the partitions of ω into the sets ω1,ω2,s and ω2,p, we can deduce an upper bound for VN,r(ν),
respectively a lower bound for VN−1,r(ν). This enables us to prove inequality (4).

Let r > 1 and α ∈CN−1,r(ν). Due to card(α) = N− 1 there exist two different points
x1,x2 ∈ ω and a ∈ α with d(x1,a) = d(x1,α), respectively d(x2,a) = d(x2,α). For every
z ∈ B(x1, l) we have

d(z,α)≥ d(x1,α)−d(x1,z)≥ d(x1,α)− l,

respectively d(z,α)≥ d(x2,α)− l for z ∈ B(x2, l). Hence,∫
B(x1,l)

d(z,α)rdν(z)+
∫

B(x2,l)
d(z,α)rdν(z) (15)

≥ 1
N

((max(0,d(x1,α)− l))r +(max(0,d(x2,α)− l))r) .

Obviously,

xr + yr ≥ 2
(

1
2

)r

(x+ y)r (16)

for arbitrary x,y ≥ 0 with x + y > 0. From l < 1
2 dmin(ω) and (16) we deduce for inequality

(15) that ∫
B(x1,l)

d(z,α)rdν(z)+
∫

B(x2,l)
d(z,α)rdν(z) (17)

≥ 2
N

(
1
2

)r

(d(x1,a)+d(x2,a)−2l)r

≥ 2
N

(
1
2

dmin(ω)− l
)r

.

With statement (9), which is also valid if card(α) = N−1, we get

card(α) ≥ ∑
x∈ω2

card(α(x)).

The definition of ω2,p and ω2,s yields

∑
x∈ω2

card(α(x)) = ∑
x∈ω2,s

card(α(x))+ ∑
x∈ω2,p

card(α(x))

= card(ω2,s)+ card(ω2,p)+ ∑
x∈ω2,p

(card(α(x))−1)

≥ card(ω2)+ card(ω2,p).

Thus, we have

card(ω2)+ card(ω2,p) ≤ card(α)

= N−1 = card(ω2)+ card(ω1)−1,

which yields
card(ω2,p) ≤ card(ω1)−1. (18)
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Using (17), we conclude that

VN−1,r(ν) = ∑
x∈ω2,s\{x1,x2}

∫
B(x,l)

d(z,α)rdν(z) (19)

+ ∑
x∈ω2,p\{x1,x2}

∫
B(x,l)

d(z,α)rdν(z)

+ ∑
x∈ω1\{x1,x2}

∫
B(x,l)

d(z,α)rdν(z)

+ ∑
x∈{x1,x2}

∫
B(x,l)

d(z,α)rdν(z)

≥ ∑
x∈ω2,s\{x1,x2}

1
N

V1,r(ν(·|B(x, l)))

+ ∑
x∈ω2,p\{x1,x2}

1
N

Vcard(α(x)),r(ν(·|B(x, l)))

+ ∑
x∈ω1\{x1,x2}

1
N

(2l)r +
2
N

(
1
2

dmin(ω)− l
)r

≥ 1
N

 ∑
x∈ω2,s\{x1,x2}

V1,r(ν(·|B(x, l)))

+ (card(ω1)−2)(2l)r +2(
1
2

dmin(ω)− l)r
)

.

From (a) we get

VN,r(ν) =
1
N ∑

x∈ω

V1,r(ν(·|B(x, l))),

which implies

VN,r(ν)≤ 1
N

(
∑

x∈ω2,s

V1,r(ν(·|B(x, l)))+(card(ω2,p)+ card(ω1))lr

)
. (20)

With (19) and (20) we deduce

N
(

VN−1,r(ν)− (1+
1
N

)VN,r(ν)
)

≥ ∑
x∈ω2,s\{x1,x2}

V1,r(ν(·|B(x, l)))+(card(ω1)−2)(2l)r +2
(

1
2

dmin(ω)− l
)r

−
(

1+
1
N

)(
∑

x∈ω2,s

V1,r(ν(·|B(x, l)))+(card(ω2,p)+ card(ω1))lr

)

≥ (card(ω1)−2)(2l)r +2
(

1
2

dmin(ω)− l
)r

−
(

card(ω2,s)lr

N
+(1+

1
N

)(card(ω2,p)+ card(ω1))lr
)
−2 · (2l)r.
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Due to dmin(ω) > 10l, the right hand side is strict greater than(
(card(ω1)−2)2r +2 ·4r−

card(ω2,s)
N

−
(

1+
1
N

)
(card(ω2,p)+ card(ω1))−2 ·2r

)
lr

= ((card(ω1)−2)2r +2 ·4r−1− card(ω1)− card(ω2,p)−2 ·2r) lr.

Due to (18) and r > 1 we obtain the lower bound

((card(ω1)−2)2r +2 ·4r−2card(ω1)−2 ·2r) lr

= ((card(ω1))2r−4 ·2r +2 ·4r−2 · card(ω1)) lr > 0,

which proves inequality (4).

Remark 1 The sufficient condition dmin(ω) > 10l in Proposition 1 (b) ensuring the separa-
tion property (3) of the optimal codebooks needs only the constant value 10 and does neither
depend on ω nor the norm exponent r. It is also independent of the dimension d.

For x ∈ Rd we denote δx as the dirac measure in x.

Remark 2 One may conjecture that the condition dmin(ω) > 10l in Proposition 1 (b) can
be weakened, i.e. Proposition 1 (b) is probably still true for a smaller constant than 10. But
we cannot drop the condition completely. For example, let d = 1 and ν = 1

2 (δ0 + δ1) be
the uniform distribution on the points 0 and 1. Let ω = {0, 7

10} and l = 3
10 . Hence, ν is a

(l,ω)−separated measure. Clearly, C2,r(ν) = {{0,1}} and W (0|{0,1}) =]−∞, 1
2 ]. Thus,

we obtain
W (0|{0,1})∩B(0, l) = B(0, l) 6= /0

and

W (0|{0,1})∩B
(

7
10

, l
)

=
[

4
10

,
5
10

]
6= /0,

which implies that ν is not separately quantizing.

2.2 Approximation of the optimal quantization error

For d ∈ N denote Uω as the uniform distribution on ω . It is well known (see e.g. [5], p.
57 ff) that the n−optimal quantization error depends continuously from the distribution it
refers to, if the distance between distributions is defined by a suitable metric. Moreover, this
continuity is uniform in n.
In our special case, for every ε > 0 an l > 0 exists such that for every (l,ω)−separated dis-
tribution ν and n∈N, we have |Vn,r(ν)−Vn,r(Uω)|< ε . The following Proposition 2 refines
this abstract approximation result by presenting an upper bound for the optimal quantization
error difference, independent of n and tending to zero if l tends to zero. For an arbitrary set
C ⊂ Rd and x ∈ Rd let

1C(x) :=
{

1 , if x ∈C
0 , otherwise

be the characteristic function on C. We denote with

diam(C) = sup{‖ x− y ‖: x,y ∈C}

the diameter of C.
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Proposition 2 Let n ∈N and r > 1. Let ν be an (l,ω)-separated probability measure. Then

|Vn,r(ν)−Vn,r(Uω)| ≤
{

lr(l +diam(ω))r−1, if n < N
lr, if n≥ N

.

Proof Let n≥ N. Then Vn,r(Uω) = 0 and

|Vn,r(ν)−Vn,r(Uω)| = Vn,r(ν)≤Ψω,r(ν)≤ lr.

If n < N, we can identify two cases.

1. Vn,r(ν)≥Vn,r(Uω).

With an α ∈Cn,r(Uω) we obtain

Vn,r(ν)−Vn,r(Uω) ≤
∫

d(y,α)rdν(y)−
∫

d(y,α)rdUω(y) (21)

= ∑
x∈ω

(∫
B(x,l)

d(y,α)rdν(y)− 1
N

d(x,α)r
)

.

Due to ν(B(x, l)) = 1
N , for every x ∈ ω the right hand side of (21) equals

∑
x∈ω

∫
B(x,l)

(d(y,α)r−d(x,α)r)dν(y) (22)

≤ ∑
x∈ω

∫
B(x,l)

(d(y,α)r−d(x,α)r)1{z∈B(x,l):d(z,α)≥d(x,α)}(y)dν(y).

