
AI-Supported Interactive
Segmentation of 3D Volumes

Thomas Lang

Dissertation zur Erlangung des Doktorgrades
der Naturwissenschaften (Dr. rer. nat.)

eingereicht an der Fakultät für Informatik und Mathematik
der Universität Passau

Dissertation submitted to
the Faculty of Computer Science and Mathematics

of the University of Passau
in Partial Ful�llment of Obtaining

the Degree of a Doctor of Natural Sciences

Betreuer/Supervisor: Prof. Dr. Tomas Sauer
Externer Gutachter/External Examiner: Prof. Dr. Thomas Pock

Passau, 14th April 2021

Abstract
The segmentation of volumetric datasets, i.e., the partitioning of the data into disjoint sub-
volumes with the goal to extract information about these regions, is a di�cult problem and has
been discussed in medical imaging for decades. Due to the ever-increasing imaging capabilities,
in particular in X-ray computed tomography (CT) or magnetic resonance imaging, segmentation
in industrial applications also gains interest. Especially in industrial applications the gener-
ated datasets increase in size. Hence, most applications apply well-known techniques in a 2+1-
dimensional manner, i.e., they apply image segmentation procedures on each slice separately and
track the progress along the axis of the volume in which the slices are stacked on. This discards
the information on preceding or subsequent slices, which is often assumed to be nearly identical.
However, in the industrial context this might prove wrong since industrial parts might change
their appearance signi�cantly over the course of even a few slices. Moreover, artifacts can fur-
ther distort the content of the slices. Therefore, three-dimensional processing of voxel volumes
has to be preferred, which induces constraints upon the segmentation procedures. For example,
they must not consider global information as it is usually not feasible in big scans to compute
them e�ciently. Yet another frequent problem is that applications focus on individual parts only
and algorithms are tailored to that case. Most prominent medical segmentation procedures do
so by applying methods to speci�cally �nd the liver and only the liver of a patient, for example.
The implication is that the same method then cannot be applied to �nd other parts of the scan
and such methods have to be designed individually for any object to be segmented. Flexible
segmentation methods are needed too speci�cally when partitioning unique scans. We de�ne a
unique scan to be a voxel dataset for which no comparable volume exists. Classical examples in-
clude the use case of cultural heritage where not only the objects themselves are unique but also
scan parameters are optimized to obtain the best image quality possible for that speci�c scan.

This thesis aims at introducing novel methods for voxelwise classi�cations based on local geometric
features. The latter are computed from local environments around each voxel and extract in-
formation in similar ways as humans do, namely by observing their similarity to geometric or
textural primitives. These features serve as the foundation to learning the proposed voxelwise
classi�ers and to discriminate between segmented and unsegmented voxels. On the one hand,
they perform fully automated clustering of volumes for which a representative random sample
is extracted �rst. On the other hand, a set of segmenting classi�ers can be trained from few seed
voxels, i.e., volume elements for which a domain expert marked if they belong to the compon-
ents that shall be segmented. The interactive selection o�ers the advantage that no completely
labeled voxel volumes are necessary and hence that unique scans of objects can be segmented for
which no comparable scans exist. Overall, it will be shown that all proposed segmentation meth-
ods are e�ectively of linear runtime with respect to the number of voxels in the volume. Thus,
voxel volumes without size restrictions can be segmented in an e�cient linear pass through the
volume. Finally, the segmentation performance is evaluated on selected datasets which shows
that the introduced methods can achieve good results on scans from a broad variety of domains
for both small and big voxel volumes.

iii

Zusammenfassung
Die Segmentierung von Volumendaten, also die Partitionierung der Daten in disjunkte Teilvo-
lumen zur weiteren Informationsextraktion, ist ein Problem, welches in der medizinischen Bild-
verarbeitung seit Jahrzehnten behandelt wird. Bedingt durch die sich ständig verbessernden
Bilderfassungsmethoden, speziell im Bereich der Röntgen-Computertomographie (CT) oder der
Magnetresonanztomographie, gewinnt die Segmentierung von industriellen Volumendaten auch
an Wichtigkeit. Insbesondere im industriellen Kontext steigt die Größe der zu segmentierenden
Daten jedoch rasant an, so dass sich die meisten Segmentierungsapplikationen auf den 2+1-
dimensionalen Fall beschränken, also Bilder verarbeiten und die Ergebnisse über mehrere Bilder
hinweg verfolgen. Jedoch werden somit beispielsweise geometrische Informationen über be-
nachbarte Schichten ignoriert. Diese können sich aber gerade im industriellen Bereich signi�kant
ändern. Aus diesem Grund ist hier die dreidimensionale Bildverarbeitung vorzuziehen. Dadurch
ergeben sich neue Einschränkungen, beispielsweise können keine globalen Informationen zur
Segmentierung herangezogen werden, da diese typischerweise nicht e�zient berechenbar sind.
Ferner fokussieren sich dreidimensionale Methoden aus medizinischen Bereichen zumeist auf
bestimmte Bestandteile der Daten, wie einzelne Organe. Dies schränkt die Generalität dieser
Methoden signi�kant ein und somit sind separate Verfahren für jedes zu segmentierende Objekt
notwendig. Flexible Methoden sind darüber hinaus bei Anwendung auf einzigartige Scans er-
forderlich. Ein einzigartiger Scan ist ein Voxelvolumen, für welches kein vergleichbares Datum
existiert. Klassische Beispiele sind Kulturgutdigitalisate, da dort nicht nur die Objekte einzigartig
sind, sondern auch die Aufnahmeparameter spezi�sch für diesen einen Scan optimiert wurden.

Die vorliegende Dissertation führt neuartige Methoden zur voxelweisen dreidimensionalen Seg-
mentierung von Volumendaten auf Basis lokaler geometrischer Informationen ein. Die Bewer-
tung dieser Informationen imitiert die menschliche Objektwahrnehmung, indem lokale Regionen
mit geometrischen oder strukturellen Primitiven verglichen werden. Mit Hilfe dieser Bewertun-
gen werden voxelweise anzuwendende Klassi�katoren trainiert, welche zwischen erwünschten
und unerwünschten Voxeln unterscheiden sollen. Ein Teil dieser Klassi�katoren führt eine voll-
automatische Clustering-Analyse durch, nachdem eine repräsentative und zufällig ausgewählte
Teilmenge fester Größe an Voxeln selektiert wurde. Die verbliebenen Segmentierungsalgorith-
men erhalten Trainingsdaten in Form von Seed-Voxeln, also wenige Volumenelemente, die von
einem Domänenexperten markiert wurden. Diese interaktive Herangehensweise ermöglicht das
Einbringen von Expertenwissen ohne die Notwendigkeit vollständig annotierter Trainingsvolu-
men, wodurch auch einzigartige Scans segmentiert werden können. Für alle Verfahren wird
dargelegt, dass die eingeführten Algorithmen von asymptotisch linearer Laufzeit in der Anzahl
der Voxel im Volumen sind. Somit können Voxeldaten ohne Größenbeschränkungen in einem ef-
�zienten linearen Durchgang verarbeitet werden. Abschließend wird die Performanz der vorges-
tellten Verfahren auf ausgewählten Daten evaluiert und aufgezeigt, dass mit denselben wenigen
Verfahren gute Ergebnisse auf vielen unterschiedlichen Domänen und gleichfalls auf kleinen und
großen Volumen erzielt werden können.

v

Dedicated to my mother Silvia who sacri�ced a lot to enable me to study and
consequently write this thesis, to her partner Walter and to my father Thomas.

vii

Acknowledgements

This thesis has only been made possible through the support of many people.
First of all, I want to thank Prof. Dr. Tomas Sauer, who not only gave me the opportunity to
work on the interesting �eld of segmentation of industrial computed tomography data but also
introduced me to the world of machine learning and its mathematical foundations. I am fur-
ther grateful that he formed the �rst connection between me and the people working at the
Fraunhofer EZRT in Fürth which enabled an easy and fun collaboration. In particular, I want to
thank him for proofreading this thesis and intermediate reports as well as improving my English
language skills in general.
Next, I would further like to express my gratitude to all of my colleagues at the institute FORWISS
at the University of Passau. Of them, I especially thank my o�ce co-workers Dr. Benedikt
Diederichs and Michael Stock. Benedikt speci�cally supported me by improving my mathem-
atical background and demonstrating that an abstract mathematical viewpoint can often lead
to elegant yet e�cient solutions, speci�cally when we collaborated on the mathematical details
of the Wasserstein histogram embedding and when he de�ned a new spherical histogram type
used here for the HOG feature descriptor. Michael instead always took time to answer my ques-
tions regarding algorithmic and implementation details which enabled us to quickly develop a
prototypical application. This in turn provided means to demonstrate the proposed interactive
work�ows to audiences and helped to explain them as well as to pitch new ideas and projects.
I am also thankful for the help of my colleagues at the Fraunhofer EZRT in Fürth, who provided
the datasets used in this thesis and further also supported me with technical details and ideas
to improve the methods presented in this work. Speci�cally, I want to mention the group of
co-workers from both the FORWISS and the EZRT who together with myself met virtually on
each day in the “Früher Ka�ee” meeting which helped me not only socializing with all of them
but also gave me the opportunity for quickly discussing issues.
Finally, I especially want to thank my friends of the “Stammtisch” group, my family and especially
my mother and grandparents for bearing with me over the last three years and supporting me
emotionally, especially during the isolation due to the Covid-19 pandemic.

ix

Contents

I. Introduction 1

1. Background 5

2. Basic Pre- and Postprocessing 15

II. Describing Local Geometry 21

3. A Wasserstein Histogram Embedding 25

4. Describing Local Structure 31

III. Unsupervised Segmentation 47

5. Random Sampling 51

6. K-Means Clustering 55

7. Clustering via Gaussian Mixture Models 59

IV. Supervised Segmentation 69

8. Feature-Adaptive Interactive Thresholding 73

9. Support Vector Machine-Based Segmentation 87

10. Multiresolution Segmentation 99

V. Evaluation and Experiments 119

11. �antitative Evaluation 123

12. �alitative Evaluation 137

VI. Conclusions and Outlook 153

13. Conclusion 157

14. Outlook 159

Appendices 163

xi

List of Figures

1.1. The �rst X-ray image showing the hand of Röntgen’s wife [33]. 9
1.2. Schematic CT overview [34, Fig. 1.6]. 9
1.3. Mask-based processing for K = 3. 12
3.1. The idea behind Wasserstein histogram comparison. 25
4.1. Obtaining texture vectors in LBP [22]. 34
4.2. Ideal data colorized with plane and line �t characteristics. 37
4.3. Typical geometrical feature histograms. 37
4.4. Ideal data colorized with orientation features. 40
4.5. Spherical histogram in our setting. 41
5.1. Strati�cation of a typical grayscale value distribution. 51
7.1. Misclassi�cations by K-Means [12] due to di�erent cluster variances. 59
7.2. Schematic univariate Gaussian Mixture Model. 60
9.1. Soft-margin SVM dataset separation. 88
9.2. Uncertainty function for several locality parameters. 96
10.1. Multiresolution indices increment calculation. 105
11.1. Calibrated test volumes. 125
11.2. Motor piston scans. 125
11.3. Components of the ME-163. 126
11.4. Voxel dataset “Ford Fiesta”. 126
11.5. ROC curves of our test cases. 129
11.6. Multiresolution IoU development graph. 132
11.7. Multiresolution Precision development graph. 132
11.8. Multiresolution Recall development graph. 133
11.9. Multiresolution F1 score development graph. 133
11.10.Speedups over multiple resolution levels, segmentation only. 135
11.11.Speedups over multiple resolution levels, including training. 135
12.1. Wolf jaw and wheat plant data. 138
12.2. Peruvian mummy datasets, courtesy of the Lindenmuseum in Stuttgart. 138
12.3. Clustering techniques applied to “Piston”. 140
12.4. Clustering techniques applied to “Canis Lupus”. 141
12.5. FAITH applied to “Canis Lupus”. 141
12.6. FAITH applied to the mummy skull, results overlaid in white 142
12.7. Individual FAITH steps applied to the skull dataset. 143
12.8. Ford Fiesta segmentations, results overlaid in white. 143
12.9. Peruvian mummy, results overlaid in white. 144
12.10.Peruvian mummy, results overlaid in white. 144
12.11.Piston and wheat roots. 145
12.12.Roman armor piece. 145
12.13.Progression of uncertainty sampling on piston data. 147
12.14.Seed voxel count in�uence on iron ring. 148
12.15.Seed voxel count in�uence on Ford Fiesta springs. 149
12.16.“Honda Accord”, original data and result of retrained segmentation. 150
12.17.Retraining a pretrained model on a di�erent scan. 150

xiii

List of Algorithms

1. Parallel volume processing. 11
2. Typical iterative segmentation work�ow. 17
3. Computation of a histogram embedding. 29
4. Reservoir sampling. 52
5. Strati�ed reservoir sampling on a volume. 53
6. Lloyd’s algorithm. 56
7. K-Means++ initialization. 56
8. Volume segmentation by K-Means clustering. 57
9. Expectation Maximization for Gaussian Mixture Models. 62
10. Volume clustering based on Gaussian Mixture Models. 64
11. Volume clustering based on univariate Gaussian Mixture Models. 65
12. General proximal gradient method solver. 77
13. Elementwise soft-thresholding. 78
14. Projection onto a convex polytope via Hildreth’s method. 79
15. Iterative solver for Problem (8.4). 82
16. Volume segmentation using FAITH. 84
17. Voxelwise segmentation using Support Vector Machines. 94
18. General interactive multiresolution segmentation. 107
19. RoI fusion during multiresolution segmentation. 109

xv

List of Symbols and Abbreviations

General
xα Voxel of a volume at position α
x = (xi)

d
i=1 Vector of dimension d

ei i-th standard basis unit vector
M = (Mi,j)1≤i≤m

1≤j≤n
Matrices in Rm×n

p(xα) , v(xα) Position and value of voxel xα, respectively
RK(xα) Region of size K ×K ×K centered around a voxel xα

d Dimensionality of feature vectors
O(·) Landau notation used in complexity analysis
NT , N,M Number of threads, voxels in a volume and a selection, respectively
T Thresholds of all kinds

Clustering
E[X] Mean/Expected value of X
Fν Cumulative distribution function of a probability measure ν
Ω Random samples
π GMM mixture coe�cient
N (· | µ,Σ) Multivariate normal distribution having mean µ and covariance matrix Σ

log L (X | Θ) Logarithmized likelihood of X given parameters Θ

FAITH
λ, µ FAITH regularization parameters
∂g(·) Subgradient of a function g at some point
proxf Proximal operator of a function f
ST Soft-thresholding operator with threshold T
W Maximum admissible grayscale value
L Lipschitz constant
Eigmax(A) The largest eigenvalue ofA

SVM-based Segmentation
S SVM classi�cation operator
C , ν SVM regularization parameters
ξ SVM slack variables
k Kernel function

Multiresolution Segmentation
`max Number of resolution levels for a volume
` Resolution level, 1 ≤ ` ≤ `max

Υ`
`′ Sampling policy from resolution level `′ to `

S`
`′(x) Set of voxels on level `′ covered by x on level `

ρ` Con�dence threshold for level `
C Candidate Regions of Interest

xvii

Part I.

Introduction

1

Lasciate ogni speranza, voi ch’entrate.

Dante Alighieri, Divine Comedy

Table of Contents

1. Background 5

1.1. Motivation . 5
1.2. Advances in Segmentation . 6
1.3. Data Acquisition . 8
1.4. Processing 3D Data . 10
1.5. Challenges . 13

2. Basic Pre- and Postprocessing 15

2.1. Thresholding . 15
2.2. Advanced Artifact and Noise Reduction . 16
2.3. Removing Isolated Voxels . 16
2.4. Connected Components Analysis . 17
2.5. Applying Further Segmentation Algorithms . 17

This �rst part of this thesis starts by motivating why segmentation of voxel volumes is an essen-
tial tool in many image processing applications. After listing recent advances in segmentation
techniques, we brie�y examine how volumetric data is generated and how we process it. Addi-
tionally, we discuss several challenges encountered in practice whose issues we aim to solve or
at least reduce by our introduced techniques.
The next chapter deals with simple yet e�cient pre- and postprocessing methods used for im-
proving segmentation results. They include methods for noise or artifact reduction as well as for
simplifying and updating the results.

1. Background

Abstract This introductory chapter �rst discusses why segmentation is still an important part
of many volume processing applications. Next, the acquisition and processing of volumetric data
is explained in our framework which forms the basis of all local segmentation procedures intro-
duced in subsequent parts. The chapter is concluded by highlighting some challenges occuring
in volumetric segmentation.

1.1. Motivation

Segmentation of images and volumes is a crucial requirement in many applications ever since im-
ages and volumes could be generated. We focus speci�cally on volumetric segmentation, which
plays a fundamental role in several �elds:

• Volume inspection

• Surgery planning

• Computer Aided Diagnosis

• Industrial Quality Control

In medical context, the �rst aspects of this list are of high interest since decades. The �rst steps
were done by rendering and inspecting medical data, e.g., computed tomography or magnetic
resonance images, so experts could manually diagnose patients, e.g., by �nding tumors. Another
use case is the planning of surgeries such that they are minimally invasive. The latter pro�ts
from such methods as they highlight segmented parts and especially their location, allowing to
plan the simplest and least dangerous way of accessing them.
Improvements over manual inspection include (semi-)automated Computer Aided Diagnosis.
Typically, such applications provide the described visual features while also automatically clas-
sifying objects that have been found. As an example, consider a diagnosis tool which inspects
computed tomography scans of human colons, detects polyps and additionally informs doctors
whether the detections are of malignant nature.
In recent years, tomography gained interest in industrial applications too. There, one often uses
this technique to inspect products and classify if they ful�ll certain quality standards. Advances
in segmentation aim to inform producers if their manufacturings can still be used even if they
contain small faults, thus reducing rejections and saving money as well as resources.
Especially regarding industrial tomography, the resulting size of the datasets are ever-increasing.
In this thesis, we introduce algorithms applicable to volumetric data without size restrictions.
Therefore, we will consider segmentation techniques which classify voxelwise while still being
of approximate linear runtime in the number of voxels. At this point, we especially mention
the Fraunhofer Development Center for X-ray Technology (EZRT) who developed a computed
tomography scanner in which big objects like complete cars or small airplanes can be scanned
at once, allowing for inspecting them in high detail1. An implied use case is the inspection of

1Technical details can be viewed under https://www.iis.fraunhofer.de/en/ff/zfp/tech/
hochenergie-computertomographie.html.

5

https://www.iis.fraunhofer.de/en/ff/zfp/tech/hochenergie-computertomographie.html
https://www.iis.fraunhofer.de/en/ff/zfp/tech/hochenergie-computertomographie.html

1. Background

crashed cars, in which individual parts can be checked if they conform to simulations without
the need to disassemble them. The latter would be unfavorable as tensions in parts could result
in further damage during the disassembly. Hence, visual inspections supported by segmentation
procedures can help engineers interpreting crash test results as is.

1.2. Advances in Segmentation

Since segmentation forms an important step in most image or volume processing pipelines, a
huge variety of di�erent methods has been created over the past decades, and ever-increasing
data generation capabilities require future work to be done in this �eld.
Here, we give a brief overview over existing techniques used for volumetric segmentation, but
explicitly exclude algorithms involving adaptive thresholding, Support Vector Machines or mul-
tiresolution approaches, as dedicated literature surveys are provided in the chapters dealing with
these.

We start with deformable contour models which are initialized with a prior shape close to that
of the desired object and adapt (deform) it to �t the part under consideration by minimizing a
shape error functional that penalizes mis-segmentations as well as the boundary surface area.
Note that active contours are mostly 2+1-dimensional methods which determine the delineat-
ing boundary and track it along the depth of the object. A related approach is the so called
level set method. These are improvements over the active contour method in the sense that
during the segmentation process the topology of the object can change. To achieve this, they
switch from minimizing an energy-based loss function to tracking an evolving contour numer-
ically based on gradient features of some surface function ϕ. The models thus assume that the
searched surface is given in implicit form as a level set Γ(t) = {(x, y) | ϕ(x, y, t) = 0}. Note
that level set methods are a special case of active contour models and often both approaches
are used symbiotically when gradient-based tracking is combined with the minimization of an
error functional. Examples stem mainly from medical image processing like [1] in which the
authors re�ne the basic method by adding a probabilistic shape prior as well as a probabilistic
speed function which further incorporates the estimated mean curvature. In [2], level sets for
both registration and segmentation methods are de�ned to allow proper shape initialization and
improving the results. A similar procedure is found in [3], in which the authors present a vari-
ational framework including the combination of segmentation and registration techniques based
on active contours. [4] further compares several active contour approaches with respect to their
applicability in automatic bone segmentation in computed tomography scans. A comprehensive
literature survey dealing with level set methods can be found in [5], whereas a list of publications
concerning active contours in medical imaging is given in [6].

A completely di�erent approach to segmentation of voxel data is by using graph algorithms.
Conceptually, these methods interpret pixels/voxels or regions in an image/volume as a graph,
on which techniques comprised of �nding shortest paths, minimum spanning trees or cutting
the graph can be employed for segmentation. Popular methods used in two-dimensional im-
age segmentation which in principle can be lifted to the three-dimensional case are listed in [7],
while [8] explains applications in 3D medical imaging. In particular, we mention the work by
Bauer et al. [9] in which the authors presented a method for segmenting tubular structures from
tomography data using prior shape information as well as graph cuts. For this, a graph is con-
structed using voxels as vertices and a cost is assigned to each edge connecting the nodes. Graph
cuts then search for the optimal solution of a cost functional discretized and applied on said
graph. Recent advances also combine graphical models with probabilistic approaches, e.g., Hid-
den Markov Models or random �elds. Using that method, graphical models consider observable

6

1.2. Advances in Segmentation

input given in form of voxel values and unobserved values representing the assigned class labels.
After training, class labels for each voxel can be assigned in a single pass through that network.
Examples include [10] where a graph-based model was trained using the popular Expectation
Maximization algorithm to cluster magnetic resonance images.

Especially in the context of clinical tomography, also atlas-based techniques are used. They use
manually annotated datasets, the so called atlasses, in which commonly certain Regions of In-
terest are annotated with a class label. During segmentation, the ground truth image is registered
to the currently processed data and the annotation labels are propagated to the registration re-
sult. Depending on the application, also multiple atlasses are used, as explained in [11], where
the multitude of labels are propagated to the scan after registration and are combined using a spa-
tially varying decision function. Similarly, [12] used several atlas images which are registered to
magnetic resonance scans in order to obtain a bunch of segmentations which later are combined
into a �nal segmentation. Further methods are summarized in [13].

Naturally, we also like to give a very brief overview over the most recent advances in segment-
ing images and volumes achieved by neural networks. As that name hints, these are graph-
ical models in which each individual node is a neuron which mimics biological ones found in
brains. The major breakthrough brought by neural networks is that they learn features and in-
variants from the data by themselves and can represent nonlinearities. Over the years, a lot
of di�erent types and techniques were developed to improve and accelerate segmentations, of
which we speci�cally name convolutional neural networks and their applications in instance
and semantic segmentation. The latter describes segmentation results where not only all voxels
have a label assigned but also that these labels are identi�ed with each other if their objects are
trained to have a semantic connection. Examples for semantic segmentation are numerous, in
the two-dimensional case extensive literature surveys are found in [14, 15] while for volumetric
segmentation relatively few methods were published yet, from which we highlight [16–18]. First,
Çiçek et al. [16] construct a dense volumetric segmentation from sparse annotations based on a
modi�ed U-Net network architecture. Next, [17] also base their segmentation dealing with full
head and neck regions on the U-Net architecture but extend it by allowing local segmentations
and using a modi�ed loss function. Finally, [18] also uses a modi�ed U-Net model for semantic
segmentation of kidney vessels by generating multiple segmentation results and producing a �-
nal one by averaging them. On top of these approaches, the �eld of instance segmentation does
not only segment its input semantically in the just described sense, but also enumerates them
per class, i.e., assigns unique labels to each instance of a semantically grouped region. A survey
of instance segmentation approaches for images is given in [19]. A quite recent survey encom-
passing both techniques can be found in [20]. Concludingly, we want to highlight that neural
networks, being famous for constructing features on their own, have been successfully combined
with other methods like a variational approach presented in the work of Ranftl et al. [21].

While one could discuss many more details regarding recent advances in segmentation, this
thesis speci�cally focusses on interactive segmentation. Until now, only few interactive ap-
proaches were proposed, of which both two-dimensional and three-dimensional methods exist.
In the 2D case, we want to mention [22] which uses interactive annotations to train an active
contour model used for delineating the boundaries of the desired object. In a similar fashion,
Santner et al. [23] used seed pixel information to train a random forest classi�er combined with
regularization. Regarding three-dimensional segmentation, an increasing number of techniques
were proposed in recent years, of which we like to cite [24], where the authors proposed an
early interactive approach in which a contour segmentation is combined with probabilistic re-
gion growing. A much more modern path is taken by [25] by combining user interaction with

7

1. Background

probabilistic maps, neural networks and geodesic distances for volumetric segmentation. A brief
survey over additional interactive segmentation techniques is given in [26].

As the above paragraphs demonstrated, many if not most existing segmentation procedures stem
from medical imaging and are often speci�cally tuned towards that domain. However, in such
applications the size of the datasets are typically small, ranging up to a few hundred Megabytes,
for the reason that a patient shall receive as few radiation as possible. In industrial tomography,
the reconstructed volumes can be substantially bigger, ranging up to Terabytes in extreme cases.
Another caveat speci�c to industrial tomography is that typically few scans are of the same kind,
hence making it di�cult to train a robust segmentation model. Then, many algorithms described
thus far are not feasible anymore, e.g., common neural network models.
To cope with these big volume sizes, additional methods were proposed which mostly exploit
locality or add locality to existing methods. Popular methods include Bayesian methods, which
together with additional techniques are compared in [27] for their usage in analysis of pore
structures. In the same �eld, [28] detect pores using neural networks both slicewise and by
3D nets. Instead, in [29] the authors proposed a markov random �eld model for segmentation
while simultaneously dealing with metal artifacts. On the other hand, [30] uses a gradient-based
technique to detect edges in blurry regions trained from Computer Aided Design input.

We conclude that a humongous number of di�erent approaches exist with an increasing trend
towards three-dimensional segmentation. Moreover, the following chapters will describe even
more methods for segmenting volumes.
However, inspection on most techniques mentioned above need special requirements to be ful-
�lled. These often consist of a priori labeled training data, i.e., volumes where each individual
voxel is assigned a class label, e.g, in methods using atlasses or neural networks. Naturally, the
creation of such voxel data is cumbersome and since experts are required to do so it is also ex-
pensive. Other prerequisites include nonlocal information in case the methods explicitly aim
for globally optimal segmentation or when large neighborhoods are necessary for graph cut al-
gorithms.
During the course of this thesis, we will propose extensions and novel algorithms for volumetric
segmentation which are suited to handle big volumes. We will intuitively prove this by arguing
that they are e�ectively of linear runtime complexity with respect to the number of voxels. Fur-
thermore, we demonstrate that the presented methods work locally enough, i.e., consume few
enough memory, such that they are applicable to volumes without size restrictions.

1.3. Data Acquisition

Since the algorithms introduced later process three-dimensional data, we like to mention a few
basic details of how that data is acquired. There are plenty of methods producing 3D images, e.g.,
X-ray computed tomography, magnetic resonance imaging, ultrasound imaging, positron elec-
tron tomography and many more. We focus on X-ray computed tomography (CT) and magnetic
resonance imaging (MRI) as we primarily work with such data. However, we emphasize that all
methods proposed only assume three-dimensional voxel grids and thus are applicable to many
di�erent domains.
First, we discuss X-ray computed tomography which employs X-rays �rst found by Wilhelm
Conrad Röntgen who was awarded the �rst Nobel prize in 1901 [31]. He famously called them
X-rays where X stands for unknown, while at least the German community started to call them
Röntgen rays after his talk given at the third sitting of the Physics andMedical Society in Würzburg.
His discoveries described in that talk can be read up in [32]. In said presentation Röntgen de-
scribed how the newly found radiation is able to “penetrate materials beyond optical inspection”

8

1.3. Data Acquisition

Figure 1.1.: The �rst X-ray image show-
ing the hand of Röntgen’s
wife [33].

Figure 1.2.: Schematic CT overview [34, Fig. 1.6].

and that the produced images depend on the densities of the objects scanned. Furthermore, he
also proposed the usage of his �ndings for medical inspection, one of the very �rst such images is
depicted in Figure 1.1 which shows the hand of Röntgen’s wife Anna Bertha Ludwig with clearly
visible bones and her ring.
As the image quality of X-ray images improved, his invention became increasingly popular for
medical inspection. However, X-ray imaging lacks information about the three-dimensional
shape of the objects considered. Thus, the idea of X-ray computed tomography was born: How
can we reconstruct a 3D volume from several X-ray images?
The theoretical background to the answer of this question was developed by Johann Radon who
de�ned an integral transform named after him as well as a corresponding inverse transform.
That transform maps a two-dimensional image function into its set of integrals along all straight
lines parametrized by a projection angle and an o�set. In the following paragraphs, we call this
mapping the projection, cf. Figure 1.2. Under some assumptions regarding the image function,
the integral expressions converge absolutely and the image function is uniquely de�ned by its
transformation result [35]. In context of X-ray imaging, the Radon transform of an object along
some direction corresponds to the X-ray image recorded in that direction. Regarding the recon-
struction of the object from the individual images, one now exploits that the one-dimensional
Fourier transform of the projections are slices of the two-dimensional Fourier transform of the
original image. This fact is ensured by the Fourier slice theorem [36] which can be generalized
to higher dimensions. Consequently, one computes a 2D Fourier transform on the projection
images, aggregates these slices and �nally applies an inverse 3D Fourier transform on the re-
sult to obtain a reconstructed three-dimensional object. The work�ow just described is depicted
schematically in Figure 1.2 for a two-dimensional reconstruction problem. These connections
can be lifted to higher dimensions.
Ever-ongoing improvements in terms of reconstruction quality, accuracy and speed made CT
imaging a highly popular method of inspecting objects. As a historical remark, �rst steps towards

9

1. Background

practical tomography were taken by Korenblum et al. [37] in 1958. In their work, the authors
describe the two-dimensional reconstruction problem speci�cally solved for the fan-beam scan
geometry as well as providing a scheme to build a simple tomography scanner for the stated slice
reconstruction. However, their work got largely unrecognized due to the paper being in Russian
and we suppose also due to the political climate at that time. A few years later, further progress
for medical applications was made as advanced scanners became available in the 1970s when
Sir Godfrey Houns�eld created a prototype CT scanner based on the works of Allan MacLeod
Cormack. For their work, both were awarded the Nobel prize in Physiology in 1979 for the devel-
opment of computer assisted tomography [38]. Considering industrial tomography, the probably
�rst recorded experiment was conducted by William H. Oldendorf in 1961 which already shows
the typical setup commonly found in commercial industrial CT scanners [39]. Ever since that
experiment, the industrial use case developed in parallel to advances in medical tomography
imaging.
Although X-ray computed tomography is arguably the most prominent noninvasive inspection
technique used for medical and industrial applications, other methods exist for special use cases,
e.g., magnetic resonance imaging (MRI) or positron emission tomography (PET). Such methods
try to depict certain parts of the desired images as good as possible. In case of MRI, applications
include the visualization and processing of images of internal organs which are often not prop-
erly recognized by X-ray CT. On the contrary, PET makes uses of a radioactive substance which
enhances the visibility of, e.g., metabolic �ows in organs. Considering industrial imaging, pos-
sible uses for MRI are automatic inspection of nonmedical soft-tissue material like fruit or baby
food in order to detect harmful content like glass fragments [40]. A short survey of applications
of other tomography methods in process engineering can be found in [41].
Whatever way is chosen to acquire data, we assume that the generated voxel datasets are three-
dimensional volumes containing nonnegative values. Hence, by abstracting from the actually
used technology we provide algorithms operating on general volumetric datasets. For an in-
depth view into the mathematical and physical background of computed tomography we forward
the reader to [36, 42, 43].

1.4. Processing 3D Data

Regardless of the technology used for data acquisition, the result is a digital three-dimensional
reconstruction of the scanned object. We call such a reconstruction a volume consisting of voxels.

De�nition 1.4.1. A set Γd ⊂ N3 of the form Γd := {1, . . . , d1} × {1, . . . , d2} × {1, . . . , d3} is
called a regular grid of dimensions d = (d1, d2, d3) ∈ N3. Moreover, let fv : Γd → R≥0 be a
function assigning a nonnegative real value to each position in the grid.
A volume is a tuple (Γd, fv, V) where V = {xα | α ∈ Γd} is the set of all volume elements xα
on the grid Γd.
Additionally, de�ne

p : V → Γd v : V → R≥0

xα 7→ α, xα 7→ fv(α),

as functions retrieving the position and value associated to a voxel xα ∈ V .

Here, we use a voxel as an abstraction of a cuboid of which the volume consists, which can
possess additional attributes like the actual voxel size in micrometers. Contrary, the grid points
are only the positions of the voxels in the discrete grid.
Since the voxel set V contains one volume element for each point in the grid Γd, the mapping
p assigns a unique position to each voxel and further p is surjective since V enumerates every

10

1.4. Processing 3D Data

point in the grid. Thus, p forms a bijection between the set of voxels enumerated by multi-indices
and the grid points.
With respect to De�nition 1.4.1, applying any segmentation operator introduced in this thesis on
a volume (Γd, fv, V) creates a new physical volume (Γd, f̃v, V) of same dimensions, and hence
also the same set of enumerated voxels, but with a new voxel value function f̃v . Syntactically,
we write ṽ(xα) when the value of the voxel at position α in the target volume is set.
Remark 1.4.2. In medical imaging and most industrial applications the voxel values actually
are integral due to datatype conversion to save memory. We generalize this to real values, but
nevertheless we require nonnegative values. If in certain applications also negative values are
produced, we scale them accordingly.
Remark 1.4.3. De�nition 1.4.1 explains that a discrete voxel volume as gained from computed
tomography forms a three-dimensional rectangular parallelepiped consisting of voxels. Regard-
less of the physical orientation of the object scanned, its digital reconstruction is oriented as a
continuous data stream. In this stream, the voxels are enumerated in lexicographic order of their
associated multi-indices in the ordering z ≤ y ≤ x. We interpret the third multi-index compon-
ent as the z axis, all combinations of multi-indices for a �xed z value form an individual slice
image.
To each volume we can further de�ne Regions of Interest which de�ne sub-volumes.

De�nition 1.4.4. A Region of Interest (abbreviated as RoI) is a tuple (o,d) consisting of an origin
o ∈ N3

0 and a dimension d ∈ N3.

Another useful de�nition necessary to de�ne the further processing is the iterable RoI describing
the largest region such that each voxel can be the center point of a cube having a side length of
K voxels along each axis, which we will refer to as mask.

De�nition 1.4.5. Given a volume of dimensions d ∈ N3 and some padding p ∈ N3
0, the iterable

RoI of this volume is given by the Region of Interest
(p,d− 2p) . (1.1)

Note that while p = 0 is permissible, we require that the volumes contain at least one voxel, i.e.,
2p+ 1 ≤ d.

We further want to describe how volumes are processed in a space-e�cient way. In order to
exploit parallelism, we split the volume along its logical z axis and process the sub-volumes in
parallel. In detail, consider a system having NT ∈ N threads available. Then, the volume is split
intoNT RoIs along its logical z axis and all regions are processed in parallel, where in each thread
a function is applied sequentially. In subsequent pseudocode listings we will denote this by the
keyword parfor. Hence, Algorithm 1 describes that two physical volumes of same dimensions
are split up in the same way along their z axes. In parallel, the value ṽ(xα) of the voxel at position
α in the target volume is assigned a new value as computed by some function f depending on the
voxel xα at the same position. Processing every iterable voxel in the volume V further ensures
that every voxel is taken into account.

Algorithm 1: Parallel volume processing.
parfor xα ∈ V do

ṽ(xα)← f(xα)

Additionally, we distinguish between voxelwise and mask-based processing. The �rst method
simply uses the current voxel and disregards any surroudings. For certain applications like

11

1. Background

x

Figure 1.3.: Mask-based processing for K = 3.

thresholding, which we will explain later, this su�ces. However, we speci�cally want to exploit
local environments around each voxel according to De�nition 1.4.6.

De�nition 1.4.6. Let K ∈ 2N + 1 be the environment size which we require to be always
odd since our anchor point is always in the middle of the mask. This induces a padding of
K2 := bK/2c voxels. Let V be the set of voxels according to De�nition 1.4.1.
De�ne the local environment of size K centered on a voxel xα ∈ V by

RK(xα) = {xβ ∈ V | ‖p(xα)− p(xβ)‖∞ ≤ K2}.

Naturally, the induced padding also shrinks the iterable RoI according to De�nition 1.4.5.
Remark 1.4.7. Be aware that in many image processing systems it is common to process each
individual voxel instead of just considering the ones included in the iterable RoI. The missing
information at the boundary is then often assumed to have values of zero, or that the missing
information extends the boundary of the image. We choose to only process the inner voxels as
speci�ed in the framework we implemented our methods in. The values of the target volume
voxels which are not processed are explicitly set to zero.
A visual interpretation of local environments and the iterable Region of Interest is given in
Figure 1.3 in which we �x K = 3. As inferred from De�nition 1.4.6, choosing K = 3 implies
a padding of one voxel. Hence, only for the inner voxels (depicted blue) a local environment of
size K ×K ×K can be fully constructed. Such a region for the �rst iterable voxel is drawn as
red square in the image.
Overall, for parallel processing the volume is split along its z axis with overlap as big as the
padding such that the demonstrated iteration can be applied on each sub-volume.
Since we deal with big voxel datasets, we want to highlight one implementation detail. If the
source as well the target volume �t into main memory as a whole, we apply the simple technique
described above. Otherwise, the voxels of the volumes are streamed from/to disk, i.e., only the
currently processed voxels are loaded in a bu�ered manner. Both ensure that volumes without
size restrictions can be handled in a space-e�cient way.

12

1.5. Challenges

1.5. Challenges

We conclude the current chapter by describing the challenges one faces when segmenting indus-
trial computed tomography data.
First of all, we deal with big voxel volumes in principle. This fact implies two restrictions on
segmentation algorithms, namely locality and e�ciency. Locality describes that any algorithm
needs to work on local environments only (cf. De�nition 1.4.6) as global consideration is not feas-
ible for big volumes. By e�ciency we mean that the asymptotic runtime of segmentation proce-
dures should depend only linearly on the number of voxels in the volume. That runtime might
depend on other factors too, but since the voxel count is typically the dominating factor during
processing, only algorithms linear in it are admissible. For each subsequently introduced tech-
nique we will provide approximate analyses of their asymptotic runtimes as well as the memory
requirements to show their suitability for our purposes.
Additionally, we face the challenge that we want to avoid hand-tuned models as well as keep-
ing the algorithms as general as possible. Thus, our methods are useful for many di�erent ap-
plications and allow for a highly �exible segmentation. The versatility is further enhanced by
introducing an interactive component in our algorithms which allows for using domain expert
knowledge ad hoc. Our solutions further involve several machine learning techniques which
automatically infer properties of local environments and enable a quick training procedure as
well as easy generalization of algorithms.
In Part V we will demonstrate the �exibility of our algorithms by providing qualitative segmentation
results which were generated with the same few algorithms proposed in this thesis. A quantit-
ative evaluation will also be performed on selected volumes which further demonstrates that a
good segmentation performance can be achieved.

13

2. Basic Pre- and Postprocessing

Abstract In any segmentation and also machine learning system, preprocessing and postpro-
cessing is omnipresent and crucial for dealing with noise or for accelerating algorithms.
This chapter introduces basic yet e�cient pre- and postprocessing techniques. It starts by de�n-
ing simple thresholding used to reduce measurement noise. Next, a brief overview over advanced
artifact reduction methods is given. Lastly, two e�cient postprocessing steps are introduced
which allow for further improvement of segmentation results.

2.1. Thresholding

The �rst technique we like to present is thresholding, which is perhaps the most widely used
segmentation method in all of image processing.

De�nition 2.1.1. Let b, f ∈ R≥0 be a background and foreground value, respectively. Given a
threshold θ ∈ R≥0, we de�ne the parametrized thresholding operator

T b,fθ : R≥0 → R≥0

x 7→

{
f, x ≥ θ,
b, x < θ.

