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Abstract

Online social networks provide a rich source of information about millions of users
worldwide. However, due to sparsity and complex structure, analyzing these net-
works is quite challenging and expensive. Recently, graph embedding emerged to
map networked data into low-dimensional representations, i.e. vector embeddings.
These representations are fed into off-the-shelf machine learning algorithms to sim-
plify and speed up graph analytic tasks. Given the immense importance of social
network analysis, in this thesis, we aim to study graph embedding for social networks
in three directions.

Firstly, we focus on social networks at microscopic level to primarily encode the
structural characteristic of users’ personal networks so-called ego networks. These
representations are utilized in evaluation tasks whose performance depends on rela-
tional information from direct neighbors. For example, social circle prediction and
event attendance inference both need structural information from neighbors in social
networks.

Secondly, we explore assessing the content of vector embeddings in terms of
topological properties. This could be explained via two proposed approaches: 1)
a learning to rank algorithm in which the model weights reveal the importance
of properties at subgraph level (ego networks), 2) a regression model for direct
approximation of network statistical properties at vertex level.

Thirdly, we propose extensions of graph embedding to capture sign or additional
content of social networks. Users in social media often express their feelings and
attitudes towards others which forms sentiment links besides social links. We design
a joint objective function whose terms capture semantics of both social and sentiment
links simultaneously. We also propose a multi-task learning framework for networks
with attributes and labels by stacking autoencoders. The weights of the learning
tasks are automatically assigned via an adaptive loss weighting layer.
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Chapter 1

Introduction

1.1 Motivation

Online social networks nowadays contain a wealth of useful information about so-
cial interactions, relations, and user generated content. Social network analysis
thus became an important tool for solving various real-world applications such as
epidemic prediction [CCF08, GK04, PSV01, FMWFM11], natural disaster mitiga-
tion [NSJ12,BOF+97,Fre11], social influence dissemination [MF94,MF93,KKT03],
information and trust propagation [JE10,BXM+13,RP11], crime and criminal detec-
tion [Bol14,HLJ15,OE12], personalized recommendations [QFZM13,GZC+09,SZ08],
targeted advertising [YDCL06,MB09], social healthcare analysis [DA10,TY12], viral
marketing [ML10,DTSS10], and academic network analysis [TZY+08,LMWDO10,
DBS07].

To process the networked data, traditional methods mainly rely on handcrafted
features, such as kernel functions [VSKB10], graph statistics (e.g. degree, clustering
coefficient) [BCM11], carefully engineered features [LNK07], and probabilistic mod-
els [WSP07, HMK04]. However, these conventional algorithms mostly suffer from
theoretical and practical difficulties such as high computational time and space. Re-
cently, graph embedding (or network embedding) emerged to learn a mapping from
raw input nodes to points in a low-dimensional vector space, so-called vector em-
bedding (or representation). The goal is to optimize this mapping so that network
properties are reflected in the geometric relationship between the learned vectors.
These representations are then input as features into off-the-shelf machine learning
algorithms whose speed and performance obviate the need for applying complex
classification models directly on the original graph.

Graph embedding has been already applied to social networks with the aim
of performing accurate and fast link prediction [GL16,OCP+16, ZLL+17, LZZ+17,
LZZ+18], anomaly detection [HAMH16, PLL+18, LJSP18, SD14, YCA+18], node
classification [YLZ+15,WCZ16,LHZC18,HYL17,DDS16] and clustering [TGC+14,
CLX15,WCW+17,TNJ16,WXCY17]. Yet there exist many social network analysis
tasks need to be solved by graph embedding.
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A comparatively less explored but evidently important subject in social networks
is the structural characteristic of users’ personal networks so-called ego networks. In
sociology, ego networks are fundamental to determine key facets of human behavior,
such as trust, sharing of resources, and formation of communities. Therefore, ego
network embedding can be used to simplify or speed up applications which need
users’ behavior and relations in small groups like social circle prediction or event
attendance inference. Further analysis on social networks structure (e.g. centrality
measures) has led to solve community detection [For10], shortest distance approx-
imation [EJS76], link prediction [LNK07], node ranking [PA06] and recommenda-
tion [WLZ12]. For the sake of simplicity and efficiency, vector embeddings can be
examined on retaining centrality measures or geodesic distance of nodes. Moreover,
social networks can contain attributes, signs, and labels which initiate another set
of applications such as signed link prediction, attribute inference, and edge label
prediction. To further facilitate the latter tasks, vector embeddings containing rich
semantics of network information can be leveraged via appropriate predictor models.

Given the immense importance of social network analysis, in this thesis, we aim
to study and extend graph embedding for social networks in three directions. First,
social networks are explored in a more fine-grained level to encode the subgraph
around a focal node (ego) which ends in solving certain social network analysis
tasks. Second, the recent graph embedding methods are probed if they preserve
topological properties of social networks. Third, special forms of social networks are
investigated if adapted embedding models can describe their data and structure.

1.2 Challenges

The major challenges in graph embedding for social networks are as follows:

• Variability of neighborhood patterns: Most of the current graph embed-
ding approaches scrutinize social networks at macroscopic level, while there
exist various neighborhood patterns at microscopic level, e.g. around an
ego. According to Muhammad et al. [MVL15], the neighborhood pattern in
ego networks can form eight distinct trends: star, complete, dense, strongly
linked, linked neighbors, powerful ego node, strong ego neighbor, and less
cohesive star. Ego network structure can help to identify influential spread-
ers [ACLG+16] or to organize users into different social circles [ML14]. There-
fore, it is required to design subgraph embedding models in which personal
social networks are effectively encoded. As such, the usefulness of subgraph
embedding goes beyond the task of basic subgraph classification.

• Incomplete understanding of learned embeddings: Over the past few
years, plenty of embedding methods have been proposed to simplify a range of
different graph analysis tasks. These methods tend to learn as much topologi-
cal information as possible, however what structure is exactly being captured
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is currently not known. One aspect of this issue is to explore the interpretabil-
ity of vector embeddings. Thus, further investigation on learned embeddings is
needed to discover which network property (e.g. centrality measures, distance,
density) is actually preserved there.

• Diversity of social networks: The data from real social networks can be
heterogeneous or homogenous, weighted or unweighted, signed or unsigned,
labeled or unlabeled, with associated content or multiple social roles. Fur-
thermore, the tasks of social network analysis can vary widely, ranging from
node-focused problems (e.g. node recommendation, link prediction) to graph-
focused problems (e.g. community detection, graph generation). This diver-
sity in data types and tasks requires designing different architectures to tackle
specific problems.

1.3 Scientific Contributions

Based on the challenges defined above, we present the following scientific contribu-
tions:

• Ego network embedding: We make use of Paragraph Vector [MSC+13] to
encode the neighborhood pattern of an ego network into a single vector called
"Loc". The Loc vector then acts as a complementary feature to improve the
performance of two downstream evaluation tasks namely social circle predic-
tion and event attendance inference.

• Exploring vector embedding: We utilize RankSVM [Joa02] to examine
the content of vector embeddings on retaining network centrality (e.g. close-
ness) at subgraph level (ego network). We also investigate the extent to which
network centrality is preserved in embeddings at vertex level. A regression
model fed with embeddings is used to directly approximate centrality values.
Empirical experiments show each of the embedding techniques can potentially
capture different semantics of network centrality in ego networks. Following
the success of closeness approximation at vertex level, we attempt to compute
the shortest distance between nodes via a neural regressor. We report our ex-
perimental evaluations on several benchmark datasets showing low distortion
errors compared to the baseline methods.

• Deep learning for special networks: Given a network with sentiment and
social links, we expand the objective of LINE [TQW+15] to learn representa-
tions observing both sentiment and social links. We validate the efficiency and
effectiveness of our model by empirical evaluations on two real-world datasets.
Another set of networks contain both attribute and labels which need to be
modeled through joint learning paradigms. A possible approach is to stack au-
toencoders as an end-to-end model in which graph connectivity, node labels,
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and available attributes are captured at the same time. The model conducts
three embedding tasks optimizing three objective functions where weights for
objectives are automatically learned. To ensure a fair comparison, we run
several experiments on widely used datasets containing both node label and
attribute.

1.4 Methodology

We use an experimental research methodology throughout this thesis. After related
work in Chapter 2, we approach a scientific question in each chapter by conducting
experiments with different variables. There exist different graph embedding methods
which are compared using multiple datasets. All claims and conclusions are drawn
from the conducted experiments and their respective results values.

1.5 Structure

This current chapter already introduced graph embedding for social networks and
its inherent applications. Chapter 2 gives a general overview of graph embedding
techniques for plain, heterogeneous, attributed, and signed networks. Therein, the
recent embedding methods for social networks besides the usual applications are
briefly described. This thesis consists of three major parts.

Part I includes Chapter 3 and Chapter 4 which introduce the use of ego network
embedding for practical applications such as social circle prediction and inferring
event attendance. These chapters describe the proposed models and datasets, dis-
cuss appropriate evaluation metrics, and conclude results and achievements.

Part II involves Chapter 5 and Chapter 6 which probe the content of differ-
ent embeddings in regard to network topological features. This covers models and
experiments for estimating vertex centrality and shortest path distance in social
networks.

Part III studies special types of social networks in Chapter 7 and Chapter 8.
Chapter 7 investigates how sentiment links along with social links can be encoded
via a joint objective function. The proposed model is evaluated on two standard
tasks namely signed link prediction and node recommendation. Chapter 8 presents
stacked autoencoders for joint feature learning on network structure and additional
attached content. The model includes an additional neural layer which assigns
optimal weights to the multiple objectives.

Finally, Chapter 9 summarizes the findings and contributions of this work. The
limitations of the proposed methods along with possible future works are briefly
addressed at the end of the chapter.
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1.6 Publications

The following papers are published in the context of this work:

• Global and Local Feature Learning for Ego Network Analysis: In this
paper, we introduce the usage of Paragraph Vector [MSC+13] to model neigh-
borhood patterns of ego networks and subsequently predict social circles. We
assess our proposed method on ego networks of Facebook, Google+, and Twit-
ter. This paper forms Chapter 3 of the thesis which explains the importance
of ego network embedding specifically for social circle prediction

Fatemeh Salehi Rizi, Michael Granitzer, and Konstantin Ziegler. "Global
and local feature learning for ego network analysis." In 2017 28th Interna-
tional Workshop on Database and Expert Systems Applications (DEXA),
pp. 98-102. IEEE, 2017.

• Properties of Vector Embeddings in Social Networks: In this work,
we probe vector embeddings in terms of vertex centrality via two proposed
approaches. Our ranking approach unveils eigenvector and betweenness cen-
trality as the most captured properties at subgraph level (ego networks). By
a direct mapping, closeness centrality shows a more precise approximation at
vertex level almost for all embedding techniques. Chapter 5 provides more
detail on this work.

Fatemeh Salehi Rizi and Michael Granitzer. "Properties of vector embed-
dings in social networks". Algorithms 10, no. 4 (2017): 109.

• Shortest Path Distance Approximation Using Deep Learning Tech-
niques: In this paper, we provide a direct mapping from pairs of vectors to
real topological distances. Our experimental results on social network data
demonstrate relatively low distortion errors in specific for shorter distances.
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study the distance between nodes in Chapter 6.

Fatemeh Salehi Rizi, Joerg Schloetterer, and Michael Granitzer. "Short-
est Path Distance Approximation Using Deep Learning Techniques." In
2018 IEEE/ACM International Conference on Advances in Social Net-
works Analysis and Mining (ASONAM), pp. 1007-1014. IEEE, 2018.

• Predicting Event Attendance Exploring Social Influence: In this work,
social influence is simply calibrated by network embedding techniques. A
combination of textual and network structural features is deployed to make
attendance prediction. Empirical evaluations on two event-related datasets
reveal the impact of additional network features. This work is another example
to show the importance of local neighborhood embedding in Chapter 4.
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Fatemeh Salehi Rizi and Michael Granitzer. "Signed heterogeneous net-
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Symposium on Applied Computing, pp. 1877-1880. 2020.
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this paper, we stack autoencoders to build an end-to-end model (called JAME)
capable of handling data integration in social networks. Experimental eval-
uations on real-world datasets demonstrate the effectiveness and efficiency of
JAME compared to the baseline methods. Chapter 8 explains more detail
about this paper.
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sentation Learning with Adaptive Loss Weighting." In 2020 IEEE/ACM
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Chapter 2

Background and Related Work

This chapter provides background and overview on the recent neural graph em-
bedding techniques and their applications in social network analysis. With the
growth of online social networks such as Facebook and Twitter, graph analysis
has become a radically novel area of data mining. Other than social networks,
graphs in general provide a natural abstraction to represent the relationship be-
tween multiple entities. Graph analysis can solve practical applications in diverse
domains like social science [MVW14], biology [Maa11,ZVTD+18], recommendation
systems [LMY+12], crime detection [TGB11,FDMCF14], natural language process-
ing [Uts15], and medicine [BGL11].

Typically, social networks reflect social interactions between people, biological
networks form protein-to-protein iterations, citation networks show how publica-
tions are cited by authors in the same field, and word co-occurrence networks help
for language modeling. A more extensive analysis on complex networks can lead
to solve various applications such as friend recommendation in social networks,
diseases prediction in protein interaction networks, identifying criminal groups in
communication networks, and highly cited papers in citation networks. The latter
tasks can formally fall into the category of link prediction [LNK07,GL16,OCP+16,
BG17,TMKM18, SWRG19], node classifcation [BCM11,GL16,TQW+15, PARS14,
WCZ16,BG17,TMKM18], graph clustering [Sch07,CZC+17], or node centrality cal-
culation [MRV16].

However, with today’s large-scale networks, performing graph analysis and vi-
sualization imposes serious challenges. For instance, most of the traditional graph
algorithms run iteratively on the adjacency matrix which usually cause high com-
putational costs in time and space [NJ, ZGL03]. An alternate solution is to use
hand-engineered features created by network statistics and other measures [GER08]
which is a labor process. Traditional parallel computing platforms such as Mapre-
duce [DG08] are not well suited for networked data, and the other graph analytic
platforms like Pregel [MAB+10], Giraph [MSLH15] and Graphx [XGFS13] have
limited efficiency for real-world networks with the scale-free property.

A possible solution for large-scale graph analysis is to map the networked data
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into low-dimensional latent space, and then run off-the-shelf machine learning algo-
rithms over those representations. This process of converting the networked data
into vector space is known as graph embedding (or network embedding). Initially,
researchers developed graph embedding algorithms inspired by dimensionality re-
duction techniques. They first build a similarity matrix based on the neighborhood
structure, then embed that matrix into a low-dimensional vector space such that con-
nected nodes are closer to each other. However, the majority of works based on this
rationale suffer from scalability issues. For example, Laplacian Eigenmaps [BN01]
and Locally Linear Embedding (LLE) [RS00] have time complexity of O(|V |2),
where V is the set of nodes. Therefore, obtaining scalable graph embedding tech-
niques which leverage the sparsity of real-world networks has drawn great attention
during the last decades.

The great success of neural networks for learning compact descriptors of data in
language modeling [CS17,CW08, SBM12], speech and image processing [DYDA11,
HOT06,HDY+12,GLO+16,KSH12,WWH+14] encouraged researchers to apply deep
learning models to the networked data. Thus, neural graph embedding emerged
with the goal of mapping nodes in the large-scale networks into latent vectors (or
representations). A significant amount of research has been made in the past few
years to encode different types of networks via nonlinear deep learning models. As
an example, Figure 2.1 shows 2D representations of applying DeepWalk [PARS14]
to the Zachary’s karate club network [Zac77].
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ABSTRACT
We present DeepWalk, a novel approach for learning la-
tent representations of vertices in a network. These latent
representations encode social relations in a continuous vector
space, which is easily exploited by statistical models. Deep-
Walk generalizes recent advancements in language mod-
eling and unsupervised feature learning (or deep learning)
from sequences of words to graphs.

DeepWalk uses local information obtained from trun-
cated random walks to learn latent representations by treat-
ing walks as the equivalent of sentences. We demonstrate
DeepWalk’s latent representations on several multi-label
network classification tasks for social networks such as Blog-
Catalog, Flickr, and YouTube. Our results show that Deep-
Walk outperforms challenging baselines which are allowed
a global view of the network, especially in the presence of
missing information. DeepWalk’s representations can pro-
vide F1 scores up to 10% higher than competing methods
when labeled data is sparse. In some experiments, Deep-
Walk’s representations are able to outperform all baseline
methods while using 60% less training data.

DeepWalk is also scalable. It is an online learning algo-
rithm which builds useful incremental results, and is trivially
parallelizable. These qualities make it suitable for a broad
class of real world applications such as network classifica-
tion, and anomaly detection.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
- Data Mining; I.2.6 [Artificial Intelligence]: Learning;
I.5.1 [Pattern Recognition]: Model - Statistical

1. INTRODUCTION
The sparsity of a network representation is both a strength

and a weakness. Sparsity enables the design of efficient dis-
crete algorithms, but can make it harder to generalize in
statistical learning. Machine learning applications in net-
works (such as network classification [15, 37], content rec-

c©The authors, 2014. This is the author’s draft of the work. It is posted here
for your personal use. Not for redistribution. The definitive version was
published in KDD’14, http://dx.doi.org/10.1145/2623330.
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Figure 1: Our proposed method learns a latent space rep-
resentation of social interactions in Rd. The learned rep-
resentation encodes community structure so it can be eas-
ily exploited by standard classification methods. Here, our
method is used on Zachary’s Karate network [44] to gen-
erate a latent representation in R2. Note the correspon-
dence between community structure in the input graph and
the embedding. Vertex colors represent a modularity-based
clustering of the input graph.

ommendation [11], anomaly detection [5], and missing link
prediction [22]) must be able to deal with this sparsity in
order to survive.

In this paper we introduce deep learning (unsupervised
feature learning) [2] techniques, which have proven success-
ful in natural language processing, into network analysis for
the first time. We develop an algorithm (DeepWalk) that
learns social representations of a graph’s vertices, by mod-
eling a stream of short random walks. Social representa-
tions are latent features of the vertices that capture neigh-
borhood similarity and community membership. These la-
tent representations encode social relations in a continuous
vector space with a relatively small number of dimensions.
DeepWalk generalizes neural language models to process a
special language composed of a set of randomly-generated
walks. These neural language models have been used to
capture the semantic and syntactic structure of human lan-
guage [6], and even logical analogies [28].
DeepWalk takes a graph as input and produces a la-

tent representation as an output. The result of applying our
method to the well-studied Karate network is shown in Fig-
ure 1. The graph, as typically presented by force-directed
layouts, is shown in Figure 1a. Figure 1b shows the output
of our method with 2 latent dimensions. Beyond the striking
similarity, we note that linearly separable portions of (1b)
correspond to clusters found through modularity maximiza-
tion in the input graph (1a) (shown as vertex colors).

To demonstrate DeepWalk’s potential in real world sce-
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Figure 1: Our proposed method learns a latent space rep-
resentation of social interactions in Rd. The learned rep-
resentation encodes community structure so it can be eas-
ily exploited by standard classification methods. Here, our
method is used on Zachary’s Karate network [44] to gen-
erate a latent representation in R2. Note the correspon-
dence between community structure in the input graph and
the embedding. Vertex colors represent a modularity-based
clustering of the input graph.

ommendation [11], anomaly detection [5], and missing link
prediction [22]) must be able to deal with this sparsity in
order to survive.

In this paper we introduce deep learning (unsupervised
feature learning) [2] techniques, which have proven success-
ful in natural language processing, into network analysis for
the first time. We develop an algorithm (DeepWalk) that
learns social representations of a graph’s vertices, by mod-
eling a stream of short random walks. Social representa-
tions are latent features of the vertices that capture neigh-
borhood similarity and community membership. These la-
tent representations encode social relations in a continuous
vector space with a relatively small number of dimensions.
DeepWalk generalizes neural language models to process a
special language composed of a set of randomly-generated
walks. These neural language models have been used to
capture the semantic and syntactic structure of human lan-
guage [6], and even logical analogies [28].
DeepWalk takes a graph as input and produces a la-

tent representation as an output. The result of applying our
method to the well-studied Karate network is shown in Fig-
ure 1. The graph, as typically presented by force-directed
layouts, is shown in Figure 1a. Figure 1b shows the output
of our method with 2 latent dimensions. Beyond the striking
similarity, we note that linearly separable portions of (1b)
correspond to clusters found through modularity maximiza-
tion in the input graph (1a) (shown as vertex colors).

To demonstrate DeepWalk’s potential in real world sce-

ar
X

iv
:1

40
3.

66
52

v2
  [

cs
.S

I]
  2

7 
Ju

n 
20

14

(b) Output: Representation

Figure 2.1: Graph embedding by DeepWalk [PARS14] on Zachary’s Karate Club
network [Zac77]. Different node colors show a modularity-based clustering on the
input network. All the nodes with structural proximity are close to each other in
the latent space.

Network embedding models are supposed to primarily preserve first-order,
second-order, and higher-order proximity in the latent space, however this trans-
formation is not straightforward. The real-world networks with millions of nodes
are usually sparse, nonlinear, scale-free, dynamic, heterogeneous, singed, or with
associated content. Thus, the need for designing scalable and flexible embedding
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models which adapt to such situations is felt keenly in the graph analysis domain.

Over a few years, there have been a large category of graph embedding models
for practical purposes. In this thesis, we focus on graph embedding models which
leverage neural networks to finally mitigate social network analysis problems. In
the following, we build a taxonomy of graph embedding techniques whose category
is classified into plain networks, heterogeneous networks, signed networks, and at-
tributed networks. Further, we discuss the recent applications of graph embedding
in the context of social network analysis.

2.1 Definitions and Preliminaries

We start by definitions and preliminaries whose terminologies have been delineated
similar to Wang et al. [WCZ16].

Definition 2.1.1. (Graph) A graph G = (V ,E) contains a collection of V =
{v1, · · · , vn} vertices (a.k.a. nodes) and E = {eij}ni,j=1 edges. The adjacency matrix
A of graph G is defined such that Aij = 1 if node vi is connected to node vj , else
Aij = 0. In the weighted graphs, wij represents a non-negative weight associated
with the edge between vi and vj . For each node vi, we denote the set of its direct
neighbors as N(vi).

Definition 2.1.2. (First-order proximity) The first-order proximity between nodes
vi and vj is measured by the weight wij > 1. The higher weight indicates the higher
proximity.

Definition 2.1.3. (Second-order proximity) The second-order proximity of nodes
vi and vj is determined by the similarity of two neighborhoods N(vi) and N(vj).

