
Dissertation

Preventing the Leakage of Privacy

Sensitive User Data on the Web

Martin Koop (geb. Stopczynski)
Dissertation eingereicht an der Fakultät für Informatik und

Mathematik der Universität Passau zur Erlangung des Grades eines

Doktors der Ingenieurswissenschaften

Gutachter: Prof. Dr. Stefan Katzenbeisser

Zweitgutachterin: Prof. Dr. Delphine Reinhardt

Betreuer: Prof. Dr. Stefan Katzenbeisser

Roßdorf, September 2020

Zusammenfassung

Das Aufzeichnen der Internetaktivität ist mit der Verknüpfung persönlicher Daten zu einer Schlüssel-
ressource für viele kostenpflichtige und kostenfreie Dienste im Web geworden. Diese Dienste sind zum
einen Webanwendungen, wie beispielsweise die von Google bereitgestellten Karten/Navigation oder
Websuche, die täglich kostenlos verwendet werden. Zum anderen sind es alle Webseiten, die meist
kostenlos Nachrichten oder allgemeine Informationen zu verschiedenen Themen bereitstellen. Durch
das Aufrufen und die Nutzung dieser Webdienste werden alle Informationen, die im Webdienst ve-
rarbeitet werden, an den Dienstanbieter weitergeben. Dies umfasst nicht nur die im Benutzerkonto
des Webdienstes gespeicherte Profildaten wie Name oder Adresse, sondern auch die Aktivität mit dem
Webdienst wie das anklicken von Links oder die Verweildauer.

Darüber hinaus gibt es jedoch auch unzählige Drittparteien, welche zumeist im Hintergrund in die
Webdienste eingebunden sind und das Benutzerverhalten der kompletten Webaktivität - Webseiten über-
greifend - mitspeichern sowie auswerten. Der Einsatz verschiedener, in der Regel für den Benutzer
verborgener Techniken, dient dazu das Online-Verhalten der Benutzer genau zu verfolgen und viele sen-
sible Daten zu sammeln. Dieses Verhalten wird als Web-Tracking bezeichnet und wird hauptsächlich
von Werbeunternehmen genutzt. Die gesammelten Daten sind oft personenbezogen und eine wertvolle
Ressourcen der Unternehmen, um Beispielsweise passend zum Benutzerprofil personalisierte Werbung
schalten zu können. Mit der Nutzung dieser personenbezogenen Daten entstehen aber auch weitre-
ichendere Auswirkungen, welche sich unter anderem in Preisanpassungen für Benutzer mit speziellen
Profilattributen, wie der Nutzung von teuren Endgeräten, widerspiegeln.

Ziel dieser Arbeit ist es die Privatsphäre der Nutzer im Internet zu steigern und die Nutzerverfolgung
von Web-Tracking signifikant zu reduzieren. Dabei stellen sich vier Herausforderungen, die jeweils einen
Forschungsschwerpunkt dieser Arbeit bilden: (1) Systematische Analyse und Einordnung eingesetzter
Tracking-Techniken, (2) Untersuchung vorhandener Schutzmechanismen und deren Schwachstellen,
(3) Konzeption einer Referenzarchitektur zum Schutz vor Web-Tracking und (4) Entwurf einer au-
tomatisierten Testumgebungen unter Realbedingungen, um die Reduzierung von Web-Tracking in den
entwickelten Schutzmaßnahmen zu untersuchen. Jeder dieser Forschungsschwerpunkte stellt neue
Beiträge bereit, um einheitlich das übergeordnete Ziel zu erreichen: der Entwicklung von Schutzmaß-

nahmen gegen die Preisgabe sensibler Benutzerdaten im Internet.
Der erste wissenschaftliche Beitrag dieser Dissertation ist eine umfassende Evaluation eingesetzter

Web-Tracking Techniken und Methoden, sowie deren Gefahren, Risiken und Implikationen für die
Privatsphäre der Internetnutzer. Die Evaluation beinhaltet zusätzlich die Untersuchung vorhandener
Tracking-Schutzmechanismen und deren Schwachstellen. Die gewonnenen Erkenntnisse sind maßge-
blich für die in dieser Arbeit neu entwickelten Ansätze und verbessern den bisherigen nicht hinreichend
gewährleisteten Schutz vor Web-Tracking.

