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A B S T R A C T

The concept of programmable networks is radically changing the way
communication infrastructures are designed, integrated, and operated.
Currently, the topic is spearheaded by concepts such as software-
defined networking, forwarding and control element separation, and
network function virtualization. Notably, software-defined network-
ing has attracted significant attention in telecommunication and data
centers and thus already in some production-grade networks. Despite
the prevalence of software-defined networking in these domains, in-
dustrial networks are yet to see its benefits to encourage adoption.
However, the misconceptions around the concept itself, the role of
virtualization, and algorithms pose a significant obstacle.

Furthermore, the desire to accommodate new services in the automa-
tion industry results in a pattern of constantly increasing complexity
of industrial networks, which is compounded by the requirement to
provide stringent deterministic service guarantees considering char-
acteristically different applications and thus posing a significant chal-
lenge for management, configuration, and maintenance as existing
solutions are architecturally inflexible.

Therefore, the first contribution of this thesis addresses the miscon-
ceptions around software-defined networking by providing a compar-
ative analysis of programmable network concepts, detailing where
software-defined networks compare with other concepts and how its
principles can be leveraged to evolve industrial networks.

Armed with the fundamental principles of programmable networks,
the second contribution identifies virtualization technologies and pro-
poses novel algorithms to provide varied quality of service guarantees
on converged time-sensitive Ethernet networks using software-defined
networking concepts.

Finally, a performance analysis of a software-defined hybrid deploy-
ment solution for control and management of time-sensitive Ethernet
networks that integrates proposed novel algorithms is presented as an
industrial use-case that enables industrial operators to harness the full
potential of time-sensitive networks.
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1
I N T R O D U C T I O N

Despite the numerous research on industrial network architectures,
adaptation of networks to changing requirements or constraints im-
posed by the emergence of technologies such as Machine-to-Machine
(M2M) communication, Internet of Things (IoT), Haptic communica-
tion, and tactile internet, etc., still remains elusive.

There has been a lot of research on the adaptation of existing net-
work systems to new functionalities such as demands for audiovisual
in e. g., automotive industry, coupled with ever-changing customer
requirements of industrial operators such as the remote operation
of machinery, actuators and long-distance control of Cyber-Physical
Systems (CPS) with deterministic service requirements.

These past and current trends provide sufficient data to support the
assertion that the environment of networks (application and customer
requirements) will continue to exhibit similar trends in the future.
Regardless of these trends, current industrial networks are continually
built on traditional architectural principles which introduce significant
challenges w.r.t the ability and capacity to evolve with their changing
environments and thus, the continuous development of new commu-
nication solutions that are often optimized for specific use-cases.

Moreover, with the emergence of new technologies such as IoT and
edge computing, industrial network owners and operators want to
take advantage of these new technologies to expand their portfolio of
services to stay competitive. These new services can be categorized
as either Information Technology (IT) or Operational Technology (OT)
based.

For decades, industrial IT and OT networks have existed on different
infrastructures [1]. The desire to serve these two contrasting areas of
applications with a common network infrastructure has also increased
with the introduction of time-sensitive Ethernet bridges purported to
support any type of service. The new opportunities seen by the real-
ization of IT and OT convergence on Ethernet is gradually coming to
fruition and will enable industrial owners to cut down cost. However,
there are still a lot of lingering questions around how these networks
can be deployed and managed. Among the lingering questions are
the quest for flexible resource reservation solutions, Quality of Ser-
vice (QoS), effortless service provisioning, integration with brown-
and green-field systems (e. g., Fieldbus and 5G systems), efficient and
flexible deployments.

To address these issues, network programmability has been put
forth by the research community as a way to ameliorate the current
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2 introduction

blockade to industrial network evolution [2]. Although network pro-
grammability concepts and principles have seen significant adoption
in domains such as telecommunication e. g., 5G, and data centers,
industrial networks (e. g., factory automation) are yet to consider the
possibility of adopting programmable networking concepts.

The transition to programmable networks is, however, non-trivial as
recent accounts of programmable network concepts such as Software-
Defined Networking (SDN) has become too slick and thus tailored
to Service Provider (SP) networks where requirements are contrary
to traditional expectations in the industrial domain. In the industrial
domain, high-precision communication is the primary goal of network
services. The capacity of programmable networking frameworks to
provide the same level of high-precision delivery of packets as those
ensured by legacy networks systems such as field-bus networks is also
an open research question.

This thesis addresses these challenges, by giving a structured analy-
sis of programmable network architectural frameworks such as SDN
and Forwarding and Control Element Separation (ForCES) considering
industrial requirements. As part of this, concepts and methodologies
that can be applied in End-to-End (e2e) service QoS guarantees such
as capacity and latency within programmable industrial networks will
be identified, examined and analyzed.

Bridging network programmability concepts in SDN with enabling
concepts/technologies such as network slicing and Virtual Network
Embedding (VNE) in the industrial context, Software-Defined Indus-
trial Networking (SDIN) is presented as a complementary albeit an
alternative solution to the recently introduced stream-reservation so-
lutions in Time-Sensitive Networking (TSN) ( see IEEE 802.1Qcc [3],
also discussed in Chapter 7).

The viability of the proposed solution is demonstrated by way of de-
sign of novel resource orchestration algorithms, qualitative and quan-
titative performance analysis of how SDN can introduce significant
flexibility as well as enable the integration of IT and OT requirements
on a common bridge Local Area Network (LAN) infrastructure.

1.1 thesis contribution

This thesis proposes the use of programmable network concepts
based on SDN to address the challenges of industrial networks on
control and management of IT and OT requirements. The contribu-
tions are summarized in three parts:— network programmability, QoS
provisioning, and deployment architectures.
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1.1.1 Network programmability

First, this thesis examines programmable network concepts and why
they are beneficial for evolution of current industrial networks.
The main goal of the contribution is to provide a detailed account of
some original inception of the concept, current state, and enabling
innovations such as virtualization and how it can be leveraged for
production-grade industrial networks. This includes review, analysis
and comparison of architectural principles of the ForCES and SDN
architectures.

The methodology used in addressing this contribution is one that is
perhaps better summarized by a famous quote from Peter Sarnak in
his advice to young researchers, captured in the Princeton Companion
to Mathematics (by T. Gowers et al. [4]) under final perspective as:

" When learning an area, one should combine reading modern
treatments with a study of the original papers, especially papers
by the masters of the subject. One of the troubles with recent
accounts of certain topics is that they can become too slick. As
each new author finds cleverer proofs or treatments of a theory,
the treatment evolves toward the one that contains the “shortest
proofs.” Unfortunately, these are often in a form that causes the
new student to ponder, “How did anyone think of this?” By
going back to the original sources one can usually see the subject
evolving naturally and understand how it has reached its modern
form."

The concept of network programmability has evolved from several
schools of thought since its inception. To understand programmable
networks as known today with SDN, it is worth reviewing the funda-
mental or original account of seemingly similar concepts.

For example, in most educational material on communication and
networks, to understand Transport Connection Protocol/Internet Pro-
tocol (TCP/IP), researchers reference the Open System Interconnect
(OSI) model which gives an original account of layered communica-
tion. The trend within the networking research community is one
that hinges on timing among all things important. For equally good
concepts or solutions to gain the traction required to foster adoption,
timing of release and enabling technologies are often important factors
to consider. Like the OSI model and TCP/IP, the race for adoption of
programmable networking concept is one that is currently between
ForCES and SDN, with ForCES playing the role of OSI model while
SDN takes the limelight like TCP/IP.
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1.1.2 QoS guarantee in SDIN

Research innovation in programmable networks introduce a paradigm
shift from traditional network management [5]. The new paradigm fo-
cuses on the synergy of network abstraction and virtualization, Open
service interfaces, integration of computational and communication
models [6] in what is termed intelligent service automation. This
paradigm introduces new challenges such as service creation and QoS
guarantees e. g., bandwidth and latency, mainly considering services
with contrasting requirements on the same infrastructure.

The second contribution of the thesis proposes novel concepts and
algorithms for resource orchestration for bandwidth and delay guar-
antees within the SDIN framework. This is achieved firstly by iden-
tifying and leveraging state-of-the-art concepts and methodologies
like Network Slice (NS) and Virtual Network Embedding (VNE) as
service creation and QoS building blocks within the SDN paradigm.
Important highlights of this contribution are listed in the following:

mathematical models for delay guarantee in tsn Re-
source allocation in SDN-enabled infrastructures begins at the ab-
straction and virtualization layer. At this point, the applications’ re-
quirements are abstracted and represented as a Virtual Network Re-
quest (VNR). A VNR is instantiated as Virtual Network (VN) on a
substrate infrastructure using VNE algorithms in what is term virtual-
ization.

To guarantee QoS requirements such as bandwidth and latency, the
VNR must be mapped to the logical resource and tested against partic-
ular service demands such as capacity, delay, reliability, etc., before it is
committed to actual resources in the physical network. This consists of
three main processes; the request modeling, infrastructure modeling,
and resource mapping.

To ensure service guarantees in SDN-enabled industrial infrastruc-
tures, this thesis shows how formal mathematical models can be
developed using a Trajectory Approach (TA) and integrated in Virtual
Network Embedding (VNE) problem as components of Service Func-
tion Construct (SFC) to ensure deterministic guarantees in practical
deployments.

accuracy and efficiency of vne algorithms Within the
SDN paradigm, simulation of the VNE problem is often confused
with actual deployments of VNE algorithms. While the accuracy of
solutions produced by VNE algorithms depend on the models of the
system under study, the efficiency of the VNE algorithms depend on
the efficacy of the algorithm to follow an optimization goal. As part
of this contribution, this thesis shows how VNE algorithms can be
designed and integrated as components of SFCs to ensure efficient use
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of network resources within SDIN. This includes the design of novel
Demand Based Approach (DBA) to Virtual Link Mapping (VLiM),
topology-aware mapping and time-aware resource allocation for peri-
odic time-sensitive applications.

1.1.3 Deployment architectures

The emergence of TSN standards has seen significant strides towards
its adoption at every level of industrial communication networks. One
of the leading research challenges is finding a deployment model
that enables industrial network operators to reap the benefits of all
proposed features.

The final contribution of this thesis proposes and examines an
SDIN-enabled TSN hybrid deployment that integrates the concepts
and algorithms discussed in the previous contributions. A comparative
performance analysis of the proposed hybrid SDIN-enabled, and fully
decentralized TSN deployments are examined, developed, and ana-
lyzed considering response time for resource allocation mechanisms.
The quantitative analysis leverages a combination of open Queuing
Network (QN) and the expressiveness of deterministic Petri Net (PN)
formalism to estimate the response time of SDIN-enabled TSN control
mechanisms for resource allocation.

1.2 structure of thesis

At a glance, Figure 1.1 illustrates the outline of this thesis whilst the
following describe how the thesis is organized:

Chapter 2— Industrial Concerns and Network Programmability
Examines requirements and challenges of industrial networks oper-
ators. With a clear understanding of challenges of current industrial
network solutions, it proposes network programmability as a key to
addressing these concerns. However, with the existence of several pro-
grammable network concepts and varied interpretations, it is essential
to clarify the subject from the view of industrial operators. To do so, a
detailed analysis of the concepts from ForCES and SDN perspective is
provided. Through the analysis, key elements are identified and used
to derive Software-Defined Industrial Networking (SDIN).

Chapter 3— SDIN: Service Provisioning Enablers
After identifying the challenges and concerns in Chapter 2, Chapter 3

discusses how SDIN can be used to provide service guarantees for
industrial applications on a common network infrastructure using NS
concept. To do so, the chapter describes how existing methodologies
such as VNE and delay estimation methodologies can be leveraged to
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create slices.

Chapter 4— Modeling Delay in TSN-Enabled Infrastructure
From the analysis of VNE in Chapter 3, it is revealed that QoS guar-
antees within the VNE problem lies primarily with the underlying
infrastructure. Also, to leverage SDN for industrial communication, an
SDN compatible underlay network is required. On that basis, a TSN-
enabled infrastructure is adopted as a use-case for an SDN-enable
industrial network where the underlying Quality of Service (QoS)
features of the network are analyzed to develop delay computation
models for the VNE problem.

Chapter 5— Designing VNE Algorithms for SDIN-enabled TSN
The analysis of VNE problem from Chapter 3 also reveals that aside
from the need to ensure QoS which depends on the features of
Substrate Network (SN), efficient resource usage depends on the un-
derlying orchestration hypothesis used by a VNE algorithm designer.
This chapter proposes the design of novel VNE algorithms within
SDN context and provides a contrast to the orchestration approach
used in literature.

Chapter 6— Evaluation of VNE Algorithms in SDIN
Chapter 6 evaluates the proposed VNE algorithms and constraint
computation models developed in Chapters 4 and 5 to assert their
efficiency and efficacy of underlying hypothesis as well as accuracy. It
also describes evaluation guidelines on how VNE algorithms used in
SDN must be evaluated for production-ready deployment.

Chapter 7— Analysis of SDIN-enabled TSN Deployment
One of the significant challenges identified in Chapter 2 was the lack
of flexibility in existing industrial solutions, to showcase the flexibility
and benefits of an SDN-enabled industrial network, Chapter 7 exam-
ines and proposes an SDIN-enabled Hybrid Reservation Model (HRM)
as an alternative albeit a complementary solution that allows indus-
trial operators to utilize the full potential of Time-Sensitive Network-
ing (TSN). It further backs the proposed concept with a qualitative
and quantitative performance analysis showcasing the advantages of
an SDIN operated TSN infrastructure.

Chapter 8—Conclusion
Chapter 8 summarizes the main contributions of the thesis, a discus-
sion of the lessons learned, and the impact of the results. It concludes
with an outlook on future research directions.
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I N D U S T R I A L C O N C E R N S A N D N E T W O R K
P R O G R A M M A B I L I T Y

The fundamental task in every communication network is to ex-
change data between different devices or participants. This exchange
can be via direct Point-to-Point (P2P) line connections between two
participants or over a network systems or devices [7]. Practically, it
may require more than two participants to exchange data; also, the
data exchange can span vast geographical areas. As an example, let
us examine a real world communication scenario that entails a direct
exchange of information between participant A and B.

Participant A says something, B listens, and performs an action.
The action can be a simple response from participant B in acknowl-
edgment of message received or pick an object, change position due
to impending danger, etc. The urgency ascribed to the exchanged
messages depends on the actions at hand.

In the case of an eminent danger, the message must get to participant
B to enable a quick action in order to avoid a catastrophic situation.
In human conversation, the urgency attached to such messages may
be demonstrated by a high-pitched tone, however, in machines, it is
characterized by speed.

Now, let us also consider a case where participant A and B are at
least a kilometer apart, the message exchange might not be possible
over this distance. Even if possible, participant B may not understand
or comprehend the vociferous nature of the message to act quickly as a
result of pitch distortion due to the distance between them. Communi-
cation networks are well suited to handle this kind of communication.

Over the years, communication networks have evolved from sim-
ple serial data transmission to more complex systems that perform
different forms of data exchange (e.g., the internet). Despite the sole
purpose of a communication network being data exchange, no two
communication networks are the same. This problem is because data
exchange varies in complexity and sometimes are very contradictory
as illustrated in the above example. The contradictions lead to differ-
ent ways of handling data exchange over communication networks
and hence different solutions developed specifically to suit different
applications or domains.

The authors in [7] provide extensive characterization and classifica-
tion of networks based on attributes such as geographical coverage,
mode of interaction of network participants or devices, type of service
or applications’ requirements. The authors further discuss the ratio-
nale behind the plethora of network solutions today and why such

9
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contrasting differences exist as one moves from telecommunications
and data-centers to the industrial domain. This thesis will use their
characterization on industrial network to describe industrial network
operators’ concerns and requirements, showing how the application
of programmable network concepts such as SDN is beneficial for the
evolution of industrial networks.

2.1 industrial networks

In the industrial domain, the application (use-case) dictates commu-
nication networks, i.e., be it in manufacturing, automotive, process
and factory automation, the task of data exchange vary in complexity
with very contradictory requirements [7]. Networks can be required
to exchange data for control of drives, motors, braking systems as in
cars or trains, video display, and audio packets from a microphone to
speakers.

By applying the example of data exchange between participant A
and B to industrial networks, it can be realized that the requirements
on data exchange are not inherently the same. This makes it almost
impossible to optimally address all applications’ needs with single or
common communication infrastructure.customized

solutions enable
optimum

performance

In order to optimally address the multiple requirements, different
solutions are required for each domain of application [7]. However,
though optimum from applications or performance perspective, this
approach often leads to many solutions. Ultimately, with a plethora
of solutions for different applications, the rate of growth and evo-
lution of industrial networks in the context of integrating emerging
applications such IoT, M2M, Haptic communication [8, 9], etc., be-
come slower as existing tailored network solutions are unable to
support these emerging requirements. That is, every new use-case or
application requires a customized network solution to accommodate
them. This approach does not scale well and often leads to substantial
long-term Capital Expenditure (CAPEX) due to device purchases and
Operational Expenses (OPEX) which leads to cost1 of performing net-
work management tasks (e. g., engineering, configuration, monitoring,
maintenance).

To address this concern, industrial networks need to evolve towards
more flexible and adaptable network systems capable of accommodat-
ing different requirements. However, these goals are not achievable
with traditional industrial network architectures (e. g., Field-bus) as
these network systems are architecturally inflexible to accommodate
new requirements.

Therefore, this section of the thesis examines communication in the
industrial network domain to identify challenges and requirements,
as well as propose solutions.

1 cost here refers to the time and effort needed to plan, engineer, and configure NEs
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The subsequent sections of this thesis will briefly discuss and ex-
amine the different aspects and requirements of industrial networks
and identify concerns from the perspective of different stakeholders
such as the industrial network owner, operators and engineers. Sub-
sequently, it will highlight the critical industrial concerns that are
addressed in this thesis.

Finally, the chapter will conclude with architectural concepts that
show great potential to tackle the framed concerns in order to achieve
flexible and convergent industrial network systems. This will include
a thorough analysis of two competing architectural concepts for pro-
grammable networks and their industrial implications. As a result, we
will compare and contrast the two architectures to highlight where
such ideas have been considered.

2.2 background, requirements and concerns
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Figure 2.1: Hierarchical levels of industrial communication systems [7]

The topics of communication networks are generally very compli-
cated especially in the industrial domain. This is because of the several
aspects to industrial communication. Often, it is very difficult to make
clear distinctions between industrial communication networks based
alone on coverage or whether circuit or packet switching is required.

Rather, a much practice-oriented classification is achieved by assign-
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ing communication requirements to different hierarchical or applica-
tions levels (as examined in [7]). These levels form what is termed the
industrial communication pyramid.

Figure 2.1 shows the main application levels illustrating the data
size and order of time required for data exchange in the respective
levels. From the Enterprise to Supervisory/Automation levels, large
volumes of data in the Giga/Mega/Kilobytes orders are required to be
transported over the network often without time bounds. In a situation
where time bounds are required, the response time for data transfer
can be in the order of minutes if not seconds. Essentially, the safe
transfer of huge data is more important than the duration of transfer
of the data [7].

The supervisory level is responsible for the supervision of an entire
factory process which includes several automation processes. Each
of these factory processes may require different networks tailored
specifically to the application’s requirements.

The Automation level controls the lower part of the pyramid[1, 7]
referred to as the Field level. On the Supervisory and Automation
levels, data size ranges from a few kilo-bytes to an average of 10 to
500 bytes respectively with delays between 5 to 20 ms [7].

The lower part of the pyramid shows the Field levels. In these levels
data exchange is in the orders of bytes to bits. At the Field level, delay
requirements are in the orders of micro to a few milliseconds. With
communication between the automation and field levels often in a few
millisecond duration. Most important is the fact that all requirements
on the data size and delay have strict deterministic bounds as shown
in the lower part of the pyramid.

The reason for the huge differences lies in the different goals of com-
munication. On the one hand, communication in the automation and
field levels is addressed from the monitoring and control of physical
systems (e. g., valves, sensors, robots, actuators, motors.) which require
real-time operations. On the contrary, the Enterprise and Supervisory
levels behave more like conventional IT, data-center and telecommuni-
cation networks where real-time requirements are not very stringent
compared to the lower parts of the pyramid. That is, in networks at
the base of the pyramid, although packet losses or delayed packets
may lead to catastrophic scenarios such as endangering human life or
crashing of a production line, it does not compare to a late delivery
or arrival of an email or a chat message on a social platform such as
Whatsapp.

It is difficult to find a common denominator for networks designed
for the different levels as solutions and terminologies differ from com-
pany to company within the industrial domain. However, they are
often captured under Information Technology (IT) and Operational
Technology (OT).

IT subsumes all industrial systems that employ enterprise appli-
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cations, information processing and business process communica-
tion. OT subsumes all systems used in the industrial environment
for the sole purpose of monitoring and control of Cyber-Physical
Systems (CPS). Communication networks designed for carrying moni-
toring and control data of physical devices are referred to as Industrial
Control Networks (ICN).

At their core, ICNs are entirely different from conventional IT net-
works in several aspects such as functionality, architecture and even
ways of management. They are often deployed in some form in any
environment that requires machine monitoring and control. Often, the
communication infrastructures differ based on the specific require-
ments of the individual sectors such as manufacturing, transportation,
chemical refinery, power generation, food and beverage processing,
etc (cf. [1]).

In recent times, the difference in ICNs compared to commercial net-
works fades as a result of current integration of Ethernet [1]. However,
as discussed by Hancke and Galloway [1], the recent advancements
of Ethernet do not necessarily make the functionalities of the indus-
trial networks and conventional IT networks the same. In fact, the
core functionality which is monitoring and control of CPS remains
the same. The only change comes with an improvement in some un-
derlying infrastructures such as Ethernet, previously used in the IT
sector to accommodate as well OT related data exchange on a single
infrastructure. This brings up the topic of convergence of industrial
networks (i.e. IT and OT), new mechanisms for control and manage-
ment, algorithms and enablers for QoS performance guarantees in
such networks.

Before addressing the various industrial concerns, it is best to give a
formal definition of what is referred to as a concern.

Definition 2.2.1. Concern (co): A concern identifies a problem or
desire that needs to be addressed w.r.t to a system or application.

A major challenge envisaged with the influx of emerging technolo-
gies and services created around them is whether industrial networks
can be adaptable to rapid changes in requirements. This is summarized
in what is termed evolvability concerns:

Definition 2.2.2. Evolvability concern address the ability or capacity of
a network to adapt itself to requirements imposed on it by applications
that use the service it provides.

The subsequent section examines the evolvability concern within
industrial networks.
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2.3 evolvability concerns

With consideration for IT and OT convergence 2, future industrial
networks are still required to address the following concerns:

co.1 Same QoS guarantees as those obtained on tailored solutions
such as Field-buses e. g. PROFIBUS, CANopen, SERCOS, etc.

co.2 Accommodate deterministic as well as stochastic requirements
on the same infrastructure.

co.3 Accommodate new as well as currently undiscovered services.

co.4 Enable flexible management and control of different forwarding
mechanisms.

co.5 Reduce initial and long term capital investment by enabling the
integration of new services with minimum required changes.

co.6 Integration with traditional (brown-field) and non-traditional
(green-field) industrial networks e. g. 5G.

These concerns can be framed under adaptability and/or evolvability
concerns. Adaptability refers to industrial communication networks’
ability or capacity to support green- and brown-field use-cases often
during the operation period of the system. Green-field use-cases in-
clude currently untapped systems or applications while brown-field
covers legacy systems or applications.

Adaptability is in fact a concern that deals with operation and ser-
vice provisioning, often considered from a network operator/service
provider or engineer’s perspective. On the other hand, network own-
ers or operators turn to look at these concerns from a business point
of view which mostly centers on the longevity of their assets and the
capacity of these systems to continually provide a competitive edge
over time. In this context, a more befitting functional term will be
evolvability.

Evolvability describes the capacity of a system to adapt to a chang-
ing environment. To put it in a better context, if we consider the
requirements of applications or use-cases as the environment within
which a network must exist, then the ability of the network to change
in order to meet the requirements imposed by the applications can be
termed as evolvability.

Mostly, it entails designing systems that provide the optimum bene-
fits in terms of projected CAPEX over a period of time. This concern
is illustrated in an article by Dovrollis et al. [10], where network evolv-
ability concern is analyzed from a biological, engineering and business
perspective.

2 Convergence refers to applications with different bandwidth and delay requirements
sharing the same network infrastructure.
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After discussing the focus of industrial networks w.r.t IT and OT
convergence and the concerns to be addressed, now we identify spe-
cific technologies and architectural concepts that can ameliorate these
concerns but first, let us examine the fundamental constituent of a
network from a functional point of view. The functional view gives a
better appreciation of how network architectures have been defined
over the last decades and why concerns identified in this thesis must
first be tackled from an architectural perspective in order to gain
the requisite understanding for the development of functions and
algorithms that addressed these concerns.

2.4 key to evolution of industrial networks

Figure 2.2: Internal view of Network Element architecture

A network is composed of connected devices (Network Element
(NE)) e. g., switches/bridges, routers, etc. These NEs appear from
an end-user perspective as single monolithic entities, however, a mi-
croscopic view into the internal structure of NEs reveals that they
are composed of logical entities that corporate together to provide
common functionalities e. g., moving a packet of data from one end of
a switch to the other. These logical entities can be categorized into two
sets of components namely; the control and forwarding components.

Architecturally, these components are classified by planes i. e., the
Control, Forwarding (sometimes used interchangeably with data) and
Management planes. Figure 2.2 provides basic architecture of the in-
ternal view of an NE. As shown, the control components are assigned
architecturally to the Control Plane (CP) whilst the forwarding com-
ponents are assigned to the Forwarding Plane (FP).

The CP handles all the intelligence displayed by an NE. Intelligence
in this context refers to the algorithms or control protocols used for
example signaling, path computation and resource reservation, ad-
dress resolution, authentication, registration, collection of statistical
information, etc. In effect, the CP functions decide the behavior of the
FP, however, the CP functions are defined based on the capabilities of
the FP. The FP handles the actual movement of data or packet from
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one end of the network or NE to the other, often referred to as the Data
Plane (DP) or muscle of the network. Examples of the functionalities
that can typically be found in this plane are traffic shapers and/or
schedulers, meters, classifiers, etc. The Managment Plane (MP) as
implied by its name, allows management of the CP and FP.

Generally, the three different planes are combined in one physical
system or NE. This presupposes that the intelligence of the network
elements is developed with strict adherence to the mechanisms avail-
able in the FP hence, forms a tightly coupled system.

There are situations where due to the restrictions of the physical de-
vice capabilities (i. e., hardware capabilities such as processors, ASICs,
and memory), the level of intelligence is limited to exactly what is
required for a specific type of application. Thus, it hinders the ability
to adapt the network to new requirements without changing the entire
NEs.

In legacy industrial networks like Fieldbuses, limitation in com-
putationally involving functions such as bootstrapping and service
creation are usually compensated for by an Engineering and Planing
Tool (EPT). An EPT allows network engineers to perform the most
computationally intensive functions in an offline system and integrate
the offline solutions into the control plane via interfaces provided by
the MP.

Sometimes, even when this is possible, restrictions of the FP may not
allow new applications or requirements. This paradigm of networking
introduces a 1-dimensional system that poses the following challenges
to the concerns ( co.3→ co.6) defined in subsection 2.3.

ch.1 Services for new applications (co.3) cannot be accommodated
in the legacy networks because their architectural designs are
tightly coupled to application-specific requirements. Hence, they
fail for new applications. To enable the network for new appli-
cations that do not share similar characteristics, the entire NE
will have to be replaced with new ones that have the requisite
intelligence to support the said service. This, of course, does not
do well for long term CAPEX, co.5. It can also take a very long
time through lengthy standardization processes to enable such
features even when capital is not an issue.

ch.2 A flexible control and management system may not be possible
as several solutions may impose customized management and
control functions, co.4. For example, CANopen and TSN [11].

ch.3 Integration with other network domains and technology be-
comes increasingly difficult and inflexible because of the plethora
solutions available, co.6.

Considering the challenges identified, one simple solution is devel-
oping new technologies but it does not solve the problem entirely. In
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fact, the challenge with current network systems lies deep within the
fundamental architecture of network systems as illustrated. To enable
networks to evolve to accommodate different services, they need to be
adaptable.

Forwarding and control function separation, is a concept that enables
networks to be adaptable. By allowing the control and forwarding
planes to evolve separate of each other, one can develop different
forwarding functions to handle different types of services. The for-
warding functions can include general as well as specialized functions
and can be put together in several combinations to fulfill different
service requirements and thus making the NE programmable [12].

The subsequent section examines the basic principles of programmable
networks.

2.4.1 Basic principles of programmable networks

Network programmability according to Galis et al. [6] is the next
step of network evolution. The primary goal of this evolution is to
enable rapid deployment and customization of services, which can be
achieved via a two-dimensional model that allows the integration of
computational and communications models.

This two-dimensional model describes the interaction of compo-
nents of communication models such as packet header processing and
forwarding (QoS), and computational models such as programming
languages, operating systems, algorithms, etc.

Though the idea of programmable networks is not a new one, recent
accounts and implementations has led to frameworks that address spe-
cific computer network domains. For example, SDN can be considered
as a service-defined network which is more tailored to telecommu-
nication and data-center service providers. However, a fundamental
principle that cuts across all frameworks is the concept of " separation
of control and forwarding plane".

The subsequent sections discuss the requirements of forwarding and
control separation, notable architectural concepts, their key strength
and differences and how they can be leveraged to address the indus-
trial concerns discussed in section 2.3.

2.5 control and forwarding function separation

Figure 2.3 illustrates the basic principle for control and forwarding
function separation. As shown, it is a slight derivative of Figure 2.2
with the exception that the different planes are separated by the
introduction of a protocol (control messages) between the respective
planes. This separation enables the development and combination of
different control and forwarding functions. As a result, it enables a
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Figure 2.3: Proposed NE function separation enabling the evolvability of
networks to support varied services.

network operator to readily adapt the network to different service
requirements by combining different network functions.

Two notable architectural concepts that proposes this radical ap-
proach to networking are the ForCES and SDN architectures. The key
differences in the two architectures are discussed next.

2.5.1 Principles of ForCES
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Figure 2.4: Forwarding and control function separation: ForCES Architec-
ture [6]

ForCES is one of the fore notable architectural concepts in today’s
networking paradigm. Fundamentally, it proposes the separation of
the Control and Forwarding plane of NEs to enable them evolve inde-
pendent of each other.

To illustrate the fundamental principles of the ForCES architectural
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concept, Figure 2.4 provides a ForCES representation of an NE. Ac-
cording to the architectural representation, the NE consists of two sets
of elements;— CEs and FEs. Architecturally, the Control Element (CE)
operates in the CP while the CE operates in the FP.

The CE consist of network control functions that perform tasks such
as routing and signaling. Example of signaling protocols that can be im-
plemented in this block are;—Label Distribution Protocols (LDP), Link
Layer Discovery Protocols (LLDP), Link Registration Protocol (LRP),
and Resource Reservation Protocols (RSVP) such as Resource Al-
location Protocol (RAP), Multiple Stream Registration/Reservation
Protocol (MSRP), etc.

The FEs perform packet operations such as metering, shaping/schedul-
ing and classification. Figure 2.4 also shows the relationship between
the logical components where the CE and Forwarding Element (FE)
can be interconnected in every possible combination, i. e., CE-FE, CE-
CE, FE-FE. Each possible combination defines a reference point which
can consist of a collection of protocols that enables the transfer of
messages between them.

The Fp reference point implements the ForCES protocol which is
intended to facilitate the CE with the ability to control the behavior
of the FE via abstraction of FE capabilities. This abstraction allows
network operators to define CE functions that adapt the FE to different
application requirements.

As a requirement of FE within the ForCES architecture, FEs can
manifest varying functionalities which implies, the CE can only make
minimal assumptions w.r.t the capabilities of FEs [6]. This in fact
posses a major problem for CE function definition. That is, in order
for the CE to effectively control an FE, the CE must have a vivid
understanding of how an FE processes and forwards packets. With
this knowledge, the CE can dynamically control how packets are pro-
cessed by the FE even at network run-time. This, therefore, makes the
network highly programmable, hence adaptable to different uses.

The detailed description of the ForCES architecture ( [12]), require-
ments on CEs, FEs ([13]) and Fp are defined in RFC 3746, 3654 and
3756 respectively.

The following are some key feature requirements proposed by the
ForCES concept in RFC 3654 [13]:

1. The CE and FE must be able to connect by a variety of technolo-
gies ( RFC 3654 [13]). This implies any protocol or mechanism
that conforms to the requirements of ForCES Fp can be used.
It allows for multiple of such protocols to be supported by a
ForCES NE.

2 The FE must support a minimal set of capabilities; however, the
number of capabilities of the FEs are not restricted.
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3. Packets must arrive at an NE via one FE and leave the NE via
different FEs.

4. An FE must asynchronously inform the CE of a failure or in-
crease/decrease in available resources or capabilities on the FE
due to usage. That is, the FE should be able to give statistical in-
formation on its resource usage and events. This enables the CE
to monitor and adjust the FE behavior with a specific application
when necessary.

5. The combination of CEs and FEs within an NE, must appear as
a single device to an end-user.

6. FEs must have the ability to redirect packets addressed to their
interface to the CE.

7 The CE must be able to learn the topology by which FEs are con-
nected within an NE and change the topology when necessary.

8. The ForCES architecture must allow FEs and CEs to join and
leave NE dynamically.

9. The CE should be capable of off-loading certain functions onto
the FE

RFC 3654 provides extensive details of these requirements, features
stated here are important for the subsequent discussions. For further
readings, refer to [13]. Other requirements of the ForCES elements
and protocols are also summarized in Appendix A.1.

programmability in the context of forces The ForCES
architecture supports three levels of programmability. The first level of
programmability addresses the control and configuration of statically
defined FEs. This covers a scenario where the structure of atomic
functions such as classifiers, shapers or schedulers that constitute the
FE functional block remain fixed. This includes a fixed topology of
the FE functions.

At this level of programmability, a network operator or engineer can
define the constituent CEs deterministically. That is, CE function can
be changed or augmented; however, the set of FE functions and their
topology must remain the same for the life-cycle of an NE.

The second level of programmability addresses a scenario where
the CE can discover the capabilities of the FE as well as change the
topology of the FE functions. This implies, the CE can choose from a
pool of FE functions, define how the functions are chained (topology)
in order to meet the desired way of handling packets.

To put this into perspective, consider a scenario where FE con-
stitutes three different scheduling functions e. g., priority scheduler,
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Earliest Deadline First (EDF) and Time-Aware Scheduler (TAS). From
a deployment point of view, an NE may implement only one of the
above functions which will dictate the kind of application the NE can
support. However, what the second level ForCES programmability
proposes is that, the CE discovers the fact that the FE functional block
has the three different scheduling capabilities and chooses which ca-
pability should be included in the topology of the FE block to support
the application. One important thing to note here is that, FE must
constitute a fixed pool of forwarding functions.

The third and final level of ForCES programmability is similar to
the second level but with an added functionality that enables the CE
to download new FE functional blocks into an NE. This implies, the
CE can remove and add new FE functional blocks, define new FE
topology during the life-cycle of the NE or even at run-time.

2.5.2 Principles of SDN

From a generic viewpoint, the SDN concept is similar to or an in-
stance the first level of ForCES programmability. Conceptually, SDN
follows the same line of thought considered in the ForCES concepts.
However, the SDN architecture emphasizes control and forwarding
plane separation where connectivity between the CP and the FP is
governed by open communication interfaces. More so, it advocates for
physical instantiation of the CP element (CE) as a centralized entity
outside the NE.