Now let x ∈ ω and y ∈ B(x, l) such that d(y,α)≥ d(x,α).
Choose a ξ (y) ∈ [d(x,α),d(y,α)] such that

d(y,α)r−d(x,α)r = rξ (y)r−1(d(y,α)−d(x,α)) (23)

From [5], Remark 4.6 (a) we deduce

α ⊂ conv(supp(Uω)).

On the other hand we have

diam
(

conv(supp(Uω))
)

= diam(ω),

which yields

max(d(y,α),d(x,α)) ≤ d(x,α)+d(x,y)

≤ diam(ω)+ l.

Equation (23) implies

d(y,α)r−d(x,α)r ≤ r(l +diam(ω))r−1d(x,y)≤ rl(l +diam(ω))r−1.

Thus, we derive for (22) the upper bound

∑
x∈ω

∫
B(x,l)

rl(l +diam(ω))r−1dν(y) = rl(l +diam(ω))r−1.
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Using (21) we get
Vn,r(ν)−Vn,r(Uω)≤ rl(l +diam(ω))r−1.

2. Vn,r(ν) < Vn,r(Uω).
Let α ∈Cn,r(ν). Similar to the first case, we obtain

Vn,r(Uω)−Vn,r(ν)

≤ ∑
x∈ω

∫
B(x,l)

(d(x,α)r−d(y,α)r)dν(y)

≤ ∑
x∈ω

∫
B(x,l)

(d(x,α)r−d(y,α)r)1{z∈B(x,l):d(x,α)≥d(z,α)}(y)dν(y).

Now we consider all x ∈ ω and y ∈ B(x, l) with d(y,α) ≤ d(x,α). As in the first case we
deduce

0 < Vn,r(Uω)−Vn,r(ν)≤ rl(l +diam(ω))r−1.

The combination of both cases yields the assertion.

3 Uniform distributions on Cantor-like sets

Let r > 1. Recall N ≥ 2 and the finite set ω = {x1, ..,xN} ⊂ Rd , consisting of N different
points xi ∈ Rd . Note that we do not make any restrictions on the dimension d ∈ N. Let
(ck) ⊂ ]0,1[ be a sequence of contraction ratios and Sk,i contractive similitudes for k ∈ N
and i ∈ {1, ..,N} with fixpoint xi and contraction ratio ck independent of i. We assume that
supk∈N ck = c < 1 and that the mappings Sk,i satisfy the open set condition, i.e. a bounded
open set V ⊂ Rd exists such that for every k ∈ N and i ∈ {1, ..,N} we have

Sk,i(V )⊂V (24)

and
Sk,i(V )∩Sk, j(V ) = /0

for every j ∈ {1, ..,N}\{i}. Now we can construct the N-adic Cantor-like set E and the
uniform distribution µ on it. To this end, let m ∈ N, recall V as the topological closure of V
in Rd and define for any k ∈ N the set

Dm
k (V ) = {Sm,i1 ◦ ...◦Sk+m−1,ik(V ) : (i1, .., ik) ∈ {1, ..,N}k}.

With Em
k (V ) =

⋃
F∈Dm

k (V ) F , we define the Cantor-like set Em(V ) =
⋂

k∈N Em
k (V ). By re-

peated subdivision, (cf. [2], p. 9) we get a unique Borel probability measure µ(m) on Rd ,
defined by µ(m)(F) = N−k for every F ∈Dm

k (V ). Note that µ(m) is supported on Em(V ). We
write shortly D1

k (V ) = Dk(V ), respectively E1
k (V ) = Ek(V ), E1(V ) = E and µ(1) = µ . We

denote by {1, ..,N}∗ the set of all words on the alphabet 1, ..,N, including the empty word
/0. With σ = σ1...σk ∈ {1, ..,N}∗, we call k the length of σ and write |σ | for it. The empty
word /0 has length 0.
We denote Sm

σ = Sm,σ1 ◦ · · · ◦ Sk+m−1,σk respectively shortly S1
σ = Sσ . Moreover we write

πm
k = ∏

k+m−1
l=m cl respectively shortly π1

k = πk.

Lemma 1 Let m,k be integers and σ ∈ {1, ..,N}∗ with length k. Then we have

µ
(m)(·|Sm

σ (Em(V ))) = µ
(m+k) ◦ (Sm

σ )−1.

Proof The assertion follows from the construction of µ(m) respectively µ(m+k).
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3.1 Solution of the optimal quantization problem

To solve the quantization problem for uniform distributions on Cantor-like sets, we assume
that for every m ≥ 1, the distribution µ(m) satisfies a separation condition which incorpo-
rates that µ(m) is separately quantizing (cf. Definition 2). Moreover we need a monotonicity
condition for the first N differences of the optimal quantization errors of µ(m). Let us define
these two conditions.

(a) Separate quantization (SQ): we say that µ satisfies the separate quantization condition,
if a set κ = {y1, ..,yN}⊂Rd with card(κ) = N exists, such that for every m∈N an lm > 0
exists, with

(a1) B(yi, lm)⊃ Sm,i(Em(V )) for every i ∈ {1, ..,N},
(a2) the distribution µ(m) being an (lm,κ)-separated probability measure (cf. Definition

1) and separately quantizing (cf. Definition 2).
(b) Monotonicity of quantization error differences (MQED): we say that µ satisfies the

monotonicity condition for the quantization error differences, if for every m ∈ N and
n ∈ {1, ..,N−1} the relation

Vn,r(µ
(m))−Vn+1,r(µ

(m)) > Vn+1,r(µ
(m))−Vn+2,r(µ

(m))

does hold.

Remark 3 If the condition (SQ) is satisfied, also the strong separation condition is satisfied,
i.e.

Sm,i(Em(V ))∩Sm, j(Em(V )) = /0 (25)

for every m ∈ N and i, j ∈ {1, ..,N} with i 6= j.

Proposition 3 Let m,n ∈ N with n ≥ N and α ∈ Cn,r(µ(m)). If condition (SQ) holds, then
n1, ..,nN ∈ N exist with ∑

N
i=1 ni = n and

Vn,r(µ
(m)) =

1
N

N

∑
i=1

cr
mVni,r(µ

(m+1)). (26)

Moreover, for each i ∈ {1, ..,N} an ni−optimal set βi ∈Cni,r(µ(m+1)) exists such that

α =
N⋃

i=1

Sm,i(βi).

Proof Let α ∈Cn,r(µ(m)). Applying condition (SQ), we find with κ = {y1, ..,yN} that

α =
N⋃

i=1

α(yi)

with α(yi)∩α(y j) = /0 for every i, j ∈ {1, ..,N} with i 6= j.
Define ni = card(α(yi)) > 0 for every i ∈ {1, ..,N}. From [5], Theorem 4.1 and 4.2 we
deduce

Vn,r(µ
(m)) =

N

∑
i=1

µ
(m)(

⋃
a∈α(yi)

W (a|α)) ·Vni,r(µ
(m)(·|

⋃
a∈α(yi)

W (a|α))). (27)
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Again by (SQ) and Lemma 1 we obtain

µ
(m)(·|

⋃
a∈α(yi)

W (a|α)) = µ
(m)(·|B(yi, lm)) (28)

= µ
(m)(·|Sm,i(Em(V ))) = µ

(m+1) ◦S−1
m,i

respectively

µ
(m)(

⋃
a∈α(yi)

W (a|α)) =
1
N

(29)

for every i ∈ {1, ..,N}. The application of (28) and (29) to (27) yields

Vn,r(µ
(m)) =

1
N

N

∑
i=1

Vni,r(µ
(m+1) ◦S−1

m,i).

From [5], Lemma 3.2 (a) and the definition of Sm,i we get

Vn,r(µ
(m)) =

1
N

N

∑
i=1

cr
mVni,r(µ

(m+1)).

Define βi = S−1
m,i(α(yi)) for every i ∈ {1, ..,N}. From [5], Theorem 4.1 we obtain

Sm,i(βi) ∈Cni,r(µ
(m)(·|

⋃
a∈α(yi)

W (a|α))).