Der zweite wissenschaftliche Beitrag ist die Entwicklung einer robusten Klassifizierung von Web-
Tracking, der Entwurf einer effizienten Architektur zur Langzeituntersuchung von Web-Tracking sowie
einer interaktiven Visualisierung des Auftreten von Web-Tracking im Internet. Dabei basiert der neue
Klassifizierungsansatz, um Tracking zu identifizieren, auf der Entropie Messung des Informationsgehalts
von Cookies. Die Resultate der Web-Tracking Langzeitstudien sind unter anderem 1.209 identifizierte
Tracking-Domains auf den meistbesuchten Webseiten in Deutschland. Hierbei wurden innerhalb der
Top 25 Webseiten im Durchschnitt 45 Tracking-Elemente pro Webseite gefunden. Der Tracker mit dem
höchsten Potenzial zum Erstellen eines Benutzerprofils war doubleclick.com, da er 90% der Webseiten
überwacht. Die Auswertung des untersuchten Tracking-Netzwerks ergab weiterhin einen detaillierten
Einblick in die Tracking-Technik mithilfe von Weiterleitungslinks. Dabei haben wir 1,2 Millionen HTTP-
Traces von monatelangen Crawls der 50.000 international meistbesuchten Webseiten analysiert. Die
Ergebnisse zeigen, dass 11,6% dieser Webseiten HTTP-Redirects, verborgen in Webseiten-Links, zum

3

Tracken verwenden. Dies wird eingesetzt, um den Webseitenverlauf des Benutzers nach dem Klick
durch eine Kette von (Tracking-)Servern umzuleiten, welche in der Regel nicht sichtbar sind, bevor das
beabsichtigte Link-Ziel geladen wird. In diesem Szenario erfasst der Tracker wertvolle Verbindungs-
Metadaten zu Inhalt, Thema oder Benutzerinteressen der Website. Die Visualisierung des Tracking
Ökosystem stellen wir in einem interaktiven Open-Source Web-Tool bereit.

Der dritte wissenschaftliche Beitrag dieser Dissertation ist die Konzeption von zwei neuartigen
Schutzmechanismen gegen Web-Tracking und der Aufbau einer automatisierten Simulationsumgebung
unter Realbedingungen, um die Effektivität der Umsetzungen zu verifizieren. Der Fokus liegt auf den
beiden meist verwendeten Tracking-Verfahren: Cookies (hierbei wird eine eindeutigen ID auf dem Gerät
des Benutzers gespeichert), sowie Browser-Fingerprinting. Letzteres beschreibt eine Methode zum Sam-
meln einer Vielzahl an Geräteeigenschaften, um den Benutzer eindeutig zu (re-)identifizieren, ohne eine
eindeutige ID auf dem Gerät zu speichern.

Um die Effektivität der in dieser Arbeit entwickelten Schutzmechanismen vor Web-Tracking zu un-
tersuchen, implementierten und evaluierten wir die Schutzkonzepte direkt im Chromium Browser. Das
Ergebnis zeigt eine erfolgreiche Reduzierung von Web-Tracking um 44%. Zusätzlich verbessert das in
dieser Arbeit entwickelte Konzept “Site Isolation” den Datenschutz des privaten Browsing-Modus, er-
möglicht das Setzen eines manuellen Speicher-Zeitlimits von Cookies und schützt den Browser gegen
verschiedene Bedrohungen wie CSRF (Cross-Site Request Forgery) oder CORS (Cross-Origin Ressource
Sharing). Site Isolation speichert dabei den Status der lokalen Website in separaten Containern und
kann dadurch diverse Tracking-Methoden wie Cookies, lokalStorage oder redirect tracking verhindern.
Bei der Auswertung von 1,6 Millionen Webseiten haben wir gezeigt, dass der Tracker doubleclick.com das
höchste Potenzial besitzt, den Nutzer zu verfolgen und auf 25% der 40.000 international meistbesuchten
Webseiten vertreten ist.