The SDN concept allows all NEs within a network to share a cen-
tralized intelligence by providing open interfaces to enable the devel-
opment of software that can control the connectivity of a network of
resources and the flow of traffic through the resources.

Even though the SDN concept advocates for control plane separation
and centralized instantiation, some aspect of control inevitably resides
within the DP which is referred to as NE in the SDN terminology [14].
That is, even though the centralized controller has oversight of for-
warding resources, it allows for the possibility of delegating control
functions, e. g., LLDP, Multiple Stream Registration Protocol (MRP) to
the DP which it refers to as the network infrastructure or NEs.

Figure 2.5 shows the basic architectural components and terminolo-
gies as described in [14]. Within the SDN concept, the DP also known
as the FE in the ForCES architecture, consist of a set of one or more
NEs, each of which constitutes a set of forwarding functions or traffic
processing functions. DP resources are abstract representations of the
capabilities of the traffic forwarding functions.

The CP comprises the SDN controller(s) which have exclusive con-
trol over the set of resources exposed by the DP (NEs). According to
the Open Networking Foundation (ONF) [14], a common but non-
essential function of an SDN controller is to act as the CE in feedback
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Figure 2.5: Forwarding and control function separation: SDN Architecture

control, responding to network events in order to recover from failure,
allocate or re-optimize network resources and as well provide applica-
tions with the semblance of logically separate networks.

In this regard, Clause 4.3.5 of [14] explains how resources can be
shared among applications on a first-come-first-served or Best-effort
basis. As one contribution of this thesis, we propose concepts that
enable resources to be shared among applications in a varied manner
(e. g., prioritized) in addition to what the SDN traditionally proposes.
This is discussed in Chapter 4.

The Application Plane (AP) consists of a set of applications, each
of which has exclusive control of a set of resources exposed by the
SDN controller(s). Though the ONF’s definition presents the SDN con-
troller as a black-box, its functions can be defined so that it provides
isolation between applications and thus, portrays as sense that each
application exists on a network tailored specifically to its needs. In
the next Chapter of this thesis, we will identify, examine and discuss
some enabling technologies that can be used to achieve this goal.

The elements of the AP exchange messages with the SDN controller
via a non-standardized Application-Control Plane Interface (A-CPI)
also referred to as the North Bound Interface (NBI). Communication
between the SDN controller and the NEs in the DP occurs via one or
more standardized open Data-Control Plane Interface (D-CPI) also
referred to as South Bound Interface (SBI). The nature and conceptual
definition of the SBI have been a bone of contention, often leading to
great misunderstanding of the SDN concept. This misunderstanding is
addressed in this thesis by analyzing SDN programmability through
the lenses of the of the ForCES framework to help us in deriving the
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term Software-Defined Industrial Networking (SDIN) as a solution for
industrial networks.

programmability in the context of sdn Under the ForCES
framework, the concept of programmability is applied to the adap-
tation of forwarding functions of the NEs and subsequent control
function modification within a network device during its operation
and/or entire life-cycle. Under SDN, programmability is examined
from a slightly different perspective.

Regardless of the subtle differences, one will not be wrong to allude
that the entire concept of SDN programmability fits to at least one of
the three levels of programmability proposed by the ForCES frame-
work. Upon critical analysis of both frameworks, it can be observed
that the SDN concepts fits to the first level of programmability pro-
posed by the ForCES framework. That is, the ability to manipulate and
augment the forwarding behavior of an NE during network run-time.
However, what makes the SDN concept slightly different from the
ForCES concept for level one programmability is that, all NEs are
seen as FEs that share common intelligence via the centralized SDN
controller.

The similarity is that the FE capabilities cannot be changed during
run-time. The SDN controller abstracts the capabilities of the NEs and
represents them as single shared logical resource and exposes indi-
vidual quotas of resources to the application as if they were separate
resource (logical isolation). However, in the ForCES framework, FE
resources are seen as dedicated directly to applications which can lead
to pre- and over-provisioning hence may limit resource usability.

2.6 comparison of sdn and forces principles

Though both concepts (ForCES and SDN) propose the programma-
bility via control and forwarding function separation, there exist some
differences behind the governing principles of the respective con-
cepts. While ForCES address network programmability from a generic
computer network perspective, SDN evolves towards principles that
address more specifically the requirements of service providers. Next,
we will compare and contrast the two concepts based on five unique
principles.

2.6.1 Principle of control/forwarding function Separation

Although both frameworks propose the decoupling of CP and
FP/DP to enable each evolve separately, SDN defines its separation
slightly different from the ForCES framework. That is, the FEs in the
ForCES framework are considered in the perspective of an NE while
in the SDN framework, an NE is regarded as an FE.
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The similarity between the two principles is that although CP and
FP are separated, the SDN controller can delegate some control func-
tions to the DP as long as these control functions operate in a manner
acceptable to the SDN controller. Feature 9 of the ForCES framework
(see Section 2.5.1), stipulates that the CE can also offload some control
functionalities to the FEs. Therefore, the two frameworks are similar on
this point. However, a subtle distinction of the control and forwarding
separation in the context SDN is that, all NEs share common intelli-
gent entities due to the centralized instance of the SDN controller. On
the other hand, FEs in ForCES may share common intelligent entities
only within an NE .

Also, considering the protocol used for information exchange be-
tween the CE and FE/DP, SDN proposes the use of open interfaces
where as ForCES does not restrict nor advocate for the use of open
interfaces. However, the characteristic requirements of the ForCES
protocol (Fp) can be achieved as a non-proprietary protocol.

Comparing the two frameworks from the true essence of evolution
as studied by Dovrolis et al. [10], from a biology point of view, the
true meaning of evolution is the ability of an organism (in this case
a Network) to change its features in order to adapt to a changing
environment (application requirements).

Considering the analysis of the two architectural frameworks from a
biological evolution of an organism, it can be seen that ForCES meets
the evolvability criteria described by Dovrolis et al. [10]. This is because
the second and third level ForCES programmability proposes changing
of device forwarding functions and behaviors to meet requirements of
its environment while SDN adapts its environment to the network.

Although both approaches can be seen as an evolution in some
sense, SDN’s claim of independent evolution of the different planes as
a result of decoupling CP and FP/DP is not entirely true in the real
sense of evolution as defined by Dovrolis et al. [10]. It is the opinion
that the current SDN principles, though still viable for industrial usage,
if not made to adopt some ForCES principles may fail to deliver fully
on its promise of independent evolution of control and forwarding
planes.

2.6.2 Concept of shared resource

The notion of network resource is that all applications on a network
have dedicated resources. This notion of resource is similar in the con-
text of ForCES framework. It implies that applications hold on to the
physical resources of the FP even at inactive periods. This dedicated
resource model is often inflexible as it provides limited opportunity
to increase resource utilization efficiency due to over-provisioning.

SDN provides a concept whereby applications only hold onto re-
sources at an abstract level, that is, the resources exposed by the
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controller to applications are logical and are only committed as and
when they are required on the DP. In this regard, applications can be
over subscribed to the network resource as long as the applications
can live with the resulting guarantees when the logical resources are
committed (instantiated) as physical resources in the DP.

To ensure prioritization, SDN proposes to serve applications with
stringent requirements first. However, this often does not work well
as arrival, departure, and time of resource usage can be very unpre-
dictable. Even in deterministic networks like ICNs, there still exist the
possibility that the network operator may want to add a new service,
planned or unplanned, to the system at run-time and therefore the
unpredictability must somehow be curtailed to provide deterministic
bounds.

This thesis proposes alternative ways to the first-come-first-served
and best-effort approaches by adopting worst-case concept to guar-
antee application QoS requirements by using a Demand Based Ap-
proach (DBA) for efficient resource orchestration.

2.6.3 Abstraction and virtualization

The SDN controller operates on globally abstracted capabilities of
the physical resources of NEs which are represented or instantiated
as virtualized resources. This means applications have access to the
physical resources only when all requirements have been tested and
contractually established in the virtualization layer.

This can be achieved by the design and development of common
information models that represent the functionalities of physical hard-
ware (NEs) as well as the applications using the resource. In Chapter 4

of this thesis, we show how this can be achieved as a component of the
service functions using enabling concepts and technologies described
in Chapter 3.

On the contrary, the ForCES CE operates on a locally abstracted
resource of the FEs within an NE. Therefore, it is not easy to achieve
the same level of resource usability in the level one programmability
of the ForCES framework.

2.6.4 Service creation

One of the most important service routines is the deployment of
configuration data to the NEs in the FP/DP. Before actual resource
reservations can be achieved across the network, all NEs must have
some default configurations. This allows them to communicate and
establish connections before applications can begin to use the service
they provide. This aspect of networks persist in both ForCES and SDN
frameworks.

As shown in Figures 2.4 and 2.5, the two architectures underline the



26 industrial concerns and network programmability

need for management components at all planes of the architectural
frameworks including the FP/DP. In this regard, the SDN framework
describes the possibility of fusing traditional network management
systems as a part of the SDN controller. This enables network opera-
tors to appropriate traditional network management protocols such as
Simple Network Management Protocol (SNMP), Network Configura-
tion Protocol (NETCONF), etc. as south-bound protocols between the
SDN controller(s) and the NEs in the DP if they meet the requirement
of an SBI.

With the SDN controller serving as a feedback control entity to the
NEs in the DP as well providing oversight of resources, it enables net-
work engineers to integrate service functions to orchestrate different
services on the network in an automated manner.

The service functions can consist of carefully curated chains of
atomic or basic network functions. The network functions may also
leverage the power of high-level abstraction and virtualization which
are traditionally done as a separate task or routine. The centrally
instantiated SDN controller, as will be discussed later in Chapter 7,
provides some possibilities for different deployment scenarios of the
same network infrastructure.

On the other hand, ForCES framework does not restrict the possibil-
ity of having these features that make SDN so attractive. It supports
these features but its specifications are a bit silent. This in my opinion
was intended so as not to dictate deployment aspects of networks. The
evidence of this can be inferred from RFC 364 (Architecture).

Another difference between the ForCES and SDN framework is the
terminology and role of the architectural components in the different
planes w.r.t the protocol operating between the CP and FP. While the
SDN framework identifies the whole system as a hierarchically recur-
sive client-server relation with an N-level agent system, the ForCES
framework proposes a non-hierarchical, non-recursive master-slave
relation.

In the hierarchical-recursive client-server relation, an entity at a level
N+1 perceives another entity at level N as a resource that exposes
and/or has a set of actions. SDN applies this concept through out the
entire system. This implies all elements of the AP perceives elements
of the CP (Controller mainly) as servers that provide set of actions on
resources that can be used to request services. Likewise, elements in
the CP perceive elements of the DP (mainly NEs) as servers as well.
This makes SDN a desirable programmable framework for service
providers and the internet.

Additionally, unlike the traditional client-server relation where the
client receives information or data by proactively requesting it, the
SDN framework allows servers to notify clients of changes occurring
on them. This feature is especially included between the level N;—the
CP where Controller resides and level N-1;— the FP where NEs reside.
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This feature allows the network controller to stay abreast with resource
availability and faults occurring within the DP.

The ForCES’ Master/Slave relation unlike the hierarchical recursive
client-server model, defines a strict relation where the roles of the
CE and the FE are specific. That is, the CE always plays the role of
a master while the FEs play the role of slaves. Thereby making the
ForCES protocol a strictly master-slave protocol. What happens in this
kind of relationship is that the CE always instructs on what to do and
the FEs must comply and report back on the actions.

It must be emphasized that the Client-Server model proposed in the
SDN framework especially between level N and N-1 is a Master/Slave
model. A typical Client-Server model describes a relation between
systems in which one or more systems;—the client(s) requests service
from another system;— the server which fulfills the request.

Generally, a Server can serve several clients in a Client/Serve mod-
els. In this relation, clients should only be able to access information
but not modify data on the server. Often this is a requirement that
ensures data integrity as errors can be introduced by unsynchronized
or unpredictable modification of Server data. This is not the case in
SDN i.e; the specifications describe the role of controllers as entities
that manipulate NE (Server) data in order to change the behavior of
the network. This completely contradicts the principles of the client-
server model.

Contrarily, the Master/Slave model proposes a system of communi-
cation where an entity; the Master has unilateral control over one or
more entities; the slaves e. g., NEs. In this model, a Master oversees
all slaves and can change the data of Slaves as and when required.
This in my opinion describes better the principles of SDN protocol as
rightly captured by the ForCES framework.

2.6.5 Evolvability/ adaptability

In the context of adaptability and evolvability concerns described in
Section 2.3, the two frameworks provide a good set of features that
present the potential to address the adaptability/evolvability concerns
in different ways.

The SDN framework provides the potential to integrate legacy and
currently unknown application requirements on existing infrastruc-
tures by leveraging the power of logical abstraction and virtualization.
With a good use of virtualization concepts (abstraction and instantia-
tion), it can be used to meet the QoS requirements of very contrasting
applications on the same network infrastructure. However, a funda-
mental thing that must be noted is that SDN provides the ability to
adapt an application’s requirements to the network rather than chang-
ing the network to suit applications’ requirements. This is because the
SDN’s DP maintains a specific set of capabilities that do not change
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during deployment. Therefore, service requirements can only be sup-
ported if the DP possess adequate FE (QoS) mechanisms to do so.
Hence, the independent evolution of control and forwarding plane
promised by the SDN framework is strictly dependent on the capabili-
ties of the DP and thus evolvability only applies to the adaptability of
CP functions rather than DP. That is, SDN only seeks to augment the
control functionality of network devices by integrating computational
models e. g., programming languages, operating systems, object ori-
entation together with communication models e. g., QoS and packet
forwarding [6]. Unlike SDN, ForCES provides specification that allows
the CP and FP planes to evolve separately as illustrated by the 3 levels
of programmability discussed in Section 2.5.1.

The current implementation of SDN can also be made to adapt the
packet processing functions of NEs but cannot be achieved in real-time
or at run-time of the network. That is, to do so, the Application Specific
Integrated Circuit (ASIC) of the NEs need to be editable. This aspect is,
however, not covered under SDN. The ability to edit control functions
on ASIC is covered under Programmable Protocol-Independent Packet
Processors (P4) which deals with defining packet processing functions
in the NE.

P4 is developed to target some components of the SDN architec-
ture that enables it to reach ForCES level two programmability to a
certain degree. However, forwarding functionalities like schedulers
and shapers cannot be changed or bypassed. Silicon-independent
switch operating system (Stratum) is another project currently be-
ing developed by the ONF to enable SDN reach full level 2 ForCES
programmability by building minimal production-ready distribution
for white-box switches where the packet processing and forwarding
functions can be changed to make networks evolvable under the SDN
framework.

On the other hand, the ForCES framework promises different kinds
of adaptability and evolvability in comparison to SDN. While the first
level of programmability can be extended to behave in the same way
as the SDN abstraction and virtualization concepts with a centrally
instantiated controller, the second and third level programmability
emphasizes the adaptation of the network infrastructure to its environ-
ment (requirements of application). Simply put, the SDN framework
enables the adaptation of requirements of a network’s environment
to the network whilst the ForCES framework in its fullest realization
adapts the network to its environment. A good study of the adaptation
of requirements of heterogeneous industrial application by leveraging
SDN is examined in the FIND project in [11].
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2.6.6 Long-term capital expenditure

From a cost perspective, the initial capital and effort required to
realize the ForCES framework to its fullest are capital intensive but
very rewarding over a long period. This is because a common NE can
be reused in any environment regardless of new trends that may arise
in future industrial production systems.

Comparably, SDN will involve less capital as the only component
of the network that is required to change over time is the network
controller which might not even require any dedicated hardware for
deployment.

The combination of P4, and SDN can enable SDN to reach level 2

ForCES programmability but forwarding functions such as schedulers
and shapers which determine some QoS capabilities of the network
cannot be changed. If ever, the ability to change these forwarding func-
tionalities comes into fruition in future, possibly with the Stratum [15]3

project, both frameworks may be indistinguishable in terms of cost. In
their current state of implementation in the network community, SDN
offers more functionalities for money based on requirements of legacy
and current applications, however, from a technical and architectural
view point, ForCES provides all the ingredients required to make
networks evolvable.

2.7 sdn-enabled industrial networks

This section discusses the potential of SDN for industrial networks
illustrating the core concerns and how SDN concepts can help in
achieving these concerns. The discussions here provides a context for
subsequent chapters where service guarantee (QoS) and performance
analysis are discussed.

To illustrate the synergy between SDN and the ForCES framework,
after establishing that SDN programmability can be categorized as
a level one ForCES programmability, the FE and NE will be used
interchangeably in the subsequent discussions within the SDN context
when required.

Some significant takeaways from the analysis of SDN and ForCES
architecture are as follows:

1. Control functions must be developed with a detailed understand-
ing of FP mechanisms or functions. Even though the decoupling
of the planes enables each plane to evolve, hence making net-
work adaptable, the control plane cannot evolve independently
of FP. The forwarding plane provides the baseline upon which
CP functions are designed. Unlike the CP, the FP can evolve

3 Stratum is a next-generation of SDN based silicon-independent switching operating
system that runs on white-box switching platforms [15]
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with zero dependence on the control. However, SDN framework
does not support this feature.

2 The concept of shared resources in the SDN framework should
enable the integration of abstract reservation directly into the
network service creation during run-time. However, these mod-
els must emulate the QoS capabilities of the network which is
only provided by the NEs in the FP.

3 SDN framework provides a feedback control system (SDN con-
troller) which can integrate intelligent functions and models
capable of mapping new application requirements by leverag-
ing the optimum topology of the DP. This feature and point
2, are very interesting for industrial networks as service cre-
ation can be automated. This comes from the recent integra-
tion of time-sensitive FE mechanisms such as the Time-Aware
Scheduler (TAS) in standard Ethernet bridges. Furthermore, the
centrally instantiated network controller provides significant
flexibility for deployment purposes. This is discussed in Chapter
7.

It is important to note here that in order to leverage SDN for industrial
networks, there must exist an SDN compatible data plane for industrial
networks. Ethernet has already been established as an SDN compatible
DP for telecom and data-center networks. However, with the integra-
tion of forwarding functions such Credit Based Shaper (CBS) and TAS
in Ethernet, TSN provides a perfect SDN compatible DP for industrial
networks due to the varied ways packets can be forwarded to meet
different delay guarantees. We will build on the above takeaways to
derive what is termed in this thesis as the SDIN.

Definition 2.7.1. Software-Defined Industrial Networking (SDIN) is
an industrial network constructed on SDN guidelines to address in-
dustrial network evolvability concerns whilst still providing service
performance similar to legacy tailored solutions.

Therefore, the evolvability concern addressed in this thesis has
to do with the mapping of industrial application requirements to
SDN-capable industrial infrastructure rather than the adaptation of
the infrastructure to the application requirements. This, therefore,
requires the definition and design of control functions to augment
existing SDN controllers to support some industrial applications (e.g.,
Programmable Logic Controller (PLC) to IO devices) which otherwise
could not co-exist on the same bridge infrastructure with video, audio
and other best-effort traffic due to their widely contrasting traffic
characteristics.
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2.8 summary and bibliographic comments

2.8.1 Bibliographic comments

Several research papers have been published within the context of
programmable networks. Among them, Campbell and de Meer et
al. [5] provide a survey highlighting several innovations leading to
network programmability levels. The innovations identified include
the separations between transmission hardware and control software,
accelerated creation and deployment of new network services through
virtualization of network infrastructure, and availability of open in-
terfaces. Also, Galis et al. [6] provide a concise account of the genesis
of programmable networking concepts in which the authors identify
the Open Singnaling (Opensig) community 4 and Defends Advanced
Research Project Agency (DARPA) Active networks as the two school
of thought that began the topic of programmable networks.

The basic idea of the Opensig community advocates for a service
composition framework that is accessible via open interfaces. In this
framework, the Opensig community proposes a restructuring of mono-
lithic and complex control architectures in a minimal set of layers
making the services within each layer accessible via open interfaces.
These ideas were later formalized in what became the IEEE P1520

reference model [6, 16].
Contrary to the Opensig idea, DARPA Active networks [17, 18] pro-

pose a much more radical approach that allows applications to directly
define how networks process their packets by injecting programmable
code snippets in IP packet headers. One fundamental principle that
both communities are convergent on, is the clear separation of control
and transport planes [6]. The ForCES architectural framework pro-
posed by the Internet Engineering Task Force (IETF) also advocates
for the clear separation of control and transport planes in what is
referred to as FP discussed in Section 2.5.1. The analysis by Galis et
al. [6] show that the ForCES FE model uses a similar approach to the
building block approach of the IEEE P1520.3 working group where
they encapsulate distinct logical functions within FE blocks.

Based on the fundamental principle of open service interfaces, sep-
aration of planes and the integration of computational models with
communication models, the ONF proposed SDN. SDN has seen sig-
nificant adoption compared to the ForCES framework though, in the
true sense of evolution, the ForCES principle show great promise.

The reason for the widespread adoption of SDN in today’s net-
work research vocabulary is how its fundamental principles can eas-
ily be demonstrated with the implementation of the SBI protocol

4 OPENSIG was established in 1995 with the main objective of making the internet,
mobile and Asychronous Transfer Module (ATM) networks open, extensible and
programmable [6]
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OpenFlow [19], and the readily available OpenFlow programmable
switches [20]. Recent advances [21–23] has seen network manage-
ment protocols such as SNMP (for backward compatibility) and
NETCONF5 [24] appropriated as SDN south-bound protocols. Fur-
thermore, there are several open-source SDN controllers [25, 26] which
have promoted its widespread adoption.

Based on analysis of Galis et al. [6] and facts presented, we can con-
fidently conclude that SDN is partly developed on similar principles
as IEEE P1520.30.

2.8.2 Chapter summary

This chapter examined the fundamental concepts behind the devel-
opment of industrial networks, highlighting the different requirements
and concerns that have contributed to the plethora of network solu-
tions today. More so, it identifies and discusses why current industrial
networks are in general not flexible enough to support emerging ser-
vices. It pinpoints the architectural inflexibility of NE as a major con-
tributing factor that has halted industrial networks’ ability to evolve
with changing requirements. It further examined programmable net-
works as a framework that can ameliorate industrial network evolv-
ability concerns. Among existing programmable network concepts,
the SDN and ForCES frameworks were identified, examined and com-
pared, highlighting similarities and differences in their governing
principles to derive solutions that can be used to address industrial
evolvability concerns.

Based on the analysis and consideration for current requirements of
the automation industry, SDIN is derived as a solution that integrates
SDN principles to manage industrial network infrastructures. The
analysis illustrates that although SDN does not fulfill requirements of
network evolvability in all sense and purposes as defined by Dovrolis
et al. [10], the centralization of CP does enable the integration of com-
putational and communication models for control and management
of industrial networks. Thereby allowing the adaptation of widely
contrasting production environments to a common network.

While SDN framework enables the management of heterogeneous
requirements, a fundamental question that remains unclear is how its
promises can be achieved in industrial communication networks given
the several concerns and contrasting characteristics of applications.

Chapter 3 identifies and examines enabling technologies to provide
differentiated service guarantees and how they can be leveraged in
production-grade SDIN. These enablers are extensively presented with
novel functions and algorithms for SDIN in Chapters 4 and 5.

5 NETCONF is a management protocol which allows NEs to expose an Application
Programming Interface (API) via which extensible configuration data can be sent/re-
trieved and/or modified.
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In a typical production network, computational models are used in
what is termed engineering phase. In this phase, the network is de-
signed to fit the operational characteristics of applications it supports
and solutions used as an operational model on which the network runs.
This chapter leverages the features of SDN controller as a feedback
control to define algorithms that enable the integration of computa-
tional models as part of service functions to automate offline service
engineering as an online process.

First, we identify existing methodologies used to simulate the study
of systems and their operation. Second, these methodologies are care-
fully examined to provide a clear understanding of how they can
be leveraged in SDIN to develop analytical models that integrate in
resource allocation algorithms to enable an SDIN controller engineer
and create services based on defined policies.
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Figure 3.1: Network slicing in converged industrial networks
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3.1 network slicing and the vne problem

Network Slice (NS) is a general term used to describe a set of
resources used to provide service guarantees within SDN. The concept
of NSs represents a specific type of network virtualization that enables
multiple virtual networks to co-exist on shared network infrastructure.
This thesis provides a concise definition of an NS within SDN as
follows:

Definition 3.1.1. Network Slice (NS) is an abstract representation of
a virtualized set of network resources that ensures the e2e network
requirements of applications are guaranteed on a shared network
infrastructure.

The guarantee provided by an NS to an application serves as a
binding contract between the application and the network. This im-
plies whenever resources held by an NS are committed to the DP,
the required guarantee can be assured by the QoS features within
the DP. The reverse also implies if the QoS features of the DP cannot
adequately ensure a certain level of guarantee then the NS cannot
fulfill the contract with the application.

The definition of an NS reveals a primary dependence of the concept
on virtualization which is a widely researched topic. According to Fis-
cher [27] and others [28–31], virtualization of resources enables flexible
design and management of networked systems such that even the net-
work itself can be virtualized. This enables network engineers to create
highly flexible, and tailored network structures for arbitrary commu-
nication (cf. [27–30]). It also implies virtualization is an indispensable
tool for the realization of NSs on shared network infrastructure.

Figure 3.1 illustrates an example of the concept of NSs on a con-
verged industrial network where applications with contrasting char-
acteristics can share a physical network. In this example, network
requirements of applications from different levels of the industrial
automation pyramid (see Figure 2.1) are accommodated on a shared
network. The resources that provide the network guarantees are de-
fined by NSs within the CP provided as SDIN controller. However,
the logical resources held by the individual NSs can occupy the same
physical resource in the DP.

The creation of NSs for arbitrary communication using virtualiza-
tion concepts is a popular resource assignment problem known as
the Virtual Network Embedding (VNE) problem. The topic’s impor-
tance has seen numerous VNE algorithms proposed and discussed in
literature, focusing on varied areas of application. In recent times, it
has been the primary methodology for the creation of NSs due to the
flexibility of integrating QoS features.

A formal description of the VNE problem helps to clarify the un-
derlying principles of the methodology. It will also provide an under-
standing of how the VNE can be applied in SDIN.
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Formal descriptions of the VNE problem have been provided by
many authors in literature. These descriptions are often specialized
for particular use-cases; therefore, no single description captures the
entirety of problem [27]. However, Fischer [27] provides a mathemati-
cal description which is very useful to build upon. This reduces the
effort required to treat the entirety of the VNE problem. Therefore,
this thesis leverages the contributions of Fischer [27] by highlighting
the guidelines provided for online and offline treatment of the VNE
problem discussed in Chapter 3 section 1 to 2 in [27].

The reason for leveraging Fischer’s work is in part, the usability of
mathematical definition, and flexibility to adapt and integrate compu-
tational models as part of VNE problem in production-grade SDIN
controllers. However, a deeper look at requirements for the design
of VNE algorithms, modeling of network infrastructures and applica-
tion requirements that enable the creation of dynamic industrial NSs
within the SDIN is needed.

A thorough analysis and mathematical definition of the VNE prob-
lem is given in the thesis of Fischer [27]. The definition given below is
provided to highlight aspects of the problem that can be improved to
design and develop computational models for NSs in the context of
SDN.

3.1.1 Basic concept of the VNE problem

Given a Substrate Network (SN) and a set VNRs, the VNE problem
describes a system of solutions to map VNRs on SN according to the
inequation (3.1) D = {demands}

R = {resources}
G

∑
g=1
D(VNg) ≤ R(SN) (3.1)

where Virtual Network (VN) is the number of VNRs mapped to an
SN.

The VNE problem represents a resource and demand pair where
demands imposed by the Virtual Network Request (VNR) are matched
with the type of resource provided by the SN. In Fischer’s analysis,
demands refer to the virtual nodes’ and links’ capacities which can be
guaranteed by SN node and link resources respectively. For simplicity,
Fischer assumes resources and demands are numbers in R+

0 such that
the value of a demand indicates the amount of corresponding resource
it occupies. This does not necessarily apply in all scenarios. Demands
may sometimes represent requirements such as the application’s com-
munication pattern or application characteristics that are not in R+

0 .
This, therefore, implies a demand may or may not be in R+

0
1.

1 a demand can also be a Boolean operation on a resource
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3.1.2 Formulation of VNE problem

The VNE problem is mathematically formulated using graph theory.
The SN and VNR can each be represented as a graph G, that consists
of a tuple (V , E ) where V represents a finite set of vertices. E represents
a finite set of edges such that each e ∈ E is a set consisting of two
elements {u, v} : u, v ∈ V . Solution to VNE problem consist of three
processes namely:

• the modeling of Substrate Network (SN) as graph that captures
abstraction and representation of the underlying network infras-
tructure.

• the modeling of VNR as a graph which captures abstraction and
representation of application/service requirements.

• the instantiation of VNRs on SN as VNs.

The instantiation of VNs on SN is a process or task handled by VNE
algorithms. VNE algorithms are generally use-case specific as no
single algorithm is best in all scenarios. The VNE problem can be split
into two sub problems;— the Virtual Node Mapping (VNoM) which
deals with mapping virtual nodes on SN— the VLiM deals with the
mapping virtual links on SN. Though the problem can be split into
two sub problems, the VLiM remains an NP-hard problem due to its
combinatorial nature.

Solution to the VNoM problem is to find a node in SN that matches
the demands of a node in VNR. Demand can be a real number in
R+

0 e. g., memory, processors, etc. or a label of a node in VNR that
matches a node in SN. On the other hand, a solution to the VLiM
problem is to find a set of paths within a SN that matches the demand
of a link in VNR. In this sense, a path is defined in the instance of a
SN such that a path between node u and v denoted as Pu,v is defined
as a consecutive sequence of edges between u and v.

Solving the VNE problem requires solutions that must address two
main objectives:

Objective 1 map demands of a VNR on the SN such that all demands of the
VNR are satisfied.

Objective 2 make efficient use of the SN resource in order to accommodate
more VNRs.

Objective 1 deals with modeling of the SN infrastructure as resources,
demands of the VNR as constraints, and constraint verification mod-
els.

The basic operation here is to compare the solutions on a set of
resources to the constraint imposed by the demands. For demands
in R+

0 , if a solution on a set of resources, R, is algebraically less than



3.1 network slicing and the vne problem 37

or equal to the demand, D, (i. e., R ≤ D), then the set of resources in
question is said to be a solution that satisfies the demand; otherwise
the demand on the resource cannot be satisfied. For demands not in
R+

0 , (i. e., D /∈ R+
0 ), simple equality or binary operation is a sufficient

verification.
For a VNE problem, there can be more than one solution or multiple

combinations of a set of resources that satisfy a demand. Therefore, an
algorithm designer can choose solutions such that they fulfill an opti-
mization goal. The decisions on which solutions fit the optimization
goal for a large set of demands makes the problem NP-complete and
thus, strongly NP-hard. This is where the second Objective 2 comes
into focus.

Achieving the second objective (Objective 2) of the VNE problem
requires a discretionary use of the resources on a SN by the algorithm
designer. Often, an approach may perform well in certain areas of
application and perform abysmally in other scenarios due to chang-
ing requirements of the problem space. In literature, e. g., authors in
[32–34], researchers often go for an approach that tries to minimize
the SN bandwidth usage in order to maximize the number of VNR
that can be instantiated as VNs in the SN.

Contrary to this approach, one contribution of this thesis proposes
a Demand Based Approach (DBA) which emphasizes on the steering
demand in comparison to the set of feasible solutions when decid-
ing on the resources that fit the optimization goal. The design and
development of DBA algorithms are discussed in Chapter 5.

3.1.3 VNE application domains

VNE is applied in several areas of network and service manage-
ment. Particularly in cloud and data-center networks, solutions to the
VNE problem are required to instantiate VNs that can be operated as
separate networks on a physical infrastructure. In this domain, it is
required that the topology of the instantiated VN represents an exact
match of the VNR in the SN.

Demands in this area of application requires finding sub-graph iso-
morphic representation of the VNR topology on the SN as illustrated
by Ashahin and Lischka et al. [35, 36]. This implies VNoM can be
achieved on any substrate node as long as numerical attributes of
the demand can be met by an SN node. This area of application falls
under sub-graph isomorphism.

Contrary, within the SDN context, nodes of a VNR are unambigu-
ously defined. This is because they serve as the service endpoints
within a network. Therefore, solution of the VNE problem within the
SDN context reduces to a VLiM problem, where the VNoM process is
assumed to complete successfully [33, 37, 38].

From this point onward, the VNE problem will be conceived as
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a VLiM problem, where the VNoM process has already completed
successfully.

3.1.4 FSFD and ARFE VLiM use-case in SDN

Within the context of SDN, the VLiM problem can take one of two
forms; Fixed-Source-Fixed-Destination (FSFD) and Arbitrary-Root-
Fixed-Endpoints (ARFE). We define the two forms as follows:

Definition 3.1.2. FSFD is a VLiM problem where the mapping of the
source and destination nodes in VNR are unambiguously defined as
two different nodes within a SN whose labels/identity has a one-to-
one mapping to nodes in a VNR.

The solutions to the FSFD VLiM problem are applied in the SDN
context for slicing communication services between applications on the
network where streams are exchanged between only two applications
as shown in Figure 3.2.

Figure 3.2: FSFD and ARFE service topology problem

Definition 3.1.3. ARFE is a VLiM problem where the mapping of the
communication endpoint nodes in VNR are unambiguously defined
but the anchor (Root) node can be any node within a SN.

The solutions to the ARFE VLiM problem are applied in the SDN
context for slicing communication services between applications on
the network where streams are exchanged between more than two
applications as shown in Figure 3.2.

The mapping process for the FSFD and ARFE requires different
mapping strategies just as uni-cast and multi-cast communications are
treated differently in traditional networks.
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3.2 deploying vne in production-grade sdin

For the same VNE problem, the results produced by a VLiM algo-
rithm can vary widely. Fischer’s [27] investigation into the problem
reveals a compelling condition under which such variations can result;
the processing order of VNRs by a VNE algorithm.

Especially in a multiple constraint system, where VNRs impose
different constraints, the acceptance of a VNRi influences the decision
on a VNRi+1 where i = 1, 2, · · · . That is, if the order of VNRs arrival
changes, the results produced by a VLiM algorithm may subsequently
change as well. Therefore, this variation introduces two scenarios
under which VLiM algorithms are evaluated:— offline scenario, in
an offline scenario, the VLiM algorithm designer assumes complete
knowledge of VNRs. Therefore, can decide the processing order that
allows the VLiM algorithm to yield maximum acceptance. This im-
plies the algorithm can run through several iterations of the problem
to find the order which ensures that a maximum number of requests
are instantiated as VNs on a SN. — online scenarios, unlike the for-
mer, assumes no knowledge of VNR characteristics nor their order of
arrival and thus VNRs are processed based on the temporal state of
the VNE problem.

The two scenarios stated above suggest a need for different ways of
deploying VLiM algorithms.

offline deployment in sdin In legacy industrial networks like
Profibus/Profinet, the network is fully pre-engineered before com-
missioning into operation. Once in operation, no new services can be
added dynamically. To add new services, the entire system has to be
halted and the process repeated all over again in a manual reconfigu-
ration process.

An SDIN controller can proactively and reactively control and man-
age the DP. Proactive management is more suited to the legacy systems
where several iterations of the VNE problems can be performed and
results integrated directly by the SDIN controller in the DP. This,
therefore, implies that offline scenarios are better suited for these
kinds of deployments.