Definition 2.1.4. (Heterogeneous Network) A heterogeneous network G =
(V ,E, ρ,ψ) consists of multiple types of nodes and edges. Each node vi ∈ V in G
is associated with a node type ρ(vi), and each edge eij ∈ E is associated with an
edge type ψ(eij). Function ρ : V 7→ Tv presents a node type mapping where Tv is
the set of node type, |Tv| > 1. ψ : E 7→ Te is an edge type mapping function where
Te denotes the set of edge types, |Te| > 1.

Definition 2.1.5. (Attributed Network) An attributed network is formally denoted
as G = (V ,E,X) where V and E denote the sets of nodes and edges respectively.
X = {x1, · · · ,xm} is a set of attributes associated with nodes to describe node
properties. Each node vi ∈ V holds an attribute vector [x1(vi), . . . ,xm(vi)] where
xj(vi) is the jth attribute value of the node vi.

Definition 2.1.6. (Signed Network) A signed network is defined as G = (V ,E, ξ)
where V and E denote the sets of nodes and edges respectively. ξ : E 7→ {−1, 0,+1}
is a function which assigns +1 if the edge between vi and vj is positive (friend/trust),
−1 if the edge is negative (foe/distrust) and 0, if there is no edge.
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Definition 2.1.7. (Graph embedding) Graph embedding over G = (V ,E) is a
mapping f : vi 7→ φi ∈ Rd ∀i ∈ {1, . . . , |V |} such that d� |V |, and the function f
preserves first-order, second-order, or higher-order proximity defined on the graph
G.

2.2 Network Representation Learning

In this section, we build a taxonomy of graph embedding methods based on net-
work types which reviews the recent and major works under each category. The
embedding methods fall into four broad categories: 1) plain networks, 2) heteroge-
neous networks, 3) signed networks, and 4) attributed networks. We first describe
the characteristic of each category, then provide a summary of representative ap-
proaches using the notation in Table 2.1

Table 2.1: Summary of notations.

G Graphical representation of the data
V Set of nodes in the graph
E Set of edges in the graph
A Adjacency matrix, |V | × |V |
d Number of dimensions
φi Embedding of node vi , 1× d
f Mapping function
X Attribute matrix, |V | × k
Y Label matrix, |V | ×m
S Similarity matrix, |V | × |V |

2.2.1 Plain Networks

Plain networks refer to homogeneous, undirected, static, and unsigned networks.
The key and fundamental goal of the embedding process is to preserve the struc-
tural property of the original network. DeepWalk [PARS14], node2vec [GL16], and
LINE [TQW+15] are pioneering works which employ neural networks for graph
analysis tasks. DeepWalk and node2vec first conduct random walks to collect node
pairs whose distance is in the range of a local vicinity. Then, they use the Skip-gram
model [MSC+13] of word embedding which leverages a shallow neural network ar-
chitecture to generate embeddings. To explore the input graph locally and globally,
node2vec additionally involves Breadth-First Search (BFS) and Depth-First Search
(DFS) during the random walk. Given a walk v1, . . . , vi, . . . vl with length l, Skip-
gram maximizes the probability of neighbors in the walk, given the representation
of the central node:

max
φ

P (vi−w, . . . , vi+w|φi), (2.1)
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where w denotes the size of context neighbors around vi and φi refers to the
vector representation of the node vi. The Skip-gram model ignores the ordering
constraint, then Equation 2.1 is transformed to:

max
φ

∑
−w<j<w

logP (vi+j |φi). (2.2)

The conditional probability of a node pair P (vj |φi) is defined using the softmax
function:

P (vi+j |φi) =
exp(φTi+jφi)∑|V |
k=1 exp(φTk φi)

. (2.3)

The softmax computation at the output layer of Skip-gram runs over all nodes
which costs time and memory. DeepWalk and node2vec apply two strategies
to approximate softmax, hierarchical softmax [MSC+13] and negative sam-
pling [MSC+13]. Hierarchical softmax constructs a binary tree in which leaf
nodes present the words in vocabulary and the intermediate nodes present internal
parameters. In this way, Equation 2.3 does not need to enumerate all the nodes
but only a path from the root to the corresponding leaf. The optimization problem
indeed narrows down to maximize the probability of a particular path in the tree.
Given a path to leaf vi with the sequence of nodes (b0, b1, . . . , blog(|V |)), where
b0 = root and blog(|V |) = vi, then Equation 2.3 becomes:

P (vi+j |φi) =
log |V |∏
t=1

P (bt|φi). (2.4)

The time complexity of the Skip-gram model is bounded to O(w(d+ d log |V |)),
where w is the context window size, d is the number of dimensions, and log |V | is the
time to build the hierarchical softmax over V vertexes. The other idea is negative
sampling which randomly picks nodes as noise instead of running a sum over all
nodes. This means for two given neighbors vi and vi+j , a noise node vk is sampled
according to a uniform distribution Pn(vi) ∼ 1

|V | ,∀vi ∈ V [MSC+13]. Then, the
log-probability logP (vi+j |φi) is calculated as:

log σ(φ′Ti+jφi) +
K∑
k=1

Evt∼Pn log σ(φ′Tk φi), (2.5)

where σ(.) denotes the sigmoid function σ(x) = 1
1+exp(−x) , and K is the number of

negative samples.

LINE [TQW+15] differently samples node pairs connected by edges multiple
times considering the constant edge weights. The first-order proximity for each
edge (vi, vj) is defined via the joint probability P (vi, vj), and the second-order
proximity via the conditional probability P (vi|vj). To maximize these probabilities,
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the idea of negative sampling [MSC+13] is tied to the formulation whose terms draw
away K negative node pairs (non-existing edges) during training. In total, the time
complexity of Skip-gram with negative sampling can be calculated approximately in
O(n) when n is the size of training data [KK17].

DeepWalk is intended as the baseline of many recent works such as Walk-
Lets [PKS16], struc2vec [FRS17], and many other subsequent works [PWZ+16,
NLR+18, GL16, DCS17, DLTW18, CPHS18]. Walklets [PKS16] modifies the ran-
dom walk strategy of DeepWalk by skipping over multiple nodes in the ongoing
walk. This is performed for different skip lengths which resemble adjacency ma-
trix A powers up to a given order. Struc2vec [FRS17] preserves the structural role
of nodes in the network through two steps. First, building a hierarchical multi-
layer graph, then running random walks over that synthetic graph which seamlessly
collects samples for the Skip-gram learning.

Graphs inherently present a nonlinear structure which is a good fit for ar-
chitectures like autoencoders with capability of learning nonlinear manifolds.
SDNE [WCZ16] deploys stacked autoencoders and implements multiple layers
of nonlinear functions to map the networked data into vector space. Indeed,
the network structure property and sparsity is managed via the following joint
optimization function:

|V |∑
i=1
‖(Âi −Ai)� bi‖+ α

|V |∑
i,j=1

Aij‖φi − φj‖+ λLreg, (2.6)

here Ai is the ith row of the adjacency matrix and Âi is the reconstructed one. �
performs the Hadamard product and bi = {bij}

|V |
i,j=1 is used to handle the sparsity

of the adjacency matrix. If Ai,j = 0 then bi,j = 1, else bi,j = β > 1. The parameter
of β controls the reconstruction weight of the nonzero elements in the input graph.
φi and φj denote the feature representation of nodes vi and vj respectively. The
first term preserves second-order proximity using stacked autoencoders, and the
second term stands for first-order proximity applying Laplacian Eigenmaps. The
parameter of α balances the weight of two terms and λ adjusts the regularization
term described in [WCZ16]. Overall, the model minimizes the reconstruction error
to globally capture the network underlying structure. The time complexity of SDNE
is proportional to O(cdI|V |), where d is the dimension size of embeddings, c is the
average degree of the network, and I is the number of training iterations.

Motivated by Pairwise Mutual Information (PMI) in language modeling [LGD15,
BL07], DNGR [CLX16] combines the random walk strategy with a deep autoencoder
architecture. The idea is to first calculate the PMI matrix M from the co-occurred
nodes appeared in walks, then input the matrix to stacked autoencoders to obtain
embeddings. The PMI matrix as input ensures that the autoencoder can capture
higher-order proximity and aids robustness of the model in presence of noise in the
graph. The objective function of the DNGR model is formulated as:
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arg min
θ1,θ2

|V |∑
i=1
‖mi − gθ2(fθ1(m̂i))‖2, (2.7)

wheremi is the ith instance of the PMI matrix, and m̂i is the reconstructed input
data of mi. The goal is to estimate θ1 and θ2 so as to minimize the distance between
the PMI matrix and its reconstruction. The transformation functions fθ1 and gθ2
are responsible for encoding and decoding in the autoencoder respectively. The time
complexity of DNGR is proportionate to the size of nodes |V | in the network.

Lately, there has been dispersion efforts for applying convolutional neural net-
works (CNNs) [DBV16,HVG11] to large-scale networked data. Graph Convolutional
Network (GCN) [KW16a] is a prominent technique which integrates two input ma-
trices from feature matrix X ∈ Rn×k with k features, and the adjacency matrix A
over multiple layers. The input representations of nodes at the lth layer of graph
convolution is denoted by H(l−1) and the output representations by the matrix H(l).
The initial representations are naturally the original input features:

H(0) = X, (2.8)

which is input to the first GCN layer. At each layer, GCN applies transformations
to the feature vector xi (of the node vi) and averages that hidden representation
with vi’s neighbors. The joint update for all nodes becomes a simple sparse matrix
multiplication:

H(l) = σ(D̂−
1
2 ÂD̂−

1
2H(l−1)W (l−1)), (2.9)

where Wl is the trainable weight matrix at layer lth, and Â = A+ In is the ad-
jacency matrix with self-connections. In is the identity matrix and D̂ is a diagonal
matrix that D̂i,i =

∑
j Ai,j . Intuitively, these steps smooth the hidden representa-

tions locally along the edges of the graph and eventually enforce similar predictions
among close neighbors. The time complexity of the convolution operation is esti-
mated in O(|E|fd), where |E| is the number of edges, f is the number of convolution
filters, and d is the embedding dimension size.

GCN has been deployed as the base of many recent works such as Variational
Graph AutoEncoder (VGAE) [KW16b], FastGCN [CMX18], and Parametric graph
convolution [TNS18]. VGAE is an enhancement over GCN using variational au-
toencoders to learn latent representations for undirected graphs. FastGCN [CMX18]
proposes an adaptive sampling scheme instead of fixed sampling. Nodes are sampled
in each convolutional layer, then integral transformations are applied to those nodes
under certain probability measures. This adaptive node sampling via normalized
degrees can reduce variances and lead to enhanced performance. Parametric graph
convolution [TNS18] generalizes a convolutional filter by controlling the influence of
the filter size which improves the performance of the regular GCN.
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GraphGAN [WWW+18] adopts Generative Adversarial Nets (GAN) [GPAM+14]
to build a generator and a discriminator which act like minmax game. The gen-
erator approximates the distribution of connectivity patterns in the network and
generates fake node pairs to fool the discriminator. The discriminator attempts
to distinguish the fake vertex pairs by generator from the real ones. The goal
of the discriminator is to maximize the probability of assigning correct labels to
real and generated samples. While the generator minimizes the probability, the
discriminator identifies a correct sample among the generated one. The sigmoid
function is used to model the discriminator D and the softmax function models the
generator G. The goal of GraphGAN is to estimate θG and θD so as playing the
following two-player minimax game with the value function V (G,D):

min
θG

max
θD

V (G,D) =
V∑
c=1

Ev ∼ Ptrue(.|vc)[logD(v, vc; θD))]+

Ev ∼ G(.|vc; θG)[log(1−D(v, vc; θD)].
(2.10)

The generator G(v|vc; θG) tries to generate nodes whose connections resembles
the neighbors of vc by approximating the underlying true connectivity distribution
Ptrue(v|vc). The discriminator D(v, vc; θD) attempts to discriminate the true neigh-
bors of vc from those generated by G. This is done via calculating the probability of
existing edge between v and vc. The time complexity of GraphGAN in each iteration
is proportional to O(|V | log |V |), where |V | is the number of nodes.

NetGAN [BSZG18] combines GAN and LSTMs to generate graphs based on a
random walk strategy. At training, a generator produces plausible random walks
through an LSTM network, then a discriminator identifies fake random walks from
the real ones. After training, a new graph is obtained by normalizing a co-occurrence
matrix computed based on the random walks coming from the generator. Dyn-
GAN [MGHR] leverages generative adversarial networks and recurrent networks to
capture temporal and structural information of dynamic networks. The evolution
pattern of the network is captured in an adversarial manner while the model predicts
node embeddings. KBGAN [CW17] proposes an adversarial learning framework to
improve the performance of a wide range of existing knowledge graph embedding
models.

2.2.2 Heterogeneous Networks

With today’s networks, some graph analysis tasks demand the data to be modeled
from heterogeneous networks [SLZ+16,SH13] with nodes and edges of different types.
For example, nodes in a citation network can have three different types such as
papers, authors, and venues which are connected by edges. Heterogeneous network
embedding aims to unify the heterogeneous types of nodes and links into a shared
low-dimensional space.
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Metapath2vec [DCS17] extends DeepWalk [PARS14] to conduct random walks
over the heterogeneous network to gather metapaths. A metapath is represented in
the form of v1

R1−−→ v2
R2−−→ . . . vt

Rt−→ vt+1 . . .
Rl−1−−−→ vl, where R = R1 ◦R2 ◦R3 ◦Rl−1

describes the composition relations between node types v1 to vl. These paths are
supposed to capture both the structural and semantic relationship between different
types of nodes. Similar to DeepWalk, the collected paths are fed to a heterogeneous
Skip-gram model to learn the representation of nodes by maximizing the probability
of heterogeneous co-occurred nodes. Formally, the goal is to estimate θ so as to
maximize the likelihood of a dataset of node-context pairs:

arg max
θ

∑
v∈V

∑
t∈Tv

∑
ct∈N(v)

logP (ct|v; θ), (2.11)

where t denotes the node type, N(v) is the set of neighbors for v, and P (ct|v; θ)
is the probability of node co-occurrence modeled by a softmax function.

HNE [CHT+15] is another effort for mapping multi-modal objects into a shared
space such that the similarity between the objects is preserved. The input of the
HNE model is a heterogeneous network with text-text, text-image, and image-image
interactions. The CNNs structure is utilized as building blocks to learn image fea-
tures while fully connected layers are used to extract discriminative representations
for text data. HNE receives a pair of text documents from the left and processes in
a left-to-right direction. The outputs from the embedding layer are the vectorized
representation of available network objects in the common latent space. These are
further channeled to a prediction layer which computes the loss by minimizing the
distance between topologically connected objects:

min
U ,V

1
NII

∑
vi,vj∈VI

L(xi,xj) +
λ1
NTT

∑
vi,vj∈VT

L(zi, zj)+

λ2
NIT

∑
vi∈VI ,vj∈VT

L(xi, zj) + λ3Lreg,
(2.12)

where U ∈ RdI×r and V ∈ RdT×r are r-dimensional transformation matrices for
the image and text domain. VT and VI represent two disjoint subsets of text and
image domain, NTT , NTI , and NII correspond number of edges types for text-text,
text-image, and image-image interactions respectively. The first loss term preserves
the text to text similarity, the second term preserves image to image similarity, the
third component stands for text to image similarity, and finally the last component
is a regularizer Lreg = ‖U‖2 + ‖V ‖2. The parameters λ1, λ2 and λ3 are the three
balancing parameters which control the emphasis among loss terms.

PTE [TQM15] exetends the idea of LINE [TQW+15] to further adopt networks
with vertex heterogeneity. The heterogeneous network here is constructed by com-
bining three bipartite networks: 1) word-word network, 2) word-document network,
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and 3) word-label network. PTE optimizes a joint objective function which collec-
tively embed the three bipartite networks into a low-dimensional space:

min −wij
∑

(i,j)∈Eww

logP (vi|vj)−wij
∑

(i,j)∈Ewd

logP (vi|dj)−

wij
∑

(i,j)∈Ewl

logP (vi|lj),
(2.13)

where vj is a word node, dj is a document node, and lj is a label node. These
three loss terms try to minimize the negative log-likelihood of co-occurred nodes in
word-word, word-document, and word-label networks. The authors suggested two
algorithms to perform the learning process, a joint training and a pre-training with
fine-tuning.

Motivated by metapath2vec [DCS17], HIN2Vec deploys a shallow feedforward
network that inputs a pair of nodes (vi, vj) ∈ V to predict the relationship type
r ∈ R between them. More formally, the objective function of HIN2Vec maximizes
the prediction probability if a relationship exists between vi and vj :

max
∑

vi,vj ,r∈D
logO(vi, vj , r), (2.14)

here D a dataset of node-node-type triplets, and O(vi, vj , r) maximizes
P (r|vi, vj), if R(vi, vj , r) = 1, otherwise minimizes the probability. R is a
binary value that indicates whether vi and vj have a relationship r.

There exist some other lines of work such as TransE [BUGD+13] and ProxEm-
bed [LZZ+17] which basically aim at encoding rich interactions among flexible-typed
nodes in heterogeneous graphs.

2.2.3 Signed Networks

Signed networks [LHK10b,TCAL16] are graphs with positive and negative signs on
edges which usually determine friend or foe relationship between entities. Substan-
tial research work has been carried out on signed network embedding to accurately
reflect these relationships in the embedding space.

SIDE [KPLK18] extends the random walk strategy of node2vec [GL16] to capture
sign and direction available in the sequence of nodes. The structural balance theory
is applied to infer the sign of co-occurred pairs with non-existing edges. This theory
states that users of a signed social network should be able to have their friends
closer than their foes. To update the model parameters, SIDE follows Skip-gram
with negative sampling:
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max
∑
u,v∈D

[logP (u, v)−
k∑
j=1

logP (u, vj)] +
λ

2Lreg, (2.15)

where D contains co-occurred pairs, and Lreg is a regularization term. The
objective function tries to maximize the likelihood P (u, v) between two positively
connected nodes u and v, i.e. sign(u, v) > 0, and to minimize the likelihood for
negatively connected nodes. Formally, the likelihood P (u, v) is defined as follows:

P (u, v) =


σ(W out

u .W in
v + bout+u + bin+v ) if sign(u, v) > 0

σ(−W out
u .W in

v + bout−u + bin−v ) if sign(u, v) < 0
σ(−W out

u .W in
v ) if v is a noise,

(2.16)

where W out
u and W in

v are signed proximity terms, and bout± and bin± are bias
terms. The latter part of the objective function acts as a regularizer of the bias
terms Lreg = (‖bout+‖2 + ‖bout−‖2 + ‖bin+‖2 + ‖bin−‖2). The time complexity of
SIDE can be estimated as O(γl|V |), where γ is the number of walks per node and
l indicates the walk length.

SiNE [WTA+17] designs a deep learning architecture for signed network embed-
ding again by exerting structural balance theory. For a given node triplet (vi, vj , vk)
with edges eij = 1 and eik = −1, the similarity between vi and vj is larger than
vi and vk, i.e. s(vi, vj) > s(vi, vk). SiNE consists of two deep networks in which
one preserves the sign by structural balance theory and the other one captures the
network structure. That means for eij = 1, nodes vi and vj should be closer in
the vector space than vi and vk. The following objective function maximizes the
similarity for positively connected nodes:

min
Φ,φ0

1
C
[

∑
(φi,φj ,φk)∈P

max(0, s(φi,φk) + δ− s(φi,φj))+

∑
(φi,φj ,φ0)∈P0

max(0, s(φi,φ0) + δ0 − s(φi,φj))] + αLreg,
(2.17)

where Φ = {φ1,φ2, . . . ,φ|V |} is a set of vector representations for V nodes, P
and P0 are two sets of triplets, C = |P|+ |P0| is the size of the training set, and
δ is a threshold to regulate the similarities. Lreg = R(θ) + ‖Φ‖2 + ‖φ0‖2 is a
regularization term to avoid overfitting, and α is a parameter to control the contri-
bution of the regularizer. The key step of optimizing is to compute the gradient of
max(0, s(φi,φk) + δ− s(φi,φj)) and max(0, s(φi,φ0) + δ0− s(φi,φj)) with respect
to Φ and φ0. Finally, the gradient descent algorithm is used to update all of the
parameters.

SNE [YWX17] adopts a log-bilinear model [MK13] to encode sign and network
structure at once. Given a path h, SNE predicts the representation of a target



18 Background and Related Work

node v by linearly combining the representation of its context nodes. To involve the
signed relationship between nodes, two signed-type vectors are incorporated into
the log-bilinear model. Also, a scoring function s measures similarity between the
actual and predicted representations. The objective function of SNE is stated as:

max
∑
v∈V

log exp(s(v,h))∑
vj∈V exp(s(vj ,h))

, (2.18)

here the log-likelihood is modeled by a softmax function. The goal is to maximize
the likelihood of a target node v available in the path of nodes h.

Another work by Wang et al. [WATL17] called SNEA presents a network em-
bedding method on signed attributed networks. The objective function of SENA
consists of two components, one for modeling user attributes and another for signs
using structural balance theory. During training, the joint objective function opti-
mizes these two components simultaneously.

2.2.4 Attributed Networks

Today’s real-world networks are often associated with additional features (e.g. pro-
file attributes or textual contents) which provide rich semantic information. There-
fore, it is desirable to have network embedding methods which encode the rich con-
tent of the network into more accurate representations. However, how to combine
attributes with the network topology in network embedding arouses considerable
research challenges.

TADW [YLZ+15] jointly embeds both network structural features and nodes’
textual content by taking advantage of the DeepWalk approach. DeepWalk is shown
as equivalent to factorizing the PMI matrix of vertex-context pairs. TADW uses a
DeepWalk-derived matrix factorization and an inductive matrix completion [ND14]
to learn final representations. Formally, the textual matrix T ∈ R|V |×k with k

features is integrated into embeddings by factorizing the PMI matrixM ∈ R|V |×|V |:

min
W ,H

∑
‖M −W THT‖2 + λ

2 (‖W‖
2 + ‖H‖2). (2.19)

Here the first term represents the low rank matrix decomposition of M , and
the second term is a regularizer. The concatenation of W and HT are used as
2d-dimensional representations of vertices. The time complexity of TADW in each
iteration is O(n0(M)d+ kd|V |+ d2|V |), where n0(M) refers to the number of non-
zero entries and d denotes the low rank of M .