Schließlich demonstrieren wir in unserem erweiterten Chromium-Browser einen robusten Browser-
Fingerprinting-Schutz. Der Test unseres Prototyps mittels 70.000 Browsersitzungen zeigt, dass unser
Browser den Nutzer vor sogenanntem Browser-Fingerprinting Tracking schützt. Im Vergleich zu fünf
anderen Browser-Fingerprint-Tools erzielte unser Prototyp die besten Ergebnisse und ist der erste
Schutzmechanismus gegen Flash sowie Canvas Fingerprinting.

Abstract

Recording Internet activity and linking it to personal information has become a key resource for many
paid and free web services. These services include web applications such as Google Maps/Navigation
or Search, which are used daily for free. On the other hand, there are websites that provide (mostly
free) news or general information on various topics. By using these web services, all information is
processed by the service provider. This includes not only the profile data stored in the user account of
the web service such as name or address, but also the activities such as clicking links or the duration
of stay. In addition, however, there are also countless third-parties, mostly hidden in the background,
that record and analyze the users’ behavior even across websites. This process is known as web tracking
and is mainly used by advertising companies. The collected data often contains personal data which is a
valuable resource for companies, for example, to provide personalized advertisements according to the
user profile. However, the use of these personal data also results in far-reaching effects, which are among
other things, price adjustments for users with special profile attributes, such as the use of expensive end
devices.

The main goal of this work is to increase the privacy of users on the Internet and to significantly
reduce web tracking. There are four challenges, each of which forms a research focus of this work: (1)
systematic analysis and classification of used tracking techniques, (2) evaluation of existing protection
mechanisms and their weaknesses, (3) designing a reference architecture to prevent web tracking; and
(4) designing an automated test environment under real-world conditions to evaluate the reduction
of web tracking in the developed protection mechanisms. Each of these research topics provides new
contributions to achieve the overall objective: preventing the leakage of privacy sensitive user data on
the web.

The first scientific contribution of this dissertation is a comprehensive evaluation of web tracking
techniques used on the web, as well as their risks, threats and implications for the users’ privacy. The
evaluation also includes the analysis of existing tracking protection mechanisms and their weaknesses.
The insights gained are decisive for the new developed approaches in this work and improve the previ-
ously insufficient protection against web tracking.

The second scientific contribution is the development of a robust classification of web tracking, the
design of an efficient architecture for a long-term study of web tracking and the publication of an inter-
active visualization of the occurrence of web tracking on the Internet. The new classification approach
to identify tracking is based on the entropy measurement of the information content of cookies. The re-
sults of the web tracking long-term studies include 1,209 identified tracking domains on the most visited
websites in Germany. Here, an average of 45 tracking elements per website was found within the top
25 websites. The tracker with the highest potential for creating a user profile was doubleclick.com, as
it monitors 90% of the scanned web pages. The evaluation of the tracking network provided a detailed
insight into the tracking technique using redirect links. In this process, we analyzed 1.2 million HTTP
traces of months long crawls on the 50,000 internationally most visited websites. The results show that
11.6% of these websites use HTTP redirects hidden in web links capable for tracking. This method is
used to redirected the user through a chain of potential tracking servers not visible to the user. In this
scenario, the tracker collects valuable connection meta data about the content, topic or users’ interests
on the website. The visualization of the tracking ecosystem is provided in an interactive open-source
web tool.

The third scientific contribution of this dissertation are the design of two novel protection mechanisms
against web tracking and the development of an automated simulation environment under real condi-
tions to verify the effectiveness of the implementations. Here, we focus is on the two most commonly
used tracking methods: cookies (where a unique ID is stored on the user’s device), as well as browser

5

fingerprinting. The latter describes a method for collecting a variety of device properties to uniquely
(re-)identify the user without storing a unique ID on the device.

In order to evaluate the effectiveness of the web tracking protection mechanisms developed in this
work, we implemented and evaluated the protection concepts directly in the Chromium browser. The
result shows a successful reduction of web tracking by 44%. In addition, the concept of "Site Isolation"
developed in this work improves the privacy of the private browsing mode, enables setting a man-
ual cookie timeout limit and protecting the browser against various threats such as Cross-Site Request
Forgery (CSRF) or Cross-Origin Resource Sharing (CORS). Site Isolation stores the status of the local
website in separate containers and can therefore prevent various tracking methods such as cookies,
lokalStorage or redirect tracking. In an additional evaluation of 1.6 million websites we show that the
tracker doubleclick.com has still the highest potential to track the user on 25% of the 40,000 interna-
tionally most visited websites.