However, the offline algorithm is not required to be in an SDN
controller since the entire VNE problem generated is static and param-
eters do not change. Therefore, the individual embedding solutions
are the only relevant results of the problem required for integration.
This notwithstanding, whether the VLiM algorithm can embed more
or fewer requests is inconsequential to how services are provisioned
by the SDIN since embedding solutions are the only required input.

online deployment in sdin Unlike the offline scenario, the
online scenario considers the temporal state of the VNE problem.
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This implies as VNRs arrive and depart, an online VLiM algorithm
should be able to compute solutions based on the temporal state
of the SN as well as the random and sporadic arrival of requests.
This makes the online scenario an interesting use-case where services
can be dynamically added or removed from an operational network.
Therefore, online VLiM algorithms can be integrated into the SDIN
controller for resources orchestration and service provisioning.

To do this, the algorithm must be designed to follow in general a
hypothesis for resource usage that is based on the desired behavior of
the system under study. This is discussed in Chapters 5 and 6.

3.2.1 Designing online QoS-aware VLiM problem

The term QoS-aware VNE algorithm is frequently used in literature
(e. g., authors in [34, 39, 40]). However, to the best of my knowledge
the term is not defined but implied. To better understand and discuss
QoS-aware VNE, a formal definition is provided as follows:

Definition 3.2.1. QoS-aware VNE algorithm is a VN embedding algo-
rithm that computes solutions on a SN to meet network demands of
a VNR using computational models that captures one or more QoS
capabilities of the SN.

A VNE algorithm can ensure service guarantees if and only if it
is QoS-aware. From definition 3.2.1, for a VNE algorithm to be QoS-
aware, three things must be considered:

• the algorithm must have computational models that can estimate
accurately one or more QoS parameters e. g., bandwidth, delay,
reliability, etc.

• the QoS capabilities of the SN must be modeled as an attribute
of a resource in the VNE problem formulation in order for
computation functions to compute precise solutions.

• the VNE formulation should be able to adequately characterize
the demand in the problem formulation in order to enable QoS
computation functions to match demands to SN QoS capabilities.

Depending on the level of abstraction, SN resource and/or an appli-
cations’ demands (in R+

0 ) can be characterized in such a way that
the solutions computed in relation to system(s) under study are not
exact. Regardless of how demand or resources are characterized, a
VNR algorithm does not give any inclination whether the models
are correctly characterized or not. This can lead to solutions that are
unusable in real-world or production networks.

To deploy QoS-aware VNE algorithms in production-grade net-
works, the production network and the applications they support must
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be precisely modeled and represented using graphs. This involves ab-
straction and representation of applications’ demands as VNR graph
and the underlying network, specifically the FP/DP components (e. g.,
queue, shapers, schedulers, port or interfaces) that describe the QoS
features of the production network as an SN graph.

vnr modeling Often in literature (e. g., [29, 30, 32, 34, 39, 41]),
VNRs are modeled simply as a graph that represent a service. De-
mands such as bandwidth, delay, jitter are randomly generated for
each link in VNR. While this may be enough in certain application
areas such as cloud and data-center networks, in other networks where
high precision estimations are required (e. g., TSN), it is realistic to
consider other aspects such as whether the application is sporadic/de-
terministic, periodic or non-periodic. These characteristics are very
relevant if precise solutions are to be computed by the demand esti-
mation function of the VNE algorithm. This is because, the solutions
are only derived based on the interaction of flows or streams of the
application with QoS capabilities of the supporting SN.

sn modeling Likewise, the model of the Substrate Network (SN)
graph must capture the QoS capabilities of the underlying network
accurately. This implies FEs such as queues, shapers/schedulers in
addition to port or interface functionality (e. g., speed of interface)
must as well be characterized as accurately as possible in the SN
model. The characterization involves the topology of the FEs within
each of the NE in the underlay network. This aspect is discussed in the
paper [42] and treated further in Chapter 4 where an SDIN-enabled
TSN is examined as an industrial use-case.

3.2.2 Resource, attributes and constraint relation in VNE problem

In modeling a VNE problem, certain terms and notation are used
sometimes interchangeably. These terms often present a source of
misunderstanding. In order to ensure consistency throughout this
thesis, we will clarify the terms used in the thesis by highlighting the
relationship between them as follows:

constraint-demand relation A demand is an attribute of a
VNR that describes the service requirements to be deployed on a net-
work. These requirements from a mapping and embedding perspective
of VNE define the solution space of a VNE algorithm. Therefore, from
the perspective of a VNE algorithm, a demand imposes constraints
which guide the outcome of solutions. Without constraints, all solu-
tions returned by a VNE algorithm will satisfy all demands, which is
undesirable. In the context of QoS-aware algorithms, demands cannot
be satisfied without constraints. Though QoS-aware algorithms are
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often characterized by the same parameters, it is worth to make this
distinction.

Proceeding further, constraint is used in relation to solutions com-
puted by a VNE algorithm while demand is used in relation to re-
quirements of a VNR.

resource and attributes Fischer [27] and Chowdhury et al.
[43, 44] define resource as the capacity of a link or node in SN that can
be used to fulfill demands of VNR. Generally, resources can take the
form of numerals in R+

0 which describe the characteristics or attribute
of the resource.

Example of resources considered in generic VNE problem include
the number of processors or memory capacity of a node. Bandwidth
is always considered as a resource provided by an SN link. Which
resource belongs to a node or link in the VNE problem depends on
how the designer represents the problem. Bandwidth can equally
be attributed to a node if a node is modeled such that it constitutes
interfaces. Since an interface can be characterized by its speed, it can
also be represented as bandwidth. However, it is simpler to assign
bandwidth as a resource provided by a link that connects two nodes
of an SN. This representation provides easy identification of resources
and their relationships.

Contrary to the definition provided by Fischer and Chowdhury et
al. [27, 43, 44], resources can be referred to as the nodes and links
within an SN, used to fulfill demands of VNRs. The reason for this, is
that whenever VNE is considered in the context of QoS, the definition
by Fischer and Chowdhury makes it difficult to distinguish between
bandwidth as resource and parameters such as delay computed on a
link in the SN.

Also, bandwidth and delay of a link can be characterized as at-
tributes of the link. In this sense of the definition, it becomes simpler
to relate the demands of a VNR (imposed constraints) to the solutions
computed on the SN by VNE algorithm.

3.3 designing qos-aware vlim algorithms

No single VLiM algorithm performs well in all scenarios where they
are deployed. The performance of the algorithm depends largely on
the use-case or the problem area. Whereas a VLiM algorithm may
perform exceptionally well in problem A, it may perform abysmally
in problem B. Therefore, before designing a VLiM algorithm, it is
important to examine the requirements to be fulfilled (e. g., time,
efficiency and accuracy of the solutions) of the problem under study.
The subsequent sections describe requirements which are relevant to
consider when designing VLiM algorithms.
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3.3.1 Efficiency or efficacy

VNE algorithms are generally evaluated based on their ability to
efficiently utilize the resources of SN in order to instantiate more VNs.
In this regard, efficiency is an evaluation metric often attributed to the
optimization of resource/demand pairs (see Fischer [27]).

While efficiency is presented as the sole problem of the algorithm, it
is more related to the designers approach to the problem than the opti-
mization methodology. The use of Mixed Integer Programming (MIP)
or Integer Linear Programming (ILP) methodologies as argued in
some literature [32, 33] does not guarantee that a VNE algorithm
will perform better in terms of acceptance ratio than their heuristic
counterparts within a problem space. For this reason, there is a need
to consider a qualitative metric known as efficacy as an additional
metric that addresses the designers approach to the problem.

Definition 3.3.1. Efficacy of VLiM algorithm is a qualitative metric
that examines the ability of VLiM algorithms to compute solutions
that illustrates the desired hypothesis for resource usage intended by
the algorithm designer in relation to the problem under study.

The definition of the efficacy of the VLiM algorithms enables the ap-
proach of the algorithm’s designer to be evaluated as well. In Chapter
5 and 6 two design choices are discussed, and evaluated on efficiency
and efficacy in relation to FSFD problem together with other algo-
rithms proposed in this thesis for management of SDN-enable TSN.

3.3.2 Time Complexities of VNE algorithms

VNE is a combinatorial decision problem where generally, algo-
rithms must decide among several solutions. Finding the right solution
that efficiently addresses the problem among multiple solutions can
be considered NP-complete, making the problem strongly NP-hard
(see [45, 46]). This is even the case in the reduced problem where
VNoM and VLiM are addressed as separate problems (see Fischer
[27]). This makes the problem computationally intractable even in the
offline scenario where the problem is relaxed by the assumption that
characteristics of the VNRs are known before processing.

Especially in the offline scenario, the order of VNRs can be changed
to find the optimum processing order that achieves the best result in
unsolvable scenarios (see Fischer[27]). This makes the offline problem
strictly concave and/or convex optimization if the objective is to maxi-
mize and/or minimize respectively and thus, are much easier to solve
than the online case.

The online scenario as examined in this thesis is more challenging
because the characteristics of the incoming VNRs are generally un-
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predictable [47] and the search space for every VNR differs due to
the different and multiple constraints imposed by the demands of
VNRs [48]. The online algorithms can be used to dynamically create
NSs due to the characteristics of the problem space.

Therefore, designing online VLiM algorithms, the choice of method-
ology becomes important as algorithm designers find ways to reduce
the convergence time hence, the choice of methodology and the art
of modeling can change from one algorithm designer to the other.
Especially in this thesis, VLiM algorithms are integrated as network
functions of SFCs in the SDIN controller where worst-case response
time for the overall service provisioning process is expected to be
within the same time order as traditional network deployments. This
puts a strict time requirement on the algorithms as solutions must be
computed in the shortest time possible (usually less than 1 second).

Therefore, online VLiM algorithms must be designed such that they
converge in pseudo-polynomial time if not in polynomial time. This
is more related to the methodology used to model the problem and
algorithm.

In chapter 5, an analysis of the commonly used methodologies are
examined to design MIP and heuristic versions of the VLiM algorithms
for the FSFD for TSN-enable SDIN.

3.4 accuracy of solutions produced by vne algorithms

For practical application of VNE, the solution provided by VNE
algorithms must adhere accurately to the service requirements before
it can be used in production networks. It, therefore, warrants that
online VLiM algorithms must be equipped with QoS computation
functions that can derive precise solutions for imposed constraints.
The VLiM problem is considered within the context of Traffic Engi-contribution

from [42] neering (TE) which focuses on QoS guarantees such as bandwidth and
delay [34, 39, 49, 50]. Often, the models considered for the problem
focus on the instantaneous delay of streams, i.e., delay due to network
traffic in an instance of time.

Nonetheless, the delay models are not detailed enough to include
delays introduced by the underlying forwarding mechanisms; hence
they are inadequate to be considered for deterministic, periodic and
real-time requirements in industrial networks. This is because delay
due to FEs (such as schedulers and shapers) contribute very little
to the magnitude of delay requirement imposed by the services (e.g.
video streaming) which are considered to be more tailored to the IT
networks.

On the contrary, delay requirements of ICNs are much stringent
and are significantly affected by shaping and scheduling mechanisms,
aside from being periodic. Also, the worst-case delay scenarios are im-
portant as they provide the necessary information for safety engineers
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to design countermeasures to guide against failure scenarios that may
be caused by packets missing their delivery deadlines. In order to
precisely verify VLiM solutions in relation to constraints imposed by
VNR demands (e. g., constraints such as bandwidth and delay), the
verification functions have to take into account how FEs interact with
flows of the application allocated to an NS.

Furthermore, in the creation of dynamic NSs, the aspect of the delay
required to be guaranteed by a NS is of a worst-case in principle rather
than an instantaneous delay of the individual packets. This is because
regardless of the customization of an NS, the physical resources used
to enforce the guarantees are shared with other NSs which can influ-
ence each other in terms of the performance of the physical resource.
For this reason, the overall load to be accommodated by an NS and
characteristic of the application using the slice must be used to com-
pute a guaranteed worst-case delay bound by which requirements of
flows admitted into the NSs can be used as admission constraints in
the VNE process.

In the subsequent section, we examine and leverage existing method-
ologies for delay analysis. These methodologies will be used in Chap-
ter 4 to formulate computational models which are integrated as
constraint verification functions in VLiM algorithms.

3.4.1 Worst-case delay computation for VLiM problem

Worst-case delay analysis is widely used in deterministic real-time
industrial networks to evaluate the performance of configured flows
rather than their creation. For industrial switched Ethernet networks,
three groups of approaches are examined (c.f. [51]): 1) Simulation [52–
54], 2) Model-checking [55–57] and 3) Guaranteed (exact) upper-bound.
Characteristic of each approach are discussed in the Ph.D thesis of
Xiaoting Li [51].

This thesis emphasizes guaranteed upper-bound because it focuses
on computing delay by considering worst-case scenarios that a flow
can encounter while it traverses a network. The algebraic nature of
the methodologies used to characterize delay makes it flexible to inte-
grate into online VLiM algorithms as computational models that can
verify whether a VNR will be able to guarantee its delay demand if
instantiated as a VN on a shared SN.

In this approach, two important methodologies are considered ana-
lytically in literature for exact worst-case delay estimation— TA [58–60]
and —Network Calculus (NC). The NC approach is extensively treated
in [61–63]. The deterministic and stochastic nature of NC makes it an
interesting theory for computing deterministic and stochastic delay
bounds especially for packet switched networks. However, the results
have been proven to be very pessimistic in its fundamental application
due to lack of conciseness to traffic and network component models.
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Unlike NC, TA is less pessimistic primarily because of the simplicity
of its modeling and mathematical operations. However, the general
concept of a trajectory approach is still applicable to NC.

3.4.2 Trajectory approach to Worst-case delay analysis

To understand the Trajectory Approach (TA), firstly a formal defini-
tion of the approach is given as follows:

Definition 3.4.1. Trajectory Approach (TA) describes the sum of delay
encountered by a packet at each hop in a network from its origin to
its destination along a specified path.
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Figure 3.3: Trajectory approach and worst-case delay analysis for NS creation

To illustrate the delay estimation using the TA, consider a network
of Ethernet bridges (N1 → N3, N2 → N4) connected as shown in Fig-
ure 3.3. Also, let us assume the link between each Ethernet bridge can
forward a total of 108 bits per second. Then, the total bandwidth at
each bridge transmit interface or port (pn, n = 1, 2, · · · ) is 100 Megabits
per second (100 Mbps). Let us also consider three NSs (S1 = 512 bits
per 0.5ms, S2 = 2000 bits per 1 ms, S3 = 12000 bits per 2 ms) carrying
flows with total burst size of 512 bits, 2 kbits, 12 kbits respectively,
then the bandwidth that needs to be guaranteed for each of these
flows is 1024 kbps, 2 Mbps, 6 Mbps.

Considering the TA, the trajectory of flows admitted to the respec-
tive NSs are as follows: Tr(S1) starting at point A and terminating at
point D is given as A → N1.P2 → N3.P1 → D. Likewise, Tr(S2) and
Tr(S3) are given as B → N2.P1 → N4.P1 → E and C → N4.P1 → E
respectively. Where Tr denotes the trajectory (path) of flows in an NS.

Considering the Tr(S1), the delay that can be guaranteed by a NS
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for any flow admitted to it, is given by the time taken to forward the
last bit of the flow during a busy-period. Where a busy-period is defined
in [58–60] as a duration of time for which the forwarding function
has packets to send. This means, the delay of a flow which is ready
to send right at the beginning of the maximum possible busy-period is
the worst-case delay. Any other delay less than the worst-case delay is
instantaneous and cannot be guaranteed by the NS.

The maximum possible busy-period occurs when packets of all com-
peting flows arrive at the same time, and when additionally further
packets of one or more of other competing flows arrive before packets
from the first burst of the flow in focus are forwarded.

In the case of S1, the worst-case e2e delay guarantee for all flows in
the slice as its flows enters and exit N1.p2 and N3.p1 is (2×0.512)Kb

100Mbps =

10.24 µs. Unlike S1, S2 and S3 interfere with each other at bridge N4, p1.
Moreover, the respective bursts of each slice are generated at different
cycles (periodic).

For this computation it is important to define a measurement in-
terval in which the busy-period occurs, i. e., how long the busy-period
lasts. A network cycle (or path cycle) needs to be defined to do this
computation. In this example, one can take the network cycle as the
largest cycle of all NSs within the network and consider all possible
scenarios of packets that can be received at the egress port within the
network cycle or consider an arbitrary measurement interval in which
case, the computed results become pessimistic with long measurement
intervals for application with longer cycles or non-cyclic applications.

The following example explains the concept of network cycle;— con-
sider a video stream with a data rate of 6 Mbit/s. As the maximum
Protocol Data Unit (PDU) size for Ethernet networks is limited to 1500

bytes (=12000 bits), this stream will appear at the egress line as one
packet of 1500 bytes every 2 ms.

For the sake of clarity, let us ignore video compression algorithms’
details leading to variable packet sizes. With this, the video stream network cycle can

be considered more
precisely as path
cycle

appears as a cyclic application from the perspective of the network,
where the network cycle time is 2 ms, which matches S3 in the example
above.

To compute the worst-case delay for a packet of this video stream,
one has to sum up all other flows that compete for the same resources
(transmit interface) and might arrive within one network cycle (2ms).
This will result in a worst-case port delay at N4.p1

(2∗2+12)kb
100Mbps = 160 µs

during a busy-period. This is the worst-case delay that will be expe-
rienced by S2 and S3 if they are treated equally without any form
of shaping or prioritization, which implies the worst-case e2e delay
for S2 over the two hops is ( 2 kb

100Mbps + 160)µs= 180µs while that of S3

remains 160µs over a single hop.
Here, it makes sense that S3 has the least e2e worst-case delay com-

pared to S2 given that it traverses a single hop. It can also be observed
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that based on the load (burst) requirements of the respective slices, the
bandwidth reservation at N4.p1 if expressed as a percentage of the to-
tal bandwidth at the port will be S2 = 2Mbs

100Mbps = 2% likewise s3 = 6%.
However, regardless of their guaranteed bandwidth reservation, the
guarantee on delay is not straight forward as in the case of S1.

Assuming that at N4.p1, S2 is prioritized ahead of S3 then, the e2e
worst-case delay guaranteed for S2 occurs at a busy-period where a
non-preemptive packet (τ bits) of a flow admitted to S3 and the last bit
of flows admitted to S2 exit N4.p1, thus 2×2kb+τ

100Mbps = (40µs + τ
100Mbps s) ≈

40 µs over the two hops.
For simplicity of illustration, τ

100Mbps is neglected for now. Here, we
see for the first time the effect of priority scheduling mechanism in
the delay analysis. It can be observed that regardless of the percentage
of bandwidth reservation, S3 has at N4.p1 and also just traversing a
single hop, the e2e worst-case delay of S2 is much smaller than S3

(=160 µs).
Now, let us consider the scenario where τ

100Mbps is not neglected.
In Ethernet networks, the largest non-preemptive packet size on a
transmission line is equivalent to 1500 bytes (i.e., τ =1500 bytes). In
this case the delay introduced by τ is 12kb

100Mbps = 120µs. Here, it can
be seen that priority scheduling is not even enough. That is, the only
way to guarantee an e2e worst-case delay of 40µs for S2 is to use
time-schedules.

In Chapter 4, the operational characteristics of different forwarding
mechanisms in TSN are examined individually, and in a tandem com-
position as an SDIN use-case. Delay computation functions will be
derived based on the methodology described here, and integrated as
computational models for online QoS-aware VLiM algorithms.

3.5 summary of chapter and bibliographic comments

3.5.1 Bibliographic comments

The concept of slicing is widespread in today’s communication net-
work vernaculars as there exist tons of literature describing the concept
in general [64]. In [65–68], the authors describe various elements and
functional building blocks on network slicing e. g., challenges, require-
ments, orchestrations, enablers, etc. Afolabi et al. [69] in their survey
article, provide an extensive research summary regarding network
slicing from a 5G perspective.

In next-generation 5G networks, the concept of slicing is also pro-
posed to be the bedrock upon which several services emanating from
the different domains such as industrial factory automation, data-
centers and telecommunication can be supported. An article by Zhou
et al. [70], proposes a hierarchical e2e NS as a service (NSaaS), and a
means to facilitate the building of customized and dedicated services
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where the integration of quality assurance by mapping Service Level
Agreement (SLA) is discussed. Trivisonno et al. [71] also propose the
use of an ad-hoc e2e NS in both 5G access and core network for a
massive IoT connectivity use-case which covers a massive deployment
of devices requiring sporadic connectivity and small data transmission
with stringent QoS requirements. These articles discuss the challenges
of slicing pertaining to QoS. However, their proposed solutions are
generally tailored to sporadic applications.

Although majority articles focus on NS in the context of 5G, only
a few consider industrial networks in particular nor provide any de-
tailed descriptions of how NSs can be created in an industrial network.
Kalør et al. [72], identifies abstraction methods and provide e2e delay
analysis for industry 4.0 applications where mathematical models
based on deterministic NC were generated for NS analysis. An NS can
be seen from its users’ perspective as an independent private network
offering services tailored to their requirements. Contrary, from net-
work operators’ perspective, an NS may also exist alongside several
other NSs on the same infrastructure such that each NS is customized
for different services. This customization is realized by logical isolation
of physically allocated resources, abstracted and represented as virtual
resources using solutions to the VNE problem [27, 33, 47].

VNE deals with the research problem of realizing a given number
of VNs on single network infrastructure by mapping requirements of
the individual NSs onto the VN. It has been used in several use-cases
such as TE [39, 49, 50], energy [73, 74] and cloud systems to mention
a few. Particularly those focused on QoS seek to provide bandwidth
and delay guarantees [39, 49, 50, 72]. Often, the models considered for
the problem focus on the instantaneous delay of streams, i.e., delay
due to network traffic in an instance of time. Nonetheless, the delay
models are not detailed enough to include delay introduced by the
underlying forwarding mechanisms, hence, makes them inadequate
for deterministic periodic real-time requirements for some industrial
applications. This is because delay due to these mechanisms (e. g.,
schedulers/shapers) contribute very little to the magnitude of delay
requirement imposed by the services (e.g. video streaming) considered
in their use-cases in terms of the order of magnitude. Contrary, this is
not the case in ICNs as they are much stringent and are significantly
affected by shaping and scheduling mechanisms. Aside from being
periodic, some application have strict release times and hard deadlines;
thus, any form of packet interference on the network must be avoided.

Furthermore, in the creation of NSs, the aspect of the delay required
to be guaranteed by an NS is one that is of a worst-case in nature
rather than an instantaneous delay of the individual packets. This is
what the next chapter of this thesis addresses which is contrary to
current literature.
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3.5.2 Chapter summary

This chapter shows how solutions to existing problems in VNE and
worst-case delay methodologies can be leveraged in SDN-enabled
industrial communication networks for service guarantees.

Although, VNE is used in several areas and use-cases in literature,
none emphasizes the solutions produced by VNE algorithms. Rather,
existing experimental evaluations focus on the statistical data such
as acceptance ratio and convergence time of algorithms, making the
applicability of VNE in production-grade networks unclear.

Examination of the VNE methodology as a tool for the realization
of Network Slice (NS) is provided to illustrate the various facets of
the methodology that can be used in SDIN. Based on the analysis,
guidelines for the usage of VNE in SDIN were outlined. It is shown
that within the SDIN context, the VNE problem reduces to a VLiM
problem where the Virtual Node Mapping (VNoM) sub-problem is
always successful due to the unambiguous nodes of the Virtual Net-
work Request (VNR).

Furthermore, the analysis of the VNE problems reveals that although
VNE algorithms are reported in literature to provide QoS guarantees,
the algorithms themselves cannot give any indications to whether
solutions accurately capture the guarantees. Rather, ensuring QoS
guarantee hinges on constraint verification functions which are largely
dependent on the forwarding mechanism of the underlying Data
Plane (DP).

Based on the outcome of VNE analysis, the chapter provides guide-
lines and recommendations for designing VNE algorithms and differ-
ent types of constraints and how existing methodologies can be lever-
aged in constraint verification functions. Particularly, exact worst-case
e2e delay concepts such as Trajectory Approach (TA) was examined
showing exactly how delay constraint verification functions can be
designed and integrated in VNE problems.

Chapter 4 gives an in-depth step-by-step use of the Trajectory Ap-
proach (TA) in the derivation of delay constraint verification models
on Time-Sensitive Networking (TSN) as a converged network for in-
dustrial applications. Chapter 5 proposes novel VLiM algorithms for
resource orchestration and QoS guarantees in Software-Defined In-
dustrial Networking (SDIN). Finally, the algorithms are evaluated in
Chapter 6.



4
M O D E L I N G D E L AY I N T S N - E N A B L E D
I N F R A S T R U C T U R E

One of the core principles enabling programmability in SDN is the
flexibility of creating services at run-time. Furthermore, it enables the
requirements of different applications to be adapted to the underlying
network technology. Also, with appropriate virtualization mechanism,
one can use SDN features to accommodate applications with very
contrasting requirements as long as the underlying DP possesses
the requisite QoS mechanisms that can enforce the service guarantee
promised or negotiated in the CP.

In Chapter 2, the management and control of TSN using SDN prin-
ciples termed SDIN was proposed. However, clarity on why TSN is
presented as an industrial use-case for SDN was only examined briefly.
The subsequent sections of this chapter will provide an overview of
TSN and why it is the DP technology of choice by examining its fea-
tures in relation to industrial concerns discussed in Chapter 2.

Furthermore, computational models will be derived using worst-
case delay methodologies discussed in Chapter 3.4.1. These com-
putational models are then used as verification functions by VLiM
algorithms (see Chapter 5) for constraint verification as an admission
control mechanism in SDIN controller(s).

4.1 use-case : tsn-enabled sdin

Time-Sensitive Networking (TSN) describes a group of IEEE stan-
dards with the intended goal of introducing deterministic real-time
communication within standard Ethernet-based networks. See Ap-
pendix A.2 for list of TSN specifications. TSN enables Ethernet-based
networks to enforce deterministic guarantees that make them pre-
dictable and ensure guaranteed e2e latency, low jitter and almost zero
packet loss; this allows the convergence of critical and non-critical
requirements on the same Ethernet network.

The standards propose several features which are as of now partly
integrated into the IEEE 802.1Q standard extension. The features ad-
dress topics such as synchronization, queuing and forwarding, stream
reservation, seamless redundancy.

Time-scheduling and synchronization are the key TSN features
which enable deterministically guaranteed packet delivery. These fea-
tures are proposed in the IEEE 802.1AS and 802.1Qbv [75]. IEEE
802.1AS ensures all network devices are synchronized to a common
network clock that enables all devices to be aware of when scheduled
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critical traffic arrives and departs. IEEE 802.1Qbv adds gates to queue
and ensures packets in each queue are held till a schedule permits
their opening. The IEEE 802.1Qbv defines specifications for cyclically
scheduled traffic using Time-Aware Scheduler (TAS). A detailed ex-
amination of the TAS and its relevance are provided in Section 4.2.1.

4.2 mathematical model of tsn nodes

This section introduces the Queue-Scheduler-Link (QSL) model for
TSN nodes. Here, the use of worst-case delay concepts and analysis are
illustrated. This study will discuss the trajectory approach and how
it can be integrated with TSN for deterministic delay guarantees but
first, let’s examine the sources of delay in switched Ethernet networks.

Sources of Delay in Switched Ethernet Networks

A key element to consider in the switched Ethernet network model is
the sources of delay within the network. Those considered in literature
for worst-case performance analysis are introduced below:

forwarding or transmission delay is the time to forward a
packet on the transmission line. It is expressed as the ratio of packet
size and line speed.

queuing or buffering delay is experienced as a result of how
schedulers/shapers handle packets in the same, higher or lower prior-
ity queues. It depends on the given priority with which packets from
queues are processed by a scheduler/shapers in relation to others
queues.

processing or switching delay is caused by packet process-
ing operations in a network device. It comprises e. g., Cyclic Re-
dundancy Check (CRC), address lookup, Virtual Local Area Net-
work (VLAN) table mappings, traffic classification, and ingress polic-
ing. Since lookup table sizes are bounded and the packet processing
time of the device is known, a device-specific upper- bound is often
specified by the device manufacturer. Therefore, switching delay does
not contribute any additional information w.r.t how flows interact
with the forwarding mechanisms.

propagation or wire-line delay is experienced on the trans-
mission medium as a result of signal propagation. It is often specified
by the manufacturer, therefore it is not influenced by packet size. Its
significance depends on the length of the transmission medium. For
short cable lengths in the range of a few meters as used in most ICNs,
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Figure 4.1: Abstraction of network link into QSL model.

they are in the orders of nanoseconds and therefore can be neglected
in performance analysis but not in production-grade networks.

Considering these sources of delay, an abstraction that captures the
effect of the identified components of delay is derived. This is termed
the Queue-Scheduler-Link (QSL) model. Figure 4.1 illustrates the QSL
model abstracted from a direct connection between two Ethernet
bridge ports. The abstraction focuses on the transmit interface of the
port. As shown in Figure 4.1, the most significant components of delay
are the points 1 and 2 as they capture the queuing, scheduling and
processing delay while point 3 captures the propagation delay.

The queuing delay depends on;— queuing discipline used within
the queues and scheduler/shaper type, which selects packets from
queues for transmission. The worst-case delay models are based on
the DP characterized by the QSL model. The QSL model is integrated
into the SN model in Section 4.4.2. A link-queue model was proposed
by Guck et al. [76]. However, the difference between the QSL model
and the link-queue model is the inclusion of schedulers/shapers.
The examination of the delay components shows how the handling of
packets in a queue by scheduler/shapers affect the queuing component
of delay significantly. Which implies that a link-queue model does
not provide an adequate abstraction to characterize delay in TSN for
guaranteed deterministic delays.

4.2.1 Behavioral analysis of TSN forwarding mechanisms

The analysis of delay sources within Ethernet reveals queuing de-
lay as the only source of delay that introduces significant variation
in delay at the transmit port/interface. This variation is caused by
how shapers/schedulers process packets from the respective queues.
Among the features of TSN highlighted in Section 4.1, the basic oper-
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ation of Stricit Priority Scheduler (SPS), CBS, and TAS are examined
next.

strict priority scheduler (sps) The SPS operates on a simple
principle: to provide preferential packet forwarding for packets within
queues in the order of their priority. Based on this principle, an SPS
will continuously forward packets from a higher priority queue until
it is empty before moving to lower-priority queues. This behavior
can lead to significant delays in lower queues and an unfair queuing
system where lower priority queues are overly starved. Detailed oper-
ation of SPS in Ethernet-based networks are discussed in [58–60]

A distinct observation with SPS is, once a packet in a lower priority
queue is put on the transmission line, a packet in a higher prior-
ity queue that just arrived at the transmission port has to wait till
the lower priority packet has been forwarded. In real-time systems,
this behavior is undesirable for Utra-Low latency (ULL) real-time
systems. Therefore, preemptive SPS is used in real-time Ethernet net-
works. However, preemptive SPS cannot preempt the forwarding of a
minimum PDU size as described in Worst-case delay example in Sec-
tion 3.4.2. This, therefore, makes SPS inadequate for interference-free
packet forwarding.

credit-based shaper (cbs) SPS has two significant deficiencies;
starvation of lower priority queues and delay of higher-priority packet
by minimum PDU size. To address unfair queuing, the Audio-Video
Bridging (AVB) group proposed CBS for audio and video traffic as
part of IEEE 802.1Q standard. The main enhancement compared to
the strict-priority scheduler is that it implements a fair scheduling
discipline. Higher-priority queues do not overly starve packets in lower
priority queues. Packets in higher-priority queues are forwarded based
on credit accumulation; that is, a higher-priority queue is allowed
to access the transmission line only if it has a non-negative credit
accumulation.

The AVB specification defines two stream classes (Stream class A
and B) which are mapped to two queues. Generally, the number of
CBS-shaped queues is not limited. All queues access the transmission
line on a strict priority basis if all queues have non-negative credit
accumulation.

For credit-shaped stream/flow, four important parameters must be
defined:

1. High-Credit: this is the maximum credit that a queue can accu-
mulate. This credit provides an upper bound on the number of
bits than can be transmitted in one class measurement interval.

2. Low-credit: defines the minimum credit of a queue. This credit
represents the minimum level to which a credit may be depleted.
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The time taken for credit to accumulate to a non-negative value
represents the queuing delay, a higher priority packet which
arrived just before credit reached the minimum level.

3. Send-Slope: defines the rate at which credit decrease while pack-
ets are offloaded onto the transmission line. A packet can only
be selected for forwarding if the credit of the queue is zero or
greater. Credits can decrease to the limit defined by Low-Credit

4. Idle-Slope: defines the rate at which credit increases whilst pack-
ets are not being forwarded from a credit-shaped queue. Credits
can accumulate to the limit defined by High-Credit.

The parameters described above are derived from the bandwidth
requirements (policy) for credit shaped streams. AVB stream classes
A and B have standardized class measurement intervals, but they are
freely adjustable in general.

Figure 4.2: Time-triggered enhancement of Ethernet bridges for ULL traf-
fics where packets assorted to priority queues are forwarded
based on predefined time schedules. To enable frame forwarding
from specific queue(s), the gate(s) of the queue(s) must be in an
open-state= 1.

time-aware shaper (tas) The Time-Aware Scheduler (TAS) was
introduced by the TSN group to address the second deficiency of the
SPS discipline; delay of higher priority packet by minimum PDU size
from lower-priority traffic. TAS adds a gate to every queue. Packets
cannot be selected from a queue when its gate is closed. At any point
of time, zero, one, or more gates may be opened. If multiple gates
are opened simultaneously, strict priority scheduling may be enforced
between queues with opened gates. Figure 4.2, illustrates the operation
of TAS on the egress/transmit port of an Ethernet bridge.

Assuming a perfect synchronization of bridges and end-stations
(Talker and listener applications), end-to-end time schedules can be
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calculated to ensure no queuing delay occurs for Time-Triggered (TT)
packets. This is because all TT packets have exclusive, pre-planned
time slots to forward packets on every bridge in its trajectory (path).

Note that this also means the ESs send the TT streams of packets
precisely at a pre-planned point in time, otherwise the packets will
miss their epoch and will have to wait for the next epoch. This causes
undesirable interference with the next packet, if the latter is on time.
A detailed work on how the time schedules are computed in SDIN is
discussed in Chapter 5.

4.3 modeling the delay of deterministic services

In Chapter 3.4.1, the worst-case delay concept was introduced. TA
and NC were identified as methodologies that can be applied to
compute the exact worst-case delay.

In this section, the concept and methodologies are applied to derive
delay models for dynamic slicing in the QoS-aware VLiM problem.
First, a generic delay model is derived, it is then adapted based on the
SPS, CBS and TAS forwarding mechanisms. Additionally, a model for
correlated operation consisting of a tandem topology of TAS, CBS and
SPS as an IT and OT convergence use-case is derived.