Applying (28), we deduce Sm,i(βi)∈Cni,r(µ(m+1) ◦S−1
m,i). Finally, [5], Lemma 3.2 (a) implies

βi ∈Cni,r(µ(m+1)).

Remark 4 If condition (SQ) is satisfied, we get as a direct consequence of Proposition 3 for
every m ∈ N the identities

VN,r(µ
(m)) = cr

m ·V1,r(µ
(m+1))

respectively

VN+1,r(µ
(m)) =

cr
m

N

(
(N−1)V1,r(µ

(m+1))+V2,r(µ
(m+1))

)
.

As an application, we derive the equation

cr
m

N

(
V1,r(µ

(m+1))−V2,r(µ
(m+1))

)
(30)

=
cr

m

N

(
1

cr
m

VN,r(µ
(m))− N

cr
m

VN+1,r(µ
(m))+(N−1)V1,r(µ

(m+1))
)

=
1
N

VN,r(µ
(m))−VN+1,r(µ

(m))+
cr

m(N−1)
N

1
cr

m
VN,r(µ

(m))

= VN,r(µ
(m))−VN+1,r(µ

(m)),

which will be useful in the sequel.
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Remark 5 In the self-similar case (cf. section 4), Graf and Luschgy (cf. [5], Lemma 14.10)
have shown that an n0 ≥ N exists such that identity (26) remains true for n ≥ n0 under the
strong separation condition, which is, according to Remark 3, weaker than our condition
(SQ). Nevertheless, n0 will be greater than N in many cases.

For any σ ∈ {1, ..,N}∗ and n < |σ |, we define

σ |n =
{

0 , if n = 0
σ1...σn , otherwise

as the restriction of σ to n. For any τ ∈ {1, ..,N}∗, we define the order relation σ ≺ τ if and
only if |σ | ≤ |τ| and τ||σ | = σ . We call σ a predecessor of τ , if σ ≺ τ . A finite set Γ ⊂
{1, ..,N}∗ is called a finite antichain, if any two different words σ ,τ ∈ Γ are incomparable,
i.e. neither σ ≺ τ nor τ ≺σ . A finite antichain Γ is called maximal if any word τ ∈{1, ..,N}∗
with |τ| ≥max{|σ | : σ ∈Γ } has a predecessor in Γ . By an iterative approach of Proposition
3 it is straightforward to see that the following statement holds.

Corollary 1 Let m,n ∈ N with n ≥ N. Assume that condition (SQ) holds and let α be an
n−optimal set for µ(m) of order r > 1. Then a maximal finite antichain Γ ⊂ {1, ..,N}∗ and
nσ ∈ {1, ..,N} for every σ ∈ Γ exists, with ∑σ∈Γ nσ = n and

Vn,r(µ
(m)) = ∑

σ∈Γ

(π|σ |)r

N|σ |
Vnσ ,r(µ

(m+|σ |)). (31)

Moreover, for each σ ∈ Γ an nσ -optimal set βσ for µ(m+|σ |) of order r exists such that

α =
⋃

σ∈Γ

Sm
σ (βσ ).

Remark 6 By one more application of Proposition 3, the statement of Corollary 1 does also
hold with nσ ∈ {1, ..,N−1} for every σ ∈ Γ .

For an integer k and Γ ⊂ {1, ..,N}∗ let Γk be the subset of Γ consisting of all words with
length k.

Remark 7 If the maximal finite antichain Γ from Proposition 3 contains only words of
length k, i.e. Γ = Γk, then Γ consists of exactly Nk words.

For σ = σ1...σk−1σk ∈{1, ..,N}∗ we denote σ−= σ1...σk−1. We say that σ is equivalent
to τ ∈ {1, ..,N}∗, if σ− = τ−.

Remark 8 Let Γ and βσ , σ ∈ Γ as in Corollary 1. Conversely to Remark 6, we can cluster
the sets βσ . We will denote exactly this. Let l := max{|σ | : σ ∈ Γ } and assume that l ≥
2. The equivalence relation described above induces the partition Γl,1, ..,Γl,w of Γl with an
integer 1≤w≤N. Now let i∈{1, ..,w} and τ ∈Γl,i. Because Γ is a maximal finite antichain,
we get card(Γl,i) = N. It is easy to see that⋃

σ∈Γl,i,τ
−=σ−

Sm+l−1,σl (βσ )

is independent of the choice of τ ∈ Γl,i and an li−optimal set for µ(m+l−1) with

N ≤ li ≤ N · max
σ∈Γl,i

card(βσ ).
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Remark 9 In the self-similar case (cf. section 4), Graf and Luschgy (cf. [5], Corollary 14.2)
have shown that the right hand side in equation (31) is greater or equal to Vn,r(µ(m)), if
condition (SQ) is dropped completely.

If we additionally assume that the monotonicity condition (MQED) holds, we can sharpen
identity (31) to a formula for the optimal quantization error, which depends only on the first
N optimal quantization errors.

Theorem 1 Let r > 1 and n ≥ N. Let k ≥ 1 be an integer and i ∈ {1, ..,N− 1} such that
iNk ≤ n < (i+1)Nk. Assume that condition (SQ) and (MQED) holds. Let α be an n−optimal
set for µ of order r. Then for every σ ∈ {1, ..,N}∗ with length k a set βσ exists such that

α =
⋃

σ∈{1,..,N}∗,|σ |=k

Sσ (βσ )

and n− iNk of the sets βσ are (i+1)−optimal sets for µ(k+1) of order r, while (i+1)Nk−n
of the sets βσ are i−optimal sets for µ(k+1) of order r. Moreover,

Vn,r(µ) (32)

=
(πk)

r

Nk

(
((i+1)Nk−n) ·Vi,r(µ

(k+1))+(n− iNk) ·Vi+1,r(µ
(k+1))

)
.

Proof To prove Theorem 1 we will use Corollary 1. We divide the proof into two steps.
1. We will show that condition (MQED) ensures that the set Γ in Corollary 1 is identical
with Γk and that nσ can take only two different adjacent values for every σ ∈ Γ .
Let Γ ⊂ {1, ..,N}∗ be as in Corollary 1. Let l be the number of all appearing lengths in Γ

and denote Γ = Γk1 ∪·· ·∪Γkl with k1 < · · ·< kl . We study all appearing (sub)cases.
Case 1: l = 1.
Case 1.1: k1 = k.
Case 1.1.1: maxσ∈Γ nσ −minσ∈Γ nσ ≤ 1.
We will show that this case is the only one which can happen and all remaining cases end in
a contradiction or can be transformed into this case.
Case 1.1.2: maxσ∈Γ nσ −minσ∈Γ nσ > 1.
Let σ0 ∈ Γ with nσ0 = minσ∈Γ nσ and σ1 ∈ Γ with nσ1 = maxσ∈Γ nσ . According to Corol-
lary 1 let βσ ∈Cnσ ,r(µ(k+1)) for every σ ∈ Γ such that α =

⋃
σ∈Γ Sσ (βσ ) is an n−optimal

set for µ or order r. Let β ′σ0
∈Cnσ0 +1,r(µ(k+1)) and

β ′σ1
∈Cnσ1−1,r(µ(k+1)). For σ ∈ Γ we define

γσ =


βσ , if σ ∈ Γ \{σ0,σ1}
β ′σ0

, if σ = σ0
β ′σ1

, if σ = σ1

.

Define α ′ =
⋃

σ∈Γ Sσ (γσ ). Clearly, n = card(α) = card(α ′). By definition (1) and the con-
struction of µ we obtain

Ψα ′,r(µ) =
∫

min
a∈α ′
‖ x−a ‖r dµ(x)

≤ ∑
σ∈Γ

1
Nk

∫
min

a∈Sσ (γσ )
‖ x−a ‖r dµ(· | Sσ (E))(x)
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Applying Lemma 1, we get

Ψα ′,r(µ) ≤ ∑
σ∈Γ

1
Nk

∫
min

a∈Sσ (γσ )
‖ x−a ‖r dµ

(k+1) ◦S−1
σ (x) (33)

= ∑
σ∈Γ

(πk)r

Nk

∫
min
a∈γσ

‖ x−a ‖r dµ
(k+1)(x)

= ∑
σ∈Γ

(πk)r

Nk Vcard(γσ )(µ
(k+1)).