Finally, we demonstrate a robust browser fingerprinting protection in our enhanced Chromium
browser. Testing our prototype on 70,000 browsing session, we show that our browser protects against
so called browser fingerprinting tracking. Compared to five other browser fingerprinting tools, our pro-
totype achieved the best results and is the first protection mechanism against Flash as well as Canvas
fingerprinting.

Acknowledgments

During my long journey leading to this dissertation, there are various people I would like to thank. First
of all, I would like to thank my advisor Prof. Dr. Stefan Katzenbeisser. Being my supervisor, he not only
provided me continuous support by reviewing my work, but especially motivated me in my research with
new ideas and his feedback leading to great publications. I thank him for his patience and the possibility
he gave me to finish this work. I very well remember his inspiring goal he told me once “to support all

students finishing their studies”. I also thank my co-referee Prof. Dr. Delphine Reinhardt, giving me the
confidence to finish the thesis.

Further, I thank all me friends in believing in me to finish my dissertation. I thank in particular my
friends Franz Aschoff, Matthias Finke, Bastian Koop, Johannes Küber, Johannes Lerch, Neal Livingston,
Kamill Panitzek and Lukas Stopczynski helping me to proofread the thesis. I especially thank my
colleague and friend Marco Ghiglieri, giving me the entire time support in technical problems as well as
in discussing research questions. In addition, I thank Erik Tews for his help in supporting my publications
with ideas as well as technical know how. Moreover, I thank all my students making contributions to my
research projects. Thank you Peter Baumann, Benedikt Bäumle, Thorben Bürgel, Johannes Häußler, and
Michael Zugelder for the great work in your theses.

I would like to express my gratitude to my parents, as they gave me all the support I needed to start
and finish my studies. All is based on the life goal of my family and what my grandfather used to say: ”It
is better to carry books, than a sack of coal”, which helped me reaching this point.

Special thanks to Lara, giving me the energy and inspiration in the last steps finishing this thesis. You
motivated me to accomplish my goal - I love you!

7

Contents

1 Introduction into Web Tracking 19
1.1 Web Tracking Methods . 19
1.2 Web Tracking Defenses . 20
1.3 Publications and Contributions . 21
1.4 Outline . 22

2 Web Tracking Background 25
2.1 Beginning of Web Tracking . 25
2.2 Cross-Domain Tracking . 25
2.3 Market and Stakeholders . 26
2.4 Ad-Ecosystem . 27
2.5 Risks, Threats and Implications . 28

2.5.1 Insecure Data Handling . 28
2.5.2 Web Services and Social Media . 29
2.5.3 When Third-Party Tracking becomes First-Party . 30
2.5.4 Information Leakage . 30
2.5.5 Buying User Data . 30
2.5.6 Web Exploits . 31
2.5.7 De-Anonymization of Users . 31
2.5.8 Price Discrimination . 32
2.5.9 Financial Credibility . 32
2.5.10 Insurance Coverage . 32
2.5.11 Government Surveillance . 33
2.5.12 Positive Aspects of Tracking . 33

2.6 Web Tracking Techniques . 34
2.6.1 Session Based . 34
2.6.2 Storage Based . 34
2.6.3 Cache Based Tracking . 37
2.6.4 Browser Fingerprinting . 38
2.6.5 Redirect Tracking . 39
2.6.6 Others . 41

2.7 Tracking Protection Mechanisms and Tools . 42
2.7.1 Clearing Browser Cookies, Cache and History . 42
2.7.2 Built-In Browser Mechanisms . 42
2.7.3 Private Browsing . 44
2.7.4 Opt-Out Cookies . 44
2.7.5 Do-Not-Track Header . 44
2.7.6 European Cookie Law . 45
2.7.7 Tools to Block Trackers . 45
2.7.8 Anonymity Networks / IP Hiding . 46
2.7.9 Anonymous Search Engines . 47
2.7.10 User Driven (Academic) Advertising Models . 47
2.7.11 Tracking-Free (Paid) Services . 48