DANE [GH18] aims to jointly learn the network structure and attribute in-
formation through autoencoders composed of multiple nonlinear units. Given the
adjacency matrix A ∈ R|V |×|V |, the higher-order proximity matrix is defined as
M = A+ A2 + A3 + · · ·+ At with t orders. The joint model receives the higher-
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order proximity matrix M and attribute matrix Z ∈ R|V |×k from two separate
branches and maps them to a shared low-dimensional latent space. The hidden lay-
ersHM andHZ denote representations from the topological structure and attributes
respectively. DANE preserves the semantic proximity of attributes by minimizing
the reconstruction loss between the input Z from encoder and the output Ẑ from
decoder. Similarly, the higher-order proximity is preserved by minimizing the dis-
tance between M and the reconstructed matrix M̂ . Thus, the objective function for
both attribute proximity and higher-order proximity in the network is formulated
as:

min
|V |∑
i=1
‖Ẑi −Zi‖22 +

|V |∑
i=1
‖M̂i −Mi‖22. (2.20)

DANE also preserves the first-order proximity and attributes proximity simulta-
neously by maximizing the probability PMij and PZij between the node vi and vj :

PMij =
1

1 + exp(−HM
i (HM

j )T )
(2.21)

PZij =
1

1 + exp(−HZ
i (H

Z
j )

T )
(2.22)

The final latent representations HM and HZ are obtained by minimizing the
following objective:

min −
∑
Eij>0

logPMij −
∑
Eij>0

logPZij −
∑
i

[logPii −
∑
Eij=0

log(1− Pij)]. (2.23)

These two representations are then concatenated to build consistent and comple-
mentary information from the network structure and attributes. The time complex-
ity is dominated by the computation of the similarity HM (HZ)T in each iteration
which is bounded to O(|V |2).

DeepGL [RZA17] proposes a deep architecture which learns representations for
nodes and attributes in a hierarchical manner. The input graph is first collapsed
into subgraphs (graphlets) at different levels. Then, DeepGL learns a set of rela-
tional feature operations which are essential to generate the higher level features.
Thus, each layer of the deep model combines features from lower order subgraphs to
generate higher order subgraphs employing the relational feature operations. The
formal optimization function of DeepGL is defined as:

arg max
φi /∈Φ

[s(y,φi)− β
∑
φj∈Φ

s(φi,φj)], (2.24)
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where Φ is the current set of selected features, s(.) is a similarity function, and
β controls the balance between maximizing relevance and minimizing redundancy.
The objective function finds a set of features φi that maximizes the similarity to
the label y and minimizes the similarity to the set of selected features φj . The
complexity of DeepGL is proportional to O(k(|V |+ k|E|)), where k is the number
of node features.

There exist other efforts that use deep architectures to jointly encode network
connectivity and additional attributes. CAN [MLBZ19] is a co-embedding model
which takes the advantage of both variational autoencoders and GCNs to encode
the network structure and attributes. The model inputs the adjacency matrix A

and attribute matrix X, then outputs Gaussian distributions as latent embeddings
separately for nodes and attributes. CANE [TLLS17] offers a context-aware network
embedding model whose convolutional layers with max-pooling are applied over
different regions of the network.

2.3 Graph Embedding for Social Networks

With the advent of graph embedding, social network analysis has been shifted to
the deployment of classification and clustering models on low-dimensional latent
representations. Typical examples include epidemic trend prediction [LAH07], on-
line advertisement targeting [LZT15], personalized recommendation [STLS06], social
healthcare [TY12], social influence analysis [PWX16], viral marketing [CWW10],
and citation network analysis [DBS07,GZZ+13].

In social networks, users (nodes) are usually associated with semantic labels rel-
evant to certain aspects about them, such as affiliation, interest, or belief. However,
these networks are often partially or sparsely labeled due to the high cost of node
selection and labeling. The main goal of node classification is to predict labels for
unlabeled nodes by leveraging connectivity patterns of labeled ones extracted from
the network structure. A common practice is to extract node features using graph
embedding techniques, and then apply machine learning classifiers like support vec-
tor machine, Naïve Bayes, or logistic regression for prediction. Different from these
steps, some more recent works [DDS16,HYL17,MBM+17] design end-to-end frame-
works to combine the two tasks, so that the discriminative information inferred from
labels can directly benefit the learning of network embedding.

Social networks are not always complete as some friendship links between users
can be missing even if they are friends in real-life. The aim of link prediction is to
infer the presence of new emerging links in the future based on the observed links
and the network evolution mechanism [LNK07,AHZ11,Zho11]. A well-understood
approach is first to learn network embeddings, then to apply logistic regression to
predict the existence of links between unseen node pairs under homogeneous network
settings [GL16,OCP+16,ZLL+17], or heterogeneous ones [LZZ+17,LZZ+18].

Another challenging task is to detect anomaly in social networks such as spam-
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ming, fraud, or phishing nodes which occur rare or unexpected and deviate from the
majority of normal users. Network embedding projects the discrete and structural
information of the network into the latent space. Thereafter, the statistical or ge-
ometrical algorithms are used in measuring the degree of isolation or outlierness of
network components [HAMH16,LJSP18,PLL+18].

Node clustering is another important social network analysis problem which par-
titions the network into a set of clusters (communities), so that nodes in the same
cluster are more similar than those from other clusters. Most of the efforts have
resort to network embedding techniques for node clustering as disjointed tasks.
They first embed nodes to low-dimensional vectors, then apply clustering algo-
rithms to group vertexes [TGC+14,CLX15,WCW+17]. Some others such as Tang
et al. [TGC+14] and Wei et al. [WCW+17] define node clustering and embedding
as a unified objective to generate cluster-induced vector embeddings.

More nuanced works seek to encode users’ profile information through well-
defined objective functions. Zhang et al. [ZYZZ17] propose User Profile Preserv-
ing Social Network Embedding (UPP-SNE) which leverages profile information to
encode more meaningful embedding. Users’ profiles differ from the textural fea-
tures due to noisy, sparse, incomplete and topic-inconsistent structure. UPP-SNE
attempts to filter out the noise and extract the key information from profiles by
performing a nonlinear mapping guided by the network structure. Formally, an
approximated kernel mapping [RR08] is used to construct user embedding φi from
user profile features:

φi =
1√
d
[cos(µT1 xi), . . . , cos(µTd xi), sin(µT1 xi), . . . , sin(µTd xi)]T , (2.25)

where xi denotes the profile feature vector of vertex vi, and µi stands for the
corresponding coefficient vector. Further, the objective of DeepWalk [PARS14] is
used to supervise the learning of the nonlinear mapping and make user profiles and
network structure complement each other:

min
φ
− logP ({vi−w, · · · , vi+w} \ vi|φi), (2.26)

where {vi−w, . . . , vi+w} is the set of context neighbors of the node vi within w
window size in the given random walk sequence.

Noise-Resilient Similarity Preserving (NSP) [QHW+19] is another embedding
technique confined for social networks. A noise in social networks is a false link
exists in the observed network or an actual link which is missing in the current
observation. NSP first calculates a similarity index vector Sv = {s1, · · · , si, · · · , sγ}
consisting of γ single similarity indices from [ZXZZ15]. For any node pair (vi, vj), the
similarity index vector is defined as Sv(vi, vj) = {s1(vi, vj), . . . , sγ(vi, vj)}. Given
Sv, NSP defines the comprehensive similarity index between nodes vi and vj as:
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S(vi, vj) =
∑
sk∈Sv

sk(vi, vj)max(sk)−min(sk)
max(sk)−min(sk)

, (2.27)

where min(sk) is the minimum sk value of all node pairs in the network, and
max(sk) is the maximum value. Thereafter, NSP computes a correction matrix C
based on S and adjacency matrix A applying a noise reduction process:

Cij = Aij ×
Sij

avg(S) × α, (2.28)

where avg(S) is the average of all the elements in S and α is a threshold param-
eter such that 0 < α < 1. A link between vi and vj in the observed network with
small similarity Sij is regarded as a false link. To reduce the influence of such a false
link, the original Aij is reduced to reflect the actual connection strength. Finally,
NSP fits a non-negative basis matrix M ∈ Rn×d into the objective that enforces the
embedding matrix U for preserving the actual relationship between nodes. The goal
is to minimize the distance between the correction matrix and embeddings which
leads to the following objective function:

min
M ,U

‖C −MUT‖2, s.t. M > 0,U > 0. (2.29)

Updating this equation makes M ×U to be as close as possible to the correction
matrix C which ends up with noise-resilient vector embeddings. The complexity
of solving Equation 2.29 is bounded to O(d2|V | + d|V |2), where d � |V | is the
dimension size of embeddings. Thus, the overall complexity of the update rules of
NSP can be resolve in O(d|V |2).

There exists another work called LATTE [MBZ19] whose deep neural model is
specified for network alignment [KZY13], community detection [VL07], information
diffusion [KKT03]. Besides preserving the network structure, LATTE adds some
application-oriented objectives into the optimization steps so as to guarantee the
learned embeddings can be used in multiple external applications.
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Ego Network Embedding





Chapter 3

Social Circle Prediction

3.1 Introduction

With the advent of social networks, a lot of efforts have been exerted to characterize
social graphs at macroscopic level [UKBM11, BK09, HKP12, TSWY09]. The idea
is to extract structural characteristics of the network to mitigate analytic problems
like leader node identification or outlier detection. However, in the anthropology
literature, it is required to determine key facets of human behavior, such as trust,
sharing of resources, and formation of communities by investigation on the micro-
scopic properties of social networks [MC84]. One effective way to succinctly describe
local structures is breaking up the network into smaller sub-networks called ego net-
works [ML14]. An ego network is defined as a portion of a social network formed of
a given focal node (ego) who has direct social relationships with the other persons
(alters). Typically, alters are categorized by the ego into different social groups (so-
cial circles) such as family members, colleagues, sport teammates, etc. Figure 3.1
depicts an exemplary ego with her alters grouped in four social circles. Social cir-
cles such as Google circles and Facebook custom lists are great means of privacy
protection as provide control on information boundary.

Ego networks have been an important subject of work in sociology and anthro-
pology in the last decades. The majority of works attempted to characterize fun-
damental properties of ego network evolution [WPZ+15, HZL+16, TG16, LWB18].
Another interesting property of ego networks is alters’ connectivity patterns which
differ based on network density and local topology [MVL15]. The recent stud-
ies [ALGPC16,ACLG+16,ALGPC14] show some social network properties such as
information diffusion strongly depends on the structure of users’ ego networks. In
practice, social circles can contribute to solve applications including content filtering
and group recommendation [ML14]. For example, an event organizer may better
target potential participants by issuing invitations around a core group of known
experts or a user wants to read the latest news in social networks from his colleagues
instead of scrolling through entire latest news [QLM12]. However, the major draw-
back is to assign hundreds of existing friends into circles which imposes a tedious
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Figure 3.1: An ego network with four social circles.

and labor-intensive work.

Tracing this line of research [LYL+17,DLG15,WG13,ZN13,QLM12], most of the
current social circle detection methods are unsupervised complex models exploring
connectivity patterns in the original graph. The main semi-supervised approach
is by McAuley et al. [ML14] which leverages both network structure and profile
attributes to discriminate members from non-members in each circle. However,
their probabilistic model still needs to inspect the complex connectivity of large-
scale networks, and fails to refit the algorithm for a new added alter.

In graph analysis, usually, network structure is seized and deployed to make
predictions about graphs. Therefore, graph embedding can be an effective means to
tackle topological related tasks such as social circle prediction. Random walk based
methods such as DeepWalk [PARS14], node2vec [GL16] reflect the global structure
by walking over the entire network without restrictions. To encode more fine-grained
structures like ego networks, we need to limit the walking distance to the diameter
of ego networks.

Inspired by the successful completion of word embedding in graph analysis area
[PARS14,GL16], we propose to make use of Paragraph Vector [LM14] to learn struc-
tural patterns within ego networks. Paragraph Vector projects both words and docu-
ments into a single semantic space and estimates word probabilities with the promis-
ing performance in word focused applications [AYGC16,DOL15,TKOT15,MT17].
The literature in word embedding presents two main structures for learning dis-
tributed representations: Continuous Bag-of-Words (CBOW) [MSC+13] and con-
tinuous Skip-gram [MSC+13]. More thoroughly review on word embedding shows
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CBOW and Skip-gram make their performance different in specific situations. Skip-
gram performs well with small training data and returns effective representations
even with rare words or phrases. Whereas CBOW is faster to train with better
accuracy in encoding more frequent words. For this reason, it is useful to examine
CBOW in the context of graph embedding specifically for large-scale social graphs.

In this study, the key idea is to create artificial paragraphs by sampling sequences
of nodes from ego networks and then to embed the paragraphs into a low-dimensional
space. We also utilize CBOW to learn embeddings for nodes at global scale, where
ego networks of the different size and density construct a social graph. We thus
investigate the interplay of local and global structures within social networks to
make the following contributions:

• We introduce local vector embedding (Loc) for egos in social graphs to com-
plement the global representations, i.e. learning relations in a small vicinity
instead of the entire graph.

• We apply global and local feature learning to the circle prediction problem.

• We demonstrate the effectiveness of local features compares through several
experiments on real-world datasets.

In Section 3.3, we review the state-of-the-art for circle detection and prediction.
In Section 3.3, we elaborate on local and global feature learning which is adopted for
simplification of social circle prediction. In Section 3.4, we conduct empirical exper-
iments to evaluate our proposed approach on three widely used datasets. Finally,
we conclude and discuss the future work in Section 3.5.

3.2 Related Work

With the emergence of social networks, the problem of social circle detection and
prediction has gained attention during the past few decades. Mcaulley et al. [ML14]
formulate circle detection as a clustering problem on ego network of each user.
The clustering algorithm receives the ego network structure and users’ profile at-
tributes as input. Like typical clustering algorithms, the model needs to calculate
the pairwise similarity between alters as a function of common profile information
and common edges. The initial empty clusters are filled while the algorithm assigns
cluster labels to alters during multiple iterations. Although the unsupervised algo-
rithm is quite effective to identify social circles, it is not particularly efficient for
small networks with a few number of egos.

Yang et al. [YLL+14] present a multi-view clustering algorithm that extracts
multiple quantitative features from users’ ego networks. The idea is to integrate
three views from structural, content, and interaction features. That means friends
with common neighbors who share similar opinions more likely to fall in the same
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circle. Thereafter, they interact within circles rather than cross circles. These
observations are extracted as multiple quantitative features from users’ ego networks
to build the computational clustering model. However, such an approach heavily
relies on users’ generated content and frequent interactions which are not always
publicly available.

Petkos et al. [PPK15] make use of Latent Dirichlet Allocation (LDA) for social
circle generation which is typically applied for topic detection in documents. In ego
networks, ego’s friends resemble the documents and social circles are interpreted
like produced topics. LDA is adapted to take into account both profile properties
of friends and social links between them. Indeed, the vocabulary processed by LDA
contains two types of elements, a set of properties and a set of user ids. Thus,
network connectivity is jointly modeled along with profile property distribution in
each circle. LDA allows a simpler model and a more accurate clustering, however it
still suffers from high runtime complexity.

Tang et al. [TLXW14] take advantage of Bayesian Network (BN) to model so-
cial circle identification as a classification problem on a user’s ego network. First,
the social network data is transformed to become more suitable for Bayesian mod-
eling. Second, an initial Bayesian network of egos is constructed using MMHC
algorithm [TBA06] with proper nodes as parents and children. Lastly, by leverag-
ing a carefully designed threshold, the BN model is used for accurate social circle
prediction. The BN model outperforms Naïve Bayes, IBL, OneR and J48, however
the computation for social network transformation is still costly.

3.3 Approach

Given a social graph G with m egos {u1,u2, . . . ,um} ∈ U ⊆ V , each ego u with his
alters compose an ego network Gu. We denote a set of l alters {v1, v2, . . . , vl} for
the ego u by Au ⊆ V . These sets of alters in different ego networks may overlap.
Below we explain how to encode the topological characteristics of the original social
graph (consists of ego networks) at global and local scales.

3.3.1 Glo: Global Representations

Inspired by DeepWalk, we generalize the idea of CBOW [MSC+13] from word rep-
resentation learning to network embedding, by using random walks to collect node
contexts. More formally, given a random walk sequence with a pivot node vt, we
maximize the probability of observing the center node given the neighborhood con-
text:

P (vt|vt−w, . . . , vt−1, vt+1, . . . , vt+w), (3.1)

where w is the window size which restricts the size of node context. As such, a
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mapping function Glo : v ∈ V → R|V |×d converts nodes into vector representations
where d� |V | is the embedding size.

3.3.2 Loc: Local Representations

Given an ego u, we first conduct random walks over the subgraph Gu to generate a
synthetic paragraph called ego-walk. This means an ego-walk is built by a stream of
short random walks started at every v ∈ Au ∪ {u}. We then apply the Distributed
Memory Model of Paragraph Vectors (PV-DM) [LM14] to learn compact vector
representations for each ego. PV-DM extends CBOW by assigning a unique id to
each paragraph and updating the corresponding paragraph vector simultaneously
with the other word vectors. Formally, given the ego-walk of ego ui with a center
node vt we aim to maximize the average probability:

P (vt|ui, vt−w, . . . , vt−1, vt+1, . . . , vt+w), (3.2)

where w is the window size and ui is a unique ego id. We thus derive a mapping
function Loc : u ∈ U → R|U |×d which transfers an ego network into a coordinate
vector with size d� |V |. Paragraph Vector indeed takes one step further as it not
only trains node embedding but also ego network embedding directly. As shown in
Figure 3.2, each ego is mapped to a unique vector represented by a column of the
ego matrix D. Each alter is also mapped within a column of the matrix W . At the
training phase, the ego vector and alter vectors are concatenated to predict the next
alter in the ego-walk.

Figure 3.2: PV-DM for learning ego vectors. The concatenation of an ego vector
with the context alters v1, v2, v3 is used to predict the next alter v4.

We now study the problem of automatic social circle prediction exploiting the
obtained global and local features.
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3.3.3 Social Circle Prediction

We formulate the problem of circle prediction as a multi-label classification task on
a new added alter into the social graph. In accordance with Leskovec et al. [LM12],
we also leverage users’ profile information to improve the prediction task. The
personal profiles including attributes are a rich source of information may reveal
some hidden relationships in social networks. For example, if an ego and his alter
both study at the same university most likely this alter belongs to the university
circle. Accordingly, we involve profile similarity between alter and ego in addition to
network topological features which possibly leads to more effective circle prediction.
To formalize the intuition, we define the profile similarity vector between the ego u
and alter v, Sim(u, v) = (b1, . . . , bk) as follows:

bi =

1 if u. feati = v. feati,
0 otherwise.

(3.3)

Where u.feati denote ith profile feature of the ego u, and v.feati is ith profile
feature of the alter v. Therefore, we encode profile attributes into pairwise binary
vectors Sim(u, v) ∈ {0, 1}k where k is the number of profile features.

To design our predictor, we choose neural networks due to their ability to learn
complex mappings between input and target spaces. In particular, feedforward
networks has showed computational efficiency and empirical evidence supporting
its generalizations for various problems [WCWW15]. Here we need a multi-label
classification setting as a few alters belong to multiple social circles. We thus use a
shallow feedforward network with the following possible inputs:

• where the model input is concatenation (⊕) of global and local representations:

– LocGlo: Loc(u)⊕Glo(v)
– GloGlo: Glo(u)⊕Glo(v)

• where the model input is concatenation (⊕) of network embedding and profile
similarity vector:

– LocGLoSim: Loc(u)⊕Glo(v⊕ Sim(u, v)
– GloGloSim: Glo(u)⊕Glo(v)⊕ Sim(u, v)

Overall, the architecture of our classifier is described as follows:

• Input layer: A set of real-valued features which were described above.

• Hidden layer: A hidden layer with ReLU activation units.

• Output layer: Activation units same number as social circles with softmax
function.
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• Optimizer: RMSprop with adaptive learning rate method that already
showed outstanding success in practice [TH12].

3.4 Experiments

This section describes our extensive experimental evaluations with the aim of exam-
ining constructed local and global features. We first introduce datasets used in these
experiments, then compare model performance to the baselines in view of different
features.

3.4.1 Datasets

We select a set of widely used networked datasets (Facebook, Twitter, Google+) with
circle labels available on SNAP collection [ML14]. Table 3.1 describes the statistics
of the datasets used in our experiments. Each social network dataset consists of
nodes, social links, circles, and profile attributes. We publicly shared our reference
code and datasets at https://github.com/fatemehsrz/Ego-network_Embedding.

Table 3.1: Statistics of the datasets.

Facebook Twitter Google+
nodes |V | 4, 039 81, 306 107, 614
edges |E| 8, 8234 1, 768, 149 13, 673, 453
egos |U | 10 973 132
circles |Y| 46 100 468
features k 576 2273 4122

3.4.2 Experimental Setup

As the first step, we transform social networks into sets of sequences by multiple
random walks similar to [PARS14]. Then, word2vec of gensim [ŘS10] is applied to
the gathered sequences with the aim of deriving accurate coordinates. Following
the baseline settings [GL16,TQW+15,PARS14], we set the embedding size d = 128,
walk length l = 10, and context length w = 10. In a similar manner, we generate
ego-walks which are sequences of nodes limited to one ego network, then apply
doc2vec of gensim [ŘS10] to encode artificial paragraphs. For example, for the
Facebook graph with 10 egos, we build a node corpus with 10 ego-walks.

The second step is to build profile similarity vectors based on the formulation
described in section 3.3.3. Our datasets contain profile features which vary for each
ego, hence we select k = 100 important features including occupation, education,
gender, hometown, birth date, languages, location, and work together with their
subbranches.

https://github.com/fatemehsrz/Ego-network_Embedding
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In the third step, we construct feature matrices by concatenation of network
embeddings and similarity vectors. In detail, our input matrices are shaped consid-
ering the different combination of features where XLocGlo ∈ R2d and XGloGlo ∈ R2d

contain only the network structure, XLocGloSim ∈ R2d+k and XGloGloSim ∈ R2d+k

integrate profile features in addition.

In the multi-label setting, each of the alters is assigned to one or more social
circles from a finite set Y . We select 70% of alters as our training set and the
remaining 30% as the test set. The batch size for all datasets is set to 32, and we
run the model over 50 iterations.

3.4.3 Results

The performance of social circle prediction on Facebook, Google+, and Twitter is
reported by F-score same as the baseline [ML14]. We validate the obtained results
through 10-fold cross-validation. Table 3.2 demonstrates the average performance
for social circle prediction across different folds. The maximum mean score within
each scenario of feature combination is marked in bold and the standard deviation
after cross-validation is less than 0.01.

As the first observation, replacing global representation with the local one im-
proved the performance of the circle inference. The main reason for this advancement
lies at the relevance of Loc representation that contributes more accurate informa-
tion of egos’ structures. While Glo representation holds the information mostly
about global positioning of egos in the network.