We see that given some threshold θ ∈ R≥0, we replace the voxel value by either a foreground
value f or a background value b, depending on the voxel value.
In our applications, we use thresholding two-fold: to reduce measurement noise and to re�ne
segmentation results. The �rst case exploits that in both computed tomography and magnetic
resonance imaging, measurement noise is typically located in a grayscale value range far be-
low material voxel values. Thresholding sets noise voxel values to zero, allowing for skipping
them automatically and thus signi�cantly reducing runtime. The second case is useful if a
segmentation procedure does not simply produce a binary decision but rather yields values in a
discrete or continuous range. Then, thresholding these generated values yields a binary decision
by setting unlikely voxels to zero.
We also want to note that thresholding is easily incorporated in other segmentation methods.
Basically, whenever some method aims to decide if a voxel shall be kept in the result volume it
can �rst check if the voxel value is below a given threshold. If so, the value of the voxel in the
target volume is set to zero and the algorithm skips to the next voxel immediately, thus omitting
probably costly calculations.

For these two common cases, we specialize the above operator further.

De�nition 2.1.2. Given a threshold θ ∈ R≥0, we de�ne the thresholding operator

Tθ : R≥0 → R≥0

Tθ = T 0,x
θ

The operator speci�ed in De�nition 2.1.2 is commonly called hard-thresholding since there is
a noncontinuous jump at the threshold value. There exists a continuous thresholding operator

15

2. Basic Pre- and Postprocessing

where additionally all values above the threshold are shrinked by the same value to eliminate the
jump. A formal de�nition of such a soft-thresholding operator will be provided in Section 8.3.2.

2.2. Advanced Artifact and Noise Reduction

In addition to thresholding, it may be bene�cial to apply additional procedures for reducing noise
or artifacts from scans.
Regarding denoising, [44] gives a good overview over existing noise reduction techniques. These
include simple �lters, wavelet-based methods, statistical and also PDE-based approaches. A
promising method was introduced in [45] which computes a denoised image by a maximum
a posteriori procedure whose parametrization is given by a solution of the Lyapunov equation
used in stability analysis of di�erential equations.
Similar yet di�erent methods focus on artifact reduction. There is a broad variety of artifacts
occuring in tomography due to a lot of physical e�ects taking place, e.g., rings, streaks or beam
hardening, to just name a few. A comprehensive introduction to artifacts in computed tomo-
graphy can be found in [46]. Recent advances to reduce these e�ects include [47] which aims
to solve the mentioned problem using deep learning with convolutional neural networks. Com-
prehensive surveys over related methods can be found in [48] which focusses on sinogram and
special reconstruction methods reducing these unwanted e�ects before or during reconstruction
of the digital model, while another survey in [49] compares several reduction methods to be
applied after reconstruction.
As a small �nal remark we note that although many of the cited technologies look promising,
our applications do not use them due to framework restrictions. Hence, all results presented
later were produced without them. But in general, we would suggest to apply them too, as
segmentation methods certainly bene�t from better input data quality.

We now move on to present postprocessing methods used to improve segmentation results.

2.3. Removing Isolated Voxels

An often occuring phenomenon in our voxelwise segmentation is that individual volume ele-
ments are selected to be in the result, which however do not belong to the desired part at all.
That might happen due to the local environment around such voxels being structurally similar
to the ones of the object to be segmented. Artifacts can cause this too.

De�nition 2.3.1. LetK ∈ 2N+1 be an odd environment size and n ∈ {0, . . . ,K3−1} be some
voxel count threshold. Consider a local environment RK(xα) around a voxel xα in the iterable
region of a volume according to De�nition 1.4.6.
We call xα n-isolated if

{xβ ∈ RK(xα) \{xα} | v(xβ) > 0} < n.

We see that a voxel being isolated depends on a threshold de�ning the minimum number of
neighboring voxels required to have a positive value. This implies a simple postprocessing step
which thresholds isolated voxels away, as given in the following de�nition.

16

2.4. Connected Components Analysis

De�nition 2.3.2. Consider the setting of De�nition 2.3.1 and let n ∈ {0, . . . ,K3−1} be a voxel
count threshold. Then de�ne the isolated voxel removal operator Rn by

Rn : V → V

ṽ(xα) =

{
0, xα is n-isolated,
v(xα) , otherwise.

Using the introduced removal operator, one can implement a removal technique which lets an
expert choose the threshold n interactively as well as the environment size used.

2.4. Connected Components Analysis

Any voxelwise classi�cation procedure proposed in this thesis yields a voxel volume where either
a binary decision or a likelihood value in a discrete range is assigned to each voxel. If we ad-
ditionally want to identify certain components, we mostly aggregate them by a connectedness
criterion, i.e., we apply a connected component labeling algorithm. Multiple di�erent techniques
to do so were proposed in literature, we choose a simple two-pass algorithm similar to the one
introduced in [50] but lifted to the three-dimensional case.
The result is again a volume in which to each voxel there is assigned either zero, the background
value, or a unique index denoting the component the voxel belongs to. Individual components
then can be extracted by simple thresholding on these indices.

2.5. Applying Further Segmentation Algorithms

Lastly, we want to emphasize that when applying interactive segmentation algorithms like we
do, it is almost always bene�cial to combine multiple methods to achieve a good result. Typically,
one �rst applies simple thresholding to reduce measurement noise. Next, we suggest applying
one of our proposed segmentation algorithms followed by one or more postprocessing steps
mentioned before. All steps then can be iterated until the result is satisfactory.
A typical work�ow in our applications is given in Algorithm 2.

Algorithm 2: Typical iterative segmentation work�ow.
V 0 ← preprocess volume V
k ← 0
repeat

k ← k + 1

V k
s ← segment V k−1

V k ← remove isolated voxels from V k
s

until V k is satisfactory
V final ← select connected components from V k

17

References

[1] Fahmi Khalifa et al. “3D Kidney Segmentation from CT Images Using a Level Set Ap-
proach Guided by a Novel Stochastic Speed Function”. In: Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2011. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2011, pp. 587–594.

[2] Piotr Swierczynski et al. “A level-set approach to joint image segmentation and registration
with application to CT lung imaging”. In: Computerized Medical Imaging and Graphics 65
(2018). Advances in Biomedical Image Processing, pp. 58–68.

[3] A Yezzi, Lilla Zollei and T Kapur. “A variational framework for integrating segmentation
and registration through active contours”. In:Medical image analysis 7 (July 2003), pp. 171–
185.

[4] Phan T. H. Truc et al. “A Study on the Feasibility of Active Contours on Automatic CT
Bone Segmentation”. In: Journal of Digital Imaging 23.6 (Dec. 2010), pp. 793–805.

[5] Daniel Cremers, Mikael Rousson and Rachid Deriche. “A Review of Statistical Approaches
to Level Set Segmentation: Integrating Color, Texture, Motion and Shape”. In: International
Journal of Computer Vision 72.2 (Apr. 2007), pp. 195–215.

[6] Lei He et al. “A comparative study of deformable contour methods on medical image
segmentation”. In: Image and Vision Computing 26.2 (2008), pp. 141–163.

[7] Bo Peng, Lei Zhang and David Zhang. “A Survey of Graph Theoretical Approaches to
Image Segmentation”. In: Pattern Recognition 46.3 (2013), pp. 1020–1038.

[8] Xinjian Chen and Lingjiao Pan. “A Survey of Graph Cuts/Graph Search Based Medical
Image Segmentation”. In: IEEE Reviews in Biomedical Engineering 11 (2018), pp. 112–124.

[9] Christian Bauer et al. “Segmentation of interwoven 3d tubular tree structures utilizing
shape priors and graph cuts”. In: Medical Image Analysis 14.2 (2010), pp. 172–184.

[10] Yongyue Zhang, Michael Brady and Stephen Smith. “Segmentation of Brain MR Images
Through a Hidden Markov Random Field Model and the Expectation-Maximization Al-
gorithm”. In: IEEE Transactions on Medical Imaging 20.1 (Jan. 2001), pp. 45–57.

[11] Ivana Išgum et al. “Multi-Atlas-Based Segmentation With Local Decision Fusion - Applic-
ation to Cardiac and Aortic Segmentation in CT Scans”. In: IEEE Transactions on Medical
Imaging 28.7 (July 2009), pp. 1000–1010.

[12] Angel Torrado-Carvajal et al. “Multi-Atlas and Label Fusion Approach for Patient-Speci�c
MRI Based Skull Estimation”. In: Magnetic Resonance in Medicine 75.4 (2016), pp. 1797–
1807.

[13] Torsten Rohl�ng et al. “Quo Vadis, Atlas-Based Segmentation?” In:Handbook of Biomedical
Image Analysis: Volume III: Registration Models. Springer US, 2005, pp. 435–486.

[14] Martin Thoma. A Survey of Semantic Segmentation. 2016. arXiv: 1602.06541.
[15] Bo Zhao et al. “A Survey on Deep Learning-based Fine-grained Object Classi�cation and

Semantic Segmentation”. In: International Journal of Automation and Computing 14.2 (Apr.
2017), pp. 119–135.

[16] Özgün Çiçek et al. “3D U-Net: Learning Dense Volumetric Segmentation from Sparse An-
notation”. In: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016.
Cham: Springer International Publishing, 2016, pp. 424–432.

[17] Wentao Zhu et al. “AnatomyNet: Deep learning for fast and fully automated whole-volume
segmentation of head and neck anatomy”. In: Medical Physics 46.2 (Feb. 2019), pp. 576–589.

18

https://arxiv.org/abs/1602.06541

References

[18] Ahmed Taha et al. “Kid-Net: Convolution Networks for Kidney Vessels Segmentation from
CT-Volumes”. In: Medical Image Computing and Computer Assisted Intervention - MICCAI
2018. Cham: Springer International Publishing, 2018, pp. 463–471.

[19] Abdul Mueed Ha�z and Ghulam Mohiuddin Bhat. “A Survey on Instance Segmentation:
State of the art”. In: International Journal of Multimedia Information Retrieval 9.3 (July
2020), pp. 171–189.

[20] Farhana Sultana, Abu Su�an and Paramartha Dutta. “Evolution of Image Segmentation
using Deep Convolutional Neural Network: A Survey”. In: Knowledge-Based Systems 201-
202 (June 2020), p. 106062.

[21] René Ranftl and Thomas Pock. “A Deep Variational Model for Image Segmentation”. In:
Pattern Recognition. Springer International Publishing, 2014, pp. 107–118.

[22] Markus Unger et al. “TVSeg - Interactive Total Variation Based Image Segmentation”. In:
Proceedings of British Machine Vision Conference (BMVC 2008). Jan. 2008.

[23] Jakob Santner, Thomas Pock and Horst Bischof. “Interactive Multi-Label Segmentation”.
In: Proceedings of the 10th Asian Conference on Computer Vision - Volume Part I. ACCV’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 397–410.

[24] Peter Hastreiter and Thomas Ertl. “Fast and Interactive 3D-Segmentation of Medical Volume
Data”. In: Proc. Image and Multidimensional Digital Signal Processing (IMDSP’98). 1998,
pp. 41–44.

[25] X. Liao et al. “Iteratively-Re�ned Interactive 3D Medical Image Segmentation With Multi-
Agent Reinforcement Learning”. In: 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) (2020), pp. 9391–9399.

[26] Feng Zhao and Xianghua Xie. “Interactive Segmentation of Medical Images: A Survey”. In:
Computer Science Swansea University, Singleton Park Swansea SA2 8PP, UK (2012), pp. 263–
270.

[27] Pavel Iassonov, Thomas Gebrenegus and Markus Tuller. “Segmentation of X-ray computed
tomography images of porous materials: A crucial step for characterization and quantit-
ative analysis of pore structures”. In: Water Resources Research 45 (Sept. 2009).

[28] Patrick Fuchs, Thorben Kröger and Christoph S. Garbe. “Self-supervised Learning for Pore
Detection in CT-Scans of Cast Aluminum Parts”. In: The e-Journal of Nondestructive Testing
24.11 (July 2019).

[29] Avinash Jaiswal et al. “Markov random �eld segmentation for industrial computed tomo-
graphy with metal artefacts”. In: Journal of X-ray science and technology 26.4 (Apr. 2018),
pp. 573–591.

[30] Yuki Doi et al. “3D Segmentation of CT Volumetric Image for Mechanical Assemblies with
Forcible Edge Enhancement”. In: The e-Journal of Nondestructive Testing 25.2 (Feb. 2020).

[31] Nobelprize.org. MLA style: The Nobel Prize in Physics 1901. Online. Accessed on September
10th, 2020.

[32] Wilhelm Conrad Röntgen. “Über eine neue Art von Strahlen”. In: Sitzungsberichte der
Physikalisch-Medizinischen Gesellschaft zu Würzburg 3 (Jan. 1896), pp. 1–22.

[33] Wilhelm Conrad Röntgen. Hand mit Ringen. Online. Courtesy of the Physikalisches Institut
der Universität Würzburg. Dec. 1895. url: https://commons.wikimedia.org/w/index.php?
title=File:Roentgen_first_medical_xray.jpg&redirect=yes.

[34] Wim van Aarle. “Tomographic segmentation and discrete tomography for quantitative
analysis of transmission tomography data”. PhD thesis. University of Antwerp, 2012.

19

https://commons.wikimedia.org/w/index.php?title=File:Roentgen_first_medical_xray.jpg&redirect=yes
https://commons.wikimedia.org/w/index.php?title=File:Roentgen_first_medical_xray.jpg&redirect=yes

[35] Johann Radon. “Über die Bestimmung von Funktionen durch ihre Integralwerte längs
gewisser Mannigfaltigkeiten”. In:Berichte über die Verhandlungen der Königlich-Sächsischen
Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physische Klasse 69 (Apr. 1917),
pp. 262–277.

[36] Avinash C. Kak and Malcolm Slaney. Principles of Computerized Tomographic Imaging.
IEEE Press, 1988.

[37] Alex Gustschin. Translation: About one scheme of tomography. 2020. arXiv: 2004.03750.
[38] Nobelprize.org.MLA style: The Nobel Prize in Physiology orMedicine 1979. Online. Accessed

on September 11th, 2020.
[39] W. H. Oldendorf. “Isolated Flying Spot Detection of Radiodensity Discontinuities - Dis-

playing the Internal Structural Pattern of a Complex Object”. In: IRE Transactions on Bio-
Medical Electronics 8.1 (1961), pp. 68–72.

[40] Laurance D. Hall and Thomas A. Carpenter. “Magnetic resonance imaging: A new window
into industrial processing”. In: Magnetic Resonance Imaging 10.5 (1992), pp. 713–721.

[41] F. J. Dickin et al. “Tomographic imaging of industrial process equipment: techniques and
applications”. In: IEE Proceedings G - Circuits, Devices and Systems 139.1 (1992), pp. 72–82.

[42] Thorsten Buzug. Computed Tomography : From Photon Statistics to Modern Cone-Beam CT.
Jan. 2008, 522 pp.

[43] Frank Natterer. The Mathematics of Computerized Tomography. USA: Society for Industrial
and Applied Mathematics, 2001.

[44] J. Mohan, V. Krishnaveni and Yanhui Guo. “A survey on the magnetic resonance image
denoising methods”. In: Biomedical Signal Processing and Control 9 (2014), pp. 56–69.

[45] João M. Sanches, Jacinto C. Nascimento and Marques Jorge S. “Medical Image Noise Reduc-
tion Using the Sylvester–Lyapunov Equation”. In: IEEE Transactions on Image Processing
17.9 (2008), pp. 1522–1539.

[46] Julia F. Barret and Nicholas Keat. “Artifacts in CT: Recognition and Avoidance”. In: Radio-
Graphics 24.6 (Nov. 2004), pp. 1679–1691.

[47] A. Trbalić et al. “CT Metal Artefacts Reduction Using Convolutional Neural Networks”. In:
2019 42nd International Convention on Information and Communication Technology, Elec-
tronics and Microelectronics (MIPRO). May 2019, pp. 251–255.

[48] Andre Mouton et al. “An experimental survey of metal artefact reduction in computed
tomography”. In: Journal of X-ray science and technology 21.2 (2013), pp. 193–226.

[49] Shrinivas D. Desai and Linganagouda Kulkarni. “Comprehensive Survey on Metal Artifact
Reduction Methods in Computed Tomography Images”. In: International Journal of Rough
Sets and Data Analysis 2 (June 2015), pp. 92–114.

[50] Luigi Di Stefano and Andrea Bulgarelli. “A Simple and E�cient Connected Components
Labeling Algorithm”. In: Proceedings 10th International Conference on Image Analysis and
Processing. 1999, pp. 322–327.

20

https://arxiv.org/abs/2004.03750

Part II.

Describing Local Geometry

21

Geometry, in particular, is a Greek invention, without which
modern science would have been impossible.

Bertrand Russel, A History of Western Philosophy

Table of Contents

3. A Wasserstein Histogram Embedding 25

3.1. Introduction . 25
3.2. Related Work . 26
3.3. Embedding the 2-Wasserstein Distance . 26
3.4. Implementing the Embedding . 29
3.5. Applications and Consequences . 30

4. Describing Local Structure 31

4.1. Local Thresholding . 31
4.2. Histogram Thresholding . 32
4.3. Nongeometric Features . 32
4.4. Geometric Features . 35
4.5. Scaling Feature Vectors . 42
4.6. Automatic Feature Selection . 43

In this part, we describe how local voxel environments can be assessed based on geometric
features. Descriptions of how much a region resembles the introduced geometries will be ag-
gregated in feature vectors which play a fundamental role in later segmentation techniques.
We start by �rst describing a custom histogram embedding which enables us to make use of
the popular Wasserstein distance when comparing feature vectors. The following chapter then
de�nes the features used throughout this thesis which also incorporate our embedding.

3. A Wasserstein Histogram Embedding

Abstract Often, the feature vectors computed from local regions are histograms which can be in-
terpreted as discrete probability distributions. However, comparing histograms by vector norms
is not preferable since they do not consider the positions of the coe�cients, but the latter plays
a fundamental role in probability distributions. The Wasserstein distances, however, allow for
a better comparison. This chapter begins by providing an example where a simple vector norm
comparison fails to distinguish histograms while the Wasserstein distance can. Next, the family
of Wasserstein distances is formally introduced. After that, an embedding used to approximate
the better metric is proposed. Finally, certain approximation qualities as well as e�cient imple-
mentation algorithms are listed.

3.1. Introduction

It is common to compare histograms not by their Euclidean distance but rather using a so called
Wasserstein distance. The family of Wasserstein distances models optimal transport with respect
to some ground distance metric.

H1 = (1,0,0) H2 = (0,1,0) H3 = (0,0,1)

Figure 3.1.: The idea behind Wasserstein histogram comparison.

The basic idea behind them is visualized in Figure 3.1 showing three normalized histograms. As
one can see, a simple comparison of the depicted vectors using the Euclidean distance yields the
same value, i.e., all three histograms have the same distance to each other when considered as
vectors, making them indistinguishable. However, intuitively we would say that the histogram
H1 seems closer to H2 than to H3. That is, because it takes more energy to move the leftmost
column of H1 to the right so it matches H3 than it does to do the same to match H2. The
p-Wasserstein distance Wp, p ≥ 1 helps disambiguating them as it produces Wp(H1,H2) <
Wp(H1,H3). In the following, we will introduce these metrics and provide an embedding for
the case p = 2.
The Wasserstein (or Monge-Kantorovich) distance is a distance function between probability mea-
sures which often gives a natural way of comparison. As motivated, it describes the least work
necessary to transform one measure into the other without losing any mass.
In general, the p-Wasserstein distance Wp(µ, ν) for two probability measures µ, ν ∈ P(X) over
some complete and separable metric space (X , c) endowed with its Borel σ-algebra is de�ned
in [1] by

Wp(µ, ν) =

(
inf

π∈Γ(µ,ν)

∫
X×X

(c(x, y))p dπ(x, y)

)1/p

,

25

3. A Wasserstein Histogram Embedding

where Γ(µ, ν) is the set of all measures on X ×X with marginals µ and ν on its �rst and second
components, respectively. That is, we have the additional constraints that π(A × X) = µ(A)
and π(X ×B) = ν(B) for all Borel sets A,B ⊆ X [1].
Many algorithms in machine learning, most notably Support Vector Machines, act in Euclidean
space and consider histogram features which represent d-dimensional discretizations of prob-
ability measures. In this context, we recapitulate the de�nitions of a cumulative distribution
function associated to a probability measure [2].

De�nition 3.1.1. Let ν be a probability measure on R. The mapping
Fν : R→ [0, 1], x 7→ ν ((−∞, x])

is called the cumulative distribution function (cdf) for ν.
For a probability mass function ν interpreted as a vector ν ∈ Rd, the discrete cdf is de�ned as
Fν(i) =

∑i
j=1 νj , i = 1, . . . , d.

Even in this relatively simple setting, the 1-Wasserstein distance (aka Earth Mover’s distance) is
used primarily because it can be computed e�ciently using

W1(µ, ν) = inf
π∈Γ(µ,ν)

∫
R×R
|x− y| dπ(x, y) =

∫
R
|Fµ(x)− Fν(x)| dx

as shown by Vallander [3].
However, this de�nition uses the `1 ground distance metric, whereas in Euclidean space the
natural distance metric would be the `2 metric which induces the 2-Wasserstein distance. Un-
fortunately, there does not exist such an easy isometric relation in the latter case.
In the subsequent sections, we introduce an embedding for probability measures over R such
that their regular Euclidean distance converges against the 2-Wasserstein distance of the original
measures.

3.2. Related Work

In many scienti�c �elds, e�orts have been made to use the Wasserstein distances, and most
often the Earth Mover’s distance is used as mentioned before and new algorithms or kernels for
existing kernelized methods are provided. Publications involve [4–9], to just cite a few.
Regarding the 2-Wasserstein distance, current scienti�c progress mostly focusses on yet another
machine learning approach to learn such embeddings discussed in [10, 11].
Other publications focus on modi�ed loss functions that involve the 2-Wasserstein distance by
either solving a linear program each time (cf. [12], [13]) or by deriving estimates of it proportional
to the Kullback-Leibler divergence (cf. [14]).
Recently, [15] used a Sliced Wasserstein distance which, similar to this chapter, aims to construct
an embedding and also proves certain properties about derived kernels. However, their embed-
ding uses the Radon transform which seems intractable for large scale applications, and use of
their derived kernels also required a modi�cation of the used frameworks.

3.3. Embedding the 2-Wasserstein Distance

As we focus on embedding the 2-Wasserstein distance W2, we brie�y recapitulate the de�nition
of this distance metric in our setting.

26

3.3. Embedding the 2-Wasserstein Distance

De�nition 3.3.1. Let µ, ν ∈ P(R) be two probability measures and let Γ(µ, ν) denote the set of
measures on R× R having marginals µ and ν on its �rst and second components, respectively.
Then, the squared 2-Wasserstein distance W2 is de�ned by

W 2
2 (µ, ν) = inf

π∈Γ(µ,ν)

∫
R×R
|x− y|2 dπ(x, y).

To de�ne our embedding, we further reintroduce the quantile function (or generalized inverse
distribution function) associated to a distribution function [2].

De�nition 3.3.2 (Quantile function). Let µ be a probability measure with its associated cumu-
lative distribution function Fµ. Then the mapping

F−1
µ : (0, 1)→ R

p 7→ inf {x ∈ R | Fµ(x) ≥ p}
is called the quantile function for µ.

Using these de�nitions, we now de�ne our embedding which also consists of a function approx-
imation by M ∈ N terms. We approximate them using their �rst Fourier coe�cients.

De�nition 3.3.3 (Wasserstein embedding). Let µ ∈ P(R) be a probability measure on R. De�ne
the Wasserstein embedding of dimension M ∈ N as

EM (µ) =
(
〈F−1

µ , ξn〉
)M
n=1

where F−1
µ is the corresponding quantile function and the system

ξ1 = 1,

ξ2n =
√

2 cos(2πn·), n > 0,

ξ2n+1 =
√

2 sin(2πn·), n > 0,

is the classical sine/cosine basis of L2(0, 1).

In other words, the Wasserstein embedding is the Fourier transform of the quantile function.
Our goal is to construct an embedding such that the 2-Wasserstein metric between two distribu-
tions is approached by the `2 distance between their embeddings.
We �rst prove the pointwise convergence.

Theorem 3.3.4. Let µ, ν be probability measures with associated quantile functions F−1
µ and

F−1
ν , respectively. Assume that g := F−1

µ − F−1
ν ∈ L2(0, 1). Let W2(µ, ν) denote the 2-

Wasserstein distance between them. Then
‖EM (µ)− EM (ν)‖2

M→∞−−−−→W2(µ, ν).

Proof. Panaretos and Zemel [1] showed that an isometry into L2(0, 1) using the quantile func-
tions is given by µ 7→ F−1

µ and that the Wasserstein distance can be expressed as

W 2
2 (µ, ν) =

∫ 1

0
|F−1
µ (x)− F−1

ν (x)|2 dx. (3.1)

Let {ξn}n∈N be any orthonormal basis of L2(0, 1). Then we get

‖EM (µ)− EM (ν)‖22 =

M∑
n=1

|〈F−1
µ , ξn〉 − 〈F−1

ν , ξn〉|2 =

M∑
n=1

|〈g, ξn〉|2.

27

3. A Wasserstein Histogram Embedding

As M approaches in�nity, the series converges against the 2-Wasserstein distance since

lim
M→∞

M∑
n=1

|〈g, ξn〉|2 =
∞∑
n=1

|〈g, ξn〉|2 = ‖g‖2 (3.1)
= W 2

2 (µ, ν).

Therefore, pointwise convergence is immediate.

In this very general case, we cannot formulate any statements about the rate of convergence. Let
us now improve this by restricting our assumptions.
To this end, we note that the general approximation error satis�es

EM (g) := ‖g‖2 −
M∑
n=1

|〈g, ξn〉|2 =

∞∑
n=1

|〈g, ξn〉|2 −
M∑
n=1

|〈g, ξn〉|2 =

∞∑
n=M+1

|〈g, ξn〉|2.

In the following, let again g = F−1
µ −F−1

ν denote the di�erence between some quantile functions
speci�ed in the later lemmas. Furthermore, let ‖g‖V be the total variation of such a function g.

Lemma 3.3.5. Let µ, ν be probability measures whose quantile functions are bounded. Then∣∣‖EM (µ)− EM (ν)‖22 −W 2
2 (µ, ν)

∣∣ = O(‖g‖2VM−1).

Proof. Again, we use quantile functions F−1
µ and F−1

ν which are bounded by assumption and
nondecreasing by de�nition and therefore of bounded variation. Thus, their di�erence function
g = F−1

µ − F−1
ν is of bounded variation as well, denoted by ‖g‖V =

∫ 1
0 |g

′(t)|dt <∞ where g′
is the derivative of g in the distributional sense.
It is well-known (see e.g. [16, Theorem 4.12]) that the Fourier coe�cients of a function of bounded
variation satisfy

|〈g,
√

2 cos(2πn·)〉|, |〈g,
√

2 sin(2πn·)〉| ≤
√

2‖g‖V
πn

.

Thus, for the approximation error we have that

EM (g) =
∞∑

n=M+1

|〈g, ξn〉|2 ≤
∞∑

n=M+1

2‖g‖2V
π2n2

=
2‖g‖2V
π2

∞∑
n=M+1

1

n2
≤

2‖g‖2V
π2M

.

We see that for bounded quantile functions the approximation converges linearly. Over any
family of measures with uniformly bounded variation, that convergence is clearly uniform. One
particularly interesting case is the following.

Corollary 3.3.6. Given a family G of probability measures with uniformly bounded quantile
functions, i.e., −∞ < Cmin ≤ F−1

µ (x) ≤ Cmax < +∞ for any µ ∈ G and all x ∈ (0, 1).
Then, for all µ, ν ∈ G

‖EM (µ)− EM (ν)‖2
unif.−−→W2(µ, ν), (M →∞).

Proof. It su�ces to show that for any µ, ν ∈ G the variation of g is uniformly bounded. But
‖g‖V ≤ ‖F−1

µ ‖V + ‖F−1
ν ‖V ≤ 2(Cmax − Cmin),

where Cmax and Cmin is the uniform upper and lower bound, respectively. Here we used the
monotonicity of the quantile functions.

Remark 3.3.7. As Fourier approximations are particularly e�cient for smooth functions, we get
even better rates of convergence over families of measures with smooth quantile functions.

28

3.4. Implementing the Embedding

3.4. Implementing the Embedding

Since the embedding acts on probability distributions, an implementation of it must �rst nor-
malize the input histogram such that its entries sum to one. Furthermore, the approximation
quality depends on the number of approximation terms M ∈ N that are used which we choose
always odd since our chosen basis of L2(0, 1) consists of the constant function 1 and pairs of sine
and cosine functions. If M ≤ d, we compute M ′ = max{M, b1.25 dc} as determined experi-
mentally and keep that number odd, i.e., M = M ′ + 1− (M ′ mod 2). This M is then fed into
Algorithm 3. Another important parameter is the number of quantilesQ used to approximate the
quantile function. Generally, the higher the number of quantiles, the better the approximation
gets, but also the longer the computation of the embedding takes.
Algorithm 3 shows the computation of a histogram embedding given approximation quantities
M and Q for the embedding and quantile function, respectively. In it, the symbol � denotes
elementwise multiplication of two arrays of same length or of each array element with a scalar
value. Furthermore, E[x] denotes the arithmetic mean of all elements in x.
Algorithm 3: Computation of a histogram embedding.
Function EmbedHist(H,M , Q)

Input : A histogramH ∈ Rd≥0

Input : Number of terms M ∈ 2N + 1
Input : Number of quantiles Q ∈ N
Output: An embedded histogram EM (H) ∈ RM
Hn ← normalize(H)
y ← (k/Q)Q−1

k=0

q ← Quantiles (Hn, y)
e← (E[q])
for n← 1 to bM/2c do

a← y � 2πn

e← (e,
√

2 E[q � cos(a)])

e← (e,
√

2 E[q � sin(a)])

EM (H)← e

Function Quantiles(H, S)
Input : A normalized histogramH ∈ Rd≥0

Input : A sequence S of N evenly spaced numbers over the interval [0, 1)
Output: The vector q of estimated quantile values
q ← ()
i← 1
partialSum← H1

for k ← 1 to N do
while true do

if Sk ≤ partialSum or i = d then
q ← (q, i)
break

else
i← i+ 1
partialSum← partialSum +Hi

return q

29

3. A Wasserstein Histogram Embedding

3.5. Applications and Consequences

While the modeling and the experiments show that we can indeed mimic and utilize the 2-
Wasserstein distance in practical applications, we are aware that other applications, for example,
use specialized kernels to do so [15, 17].
However, [15] and [17] use histogram features exclusively, i.e., without any additional features.
In contrast, using this embedding allows to use both unrelated numerical features as well as
histogram features in the same application. So, given a feature vector composed of unrelated
as well as histogram feature values, replacing the histograms by their embeddings inside the
feature vector compares unrelated feature values using the Euclidean distance while histograms
are compared using the 2-Wasserstein distance.
As an example, consider a feature vector of the form

f = (f1, f2, f3, . . . , fd︸ ︷︷ ︸
=:fh

),

where f1, f2 are two unrelated features, while fh is some histogram feature. Conceptually, we
would like to compare two vectors f, g of this form using

(d(f, g))2 = (f1 − g1)2 + (f2 − g2)2 +W 2
2 (fh, gh) (3.2)

Using our embedding, this is possible by embedding the histogram feature to obtain new feature
vectors

f ′ = (f1, f2,

=EM (fh)︷ ︸︸ ︷
f ′3, . . . , f

′
M+2),

g′ = (g1, g2, g
′
3, . . . , g

′
M+2︸ ︷︷ ︸

=EM (gh)

).

The desired comparison in (3.2) is now achieved by ‖f ′ − g′‖22. This again symbolizes that the
resulting distance function is just the regular Euclidean norm which is natively used by many
classi�ers.
Especially with regard to the fact that the presented embedding is intended to be used in machine
learning applications, we want to stress that often a su�cient number of training data instances
might render the bene�ts introduced void. In such a case, the results will not be improved but the
runtime increases. However, numerical experiments hint that the performance is only a�ected
slightly. But, we conjecture that the better comparability induced by using the Wasserstein dis-
tance embedding enables us to achieve a good segmentation with relatively few seed voxels.

30

4. Describing Local Structure

Abstract All techniques introduced in subsequent chapters have the same foundation, namely
that they use features based on local voxel environments. Currently, the majority of related
applications rely entirely on voxel region descriptors derived from the distribution of grayscale
values in it, with few approaches additionally considering geometry (cf. [18]) or texture (cf. [19]).
The latter methods are limited in the sense that they either �x the environment size or involve
costly operations slowing the overall segmentation down.
This chapter will improve upon this by �rst introducing means to make descriptors more robust
against measurement noise, especially if histograms are produced. This is followed by a set
of features which either enhance existing or introduce new ones, both explicitly considering
nongeometric and geometric indicators. For each presented feature it will be discussed if its
result shall be embedded using the Wasserstein embedding introduced in the preceding chapter.
Finally, a feature selection method is given for keeping relevant features while simultaneously
reducing the computational e�ort.
We further make use of the following notation.

De�nition 4.0.1. LetRK(xα) be a local environment of dimensionsK×K×K around a voxel
xα in the iterable region of a volume according to De�nition 1.4.6.
We denote by VK(x) the collection of all voxel values in the environment around the voxel, i.e.,
VK(xα) = {v(xβ) | xβ ∈ RK(xα)}, where multiple values are admissible too.

4.1. Local Thresholding

In order to improve the noise robustness of the features introduced subsequently, we apply a
simple and fast thresholding on the local environment. For the threshold, we choose the mean
of the grayscale values in the region.

De�nition 4.1.1. Let RK(xα) be any local environment around some voxel xα in a volume’s
iterable region. Let VK(xα) be the set of grayscale values in that region.
Then local thresholding yields a new environment R′K(xα) around the same voxel xα with the
new voxel values

V ′K(xα) = {Tµ(v) | v ∈ VK(xα)} ,
where µ = E[VK(xα)] denotes the mean over all voxel values in the region and Tµ is the hard-
thresholding operator according to De�nition 2.1.2. Again, multiple values are admissible here.

The reason we use the mean of the voxel values instead of their median is that if the majority
of the voxel values belong to material voxels the median would indicate the same. Hence, the
local thresholding would clear the entire region without recognizing material. Although this
is a very simple heuristic, experiments showed that the robustness of features against noise is
considerably improved, especially in combination with occasional thresholding later on. Thus,
before the computation of any of the following features, we perform such a local thresholding
and obtain a new local region. For e�ciency, we also record for a given region if it is completely
homogenous for which we can in many cases compute default values for features and save costly
operations.

31

4. Describing Local Structure

4.2. Histogram Thresholding

A phenomenon occuring often during the generation of histograms as feature vectors is that
noisy input contributes to it in form of individual bins with a small number of elements. We
compensate this by additionally thresholding the histogram values but still redistributing the
thresholded “mass” equally among the other bins, thus the sum over all histogram entries remains
the same.

De�nition 4.2.1. Let H ∈ Rd≥0 be some d-dimensional histogram and let θ ≥ 0 be some
threshold. First, we compute the thresholding Ht = (Tθ(Hk))dk=1. The lost mass is given by
m = ‖H −Ht‖1 and de�ne nt :=

∑d
k=1 1(Htk > 0).

The histogram thresholding then computes a new histogram

H′k =

{
0, Hk < θ,

Hk +m/nt, otherwise,
k = 1, . . . , d.

Empirically, we determined the median of the histogram values to be a good threshold, although
other thresholds like the 25 percent quantile may be valid application-dependent choices too.
Thus, all bins whose values are strictly lower than the median are emptied, while the mass lost
due to the thresholding is redistributed equally across all remaining bins. Consequently, bins
which are only slightly �lled as is likely in noisy context are cleared while the overall mass is
kept.
The following sections will introduce and generalize features both describing geometric and
nongeometric features of local three-dimensional regions. In practical applications we turn indi-
vidual features on and o�, depending on the dataset. For instance, in most computed tomography
segmentation problems we apply the subsequently described grayscale and orientation features.
On the other hand, in especially di�cult cases additionally the position of the center voxel might
become important.

4.3. Nongeometric Features

The grayscale values in a region are certainly the most important features. Hence, we employ
a set of nongeometric features based on them. They do not consider geometry, which we will
complete later.

4.3.1. Position

The �rst feature we consider is the position of the center voxel.

De�nition 4.3.1. For a local environment RK(xα) around a voxel xα, the position feature is
de�ned as p(xα).

Alternatively, the barycenter might be a �tting choice for the position too. Naturally, the posi-
tion of the center voxel is useful for segmenting an individual object. In general, however, note
that when segmenting multiple components one either has to provide enough seed voxels in all
components or refrain from that feature. We also want to mention that the position does not
generalize well, i.e., a model trained with the position feature can be applied on unseen voxel
data only in rare cases. A previous registration might help here, but we do not cover that.

32

4.3. Nongeometric Features

4.3.2. Statistical moments

The probably most used features in current segmentation systems are descriptors calculated from
the grayscale value distribution, especially its �rst standardized statistical moments.
We choose the �rst four such moments as each of them has a clear interpretation regarding the
shape of the distribution.

De�nition 4.3.2. Consider the setting of De�nition 4.1.1 and let W := VK(xα) be the voxel
values in a region which has a cardinality of N := K3.
The �rst four (standardized) statistical moments µ, σ, s and k are given by

µ = N−1
∑
v∈W

v,

σ2 = N−1
∑
v∈W

(v − µ)2 ,

s = N−1
∑
v∈W

(
v − µ
σ

)3

,

k = −3 +N−1
∑
v∈W

(
v − µ
σ

)4

.

In the given de�nition, µ is the mean value of the voxel values and σ is the contained standard
deviation. The other metrics are the skewness s and the (excess) kurtosis k. For maximum
e�ciency, all four values are estimated in a single pass using the algorithm presented in [20].
This algorithm is composed of certain addition formulas known to provide a numerically stable
estimation of the above four moments.

4.3.3. Local Binary Pa�ern

The �nal nongeometric feature we propose is an extension of the established uniform local binary
pattern (LBP), which aims to capture local structure by encoding it in a bit string. To handle
di�erent environment sizes, which implies a huge growth in the number of voxels, we decided
to implement a simple variant of the LBP feature, the LBP/TOP (local binary pattern for three
orthogonal planes). But �rst, we reintroduce the classical LBP descriptor on two-dimensional
images as described in [21].

De�nition 4.3.3. Consider a square two-dimensional image of odd side length and some pixel
c in it having a grayscale value of c ∈ R≥0. Further let P ∈ N and R > 0 be the parameters of
the LBP descriptors denoting a number of points and a radius, respectively.
Then, we �rst calculate P coordinates of points sampling a circle of radius R around c
equidistantly. Let t ∈ RP≥0 be the bilinearly interpolated pixel values at the computed points.
Next, we derive a texture vector T = (1(tk ≥ c))Pk=1 and count the number of texture changes

nc =
P−1∑
k=1

|Tk − Tk+1| .

Finally, the local binary pattern around the pixel c is given by

LBP =

{
‖T‖1, nc ≤ 2,

P + 1, otherwise.

A graphical representation of how texture vectors are obtained is given in Figure 4.1. The in-
terpolation of values on points on a circle is shown on the bottom half of the picture, while the

33

4. Describing Local Structure

Figure 4.1.: Obtaining texture vectors in LBP [22].

top half shows conceptually how a texture vector is obtained. The �nal reduction to a decimal
value completes the general LBP feature, that last step is replaced by the last summation step
in De�nition 4.3.3. In general, the local binary pattern captures the texture of a local environ-
ment in a bit string or texture vector and collapses it into a real number just as above. In our
industrial use case, we notice that very often components are homogenous, e.g., is of the form
11111111, 00000000, or else consists of at most two 0-1 changes, e.g., 00111000. Special treatment
for these often occuring cases is done by using the uniform LBP described in De�nition 4.3.3
which improves the performance and obtains some kind of rotation invariance [22].
As hinted, for three-dimensional local regions we compute the LBP/TOP descriptor according to
the following de�nition.

De�nition 4.3.4. Let RK(xα) be any local region of size K according to De�nition 1.4.6
centered around some voxel xα. First, we compute the three orthogonal planes as projection
images S(a), i.e., for all i, j = 1, . . . ,K we have

S
(a)
i,j =

K∑
k=1

v
(
xβ(k)

)
, β(k) =

k i i
i k j
j j k

 ea, k = 1, . . . ,K,

for each axis a ∈ {1, 2, 3}. Then, for every axis we proceed as follows:

1. Compute the projection S(a) along the current axis.

2. Choose P points on a circle of radius R around a pixel on the projection. Compute the
classical LBP descriptor value for each pixel in S(a) except the boundary of width R. Ex-
perimentally, we set R = 1 and P = 4.