2.8 Summary . 50

9

3 Automated System to Detect, Analyze and Protect Against Tracking 51
3.1 Architecture and Implementation . 51
3.2 Tracker Classification and Detection Metric . 53
3.3 Long Term Evaluation and Results of Web Tracking on German Websites 53
3.4 Experimental Setup . 54
3.5 Results . 54

3.5.1 Top Tracker of Entire Evaluation Period . 54
3.5.2 Top Tracker in a Single Crawl . 54
3.5.3 Highest Tracker Appearance in Different Crawls . 56
3.5.4 Total Amount of Tracking Elements on Websites . 56
3.5.5 Amount of Tracking Elements on Websites in a Single Crawl 57
3.5.6 Average Amount of Tracking Elements Embedded on Websites 57
3.5.7 Maximum Trackers on Websites in Different Crawls 57
3.5.8 Evaluation of Tracking Methods . 58

3.6 Summary . 58

4 Dynamic Redirect Link Tracking Evaluation 61
4.1 Related Work . 61
4.2 Experimental Setup . 63

4.2.1 OpenWPM Framework . 63
4.2.2 Crawler Architecture . 63
4.2.3 Crawler Configuration . 64
4.2.4 Simulated User Behavior . 64

4.3 Results . 65
4.3.1 Initial Loading . 65
4.3.2 Identifying Redirect Trackers . 66
4.3.3 Regular Trackers . 67
4.3.4 Redirect Trackers and Cookies . 68
4.3.5 Cookie classification . 70
4.3.6 Clusters of Trackers . 71
4.3.7 Structure of the Redirect URLs . 72

4.4 Countermeasures . 74
4.4.1 Rewriting URLs in the Browser . 74
4.4.2 Blocking Cookies from 1st Party Redirects . 74
4.4.3 Blocking Popups . 75
4.4.4 Blocking Ads . 75
4.4.5 Browser Add-on LinkTrackExchange . 75

4.5 Visualization . 77
4.5.1 Bubblechart . 77
4.5.2 Redirect-Graph . 78
4.5.3 Select different statistic data . 78
4.5.4 Network-Graph . 79

4.6 Summary . 79

5 Reducing User Tracking through Automatic Website State Isolation 83
5.1 Design Decisions . 84

5.1.1 Intercepting Proxy . 84
5.1.2 Extension or Add-On . 84
5.1.3 Plugin . 85
5.1.4 Modifying the Browser Source . 85

10 Contents

5.2 Concept and Implementation . 86
5.2.1 Storage Policy . 88
5.2.2 Support of Complex Interaction . 89
5.2.3 Storage Strategies . 90
5.2.4 Isolation Classifications . 92

5.3 Evaluation . 93
5.3.1 Browsing Sessions . 94

Biased Crawling . 94
Crawling Results . 95

5.3.2 Discussion . 98
5.4 Related Work . 98
5.5 Summary . 99

6 Robust Browser Fingerprinting Protection 101
6.1 Related Work . 102
6.2 Anti-Fingerprinting: Disguised Chromium Browser . 104

6.2.1 Architecture and Implementation . 104
6.2.2 DCB: Mode of Operation . 106
6.2.3 Flash and System Font Protection Mechanisms . 106
6.2.4 Specific N:1 Implementation . 107
6.2.5 Specific 1:N Implementation . 108

6.3 Canvas Anti-Fingerprinting . 108
6.3.1 Weaknesses in Counter Detection Strategies of Canvas Manipulation 109
6.3.2 Robust Canvas Fingerprinting Protection . 109
6.3.3 Image manipulation algorithm . 110

6.4 Evaluation . 110
6.4.1 1:N – One Browser, Many Configurations . 111

Results . 112
6.4.2 N:1 – Many Browsers, One Configuration . 113

Results . 113
6.4.3 Comparison of Anti-Fingerprinting Features . 113

6.5 Summary . 114

7 Conclusion and Future Work 117

Contents 11

List of Figures

2.1 Ad-ecosystem . 27
2.2 Redirect link tracking behavior . 40
2.3 Real redirect example when clicking the ’Jobsearch’ link at the spiegel.de website 41