From Corollary 1, we deduce

Vn,r(µ) = ∑
σ∈Γ

(πk)r

Nk Vcard(βσ )(µ
(k+1)). (34)

The combination of (33) and (34) together with the definition of γσ implies that

Vn,r(µ)−Ψα ′,r(µ) ≥ (πk)r

Nk

(
Vnσ0 ,r(µ

(k+1))+Vnσ1 ,r(µ
(k+1))

− Vnσ0 +1,r(µ
(k+1))−Vnσ1−1,r(µ

(k+1))
)

.

Due to the choice of σ0 and σ1, we have

nσ0 < nσ0 +1≤ nσ1 −1 < nσ1 .

Condition (MQED) then yields Vn,r(µ)−Ψα ′,r(µ) > 0, which contradicts the optimality of
α . Thus Case 1.1.2 cannot happen.
Case 1.2: k1 = k′ 6= k.
Corollary 1 ensures n = ∑σ∈Γ nσ ≤ Nk′+1 respectively n≥ Nk′ .
Because Nk ≤ n < Nk+1, only the case k′ = k−1 with nσ = N for every σ ∈ Γ can happen.
But in this case, we can apply Proposition 3 and will end into Case 1.1.1 with Γ = Γk and
nσ = 1 for every σ ∈ Γ .
Case 2: l > 1.
Case 2.1: a σ1 ∈ Γk1 exists, with nσ1 < N.
Case 2.1.1: a σl ∈ Γkl exists, with nσl > 1.
We proceed similar to Case 1.1.2. Let βσ ∈Cnσ ,r(µ(|σ |+1)) for every σ ∈ Γ ,
such that α =

⋃
σ∈Γ Sσ (βσ ) is an n−optimal set for µ or order r.

Let β ′σ1
∈Cnσ1 +1,r(µ(k1+1)) and β ′σl

∈Cnσl−1,r(µ(kl+1)). For σ ∈ Γ we define

γσ =


βσ , if σ ∈ Γ \{σ1,σl}
β ′σ1

, if σ = σ1
β ′σl

, if σ = σl

.

and α ′ =
⋃

σ∈Γ Sσ (γσ ). By the same arguments as in Case 1.1.2 we obtain

Vn,r(µ)−Ψα ′,r(µ) ≥ ∑
σ∈Γ

(π|σ |)r

N|σ |

(
Vcard(βσ )(µ

(|σ |+1))−Vcard(γσ )(µ
(|σ |+1))

)
≥

(πk1)
r

Nk1

(
Vnσ1 ,r(µ

(k1+1))−Vnσ1 +1,r(µ
(k1+1))

)
−

(πkl )
r

Nkl

(
Vnσl−1,r(µ

(kl+1))−Vnσl ,r
(µ

(kl+1))
)



19

By iterative application of equation (30) from Remark 4 and condition (MQED), we deduce

Vn,r(µ)−Ψα ′,r(µ)

=
(πk1)

r

Nk1

(
Vnσ1 ,r(µ

(k1+1))−Vnσ1 +1,r(µ
(k1+1))

−
(πk1+1

kl
)r

Nkl−k1

(
Vnσl−1,r(µ

(kl+1))−Vnσl ,r
(µ

(kl+1))
))

≥
(πk1)

r

Nk1

(
VN−1,r(µ

(k1+1))−VN,r(µ
(k1+1))

−
cr

k1+1 · ... · cr
kl

Nkl−k1−1N

(
V1,r(µ

(kl+1))−V2,r(µ
(kl+1))

))
≥

(πk1)
r

Nk1

(
VN−1,r(µ

(k1+1))−VN,r(µ
(k1+1))

−
(

VN,r(µ
(k1+1))−VN+1,r(µ

(k1+1))
))

> 0,

which contradicts the optimality of α . Thus, Case 2.1.1 does not appear.

Case 2.1.2: nσ = 1 for every σ ∈ Γkl .

Case 2.1.2.1: l = 2.

Case 2.1.2.1.1: nσ ≥ N−1 for every σ ∈ Γk1 .
From Remark 8 we know that the sets βσ , σ ∈ Γk2 , which are optimal for µ(k2+1), can be
clustered to sets β

′
σ , σ ∈ Γ ′ with Γ ′ = {σ− : σ ∈ Γk2}, which are N−optimal for µ(k2). If

k2− 1 = k1 we end into case 1.1.1. If k2− 1 > k1 we proceed as in case 2.1.1 and end in a
contradiction.

Case 2.1.2.1.2: a σ ∈ Γk1 exists, with nσ < N−1.
First, we cluster Γk2 to Γ

′
as described in Case 2.1.2.1.1. If k2− 1 = k1, we proceed as in

Case 1.1.2 and end in a contradiction. If k2−1 > k1, we adopt the arguments of Case 2.1.1,
yielding a contradiction as well.

Case 2.1.2.2: l > 2.
Due to k2−1 > k1, we proceed as in Case 2.1.2.1.2 and end in a contradiction.

Case 2.2: nσ = N for every σ ∈ Γk1 .

Case 2.2.1: l = 2.

Case 2.2.1.1: nσ ≤ 2 for every σ ∈ Γk2 .

Case 2.2.1.1.1: nσ = 2 for a σ ∈ Γk2 .
We subdivide Γk1 according to Remark 6 into Γ

′′ ⊂ {1, ..,N}∗ such that
Γk1 = {σ− : σ ∈Γ

′′}. For every τ ∈Γk1 then the N−optimal set βτ is divided into 1−optimal
sets βτ1, ..,βτN . If k2−1 = k1 we end in case 1.1.1. If k2−1 > k1 we proceed as in case 2.1.1
and end in a contradiction.

Case 2.2.1.1.2: nσ = 1 for every σ ∈ Γk2 .
First we subdivide Γk1 into Γ

′′
like in case 2.2.1.1.1. If k2−1 = k1 then we end in case 1.1.1.

If k2− 1 > k1, we cluster Γk2 to Γ
′

as described in Case 2.1.2.1.1. If k2− 1 = k1 + 1 and
N = 2, then we proceed as in Case 1.1.2. Otherwise, we adopt the arguments of Case 2.1.1.
Hence, both cases end in a contradiction.
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Case 2.2.1.2: a σ ∈ Γk2 exists, with nσ > 2.
After subdivision of Γk1 into Γ

′′
like in case 2.2.1.1.1, we proceed, depending on the value

of k2− k1, like in case 1.1.2 respectively 2.1.1 and both ways end in a contradiction.

Case 2.2.2: l > 2.
Due to k2−1 > k1 we can proceed as in Case 2.2.1.1.2 respectively Case 2.1.1 and end in a
contradiction.

2. We finish the proof.

From Corollary 1 and 1. we deduce for n ∈ [iNk,(i + 1)Nk[ that two integers mi,mi+1 exist
such that

Vn,r(µ) = ∑
σ∈Γk

(πk)r

Nk Vnσ ,r(µ
(k+1))

=
(πk)r

Nk

(
mi ·Vi,r(µ

(k+1))+mi+1 ·Vi+1,r(µ
(k+1))

)
with i ·mi +(i+1) ·mi+1 = n. Applying Remark 7 we obtain mi +mi+1 = Nk. Thus we get
mi = (i+1)Nk−n, respectively mi+1 = n− iNk, which proves equation (32). The represen-
tation of the optimal sets follows from above and Corollary 1.

Remark 10 Although one may conjecture that conditions (SQ) and (MQED) in Theorem
1 can be weakened, they cannot be dropped completely. The example of one-dimensional
Cantor distributions (cf. section 5.1) will demonstrate that (SQ) can not even be replaced
by the strong separation condition (cf. (25)). Moreover, a discussion of modified versions
of the Sierpinski gasket (cf. section 5.2) shows that condition (MQED) cannot be dropped
completely either.

Remark 11 The special case of one-dimensional dyadic homogeneous Cantor distributions
(d = 1,N = 2) was investigated by Kesseböhmer and Zhu [15] and Kreitmeier [17]. Al-
though not explicitely stated, both conditions (SQ) and (MQED) were necessary in these
papers as well. Lemma 3.6 in [15], respectively Proposition 3.11 in [17] indemnifies (SQ).
The arguments ensuring that condition (MQED) is satisfied are somewhat hidden, but can
be found in Lemma 3.3 - 3.5 of [15], respectively Lemma 4.1 - 4.3 of [17]. The appropriate
version of Theorem 1 is stated as Proposition 3.7 in [15], respectively Theorem 4.4 in [17].