Further experiments support our assumption that additional profile similarity
features improve the performance over all datasets. In practice, we find our results
very competitive to the baseline method [ML14] preforming better on the Facebook
dataset. It is worth noting that our model spends only 5 minutes on network em-
bedding and circle prediction for Facebook, however McAuley’s approach takes up
1 hour over 1, 000 nodes [ML14].

Table 3.2: Social circle prediction performance reported by F-score.

Features Facebook Twitter Google+
GloGlo 0.37 0.46 0.49
LocGlo 0.42 0.50 0.52

GloGloSim 0.40 0.49 0.51
LocGloSim 0.45 0.53 0.55

Φ1 [ML14] 0.38 0.54 0.59
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3.5 Conclusion

Ego networks have been proposed to study several aspects of human behavior and
social circles have emerged for privacy protection [SKLD14, SLKD12]. A major
drawback is the usability problem; how to assign hundreds of alters to a few social
circles. The problem of social circle perdition has been studied via direct charac-
terization of network connectivity and profile information. Whereas, our current
investigation focused on performance improvement in circle prediction with the help
of neural networks. To this end, we employed deep language modeling techniques to
transform the ego network structure into latent representations at local and global
scales. These representations along with profile similarity vectors were fed into a
feedforward network to predict circles of a new added alter in a more efficient running
time.

Despite improvements on the performance, our study is restricted in a few di-
rections. Firstly, we need the prior knowledge of egos for a new added alter to the
social graph. However, from a practical point of view, we desire an algorithm that is
able to make predictions on an alter without knowing her ego. Secondly, we follow
the random walk strategy with equal probability of stepping in all directions which
is not able to accurately model distinct neighborhood patterns. To properly capture
prototypical patterns, e.g. star, we would need a finer control policy on walking
transitions to nearest neighbors. Following that, we need specific evaluation tasks
to examine embeddings on prototypical patterns, rather than typical classification
tasks. Lately, Sub2vec [AZRP18] attempted to use Paragraph Vector for subgraph
embedding with a more precise model and evaluation tasks. Our next chapter de-
scribes the usage of ego network embedding in event attendance prediction.





Chapter 4

Event Attendance Prediction

4.1 Introduction

Today’s social networks have become a major channel for communication and infor-
mation dissemination especially the spread of large public events. One interesting
analytical scenario is to explore posts and comments to predict users’ actual atten-
dance to a certain event. Understanding people’s behavior and feelings in events
can offer valuable insights for effective event organization, community development,
event recommendation, and mobility management.

Event participants often post their feelings, opinions, or experiences on social me-
dia in which information can quickly flow from one individual (or community) to an-
other one. This information propagation may affect users’ future decisions on what
event and where to attend. The phenomenon of influence in online social networks
has been widely studied in political elections [BFJ+12], obesity propagation [CF07],
marketing and advertising [KKT03], and innovation adoption [TSWY09]. Some of
the previous research work [DYM+14, ZL17] has shown people intend to partici-
pate in events with their friends or family members who are already linked in social
media. Thereafter, users can propagate social influence within small groups whose
opinions affect others’ event attendance. However, there have been little work in-
volving social influence to infer event attendance [ZL19,ZL17] which are limited to
Event-Based Social Networks (EBSNs).

Interestingly, the network topological pattern (e.g., dense, sparse) can explain
how the social influence spread over the time [KW06,CG16]. Thus, we speculate
that the network structure of direct friends plays a role to encourage users for event
attendance. This small group connectivity can be modeled via graph embedding
algorithms.

To extract the network structure, we apply some of the recent graph embed-
ding methods such as node2vec [GL16], HARP [CPHS18], Poincarè [NK17], and
Loc [RGZ17] which have already shown prominent performance in graph analytic
tasks. node2vec follows word2vec [MSC+13] and confirmed to be effective in
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a wide variety of graph analysis tasks [GF17]. Later node2vec is extended by
HARP [CPHS18] which first collapses the original network into a series of succes-
sively smaller graphs, then recursively embeds coarsened graphs to the larger ones.
HARP explores underlying local and global structures via star and edge collapsing
which eventually results accurate embeddings. Additionally, the hierarchical nature
of social networks [MCP+13] motivates to apply Poincarè [NK17] since the hyper-
bolic space is an appropriate representation for the hierarchical data. Hyperbolic
embedding excels in capturing both node similarity and node hierarchy, hence, is
expected to encode more effective embeddings. Loc [RGZ17] differently limits the
random walk range to the user’s personal network with the aim of obtaining a more
fine-grained structure stashed in embeddings.

Nowadays, Twitter presents one of the most popular platforms in which users ex-
press their emotions, opinions, and views about public events. Twitter data analysis
and mining has gained immense importance in the recent years due to a wide variety
of real-world applications. For instance, sentiment analysis in marketing to know
how the public reacts to products, in politics to determine views of people regarding
specific situations, and in risk prevention to detect if some people are being attacked
or harassed. However, there exists little work focused on Twitter data analysis to
infer users’ actual attendance at the large public events.

To the best of our knowledge, only Lira et al. [dLMO+17] explore non-geotagged
tweets from two music festivals to infer event participation. They extract three types
of features: text features, temporal features, and social features. Text features refer
to the textual content of the post modeled by Bag-of-Words. Temporal features
present the time of the post in days with respect to the event. Social features
describe the social profile of the posting user with the number of followers, number
of followees, and the ratio between them. However, the authors totally neglect the
impact of friends’ influence on event participation and in contrast opt out of it.

In this chapter, we propose to extend the work by Lira et al. [dLMO+17] in
which textual features are augmented to predict the attendance. We additionally
encode Twitter network data by graph embedding and aggregate these new features
with the former textual features. In summary, we make the following contributions:

• We extract network topological features by graph embedding to inspect the
impact of social connections on event attendance.

• We investigate how different embedding techniques perform to predict event
participation.

• We show additional network features lead to better performance compared to
the state-of-the-art work.

The remaining of the chapter is organized as follows. Section 4.2 quickly reviews
the relevant works for predicting event attendees. Section 4.3 describes preliminaries
and the proposed method. Section 4.4 presents our evaluation results on two event-
related datasets. Finally, Section 4.5 concludes the chapter.
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4.2 Related Work

Social networks like Twitter widely reflect public events, hence become a rich source
of information for event data analysis. Recently, there has been growing research
interest in developing tools for inferring event participants exploring social media.
Lira et al. [dLMO+17] collect textual and temporal features from non-geotagged
tweets for attendance prediction, yet they ignore the impact of friends influence on
users’ decisions.

There exists another line of research in which geotagged posts in social media
are probed to infer event attendance. Magnuson et al. [MDM15] associate each
tweet with a real-world event given geolocation tags. Further, each user will have
an interest profile about the events that she already attended. The list of events is
gathered via a web crawl of Eventbrite1, a popular event organization website with a
database of past and upcoming events. Attended users have been identified through
sentiment analysis of users’ opinions posted on social media. The intensity of the
user’s sentiment is mapped into a rating number which reflects the interest of that
user in the event. The final model generated from the above data provides geographic
recommendations based on the time and location of the user. Botta et al. [BMP15]
attempt to estimate the number of event participants at a given time by analyzing
mobile sensors and geolocated tweets. A linear regression separates attendees and
non-attendees relying on similar relationships in SMS activity, Internet activity, and
Twitter activity.

Event-Based Social Networks (EBSNs) such as Meetup2 and Sched3 are the
newly emerging platforms to publish events online and attract others to attend
offline. Usually, EBSNs provide groups with specific themes such as hiking, writing,
or health and try to encourage group members to attend real-world events. There
exists an abundance of studies aim at finding the interest of a user by analyzing the
user’s past behaviors available in EBSNs. Authors in [ZZC15] explore EBSNs to
accumulate three sets of features including semantic, temporal, and spatial features.
Semantic features indicate how frequently users have attended similar events in
the past. Event similarity measures are used to identify former relevant events.
Temporal features refer to the users’ temporal preference like date and time, while
spatial features obtained from users’ location preference. A set of classifiers such
as logistic regression, J48 decision tree, and Naïve Bayes are fed with the collected
features to predict the attendance.

An EBSN does not only contain online interactions like other social networks
but also includes offline social interactions captured from offline activities. Liu et
al. [LHT+12] analyze real data collected from Meetup to investigate network proper-
ties such as heavy-tailed degree distribution and strong locality of social interactions.
An extended version of the Fiedler method [FS14] is deployed to incorporate online-

1https://www.eventbrite.com/
2https://www.meetup.com/
3https://sched.com/

https://www.eventbrite.com/
https://www.meetup.com/
https://sched.com/
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offline heterogeneity of EBSN into community detection process. Due to the short
life-time, recommending events can significantly differ from the usual recommenda-
tion problems like movies or places. Event recommendation is valid after creating the
event online and before the event starts which leads to a cold start problem. The
authors design multiple diffusion patterns to capture information flow within the
heterogeneous EBSNs. These patterns take the community structure into account
to yield the best prediction performance.

Social influence in EBSNs groups plays a role when individuals decide to attend
a particular event. Zhang et al. [ZL17] propose a reconstructed propagation net-
work to model the role of social influence on event popularity prediction. This is
beneficial to public concerns track and decision-making for organizations to know
event popularity. A set of contextual features (spatial, group, temporal, and se-
mantic) and group-based features are fit into the Classification and Regression Tree
(CART) [Loh11] for predicting event popularity. These events are organized by dif-
ferent social groups on EBSNs. In [DYM+14], authors model the social relationship
between a user and a host (event holders) to infer the attendance. The activity
host sends invitations to her followers, hence, if a user responds to the host, most
likely she will attend the activities organized by that host. The collected features
in this work including content preference, context (spatial and temporal), and so-
cial influence are finally fed into a Singular Value Decomposition with Multi-Factor
Neighbor-hood (SVD-MFN) to predict the attendance.

Compared to these approaches we do not specifically deal with location-based
social networks (EBSNs) but instead focus on popular social networks (e.g. Twitter)
in which events are more publicly and frequently reflected.

4.3 Approach

Given a social graph G = (V ,E), we aim to predict whether a user u ∈ V will
attend event e or not. We utilize two types of features to infer the user actual
attendance:

• Textual features are extracted from the textual content posted by the user
ui. We employ Bag-of-Words [Har54] which is a common and straightforward
numerical representation for short texts [FT]. Given tweets, we first remove
emoticons, and Twitter specific stopwords to store a stemmed version of key-
words (unigrams and bigrams). We thus create an array of size |T | (vocabulary
with finite small size) with 1s in the position of the words belonging in this
tweet and 0s everywhere else. Thus, we would have a vector τi ∈ {0, 1}|T |
representing each posted tweet.

• Network features describe the neighborhood pattern around a user u in G.
Graph embedding models are used presenting the neighborhood structure
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around the user ui in real-valued vectors φi ∈ Rd, d � |V |. We take the
following graph embedding techniques into consideration:

– node2vec [GL16] encodes the structure around a node u by maximizing
the probability of observing the w nodes before and after u in the random
walk.

– HARP [CPHS18] first collapses the graph G into l coarsened graphs
(G0, · · · ,Gl) in a hierarchical manner. Then, node2vec is recursively
applied from Gl to G0 such that embeddings from Gi initialize the model
for Gi+1.

– Poincarè [NK17] represents a geometrical ball to encode hierarchical pat-
terns in complex networks. Given a node pair (vi, vj) within the radius
of r, the goal to maximize the following probability:

P ((vi, vj) = 1|φi) =
1

e(δ(vi,vj)−r)/t + 1
. (4.1)

The parameter t specifies the steepness of the logistic function in opti-
mization, and δ is the Poincarè distance as:

δ(vi, vj) = arccos
(

1 + 2 ‖vi − vj‖2

(1− ‖vi‖2)(1− ‖vj‖2)

)
. (4.2)

– Loc [RGZ17] first conducts random walks in a limited range around a
central node (ego), then inputs the generated walks into the Paragraph
Vector [LM14] which finally results a single ego vector.

We now model the prediction task as a binary classification performed by a feed-
forward neural network. The model receives a combination of textual and network
features to predict users’ attendance. Formally, we define a function f :

f : τi ⊕ φi 7→ {0, 1}, (4.3)

that maps concatenation (⊕) of τi (textual features) and φi (network features)
to infer ui attendance. The binary value of 1 stands for attendance and 0 for
non-attendance. Our predictor is composed of an input layer, a hidden layer, and
an output layer with a single neuron. The size of the input layer depends on
the size of vector embeddings d and vocabulary of tweets |T |. We set the recti-
fied linear unit (ReLU) [NH10] as activation functions of the hidden layer. ReLU
is widely used in deep neural networks for its computational advantages in train-
ing [GBB11,MdLFH19]. The number of neurons in the hidden layer is the mean
number of neurons used in the input layer [Hea08]. The output layer is functioned
by a sigmoid [KO11] unit as for binary classification. Our optimizer is Adam [KB14]
due to its robustness and a few parameters to tune.
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4.4 Experiments

In this section, we start with a description over our event datasets, then present the
experimental settings and performance analysis.

4.4.1 Datasets

We use the same datasets as in [dLMO+17] to fairly compare our results to the base-
line. Tweets in these datasets are extracted from two music festivals namely VFesti-
val and Creamfields both held in the UK (2016) [dLMO+17]. We additionally crawl
social graphs of Creamfields users with 671 nodes and 723 edges, and VFestival with
649 nodes and 714 links. There exist a few users who deleted their accounts over
time, hence we obtain fewer posts than the original dataset. Table 4.1 illustrates the
total number of tweets and the respective percentage of positive (attended) and neg-
ative (not-attended) labels in each dataset. Our reference code and data are publicly
available at https://github.com/fatemehsrz/Event_Attendance_Prediction.

Table 4.1: Statistics of the Twitter data.

Dataset Timestamp Labled pos% neg%

VFestival
before 320 44 56
during 329 47 53
overall 649 46 54

Creamfields
before 330 46 54
during 341 42 58
overall 671 44 56

To examine the role of additional network features, we apply node2vec, HARP,
Poincarè, and Loc to the crawled Twitter graph. Figure 4.1 depicts the structure of
attendees networks crawled from Twitter for both VFestival and Creamfields. It can
be noticed that social influence causes users to participate in the events as disjoint
communities (social groups). Most of the attendees are members of larger groups
and few joined only with a friend. This can confirm the general argument in social
science that states social groups create a psychological process to strongly influence
individuals behavior [VA13].

4.4.2 Parameters and Environment

For node2vec, we tune p = q = 1 which corresponds to explore local and global
neighborhoods equally. For the other parameters, we use the defaults from the
paper. HARP applies a hierarchical paradigm based on node2vec, hence we follow
the same tuning procedure as node2vec. For Poincaré, we determine the radius

https://github.com/fatemehsrz/Event_Attendance_Prediction


4.4 Experiments 39

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

(a) VFestival 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Creamfields

Figure 4.1: Social groups of attendees in VFestival and Creamfields.

r > 1 and the steepness as in t = 0.01 [NK17]. In the feedforward network, weights
are initialized randomly, the learning rate is set to 0.01, and the model runs for 50
iterations. We run experiments on a CPU machine Intel Xeon(R) with a Core(TM)
i5 processor and 32GB memory.

4.4.3 Results and Discussions

Our Neural Network (NN) classifier is fed with the concatenation(⊕) of input fea-
tures:

• τ⊕Loc: Textual feature and Loc embedding

• τ⊕HARP: Textual feature and HARP embedding

• τ⊕N2V: Textual feature and node2vec embedding

• τ⊕Poincarè: Textual feature and Poincarè embedding

Additionally, we feed the model with single features considering only textual or
network features. The model is run using 5-fold cross-validation, while preserving the
proportion of positive and negative instances in each fold. The quality of the predic-
tion is measured in terms of accuracy, precision, recall, and F1 score. Table 4.2 com-
pares our results against the most recent work [dLMO+17] whose accuracy reached
the maximum value through Gradient Boosting Decision Trees (GBDT). The max-
imum scores are marked in bold and the standard deviation after cross-validation
is less than 0.01. The overall superior performance of our model reveals the poten-
tial role of friends’ networks on event attendance. We observe that Loc embedding
achieves better performance compared to the other techniques. Accuracy is already
above 89% across both datasets which explains the power of restricted random walks
to encode personal social networks. On the other hand, Poincarè shows the lowest
performance which appears to lie at the core of its loss function. Poincarè maps
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Table 4.2: Classification performance on event attendance prediction.

Dataset Classifier Accuracy Precision Recall F1

VFestival

GBDT 0.805 0.826 0.675 0.736
NNτ⊕Loc 0.903 0.891 0.823 0.855
NNτ⊕HARP 0.892 0.886 0.784 0.821
NNτ⊕N2V 0.823 0.792 0.745 0.768
NNτ⊕Poincarè 0.785 0.735 0.706 0.720
NNτ 0.782 0.756 0.667 0.708
NNHARP 0.769 0.691 0.745 0.717

Creamfields

GBDT 0.865 0.838 0.764 0.793
NNτ⊕Loc 0.894 0.878 0.815 0.845
NNτ⊕HARP 0.881 0.857 0.774 0.814
NNτ⊕N2V 0.803 0.786 0.758 0.752
NNτ⊕Poincarè 0.779 0.735 0.689 0.712
NNτ 0.777 0.729 0.686 0.707
NNHARP 0.710 0.732 0.661 0.695

many of the nodes on the border of the hyperbolic ball [GBH18] which can cause
the loss of critical local properties [SB18].

We also study the dependence of performance on tuning hyperparameters of
the embedding methods. Figure 4.2 depicts accuracy changes on different context
sizes w and dimension sizes d. In HARP, accuracy raises along with the increase
of dimension size up to d = 128, but further dimensions do not provide useful
information for the task. Similarly, Poincaré shows the best performance for d = 128
and drops afterwards. The length of the context window in node2vec and HARP
characterizes the range of neighborhood locality captured by both models. As shown
for HARP, a larger window causes accuracy loss since faraway neighbors appear more
in co-occurred pairs. While our attendance inference model supposes direct friends’
influence each other for event participation.
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Figure 4.2: Impact of hyperparameters on the classification performance.
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4.5 Conclusion

The small-world property of social networks directly impacts the ability of the net-
work to spread information about events. This has been observed that positive or
negative posts can have an influence on friends’ decision-making. Twitter is one of
the platforms that large public events are widely folded and discussed. Therefore,
we explored both Twitter posts and graph structure to study the event attendance
problem. A key detail of our proposed approach was to exploit user’s connectivity
patterns in social networks applying graph embedding techniques. We used event
datasets from the state-of-the-art to demonstrate the utility of network topological
features to improve the prediction performance.

Despite the early success in this study, a few limitations still exist. Firstly, the
current embedding models are not exactly designed to model influence diffusion in
social networks. Thus, there is a need to develop embedding methods in which local
influence and user similarity are both mapped into the representations. Secondly,
user’s activity and history are completely neglected. However, users’ comments,
stories, and attended events can build a set of preferences. Thirdly, the role of
EBSNs in connection with other social networks, e.g. Twitter, is not discussed or
investigated. EBSNs organize groups that users choose to join, hence identifying
these users’ posts on the other social media can potentially reveal attendance be-
havior and tendency. In the next part, we will explore embeddings further on the
topological structures which are captured during training.





Part II

Exploring Vector Embeddings





Chapter 5

Understanding the Content of
Vector Embeddings

5.1 Introduction

The critical role of social networks in studying people’s activities and behaviors has
motivated researchers for exhaustive analysis on network topological structure. For
instance, how to identify the social influencers whose opinions and beliefs are quickly
spread through society. Therefore, much of the research work emerged with the goal
of comparing nodes in terms of connectivity patterns.

One of the frequent questions in social networks is to measure how central a
node is compared to others and what position or prestige plays in the network. The
concept of centrality usually capture complementary aspects of a node’s position,
hence a centrality measure can be more appropriated for some applications and less
for others. For example, the spread of information is often affected by the influence
of certain nodes with higher closeness centrality. Identifying these influential nodes
helps to better understand the complex networks specifically for predicting and
controlling network evolution [BBBG10,KNT10,LBKT08].

Recently, random walk based graph embedding techniques perform successfully
to preserve proximity among nodes so that neighbors in a small vicinity are embed-
ded together. However, little effort is dedicated to dive deep into why these graph
embedding methods are successful and what structure is being saved in latent rep-
resentations. In this chapter, we explore if some of the known and mathematically
understood topological properties [New10] are projected in the embedding space.
For the sake of completeness, embeddings are investigated at both subgraph and
vertex level. We first investigate if vector embeddings learned something analogous
with traditional properties at subgraph level, i.e. in ego networks. Ego networks
generically split a social graph into subgraphs with central nodes called egos [ML14].
The ego network structure allows hidden patterns, anomalies, and features to be dis-
covered that can be missed when the entire graph is analyzed [ACLG+16].
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To achieve this, a model which relates the properties of ego networks to embed-
ding vectors is needed, for example, a mapping from linear combination of network
properties to ego similarity in embedding space. We approach this problem from
an information-retrieval perspective such that topological relations between egos in
the network are used to predict ego ranking. In fact, we define a learning to rank
problem where pairwise similarities between egos in the network form a query and
corresponding ground-truth rankings are derived from pairwise similarities in the
embedding space. The goal of training is to approximate a ranker which minimizes
a ranking loss function over ego networks for the queries, target egos, and associated
ranks that are given in the training set. Therefore, we leverage the knowledge of
network topology to produce node ranking meanwhile the model weights reveal the
importance of those topological properties.

In particular, we use RankSVM [Joa02] because it accepts pairwise preferences
between items as training data and is suitable for large-scale learning problems
even with more missing data [K+12]. To feed the model, we construct a feature
matrix by computing similarity between centrality distributions in ego networks.
For ground-truth ranking, we calculate the pairwise similarity between ego vectors in
the embedding space. Thereafter, RankSVM inputs the centrality similarity values
and tries to learn a linear combination of weights which gives relevance scores for
the candidate pairs. These relevance scores should respect the preference relations
given already as the rank labels to the algorithm. Such discovery could provide
a practical framework to experimentally explain which topological structures are
retained in the representations.

At vertex level, we turn our attention to a regression task which defines a map-
ping from embeddings into centrality values. An accurate approximation confirms
embeddings yield insights into the properties of the network. Therein, we use a
feedforward neural network as a regressor which inputs embeddings and outputs
centrality values (e.g. betweenness, closeness, and eigenvector). Since the compu-
tation of some centrality measures based on network structure is very high, this
approach can ensure efficient and time-saving centrality approximation.

In summary, we present the following contributions:

• We propose to make use of learning to rank for identifying network properties
preserved by graph embedding at subgraph level. According to the work by
Malmi et al. [MTT+16], RankSVM has a strong capability to relate features
from two spaces while revealing the importance of each feature. We thus use
RankSVM to relate centrality similarity between two egos to their embedding
similarity. The retrieved weights from the linear model are considered as im-
portance for those centrality measures. A centrality measure with the highest
contribution to the similarity of two egos can be considered as the highest
explanatory factor regarding their relatedness in embedding space.