3. Generate a histogramHa of generated values having P + 1 bins.

The �nal descriptor is given by the concatenation (H1,H2,H3).

Although the constructed feature vector consists of three histograms, we do not embed them for
Wasserstein comparability, since there is no known meaningful measure of similarity between
texture vectors.

34

4.4. Geometric Features

4.4. Geometric Features

Up to now, we described simple descriptors based solely on voxel values. In the current section,
we will instead introduce new features representing geometry, i.e., compute vectors showing
how similar a local environment is to some geometric primitive.
The geometries considered here will cover the following questions:

• How linear or planar is the current region?

• How curved is the locally considered surface?

• What overall shape has the environment?

• How is the region oriented?

The following sections will list the de�nitions of our constructed features and also explain de-
fault feature values in ambiguous or trivial cases. Additionally, we discuss whether computed
histograms shall be embedded for Wasserstein comparability according to De�nition 3.3.3.

4.4.1. SVD-Based Features

To answer the question about linearity or planarity of local regions, a set of descriptors �ts prim-
itives like lines and planes to the nonzero voxels in the current region (after local thresholding).
We �rst calculate the local orientation which is implicitly encoded in a Singular Value Decom-
position (SVD) over the position vectors of the voxels having a nonzero grayscale value in the
current region. This orientation serves as a feature descriptor on its own.

De�nition 4.4.1. Consider a local environmentRK(xα) around some voxel xα in the volume’s
iterable region, consisting of M ∈ N nonzero voxels after local thresholding.
Construct a matrix C ∈ N3×M

0 containing the positions of these voxels relative to the environ-
ment’s origin columnwise. Next, compute a centered coordinate matrix

C ′ = C − µ1T ,

where µ = M−1C1 ∈ R3 is the vector containing the rowwise means.
The SVD feature consist of the three singular values of C ′.

Default values. If the region is completely homogenous or less than three voxels are nonzero
after local thresholding, there is no detectable dominant direction in that environment. Thus, the
local orientation descriptor will become the vector 1 then, indicating a fully isotropic region.
For the mentioned primitives we �t them through the center of the current region and derive
descriptors based on distances to them. In both cases, the maximum possible distance of any voxel
in the cubical region to either a line or a plane through the center voxel is dmax =

√
3bK/2c.

Next, we use the matrix U ∈ R3×3 from the Singular Value Decomposition C ′ = UΣV T

computed as in De�nition 4.4.1. Denote by xα the center voxel of the current region.
We know that the least squares error �t line is given by the center voxel point and the vector u1

pointing in the direction of the �t line, while the least squares error �t plane is modeled using the
center voxel and the column vector u3 which is orthonormal to the �t plane. Additionally, we
need an o�set point lying on the line or plane, respectively, for which we choose explicitly the
center voxel xα. Typically, one would choose the center of gravity, however, this implies that
computed characteristics cannot distinguish between planes or lines passing through the center
voxel or the border voxels of the local region. Therefore, we choose a �xed location.

35

4. Describing Local Structure

Overall, let L = L(u1, p(xα)) be the �tted line and let P = P (u3, p(xα)) be the �tted plane.
Then, denote by DL, DP the collections of distances to the �t primitives [23] computed by

dL : N3
0 → R, v 7→ ‖(v − p(xα))× u1‖2,

dP : N3
0 → R, v 7→ |〈v − p(xα) ,u3〉| .

From these we compute the descriptors describing linearity and planarity.

De�nition 4.4.2. First, we construct histograms HL,HP from DL and DP . Both histograms
haveK bins as chosen experimentally and are thresholded as in De�nition 4.2.1. Then, we embed
these histograms as speci�ed in De�nition 3.3.3, we denote them byH′L andH′P .
Moreover, we compute characteristics

fp1 = exp (−E[Dp]) and fp2 =
maxd∈Dp d−mind∈Dp d+ 1

2dmax

for both features p ∈ {L,P}.
In case of p = L, these two values represent the linearity, i.e., how much the current region
resembles a straight line, and also the diameter, i.e., the maximum diameter a �t cylinder has.
In case of p = P , they represent the planarity and width of the environment instead.
The overall descriptor vector is given through(

fp1 , f
p
2 ,H

′
p

)
∈ R2+K

for p ∈ {L,P}.

Again, we have to de�ne default values covering ambiguous cases like completely homogenous
regions or when less than three voxels have remain nonzero after local thresholding.
Default values. Considering the default characteristics, we choose fp1 = fp2 = 0, p ∈ {L,P}.
Setting them zero indicates completely homogenous regions, i.e., maximally nonlinear and non-
planar. Regarding the histogram features, on default uniform histograms are returned, i.e., his-
tograms where all bins are equally �lled. They are further normalized and embedded.
Concerning the computed characteristics representing the planarity/linearity and width as stated
in De�nition 4.4.2, we used these feature values to colorize each voxel of an idealized test dataset
consisting of a few shapes, including a �lled sphere, a �lled cube and two intersecting planes,
of the same intensity value. Concretely, for each iterable voxel in that volume we computed
the mentioned characteristics in a local environment and assigned the result to the voxel, where
we scaled the values to the grayscale value range for visualization purposes. The results are
depicted in Figure 4.2, where in all images brighter values represent higher feature values after
scaling. Regarding a local plane �t, the planes are well identi�ed by the planarity where the
feature values are close to one, while on nonplanar regions they are signi�cantly smaller. The
width also represents the planes as thin objects locally while isotropic regions are identi�ed as
being thick. A similar yet less prominent e�ect can be observed considering a local line �t, where
edges are marked stronger than �at or isotropic regions.
By careful inspection of di�erent histograms generated described above we notice that the pos-
sible histogram shapes transform continuously from a peak at the �rst bin, if the voxels form a
perfect plane, to an exponential-like curve as the voxel region gets �lled up. Thus, the current
features follow the trend depicted in Figure 4.3a. Hence, a better comparison is achieved if the
histograms are compared by a Wasserstein distance than with the usual Euclidean metric. Thus,
we embed the histograms according to De�nition 3.3.3.

36

4.4. Geometric Features

(a) Planarity fP1 (b) Width fP2

(c) Linearity fL1 (d) Width fL2

Figure 4.2.: Ideal data colorized with plane and line �t characteristics.

 0 dmax

ideal shape

semi filled
environment

fully filled
environment

 0 dmax

 0 dmax

(a) Typical distance histograms.

U

0

-π/2

_

π/2 -π/2 0 π/2

-π/2 0 π/2

-π/2 0 π/2

(b) Typical curvature histograms.

Figure 4.3.: Typical geometrical feature histograms.

37

4. Describing Local Structure

4.4.2. Curvature Features

As mentioned before, one major question is how curvature can be estimated in local envir-
onments. Typically, one would aim for extracting a surface in the local region and estimate
the curvature on it. However, this would require another optimization algorithm or at least a
threshold. The �rst approach is typically not tractable for large-scale applications while such
thresholds would have to be adapted for each local region. To estimate the local curvature fast
and without the need for additional algorithms, we propose the use of a variant of Yoshida’s
estimation [18, Part IV.A].
In their approach, they consider an iso surface speci�ed by a function over the coordinates and
some surface extraction threshold in a small neighborhood around each voxel. Next, they form-
ally derive explicit expressions for the �rst and second fundamental forms which do not contain
this threshold anymore, but rather rely on discrete gradient information. From this, the principal
curvatures can be estimated, from which the curvature feature is extracted in turn.
As a small addition to Yoshida’s approach, we added some additional error handling:
If the squared mean curvature H2 is smaller than the Gaussian curvature K , the proposed com-
putations would issue a domain error since the term

√
H2 −K would not be well-de�ned. Fur-

thermore, if the di�erence of the principal curvatures is close to zero, the curvature estimation
would not be well-de�ned too. In both cases, this is due to an ambiguity where the current voxel
either lies on a plane or on a saddle point surface. In these cases, we de�ne them to have zero
curvature, and hence the scaling in Yoshida’s paper produces a default value of π/2.
This consideration is for very small environments around each voxel only. To make this feature
applicable for bigger environment sizes too, we basically record the curvatures on each voxel
inside our region.

De�nition 4.4.3. Let RK(xα) be a local environment around some voxel xα in the iterable
region of a volume. For each voxel in the iterable region of RK(xα) (considering a padding of
one voxel on each side), the curvature is estimated on each 3 × 3 × 3 environment around it
and recorded in a histogram Hc whose values range from 0 to π. The feature consists of the
histogram after normalization, thresholding and embedding according to De�nition 3.3.3.

For the number of bins during histogram creation we choose �ve bins experimentally.
As stated, we also embed the histogram of curvatures for Wasserstein comparability. A justi�c-
ation is given as a shape in form of

⋃
creates a histogram resembling a descending exponential

curve while the opposite shape
⋂

describes its ascending counterpart. In ambiguous cases, e.g.,
considering planes, the histogram is a peak at the middle curvature π/2. Intermediate shapes
form a continuous transformation of histograms. That trend is visualized in Figure 4.3b which
shows the histograms associated to the border cases and in between them depending on the cal-
culated curvatures before shifting the values by π/2. Hence, we suppose that the Wasserstein
distance is the preferred comparison metric here which was supported by numerical experiments.
Default values. In case of a completely homogenous region, we return a histogram containing
exactly one entry at the π/2 bin, assimilating all ambiguous cases.

4.4.3. Distance Histogram Feature

Having discussed linearity and curvedness of local regions, we now aim to describe the overall
shape. To accomplish that, we consider the distances of all nonzero voxels to the center point of
the region after local thresholding. All distances then are accumulated in a histogram.

38

4.4. Geometric Features

De�nition 4.4.4. Let RK(xα) be some local environment centered around some voxel xα in
the iterable Region of Interest of a volume.
Then, we compute the distances of each nonzero voxel to the center voxel, i.e., ‖p(xβ)−p(xα)‖2
for all xβ ∈ RK(xα) \{xα} for which v(xβ) > 0. All these distances are arranged in a his-
togram, which is further normalized, thresholded and embedded for Wasserstein comparability
according to De�nition 3.3.3.

The number of bins was empirically determined as round(2.4K − 2.2) where K is the size of
the local environment. This rule was found by simulating environments and estimating the
optimal bin counts by a Freedman-Diaconis estimator [24], after which linear regression over
the predicted counts was done. Furthermore, the distance values range from zero to

√
3bK/2c,

de�ning the value range of the histogram.
Default values. In case of a completely homogenous region, all voxels have a value of zero after
local thresholding. Then, we compute the descriptor as if each voxel has a nonzero value instead.
Another popular realization of a shape describing feature is a histogram of pairwise distances.
However, we explicitly choose the distances to the center voxel instead as both descriptors share
the same expressiveness but only the latter is of linear runtime with regard to the environment
size. Considering pairwise distances would introduce a quadratic runtime factor instead.

4.4.4. Texture and Orientation Features

After discussing the similarity of local environments to geometric primitives like lines, planes or
curved surfaces, we are now going to deal with the texture of local environments.
Such a texture or orientation is inherently encoded by the grayscale values. However, contrary
to the plain statistical moments discussed earlier, texture usually possesses more discriminative
power. The presented features will cover both textures as found in the spatial domain as well as in
the Fourier domain. Both features make use of an inertia tensor which is a concise representation
of mass orientation in a matrix. In physical considerations, it typically uses a mass distribution
to encode inertia, where the eigenvectors of this matrix represent the axis of inertia, i.e., the
dominant inertia direction.
In the Fourier domain, we want to characterize local texture by the Fourier domain shape. Hence,
we compute a Fourier transform of the local region, followed by a construction of an inertia
tensor IF ∈ R3×3. In the following, let J (i) := {1, 2, 3}\{i}.

De�nition 4.4.5. Let R := RK(xα) be a local environment around some voxel xα. Addition-
ally, denote by F the three-dimensional Fourier transform of that environment, from which we
compute the spectral energy E = |F|2 componentwise, i.e., E ⊂ RK×K×K .
The Fourier inertia tensor as proposed by Bhalerao and Wilson [19] is given by

IFi,i =
∑
xβ∈R

 ∑
j∈J (i)

β2
j

Eβ, i = 1, 2, 3,

IFi,j = IFj,i = −
∑
xβ∈R

βi βj Eβ, i, j = 1, 2, 3, i 6= j,

where Eβ is the value of the spectral energy at position β.

To avoid the very costly Fourier transform to be evaluated at each voxel region, we aim to com-
pute equivalent features in the spatial domain, as proposed by Jähne.

39

4. Describing Local Structure

(a) Linearity fl (b) Planarity fp (c) Isotropy fs

Figure 4.4.: Ideal data colorized with orientation features.

De�nition 4.4.6. Given a local three-dimensional region of size N := K × K × K , compute
the three partial derivatives Gx, Gy, Gz ∈ RN along each axis, yielding

G1 = Gx, G2 = Gy, G3 = Gz.

The inertia tensor is set up as proposed by Jähne [25, Eq. 8.11]:

IOi,i =
∑
j∈J (i)

‖Gj‖22, i = 1, 2, 3,

IOi,j = IOj,i = −〈Gi, Gj〉, i, j = 1, 2, 3, i 6= j.

For both kinds of features, we use the constructed inertia tensor to calculate the feature values.

De�nition 4.4.7. Let IF and IO ∈ R3×3 be as de�ned in De�nition 4.4.5 and 4.4.6, respectively.
All these tensors are symmetric real matrices, thus they have three real eigenvalues

λ1 ≥ λ2 ≥ λ3 ≥ 0.

The resulting feature values are given by

fl =
λ1 − λ2

λ1
, fp =

λ2 − λ3

λ1
, fs =

λ3

λ1
,

which together form the descriptor vector (fl, fp, fs).

Geometrically, fl represents the linearity which is high if one direction dominates the other two.
fp denotes the planarity, which increases as two directions dominate the third one and �nally fs
can be interpreted as isotropy which assumes a high value if no direction is dominant. Note that
these values form probabilities and must sum to one, i.e., fl + fp + fs = 1.
Default values. For completely homogeneous or empty regions, we return fl = fp = fs = 0. In
the Fourier domain, this setting identi�es a single in�nitesimal point, disambiguating this from
almost completely isotropic regions.
Similar to the description of local plane or line �t features we also colorized the same idealized
dataset with the descriptor values introduced in De�nition 4.4.7. The results are depicted in
Figure 4.4. We see that the features keep their respective structure well. Especially interesting is
the isotropy feature which identi�es very homogenous regions, e.g., the inside of the sphere but
also the corners of the �lled cube.

4.4.5. Spherical HOG Features

In literature, the Histogram of Oriented Gradients (HOG) feature captures local orientation by
computing gradients and estimating three-dimensional orientations. These are added to a two-
dimensional histogram binning the azimuthal and elevation angles. The histogram entries are

40

4.4. Geometric Features

Figure 4.5.: Spherical histogram in our setting.

incremented by the intensity, i.e., the Euclidean norm, of the gradient. Conceptually, all possible
orientations form a sphere in 3D space. But a naive equidistant binning of that space would result
in “small” bins, i.e., that some bins correspond to very few angles and some encompass a large
variety of orientations. To avoid that, we instead partition the sphere formed by the orientations
such that each surface patch has the same area. Hence, we consider an equidistant partitioning
over the elevation angles into nϕ sectors, and further each sector is divided into nψ parts such
that the area of each surface patch on the sphere covered by a bin is equal to any other one.
Speci�cally, we suppose that a partitioning into two pole regions, an equator and two interme-
diate zones su�ces, hence we consider �ve elevation sectors only. We apply the same scheme
to both the western and eastern hemisphere. However, for both pole regions we use only four
bins on each as these regions are smaller. The remaining 42 bins are distributed evenly over the
middle three horizontal sectors, thus each one is split into 14 bins. This partitioning is depic-
ted in Figure 4.5. Using the concept of spherical histograms, we can de�ne a three-dimensional
Histogram of Oriented Gradients descriptor as follows.

De�nition 4.4.8. Given a local three-dimensional region of sizeN := K×K×K , compute the
three partial derivatives Gx, Gy, Gz ∈ RN along each axis. Next, we compute the orientation
from each element gj = (gj,x, gj,y, gj,z) = (Gx,j , Gy,j , Gz,j) ∈ R3, j = 1, . . . , N , by

ϕj = tan−1

(
gj,z
gj,x

)
,

ψj = sin−1

(
gj,y
‖gj‖2

)
.

A two-dimensional histogram is formed where the bins are identi�ed by the angles computed
above and incremented by the gradient magnitude if they are relevant.
The HOG descriptor for the local region then is given by the normalized and linearized histogram.

Regarding the bin increment, given some element gj , j = 1, . . . , N , the value of the bin at posi-
tion (ϕj , ψj) is increased by ‖gj‖2. The increment is done only if the element is relevant, i.e., if
‖gj‖2 > ε where we choose ε = 10−5.

41

4. Describing Local Structure

We want to note that we do not embed a HOG histogram to be Wasserstein comparable as it
is unclear if the Wasserstein distance actually improves comparability in this two-dimensional
case.

4.5. Scaling Feature Vectors

For many classi�cation systems which compute distances in an Euclidean space, feature scaling
is very important. If some feature value has a wide range of values, i.e., a high variance in its
values, while others are concentrated around some value, the �rst one will dominate the distance
calculated. Consequently, the other features does not participate much to the distance and thus
not for the classi�cation.
Therefore, feature scaling aims to transform feature values such that the generated values do not
dominate other features just because of a bigger variance. In many applications, feature vectors
are standardized elementwise, i.e., each component is transformed to have zero mean and unit
variance which is commonly called z-score [26].
Given a set of training data feature vectors {t1, t2, . . . , tM} ⊂ Rd, one �rst estimates the mean
and standard deviation from them via

µk =
1

M

M∑
j=1

tjk, σ2
k =

1

M

M∑
j=1

(tjk − µk)
2, k = 1, . . . , d.

Typically, a feature vector f ∈ Rd is transformed into a vector g ∈ Rd by

gk =
fk − µk
σk

, k = 1, . . . , d.

The mentioned dominating behavior occurs frequently if the computed feature values are of
di�erent scales, like for di�erent statistical moments combined with grayscale values. But in
other cases, e.g., when using histogram features, the feature values actually have the same value
range and elementwise scaling might even decrease the discriminative power of histograms. In
order to use both unrelated feature values and histograms in a classi�er, we propose the following
feature scaling scheme.

De�nition 4.5.1. Let {t1, t2, . . . , tM} ⊂ Rd be a set of training feature vectors.
Consider an index function which maps a vector component index k = 1, . . . , d to a tuple of
component indices (sk, s

′
k) that shall be scaled together, where sk ≤ s′k. Hence, in total N :=

M(s′k − sk + 1) elements are scaled at once.
Then, compute the means and standard deviations via

µk = N−1
M∑
`=1

s′k∑
j=sk

t`j , σ2
k = N−1

M∑
`=1

s′k∑
j=sk

(t`j − µk)2,

for k ∈ {1, . . . , d}. Then, a feature vector f ∈ Rd is scaled by fk 7→ (fk−µk)/σk, k = 1, . . . , d.

To clarify the above de�nition and the role of the index function, we give a small example.

42

4.6. Automatic Feature Selection

Example 4.5.2. Consider the above setting and assume that the feature vectors contain three
independent features and one histogram, e.g., they are of shape

f = (f1, f2, f
h
3 , . . . , f

h
d−1, fd),

where the superscript h denotes that these marked values form a histogram and shall be scaled
together. The corresponding index function then is de�ned as

i(k) =

(1, 1), k = 1,

(2, 2), k = 2,

(3, d− 1), k = 3, . . . , d− 1,

(d, d), k = d.

Given this, let N := M(d− 3) and then we estimate the means and standard deviations by

µj = M−1
M∑
`=1

t`j , j = 1, 2, d, µ3 = . . . = µd−1 = N−1
M∑
`=1

d−1∑
j=3

t`j ,

σ2
j = M−1

M∑
`=1

(t`j − µj)2, j = 1, 2, d, σ2
3 = . . . = σ2

d−1 = N−1
M∑
`=1

d−1∑
j=3

(t`j − µ3)2.

We see that all feature vector components belonging to the histogram are scaled with the same
mean and standard deviation instead of one for each component.

4.6. Automatic Feature Selection

When we combine multiple geometric features that produce histograms, the resulting feature
vectors potentially get very large. But high-dimensional vectors increase the computational bur-
den and they might also impede the segmentation performance of classi�ers if they are likely
to su�er from the curse of dimensionality. Another important point is that if local regions do
not resemble certain geometric primitives at all, the constructed histograms sometimes are the
same for di�erent classes too, thus there is redundancy which elongates feature vectors but has
no discriminative power. Conventionally, one uses dimensionality reduction to cope with these
problems, e.g., using a Principal Component Analysis (PCA), which takes feature vectors and cre-
ates new ones from them containing only the relevant parts. Of such techniques, PCA is arguably
the most-used technique in many mathematical �elds with its basic idea dating back to 1901 [27]
and its formal derivation given in [28]. To put it brie�y, PCA determines a best-�t ellipsoid to
the dataset where the orientation of it correlates to the variance of the individual feature vector
components. Hence, the component having the biggest variance will become the �rst principal
component. Thus, the least important feature values will reside in the last principal components.
For dimensionality reduction, one typically computes a PCA in form of a transformation matrix
and further truncates that matrix, i.e., produces a matrix which projects feature vectors onto a
PCA subspace of lower dimension. However, a disadvantage using dimensionality reduction with
PCA is that we still have to compute all feature values which are reduced afterwards. Instead,
we perform feature selection to estimate the most important features and during segmentation
we only compute the necessary features, thus reducing the computational e�ort.
The computation of the relevant features follows the approach introduced in [29]. Their method
starts similar to one popular variant of computing a PCA by �rst calculating the sample covari-
ance matrix of the feature matrix. Let F ∈ RM×d be the matrix containing one d-dimensional
feature vector rowwise for each of the M training voxels and let µ = M−1FT1 ∈ Rd be the
columnwise means ofF . Each feature vector is comprised of all geometric feature vectors. Next,

43

4. Describing Local Structure

we compute the covariance matrix by
Σ = (M − 1)−1(F − 1µT)T (F − 1µT),

which is of dimensionality d×d. In practice, the dimensionality d is far smaller than the number
M of seed voxels, and hence Σ is relatively small in size which is further independent ofM . That
matrix has d nonnegative real eigenvalues λk and associated eigenvectors wk, k = 1, . . . , d.
In [29], the authors state that the in�uence of the feature value at index j = 1, . . . , d on the
dimensionality reduction result corresponds to the j-th coe�cient of the eigenvectors. Hence,
letw1, . . . ,ws be the eigenvectors associated to the s largest eigenvalues of Σ, where s de�nes
how many features we want to select. Next, we calculate the contribution of the j-th feature
component by cj =

∑s
k=1 |wk,j | wherewk,j denotes the j-th coe�cient of the vectorwk. That

process is repeated for all j = 1, . . . , d. The computed contributions are sorted in descending
order and the ordering is recorded in another ordering o, e.g., if the l-th feature component has
the biggest in�uence on the selection result, then we obtain o1 = l. The selection then consists
of the s feature components highest ranked on the computed order.
As in our application the order of the features computed is �xed, we are able to calculate the
actual feature selection. On a technical note, we note that if a feature produces multiple values
(cf. histogram features) and at least one component is to be selected, we select that feature.
Consequently, although the procedure selects only few features, the remaining feature vector
length can and often will be bigger than the number of requested features s.

4.6.1. Runtime and memory complexity

LetM denote the number of voxels used for feature selection as above. Furthermore, let d be the
maximum possible feature vector size, i.e., its size when all geometric features are selected.
First, the presented procedure computes the eigenvalues and eigenvectors of the covariance mat-
rix computed from the feature matrix, which is a symmetric real matrix of dimensions d×d. The
needed runtime for computing the covariance matrix is of order O(d2M). On the other hand,
the solver used for the computation of the eigenvalues and eigenvectors implements Algorithm
8.3.3 described in [30, p.463] and hence has a runtime complexity of O(d3). Note that since d is
constant a priori and independent of M , the runtime e�ectively reduces toO(M). Secondly, the
computed eigenvalues and associated feature indices are sorted which has a negligible runtime
as d is constant. All following steps solely operate on the computed eigenvalues and their order-
ing. Thus, they are of constant runtime too. Hence, the overall runtime complexity is linear in
the number of voxels considered for feature selection.
For the space complexity, we �rst have to keep the feature matrix of dimensions M × d in main
memory. After computation of the covariance matrix, the resulting operations just need constant
memory as d is constant.

44

References

References

[1] Panaretos, Victor and Zemel, Yoav.An Invitation to Statistics inWasserstein Space. Springer,
Jan. 2020.

[2] Patrick Billingsley. Probability and Measure. 3rd ed. Series in Probability and Mathematical
Statistics. Wiley, 1995.

[3] S. S. Vallander. “Calculation of the Wasserstein Distance Between Probability Distributions
on the Line”. In: Theory of Probability & Its Applications 18.4 (1974), pp. 784–786.

[4] Kangyu Ni et al. “Local Histogram Based Segmentation Using the Wasserstein Distance”.
In: Int. J. Comput. Vision 84.1 (Aug. 2009), pp. 97–111.

[5] Piotr Indyk and Nitin Thaper. “Fast Image Retrieval via Embeddings”. In: 3rd Workshop on
Statistical and computational Theories of Vision. Nice, France, 2003.

[6] Yulia Dodonova and Mikhail Belyaev and Anna Tkachev and Dmitry Petrov and Leonid
Zhukov. Kernel classi�cation of connectomes based on earth mover’s distance between graph
spectra. Aug. 2016. arXiv: 1611.08812.

[7] Le Hou and Chen-Ping Yu and Dimitris Samaras. Squared Earth Mover’s Distance-based
Loss for Training Deep Neural Networks. 2017. arXiv: 1611.05916.

[8] Z. Yu and G. Herman. “On the Earth Mover’s Distance as a histogram similarity metric
for image retrieval”. In: 2005 IEEE International Conference on Multimedia and Expo. 2005,
pp. 686–689.

[9] Jialin Liu and Wotao Yin and Wuchen Li and Yat Tin Chow. Multilevel Optimal Transport:
a Fast Approximation of Wasserstein-1 distances. Sept. 2018. arXiv: 1810.00118.

[10] Charlie Frogner and Farzaneh Mirzazadeh and Justin Solomon. Learning Embeddings into
Entropic Wasserstein Spaces. 2019. arXiv: 1905.03329.

[11] Nicolas Courty, Rémi Flamary and Mélanie Duco�e. “Learning Wasserstein Embeddings”.
In: ICLR 2018 - 6th International Conference on Learning Representations. Vancouver, Canada,
Apr. 2018, pp. 1–13.

[12] Charlie Frogner and Chiyuan Zhang and Hossein Mobahi and Mauricio Araya-Polo and
Tomaso A. Poggio. “Learning with a Wasserstein Loss”. In: Advances in Neural Information
Processing Systems (NIPS) 28. 2015.

[13] Taghvaei, Amirhossein and Jalali, Amin. 2-Wasserstein Approximation via Restricted Convex
Potentials with Application to Improved Training for GANs. Feb. 2019. arXiv: 1902.07197.

[14] Daizong Ding and Mi Zhang and Xudong Pan and Min Yang and Xiangnan He. “Improving
the Robustness of Wasserstein Embedding by Adversarial PAC-Bayesian Learning”. In:
Proceedings of the AAAI Conference on Arti�cial Intelligence. Vol. 34. AAAI Press, Apr. 2020,
pp. 3791–3800.

[15] S. Kolouri, Y. Zou and G. K. Rohde. “Sliced Wasserstein Kernels for Probability Distribu-
tions”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 5258–5267.

[16] Antoni Zygmund. Trigonometric Series. Vol. 1. Cambridge university press, 2002.
[17] Henri De Plaen, Michael Fanuel and Johan A. K. Suykens. Wasserstein Exponential Kernels.

2020. arXiv: 2002.01878.
[18] Hiroyuki Yoshida and Janne Näppi. “Three-Dimensional Computer-Aided Diagnosis Scheme

for Detection of Colonic Polyps”. In: IEEE Trans. Med. Imaging 20.12 (2001), pp. 1261–1274.

45

https://arxiv.org/abs/1611.08812
https://arxiv.org/abs/1611.05916
https://arxiv.org/abs/1810.00118
https://arxiv.org/abs/1905.03329
https://arxiv.org/abs/1902.07197
https://arxiv.org/abs/2002.01878

[19] Abhir Bhalerao and Roland Wilson. “A Fourier Approach to 3D Local Feature Estimation
from Volume Data”. In: Proceedings of BMVC 2001 (Apr. 2002).

[20] Philippe Pebay and Philippe Pierre. Formulas for Robust, One-Pass Parallel Computation of
Covariances and Arbitrary-Order Statistical Moments. Tech. rep. U.S. Department of Energy,
O�ce of Scienti�c and Technical Information, Sept. 2008.

[21] Guoying Zhao and Matti Pietikäinen. “Dynamic Texture Recognition Using Local Binary
Patterns with an Application to Facial Expressions”. In: IEEE transactions on pattern ana-
lysis and machine intelligence 29 (July 2007), pp. 915–28.

[22] Olli Lahdenoja, Jonne Poikonen and Mika Laiho. “Towards Understanding the Formation
of Uniform Local Binary Patterns”. In: ISRN Machine Vision 2013 (July 2013).

[23] Sung Joon Ahn. Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space.
Vol. 3151. Lecture Notes in Computer Science. Springer, 2004.

[24] David Freedman and Persi Diaconis. “On the Histogram as a Density Estimator: L2 The-
ory”. In: Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 57.4 (Dec. 1981),
pp. 453–476.

[25] Bernd Jähne. Spatial-Temporal Image Processing, Theory and Scienti�c Applications. Springer-
Verlag Berlin Heidelberg, 1993.

[26] Erwin Kreyszig. Advanced Engineering Mathematics. 10th ed. Wiley, Feb. 2011.
[27] Karl Pearson. “LIII. On Lines and Planes of Closest Fit to Systems of Points in Space”.

In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2.11
(Nov. 1901), pp. 559–572.

[28] Harold Hotelling. “Analysis of a complex of statistical variables into principal compon-
ents”. In: Journal of Educational Psychology 24.6 (1933), pp. 417–441.

[29] F. Song, Z. Guo and D. Mei. “Feature Selection Using Principal Component Analysis”. In:
2010 International Conference on System Science, Engineering Design and Manufacturing
Informatization. Vol. 1. Nov. 2010, pp. 27–30.

[30] Gene H. Golub and Charles F. Van Loan.Matrix Computations (3rd Ed.) USA: Johns Hopkins
University Press, 1996.

46

Part III.

Unsupervised Segmentation

47

O this learning, what a thing it is!

William Shakespeare, The Taming of the Shrew

Table of Contents

5. Random Sampling 51

5.1. Strati�cation . 51
5.2. Reservoir Sampling . 52

6. K-Means Clustering 55

6.1. Introduction . 55
6.2. Lloyd’s Algorithm . 55
6.3. Initialization . 56
6.4. Clustering Big Volumes . 57
6.5. Runtime and Memory Analysis . 57

7. Clustering via Gaussian Mixture Models 59

7.1. Gaussian Mixture Models . 59
7.2. Expectation Maximization . 61
7.3. Avoiding Degeneracies . 63
7.4. Model Selection . 63
7.5. Clustering Big Volumes . 64
7.6. Runtime and Memory Analysis . 65

The �rst segmentation techniques we cover are unsupervised, i.e., they segment a volume without
using any labeled data or further user interaction. They all belong to the group of clustering
algorithms where characteristics like our features describe the similarity between voxel regions
so they can be grouped together.
We start by describing a random sampling technique used to extract a representative subset of a
voxel volume. This subset is of constant size and thus allows tackling big volumes. We proceed
by explainig clustering using K-Means and Gaussian Mixture Models. Both algorithms will be
trained on an extracted random sample, after which the voxel volume is segmented in a space-
e�cient way.

5. Random Sampling

Abstract Typically, clustering algorithms compute characteristics for each data element and
perform grouping afterwards. However, the runtime complexity of this �rst step is often of order
O(Nα), α > 1, i.e., polynomial in the dataset size. Such algorithms are typically not feasible for
processing large volumes.
In order to tackle this problem, this chapter introduces a strategy for extracting a representative
random sample of a �xed size M ∈ N. First, the strati�cation is explained which partitions the
grayscale value distribution value range. Next, the actual random sampling procedure on such a
strati�cation which is linear in the number of input voxels is given.

5.1. Stratification

The goal is to extract a small representative subset from a big voxel volume. A possible con-
sequence is that, e.g., all voxel values which belong to a certain material might get omitted.
To avoid this loss of information, we compute a strati�cation before sampling. That is, we di-
vide the voxel value range into disjoint parts (the strati), as indicated in Figure 5.1 in which the
S1, S2, S3, S4 denote the strati and the solid line shows a typical grayscale value distribution.

b1 b2 b3 b4

S1 S2 S3 S4

Figure 5.1.: Strati�cation of a typical grayscale value distribution.

Distributions of this shape occur frequently in industrial tomography scans, which form the main
application of our algorithms. Therefore, the computed strati�cation assumes this “exponential”
shape. But we emphasize that the sampling technique which will be presented in the next section
can use any strati�cation and thus the sampling can exploit further application-speci�c know-
ledge.
Formally, we express our (multi-threaded) strati�cation as follows.

51

5. Random Sampling

De�nition 5.1.1. Let W be the overall width of the grayscale value distribution and let NT ∈ N
be the number of threads used. Further, let M ∈ N be the requested sample size and K be
the number of strati. Then the grayscale value interval is divided into strati Stj of widths bjW ,
j = 1, . . . ,K , where

bj =

{
21−K , j = 1,

2j−1−K , j = 2, . . . ,K.

This strati�cation is done by each thread t = 1, . . . , NT in the same way.
The obtained strati�cation is a tuple(

K, (bj)1≤j≤K , {S
t
j} 1≤j≤K

1≤t≤NT

)
.

We encode the exponential shape depicted in Figure 5.1 in the strati�cation by partitioning the
grayscale value range into disjoint intervals of width bjW where the fractions bj , j = 1, . . . ,K ,
decrease exponentially as the index j increases. Thus, we obtain that b1 = b2 ≤ . . . ≤ bK , i.e.,
the width of a stratum increases towards higher grayscale values. As we will see, this will lead
to more voxels having higher voxel values getting selected than voxels with lower values, which
compensates the typically overwhelming number of voxels close to zero under the exponential
shape assumption.

5.2. Reservoir Sampling

Next, for each stratum we perform reservoir sampling in it, which is a common technique to
obtain a uniformly distributed random sample from some population. Algorithm 4 shows this
sampling method schematically. The presented algorithm was discovered independently by both
Alan Waterman (as stated by Knuth [1, p.144] and Vitter [2]) and by McLeod and Bellhouse [3].

Algorithm 4: Reservoir sampling.
Function ReservoirSampling(Q,M)

Input : A population Q = {q1, . . . , qN}
Input : A sample size M ≤ N
Output: A tuple Ω of size M containing the sample
Ω← ()
for i← 1 to N do

if i ≤M then
Ω← (Ω, qi) // fill up reservoir

else
r ← randInt(1, i) // unif.random integer in {1, . . . , i}
if r < M then

Ωr ← qi

return Ω

As hinted by the algorithm, �rst the reservoir which will contain the sample at the end is �lled
with the �rst M elements of the population. After the reservoir is �lled, each following pop-
ulation element qi is accepted with probability M/i and replaces a random element Ωr in the
reservoir. The latter step is continued until all items from the population are processed.

52

5.2. Reservoir Sampling

A speciality of reservoir sampling is that the population size need not be known a priori, which
is however known in our case, and that a uniformly distributed sample can be obtained in one
linear pass over the population, making it suitable for sampling large data sets like industrial
computed tomography voxel volumes.

Furthermore, it is guaranteed that the sample generated by Algorithm 4 is drawn uniformly
distributed from the given population.

Lemma 5.2.1. Given some population Q = {qi}Ni=1, Algorithm 4 produces a uniformly distrib-
uted random sample Ω of sizeM , i.e., each population item qi, i ∈ {1, . . . , N}, has the probability

P (qi ∈ Ω) =
M

N
of being chosen to be in the reservoir.

Several short proofs can be found in literature, e.g. in [1–3]. We give a detailed explanation in
Appendix A for the sake of completeness.
Considering our setting, we combine a strati�cation and reservoir sampling to extract a strati�ed
sample e�ciently from a volume. Algorithm 5 shows the sampling procedure.

Algorithm 5: Strati�ed reservoir sampling on a volume.
Function StratifiedSampling(V ,M , S)

Input : A volume V of N voxels
Input : A sample size M ≤ N
Input : A strati�cation S = (K, bj , S

t
j) acc. to De�nition 5.1.1

Output: A sample Ω of size M
parfor t← 1 to NT do

for j ← 1 toK do
V t
j ← sub-volume belonging to stratum Stj

Ωt
j ← ReservoirSampling(V t

j , bjM)

Ω′ =
⋃NT
t=1

⋃K
j=1 Ωt

j

Ω← ReservoirSampling(Ω′,M)
return Ω

We want to remind the reader that in our setting, parallel processing over a volume happens by
partitioning the volume into disjoint sub-volumes V t for t = 1, . . . , NT along its logical z axis
and processing each sub-volume sequentially. Technically, these could have an arbitrary shape,
but we follow the parallel processing methodology introduced in Section 1.4.
The �rst step of Algorithm 5 operates in parallel over the sub-volumes V t in the mentioned
sense and additionally computes a strati�cation Stj for each sub-volume over all threads t and
for all j = 1, . . . ,K . By construction of the parallel processing and the strati�cation the con-
structed strati are all pairwise disjoint. From each V t

j a uniformly distributed random sample Ωt
j

is extracted using reservoir sampling as described in Algorithm 4. We choose the size of each
stratum-speci�c sample proportional to the stratum width as bjM where bj , j = 1, . . . ,K , is
given by the strati�cation computed a priori and M is the sample size. Since all sub-volumes
are pairwise disjoint, so are all Ωt

j . Following this, an intermediate sample Ω′ is accumulated as
the union over all samples speci�c to a stratum and a thread. The �nal sample Ω of size M is
obtained by applying reservoir sampling to this intermediate sample.
Naturally, we like to compute the probability of a voxel getting selected in the �nal sample.

53

5. Random Sampling

Firstly, the probability that a voxel x gets chosen to be in a stratum-speci�c sample Ωt
j is

P (x ∈ Ωt
j) = P (x ∈ Ωt

j ∩ Stj) = P (x ∈ Ωt
j | x ∈ Stj)P (x ∈ Stj) =

bjM

#Stj
P (x ∈ Stj),

for j = 1, . . . ,K and t = 1, . . . , NT , where we used that the sample is always a subset of
the stratum, i.e., Ωt

j ∩ Stj = Ωt
j . This implies that the probability of a voxel ending up in the

aggregated intermediate sample Ω′ is

P (x ∈ Ω′) = P

x ∈ NT⋃
t=1

K⋃
j=1

Ωt
j

 =

NT∑
t=1

K∑
j=1

P (x ∈ Ωt
j) =

NT∑
t=1

K∑
j=1

bjM

#Stj
P (x ∈ Stj),

which makes use of the fact that all Ωt
j are pairwise disjoint.

The size of Ω′ is given by

#Ω′ = #

NT⋃
t=1

K⋃
j=1

Ωt
j =

NT∑
t=1

K∑
j=1

bjM = MNT

K∑
j=1

bj = MNT .

This is followed by an additional reservoir sampling step on Ω′.
Therefore, the overall probability of a voxel being in the �nal sample Ω is given by

P (x ∈ Ω) = P (x ∈ Ω ∩ Ω′)

= P (x ∈ Ω | x ∈ Ω′)P (x ∈ Ω′)

=
M

#Ω′
P (x ∈ Ω′)

=
M

NT

NT∑
t=1

K∑
j=1

bj
#Stj

P (x ∈ Stj).

54

6. K-Means Clustering

Abstract Having a random sampling technique at hand, we will now discuss a classical clus-
tering algorithm, namely K-Means clustering. It aims to group a given dataset into K di�erent
clusters based on the Euclidean distance between individual data points. After introducing that
method, we combine it with our random sampling procedure to make the clustering space com-
plexity independent of the volume size. Lastly, we analyze the asymptotical runtime behavior
and memory requirements.