3.2 Quantization dimension and quantization coefficient

As defined in writing on the topic (see e.g. [5], Definition 11.1), we call

Dr(µ) := liminf
n→∞

r log(n)
− log(Vn,r(µ))

the lower and

Dr(µ) := limsup
n→∞

r log(n)
− log(Vn,r(µ))

the upper quantization dimension of µ of order r. If the two numbers agree, their common
value Dr(µ) = Dr(µ) = Dr(µ) is called quantization dimension of µ of order r. First intro-
duced by Zador [23], the quantization dimension for singular distributions was studied by
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Graf and Luschgy (cf. [5], [6]) in the self-similar case. They have shown that the quantiza-
tion dimension always exists in this case, if the open set condition is satisfied. Lindsay has
shown (cf. [19], Example 5.5) that the quantization dimension needs not to exist for singular
distributions that are not self-similar. Kesseböhmer and Zhu [15] studied the quantization
dimension for homogeneous singular distributions on Cantor-like sets in the 1-dimensional
case. To this end, they determined the structure of the optimal sets under the restriction that
c = supi∈N ci ≤ 1

4 . Kreitmeier [17] extended this codebook result and the related existence
characterization of the quantization dimension to the case c ≤ 1

3 . Several authors (cf. [11],
[12], [20]) studied Hausdorff and packing dimension of even more generalized Cantor-like
sets as introduced by us in section 3. They need a boundary distortion condition, which turns
in our setting into

inf
i∈N

ci > 0. (35)

Hua et.al. (cf. [13], section 3.3) were able to determine Hausdorff and packing dimension of
Cantor-like sets without using (35). But they needed (in our terms) the condition

lim
i→∞

log(ci)
log(πi)

= 0.

The inquiries for quantization dimension of generalized one-dimensional Cantor sets (cf.
[15], Theorem 1.6 (3), respectively [17], Proposition 5.1) abstained from (35). Zhu [24] also
characterized the quantization dimension for a large class of singular distributions on higher
dimensional Cantor-like sets. Due to this more general approach, he needed the boundary
condition (35) there. In our setting (cf. Proposition 4), we can drop (35), but are restricted
to the conditions (SQ) and (MQED).

Lemma 2 Assume that condition (SQ) and (MQED) are satisfied. Then strict positive con-
stants 0 < M1 ≤M2 < ∞ exist such that for every n∈N with n∈ [iNk,(i+1)Nk[, the relation

M1 · (πk)
r ≤Vn,r(µ)≤M2 · (πk)

r

does hold.

Proof Immediate consequence of Theorem 1 with M1 = minl∈{1,..,N}Vl,r(µ) > 0 and M2 =
maxl∈{1,..,N}Vl,r(µ) < ∞.

Proposition 4 Assume that condition (SQ) and (MQED) holds. Then

Dr(µ) = liminf
n→∞

− log(N)
1
n ∑

n
i=1 log(ci)

≤ limsup
n→∞

− log(N)
1
n ∑

n
i=1 log(ci)

= Dr(µ). (36)

Proof From the definition of Dr(µ) and n ∈ [Nk(n),Nk(n)+1[, we deduce
VNk ,r(µ)≥Vn,r(µ) respectively

Dr(µ) = liminf
n→∞

r log(n)
− log(Vn,r(µ))

≤ liminf
k→∞

r log(Nk+1)
− log(VNk ,r(µ))

= liminf
k→∞

kr log(N)+ r log(N)
− log(VNk ,r(µ))

.
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Because (Vn,r(µ))n∈N tends to zero (cf. [5], Lemma 6.1), considering Lemma 2 we obtain

Dr(µ) ≤ liminf
k→∞

kr log(N)
− log(VNk ,r(µ))

≤ liminf
k→∞

kr log(N)
− log(M2 · (πk)r)

= liminf
n→∞

log(N)
− 1

n ∑
n
i=1 log(ci)

.

By the same arguments the lower inequality can be shown. The identity for Dr(µ) follows
similarly.

Subsequently to the characterization of the quantization dimension we can ask whether
the quantization coefficient Qr(µ) exists. The following Proposition shows that under weak
assumptions the quantization coefficient does not exist.

Proposition 5 Let r > 1 and assume that (SQ) and (MQED) does hold. Further assume that(
log(N)

− 1
n ∑

n
i=1 log(ci)

)
n

converges in R. Then Dr exists and

(i) limsupn→∞ n
r

Dr Vn,r(µ) < ∞, if and only if limsupk→∞ N
k

Dr πk < ∞,

(ii) liminfn→∞ n
r

Dr Vn,r(µ) > 0, if and only if liminfk→∞ N
k

Dr πk > 0.

(iii) Let supk∈N ck = c < 1
N . If 0 < liminfk→∞ N

k
Dr πk and limsupk→∞ N

k
Dr πk < ∞, then

0 < liminf
n→∞

n
r

Dr Vn,r(µ) < limsup
n→∞

n
r

Dr Vn,r(µ) < ∞. (37)

Proof Proposition 4 ensures the existence of the quantization dimension Dr. The assertions
(i) and (ii) are an immediate consequence of Lemma 2.
(iii) Let x ∈ ]1,2[ and consider the mapping

x→ s(x) =
log(x)

log( 1
2−x )

. (38)

Clearly, s(x) < 1. Using de l’Hospital we obtain limx→1 s(x) = 1. Thus, we can choose an
α ∈ ]1,2[ such that − log(N)

log(c) < s(α) < 1. As a consequence, we get

Dr = liminf
n→∞

log(N)
− 1

n ∑
n
i=1 log(ci)

≤ − log(N)
log(c)

< s(α) < 1.

Now, let nk = Nk and mk = αkNk with αk = [αNk]/Nk for every k ∈ N. Here [αNk] denotes

the integer part of αNk. Using (32), we deduce n
r

Dr
k Vnk ,r(µ) = (Nk)

r
Dr (πk)rV1,r(µ(k+1)),

respectively

m
r

Dr
k Vmk ,r(µ)

= α

r
Dr

k (Nk)
r

Dr
(πk)r

Nk ((2Nk−αkNk)V1,r(µ
(k+1))+(αkNk−Nk)V2,r(µ

(k+1)))

≥ (2−αk)α
r

Dr
k (Nk)

r
Dr (πk)rV1,r(µ

(k+1)).
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Clearly, αk
k→∞−→ α . Together with (38), we obtain

m
r

Dr
k Vmk ,r(µ)

n
r

Dr
k Vnk ,r(µ)

= α

r
Dr

k (2−αk)
k→∞−→ α

r
Dr (2−α) > α

1
s(α) (2−α) = 1.

Combining this with (i) and (ii), we get

0 < liminf
n→∞

n
r

Dr Vn,r(µ)≤ liminf
k→∞

n
r

Dr
k Vnk ,r(µ)

< limsup
k→∞

m
r

Dr
k Vmk ,r(µ)≤ limsup

n→∞

n
r

Dr Vn,r(µ) < ∞.

Remark 12 It remains an open question whether the existence characterization (36) of the
quantization dimension does also hold, if only condition (SQ) is required. The techniques
developed by Zhu [24] need the boundary condition infi∈N ci > 0 and therefore cannot be
used here. Moreover, it remains unanswered whether it is possible to find conditions, which
are equivalent to (36).

Remark 13 It is also still an open question whether (37) remains valid, if we drop some or
all conditions in Proposition 5 (iii).

3.3 Criteria for the imposed conditions

In order to make our results applicable, we need a criterion ensuring that condition (SQ),
respectively (MQED) is satisfied. Such a criterion may only depend on V , ω and (ck)k∈N.
Note that for every integer m and i ∈ {1, ..,N} the similitude Sm,i(·) can be written as

Sm,i(·) = cmOm,i(·− xi)+ xi (39)

with an orthonormal map Om,i. (cf. [14], Proposition 2.3 (1)). Let us first note a simple but
essential fact.

Lemma 3 It is ω ⊂V .