3.1 Tracking detection and protection system architecture . 52
3.2 Top 25 trackers of entire evaluation period with the amount of websites they can monitor. 55
3.3 Top 25 tracker in a single crawl from Jan. 2014 with amount of websites being embedded

in. 55
3.4 Highest amount of embedded trackers in crawls between November 2012 and January

2014. 56
3.5 Top 25 websites with different tracking elements observed during the entire crawling period. 57
3.6 Top 25 websites embedding tracking elements in a single crawl in January 2014. 58
3.7 Top 25 websites with average amount of embedded trackers during the entire crawling

period. 59
3.8 Top 25 websites embedding the highest amount of trackers in single crawls out of entire

observation period. 59
3.9 Usage of different tracking methods. 60

4.1 Experimental set-up. 63
4.2 Amount of links found on each website (browser cookie config: blue=always, red=never). 66
4.3 Amount of links clicked on websites (nearly similar on browser cookie config. 66
4.4 Top redirect occurrence on different browser settings. 67
4.5 Dependencies between the redirectors. The width of an arrow from a to b shows how

often we have seen a redirect from a to b in our crawls. 73
4.6 Top 100 publishers, colored/sized by tracker intensity. 76
4.7 Top 100 publishers showing embedded tracker. 77
4.8 Redirect-Graph highlighting ’microsoft.com’ and statistic data below. 80
4.9 Ordered network graph: Publisher colored white with black border connecting to embed-

ded third-party elements colored/sized by tracking intensity. 81

5.1 Regular storage. 86
5.2 Isolated storage. 86
5.3 Folder structure. 87
5.4 User Interface. 87
5.5 Original preference dialog. 88
5.6 Cookie timeout feature. 88
5.7 Database structure of the crawling results . 94
5.8 Pages crawled (crosses) / viewed by AOL users (blue circles). 97
5.9 Storage partition usage in browsing sessions. 97

6.1 DCB: Initialization of a browser session and mode of operation. 106
6.2 Canvas processing algorithm. 109

13

List of Tables

4.1 Top 30 regular trackers encountered in our crawl. 68
4.2 Top redirectors and their properties. Class: Describes the redirect classification. Redi-

rects: How many redirect chains we observed that included this redirector. Sites: On
how many different websites we observed this redirector. The config always and config
never columns show how many times (in percent) a cookie was set from this domain. NV:
Cookie was never set, AP: Cookie was set after the initial page load, AC: Cookie was set
after the click on a link during the following redirect chain, TC: Percentage of redirects in
which the redirector set a tracking cookie, SR: Number of self redirects observed for this
redirect pointing back to the original website the redirect link was clicked on. Alexa: Per-
centage of the Alexa top 50k that had third-party cookies from this domain, EL: Domain
is on the Easylist, EP: Domain is on the EasyPrivacy list, GH: Domain sets cookies within
Ghostery plugin, ITP: Domain sets cookies within Safari ITP 2.3 (release March 2020). . . 69

4.3 Redirect chain length (chain length 1 indicates only a single redirector appeared between
start and target). 71

4.4 Redirect graph statistic. 72

5.1 Top 10 domains referenced most from other pages . 95
5.2 Top 10 domains that had the most cookies set in browsing sessions 95
5.3 Effects of storage partitions on the top trackers . 97

6.1 Resulting fingerprints on evaluating 1:N strategy in 10,000 browser sessions [higher is
better], and N:1 on 12 systems [lower is better]. 112

6.2 Comparison of fingerprinting feature coverage: PriVaricator (PV), FireGloves (FG), FP-
Guard (FPG), FPBlock (FPB), Tor, DCB. 114

15

Listings

2.1 Tracking pixels on the HTTP level . 35
2.2 Client side redirect examples . 40

4.1 The URL is used to direct the user to Google+ so that he can share a posting about kini-
history.net there. While it points to share.yandex.net, the real destination can be easily
concluded from the URL. 72

4.2 The URL directs the user to Facebook to post something about kino-filmi.net on his time-
line. However, from the URL itself, it is less obvious that this is the target of this redirect. . 74

5.1 Modified GetStoragePartitionConfigForSite method . 87
5.2 Implementation of shouldBeIsolated . 88

17

1 Introduction into Web Tracking

In the today’s digital life we use a wide spectrum of online services, applications and tools. The age of
the Internet of Things comprises a plethora of physical devises that collect and exchange data over the
web. These devises such as computers, laptops, smart phones, smart TVs or smart watches are capable
of browsing the web, using online services, communicate with each other as well as collect personal
data and activities. Due to this interconnectivity of devises and the usage of web services as well as the
exchange of data, users leave a huge digital footprint [1, 2, 3].