6.1. Introduction

The K-Means algorithm is a popular method of clustering data using only the number K ∈ N
as a hyperparameter. We will brie�y recapitulate how it works, further introductions to this
technique are given, e.g., in [4, 5].

De�nition 6.1.1. Given a dataset X and a number K ∈ N of clusters, the K-Means algorithm
computes a partitioning P1, . . . , PK by solving

argmin
P1,...,PK

K∑
j=1

∑
x∈Pj

‖x− µj‖22 such that X =
K⊔
j=1

Pj ,

where µj = E[Pj] is the centroid estimated for partition Pj , j = 1, . . . ,K .

It is well-known that for one cluster only, i.e.,K = 1, the optimal solution to this problem is given
by the mean µ = E[P1] over the only population P1. Therefore, we aim to �nd K population
means to minimize the stated expression, which also gives an intuition why this technique is
calledK-Means. However, numerically solving this problem is NP-hard [6] in general. Therefore,
practical applications use heuristic algorithms to solve it, of which Lloyd’s algorithm is without
a doubt used the most.
The following sections will introduce Lloyd’s algorithm in detail and pay special attention on
how to properly initialize it. We continue by providing an algorithm explaining how K-Means
is used to cluster potentially big voxel volumes. Finally, the end of the current chapter brie�y
analyzes both the asymptotic algorithm runtime as well as the memory requirements.

6.2. Lloyd’s Algorithm

As mentioned, we use Lloyd’s algorithm [7] for solving the K-Means clustering problem, as this
procedure is simple, e�cient and often yields the optimal result.
This procedure is summarized in Algorithm 6.
The classical two-stage algorithm begins by computing initial means. Lloyd’s algorithm depends
heavily on a good initialization, for which we use theK-Means++ strategy that will be explained
in the next section.

Next, we continue two-fold:

55

6. K-Means Clustering

Algorithm 6: Lloyd’s algorithm.
Function Lloyd(X ,K)

Input : A population X = {x1, . . . ,xN}
Input : Number of clusters K
Output: Estimated means µ = {µ1, . . . ,µK}
µ← initialize (X , K)
repeat

Pj ← {x ∈ X | ‖x− µj‖2 ≤ ‖x− µi‖2, j 6= i = 1, . . . ,K}, j = 1, . . . ,K
µj ← E[Pj], j = 1, . . . ,K

until assignment converged
return µ

1. We cluster the data according to the current means, i.e., we create sub-populations Pj
containing all elements nearest to the mean µj for j = 1, . . . ,K . In the ambiguous case
of equal distances, we assign the element to the cluster having the smallest cluster index.

2. We re-estimate the means according to this clustering.

This procedure is continued until the algorithm converges. We say that the iterations have con-
verged if less than �ve percent of cluster assignments change. Given the estimated means, the
data set is clustered by assigning each item the index j of the closest mean µj , j = 1, . . . ,K .

6.3. Initialization

There exists a broad variety of initialization methods for the K-Means algorithm, an overview
of which is given in [8]. Of these, we decided to use theK-Means++ strategy [9]. That technique
starts by choosing the �rst center uniformly at random from the population. The following
centers then are chosen proportionally to the distances to the already selected centers. Intuitively,
each following initial center is far away from all already �xed centers.

Algorithm 7:K-Means++ initialization.
Function initialize(X ,K)

Input : A population X = {x1, . . . ,xN}
Input : Number of clusters K
Output: Initial means µ = (µ1, . . . ,µK)

µ1 ← randomly chosen from X
µ = (µ1)
for j ← 2 toK do

D ←
(
min1≤i<j ‖xk − µi‖22

)N
k=1

ν ← D/‖D‖1
r ∼ U([0, 1])
µj ← xi∗ , i∗ = min {i ∈ {1, . . . , N} | Fν(i) > r}
µ← (µ,µj)

return µ

56

6.4. Clustering Big Volumes

The K-Means++ initialization is summarized in Algorithm 7. We see, that the �rst center is
chosen uniformly at random from the population. For each subsequent center estimation, we
compute the squared distances D of each data item to its closest already known center. Hav-
ing these distances, the next center is chosen at random from a distribution where probabilities
are proportional to the computed distances. Using the well-known inverse tranform sampling
method [10], this can be achieved by generating a uniformly distributed number r ∼ U([0, 1])
and searching for the smallest index i∗ ∈ {1, . . . , N} such that the according value of the dis-
crete cumulative distribution function, i.e., Fν(i∗), surpasses r. This is equivalent to searching
the r-th quantile of the distribution ν. The population item xi∗ at that index then is selected as
the next initial mean. This estimation procedure is repeated until allK initial centers are chosen.

6.4. Clustering Big Volumes

We conclude this chapter by stating an algorithm for applying K-Means clustering to volumes
without restricting their size, which is shown in Algorithm 8.
The grouping of voxels is de�ned by similarity of feature vectors, i.e., their Euclidean distance.
As a special case, the grayscale value v(x) of some voxel x can serve as a feature too.

Algorithm 8: Volume segmentation by K-Means clustering.
Input : A volume V of voxels xα,α ∈ Γd
Input : A feature computation function f
Input : Number of clusters K
Input : A sample size M ≤ #Γd
Output: A segmented volume of voxels
S ← a strati�cation acc. to Def. 5.1.1
Ω← StratifiedSampling(V ,M , S)
µ← Lloyd({f(xβ) | xβ ∈ Ω},K)
parfor xα ∈ V do

ṽ(xα)← min {j ∈ {1, . . . ,K} | ‖f(xα)−µj‖2 ≤ ‖f(xα)−µk‖2, j 6= k = 1, . . . ,K}

First, a strati�ed random sample is extracted from the volume using Algorithm 5. The size of the
sample is chosen such that it �ts easily into main memory, e.g., using 4096 elements.
The algorithm proceeds by estimating the centroidsµj , j = 1, . . . ,K , by Lloyd’s algorithm from
the selected sample. As the sample size is �xed and chosen independently of the volume size, the
polynomial runtime is negligible compared to the following loop.
Finally, the input volume V is clustered by assigning to each voxel the index j of the closest
cluster center µj , j = 1, . . . ,K . In the ambiguous case of two or more cluster centers having
the same distance to the feature vector, we choose the smallest index.

6.5. Runtime and Memory Analysis

Since the goal of this thesis is to introduce algorithms usable for the segmentation of volumes
without size restrictions, we also want to give a brief overview over the asymptotic runtime and
memory requirements. In the following, denote N ∈ N the number of voxels in the volume
and M ≤ N the sample size which is typically much smaller than the volume size and in our
applications constant with a value of 4096 elements.

57

6. K-Means Clustering

6.5.1. Runtime Analysis

Firstly, we perform random sampling on the volume. By de�nition of the strati�ed random
sampling algorithm given in Algorithm 5, the parallel sampling followed by the sequential ran-
dom sampling yields a runtime of orderO(NN−1

T +NTM). SinceNT and the sample sizeM are
constant and independent of N , the sampling runtime is e�ectively of linear order O(N). Next,
the means are estimated using Lloyd’s algorithm, which has a polynomial time complexity [11]
in the number of elements. However, in our aforementioned setting the latter is constant. Thus,
the mean estimation has an asymptotically constant runtime. Finally, we apply the clustering to
each voxel in the algorithm. For this, we iterate over a constant number of clusters K and over
all voxels in the volume.
We conclude, that Algorithm 8 has a linear runtime complexity of order O(N) with a constant
additional overhead for the estimation procedures.

6.5.2. Memory Requirements

Let us now discuss the memory requirements of our algorithm.
In the �rst step, we extract a strati�ed random sample which must �t into memory. The used
reservoir sampling technique guarantees that only the reservoir of constant size M , which will
become the sample, needs to �t in memory. Thus, for the random sampling, the memory requried
is of order O(M). Next, we perform Lloyd’s algorithm on this sample, during which we keep
a cluster assignment in memory which is of the same size as the sample. Overall, the memory
requirements do not change. Finally, we iterate over the volume and assign to each voxel the
index of its closest cluster mean. For this step, only the estimated means and a local environment
centered around the currently processed voxel must be kept in memory at all times, thus the
memory requirement drops to a constant of order O(K).
Overall, the memory required to execute Algorithm 8 is of order O(M). Since in our applica-
tions, the sample size M is constant, the overall memory used is of constant size. That makes
Algorithm 8 applicable for volumes regardless of their size, as long as the sample �ts into memory.

58

7. Clustering via Gaussian Mixture Models

Abstract A well-known shortcoming of theK-Means algorithm we discussed in the last section
is that it is a hard clustering method. That is, a data item is assigned to exactly one cluster, but
there is no measure of how likely it is that this item belongs to each cluster. Moreover, the hard
assignments are based purely on distance to estimated centers and do not take the variance of a
cluster into account. This makes K-Means in�exible, especially when the variance of the data
clusters varies. Therefore, the current chapter aims to overcome this in�exibility by considering
soft assignments based on Gaussian Mixture Models.
First, these types of parametric models are introduced with special focus on how we initialize
the trainable parameters. Secondly, the popular Expectation Maximization algorithm is explained
and applied on Gaussian Mixture Models, followed by strategies to avoid degeneracies. Next, a
model selection technique is presented, after which we give the overall clustering procedure.
Finally, a brief complexity analysis is given.

7.1. Gaussian Mixture Models

The middle part of Figure 7.1 depicts the aforementioned shortcoming of simple K-Means clus-
tering when applied on a “mouse” dataset given in the �rst image. We see that K-Means fails to
classify many data items correctly when the cluster variances are not uniform. The right-most
image then shows how this can be improved by using Gaussian Mixture Models (GMMs) on that
dataset which allows capturing the di�erent cluster variances.
Therefore, we continue to introduce Gaussian Mixture Models which form a special case of gen-
eral mixture models. Brie�y said, mixture models are weighted sums of distributions. With such
a model, we can express the likelihood that an item belongs to each individual distribution. The
by far most used mixture models are Gaussian Mixture Models, i.e., mixtures where each distri-
bution follows a Gaussian distribution, which o�er the possibility to encode the variance in a
cluster into the estimation and clustering process.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Original Data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

k-Means Clustering

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

EM Clustering

Different cluster analysis results on "mouse" data set:

Figure 7.1.: Misclassi�cations by K-Means [12] due to di�erent cluster variances.

59

7. Clustering via Gaussian Mixture Models

100 150 200 250 300 350
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Figure 7.2.: Schematic univariate Gaussian Mixture Model.

De�nition 7.1.1. Let d ∈ N be the dimensionality of feature vectors and K ∈ N be the number
of component distributions. The Gaussian Mixture Model is de�ned as

K∑
j=1

πj N
(
· | µj ,Σj

)
, where 0 ≤ πj ≤ 1,

K∑
j=1

πj = 1.

Here, πj are the weights or mixture coe�cients and µj ∈ Rd and Σj ∈ Rd×d are the mean
vector and covariance matrix for the j-th distribution, respectively, for any j = 1, . . . ,K .

An univariate GMM is visualized in Figure 7.2.
We see that given some discrete data, we assume that it really consists of a superposition of
three individual normal distributions, each depicted using dashed lines. The solid line shows the
weighted sum of them, i.e., the mixture distribution, which matches the data pretty well.
The rest of this chapter explains how such a (multivariate) model can be �tted to a given dataset
X = {xi}Ni=1 and discusses di�culties.

Initialization

Before considering the �tting of a mixture distribution to data, we note that a good initialization
is the key to fast convergence. Regarding the initialization of Gaussian Mixture Models, a broad
variety of initialization procedures exists as surveyed in [13] and [14]. We decided to use a
relatively quick and simple, yet well-suited initialization scheme which was inspired by [13, 15].
First, we run our K-Means algorithm on the dataset X which yields initial means denoted by
µ′j ∈ Rd, j = 1, . . . ,K . The K-Means algorithm uses the K-Means++ initialization which we
discussed in the previous chapter. We further compute an initial partitioning

Pj = {x ∈ X | ‖x− µ′j‖2 ≤ ‖x− µ′i‖2, j 6= i = 1, . . . ,K}, j = 1, . . . ,K.

Just as when applying K-Means directly, if an item has equal distance to multiple cluster cen-
ters µI , I ⊂ {1, . . . ,K}, then it is assigned to the partition Pj endowed with the lowest index

60

7.2. Expectation Maximization

j = min I . Having an initial clustering, we estimate the inital model parameters of the j-th
distribution, j = 1, . . . ,K , by

πj =
#Pj
N

,

µj =
1

#Pj

∑
x∈Pj

x,

Σj =
1

#Pj

∑
x∈Pj

(x− µj)(x− µj)T .

Furthermore, we estimate the initial responsibilities used in the training algorithm. Intuitively,
these are values that estimate how much a distribution explains a sample. In our initial hard
cluster assignment, exactly one distribution is responsible for a sample, thus for the responsibil-
ities we choose

γn,j =

{
1, xn ∈ Pj ,
0, xn 6∈ Pj ,

n = 1, . . . , N, j = 1, . . . ,K.

7.2. Expectation Maximization

We just de�ned the initial responsibilities which is a hard cluster assignment due to theK-Means
clustering algorithm. The training phase which we discuss in this section will change the model
so it can indeed use a soft assignment based on how likely a data item belongs to a cluster.
For this training, we use the popular Expectation Maximization1 (EM) algorithm, which aims at
tuning model parameters in order to maximize the likelihood of a model given the training data.
Since we concentrate on Gaussian Mixture Models, we want to tune the parameters of the normal
distributions in a way such that the logarithmized likelihood given in Equation (7.1) is maximized.

log L (X | π,µ,Σ) =
N∑
n=1

log

 K∑
j=1

πj N
(
xn | µj ,Σj

) (7.1)

Before we state the overall algorithm, we want to note how the Gaussian density function is
evaluated, namely as

N (x | µ,Σ) =
1√

(2π)d det Σ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

To avoid the inversion of the covariance matrix, we �rst compute a Cholesky decomposition of
it, yielding a lower triangular matrix L such that Σ = LLT . Since the covariance matrix is
symmetric and positive semi-de�nite, such a decomposition exists. Moreover, we will show in
the next section that after some minor modi�cations it is further positive de�nite in our applica-
tion, making the computed decomposition unique. The positive de�niteness further ensures that
det Σ = (detL)2 > 0, so the likelihood expression is well-de�ned.
Using this decomposition, the exponent in the density reduces to

(x− µ)TΣ−1(x− µ) = ‖L−1(x− µ)‖22,
where the expression y := L−1(x − µ) can be computed numerically stable by solving the
system Ly = (x− µ) using forward elimination.

1The idea of Expectation Maximization was postulated by many authors, notably Ceppellini et.al. [16], and it was
popularized by Dempster et.al. [17].

61

7. Clustering via Gaussian Mixture Models

Overall, we rewrite the density to obtain the form

N (x | µ,Σ) = exp (logN (x | µ,Σ)) = exp

(
−1

2

(
‖L−1(x− µ)‖22 + d log(2π) + 2 log detL

))
which subsequently allows an e�cient computation of likelihood values. Finally, we can state
the Expectation Maximization algorithm for Gaussian Mixture Models as it was explained in [15]
which is summarized in Algorithm 9.

Algorithm 9: Expectation Maximization for Gaussian Mixture Models.
Function EM(X ,K , θ(0))

Input : A matrixX ∈ RN×d consisting rowwise of feature vectors xj , j = 1, . . . , N
Input : Number of component distributions K
Input : Initial parameters θ(0) = (π(0),µ(0),Σ(0))
Output: Tuned parameters π,µ,Σ
m← 0
while not converged do

// E-step

γn,j ←
π

(m)
j N

(
xn | µ(m)

j ,Σ
(m)
j

)
∑K

i=1 π
(m)
i N

(
xn | µ(m)

i ,Σ
(m)
i

) , n = 1, . . . , N, j = 1, . . . ,K

Γ = [Γ1 · · ·ΓK] , Γj = (γ1,j , . . . , γN,j)
T , j = 1, . . . ,K

H ← (‖Γj‖1)T1≤j≤K

// M-step
π(m+1) ← N−1H

µ(m+1) ←
(
ΓTX

)T �H
Σ

(m+1)
j ←H−1

j CT diag(Γj) C, j = 1, . . . ,K

m← m+ 1

return π(m),µ(m),Σ(m)

The EM algorithm consists of an “expectation” and a “maximization” step. The �rst step re-
estimates the responsibilities γn,j and aggregates them in the matrix Γ, whose vector of colum-
nwise sums is denoted by H . From this new soft cluster assignment, the mixture distribution
model parameters are updated using the usual de�nitions, where the matrix C is the dataset
X centered around the currently estimated means, i.e., Cn,f = Xn,f − (µ(m+1))n,f , n =
1, . . . , N, f = 1, . . . , d. Furthermore, the A � x operator denotes that every row in A is di-
vided by x componentwise, i.e., (A� x)i,j = Ai,j/xj over i rows and j columns.
These two steps are iterated until the algorithm converges or reaches a maximum number of
iterations, which was experimentally determined to be 1024 iterations as the algorithm typically
converges quickly. To check convergence, we compare the values of the logarithmized likelihood
of the mixture given the datasetX .

62

7.3. Avoiding Degeneracies

7.3. Avoiding Degeneracies

As can easily be seen from the de�nition of the density function of both the univariate and
multivariate normal distribution, the evaluation of it requires a division by the standard deviation
or the multiplication with the inverse of the covariance matrix, respectively.
This clearly causes problems in presence of singularities, i.e., if one distribution is focussed
around a single data item, thus having variance zero. This behavior was characterized in [18]
in the univariate and in [19] in the multivariate case. Both publications use basically the same
approach. They add small positive terms to both the numerator and denominator in the re-
estimation of the variance expressions in the maximization step, ensuring that the re-estimations
do not get singular. These terms stem from the multiplication of the likelihood functions with
the conjugate prior of the distributions with respect to the estimation of unknown variance ex-
pressions.

7.3.1. The Univariate Case

In the univariate case, the conjugate prior for the normal distribution is given as inverse gamma
distribution prior with parametersα, β > 0. As shown in [18], this only changes the re-estimation
of the variance to the expression

(σ2
j)

(m+1) =
1

2β +Hj

(
2α+

N∑
n=1

γn,j(xn − µj)2

)
, j = 1, . . . ,K,

and further always yields positive variance terms, e�ectively avoiding the numerical problems
mentioned above. They further state that this modi�cation does not change the convergence
behavior. In our setting, these terms were experimentally found to be α = β = 10−7.

7.3.2. The Multivariate Case

For the multivariate case, the conjugate prior is given by an inverse Wishart prior W(ν,Λ) as
pointed out in [19] where ν denotes the degrees of freedom and Λ shall be a positive de�nite
matrix. We follow this approach as presented in [14, p.9]. Therefore, we choose the degrees of
freedom as ν = d+ 2 and the prior matrix to be

Λ =

(
σ0

ε+ detS

) 1
d

S, S =
1

N − 1

N∑
n=1

(xn − E[X])(xn − E[X])T ,

where S is the empirical covariance matrix of the datasetX , ε = 10−5 and σ0 is a small positive
number, experimentally determined to be 0.1.
Again, the only change in the EM algorithm is the re-estimation of the covariance matrices,
which changes [14] to

Σ
(m+1)
j =

1

Hj + ν + d+ 2

(
CT diag(Γj)C + Λ

)
.

By de�nition, both the denominator is positive and Λ is positive de�nite, thus ensuring that the
estimated covariance matrix stays positive de�nite.

7.4. Model Selection

A key element for mixture-model-based clustering is the choice of the number K of clusters. In
general, it is not possible to choose K automatically in a meaningful way and thus it needs to be

63

7. Clustering via Gaussian Mixture Models

provided explicitly. However, we can choose the best number of clusters in a given range using
the Akaike Information Criterion [20].

De�nition 7.4.1. Given some model m with P independently adjustable parameters θ and a
�xed datasetX , the Akaike Information Criterion (AIC) is de�ned as [20]

AIC(m) = 2P − 2 log L (X | θ) ,

where log L (X | θ) denotes the logarithmized likelihood of X given the model parameters θ
as previously de�ned in Equation (7.1).

Intuitively, this information criterion estimates how much information is lost or gained when
comparing two models using it.

De�nition 7.4.2. Let mi, i = 1, . . . ,K , be models of the same kind but with di�erent model
parameters θi all trained on a datasetX .
Then, the best �tting model m∗ according to the Akaike Information Criterion is given by

m∗ = argmin
m1,...,mK

AIC(mi).

In practice, we �t Gaussian Mixture Models having 2 toK clusters in parallel to the data set. After
the training procedures are completed, we select the best model according to De�nition 7.4.2.

7.5. Clustering Big Volumes

Having the Expectation Maximization algorithm at hand, we �nally give a procedure for clus-
tering big volumes using Gaussian Mixture Models, which is shown in Algorithm 10.

Algorithm 10: Volume clustering based on Gaussian Mixture Models.
Input : A volume V of voxels xα,α ∈ Γd
Input : A feature computation function f
Input : Number of clusters K
Input : The sample size M ≤ #Γd
Output: A segmented volume
S ← a strati�cation acc. Def. 5.1.1
Ω← StratifiedSampling(V ,M , S)
θ(0) ← (π(0),µ(0),Σ(0)) // Init. on Ω using f (Section 7.1)
π,µ,Σ← EM({f(xβ) | xβ ∈ Ω},K , θ(0))
parfor xα ∈ V do

ṽ(xα)← argmax
j=1,...,K

πj N
(
f(xα) | µj ,Σj

)

The �rst phases extract a strati�ed random sample of �xed size from the volume, after which a
Gaussian Mixture Model is trained on this sample. Finally, to each output voxel the index of the
cluster is assigned which maximizes the likelihood of the input voxel given the trained model.

7.5.1. Accelerating the Univariate Case

In the general case, we need to extract a feature vector from each voxel. These are computed ad
hoc and in a concrete implementation this is done using a mask-based processing as explained

64

7.6. Runtime and Memory Analysis

in Section 1.4. However, if we want to cluster a volume solely based on its grayscale values, we
can accelerate the clustering by switching to a thresholding method and a much faster pointwise
processing.
In this univariate case, the model parameters are given asµj , σ2

j , and we assume these parameters
to be sorted by µj ≤ µj+1. Now, the goal is to �nd separating thresholds, i.e., real numbers
Tj , j = 1, . . . ,K − 1, such that πjN

(
Tj | µj , σ2

j

)
= πj+1N

(
Tj | µj+1, σ

2
j+1

)
, which reduces

to �nding solutions to the quadratic equation

0 =
(
σ2
j+1 − σ2

j

)
T 2
j +2

(
σ2
jµj+1 − σ2

j+1µj
)
Tj+

(
σ2
j+1µ

2
j − σ2

jµ
2
j+1 − 2σ2

jσ
2
j+1 log

πjσj+1

πj+1σj

)
.

We try to solve this equation such that µj ≤ Tj ≤ µj+1 holds. If no such solution exists, we use
(µj + µj+1)/2 as an approximation.
With these thresholds, Algorithm 11 shows e�cient pointwise processing of a volume.

Algorithm 11: Volume clustering based on univariate Gaussian Mixture Models.
Input : A volume V of voxels xα,α ∈ Γd
Input : Number of clusters K
Input : The sample size M ≤ #Γd
Output: A segmented volume
S ← a strati�cation acc. Def. 5.1.1
Ω← StratifiedSampling(V ,M , S)
θ(0) ← (π(0),µ(0),Σ(0)) // Init. on Ω using f (Section 7.1)
π,µ,Σ← EM({f(xβ) | xβ ∈ Ω},K , θ(0))
Compute Tj , j = 1, . . . ,K − 1, let TK = +∞
parfor xα ∈ V do

ṽ(xα)← min {j ∈ {1, . . . ,K} | v(xα) < Tj}

The �rst phases are identical to Algorithm 10, while the �nal loop assigns the cluster index to
each voxel, where the cluster index is the smallest index such that the voxel value is smaller than
the according threshold.

7.6. Runtime and Memory Analysis

Similar to the analysis of the K-Means clustering algorithm given in Section 6.5, this section
provides asymptotic estimates for both the runtime and memory requirements of the mixture-
model-based segmentation technique presented in Algorithm 10.
Again, let N ∈ N be the number of voxels in the volume and denote M ≤ N the size of the
random sample drawn from the voxel set, which again is �xed in our applications to have 4096
elements.

7.6.1. Runtime Analysis

The �rst steps of the presented algorithm are similar to the K-Means case: First, a strati�ed
random sample is extracted which uses a runtime of order O(NN−1

T + NTM). By the same
argumentation as in Section 6.5, the sampling runtime is linear in the number of voxels, i.e., of
order O(N). The Expectation Maximization is guaranteed to converge [21], let c ∈ N denote
the number of iterations needed for convergence. As mentioned earlier, in our setting we set the
maximum number of iterations to 1024 as this often su�ces for a good result. Thus, the runtime

65

7. Clustering via Gaussian Mixture Models

necessary is given by min{c, 1024}. The �nal voxelwise classi�cation is clearly linear in the
number of voxels in the volume.
Concludingly, the runtime for our clustering algorithm is bounded by two linear passes through
the volume and the parameter estimation procedure and hence is linear in N .

7.6.2. Memory Requirements

In the �rst step of the algorithm, a random sample is extracted, requiring O(M) space where
we emphasize that this is constant as the sample size M does not depend on the volume size in
our setting. During the training phase using the EM algorithm, only the extracted sample and
the trained parameters must be kept in memory, thus the necessary memory is still constant.
Finally, during the voxelwise segmentation we only need constant space for the current voxel,
or features extracted from it, and the trained parameters.
Hence, the overall memory consumption for our Gaussian Mixture Model-based clustering al-
gorithm is constant, regardless of the input volume size.

66

References

References

[1] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical
Algorithms. USA: Addison-Wesley Longman Publishing Co., Inc., 1997.

[2] Je�rey S. Vitter. “Random Sampling with a Reservoir”. In: ACM Trans. Math. Softw. 11.1
(Mar. 1985), pp. 37–57.

[3] A. I. McLeod and D. R. Bellhouse. “A Convenient Algorithm for Drawing a Simple Random
Sample”. In: Journal of the Royal Statistical Society Series C 32.2 (June 1983), pp. 182–184.

[4] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
Inc., 1995.

[5] R.O. Duda and P.E. Hart. Pattern Classi�cation and Scene Analysis. Wiley, 1973.
[6] Daniel Aloise et al. “NP-hardness of Euclidean sum-of-squares clustering”. In: Machine

Learning 75 (Jan. 2009), pp. 245–248.
[7] Stuart P. Lloyd. “Least Squares Quantization in PCM”. In: IEEE Transactions on Information

Theory 28.2 (1982), pp. 129–137.
[8] M. Emre Celebi, Hassan A. Kingravi and Patricio A. Vela. “A Comparative Study of Ef-

�cient Initialization Methods for the K-Means Clustering Algorithm”. In: Expert Systems
with Applications 40.1 (2013), pp. 200–210.

[9] David Arthur and Sergei Vassilvitskii. “K-Means++: The Advantages of Careful Seeding”.
In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms.
Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035.

[10] John E. Angus. “The Probability Integral Transform and Related Results”. In: SIAM Review
36.4 (1994), pp. 652–654.

[11] David Arthur, Bodo Manthey and Heiko Röglin. k-Means has Polynomial Smoothed Com-
plexity. 2009. arXiv: 0904.1113.

[12] User:Chire. File:ClusterAnalysis Mouse.svg. Online under https://commons.wikimedia.

org/wiki/File:ClusterAnalysis_Mouse.svg. Oct. 2010.
[13] Emilie Shireman, Douglas Steinley and Michael J. Brusco. “Examining the e�ect of initializ-

ation strategies on the performance of Gaussian mixture modeling”. In: Behavior Research
Methods 49 (Feb. 2017), pp. 282–293.

[14] Jean-Patrick Baudry and Gilles Celeux. “EM for mixtures: Initialization requires special
care”. In: Statistics and Computing 25 (Feb. 2015).

[15] Christopher Bishop. Pattern Recognition and Machine Learning. 1st ed. Springer, 2006.
[16] Ruggero Ceppellini, Marcello Siniscalco and C.A.B. Smith. “The estimation of gene fre-

quencies in a random-mating population”. In: Annals of human genetics 20.2 (Nov. 1955),
pp. 97–115.

[17] Arthur P. Dempster, Nan M. Laird and Donald B. Rubin. “Maximum Likelihood from In-
complete Data via the EM Algorithm”. In: Journal of the Royal Statistical Society. Series B
(Methodological) 39.1 (1977), pp. 1–38.

[18] Andrea Ridol� and Jérôme Idier. Penalized Maximum Likelihood Estimation for Normal
Mixture Distributions. Tech. rep. École Polytechnique Fédérale de Lausanne, School of
Computer and Information Sciences, 2002.

[19] Hichem Snoussi and Ali Mohammad-Djafari. “Degeneracy and likelihood penalization in
multivariate Gaussian mixture models”. In: Univ. of Technology of Troyes, Troyes, France,
Tech. Rep. UTT (2005).

67

https://arxiv.org/abs/0904.1113
https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg

[20] Hirotugu Akaike. “A New Look at the Statistical Model Identi�cation”. In: IEEE Transac-
tions on Automatic Control 19.6 (Dec. 1974), pp. 716–723.

[21] C. F. Je� Wu. “On the Convergence Properties of the EM Algorithm”. In: Ann. Statist. 11.1
(Mar. 1983), pp. 95–103.

68

Part IV.

Supervised Segmentation

69

Ab uno disce omnes.

Virgil, Aeneid

Table of Contents

8. Feature-Adaptive Interactive Thresholding 73

8.1. Related Work . 73
8.2. Deriving a Regularized Thresholding Problem 74
8.3. Solving the Problem . 76
8.4. Hyperparameter Tuning . 83
8.5. Segmenting Big Volumes . 84
8.6. Runtime and Memory Analysis . 84

9. Support Vector Machine-Based Segmentation 87

9.1. Related Work . 87
9.2. Support Vector Machines . 88
9.3. Con�dence Values . 91
9.4. Hyperparameter Tuning . 92
9.5. Model Serialization and Iterative Training . 92
9.6. Segmenting Big Volumes . 93
9.7. Active Learning . 93
9.8. Runtime and Memory Analysis . 95

10. Multiresolution Segmentation 99

10.1. Related Work . 99
10.2. Multiresolution Volumes . 100
10.3. General Interactive Multiresolution Segmentation 105
10.4. Applications . 111
10.5. Runtime and Memory Analysis . 112

We continue our journey towards scalable voxel volume segmentation techniques by considering
supervised segmentation techniques. Contrary to the methods discussed in Part III, now explicit

TABLE OF CONTENTS

training data comes into play. Typically, an expert provides mask volumes in which every single
voxel is manually annotated with either the value one if the voxel belongs to the desired object
or part, and zero otherwise. However, our general setting does not assume the presence of such
labeled data, which is typically cumbersome to generate. With this motivation in mind, this part
proposes algorithms which segment volumes using an interactive and iterative approach. Hence,
the presented techniques allow for including domain-speci�c knowledge which stems from an
expert interactively labeling voxels which is iterated until the results are good enough. In the
following, we will refer to this interactively selected voxels as seed voxels.
The �rst chapter discusses a thresholding algorithm which adapts a given threshold according
to locally estimated features in order to counteract voxel intensity deviations occuring on, e.g.,
thin bone structures. Adaptive thresholding can also improve segmentation results in presence
of artifacts occuring frequently in computed tomography scans. Next, we introduce the arguably
most versatile algorithm discussed in this dissertation, namely a segmentation procedure based
on Support Vector Machines. The memory and runtime analyses will show that both methods are
well-suited for processing large voxel volumes. We proceed by de�ning a general framework for
partitioning large data sets by interpreting a volume on di�erent resolution levels with moderate
memory overhead. Furthermore, we show how our supervised segmentation algorithms can
be embedded in a multiresolution setting using the latter to gain considerable runtime bene�ts
without losing accuracy. Finally, further memory and runtime analyses are performed for general
multiresolution algorithms.

72

8. Feature-Adaptive Interactive Thresholding

Abstract Without a doubt, the most used segmentation technique, especially in the �eld of
computed tomography, is thresholding as described in Chapter 2.1. In its simplest form, this
technique uses a global threshold and binarizes the volume pointwise. Since this simple tech-
nique is fast and su�ces for many applications, a variety of similar methods was developed over
time, cf. [1–7], to only cite a few. Here, we propose a re�ned supervised thresholding technique
allowing a modi�cation of the global threshold by local geometric information. The training
data is provided interactively by the user, which is why we named the procedure explained in
the following Feature-Adaptive Interactive Thresholding, or FAITH for short.
In subsequent sections, the underlying model is constructed as an optimization problem. Also,
an iterative procedure for solving it is proposed. We further prove that that the sequence gener-
ated by that procedure converges against the optimal solution. The chapter is concluded by an
analysis of the constructed method which shows that it acts local enough such that big volumes
can be segmented e�ciently.

8.1. Related Work

The usage of additional information in thresholding is no new idea, e.g., [8] proposed an al-
gorithm for local thresholding obtained by minimizing a functional describing the projective
distance between the projection data of a CT scan and its segmented reconstruction. Here, we
focus on techniques processing volumetric data only. In particular, we cannot assume that projec-
tion data is always available, especially in context of processing big volumes where the projection
images require a huge amount of memory.
There already exist adaptive thresholding techniques which operate solely on voxel grids. No-
table examples are the works by Niblack [9] and Sauvola [10]. Both methods choose a threshold
in a local region based on the contained grayscale value distribution and proved to be highly suc-
cessful in processing text images su�ering from illumination problems. But they often perform
badly on computed tomography scans having low contrast or a lot of noise. That is, because
in local regions �lled with noise, i.e., containing signi�cant variance, both methods compute
thresholds that explicitly select that noise as material voxels. Hence, in very noisy scans the
scanned objects might not be distinguishable from noise. Such misclassi�cations hint that in the
case mentioned simple grayscale features are not su�cient. For this reason, geometric informa-
tion is expected to improve the segmentation results.
Contrary to the above, we took inspiration from an approach presented in [11] where a global
threshold was adapted locally based on the planarity of the local environment. Conceptually,
this increases the detection rate of �ne planar structures in, e.g., bones in computed tomography
scans while also thickening them. But the approach lacks �exibility as it depends on two addi-
tional hyperparameters and only allows one feature, the planarity of an environment, to have an
in�uence on the threshold.
Our approach overcomes these shortcomings and generalizes the cited model. It consists of a
training and a classi�cation phase. In the training phase the user marks training data interact-
ively. This means that a selection of voxels of the desired object and also of voxels in regions
where simple binarization fails are selected by a possibly human operator. Therefore, entirely

73

8. Feature-Adaptive Interactive Thresholding

noisy regions can be omitted by not selecting them and thus we e�ectively omit the problems
occuring when using Niblack or Sauvola while still operating adaptively and locally. The classi-
�cation phase segments a volume by local thresholding depending on the trained information.

8.2. Deriving a Regularized Thresholding Problem

We start by deriving an optimization problem which describes how a global threshold should
be adapted using local feature information for optimal segmentation. In subsequent sections, a
regularization approach is introduced to keep solutions smooth yet sparse.

8.2.1. Derivation of the Initial Problem

Firstly, we note that automatically choosing a threshold locally as demonstrated by Sauvola or
Niblack can fail, as pointed out before. Contrary, especially in the context of segmenting com-
puted tomography scans, a global binarizing threshold might su�ce for most of the desired ob-
ject. In order to optimize the segmentation in cases where the global threshold is not optimal,
we allow a modi�cation of it in local regions based on geometric features which we discussed in
Chapter 4.
We start by considering a global threshold θg provided by a user. This value depends on the data
and shall be chosen in a way such that most voxels of the desired object are captured by a plain
binarization using this threshold. In particular, this threshold lies in the valid grayscale value in-
terval [0,W] where W ≥ 0 represents the maximum possible representable voxel value given a
�xed data type. In the following, consider given training data {xj}Mj=1 consisting ofM ∈ N seed
voxels and local environments T = {Uj := RK(xj)}Mj=1 around each seed voxel. These data
items stem from user interaction and belong to the desired object, especially to regions where
simple binarization fails. To each environment Uj we further estimate an optimal binarizing
threshold θ∗(Uj), j = 1, . . . ,M , obtained via Minimum Cross Entropy Thresholding [12]. That
method estimates a threshold minimizing the binarization error in an unsupervised manner sim-
ilar to Otsu’s algorithm, but improves in the sense that it is no longer biased when the underlying
distributions are very di�erent. The minimized error describes a comparison of the source value
distributions against the segmented distributions. A detailed explanation can be found in [12].
Additionally, denote by U the set of all local environments around voxels and

F : U → Rd,
U 7→ F (U),

(8.1)

as a function which maps an environment U to a d-dimensional real feature vector.
All together, we adapt a threshold locally based on features as follows:

De�nition 8.2.1. Let θg be the global threshold and let F be the feature function of the form
shown in Equation (8.1). For a voxel xα and its respective local environment U = RK(xα) the
local threshold mapping is de�ned through

θ : U → R
U 7→ θg + βTF (U)

for weights β ∈ Rd.

74

8.2. Deriving a Regularized Thresholding Problem

We aim to train the weights β in a way such that the local thresholds are as close as possible to
the optimal thresholds. Therefore, the goal is to solve the optimization problem

β∗ = argmin
β∈Rd

1

2

M∑
k=1

|θg + βTF (Uk)− θ∗(Uk)|22

which can be rewritten compactly in matrix form as

β∗ = argmin
β∈Rd

1

2
‖Fβ −Θ‖22 (8.2)

where

F =

 (F (U1))T

...
(F (UM))T

 and Θ =

 θ
∗(U1)− θg

...
θ∗(UM)− θg

 .
Clearly, this is a classical least squares problem and can be solved as usual. However, for several
reasons we further introduce regularization to this problem.

8.2.2. Regularization

Depending on the actual data, some features might yield the same values for at least two envir-
onmentsUj which in turn renders the resulting problem ill-conditioned. Additionally, redundant
information in feature vectors can distort the trained weights. In order to counteract these e�ects,
we introduce an `2-regularization term. Consequently, the solution gets smoother and omits sin-
gularities. Furthermore, we introduce a `1-regularization term, which steers the solution towards
a sparse one, as is commonly known. Then, only important feature values, i.e., values signi�c-
antly di�erent from zero, remain in the solution vector and hence this can be interpreted as a
kind of automatic feature selection.
We use both techniques simultaneously which is also known as elastic net regularization [13].

De�nition 8.2.2. Let J be a cost function of a minimization problem.
Then de�ne the elastic net regularization of J with parameters λ > 0, µ ∈ (0, 1) by

min
x
J(x) + λ

(
1

2
(1− µ)‖x‖22 + µ‖x‖1

)
.

We see that De�nition 8.2.2 requires two additional hyperparameters λ > 0 and µ ∈ (0, 1). Note
that in literature µ = 1 is allowed as well, but we choose to omit this value to avoid singularities
during later processing. The parameter λ controls the in�uence of regularization and also how
smooth the solution will be. That is, the larger it gets, the less the actual data participates in
training, while in the opposite case we rely more on the given data and only smooth a little bit.
On the other hand, the parameter µ controls the trade-o� between smooth and sparse solutions.
So, as µ approaches 1 more emphasis is put on producing sparse vectors, while lower values
allow for less sparse but smoother solutions.
Applying De�nition 8.2.2 to our optimization problem given in Equation (8.2) yields the regular-
ized problem

β∗ = argmin
β∈Rd

1

2
‖Fβ −Θ‖22 + λ

(
1

2
(1− µ)‖β‖22 + µ‖β‖1

)
. (8.3)

In later steps, the hyperparameters λ and µwill be chosen to give a appropriate trade-o� between
smooth and sparse solutions and respecting the training data.

75

8. Feature-Adaptive Interactive Thresholding

8.2.3. Limitation to Meaningful Parameters

An immediate observation we make is that our solution vector is an element of the space Rd
without any restriction. However, since we aim to train weights for generating thresholds, we
can constrain the feasible set further such that the resulting thresholds are valid values in the
data-type-speci�c grayscale value range. For this limitation, we consider the feasible grayscale
value value interval [0,W]. The constraint is then expressed as 0 ≤ θg + βTF (Uk) ≤ W for
all k = 1, . . . ,M . In matrix form, this is equivalently expressed through the convex polytope
C = {x ∈ Rd | C x ≤ d} where

Cβ ≤ d :⇔
[
−F
F

]
β ≤

[
θg1

(W − θg)1

]
.