4.3.1 Trajectory approach

The TA is used to estimate a worst-case upper-bound on the delay at
every hop (egress/transmit port) along a path taken by a packet from
its origin to destination and summed up. Therefore, the e2e worst-case
delay experienced by a packet using an NS (denoted Sn) along a path
Y is given by Equation (4.1):we2e

d =worst-case
e2e delay

pd = worst-case
port delay

Y = number of
hops in the path

we2e
d (Sn) =

Y

∑ pd(Sn) (4.1)

Where pd is the worst-case port delay of NS n (Sn) at a busy-period.
the total delay that occurs at the egress port is defined by Equation (4.2).

fd = transmission
delay

ℵp = switching
delay

pd(Sn) = fd(Sn) + qd(Sn) + ℵp + γp (4.2)

Given the already bounded nature of the propagation (γp) and

qp =queuing delay

γp =propagation
delay

switching (ℵp) delays, it is important that the delay model centers on
load dependent components such as queuing and forwarding delay
(see Section 4.2).

Intuitively, a NS not experiencing any interference from another
NS does not incur queuing delay as a result of packets admitted to
other NSs. This means that a packet admitted to such an NS only
experiences queuing delay from packets admitted to the same NS.
However, since the worst-case delay guarantee is considered from a
slice perspective, we can safely state that the delay guarantee of such



4.3 modeling the delay of deterministic services 57

an NS at an egress port is the same as the transmission delay given by
Equation (4.3): σ = burst of NS

R = transmission
rate of egress port

fd(Sn) =
σ(Sn)

R
(4.3)

Similarly, for an NS experiencing interference from other NSs ad-
mitted to the same queue, the queuing delay experienced at the port
is given by Equation (4.4): Si = all

interfering NSs of
Sn

qd(Sn) =
∑K

i=1 σ(Si)

R
(4.4)

application abstraction The applications which use network
services are often characteristically different, that is, some application
may generate bursts (or burst of packets) periodically while others in
a sporadic manner. Due to this basic characteristic differences, packets
may be processed differently. This also implies that certain forwarding
mechanisms are better suited for some application if QoS e. g., delay
must be guaranteed.

In the case of non-sporadic periodic applications 1, TSN provides
specialized forwarding mechanism in order to meet delay guaran-
tees. For periodic applications with ULL requirements, TSN uses
time-shaped forwarding which is covered under TAS (see Section
4.2.1), application with this characteristics are referred to as Time-
Triggered (TT) applications in this thesis. For periodic applications
with real-time requirements, non-TT periodic applications:— these are
processed with credit-shaping mechanism; — it is covered under CBS.
For sporadic non-periodic applications with real-time requirements,
a simple priority forwarding mechanism is applied; this is covered
under SPS.

Having discussed the generic computational models (i.e, Equa-
tions (4.2) and (4.1)), the derived Equations will be extended w.r.t
to the operations of the individual TSN forwarding mechanisms de-
scribed in Section 4.2.1. The following conditions must apply:

Condition (1) If one or more NSs are mapped to the same queue, packets of
these NSs will be forwarded using FIFO approach.

Condition (2) Packets of NSs mapped to different queues are forwarded based
on the priority of the respective queues.

4.3.1.1 Strict Priority Scheduler

The basic principle of SPS is to expedite forwarding of packets in
higher-priority queues ahead of lower-priority queues as discussed in
Section 4.2.1. This means as long as packets are en-queued in a higher-
priority queue, all packets in lower-priority queues will be delayed.

1 Applications with non-deterministic packet release time can generally be classified as
sporadic regardless of whether they exhibit cyclic or non-cyclic packet repetitions [77].
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Also, per Condition (1) and Condition (2), packets of different NSs
will delay each other. Therefore, the worst-case port delay of a slice,
Sn, assigned to the lowest priority queue, pl

d(Sn), is equivalent to
Equation (4.2). However, there exists the possibility that the largest
non-preemptive packet in any lower-priority queues either than the
lowest priority queue can delay packets of any other queue.

To capture this effect, Equation (4.2) is extended to Equation (4.5) by
introducing δ, where δ = τ

R : τ is the number of bits of the largest non-
preemptive packet in a lower priority queue. This often constitutes a
packet data unit size of 1500 bytes.δ = largest

non-preemptive
packet

pu
d = worst-case

port delay for high
priority queues

pu
d(Sn) = fd(Sn) + qd(Sn) + ℵp + γp + δ (4.5)

pu
d is the worst-case port delay for a packet in any queue but the

lowest priority queue. That of the lowest priority queue is obtained
by neglecting δ. Subsequently, the worst-case e2e delay of a packet in
the lowest priority queue is given by Equation (4.1), (i.e. we2e(l)

d (Sn) ≡
Equation (4.1)) whilst that of a packet in any other queue is obtained
by substituting Equation (4.5) into Equation (4.1) to get Equation (4.6):

we2e(u)
d = e2e

worst-case delay of
NS in an upper

queue
we2e(u)

d (Sn) =
Y

∑ pu
d(Sn) (4.6)

4.3.1.2 Credit-Based Shaper

CBS maintains credits for each credit-shaped queue. While sending,
credits are decreased at a rate defined by the parameter, send-slope.
While not sending, credits are increased according to the idle-slope.
Thus, send- and idle-slopes indirectly define the throughput or re-
served bandwidth for a queue. The epoch for this measurement is
called class measurement interval.

Hi-credit and low-credit parameters limit the committed burst size
of the class measurement interval. If a queue has negative credit,
no packet is selected from this queue, thus packets in lower priority
queues are not overly starved by those in credit-shaped higher priority
queues. In accordance with the AVB standard, two CBS queues for
classes A (the highest priority) and B (lower credit-shaped priority
queue) are defined.

The worst-case port delay CBS adds to a packet of a certain class
occurs when a packet arrives at a time such that all credits for the
class are depleted to the limit of its low-credit thus no frame will be
selected for transmission until credit has increased to zero or higher.

Furthermore, just as the credits accumulate to zero, the packet may
not be forwarded immediately if a non-preemptive packet (τ) from a
lower priority queue is on the transmission line. This means δ is also
introduced just as for SPS. Therefore, the worst-case port delay for
class measurement interval A is derived by Equation (4.7):pA

d = worst-case
delay for

measurement class
A

HA
l = time to zero
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pA
d (Sn) = fd(Sn) + qA

d (Sn) + HA
l + ℵp + γp + δ (4.7)

where qA
d (Sn) is queuing delay due to packets of class A, which arrived

while credit was negative and Hl is the time taken to accumulate credit
to a non-zero value. Similarly, for class B, qB

d (Sn) includes the queue
delay of all packets in class B which arrived when credit was negative.
If the credit of B rises to a non-negative value, and class A has a
non-negative credit, packet of NSs in A will also delay those in B.
Therefore, the guaranteed port delay for NSs in class B is given by
Equation (4.8): qB

d = queuing
delay due NSs in
A and B

pB
d = worst-case

port delay class B

pB
d (Sn) = fd(Sn) + qB

d (Sn) + qA
d (Sn) + HB

l + ℵp + γp + δ (4.8)

Subsequently, the e2e-worse-case delay guarantee of the respective
classes A and B is obtained by substituting Equation (4.7) or (4.8) into
Equation (4.1) to obtain Equations (4.9) or (4.10) respectively. we2e(A)

d =
worst-case e2e
delay for NS in
CBS class Awe2e(A)

d (Sn) =
Y

∑ pA
d (Sn) (4.9)

we2e(B)
d =

worst-case e2e
delay for NS in
CBS class B

we2e(B)
d (Sn) =

Y

∑ pB
d (Sn) (4.10)

4.3.1.3 Time-Aware shaper

Based on the operational characteristic of TAS, an unsynchronized
system can lead to far more delays than SPS and CBS. TAS was
introduced basically to ensure interference-free packet transmission
where exchange of packet between a talker application (e. g., PLC) and
Listener application(s) (e. g., IO-device like a drive) occurs as if there
is direct circuit between them.

TT applications cannot operate well in worst-case scenario, therefore,
worst-case delay computation is not necessary. However, computing
the start-time and gate-events is an important research problem; this
will be examined in Chapter 5. At the start of any gate open window,
if only one queue has exclusive access to the transmission line, there is
no queuing delay. Therefore, the only delay experienced at the egress
port is the transmission delay. This is the case where the NS hosts
TT applications. Therefore, port delay assuming packets arrive within
their gate-open window is given by Equation (4.11). ptt

d = worst-case
port delay of TT
NS with ideal sychpTT

d (Sn) = fd(Sn) + ℵp + γp (4.11)

Subsequently, the e2e delay is derived from Equation (4.11) and (4.1)
as Equation (4.12). we2e(tt)

d =
worst-case e2e
delay of TT NS
with ideal
synchronization

we2e(tt)
d (Sn) =

Y

∑ ptt
d (Sn) (4.12)

For non-TT NSs, multiple gates may be opened at the same time in
which case, packets are forwarded based on queue priority. However,
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all non-TT NSs experience queuing delay during gate-open windows
of the TT NS which may send packets during the busy-period, therefore
non-TT in upper priority queues experience a worst-case port delay
given by equation (4.13).pnl

d = worst-case
port delay for

non-TT NSs in
upper priority

queues

pnu
d (Sn) = fd(Sn) + qd(Sn) + ℵp + γp + δ + χtt (4.13)

The lowest priority does not experience delay due to δ since it emanates
from the same queue, it is already considered in the intra-class queuing
delay, therefore, the worst-case port delay is given by Equation (4.14).pnl

d = worst-case
port delay for

non-TT NSs in
lowest priority

queue

pnl
d (Sn) = fd(Sn) + qd(Sn) + ℵp + γp + χtt (4.14)

Subsequently, the e2e worst-case delay for non-TT NSs are obtained
by substituting Equation (4.13) or (4.14) for upper or lowest priority
respectively in Equation (4.1).χtt = sum of

gate-open duration
for TT within a

busy-period 4.3.2 Tandem composition for converged OT and IT

IT and OT convergence can be achieved in two ways;— using specific
TSN features based on specific requirements of the communication
pyramid (see Chapter 2), or — combining all TSN forwarding features
at an egress port. For the former, the derived worst-case computation
models are sufficient for slicing. However, the later requires correlating
the operation of individual shaper/schedulers in a tandem composi-
tion as shown in Figure 4.3.

In the Figure 4.3, it can be observed that not all the shapers apply
directly to all queues at the egress port of the switch. Nevertheless,
depending on the composition of these shapers with respect to the cor-
responding queues, queues reserved solely for TT, or Credit Based (CB)
or normal priority traffic are referred in the following; TT-queues refer
to queues reserved specifically for periodic time-triggered flows with
ULL requirements, CB-queues refer to queues reserved specifically
for periodic flows with critical delay requirements but are not TT,
and Priority Based (PB)-queues refer to queues that hold non-periodic
flows with relaxed delay requirements.

It can also be observed that the tandem composition of shaper/sched-
uler introduces an inherent precedence to packets of NSs admitted to
the respective queues. TAS affects all queues directly. Each TT-queue
(Q1 & Q2) has an exclusive time window, configured so that packets
from each of the queues experience no interference of any form. All
other queues share the remaining time of the scheduling cycle.

CBS affects Q1 to Q7 directly; however, only Q3 and Q4 are managed
by credits, all queues not managed by credits have to be configured
with infinite idleSlope and a zero sendSlope as shown in Figure 4.3. CB
queues Q3 and Q4 are configured to have finite idleSlope and sendSlope
based on specific allocation for CB packets. Packets in all other queues
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Figure 4.3: Correlation of shapers and queues.

(i.e. Q5→Q7) are scheduled directly by SPS within a non-TT window.
With this composition, Q1 and Q2 are prioritized ahead of all the

other queues within a busy-period, i.e. they get the pre-planned time
window required to forward all planned packets without any queuing
delay. Based on the correlated operation of the tandem shaper/sched-
ulers, the derived Equations for the individual schedulers are revised
as follows:

• TT-NSs maintain the same Equations as defined in Equations (4.11)
and (4.12).

• for CB-NSs, Equations (4.7) and (4.8) must take into account the
delay introduced by the TT traffic during a busy-period, this
results in Equations (4.15) and (4.16):

pA
d (Sn) = fd(Sn) + qA

d (Sn) + HA
l + ℵp + γp + δ + χtt (4.15)

pB
d (Sn) = fd(Sn) + qB

d (Sn) + qA
d (Sn) + HB

l + ℵp + γp + δ + χtt

(4.16)

• non-TT/non-CB NS must as well take into account the queuing
delay introduced by the TT during a busy-period as well as
CB. Therefore, Equations (4.5) and (4.2) are modified to derive
Equations (4.17) for high priority non-TT/non-CB and (4.18) for
the lowest priority queue as follows:

pu
d(Sn) = fd(Sn) + qd(Sn) + ℵp + γp + δ + χtt (4.17)

pl
d=worst-case

port delay for
lowest priority
queue
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pl
d(Sn) = fd(Sn) + qd(Sn) + ℵp + γp + δ + χtt (4.18)

qd(Sn) inherently captures the delay introduced by the CB-NSs.
The e2e worst-case delay for the respective NSs are obtained
by substituting Equations (4.15), (4.16), (4.17), and (4.18) into
Equation (4.1).

4.4 slicing for deterministic applications

This section describes and discusses how the mathematical mod-
els derived from the analysis above can be used to create NSs for
guaranteed service deployment. The analysis is done in the context of
deterministic applications. This implies, the committed burst of the
application does not exceed a known threshold.

The NS creation process represents a demand-resource relation as
discussed in Section 3.2.1, where a set of demands are verified against
resources abstracted from the substrate network. The demands impose
constraints on the solutions computed with the resources. The map-
ping process ensures that demands are verifiable through a preceding
verification process before an NS is embedded. During the embedding
process, resources are updated based on the mapping solutions that
fulfill all demands for a given NS.

Resources are occupied when demands are embedded. This implies,
if a demand (NS requirements on, e.g. bandwidth, delay.) is embedded
in a substrate entity, the relevant resource is exclusively reserved, re-
sulting in residual resource that is used in the subsequent embedding
of other NSs. All the processes described above are undertaken by
a VNE algorithm which can be hosted in a network controller in an
online scenario, or offline in a planning tool. The algorithm uses a
model of the NS which is represented as VNRs with demands and the
SN model composed of abstracted network resources. 2

VNE 
Problem

 modeling

VLiM algorithm

Demand 
verification 
functions

Decision 
function

SN

VNRs
APR

SN

SN +VNs

embed

reject

Figure 4.4: NS creation and VNR embedding process
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4.4.1 Network slice creation process

As discussed in Chapter 3, the accuracy of solutions computed by
the VNE algorithm is dependent on how precise the underlying sub-
strate network is modeled to reflect the QoS mechanism within the
network. Likewise, the accuracy of the VNR model to capture the
relevant characteristic details of applications using the NS.

Figure 4.4 illustrates the entire process for NS creation. As shown,
the process begins with the abstraction of the Substrate Network (SN)
and characteristics of the applications for which the NS is created.
This process is termed VNE problem formulation or modeling. In
the problem formulation, attributes such as AR, which describes the
interaction between the application as well as the Communication
Relation (CR) which describes the QoS requirements are modeled into
VNR graphs (Gv).

Similarly, the SN network entities and connectivity are represented
as an SN graph (Gs). The SN graph must be represented in a manner
that integrates all the necessary features of the SN that influence the
problem space. That is, without an precise representation, solution
computed becomes inaccurate for deployment in production networks.

Furthermore, the VNE algorithms use demand verification functions
which can be formal models that estimate delay, reliability, bandwidth,
etc., to compute solutions as discussed in Chapter 3. These verification
functions may also include simple operations such as matching identi-
fiers of the VNR node to SN nodes in scenarios where the VNoMs are
uniquely defined. If one or more demand verification asserts false, the
decision function of the VLiM algorithm rejects the VNR in question.
If all demand verification asserts true, the set of resources used be-
comes a possible solution. If more than one possible solutions exist for
a specific VNR, the underlying orchestration approach of the decision
function determines which resources are allocated to the VNR. The
decision logic embodies the resource orchestration hypothesis of the
VLiM algorithm designer. The different approaches are discussed in
Section 4.4.3.

In the context of the embedding process, the QSL model (see Figure
4.1) must be integrated in the SN model whilst the e2e worst-case
requirements of an NS and the type of applications admitted to the NS
are abstracted in the VNR model. This enables VLiM algorithms to use
the worst-case delay computation functions described in Section 3.4.1
according to the QoS forwarding capabilities of the network.

2 Application Relation (APR) is sometimes used interchangeably with with Application
Relation (AR)
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4.4.2 TSN substrate network model

The substrate network is modeled as a non-reflexive directed graph
Gs = (V s, E s), where V s = {vs

1, vs
2, · · · , vs

N} is a set of N substrate
nodes and E s = {es

ij}, i, j = 1, 2, · · · , N is a set of substrate edges such
that es

ij represents the connectivity of ns
i to node ns

j . Considering the
non-reflexive property of Gs, es

ij = 0 if i = j, which implies loop-back
edges are not considered as resources. For any edge to be considered
as a resource, ∀es

ij : i 6= j). The superscript s denotes that the resource
belongs in a physical plane (DP).

extension to the edge model using qsl models The sub-
strate edge notation is further extended as e

p
ni
u ,p

nj
v

where pu and pv

denote the interfaces that comprise the source and destination of the
edge on nodes: u, v = 1, 2, · · · . The use of directed graphs implies the
QSL model must integrate directly in the source, i.e. pu, as the source
of the edge represents the transmit interface of the bridge. Addition-
ally, the capabilities and attributes of an interface such as transmission
rate or bandwidth (R ≡ b), propagation delay (ℵp(ep

ni
u ,p

nj
v
)), switching

delay (γs(ep
ni
u ,p

nj
v
)), the forwarding and queuing delay of the respec-

tive forwarding mechanisms discussed in Section 3.4.1 (i.e fd(ep
ni
u ,p

nj
v
).

qd(ep
ni
u ,p

nj
v
)), must be associated to the edge. This enables a VLiM algo-

rithm to compute accurate results. An example of an SN definition file
which integrate the QSL model is shown in Appendix A.3 (Listing A.1).

Virtual Network Request Model: The NS is modeled as a non-reflexive
directed graph GV = (Vv, Lv), where Vv = {vv

1, vv
2, · · · , vv

N} is a set
of N virtual vertices representing the endpoints of the NS. Each NS
endpoint maps unambiguously to a substrate node in the substrate
network described earlier. The superscript v denotes a virtual plane.
Lv = {lv

ij}, i, j = 1, 2, · · · , N is a set of virtual links where lv
ij shows

that NS endpoint vi is connected to NS endpoint vj. The definition of
the VNR requires additionally a definition of requirements associated
with vertices and their connectivity termed demands (see section 3.1).

For each link in the NS, a set of link demands are defined. This
includes maximum load or burst (bandwidth) and delay requirements

of the NS, denoted by B
lk
ij

max, and D
lk
ij

max respectively. B
l
vk
ij

max is expressed
in bits per second. Therefore, in other to define an operation on the
bandwidth in Gs, the periodic burst of the NS must also be expressed
in bits per second. This implies, for NS carrying periodic streams, the
bandwidth = σ

x where x is the period of the NS.
Though this simplifies the model, it also introduces pessimism in

the results. This is because some applications do not generate a single
burst every second. As illustrated in the worst-case delay analysis
in Chapter 3, there can be several busy-periods in a second. For the
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delay computation, an accurate result can only be obtained if burst
per period is used instead of burst per second.

The up-side of this representation, on the other hand is, since band-
width is expressed per second, it provides a straight forward addi-
tion or subtraction operation to verify bandwidth constraints. Ap-
pendix A.3 provides an example of NS request file A.2.

4.4.3 Role of decision functions in embedding process

As discussed previously in Chapter 3, VNE problems are designed
with two main objectives (see section 3.2.1). Objective 1 is particularly
important for NS creation. That is, QoS-aware algorithms are required
to firstly verify constraints imposed by the demands of VNRs on
the resources of the SN before the resource(s) are committed to the
network.

For the QoS-aware VLiM problem, two important steps are required;
Path computation and Path selection.

path computation is an important step in the VLiM problem. In
this step, the QoS demands of VNRs are verified as constraints on the
resources of the SN. Once all constraint verification assert true on a
set of resources, the resources become possible solutions to the VLiM
problem. This implies for each constraint, a verification function is re-
quired. In section 4.3, delay computation models were derived. These
models are used by the VLiM algorithms as delay-constraint verifica-
tion functions for path computation. The path computation process is
discussed together with the path selection process in Chapter 5.

path selection before a virtual link can be mapped, it is manda-
tory to find a path between substrate nodes where the endpoints are
mapped and verify if the demands can be satisfied along the path
(see path computation 4.4.3). Path computation can result in several
possible solutions to a single mapping processes. However, for every
VNR, a single solution must be selected among the several solutions
available. From the perspective of a VNR, the path selection is not so
relevant but, from a resource utilization view point, it is essential how
paths are selected from the solution space. This aspect of the problem
deals with the second objective of the VNE problem (see Objective 2),
which is discussed Chapter 5.

4.5 summary of chapter and bibliographic comments

4.5.1 Bibliographic comments

The realization of virtualized networks on physical infrastructures
depend on achieving two major goals;— embed virtual networks in
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an efficient manner such that the SN is efficiently utilized; — en-
sure that embedded VNs can guarantee the QoS requirements of the
applications that use them. While the former depends on effective
techniques and algorithmic approach for resource orchestration within
the problem space, the latter depends solely on the characteristics of
the applications that use the instantiated VNs and the QoS features of
the SN.

In literature, several researchers have investigated the QoS guaran-
tees of virtualized infrastructures under the theme "QoS-aware VNE"
where bandwidth and latency (delay) are the predominant guarantees
considered [78–84]. A significant occurring problem with these litera-
ture is the homogeneous treatment of delay which seemingly asserts
that latency is mainly dependent on traffic intensity [49]. However,
the analysis provided in this thesis proves contrary to this assertion,
especially for ULL applications in TSN-enabled LANs.

One may argue that at a higher layer such as network layer (L3),
the effect of shapers and schedulers do not significant impact some
applications’ delay requirements; hence, these assertions are valid.
However, to cover a broader spectrum of applications, delay guaran-
tees must reflect the effects of shapers and schedulers.

The estimation of delay especially in Ethernet switched networks is
broadly studied in [52–60]. Although there exist several methodologies
in literature as discussed in the Ph.D thesis of Xiaoting Li [51], not all
methodologies can be applied in the QoS-aware VNE problem within
the context of SDN. This because they are mostly simulations of the
real systems [52–54]. The application of VNE for NS creation requires
accurate estimations to determine whether an NS can surely guarantee
delay demands before they are instantiated, therefore, it calls for exact
approaches.

Two methodologies known for exact worst-case delay estimations
are the Trajectory Approach (TA) and Network Calculus (NC). Notably,
TA which provides a simplistic algebraic analysis, has been applied to
real-time switched Ethernet networks where the effect of schedulers
and shapers such as the SPS and CBS have been studied [58–60].

On the other hand, NC is based on Min-Max-algebra and has also
been used in similar analysis like the TA [61–63]. Though results have
been reported to be very pessimistic, the theory’s pessimism has not be
proven. Though this thesis does not claim to prove it nor analyze NC,
an analysis performed in comparison to TA shows that the pessimism
does not originate from the theory itself but the representation of
arrival curves in relation to the busy-period introduces the pessimism.
Aside from this pessimism, the mathematical operations of NC are
complex in comparison to TA hence requires more effort to compute
solutions.
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4.5.2 Summary of chapter

Service guarantees of an instantiated Virtual Network (VN) depend
on the Quality of Service (QoS) features of the underlying Substrate
Network (SN) as well as the characteristic of applications that use
them. Therefore, the chapter examines in closer detail, components of
the SN which contribute to delay guarantees.

Based on the analysis of Time-Sensitive Networking (TSN)-enabled
Local Area Network (LAN), a Queue-Scheduler-Link (QSL) model is
derived to characterize the effect of the various components of delay
emanating from the effect of queues, shapers/schedulers and links.

Furthermore, a Trajectory Approach (TA) is leveraged to develop
computational models using the QSL model by considering the char-
acteristics of applications and the interaction of their flows within
TSN-enabled LANs. The QSL models are subsequently integrated into
an SN model as part Virtual Network Embedding (VNE) problem
formulation which enables Virtual Link Mapping (VLiM) algorithms
to use the derived computational functions to verify exact delay guar-
antees due to embedded and yet to be embedded VNRs. This, in effect,
ensures QoS-aware VLiM algorithms can provide delay guarantees
for all kinds of applications that use an VN.

The delay models address the effect of schedulers and shapers
such as Stricit Priority Scheduler (SPS), Credit Based Shaper (CBS)
and Time-Aware Scheduler (TAS) when used individually or as the
tandem configuration. The delay models can be used to ensure dif-
ferent kinds of services regardless of the delay requirements of an
application.
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85]

In this chapter, the methodologies for the design of VNE algo-
rithms that address Objective 2 of the VNE problem (see 3.1.2) are
discussed. This begins with the examination of state-of-the-art ap-
proaches followed by the proposed Demand Based Approach (DBA),
designed specifically for the multi-constraint online VLiM problem.
Under the DBA, demands are examined from two perspectives; nu-
merical attributes of the demand ( ∈ R+

0 ), which address QoS,—and
non-numerical attributes, which address the communication pattern
(e. g., multi-cast or uni-cast communication pattern).

5.1 algorithms for multi-constrained vlim problem

In chapter 3, fundamental principles for designing VNE algorithms
were examined. In this section, we will apply these principles to design
algorithms for multi-constrained QoS online VLiM problems within
the FSFD use-case. A Demand Based Approach (DBA) which is pro-
posed in this thesis will be compared to published approaches in
literature.

As discussed in section 4.4.3, path selection is a vital process that
ensures efficient utilization of the Substrate Network (SN) resources
within the VLiM problem. It is often misconstrued to be a require-
ment addressed by optimization methodologies such as Mixed Integer
Programming (MIP) or Integer Linear Programming (ILP). This per-
ception is based on the assertion that MIP/ILP algorithms yield the
most efficient results. However, critical analysis of the problem will
reveal that it is the underlying resource orchestration approach that
determines the efficiency of a VLiM algorithm.

A review of related work [37, 38] reveals a common resource orches-
tration approach used in literature for path selection in the VLiM
problem. This approach is categorized as Shortes Path First Ap-
proach (SPFA) or bandwidth-minimization.

SPFA selects paths for the embedding process based on the richness
of resources in the SN, i. e., whether the path provides the least cost
among several feasible solutions. The subsequent subsections examine
in detail the SPFA.

69
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5.1.1 Shortest path first approach

Definition 5.1.1. Shortest Path First Approach: is an approach that
selects the least-cost path among several possible options that fulfills
a demand.

From definition 5.1.1, the Shortes Path First Approach (SPFA) is in
fact a Greedy Approach (GA) which is synonymous with the short-
est path routing algorithms. The use of this approach in the VLiM
problems can be observed in MIP-based VLiM algorithms which are
defined mainly to minimize resource usage in order to increase the
acceptance of VNRs.

To proof this assertion, let’s examine VLiM algorithms proposed and
discussed in [32, 33, 86, 87]. An objective function that summarizes
concisely the core approach used in these related work is expressed
by Equation (5.1):yg = request

decision variable
xij = is a link

decision variable max{
G

∑
g=1

yg − ε ·
N

∑
i=1

N

∑
j=1

bij · xij} (5.1)

The objective function consists of two parts —a maximization partbij = bandwidth
attribute of links

in SN
ε = normalization

coefficient

which guides the general output of the algorithms, — and a mini-
mization part that determines the approach used by the algorithm’s
designer.

The minimization part (∑N
i=1 ∑N

j=1 bij · xij), minimizes the bandwidth,
(bij), used for a demand, in other words minimizes the number of links.
However, considering constraints imposed by the demands, demands
can either be fulfilled or not. This implies if a VNR has a demand of
2Mb/s, the whole demand must be fulfilled on every link within the
path. This means the approach of bandwidth minimization is in fact
link minimization since bandwidth is concave (non-additive) attribute
that must be satisfied by every link within the path.

This minimization aspect of the MIP based optimization algorithms
will produce the same result as an algorithm that applies a heuris-
tic shortest path algorithm multiple times within the VLiM problem.
This is because both have an inherent design objective to find the
shortest path first for every VNR. The SPFA selection design objec-
tive whether MIP optimization or heuristic based, comes at a cost of
greater rejections in future requests due to its greedy nature. Particu-
larly, demands with stringent requirements when considered in the
scope of multi-constrained VLiM [34, 39].

5.1.1.1 Challenges with SPFA in the multi-constrained VLiM

To illustrate deficiencies of the SPFA for multi-constrained VLiM
problem within the FSFD use-case, Figure 5.1 describes a simple exam-
ple of the problem. The problem requires mapping of VNRs with the
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Figure 5.1: Deficiency of SPFA decisions in the bandwidth-delay constrained
on-line VLiM problem

demands; bandwidth (B), delay (D), hop-count (H) on the SN using an
online VLiM algorithm hosted as a network function in a network con-
troller. The controller provides up-to-date substrate network resource
and attributes to enable the verification functions to compute mapping
solutions for each VNR. The SN has links with 10 units capacity and
5 units delay.

An SPFA VLiM design objective (decision logic) results in the map-
ping of VNR1 on substrate link 1→5 and VNR2 on substrate links
1→6 and 6→5. In the event of VNR3 and VNR4 arriving, there are no
suitable resources with the attributes to meet their demands. There-
fore, VNR3 and VNR4 are rejected despite available bandwidth on
links (1→2, 2→5), (2→4, 4→5), and (2→3, 3→4, 4→5). This results
in low substrate bandwidth utilization which subsequently leads to
low embedding ratio of requests with tighter demands and the overall
embedding ratios of the algorithm.

In this simple illustration, it can be observed that the path selection
decision leads to such an outcome. It further asserts that efficiency of
the VLiM algorithm does not depend on formal methodologies such
MIPs/ILP but fundamentally the algorithm designer’s approach to
path selection. This has been duly noted by Trivisonno and Guerzoni
et. al. [34, 39]. This path selection approach leads to the following
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problems:

• Rejection of future delay critical requests and subsequently lower
VNR embedding ratios [34];

• Under utilization of the physical infrastructure due to saturation
of critical substrate links (delay critical bandwidth) [34, 39, 86];

• High computational time due to the need for re-mapping of
requests.

To address this problem, a Demand Based Approach (DBA) to path
selection is proposed in this thesis. The description and design of DBA
algorithms for FSFD use-case in the online VLiM problem is discussed
next.

5.1.2 Demand-based approach

Definition 5.1.2. DBA is an approach that selects the highest-cost path
among several possible paths that fulfills a demand.

The DBA is derived from a careful analysis of the multi-constrained
online VLiM problem. The online nature of the problem present two
fundamental challenges considering Objective 2, where a decision on
path selection must focus on increasing the overall acceptance ratio as
well as efficient utilization of the SN.

The underlying hypothesis for the design is, if path selection is
considered in the context of the best solutions alone as done in rout-
ing algorithms, critical demands may be declined as illustrated in
Figure 5.1. Given that the characteristics of the request are unknown
before processing begins, it is better to make path selection decisions
that serves a demand based on its requirements.

From definition 5.1.2, the goal of DBA is to find a solution that
serves a demand but not necessarily the best solution in the problem
space. Therefore, ensures that solutions are selected appropriately per
demand, leaving enough room for future critical demands. DBA algo-
rithm (Demand Based virtual Link Embedding Algorithm (DBvLEA))
computes all possible solutions that can satisfy the demands of a VNR.

Given that non-additive attributes of demands must be fulfilled on
every link on a path, DBA focuses on the additive attributes of the
demand such as delay, hop-count and jitter. For each set of additive
demand, it selects one that is most relevant to the applications that
will use the services of the VN if instantiated. Then, it selects the path
which results in the minimum deviation to the additive attribute of
the solution.

Still referring to Figure. 5.1, upon the arrival of VNR1, a DBA algo-
rithm computes all feasible paths between node A and C that satisfy
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the hop-count, delay, and bandwidth attribute of the demand, i. e.,
([B: 10, D: 20, H: 5]). It then chooses, for example, if delay is the focus
of applications that will use the VN, the path which minimizes the
difference of the actual path delay and the maximum delay of the
demand. In the case of VNR1, path (1→2→3→4→ 5) is chosen.

Applying the same logic upon arrival of VNR2, VNR3 and VNR4,
will result in path (1→2→4→ 5) and (1→2) chosen respectively for
VNR2, VNR3. This allows VNR4 to be mapped to path (1→2) as well.
In this regard, a DBA algorithm achieves 100% acceptance ratio com-
pared to 50% acceptance ratio of any SPFA algorithm.

In effect, considering a multi-constrained online VLiM problem
in the FSFD use-case, a DBA algorithm will always perform better
than an SPFA algorithm w.r.t Objective 2. The next section describes
the design of DBA algorithm within the online VLiM problem using
MIP/ILP and heuristic methodologies.

5.1.3 Designing DBA algorithm for online VLiM problem

Following the general methodologies used in literature, a MIP ver-
sion and heuristic versions of the DBvLEA are designed. The use of
a combination of heuristic and MIP are emphasized to reduce the
number of decision variables that make any MIP problem NP-complete.
This is to enable the computation of solutions in a pseudo-polynomial
time if not polynomial time. That is, reducing the solution space to
only feasible paths before optimizing for the embedding path. This is
done by using loop-free K-path algorithms to compute a set of paths
that fulfill the constraints and then perform a minimization of the
deviation of the paths that fit the solution space of the VNR demands.

In effect, the number of equations (which is quadratic) that are
required to solve the problem is reduced, resulting in a pseudo-
polynomial time complexity.

dba : mip formulation The general MIP objective function is
shown in Equation (5.2). Contrary to [33, 34, 39, 86], the variable dij is
used in the objective function instead of bij. This is because bandwidth dij = delay on a

link from node i to
j

requirements impose non-additive constraints and must be fulfilled

bij = bandwidth
on link from node i
to j

on every link along a path. Therefore, it is logical to use an additive
(convex) constraint such as delay or hop-count since additive attributes
of the demand impose constraints that are aggregated for the whole
path rather than a single link in the path. Dmax =

maximum delay
constraint

max{
G

∑
g=1

yg − ε · ((
N

∑
i=0

N

∑
j=1

dij · xij)− Dg
max)} (5.2)

i = j = 0 : i, j = 1, 2, · · · , N where N is the number of nodes, G is the ε = normalization
coefficient
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total number of VNRs, yg and xij are decisions variables such that:

yg =

{
1 gth VNR is mapped

0 otherwise

and

xij =

1 yg is mapped in−−−−−−→ es
ij

0 otherwise

Based on the reduction technique discussed, Equation (5.2) can be
reformulated as Equation (5.3), where all paths are in the feasible
solution space for the gth VNR.

max{
G

∑
g=1

yg − ε ·
K

∑
j=1,pj∈P

(d(pj)− Dg
max)} (5.3)

where P is the set of paths within the solution space of the gth VNR,
K being the total number of candidate paths and j = 1, 2, · · · , K.
The objective function for VNR mapping for Equation (5.2) and (5.3)
are subject to the following constraints:

es
ij · xi,j 6= 0 (5.4)

Bk
max ≤ bes

ij
· xij (5.5)

N

∑
i=0

N

∑
j=1

des
ij
· xij ≤ Dg

max (5.6)

N

∑
i=0

N

∑
j=1

es
ij · xij ≤ Hg

max (5.7)

∀ es
ij, dij, ∈ E s,As

es
ij

and Dg
max, Hg

max ∈ Dg.

Equation (5.4) is a topology constraint which imposes that a VNR
can be mapped to a substrate resource (link) only if it exists.
Inequations (5.5) to (5.7) are constraints imposed by the QoS demands
(Dg

max, Hg
max) of the gth VNR respectively.