Users freely give away a lot of personal data just while browsing the web. This consists not only of the
data which websites the users visit, what content and topics the users are interested in. Moreover, the
data which physical devices and services the users are using or the content they are sharing in Online

Social Networks (OSN) like Facebook1, leaks a lot of privacy sensitive user data to the content provider
as well as the embedded third-party services on the websites [4].

Connecting this data with other information from social media (Facebook Likes) [5, 1, 6], shopping
behavior [7], mobile location information, physical devices [8, 9], search queries [10] and profile in-
formation in web services, more privacy sensitive information can be revealed [11, 12, 13, 14]. This
includes personal problems or desires of users, real names, addresses, political or religious views, as well
as the financial and health status [4, 15].

Depending on the users geographic location (computed using the IP address), the type of purchases,
the devices the user is using and the websites visited, companies may then be able to create a personal
credit score [16] or estimate the risk for health insurance to a disadvantage of the user [17, 18]. More-
over, the loss of anonymity can lead to price discrimination [19, 20], deductibility of private information
[21] or identify theft/fraud.

As we will present in Chapter 3 and 5, our research [22, 23] depicts that user tracking is even more
widespread in today’s web then showed by other researchers [24, 25]. We show that third-party
trackers exist on most commercial websites and are able to follow users on 90% of the top 1,634
mostly visited websites in Germany [22] as well as 25% of the global top 40,000 ranked websites
[23]. Our research concludes that trackers are able to easily re-identify a user across the web [26, 24].
The tracking potential of the top trackers such as Google and Facebook is:

• 50% of the top 600 global pages [27],

• 25% of the top 10,000 global pages [28], and

• 10% of the top 1 million global pages [29].

1.1 Web Tracking Methods

In order to give an insight into web tracking, we will first briefly introduce the web tracking methods
and techniques, followed by possible protection mechanisms and tools. A detailed discussion will be
presented in Chapter 2.

It is common practice to use different tracking techniques by embedding third-party elements [13, 28].
This covers not only the web advertisement infrastructure like banners, but also so-called web beacons2

or social media buttons, to gather data on the users’ online behavior as well as privacy sensitive data
[11, 12, 13, 30].

The goal is to establish detailed user profiles, which are then used for more effective targeted advertise-
ments [31, 32, 33, 34], and even if anonymized, they can be reconstructed [35] or easily de-anonymized

1 https://www.facebook.com
2 Web beacon or web bug, are typically 1x1 pixel images embedded on a website and not visible to the user

19

and sold [14, 36, 37, 6]. Moreover, tracking is often invisible or integrated into other features and
services, such as advertising, or the Facebook Like button. In effect, most tracking is performed in the
background without the user’s notice and there is usually no option to opt-out [12, 38]. Even with the
EU’s General Data Protection Regulation (GDPR), which should make the users aware about the general
usage of cookies (introduced in the year 2018), tracking did not drop significantly as research shows
[39, 40, 41].

In contrast to other kinds of user behavior tracking, for example via surveillance cameras or by evalu-
ating the credit card history, web tracking is cheap, mostly automated and not limited to purchases done
by credit card. It is also a lot faster and can be more reliable, especially when data can be linked to
important and persistent online services [42], such as social media like Facebook or e-mail accounts, to
create detailed user profiles [43].

The most common way for any company to track users on the web is by storing a unique identifier on
the client and retrieve it on every page where the tracking code is embedded [44]. Unique identifiers can
be stored for example in cookies, HTML5 localStorage, browser cache, and common third-party plug-ins
like Flash or Java [13]. A basic method to save this identifier is by using a HTTP cookie. Any HTTP
request suffices for storing a cookie on the users machine. The so called tracking pixel, a transparent 1:1
pixel sized image, is the traditional, bandwidth-conserving, and high-performance method used in the
wild to set a cookie. Once set, the visitor’s browser will request the tracking cookie each time a page is
loaded and the tracking company can re-identify a user on every page that includes this tracking cookie.