Since the grayscale value interval includes zero and since the global threshold stems from this
interval too, we conclude that the polytope C is nonempty as at least the point 0 is included.
Additionally, it is easy to see that polytopes of this shape are closed convex sets.
Concludingly, the �nal optimization problem we aim to solve is given by

β∗ = argmin
β∈Rd

1

2
‖Fβ −Θ‖22 + λ

(
1

2
(1− µ)‖β‖22 + µ‖β‖1

)
(8.4)

s.t. Cβ ≤ d.
The next section will describe the individual building blocks which together comprise the solu-
tion of that problem.

8.3. Solving the Problem

In order to solve the problem given in Equation (8.4), we �rst observe that this convex problem
can be expressed as sum of two convex functions. We trivially rewrite it as

β∗ = argmin
β∈Rd

f(β) + g(β) s.t. Cβ ≤ d,

where

f(β) =
1

2
‖Fβ −Θ‖22 +

1

2
λ(1− µ)‖β‖22,

g(β) = λµ‖β‖1.
(8.5)

The important part is that the function f is convex and di�erentiable, while g is convex. There-
fore, it can be solved using proximal gradient methods which intuitively are gradient descent
algorithms capable of handling non-di�erentiable parts.

8.3.1. Proximal Methods

Before actually solving Problem (8.4), we give a very brief overview over proximal methods.
As stated, a general iterative solving algorithm performs a gradient descent-like iteration with
special treatment for the non-di�erentiable parts.
To this end, we want to note that the regularized minimization problem without the constraints
introduced in Section 8.2.3 could be transformed into a binary classi�cation problem which itself
is solved using an appropriate solver as demonstrated in [14].
A general scheme for solving such problems using the proximal gradient method is sketched in
Algorithm 12. The depicted iteration is known as forward-backward splitting in literature [15].
That name is derived from the two steps in it, a forward step which is a gradient descent iteration,
followed by the a backward step executing the proximal step.

76

8.3. Solving the Problem

Algorithm 12: General proximal gradient method solver.
Function SolveProximal(f , g, d)

Input : Functions f and g as speci�ed above
Input : The dimensionality d of the solution vector
Output: The minimizer x∗ ∈ Rd

x∗ ← 0
δ ← step size
while not converged do

x∗ ← proxδg (x∗ − δ∇f(x∗))

return x∗

The method begins by initializing the solution to some arbitrary feasible vector for which we
choose the zero vector and compute a problem-dependent step size. The step size can be �xed or
be adapted in each iteration. Each iteration then �rst executes a simple gradient descent step with
the current step size. Next, that intermediate result is fed to a proximity operator proxg associated
to a proper, lower-semicontinuous function g. We call a function proper if its codomain is R ∪
{+∞} but if it is not identically equal to +∞. The proximal operator to such a function g is
de�ned as [16]

proxg(x) = argmin
z

1

2
‖x− z‖22 + g(z),

and is a convex function with respect to x. In practice, one chooses the function g in a way such
that the proximal operator has an analytic solution or can be computed e�ciently.
In Algorithm 12, we say that the iterations have converged if a �xed point is reached, i.e., if the
solution vector x∗ does not change anymore. Numerically, we check if the change of this vector
between two consecutive iterations is less than a certain problem-dependent constant.

8.3.2. Solving our Problem

In the current section, we apply the introduced techniques to our problem and give an algorithm
for solving it.

Gradient descent

We already saw that a proximal gradient method solver includes a regular gradient descent step.
That is why we �rst state the gradient of f which is given by

∇f(β) = FT (Fβ −Θ) + λ(1− µ)β.

Consequently, a gradient descent iteration concerning f can be expressed via

β(k+1) = β(k) − δ
(
FT

(
Fβ(k) −Θ

)
+ λ(1− µ)β(k)

)
. (8.6)

There are various methods to estimate the step size δ > 0 in order to guarantee convergence of
the iterations towards the minimizer, e.g., by searching the optimal step size on a line connecting
two feasible values or by simply using a constant step size. For simplicity, we focus on the
latter and will give an expression for it in later sections when we discuss the convergence of the
algorithm.

77

8. Feature-Adaptive Interactive Thresholding

`1 Proximity

A proximal part remaining to solve is the function g(x) = λµ‖x‖1 which incorporates the
convex but nonsmooth `1 norm. In general, we have to solve the minimization problem in the
proximity operator introduced earlier. For this speci�c function, it is shown in literature [15]
that the according proximal operator yields a scaled soft-thresholding function.

De�nition 8.3.1. Let T > 0 be some threshold. De�ne the soft-thresholding operator by
ST : R→ R,

x 7→ sgn(x) max{0, |x| − T}.

The solution to the proximal operator for our function g then is a scaled componentwise applic-
ation of the soft-thresholding operator on the solution vector, i.e.,

proxδg(x) = (Sδλµ(xk))
d
k=1 . (8.7)

That procedure is also given in Algorithm 13.

Algorithm 13: Elementwise soft-thresholding.
Function SoftThresholding(x, δ, λ, µ)

Input : The input vector x ∈ Rd
Input : Scalings δ > 0, λ > 0, µ ∈ (0, 1)
Output: The thresholded vector
for k ← 1 to d do

xk ← sgn(xk) max{0, |xk| − δλµ}
return x

Polytope Constraints

However, we additionally require the generated local thresholds to lie in the feasible grayscale
value range, too. In the process of solving our problem with the additional constraints, we intro-
duce another proximal step dealing with that.
First of all, it is well-known that the indicator function

ιA(x) =

{
0, x ∈ A,
+∞, x 6∈ A,

yields proxδιA(x) = PA(x) as proximal result, i.e., the proximal operator of that function is the
projection onto the according set. This is easily veri�ed as

proxδιA(x) = argmin
z

1

2
‖z − x‖22 + διA(z) = argmin

z∈A

1

2
‖z − x‖22 = PA(x)

holds true for all x ∈ Rd.
Similarly, the proximal operator for the indicator function of the polytope restricting the feasible
set is given by the projection onto it, i.e., proxδιC(x) = PC(x) where C = {x ∈ Rd | C x ≤ d}
is our polytope. Since in general there does not exist a closed-form solution for the projection of
a point onto a convex polytope, we use Hildreth’s method for inequalities [17, p. 283] to calculate
this proximal operator e�ciently.
The iterative solving algorithm for this sub-problem is repeated in Algorithm 14, in which the
vectors ei, i = 1, . . . , 2M , are the standard basis elements of R2M . Note that the number of iter-

78

8.3. Solving the Problem

ations is limited by a constant upper limit kmax, although in most cases the algorithm terminates
early. That limit was experimentally determined to be 1024 for our applications.

Algorithm 14: Projection onto a convex polytope via Hildreth’s method.
Function ProjectOntoPolytope(x, C , d, kmax = 1024)

Input : The input vector x ∈ Rd
Input : A polytope de�ned by C ∈ R2M×d,d ∈ R2M

where M is the number of polytope constraints
Input : The maximum number of iterations kmax

Output: The projected point p ∈ Rd

p← x
λ← 0(
nj = ‖eTj C‖22

)2M

j=1
// rowwise squared `2-norm

for k ← 0 to kmax do
for i← 1 to 2M do

c← min
{
λi,

di−eTi Cp
ni

}
p← p+ cCTei
λ← λ− c ei

if k > 0 and p did not change then
break

return p

Hildreth also showed that if the polytope is not empty, Algorithm 14 converges [17, Theorem 3]
against the solution of argminz∈C

1
2‖z − x‖

2
2, which is exactly the required proximal operator

proxδιC(x).

Choosing the step size

The step size δ occuring in all steps of our optimization steps is essential for convergence of the
overall algorithm. The choice of it is a well-discussed topic in convex optimization and in most
cases, δ is chosen by one of the following criteria:

• The step size is constant.

• The step size is chosen by a line search [18] in each iteration.

• The step size is constant but a momentum [19] is multiplied for acceleration.

For simplicity, we use a constant step size. However, we emphasize that accelerations like
Nesterov’s momentum method [20] may be used additionally.
In our case, we set δ = 1

L where L is a Lipschitz constant of the gradient of the function f , i.e.,
a constant L such that

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖.

79

8. Feature-Adaptive Interactive Thresholding

For our function f , we know that it is a linear function and thus Lipschitz continuous. Thus,
such a constant exists. Even better, we can give an estimate of this constant via

‖∇f(x)−∇f(y)‖ = ‖FTFx+ λ(1− µ)x−FTFy − λ(1− µ)y‖
= ‖(FTF + λ(1− µ)I)(x− y)‖
≤ ‖FTF + λ(1− µ)I‖2‖x− y‖
=
(
‖FTF‖2 + λ(1− µ)‖I‖2

)
‖x− y‖

=
(
Eigmax(FTF) + λ(1− µ)

)︸ ︷︷ ︸
=:L

‖x− y‖.

(8.8)

Thus, we obtain
L = σ2

max(F) + λ(1− µ), (8.9)
where σmax(·) is the maximum singular value of the argument matrix. The constant L is further
positive sinceATA is positive semi-de�nite for every matrixA and by choice of the admissible
values for the regularization parameters λ > 0, 0 < µ < 1 holds.
Our overall method will be guaranteed to converge for step sizes 0 < δ < 2

L , and we choose it
to have a constant value of δ = 1

L .

Overall algorithm

Given our problem rewritten as

min
β
f(β) + g(β) + ιC(β), ιC(x) =

{
0, x ∈ C,
+∞, x 6∈ C,

one is tempted to de�ne each iteration of the solving algorithm as forward-backward-backward
iteration {

x(0) ∈ Rd,
x(k+1) = PC

(
Sδλµ(x(k) − δ∇f(x(k)))

)
.

(8.10)

Indeed, it can be shown that the iterations in (8.10) converge linearly to a unique �xed point in
the convex polytope. A formal proof is given in Corollary B.4. For it to further converge against
a minimizer of our target function, the following equivalences must hold. Note that in them, the
sum∇f(x∗) + ∂g(x∗) corresponds to the Minkowski sum between sets where ∂g(x∗) denotes
the subdi�erential of the function g at x∗. Also, the value ∇f(x∗) is the only element in the
singleton subgradient of the di�erentiable function f . Furthermore, the expression (Id +δ∂g)−1

is a singleton relation because the minimum of proximal operators is unique [16, p.19]. Now, let
us assume that Equation (8.11) holds.

proxδιC+δg = proxδιC ◦ proxδg (8.11)
Then, we have the following equivalences:

0 ∈ ∇f(x∗) + ∂g(x∗) + ∂ιC(x
∗)

⇔ 0 ∈ δ∇f(x∗)− x∗ + x∗ + δ∂g(x∗) + δ∂ιC(x
∗)

⇔ (Id−δ∇f) (x∗) ∈ (Id +δ(∂g + ∂ιC)) (x∗)

⇔x∗ = (Id +δ(∂g + ∂ιC))
−1 (Id−δ∇f) (x∗)

⇔x∗ = proxδιC+δg (x∗ − δ∇f(x∗))

⇔x∗ = (proxδιC ◦ proxδg)(x
∗ − δ∇f(x∗))

⇔x∗ = PC (Sδλµ(x∗ − δ∇f(x∗))) .

(8.12)

80

8.3. Solving the Problem

We see that if Equation (8.11) holds true, the proposed iteration is a �xed point iteration if and
only if the �xed point attained is a minimizer to the presented error function.
However, the assumption in (8.11) does not hold in general.

Example 8.3.2. Let C = {(x, y)T ∈ R2 | y ≤ −2x} and let f, g be as above where A =
I, b = (1, 3)T and λ = 1 and µ = 1/2. In this setting we obtain a Lipschitz constant of
L = 1 + λ(1− µ) = 3/2 and hence for our step size we get δ = 1

L = 2/3.
Now plugging everything in we observe that

proxιC+g(b) = argmin
z

1

2
‖z − b‖22 + ‖z‖1 + ιC(z)

= argmin
z∈C

1

2
‖z − b‖22 + ‖z‖1

= (−0.4, 0.8)T ,

while on the other hand we have that
proxιC

(
proxg(b)

)
= PC

(
S1/3(b)

)
= (−0.9, 1.9)T .

We see that in this case Equation (8.11) does not hold.

On the other hand, there are a number of cases where the naive iteration still converges against
the minimizer of the target function. We will brie�y discuss these cases.

Proposition 8.3.3. If C has a nonempty interior and
∂g
(
proxιC(x)

)
⊂ ∂g(x)

holds for all x ∈ Rd, then the sequence generated by Iteration (8.10) converges against the
minimizer of our target function.

Proof. We notice that both g = λµ‖ · ‖1 and ιC are proper, convex and lower-semicontinuous
functions. Let int(X) denote the interior of a set X . Additionally, denote by dom f the e�ective
domain, i.e., the set of all points where the function f evaluates to a �nite value.
With this notation we know that int(dom ιC) = int(C) and int(dom g) = Rd and hence that
their intersection is nonempty as well. Furthermore, since both functions are convex and C has
a nonempty interior, it holds that ∂(ιC + g) = ∂ιC + ∂g as shown in [21, Theorem 23.8].
Now using [22, Proposition 2.13], Equation (8.11) holds and thus the equivalences in (8.12) are
ful�lled. As a consequence, the sequence generated by Iteration (8.10) converges against the
minimizer of our functional.

Furthermore, if the convex polytope which builds our feasible set is separable, then the naive
algorithm works too.

Proposition 8.3.4. If C is separable, i.e.,

C =
d⋂

k=1

{x ∈ Rd | 〈x, ek〉 ∈ Ck},

where ek is the k-th standard basis vector of Rd and Ck, k = 1, . . . , d, are nontrivial closed
intervals in R.
Then the iteration in (8.10) converges against the minimizer of our target function.

Proof. The `1 proximity function g is separable with functions ϕk(x) = λµ|xk|, i.e.,

g(x)
def
= λµ‖x‖1 = λµ

d∑
k=1

|xk| =
d∑

k=1

ϕk(x).

81

8. Feature-Adaptive Interactive Thresholding

Under the assumption that C is separable too, [23, Proposition 2.2] implies that Equation (8.11)
holds and thus the minimum is attained using the naive �xed point iteration.

Unfortunately, these conditions are not always ful�lled in our problem. To �x this, we adopt the
nested optimization scheme as introduced in [23] in Algorithm 15.
In our concrete setting, we choose the following parameters:

• (γn)n∈N = δ = L−1 with L according to (8.9)

• (λn)n∈N = 1

• τ = 1

The resulting iteration is shown in Algorithm 15 in which W denotes the maximum possible
value of the grayscale value range [0,W].

Algorithm 15: Iterative solver for Problem (8.4).
Function FAITH_Training(F , θg , λ, µ)

Input : Feature matrix F ∈ RM×d from seed voxel selection
Input : Global threshold θg ∈ R
Input : Regularization parameters λ > 0, µ ∈ (0, 1)
Output: Feature weight vector β ∈ Rd

C ←
[
−F
F

]
d←

[
θg1

(W − θg)1

]
δ ←

(
σ2

max(F) + λ(1− µ)
)−1

β ← 0

while β not converged do
x← β − δ∇f(β)
z ← 2Sδλµ(x)− x
while z not converged do

ẑ ← PC
(

1
2(z + x)

)
z ← z + Sδλµ(2ẑ − z)− ẑ

β ← ẑ // The last value of ẑ

return β

Firstly, the polytope matrix and o�sets are initialized as de�ned in Section 8.2.3. Also, the step
size is computed as in Equation (8.9). The algorithm proceeds by performing a gradient descent
step. Next, the nested proximal operators are evaluated by �rst solving the polytope proximal
step, followed by soft-thresholding handling the `1 proximity. The overall procedure is continued
until convergence is reached. We say that the algorithm converged if the solution vector does
not change anymore between iterations, i.e., if ‖β(k+1)−β(k)‖2 < ε for a small positive εwhich
was set empirically to 10−5. We like to point out that the zero start vector is su�cient as it is
included in every possible polytope in our setting.
Finally, this method converges against a minimizer of our functional.

Theorem 8.3.5.
The sequence generated by Algorithm 15 converges to a solution of Problem (8.4).

82

8.4. Hyperparameter Tuning

As pointed out earlier, the polytope C is always nonempty. Using that, a detailed proof is given
in [23, Proposition 4.2].

Remark 8.3.6. Algorithm 15 uses a nested optimization scheme because after plugging in the
de�nitions we obtain

proxιC(proxδg(x)) = argmin
y

1

2

∥∥y − proxδg(x)
∥∥2

2
+ ιC(y)

= argmin
y

1

2

∥∥∥∥y − (argmin
z

1

2
‖z − x‖22 + δg(z)

)∥∥∥∥2

2

+ ιC(y).

Thus, in the general case we need to solve another optimization problem at each step of solving
the surrounding problem. That particular scheme �nds the solution to the inner problem using
a classical Douglas-Rachford split [15] approach

x(0) ∈ Rd,
y(k+1) = proxδιC(x

(k)),

x(k+1) = x(k) + proxδ‖·‖1(2y(k+1) − x(k))− y(k+1).

The result then is inserted in a typical forward-backward iteration.

8.4. Hyperparameter Tuning

To this end, the only remaining unknowns in Algorithm 15 are the regularization hyperparamet-
ers λ > 0 and µ ∈ (0, 1). In order to estimate these parameters, we use a Grid Search approach,
i.e., we choose the best possible values from an a priori de�ned parameter grid.

The parameterµ controls the balance between sparsity and smoothness and hence takes values in
the interval (0, 1). We use the discrete parameter setPµ = {0.25, 0.33, 0.42, 0.50, 0.58, 0.67, 0.75}.

To determine the value range for λ we apply the approach introduced in [24] where the authors
showed that the maximum meaningful value is given by λmax(µ) = µ−1‖FTΘ‖2. From that, a
regularization path is constructed in log-space, that is, a feasible hyperparameter set given the
maximum value is de�ned by

Pλ = {ελmax(µ)10
k

N−1
log10(ε−1)}kmax−1

k=0 ,

for some ε > 0 and a number of kmax ∈ N di�erent values. In practice, we use 16 di�erent values
which su�ce as determined experimentally.

The overall hyperparameter value grid is accumulated by
P = Pλ × Pµ.

Next, we search for the best parameter combination, i.e., the tuple (λ, µ) which minimizes the
prediction error. The following procedure executes this search.

1. Select λ, µ from P .

2. Perform K-fold cross validation. For each split:
a) Split the problem in F train,F test and Θtrain,Θtest.
b) Train the model on F train and Θtrain for the current λ, µ yielding β̂.
c) Predict Θ̂ = F testβ̂.
d) Record prediction error SSRj = ‖Θ̂−Θtest‖22.

83

8. Feature-Adaptive Interactive Thresholding

3. Compute average error over folds SSRλ,µ = 1
K

∑K
j=1 SSRj .

The optimal parameter set is found by solving argmin(λ,µ)∈P SSRλ,µ.

8.5. Segmenting Big Volumes

The preceding sections presented in the prerequisites enable us to construct an algorithm for
segmenting a volume using our Feature-Adaptive Interactive Thresholding technique.

Algorithm 16: Volume segmentation using FAITH.
Input : A volume V of voxels xα,α ∈ Γd
Input : The number NF of features to use
Input : A global threshold θg
Input : Voxel selection {xβ}β∈J for J ⊂ Γd, #J = M
Output: A segmented volume of voxels
h← function computing the best NF features acc. to Section 4.6

F ←

h(xβ)T

...
h(xβ′)T

 , β, . . . ,β′ ∈ J

// λ∗, µ∗ optimal by grid search
β ← FAITH_Training(F , θg, λ∗, µ∗)
parfor xα ∈ V do

θ ← θg + βT h(xα)

ṽ(xα)← T 0,1
θ (v(xα)) // Cf.Definition 2.1.1

The procedure requires a collection of M seed voxels interactively provided by a user. That col-
lection shall contain voxels belonging to the desired object. For an input number NF of features
to use, we select those which are best for representing environments around the seed voxels,
automatically using the feature selection procedure presented in Section 4.6. Subsequently, a
matrix F containing the according feature vectors rowwise is constructed. The following step
estimates the optimal feature weights β with respect to the global threshold and the computed
features. The optimal regularization parameters are selected by a grid search. Finally, for each
voxel a feature vector and an associated local threshold is computed. The binarization then as-
signs to each target voxel either the value one if the current voxel value is bigger than the local
threshold, or the value zero otherwise.

8.6. Runtime and Memory Analysis

Similar to previous analyses, we show how FAITH is suited for segmenting big voxel volumes.

8.6.1. Runtime Analysis

Algorithm 16 starts by computing a selection ofNF optimal features given a seed voxel selection.
As discussed in Section 4.6, the choice of optimal features has a runtime of order O(M) where
M is the number of seed voxels. Next, for each seed voxel the selected features are evaluated and
stored in a feature matrix. Clearly, the runtime of this step is linear in the number of selected
voxels, i.e., it is of order O(M). The next step is the FAITH training procedure. It consists of a

84

8.6. Runtime and Memory Analysis

nested training iteration where each loop has a maximum iteration count of 1024 iterations. Let
m be the number of iterations necessary for the outer training loop. For each inner optimization
step, denote kj , j = 1, . . . ,m, its respective runtime and let k := maxj=1,...,m kj . Thus, the
runtime of this part has a complexity of O(mk). Although this factor will depend on M in
some way, we want to note that typically the number of seed voxels is very small compared to
the overall number of voxels in the volume. Finally, we apply a binarization technique for each
voxel which is linear in the number of voxels.
Overall, the runtime complexity of segmentation using the presented Feature-Adaptive Interact-
ive Thresholding technique is of order O(M +mk +N).

8.6.2. Memory Requirements

The initial memory requirements of Algorithm 16 are of order O(M) for both the feature selec-
tion and the feature computation. The training procedure itself needs to keep the matrix C and
the vector d describing the convex polytope C in memory, as well as the solution and additional
computation vectors which are all of dimensionality d which is the constant number of feature
values after feature selection. The following mask-based binarization procedure requires only a
small environment around each voxel in memory which is of negligible size.
Hence, the overall memory requirements scale linearly with the number of voxels provided in-
teractively.

85

9. Support Vector Machine-Based
Segmentation

Abstract Thresholding techniques su�er from some shortcomings, most notably that the seg-
mented component must consist of voxels having grayscale values in the upper region of the
grayscale value distribution, which is often not the case. This chapter will introduce a more
sophisticated segmentation method using Support Vector Machines (SVMs) for classifying voxels.
The following section describes what Support Vector Machines are and how they work, also
listing advantages we gain by using that classi�er, followed by a description of how it is used
to perform voxelwise segmentation of volumetric data. This is continued by a discussion of
how the model hyperparameters are tuned in our case and also how a trained model can be
retrained and applied on another dataset. After that, con�dence values are introduced. These
are representations of how certain the system was at classifying a voxel to belong to the desired
part. Finally, the overall segmentation procedure is explained and its amortized runtime behavior
and memory requirements are analyzed.

9.1. Related Work

Support Vector Machines are well-understood classi�ers. As such, they are very often used for
segmentation in various forms and in a lot of applications: Segmentation of images or volumes
using Support Vector Machines yields about 20 million results on a Google search, of which
600,000 entries are Google Scholar articles alone. Applications are not limited to image pro-
cessing but cover nearly every possible �eld of research.
Comprehensive surveys are given in [25, 26].
Speci�cally in image or volume processing, we can identify two main uses for a SVM:

1. Classi�cation of whole images/volumes.

2. Pixelwise/voxelwise classi�cation.

Very often, the �rst type is employed. That is, interesting sub-regions of images or volumes are
identi�ed and the extracted parts then are classi�ed using SVMs into di�erent categories. Notable
applications include Computer Aided Diagnosis systems for identifying cancer and geological
evaluations (cf. [27–30]) or identi�cation and labeling of objects found with object detection
frameworks (cf. [31–34]).
On the other hand, some approaches aim for voxelwise classi�cation, i.e., for each pixel or voxel
in the image or volume, respectively, a trained model assigns a class label. This method is partic-
ularly popular in medical applications for segmenting tumors and other anomalies in magnetic
resonance images as demonstrated in [35–41] to just name a few.
Nearly all existing segmentation approaches using Support Vector Machines follow a noninter-
active approach, i.e., they require manually annotated images/volumes as training data. Clearly,
the creation of these labeled datasets is very cumbersome and improvement by retraining is pos-
sible only to a limited extent as additional labeled data is required.
Due to this, we propose an interactive approach which utilizes very sparsely annotated training
data. We conjecture that given a high demand of volumetric segmentation such interactive tech-

87

9. Support Vector Machine-Based Segmentation

ξi

ξj

margin
y = -1

y = +1

Figure 9.1.: Soft-margin SVM dataset separation.

niques gain importance, although currently only few methods exist. We want to highlight [42]
and [43] which segment images and volumes, respectively, interactively, but using only color
information. To the best of our knowledge, there currently do not exist approaches exploiting
local geometry.

9.2. Support Vector Machines

Before we continue on how we use Support Vector Machines for voxelwise segmentation, we
want to brie�y recapitulate how they work and how they can be utilized for our purpose.

9.2.1. What are SVMs?

Support Vector Machines are maximummargin classi�ers, i.e., they aim to �nd a hyperplane that
separates two classes from each other. Denote by xi ∈ Rd a d-dimensional feature vector and by
yi ∈ {±1} its label which paired together form a sample of the training data for i = 1, . . . ,M .
The datasets that shall be separated are indicated by di�erent labels.
A visualization is given in Figure 9.1.
There, two clusters (circles and stars having labels −1 and +1, respectively) are separated by
an optimal separating hyperplane (the solid red line) that maximizes the margin while simultan-
eously minimizing the errors made by misclassi�cations. The latter are depicted as data items
to which a slack term ξi > 0 is assigned. The support vectors de�ning the decision function are
surrounded by green rectangles.
This optimal separation is expressed as the optimization problem [44]

min
w,b,ξ

1

2
‖w‖22 + C

M∑
i=1

ξi

subject to yi(w
T ϕ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . ,M,

88

9.2. Support Vector Machines

whose derivation stems from a classical paper by Vapnik [45]. It describes a soft-margin SVM,
i.e., a maximum margin separator allowing for some classi�cation errors in case the dataset is
not fully separable. This approach further maps data elements into an often higher-dimensional
feature space using a function ϕ.
However, we actually use a modi�ed version of it, namely the ν-SVM. The according problem is
given by [44] as

min
w,b,ξ,ρ

1

2
‖w‖22 − νρ+

1

M

M∑
i=1

ξi

subject to yi
(
wT ϕ(xi) + b

)
≥ ρ− ξi,

ξi ≥ 0, ρ ≥ 0.

(9.1)

The reason we use this version is because the hyperparameter ν ∈ (0, 1] can be bounded from
above by [44]

ν ≤ νmax :=
2

M
min{#yi = +1,#yi = −1} ≤ 1. (9.2)

Remark 9.2.1. At this point, we want to remind the reader that a hyperparameter is a parameter
of an optimization problem which is not trained by the solver for the problem. Instead, it re-
quires manual optimization. On the other hand, a variable which is trained during solving of the
problem is called a parameter.
The given problem is solved in its dual form

min
α

1

2
αTQα

subject to 0 ≤ αi ≤ 1/M, i = 1, . . . ,M,

1Tα ≥ ν, yTα = 0,

where Qi,j = yiyjk(xi,xj), i, j = 1, . . . ,M , encodes the kernelization, i.e., the lifting of data
elements into a high-dimensional feature space using a kernel k. In our application, we use a
radial basis function kernel of the form

k(x,y) = exp
(
−γ‖x− y‖2

)
where γ > 0 is an additional hyperparameter.
Any training procedure applicable thus returns weights α and a bias b, where the latter is cal-
culated from the KKT conditions after calculating the weights. The derived decision function is
given in De�nition 9.2.2.

De�nition 9.2.2. Let M ∈ N and (xi, yi), i = 1, . . . ,M , be some training data. Furthermore,
denote by k some kernel function function and let αi, i = 1, . . . ,M , and b be the trained weights
as just explained and the trained bias term, respectively.
De�ne the SVM decision function by

Su : Rd → R,

x 7→
M∑
i=1

yiαik(xi,x) + b.

Classical SVM classi�cation predicts a label value in {±1} as shown in De�nition 9.2.3.

89

9. Support Vector Machine-Based Segmentation

De�nition 9.2.3. Consider the setting of De�nition 9.2.2.
De�ne the SVM classi�cation function by

S : Rd → {±1},
x 7→ sgn (Su(x)) .

9.2.2. Why SVMs?

Having discussed the basic principle behind Support Vector Machines, the question occurs to
why we choose to use a SVM instead of other classi�ers.
First of all, we see that a Support Vector Machine only needs its support vectors and their as-
sociated weights in order to make a classi�cation decision (as for all other training data ele-
ments the weights are zero). Since in practice the number of support vectors is signi�cantly
less than the count of training data instances, many computations can be avoided and we ob-
tain a time and memory e�cient procedure. Consequently, only few data items are required
for an optimal decision boundary and thus often only very sparse image/volume annotations
are required. This saves the very time-consuming task of manually annotating whole images or
volumes as would be the case for, e.g., deep learning algorithms. Furthermore, the regularization
involved makes the system robust against mis-labeled training data items while other techniques,
like nearest neighbor classi�cation, typically su�er severely from this. In addition, an advantage
over other methods is the kernelization which allows for nonlinear transformations in an e�cient
way without having to design the feature mapping function ϕ used in Formula (9.1) explicitly.
Rather, only the similarity between feature vectors in the feature space must be modeled. We
do so by using a radial basis function kernel as we expect our features to group similar voxels
together while distinguishing between voxels belonging to di�erent parts, and thus obeying a
Gaussian distribution. Another often stated advantage is that Support Vector Machines provide
a good out-of-sample generalization. That is, bias in the training dataset can be compensated to
a certain degree by appropriately tuning its hyperparameters [46].
On the other hand, Support Vector Machines naturally also have disadvantages, in particular that
they assume each voxel to be independent from all others. Hence, they do not consider spatial
relations between voxels on their own. Therefore, we overcome this limitation to some extent by
considering neighborhoods of voxels as well. Additionally, one of the most cited disadvantages of
SVMs is that their trained parameters are di�cult to interpret [46, 47], if at all, since they describe
a hyperplane in some feature-space de�ned by the according kernel function. Nevertheless, due
to interpretable building blocks in form of the chosen features and kernel, misclassi�cations are
still interpretable.

9.2.3. Voxelwise Classification

Following a description of Support Vector Machines in general, we now describe how we utilize
SVMs for voxelwise classi�cation.
As we do not assume that labeled volumes are present, we employ an interactive method. Hence,
we require a user to mark voxels through some method and assign a label to it. Speci�cally
in our setting, we choose simple mouse clicking where one mouse button corresponds to the
positive label, i.e., that the selected voxel belongs to the part that shall be segmented. On the
other hand, another button signals that the negative label shall be assigned to the selected voxel,
which is interpreted as a voxel not belonging to the desired part. In this way, we allow for very
sparse annotations while simultaneously encoding domain-speci�c knowledge in the labeling
process. Other mechanisms, e.g., paint brush tools, are possible as well, but minimum user e�ort
is best supported by individual voxel clicking. Next, the given initial seed voxel selection and

90

9.3. Con�dence Values

an environment size K , which is also determined by the user ad hoc, are used to extract local
environments around them. So, for each seed voxel xα in the collection of seed voxels a local
environment of sizeK×K×K centered around it, as de�ned in De�nition 1.4.6, is extracted from
the volume. From each environment features are extracted according to some feature selection.
The latter might be speci�cally selected by the user based on a-priori knowledge, or automatically
selected as described in Section 4.6. This results in one feature vector for each seed voxel. The
collection of these vectors then is used for training a ν-SVM with its primal problem given in
Problem (9.1). Having a trained system at hand, we use it for voxelwise classi�cation. Thus, for
each voxel, we again extract a local region of size K × K × K voxels and compute the same
features for it. The resulting vector is fed to the machine which classi�es the voxel as positive,
i.e., that it belongs to the desired part, or negative otherwise. The �nal result is a volume of same
size where the Support Vector Machine classi�ed each voxel accordingly.

9.3. Confidence Values

Typically, Support Vector Machines yield labels as classi�cation result (±1 in the binary case).
However, such a hard assignment cannot assign ambiguous voxels, i.e., voxels that do not clearly
belong to either class, with certainty. We already encountered a similar behavior when discussing
K-Means. For the latter, we overcame that di�culty by using a probabilistic approach instead to
describe how likely the classi�cation of a voxel was. In order to also get such a soft assignment of
voxels to either the positive or the negative class when using a Support Vector Machine, we use a
well-known technique called Platt scaling [48]. Basically, Platt proposed �tting a sigmoidal model
to the distribution of the decision values emitted by the function Su given in De�nition 9.2.2.
Each value Su(xi), i = 1, . . . ,M , represents the distance from each data item to the trained
margin. Now, a sigmoidal curve is �tted to these prediction values with the goal to estimate the
posterior probability that the voxel belongs to the desired part. Hence, the goal is to �t a curve
parameterized with values A,B such that

P (yx = 1 | Su(x)) =
1

1 + exp (A Su(x) +B)

holds. Typically, the estimation of A and B is performed using a maximum likelihood approach.
To improve robustness, estimation procedures often additionally perform cross validation on the
dataset and choose the best parameters from it. Having both parameters estimated from the pre-
diction values and labels of the training data, the same formula is applied to predict these prob-
abilities. Thus, instead of a binary decision now each voxel is assigned the posterior probability
that given the trained model the current voxel belongs to the component under investigation.

De�nition 9.3.1. Given constants A,B ∈ R obtained via Platt scaling, rede�ne the SVM
segmentation operator by

S(x) =
1

1 + exp (A Su(x) +B)
.

Since voxel values are discrete values in some interval depending on the data type, we assign to
each voxel the computed probability scaled to [0, 100] and rounded to the closest integer. We call
these integers con�dence values. The Support Vector Machine implementation we use internally
uses a slightly improved method. Details can be found in [44]. The segmented volume then
is better interpretable why a voxel gets selected as the derived values encode how certain the
system was when making the decision. So, a con�dence value of 100 expresses that the model is
100 percent sure that the voxel is part of the object that shall be segmented. Conversely, a value
of zero encodes that it shall not be selected at all.

91

9. Support Vector Machine-Based Segmentation

In addition to making the result better interpretable, the (in principle) continuous value range
allows for further postprocessing, namely thresholding on con�dence values. Therefore, using
Platt scaling it is possible to select all voxels which are determined to belong to, e.g., 80 percent
to the object we are interested in. All voxels having a con�dence value less than the speci�ed
threshold will be discarded.

9.4. Hyperparameter Tuning

The ν-SVM model from Equation (9.1) and its associated dual problem depend on the hyper-
parameter 0 < ν ≤ νmax where νmax was de�ned in Equation (9.2). This hyperparameter is not
trained during the model estimation itself, but must be provided a priori. We de�ne the parameter
set for ν to consist of equidistant samples of that range. Speci�cally, we choose

Pν =

{
i

100
νmax | 10 ≤ i ≤ 100, i ∈ N

}
as set of valid parameter values.
Other hyperparameters include parameters to the kernel function. In our application, we choose
a radial basis function kernel with parameter γ > 0. As is common practice for estimating these,
we sample the parameter set in log-space. In our application, we �x the according set to

Pγ = {2g | −6 ≤ g ≤ 6, g ∈ Z} ,
where the boundaries for g were found experimentally.
The overall set of admissible hyperparameter values is given by P = Pν × Pγ .
To estimate the best pair of hyperparameters, we perform a Grid Search using 7-fold cross valid-
ation similar to the procedure used in Section 8.4. Denote byX×y ⊂ RM×d×RM the training
data. Note that the hyperparameter tuning takes place before the estimation of the Platt scaling
coe�cients, hence the SVM predictions used here are label values in {±1}.

1. Select ν, γ from P .

2. Perform K-fold cross validation. For each split:
a) Split the problem inXtrain,Xtest and ytrain, ytest.
b) Train the model onXtrain and ytrain for the current ν, γ.
c) Predict ŷ fromXtest.
d) Record prediction error SSRj =

∑N
i=1 1(ŷi 6= ytest,i).

3. Compute average error over folds SSRν,γ = 1
K

∑K
j=1 SSRj .

The optimal parameter set is found by solving argmin(ν,γ)∈P SSRν,γ .

9.5. Model Serialization and Iterative Training

Although our approach is highly �exible as it trains a model interactively, it is often preferable
to simply apply a pretrained model. When Support Vector Machines are used, this can be accom-
plished by serializing the trained SVM, i.e., writing metadata and the trained support vectors to
disk. The produced �le can be read later and the loaded model can be directly applied on some
dataset. Necessary metadata for reapplying a serialized SVM includes the environment size used
for extracting environments around voxels and the feature selection de�ning what features are
extracted from them. Additionally, the trained hyperparameters are serialized too. The standard

92

9.6. Segmenting Big Volumes

serialization provided by the implementation of our classi�er simply writes the support vectors
to disk. When a persisted model shall be used, its interna are read from disk. Next, the volume
will be segmented according to the method described in Section 9.2.3.
While this approach can successfully apply a previously trained model on another voxel volume,
the result often does not produce perfect results. Instead, additional training data need to be
provided to further improve the segmentation. That new information in combination with the
one read from disk then trains a new model which respects both. However, this is not possible
using the standard serialization relying solely on the support vectors, for the reason that the
trained hyperplane can change signi�cantly. In detail, let To be the complete training dataset of
the serialized model and denote by T so ⊆ To the support vectors of the serialized model. Let Tn
be the additional training data. The optimal hyperplane maximizing the margin then depends
on training data instances from the set To ∪ Tn. However, since our model is a soft-margin
SVM, misclassi�cations are allowed. Hence, the new optimal separating hyperplane might rely
on training data instances which stem from To\T so to maximize the margin. But the standard
serialization prevents this as those instances are not persisted.
Therefore, we instead serialize all unscaled training feature vectors. When the model is loaded
and new data items are provided interactively, both form a new training dataset which is newly
scaled and used for training.

9.6. Segmenting Big Volumes

The �nal procedure for interactive voxel data segmentation using Support Vector Machines is
depicted in Algorithm 17 in which S : Rd → {0, . . . , 100} denotes the SVM decision function
yielding con�dence values.
The procedure starts by optionally reading a serialized model and the persisted feature vectors
and labels from disk. We consider this �rst step as a single operation of constant time complexity.
Next, the iterative procedure starts where the user interactively selects additional seed voxels
and according labels. Around these seed voxels local environments are extracted and feature
vectors computed. With all training data combined, the Support Vector Machine is �tted and the
volume is segmented. Both steps are repeated until the segmentation result is satisfactory. A
�nal optional step serializes the model to disk so it can be reapplied.

9.7. Active Learning

Active learning is an emerging branch of machine learning which considers incremental data
labeling. In detail, a model is trained on limited training information. The trained model then
selects a set of yet unlabeled instances which shall be labeled by an oracle, e.g., a human. The
additional labeled information now is fed back to the model which is retrained on the overall
information. Additional variants of this methodology can be found in [49]. The interesting ques-
tion remaining is how the model shall select the set of unlabeled samples. [49] lists several query
strategies, including but not limited to

• Uncertainty sampling,

• Query-By-Committee, and

• Estimated error reduction.