Proof Let m ∈N and i ∈ {1, ..,N}. Because Sm,i(.) is a similitude, we get from relation (24)
that

Sm,i(V )⊂V . (40)

Now, we proceed indirectly. Assume that xi /∈V . Thus, we get

sup{δ > 0 : B(xi,δ )∩V = /0}=: δi > 0.

Moreover, a w ∈V exists such that ‖ xi−w ‖= δi. Using (39), we obtain

Sm,i(w) ∈ Sm,i(B(xi,δi)) = B(Sm,i(xi),cmδi) = B(xi,cmδi).

Because cm < 1, we have B(xi,cmδi)∩V = /0. Hence, Sm,i(w) /∈V , which contradicts relation
(40).

In the sequel, we will need the constant d0 = dmin(ω)
10diam(V ) .
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Proposition 6 If c = supi∈N ci < d0 and r > 1, then (SQ) holds with κ = ω and lm = c ·
diam(V ) for every m ∈ N.

Proof Let m ∈N and lm = c ·diam(V ). The construction of Em(V ) and relation (24) implies
Em(V )⊂V . Using (39) and Lemma 3, we obtain

Sm,i(Em(V ))⊂ Sm,i(V )⊂ B(xi,c ·diam(V )), (41)

which proves part (a1) of condition (SQ) with κ = ω .
Due to cm < dmin(ω)

2diam(V ) , the balls B(x, lm),x∈ω are pairwise disjoint. Thus, the construction of

µ(m) and (41) yields µ(m)(B(x, lm))= 1
N for every x∈ω . Hence, µ(m) is an (lm,ω)−separated

probability measure. Because of lm < d0 ·diam(V ) = dmin(ω)
10 , we can apply Proposition 1 (b)

and deduce that µ(m) is separately quantizing. Thus, (a2) of (SQ) is also proved.

Now, we need to develop a criterion for condition (MQED). To this end, we define for
any Borel probability distribution ν , r ≥ 1 and N > 2 the value

Dmin(r,N,ν)

= min{Vn,r(ν)−Vn+1,r(ν)− (Vn+1,r(ν)−Vn+2,r(ν)) : n ∈ {1, ..,N−2}}
= min{Vn,r(ν)+Vn+2,r(ν)−2Vn+1,r(ν) : n ∈ {1, ..,N−2}}.

Proposition 7 Let m ∈ N and N > 2. Let Dmin(r,N,Uω) > 0 and

d1 =

 min
(

d0,
Dmin(r,N,Uω )

4r( 11
10 diam(ω))r−1

diam(V )

)
, if N > 2

d0 , if N = 2

If c < d1 and r > 1, then condition (MQED) and (SQ) does hold.

Proof We divide the proof into two steps.
First, we will show that Dmin(r,N,µ(m)) > 0.
Due to c < dmin(ω)

2diam(V ) , we know that µ(m) is an (l,ω)−separated probability measure with

l = c ·diam(V ). Applying Proposition 2, we obtain

Dmin(r,N,µ
(m)) > Dmin(r,N,Uω)−4lr(l +diam(ω))r−1

≥ Dmin(r,N,Uω)−4c ·diam(V )r
(

dmin(ω)
10

+diam(ω)
)r−1

≥ Dmin(r,N,Uω)− c ·diam(V )4r
(

11
10

diam(ω)
)r−1

> 0.

Secondly, we will show that VN−1,r(µ(m))−VN,r(µ(m)) > VN,r(µ(m))−VN+1,r(µ(m)).
Applying Proposition 1 (b), we deduce

VN−1,r(µ
(m))−VN,r(µ

(m))− (VN,r(µ
(m))−VN+1,r(µ

(m)))

>

(
1+

1
N

)
VN,r(µ

(m))−2VN,r(µ
(m))+VN+1,r(µ

(m)).
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With Proposition 3 and (30), the right hand side turns into

1
N

VN,r(µ
(m))− cr

m

N

(
V1,r(µ

(m+1))−V2,r(µ
(m+1))

)
=

cr
m

N
V2,r(µ

(m+1))≥ 0.

Combining the two steps, we recognize that (MQED) does hold.

Remark 14 If we replace Dmin(r,N,Uω) by |Dmin(r,N,Uω)| in the definition of d1, it is easy
to see that Dmin(r,N,Uω) < 0 implies Dmin(r,N,µ) < 0, provided c < d1.

Remark 15 According to [5], Lemma 3.2 (a), the optimal quantization error scales with
sr under a similitude with scaling number s > 0. Thus, any criterion ensuring that (SQ)
respectively (MQED) holds, should be invariant under such a similarity transformation of
the whole model. Indeed, each of our criteria in this section satisfies this request. Note also
that d0, respectively d1 in the criteria above do not depend on the cardinality of ω . Our
criteria, ensuring that (SQ) does hold, is working with κ = ω and lm independent of m.
Nevertheless (SQ) is not restricted to this special setting.

4 The self-similar case

If c = cm is independent of m ∈ N, we have µ = µ(m) for every m ∈ N. Thus, µ becomes
self-similar. In this case, we have D = Dr(µ) = log(N)

− log(c) for the quantization dimension (cf.
[6]) because the similitudes satisfy the open-set condition. In this self-similar case, we can
determine all accumulation points of

(
n

r
D Vn,r(µ)

)
n∈N. To this end, let fc : [1,N]→ R with

fc(x) = x
r
D ((i+1)Vi,r(µ)− iVi+1,r(µ)− x(Vi,r(µ)−Vi+1,r(µ))) ,

if x ∈ [i, i+1[, i ∈ {1, ..,N−1} and fc(x) = V1,r(µ), if x = N. By adapting arguments from
[4] and [17] in addition to Theorem 1 we get the following result.

Proposition 8 Let r > 1 and n ≥ N. Let k ≥ 1 and i ∈ {1, ..,N− 1} such that iNk ≤ n <
(i+1)Nk. Assume that condition (SQ) and (MQED) holds. Then

Vn,r(µ) =
ckr

Nk

(
((i+1)Nk−n) ·Vi,r(µ)+(n− iNk) ·Vi+1,r(µ)

)
. (42)

If, furthermore, c≤ 1
N , then the set of all accumulation points of the sequence

(
n

r
D Vn,r(µ)

)
n∈N

equals the interval fc([1,N]), which contains more than one point.

Proof Equation (42) follows immediately from Theorem 1.
Due to limx→i−0 fc(x) = fc(i) for every i ∈ {2, ..,N}, the function fc is continuous and
fc([1,N]) is an interval. Moreover, we see for every i∈ {1, ..,N−1}, that fc is differentiable
on ]i, i + 1[. Using r > 1 and c ≤ 1

N , we deduce r
D = r log(c)

− log(N) > 1. Thus, for all x ∈ ]i, i + 1[
we get

f ′c(x) =
r
D

x
r
D−1 ((i+1)Vi− iVi+1)+ x

r
D (1+

r
D

)(Vi+1−Vi) .

Hence, f ′c is continuous on ]i, i+1[ and has at most one zero in ]i, i+1[. Thus, fc is not con-
stant, yielding that fc([1,N]) contains more than one point. It remains to prove that fc([1,N])
equals the set of all accumulation points of the sequence

(
n

r
D Vn,r(µ)

)
n∈N. Let y∈ fc([1,N]).
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Then an i0 ∈{1, ..,N−1} and x∈ [1,N] exist, with x∈ [i0, i0 +1] and y = fc(x). Let k∈N and
define nk := [xNk] as the greatest integer, smaller or equal to xNk. Obviously, an xk ∈ [1,N]
exists, with nk = xkNk. The sequence (xk)k∈N converges to x. Due to k(nk) = k and i(nk) = i0
we get from (42)

n
r
D
k Vnk ,r(µ)

= (xkNk)
r
D

ckr

Nk

(
Vi0,r(µ)((i0 +1)Nk− xkNk)+Vi0+1,r(µ)(xkNk− i0Nk)

)
.

Because of cD = 1
N , we deduce

n
r
D
k Vnk ,r(µ)

= xk
r
D
(
(i0 +1)Vi0,r(µ)− i0Vi0+1,r(µ)− xk(Vi0,r(µ)−Vi0+1,r(µ))

)
= fc(xk).