δg=deviation
variable of the

gthVNR Algorithm 5.1: DBvLEA; Computing ODP

1 Input : g ∈ Gv , Gs

Output : yg , podp
begin

i n i t i a l i z e : yg ← 0 , podp ← 0 , δg ← i n f . ,P ← ∅ ;
P ← ComputePaths ( g , Gs , Bg , Dg , K) ;//Yen ’ s K path algorithm

6 f o r p ∈ P : do
i f Dg − d(p) ≤ δg : do

δg ← (Dg − d(p)) ; podp ← p ;
endfor ;
yg ← embed ( g , podp ) ;
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11 i f yg == 1 : do
updateResource ( Gs , Bg ) ;
r e tur n yg , podp ;

end

Considering Equation (5.2), the time complexity for finding a least-
cost path in the minimization part of the objective function is O(N2),
since there are ≈ N2 decision variables. This is a quadratic function
with ≈ G · N2 decision variables that must be exhaustively analyzed
by the branch and bounds algorithms used in MIP solvers. For very
large topology, this complexity may be reduced by introducing some
heuristics before selecting the Optimal Demand Path (ODP).

dba : heuristic algorithm The heuristic version of the DBvLEA
algorithm that uses an objective function similar to Equation (5.3) is
illustrated in Algorithm 5.1. In line 5, Yen’s k-path algorithm is used to
compute all paths that meet the demands of the gth VNR. This ensures
that all paths are within the solution space of the gth VNR before
demand based optimization is performed. Line 6 to 9 computes the
optimal demand embedding solution as described in Equation (5.3).
The path that sufficiently fulfills the demand is referred to as Optimal
Demand Path (ODP), (podp). Lines 10 to 12 embed the gth VNR and
updates the resources and attributes of the SN respectively.

The idea of reduction is to use an algorithm that converges in at
least pseudo-polynomial time as a filter to compute all possible paths
that fall within the solution space of the gth VNR before selecting
an ODP. To achieve this, the DBvLEA algorithm starts by leveraging
the Yen’s loop-free k-path algorithm, which has a time complexity of
≈O(K log N(M+N log N)) . M= number of

links
K= number of
paths

The combination of Equations (5.3) and Yen’s loop-free K-path
algorithm yields a time complexity of O(K log N(M+N log N)+ K) for
a single VNR. For a total of G VNRs, a time complexity of
O(K (G+log N(M+N log N)) is achieved.

Evaluation of the SPFA and the DBA algorithms are discussed in
Chapter 6.

5.2 application topology-aware vne

5.2.1 Application and Communication Relation

At the core of distributed automation systems is the necessity for
reliable exchange of information. Any attempt to steer processes in-
dependently of continuous human interaction requires the flow of
information between Automation Function (AtF) such as sensors, con-
trollers, and actuators of some sort [2, 88].

On a functional level, Olaya et al. [89] describe AtFs as entities
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within automation systems which represent identifiable actors of the
productive environment where the relationship between AtFs are char-
acterized by AR. Per the definition from IEC 61158 [90], ARs may
represent material, energy or information exchange between AtFs.
Whenever such exchange refer to information, it is characterized by
Communication Relation (CR). Therefore, CRs describe the communi-
cation requirements of information exchange within an AR.

Although ARs and corresponding CRs are specified as abstract
functional requirements of the productive environment, industrial net-
works are required to allocate resources that realize the CRs of an AR
within a productive environment on a physical network. This requires
the mapping of the functional viewpoint on the physical network.

Often, ARs manifest certain attributes that impose strict topologies
on the communication pattern described by their CRs. A common
occurrence which often determines how legacy industrial networks
are constructed especially in factory automation results in network
topologies such as trees, rings and lines (bus) [91]. These kinds of
topologies are optimized to serve the productive environment.

Within TSN-enabled LANs, such specialized topologies do not exist.
However, they can be constructed by VLANs derived by decentralized
tree algorithms specified in IEEE802.1Q. Whilst VLANs can often be
very difficult to deal with in terms managing individual CRs, this
challenge can be ameliorated by the use of Network Slice (NS) that
are instantiated as VNs within the SDN controller, where resources
for individual CRs can be managed in a virtualization plane before
they are committed to the SN.

Achieving resource allocation especially for tree based topologies
requires specialized VLiM algorithms. However, due to the FSFD na-
ture of slicing within the SDIN context, varied solutions may manifest
due to the root node selection [91]. Root nodes do not occur in ARs
nor their CRs hence an easier or faster way to define the VNR is to
use network endpoints which peer with ARs or CR endpoints.

However, this approach does not necessarily lead to efficient use
of the SN and often requires significant configuration effort. The sub-
sequent sections describe the design of algorithms for mapping NSs
that exhibit tree topologies as a result of the communication pattern
imposed by the relation between applications that use them.

5.2.2 Tree mapping algorithm

Contrary to the previous approach, tree mapping algorithms take
into account the definition of the VNR before applying VLiM for
respective links in the VNR. This is because the root node is unknown
from an AR/CR perspective. However, depending on the root node,
solutions produced can be very different.

For a given CR emanating from an AR, a root node is selected for
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Talker/Listener(s) tuple to form a tree. The root nodes then serves
as the anchor node from which each link within the VNR is mapped
using a VLiM algorithm. The root nodes can be selected based on 3

criteria:

• Listener Root Bridge (LRB) selects a common bridge within the
SN to all Listeners in the tuple.

• Talker Root Bridge (TRB) selects a bridge within the SN con-
nected directly to the Talker within the tuple.

• Rendezvous Root Bridge (RRB) selects a bridge within the SN
that is central to Talker and all listeners within the tuple.

Solutions produced by the line/tree mapping VLiM algorithms based
on the selected root bridge are used as scheduling topologies whenever
the CR requires the use of TT schedules. The subsequent sections
address TT schedule computation from a VNE perspective.

5.3 overview of time-aware scheduling in tsn

In TSN, the goal is to configure NEs in order to send time-critical
packets to meet arrival deadlines. Time critical applications can be
periodic/aperiodic with sporadic or deterministic packet release times.
Transmission of time-critical streams can be served by priority schedul-
ing (preemptive SPS or CBS) as discussed in Section 3.4.1. However, a
periodic application with deterministic release times and hard dead-
lines requires network bridges to support enhancements that enable
packet forwarding from an egress queue at specific epochs of time.

This enhancement for scheduled traffic (periodic/deterministic contributions in
this section are
from [85]

release time) is enabled by TAS, (specified in IEEE 802.1Qbv). TAS
serves as a time enforcement mechanism positioned at the egress of
priority queues on the transmit interfaces of Ethernet bridges. The
main functions of TAS is to dynamically enable and disable selection
of packets from respective priority queues onto the transmission line
based on predefined epochs (time schedules).

TAS uses clock/time-driven schedulers to control queue access to
the transmission line by associating a transmission gate with each
queue. The state of a gate determines whether packets from a queue
can be selected for forwarding. The gate of a queue can only be in
one of two states; open or close. A gate event is triggered at the end or
beginning of a time interval. This causes a gate transition from an open
state to a close state or vice-versa;— A gate-close event disconnects the
transmission selection function of the forwarding process (forwarding
function) from the queue(s) hence prevents packets of that queue from
being selected.

On the other hand, a gate-open event allows the forwarding func-
tion to select packets from the queue. The sequence of gate operations
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can be scheduled to allow packets of periodic Time-Triggered (TT)
applications to be forwarded in a timely manner without any form of
interference. To ensure gate(s) of the queue(s) are opened or closed in
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Figure 5.2: Operation of TAS in relation to periodic TT packet forwarding

the exact times, the bridges maintain notion of a working clock which
synchronizes all switches and ESs. Since TAS allows each egress port
to run its own schedules, the release time of the packet as well as the
gate event at each egress port must be synchronized to a common
clock ( specified in IEEE 802.1AS).

Figure 5.2 shows a TAS positioned at the egress of priority queues
as well as illustrates the operation of network of TAS. As shown, pack-
ets from different ingress ports are assorted into the priority queues.
For each egress port, the sequence of gate-events are specified by a
Gate Control List (GCL). The GCLs consist of several epochs (time
schedules), which are used by a time scheduler to change the state
of the gate of each queue. See Appendix A.3 for an example of time-
scheduler algorithm.

In Figure 5.2, a periodic TT application releases its packet at Tr

which is assorted to queue 3. At time t0 till t1 of switch A.P1 and
switch B.P1 relative to Tr, the gates of queue(s) 2 & 1 are closed whilst
queue 3 is opened. This allows packets sent by the TT application
to be forwarded without any interference from non-TT packets. At
time t1 the gates of queues 2 & 1 are opened for non-TT packets while
queue 3 is closed. At t2 the gates change state per the GCL. The cycle
of gate operations will continue in a periodic manner until a new GCL
is installed at each egress port.

To create NSs for multiple independent periodic-TT applications,
two challenges must be addressed:

• Determining whether a group of independent periodic TT appli-
cation can be scheduled.
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• If they are schedulable, can a feasible schedule be computed.

The former deals with determining the feasibility of a scheduling sys-
tem1 termed "schedulability" 2 and the later deals with the allocation
of resources at several epochs of the scheduling cycle considering a
scheduling system. The next section describes how this problem is
addressed.

5.4 slicing with time-scheduling in focus

Aside bandwidth, delay and topological constraints identified pre-
viously, time scheduling of bandwidth cannot be fully considered
in the same frame. Regardless, allocating bandwidth for periodic TT
applications does not occur on arbitrary topology. This is because,
in addition to finding a resource graph that matches the communi-
cation pattern of the applications, the set of periodic applications
ought to be compatible within the scheduling system (i. e., can be
scheduled together). Therefore, after finding a topology that matches
the source and destination(s) as well as bandwidth and delay as per
Equations (4.11) and (4.12), one has to determine if the network cycle
or periods of applications to be scheduled are feasible. To address this
issue, the following terminologies and constraints are discussed next.

5.4.1 TAS terminologies and formal scheduling constraints

time-interval per queue or application In the context of
a queue, time-interval presents the duration between gate-open and
gate-close events. However, in the context of a periodic TT applica- εi =

σn
Rij

σn= packet size of
the nth TT
application

tion, it represents the time taken to forward a single packet on the
transmission line or as deadline for completion of periodic task on the
transmission line.

Given that the packet release time of each TT periodic application
is predetermined, the gate of a queue can be opened for contiguous
amount of packets till the next gate-close event. In this sense, the
time-interval between gate-events from the perspective of a queue can
be considered as the sum of execution times of multiple periodic TT
applications. In the subsequent sections of this thesis, the time-interval
is referred to as the execution time (ε) or sum of several ε that exist
between gate events.

application/scheduling cycle The application cycle refers
to the time interval between consecutive jobs (packets) sent by each
periodic application. The scheduling cycle on the other hand referred

1 Scheduling systems is a set of periodic applications to be scheduled.
2 Schedulability asserts whether feasible schedules exist or can be computed for a set

of periodic applications within a scheduling system.
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to as Cycle-Time is the overall duration for repetition of consecutive
scheduling regime.

Mostly, time-triggered scheduling applies to deterministic periodic
systems [92]. Even though aperiodic or sporadic tasks can be accom-
modated, they must be done within a periodic frame [77, 92]. For a set
of periodic applications, the Least Common Multiple (LCM) of all cy-
cles of the individual applications can be considered as the scheduling
cycle. However, the most important requirement is that all cycles in
the scheduling system must be a harmonic of the scheduling cycle. For
a simply periodic system, the scheduling cycle is equal to the largest
cycle in the system which is also equal to the LCM. Therefore, the
analysis of the scheduling systems are restricted to simply periodic
systems.3

5.4.1.1 Scheduling computation constraints

size constraint of gcl The sequence of gate-events in a GCL
is defined as ordered entries of octet-string values with each octet
encoded as a Type Length Value (TLV) as follows (c.f. [75]):

• The first octet of each TLV is an unsigned integer representing a
gate operation;

• The second octet of the TLV is the length field which indicates
the number of octets of the value that follows the length. A
length of zero indicates that there is no value (i.e., the gate
operation has no parameters); This also defines the number of
gate events.

• The third through to (length -1) (i.e. 3rd, 4th, · · · , (length− 1)th)
octets encode the parameters of the gate operation, in the order
that they appear in the definition of the operation in IEEE802.1Qbv
Table 8-6.

From the definition above, the maximum size of GCL is attained when
all 8 bits of the length (L) octet are ones (i.e. 28 = 256). With this
bound, there can be a maximum of 256 gate-events (123 each of gate-
open and gate-close events). The upper bound on gate-events results in
scheduling constraints when considering different application periods.
This problem is further discussed in the next paragraph.

application periodicity constraint Consider N periodic in-
dependent talkers generating a maximum packet burst-size σn within
a period pn where n = 1, 2, · · · , N represents the number of talkers to
be scheduled. Let also assume the gating-cycle to be at least H, the
LCM of periods of all talkers to be scheduled. Then the number of

3 A set of periodic applications are said to be simply periodic if the LCM of periods
within the system is equal to the largest period.
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packets generated by the nth talker in the hyper-period H is expressed
as fn = H

pn
. Thus, it follows that for a group of periodic TT talkers,

the total number of gate events (close and open) required in a GCL,
denoted Fs, is given by Equation (5.8).

Fs = 2 ·
N

∑
n=1

fn = 2 ·
N

∑
n=1

H
pn

(5.8)

On the other hand, let Goe
min be the minimum number of gate-open

events. Intuitively, every gate-open event may correspond to a gate-
close event of the other queues and vice-versa. Then from the GCL
definition Fs ≤ 123. This also impose a constraint on the periods of
the applications that can be scheduled. Therefore, from the analysis,
a periodic system that consists of periods that are not harmonics or
integer multiples of each other will result in very large number of
gate-events.

However, as discussed in the previous paragraph, the definition of
GCL limits configuration to a maximum of 123 events per port. That
is if a single queue is considered for periodic TT packets and all other
queues for sporadic packets4. Hence, another reason to consider TT
applications that have periods which are harmonics of each other (or
precisely simply periodic).

5.4.2 Scheduling problem definition and network models

T1

Tn

T…

GCL

GCL

GCL

GCL

V1 V2 L…

L1

Ln

Figure 5.3: Example of a network model with GCL forwarding from Talker
End-Station (s) T1,··· ,n to Listener End-Station (s) L1,··· ,n

network model Time-sensitive network consists of bridges, links
and End-Station (ES). An ES may consist of a producer and/or con-
sumer applications termed Talker and Listener. As illustrated in Fig-
ure 5.3, TAS exists on the transmit interface and packets are forwarded
towards the listeners. For simplicity, the network is modeled in a uni-
directional view from the Talker to Listener(s) by extending the graph

4 Note that, sporadic applications can also be periodic but with arbitrary packet/job
release times.
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model from Section 4.4.2. This is represented as a non-reflexive di-
rected graph G = (E ,V), where E = {eij} is a set of edges and
V = {vi} is a set of nodes. Each eij = vi → vj ∈ E is characterized by

the following attributes; 〈WK
ij , Rij〉 where WK

ij =
t
(w1

ij, · · · , wk
ij, · · · , wK

ij )

denotes the total time window for scheduled traffic on queue k
(k = 1, 2, · · · , K: K ≤ 8) of node vi, and Rij is the maximum line
speed of eij.

extending vnr model for tt applications Listener applica-
tions do not generate any packets and thus they do not put any load
on the network. Therefore, the focus must be on packet generating
applications (i. e., Talkers). The VNR model introduced in Section 4.4.2
for TT applications must also be extended as follows:—
Let a Talker be a TT periodic application Appn that generates streams
of data packets of size σn at a frequency fn. This application is de-
scribed by a triplet Appn = 〈φn, pn, εn〉 where φn, pn, εn denote the
phase (startTime), the period (i. e., the time interval between two con-
secutive packets), and the maximum transmission time or packet
duration on the forwarding line (execTime) respectively. The execution
time (εn = σn

Rij
) on a link eij.

problem description Given a networked of TAS, G and Apps =
〈Appn = (Φn, pn, εn), n = 1, 2, · · · , N〉, a set of N periodic TT applica-
tions. The problem consists of two parts; firstly, verify the feasibility of
scheduling a group of periodic time-triggered applications. Secondly,
determine the optimal phases φns and subsequently the GCL on each
TSN bridge along the trajectory of their flows such that they arrive ex-
actly within their planned transmission window on each bridge. Thus,
eliminates queuing delays at the bridges. This also implies an ideal
clock synchronization is required and, therefore, effect of clock drifts
are omitted from the analysis. Regardless, clock drift can easily be
factored in as a constant within each window as part of a guard-band.

5.4.3 Schedulability analysis and verification algorithms

For the problem described in Section 5.4.2, the solution is decom-
posed in two parts. The first part consists of determining whether
flows of a set of Talkers can be scheduled. The second, deals with
using the "schedulability" information to determine the start-time and
subsequently the gate opening times along the path.

preliminary conditions for schedulability The schedul-
ing system consist of a set of periodic independent applications (Talk-
ers). The periodicity of the applications imposes constraints which
make it difficult to determine "schedulability". For this reason, the
following conditions are used:—
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• The scheduling system is simply periodic. That is, for a set
of independent Talker applications, the scheduling system is
simply periodic if for each pair of Talker applications, say Appi
and Appj are such that pi ≤ pj, ∃ n ∈ N∗ an integer verifying
pj = n× pi.

• The periods of all applications are natural: pi ∈N∗.

• The exectime, εi, of the ith application is less than its period pi
(i.e εi ≤ pi).

• The network uses an ideal clock synchronization. Therefore,
all nodes in the network are perfectly synchronized. However,
without this, one has to respect the clock jitter which can be
factored into the time-intervals as guard-bands.

• The network topology consists of M bridges with a single ren-

dezvous point: v1
l12−→ v2, · · · , vM−1

lM−1,M−−−→ vM. Thus, it can safely
be stated that Wk

1,2 = Wk
2,3 = · · · = Wk

M−1,M ∀k as the packets
transit from one bridge to the next.

5.4.4 Utilization condition

The utilization of a system S of N periodic independent applications
is defined as:

US =
N

∑
n=1

Ui =
N

∑
n=1

εi

pi
(5.9)

Following the proof by Liu et al. [77], a system S of N independent
periodic tasks may be schedulable if US ≤ 1. Regardless, a feasible
schedule may not exist even if the above condition is met. If jobs
are preemptive and deadlines (d) are at least equal to periods (i.e.
pi ≤ di) and the system is simply periodic, then a Rate Monotonic
Scheduling (RMS)5 algorithm is optimal. In other words, whenever
US ≤ 1, it can be assured that S is schedulable using RMS [77].

Since periodic independent tasks are considered in the context of a
network where the generated jobs are simply the packets that need to
be forwarded, one can safely state that it is not required to immediately
send a packet once generated. Rather, it can be stored, if needed, until
the next packet is generated, before being forwarded at the Talkers,
i.e., pi ≤ di is always respected. However, it must be emphasized that
though this condition is valid for preemptive tasks, it does not hold
true for non-preemptive tasks. In the TSN, a TT application cannot be
preempted within its own transmission window.

Also, given that no packet must interfere with any other packet of
any TT application, preemption must be ignored entirely in the scope

5 RMS is a priority scheduling algorithm that assigns the highest priority to shorter
periods, hence schedules applications with shorter periods ahead of longer ones.
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of TT flows, thus optimality might be missed and can result in the
rejection of some TT applications.6

5.4.5 Verifying the schedulability of the scheduling system

In this subsection, the analysis considers a single queue for periodic
time-triggered applications due to constraint on the number of gate
events, however, the analysis is easily applicable to multiple queues.
As explained earlier, the scheduling system consists of N periodic
talker applications. Firstly, the schedulability of the scheduling system
is verified using Algorithm 5.2. This is done by considering a single
rendezvous point. In this case, starting with the bridge directly con-
nected to a Talker ES as shown in Figure 5.3 is the same as starting
with a rendezvous bridge (node). The rendezvous node (specifically
port) is any port where all TT applications contend for time-slots.

Lines 1→ 10 initializes the parameters where H is the LCM of the
scheduling system (H = wk). It is also referred to as the hyper-period
or the scheduling/network cycle.

Tp (Tab Possibilities) is a data structure that saves in cell i the max-
imum number of possible talker applications of period p = i and
execution time ε = 1 unit that can possibly be scheduled in the system.
Tp is of a size equal to the biggest period in the scheduling system (i. e.,
for a simply periodic system, this corresponds to the hyper-period
H ≡LCM).

S f ree =number of
consecutive free

slots Algorithm 5.2: Schedulability and Relative Phase computation

1 Output : As , Apps.Φi
Input : {Apps = appi = (Φi = ?, pi , εi), i = 1, · · · , N} , Gs

Data : Tp , H , bw
begin

i n i t i a l i z e :
6 H ← LCM(app.pi ; app ∈ Apps) ; As ← zeros ; bw ← H ;

f o r app ∈ Apps : do
app.φi ← NaN ;

f o r i from 1 to s i z e ( Tp ) : do
Tp[i]← i ;

11 Apps← s o r t P e r i o d s { Apps.p } ;
S c h e d u l a b i l i t y :

f o r app ∈ Apps : do
i f app.ε ≤ Tp[app.p] & ≤ bw : do

i← 1 ;
16 while i < H: do

i f As[i] == 0 : do
S f ree ←getConsecut iveFreeS lo t s ( i, H, As ) ;
i f app.ε ≤ S f ree : do

app . Φ← i− 1 ; break ;
21 e l s e i← S f ree+ 1 ;

e l s e i← i+ 1 ;

6 Optimality in the sense of number of TT applications that can be scheduled not
in terms resources (bandwidth). This is because non-TT windows can be used to
forward sporadic flows.
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endwhile
f o r i from 1 to s izeOf ( Tp ) : do

Tp[i]← Tp[i]− app.ε× i
app.p ;

26 updateTimeSlots ( app.[Φ, p, ε], H, bw, As ) ;
e l s e r e j e c t ;

end

Note that Tp[i] = x can be interpreted in many ways:— either one can
schedule " x applications of period p = i with execution time ε = 1 unit",
or, " x

2 applications of period p = i with execution time ε = 2 units (given
that x

2 ∈ N)", . . . , or " 1 application of period p = i with execution time
ε = x" units.

Initially, Tp[i] is obviously equal to i. Also, As (Available Slots) is As = available
time-slotsa binary table of H elements (time units) showing free slots on each

link. Where, 0 means a free time-slot, 1 indicates a used time-slot. 0 = free
1 = usedInitially, all the time-slots are available (all set to 0) and every time a

new application is accepted for scheduling, its respective time-slots
in As, occupied by its generated packets (ε time-slots every p slots,
starting at φ, the phase to be determined) is turned to 1.

Lines 12→ 23 verifies whether a Talker application is schedulable
by assigning them time-slots within the scheduling window. Besides,
their relative phases with respect to the scheduling/network cycle
of the first bridge to which the Talker ESs are connected must be
computed. If an application appi is not schedulable then it is ejected
from the scheduling system (i. e., would not be scheduled in the
current scheduling system), if it is schedulable then the algorithm sets
its relative phase φi which is the index of the first time-slots it occupies
within the scheduling cycle. Afterwards, the Tp and As are updated
accordingly.

The algorithm keeps track of the biggest window (bw, line 6) of bw = longest
consecutive empty
time-slot in As

consecutive empty slots in As. This enables the algorithm to run
a quick test on the schedulability of the current application appi.
Basically, if the size of the widest empty window, bw, is greater than
execution time εi of appi, then appi can be scheduled (Line 14). If
appi passes this test, the algorithm starts looking for the first empty
window that can host the application. The beginning of this window
indicates the initial phase, Φi, to be assigned to appi. For this, the
algorithm iterates over As until the first bw is found. This indicates
that the application is accepted for scheduling (Lines 16→ 23). In fact,
this line can be simplified or removed entirely by noting as well the
index zero of bw in As.

Next, Tp, As and bw are updated. It is obvious to see here that a newly
accepted application will affect the number of possible applications
(i.e. all cells in Tp) that can be scheduled. For cell i (storing the number
of possible applications of period i that can still be scheduled in the
system), Tp[i] should be decreased as indicated in Line 25 depending
on the execution time εi and the period pi of the newly accepted
application.
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The output of Algorithm 5.2 are the relative phases (Apps.Φ) of all
schedulable TT applications, and available time-slots table, As, which
represents a mask of occupied-slots and free-slots over the entire
scheduling cycle. This does not represent the actual schedules that can
be configured on a bridge. This will be discussed in section 5.5.

5.4.6 Schedule-aware VN mapping

Figure 5.4: Admission control for online schedule-aware VLiM for slicing
periodic TT applications

Traditionally, TAS schedule computation and configuration occur
as an offline system, where schedules are pre-computed and fed di-
rectly into the Management Information Base (MIB) of the respective
switches. Using the SDN controller as a feedback control provides op-
portunity to have a plug-and-play or event-driven resource reservation
and schedule computation. To do this, the schedulability algorithm
integrates into the VLiM algorithm. Figure 5.4 illustrates the corre-
lation of VNE and TAS schedule computation for TT NSs. That is,
before the actual schedules can be computed, a VLiM algorithm that
is schedule-aware is able to assert whether the constraints imposed by
the TT application can be fulfilled or otherwise, for a given topology.

5.4.6.1 Online schedule-aware VLiM algorithm

Algorithm 5.3 shows the integration of schedulability algorithm and
traditional VLiM algorithms in what is termed schedule-ware VLiM.

The idea of the combination is to provide an online system capable
of asserting whether an application can fit to an existing VN instan-
tiated for TT applications or if not, can one be created for such an
application. This implies, dynamic NS creation algorithms described
previous using the online VLiM should have the capability do so.
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Schedulability is not a VNE problem, therefore, it must be integrated
as as a demand verification function just as the topology and delay
verification algorithms.

To accomplish this, the TT application is converted to VNR with all
the characterization for TT applications described in Section 5.4.2 (see
Algorithm 5.3, line 4). Before schedulability can be asserted, a schedul-
ing resource graph is required. This means a set of links between the
Talker and its listeners must first be found. Using topology-aware
VLiM algorithms, a set of virtual topologies that illustrate the commu-
nication pattern of the TT application (see Algorithm 5.3, line 6 ) is
computed. For each VN, if there exists a TT schedule for an existing
NS, the rendezvous scheduling port must be identified and checked if
the scheduling cycle is harmonic of the TT application period to be
scheduled. If this check asserts true, then the delay and schedulability
of the TT application is verified. However, if no TT schedules exist
on any of the links in the VN, then any node within the VN can be
selected as the rendezvous point, (see Algorithm 5.3, line 14).

Algorithm 5.3: Schedule-Aware VLiM

Input : appn , Gs

2 Output : yg, Ps ⊂ Gs , As(es
ij) , appn.Φ

begin
i n i t i a l i z e : gv ← convertToVNR ( appn ) ; Ps ← ∅ ; yg ← 0

VN graph
VN ← computeVNs ( gv, Gs ) ;// using algorithm 2

7 f o r VN ∈ VN : do
i f gv.p harmonic of VN. p : do

xg ← ver i fyDelay (VN, gs ) ;// using equation ( 4 . 1 2 )
sg ← S c h e d u l a b i l i t y (VN, gs ) ;
i f xg & sg == 1 : do

12 Ps ← VN ;
yg ← 1 ;
r e turn yg, As , appn.Φ

endfor
end

If the delay verification and schedulability test assert true, the VN in
focus becomes the scheduling graph, the algorithm returns this graph,
the rendezvous node (port) with the scheduling mask As and relative
scheduling phase, Φ of the application. The result of this algorithm
can then be fed to a GCL computation algorithm as illustrated in
Figure 5.4. The schedule computation algorithm is described next.

5.5 gcl event computation

Computing the Gate Control List (GCL) on each bridge along the
trajectory of the packets from a Talker ES requires a reference start-
time Tr on the talker ES, and the gate events (gate-close and gate-open
times) on each bridge.

This is integrated into Algorithm 5.2 by adopting a RMS approach
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where the scheduling system is sorted in increasing order of periods
in line 11, thus gives priority to applications with shorter periods.
However, note that scheduling applications in the decreasing order of
their periods (reverse RMS) results in scheduling more applications
within a hyper-period than RMS as shown in Equation (5.8). This
of-course is dependent on the scheduling system and the goal of the
service creator, therefore, it can be left as a scheduling preference of
the user of schedulability algorithms. In either case, the number of
gate-events occurring in very large H can be reduced only if gates are
opened for contiguous amount of packets belonging to independent
TT applications. This prevents the use of multiple queues for TT
applications.

Figure 5.5: Output solution illustrating the schedule computation of three
periodic Talker applications (App1 = 〈Pi = 4, ε1 = 0.5 unit〉,
App2 = 〈Pi = 8, ε1 = 1.0 units〉, App3 = 〈Pi = 16, ε1 = 1.5 unit〉
using Algorithm 5.2

Figure. 5.5 shows the results obtained from Algorithm 5.2 consider-
ing a simple scheduling system that consists of 3 Talker applications
(App1 = 〈Pi = 4, ε1 = 0.5 unit〉, APP2 = 〈Pi = 8, ε1 = 1.0 units〉,
App3 = 〈Pi = 16, ε1 = 1.5 unit〉). In this example, the first bridge
connected to the Talkers is the rendezvous bridge.

In this bridge, one simply needs to open/close gates according to the
generated mask on the egress port where all TT application contend
for resources, As (i.e. Table 5.1), of Algorithm 5.2, where a 0 means a
slot with a closed gate and a 1 means a slot with an open gate.

The same schedule mask is applied to the second and third bridges
by taking into account the inter-bridge delay due to propagation,
switching and transmission (inter-bridge Offset) as described by Equa-



5.5 gcl event computation 89

tion (4.12).
Till this point, the computed schedules are made as if the talkers

Table 5.1: Time-slots (As) used as scheduling mask

Index (i) 1 2 3 4 5 · · · H

As 1 1 1 0 1 · · · 1

are running at the bridge (i.e. delay, called initial off-set (γ), from
the talker to the bridge is 0) in Algorithm 5.2. Thus, to compute the
reference start-time Tr for each Talker application, the initial phase
obtained from the schedulability analysis must be rectified to coincide
exactly with the closing and opening of the scheduling window of
each bridge along the path. Rectifying these phases is more complex
than a mere shift. This is because the physical connection between the
Talker ESs and the edge (rendezvous) bridge may not be the same for
all talkers due to different cable lengths or the fact that they might not
all be emanating from a common source.

Algorithm 5.4: Phase Rectification Algorithm

Input : Apps[.] = 〈Appi = (Φi , σi , pi)〉
Output : AppStartTime ( Tr [.] )
Data : initialo f f set : γ[.]

4 begin
f o r i ∈ Apps[.] : do

Tr [i]← Φi − γ[i] ;
endfor
maxAbShi f t← min (Tr [Apps])

9 f o r i ∈ Apps : do
Tr [i]← Tr [i]−maxAbShi f t ;

endfor
re turn Tr [.] ;

end

This situation is illustrated in Figure. 5.6, where the scheduling order
of the Talker applications calculated by Algorithm 5.2, does not neces-
sary imply the same order of first packet firing. The most important
thing that needs to be respected is to ensure that the first packet of
the different TT applications reach the rendezvous bridge exactly as
specified in the computed schedule. For this reason, the initial as-
sumption that the talkers are running at the bridges must be rectified
using Algorithm 5.4. Here, the reference start-time (effective release
time) of each application must be calculated in a way that respects
the schedule mask computed by Algorithm 5.2. This can be done by
taking into account the delays due to the variable cable lengths to the
edge bridge ( or rendezvous bridge), denoted γ (initial-offsets).

In algorithm 5.4, every application Appi, should start firing γ[i]
units of time before its computed phase Φi. This is done in the first for-
loop of the algorithm (Lines 5− 7). Once these shifts are performed,
all the new starting times need to be put in the same time reference
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(i. e., absolute time referential), thus the need to shift all of them with
maxAbshi f t (Lines 9− 11).

In the example depicted in Figure 5.6, the maximum shift is given
by App2, and thus its release time can be regarded as the time origin:
Tr[i]← Tr[i]−maxAbShi f t = maxAbShi f t−maxAbShi f t = 0. Whilst
this shifting of scheduling mask suffices for line, ring and tree topol-
ogy with single resource contention point (rendezvous interface), a
much generic shifting algorithm is required for tree topology with
multiple resource contention interfaces. This part is currently reserved
for future work. The number of gate-events for queue, k, triggered

Figure 5.6: Rectification of relative schedule phases for GCL computation
considering absolute reference clock. The delay between Talkers
and the edge bridge as well as inter-bridge delay are used as
offsets for calculating absolute time for gate-events on the bridges
using Algorithm 5.4 and 5.5 respectively

by application, Appi, on each bridge is determined by the number of
generated (informed by the application cycle pi) within the scheduling
window (wk = H) of each egress interface. This means there are a
total number of 2× wk

pi
gate events generated solely by Appi. This

is because for every gate open event, there is a corresponding close
event.

In accordance with Equation (5.8), the total number of events can
be obtained by simply summing over all applications in the system.
However, the number of gate-events can be reduced significantly
if gates are opened for an uninterrupted transmission of contigu-
ous packets from independent TT applications, in which case, Algo-
rithm 5.4 can be ignored entirely and replaced by using Equations spec-
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ified in IEEE 802.1Qbv for start-time computation (see [75] 8.6.9.1.1).
For this, one needs only to rely on the output of Algorithm 5.2, i. e.,
As.

Recall that Table 5.1 is an example of such an output As, the time-
slot occupancy state of a bridge as calculated by Algorithm 5.2.
To reduce the total number of generated events, a GCL illustrated by
Table 5.2 can be derived from As. Suppose that the number of events
are reduced to n, then, row k in Table 5.2 represents the events indices
(k = 0..n− 1), t[k] is the starting time of the kth event in the relative
time referential of the considered bridge; and A[t[k]] represents the
corresponding gate-events: open (i.e. op) or close (i.e. cl).
The duration of an event, say i, is simply given by the difference
between the starting time t[i] and its next event t[i + 1]. Information
from Table 5.2 is fed as input into Algorithm 5.5 to compute the GCL
for each bridge along the trajectory of the packets on the network.

Again, shifts that rectifies applications’ phases w.r.t their inter-bridge
offsets need to be accounted. Whilst the former shifts are rectified by
Algorithm 5.4, the latter is obtained by iteratively computing the time
origin for bridge bri from the time origin of its predecessor along the
path, bri−1, and the transmission delay between them, which is given
by interBrO f f set[i][i + 1].

Table 5.2: Transformed scheduling Mask (As)

k 0 1 2 3 4 · · · n− 1

t[k] 1.0 3.0 1.0 3 1 · · · 10

A[t[k]] op op cl op cl · · · cl

Algorithm 5.5: Per Bridge GCL Computation

Input : interBrO f f set[][] , initialRe f StartTime , path[]
2 Output : baseTime[.]

Data :
begin

baseStartTime[1]← initialRe f StartTime ; //source bridge
f o r i from 2 to s i z e ( path ) : do

7 baseTime[i]← baseTime[i− 1] + interBrO f f set[i− 1][i] ;
endfor

end

Note here that initialRe f StartTime represents the first event in the
absolute time referential, corresponding to the release of the first
packet in the system by a TT application. Path denotes the ordered
sequence of switches/bridges relaying packets from the talker ESs to
the listener ESs.