Brie�y summarized, uncertainty sampling selects instances which it is “uncertain” about. Query-
By-Committee instead trains multiple models with di�erent objectives on the same dataset and

93

9. Support Vector Machine-Based Segmentation

Algorithm 17: Voxelwise segmentation using Support Vector Machines.
Function SVMSegmentationImpl(V , f , L,K , F)

Input : Input volume V of voxels xα,α ∈ Γd
Input : Seed feature vectors f = {fβ}β∈Γd′

Input : Associated labels L = {`β}β∈Γd′

Input : Environment size K ∈ 2N + 1
Input : Feature computation function F
Output: A segmented volume
// Training includes hyperparameter tuning
Train SVM using feature vectors f and labels L
parfor xα ∈ V do

r ← F (RK(xα)) // Compute features
ṽ(xα)← b100 S(r)c // Scale to discrete range

Function SVMSegmentation(V ,K , F)
Input : Input volume V of voxels xα,α ∈ Γd
Input : Environment size K ∈ 2N + 1
Input : Feature computation function F
Output: A segmented volume V ′

(fs, Ls)← de-serialized feature vectors and labels // (optional)
(fi, Li)← ((), ())

repeat
// Select seed voxels and labels on a grid Γd′ ⊂ Γd

fi ← (fi, {F (RK(xβ))}β∈Γd′)

Li ← (Li, {`i}β∈Γd′)

V ′ ← SVMSegmentationImpl(V , (fs, fi), (Ls, Li),K , F)
until V ′ is satisfactory

Serialize model // (optional)
return V ′

94

9.8. Runtime and Memory Analysis

makes its decision on samples where the most models disagree with each other. Lastly, estimated
error reduction aims to reduce the generalization error. That is, it adds any of the unseen data
points to the training set, performs a full training and classi�cation and decides afterwards if the
selected sample is relevant.
It is easy to see that Query-By-Commitee, estimated error reduction and related methods have a
high computational e�ort since many models must be trained over and over again until a satis-
factory result is achieved. The only model computationally attractive in our setting is uncertainty
sampling, which is especially suited for probabilistic classi�cation which we aim to do already.
In the �eld of text processing, [50] propsed an active learning approach to �nd the optimal SVM
hyperplane by actively labeling instances closest to the currently estimated hyperplane. This
principle was used in a similar fashion in [51] and [52]. The same idea, yet implemented dif-
ferently, is used in [53] where the q most ambiguous samples are selected automatically in each
iteration for some a priori known number q.
While the mentioned approaches all rely on reducing the space of hyperplanes separating the
feature space, an alternative approach based on the probabilistic model using Platt scaling can
be implemented. Since we use Platt scaling to derive the con�dence values, we can formulate
an active learning approach directly on these values. For con�dence values as introduced in
De�nition 9.3.1 the highest uncertainty is indicated by a con�dence value of 0.5. Thus, we can
rewrite the prediction rule to resemble uncertainties.

De�nition 9.7.1. Let S(x) be a con�dence value according to De�nition 9.3.1 and let δ ≥ 0.
De�ne the uncertainty value U(x) by

U(x) = exp

(
−δ tan

(
π

∣∣∣∣S(x)− 1

2

∣∣∣∣)) .
The parameter δ controls the locality of the uncertainty values around the critical con�dence
value 0.5. Hence, the larger δ gets, the more the uncertainty concentrates around a con�dence
of 50 percent, while lower values consider less uncertain predictions also. This trend is depicted
in Figure 9.2. Applying the uncertainty function on our con�dence values directly yields a new
representation showing which parts of the volume are still ambiguous or less well explained.
Section 12.4 describes the modi�ed work�ow on an example volume.

9.8. Runtime and Memory Analysis

We conclude the current chapter by a brief analysis of the amortized runtime and memory re-
quirements of Algorithm 17.

9.8.1. Runtime Analysis

We consider the �rst step of Algorithm 17 as a single I/O operation and thus of constant time
complexity. Although the runtime of reading the feature vectors from disk conceptually depends
on the number of serialized vectors, the reading operations are fast enough to disregard that fact.
The following segmentation procedure �rst trains an SVM. In many applications, the runtimes
are reported to be of quadratic or cubic complexity in the number of samples while being linear
in the feature vector dimensionality1 which somewhat coincides with the solving complexity re-
ported in the description of the implementation we use [44]. A worst-case runtime analysis given
in [54] concludes a computational complexity of O(M5 logM/εM) where M is the number of

1This heavily depends on the given dataset, these estimations stem from https://scikit-learn.org/
stable/modules/svm.html#complexity.

95

https://scikit-learn.org/stable/modules/svm.html#complexity
https://scikit-learn.org/stable/modules/svm.html#complexity

9. Support Vector Machine-Based Segmentation

0.00 0.25 0.50 0.75 1.00
Confidence value

0.0

0.2

0.4

0.6

0.8

1.0

Un
ce

rta
in

ty

Uncertainty function
=0.5
=1
=2
=4
=8
=16

Figure 9.2.: Uncertainty function for several locality parameters.

96

9.8. Runtime and Memory Analysis

training data items and εM is some value depending on M which is involved in the estimation
of the number of iterations. However, [55, p.10] reports that typically solvers are of quadratic or
cubic order with respect to the number of seed voxels, depending on the regularization hyper-
parameter. Due to a hyperparameter tuning, one can actually expect the runtime to be multiplied
by #P/NT where P is the set of admissible hyperparameters and NT is the number of threads
that can be used, as all sub-problems during the grid search can be solved independently from
each other in parallel. However, we emphasize that the number M describes the quantity of
training samples which were selected interactively. Thus, we expect M to be much smaller than
the number of voxelsN of a volume in practice. After training, the segmentation step is executed
where each voxel is classi�ed by the trained machine. Clearly, that step is of linear runtime. The
presented instructions are repeated until the result is satisfactory which needs to be decided by
the user, e�ectively multiplying the aggregated complexity by the number of iterations k ∈ N.
Overall, we conclude that our segmentation procedure based on Support Vector Machines has
a complexity of O(k poly(M)N) where typically deg poly(M) ≤ 5. Under the assumption
that the training data is selected interactively and thus M is much smaller than N , the runtime
e�ectively decreases to O(kN).
Hence, the proposed algorithm is approximately linear in the number of voxels and depends
on the iterations until the result is good enough. Experiments hint that even the number of
iterations is often very small to achieve good results, making the algorithm even more suitable
for processing big data sets.

9.8.2. Memory Requirements

Regarding the memory requirements, Algorithm 17 needs to keep the training data available
at all times, i.e., it needs O(Md) memory where M is the number of training data items and
d is their dimensionality. The segmentation phase only needs a small environment around the
current voxel in memory, similar to memory analyses made for other algorithms in this thesis.
Overall, we need to keep the support vectors and the current region in memory, thus e�ectively
having a memory complexity of O(Md). Therefore, the proposed algorithm is well suited for
handling big voxel volumes.

97

10. Multiresolution Segmentation

Abstract The segmentation algorithms presented thus far are designed to consume as few
memory as possible and to be time-e�cient in the sense that they e�ectively have linear runtime
complexity with respect to the number of voxels. However, a linear runtime for voxelwise clas-
si�cation still implies that probably costly operations are executed for each individual voxel.
Moreover, that action is often redundant since typically large areas of a voxel volume will not
be selected as segmented voxels at all. As an example, consider a computed tomography scan of
a car, in which some components only appear in few regions, e.g., the springs which only occur
near the tires. Hence, most regions of voxels in such a scan will not get selected as being part of
the object under investigation anyway. Exploiting this knowledge, the current chapter proposes
a general multiresolution segmentation framework which aims to decrease algorithm runtimes
signi�cantly with only minor de�ciencies in terms of segmentation performance.
First, a brief overview over existing approaches to multiresolution volumetric segmentation is
given. Next, our framework is introduced in a general way by explaining algorithmic details to
multiresolution segmentation common to all techniques proposed in this thesis. The following
section applies the framework to FAITH and our SVM procedure presented in preceding chapters.
Finally, the asymptotical runtime behavior and memory consumption are estimated for when a
multiresolution approach is applied on top of a voxelwise segmentation method.

10.1. Related Work

The described challenges regarding long runtimes of voxelwise algorithms do occur increasingly
as the available data size and measurement capabilities are increasing. Hence, research was
already conducted to decrease the runtime using multiresolution methods. Note that we focus
on voxelwise segmentation here, i.e., the creation of voxelwise masks and thus do not consider
previous work on nonvoxelwise methods over multiple resolution levels.
At this point we want to brie�y recapitulate recent advances in segmentation with convolutional
neural networks. They have proven to provide excellent segmentation results and they provide
a multiresolution approach inherently. Such networks also do extract features across multiple
scales on their own. A survey about their uses in medical imaging which especially includes
segmentation of organs like the prostate is given in [56]. However, we already mentioned the
main disadvantage of neural networks in our scenario as they typically require a big training
dataset, which is often not available in our use cases.
Closer to our �eld of applications are multiresolution approaches that perform segmentation
using a dedicated classi�er trained on explicit features, as they most likely can achieve good
performance even with few training data items. Similar to the �eld of Support Vector Machine-
based segmentation, most approaches follow a noninteractive approach, i.e., they use a priori
annotated training data to train some classi�er. Here, we want to speci�cally cite [57] and [58],
respectively, when mentioning a multiresolution segmentation approach in 2D. The �rst paper
describes features across multiple scales using a Wavelet and Curvelet-based analysis, and using
a Support Vector Machine on that feature vectors to classify images if they contain breast tumors.
Contrary, [58] deals with a more general video segmentation toolchain which acts similar to our
approach. However, it segments images using a variant of an Expectation Maximization-based

99

10. Multiresolution Segmentation

method on each resolution level and predicts pixel values by a weighted sum of the individual
predictions. The hierarchy is implemented by a discrete wavelet transform of an image. They
also propose the usage of a three-dimensional wavelet analysis operating on a stack of images
in a video which unfortunately scales quadratically with the number of pixels in each image.
When dealing with three-dimensional data which explicitly excludes videos that are actually
2+1-dimensional images, i.e., image stacks, we especially want to cite [59] and [60]. [59] actually
implements a 3D segmentation procedure for segmenting prostates from ultrasound images by
training three SVMs for each volume axis. For each one, features are extracted using a multiresol-
ution analysis via the discrete wavelet transform. After training, to each voxel three con�dence
values are assigned and a probabilistic vote decides from that values if the voxel is segmented.
On the other hand, Bhalerao et al. [60] proposed a somewhat similar method compared to the
one we will introduce in subsequent sections. As such, they construct a Gaussian pyramid and
perform a segmentation procedure on the coarest level. However, they perform full classi�cation
and then propagate the results from the coarsest down to all resolution levels and adaptively re-
�ne segmentation boundaries. Speci�cally for Support Vector Machine-based segmentation, we
further want to highlight [61]. Although dealing with object detection rather than pixelwise
segmentation, their work incorporates several resolution levels and processes them simultan-
eously with a dedicated SVM for each scale in a sliding window approach. The results are then
fed into a neural network where each neuron itself is a Support Vector Machine which at its
output neuron yields the �nal classi�cation.
Regarding interactive segmentation of voxel volumes in a multiresolution manner, even less work
was published to date. The few examples include [62] in which the authors propose an interactive
active shape model which extracts features from multiple scales, but processes the data in its
original format. To our best knowledge, the method available closest to our approach is [63].
In it, the authors propose both an interactive and a multiresolution approach for segmentation
of retinal image data in 3D. However, the biggest di�erence is that they limit their features to
statistical as well as simple gradient-based features and that they compute feature vectors as
weighted averages of features over all di�erent scales. Hence, they still compute the features for
each voxel on each scale instead of propagating only relevant regions.
The following sections will introduce a new multiresolution segmentation procedure well suited
for di�erent kinds of segmentations, be it based on thresholding (cf. FAITH) or on Support Vector
Machines. Additionally, the framework introduces multiresolution volumes which are views on
voxel data interpreting it on coarser resolutions without the need to persist that data in memory
or disk. We will also see the bene�ts by choosing interesting regions on a coarse level and only
considering the selected ones on �ner scales.

10.2. Multiresolution Volumes

In context of multiresolution segmentation, we need to operate on several resolution levels of
a volume. In the current section we will introduce the notion of a multiresolution volume as a
generalization of volumes as introduced in De�nition 1.4.1. Notationally, the following sections
will deal with 1 ≤ ` ≤ `max ∈ N resolution levels. In this notation, 1 represents the coarsest
resolution level while on the other hand `max denotes the �nest resolution level.

10.2.1. Definition

Before we formally de�ne multiresolution volumes, we �rst introduce the notion of a sampling
policy. Such a policy de�nes how a voxel value on a coarser resolution level is computed from the
voxels it covers on a higher resolution. For this, assume that we are given representations V `, V `′

100

10.2. Multiresolution Volumes

for resolution levels 1 ≤ ` < `′ ≤ `max on associated grids Γ1
d ⊆ Γ`d ⊂ Γ`

′
d ⊆ Γ`max

d = Γd.
Following the de�nition a sampling policy, these representations are introduced formally.
In the following, denote by p`(xα) the position function attributed to a volume on resolution
level `. Hence, for each resolution level `, the function p` : V ` → Γ`d,xα 7→ α maps a voxel of
a volume on a certain scale to its position within its volume, i.e., relative to its grid.

De�nition 10.2.1. Denote by `max ∈ N the number of resolution levels available for some
volume V . Let V `′ be the volume on a resolution level `′ ∈ {1, . . . , `max} and accordingly
consider V ` the volume on a coarser level ` ∈ {1, . . . , `′}.
The set of covered voxels S`

`′(xα) by a voxel xα ∈ V ` is de�ned by

S`
`′(xα) =

{
xβ ∈ V `′

∣∣ p`′(xβ) = 2`
′−` p`(xα) + k, |k| ≤ 2`

′−` − 1, k ∈ N3
}
.

Its cardinality is given by #S`
`′(·) = 8`

′−` voxels.

Having the notion of covered voxels at hand, we now can de�ne what a sampling policy is.

De�nition 10.2.2. Let x be any voxel of a volume on a coarse resolution level ` and denote by
`′ a �ner resolution level, i.e., 1 ≤ ` ≤ `′ ≤ `max.
A sampling policy is a mapping

Υ`
`′ : V

` → R≥0

xα 7→ v(xα) = Υ
(
S`
`′(xα)

)
,

which computes a voxel value from the set of its covered voxels according to some function Υ.

Conceptually, a sampling policy according to De�nition 10.2.2 is intended to compute the value
of a voxel xα on a coarser level ` from its covered voxels S`

`′(xα) on a higher resolution `′ as
introduced in De�nition 10.2.1. Note that a sampling policy might also use the position of the
voxels, even though we use the voxel values only.
Depending on the application, di�erent sampling policies can be of advantage, e.g., a discrete
downsampling which computes the new voxel value by simply choosing the value of a speci�c
voxel of the covered region. However, a discrete downsampling often discards important in-
formation. To keep that information available in the downsampled volume, we instead use an
averaging strategy as given in De�nition 10.2.3.

De�nition 10.2.3. Let xα be any voxel of a volume on a coarse resolution level ` and let S :=
S`
`′(xα) be the set of voxels on level `′ covered by xα.

Then the averaging sampling policy computes its value from its covered voxels by calculating
their arithmetic mean, i.e.,

Υ`
`′(xα) = Υ(S) =

1

#S

∑
y∈S

v(y)

for resolution levels 1 ≤ ` ≤ `′ ≤ `max.

We emphasize again that alternatively many di�erent sampling policies can be used, examples
include choosing the maximum of the covered voxel values or applying �lters, e.g., Gaussian
�ltering.
Using sampling policies, we can interpret a volume at di�erent resolution levels and combine
these into a multiresolution volume.

101

10. Multiresolution Segmentation

De�nition 10.2.4 (Multiresolution Volume).
Let (Γd, fv, V) be a volume according to De�nition 1.4.1 for which `max ∈ N resolution levels
are available. We call this the volume at the �nest resolution level.
This induces coarser volumes(

Γ`d = Γb2`−`maxdc, f
`
v , V

` = {xα | α ∈ Γ`d}
)
, ` = 1, . . . , `max − 1.

The voxel value function f `v computes its values now based on the speci�ed sampling policy, thus
the value function changes to

v` : V ` → R≥0

xα 7→ f `v(α) := Υ`
`max

(xα),

which uses the original voxel value function in turn.
A multiresolution volume for `max resolution levels is the tuple(

V 1, . . . , V `max

)
,

encompassing the volume interpretations for all levels.

With the interpretation of a volume on di�erent scales, not only do the voxel values change
between resolution levels, but also the dimensions of the volume. Hence, we obtain new iterable
Regions of Interest.

De�nition 10.2.5. LetK ∈ 2N+1 be an odd environment size and let d ∈ N3 be the dimensions
of a given volume on its �nest resolution level. De�neK2 := bK/2c1.
Then, the iterable region of the volume at resolution level ` = 1, . . . , `max is given similar to
De�nition 1.4.5 by (

K2,
⌊
2`−`maxd

⌋
− 2K2

)
,

where the �oor operation is applied componentwise.

A question remaining is what the maximum number of resolution levels for a given volume is.
Fortunately, the answer can be given explicitly.

Lemma 10.2.6. Let K ∈ 2N + 1 be an odd environment size and let (d1, d2, d3) ∈ N3 be the
dimensions for a given volume on the �nest resolution level.
Then the maximum number of resolution levels for that volume is

`max = 1 +

⌊
log2

dmin

K

⌋
,

where dmin = minj=1,2,3 dj is the smallest volume axis dimension.

Proof. De�ne K2 := bK/2c. We immediately see that 2K2 = K − 1 holds since K is odd. For
the coarsest resolution level ` = 1 to yield a valid volume, the iterable Region of Interest at that
level must span at least one voxel. The smallest dimension of the iterable RoI at the coarsest
resolution is given in De�nition 10.2.5 by b21−`maxdminc − 2K2.
Hence, we have

1 ≤ 21−`maxdmin − 2K2

⇔ 0 ≤ 21−`maxdmin −K
⇔ 2`maxK ≤ 2dmin

⇔ `max ≤ log2

2dmin

K
.

102

10.2. Multiresolution Volumes

Therefore, the largest integral value for this expression is

`max =

⌊
log2

2dmin

K

⌋
= 1 +

⌊
log2

dmin

K

⌋
.

Although this is the largest feasible number of resolution levels, we want to note that in practice
one chooses that limit in a way such that the object to be segmented is still recognizable.

10.2.2. Switching Resolution Levels

The presence of multiple views implies that at certain points during the execution of algorithms
using multiresolution volumes, the execution switches from one scale to another. Typically, it
jumps from a coarse level to the next �ner one, as we will discuss in later sections.
In that process, we almost always want to transfer Regions of Interest between scales. The fol-
lowing Lemma ensures that this lifting is well de�ned by the presented transfer rule.

Lemma 10.2.7. Let (o,d) ∈ N3
0 × N3 be an arbitrary valid Region of Interest contained in the

iterable RoI of a volume at resolution level ` ∈ {1, . . . , `max − 1}.
Additionally, letK2 = bK/2c1. De�ne a RoI (o′,d′) ∈ N3

0 × N3 through
o′ = 2o−K2,

d′ = 2 (d+K2) .

Then that region is contained in the iterable RoI of the volume at resolution level `+ 1.

Proof. In the following, the �oor operation is applied on vectors componentwise, as well as the
relation operator.
For brevity, let d(l+1)

V = b2`+1−`maxdV c be the dimensions of the volume V at resolution level
`+ 1 calculated from the dimensions dV of the volume at the �nest resolution level.
Since the given RoI is contained in the iterable Region of Interest at level ` by assumption, the
constraints

K2 ≤ o and o+ d ≤
⌊
2−1 d

(`+1)
V

⌋
−K2

are ful�lled. Then, by applying the de�nition of the new region we get
o′ = 2o−K2 ≥ 2K2 −K2 = K2

and
o′ + d′ = 2o−K2 + 2d+ 2K2 = 2 (o+ d) +K2 ≤ 2

⌊
2−1d

(`+1)
V

⌋
−K2 ≤ d(`+1)

V −K2

componentwise. Thus, the necessary constraints also hold for the next resolution level, i.e., the
scaled RoI (o′,d′) is contained in the iterable RoI of the volume at level `+ 1.

As a small remark, the previous lemma enables us to omit costly boundary checks in an imple-
mentation.

10.2.3. Practical Considerations

Without stepping to deep into actual implementation issues, we still want to make a few remarks
about implications of the above formulations for concrete realizations in a given programming
language.
The most important thing here is that the volumes are not actually downsampled and persisted.
Instead, each voxel value at some resolution level is computed ad hoc from the original volume

103

10. Multiresolution Segmentation

using a problem-dependent sampling strategy. Thus, only iterators to the original data source
at a given location must be accessible. However, this gives rise to a small caveat itself: Imple-
mentations should cache these iterators for e�cient access. But one must be careful not to use
�le-based iterators, where a region is read from disk ad hoc. That is, because when caching all
necessary iterators on a resolution level ` ∈ {1, . . . , `max}, actually 8`max−` �le handles would
be opened, which is not supported by many operating systems, e.g., Windows. Therefore, we
recommend using a more advanced technique like memory mapped �les.
Another minor issue regards the dimensions of a multiresolution volume at its �nest level. For
computing the coarser representations on-the-�y, the sampling policy considers all voxels on a
�ner level covered by the one on the coarse level. Considering the coarsest scale, each voxel
consequently covers actually 2`max−1 voxels along each volume direction. Hence, if the dimen-
sions of a volume at its �nest scale do not match this box exactly, some voxels are not considered
and should not be considered for computation. Implementations using iterators need to keep
track of this behavior for correct iterator movement. To compensate this, we introduce virtual
dimensions for this case. From a given limit of resolution levels `max and the dimensions of the
original voxel data, new dimensions are computed which �t the box description just explained.

Example 10.2.8. Suppose that the original volume had dimensions of (11, 7, 4) and further as-
sume that the limit of resolution levels set is `max = 3. This is feasible as it is possible to apply
three scales to the minimum dimension in one direction being 4 voxels.
The dimensions to �t the box requirement need to be multiples of the minimum dimension 4,
thus the virtual dimensions introduced are (8, 4, 4).
Starting from this, the dimensions per scale are updated for all coarser levels.

Lastly, we want to make a statement about index calculations and iterator movement. Depending
on the volume dimensions and resolution levels, it occurs frequently that incrementing an iter-
ator on a coarse level, i.e., moving it to the next voxel, does not result in a simple increment of the
�ner level pointers. Instead, multiple slices, i.e, planes, are often skipped at once, even though on
the coarse level the o�set is just one voxel. Thus, we need to make additional index calculations
on each iterator movement starting from an iterator at some three-dimensional position:

1. Compute a linearized index from the three-dimensional index considering the standard
traversal and the virtual dimensions.

2. Increment the one-dimensional index by the speci�ed o�set.

3. Calculate the updated three-dimensional position.

4. Update the iterators on di�erent scales to that position.

Although this implies a high amount of operations to be executed at each iterator movement,
we observed only a moderate runtime increase induced by them. These steps are visualized in
Figure 10.1. There, an iterator movement by one voxel on the coarser level induces a physical
increment by 22 voxels on the actual volume.

10.2.4. Relation to Wavelet-Based Approaches

In our literature survey we already encountered the usage of wavelets to construct a multiresol-
ution hierarchy. Conceptually, the multiresolution volume de�nition presented earlier in this
chapter can be endowed with wavelet technology too by choosing a wavelet lowpass �lter as
sampling policy. In a way, the averaging sampling policy presented in De�nition 10.2.3 mimics

104

10.3. General Interactive Multiresolution Segmentation

(1,1,0)

(0,0,1)

coarser level 1

(2,2,0)

(0,0,2)

finer level 2

level 1: (1,1,0)

level 2: (2,2,0)

3 4 (0,0,1)

(0,0,2)

+= 1

+= 22

offset calcluation

Figure 10.1.: Multiresolution indices increment calculation.

the approximation part of Haar wavelets. Thus, conceptually the consideration of coarser resolu-
tion levels is similar to viewing the lowpass wavelet coe�cients of a discrete wavelet transform.
However, we still like to follow a more general approach. Although a wavelet-based technique
possibly could transform larger parts of the volume more e�ciently, the approximated wavelet
volume views need to be persisted in some way, which is exactly what we try to avoid here. On
the other hand, an on-the-�y wavelet-based lowpass �ltering is probably just as e�cient as our
simple procedure.

10.3. General Interactive Multiresolution Segmentation

We now combine the notion of multiresolution volumes with voxelwise classi�cators to de�ne a
general algorithm for interactive segmentation in a multiresolution setting.
To accomplish that, we �rst describe the necessary interfaces to the segmentation model, i.e., a
classi�er used for determining if a voxel belongs to the part under consideration. When discuss-
ing applications in a later section, we will cover how these traits are implemented with regard to
our thresholding routine FAITH (cf. Chapter 8) and our Support Vector Machine-based technique
proposed in Chapter 9. After that, we are going to describe the framework and segmentation
procedure. Then we will also take a look at two algorithmic details concerning aggregation and
propagation of interesting sub-regions. The section ends with a description how our supervised
segmentation methods we just referred to are included in said framework.

10.3.1. Model Interfaces

To keep things general in this chapter, we require that whatever voxelwise classi�er shall be used
across multiple scales must obey a certain interface.
Firstly, such a model must provide means to be trained from the interactively selected collection
of voxels and the local regions around them of a speci�ed environment size. Given a list of
input Regions of Interest, one classi�er is trained on it for each resolution level, where the voxel
regions are scaled to the according scale. The implemented training interface should also include
the (de-)serialization of a model, if required.
Additionally, a model must be applicable on a voxel. In detail, each model must provide some
functionality to compute a voxel value from a local environment, which itself may be a con�dence

105

10. Multiresolution Segmentation

value, e.g., in the Support Vector Machine case. In pseudocode, we denote the applying of a model
m on a region of size K around a voxel x by m(RK(x)).
Lastly, each model further speci�es a con�dence threshold. A con�dence threshold is a value
deciding when the predicted value of a classi�er signals that the currently processed voxel does
not belong to the desired component and shall be discarded from further analysis. Conversely, if
the prediction produces a value bigger than that threshold, it is considered for further analysis
and potentially creates a Region of Interest which again is traversed on a �ner resolution. Hence,
when only certain parts shall be segmented from a big scan, many regions are skipped early, thus
increasing the runtime e�ciency of our method.

10.3.2. The Framework

Now we proceed with the main topic of this chapter, namely the general interactive multiresol-
ution segmentation framework. Without further ado, the procedure is given in Algorithm 18.
The main procedure has a structure similar to previous segmentation techniques depicted in
Algorithms 16 and 17. In detail, we assume a priori information in form of a multiresolution
volume according to De�nition 10.2.4, an environment size as well as a function being able to
compute features from regions and a collection of models, one for each resolution level.
During execution, a collection of interactively selected voxels is accumulated. Depending on the
underlying model type, one also collects labels indicating if a voxel belongs to the component un-
der focus. Both the �xed function parameters and the iteratively acquired voxel input are fed to
an implementation routine which we will describe shortly and which yields a segmented volume
of the same size as the input volume on its �nest resolution. The presented steps are repeated un-
til the segmentation result is satisfactory, just as it was introduced in previous algorithms. Given
its input, the routine implementing the actual segmentation extracts local environments of size
K×K×K around each seed voxel on each resolution level. The positions of the seed voxels are
scaled appropriately to the di�erent scales. Next, a separate model is trained for each level. The
training typically considers the extracted Regions of Interest and extracts features from them.
Since each model is likely to encounter a di�erent representation of voxel regions, the feature
selection might vary if the latter is determined automatically as explained in Section 4.6. De-
pending on the application, the feature selection can also be �xed across scales. Next, con�dence
thresholds are extracted from all but the �nest models. These are either pre-determined by the
underlying classi�er, e.g., for FAITH, or estimated from the training data, e.g., when using our
Support Vector Machine-based segmentation method. The following section contains a detailed
explanation about them.
Then the actual segmentation procedure starts. Generally, on each but the last level candidate
RoIs are searched for. Those are sub-regions in the volume on the current scale which are likely to
contain voxels which belong to the part that shall be segmented. Their construction is also going
to be described in the following section. Thus, �rst we search for candidate RoIs on the coarsest
scale. Since no previous information is given in this case, we traverse the whole volume on that
level and construct intersting sub-regions which are identi�ed by the associated model m1 and
its corresponding con�dence threshold ρ1. Having obtained a set of candidates, we proceed on
all intermediate levels by considering these RoIs scaled to the next resolution level and searching
for candidates in them using the next model.
At the �nest resolution level, a set of candidates remain. Now, we make use of the model trained
on this scale to classify each voxel in the remaining RoIs and write the result to the according
voxel in the target volume.

106

10.3. General Interactive Multiresolution Segmentation

Algorithm 18: General interactive multiresolution segmentation.
Function MRSegmentationImpl(V , X , y,K , F ,m)

Input : Multiresolution volume V =
(
V 1, . . . , V `max

)
Input : Seed voxel collection X = (xβ)β∈Γd′

Input : Optional seed voxel labels y = (yβ)β∈Γd′

Input : Environment size K ∈ 2N + 1
Input : Feature computation functions F = (F`)

`max
`=1

Input : Classi�ersm = (m`)
`max
`=1

Output: A segmented volume
Extract Regions RK(xβ) with possibly associated labels yβ , β ∈ Γd′ on all levels
Train each m` on these regions using F`, 1 ≤ ` ≤ `max on these regions
Get con�dence thresholds ρ =

(
ρ`
)`max−1

`=1
fromm

// Find candidate RoIs on coarse levels
C0 ← {

(
0,d1

)
}

for `← 1 to `max − 1 do
C` ← SearchCandidates(V `, C`−1,m`, ρ`)

// Voxelwise segmentation on finest level
for C ∈ C`max−1 do

VC ← voxels in RoI C
parfor xα ∈ VC do

ṽ`max(xα)← m`max(RK(xα))

Function MRSegmentation(V ,K , F ,m)
Input : Multiresolution volume V = (V 1, . . . , V `max)
Input : Environment size K ∈ 2N + 1
Input : Feature computation function F = (F`)

`max
`=1

Input : Classi�ersm = (m`)
`max
`=1

Output: A segmented volume V ′

X ← ()
y ← () // labels (optional)

repeat
// Select seed voxels on a grid Γd′ ⊂ Γ`max

d

X ← (X, (xβ)β∈Γd′)
y ← (y, (yβ)β∈Γd′) // (optional)

V ′ ← MRSegmentationImpl(V , X , y,K , F ,m)
until V ′ is satisfactory
return V ′

107

10. Multiresolution Segmentation

10.3.3. Confidence Thresholds and RoI Fusion

So far we described a general algorithm for interactive and iterative multiresolution segmentation.
The current section explains two major parts in Algorithm 18 in detail which have not been
covered yet. First, we take a closer look at con�dence thresholds and explain what they are
used for. Then we show how individual candidate voxels are fused together to form Regions of
Interest.

Confidence Thresholds

Con�dence thresholds play a major role during multiresolution segmentation in the sense as they
describe when a voxel is considered a candidate voxel. A voxelwise segmentation method decides
for each voxel at some resolution level, if it is part of the object that shall be segmented. When
applying our FAITH thresholding procedure, the classi�cation yields either some foreground
value if the model decides positively about the current voxel, or a background value otherwise.
On the other hand, the Support Vector Machine-based segmentation instead produces con�dence
values, i.e., discrete values ranging from zero to 100 indicating how likely the voxel belongs to
the desired part.
A con�dence threshold now decides when the classi�cation of a voxel being interesting is high
enough such that the voxels spanned on the next �ner resolution level shall be considered too.

RoI Fusion

The last missing detail concerns the fusion of candidate voxels into candidate RoIs. In order to
keep a linear-like runtime per resolution level, we follow a mark-and-sweep-like approach, which
is a technique sometimes used in the implementation of programming languages.

1. Mark: Accumulate interesting candidate voxels.

2. Sweep: Fuse the voxels collected thus far into Regions of Interest.

The overall procedure is given in Algorithm 19.
In the second procedure, we search for candidate RoIs on the next �ner resolution level. We
obtain them by considering a candidate RoI inherited from the previous resolution level, scaled
to the current scale according to Lemma 10.2.7. For each voxel inside that region the previously
trained model decides whether it is a candidate voxel. These are then fused to Regions of In-
terest depending on a fusion criterion explained next. After each voxel inside this region was
processed, we fuse all remaining candidate voxels into regions too. Then, the resulting RoIs are
fused pairwise if they have enough overlap. In particular, they are combined if one contains the
other. The minimum overlap percentage is a tunable parameter which was experimentally set to
0.02. Finally, each remaining candidate RoI is scaled to cover the according set of voxels on the
next �ner resolution level according to Lemma 10.2.7.
The fusion method adds a new candidate voxel to some internal collection Ω. Additionally, if the
sweep phase sets in, we fuse the accumulated voxels by a simple connectedness criterion.

De�nition 10.3.1. A candidate voxel ω is connected to a RoI C = (o,d) ∈ N3
0 × N3 if

o− 1 ≤ p(ω) ≤ o+ d

holds componentwise.

The accumulated voxels are fused into candidate RoIs whenever the sweep phase sets in, which
is periodically invoked. In our algorithm, we make use of a simple heuristic which executes the

108

10.3. General Interactive Multiresolution Segmentation

Algorithm 19: RoI fusion during multiresolution segmentation.
Function Fuse(Ω, C , fuseAnyway)

Input : Candidate voxel collection Ω
Input : Candidate RoI collection C
Input : Boolean fuseAnyway indicating unconditional fusion
Nsweep ← 220

if fuseAnyway or #Ω = Nsweep then
foreach ω ∈ Ω do

Cω ← (p(ω) ,1)
fused← false
foreach C ∈ C do

if Cω is fusable with C then
C ← C ∪ Cω
fused← true
break

if not fused then
C ← (C, Cω)

Ω← ()

Function SearchCandidates(V `, C`−1,m`, ρ`)
Input : Volume interpretation at level `
Input : Parent candidate RoIs C`−1

Input : Model m` for level `
Input : Con�dence threshold ρ` at level `
Output: Candidate RoIs C
{Ωj ← ()}NT

j=1 // Candidate voxels per thread

{Cj ← ()}NT
j=1 // Candidate RoIs per thread

foreach C ∈ C`−1 do
Consider voxelsX of C in V `

parfor x ∈X do
if m`(RK(x)) > ρ` then

t← index of current thread
Ωt ← (Ωt,x)
Fuse(Ωt, Ct, false)

Ω←
⋃NT
j=1 Ωj

C ←
⋃NT
j=1Cj

Fuse(Ω, C , true) // Fuse remaining candidate voxels
Fuse candidate RoIs if enough overlap
// Scale candidate RoIs acc. to Lemma 10.2.7
foreach (o,d) := C ∈ C do

o′ ← 2o−K2

d′ ← 2(d+K2)
C ← (o′,d′)

return C

109

10. Multiresolution Segmentation

load #1 search #1 · · · · · ·
load #2 search #2 · · ·

Table 10.1.: Schematic RoI fusion pipeline

fusion process whenever a certain number of voxels, e.g., 220, were accumulated. If in the fusion
process a voxel is connected to an existing Region of Interest, then it is fused into it, making the
RoI potentially bigger. If there is no such region, a new one of dimension d = 1 is created and
appended to the list of RoIs.

Advanced fusion
The proposed fusion scheme is simple and e�cient. However, we assume that better strategies
improve the result in the sense that less or better �tting RoIs are produced.
Conceptually, we are interested in constructing an error function

E(C,ω) = |v(ω)− E[C]|+ shape(C,ω),

which measures how much error is introduced to C when the candidate voxel ω is added to it.
The error is composed of the deviation of the grayscale value ofω from the mean grayscale value
in the RoI, and additionally takes the shape distortion denoted by shape(C,ω) into account.
The best candidate RoI C∗ for including the candidate voxel then is the one minimizing that
error, i.e.,

C∗ = argmin
C∈C

E(C,ω).

In case the voxel should not belong to any of the existing regions, i.e., if E(C∗,ω) > T for some
threshold T , we create a new one containing just this voxel for now.
Care has to be taken when choosing a shape distortion functional. A natural idea would be to
check how well the shape present in the region is extended by the candidate voxel. However, in
case that the shape is not aligned along volume axes, e.g., when considering a skewed plane, the
shape can possibly be extended very well but the resulting region gets unnecessarily big. One
example for a distortion functional is the change of isotropy. Consider the current RoI C and the
RoI C ′ enhanced with the candidate voxel ω. From these, compute the isotropy features fs and
f ′s, respectively, according to De�nition 4.4.7. Then, the functional is given by shape(C,ω) =
|fs− f ′s|. Currently, we did not take this error-based fusion into account, but we conjecture that
when using a proper shape functional less and better-suited Regions of Interest can be produced.

10.3.4. Practical Considerations

Similar to Section 10.2.3, we want to give a very brief insight into aspects that need to be con-
sidered when implementing the fusion procedure. Speci�cally, we focus on the points of RoI
division and a pipeline mechanism to improve the overall e�ciency.
By RoI division we simply mean that in case of very large candidate Regions of Interest pro-
duced by our method they should be subdivided in multiple regions of smaller size which can
be handled in memory. Of course, this is only meaningful when using a pipeline mechanism.
The mentioned pipeline mechanism is a common technique which separates I/O actions from/to
disk and computations into di�erent threads. Hence, costly �le operations can be executed while
another thread of execution proceeds with its calculation. Schematically, Table 10.1 depicts how
this works. Hence, we load a region. While one thread processes the loaded region, another one
already loads the next one, and so on. Such a pipeline is used in our application if and only if we
do not have random access on the volume, e.g., if we stream the volume directly from �le.

110

10.4. Applications

10.4. Applications

The proposed framework is designed to be as general and modular as possible, i.e., it allows
for arbitrary voxelwise classi�cation algorithms used for segmentation across multiple scales.
The only requirements are that these classi�ers must implement the interface explained in Sec-
tion 10.3.1. Now we integrate the voxelwise segmentation procedures FAITH and the Support
Vector Machine-based method into our multiresolution scheme, which we will describe in the
current section. Hence, we brie�y explain how these algorithms implement the interface.

10.4.1. FAITH

We start with the Feature-Adaptive Interactive Thresholding technique. Firstly, it provides a
procedure for training a model on each resolution level as explained in Algorithm 15. Applying
a model on a local environment around a voxel is further given in Algorithm 16 which computes
a local threshold and emits the value one if the voxel value is bigger than this threshold, or zero
otherwise.
Concerning the con�dence threshold, it should be chosen such that any value emitted bigger than
it marks a voxel as a candidate voxel. When using FAITH, only two values are emitted, either
zero or one. Clearly, candidates shall be the voxels which get assigned a value of one. Hence, the
con�dence threshold is zero. If in future work our thresholding procedure is extended to yield
con�dence values similar to our SVM-based method, one computes a con�dence threshold as
shown in the following section.

10.4.2. SVM

Similarly, our Support Vector Machine classi�er can be trained on seed voxel information and ap-
plied to regions around voxels, cf. Algorithm 17. However, this segmentation operator produces
con�dence values in [0, 1], where implementations emit values in the discrete range {0, . . . , 100}.
Intuitively, we then choose a con�dence threshold of 50 percent. In case the dataset is separable
in feature space, that value would select all voxels which are somewhat likely to belong to the
desired part, whereas it discards all voxels which are unlikely to be interesting.
We re�ne the stated idea to a more data driven approach. Let T ` = T `+ ∪T `− be the training data
given for each resolution level 1 ≤ ` ≤ `max and denote by S` the SVM classi�cation operator
emitting con�dence values as speci�ed in De�nition 9.3.1 for level `.
Then, we choose a con�dence threshold ρ` such that the misclassi�cations are minimized, i.e.,

ρ` = argmin
ρ∈[0,1]

1

#T `+

∑
x∈T `

+

1(S`(x) < ρ) +
1

#T `−

∑
x∈T `

−

1(S`(x) > ρ),

where 1(b) evaluates to 1 if b is true, or to 0 otherwise. In practice, we start by a value of 50
percent and �nd the minimizer by a simple search in both directions. A question remaining is, if
there actually exists a minimizer.

De�nition 10.4.1. Let T be the training data and let yx ∈ {±1} be the label associated to a
voxel x ∈ T . Denote by S the SVM classi�cation function de�ned in De�nition 9.3.1. De�ne the
probabilistic hinge loss function by

g(ρ) =
1

#T
∑
x∈T

max {0, yx(ρ− S(x))}, ρ ∈ [0, 1].

The value ρ is called a con�dence threshold.

111

10. Multiresolution Segmentation

First of all, we see that yx(ρ−S(x)) is linear in ρ and thus convex. Since the maximum and sum
of convex functions are convex too, we conclude that g is a proper, convex function. As such,
there exists a global minimum.
We can describe its shape even further.

Lemma 10.4.2. Let g be the above function and let ρ be some con�dence threshold.
Then g ≥ 0 and g(ρ) = 0 if and only if the dataset is separable.

Proof. First, we notice that g is trivially nonnegative. Furthermore, we see that

g(ρ) = 0⇔ yx(ρ− S(x)) ≤ 0⇔

{
S(x) ≥ ρ, yx = +1,

S(x) ≤ ρ, yx = −1,
⇔

{
S(x) ≥ ρ, x ∈ T+,

S(x) ≤ ρ, x ∈ T−.

holds. This implies that g is zero on some interval [ρ1, ρ2] ⊂ [0, 1] if and only if no misclassi�c-
ations occur on that interval, which is the case if and only if the dataset is separable.