• We examine whether vector embeddings can directly predict the centrality
values of each vertex using a feedforward network. Degree, betweenness, close-
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ness, and eigenvector centrality are our main focus.

• We provide detailed experimental evidence for our claims over several graph
embedding techniques and centrality measures.

The remainder of the chapter is organized as follows. Section 5.2 provides a
brief overview on relevant works. Section 5.3 introduces preliminaries and required
notations. Section 5.4 defines how to explore the content of embeddings and ap-
proximate centralities. Section 5.5, illustrates the experimental setup and evaluate
our proposed approaches. Finally, Section 5.6, draws the conclusion and discusses
the limitations.

5.2 Related Work

Exploring the content of vector embeddings is still quite young area in the field of
data representation learning. Bonner et al. [BKB+19] search for a mapping from the
embedding space to a range of topological features, if such mapping exists, those
topological features are also approximated in the embedding space. In particu-
lar, they investigate the content learned by DeepWalk [PARS14], node2vec [GL16],
SDNE [WCZ16], and Poincaŕe [NK17] applying supervised and unsupervised models
to the embeddings. This discovery indicates that graph embedding can learn approx-
imations of known topological features. Specifically, eigenvector centrality shows the
best reconstruction by many of the methods. The authors attempt to provide a key
insight into how graph embedding learns to create high quality representations.

Balogh et al. [BBDT] investigate the semantic content of word embeddings us-
ing a common sense knowledge base whose tools explore directions of vectors in
sparse embeddings. Knowledge bases indeed give a computational approach for in-
terpretability by providing explicit meaning of words along with quantifiable valid-
ity. Their methodology analyzes the paths between concepts in ConceptNet [SH12]
which finally assigns labels to the dimensions of the vector embedding.

Tsvetkov et al. [TFL+15] propose an evaluation measure called QVEC to exam-
ine the quality of word embeddings. QVEC estimates a correlation between dimen-
sions of a word vector and the semantic categories gained from SemCor [MLTB93].
Finally, Senel et al. [ŞUY+18] determine explicit assignments to word embedding
dimensions with specific interpretability scores to measure semantic coherence.

5.3 Definitions and Preliminaries

In this study, we aim at investigating generated embeddings by DeepWalk [PARS14],
node2vec [GL16], LINE [TQW+15], and Loc [RGZ17]. Our main focus is on topo-
logical features measured at subgraph level like centrality distribution in the direct
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neighbors of ego ui denoted as N(i). We explore the following widely used centrality
measures in social networks [ZAL14].

Degree centrality: This centrality is defined as the number of edges incident
upon a node v:

dc(v) = deg(v). (5.1)

Betweenness centrality: It measures how often a node acts like a bridge
in the shortest path of two other nodes. Formally, betweenness of a node v is
then defined as:

bc(v) =
∑

s6=v 6=t

σs,t(v)

σs,t
, (5.2)

where σs,t(v) is the number of shortest paths between nodes s and t that pass
through node v. σs,t is the number of all shortest paths between node s and t
in the graph.

Closeness centrality: This is defined as the inverse of sum over all the
shortest distances from a node to the others. Formally, closeness of a node v
is defined as:

cc(v) =
1

|V |∑
j=1

δ(v, vj)
, (5.3)

where δ(v, vj) is the length of the shortest path between (v, vj).

Eigenvector centrality: This measure generalizes degree centrality by in-
corporating the importance of the neighbors. The eignvector centrality of
the vertex vi is proportional to the structural importance of their connected
neighbors:

ec(vi) =
1
λ

|V |∑
j=1

Aijec(vj), (5.4)

where A is the adjacency matrix of the graph G and λ is a constant value.

5.4 Approach

5.4.1 Exploring the Content of Embeddings

We aim at assessing embeddings in terms of centrality measures in the subgraph level
(within ego networks). Given vectors φi and φj , first, the inner-product determines
the similarity between two egos in the embedding space:



5.4 Approach 47

f(φi,φj) = φi · φj . (5.5)

This embedding similarity is then used to give a rank label to each ego pair. For
given egos ui,uj ,uk, the rank yij is higher than yik when f(φi,φj) > f(φi,φk). As
such, we assign a unique ranking to each ego pair based on their similarity in the
embedding space. Due to the random walk strategy behind embedding creation,
we assume embeddings of the egos ui and uj can be approximated by the network
properties in their neighborhoods N(i) and N(j). Let pi and pj denote centrality
distribution in the neighborhoodN(i) andN(j) respectively, we define the centrality
similarity beween ui and uj using Kullback-Leibler (KL) divergence [KL51] as:

s(ui,uj) = 1−KL(pi‖pj). (5.6)

Here the pairwise similarity in the embedding space f(φi,φj) gets related to the
pairwise similarity in centrality distribution s(ui,uj). We formulate our approach
such that the similarity of two embeddings φi and φj can be approximated by a
weighted sum of over the network centralities:

f(φi,φj) ∼
k∑
t=1

wtst(ui,uj), (5.7)

where st is the similarity value for tth network centrality and wt is the weight for
that measure. To estimate the optimal weights w, we cast the problem into a learning
to rank model. We assume the availability of m training examples {xi, yi}mi=1 where
m is the number of possible ego pairs in the network. Our feature matrix is denoted
by X := (s1, . . . , sk) ∈ Rm×k with k centrality measures, and our label matrix
containing rankings represented as Y ∈ Rm×1. The goal of the training is to obtain
the weight matrix W ∈ Rm×k such that the objective of RankSVM defined over the
training data is minimized. More precisely, we train the model such that wTi xi >
wTj xj ,∀yi > yj by optimizing the following objective function,

min
w

1
2ww

T +C
∑
yi>yj

max(0, 1−wT (xi − xj)), (5.8)

where C > 0 is a regularization parameter and w ∈ Rk is a weight vector which
reveals the importance of each centrality.

5.4.2 Centrality Approximation

At the aim of centrality approximation in the vertex level, we formulate a regression
problem by employing neural networks fed by embeddings. Formally, we define a
mapping f from vector embeddings to centrality values:
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f : Rd 7→ R+, (5.9)

where d is the size of vectors learned by one of the embedding techniques, i.e.
DeepWalk, node2vec, LINE, or Loc [RGZ17]. The architecture of our model is
described as follows,

• The input layer is fed with the vector embeddings of size d.

• The hidden layer consists of a dense layer with ReLU [Roj13] activation units.

• The output layer has a single sigmoid [Roj13] unit since the normalized cen-
trality values fall in the range of [0, 1].

5.5 Experiments

This section presents the experimental results for inspecting the content of vector
embeddings. We evaluate the proposed methods on several ego network datasets as
well as a syntactic network.

5.5.1 Datasets

Our first goal was to investigate assessing the content of embeddings in terms of
centrality measures. Due to relying on distributional properties in ego networks, we
seek datasets providing such structure with focal nodes and their neighbors. We thus
take several ego-shaped datasets from major social networking sites, e.g. Facebook,
Google+, and Twitter provided by SNAP [ML14]. Table 5.1 describes the details
of the datasets used in our experiments. Our reference code and data are publicly
available at https://github.com/fatemehsrz/Properties_of_Embeddings.

Table 5.1: Statistics of the social network datasets.

Facebook Twitter Google+
nodes |V | 4, 039 81, 306 107, 614
edges |E| 88, 234 1, 768, 149 13, 673, 453
egos |U | 10 973 132

We also generate a synthetic graph dataset to validate our experiments. Given
the number of nodes |V | and average degree d, we generate a synthetic network
using the preferential attachment model by Barabási et al. [AB02]. Here we set
|V | = 4, 000 and d = 20 to simulate the Facebook graph by generating 79, 600
edges. To fairly compare the synthetic graph to the real one, we break it into
10 ego networks applying a modularity-based graph clustering algorithm [CNM04].
We further pore over the synthetic graph by comparing centrality distribution in

https://github.com/fatemehsrz/Properties_of_Embeddings
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the composed clusters and the real ego networks from Facebook. As an instance,
Figure 5.1 compares the centrality distribution of two samples: ego ’686’ of the
Facebook and ego ’5’ of the synthetic graph. The goodness of fit can be measured
by Kolmogorov-Smirnov (KS) statistic and p-value tests [Ste74] where low KS and
high p-value indicate identical distributions. Table 5.2 provides a comparison over
centrality distribution (e.g. degree distribution) in ego networks of the real and
synthetic network. For each pair of egos, we can see a low KS statistic (around 0.1)
and a high p-value which validate identical centrality distributions in the real and
synthetic ego networks [Ste74]. We then use our synthetic network to further verify
the proposed models on vector embedding investigation.
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Figure 5.1: Centrality distribution of ego network ’686’ in Facebook and ego ’5’ in
the synthetic graph.

5.5.2 Parameter Settings

To learn representations, we implemented the baseline works using the code released
by the authors. For fair comparison, the embedding dimension is fixed to d = 128
in the baselines. The other parameters are tuned to be optimal:

• DeepWalk: We set the window size w = 10, walk length l = 40, and the
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Table 5.2: Comparing centrality distributions in real and synthetic ego networks.

Ego (real) Ego (synthetic) Centrality KS statistic p-value

686 5

degree 0.12865 0.12432
closeness 0.10099 0.35831

betweenness 0.10684 0.29330
eigenvector 0.07805 0.68533

686 8

degree 0.12865 0.10042
closeness 0.14099 0.15841

betweenness 0.05684 0.59340
eigenvector 0.10805 0.39473

414 5

degree 0.11865 0.13402
closeness 0.08899 0.35851

betweenness 0.10684 0.23456
eigenvector 0.08805 0.69573

414 8

degree 0.13865 0.22532
closeness 0.11543 0.35551

betweenness 0.10334 0.25510
eigenvector 0.06805 0.55573

number of walks per node γ = 80.

• node2vec: This algorithm operates like as DeepWalk, however the hyperpa-
rameter p and q control the walking strategy. With q > 1 and p < min(q, 1)),
the random walk is biased towards nodes close to the start node within a small
locality (BFS manner). In contrast, with q < 1 and a large p > 1, the walk is
more inclined to visit nodes which are further away from the start node. Such
behavior reflects a DFS-like exploration which encourages outward deep walks.
We then consider two settings: node2vecq keeps the walk local with p = 2−8,
q = 28, while node2vecp walks more exploratory with p = 28, q = 2−8.

• LINE: This method acts like DeepWalk with a restriction on node sampling
whose pairs are limited to direct neighbors [TQW+15].

• Loc: Loc [RGZ17] applies Paragraph Vector to a set of walks, hence settings
are similar to DeepWalk.

5.5.3 Exploring the Content of Embeddings

We first calculate egos’ pairwise similarity in embedding space to build the ground-
truth ranking. Then, the feature matrix is built by computing structural similarity
between egos comparing degree, betweenness, closeness, and eigenvector distribu-
tions. To train the RankSVM model, we randomly split the input data into training
(80%) and test (20%) sets. Table 5.3 reports the absolute values of estimated weights
after 5-fold cross-validation. The accuracy of SVM in all experiments is around 75%,
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Table 5.3: The importance weights reported for degree, closeness, betweenness, and eigen-
vector centrality.

Dataset Weight DeepWalk LINE Loc node2vecq node2vecp

Facebook
wdc 0.09± 0.02 0.15± 0.05 0.92 ± 0.06 0.82 ± 0.01 0.15± 0.07
wcc 0.01± 0.04 0.07± 0.00 0.09± 0.01 0.04± 0.00 0.06± 0.11
wbc 0.64 ± 0.03 0.55 ± 0.07 0.17± 0.03 0.01± 0.04 0.13± 0.04
wec 0.64 ± 0.02 0.68 ± 0.08 0.08± 0.01 0.07± 0.00 0.56 ± 0.01

Twitter
wdc 0.07± 0.09 0.09± 0.05 0.87 ± 0.08 0.53 ± 0.01 0.04± 0.01
wcc 0.15± 0.00 0.00± 0.08 0.13± 0.05 0.04± 0.17 0.02± 0.04
wbc 0.51 ± 0.04 0.69 ± 0.00 0.19± 0.07 0.11± 0.10 0.16± 0.02
wec 0.71 ± 0.05 0.58 ± 0.01 0.12± 0.03 0.03± 0.01 0.49 ± 0.01

Google+
wdc 0.02± 0.04 0.00± 0.10 0.84 ± 0.01 0.65 ± 0.00 0.08± 0.05
wcc 0.05± 0.11 0.04± 0.09 0.07± 0.08 0.09± 0.07 0.00± 0.11
wbc 0.55 ± 0.05 0.53 ± 0.07 0.17± 0.00 0.14± 0.00 0.03± 0.00
wec 0.63 ± 0.03 0.68 ± 0.06 0.12± 0.02 0.07± 0.03 0.69 ± 0.01

Synthetic
wdc 0.00± 0.00 0.15± 0.03 0.66 ± 0.01 0.64 ± 0.01 0.00± 0.00
wcc 0.14± 0.09 0.07± 0.00 0.00± 0.00 0.09± 0.15 0.16± 0.06
wbc 0.61 ± 0.14 0.63 ± 0.08 0.08± 0.04 0.18± 0.03 0.07± 0.04
wec 0.66 ± 0.08 0.60 ± 0.16 0.22± 0.03 0.17± 0.07 0.51 ± 0.01

which tells us explaining some network properties is missing. We summarize our ob-
servations as follows:

• The weights tend to be high for degree, betweenness, and eigenvector, however
show a negligible value for closeness centrality.

• LINE and DeepWalk present higher weights for eigenvector and betweenness
which is in correspondence with the results found in [BKB+19]. This can be
attributed to the global traverse in these methods which allows to capture the
global structure required in both betweenness and eigenvector calculations.
Betweenness is based on shortest path enumeration over a node, and eigenvec-
tor calculates a global ranking of all vertexes based solely on their location at
a global view.

• node2vecq with large q > 1 and Loc [RGZ17] constrain the walks within limited
areas of the network. This gives larger weights to the degree centrality as a
local measure and smaller weights to other centralities.

• node2vecp with p > 1 shows a DFS behavior which encourages outward ex-
ploration walks to the depth of the graph. The high weights of eigenvector
centrality can confirm the ability of these random walks to capture structural
properties at the global scale.

5.5.4 Centrality Approximation

To characterize network structural properties saved within embeddings in vertex
level, we approximate the centrality values directly by our regressor. To do so, we
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randomly select 70% of nodes in the Facebook graph as training and the remaining
as test set. Since the regressor outputs real numbers, we estimate the error between
real centrality value and predicted one by Root Mean Square Error (RMSE) and
Coefficient of Variation of RMSE or briefly CV(RMSE). Table 5.4 demonstrates the
standard deviation and mean value of centrality besides the estimated errors.

Table 5.4: Root Mean Square Error (RMSE) and CV(RMSE) reported on centality ap-
proximation in the Facebook graph.

Centrality Mean Std Model RMSE CV(RMSE)

Degree 0.012581 0.01516

DeepWalk 0.01848 1.46908
node2vecq 0.02074 1.64857
node2vecp 0.02226 1.76898
LINE 0.03132 2.48925
Loc 0.01681 1.33579

Closeness 0.25302 0.02319

DeepWalk 0.04755 0.18795
node2vecq 0.05906 0.23342
node2vecp 0.06260 0.24740
LINE 0.04695 0.18555
Loc 0.03647 0.14413

Betweenness 0.00105 0.01180

DeepWalk 0.01630 15.44306
node2vecq 0.01568 14.84949
node2vecp 0.01554 14.72446
LINE 0.01761 16.68014
Loc 0.02024 19.17428

Eigenvector 0.01036 0.02355

DeepWalk 0.02412 2.32737
node2vecq 0.02664 2.56986
node2vecp 0.02731 2.63491
LINE 0.02534 2.44495
Loc 0.02724 2.62788

RMSE measures the difference between actual and predicted values, the lower
error, the better approximation. As shown in Table 5.4, closeness centrality is
approximated sufficiently well since RMSE stays in an acceptable range. The mean
value of closeness is around 0.25, concurrently the standard deviation shows a small
value (around 0.02) which approves most of the nodes hold centrality values near to
the mean. With the RMSE significantly lower than the mean value, we conclude that
most of the nodes received correct centrality approximation. Additionally, we report
CV(RMSE) whose values keep the lowest error on closeness approximation compared
to the others. Closeness centrality measures the average distance (shortest path)
from a node to others in the graph. This means the nodes with low closeness receive
information flows sooner than others. A possible interpretation on the results is the
existence of local manifolds in embedding methods which causes shorter distances
to be preserved in representations. Although closeness centrality has not been a
relevant factor for node ranking in subgraphs, a nonlinear mapping at the vertex
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level can fairly estimate this centrality.

5.6 Conclusion

In this chapter, we explored making a step in the direction of reconstructing net-
work properties from vector embeddings. One hypothesis was if any relation from
the topological property of ego networks to ego vector similarity can be found via
RankSVM. We presented an extensive set of experiments studying this problem
across three datasets explaining four common network centrality measures. An-
other idea was to directly approximate the centrality of each vertex performing a
regression task which showed success mostly for closeness centrality. This could
give a key insight into the quality of representations to hold information such as the
length of shortest path among nodes.

Our research aims at probing embeddings generated for social graphs consist of
multiple ego networks. However, we bluntly ignored to study further topological
features (e.g. number of triangles, local clustering score) not only at subgraph level
but also at vertex level. Moreover, our learning to rank approach misses some stan-
dard tasks for further validation specifically on closeness centrality. It is beneficial
if these tasks explain the relation between centrality in the subgraph and vertex
levels. The early success on closeness centrality encourages us to study if latent
representations retain the shortest distance among nodes in the next chapter.





Chapter 6

Shortest Path Distance
Approximation

6.1 Introduction

With the recent growth of social networks how to efficiently compute the shortest
distance between nodes still remains a challenge in the research community. Specif-
ically to solve the fundamental problems in graph analysis such as measuring cen-
trality of nodes [BV14, Fre77, Sab66, HC14], strength of relevance [LNK07,MC13,
YBLS08], computing social distance [IK17, MBF+19], social similarity [CDF+13,
HC14,LNK07], and detecting friends influence [ACKP13,DSRZ13,RBS11]. A vast
variety of applications benefit from the knowledge of shortest distance within social
graphs, like, selecting more trustworthy sellers in e-commerce regarding distances
to sellers, and filtering out query results using shortest distance in websites like
LinkedIn.

Many of the current algorithms have been developed for computing the exact
distance for single source shortest path (SSSP). However, they mostly succeed on
small and medium size networks and do not scale up with the network size. For
today’s massive networks traditional exact algorithms, such as Breadth-First Search
(BFS) [Moo59], take an overlong computation time. In an unweighted graph with
|V | nodes and |E| edges, BFS algorithm computes paths from a single source to all
other vertices in no less than O(|E|+ |V |log|V |) time. The runtime of the approach
can be improved by heuristics like A* search [HNR68] whose performance totally
depends on the heuristic.

Another category of works which solve all pairs shortest path (APSP) calculates
the exact distance between nodes in the graph. The Floyd-Warshall algorithm cal-
culates all pairs distances employing dynamic programming in an intuitive way with
a runtime of O(|V |3). Recently, T. M. Chan [Cha12] presented a faster implementa-
tion of Floyd-Warshall in which all the edge weights are integer and eventually runs
out in O(|E||V |). However, for today’s million networks, computing the exact dis-
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tance can take up to one minute for a pair of nodes [PBCG09]. Therefore, pairwise
distance computation in such graphs can take an overlong runtime, i.e. hours for a
thousand pairs. Alternatively, approximate shortest distance methods emerged as a
feasible solution that scales up to larger networks.

A large category of approximation methods relies upon the use of landmarks
whose position in the network helps to speed up distance calculation for other nodes.
These methods first fix a set of k landmarks to precompute the distance between
landmarks and others, then use triangle inequality to compute the distance for any
other pairs in O(k). In this way, computing all pairs shortest distance in unweighted
graphs can solve in O(k|V |2) [TK14]. As emblematic examples, Orion [ZSW+10]
and Rigel [ZSZZ11] use landmarks to map nodes in coordinate space and then cal-
culate the distance. However, selecting a perfect minimal set of landmarks is a NP
hard problem [QCCY12] and landmark-based algorithms usually fail to accurately
estimate distances between close pairs [KSW04].

In this chapter, we describe an improvement to the runtime of shortest distance
approximation by exploiting the advancements of graph embedding techniques. The
idea of the modification is based on the use of vector embeddings in flow dis-
tance [GGLZ17] and closeness approximation [SRG17]. This observation motivates
us to first learn vector embeddings, then input representations into a regression
model that yields real-valued distances. This proposed paradigm allows us to shift
the complex landmark selection to applying a simple regression task to latent rep-
resentations. Our contribution consists of random landmark selection, running BFS
traversals from landmarks to other nodes, and an accurate analysis over distance
approximation via the regression task. In detail, we first learn node representations
applying node2vec [GL16] and Poincarè [NK17], then construct a feature matrix
by composing node pairwise embeddings. Finally, a neural regression is devoted to
input the feature matrix and return the approximated distances.

Due to sparse density in real-world social networks [JKB15], the number of edges
is roughly a constant factor of the number of vertices. Therefore, the process of col-
lecting training pairs and approximating the distance ends in linear runtime com-
plexity. In summary, we investigate some of the recent graph embedding techniques
to make the following contributions:

• We propose to utilize node2vec [GL16] and Poincarè [NK17] for shortest dis-
tance approximation in social networks.

• We demonstrate a feedforward network fed by embeddings can predict the
shortest path distance effectively and efficiently, especially for the shorter
paths.

• We conduct experiments on real-world network showing our approach outper-
forms the prominent baseline methods in terms of approximation accuracy.

The rest of the chapter is structured as follows. Section 6.2 provides an overview
of the recent existing shortest distance approximation techniques. Section 6.3 elabo-
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rates on our proposed method. Section 6.4 summarizes the experimental evaluation
results. Finally, Section 6.5 concludes the chapter remarks.

6.2 Related Work

The shortest distance calculation is one of the key measures to represent network
structural relations. Since traditional exact methods based on BFS usually do not
scale up with network size, many studies switched to approximation techniques. The
large body of literature [GBSW10,PBCG09,QXSW13,QCCY12,TACGB+11] aiming
at distance approximation using landmarks due to the high speed of calculation in
complex networks. The main contribution with k landmarks is to satisfy the triangle
inequality which reduces the approximation time to O(k).