Finally, it must be emphasized that not all Talker ESs may be
connected to a single bridge (V1) as shown in Figure 5.7. There may
exist scenarios where the Talker ESs start at different bridges but
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Figure 5.7: Scheduling mask As computation takes into account the point of
contention (rendezvous point) where TT applications meet. Com-
plex Tree topology results when different application converge
at more than one point. A Ring topology can be treated as a line
topology because of the position of TAS

may require time-slot allocation at a common egress interface, termed
the rendezvous point. The best-case topology scenario is when all
Talkers are connected to single bridge and require time-slots on a
single interface. In this case, the scheduling mask (As) is computed at
the first rendezvous point and shifted along the path. This represents
a simple line topology which suffices for a tree topology as well. That
is if T4 is added, As must be computed at the second rendezvous
point. However, for multi-hop trees, the scheduling mask may start
from several rendezvous point(s) such that there can exist primary and
several secondary points where one or more TT applications contend
for time-slots and thus making it difficult to obtain a globally efficient
time-slot allocation. This may require several iterative use of extended
tree algorithms, hence, can result in huge convergence time and thus
may not be adequate for online deployment.

Another approach may consider superimposing the scheduling mask
for multiple rendezvous point to find a unified mask that works for all
or most applications. These aspects are, however, reserved for further
investigation.

Considering the positioning of TAS on each port of a TSN bridge, a
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Ring topology can be treated in the same manner as a Line topology.
This is because TSN bridges use duplex links and given that TAS only
operate on transmit interfaces, there are no time-slot contention in the
opposite direction of the same port.

5.6 summary of chapter and bibliographic comments

5.6.1 Bibliographic comments

Resource assignment can be performed in several ways using VNE.
However, the general approach to any VNE problem is to embed a
set of virtual nodes and/or links on a SN. Hence, the design of VNE
algorithms depend solely on the problem space and the outcome an
algorithm designer may want to illustrate. As a result, there exist tons
of VNE algorithms in literature as presented in the surveys of Fisher
and Belbekouche et al. [93, 94]. As VNE is employed in new areas or
use-cases, this number is expected to grow.

Within the context of SDN, several VNE algorithms have been de-
veloped to ameliorate the resource allocation and QoS problem [33,
39, 82, 84]. While most of these algorithms are able to achieve their
design goals, often the lack of specificity to the underlying system
makes it difficult to use results of the algorithm in production systems
and thus, remains an academic conquest.

In this thesis, the integration of such specificity has been achieved
due to the flexibility of the VNE problem formulation. This has al-
lowed aspects of schedulability analysis and the mapping of functional
requirements in the VNE problem.

Although VNE formulations are flexible, concepts or problems such
as schedulability that occupy different problem space cannot be in-
tegrated if the approaches in such space are not flexible themselves.
Several aspects of schedulability analysis have been treated in litera-
ture for real-time communication in the automotive and automation
networks [85, 92, 95–99]. Some of which are based on Satisfiability
Modulo Theory (SMT) [100]. Specific to TSN and the TAS schedule
computation, Craciunas et al. [97] presented formal constraints for
creating window based IEEE 802.Qbv schedules, some of which were
highlighted and discussed together with additional constraints in this
thesis. Contrary to these related work where synthesis of schedules
are obtained using SMT solvers to validate scheduling formulations,
this thesis develops a heuristic solution for the verification and com-
putation of time-triggered schedules as part of the VNE problem.

5.6.2 Summary of chapter

Often, VLiM algorithms are designed with the intended goal of
minimizing SN utilization in order to instantiate more VNs. In the
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online application of VNE, such an approach to multiple constrained-
QoS VLiM problem results in sub-optimal results. This chapter pro-
vided a thorough analysis of existing greedy approach and proposed
the design of a VLiM algorithm which employs a Demand Based
Approach (DBA). The DBA is developed on the hypothesis that for
multi-constrained VLiM problem, a demand-centered approach solves
challenges of greedy approach, therefore, uses the SN efficiently.

Furthermore, functional requirements such as Application Rela-
tion (AR) and corresponding Communication Relation (CR) involves
the use of tree topologies which require iterative use of VLiM algo-
rithms. However, mapping tree topologies can yield varied results due
the selection of an anchor node (root node). Therefore, the proposed
VLiM algorithm is enhanced with root selection features which enable
the VLiMs to efficiently use SN resources in the case of ARs that
impose tree CRs.

The final contribution of the chapter considers resource allocation
for Time-Triggered (TT) applications, where VLiM algorithm is en-
hanced with schedulability algorithm within the VNE problem. The
subsequent chapter provides analysis and performance evaluation of
the respective features of the VLiM algorithm.



6
E VA L UAT I O N O F V N E A L G O R I T H M S I N S D I N

To ascertain that algorithms perform according to design objectives,
they need to be evaluated via experimentation before deployment in
a production environment. This enables the algorithm designer to
verify the underlying hypothesis of the design. Important information
derived from such experimentation gives the designer an idea of how
the algorithms will operate under certain conditions.

Particularly for online scenarios, the focus lies more on how the
algorithms handle demands rather than the solutions produced. This
is because the requests and resources used during a simulation are not
necessarily the same as those in the production network. As explained
in section 3.2.1, the statistical results of a VNE algorithm does not
provide any insights to whether solutions computed are accurate or
not. This aspect has been established in this thesis to depend solely
on the precision of demand verification functions and the details of
the VNR and SN models. These models depend on the underlying
network technology. On the other hand, inferences can be made from
the statistical data provided by the respective VLiM algorithms to
pinpoint precisely where one algorithm performs better than the other.
This, in effect, helps the algorithm designer to improve or change the
design hypothesis where necessary.

For such evaluations, it is logical to test VNE algorithms and de-
mand verification functions under different conditions to examine
its influence on the results. In this context, simulation is a preferred
method for VNE algorithms and demand verification functions. Exten-
sive simulation experiments for VNE algorithms require specialized
codes which sometimes have to be developed from scratch. However,
it is much flexible and practical to extend existing simulators as bugs
in the simulation code becomes less likely ( cf. Fischer [27]).

This chapter presents the performance evaluation of VLiM algo-
rithms and demands verification functions using the Algorithms for
Embedding of Virtual Networks (ALEVIN) VNE simulator [47].

6.1 evaluation of vlim algorithms

The ALEVIN framework is an extensible VNE simulator that en-
ables the integration of new metrics and models for VNE evaluation.
In its current state, it is only designed for offline evaluations where
characteristics of VNRs and their order of arrival are predetermined.
This implies in unsolvable scenarios (see Fischer [27]), acceptance ratio
of algorithms depend largely on VNR arrivals.

95
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In the multi-constraint QoS use-cases, this is undesirable as QoS de-
mands are often very contrasting and the result can be challenging to
interpret.

Furthermore, the SN model needs to be modified to integrate the
QSL model as discussed in section 4.2, as well NS model in the VNR
model. This enables the VLiM algorithms to apply the demand ver-
ification functions effectively. The subsequent sections describe the
simulation environment and parameter settings for the evaluation of
the VLiM algorithms.

6.1.1 Evaluation environment and ALEVIN extension

The simulations are carried out using a set up of the ALEVIN frame-
work on a 64 bit windows machine with 4x2.6GHz processor cores
and 16GB Random Access Memory (RAM) capacity.

To maintain consistency of the underlying topology and NS requests
with classes and structure of ALEVIN, it is necessary the there exist a
consistent format for data representation between production SDIN
controller and the simulator. This therefore requires codes that convert
the slice request and substrate data structure to models that are con-
sistent with the simulator data structures. An example of the SN and
NS formats which are parsed in the ALEVIN simulator can be found
in Appendix A.3. Furthermore, extensive description of the ALEVIN
framework is provided in the thesis of Fischer (see [27, 47]).

6.2 evaluation of demand-based mapping algorithms

This section presents evaluation and analysis of demand context
algorithm in comparison with the least-cost selection algorithm in an
online multiple constrained link mapping problem. Here, we examine
the underlying hypothesis that informs link mapping decisions leading
the two path selection approaches.

6.2.1 FSFD use-case for VLiM

As discussed previously in Section 3.3, the use-case analysis focuses
on a fixed source and destination pair. This is because the node map-
pings are always unambiguously defined in the VLiM TE use-case (see
[32–34, 39, 101]). The use-case considered for our simulation is similar
to the use-cases proposed for SDN-enabled 5G virtual core network in
[34] and critical utility networks in [102] with the integration of TSN as
proposed by 5G-ACIA ([103]), targeted at industrial communication.

Communication between applications such as motion-control sys-
tems and Input/Output device (IODs) or actuators can be achieved
on the same network together with video surveillance, sensors, and
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Table 6.1: Traffic class and VNR QoS Profile

QoS Class Traffic Class burst (bytes) Delay (µs)

1 Real-time high (RT-H) 64− 68 1000− 2500

2 Real-time low (RT-L) 68− 128 2500− 5000

3 Video surveillance 512− 1500 ≥ 50000

alarm monitoring communication services. The use-case considered
for the evaluation is depicted in Figure 6.1 where the realization of
communication between field applications and control applications
over a backbone TSN network are examined.

Here, communication services for real-time control traffic such as
between a PLC and robot arm require very stringent e2e delay. Video
surveillance and alarm monitoring services, which are also delay and
bandwidth centric, are realized on the same network. For the use-case

Figure 6.1: Multi-service communication over backbone Ethernet network

examined, the communication services are categorized into three traf-
fic classes requiring very different demands on bandwidth, delay and
hop-count as shown in Table 6.1. Two real-time traffic classes repre-
senting QoS class 1 and QoS class 2 for high and low cyclic (low and
high transmitting) applications. For example sensor/alarm monitoring
applications. The third traffic class is for video surveillance or monitoring
designated for QoS class 3.

For each class, minimum and maximum demands e. g., bytes and
delay are defined. VNRs are generated to represent traffics emanating
from each class. The set of demands are defined by a random variable



98 evaluation of vne algorithms in sdin

uniformly generated between the range of minimum and maximum
demand limits as shown in Table 6.1.

The substrate topology is generated randomly with an average node
degree set to three and node connectivity probability set to 0.5 for core
nodes. Two edge nodes are defined and connected at two or more core
nodes with the highest node degree in the network. This is done to
ensure that the bottleneck in the network occurs within the core of the
network instead of the points at which the control and field device
connect to the network.

Also, we define a traffic-mix ratio to determine the percentages of
total VNRs that are generated per QoS class by the virtual network
generator of ALEVIN. For simulation purposes, the traffic-mix ratio
is set to 35% for QoS class 1 and 2 each, 30% for QoS class 3. The
traffic-mix ratios of QoS class 1 and 2 are intentionally defined to be
slightly more than QoS classes 3 to compensate for the low bandwidth
demand of the VNRs in the class. This allows the analysis to focus
more on the additive constraints such as delay rather than bandwidth.

To ensure a fair comparison, a mandatory condition for the online
simulation requires that all algorithms process the VNRs in the same
order of arrival.1 Hence, the traffic-ratio of the QoS class 1 and 2 does
not affect the efficiency of the process as all algorithms receive the
VNRs in the same order.

A total of 10 simulation runs are taken per network size and the
average results are evaluated at a confidence level of 95%. The goal
of the analysis is to compare SPFA and DBA based embedding ap-
proaches on the following metrics as often investigated in literature
[32–34, 39, 101]:

1. Overall acceptance ratio: is the ratio of successfully embedded
VNRs and the total number of requests that arrived during the
simulation.

2. Substrate links utilization: is a measure of the ratio of load
accepted and the overall bandwidth ( and effective bandwidth)
within the network.

3. Rejection or Blocking ratio per class: measures the number of
VNRs per class that were rejected, expressed as a ratio of the
number VNRs that arrived per class during the simulation.

4. Computational time: is the time required for an algorithm to
process a VNR.

The DBvLEA is compared to a constrained SPF VLiM algorithm which
epitomizes the SPFA design goal used in literature. It must be em-
phasized that SPFA MIP versions used in [32–34] from the analysis

1 If requests are not processed in the same order of arrival, the interpretation of
embedding results can be erroneous as algorithms may selectively choose requests
that improve their outputs
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presented in section 5.1.1 produce the same results as constrained
shortest path algorithms. This is also noted by Trivisonno et al. [32–
34], where the gains in the case of their MIP version are as a result of
the bulk processing of VNRs which can lead to situations where more
VNRs belonging to a critical demand class may exist in a bulk submis-
sion of VNRs. To show this effect, a version of the VLiM algorithm is
included, where an embedding solution is selected randomly from the
feasible set of paths computed by the Yen’s k-paths in Algorithm 5.1
line 7 tagged as Random Path Approach (RPA).

6.2.2 Analysis of results

Figure 6.2 shows the results for the overall average acceptance ratio
and link utilization for a network size of 22 nodes and 300 VNRs over
10 simulation runs with a confidence interval of (2.26, 2.24), (2.32, 2.25),
(2.21, 2.16) for DBA, RPA and SPFA respectively. Figure 6.5 shows
similar results for increasing network size plotted as a bar chart.

Figure 6.2: Acceptance on network size of 20 nodes

Referring to Figure 6.2, it can be observed that due a high per-
formance substrate network conditions, all algorithms show good
acceptance ratio in the beginning of the embedding process but gradu-
ally dwindles as the substrate network begins to saturate. This is made
evident when the acceptance ratio is considered midway at which
point the 150th VNR has arrived for processing for all algorithms. It
can be observed that SPFA acceptance ratio declines sharply compared
to that of DBA. DBA and RPA shows approximately 20% and 36%
gains in acceptance respectively compared to SPFA.

Also comparing DBA to RPA, significant gains in acceptance of
about 16% is observed midway through the embedding process. The
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reason for such gains in the acceptance ratio is further explained by
examining Figure 6.3 which shows the VNR rejection ratio per class
for respective algorithms. From the figure, it can be observed that class

Figure 6.3: Acceptance per QoS class

1 experiences less blocking compared to the other classes for DBA.
With class 3 being the most rejected class. However, comparing RPA
and SPFA, it can be observed that class 1 and 2 are the most rejected
classes for RPA and SPFA.

The reason for such results can be explained as:— SPFA and RPA
reach early saturation for some classes as resources capable of embed-
ding VNRs from class 1 and 2 are used up in the early stages by class
3 VNRs and thus leading to high blocking ratios. This is confirmed by
examining how the substrate links are used by each of the algorithms
in Figure 6.2. It can be observed that SPFA reaches early saturation
consequently resulting in lower acceptance ratio likewise RPA.

Furthermore, very low substrate utilization is observed by close
examination of Figure 6.2. The reason for the low utilization is solely
due to the fact that link utilization metric is expressed as a ratio of
total accepted capacity and the total substrate capacity as presented
in [33, 34]. However, when considering VLiM problem in the SDN-TE
context with unambiguously mapped source and destination, some
substrate links be default are not considered in the solution space
and thus may never be used. The bandwidth of these links are still
considered in calculating the utilization ratio.

To efficiently evaluate the link utilization metric, max-flow utiliza-
tion metric provides a better characterization. The metric defines the
link utilization as a ratio of the accepted capacity and the maximum
flow capacity that is required to separate the unambiguously mapped
source and destination endpoints into two disjoint graphs. This defines
the theoretical maximum capacity that can be attained by an ideal
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Figure 6.4: Accepted load per maximum effective capacity

VLiM algorithm. This new metric is shown in Figure 6.4 where the
cumulative capacity of VNRs accepted in the network is expressed
as a ratio of the max-flow capacity within the network. The figure
shows how the different algorithms use the SN resources and how
they contribute to their global acceptance ratios.

Also, a critical examination of Figure 6.4 shows a steep rise in

Figure 6.5: Acceptance per algorithm with increasing network size

capacity utilization of all algorithms at the beginning of simulation
process but begin to decline slowly as the process reaches mid-point.
It can be seen that at the arrival of the 100th VNR, the SPFA can barely
accept additional VNRs as it reaches saturation due to the greedy path
selection, leading to sub-optimal utilization. However, DBA continues
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to accept more VNRs due to its purposeful selection of paths and
thus confirming the efficacy of the algorithm to the DBA hypothesis.
RPA results can be attributed to the fact that some randomly selected
paths from the feasible paths may sometimes coincide with similar
solutions as the DBA. This phenomena is also the case when MIP
versions embed VNRs in bulk as noted by Riccardo et al. [34]. Further
examination of Figure 6.4 shows that even at the arrival of the 150th

VNR, DBA shows about 11% and 32% utilization gains over RPA and
SPFA respectively while RPA also shows a gain of about 20%. This
further highlights the efficiency of the DBA in the online multi-service
VLiM use-case.

The overall acceptance ratio for the path selection approaches are
shown in Figure 6.5, where a general increase with increasing network
size is observed. However, this results can only be attributed to the fact
that additional substrate nodes and links only enriches the solution
space, therefore, more VNRs are accepted on the substrate network.

Figure 6.6: Computational time

Finally, a comparison of the algorithms in terms of computation
time is examined. Figure 6.6 shows the average computation time for
embedding a single VNR considering all the constraints involved. It
can be seen that SPFA shows lower computation time than the DBA
and RPA which is expected, given that the DBA and RPA find several
paths from which one is selected as a solution while the SPFA only
computes a single least-cost path for every VNR.

It can also be observed that the time gap between DBA and RPA
reduces gradually to almost the same time as the simulation process
approaches completion. This is because the number of candidate paths
that have to be traversed to find the ODP at the beginning of the simu-
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lation decreases as the substrate network approaches saturation. This
explains the closeness of the computational time at the end. Regardless
of the high computation time of the DBA approach, the computational
time for DBvLEA is well below acceptable ranges compared to those
in literature [34, 39].

6.3 evaluation of delay admission constraint

In section 6.2, performance focused on Objective 2 of the VNE prob-
lem where efficiency and efficacy of the algorithms are evaluated.
This required the generation of unsolvable scenarios [27] and ran-
domization of the SN to ensure that results are not dependent on
the topological characteristics of the network nor the order in which
VNRs are processed by the algorithms. However, this approach does
not help us to understand whether the demand verification functions
perform as desired in a production environment. This is particularly
important in the QoS-aware problem because these functions ensure
that the promised QoS can actually be guaranteed on the SN when
resources are committed on the SN (VNE Objective 1).

For Objective 1 evaluation, a deterministic SN is a must. This allows
the problem designer to track the solutions computed and compare
them with the integrated models. The next section provides the evalu-
ation of delay verification models.

6.3.1 Simulation and analysis of delay verification models

In this section, the ability and efficacy of VNE algorithms to apply
the worst-case delay models to guarantee stringent demands of in-
dustrial applications is evaluated. The metrics considered are average
worst-case delay guarantees due to reserved allocations of the various
traffic classes as well as the delay due to the actual utilization of em-
bedded NSs in the respective traffic classes.

A total number of 10 simulation runs are performed on a bench-
mark substrate network depicted in Figure.6.7 using the ALEVIN
framework [47]. The SN from a real case-case deployment are boot-
strapped, modeled in a Json format (see Appendix A.3) and fed to the
VNE simulator.

The arrival of VNRs are randomized in accordance with the online
mapping process to avoid the dependence of results on arrivals order
of NSs. Furthermore, the same network parameters in the benchmark
substrate topology is used in order to track the solution produced by
the simulation platform so that they can be validated with numerical
solutions as well. Multiple simulation runs are done only because the
arrival order of VNR are randomized, however, the demands of each
VNR remains the same in each run.

To the best of my knowledge, this is done contrary to VNE evalua-
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Figure 6.7: Benchmark topology showing End-Stations (ES) and TSN For-
warding Nodes of a production floor

tions in literature where the VNRs and SN generation are randomized
at each simulation run. However, it is worth to note that the guar-
antees must be deterministic which means, it is important to keep a
controlled simulation environment for validatable results. This also
implies only solvable scenarios are generated in order to track solu-
tions.

The simulations are performed on an SN that captures the tandem
shaper/scheduler composition illustrated in Figure 4.3. As described,
time-sensitive NSs consisting of control-High and -Low NSs are consid-
ered. The control-High NSs are instantiated solely for rapidly transmit-
ting cyclic streams while the control-Low NSs are for less frequently
transmitting applications. Also, Surveillance NSs for real-time video
monitoring in the shop-floor and Best Effort NS for traffic with less
stringent requirements on delay are considered.

The maximum demands, budget allocations per queue, and NS

Table 6.2: NS categorization w.r.t to demands, Queue assignment, and alloca-
tion per traffic class.

NS class
Demands Budget

(%)
Classification

Burst

(byte)

cycle

[µs]

we2e
d

[ms]

Control-high 68-256 250 5 30 TT

Control-low 256-512 500 15 40 CB/TT

Best effort 512-1500 2000 - 30 PB

class are shown in Table 6.2. The control-High traffic are pre-allocated
to time-triggered traffic class (TT) due to their tight requirement on
delay. The control-Low and real-time video surveillance NSs are clas-
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sified to credit-shaped traffic under CB classes and best effort traffic
under PB class respectively. The embedding algorithm relies on the
classifications to reduce the number of decisions that are required to
map an NS to a queue.

It must be emphasized that this classification is a guess work that
is done by the network engineer based primarily on the tightness of
the delay demands. For this simulation equal traffic-mix ratios are
generated for the different classes since it is a completely solvable
scenario and there is no need to reject any VNR.

In order to ascertain the correctness of the results when comparing
the models, the same substrate network is used for all simulation runs.
A substrate network with link speed of 100 Mbps is considered for
the simulation. The propagation and switching delays are neglected
for simulation purposes. Given that they are bounded, they do not
contribute additional information to the results.

Since deterministic periodic traffic are considered together with
non-deterministic ones, the reservation per class can only be done
within a network cycle where a busy-period occurs. It is therefore
necessary to deterministically define a percentage of the network cycle
allocated specifically for TT. Though a window for the credit-shaped
classes is not entirely necessary, it must be defined in order not to
starve non-credit-shaped priority queues controlled directly by the
SPS as described in Figure 4.3. For this, a reservation of 30%, 40% and
30% each is defined for TT, CB and PB traffic, respectively.

Following the Trajectory Approach (TA) and the reservation per
traffic class, the worst-case port delay contributed by the respective
classes per the tandem scheduler is computed as per the delay models
described in section 4.3.2 as follows:

• qd(CB) = δ + ωTT ≡ 12000
108 + (0.3× 2.0ms) ≈ 0.60ms, where ωTT

is the queuing delay due to an entire budget for time-triggered
traffic during a busy-period within the network cycle of 2.0ms.

• qd(PB) = wTT + ωCB + δ ≡ 12000
108 + (0.7 × 2.0ms) ≈ 1.4 ms,

where ωTT + ωCB is the delay due to TT and CB budget within
the network cycle in a busy period. Note here that δ is not
considered for the lowest priority queue under PB.

6.3.2 Analysis of results

First, the worst-case port delay (pd) for the respective NSs are ex-
amined as they are embedded (see Figure 6.8). Due to the FIFO intra-
queue scheduling, it can be observed that there is a general increase in
delay of the NSs as they are embedded. Particularly, it can be observed
in Figure 6.8 how significantly it affects NSs in the CB and PB queues,
however, the delay due to the TT queue remains fairly constant as they
are unaffected by any form of queuing delay.
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Figure 6.8: Actual delay guarantees per VN per QoS class

Also, still referring to Figure 6.8, considering the effect of the tandem
composition of shapers described previously, the total delay due to
NSs embedded in the TT queue are factored directly into the delay
guarantees of NSs embedded in the CB queue, which also affects the
NSs in the PB queue.

Notably, it can be observed that, the VNE algorithm considers the
delay due to embedded NSs in the CB queue in that of the PB queue
thus, even before the first NS is embedded in the PB queue, the port
delay of PB due to CB and TT is exactly the same as the port delay of
the last embedded NS in the CB queue which is ≈ 0.645 ms. This is
the actual queuing delay experienced by the first NS admitted to the
PB queue. However, it must be noted that this is the best-case delay to
be experienced by the NSs in their respective queues considering that
the maximum allocated budget, ω, of the respective classes are still
under utilized.

Figure 6.9 further explains Figure 6.8 when the worst-case port
delay due to unused budgeted allocation of the classes within the
network cycle is examined. Here, a clear isolation of the NSs admitted
to the respective classes by their worst-case delay bounds is observed.
From the figure, it can be observed that the approach ensures clear
isolation of NSs thereby ensuring delay guarantees regardless of the
traffic class in which an NS is embedded. Also, the effect of embed-
ding in the higher, same, as well as lower priority classes are shown as
the VNE algorithm embeds the NS in an online manner. This outcome
affirms that dynamic NS creation performs as expected.

This also implies the worst-case delay model are used accurately
by the VNE algorithms. It is further validated by numerical analy-
sis of the delay equations described for the respective queues. Also,
comparing Figure 6.8 and 6.9, it can be seen that the instantaneous
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Figure 6.9: Worst-case delay guarantees per VN per QoS class

Table 6.3: Actual and worst-case e2e delays per path length

Path length Actual delay (ms)
worst-case delay

we2e
d (ms)

CB PB CB PB

5 3.22 8.0 5.96 11.76

6 3.87 9.58 7.15 14.11

7 4.51 11.17 8.35 16.46

(best-case) delay due to embedded NS cannot be guaranteed if NSs
are continuously embedded till they exhaust their allocated budget
within the network cycle. Some already embedded NSs may have their
delays violated. This is prevented by the use of their worst-case delay
bounds as the admission control hence emphasizes why the worst-case
delay must be considered when creating NSs in TSN. Table 6.3 shows
the actual e2e delay and e2e worst-case delays when all traffic classes
exhaust their allocated link budgets over 5 to 7 hops. Note here that
packets in the strict priority queues do not necessary need to have
deterministic delays. Therefore, stochastic guarantees can be provided
instead. This can be achieved by considering stochastic models that
characterize the percentage-wise use of resource allocations by the
deterministic streams to provide probabilistic guarantees. Stochastic
Network Calculus (NC) can be leveraged together with the approach
used in this thesis.
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6.4 evaluation of tree mapping algorithms

As discussed in Section 5.2.2, there are scenarios where the NS
to be created may have topology restrictions. A common topology
restriction in factory automation is one where an AR/CR describes
the transfer of information from a single application to more than
one application or vice-versa e. g., PLC to multiple IO applications.
The topology restriction on the AR/CR can be characterized by a tree
topology. In this case, VLiM algorithms must be applied iteratively to
realize the described AR. The iterative use of the VLiM algorithm can
lead to different solutions for an NS based on the connectedness of
the SN and selection of an anchor (root) node for the tree.

Once a root node is selected from the SN, a VNR illustrating a tree
topology is created to represent the AR/CR. The VLiM algorithm is
then used to map individual links in the VNR.
In this evaluation, the effect of root node selection on acceptance

Figure 6.10: Acceptance ratio of VLiM algorithm based on Root node selec-
tion per traffic class

ratio and computational time is examined. Here, it is interesting to
know which features provide the optimum results and time within
which such results are achieved. This is particularly important since
the algorithms are integrated as part of SFCs which provide an e2e
service. Therefore, in as much as a particular feature provides better
acceptance than another, the computation time is equally important.

Figure 6.10 shows the acceptance ratio of the respective root-node
selection features per NS class and overall number of NS over 10

simulation runs.
Overall, the Rendezvous Root Bridge (RRB) selection yields the

highest percentage of created NSs in comparison to Listener Root
Bridge (LRB) and Talker Root Bridge (TRB) under the same simulation
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settings. While LRB and TRB show equal performance, further anal-
ysis of how the VLiM algorithm performed in the respective traffic
classes is illustrative.

Within the tight delay-constrained traffic classes, control-low and
-high (CL, CH), the TRB shows very low acceptance while it performs
slightly better than the LRB in the best-effort class. This indicates
that the farther listeners are from the selected root bridge, the greater
the chances that requests are declined due to delay and bandwidth
demands. This analysis of the result is firmly established considering
the RRB and LRB which selects a root node common to one or more
participant in the tree.

Figure 6.11 shows the computation time, which includes the time

Figure 6.11: Computational and Root node selection Time

required for selecting a root node and time to perform resource al-
locations. From the figure, LRB shows the highest computation in
comparison to TRB and RRB. Due to the wide time difference, LRB is
not suitable for SDN deployment. On the other hand, RRB shows a
good match between acceptance ratio and computation time and thus
making it an efficient approach.

The TRB is largely employed in distributed tree algorithms for TSN
which is specified in IEEE 802.1Q. The RRB provides are an efficient ap-
proach that can be realized centrally in an SDIN controller. Therefore,
faster computational and resource efficiency provides a better alter-
native to distributed tree algorithms currently employed in Ethernet
LANs.
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6.5 evaluation of time-aware slicing algorithms

Whenever a valid schedule is feasible within a scheduling system, it
can be said that the set of TT application is schedulable according to
a scheduling algorithm (TAS). In this case, the scheduling algorithm
can be evaluated on its effectiveness in following the defined sched-
ules. Here, evaluation metrics such as the efficiency of utilization of
resources lies primarily with the scheduling system.

The performance criteria of scheduling computation algorithms for
hard real-time applications is one that is based on their ability to
find feasible schedules w.r.t a given scheduling system whenever such
schedules exist [77]. Often this may depend on the constraints of the
scheduling system. Therefore, one can infer that a time-aware schedule
computation algorithm for TT periodic applications is optimal if it
always produces a valid schedule for a given job within a scheduling
system, if and only if the schedule is feasible.

On the contrary, if the algorithm fails to find a feasible schedule, it
could depend on whether the TT-periodic application is even feasible
within the system at all. In this case, it can be concluded that clock-
driven schedule computation algorithm cannot feasibly schedule the
given TT application.

Therefore, in the subsequent section, the schedule verification algo-
rithm (schedulability algorithm) is evaluated by analyzing its optimal-
ity in terms of finding a feasible schedule whenever one exists.

6.5.1 Evaluating schedulability algorithm

Schedulability algorithm can be evaluated based on its ability to
assign exclusive time-slots to a system of independent periodic appli-
cations and/or based on the number of TT applications within the
system, and the time required to compute a feasible schedule.

Considering the Algorithm 5.2, in line 11, the scheduling system is
sorted in order of their periods. The scheduling system’s order affects
the number of TT periodic applications that can be scheduled within
the system. This can be verified by algebraic analysis of equation (5.8).

A non-preemptive RMS algorithm which is known to be optimal [77]
is expected to schedule all low rate applications (shorter periods) be-
fore high rate ones (longer periods). However, a careful analysis of
equation (5.8) will show that a RMS algorithm does not result in a
case where more TT application are schedulable.

Recall from equation (5.8) that the frequency of occurrence of the
period of an application, i, within a scheduling cycle is fi =

H
pi

. Let
ui =

εi
pi

be the utilization of the application within its own period. That
is, the burst offloaded to the network within a period pi at an instant.
If equation (5.8) is combined with the utilization ui of the application
within its own period, the utilization of the application within the
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scheduling cycle is obtained as Us(pi) = ∑N
n=1 ui, where N represents

the number times ui occurs in the system. This can be represented as
equation (6.1):

Us(pi) =
N

∑
n=1

ui = fi × ui (6.1)

In effect, equation (6.1) indicates how many time-slots units can
be occupied by TT applications of a specific period within the hyper-
period H or the scheduling cycle.

From equation (6.1), it can be asserted that a reverse RMS ordering
(i. e., decreasing periods of TT applications) may result in schedul-
ing more TT applications with large periods than those with smaller
periods. Due to the simplicity and lack of statistical variation, a per-
formance via simulation for optimal mapping is not necessary since
the system remains deterministic for a scheduling system.

Therefore, note that the utilization of the scheduling system is dif-
ferent from the acceptance ratios of independent periodic applications
in the scheduling system achieved by VLiM algorithms.

If one is to go by the acceptance metric, which is based on the num-
ber of individual TT applications that the schedulability algorithm
can schedule, then this metric is significantly affected by the order
in which TT application are processed. Thus, scheduling applications
with longer cycles first will achieve a higher number of scheduled
applications than an scheduling applications with shorter cycles first.
This is because high rate applications utilize more time-slots within
the hyper-period than lower ones. However, this is flexible in the
schedulability algorithm proposed in this thesis as applications can be
processed in any order that suits the user.

Finally, the computational time of the scheduling algorithm is eval-
uated by providing its complexity. It must be emphasized that the
convergence time is mostly irrelevant in the offline scenario; however,
it is very relevant in the online case where schedules are computed
dynamically within an SDIN controller. Given that the goal of the
schedulability algorithm is to provide verification and dynamic re-
source allocation for TT applications in an SDIN-enabled TSN infras-
tructure, the convergence time must be within an acceptable service
provisioning response time which is discussed in Chapter 7.

6.5.2 Complexity analysis of time schedule computation algorithm

To compute the schedules of all the bridges along a path with single
rendezvous bridge, the algorithms are executed in order Algorithm 5.2,
Algorithm 5.4 and then Algorithm 5.5. The temporal complexity of
Algorithm 5.2 is O(3× H × N) u O(N), where N is the number of
applications to be scheduled, and H is the hyper-period (i.e. H =

LCM(Pi, i = 1..N)). Algorithm 5.4 is also polynomial as it has a



112 evaluation of vne algorithms in sdin

temporal complexity of O(2× N) u O(N).
Finally, the time complexity of Algorithm 5.5 grows linearly with the

number of bridges M in the network (i.e. O(M). In other words, the
temporal complexity of the proposed system is linear to the size of the
problem (O(2× N + M) u O(N)), which makes it a good candidate
for an online schedule synthesis algorithm.
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P E R F O R M A N C E A N A LY S I S O F S D I N - E N A B L E D T S N
D E P L O Y M E N T

This chapter examines the performance of SDIN-enabled TSN in
comparison to existing deployment models specified in IEEE 802.1Qcc.

7.1 overview of tsn deployment and challenges

TSN/AVB standards specify a set of solutions which focus on re-
source allocation within Ethernet LANs. The solutions vary widely
mostly due to advanced queuing and transmission techniques used
on the FP as discussed in Chapter 4. These queuing techniques sig-
nificantly impact how TSN infrastructures are deployed in industrial
environments, e. g., process or factory automation industry. This is be-
cause of various QoS requirements within these markets [104]. In this
regard, two solutions are proposed; "reserved-streams" and "scheduled-
transmissions".

The concept of reserved-streams leverages a decentralized resource contribution
from [105]allocation mechanism enabled by Stream Reservation Protocol (SRP).

Reserved-streams rely on predefined stream classes (e. g., Stream Class
A and B ) and therefore, uses the CBS as an advanced queuing tech-
nique, thereby, enabling dynamic (plug-and-play) resource allocations
across Ethernet based LANs.

The concept of e2e "scheduled-transmissions" uses TAS as an ad-
vanced shaping and queuing technique to provide ultra-low latency
as discussed in Chapter 4. Therefore, scheduled-transmissions require
detailed timing of streams at their sources (Talker ES) and on the
network. Computation of time schedules for both talkers and the
network as shown in Section 5.5 is generally a complex task, which
requires complete knowledge of stream transmissions on specific net-
work topologies.

The solutions described above impose three main deployment mod-
els which are specified in IEEE 802.1Qcc. These deployment models
are discussed next.

7.1.1 Fully decentralized deployment

The fully decentralized deployment model is based on the concept of
"reserved-streams" which emanates from AVB. It provides mechanisms
which allow ESs to reserve bandwidth across a compliant LAN based
on their willingness to "talk" or "listen". SRP enables this mechanism
and it is built on a network management protocol called Multiple

113
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Stream Registration Protocol (MRP). The basic function of MRP is to
allow participants (Talker/Listeners) to register attributes which may
be propagated through the network. Variants of MRP such as Multiple
VLAN Registration Protocol (MVRP)–, VLANs and —Multiple MAC
Registration Protocol (MMRP) exist.