10.5. Runtime and Memory Analysis

We conclude the chapter by providing an analysis of the asymptotic runtime and memory beha-
vior of a multiresolution segmentation.

10.5.1. Runtime Analysis

Before analyzing the asymptotic runtime of the actual multiresolution segmentation procedure,
we notice that we repeat the process until the result is satisfactory, e�ectively multiplying any
runtime by the number k ∈ N of iterations. As in previous analyses, that number is typically
very small.
In each such iteration, at �rst local environments around the seed voxels are extracted from the
input volume, all happening on multiple resolution levels. Neglecting implementation details, we
consider this process to be linear in the number of seed voxels, i.e., to have a runtime complexity
ofO(M) per resolution level. Following the mentioned extraction process, one model is trained
on each scale. The complexity of the �tting procedure depends on the model, which we will de-
note byO(T) which is often polynomial in the number of seed voxels, i.e.,O(T) ≈ O(poly(M))
where typically deg poly(M) ≤ 3 as in the SVM case. Considering the estimation of con�dence
thresholds as described in the previous section, we approximate the runtime behavior by being
linear in the number of seed voxels. The basis for this is formed by the analysis of the con�-
dence threshold computation for our SVM-based classi�er shown in Section 10.4.2, in which we
search for the optimal threshold by evaluating an error function for each seed voxel, and for each
possible threshold value in the discrete range {0, . . . , 100}. Hence, in this case we make at most
100M computations which is linear inM . So, the runtime thus far is of orderO (`max(M + T)).
Starting with the actual segmentation procedure, the �rst step in the function
MRSegmentationImpl in Algorithm 18 needs to traverse the coarsest scale of the given multiresol-
ution volume. With reference to De�nition 10.2.4, that step thus is of complexityO(23(1−`max)N),
where `max is the number of resolution levels provided, the number N denotes the count of
voxels in the overall volume and the factor 3 stems from the sampling along all three axes. While
traversing the volume on its coarsest resolution, candidate RoIs are collected. That accumula-
tion process �rst remembers a constant number of candidate voxels which is independent of the
problem size and fuses them into Regions of Interest depending on a connectivity criterion. The
necessary runtime to achieve the fusion depends linearly on the quantity of generated candidate
regions and is also linear in the number of candidate voxels, which is however independent of
both M and N as argued before. Overall, denoting by N1

C the number of generated regions on

112

10.5. Runtime and Memory Analysis

the coarsest level during accumulation which clearly depends on the size of the considered sub-
volume at the current resolution level, the fusion has a runtime ofO(N1

C). A more sophisticated
fusion procedure might increase the runtime further. Combining both estimates, the candidate
RoI collection at the coarsest resolution level is of complexity O(23(1−`max)N N1

C). For each
resolution level 1 < ` < `max, subsequently inside of each candidate RoI acquired on the pre-
vious scale we search for a new set of regions. Hence, each iteration searches for candidates
in N `−1

C regions and emits a total of N `
C new candidates. Accumulating all intermediate steps,

their runtime is of complexity O
(∑`max−1

`=2 N `−1
C N `

C

)
. The �nal segmentation step performs a

voxelwise classi�cation on all remaining Regions of Interest, which is linear in the number of
voxels inside each region, i.e., of order O(

∑
C∈C`max−1

#C).
We conclude that the multiresolution segmentation procedure as introduced in Algorithm 18
which uses some voxelwise classi�er having a training procedure runtime of order O(T) is of
overall runtime complexity

O

k
`max(M + T) +

`max−1∑
`=1

N `−1
C N `

C +
∑

C∈C`max−1

#C

 ,

where N0
C = 23(1−`max)N .

Remark 10.5.1. The multiresolution segmentation is intended to be used if relatively small parts
shall be found in huge voxel datasets. Under this assumption, the resulting number of candidate
RoIs is typically small and the Regions of Interest themselves are small in size too. Then, the
runtime e�ectively decreases to a full scan over the coarsest level followed by a log `max-like
runtime due to the tree-like cascading of regions. Regarding the size, we consider the scan of
a Ford Fiesta described in the following chapter. The overall scan consists of 3, 171, 818, 496
voxels. Targeting the segmentation of the four springs located near the tires, the remaining RoIs
on the �nest level encompass 6, 281, 221 voxels in total, which amounts to roughly 0.2 percent
of the overall voxel count. In this example, we omitted several very small voxel regions which
still are selected. On the other hand, if the desired object encompasses the majority of all voxels
in the scan, then we expect a multiresolution approach to be slower since we create Regions of
Interest on each scale which cover the same information but increase in size after switching to
the next �ner resolution level. This worst case then increases the runtime to a polynomial order,
thus then the regular segmentation techniques introduced in previous chapters having linear
runtime are preferable. In practice the user performing the interactive segmentation shall decide
if either the single- or the multiresolution approach should be applied.

10.5.2. Memory Requirements

Regarding the memory consumption, the only thing necessary to be kept in memory at all times
are the support vectors for each model which includes at most M seed voxels and, depending
on the underlying classi�er, also M associated labels. Considering we store a feature vector of
dimensionality d for each seed voxel, the data occupiesO(`maxM d) memory. During the search
for candidate RoIs, the sub-volumes are traversed in the usual local fashion, thus their memory
consumption is negligible. The regions themselves are represented just by their origin and their
dimensionality. Thus, although the number of candidate regions can get rather large, but the
memory consumption stays low. For the �nal segmentation step we traverse the sub-volumes
built by considering only the remaining Regions of Interest of the volume in the usual manner
and hence only need constant memory.
Overall, the memory consumption for a multresolution segmentation is of order O(`maxM d).

113

References

[1] A Karthikeyan and M Valliammai. “Lungs Segmentation using Multi-level Thresholding
in CT Images”. In: IJECSE (2012).

[2] Selin Uzelaltinbulat and Buse Ugur. “Lung tumor segmentation algorithm”. In: Procedia
Computer Science 120 (2017), pp. 140–147.

[3] Walter Jentzen et al. “Segmentation of PET Volumes by Iterative Image Thresholding”. In:
Journal of nuclear medicine : o�cial publication, Society of Nuclear Medicine 48 (Feb. 2007),
pp. 108–14.

[4] Maliheh Ahmadi et al. “Image segmentation using multilevel thresholding based on mod-
i�ed bird mating optimization”. In: Multimedia Tools and Applications (Apr. 2019).

[5] A. R Pulagam, V. K. R Ede and R. B. Inampudi. “Segmentation of Airways in Lung Region
Using Novel Statistical Thresholding and Morphology Methods”. In: Biomed Pharmacol
(Jan. 2017), pp. 10–14.

[6] S. Anitha and T. R. Ganesh Babu. “An E�cient Method for the Detection of Oblique Fis-
sures from Computed Tomography images of Lungs”. In: Journal of Medical Systems 43.8
(June 2019), p. 252.

[7] Shengjun Zhou et al. “Segmentation of the hip joint in CT volumes using adaptive threshold-
ing classi�cation and normal direction correction”. In: Journal of the Chinese Institute of
Engineers 36.8 (2013), pp. 1059–1072.

[8] K.J. Batenburg and J. Sijbers. “Adaptive thresholding of tomograms by projection distance
minimization”. In: Pattern Recognition 42.10 (2009), pp. 2297–2305.

[9] Wayne Niblack. An Introduction to Digital Image Processing. Birkeroed, Denmark, Den-
mark: Strandberg Publishing Company, 1985.

[10] J. Sauvola and M. Pietikäinen. “Adaptive Document Image Binarization”. In: Pattern Recog-
nition 33.2 (2000), pp. 225–236.

[11] Carl-Fredrik Westin et al. “Using Local 3D Sstructure for Segmentation of Bone from Com-
puter Tomography Images”. In: Proceedings of IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition. June 1997, pp. 794–800.

[12] C.H. Li and C.K. Lee. “Minimum cross entropy thresholding”. In: Pattern Recognition 26.4
(1993), pp. 617–625.

[13] Hui Zou and Trevor Hastie. “Regularization and variable selection via the elastic net”. In:
Journal of the Royal Statistical Society, Series B 67 (2005), pp. 301–320.

[14] Quan Zhou et al. “A Reduction of the Elastic Net to Support Vector Machines with an
Application to GPU Computing”. In: Proceedings of the Twenty-Ninth AAAI Conference on
Arti�cial Intelligence. AAAI’15. Austin, Texas: AAAI Press, 2015, pp. 3210–3216.

[15] Patrick Combettes and Valérie R. Wajs. “Signal Recovery by Proximal Forward-Backward
Splitting”. In: Multiscale Modeling & Simulation - MULTISCALE MODEL SIMUL 4 (Jan.
2005).

[16] Neal Parikh and Stephen Boyd. “Proximal Algorithms”. In: Found. Trends Optim. 1.3 (Jan.
2014), pp. 127–239.

[17] Gabor T. Herman and Arnold Lent. “Iterative reconstruction algorithms”. In: Computers in
Biology and Medicine 6.4 (1976), pp. 273–294.

[18] Stephen Boyd and Lieven Vandenberghe.ConvexOptimization. Cambridge University Press,
Mar. 2004.

114

References

[19] David E. Rumelhart, Geo�rey E. Hinton and Ronald J. Williams. “Learning Representations
by Back-Propagating Errors”. In: Neurocomputing: Foundations of Research. Cambridge,
MA, USA: MIT Press, 1988, pp. 696–699.

[20] Yuri E. Nesterov. “A method of solving a convex programming problem with convergence
rate O(1

k2
)”. In: Dokl. Akad. Nauk SSSR 269.3 (July 1983), pp. 543–547.

[21] R.T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics and Physics. Prin-
ceton University Press, 1970.

[22] Samir Adly, Loïc Bourdin and Fabien Caubet. “On a decomposition formula for the prox-
imal operator of the sum of two convex functions”. In: Journal of Convex Analysis 26 (Jan.
2018).

[23] Caroline Chaux, Jean-Christophe Pesquet and Nelly Pustelnik. “Nested Iterative Algorithms
for Convex Constrained Image Recovery Problems”. In: SIAM Journal on Imaging Sciences
2.2 (2009), pp. 730–762.

[24] Rob Tibshirani, Trevor Hastie and Jerome Friedman. “Regularized Paths for Generalized
Linear Models Via Coordinate Descent”. In: Journal of Statistical Software 33 (Feb. 2010).

[25] Janmenjoy Nayak, Bighnaraj Naik and H Behera. “A Comprehensive Survey on Support
Vector Machine in Data Mining Tasks: Applications & Challenges”. In: International Journal
of Database Theory and Application 8.1 (2015), pp. 169–186.

[26] Mayank Chandra and S. Bedi. “Survey on SVM and their application in image classi�ca-
tion”. In: International Journal of Information Technology (Jan. 2018).

[27] K. B. Vaishnavee and K. Amshakala. “An Automated MRI Brain Image Segmentation and
Tumor Detection using SOM-Clustering and Proximal Support Vector Machine Classi�er”.
In: 2015 IEEE International Conference on Engineering and Technology (ICETECH). 2015,
pp. 1–6.

[28] Mingjun Song and Daniel Civco. “Road Extraction Using SVM and Image Segmentation”.
In: Photogrammetric Engineering & Remote Sensing 70.12 (Dec. 2004), pp. 1365–1371.

[29] N. Abdullah, U. K. Ngah and S. A. Aziz. “Image Classi�cation of Brain MRI Using Support
Vector Machine”. In: 2011 IEEE International Conference on Imaging Systems and Techniques.
2011, pp. 242–247.

[30] Hari Babu Nandpuru, S. S. Salankar and V. R. Bora. “MRI Brain Cancer Classi�cation Using
Support Vector Machine”. In: 2014 IEEE Students’ Conference on Electrical, Electronics and
Computer Science. 2014, pp. 1–6.

[31] Z. Song et al. “Contextualizing Object Detection and Classi�cation”. In: CVPR 2011. 2011,
pp. 1585–1592.

[32] Hongming Zhang et al. “Object detection using spatial histogram features”. In: Image and
Vision Computing 24.4 (2006), pp. 327–341.

[33] Bernd Heisele et al. “Hierarchical classi�cation and feature reduction for fast face detection
with support vector machines”. In: Pattern Recognition 36.9 (2003), pp. 2007–2017.

[34] Philipp Michel and Rana El Kaliouby. “Real Time Facial Expression Recognition in Video
Using Support Vector Machines”. In: Proceedings of the 5th International Conference on
Multimodal Interfaces. Association for Computing Machinery, 2003, pp. 258–264.

[35] J. Zhou et al. “Extraction of Brain Tumor from MR Images Using One-Class Support Vector
Machine”. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. 2005,
pp. 6411–6414.

115

[36] Jie Lu et al. “Automatic Liver Segmentation in CT images based on Support Vector Machine”.
In: Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health In-
formatics. 2012, pp. 333–336.

[37] Zhiqiang Lao et al. “Computer-Assisted Segmentation of White Matter Lesions in 3D MR
Images Using Support Vector Machine”. In: Academic Radiology 15.3 (2008), pp. 300–313.

[38] Stefan Bauer, Lutz-P. Nolte and Mauricio Reyes. “Fully Automatic Segmentation of Brain
Tumor Images Using Support Vector Machine Classi�cation in Combination with Hier-
archical Conditional Random Field Regularization”. In:Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2011. Springer Berlin Heidelberg, 2011, pp. 354–361.

[39] Jianguo Zhang et al. “Tumor Segmentation from Magnetic Resonance Imaging by Learn-
ing via one-class support vector machine”. In: International Workshop on Advanced Image
Technology (IWAIT ’04). Singapore, Singapore, Jan. 2004, pp. 207–211.

[40] E. Ricci and R. Perfetti. “Retinal Blood Vessel Segmentation Using Line Operators and
Support Vector Classi�cation”. In: IEEE Transactions onMedical Imaging 26.10 (2007), pp. 1357–
1365.

[41] S. Ruan et al. “Tumor segmentation from a multispectral MRI images by using Support
Vector Machine classi�cation”. In: 2007 4th IEEE International Symposium on Biomedical
Imaging: From Nano to Macro. 2007, pp. 1236–1239.

[42] Bérengère Mathieu, Alain Crouzil and Jean-Baptiste Puel. “Interactive multiclass segmentation
using superpixel classi�cation”. In: (Oct. 2015). arXiv: 1510.03199.

[43] Xing Zhang et al. “Interactive liver tumor segmentation from ct scans using support vector
classi�cation with watershed”. In: 2011 Annual International Conference of the IEEE Engin-
eering in Medicine and Biology Society (2011), pp. 6005–6008.

[44] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A Library for Support Vector Machines”.
In: ACM Transactions on Intelligent Systems and Technology 2 (May 2011), 27:1–27:27.

[45] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks”. In: Machine Learning 20
(Sept. 1995), pp. 273–297.

[46] Laura Auria and Rouslan A. Moro. Support VectorMachines (SVM) as a Technique for Solvency
Analysis. Discussion Papers of DIW Berlin 811. DIW Berlin, German Institute for Economic
Research, 2008.

[47] Amr Mohamed. “Comparative Study of Four Supervised Machine Learning Techniques for
Classi�cation”. In: International Journal of Applied Science and Technology 7.2 (June 2017).

[48] John C. Platt. “Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods”. In: ADVANCES IN LARGE MARGIN CLASSIFIERS. MIT
Press, 1999, pp. 61–74.

[49] Burr Settles. Active Learning Literature Survey. Computer Sciences Technical Report 1648.
University of Wisconsin–Madison, 2009.

[50] Simon Tong and Daphne Koller. “Support Vector Machine Active Learning with Applica-
tions to Text Classi�cation”. In: Journal of Machine Learning Research 2 (Mar. 2002), pp. 45–
66.

[51] Jan Kremer, Kim Steenstrup Pedersen and Christian Igel. “Active Learning with Support
Vector Machines”. In: WIREs Data Mining and Knowledge Discovery 4.4 (2014), pp. 313–326.

[52] Lei Wang, Kap Luk Chan and Zhihua Zhang. “Bootstrapping SVM active learning by incor-
porating unlabelled images for image retrieval”. In: 2003 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. 2003, pp. 629–634.

116

https://arxiv.org/abs/1510.03199

References

[53] Giona Matasci, Devis Tuia and Mikhail Kanevski. “SVM-Based Boosting of Active Learning
Strategies for E�cient Domain Adaptation”. In: IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing 5.5 (2012), pp. 1335–1343.

[54] Wan Zhang and Irwin King. “A Study of the Relationship Between Support Vector Machine
and Gabriel Graph”. In: Proceedings of the 2002 International Joint Conference on Neural
Networks. IJCNN’02 (Cat. No.02CH37290). Vol. 1. 2002, pp. 239–244.

[55] Léon Bottou et al. “Support Vector Machine Solvers”. In: Large-Scale Kernel Machines. 2007,
pp. 1–27.

[56] Geert Litjens et al. “A survey on deep learning in medical image analysis”. In: Medical
Image Analysis 42 (2017), pp. 60–88.

[57] Yang Wang and Miaomiao Yin. “Multiresolution and Multiscale Geometric Analysis based
Breast Cancer Diagnosis using weighted SVM”. In: Proceedings of the 2015 International
Conference on Mechanical Science and Engineering. Atlantis Press, Mar. 2016, pp. 373–378.

[58] Mohammed Abdel-Megeed M. Salem. “Multiresolution Image Segmentation”. PhD thesis.
Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2008.

[59] Hamed Akbari and Baowei Fei. “3D ultrasound image segmentation using wavelet support
vector machines”. In: Med Phys 39.6 (June 2012), pp. 2972–2984.

[60] C. C. Reyes Aldasoro and A. Bhalerao. “Volumetric Texture Segmentation by Discrimin-
ant Feature Selection and Multiresolution Classi�cation”. In: IEEE Transactions on Medical
Imaging 26.1 (2007), pp. 1–14.

[61] Jérôme Pasquet et al. “An e�cient multi-resolution SVM network approach for object de-
tection in aerial images”. In: 2015 IEEE 25th International Workshop on Machine Learning
for Signal Processing (MLSP). July 2015, pp. 1–6.

[62] Marleen de Bruijne et al. “Interactive segmentation of abdominal aortic aneurysms in CTA
images”. In: Med Image Anal. 8.2 (June 2004), pp. 127–138.

[63] Alfred R. Fuller et al. “Segmentation of Three-dimensional Retinal Image Data”. In: IEEE
Transactions on Visualization and Computer Graphics 13 (2007).

117

Part V.

Evaluation and Experiments

119

But thou hast arranged all
things by measure and number
and weight.

Holy Bible, Wisdom 11:20

Table of Contents

11. �antitative Evaluation 123

11.1. Performance Metrics . 123
11.2. Experiment Setup . 124
11.3. Results . 127
11.4. In�uence of Multiresolution Segmentation . 130

12. �alitative Evaluation 137

12.1. Data . 137
12.2. Clustering . 139
12.3. FAITH . 139
12.4. SVM-Based Segmentation . 142

After introducing several segmentation approaches in the preceding chapters, we continue with
an evaluation of these methods on selected datasets.
First, we perform a quantitative evaluation. That is, we execute our Support Vector Machine-
based segmentation approach in an a priori de�ned experimental setup mimicking the proposed
interactive work�ow. For the results we compute several common metrics which will show
that our segmentation can achieve a good segmentation performance on the selected datasets.
Additionally, we are going to monitor the in�uence of our multiresolution approach on these
metrics. On the other hand, the second chapter in this part evaluates the approaches qualitatively.
There, we will see segmentation results from many di�erent concrete application �elds which
exemplary shows the high �exibility and performance of our techniques. Furthermore, we will
see that we obtain good results both on small and big volumes.

11. �antitative Evaluation

Abstract The current chapter evaluates our proposed Support Vector Machine-based segmentation
technique quantitatively. Hence, on selected volumes where ground truth data is available, the
interactive work�ow is emulated and the resulting segmentation is evaluated according to sev-
eral performance metrics. First, these metrics and the selected datasets are described. Next, the
segmentation performance is measured. Finally, the in�uence of our multiresolution approach
on the segmentation performance is measured in the same way.

11.1. Performance Metrics

On a prede�ned setup which will be described shortly, we evalute the results according to the
following metrics:

• Intersection over Union

• Precision

• Recall

• F1 score

All of these metrics are computed from the commonly known Type I and Type II errors sum-
marized in Table 11.1 which is often called a confusion matrix [1]. In that table the term actually
positive/negative refers to a voxel belonging (positive) or not belonging (negative) to the desired
object that shall be segmented. On the other hand, Classi�cation positive/negative denotes if a
voxel is selected by our algorithm to be or not to be part of the segmented volume.
Now, we can de�ne our metrics mentioned above. First, the Intersection over Union (IoU, aka
Jaccard Index) is de�ned as the rate of all voxels being selected both by the segmentation as well
as by the ground truth, i.e., the true positives, related to the union of both volumes [2]. In terms
of the errors just described, it is expressed as

IoU =
tp

tp+ fp+ fn
.

Next, we measure the precision and recall. The precision considers all voxels which our algorithm
classi�ed as relevant and counts how many of these voxels are actually positive according to the
ground truth data. The recall instead computes how many of the actually positive voxels de�ned
by the ground truth information our algorithm selected as relevant too. We follow the de�nition
given in [1] and thus we have

precision =
tp

tp+ fp
, recall =

tp

tp+ fn
.

Actually positive Actually negative
Classi�cation positive true positive (tp) false positive (fp)
Classi�cation negative false negative (fn) true negative (tn)

Table 11.1.: A confusion matrix.

123

11. Quantitative Evaluation

Scan Env. size Features used Voxel removing
Ford Fiesta 7 Grayscale + Orientation K = 5, η = 15

Piston 5 Grayscale + Orientation K = 5, η = 18

Big Piston 5 Grayscale K = 5, η = 18

TPA 3 Grayscale + Orientation K = 3, η = 18

ME-163, Rumpf 7 Grayscale + Plane �t -
ME-163, Ring 7 Grayscale + Distance Histogram -
Tasterwald 7 Grayscale + Local Binary Pattern -

Table 11.2.: Experimental setup and parametrization.

Finally, the popular F1 score combines both the precision and recall in a single value as it is the
harmonic mean of them, i.e.,

F1 = 2
precision · recall
precision + recall .

For all of these four metrics we note that the higher the values, the better the result is.
Remark 11.1.1. As a small remark, we want to note that we prefer the F1 score metric over the
precision alone, as it includes both the precision and recall in a natural way. In general, the latter
indicators should be interpreted together only.
A �nal statistic we evaluate is the Receiver Operator Characteristic (ROC). The ROC is a diagram
depicting how well a classi�er behaves by plotting the true positive rate over the false positive
rate. In our application, we vary a con�dence value threshold from zero to 100, extract the
necessary component which we will describe in detail in the following section, and compute the
metrics on that component. In such a graphic, the optimal classi�er performance is a curve which
almost instantaneously rises to the top left corner of the diagram and then stays constant [1].

11.2. Experiment Setup

Before we continue with the experimental results, we �rst want to describe our setup of ex-
amples as shown in Table 11.2, and also describe the tested volume datasets and some challenges
associated with them.
Remark 11.2.1. In a real world application, the user would typically specify an initial threshold
to remove measurement noise. This can speed up the segmentation considerably, but it might
also change the evaluation score if relevant voxels are set to zero during thresholding. Therefore,
in the quantitative evaluation here, we did not threshold anything and classi�ed each individual
voxel of the input volume.
The �rst volumes we test are the scans “TPA” and “Tasterwald”, both of which are calibrated test
volumes whose scans were provided through the Fraunhofer CT in Measurement Technology
(CTMT) and are depicted in Figures 11.1a and 11.1b, respectively. Those scans are very simple
and typically can be segmented quite well by simple thresholding. The challenge on these two
datasets is the measurement noise which decreases the grayscale values on some regions in the
volume data to the extent that thresholding away the noisy parts even introduces holes in the
thresholding result.
Next, we consider a simple motor piston produced by Mahle whose dataset was created by the
Fraunhofer EZRT in Fürth, of which a slice is shown in Figure 11.2a. We arti�cially created
a bigger dataset by inserting two pistons into one scan while we also mixed in a small region
of a typical Bavarian meatloaf in a bun, traditionally called “Leberkässemmel”. The grayscale

124

11.2. Experiment Setup

(a) Voxel dataset “TPA”. (b) Voxel dataset “Tasterwald”.

Figure 11.1.: Calibrated test volumes.

(a) Slice of scan “Piston”, contrast enhanced. (b) Voxel dataset “BigPiston”.

Figure 11.2.: Motor piston scans.

values of the latter were adjusted so the components are not solely distinguishable by their voxel
values. We called the result “Big Piston”, which is depicted in Figure 11.2b. For the piston, we
want our segmentation to both disregard the measurement noise as well as segmenting the piston
without the iron ring in the upper half. As a remark, we want to note that in this particular case
a good result can be achieved using both a lower and an upper thresholding technique, yet we
still compare to a simple binarizing thresholding method as the latter is arguably the most used
segmentation procedure. For the “BigPiston” data we face the same challenge, that scan is used
mostly as a benchmark dataset as it is of substantially bigger size, namley increasing from about
174 MB to roughly 11GB. In it, we set the background, i.e., every voxel not occupied by both
pistons or the meatloaf in a bun by a constant value of one, so it does not get skipped by our
algorithm automatically.
The two following scans listed in our experimental setup both are two components of a Region
of Interest from a CT scan of a World War II �ghter jet called Messerschmitt Me 163 Komet built

125

11. Quantitative Evaluation

(a) “ME-163, Rumpf” 1 (lower right). (b) “ME-163, Ring” 1 (upright tube, middle).

Figure 11.3.: Components of the ME-163.

(a) Original data, one marked spring. (b) Thresholding only.

Figure 11.4.: Voxel dataset “Ford Fiesta”.

in Germany in 19411. The part “Rumpf” is a cut-o� of a rounded cap cylindrical part while the
“Ring” piece is a small tube inside the aircraft. Both pieces are placed within a 512× 512× 512
Region of Interest inside the actual scan. Both elements are depicted in Figures 11.3a and 11.3b,
respectively. For the part “Rumpf” we admit that simple thresholding can perfectly segment
that element. On the other hand, for the “Ring” piece we need to at least apply both lower and
upper thresholding, but we are better o� using our Support Vector Machine-based segmentation
approach as the following results will show.
We �nish our test data description with one of our favorite scans showing an entire car, namely a
crashed Ford Fiesta. The scan is roughly six Gigabytes in size and is comprised of many elements
of similar material but of di�erent shape. For the quantitative evaluation we want to focus on
the four springs of that car located near the tires for our segmentation. An image depicting the
scan where one such spring is highlighted is given by Figure 11.4a. The challenge faced here
is that simple thresholding will not yield favorable results as shown in Figure 11.4b, but our

1Data courtesy of the Deutsches Museum.

126

11.3. Results

novel technique will instead. We also like to note that the marked spring in Figure 11.4a was the
only one we learned characteristics from, i.e., we marked just a single spring in our interactive
procedure and we will end up with a segmentation of all four springs in subsequent experiments.
Table 11.2 lists all quantitatively examined CT scans and also the environment size and the feature
set used for testing. The latter two are determined automatically by searching a �xed set of
combinations and choosing the one achieving the highest Intersection over Union score.
Just as in our framework described earlier, the searched components are extracted from the re-
sult of our Support Vector Machine-based segmentation by further binarizing with a threshold,
followed by an optional removal of isolated voxels according to De�nition 2.3.2 and �nally se-
lecting the components as identi�ed by a Connected Components Analysis. During the search
for the optimal environment size and feature set, the binarizing threshold is set to 50 percent,
which is the optimal separation threshold in a separable problem setting. The voxel removing
however uses the parameters also seen in Table 11.2.
After the optimal K and F parameters are estimated for a scan, the segmentation is invoked
another time. From the result, we estimate the Receiver Operator Characteristic curve, i.e., we
vary the binarization threshold from zero to 100 inclusive, extract the components from the
volume according to the previously described procedure and track their scores. Additionally, we
keep track of the best binarizing threshold, i.e., the threshold that produces the highest IoU score.
Finally, we compare the result to the score achieved by plain binarizing thresholding and sub-
sequent component extraction. We also track the in�uence of our multiresolution approach on
both the execution times and the scores.

11.3. Results

Regarding the results of our segmentation, we summarize the scores according to the previously
discussed metrics in Table 11.3 where Precision is abbreviated as Prec. In it, we marked each
cell green where that classi�er produced better results and red otherwise. On two occations, we
marked them as yellow where the comparisons yielded very similar results.
All results were obtained by our purely CPU-based implementation inside an internal framework
developed at the Fraunhofer EZRT, applied to the data on a Dell Precision Tower 3620. The latter
contains an Intel® Core™ i7-770H processor with eight logical cores with an average clock rate of
4.2 GHz. It further is equipped with 32 GiB of main memory in which all of our tested volumes �t
entirely two times (for an input and an output volume), thus we load them directly into memory.
We like to repeat at this point that our algorithms can be applied to volumes bigger than main
memory. But in these cases consistent and correct runtime measurement is hard to impossible
to achieve. Therefore, for measurements we consider cases where the data �ts into RAM only.

SVM Naive
Scan IoU Prec. Recall F1 IoU Prec. Recall F1

Ford Fiesta 0.757 0.970 0.775 0.862 0.011 0.011 0.831 0.022
Piston 0.980 0.980 1.000 0.990 0.675 0.676 0.999 0.806
Big Piston 0.985 0.988 0.997 0.992 0.786 0.787 0.998 0.880
TPA 0.989 0.992 0.997 0.994 0.730 0.730 1.000 0.844
ME-163, Rumpf 0.949 0.963 0.985 0.974 0.971 1.000 0.971 0.985
ME-163, Ring 0.950 0.965 0.984 0.974 0.017 0.017 1.000 0.033
Tasterwald 0.883 0.999 0.884 0.934 0.520 0.641 0.734 0.684

Table 11.3.: SVM segmentation result scores.

127

11. Quantitative Evaluation

Given the datasets from industrial tomography for which we actually had labeled ground truth
data accessible we clearly see that our SVM-based segmentation approach is superior on most
scans on most metrics, with the exception of the scan “ME-163, Rumpf” which is a single part
of the �ght jet ME-163 which is easily segmented by thresholding. Nevertheless, the achieved
scores are still quite high. Furthermore, we discussed earlier that both precision and recall shall
be best interpreted together in form of the F1 score, regarding which we still are mostly superior.
From the presented results we want to explicitly take a look at the “Ford Fiesta” scan as an ex-
ample where our segmentation procedure yields a signi�cant performance increase. Both meth-
ods use a speci�ed segmentation procedure - SVM vs thresholding - followed by the component
extraction procedure described in the setup. As both work with the same parametrization, we can
indeed assume that the main in�uence is due to the di�erent segmentation method. Now, in case
of naive thresholding, a bigger part of the chassis remains which does not signi�cantly reduce
after voxel removing and component extraction as many components are still connected then,
cf. Figure 11.4b. On the other hand, our Support Vector Machine-based segmentation technique
uses local geometry and structure to distinguish between di�erent regions which discards bigger
parts of the chassis and further breaks up the connections between unrelated objects. Thus, the
subsequently applied algorithm can indeed isolate individual components.
A similar thing occurs during segmentation of the “ME-163 Ring” scan where the desired tube is
connected to several other parts locally, which cannot be resolved totally by binarizing threshold-
ing. For the piston and its bigger version, we want to mention that we only compared against
simple binarizing thresholding according to De�nition 2.1.2. A thresholding scheme employing
both a lower and an upper threshold can produce excellent results here too when combined with
our postprocessing chain.
Finally, we also like to mention the single case were our segmentation performs “worse” com-
pared to thresholding, although the achieved scores are still around 95 percent. We believe that
this observed minor decrease in performance is due to individual voxels not being selected for
segmentation although they should, based on local information around the borders of the object.
The far simpler binarization technique applies quite well as the considered part consists of voxels
having values in the upper grayscale value range. However, that advantage does no longer ap-
ply in general as can be seen on the “Ring” scan where the desired objects stems from the same
Region of Interest and where its grayscale values do not belong to the upper voxel value region.
An alternative view on the performance of our Support Vector Machine-based segmentation
procedure is by considering their ROC curves, depicted in Figure 11.5. It also shows that our
classi�er performs very well on most cases while on less successful curves like the on attributed
to the “Ford Fiesta” scan still have a steep ascension as it should be although not until the very
upper left corner. We believe that the minor bump in the ROC of the “Big Piston” scan is due to
the sensitivity of these voxelwise performance metrics on individual misclassi�ed voxels.
Overall our methods perform quite well, especially on well behaved data, i.e., data which �t well
towards individual geometric features. The following example demonstrates this by explicitly
computing the feature vector representation for two di�erent ideal geometries and their di�er-
ence.

128

11.3. Results

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC curve for 'Ford Fiesta'

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve for 'Piston'

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve for 'Big Piston'

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve for 'TPA'

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve for 'ME-163 Rumpf'

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve for 'ME-163 Ring'

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve for 'Tasterwald'

Figure 11.5.: ROC curves of our test cases.

129

11. Quantitative Evaluation

Example 11.3.1. For the sake of this example, consider two voxel regions V1 := R13(xα) and
V2 := R13(xβ) around voxels xα and xβ , respectively. Each region is of dimension 13×13×13
voxels. Now, let V1 contain a perfect line having a diameter of one voxel across the center voxel,
i.e., xα+(0,j,0) = v > 0 for j = −6, . . . , 6. Contrary, assume V2 contains a small fully �lled cube
in its center, i.e., xβ+(i,j,k) = v > 0 for i, j, k = −2, . . . , 2. All remaining voxels in these regions
shall be zero. Clearly, the two regions are not distinguishable by their voxel values since they
are identical.
Now, we compute the linearity feature descriptors fL1 , fL2 as introduced in De�nition 4.4.2. After
scaling, the computed values are

fL1 = (1.00,−1.00, 0.97,−0.06,−0.06,−0.06,−0.06,−0.06,−0.06,−0.06,

− 0.06,−0.06,−0.06,−0.06,−0.06,−0.06,−0.06,−0.06,−0.06)T ,

fL2 = (−1.00, 1.00, 5.42,−0.37,−1.21, 0.19,−0.91,−0.19,−0.57,−0.24,

− 0.56,−0.16,−0.25,−0.26,−0.20,−0.10,−0.35,−0.01,−0.28)T .

where we rounded the values to two decimals.
Their distance (cf. Section 3.5) is given by ‖fL1 −fL2 ‖2 = 5.55 which given the scales of the feature
values su�ces to separate the feature vectors in feature space. Indeed, an experiment using this
setting veri�ed this and produced a nearly perfect segmentation. The only misclassi�ed points
were the boundary points of the line, as in local regions centered around them the geometry
changes to a point-like structure.

Combining both analyses shows that our segmentation algorithm is not only able to operate
on big voxel volumes but can also reach a highly precise result. Consequently, our algorithm
will also turn out to be useful in future research for creating ground truth data, e.g., for neural
networks, with less human overhead.

11.4. Influence of Multiresolution Segmentation

We complete the quantitative analysis by examining the in�uence of our multiresolution ap-
proach to our Support Vector Machine-based segmentation, both in terms of runtime and achieved
scores. For each basic con�guration listed in Table 11.2, we applied the SVM-based segmentation
across `max = 2, 3, 4 scales and tracked both their scores and their runtime speedups relat-
ive to the single resolution approach. The score development is shown in Table 11.4 where
its score values are rounded to three decimals. The same development trends are depicted in
Figures 11.6, 11.7, 11.8 and 11.9 for all considered voxel datasets.
Considering the Intersection over Union metric, we notice that bigger and homogeneous objects
achieve approximately the same IoU score over multiple resolution levels. On the other hand,
when �ne structures or especially curved edges are part of the object, cf. springs in a car or
the curved surface of the Rumpf scan, we observe that the score decreases. Especially in these
cases, we observed that geometric details and also the overall shape of the desired parts get
distorted considerably during downsampling. Hence, some necessary voxels cannot be identi�ed
as candidate voxels and thus are rejected for further classi�cation on subsequent resolution levels.
Concerning the precision, we notice quite some visual variations across scales, but closer inspec-
tion of the ordinate suggests that the variation is rather minuscle with the maximum variation
being about three percent. Overall, the precision values seem to be rather stable.
Regarding the recall and F1 score metrics, we observe a quite similar trend as when discussing
the IoU metric, although the decreases are smaller.

130

11.4. In�uence of Multiresolution Segmentation

Scan `max IoU Precision Recall F1
Speedup

w / wo training

Ford Fiesta

1 0.757 0.970 0.775 0.862 -
2 0.765 0.964 0.787 0.867 1.76 / 2.79
3 0.688 0.975 0.700 0.815 1.77 / 4.79
4 0.660 0.978 0.670 0.796 1.07 / 2.89

Piston

1 0.980 0.980 1.000 0.990 -
2 0.953 0.953 1.000 0.976 2.47 / 3.62
3 0.955 0.956 1.000 0.977 2.36 / 5.31
4 0.954 0.959 0.999 0.976 1.91 / 4.54

Big Piston

1 0.985 0.988 0.997 0.992 -
2 0.985 0.988 0.997 0.992 3.22 / 3.98
3 0.983 0.993 0.990 0.992 3.07 / 4.51
4 0.978 0.990 0.988 0.989 2.29 / 3.48

TPA

1 0.989 0.992 0.997 0.994 -
2 0.985 0.986 0.998 0.992 1.46 / 1.51
3 0.990 0.997 0.993 0.995 2.35 / 2.64
4 0.981 0.983 0.998 0.991 1.40 / 1.52

ME-163, Rumpf

1 0.949 0.963 0.985 0.974 -
2 0.921 0.971 0.947 0.959 2.87 / 3.16
3 0.827 0.965 0.852 0.705 4.28 / 5.62
4 0.668 0.966 0.684 0.801 3.65 / 5.00

ME-163, Ring

1 0.950 0.965 0.984 0.974 -
2 0.961 0.989 0.972 0.980 3.36 / 3.51
3 0.905 0.981 0.922 0.950 10.13 / 13.16
4 0.845 0.973 0.865 0.916 8.01 / 10.70

Tasterwald

1 0.883 0.999 0.884 0.934 -
2 0.847 0.999 0.847 0.917 3.79 / 3.84
3 0.822 0.997 0.723 0.902 4.12 / 4.23
4 0.671 0.999 0.671 0.803 20.56 / 24.84

Table 11.4.: Multiresolution score development and speedups.

131

11. Quantitative Evaluation

1 2 3 4
Resolution level

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Sc
or

e

IoU development of MR-SVM

Piston
Big Piston
TPA
Ford Fiesta

ME-163 Rumpf
ME-163 Ring
Tasterwald

Figure 11.6.: Multiresolution IoU development graph.

1 2 3 4
Resolution level

0.96

0.97

0.98

0.99

1.00

Sc
or

e

Precision development of MR-SVM

Piston
Big Piston
TPA
Ford Fiesta

ME-163 Rumpf
ME-163 Ring
Tasterwald

Figure 11.7.: Multiresolution Precision development graph.

132

11.4. In�uence of Multiresolution Segmentation

1 2 3 4
Resolution level

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Sc

or
e

Recall development of MR-SVM

Piston
Big Piston
TPA
Ford Fiesta

ME-163 Rumpf
ME-163 Ring
Tasterwald

Figure 11.8.: Multiresolution Recall development graph.

1 2 3 4
Resolution level

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Sc
or

e

F1 development of MR-SVM

Piston
Big Piston
TPA
Ford Fiesta

ME-163 Rumpf
ME-163 Ring
Tasterwald

Figure 11.9.: Multiresolution F1 score development graph.

133

11. Quantitative Evaluation

Overall, applying our multiresolution approach equipped with our Support Vector Machine-
based segmentation technique to the con�gurations shown in Table 11.2 keeps good segmentation
results, where the performance decreases slightly depending on the dataset.
As the recall metric hints, it decreases if less voxels belonging to the desired part are selected. On
the other hand, the precision shows that most of the voxels remaining after our work�ow, are
correct, i.e., are part of the component under investigation. Overall, it seems that the classi�er
correctly locates the wanted objects and their geometric counterparts (cf. the other three springs)
but with an increasing number of resolution levels some voxels of these objects are lost. Reasons
for this may be of two kinds. First, important details and thus voxels are rejected at coarser
levels due to downsampling e�ects and hence are not considered for further classi�cation on �ner
levels. Secondly, we use the same postprocessing chain for each resolution level. But the result of
segmentation with four resolution levels might require di�erent postprocessing parametrizations
than when applying our method to a single scale only.