Orion [ZSW+10] maps nodes within the original graph to a fixed Euclidean
coordinate space so that node distances are preserved. With the help of coordinates,
a simple Euclidean distance computation can estimate the shortest distance in the
constant time of O(1). Orion indeed positions entire nodes in the coordinate space
according to their relative distance to given k landmarks. Landmarks minimize the
number of shortest path calculations due to the limitation on BFS runs bounded to
k times. The total time to compute landmark coordinates in Orion takes O((k2d+
kd)|V |), where n is the number of nodes in the graph, k is the total number of
landmarks, and d is the number of coordinate dimensions.

Rigel [ZSZZ11] expands Orion [ZSW+10] by mapping a large graph into a hy-
perbolic space with a low distortion error. The main idea is similar to Orion for
choosing the k landmarks with the highest degree in the network. Rigel further par-
allelizes the costly embedding process across multiple servers, allowing the system to
quickly embed millions of nodes. The initial step of coordinate computation scales
roughly in linear time to the graph size, i.e. O(kd|V |), for a graph with V nodes, k
landmarks, and d coordinate dimensions. Given the graph coordinate system, Rigel
approximates a distance query in O(1).

Some variants of the A∗ algorithm take the advantage of landmarks to achieve
better performance. Goldberg et al. [GW05] present an A∗ based search for land-
marks algorithm which adopts triangle inequality. They select an average of 20
landmarks distributed at the corners of the graph which leads to speed up route
planning. Bauer et al. [BDS+10] try to systematically push speed-up techniques
into Dijkstra’s algorithm such as adding goal-direction techniques to the hierarchi-
cal techniques. They also suggest a hierarchical A∗ based search for landmarks in
dense graphs.

Gutman [Gut04] offers a technique which stores a reach value and a Euclidean co-
ordinate for any given node in the graph. Gutman’s approach can be combined with
the A∗ algorithm to outperform Goldberg et al. [GW05] given only one landmark
but performs worse given 16 landmarks. As a drawback, this approach depends on
domain-specific assumptions and takes a longer preprocessing complexity with inap-
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plicability to dynamic settings. Potamias et al. [PBCG09] offer to select nodes with
higher centralities as landmarks that yields higher accuracy and less computational
space.

Tretyakov et al. [TACGB+11] present an improvement by building shortest path
trees to maintain the paths between each landmark and every other nodes. The use
of the shortest path trees is specifically suitable for continuously evolving graphs.
They further propose a greedy landmark selection algorithm that provides the best
coverage of all shortest paths in a random sample of nodes.

Selecting an optimal set of landmarks is an NP-hard problem [PBCG09], instead,
we focus on advanced findings of graph embedding to achieve higher accuracy and
to speed up distance approximation.

6.3 Approach

6.3.1 Distance Approximation

Given G = (V ,E) as unweighted undirected graph, we apply graph embedding to
generate real-valued vectors φi ∈ Rd for every node vi ∈ V . For a pair of nodes
(vi, vj) with the exact shortest path distance δij ∈ R+, the goal is to approximate
the distance as δ̂ij ∈ R+ employing a neural regression model. Formally, we define
f as approximation function,

f : φi × φj 7→ R+, (6.1)

that maps a pair of coordinates to a real-valued distance. Our training pairs
are gathered by exploring the entire graph at global scale. Following the landmark-
based techniques, we first select a set of k landmarks such that k � n, then run
BFS traversals to the remaining (|V | − k) nodes which gathers k(|V | − k) pairs.
For each training pair (vi, vj), we merge vectors of the incident nodes via binary
operations adopted from [GL16]. Table 6.1 illustrates the detailed definition of
the binary operations namely subtraction, concatenation, average, and point-wise
multiplication. Eventually, the composed vectors build a feature matrix as the input
of our feedforward approximator.

Our proposed neural model consists of an input layer, a hidden layer, and an
output layer. The number of units in the input layer depends on the binary op-
eration, for instance, subtraction needs d neurons while concatenation requires 2d.
Conventionally, the rectified unit (ReLU) is used as the activation function of hidden
layers [Aga]. The output layer is a single unit of softplus [GBB11] within the range
of [0,∞] in reference to the regression transformation. As optimizer, Adam [KB14]
performs adaptive momentum with relative fast convergence for large-scale learn-
ing. We later assess the quality of the regressor by estimating Mean Absolute Error
(MAE) and Mean Relative Error (MRE).
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Table 6.1: Choice of binary operation.

Operator Symbol Definition
Subtraction 	 φi − φj

Concatenation ⊕ (φi,φj)
Average � φi+φj

2
Hadamard � φi ∗ φj

6.3.2 Computational Complexity

The proposed modifications to the shortest distance approximation can decrease the
runtime complexity to linear. Learning latent representations takes precomputation
time O(|V |) for a graph with V nodes [GF17]. Computation of BFS traversals from
k landmarks to the other k(|V | − k) nodes takes the time of O(k(|V |+ |E|)) when
BFS on sparse graphs consumes O(|V |+ |E|). Our distance approximation benefits
from the speed of feedforward networks which solve a distance query independent
of the graph size in O(1) [LSSS14]. Overall, all of the computational steps can be
done at most in the time of O(|V |) +O(k(|V |+ |E|)) + k(|V | − k)O(1) + c, where
c is a constant time for the test step. This computation time is still much faster
than landmark-based methods of O(k|V |2) complexity.

6.4 Experiments

In this section, we conduct empirical evaluations on real-world datasets to demon-
strate the effectiveness and efficiency of our proposed method. We first describe
the details of our used datasets, then adjust the hyperparameters of the embedding
techniques. Finally, we verify our approach by comparing the real and approximated
distances.

6.4.1 Datasets

We use the following social networks representing four different orders of magnitude
in terms of network size, the statistics of which is provided in Table 6.2:

• Facebook: This network is built on profile and social relation data from 10 ego
networks gathered by SNAP [LM12]. The binary attributes are constructed
based on users’ profile information.

• BlogCatalog: This network describes relationships among bloggers from the
BlogCatalog website, where attributes are generated by users as a short de-
scription of their blogs. The node label represents the topic categories provided
by each author [ZL09].
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• YouTube: This is the friendship network of the YouTube video-sharing web-
site. Nodes are users and undirected edges indicate available subscribe rela-
tions [YL15]

• Flickr: This network is extracted from the Flickr online photo-sharing plat-
form, in which links show the relation between pictures of the same location
or the same gallery [MMG+07].

Table 6.2 describes number of nodes, number of edges, and average shortest
distance in the network δ. To be in line with Orion [ZSW+10] and Rigel [ZSZZ11],
we additionally report our results on the Flickr dataset. The implemented source
code and data are publicly shared at https://github.com/fatemehsrz/Shortest_
Distance.

Table 6.2: Statistics of the social network datasets.

Dataset Nodes Edges δ

Facebook 4,039 88,234 4.31
BlogCatalog 10,312 333,983 2.72
YouTube 1,134,890 2,987,624 5.55
Flickr 1,715,255 15,551,250 5.13

6.4.2 Parameters and Environment

We tune the hyperparameters to be optimal using a grid search. In node2vec [GL16],
we set the number of walks γ = 10, walk length l = 80, and context size w = 10.
With p = q = 1, the walking strategy explores the graph at local and global scales
equally. For Poincaré, we adjust the parameters r > 1 and t = 0.01 [NK17] running
the algorithm in 50 iterations. The dimension size in both embedding techniques is
tuned to d = 32 and d = 128 which reveal the impact of more features on distance
approximation. We train the regression model with the learning rate lr = 0.01
running for 15 iterations on a CPU machine (Intel Xeon(R) with a Core(TM) i5
processor and 32GB memory).

6.4.3 Approximation Quality

We first need to round real-valued predicted distances to the nearest integers as small
fractions are not taken into account. Then, we measure the performance of our model
by Mean Absolute Error (MAE) and Mean of Relative Error (MRE). The Relative
Error (RE) is widely used in the study of shortest distance evaluations [ZSZZ11,
ZSW+10,GBSW10,RS18]:

https://github.com/fatemehsrz/Shortest_Distance
https://github.com/fatemehsrz/Shortest_Distance
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RE =
|δ̂− δ|
δ

, (6.2)

where δ is the actual distance calculated by the BFS algorithm and δ̂ the ap-
proximated one. However, MRE has a natural tendency to get smaller for the larger
distances which ends to be an unfair evaluation metric. We thus apply MAE as the
most natural measure of average error magnitude with fast and robust computation.

6.4.4 Training and Test Data

To gather training pairs, we run multiple BFS traversals rooted from each landmark
to the other remaining nodes. For the smaller networks such as Facebook and
BlogCatalog, we fix the number of landmarks k = 100 while for two other larger
networks k = 5 would be sufficient. We omit the distances with length 1 since finding
the direct neighbors has linear time complexity O(|V |) [KPST11]. Through the node
sampling, once we find a path between two nodes, we additionally retrieve the node
pairs included in that path. In this way, we keep gathering many of node pairs
only with few BFS runs. Figure 6.1 depicts histograms of the distance distribution
in which shorter paths (δ = 2 or δ = 3) occur more frequently than longer paths.
Due to the small-world property of social networks, the average distance tends to
be small (δ < 6) in the most of these networks [AIY13]. We therefore limit the
maximum distance in our experiments to 5 and longer distances remain for future
work. To gather test pairs, we follow the same strategy as the training set but with a
smaller set of landmarks. The statistics of the training and test pairs are illustrated
in Table 6.3.

Table 6.3: Statistics of training and test data.

Dataset Nodes Training pairs Test pairs
Facebook 4,039 1,022,640 109,978

BlogCatalog 10,312 1,409,700 88,316
YouTube 1,134,890 2,452,757 184,413
Flickr 1,715,255 2,579,437 112,967

6.4.5 Baseline Experiment

We set up a baseline measurement in which the distance predictor is a simple linear
regression. The generated vectors by node2vec or Poincaré are input to the model,
then the performance is measured by MAE. Here the embedding size is fixed to d =
128 and the results are reported after 5-fold cross-validation. Table 6.4 demonstrates
the baseline errors along with impact of different binary operations. This can be
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Figure 6.1: Distance distribution in the training set.

observed that node2vec indicates a smaller range of error compared to Poincaré
specifically for the average operation.

Table 6.4: Baseline errors reported by Mean Absolute Error (MAE).

Dataset Embedding MAE
	 ⊕ � �

Facebook node2vec 0.679 0.663 0.546 0.653
Poincaré 0.801 0.788 0.656 0.767

BlogCatalog node2vec 0.413 0.453 0.407 0.423
Poincaré 0.427 0.450 0.436 0.447

YouTube node2vec 0.708 0.722 0.695 0.739
Poincaré 0.983 1.267 1.195 1.099

Flickr node2vec 0.633 0.694 0.574 0.739
Poincaré 0.944 0.891 0.831 0.822

6.4.6 Results and Discussions

We discuss our results in an attempt to demonstrate the performance of the neural
regressor on distance approximation. Table 6.5 compares the results of node2vec and
Poincarè where the minimum error within each scenario is marked in bold. Overall,
the most success comes from node2vec embeddings with the size of 128 showing



62 Shortest Path Distance Approximation

Table 6.5: Mean Absolute Error (MAE) and Mean Relative Error (MRE) for shortest
path distance approximation.

Dataset Embedding MAE MRE
	 ⊕ � � 	 ⊕ � �

Facebook
node2vec 32 0.480 0.415 0.233 0.531 0.175 0.164 0.068 0.188

128 0.197 0.258 0.118 0.217 0.071 0.099 0.038 0.081

Poincaré 32 0.592 0.594 0.552 0.604 0.214 0.211 0.218 0.212
128 0.437 0.315 0.372 0.608 0.169 0.115 0.142 0.246

BlogCatalog
node2vec 32 0.277 0.242 0.197 0.193 0.092 0.103 0.067 0.067

128 0.220 0.275 0.159 0.154 0.077 0.119 0.064 0.059

Poincaré 32 0.338 0.338 0.343 0.338 0.108 0.108 0.112 0.108
128 0.331 0.354 0.277 0.338 0.115 0.138 0.097 0.108

YouTube
node2vec 32 0.676 0.265 0.455 0.625 0.230 0.066 0.163 0.223

128 0.344 0.154 0.174 0.244 0.101 0.034 0.040 0.061

Poincaré 32 1.095 0.708 1.134 0.774 0.429 0.264 0.446 0.291
128 1.270 1.185 1.746 0.771 0.497 0.468 0.681 0.262

Flickr
node2vec 32 0.699 0.295 0.564 0.525 0.250 0.086 0.183 0.198

128 0.238 0.168 0.181 0.222 0.171 0.074 0.178 0.179

Poincaré 32 0.995 0.808 1.022 0.874 0.349 0.284 0.429 0.278
128 0.803 0.662 0.807 0.764 0.397 0.432 0.566 0.364

MAE around 15% across all datasets. These results expose that independent of the
network size, our method predicts the distance fairly well compared to the simple
linear regression.

Embedding techniques and embedding size: The fine-tuning of dimensions
in Table 6.5 shows larger dimensions lead to more accurate distance approxima-
tion. However, as the dimension increases, the time for learning embeddings and
distance approximation raises subsequently. The innate hierarchical structure in so-
cial network [RB03] motivates us to examine Poincarè representations for distance
approximation. Poincarè encodes graph data in a hierarchical manner to allevi-
ate overfitting and complexity issues that often Euclidean embedding faces in these
types of data. Therefore, we expect Poincarè to preserve the node distance more
accurate than node2vec in the vector space. Nevertheless, Table 6.5 shows the error
observed for node2vec is remarkably lower than Poincarè embedding.

The network embedding by node2vec is strongly tied to the random walk strat-
egy with a hidden metric space which leads to preserve flow distances [GGLZ17].
This explains why node2vec yields more distance-preserved embeddings compared
to Poincarè. Typically, the scale-free networks present a logarithmical scaling on
average distance [ZLG+09], therefore, shortest path stays as a local feature. On the
other hand, Poincarè embeds the root of nodes at the center of a hyperbolic ball and
recursively embed the children in the tree by spacing them around the sphere. The
radius of the sphere can be set to control the distortion of nodes within or around
the sphere. The higher radius maps nodes further on the border which causes leaf
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nodes to remain close to each other. However, the explicit distances from different
hierarchies at global scale might not be preserved.

Effect of binary operators: The use of binary operations can provide insights
into how various feature combination is beneficial in different scenarios. Table 6.5
shows the average operator estimates smaller errors on Facebook while concatenation
works better on the YouTube dataset. The reason could lie at the minor difference
within the inherent structure of the example graphs. We leave further investigation
on how binary operations affect vector combination for the future work.

Comparison to the state-of-the-art: Rigel [ZSZZ11] and Orion [ZSW+10] are
the most prominent works to approximate shortest distance via landmarks. Fig-
ure 6.2 depicts MAE on different path lengths applying our method (by node2vec),
Rigel, and Orion to the Flickr dataset. We notice that our method consistently
outperforms Orion and Rigel specifically on longer paths. Orion presents a graph
coordinate system in which the distance is calculated by subtraction of two coordi-
nates. However, Orion ignores the distance between non-landmarks during coordi-
nate generation. This biased input cannot characterize the network structure well
and leads to an inaccurate approximation. Rigel makes use of the hyperbolic space
to design a graph coordinate system, however still random walk based property of
node2vec captures semantics of the distance more effectively.
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Figure 6.2: Baseline comparison reported by Mean Absolute Error (MAE).

Error distribution over path lengths: We explore the error range against path
lengths across multiple binary operations. Figure 6.3 shows the larger errors caused
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Figure 6.3: Mean Absolute Error (MAE) reported on different path lengths.

by longer paths. This can be explained by the fact that node2vec and Poincarè do not
capture the property of nodes very far from a source node. The random walk strategy
of node2vec usually captures the semantic of surrounding nodes which benefits short
distance preserving. Poincaré differently maps leaf nodes on the boundary of the
hyperbolic ball that causes local neighbors to place far from each other.

Comparing computation time: We record the average time for preprocessing
and distance computation in our method, Orion, and Rigel. As shown in Table 6.6,
our proposed method is significantly faster than Orion and Rigel in both preprocess-
ing and test phases. Orion and Rigel incur prohibitively high cost for preprocessing
caused by running too many BFS traversals from landmarks to others. However,
node2vec relies on the Skip-gram model which was already proved to be fairly fast
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Table 6.6: Comparing computation time across different datasets.

Time Facebook BlogCatalog YouTube Flickr
node2vec Embedding 12s 37s 1.5h 1.6h
Orion Preprocessing 35m 1.4h 8h 12h
Rigel Preprocessing 8m 42m 6.2h 9.7h

FNN Train and Test 5.3s 6.5s 2m 2.1m
Orion Test 21.9s 17.6s 15.3m 9.4m
Rigel Test 41s 1.7m 36.8m 22.5m

for word representation learning [MSC+13]. Our test phase conducts distance pre-
diction using a feedforward network which is 5-18 times faster than vector-based
distance calculation in Orion and Rigel.

6.5 Conclusion

Traditional algorithms for computing shortest path distance no longer scale up to
nowadays massive social networks with millions of nodes. Inspired by landmark-
based methods, we suggested gathering a set of node pairs as training samples
through running multiple BFS traversals. We then made use of graph embedding
techniques namely node2vec and Poincaré to calculate the node distances via neural
networks. The key idea benefits from representations to reduce the time complexity
of transnational methods for shortest distance approximation. Our experimental re-
sults indicated the proposed method computes the distance effectively and efficiently
over example social network data.

Our analysis, however, suffers from few drawbacks: 1) the distance of the most
collected pairs fall in the range of 2-4, yet longer distances are not fairly presented in
the training set, 2) both node2vec and Poincaré fail in longer distance approximation
which needs further investigations over parameter tuning, 3) the computation time
is still high involving those many steps of prepossessing, training pair collecting,
and the final test. A possible future work is to design a graph coordinate system
which records the node distance for homogeneous and heterogeneous networks while
running multiple random walks over the graph. The next part of the thesis will go
for special types of networks with heterogeneity or additional attached information.
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Chapter 7

Signed Heterogeneous Networks

7.1 Introduction

Heterogeneous networks have attracted increasing attention in the past few years
due to the inherent rich types of information [SLZ+17,SH13]. More recently, a line of
research for heterogeneous network embedding has been started [TQM15,CHT+15,
FLL17,DCS17,HM17, SZG+18] which aims to solve practical applications such as
author identification [CS17], name disambiguation [ZSG16, ZAH17], movie recom-
mendation [SHZP18], and proximity search [LZZ+17]. However, the vast majority of
these existing algorithms have been devoted to heterogeneous networks with positive
or unsigned links.

Nowadays, users post and comment on social networks to express feelings and
attitudes towards others, e.g. politicians, which forms sentiment links besides social
links. Positive sentiment links express support or like to recipient users [LHK10a],
while negative sentiment links indicate dislike or disapproval to others. For instance,
a tweet posted on Twitter can express positive or negative sentiment towards Donald
Trump. All of these signed sentiment links form a new network topology called
sentiment network. Figure 7.1 depicts a snippet of a signed heterogeneous network
with two ordinary users and three famous ones. One interesting scenario is to predict
the sign of unobserved sentiment links with the aim of simplifying public opinion
mining and targeted advertising.

Despite the great importance, there exists little work inferring the sign of sen-
timent links in heterogeneous social networks. The most recent and relevant work
called SHINE [WZH+18] whose model tries to capture the sign, social, and pro-
file information of the network via stacked autoencoders. The autoencoders of
SDNE [WCZ16] are combined to learn an aggregated representation extracting the
information out of three single-type networks. At the training step, sentiment and
social edges are samples to jointly update parameters of three well-defined objec-
tive functions. However, SHINE confronts some drawbacks, like, 1) a relatively
low performance for signed link prediction and node recommendation, 2) too many
parameters to tune, 3) long training time on each epoch, and 4) exploiting profile
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Figure 7.1: A snippet of heterogeneous networks with sentiment and social links.

information which is not always publicly available.

In this chapter, we investigate how to jointly encode semantics of sentiment and
social links in linear runtime complexity. It is known that neural graph embedding
methods [TQW+15,PARS14,GL16] provide fast and scalable tools for network rep-
resentation learning. This finding motivates us to propose a Signed Heterogeneous
network embedding method utilizing neural networks briefly referred to as SiHet.
Therefore, the major contributions of this chapter are summarized as follows:

• We design a joint objective function for signed heterogeneous network embed-
ding involving both sentiment and social links.

• We demonstrate the efficiency of the proposed SiHet which jointly learns em-
beddings in linear time complexity.

• We show SiHet outperforms the state-of-the-art baselines through empirical
evaluations on real-world datasets.

The rest of the chapter is organized as follows. Section 7.2 reviews the related
works. Section 7.3 provides preliminaries and elaborates on the proposed model.
Section 7.4 discusses the empirical evaluations. Section 7.5 concludes the chapter
and outlines the possible future works.

7.2 Related Work

Link and node heterogeneity in networks brings challenges but also opportunities to
support specific applications. PTE [TQM15] and HNE [CHT+15] attempt to encode
node heterogeneity considering 1-hop neighborhood relationship between heteroge-
neous nodes. PTE adopts deep learning models to jointly train three objective



7.3 Approach 69

functions which yield representations for three single-type networks. HNE aims at
embedding networks with various data sources for nodes such as text, image, and
video. To do so, deep neural networks and convolutional networks are aggregated
to simultaneously handle vectorized data (e.g. text documents) or tensor-based
multimedia objects (e.g. images, videos). This joint model coordinates two rein-
forcing parts by iteratively solving an optimization problem on feature learning and
objective minimization.

HIN2Vec [FLL17] and metapath2vec [DCS17] later extend PTE by running
metapath-based random walks over heterogeneous networks to gather heterogeneous
co-occurred neighbors. The collected pairs are then used to update a negative
sampling-based objective function which pushes node pairs to be close geograph-
ically and semantically. HINE [HM17] further proposes an objective function which
minimizes the distance between two distributions, i.e. metapath-based proximity
and embedding space proximity. Another line of work [SZG+18] learns edge repre-
sentation for multiple edge types in heterogeneous networks. The idea is to maximize
the typed closeness similarity for a pair of edges in the same type.

Signed networks usually indicate attitude, trust, friendship, or similarity which
are the core for applications like social behavior prediction, homophily analysis, and
sociological studies. SiNE [WTA+17] proposes a deep learning model to make a dis-
tinction between positive and negative edges. To update the model, every iteration
requires extraction of node triples whose corresponding edges consist of a positive
and a negative edge. The positive and negative distances are reflected in the em-
bedding space with the help of an additional virtual node. SIDE [KPLK18] suggests
a linearly scalable method to learn embeddings preserving both sign and direction.
The key idea is to generate multiple truncated random walks and to use the col-
lected co-occurring pairs for optimization of a likelihood objective function. The
authors introduce two bias terms to model preferential attachment and direction
for incoming and outgoing edges. Another study [IPR18] designs an objective func-
tion motivated by classical word2vec approaches [MSC+13] to preserve sign within
higher order neighbors (more than 2-hops) in social networks.