The SRP standard provides a new MRP application called Multiple
Stream Registration Protocol MSRP to manage attributes relating to
the intent of applications and bandwidth reservation. In this regard,
MSRP, MVRP, and MMRP provide all the network signaling for SRP
(CP functions) within Ethernet bridges (cf. [106]).
The following provides an overview of these protocols. (See [106] for
details on operations and implementations)

mrp is responsible for participant registration. A participant can
make a declaration or withdrawal. Making a declaration results in the
registration of the participant at its peer. This registration is persistent
until a participant drops or issues a withdrawal. On the other hand,
making a withdrawal results in the removal of pertinent attributes
of the participant from its peer. Once a participant is registered, its
declaration is propagated to all other participants.

mmrp Once a participant is registered by MRP, its declaration is
broadcasted throughout the network. This is often inefficient as broad-
casting declarations can create congestion within the network. In this
regard, MMRP is used instead of the generic MRP. The fundamen-
tal difference is that instead of declarations being broadcasted, they
are rather forwarded directly to specific destination Media Access
Control (MAC) addresses, which makes it much more efficient. There-
fore, the declaring participant provides the set of destination MAC
addresses as an attribute within the declaration. This mechanism is
referred to as talker pruning (see Appendix A.4 for talker data model).

mvrp works in a similar faction like MMRP, it allows participants
to register to specific VLAN thereby allowing network bridges to
tag declarations with their VLAN identifications (IDs). This implies
propagation of declarations occurs within the VLAN where talkers
and Listeners are members.

msrp manages the intent of talker and Listener registrations. This
intent can be a Talker wanting to transmit data or Listeners announc-
ing their readiness to listen to publications if they exist.

srp using the above MSRP/MRP, SRP maintains a set of tables in
each bridge. These tables keep records of relevant operational infor-
mation such as per-stream reservation and bridge-wide data which
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enables it to keep track of ports that are SRP-enabled. Additional
information includes all registered Talkers and Listeners, their rank,
latency between peers, bandwidth, etc. See AppendixA.4 for MSRP
data models.
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Figure 7.1: DRM based on the fully distributed model of existing MSRP

Figure 7.1 provides a simplified-non-formalized stream reservation
(see IEEE 802.1Qcc for detailed description) as an example of the
MSRP/MRP flow for Decentralized Reservation Model (DRM).

As shown, a Talker application t1 (e.g., PLC, microphone, camera)
ES sends a stream advertisement (TAdvert) to a TSN bridge br1, the
stream identification (StreamID) is resolved, registered and then propa-
gated through the network using the destination multi-cast or uni-cast
MAC address specified in the MSRP packet. This is repeated by all
TSN bridges between the Talker and Listener(s) (i. e., br2 and br3) till
the TAdvert packet reaches the intended Listener(s) (e.g. actuator, robot
arm, speaker) ESs. This process is depicted by arrows 1©.

Upon receiving the TAdvert packet, Listener applications (i. e., l1,
l2, l3) on the ES generate and send Listener-ready messages (LReady)
if it has the credential and desire to receive packets from the Talker
stream.

Such credentials are determined by the stream identifier (StreamID)
which is composed of the Talker ES MAC address and a unique ap-
plication ID (AppID). The combination of the AppID and the MAC
address of the ES makes a StreamID unique in the LAN even if streams
are transmitted from different Talkers on the same ES.

The LReady packet triggers the bridges (br3, br2, br1) to reserve
resources for the forwarding of packets between the Talker and the
Listener(s). The LReady packet(s) are propagated to the Talker by the
bridges in addition to information on the status of the stream reser-
vation process. Upon receiving the LReady packet, if the status of the
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reservation is successful, the Talker application begins to transmit
packets with payload, which are then forwarded by the bridges to
the Listeners using the reserved resources. The advertisement and
registration processes are represented by the arrows 1© and the sub-
scription/reservation processes by 2©.

7.1.2 Fully centralized deployment

The fully centralized deployment model unlike the DRM is mainly
driven by the need for ultra-low latency, which as discussed exten-
sively in chapters 4, 5 and 6 is achievable only through time scheduling.
This approach, therefore, employs the use of a Centralized Network
Configuration (CNC) for path and schedule computations as well as
resource allocation.

Due to the difference in the forwarding mechanisms, operators are
forced to either adopt DRM or Centralized Reservation Model (CRM)
depending on the latency guarantees they want to achieve.

Within the CRM, the CNC achieves resource allocation by configur-
ing bridges and ESs. The specification of configurations is defined in
the IEEE802.1Qcc whilst parameters for scheduled traffics are specified
in IEEE802.1Qbv.

An enhanced version of MSRP (MSRPv1) is provided to serve as a
transfer protocol for carrying stream configuration over links between
each ES and the peering bridge, which is also accessible to the CNC.

MSRPv1 operates in a slightly different way from its original version
that propagates information across the network and performs resource
reservation hop-by-hop on each bridge. If MSRPv1 is applied in a fully
decentralized manner, it behaves essentially the same as the MSRPv0
with support only for CBS (cf. [104]).

The main advantage of CRM is its capacity to allow centrally config-
urable time-schedules to achieve ultra-low latency. This also makes it
rigid and inflexible.

Furthermore, CRM is not event-based. Therefore, it does not incor-
porate any form of service dynamism (plug-and-play) as the whole
reservation process is preceded by an offline pre-engineering phase.
The reservation itself is proactively triggered by a Central User Con-
figuration (CUC) and requires a human-in-the-loop.

7.1.3 Hybrid deployment

The TSN working group also proposed a hybrid deployment model
where fully DRM and CRM could coexist on the same network. In the
HRM, each reservation solution operates separately as described. This
can, however, lead to several issues which have currently not been
addressed. Some issues identified are described as follows:
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• Definition of common information models for MSRPv1 and
MSRPv0 such as domain enhancement to include scheduled
traffics.

• Inconsistency introduced by resource allocations created by
MSRPv0 and CNC via User Network Interface (UNI). The fun-
damental operation of MSRP enforces that resources are de-
allocated once network requirements such as maximum latency
are exceeded. This generates a failure code to the Talkers and
Listeners. On the other hand, allocations deployed by the CRM
via the UNI may persist even when maximum e2e latency is
violated. This can create resource fragmentation as well as a
false representation of resource states.

In light of these deficiencies, this Thesis proposes an extended hybrid
model that leverages on SDN concepts discussed in Chapter 2 and
treated extensively in preceding chapters. This proposed solution is
discussed next.

7.1.4 SDIN: hybrid deployment model

The underlying principle behind SDIN-enabled TSN is the use of
an SDN controller as a feedback control that can proactively and
reactively allocate resources as an alternative to existing solutions,
("scheduled-transmissions" and "Reserved-streams"). 1

The controller integrates among other functions, the online slicing
and schedule computation algorithms discussed in chapter 5 and 6.
Figure 7.2 illustrates the proposed SDIN-enabled HRM. The controller
consist of 3 functional blocks:

orchestrator functional block is responsible for orches-
trating service functions based on defined set of SFCs. Here, SFCs
represent a chain of network functions and computational models
in the SDIN controller required to achieve a service objective. Such
objectives include the creation, deletion, modification and monitoring
of Communication Service (CS) and Network Slice (NS).

A core function of the orchestrator is to handle network events that
are propagated from the DP or Remote Procedure Call (RPC) via
North Bound Interface (NBI) to the controller. Based on the label of
the event published via notifications or RPCs, the orchestrator exe-
cutes an SFC that is designed to establish an e2e service. Within this
functional block are components such as topology management and
policy engines:—define the set of policies that determine how specific
events should be handled.

1 SDIN is developed on the premise that the most efficient distributed systems are
those orchestrated by a centralized coordinator
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records data base is responsible for keeping statistical records
of the network which includes state of virtual resources such as NSs
in relation to physical resources in the DP. A core function of this
functional block relevant for HRM is the ability to keep track of all
MSRP declarations and withdrawals. It serves as a resolution and
registration component for the HRM. Records such as AR and CR,
VLAN membership are also stored in this functional block.

computation and enforcement functional block is re-
sponsible for network slicing, path computation and functions used
to configure or deploy configurations to the Forwarding Informa-
tion Base (FIB) and MIB subsystem of the DP. It integrates all the
algorithms and computational models discussed in this Thesis. Addi-
tionally, it provides mechanisms for translating VNE and scheduling
outputs into the specific data structures of the FIB/MIB subsystems.

For TSN, the NETCONF protocol is used for configuring TSN
bridges, therefore the functional blocks rely on the flexible config-
uration system and the YANG subsystem to wrap parameters to
specific bridges. Configuration can be delivered by a CUC as done in
the CRM or can be event-driven via the orchestrator functional block
with parameter via UNI.
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Figure 7.2: SDIN: HRM based on SDN concepts
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7.1.4.1 Flow of MSRP packet in SDIN-enabled HRM

Figure 7.2 illustrates the sequence of events flow through the SDIN-
enabled HRM.

In this deployment, two mechanisms can be defined;— 1. Listener(s)
send requests via the edge bridge to the SDIN controller, expressing
their desire to join a stream (i. e., whether the stream is advertised or
not) by issuing an LJoin message. LJoin message represents the label
(or topic) of the notification event published by packet propagation of
the MSRP at the edge bridge to the SDIN controller;— 2. Listener(s)
express their readiness to join a stream by sending an LReady message
to the SDIN controller only after receiving notification (TAdvert) from
the SDIN controller about an advertised stream.

In the case of the former, the Listener(s) actively send LJoin requests
which are forwarded to the SDIN-CNC as notifications or packetIns
by the edge bridges. Likewise, a TAdvert request from a Talker ES
is forwarded to the controller whenever it is published to the edge
bridge. The advertisement and Listener join procedures are illustrated
in Figure 7.2 with 1©.

If a Listener tries to subscribe to a stream that is not advertised
to the SDIN-CNC, the SDIN-CNC either replies with an error code,
StreamNOTFound message or may decide to ignore the subscription
request entirely. That is, Listener(s) can be registered in the SDIN-
CNC stream DB and tagged with the stream identification it wants to
subscribe to. Subsequent LJoin requests bearing the same StreamIDs
from the Listener(s) are then ignored.

Alternatively, the SDIN-CNC may ignore all LJoin requests from a
Listener if a Talker has not advertised the stream to which the Listener
wants to subscribe. Note that the two procedures are possible design
choices which can affect the SDIN-CNC processing time in general. In
the case of the later procedure, Listener(s) send LReady message to the
SDIN-CNC only as a reply to the Talker advertisement sent to them
by the SDIN-CNC.

In either mechanism, receiving an LJoin or LReady notification at the
SDIN-CNC starts a chain of processes defined by an SFC (e. g., path
computation, configuration over NETCONF agents) in the controller
which subsequently leads to reservations on the TSN bridges. This is
illustrated by 2© to 6© as shown in Figure 7.2. Once the Talker receives
(LReady) notification from the SDIN-CNC ( 7©), the Talker can send
data to the Listener(s) via the DP of the TSN-enabled LAN.

The TAdvert requests are also propagated to the SDIN-CNC just like
the LJoin and LReady requests from the Listener(s). However, unlike the
LJoin requests, all TAdverts bearing different streamIDs are processed
by the CNC since they represent entirely different stream requests.

Upon receiving a TAdvert notification, the SDIN-CNC resolves it by
firstly checking whether a TAdvert StreamID is not already registered.
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If this check is valid (true), the TAdvert StreamID and related data
fields (see Appendix A.2) which includes network requirements and
traffic specifications of the Talker application are entered into a stream
configuration registry as a registered Talker.

On the other hand, if a stream with the same StreamID exists, then
it implies there is an active Talker bearing this StreamID in which case,
the edge bridge sends a StreamExist message to the Talker. StreamExist
is a keep-alive message which is also present in the DRM. However, it
must be noted that this aspect of the process does not directly affect
the actual processing time for stream reservation in both deployment
models. This is because StreamIDs registered on the edge bridge have
been processed already; hence, there is no need to reserve resources
for such streams. Such packets are effectively dropped at the network
edge. This is important because it ensures that, no redundant resources
are reserved for a specific talker application.

The keep-alive messages are necessary for ensuring that resources
are reserved for only active Talker(s) and Listener(s). The stream reso-
lution and registration process are illustrated in Figure 7.2 by arrows
2© and 3©. Once a Talker stream is registered, and there is Listener

subscription(s) to the registered stream (determined by the StreamID),
the CNC computes paths and necessary network requirements and
enforces the reservation by configuring the bridges using NETCONF
agent (client). The path computation includes consideration of net-
work requirements such as bandwidth, delay (e. g., from the analysis
in Chapter 3), online schedule synthesis discussed in chapters 5 and 6.

A Listener or Talker may withdraw from participating in a stream.
In this regard, either participant may send a leave message via MSRP
to the SDIN-CNC. In the case of a Listener withdrawal request, if the
Listener is the last listening participant in the stream, the SDIN-CNC
de-allocates all reserved resources, pushes the Talker to a configuration
Data Base (DB) and informs the Talker about Listener(s) departures.
Otherwise, the SDIN-CNC de-allocates only resources used by the
departing Listener. This ensures efficient resource utilization and seam-
less fault resolutions.

A Talker withdrawal on the other hand results in de-allocation of
resources for the entire stream from the DP. Furthermore, all infor-
mation relating to the stream is deleted from the configuration and
operational DB of the SDIN-CNC. See Figure A.2 in Appendix A.4 for
proposed Talker/ Listener notification model for SDIN-enabled HRM.
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7.2 qualitative performance analysis of tsn

deployment models

7.2.1 Benefits and deficiencies of DRM

A significant benefit of DRM is its plug-and-play mechanisms which
allows ESs to dynamically reserve resources across LANs. However,
it is inflexible due to statically defined classes. These classes restrict
the free propagation of packets, making it difficult to allocate stream
for an application that does not belong to any of the AVB stream
classes. That is, attributes of a stream are only propagated to ports
that support AVB stream classes.

Additionally, this inflexibility does not allow for e2e scheduled
transmission aside from the inherent difficulty in time-schedule com-
putation. This limits the potential for utilizing TSN features such as
the Time-Aware Scheduler (TAS).

7.2.2 Merits and deficiencies of SDIN-enabled HRM

SDIN-HRM proposed in this thesis combines the dynamism of DRM
with CRM in an automated manner. That is, the stream reservation zero to low touch

service
provisioning

process in the TSN-enabled LAN can be reactively triggered by the
Talkers and/or Listener(s) via notifications from the DP to the or-
chestrator functional block or proactively by the CUC through the
controller’s exposed service NBIs.

Aside from the dynamism it introduces, the centralized controller
has complete oversight of events within the DP, and can react appropri-
ately to changes. This prevents the short comings of the generic HRM
approach where fragmentation of resources can arise due to resource
allocation by two different mechanisms that are unsynchronized (i. e.,
via UNI ("Scheduled-transmissions") and SRP ("Reserved-streams")).

Furthermore, with the SDIN-HRM, both "reserved streams" and
"scheduled transmissions" can be achieved using the online schedule
computation algorithms described in the previous chapters of this the-
sis. Thus enabling industrial operators to use all TSN features without
the restrictions imposed by the existing reservation solutions.

Chen [104] and Nasrallah [107] et al. argue that centralized control,
in general, may be superfluous or add unnecessary complexity to a
small-scale TSN network and therefore, increase CAPEX/OPEX. Con-
trarily, it can be argued that centralized control such as SDIN-CNC
proposed in this thesis, can be easily evolved by integrating new net-
work functions and SFCs to augment control functions of the TSN DP
and will therefore reduce long-term CAPEX as well as OPEX.

A disadvantage of the SDIN-HRM is the Single Point of Failure
(SPoF) problem which questions the reliability and availability of cen-
trally managed systems in general. However, the unavailability of the
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SDIN controller does not affect the operation of the existing streams
on the DP. This becomes a problem only when faults occur in the DP
or when new streams are to be allocated resources in the DP at a time
the SDIN-CNC is unavailable.

The SPoF problem can be ameliorated using multi-controller clus-
ters. Though it is not the focus of this thesis, issues regarding the
problem are discussed by Sakic et al. [108–110].

Additionally, the centralized SDIN controller is the only means
by which resources can be provisioned or de-allocated in the SDIN-
enabled HRM. In as much as the benefits outweigh the stated defi-
ciencies, it also introduces a huge attack surface which if not tackled
properly can be very detrimental to industrial operators as attackers
can use them to their advantage to circumvent the production system
as argued in the following publications: [111–113].

After presenting the qualitative performance advantages of the
SDIN-HRM deployment, the subsequent sections provide a quan-
titative performance analysis of the response time of the different
infrastructural deployments from a resource reservation context.

7.3 quantitative performance analysis of drm and

sdin-hrm

In order to develop a quantitative performance model for the differ-
ent reservation models, an underlying performance theory is required.
The subsequent section examines performance theory based on the
setup defined in Figure 7.1 and 7.2.

7.3.1 Performance theory construction

The performance theory begins with a generic construction of the
system for a single Talker and Listener interaction consisting of n
bridges and a controller representing an SDIN-CNC. The modeling
theory follows Equations (7.1) and (7.2) for the DRM and HRM de-
ployments respectively as shown in Figures 7.1 and 7.2. This can be
easily extended for any combinations of ESs and bridges.

αL=Listener
processing time decentralized reservation model (drm)

(2n + 2)dt + 2n(αbr + dq) + αL (7.1)

where αbr is the internal processing time of a TSN bridge whichαbr=bridge
processing time includes resolution, registration, resource computation and reservation

done by SRP, dq is the queuing delay at the bridges, dt is the delay
between bridges and ESs for transmission of MSRP packets2, n is the
number of TSN bridges between the Talker and its Listener(s).

2 Note that dt includes queuing, forwarding and propagation components of the delay.
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sdin : hybrid reservation model (hrm)

4dt(es) + 2dt(ncT) + 2dt(ncL) + αnc + dq(nc) + αL (7.2)

where αnc is the internal processing time of the controller which αnc= controller
processing timeincludes resolution, registration, resource computation and reserva-

tion, dt(es) is the transmission delay between an ES and edge bridge
(i. e., br → es), dt(ncT) is the delay between edge bridge and controller
for Talker messages, dt(ncL) is the delay between edge bridge and the
controller for Listener messages. αnc = αt

nc + αl
nc, where αt

nc represents
the controller processing time for a TAdvert. αl

nc is the controller pro-
cessing time for LReady or LJoin packets. dq(nc) is the queuing delay at
the controller stations.

From Equation (7.2), it can be observed that while the response time
of DRM increases in direct proportion to an increasing number of
bridges, SDIN-HRM is not directly dependent on the number of TSN
bridges. The dependence on the number of bridges is considered as
a fraction of the processing time of the controller αnc i. e., the time it
takes the controller to centrally allocate resources on n bridges. On
the other hand, SDIN-HRM response time can be severely affected by
the position of the controller w.r.t. the edge bridges. While this is a
great concern in SDN deployments for data-centers or cloud networks
where the controllers can be located geographically farther from the
network itself as discussed in these articles [114–116], contrarily, in
industrial networks the controller position is required to be on the
same factory or shop floor. Usually a few meters from the bridge
LAN. Hence, this effect though significant, is within the same order
of response time measured for a hop in DRM.

It must be noted that the equations assume the delays (dt) are
symmetric in either direction. However, this is not exactly true since
queuing component of delay (dq) varies due to frequency of packet
arrival (arrival rate) and how fast the device is can process them
(service rate). Regardless, the assumption remains valid even for the
physical system if the delay is considered w.r.t to transmission and
propagation of control packets on the forwarding lines.

7.4 modeling methodology and drm/sdin-hrm models

This section describes the modeling methodology for the perfor-
mance analysis. As described previously in section 7.1, Figures 7.1 and
7.2 show a non-formalized model of the communication present in
industrial TSN LANs. While Figure 7.1 shows the currently employed
decentralized approach based on SRP, Figure 7.2 depicts the novel
hybrid approach utilizing a centralized SDIN controller as a CNC
entity.

For performance evaluation, one can leverage field/test measure-
ments, analytical (closed form/numerical) or a simulation approach
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[117]. For the latter, modeling formalism such as Markov Chains- and
PN-based solutions as well as QN are often employed. In this thesis,
a combination of deterministic PNs and QNs is used for generating
performance models for the different deployments.

The use of deterministic PN and QNs allows one to capitalize on
the modeling power and expressiveness of both formalism. That is,
it enables the integration of hardware as well as software aspect of
the system’s behavior in a single model which makes it possible to
simulate simultaneous resource possession or contention as well as
synchronous and/or asynchronous processes. It therefore fits perfectly
to the deployment scenarios described in Section 7.1. Additional ad-
vantages of a combined PN-QN compared to the individual QNs or
PNs formalism are discussed by Kounev et al. [118].

The following presents the PN-QN concept and models for DRM
and SDIN-HRM.

7.4.1 Petri-Nets analysis

petri- or place/transition nets The general idea of PNs
is to describe state changes in a system with transitions, also known
as place/transition or in short PT-nets. PNs are bipartite directed
graphs that contain two sets of nodes:— transitions, T , (i. e., events
that may occur in a system), places, P , (i. e., conditions for events).
Relationships between nodes are formed by arcs. A PN is therefore
bipartite in the sense that arcs cannot directly connect nodes of the
same type;— rather, arcs connect places to transition (input arcs) and
transitions to places (output arcs). PNs as per Cassandras et al. [119]
are defined in the following:

Definition 7.4.1 (Petri Net). PN is a weighted bipartite graph given
by a 4-tuple N = (P , T ,F ,W) where P = {p1, p2, . . . , pn} is a finite
set of n places; T = {t1, t2, . . . , tm} is a finite set of m transitions;
F ⊆ (P × T ) ∪ (T × P) is a set of arcs; W : F → {1, 2, 3, · · · } is a
weight function on the arcs; P ∩ T = ∅ and P ∪ T 6= ∅.

In PNs, a place may contain an arbitrary number of tokens. A state,
s, defines a possible assignment of tokens to all places in the PN such
that s ∈ S ⊂ N|p|, p ∈ P , describes the number of tokens in each
place.

A transition with an input arc is enabled if its input place contains
one or more tokens. Transitions without input arcs are always enabled.
An enabled transition fires by removing a token from its input place to
its output place via its output arc. When a transition fires, it transforms
a PN from one state to another. A state in which no transition is
enabled is termed an absorbing state.

Given an initial state, s, a "reachability" set Rs defines the set of
states that can be reached via any number of firing sequence. There
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can be infinite state generation in PNs depending on the number of
places and firings. Especially, when multiple transitions are enabled
simultaneously, transitions can fire in any order hence making them
nondeterministic. However, with the use of execution policies, firings
can be made deterministic. This expressiveness makes PNs more
suited for modeling stochastic and deterministic systems. Therefore,
this thesis leverages this expressiveness of deterministic PN to model
the process of stream reservation in TSN.

7.4.2 Queuing network analysis

queuing systems A Queuing System (QS) is a node that consists
of queue(s) and server(s). When a packet arrives at a QS, it is queued.
Eventually, it is processed and thus, incurs a certain amount of delay.
This delay constitutes the time the packet had to wait to be serviced
and the time spent to process the packet. The resulting service time
often follows a probabilistic distribution influenced by a set of condi-
tions such as the frequency of the arrivals and rules governing how
services are delivered, and how fast the service can be delivered.

Definition 7.4.2 (Queuing System). QS is defined by Kendall’s no-
tation as A|S|m|B|P|Q, where A is the probability distribution of
inter-arrival times, S is the probability distribution of service times, m
is the number of servers, B is the buffer size, P is the population size,
and Q is the queuing discipline.

Multiple QSs form a Queuing Network (QN), see Definition 7.4.3.
After a packet is processed in one QS, the packet is sent to the next
connected QS. If multiple connections exist, a probability is assigned
to each link to determine the likelihood of packets being sent through
the link. Generically, in QNs, packets are sent from one QS to another
until they reach the end of the network [120].

Definition 7.4.3 (Queuing Network). A QN is a directed weighted
graph QN = (V , E , w) with V = {Q}, E = {R}, and w(E) → R,
where Q is a set of queuing systems and R is a set of directed edges
with an associated weight function w(E) representing either routing
probabilities or arrival rates.

QNs are classified in two distinguishable forms

• Closed QNs have a fixed amount of packets sent through the
network. Whenever a packet reaches the "end" of the network, it
is returned to the start. Thus, Closed QNs have a fixed number
of packets within the system. Although it is possible to analyze
response time, throughput and utilization at specific QSs, they
are not useful for modeling industrial communication Ethernet
networks such as those considered in this thesis. This is because
an arbitrary amount of packets pass through such networks.
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• Open QNs are better suited, since they have a source that creates
packets and sends them into the network at predefined rates (=
arrival rate λ). Similar to the service time µ, the arrival rate can
be deterministic or randomly distributed and therefore, follows
a probabilistic distribution.
Packets exit the network at the drain of the system. The time
spent to traverse the QN before the packet exiting the QN, is
known as the response time.
In the case of the presented DRM model the process is initiated
with the Talker that generates the request, the absorbing state
(drain) is the point in time when the fulfillment of the reservation
process has occurred for one or more Listeners. Thus, this is the
point in time when the Talker receives an LReady packet from
the first Listener upon successful acknowledgment of the stream
reservation.
In the case of SDIN-HRM, however, the source of the request can
also be the Listener sending a Join request, the drain being the
time when the SDIN-CNC fulfills the request and acknowledges
the Listener.

Open QNs are generally unstable if packets arrive faster than they
are processed. This causes packet queuing at specific stations in the
system. Short bursts of packets are allowed but the station must be
able to process all packets eventually. Otherwise, the queue of the
station grows indefinitely and may not be completed.

To achieve accurate or precise results, it is necessary to plot the exact
service distributions of the system components in the QSs. However,
a much practical approach is to fit the distribution of the system
under study to well known distributions which are usually integrated
in open source performance tools. The detailed workflow for this
approach is discussed next.

7.5 performance workflow and analysis

Prior to the generation of PN-QN models, the processing time of
the SDIN-CNC stations for SDIN-HRM and the SRP-based bridges
for DRM are empirically measured, and used to define the service
parameterization of the various QSs in the PN-QN model.

The measured data of the test systems (SDIN-CNC and TSN bridge)
are depicted in histograms in Figures 7.3 and 7.4. We use the goodness-
fit test to find standard distributions that best fit the measured data.

In a statistical hypothesis testing, H0|1;— the goodness-fit test has a
null hypothesis, H0, and an alternative hypothesis, H1. That is, either;

• H0: The measured data follows the hypothesized distribution;

• H1: The measured data does not follow the hypothesized distri-
bution.
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Figure 7.3: Gamma distribution estimating the switch processing time

Using this approach, Anderson-Darling [121, 122], Kolmogorov-Smirnov [123,
124] and Chi-Square [125] goodness-fit tests are used to identify fitting
distributions for the processing times. The goodness-fit distribution of
the TSN bridges, Listener, and controller processing times are visual-
ized in Figures 7.3 and 7.4, as well as Table 7.1, respectively.

Figure 7.4: Gamma distribution estimating the Listener processing time

Switch processing time follows a gamma distribution (Equation (7.3))
with parameters α = 163.68, θ = 0.00187, and data mean (x) = 298 ms.
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f (x) =
xα−1

Γ(α)× θα
e−

x
θ (7.3)

Listener processing time represents the time duration between the
reception of a TAdvert and generation of LReady message. It follows a
gamma distribution with parameters α = 36.348, θ = 0.0018, and data
mean (x) = 6.54 ms. Listener processing time defines the time required
by the Listener to generate LReady message after receiving a TAdvert
message as shown in Equations (7.1) and (7.2).

Controller processing time distribution for TAdvert and LReady
or LJoin follows a uniform distribution (Equation (7.4)) and gamma
distribution (Equation (7.3)) with parameters as shown in the Table
7.1.

f (x) =
1

max−min
(7.4)

Table 7.1: Processing time distribution for TAdvert and LReady/LJoin messages

Message/controller Distribution Parameter Values

TAdvert (nct) Uniform
min [ms] 2.3

max [ms] 7.2

mean [ms] 4.80

LReady/LJoin (ncl) Gamma
θ 0.0132

α 2.127

x [ms] 28.0

7.5.1 Design of PN-QN performance models

In the modeling process, it is essential that the generated PN-QN
models retain the most relevant attributes of the system in relation
to the performance study. Therefore, only relevant aspects in each
deployment should be considered. This can significantly reduce the
simulation time from weeks to days if not hours. These considerations
are discussed under the respective deployment models

7.5.2 Modeling DRM

The DRM model follows an exact description as shown in Figure 7.1
where three bridges, a Talker and three Listeners are considered. Fig-
ure 7.5 shows a PN-QN model developed for the DRM.

Once a token arrives at p1 (ingress point of the network by Talker
stream), it goes through the timed transitions t1 to brT

1 . The timed tran-
sitions represent the dt as discussed in Equation (7.1) and (7.2). Here,
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Figure 7.5: PN-QN model illustrating the DRM deployment for communi-
cation between Talker and three Listeners over TSN LAN as
shown in Figure 7.1. Circles and rectangles represent places and
transitions respectively.

dt is the ratio of MSRP packets (TAdvert=84 bytes, LReady=78 bytes)
and the Line speed (100 Mbps). At brT

1 the token (superscript T =⇒
TAdvert packets are processed at this station) is duplicated and a copy
of each is transmitted to brT

2 and brT
3 respectively for all Listener(s).

This behavior of the model represents the operation of MSRP/MRP
packet propagation (for multicast or broadcast) of TAdvert packets.
A similar operation is performed at brT

3 to increment the amount of
tokens corresponding to the number of TAdvert packets received by
Listener 2 & Listener 3.

Places p7, p8, p9 represent the start point for the generation of Lis-
tener messages (LReady/LJoin). As explained in section 7.1 in the DRM
deployment, only LReady messages are issued by the Listeners. Once a
token of type (T) enters either of these places (p7, p8, p9), it enables the
firing of L tokens belonging the respective Listeners (l1, l2, l3). These
tokens then transit through the network as shown in Figure 7.5 till
each reaches p16; where the process terminates (absorbing state). The
superscript T and L at the bridges (br) show the type of tokens passing
through each node in the system, which represent TAdvert and LReady
packets respectively (customer classes).

In practice, each TSN bridge (br) has limited queue length, however,
to study the stability of the systems in performance analysis such as
these, one can theoretically assume an infinite queue size in order
to estimate the system response time during the processing of large
volumes of jobs within the system. Also, it is only relevant to concen-
trate on the queue of the bridge connected directly to the Talker ES
(brT

1 ). This is because all TAdvert requests are received as tokens by the
network at brT

1 . A token dropped at brT
1 does not propagate through

the network hence does not influence other bridges in the model. So
far as the rest of the bridges in the network have queues greater than
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or equal to the edge bridge, packet drops can only happen on at the
Talker edge bridge. This allows for simulating the effect of finite and
infinite queuing scenarios on the system response time and system
drop rate.

The model defines one customer class T of type TAdvert even though
practically as illustrated in Figure 7.1, there can be 4 different customer
classes representing the Talker and Listeners (i. e., TAdvert→ T, LReady
→ L1,2,3 of respective Listeners). This simplification significantly re-
duces the model size as state-space generations are reduced using a
single customer class instead of multiple classes. This subsequently
reduces the simulation time because response time is computed for
each customer class separately and would have to be summed up
eventually to get the system response time. However, by varying the
handling of tokens from a single customer class at different stations
enables the simulation of the same effect as if additional three cus-
tomer classes are defined for each Listener.

It must be emphasized that this simplification does not affect the
result in any way. In fact, it only reduces the model size and overall
simulation time because it reduces only the state-space generation.
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Figure 7.6: PN-QN model showing the two variants of the SDIN-HRM de-
ployment model: (a) LReady: the controller (nct) informs the
Listener(s) about advertised Talker streams after resolving and
registering TAdvert notifications, (b) LJoin: Listener(s) actively
send Join notifications to the controller (ncl) as request to sub-
scribe to Talker streams if advertised.
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7.5.3 Modeling SDIN-HRM

Figure 7.6 shows the PN-QN models for the two variants of the
HRM. The first, denoted as (a) LReady, describes a scenario where
the controller (nct) informs Listeners about an advertised stream after
resolving and registering a TAdvert packet from the Talker via br1.
This prompts the Listener(s) to send LReady notification if they desire
to subscribe to the stream.

The second, denoted as (b) LJoin, describes a scenario where Listen-
ers actively inform the controller (ncL) of their wish to subscribe to a
Talker stream if advertised.

Due to the complexity and similarities of the models at certain parts,
both models are shown in Figure 7.6. The difference in the two models
is highlighted at the regions where they occur (i. e. at t3 → t6,7,8) in
the case of (a) and t∗3 → t6,7,8 for (b).

In scenario (b) LJoin, instead of the use of timed transition at t3, an
immediate transition from t∗3 to the Listener start places (p6, p7, p8)
is used. This difference represents a scenario where Listener(s) are
assumed to send LJoin requests just about the same time the SDIN
controller has just finished registering an advertised Talker stream.
Hence, there is no need to inform Listeners anyway. Due to difference
in mechanisms (i. e., (a) and (b)), it is expected that the response times
for the two cases differ. This is evident from careful examination of
Equation (7.2).

In the case of (b), the internal processing time at a Listener’s ES is
omitted, i. e., neglecting αL by replacing all parts of the model from
t3 to t4, t5, t6 ((a) LReady) with t∗3 ((b) LJoin). This is because the Lis-
teners are already trying to subscribe to a stream by sending LJoin
packets whether the streams they want to subscribe to are advertised
or not and thus, the processing time for generating LReady packets at
the Listener ESs in ((a) LReady), is no longer necessary in ((b) LJoin).
Therefore, although the model for both cases are shown in a single fig-
ure, the results of the performance analyses are presented separately
to emphasize the effect of these subtle differences.

The two options are possible enhancements that add to the flexibility
and usability of the SDIN-HRM as a deployment alternative. It also
provides a similar reservation process for dynamic/plug-and-play
stream reservation as provided by DRM. For timed transitions be-
tween SDIN-CNC and bridges, due to the huge influx of notifications
to the controller, it has to be ensured that notifications for new TAdvert
are not overly delayed at the bridges due to other notifications bound
for the controller. Therefore, delay due to link congestion to SDIN con-
troller must be minimized by using a high capacity link (e. g., 1Gbps
or 10Gbps) to reduce congestion at the edge bridges to the controller.



132 performance analysis of sdin-enabled tsn deployment

7.6 evaluation of drm/sdin-hrm pn-qn models

In the following sections discuss the evaluation of the performance
models.

7.6.1 Evaluation Metrics

A performance metric is a measurable quantity that captures pre-
cisely a value of interest. In this evaluation, the interesting thing is the
time it takes each of the deployment models to complete the stream
reservation process. In this regard, the system response time and the
drop rate are essential metrics to consider. The description of the
metrics are as follows:

• System Response Time (R) is defined as the time interval be-
tween the instant of submission of a user’s request to a system
and the instant the corresponding reply arrives at the user. Al-
though, response time can be generically assessed for almost all
types of systems, in computer networks, it is calculated as:

R = ds + dq + 2(dp + dt),

where ds is the service delay of the request, dq is the queuing
delay of the user’s request, dp is the propagation delay (i. e., the
time a signal change requires to travel over a physical medium
from the sender to the receiver), and dt is the transmission delay
of a request. It can be seen that the generic definition of response
time follows a similar analogy as Equations.( 7.1) and (7.2) on
close examination.