After focussing on the segmentation performance, at this point we want to actually show the
main point of interest when multiresolution approaches are used, namely the decrease of runtime.
When measuring the improvement of our multiresolution approach over the regular linear iter-
ation, i.e., for the case when ` = 1, we �rstly observed the speedup of the segmentation only, i.e.,
we start with already trained models and measured the classi�cation phase only. A plot of the
speedups over di�erent scales for our test datasets is given in Figure 11.10. However, in the actual
application one has to additionally consider that now multiple models need be trained, hence the
training time is increased to roughly `max times the single resolution algorithm’s training time.
The overall runtime behavior including all training times are given in Figure 11.11. Both graphs
depict the ordinate on a logarithmic scale. The detailed speedups relative to the single resolution
iteration are given in the last column of Table 11.4 for both con�gurations, which are rounded to
three decimals. At this point we want to note that external in�uences including the framework’s
memory management a�ect the runtime too and alternative strategies might improve results
even further.
We see that the runtime is improved in every case, while clearly the biggest improvement is
achieved if the searched components are small relative to the scan size, e.g., the small orbs of
the “Tasterwald” scan, yielding a speedup of up to 20. In such scans, the trend shows that then
the speedup is improved for a higher number of scales. However, for other scans which consist
largely or entirely of the desired component, the speedups stay mostly constant or even decrease.
This is due to the same RoIs being selected on each resolution level, thus the same information
needs to be processed every time. Therefore, the same amount of work is done multiple times,
increasing the runtime.
Considering also the additional training runtime decreases the speedups, but fortunately not by
an order of magnitude. Thus, on average the multiresolution version still outspeeds its single
resolution counterpart.

134

11.4. In�uence of Multiresolution Segmentation

2 3 4
Resolution level

1

2

4

8

16

Sp
ee

du
p

Speedup of MR-SVM (without training)
Piston
Big_Piston
TPA
Ford_Fiesta
ME-163_Rumpf
ME-163_Ring
Tasterwald

Figure 11.10.: Speedups over multiple resolution levels, segmentation only.

2 3 4
Resolution level

1

2

4

8

16

Sp
ee

du
p

Speedup of MR-SVM (with training)
Piston
Big_Piston
TPA
Ford_Fiesta
ME-163_Rumpf
ME-163_Ring
Tasterwald

Figure 11.11.: Speedups over multiple resolution levels, including training.

135

12. �alitative Evaluation

Abstract Contrary to the preceding chapter, we now focus on a qualitative evaluation. The ad-
ditional data used there is described �rst. Subsequent sections apply sampling-based clustering,
adaptive thresholding and the proposed Support Vector Machine-based segmentation on a broad
variety of di�erent real world datasets. The produced results are visualized and show the high
versatility of our methods. Finally, we will brie�y discuss the in�uence of the number of seed
voxels and the in�uence of grayscale value scaling when pretrained models are applied.

12.1. Data

Before continuing to qualitative results we like to introduce the reader to the datasets used for
evaluation using the di�erent techniques. All of the voxel volumes described shortly were gener-
ated by the Fraunhofer Development Center for X-ray Technology (EZRT) in Fürth. If necessary,
additional copyright information is provided.
Regarding clustering techniques, we use both a motor piston as well as a jaw of a wolf which
both are suited for clustering since both scans are composed of few individual materials. The
piston data is the same as used earlier in quantitative evaluation and is depicted in Figure 11.2a,
while the jaw scan labeled “Canis Lupus” can be viewed in Figure 12.1a.
On the other hand, applying FAITH requires that the desired component is the one having the
highest grayscale values since it is a binarization technique. Therefore, we selected again the
Canis Lupus scan to extract the denser part of its teeth. Additionally, we apply the method to
the upper part of a voxel volume obtained by scanning a peruvian mummy, where the extracted
Region of Interest is shown in Figure 12.2b1. There, the goal is to extract the skull while also
keeping thin internal structures which would be lost by simple thresholding.
Finally, the remaining scans examined are segmented using our Support Vector Machine-based
approach. There, we consider data from a variety of di�erent �elds and we will see that although
the domains are highly di�erent very good results can still be obtained using interactive input.
We start with the industrial domain in which we aim on the one hand to segment the four springs
found near the tires by only marking one, and on the other hand, we extract the windshield using
the same technique. These components stem from a scan of a Ford Fiesta which we already used
in our chapter on quantitative evaluation, an image is given in Figure 11.4a, in which the sole
spring used for the �rst segmentation case is highlighted. Next, we again consider the peruvian
mummy but this time we aim at extracting di�erent components, the entire scan is visualized in
Figure 12.2a. Lastly, the Support Vector Machine-based segmentation is used to extract the roots
of a wheat plant. The latter are especially di�cult to segment since the scan is low in contrast
and the surrounding earth is often connected and similar in structure. A slice image of said plant
inside its pot is given in Figure 12.1b.
Especially in the context of our method based on a SVM, we brie�y examine the in�uence of
the number of seed voxels. Finally, we conclude by showing the retraining capabilities of that
technique on a crash car example.

1Courtesy of Lindenmuseum Stuttgart.

137

12. Qualitative Evaluation

(a) Voxel dataset “Canis Lupus”. (b) Slice of scan “Wheat”, contrast enhanced.

Figure 12.1.: Wolf jaw and wheat plant data.

(a) Voxel dataset “Mummy”. (b) Voxel dataset “Mummy Head”.

Figure 12.2.: Peruvian mummy datasets, courtesy of the Lindenmuseum in Stuttgart.

138

12.2. Clustering

Scan #Cluster #Geometric Features Env. size

Piston 5 0 -
2 5

Canis Lupus 8 0 -
2 7

Table 12.1.: Clustering Setup.

Scan Threshold #Levels #Env. size #Geometric Features
Canis Lupus 24415 3 5 2Mummy Head 1541 1 7

Table 12.2.: FAITH Setup.

12.2. Clustering

We begin the qualitative evaluation by applying our modi�ed clustering techniques to both the
piston and wolf jaw scan, the con�gurations used are listed in Table 12.1. In our experiments
when using Gaussian Mixture Models we did not use the Akaike Information Criterion since we
want to enforce exactly the speci�ed number of clusters.
Regarding clustering applied to the “Piston” scan, the results are given in Figure 12.3. In Figures 12.3a
and 12.3b the results of sampling-based K-Means clustering are depicted. We see that both con-
�gurations capture the iron ring well, while on the other handK-Means signi�cantly su�ers from
the measurement noise in the scan. The Gaussian Mixture Model-based clustering performs sig-
ni�cantly better. The only disadvantage when using features is that the features capture local
structure which is corrupted by noise, while on the other hand they enhance contours. Both
results are shown in Figures 12.3c and 12.3d.
The results of sampling-based clustering applied to the Canis Lupus scan are depicted in Figure 12.4.
A similar behavior as when clustering the piston dataset can be seen in Figures 12.4a and 12.4b.
Again, this behavior is improved by using Gaussian Mixture Models as shown in Figures 12.4c
and 12.4d.
Overall, we see that depending on the con�guration a good clustering can be obtained using
our modi�ed algorithm based on a strati�ed random sample. But, our modi�cation enables the
processing of large volumes.

12.3. FAITH

We proceed by showing the results when applying the Feature-Adaptive Interactive Thresholding
technique developed in Chapter 8. The con�gurations used are listed in Table 12.2. For each scan,
the threshold is chosen in a way such that the desired component is selected by binarization as
good as possible. Regarding the Canis Lupus scan, we focus on the teeth, while for the skull of
the mummy we desire to segment the skull bones.
First, we consider the wolf jaw, whose results are depicted in Figure 12.5. Figure 12.5a shows
the original slice where we can clearly identify both the upper teeth as well as the round bone
structures below. Simple binarization thresholding results in Figure 12.5b where the jaw embed-
ding the teeth is thresholded away, but at the same time most of the teeth are lost. Applying
FAITH restores most of the teeth while some borders of the jaw bone are kept. However, the
new technique selects the teeth way better.

139

12. Qualitative Evaluation

(a) K-Means, con�guration 1. (b) K-Means, con�guration 2.

(c) GMM, con�guration 1. (d) GMM, con�guration 2.

Figure 12.3.: Clustering techniques applied to “Piston”.

140

12.3. FAITH

(a) K-Means, con�guration 1. (b) K-Means, con�guration 2.

(c) GMM, con�guration 1. (d) GMM, con�guration 2.

Figure 12.4.: Clustering techniques applied to “Canis Lupus”.

(a) Original scan. (b) Simple binarization. (c) FAITH applied.

Figure 12.5.: FAITH applied to “Canis Lupus”.

141

12. Qualitative Evaluation

(a) Original scan. (b) Simple binarization. (c) FAITH applied.

Figure 12.6.: FAITH applied to the mummy skull, results overlaid in white

Next, we apply the procedure to the mummy skull where the original slice image is given in
Figure 12.6a. Plain binarization yields most of the skull which we see overlaid over the original
data in Figure 12.6b. However, many thin detailed structures especially the top of the eye socket
are thresholded away. The original data shows the thin structures. Applying FAITH improves
upon this signi�cantly as one can see in Figure 12.6c.

Lastly, we like to show the in�uence of the individual steps introduced in Chapter 8 on the ex-
ample of the mummy skull dataset. Figure 12.7a shows the e�ect of plain thresholding which
discards thin structures at the top of the eye sockets. Including features to improve upon this
de�ciency using a least squares approximation introduced in Section 8.2.1 results in severe arti-
facts as shown in Figure 12.7b. However, applying regularization and limiting to valid thresholds
signi�cantly improves this intermediate result and further restores the thin structures lost due
to plain thresholding.

12.4. SVM-Based Segmentation

In the last section of our qualitative evaluation we apply our Support Vector Machine-based
segmentation described in Chapter 9 to segment many di�erent objects in order to show the
versatility of that method. The used con�gurations are given in Table 12.3. In each case, a data-
dependent skip threshold was applied.
We start in the industrial use case by segmenting the springs as well as the windshield of the
crashed Ford Fiesta. Both results are depicted in Figure 12.8. Regarding the windshield, we see the
segmented volume overlaid in white on a three-dimensional rendering of the car in Figure 12.8a.
The extracted component is largely intact and we speci�cally used the plane �t feature. Consid-
ering the springs, we marked individual seed voxels of the one spring visualized in Figure 11.4a
and aimed to extract all four springs. Figure 12.8b shows a slice with segmented voxels overlaid
in white. Although the slice contains two springs only, all four were found.
We continue by applying our segmentation procedure to a dataset including a peruvian mummy.
For most examples, we applied grayscale value and orientation features and also used several

142

12.4. SVM-Based Segmentation

(a) Simple binarization. (b) Least squares approximation. (c) Full FAITH procedure applied.

Figure 12.7.: Individual FAITH steps applied to the skull dataset.

Scan Feature set K `max
#Seed Voxels
pos / neg

Ford Fiesta Springs Gray + Orient 3 1 65 / 81
Windshield Gray + Orient + Plane 73 / 96

Mummy

Corn cob

Gray + Orient 7
3 127 / 82

Bracelets 2 242 / 128
Tool

1

50 / 44
Skull 5 336 / 100
Ropes Gray + Orient + Line 7 101 / 128

Piston Gray + Orient 5 50 / 72
Wheat roots 7 79 / 39

Table 12.3.: SVM segmentation con�gurations.

(a) Ford Fiesta: Windshield. (b) Ford Fiesta: Springs.

Figure 12.8.: Ford Fiesta segmentations, results overlaid in white.

143

12. Qualitative Evaluation

(a) Mummy: Tool. (b) Mummy: Bracelets.

Figure 12.9.: Peruvian mummy, results overlaid in white.

(a) Mummy: Skull. (b) Mummy: Corn cob. (c) Mummy: Ropes.

Figure 12.10.: Peruvian mummy, results overlaid in white.

resolution levels. But, when segmenting the ropes holding bandages together we additionally
use line �t features. All results related to the mummy scan are depicted in Figures 12.9 and 12.10,
the two original datasets can be found in Figure 12.2. We see that good segmentation results can
be obtained using the technique proposed in Chapter 9 and its multiresolution pendant.
Next, the same method is used to segment the aluminium piston and disregarding the iron ring
on top. Furthermore, the roots of a wheat plant are extracted with the same technique. These
roots are especially di�cult to segment as their shape and grayscale values change as the roots go
deeper in the earth. Both results are shown in Figure 12.11. We see that the roots are mostly kept,
while still many small stones remain in the result volume as they are locally indistinguishable
from the roots.
Finally, we apply the same algorithm to archaeological data of a Roman chest armor piece which
was found near the German town Kalkriese, the depicted data belongs to the local museum.
Archaeologists strongly believe that this armor is a relic of the Battle of the Teutoburg Forest.
The scan was made from a big block of earth, a slice is shown in Figure 12.12a. The segmentation
result is depicted in Figure 12.12b in 3D viewed from above. In both �gures, one can clearly

144

12.4. SVM-Based Segmentation

(a) Piston without iron ring. (b) Wheat roots.

Figure 12.11.: Piston and wheat roots.

(a) Varus armor original slice. (b) Segmented armor piece.

Figure 12.12.: Roman armor piece.

145

12. Qualitative Evaluation

identify the individual segments of the armor and also some fasteners. This dataset also proved
hard to segment due to the low contrast and the poor condition the armor is in.

Active Learning by Uncertainty Sampling

The overall evaluation focussed on con�dence values thus far. In this section we brie�y examine
uncertainty sampling as an active learning approach which is based on these con�dences. For this
we applied an uncertainty function given in De�nition 9.7.1 on the intermediate segmentation
results obtained from our well-known piston dataset, from which we aimed to segment the ring
part. The parametrization was identical for each iteration and speci�cally used an environment
size of �ve voxels and uses the grayscale and orientation features. The measurement noise out-
side of the piston was removed via thresholding with value 4020 given the overall grayscale value
range [0,65535]. The uncertainty locality parameter δ was set to 2.
The following evaluation considers the obtained con�dence values as well as the computed un-
certainty values. The latter served as graphical input where the next additional seed voxels shall
be chosen. In the display of the seed voxel selection, we mark the previous iteration voxels, i.e.,
the voxels that led to the shown results, with red circles. The voxels which were selected ac-
cording to the uncertainty map are drawn as blue diamonds. The overall set of training voxels
for each iteration consists of the union of previously used voxels (the red circles) and the newly
selected ones (the blue diamonds). In all images attributed to an iteration, brighter colors denote
higher values. Additionally, the contrast was enhanced in all images.
Figure 12.13 shows the progression of all four executed uncertainty sampling iterations. In the
very �rst iteration we selected only four seed voxels, cf. Figure 12.13c. After executing our
SVM-based segmentation algorithm with the stated parametrization, we obtained con�dence
values and uncertainty values depicted in Figure 12.13a and Figure 12.13b, respectively. We ob-
serve that the results are not satisfactory as the con�dence values of the piston ring are even
smaller than the values of the piston itself. Additionally, the uncertainty map shows that the
overall uncertainty is still quite high, especially at the contact surfaces of the ring and the pis-
ton, as expected. Given this knowledge, we select additional seed voxels in uncertain regions,
i.e., both inside of each component and also at the contact surfaces. This selection is marked in
Figure 12.13f. The identically parametrized segmentation algorithm then yields new con�dence
values in Figure 12.13d and uncertainties in Figure 12.13e. We immediatly see that the con�-
dence values are much better suited for selection of the steel ring. The uncertainty con�rms
this as now the contact surfaces are still a source of segmentation ambiguity while the major-
ity of the volume can be assigned to its respective class with high probability. To improve the
results further we again select additional seed voxels at the contact surfaces. We decided to also
include some seed voxels at the interior of the piston since the con�dence there is still signi�c-
ant. Figure 12.13i displays the new selection. The results of this third iteration are depicted in
Figures 12.13g and 12.13h, respectively. While the con�dences do not change signi�cantly and
still match the ring well, the uncertainty map clearly shows the improvement over ambiguities
as the steel ring is explained well now. Only the borders of the piston remain. Therefore, we
select additional voxels at the border, cf. Figure 12.13l. The �nal uncertainty map is shown in
Figure 12.13k which is zero at the majority of points, hence only very few points left seem un-
certain. This signals that not much improvement by further seed voxel selection can be expected
here from an active learning point of view. Simple thresholding on the �nal con�dence values
in Figure 12.13j yields the part under investigation. Overall, 59 seed voxels contributed to the
shown results.
Concludingly, we saw that an uncertainty map as computed from the con�dence values obtained
by the segmentation is useful to improve segmentation results. However, we also experienced
that the con�dence and uncertainty values should be interpreted simultaneously for best results.

146

12.4. SVM-Based Segmentation

Confidence values, iter=1

(a) Con�dence values #1.

Uncertainty, =2, iter=1

(b) Uncertainty values #1.

Voxel selection, iter=1

(c) Voxel selection #1.

Confidence values, iter=2

(d) Con�dence values #2.

Uncertainty, =2, iter=2

(e) Uncertainty values #2.

Voxel selection, iter=2

(f) Voxel selection #2.

Confidence values, iter=3

(g) Con�dence values #3.

Uncertainty, =2, iter=3

(h) Uncertainty values #3.

Voxel selection, iter=3

(i) Voxel selection #3.

Confidence values, iter=4

(j) Con�dence values #4.

Uncertainty, =2, iter=4

(k) Uncertainty values #4.

Voxel selection, iter=4

(l) Voxel selection #4.
Figure 12.13.: Progression of uncertainty sampling on piston data.

147

12. Qualitative Evaluation

(a) Iron ring, one voxel per class. (b) Iron ring, multiple voxels per class.

Figure 12.14.: Seed voxel count in�uence on iron ring.

Influence of Seed Voxel Count

Thus far, we trained a Support Vector Machine on several seed voxels for each class. Now, we
brie�y examine the in�uence of the number of seeds on the segmentation performance.
We start by segmenting the iron ring from the piston dataset. The minimimum number of seed
voxels is one seed per class, hence we selected one positive labeled voxel belonging to the iron
ring and three negative labeled voxels from the aluminium piston, the styrofoam holder and the
background corrupted with measurement noise. A slice of the segmented volume is shown in
Figure 12.14a, which shows that the model already assigned high con�dences to the iron ring
but the other components still remain in the target volume, although the con�dence values are
small. In a second con�guration, we used 13 positive and 30 negative labeled seed voxels. The
result is depicted in Figure 12.14b which shows that the unwanted components are discarded
better while at the same timekeeping the iron ring.
A similar comparison regarding the segmentation of the springs of the Ford Fiesta scan is shown
in Figure 12.15. The few voxel con�guration is composed of three voxels of a spring and three
voxels of non-spring components, the result is shown in Figure 12.15a. We see that many non-
spring components, e.g., parts of the chassis, are present in the result. This is considerably im-
proved by adding more seed voxels as depicted in Figure 12.15b where in total 44 positive and 69
negative seeds were selected.
In general, we see that the more information in form of seed voxels the model is trained on, the
higher is the probability that a better segmentation is achieved. Theory supports this as Stein-
wart [3, Corollary 1] proved that given a certain choice of the problem’s penalty hyperparameter
and using a Gaussian kernel, Support Vector Machines are universally consistent on all compact
subsets of Rd. Intuitively, a universally consistent classi�er gets better the more training data it
can learn from.

Retraining Models

We conclude the presented qualitative evaluation by applying a previously trained Support Vector
Machine-based model onto another dataset. One could evaluate this on many di�erent scans
and the quality of the original model also impacts the quality when reapplying it on a di�erent
volume. Instead, we focus on a single dataset, namely the voxel volume showing a crashed Ford

148

12.4. SVM-Based Segmentation

(a) Springs, three voxels per class.

(b) Springs, multiple voxels per class.

Figure 12.15.: Seed voxel count in�uence on Ford Fiesta springs.

149

12. Qualitative Evaluation

(a) Original data, zoomed into its front. (b) Result, overlaid and cropped.

Figure 12.16.: “Honda Accord”, original data and result of retrained segmentation.

(a) Applied to unscaled data, color corrected. (b) Applied to scaled data, color corrected.

Figure 12.17.: Retraining a pretrained model on a di�erent scan.

Fiesta, and check the in�uence of scaling to the results. Regarding the model, we use a SVM
trained a priori on this scan to �nd the springs of the car. Next, we apply it to another crash
car scan, namely that depicting a Honda Accord shown in Figure 12.16a. We also selected few
additional seed voxels from the Honda dataset to adapt the trained model to the new data. How-
ever, one major point not discussed yet is the in�uence of the actual grayscale value distribution,
since it can have considerable impact on the computed features. Thus, we apply the same model
with the same seed voxel selection to the unprocessed Honda voxel value data, cf. Figure 12.17a,
as well as to a derived dataset where we linearly scaled the voxel values such that the voxel
values belonging to the springs approximately match between these scans, cf. Figure 12.17b.
Both images show the unprocessed output of the SVM-based segmentation procedure. We ob-
serve that scaling the grayscale distribution accordingly improved the result obtained using a
Support Vector Machine by discarding additional voxel regions which do not contain relevant
voxels. However, this behavior does not in�uence the �nal result after postprocessing shown in
Figure 12.16b where we cropped the volume to highlight the segmented springs. Nevertheless,
appropriate scaling is expected to improve the segmentation results in general.

150

References

References

[1] Jesse Davis and Mark Goadrich. “The Relationship between Precision-Recall and ROC
Curves”. In: Proceedings of the 23rd International Conference on Machine Learning. Asso-
ciation for Computing Machinery, 2006, pp. 233–240.

[2] Jeroen Bertels et al. “Optimizing the Dice Score and Jaccard Index for Medical Image
Segmentation: Theory and Practice”. In: Medical Image Computing and Computer Assisted
Intervention – MICCAI 2019. Springer International Publishing, 2019, pp. 92–100.

[3] Ingo Steinwart. “Support Vector Machines are Universally Consistent”. In: Journal of Com-
plexity 18.3 (2002), pp. 768–791.

151

Part VI.

Conclusions and Outlook

153

Um, can you repeat the part of the
stu� where you said all about the...
things?

Homer Simpson, The Simpsons

Table of Contents

13. Conclusion 157

14. Outlook 159

Appendices 163

A. Reservoir Sampling Has Uniform Probability . 163
B. Convergence of Naive FAITH Iterations . 164

At this �nal part of this thesis we recapitulate our contributions to the �eld of industrial volu-
metric segmentation. Finally, in the following chapter we brie�y give an outlook of points in our
framework where further research should be conducted.

13. Conclusion

We �nally recapitulate our contributions to the �eld of industrial volumetric segmentation.
Speci�cally, in the �rst chapter we discussed limitations of existing methods when applied in our
setting. After this, we formally introduced how to represent a three-dimensional voxel volume
and, most importantly, the description of a local environment centered around an iterable voxel.
Next, we discussed the bene�ts of comparing histograms by their Wasserstein distance instead
of the regular Euclidean distance. In that chapter we further introduced an embedding which
transforms histograms into vectors such that the Euclidean distance of the latter approximates
the Wasserstein distance of the original histograms. Additionally, we gave algorithms for e�-
ciently computing this embedding. In Chapter 4 we described a set of features that are computed
from local environments around voxels. On the one hand, we augmented existing descriptors
based on the grayscale values or the texture of regions and conditionally enhanced them to de-
scribe three-dimensional environments. On the other hand, we proposed new features speci�c-
ally comparing regions to geometric primitives like planes or lines. We further aimed to make
the de�ned descriptors robust against noise and recapitulated a method to compute the selection
of features, which best describe the regions, automatically. After explaining features computed
from local regions, we focussed on unsupervised segmentation of voxel volumes. There, we
de�ned a novel sampling strategy to achieve a representative random sample from the voxel
volume. Having such a sample, we continued to present the two well-known data clustering
algorithms K-Means and Gaussian Mixture Models in Chapters 6 and 7, respectively. For both
methods, we speci�cally focussed on their initialization and ways to avoid degeneracies. Ad-
ditionally, we combined them with our random sampling procedure which induces a constant
memory consumption independent of the size of the processed voxel dataset, and hence makes
them feasible to be applied on volumes without size restrictions. Both techniques also consider
the features introduced in Chapter 4 or alternatively cluster volumes purely on their grayscale
value distribution. We further gave brief analyses over the asymptotic runtime behavior and
memory consumption showing their e�ective linear runtime with respect to the volume voxel
count. In Part IV, we derived three novel segmentation techniques which learn their necessary
information from very few training data interactively. That is, user interaction provides domain
expert knowledge in form of seed voxels and conditionally labels. Then, classi�ers are trained
on this information. First, we extended a thresholding procedure which incorporated feature
information by allowing multiple features to have in�uence on the result in Chapter 8. Next,
we used a Support Vector Machine model as a voxelwise classi�er based on user interaction
and local information. Then, we provided a general voxelwise multiresolution segmentation
framework in which we embedded the previous two mentioned interactive methods. For all
techniques, we provided details how they can be used for voxelwise segmentation of volumes
without size restrictions. Finally, we evaluated the introduced segmentation procedures on se-
lected voxel volume datasets. For the quantitative evaluation, we applied a deterministic setup
mimicking an interactive Support Vector Machine-based segmentation including postprocessing
steps on the mentioned volumes for which ground truth was available. The results indicate that
the segmentation is almost always superior to classical thresholding which is still the most used
method for volumetric segmentation. We also saw that applying the multiresolution counter-
part of our procedure can speed up the volume processing considerably while the segmentation

157

13. Conclusion

performance decreased only slightly. The qualitative evaluation instead applied all methods on
several datasets and the achieved results show the versatility of our methods.

The main advantages of our contributions are both the generality and the interactivity. The gen-
erality refers to the fact that all of our methods operate on general voxel volumes and hence
are not tailored towards CT or MRI scans. Furthermore, we do not focus on speci�c parts we
want to segment, e.g., the liver in medical scans, either. Instead, we do not impose any prior
knowledge on the parts that shall be segmented. The interactivity instead implicitly provides
that knowledge. It further enables a user to segment unique scans, i.e., scans of objects where no
comparable volumes exist. The best examples in this category are objects of cultural heritage, cf.
our peruvian mummy, or crashed car prototypes. We further saw that our segmentation proce-
dures yield good to excellent segmentation results, which proposes the new idea of using them
to produce ground truth data for other classifying systems like neural networks. The creation
of such ground truth data is cumbersome and requires an enormous e�ort by domain experts.
However, we claim that this process can be sped up signi�cantly using our methods and requires
only little manual editing. Recently, we applied this to create ground truth data by segmenting
pieces from toy containers and successfully trained a deep neural network which automatically
detects these pieces at di�erent positions and in di�erent orientations in other containers. Over-
all, we believe that the di�erent techniques introduced in this thesis will serve applications by
allowing for voxelwise segmentation of big volumes of many di�erent domains. The capabilities
presented are likely to bene�t the creation of ground truth data for di�erent classi�cation sys-
tems or even be directly used for extraction and visual inspection of digitized three-dimensional
objects.

158

14. Outlook
We like to point out a few points in this thesis where further research could be conducted to
improve the segmentation performance and usability of our techniques.
First, in Chapter 3, we conjectured that when only very few training samples are available, the
segmentation decision can be improved when using the Wasserstein distance instead of the reg-
ular Euclidean distance to resolve ambiguities, e.g., if the decision value for SVM classi�cation is
close to the hyperplane. Then, the Wasserstein distance might assign the item with more con-
�dence by reducing the distance to the assigned cluster. While this behavior seems reasonable,
more sophisticated numerical experiments shall be performed to empirically verify this. Also,
the engineering of features is a task which can be continued endlessly. While we covered the
main geometric properties of local environments, improvements of the presented features are
certainly possible and worthwile. Additionally, we limited ourselves to purely local features.
However, if application-dependent global information is given, it might be incorporated into the
feature vector to allow for better classi�cation.
Speci�cally considering FAITH, a future extension of that method might �t a sigmoidal func-
tion to the decision values similar to Platt scaling. The modi�ed algorithm then would yield
probabilities which in turn enables con�dence thresholding as when applying our SVM-based
method. Concerning SVMs, an important open problem is an e�cient serialization with respect
to model retrainability. That is, it should be investigated what training data instances need to
be serialized in order to make the model retrainable instead of serializing all data points. Con-
sidering our multiresolution framework, several heuristics were introduced to e�ciently handle
candidate RoIs. There, one might improve especially the fusion criterion by the idea of an shape
error functional already stated in that chapter. The remaining challenge is not only to �nd a
good functional but also one which computes the introduced shape error on a small set of locally
processed information only.
On a technical level, one de�ciency of our methods lies within its nature, namely that they classify
voxelwise. This is exactly our intention, but it severely a�ects the actual runtime of algorithms,
and while they are of asymptotical linear runtime with respect to the input voxel count, pro-
cessing each voxel can take a long time. There, further research should be done in two natural
ways: grid and GPU computing. By grid computing, we mean that big volumes should be par-
titioned with necessary overlap and distributed among a computing cluster or grid. After the
voxelwise classi�cation of the partitions, the results then shall be fused back together into one
result volume. While this is not a hard problem to solve, it is not supported by the framework
in which our methods are implemented thus far. However, extensions should easily be able to
implement this. Since our algorithms further act locally and assign computed values to each
individual voxel, a natural idea would be to derive e�cient GPU computations of the presented
features. This can speed up both the training phase as well as the classi�cation phase consid-
erably. The latter can further be performed fully on the device since the classi�cation rule of a
Support Vector Machine is simply composed of feature vectors and e�ectively dot produts. Fi-
nally, we want to emphasize that both approaches can be combined easily. That is, after the model
is trained, the volume is partitioned, distributed among the nodes in the cluster and classi�ed on
the GPU devices there.
Overall, there is still room for improvement upon our novel techniques which can not only im-
prove their segmentation but also the runtime performance and interactivity.

159

Appendices

161

A. Reservoir Sampling Has Uniform Probability

A. Reservoir Sampling Has Uniform Probability

In this section, we prove that the typical reservoir sampling algorithm draws a uniformly distrib-
uted sample from a population, i.e., that each population element has equal probability of getting
selected. Although it is well-known and several short proofs for this can be found in literature,
we give a detailed explanation for the sake of completeness following the proof found in [1].

Lemma A.1. Given a population X , Algorithm 4 produces a uniformly distributed random
sample Ω, i.e. each population item xi, i ∈ {1, . . . , N}, has the probability

P (xi ∈ Ω) =
M

N
of being chosen to be in the reservoir.

Proof. Denote Ωt to be the random sample after iteration t ∈ N.
We show that P (xi ∈ Ωt) = M/t for all t ≥ i.
We proof this by induction over t. For the base case, we distinguish between two cases.
If i ≤M , then the base case is t = M where all elements are added to the sample always, i.e.,

P (xi ∈ Ωt) = P (xi ∈ ΩM) = 1 = M/t.

On the other hand, if i > M , the base case is t = i for which we get
P (xi ∈ Ωt) = P (xi ∈ Ωi) = P (ri < M) = M/i = M/t,

where ri ∼ U([1, i]) as speci�ed by the algorithm.
In this setting, our induction hypothesis is that

P (xi ∈ Ωt) = M/t.

for some t ≥ i. For the induction step, consider the time point t + 1. Given our algorithm, we
compute the probability that the item xt+1 replaces an item xi in the sample by
P (xt+1 replaces xi | xi ∈ Ωt) = P (xt+1 is selected to be added)P (xi is selected to be removed)

=
M

t+ 1

1

M

=
1

t+ 1
.

Plugging in, we obtain
P (xi ∈ Ωt+1) = P (xi ∈ Ωt)P (xi is not replaced at time t+ 1 | xi ∈ Ωt)

= P (xi ∈ Ωt) (1− P (xt+1 replaces xi | xi ∈ Ωt))

=
M

t+ 1
.

Finally, after a full scan of the input population, the resulting probability is given by

P (xi ∈ Ω) = P (xi ∈ ΩN) =
M

N
.

163

B. Convergence of Naive FAITH Iterations

Here we show that the naive FAITH iteration{
x(0) ∈ Rd,
x(k+1) = PC

(
Sδλµ(x(k) − δ∇f(x(k)))

)
.

converges against a unique �xed point, although that �xed point need not be the true minimizer
of the FAITH target function as shown in Example 8.3.2.
First, we need an auxiliary lemma.

Lemma B.1. Let f : Rd → R be any proper, lower semi-continuous convex function.
Then the proximal operator for f is nonexpansive, i.e.,

‖ proxf (x)− proxf (y)‖2 ≤ ‖x− y‖2
for all x,y ∈ Rd.

This is ful�lled as proximal operators are �rmly nonexpansive and thus also nonexpansive. A
detailed explanation is given in in [2, p.355, Lemma 2].
Now, we prove the nonexpansive properties of all steps of the iteration.

Lemma B.2. Let C = {x ∈ Rd | C x ≤ d} 6= ∅ be a nonempty convex polytope de�ned by
C ∈ Rm×n and d ∈ Rm. Further, let t > 0 and denote the soft-thresholding operator with
threshold t by

St(x) = sgn(x) max{0, |x| − t}.
Then, for all x, y ∈ Rn we have

‖PC(x)− PC(y)‖2 ≤ ‖x− y‖2 (16.1)
‖St(x)− St(y)‖2 ≤ ‖x− y‖2 (16.2)

Proof. As reasoned in Section 8.3.2, both the projection onto our polytope and the soft-thresholding
operation are solutions to proximal operators. Hence, by Lemma B.1 both are nonexpansive op-
erators and thus the claimed inequalities hold.

Moreover, we show the contractivity of our gradient descent method for the di�erentiable part
f of our objective function.

Lemma B.3. Let f(x) = 1
2‖Ax−b‖

2
2 + 1

2λ(1−µ)‖x‖22 be the di�erentiable part of our function
where λ > 0, µ ∈ (0, 1).
Then, the gradient descent method with a constant step size of 0 < δ < 2

L (with L being the
Lipschitz constant of the gradient of f) is a contraction.

Proof. Let 0 < δ < 2
L be the step size with L as de�ned in Equation (8.9).

First, we notice that ∇2f = ATA + λ(1 − µ)I . Since for any matrix A the product ATA is
positive semi-de�nite and λ(1 − µ)I strictly positive de�nite, the combination ∇2f is strictly
positive de�nite, i.e., all eigenvalues are positive.
We can explicitly compute the largest eigenvalue as

Eigmax(∇2f) = Eigmax

(
ATA+ λ(1− µ)I

)
= Eigmax(ATA) + λ(1− µ)

(8.8)
= L,

where the second equality holds as the addition with a scaled identity matrix shifts all eigenvalues
by the scaling, and hence in particular also the largest one.

164

B. Convergence of Naive FAITH Iterations

Now, let x,y ∈ Rd be arbitrary with x 6= y.
De�ne

h : [0, 1]→ Rd, t 7→ tx+ (1− t)y,
and further de�ne

g : [0, 1]→ Rd, t 7→ h(t)− δ∇f(h(t)).

From this we derive
g′(t) =

(
I − δ∇2f(h(t))

)
(x− y).

It follows that
‖x− δ∇f(x)− y + δ∇f(y)‖2 = ‖g(1)− g(0)‖2

≤ sup
ξ∈(0,1)

‖g′(ξ)‖2

≤ sup
ξ∈(0,1)

‖I − δ∇2f(h(ξ))‖2‖x− y‖2

= ‖I − δ∇2f‖2︸ ︷︷ ︸
=:ρ

‖x− y‖2.

Note that in the mean value theorem for vector-valued functions equality does not hold in gen-
eral, but the stated inequality is valid.
Trivially, ρ ≥ 0. Additionally, we already discussed that the eigenvalues of ∇2f are elements of
the interval (0, L]. Thus, the eigenvalues of I − δ∇2f are contained in [1− δL, 0). This leads to
the estimation

ρ = ‖I − δ∇2f‖2 = |1− δL| < 1.

Overall, we conclude that
‖x− δ∇f(x)− y + δ∇f(y)‖2 ≤ ρ‖x− y‖2, (16.3)

where ρ ∈ [0, 1) is independent of x and y, which shows that this is a contraction.

Finally, we accumulate this three auxiliary statements into one result.

Corollary B.4. Let x ∈ Rd be any arbitrary starting point. Let f be the function as before.
Additionally, assume given factors 0 < δ < 2

L , λ > 0 and µ ∈ (0, 1) as above.
Then, the iteration

x(k+1) = PC
(
Sδλµ

(
x(k) − δ∇f(x(k))

))
builds a contraction.

Proof. With application of our lemmas before we get
‖PC (Sδλµ (x− δ∇f(x))) − PC (Sδλµ (y − δ∇f(y)))‖2

(16.1)
≤ ‖Sδλµ (x− δ∇f(x))− Sδλµ (y − δ∇f(y)) ‖2

(16.2)
≤ ‖x− δ∇f(x)− y + δ∇f(y)‖2

(16.3)
≤ ρ‖x− y‖2

with ρ ∈ [0, 1).
Thus, the iteration is a contraction using the Banach �xed-point theorem.

165

References

[1] Tim Roughgarden and Gregory Valiant. CS168: The Modern Algorithmic Toolbox, Lecture
#13: Sampling and Estimation. Online under http://timroughgarden.org/s17/l/l13.pdf.
May 2017.

[2] Martin Burger, Alex Sawatzky and Gabriele Steidl. “First Order Algorithms in Variational
Image Processing”. In: Splitting Methods in Communication, Imaging, Science, and Engin-
eering. Springer International Publishing, Jan. 2016, pp. 345–407.

166

http://timroughgarden.org/s17/l/l13.pdf

	I Introduction
	1 Background
	1.1 Motivation
	1.2 Advances in Segmentation
	1.3 Data Acquisition
	1.4 Processing 3D Data
	1.5 Challenges

	2 Basic Pre- and Postprocessing
	2.1 Thresholding
	2.2 Advanced Artifact and Noise Reduction
	2.3 Removing Isolated Voxels
	2.4 Connected Components Analysis
	2.5 Applying Further Segmentation Algorithms

	II Describing Local Geometry
	3 A Wasserstein Histogram Embedding
	3.1 Introduction
	3.2 Related Work
	3.3 Embedding the 2-Wasserstein Distance
	3.4 Implementing the Embedding
	3.5 Applications and Consequences

	4 Describing Local Structure
	4.1 Local Thresholding
	4.2 Histogram Thresholding
	4.3 Nongeometric Features
	4.4 Geometric Features
	4.5 Scaling Feature Vectors
	4.6 Automatic Feature Selection

	III Unsupervised Segmentation
	5 Random Sampling
	5.1 Stratification
	5.2 Reservoir Sampling

	6 K-Means Clustering
	6.1 Introduction
	6.2 Lloyd's Algorithm
	6.3 Initialization
	6.4 Clustering Big Volumes
	6.5 Runtime and Memory Analysis

	7 Clustering via Gaussian Mixture Models
	7.1 Gaussian Mixture Models
	7.2 Expectation Maximization
	7.3 Avoiding Degeneracies
	7.4 Model Selection
	7.5 Clustering Big Volumes
	7.6 Runtime and Memory Analysis

	IV Supervised Segmentation
	8 Feature-Adaptive Interactive Thresholding
	8.1 Related Work
	8.2 Deriving a Regularized Thresholding Problem
	8.3 Solving the Problem
	8.4 Hyperparameter Tuning
	8.5 Segmenting Big Volumes
	8.6 Runtime and Memory Analysis

	9 Support Vector Machine-Based Segmentation
	9.1 Related Work
	9.2 Support Vector Machines
	9.3 Confidence Values
	9.4 Hyperparameter Tuning
	9.5 Model Serialization and Iterative Training
	9.6 Segmenting Big Volumes
	9.7 Active Learning
	9.8 Runtime and Memory Analysis

	10 Multiresolution Segmentation
	10.1 Related Work
	10.2 Multiresolution Volumes
	10.3 General Interactive Multiresolution Segmentation
	10.4 Applications
	10.5 Runtime and Memory Analysis

	V Evaluation and Experiments
	11 Quantitative Evaluation
	11.1 Performance Metrics
	11.2 Experiment Setup
	11.3 Results
	11.4 Influence of Multiresolution Segmentation

	12 Qualitative Evaluation
	12.1 Data
	12.2 Clustering
	12.3 FAITH
	12.4 SVM-Based Segmentation

	VI Conclusions and Outlook
	13 Conclusion
	14 Outlook
	Appendices
	A Reservoir Sampling Has Uniform Probability
	B Convergence of Naive FAITH Iterations