The continuity of fc implies
y = fc(x) = lim

k→∞
fc(xk).

Thus, y is an accumulation point of (n
r
D Vn,r(µ))n∈N.

Now, let y be an accumulation point of (n
r
D Vn,r(µ))n∈N. Then a subsequence (n

r
D
l Vnl ,r(µ))l∈N

exists, with
y = lim

l→∞
n

r
D
l Vnl ,r(µ).

W.l.o.g. we can assume that k(nl) < k(nl + 1) for all l ∈ N. Otherwise, we take a suitable
subsequence. Let xl := nl

Nk(nl )
. Then xl ∈ [i(nl), i(nl)+1] and (42) imply

fc(xl) = n
r
D
l Vnl ,r(µ).

Because (xl)l∈N is bounded, a subsequence (xlq)q∈N exists, converging against a x ∈ [1,N].
According to the continuity of fc, we obtain

fc(x) = lim
q→∞

fc(xlq) = lim
q→∞

n
r
D
lq Vnlq ,r(µ) = y,

yielding y ∈ fc([1,N]).

Remark 16 Equation (42) implies

Vn,r(µ)−Vn+1,r(µ)≥Vn+1,r(µ)−Vn+2,r(µ) (43)

for every n≥ N. (43) turns into an equation, if

i(n)Nk(n) ≤ n < (i(n)+1)Nk(n)−1.

Hence, the strict monotonicity for n = 1, ..,N−1 (cf. condition (MQED)) is not carried over
to all n ∈ N.

Remark 17 If condition (SQ) and (MQED) are satisfied and c < 1
N , then the non-existence

of the quantization coefficient follows from Proposition 5, but is also an immediate conse-
quence of Proposition 8.
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Remark 18 Let n ∈ N. An n−tuple s = (s1, ..,sn) with si > 0 is called arithmetic, if a t > 0
exists such that si/t ∈ N. For such an arithmetic s, we call

ϑ := max{t > 0 : si/t ∈ N for every i = 1, .,n}

the period of s. Hence, the N−tuple (− log(c), ..,− log(c)) with c as contracting parameter
is arithmetic with period − log(c). In this arithmetic case, Pötzelberger ([21], Theorem 1)
has shown that a periodic function h : R+→ R+ with period − log(c) exists such that

lim
n→∞

(n
r
D Vn,r(µ)−h(log(n))) = 0.

In contrast to our special setting, this function h in [21] is not calculated explicitly.

Remark 19 The construction of the Cantor-like set E starts with the closed set V . Hutchin-
son [14] has shown for the self-similar case that a replacement of V by any non-empty
compact set K ⊂ Rd with

⋃N
i=1 Si(K)⊂ K leads always to the same Cantor-like set E.

5 Modified versions of classical fractals

5.1 One-dimensional Cantor distribution

Let d = 1 and ω = {0,1}. Let r > 1 and (ck) be a sequence of contracting factors, satis-
fying ck ∈ ]0, 1

2 ] for every k ∈ N. We consider the similitudes Sk,1(x) = ckx, respectively
Sk,2(x) = ckx + 1− ck. We choose V = ]0,1[. Obviously, the open set condition is satisfied.
The uniform distribution µ on E = E(V ) is called one-dimensional Cantor distribution. If
ck = c independent of k, the distribution µ becomes self-similar. In the (sub-)case of c = 1

3 ,
the measure µ is the classical Cantor distribution.
If c = supi∈N ci < 1

10 , Proposition 7 ensures that the conditions (SQ) and (MQED) are sat-
isfied. Applying Theorem 1, we can solve the optimal quantization problem in this case.
Using more refined methods, Kesseböhmer and Zhu (cf. [15]) proved the result for the opti-
mal codebooks in Theorem 1 under the relaxed condition c≤ 1

4 . In another work, Kreitmeier
[17] has shown that all assertions of Theorem 1 remain true, if c≤ 1

3 . Note that the solution
of the optimal quantization problem in the classical case (ck = 1

3 for every k) goes back to
Graf and Luschgy (cf. [4]). Thus, our results in this paper for the one-dimensional Cantor
distribution are already incorporated in other works. In this context, it is interesting to see
that Theorem 1 becomes wrong, if c > 1

3 . To show this, let (al)l∈N be a zero sequence with
supl∈N al ≤ 1

3 . For k, l ∈ N and c ∈ ]0, 1
2 [ let

ck,l :=
{

c, if k 6= 2
al , if k = 2

Denote µl as the uniform distribution on E defined by (ck,l)k∈N. Due to c1,l = c and because
(c2,l)l∈N is a zero sequence, the series (µl)l∈N converges weak against νc = 1

4 (δ0 + δc +
δ1−c +δ1). Moreover, ∫

‖ x ‖r dµl(x)→
∫
‖ x ‖r dνc(x),

because the support of µl and νc is contained in [0,1] for every l. Using well-known stability
and consistency results (cf. [5], p. 57 ff), one gets

Vn,r(µl)→Vn,r(νc). (44)



28

Moreover, a sequence (αl)l∈N of codebooks exists, with αl ∈Cn,r(µl) for every l ∈ N and

dH(αl ,Cn,r(νc))
l→∞−→ 0 (45)

Now assume that Theorem 1 is valid. Hence,

C3,r(µl) = {{ c
2
,1− c+

cal

2
,1− cal

2
},{cal

2
,c− cal

2
,1− c

2
}}.

In case of c≤ 1
3 it is easy to see that

C3,r(νc) = {{ c
2
,1− c,1},{0,c,1− c

2
}}.

but
C3,r(νc) = {{0,

1
2
,1}},

if c > 1
3 . In the last case, the statement about optimal codebooks in Theorem 1 gets wrong

because otherwise we would derive with

inf
l∈N

inf{dH(α,β ) : α ∈C3,r(µl),β ∈C3,r(νc)} ≥
1
2
− c > 0,

a contradiction to (45). In the same way, the assumed validity of equation (32) in case of
c > 1

3 would lead to

lim
l→∞

V3,r(µl) = lim
l→∞

cr
1

2

(
(21−1)V1,r

(
µ

(2)
l

))
=

cr

2
V1,r

(
1
2

δ0 +
1
2

δ1

)
=

1
2

( c
2

)r
>

1
2

(
1
2
− c
)r

= V3,r(νc),

which contradicts (44). Hence, all statements of Theorem 1 will get wrong in general, if
c > 1

3 . As a consequence, the condition (SQ) cannot be replaced by the weaker condition of
strong separation (cf. (25)). Even in the self-similar case, it can be shown (cf. [17], Example
6.3) that Theorem 1 becomes invalid, if ck = c > 5−

√
17

2 .

5.2 Uniform distribution on modified Sierpinski Gasket

Now, we intend to apply our results to a set ω consisting of three different points. In view
of our criteria (cf. section 3.3) for condition (SQ) and (MQED) it is essential to know, under
which conditions Dmin(r,3,Uω) > 0 does hold. At first, we will answer this question in
Proposition 9. To this end, we will use properties of the Fermat point of a triangle. After
that, we introduce the uniform distribution on a modified version of the Sierpinski Gasket
and discuss the optimal quantization of it.

Lemma 4 Let ω ⊂ Rd be finite and non-empty, r = 2 and s(ω) = 1
N ∑x∈ω x. Then

V1,r(Uω) =
∫
‖ x− s(ω) ‖r dUω(x) =

1
N ∑

x∈ω

‖ x− s(ω) ‖r . (46)

Equation (46) also holds in case of r > 1, if ‖ x− s(ω) ‖ does not depend on x.
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Proof The proof of Theorem 2.4 in [5] shows the strict convexity of

Rd 3 z Fr−→
∫
‖ x− z ‖r dUω(x) ∈ R+

0 .

If Fr has only one critical value, it is the global minimum of Fr. With ∇ as gradient, we
calculate

∇Fr(z) =
r
N ∑

x∈ω

‖ x− z ‖r−2 (z− x).

If r = 2 or if ‖ x− s(ω) ‖ is independent of x ∈ ω , we get ∇Fr(s(ω)) = 0.