• Drop Rate (D) describes the rate at which packets arrive at a
QS (see Definition 7.4.2) with a finite queue of size z which is
already full. The following equation calculates the probability of
such events:

D = (1− λ
µ )(

λ
µ )

z,
where λ is the arrival rate at the queuing system, µ its service
rate. µ in this case is equal to α in Equations (7.1) and (7.2).

Mainly, the focus of the performance analysis is to determine the
response time for job completion of the two plug-and-play deployment
models (i. e., DRM and SDIN-HRM). However, it is also interesting to
analyze aspects that influence the response time of the system such as:

• the effect of parallel processing of jobs, i. e., the number of paral-
lel servers (processors) under various arrival rates (λ), measured
in jobs/s.
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• the drop rate and waiting time of jobs at stations of interest
in the models (i. e. ncT, ncL, and brT

1 ) considering finite and
infinite queue size. Under finite queue size, it is interesting to
see effects such as dropping jobs when they exceed the queue
size compared to having job wait till they are serviced.

As explained in Section 7.4, it is interesting to know exactly the amount
of different Talker streams that can be served by a TSN-based LAN
and how these deployments influence the process.

7.6.2 Evaluation Environment

The test setup for evaluation of the deployment models is described.
The evaluation is performed on a system with the following specifica-
tions:

• OS: Windows 7 Professional Edition Service Pack 1 (64-bit)

• CPU: Intel Core i7-4770 @ 3.40 GHz

• RAM: 16 GB DDR3 SDRAM PC3-12800, 1.5 V, 800.0 MHz, 11-11-
11-28

• Disk: Lite-On LCS-256L9S-11 256 GB, 512 bytes/sector, NTFS,
cluster size 4 kB

Software-wise, the open source suite, Java Modelling Tools (JMT)3,
which consists of simulation and analytical tools for performance
evaluation and modeling of computer and communication systems
is used. The suite implements several state-of-the-art algorithms for
Exact, Approximate, Asymptotic and Simulation algorithms for PN-
QNs. The tool JSIMgraph from JMT is used since it is less restrictive
with regard to the behavior of systems.

JMT is a discrete-event simulator which enables the analysis of mod-
els that combine the strength of PNs together with QNs. In addition,
it allows for the deterministic routing of packets as well as the fine-
granular mechanics of state-space methods. This makes it well suited
for the performance analysis of this kind. Its simulation approach
allows for tunable quality of results due to the repetition of execution
of the models considering variable parameters and the derivation of
relevant output measures [108].

Furthermore, the tool supports numerous distributions (e. g., De-
terministic, Erlang, Exponential, Gamma, Normal, Pareto, Uniform,
etc.) for characterizing service times and arrival rate (λ) as well as
state-dependent and state-independent routing strategies.

3 Java Modeling Tools – Introduction, http://jmt.sourceforge.net/, last accessed:
05/03/2019

http://jmt.sourceforge.net/
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7.7 results analysis and validation

The simulations are performed by varying parameters such as the
queue size at the bridges and SDIN-CNC controller under different
service conditions such as Drop or Waiting-Queue;—Drop refers to a
service rule that allows the QS to drop packets once the queue size
is exceeded,— Waiting-Queue refers to service rule where packets are
never dropped regardless of whether the queue size is exceeded. This
is equivalent to using an infinite queue and allows the measurement
of the waiting time at a specified QS. A maximum queue size of 10

packets per TSN bridge is considered. This is because the physical
TSN bridges used for the demonstrator test measurements has a maxi-
mum buffer size of 10.

In order to compare and validate DRM and SDIN-enabled HRM
on the same set of conditions, both systems must perform a similar
task such as stream reservation or time-schedule reservation. Since
time-schedule reservation is not present in DRM but HRM, they are
compared based on stream reservation. Also, it is important that the
queue size of the SDIN controller in the HRM models is also set to
10 just as in the bridges. However, the Waiting-Queue service rule if
enabled, allows the simulation of the system as if the QSs have infinite
queue size. This also enables the observation of the system behavior
under heavy traffic.

Also, given that Talkers and Listeners can request for reservation at
any time, the arrival process of packet are random and independent
of each participant and therefore, follows a Poisson arrival process
where the inter-arrival times between packets are exponentially dis-
tributed. Therefore, an exponential distribution is used to characterize
the inter-arrival time (with mean = 1

λ ), for stream advertisement from
the Talker class. This is because the rate of growth of the queues in the
system is proportional to number of stream requests that emanates
from the Talker class.

The deployment models are evaluated for their response time un-
der an exponential arrival of stream request considering a specified
number of requests generated during the physical test measurements.
The models are then further explored to examine the system behavior
under varied traffic and server conditions in a what-if analysis which
allows the system to analyzed by varying more than one parameter.

Figure 7.7 shows the cumulative distribution of response time for
the respective models considering exponential arrival (λ = 10) under
server size of 3 using a Drop service rule. The result shows that the
SDIN-HRMs outperforms the DRM by about a factor of two, with re-
sponse time of completed jobs distributed between 0.2 to 0.8 seconds
whilst that of the DRM is between 0.8 to 1.3 seconds.

Figure 7.8a, 7.8b and 7.8c show the system-response time for the
DRM and the two variants of the SDIN-HRM models ( LReady and
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Figure 7.7: Cumulative distribution of system response, exp(λ =10), queue-
size=10 and Drop-Queue service rule using 3 servers at 95% confi-
dence.

LJoin) respectively under the Waiting-Queue service rule in a what-
if-analysis. This result is also similar to Table 7.2, 7.4 and 7.3 using
infinite queue size. This shows the consistency of the models and
accuracy of the results given that Waiting-Queue service rule behaves
the same way as using the infinite queues. It can be observed that
at an arrival rate of 10 jobs per second, the system response time of
the DRM lies between 3.13s and 1.01s (see Table 7.2) when the system
uses 3 to 5 servers respectively. This result is validated when it is
compared to the actual system measurement with TSN bridges with 3

processors.
Also, the results show a general trend of increased response time of

the system with increasing arrivals and a decrease in response time
with increasing bridge processors (servers).

In general, what the results show is that the response time of the
distributed deployment model takes a very long time under higher
traffic conditions if the number of employed servers are low. A simi-
lar trend is also observed with the SDIN-HRM deployment models,
however, the response times for SDIN-HRM models are much lower
than for DRM when the arrival process is between 10 to 30 jobs per
second using 1 to 3 servers but achieves almost the same response
time as DRM during higher arrival rates.

Comparing the two SDIN-HRM models, a slight increase is seen
in the response-time of the LReady model than the LJoin model, yet,
the difference is not significantly large as compared to the DRM. Fig-
ures 7.9a, 7.9b, and 7.9c show the response time under the Queue-drop
service rule, where TAdvert packets are dropped if the queue sizes of
the bridges and/or controller are exceeded.
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(b) SDIN-HRM LReady
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(c) SDIN-HRM LJoin

Figure 7.8: System response time under increasing traffic arrival for DRM and
SDIN-enabled HRM, exp(λ=100), queue=10 and waiting-Queue
service rule. Result computed at 95% confidence.

Considering Figure 7.9a, a general decrease in response time as
the number of processors (servers) used within the bridges increases
from 1 to 5. However, under each respective processor conditions, a
relatively constant response time is observed. The response times at 1

to 3 servers are consistent with the measured values obtained from
the test measurements from the demonstrator setup.

A similar trend persists in the case of the SDIN-HRM models,
however, they are lower than in DRM. The difference between the
two models is depicted in Figure 7.9d, which shows the difference
in the response-time for LReady and LJoin models. It can be observed
that the LReady model performs slightly better than the LJoin, with
a lower response time under one to two servers. However, LJoin per-
forms better when the number of servers increase from 2 to 5. This
is expected as the internal response time of the Listener ESs are not
considered anyway. In addition, the arrival of packets from all lis-
teners at ncl can in fact overwhelm the QS, thereby, leading a high
waiting time at the controller LJoin QS, hence requiring more servers
to process them faster. In the case of LReady, packets from the listeners
may arrive at different times due to listeners not responding to all
talker advertisement. In general, a low response time of SDIN-HRM
models is observed in comparison to DRM. This observation is further
explained by examining the system drop rate.
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(b) SDIN-HRM, LReady
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(c) SDIN-HRM, LJoin
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(d) Difference LReady-LJoin

Figure 7.9: Response time analysis of DRM and SDIN-enabled HRM,
exp(λ=100), queue=10 and Queue drop service rule. Result com-
puted at 95% confidence.

In the case of DRM, the drop test is done at brT
1 because it is the

ingress point to the system, therefore, once the queue size is exceeded
and a packet is dropped, it does not affect the processes of the other
bridges. In case of SDIN-HRM, the drop test is done at nct since it
also serves the same function as brT

1 in the DRM.
The results displayed in Figure 7.10a show that the drop rate in-

creases steeply with rising number of jobs per second. The same
trend is observed with increasing number of processors with a slight
decrease in the steepness. The possible explanation for this result
is the general processing time of the DRM. Compared to the SDIN-
HRM models shown in Figures 7.10b and 7.10c, the steepness reduces
significantly with increasing number of processors. This is to be ex-
pected since the nct processing time distribution is for a simple task of
streamID lookup and registration, which completes much faster than
in the case of DRM.

The difference between the two SDIN-HRM models is shown in
Figure 7.10d where a general rise in drop rate is visible for the LReady
model with 1 to 2 server(s). This further explains the response time dif-
ferences shown in Figure 7.9d, because LJoin assumes that the stream
is already registered; which means, it completes much faster than
LReady with 2 servers.

Table 7.2, 7.3 and 7.4 show the response times of the different
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(b) SDIN-HRM, LReady
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(c) SDIN-HRM, LJoin
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Figure 7.10: Drop rate under increasing traffic arrival, DRM and SDIN-
enabled HRM, exp(λ=100), queue=10 and Queue drop service
rule. Result computed at 95% confidence.

Table 7.2: Response time of DRM stream reservation, infinite queue

Arrival rate (λ)
System response time (s)

Number of servers

1 2 3 4 5

10 2.17E4
5.36E3

1.38 1.03 1.01

20 2.72E4
1.09E4

5.41E3
2.69E3

1.05E3

30 2.90E4
1.27E4

7.25E3
4.51E3

2.88E3

40 2.99E4
1.36E4

8.15E3
5.98E3

4.34E3

50 3.05E4
1.41E4

8.70E3
5.98E3

4.34E3

60 3.09E4
1.45E4

9.07E3
6.34E3

4.71E3

70 3.11E4
1.48E4

9.33E3
6.61E3

4.97E3

80 3.13E4
1.50E4

9.52E3
6.80E3

5.17E3

90 3.15E4
1.51E4

9.68E3
6.95E3

5.32E3

100 3.16E4
1.53E4

9.80E3
7.08E3

5.44E3

models under infinite queue size. Under infinite queue size, there is
no need for drop rate analysis as all request must be processed by
the systems eventually. Therefore, the Drop service rule is not further
investigated in this case.
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Table 7.3: Response time for SDIN-HRM LReady stream reservation, infinite
queue

Arrival rate (λ)
System response time (s)

Number of servers

1 2 3 4 5

10 3.32E0
7.83E−1

6.19E−1
5.75E−2

5.61
−2

20 8.57E3
1.86E−1

9.34E−1
6.25E−2

5.80E−2

30 1.04E4
2.88E3

3.34E0
7.31E−2

6.25E−2

40 1.13E4
4.26E3

9.85E2
1.14E−1

7.15E−2

50 1.18E4
4.80E3

2.48E3
3.31E2

1.01E−1

60 1.22E4
5.17E3

2.83E3
1.45E3

3.40E1

70 1.24E4
5.45E3

3.10E3
1.94E3

8.43E2

80 1.26E4
5.62E3

3.29E3
2.14E3

1.40E3

90 1.28E4
5.79E4

3.45E3
2.27E3

1.58E3

100 1.29E4
5.90E4

3.57E3
2.40E3

1.71E3

Table 7.4: Response time for SDIN-HRM LJoin stream reservation, infinite
queue

Arrival rate (λ)
System response time (s)

Number of servers

1 2 3 4 5

10 3.11E0
7.29E−1

5.61E−1
3.25E−2

3.0E−2

20 1.12E4
1.61E0

8.14E−1
3.73E−2

3.29E−2

30 1.67E4
2.89E3

2.32E0
4.85E−2

3.73E−2

40 1.95E4
5.58E3

9.83E2
9.09E−2

4.69E−2

50 2.11E4
7.25E3

2.64E3
3.49E2

7.76E−2

60 2.22E4
8.35E3

3.73E3
1.45E3

2.53E1

70 2.30E4
9.13E3

4.53E3
2.19E3

8.27E2

80 2.35E4
9.71E3

5.13E3
2.79E3

1.42E3

90 2.40E4
1.02E4

5.57E3
3.25E3

1.87E3

100 2.44E4
1.05E4

5.92E3
3.62E3

2.24E3

Also, it can be observed from Table 7.2 that the response time for
stream setup grows very long under 1 → 2 servers even for jobs
arrivals under 20 jobs/s, which is also the case considering the SDIN-
HRM-LReady model, however, the LReady still remains lower than
the DRM when Table 7.3 is examined. Generally, both models show
a much reduced response time with increasing number of servers.
Finally, Table 7.4 shows the response time for SDIN-HRM-LJoin model
under infinite queue size. It can be seen that, it outperforms the DRM
and SDIN-HRM-LReady models.
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7.7.1 Result validation

For the validation process, measurements taken from the proto-
typical demonstrator setup are compared to result from the PN-QN
performance results. To do so, the Mean Squared Error (MSE) metric
is used. This is important because service distribution used in the
models were derived from goodness-fit of the processing time of the
prototype demonstrators. Therefore, it is important to assert the de-
gree to which the approximations influence the models’ results by
examining the deviation from the measured data. An MSE gives a
good representation of the variation. The MSE values are shown in
Table 7.5.

Overall, the MSEs show that the prototype system and model match
very well, having an MSE of < 0.015.

In particular, it can be observed that with the SDIN-HRM deploy-
ment model, the LReady model shows a higher MSE than the LJoin.
This is expected because in the actual deployment Listeners may or
may not immediately respond to TAdvert messages received from
the SDIN-CNC. In the model, it is assumed that a Listener immedi-
ately replies to any received TAdvert message. This can lead to slight
variations in the response time compared to the actual setup.

Table 7.5: Mean Squared Error of prototype system and performance model
results for HRMs and DRM deployment

Test # HRM-LJoin HRM-LReady DRM

1 0.0007 0.0004 0.0055

2 0.0149 0.0210 0.0006

3 0.0067 0.0027 0.0023

4 0.0014 0.0182 0.0122

5 0.0125 0.0007 0.0069

6 0.0016 0.0009 0.0009

7 0.0166 0.0044 0.0138

8 0.0015 0.0004 0.0019

9 0.0133 0.0079 0.0000

10 0.0091 0.0916 0.0079

MSE 0.0078 0.0148 0.0052
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7.8 summary of chapter and bibliographic comments

7.8.1 Bibliographic Comments

The mechanism for resource reservation varies widely mostly due
to the application of advanced queuing and transmission techniques
applied on the forwarding plane [104]. These techniques significantly
impact the choice of control plane mechanisms and for that matter
TSN infrastructural deployment in industrial environments, e. g., pro-
cess or factory automation.

In this regard, Ehrlich et al. [111] and Herlich et al. [126] have exam-
ined and analyzed the architectural similarities of TSN deployment
user models and proposed the integration of SDN concepts in TSN to
enhance the evolvability of industrial networks. Their work suggest
the combination of CNC and CUC as SDN controllers [111] to enable
integration with other network systems. However, their work does
not describe nor provide any recommendation or implementation as
examined in this thesis.

Chen [104] and Nasrallah [107] et al. highlight the disadvantage w.r.t
the reliability and availability of centralized controllers when needed,
as well as capital and operation overheads w.r.t CRM or generic HRM.
This is because their architectural analysis identifies the centralized
deployment of controllers (CNC) as an Single Point of Failure (SPoF),
a huge attack surface [112, 127], as well as it being relatively capital
intensive (CAPEX/OPEX). Their opinion expresses how centralized
control may be superfluous to or add unnecessary complexity to a
small-scale network [104, 107], hence, increases CAPEX/OPEX.

Also, Nayak et al. [99] proposed an enhancement of TSN with SDN
capabilities to enable an incremental flow scheduling and routing
in time-sensitive SDNs. Though their work does not use the TSN
compliant forwarding mechanisms (i. e., the TAS), it sets the tone for
examining online-scheduling for scheduled TT using TAS.

In [85], our work on time-scheduling for TAS considers a similar ap-
proach and propose a scheduling computation algorithm highlighting
its sufficiency for all deployment models (i. e., for offline and on-line
TT schedule computation). This was further examined in Chapter 5

and 6 of this thesis.
To address consistency and SPoF challenges of centralized network

control, two approaches are pursued in literature;— controller place-
ment [114–116],— distributed controller clusters. However, in the
industrial environment, challenges resulting from the distance of net-
work controller(s) from the network are not of significant concern. This
is because in process or factory automation networks, the network
controllers are expected to be within the same shop-floor.

For the distributed controller clusters, the general idea behind scala-
bility and reliability of SDN control plane is enabled by decentralized
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replication of controller logic or functions to different physical or
virtualized systems. In this context, Sakic et al. [108–110] provides an
analysis of SDN-based control plane fault tolerance and consensus
algorithms for distributed control plane.

In [110], the authors investigate scalability issues regarding the in-
terplay between progressing state of distributed controllers and the
consistency of the configuration of external forwarding device in the
control plane under Byzantine faults. In [109], an empirical study of
the impact of adaptive consistency of distributed SDN control plane
is examined with the aid of an experiment consisting of five extended
OpenDaylight controller instances and two network topologies within
data-centers.

Similarly, Muqaddas et al. [128] investigated the load overhead of
intra-cluster communication using multiple controllers in an Open
Network Operating System (ONOS) cluster. These analyses show that
SDN-enabled centralized control can be very scalable and reliable
albeit concerns raised in [104, 107, 111].

In the context of SDN, notable work regarding performance analysis
is done in [108], where the authors evaluated the performance of
SDN cluster organization w.r.t the response time and availability of
consensus algorithms using the Mobius framework, which is based
on Stochastic Activity Nets (SANs) [129–131]. The authors analyze the
response time of controller clusters in the face of adversities. SANs
are not used in this thesis because the system under study requires
deterministic dispatch of packets and therefore, deterministic PNs are
better suited.

Furthermore, model-checking, classical system theory and discrete-
time state analysis [132], and formalism such as PN and QN [133–135]
have been used to evaluate the performance of network protocols and
networks as a whole. A similar approach is followed by Sood et al.
[136], who introduce an analytical model to study the performance of
SDN switches based on an M/Geo/1 queuing model. The analytical
model is validated using extensive simulations, where the influence
on packet arrival rates, number of flow-table entries, and position of
the target rule by corresponding packets are evaluated.

Gelberger et al. [137] also analyze and compare the performance
of two SDN protocol architectures, namely OpenFlow and ProGFE,
as a function of their complexity, flexibility, and potential capabilities.
The authors conclude that SDN flexibility comes at the price of raw
performance with an additional overhead for complex functionalities.

Araniti et al. [138] investigate the performance of OpenFlow over
wireless networks and the enhancements introduced by the usage of
SDN concepts. Using OMNeT++ [139] simulation, the obtained results
show that SDN architecture and OpenFlow yield benefits regarding
e2e delay, throughput, and jitter. However, analysis in this thesis has
shown that e2e latency guarantees are dependent on the DP and the
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efficient computational models derived from SDN-enablers.
Contrastingly, this thesis combines two methodologies to achieve

validatable results;— first, a simulation approach based on PNs and
QN models is used to gain quantitative performance results for TSN
deployment scenarios;— second, measurements from actual DRM and
SDIN-HRM installations were used to validate the results.

7.8.2 Summary of chapter

In this chapter, an SDN-enabled Hybrid Reservation Model (HRM)
for control and management of TSN infrastructures is proposed as a
complementary and/or alternative deployment solution that allows
industrial network operators to harness the full potential of TSN.

The novel Software-Defined Industrial Networking (SDIN)-HRM
leverages existing Multiple Stream Registration/Reservation Proto-
col (MSRP) mechanisms such as Multiple Stream Registration/Reser-
vation Protocol (MSRP), Multiple MAC Registration Protocol (MMRP)
and Multiple VLAN Registration Protocol (MVRP), and SDN princi-
ples to provide dynamic resource reservation coordinated by a central-
ized SDIN controller.

A set of requirements are formulated which specify how exist-
ing MSRP packet combined with User Network Interface (UNI) data
structure can be extended to enable a flexible exchange of "scheduled-
traffic" information between End-Station (ES) and SDIN controller and
thus, allowing an online centralized computation of Time-Triggered
(TT) schedules which could otherwise not be achieved in the Decen-
tralized Reservation Model (DRM).

Aside from the illustrated qualitative benefits and flexibility of SDIN
for TSN deployment, the chapter provides quantitative performance
analysis of the proposed system compared with existing deployment
models. Leveraging the expressiveness of deterministic Petri Net (PN)
and Queuing Network (QN), performance models for the respective
DRM and SDIN-HRM are developed to characterize the intricate op-
erations of each deployment. The PN-QN models are analyzed via
simulations, comparing deployment models based on their respon-
siveness under varied traffic conditions.

The results of the performance analysis indicate that in addition to
the flexibility of SDIN-HRM to integrate new requirements, the ob-
tained response times for plug-and-play stream reservation are lower
than those of the decentralized model.





8
C O N C L U S I O N S

Network programmability is revolutionizing how networks are con-
structed and operated. Leading concepts such as Software-Defined
Networking (SDN) have already been adopted for systems in telecom-
munication and enterprise networks. However, there is a significant
hesitation for its adoption in industrial networks due to misconcep-
tions and lack of clarity of the specifications that cover the needs of
industrial operators.

This thesis shows novel ways to achieve practical deployments by
leveraging Software-Defined Networking (SDN) for the control and
management of next-generation industrial networks based on Time-
Sensitive Networking (TSN).

8.1 summary of thesis

To better understand the building principles of SDN in the industrial
context, this thesis starts by examining SDN with other programmable
network concepts such as Forwarding and Control Element Separa-
tion (ForCES) from the perspective of industrial stakeholders. Notably,
concerns such as industrial operators’ ability to deploy solutions that
can manage applications with contrasting requirements on a common
network infrastructure, as well as provide the requisite Quality of Ser-
vice (QoS) whilst ensuring continuity by accommodating new services,
are among several challenges identified and examined in Chapter 2.
With the analysis of SDN concepts, this thesis identifies and examines
relevant principles enabling the concept of Software-Defined Indus-
trial Networking (SDIN) to allow industrial operators address their
concerns and resulting challenges.

With a better understanding of SDN concepts and what they can
provide to aid in addressing the challenges of industrial networks,
Chapter 3 identifies and examines virtualization technologies and
concepts that can be leveraged for the realization of an SDN-enabled
industrial infrastructure. Virtualization concepts such as network slic-
ing and how it can be leveraged to accommodate characteristically
different QoS requirements on the same network is analyzed and dis-
cussed. Paramount in the analysis is how Network Slice (NS) can be
realized in production-grade SDIN controllers by employing solutions
to the Virtual Network Embedding (VNE) problem.

In this regard, the underlying principles of the VNE problem were
examined to reveal relevant aspects of solutions to the problem that
can be optimized for flexible resource allocation and QoS provision-

145
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ing within SDN. This includes the role of VNE algorithms in flexible
service automation as well as considerations for the VNE problem
formulation, and design of VNE algorithms in the context of SDN.

Based on the insights gained from VNE analysis in relation to three
principles of SDN namely— Service creation, Abstraction and virtu-
alization, and the Concept of shared resource; two distinct objectives
are proposed for the VNE formulation within SDN;—Objective 1

discusses how the underlying Substrate Network (SN) and the char-
acteristics of applications can be virtualized to achieve QoS-aware
resource allocation,— Objective 2 examined how VNE algorithms
must be designed for efficient resource orchestration within an SDN
controller.

Based on objectives defined in Chapter 3, Chapter 4 applies a Tra-
jectory Approach (TA) to derive computational models for delay
constraint verification on next-generation TSN-enabled SN, which
provides varied traffic shaping features for QoS guarantees. The traf-
fic shaping features are analyzed and delay computation functions
derived for the respective shapers or schedulers based on a novel
Queue-Scheduler-Link (QSL) model considering the effect of indi-
vidual operations as well as the tandem composition within a TSN-
enabled Substrate Network (SN).

Subsequently, Chapter 5 proposes and develops novel online VNE
algorithms to address Objective 2 which covers efficient resource
orchestration within SDN. The novel Demand Based virtual Link Em-
bedding Algorithm (DBvLEA) which integrate several features such
as QoS-aware mapping, topology-aware and schedule-aware map-
ping are designed and developed considering proposed guidelines
discussed in Chapter 3.

In Chapter 6, the proposed algorithms are evaluated to assert the
underlying hypothesis of the design. This includes comparison to
state-of-the-art VLiM algorithms.

Finally, to showcase the flexibility and benefits of an SDN-enabled in-
dustrial network, an SDIN-enabled Hybrid Reservation Model (HRM)
is proposed in Chapter 7 as a deployment solution that allows in-
dustrial operators to utilize the full potential of TSN. Subsequently,
a qualitative and quantitative performance analysis showcasing the
merits of the proposed deployments are discussed.

8.2 lessons learned and impact

This thesis started by examining the concerns and requirements
of industrial stakeholders and their hesitations towards adopting
programmable networking concepts such as SDN. In this regard, the
thesis set forth to establish clarity on the subject by examining the
underlying principles of programmable networks, then proposing and
developing solutions that can be leveraged to address their concerns.
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The following are the lessons learned and the impact of the findings
of this thesis.

8.2.1 Analysis of programmable networks

The analysis of network programmability based on the principle of
control and forwarding functions separation presented in Chapter 2

revealed two exciting facts;— the concept of SDN adapts application
requirements (environment) to a network (organism), which is con-
trary to evolution from a biological point of view. This implies SDN
abstracts the requirements of applications and a network to assert
compatibility rather than changing the capability of the network to
suit requirements of its environment. However, the ability to fulfill the
requirements of applications is shown in Chapters 3 and 4 to depend
solely on the features of the underlying network.

Secondly, the use of Abstraction and virtualization concepts (e. g.,
Concept of shared resource) and the possibility to augment network
functions within the centralized controller allow for the realization
of application specific requirements on a network through the use of
computational and communication models. This enables on-demand
service creation via automated processes within the SDIN controller.
These results therefore provide a foundation and focus-points upon
which solutions can be curated to address specific requirements of
applications.

Finally, the knowledge of network evolvability obtained from the
analysis of SDN principles gives researchers and engineers a clear
understanding of how to map requirements of legacy applications on
SDN-enabled infrastructures and thus, allows for control and man-
agement of heterogeneous industrial systems. This, in effect, makes
SDN-enabled infrastructures backward compatible and future-proof.

8.2.2 QoS provisioning and the VNE problem

Following from the knowledge gained on SDN concept of pro-
grammability in Chapter 2, the examination of the VNE problem in
the context of SDN provides considerable insights into how VNE
should be applied in production-grade SDN-enabled networks.

The result of the VNE analysis in Chapter 3 can be used as a guide-
line for both researchers and engineers to develop algorithms and
computational models that can be applied in any network where pre-
cise QoS and efficient resource usage are required.

Furthermore, the separation of the VNE problem into two distinct
focus areas provides essential insights into the relevant aspects of
the VNE problem in terms of what to consider and what goes into
making VNE algorithms QoS-ware. Based on these guidelines, the
proposed delay models on TSN-enabled infrastructures show how
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existing methodologies for exact worst-case analysis of switched Eth-
ernet networks can be used in VLiM algorithms for delay guarantees
within SDN.

Also, the novel resource allocation algorithms proposed and evalu-
ated in Chapters 5 and 6 respectively, provide resource allocation func-
tions that enable application-specific service customization. This in-
cludes the use of a novel approach to distributed online time-schedule
computation algorithm coordinated by a centralized controller.

To the best of our knowledge, the proposed algorithm is the first
to examine online time-aware scheduling on a TSN-enabled infras-
tructure. The impact of these results implies that industrial operators
no longer have to choose one solution or the other but can utilize all
queuing and shaping mechanisms specified in the TSN standard on a
common infrastructure controlled and managed by SDIN controllers.
Lastly, demand-based resource orchestration shows a significant ad-
vantage over the greedy-based shortest path first approach for a multi-
constrained resource orchestration in SDIN. It also contributes to a
lightweight function which enables SDIN controllers to be deployed
on low capacity compute systems.

8.2.3 Flexible deployment of TSN infrastructure

After examining the role of virtualization and algorithmic functions
within SDN, Chapter 7 demonstrated the flexibility of SDIN-enabled
TSN. The demonstration illustrated among other things, how commu-
nication models such as packet headers can interact with computa-
tional functions within an SDIN controller to enable dynamic service
provisioning on demand.

Moreover, results of the qualitative performance analysis attest to the
flexibility of an SDN-enabled TSN. This is further backed by quantita-
tive performance analysis which shows the proposed SDIN-enabled
HRM can perform just as good as DRM if not better.

The impact of the results illustrated in Chapter 7 shows the practical
application of novel algorithms and concepts proposed in this thesis.

Furthermore, the open service interfaces and resources exposed by
the SDIN controller enable integration with brown- and green-field
technologies such as Field-bus and 5G systems as well as inter-domain
communications across multiple TSN domains [11].

8.3 outlook

The approach and concepts proposed in this thesis are not exhaus-
tive solutions to challenges within industrial networks, there is still
the need for further research as some concepts proposed in this thesis
rely on assumptions such as perfect synchronization of TSN bridges
and ESs as well as an always available SDIN controller.
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Contrary to real-world deployments, systems fail, and whenever
such failures occur, they can lead to financial losses or injuries. This
therefore requires a critical examination of SDIN controller deploy-
ments in production networks in case of failures.

Furthermore, efficiently controlled distributed processes are those
coordinated by a centralized entity [140]. Though this assertion is true
from classical distributed systems theory in terms of flexibility and
performance, there are merits to the Single Point of Failure (SPoF)
problem attributed to centralized control of distributed systems. For
example, a compromised SDIN controller gives an attacker unlimited
control of communication within production systems. This, therefore,
implies the security in SDIN deployment is as important as the perfor-
mance aspect of the system and must be further investigated.

In this regard, the prevention of man-in-the-middle attacks targeted
at obtaining login credentials of operators in order to gain unau-
thorized access to the SDIN controller must be investigated. Finally,
strategies to guide against Distributed Denial of Service (DDoS) at-
tacks aimed at making the SDIN controllers unavailable to in order
stall production must also be investigated.





A
A P P E N D I X

a.1 forces requirements

The following provide a summary of requirements stipulated by the
ForCES architectural framework for design of protocols between the
CE and FE termed Fp, as well as models of the FE and CE [12, 141].

a.1.1 Requirement of Fp

• Must enable CE to discover the capabilities of FE

• Must support secure communication

• Must be capable of supporting 10s of 1000s FEs and ports

• Must support reliable payload transport

• Must support packet redirect and mirroring

• Must support FE topology discovery

• Must support dynamic association of CE and FEs

• Must be able to group an ordered set of commands to FEs

• Must support asynchronous notification of FE events to CE

• Must enable CE to perform statistical queries on FE

• Must support CE redundancy or CE fail-over

• Must support multi-hop communication between CE and FE if
they are on the different layers of the OSI model using RFC2914

compliant L4 protocols e.g. Transport Connection Protocol (TCP),
Secure Communication/Transport Connection Protocol (SCTCP)

a.1.2 Requirement of FE and FE models

• FE models must express the kind of logical functions that can be
applied to packets as they pass through an FE.

• FE models must support variations in the way logical functions
are implemented on an FE.

• FE models must be capable of describing the order in which
these logical functions are applied in an FE.
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• FE must support a flexible infrastructure in which new logical
functions such as classification, actions, and parameterization
data can be easily added.

• FE model must be capable of describing the types of statistics
gathered by each logical function.

• FE must support minimal set of functions however, the number
of function is unrestricted.

• FE must be capable of expressing the number of ports on the
device, the static attributes of each port such as speed, address,
and state.

• FE models must be capable of expressing the data that can be
used by the forwarding function to make a forwarding decision.

• FE must be capable of expressing its QoS capabilities in terms
of, e.g., metering, policing, shaping/scheduling, and queuing
functions and how they can be used to provide IntServ and
DiffServ

• FE models should be extensible to adapt to new and currently
unknown functionality.

a.2 tsn standards and key features

See [142] for further descriptions.

IEEE TSN standards Key features

802.1Qbv Enhancement for scheduled traffic (TAS)

802.1Qcc Enhancement for stream reservation

802.1Qca Path control and reservation

802.1Qci Ingress filtering and policing

802.1Qch Cyclic queuing and forwarding

802.1Qcr Asynchronous traffic shaping

802.1Qbu Frame preemption

802.1CB Stream identification and seamless redundancy

802.1AS Clock/time synchronization

802.Qcp, CBcv, cw YANG models for bridges, CB, and Qbv, Qbu, Qci
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a.3 substrate network and slice request models

Listing A.1: SN Model With Integrated QSL

1 {
2 "network": {
3 "resources": {
4 "nodes": [{
5 "id": " ",
6 "attributes": {"relaibility": 0.99,
7 "port": [{
8 "id": "ce:","rate": 100000000, "tx": "on/off"

,"rx": "on/off"}
9 ]}

10 }],
11 "links": [{
12 "id": "src/dst",
13 "attributes": {
14 "propagationDelay": "0.00000010",
15 "schedulers": [{
16 "name": "TAS",
17 "queues": [{
18 "id": "0", "maxBuffer": 100000,
19 "reservedBuffer": 0,"delay": 0,
20 "occupants": []}]},
21 {"name": "CBS",
22 "queues": [{"id": "1",
23 "maximumBufferSize": 100000,
24 "usedBuffer": 0, "delay": 0,
25 "occupants": []}]}],
26 "bandwidth": {"max": "port.rate","available

": "max-used","used": 0}},
27 "src": {"srcNodeId": "port.tx","srcPort":

"port.tx"},
28 "dst": {"dstNodeId": "port.rx", "dstPort":

"port.rx"}}]}}}

Listing A.2: NS Request Model

1 {
2 "NSrequest": {
3 "sliceId": "rtslice",
4 "realtimeCapable": true,
5 "cyclic": "true",
6 "baseCycleTime": "125",
7 "delayDemand":"10000",
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8 "sliceEndPoints": [ "mac/ip:1", "mac/ip:2","mac/ip
:3"],

9 "connectivityMatrix": [{
10 "src-node-id": "mac/ip:1",
11 "dst-node-id": [{
12 "value": "mac/ip:2", "maxBurst": "10"

},
13 { "value": "mac/ip:3","maxBurst": "10

"}]},
14 {
15 "src-node-id": "mac/ip:2","dst-node-id": [{"

value": "mac/ip:1",
16 "maxBurst": "10"}]}]}}

a.4 msrp and sdin-hrm data models

Figure A.1: MSRP attributes
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Figure A.2: Proposed attributes for SDIN-enabled HRM
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