All these methods are either focused on signed network apply social balanced
theory [CH56] or networks with node heterogeneity but not both information in the
same network.

7.3 Approach

We first introduce our notations and the mathematical definitions, then elaborate
on the proposed model for representation learning.

Signed Heterogeneous Network: For better illustration, we split the signed
heterogeneous network into two single-type networks:

Sentiment Network: The sentiment network is denoted as Gs = (V ,S),
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where V is a set of nodes and S = {(vi, vj)|vi ∈ V , vj ∈ V } is a set of
sentiment links. Each sentiment edge (vi, vj) has a label sij which takes the
value of +1 or −1, representing a user vi has positive or negative sentiment
towards another user vj respectively. S+ denotes the set of positive edges and
S− represents the set of negative edges.

Social Network: Gr = (V ,R) denotes a social network with V nodes and R
edges. R = {(vi, vk)|vi ∈ V , vk ∈ V } presents a set of social links in which an
edge (vi, vk) represents a user vi follows another user vk in the social network.

Signed Heterogeneous Network Embedding: Given a signed heterogeneous
network, representation learning maps all nodes into the vector space in which the
structural and signed relations among nodes are preserved. We design our model in-
spired by LINE [TQW+15] which already showed successful representation learning
in linear time complexity. LINE is not directly applicable to heterogeneous networks
as weights on various types of links are not comparable. Therefore, we aim at ex-
panding the objective function of LINE involving signed links to the optimization
steps. The essential idea is to map nodes with positive connections nearby in the
low-dimensional space. We later describe graph embedding for sentiment and social
networks separately, then explain the merged embedding through a custom objective
function.

7.3.1 Sentiment Network Embedding

Most of the available literature [TQW+15,PARS14,GL16] model the proximity be-
tween a pair of nodes vi and vj by the following joint probability:

Pr(vi, vj) = σ(φTi · φj) =
1

1 + exp(−φTi · φj)
, (7.1)

where σ is the sigmoid function, and φi ∈ Rd is the d-dimensional representation
for node vi. The sigmoid function already showed ability of modeling the likelihood
of existing or non-existing of edges between given nodes [TQW+15,PARS14,GL16].

Given a sentiment network Gs, each sentiment edge (vi, vj) holds a sign sij ∈
{−1,+1} must be involved in the joint probability. Since the output of sigmoid is
restricted between 0 and 1, we derive that large positive numbers become nearby 1
and large negative numbers get close to 0. Therefore, we consider the largest and
smallest values for the probability as follows:

Ps(vi, vj) =
{

1 if sij = +1
0 if sij = −1. (7.2)

Intuitively, the joint probability between vi and vj increases to 1 when there
exists a positive link with sij = +1 . On the other hand, the probability gets smaller
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approaching 0 when the sentiment link has a negative sign sij = −1. Therefore, we
integrate the sign of each sentiment edge (vi, vj) into the joint probability as follows:

Ps(vi, vj) = σ(sij ∗ (φTi · φj)). (7.3)

This joint probability rises up as the product term (φTi ·φj) increased by positive
edges. While the joint probability drops once the negative value is multiplied to the
product term. By incorporating the sign of sentiment edges into the probability, the
overall objective function becomes:

Os = −
∑

(vi,vj)∈S
logPs(vi, vj). (7.4)

In practice, directly optimizing the objective in Equation 7.4 is computationally
expensive due to the sum over all the sentiment edges. To resolve this issue, we
adopt negative sampling of word embedding [MSC+13] to sample a small fraction of
negative edges which enhance the influence of positive edges. Formally, our defined
objective function randomly samples K negative edges for each positive sentiment
edge (vi, vj):

Os =
∑

(vi,vj)∈S+

[
− logPs(vi, vj) +

K∑
m=1
− logPs(vi, vm)

]
. (7.5)

The ultimate embeddings are learned via minimizing the objective function 7.5
which assigns high similarity values for positively connected nodes and low similarity
values for negatively connected nodes. As a result, incident nodes from positive edges
get similar embeddings while nodes connected via negative sign are placed far apart
from each other.

7.3.2 Social Network Embedding

Given a social network Gr, the goal is to learn representations by preserving the
network topology especially first-order proximity. Formally, we maximize the joint
probability [TQW+15] for every social edge (vi, vk) as follows:

Or = −
∑

(vi,vk)∈R
logPr(vi, vk). (7.6)

7.3.3 Signed Heterogeneous Network Embedding

We need to generate aggregated representations from two networks: a sentiment
network and a social network where nodes are shared across networks. Intuitively,
the model could be calibrated by minimizing the summation of loss functions of two
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networks:

OSiHet = Os +Or. (7.7)

The final joint objective function is defined via collectively sampling sentiment
and social links:

OSiHet = − logPs(vi, vj)− logPr(vi, vk)−
K∑
m=1

logPs(vi, vm). (7.8)

Where (vi, vj) is a positive sentiment edge, (vi, vk) is a social link, and (vi, vm) is
a negative sentiment edge. Algorithm 7.1 illustrates the steps of model optimization
and edge sampling where edges are sampled with the probability proportional to
the constant weight α > 1. Typically, such oversampling significantly improves the
efficiency of the optimizer in learning embeddings [TQW+15]. At the training step,
the algorithm receives a batch of sentiment and social edges and updates the model
parameters until convergence.

Algorithm 7.1 Joint training
Given sentiment network Gs, social network Gr, sampling weight α, number of
negative samples K.
for iter < |S+| do
sample a positive sentiment edge (vi, vj) from S+ and K negative edges from
S−

sample a social edge (vi, vk) from R

update φi taking optimization steps according to the objective function 7.8
end for

7.3.4 Time Complexity

Algorithm 7.1 samples a positive sentiment edge (vi, vj) and a social edge (vi, vk) for
α times. The random edge sampling from the edgelist takes O(1), and optimization
with K negative sampling takes O(α(K + 1)). This is visible that the number of
steps used for optimization is proportional to the number of sentiment edges |S|.
Therefore, the total runtime complexity of the SiHet is attainable in O(αK|S|),
which is linear to the number of sentiment edges.

7.4 Experiments

We provide more insight into our proposed SiHet via experiments on two real-world
datasets. As evaluation tasks, we follow SHINE [WZH+18] whose experiments in-
clude signed link prediction and node recommendation. For further analysis, we



7.4 Experiments 73

investigate the sensitivity and effect of hyperparameters on the performance. All
experiments have been run on an Intel(R) CPU machine with a Core(TM) i5 pro-
cessor and 32GB of RAM. The implementation of SiHet and datasets are publicly
available at https://github.com/fatemehsrz/SiHet.

7.4.1 Datasets

To benchmark our results, we examine the same datasets used by SHINE [WZH+18],
namely Weibo-STC and Wiki-RfA. Weibo is a Chinese social network resembles
Twitter in which users can follow and tweet. Wiki-RfA is the network of Wikipedia
Requests for Adminship [WPLP14] where edges represent positive or negative votes.
A collection of positive votes promotes the individuals to the role of administrator.
Since Wiki-RfA does not contain social links, we adopt positively connected neigh-
bors as social friends. The statistics of the datasets is described in Table 7.1.

Table 7.1: Statistics of the datasets.

Dataset Nodes Edges
Social Sentiment

Weibo-STC 12,814 71,268 18,950
Wiki-RfA 10,835 140,661 180,692

7.4.2 Baselines

The main relevant baseline is SHINE [WZH+18] which merges node embedding
of social, sentiment, and profile networks. We additionally compare SiHet to the
following baselines which integrate sign information into the final representations:

• SIDE: [KPLK18] This model involves both sign and direction of edges into
existing models by extending a word2vec [MSC+13] based objective function.

• SiNE: [WTA+17] This end-to-end model optimizes an objective function
which is built on the structural balanced theory assuming nodes with posi-
tive links are more similar than those with negative ones.

• StEM: [IR18] This method utilizes a feedforward network to map nodes in dif-
ferent classes via applying decision boundaries between opposing groups (e.g.
friends and foes). The objective is to not only incorporate local information
but also the global structure.

https://github.com/fatemehsrz/SiHet
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7.4.3 Settings and Environment

In our SiHet model, we set the sampling weight α = 5, negative samples K = 5,
and the dimension d = 100 same as SHINE [WZH+18]. Section 7.4.6 additionally
studies the effect of parameter sensitivity on the performance. To obtain a fair
comparison, we follow the hyperparameter settings suggested by the authors in the
original papers. The final setting for SHINE manages the balancing parameters
λ1 = 1, λ2 = 1, λ3 = 20, λ3 = 0.01, and reconstruction weight is α = 5. For node
sequence generation in SIDE, we set walk length l = 40, number of walk γ = 10,
and window size w = 10. In SiNE, we fix the similarity threshold δ = 0.5, and
number of layers N = 3. We use the Adam optimizer [KB14] as it converges fast
and extremely insensitive to the hyperparameters.

7.4.4 Signed Link Prediction

Signed link prediction is frequently used to evaluate embeddings of signed net-
works [KPLK18,WTA+17,WATL17,YWX17,MMLDB20]. We are given a network
with several unobserved signs, the task is to predict the sign of missing edges via
a binary classifier. Our test set is a percentage of unseen sentiment links with the
equal number of negative and positive signs. The rest of the network will be used as
the training set. We merge pairs of vectors in training and test sets through binary
operations presented by Grover et al. [GL16]. Table 7.2 shows the list of binary op-
erators. The constructed feature matrix is then fed into a logistic regression model
which predicts the sign of edges between arbitrary nodes.

Table 7.2: Choice of binary operation.

Operator Definition
Subtraction |φi − φj |

Concatenation (φi,φj)
Average φi+φj

2
Hadamard φi ∗ φj

Following SHINE [WZH+18] experiments, we choose concatenation as our binary
operator while varying the percentage of the training set from 10% to 90%. For fair
comparison over the baselines, the embedding size is fixed tod = 100. The results
obtained in signed link prediction are depicted in Figure 7.2. In summary, we make
the following observations:

• SiHet consistently obtains better performance than the baseline methods in
both datasets. In Weibo-STC, SiHet outperforms SIDE, SHINE, StEM, and
SiNE by 6.6%, 7.1%, 14.3%, and 18.9% respectively on accuracy, and achieves
6.0%, 6.5%, 14.6%, and 17.9% gains respectively on Micro-F1.
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• SIDE performs best among the baselines which caused by a likelihood formu-
lation objective from word2vec [MSC+13]. StEM and SiNE are particularly
designed for signed networks, however cannot include social edges into repre-
sentation learning. SiNE only focuses on the direct neighbors of nodes rather
than the global balance structure.
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Figure 7.2: Signed link prediction reported by accuracy and Micro-F1.

7.4.5 Node Recommendation

The node recommendation task aims to return top-k similar nodes for a given node.
The criteria of the similarity is based on node proximity in the network. We conduct
node recommendation task following Wang et al. [WZH+18] whose model recom-
mends a set of users emit positive sentiment. The performance of the node recom-
mendation task can verify the quality of the latent representations. We then consider
k neighbors with positive sentiment from 1-hop or 2-hop away as ground-truth for
each user. Given final representations, we calculate cosine similarity from a user
towards the others, then select k users with the largest similarity scores as recom-
mendations. Figure 7.3 shows the results measured by precision@k and recall@k.
We then make the following observations:

• The precision curve of SiHet stands consistently above the curves of baselines
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which means nodes with higher similarities in the embedding space are mostly
the nodes appeared in the same neighborhood containing positive sentiment.

• The overall performance on Weibo-STC are better than Wiki-RfA, which is in
accordance with the results in signed link prediction. The reason lies at Weibo-
STC structure which provides well separated sentiment and social links which
significantly improves the quality of learned representations.
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Figure 7.3: Node recommendation reported by positive precision@k and recall@k.

7.4.6 Parameter Sensitivity

We additionally examine the impact of embedding dimension d, sampling weight α,
and binary operations on the performance of the link prediction. Throughout the
experiments, we randomly select 80% sentiment links as the training set and the
remaining 20% as the test set. We also investigate the efficiency of SiHet on the
Weibo network increasing number of nodes.

Impact of d and α: We tune the dimension size whilst sample edges with different
α from Weibo. As shown in Figure 7.4, sampling edges more than one time is a
quite effective approach to improve the quality of learned embeddings. Once α > 1,
accuracy rises around 92% which validates the impact of oversampling to learn more
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meaningful representations. Another observation is the stability of the performance
for α > 1 at any dimension size. This explains SiHet can strongly encode the
heterogeneous structure even in few dimensions.
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Figure 7.4: Correlation of dimension size d and sampling weight α.

Impact of binary operations: We examine the effect of binary operations with
the fixed sampling weight α = 5. In Figure 7.5, we can see concatenation and average
prove to be the best performers across two datasets. In specific, concatenation
provides a lot of information with 2d size. Average also calculates the centroid of
two vectors which contains information from both vectors equally.
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Figure 7.5: Affect of binary operators on accuracy in signed link prediction.

7.4.7 Efficiency Evaluation

To expose the computational efficiency of SiHet, we run the baseline methods on
Weibo-STC while increasing the number of nodes. As depicted in Figure 7.6, SiHet
runs up faster than the baselines and demonstrates a linear scalability with the
smallest slope. The superior speed comes from the concise likelihood formulation
and a few number of parameters updating at each iteration. However, SIDE spends
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more time on random walks, and SHINE updates many parameters of the joint
model.
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Figure 7.6: Scalability of SiHet on Weibo dataset.

7.5 Conclusion

This study focused on representation learning for signed heterogeneous networks in
social media. The prior existing work in this direction [WZH+18] used private side
information of users and converges with high runtime cost. Therefore, we suggested
an extension to the LINE model to learn embeddings considering only sentiment and
social links. Via experiments on two real-world datasets, we demonstrated the su-
perior performance of SiHet in link prediction and node recommendation compared
to the baselines. We also showed the model scalability in representation learning
which yields linear runtime complexity.

However, this work is limited in few directions: 1) there is not a specific formu-
lation for the non-existing edges in the objective function whose terms just push
away negatively connected nodes, 2) further evaluation tasks and more datasets are
needed to validate the method, 3) a conflict case when two social friends express
negative feelings towards each other is not investigated, 4) the direction of negative
or positive attitudes towards friends is not formulated.

There are several possibilities to expand this work. First, we can design an
objective function to consider meta-data on edges such as text or image. Second,
we can investigate how these embeddings benefit other network mining tasks such
as node classification and multi-task learning [LHR+15]. Finally, we can extend the
work for node and link heterogeneity within a directed network. In the next chapter,
we aim to design a model which encodes the additional information attached to the
network.



Chapter 8

Attributed Networks with Labels

8.1 Introduction

Network embedding techniques are typically based on structural proximity, mapping
nodes in the local neighborhood nearby in the vector space. In real-world networks,
however, nodes are often associated with a set of side information such as con-
tents (e.g. profile attributes, textual features) or labels (e.g. community, affiliation
group). These labels are strongly influenced by and inherently correlated to both
network structure and attribute information [HLH17b]. Therefore, modeling and
incorporating attributes and labels simultaneously into network embedding results
more effective vector representations.

Recently, various efforts have been made to map networks with attributes (at-
tributed networks) into the low-dimensional latent representations [GH18,HLH17a,
MLBZ19, YPZ+18, ZYZZ19]. All of these methods include network structure and
attributes but ignore abundant labels which potentially benefit network embed-
ding and subsequent analytic tasks. Among the baselines, LANE [HLH17b] is the
most relevant work which smoothly incorporates labels and attributes into network
embedding while preserving their correlation. First, network affinity matrices are
constructed from the attribute matrix, adjacency matrix, and the label matrix, then
decomposition techniques are applied on affinity matrices to gain final embeddings.
This means LANE conducts three embedding tasks to jointly encode the network
information into a shared representation through optimizing three objective func-
tions. Despite the strong model, LANE encounters several drawbacks: 1) a high
computational cost for matrix decomposition, 2) manually tuning weights for mul-
tiple objectives, and 3) relatively low performance in node classification and link
prediction.

To overcome the existing drawbacks, we need to design a multi-task learning
framework which adapts weights of objectives during training. There has been
a vast amount of research showed multi-task learning improves the overall per-
formance of each task relative to learn them separately [Car97, CTLY09, CZY11].
Specifically, stacked autoencoders as a unified framework demonstrated promising
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performance on conducting multiple classifications and regression tasks simultane-
ously [MM+17, BKWG17,CDR16, ZLJ+15]. The architecture of the joint autoen-
coders facilitates the integration of multiple information sources towards an effective
representation learning [MM+17,BKWG17]. In this study, we propose a Joint Au-
toencoders model for Multi-task network Embedding, abbreviated as JAME, which
learns shared representation through optimizing multiple objectives. Overall, our
end-to-end model composed of three autoencoders: a network structure autoencoder,
an attribute autoencoder, and a label autoencoder.

At the training phase, autoencoders reconstruct the input data by minimizing the
respective reconstruction losses. The overall performance of the multi-task learning
highly depends on the optimal choice of weighting between each task’s loss func-
tion [CBLR17, BH17,KGC18]. However, manually tunning loss weights is tedious
specifically for a large number of learning tasks. We thus define an additional loss
weighting layer whose weights are based on task difficulty. This layer dynamically
assigns weights to each task where difficulty is the loss ratio between the initial loss
and the batch loss. We want higher weights for poorly trained tasks (ratio close to 1)
to contribute more to overall loss and gradient. In summary, the main contributions
of this paper are as follows:

• We propose JAME, an end-to-end model which encodes shared representations
for the networks through multi-task learning.

• We define a loss weighting layer to automatically adapt loss weights based on
task difficulty.

• We empirically evaluate our JAME on real-world datasets showing its superior
performance over the baseline methods.

The rest of the chapter is organized as follows. Section 8.2 outlines the recent
related works. Section 8.4 presents notations and the proposed model. Section 8.5
describes empirical evaluation. Finally, Section 8.6, concludes the chapter and dis-
cusses future works.

8.2 Related Work

Network embedding via deep neural networks has become an efficient tool to deal
with complex networks. Recently, there have been numerous embedding methods
which focused on preserving the topological structure of plain networks [GF18] which
yield to solve various real-world applications [JS18, Zho19, RG19, NMV17, SRG17,
RGZ17, RSG18]. However, today’s massive networks are often associated with a
rich set of attributes and abundant label information which are typically encoded
within joint embedding frameworks. DANE [GH18] proposes joint autoencoders
which input graph adjacency and attribute matrices to return shared representation
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via optimizing four objectives, i.e. first-order proximity loss, higher-order proximity
loss, semantic proximity loss, and complementary loss. The final embedding pre-
serves first-order and higher-order proximity of the network which results superior
performance in typical graph mining tasks.

Another work by [MLBZ19] named CAN utilizes two variational autoencoders
containing an inference model and a generative one. The inference model encodes
attributes into Gaussian distributions while the generative model reconstructs the
original edges and attributes. A reparameterization method is applied to transform
embeddings from Gaussian random variables to deterministic variables. This process
helps to measure affinities between nodes and attributes. CAN finally learns separate
embeddings for attributes and nodes in the same semantic space, mapping nodes
nearby their relevant attributes.

Some recent works like BANE [YPZ+18] and LANE [HLH17b] jointly apply
matrix factorization to attributed networks to earn shared representations. BANE
first applies the Weisfeiler-Lehman proximity to aggregate adjacency and attribute
matrices into a unified proximity matrix. Then, the proximity matrix is factorized
by the Weisfeiler-Lehman decomposition approach to obtain the final binary rep-
resentations. LANE first integrates attributes and edge connectivity into a unified
proximity matrix via spectral transformations. Then, graph Laplacian [CG97] is
used to smoothly embed both label matrix and proximity matrix into final represen-
tations. Although LANE observes abundant labels during training, the performance
is relatively low with an expensive runtime complexity.

Multi-task learning conducts multiple relevant tasks simultaneously such that
useful information can be shared. The joint model usually optimizes multiple ob-
jectives to improve efficiency and accuracy of all tasks. The main challenge is how
to automatically obtain optimal weights for these objectives during model train-
ing. Kendall et al. [KGC18] propose a multi-task loss function based on maximizing
the Gaussian likelihood with homoscedastic uncertainty which optimizes the com-
bination of objectives. The model conducts multi-task weighting and outperforms
separate models trained individually on each task. Similarly, Bentaieb et al. [BH17]
define a multi-loss objective function integrating uncertainty in each loss term which
is trainable during model optimization. The proposed convolutional autoencoders
classify medical images meanwhile learn how to optimally combine multiple objec-
tives. Another method is that of GradNorm [CBLR17] which adaptively balances
the loss weights based on the norm of gradients. The internal gradients are used to
manipulate gradient norms over time.

Our JAME model for multi-task learning can be viewed as a generalization of
GradNorm with two important differences: 1) we measure task difficulty in each
iteration to contribute difficult tasks more to the overall loss and gradient, 2) instead
of assigning task-weights by gradient norm, we add extra-capacity to the network
in the form of a loss weighting layer. This layer is placed after the decoders and
learns optimal weights in reference to task difficulty. To our best knowledge, we are
the first employing multi-task loss weighting into graph embedding to improve some
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graph analysis tasks.

8.3 Problem Definition and Preliminaries

Let G = (V ,E) be an attributed network with abundant labels, where V is a set of
nodes and E is the set of edges. The network is represented by an adjacency matrix
A ∈ {0, 1}n×n with n = |V |, an attribute matrix X ∈ {0, 1}n×k with k-dimensional
attribute vector, and a label matrix Y ∈ {0, 1}n×m with m categories.

Each row xi in matrix X describes the attributes associated with node vi, and
each element Yij = 1 in matrix Y indicates node vi belongs to category j. The final
shared embedding is denoted as U ∈ Rn×d where d� n is the dimension size.