Proposition 9 Let d ≥ 2, card(ω) = 3 and r > 1. Then

Dmin(r,3,Uω)≥
(

dmin(ω)√
3

)r

− 4
3

(
dmin(ω)

2

)r

. (47)

In general Dmin(r,3,Uω) > 0 if r > 2. If and only if dmin(ω) = diam(ω), (47) turns into an
equation.

Proof According to [5], Lemma 3.2 (a), the optimal quantization error remains unchanged
under isometrical mappings. Thus, we can assume w.l.o.g. that d = 2. Let ω = {A,B,C}.
Let

u = inf{‖ A−P ‖+ ‖ B−P ‖+ ‖C−P ‖: P ∈ R2}.

A point F ∈ R2 is 1−optimal for Qω of order 1, this means, {F} ∈C1,1(Qω), if and only if

u =‖ A−F ‖+ ‖ B−F ‖+ ‖C−F ‖ . (48)

The minimization problem defined by (48) has a unique solution (cf. [10]): exactly one point
F ∈ conv(ω) satisfies equation (48).

(a) If the triangle, spanned by ω , has an angle equal or greater than 2
3 π , then F is the vertex

of this angle.
(b) Otherwise, F is the unique point, at which each of the three angles BFC, CFA and AFB

- containing F as vertex - does have the value 2
3 π .

The point F is called Fermat point. Due to [5], Remark 4.6 (a), this minimization problem
does not have another solution on R2\conv(ω). Hence, the Fermat point is unique in R2 and
we have C1,1(Uω) = {{F}}.

If we construct above each side of the triangle ABC an equilateral triangle (cf. figure
1), we get the triangles BA′C, ACB′ and BAC′. The line segments AA′, BB′, and CC′ are
all the same length u and their common point of intersection is the Fermat point (cf. [10]).
Obviously, V3,r(Uω) = 0, respectively V2,r(Uω) = 2

3 ( dmin(ω)
2 )r. We proceed separately for

each of the two cases (a) and (b).

Case (a)

We obtain u≥ 2dmin(ω). Thus, the convexity of t→ tr yields

V1,r(Uω)≥
(u

3

)r
≥
(

2
3

dmin(ω)
)r

>

(
dmin(ω))√

3

)r

. (49)

Case (b)

First we calculate u. To this end, we use the standard notation a,b and c for the sides of the
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b

A

b

B

b

C

b

F

b

A′

b
B′

b

C ′

Fig. 1 Fermat point

triangle ABC. The angles α, β and γ belong to the vertices A, B and C. Let ∆ denote the
area of the triangle ABC. Note that A′B = BC = a. Using the law of cosine, we obtain

u2 = (AA′)2 = c2 +a2−2ac · cos(β +
π

3
) (50)

= c2 +a2−2ac

(
1
2

cos(β )−
√

3
2

sin(β )

)

= c2 +a2− c2 +a2−b2

2
+2ac

√
3

∆

ac

=
a2 +b2 + c2

2
+2
√

3∆ .

As before, the convexity of t→ tr yields

V1,r(Uω)≥ (
u
3
)r. (51)

Note that

∆ ≥ 1
2
(dmin(ω))2 ·max(sin(α),sin(β ),sin(γ)) .

At least one angle of the triangle ABC lies in [ π

3 , 2π

3 ]. Therefore, we get

∆ ≥ 1
2
(dmin(ω))2 1

2

√
3. (52)
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The combination of (50), (51) and (52) yields

V1,r(Uω) ≥


√

a2+b2+c2

2 +2
√

3∆

3

r

(53)

≥

(
1
3

√
3(dmin(ω))2

2
+2
√

3
1
2
(dmin(ω))2 1

2

√
3

)r

=
(

dmin(ω))√
3

)r

.

Thus, in both cases we get from (49) and (53),

Dmin(r,3,Uω) = V1,r(Uω)−2V2,r(Uω)

≥
(

dmin(ω)√
3

)r

− 4
3

(
dmin(ω)

2

)r

,

which is strictly positive if 3
4 >

(√
3

2

)r
. This is exactly the case if r > 2.

Now assume that diam(ω) = dmin(ω).
From Lemma 4 we get V1,r(Uω) = ( 1√

3
)r diamr(ω), which yields equality in (47). If, on the

other hand, (47) turns into an equation due to (49), only case (b) can happen. Thus (53),
turns into an equation. As an immediate consequence, we obtain a = b = c, which implies
diam(ω) = dmin(ω).

Now, let ω = {x1,x2,x3}⊂R2 with card(ω) = 3. Assume that the points x1,x2,x3 are not
collinear. Let (ck) be a sequence of contracting factors with ck ∈ ]0, 1

2 ] for every k ∈ N. For
x ∈ R2, the integers k ∈ N and i ∈ {1,2,3} define the similitudes Sk,i(x) = ckx +(1− ck)xi.
Let V be the interior of the convex hull of ω . Let µ be the uniform distribution on E = E(V ).
We call E a modified Sierpinski gasket. Due to c ≤ 1

2 , the open set condition is satisfied. If
ck = 1

2 for every k and ω consists of the vertices of an equilateral triangle, we call E the
classical Sierpinski gasket. In the non-equilateral case, i.e. if diam(ω) 6= dmin(ω), using
Proposition 9 and Proposition 7 we can calculate a d1 > 0, ensuring the applicability of
Theorem 1, if c < d1. In the equilateral case we can determine such a d1 > 0, too, but here
we are restricted to r > 2. Note that in the self-similar case, provided r = 2 and c < c0 for
a small enough c0 > 0, the optimal quantization errors Vn,2(µ) can be calculated explicitly
for n ∈ {1,2,3} by Theorem 5.4 in [18]. By means of Theorem 1, we thus can determine
the optimal quantization errors Vn,2(µ) for every n in the non-equilateral case, provided
c < min(c0,d1). Finally, we illustrate with this example that condition (MQED) cannot be
dropped completely. To this end, let ω represent an equilateral triangle and let µ be self-
similar with contracting factor c and r ∈ ]1,2[. Checking the proof of Proposition 9 it is easy
to see that Dmin(r,3,Uω) < 0. According to Remark 14, one gets Dmin(r,3,µ) < 0, provided
c is smaller than d1, which we will assume. Note that condition (SQ) is satisfied according
to Proposition 6. Now, let {a} ∈C1,r(µ) and {b1,b2} ∈C2,r(µ). Let

α
′ = {S1(a),S2(a),S(3,1)(a),S(3,2)(a),S(3,3)(a)}

and
α = {S1(a),S2({b1,b2}),S3({b1,b2})}.
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Because µ satisfies condition (SQ), Proposition 3 implies

Ψα ′,r(µ)−Ψα,r(µ) = cr(V1,r(µ)+V3,r(µ)−2V2,r(µ)) < 0.

Hence, α /∈ C5,r(µ) and equation (42), respectively (32) gets wrong. Thus, the condition
(MQED) cannot be dropped completely.

5.3 Further examples

Let µ be a uniform distribution on a Cantor-like set E, defined as in 3 by a set of similitudes
with contracting factors ck, k ∈ N and ω as the set of fixpoints with card(ω) = N.

According to Proposition 7, we can calculate a constant d1 > 0 and apply Theorem 1,
if Dmin(r,N,Uω) > 0 and c < d1. Additionally, as already mentioned in Example 5.2, in the
self-similar case and r = 2 by combination of [18], Theorem 5.4 and Theorem 1 we can
fix a c0 > 0 and calculate all optimal quantization errors explicitly, if c < min(c0,d1). Note
that [18], Theorem 5.4 is only applicable, if the similitudes have no rotation part, i.e. the
orthonormal transformation in (39) has to be the identity.

Thus, it remains to derive a criteria for ω , ensuring that Dmin(r,N,Uω) > 0. If r = 2, this
question can always be answered by direct calculations, using the centroidal decomposition
of Vn,2(Uω) for n = 1, ..,N − 1 (cf. [5], Example 3.5). If r > 1 in general, the situation
becomes more difficult. In [16], Proposition 6.24 (ii), some special criteria are ensuring
that Dmin(r,N,Uω) > 0. It needs further investigations to find general conditions in higher
dimensions, ensuring that Dmin(r,N,Uω) > 0.

Acknowledgements I would like to thank the referee for careful reading and valuable suggestions leading
to an improved version of this paper.
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