Based on the terminologies discussed above, we formally define the problem of
multi-task network embedding as follows. Given an attributed network G, we aim
to learn a mapping f : {A,X,Y } 7→ U in an unsupervised manner by preserving
the network structure A, attribute X, and label information Y via operating the
following learning tasks:

• Network structure embedding maps network topological structure into
latent representations:

f : {A} 7→ U (8.1)

• Attribute embedding incorporates attributes of the nodes into the vector
space:

f : {X} 7→ U (8.2)

• Label embedding integrates node labels into the vector space:

f : {Y } 7→ U (8.3)

8.4 Approach

8.4.1 Framework

Figure 8.1 depicts our JAME which handles joint autoencoders aim at encoding
the input data while assigning optimal weights to parallel tasks. JAME composed
of three autoencoders: network structure autoencoder, attribute autoencoder, and
label autoencoder. These autoencoders are jointly trained by sharing the learned
structure U across three embedding tasks. JAME receives the adjacency matrix A,
the attribute X, and the binary label Y as input and reconstructs the outputs Â,
X̂, and Ŷ . Additionally, JAME offers the loss weighting layer L capable of learning
optimal weights for all objectives during training. We provide more detail on our
proposed JAME model in the following sections.
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Figure 8.1: The framework of our proposed JAME model. The model inputs the
adjacency matrix A, attribute matrix X, and the label matrix Y to reconstruct Â,
X̂, and Ŷ as output. The shared embedding layer U aggregates information from the
structure, attribute and labels while loss weighting layer L learns optimal weights
for loss values based on task difficulty.

8.4.2 Network Structure Embedding

We build our first autoencoder by employing nonlinear activation functions to en-
capsulate the nonlinear structure of the input network. As shown in Figure 8.1,
the encoder gets latent representations for each node while the decoder computes
the pairwise distance between node representations generated by the encoder. More
formally, the structure encoder is defined as:

Ha = ReLU(AW
(1)
1 + b

(1)
1 ), (8.4)

here Ha ∈ Rn×s is the hidden representation by the structure encoder with
dimension size s. W (l)

r is the trainable weight matrix of the rth autoencoder and
b
(l)
r is the bias there which both placed in the lth layer. Sigmoid σ(.) increases
the nonlinear property of neural networks and ReLU is a widely used element-
wise activation function. In Figure 8.1, the bottleneck features in U constitute an
informative compact representation of the data. Our shared layer is the summation
of representations from the structure encoder Ha, attribute encoder Hx, and label
encoder Hy:

U = σ(Ha +Hx +Hy)W
(2) + b(2)), (8.5)

where W (2) is the shared weight within stacked autoencoders. The structure
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decoder reconstructs the network adjacency matrix:

Â = σ(UW
(3)
1 + b

(3)
1 ), (8.6)

where Â is the reconstruction of the adjacency matrix, and U ∈ Rn×d is the shared
representation with dimension size d.

According to the definitions in [Tra18], we update the model parameters by
minimizing a masked cross-entropy loss formulation:

Lce = −ai log(σ(âi))− (1− ai) log(1− σ(âi)), (8.7)

La =
∑
imi �Lce∑

imi
. (8.8)

Where ai ∈ Rn is an adjacency vector of A, and âi ∈ Rn is the reconstruction
output vector of Â. � refers to the element-wise Hadamard product, and mi is a
boolean mask, i.e. mi = 1 if ai = 1, else mi = 0.

8.4.3 Attribute Embedding

We simply employ another standard autoencoder to capture vertex-wise attribute
proximity. The encoder creates latent representations while the decoder rebuilds the
attributes. The hidden layer of the attribute encoder is defined as:

Hx = ReLU(XW
(1)
2 + b

(1)
2 ), (8.9)

here X is the attribute matrix, and Hx ∈ Rn×s is the hidden representation by
the attribute encoder with dimension size s. The attribute decoder reconstructs the
attributes associated with nodes:

X̂ = σ(UW
(3)
2 + b

(3)
2 ), (8.10)

where X̂ is the rebuild attribute matrix, and U ∈ Rn×d is the final shared repre-
sentation with dimension size d. We optimize the binary cross-entropy to update
parameters owing to the binary representation of the input matrix:

Lx = −xi log(σ(x̂i))− (1− xi) log(1− σ(x̂i)), (8.11)

where xi ∈ Rn is an attribute vector of X, and x̂i ∈ Rn is a reconstruction
output vector of X̂.

8.4.4 Label Embedding

Labels play an essential role in determining the status and mutual impact of nodes
with strong intrinsic correlations to network structure. We model network label
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information via a standard autoencoder. The label encoder transformation is defined
as:

Hy = ReLU(YW
(1)
3 + b

(1)
3 ), (8.12)

where Hy ∈ Rn×s is the hidden representation from label encoder with dimension
size s. The label decoder rebuild the class labels of nodes:

Ŷ = σ(UW
(3)
3 + b

(3)
3 ), (8.13)

where Ŷ is the reconstruction of the label matrix, and U ∈ Rn×d is the shared
representation with dimension size d. Intuitively, we minimize the categorical cross
entropy loss to update model parameters in a multi-class setting:

Ly =
m∑
i=1
−yi log(σ(ŷi)), (8.14)

where yi ∈ Rn is a label vector of Y , ŷi ∈ Rn is a reconstruction vector in Ŷ ,
and m is the number of class labels.

8.4.5 Adaptive Loss Weighting

In the loss weighting layer L, we calculate the final loss Lf which is weighted com-
bination of multiple losses:

Lf = ReLU(waLa +wxLx +wyLy), (8.15)

where wa, wx, and wy are the weights for network structure, attribute, and label
embedding tasks respectively. Our weighting approach is based on task difficulty
which measures the rate of loss changes for each task during training. The lower
ratio between the current loss and the initial loss means the more difficult task. In
this way, a poorly trained task needs higher weights to contribute more to the final
loss and gradient. To control the softness of task weighting, we use the softmax
operator inspired by distillation [HVD15]. Algorithm 8.1 receives a batch of nodes
and calculates the task difficulty to weight loss terms. The final loss is calculated
as a combination of loss values to obtain gradients and update model weights. The
model iterates on several training steps until convergence and results embeddings.

8.4.6 Training Complexity

The time complexity of JAME is proportional to O(cdI|V |), where c is the average
number of non-zero entries in each row of adjacency matrix (average degree of the
network). c is a constant in scale-free networks [BB03]. d stands for the maximum
dimension of the hidden layers, and I is the number of iterations, thus cdI stays a
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Algorithm 8.1 JAME Training with Adaptive Loss Weighting.
Given a set of tasks {1, 2, · · · ,T}
Initialize task weights wt = 1 ∀t
Initialize model weights W (l) ∀l
for each iteration i do
for each input batch B do
Compute each task loss L(B) ∈ RT

Get the first batch loss L(0,i) ∈ RT

Compute each task difficulty γt =
L(B)

L(0,i)
∈ RT

for each task t do
Update the task weight wt = exp(γt)∑

k exp(γk)

end for
Compute final loss Lf =

∑
twtL(B,t)

Update W (l) with respect to Lf
end for

end for

constant and independent of |V |. Therefore, the training complexity is bounded to
O(|V |) which signifies the total time is proportional to the number of nodes in the
network.

8.5 Experiments

This section first introduces datasets, baseline methods and experimental design,
then track the impact of loss weights on the performance over several iterations.
Lastly, we compare the efficiency of JAME to the baseline methods in terms of
computational time. We conduct experiments on real-world datasets to evaluate the
effectiveness of JAME on node classification, link prediction, and attribute inference.
These analytical tasks can give insights to understand whether shared embeddings
retain certain types of information. We repeat 5-fold cross validation and report
the mean result. Our source code and data are available at https://github.com/
fatemehsrz/JAME.

8.5.1 Datasets

We test our proposed model on three widely used benchmark datasets: Cora, Cite-
seer, and PubMed [YPZ+18,MLBZ19,GH18,ZYZZ19,CSG+19,GPH19,BKBM18].
These datasets are citation networks [SNB+08] in which nodes present publications,
edges indicate citations, and labels stand for research topics. Each node is associ-
ated with a set of attributes whose presentation is formed by Bag-of-Words. The
statistics of the datasets is summarized in Table 8.1.

https://github.com/fatemehsrz/JAME
https://github.com/fatemehsrz/JAME
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Table 8.1: Statistics of the datasets.

Dataset Nodes Edges Attributes Labels
Cora 2,708 5,429 1,433 7

Citeseer 3,312 4,660 3,703 6
PubMed 19,717 44,338 500 3

8.5.2 Baselines

We compare our proposed JAME with the following relevant baselines methods:

• LANE: This method integrates attributes and labels into the shared repre-
sentations through eigen-decomposition of the graph affinity, attribute affinity,
and label affinity matrices [HLH17b].

• CAN: This embedding model employs a variational autoencoder with an infer-
ence model for encoding attributes into Gaussian distribution and a generative
model for reconstructing both edges and attributes [MLBZ19].

• attri2vec: It is to unify network structure and attributes together seamlessly
via a transformation function [ZYZZ19]. DeepWalk model [PARS14] is used to
preserve network structure by forcing similar neighbors being mapped closely
in the attribute subspace.

• DANE: This model learns representation preserving proximity of both topo-
logical structure and node attributes via a joint autoencoder model [GH18].

8.5.3 Parameter Settings

We follow the authors’ suggested settings available in the original baseline papers
as follows. DANE builds a higher-order proximity matrix with a window size of
w = 10, the walk length of l = 80, and the number of walks of γ = 10 over 500
iterations. CAN sets the hyperparameters of prior distributions, σV ,σA to 1, and
training iterations to 200. In attri2vec, parameters are set as w = 10, l = 100,
γ = 40, and the number of iterations up to a million. LANE optimizes three
objective functions which are manually weighted to 1, α1 > 1 and α2 > 10. In
JAME, we set the dimension size for shared embeddings to d = 128 and for hidden
layers to s = 300. We optimize the model parameters using Adam optimizer [KB14]
with the learning rate of 0.001.

8.5.4 Multi-task Weighting

The initial loss weights are set to 1.0, then the model is expected to update these
weights during training. Table 8.2 shows the change of loss weights in which the
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Table 8.2: Multi-task weighting based on task difficulty across different datasets.

Iteration Cora Citeseer PubMed
wa wx wy wa wx wy wa wx wy

1 0.933 0.942 0.946 0.921 0.932 0.935 0.913 0.926 0.933
2 0.876 0.889 0.922 0.842 0.857 0.925 0.868 0.886 0.928
3 0.801 0.823 0.919 0.762 0.783 0.926 0.799 0.875 0.922
4 0.735 0.762 0.917 0.673 0.711 0.924 0.660 0.764 0.920
5 0.672 0.708 0.919 0.596 0.645 0.923 0.520 0.567 0.917
6 0.615 0.634 0.916 0.516 0.568 0.921 0.483 0.553 0.911
7 0.533 0.583 0.913 0.432 0.482 0.922 0.455 0.542 0.908
8 0.464 0.535 0.914 0.358 0.436 0.919 0.423 0.517 0.901
9 0.403 0.477 0.912 0.264 0.348 0.918 0.342 0.432 0.898
10 0.335 0.418 0.910 0.221 0.283 0.916 0.313 0.415 0.897

hardest task gets the higher weights. This is visible that reconstructing the group
labels is the hardest task in our datasets and gains consistently the highest weight
over 10 iterations. As shown in Figure 8.2, the final loss naturally drops and takes
a few iterations to converge for all datasets.
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Figure 8.2: Change of final loss during training on all datasets.

8.5.5 Node Classification

Node classification has been widely adopted to validate the quality of network em-
bedding [GF18]. Similar to LANE [HLH17b], we manage to divide n nodes randomly
into a training (Atrain,Xtrain,Ytrain) and a test set (Atest,Xtest,Ytest). The goal is
to predict the label of each node in the test set, given the network structure and
attributes. We use the JAME architecture itself for node classification observing
10% to 90% of labels at random and predicting the remaining. In the other base-
lines, we directly apply logistic regression as the main classifier and Macro-F1 score
as the performance measurement [GF18]. Table 8.3 shows our proposed JAME
consistently outperforms the baselines which confirms the shared layer and optimal
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weighting tailored for better embedding. Our multi-task setting enforces tasks to
compensate each other by learning from the shared information leveraged from the
network. Due to optimal task weighting, label embedding can be trained as effective
as others which ends at better classification results. DANE is the closest competitor
as employs autoencoders to jointly encode link and attribute information in an effec-
tive manner. Overall, the presented results reveal the effectiveness and robustness
of JAME to capture and encode the label information associated with the network.

Table 8.3: Node classification performance observing different percentages of labeled
data.

Dataset Method Macro-F1
10% 20% 30% 40% 50% 60% 70% 80% 90%

Cora

JAME 0.816 0.824 0.839 0.847 0.855 0.868 0.879 0.885 0.891
LANE 0.663 0.671 0.684 0.715 0.726 0.739 0.753 0.785 0.799
CAN 0.733 0.752 0.768 0.773 0.788 0.794 0.806 0.814 0.822

DANE 0.778 0.795 0.812 0.822 0.837 0.854 0.861 0.869 0.877
attri2vec 0.695 0.713 0.729 0.732 0.746 0.767 0.788 0.792 0.806

Citeseer

JAME 0.731 0.739 0.755 0.778 0.786 0.790 0.798 0.804 0.810
LANE 0.503 0.549 0.570 0.579 0.581 0.591 0.606 0.624 0.636
CAN 0.577 0.606 0.613 0.619 0.628 0.632 0.638 0.641 0.642

DANE 0.604 0.633 0.671 0.678 0.696 0.705 0.723 0.735 0.745
attri2vec 0.556 0.571 0.614 0.650 0.656 0.662 0.670 0.666 0.682

PubMed

JAME 0.868 0.873 0.879 0.881 0.884 0.886 0.888 0.894 0.898
LANE 0.787 0.792 0.795 0.799 0.820 0.824 0.828 0.833 0.837
CAN 0.793 0.796 0.801 0.809 0.812 0.816 0.820 0.825 0.829

DANE 0.857 0.864 0.870 0.873 0.874 0.876 0.878 0.880 0.882
attri2vec 0.843 0.850 0.853 0.858 0.860 0.862 0.863 0.865 0.866

8.5.6 Link Prediction

Link prediction is a well-studied analytic task that exposes the meaningfulness of
vector representations for preserving local connections [GF18]. We follow Grover
et al. [GL16] instructions for link prediction which gathers the equal percentage of
positive and negative edges. The positive examples are obtained by randomly re-
moving 50% of real edges from the original network. Whereas negative examples
are node pairs without any connection (non-existing edges). We first construct edge
features by applying Hadamard product [GL16] on vectors of incident nodes, then
feed a logistic regression. Table 8.4 shows the performance measured by area un-
der ROC curve (AUC) and average precision (AP). As can be seen, JAME obtains
highly competitive performance with CAN to predict the missing links due to the
effect of labels and attributes. The architecture of JAME allows shared embed-
dings to encode more meaningful vectors by observing links, attribute, and labels
simultaneously. CAN is in high competition with JAME as it exploits variational
autoencoders along with a GCN layer [KW16a] which effectively seizes nonlinearity
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and local connections of the graph structure.

Table 8.4: Comparison of the baseline methods on link prediction.

Method Cora Citeseer PubMed
AUC AP AUC AP AUC AP

JAME 0.987 0.972 0.985 0.979 0.983 0.980
LANE 0.860 0.857 0.771 0.764 0.883 0.879
CAN 0.985 0.971 0.984 0.977 0.980 0.977
DANE 0.897 0.886 0.938 0.923 0.969 0.951
attri2vec 0.872 0.867 0.796 0.791 0.890 0.885

8.5.7 Attribute Inference

Attribute inference is to predict attributes associated with each node applying lo-
gistic regression to the learned representations. We follow CAN [MLBZ19] experi-
mental setting for attribute inference which randomly divides nodes into a training
(80%), and a test set (20%). AUC and AP are used to measure the performance
due to 0/1-valued presentation of data. As shown in Table 8.5, JAME achieves im-
provements in both AUC and AP over the baseline methods. This can be explained
by the fact that attributes and labels are correlated in our datasets.

Table 8.5: Comparison of the baseline methods on attribute inference.

Method Cora Citeseer PubMed
AUC AP AUC AP AUC AP

JAME 0.968 0.961 0.971 0.963 0.681 0.677
LANE 0.872 0.867 0.880 0.875 0.590 0.587
CAN 0.932 0.916 0.954 0.939 0.670 0.652
DANE 0.917 0.910 0.928 0.921 0.639 0.635
attri2vec 0.881 0.878 0.889 0.883 0.610 0.598

8.5.8 Efficiency Evaluation

We record the runtime (in seconds) of all methods increasing the number of nodes on
the PubMed dataset. Our experiments are performed on an Intel(R) CPU machine
with a Core(TM) i5 processor and 32GB of RAM. Due to the high computation time
in attri2vec (around 6.6 hours), we limit our focus on the other works with more
reasonable runtime. Figure 8.3 shows JAME consistently learns embeddings faster
than LANE, DANE, and CAN for the given number of nodes. As the number of
nodes increases the performance difference in time also raises up. DANE and CAN
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both employ autoencoders, however more iterations are needed until convergence.
Overall, the obtained results demonstrates efficiency and scalability of the proposed
model.
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Figure 8.3: Runtime comparison on the PubMed dataset.

8.6 Conclusion

Labeled data and content are critical information available in today’s social net-
works. Multi-task learning architectures provide a shared structure across embed-
ding tasks which integrate network structure and attributes. In this chapter, we
designed a joint model called JAME in which a shared layer and a loss weighting
layer solicit for better representations. Our extensive experiments revealed that
JAME incorporates data from different sources within linear runtime complexity.

Despite the strong experimental results, our method suffers from a few limita-
tions. Foremost, autoencoders tend to be data-specific, in the sense that their utility
totally depends on input data. Our experiments are limited to citation networks,
more diverse datasets with different sizes are needed to validate the effectiveness of
our method. Also, it is not clear how the experimental results change if DANE and
CAN involve labels in their autoencoders. This is particularly needed to examine
how link prediction and attribute inference change once observing node labels.

For future work, we aim at extending JAME to the heterogeneous one, where
the network contains multiple types of nodes and edges. We can work further on
analytic theories that quantitatively measure how different tasks can be combined
in a multi-task setting other than autoencoders.





Chapter 9

Conclusion

In this thesis, we studied network embedding for processing social network data,
primarily, to propose several contributions to this nascent but fast evolving field.
Throughout the thesis, we have seen that many core concepts (e.g. deep learning
models, graph types) can be taken over to solve social network analytical tasks.
We have touched upon different types of social networks (e.g. signed, attributed)
exploring current models or drawing new models. The young field offered many
unexplored paths to tread where some of them had a dead end, but some others
led us to effective experimental results for network property valuation and data
integration. However, our proposed methods are hardly perfect and we tried to
remain critical in stating their shortcomings in each chapter.

Deep learning is a booming topic and there are often numerous lines of work
proposed independently. Particularly in deep learning on graphs, the research work
usually comes from several separate communities working in natural language pro-
cessing, information retrieval, signal processing, computer vision, and in biomedical
computing. Therefore, we attempted to gather a somewhat fused but not exhaus-
tive picture which equips the reader with a core understanding of the context of our
work.

The rest of the chapter recapitulates our contributions and concludes with an
outlook over possible future directions.

The first contribution was to learn embeddings for fine-grained structures so-
called ego networks. The key idea was to deploy Paragraph Vector in graphs which
results a compact representation for an ego network. Throughout the experimental
tasks, namely social circle prediction and event attendance inference, we showed the
importance of ego network embedding for solving analytic tasks in a fast and precise
manner.

The second contribution stands for exploring the content of vector embeddings
to reveal what they retain in terms of network topological properties. The major
insight was the formulation of the problem through a learning to rank approach in
which model weights indicate the importance of topological features in subgraph
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level. Important ingredients were the partitioning input graph into proper test and
training sets and efficient pairwise structural similarity measure to build the feature
matrix for the ranking algorithm. We also tried to retrieve centrality values in vertex
level directly by a linear regression. This was the first time that network analytic
problems like centrality and distance are scrutinized by neural graph embedding
models.

Finally, the third contribution lies at the core of deep learning usage in
specific scenarios such as modeling link heterogeneity and side information in
social networks. The major contribution was to adjust the objective function of
LINE [TQW+15] or stack autoencoders to capture certain information stashed
in the network. Our motivation was to optimize and speed up data integration
for the heterogeneous source of information and eventually facilitate subsequent
analytic tasks. We believe our work has helped to spark initial interest in multi-task
learning on networked data specifically with adapting optimal weights for learning
tasks. The shared representations fairly improved the performance compared to the
state-of-the-art methods over widely used datasets.

In a nutshell, we have ventured a journey from social graphs to their embeddings
and potential applications. We attempted to develop this research with the hope
that the context provides new insights about some of the challenges in the emergent
field of deep learning on social graphs. That brings one more step closer to solving
real-world problems analyzing social media.

9.1 Future Directions

Although many techniques have been developed to facilitate social network analysis,
there still remain several promising directions which need further exploration.

9.1.1 Scalability

The neural based network embedding has achieved substantial performances due to
high capacity, however they still suffer from the problem of efficiency. This prob-
lem specifically becomes more severe as dealing with real-world massive networks
with billions of nodes. Designing scalable representation learning models is another
driving factor to proceed in this domain [BBL+17]. Furthermore, developing com-
putational paradigms like using GPUs for network processing can be an alternative
way toward efficiency improvement.

9.1.2 Interpretability

Although we attempted to explore the content of embeddings, lack of interpretabil-
ity [LHLH18] in representation learning is still a pending issue. The meaning of
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different dimensions in vectors is not clear, hence the underlying factors hidden in
the latent space is difficult to perceive. Therefore, more works are needed on how to
understand the model output, how to design interpretable embedding models, and
how to utilize interpretations. In specific, interpretability will help to encode more
meaningful and task-specific representations toward various social network analysis
problems.

9.1.3 Hierarchical Network Structure

Social networks can present a hierarchical structure composed by individuals who
play important roles in a society such as managers, politicians, celebrities, or deci-
sion makers. The existing network embedding techniques mainly focus on capturing
node pairwise relationships not the global hierarchical structure available in com-
plex networks [BGL16]. Therefore, how to build effective embedding models which
preserve global hierarchical structures is a promising direction as for further work.

9.1.4 Dynamic Networks

Social networks often show a highly dynamic nature evolving over time by chang-
ing the set of nodes, the underlying network structure, or attribute information.
Therefore, the existing static methods can fail in encoding these networks properly.
The current techniques often rely on certain assumptions, such as fixed set of nodes
with dynamics on edge deletion and addition [LDH+17], but the change on attribute
information is ignored. Therefore, how to develop a specific embedding method for
real dynamic networks remains an open question.

9.1.5 Heterogeneous Networks

Most of the existing heterogeneous embedding models deal with node heterogeneity.
However, embedding for networks with link or content heterogeneity is still at the
early stage. Thus, more comprehensive techniques are required to fully capture
semantics of different types of elements in complex networks.
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