Because users started to block or delete cookies, tracking companies started to use JavaScript to iden-
tify users by determining an almost unique browser fingerprint of the users device [30, 45, 46, 8, 47].
This is done by monitoring the mouse position and clicks, interactions with forms [48], retrieving the
list of installed plug-ins or other hardware settings [49, 30]. Plug-ins such as Flash or Java even pro-
vide additional unique data, for example the list of installed fonts, CPU type or clock skew [50]. This
technique is relies on uniquely identifying a browser or device through combined system information
that are retrievable by websites using JavaScript, Java or Flash scripts [51], even without storing a cus-
tom identifier. The differences originate from the various hardware, network, or software configurations
that a user’s computer may have [45, 49, 52, 53, 54, 55]. This information, also called fingerprinting
features, are again mainly used by companies to track user behavior on the web [30] and to establish
detailed user profiles [24, 35].

As already presented by Mayer [56] and Eckersley [46] in 2009/2010, it was possible to uniquely iden-
tify 94% of 470,161 users by fingerprinting techniques. Further studies [57, 50] revealed the prevalence
of browser fingerprinting in real world applications and showed that more sophisticated fingerprinting
methods exist. Fingerprinters commonly use detailed information, such as system fonts, plug-in ver-
sion numbers, or even differences in graphic rendering engines (using the HTML5 canvas element) as
fingerprinting features [49].

1.2 Web Tracking Defenses

Protecting the privacy of web users against tracking by blocking third-party content has become a cat-
and-mouse game. Continuously evolving tracking methods used by companies make it difficult to block
all third-party content. In the last years many browser add-ons such as Privacy Badger3, Adblock4,
Ghostery5 or the Tor browser6 were introduced to mitigate web tracking [25]. The capabilities of
those anti-tracking tools differ, but the main functionality is often similar: block third-party connec-
tions on websites in order to stop displaying advertisements and prevent them from storing tracking
elements, such as cookies, on the user’s machine [38]. This includes third-party JavaScripts or other

3 https://www.eff.org/de/node/73969
4 https://getadblock.com/
5 https://www.ghostery.com/
6 https://www.torproject.org/

20 1 Introduction into Web Tracking

https://www.eff.org/de/node/73969
https://getadblock.com/
https://www.ghostery.com/
https://www.torproject.org/

persistent identification elements stored on the user’s machine. By blocking these third-party elements
no connection to the supplying tracking server is established.

However, blocking third-party content can cause usability or functionality loss on websites if third-
party images, Flash elements or JavaScripts cannot be loaded [38, 58]. Moreover, those anti-tracking
tools are not sufficient to block all cookie based tracking techniques and are detectable by the trackers
[24, 46, 59, 60, 49, 61, 62, 63]. Similar problems have protection tools blocking advanced tracking
techniques such as browser fingerprinting [50, 51, 25, 10] or tracking redirect links, as we show in
this work. Similarly, with the loss of revenue trough ad-blockers not displaying advertising [64], many
websites implement anti ad-blocker scripts, forcing the user to disable their ad-blocker [65, 66, 67] or
use other techniques such as redirect tracking. Further, elements not categorized as trackers will not
be blocked and can still be used for tracking. Also, if legitimate elements are falsely classified (false
positives) as trackers and blocked, web site functionalities may break. The most serious privacy problem
exist in the commercial purpose of such anti-tracking tools, i.e., a third-party can avoid that certain
tracking elements will be blocked (by making a contract) [61, 68], or by the utilization of the gathered
user data [69] to allow building a user web profile.

1.3 Publications and Contributions

This work is based on the following publications:

The in-depth evaluation of redirect tracking and link usage [70] provides the first large scale analysis
in this field, scanning 50,000 Alexa top ranked websites for several months. We extended a scanning
framework with automated user interaction to generate a much more realistic browsing behavior. An-
alyzing 1.2 million redirect traces, we identified redirect tracking on 11.6% of those websites. Further,
we developed an interactive web tool to visualize the tracking ecosystem and its network. Moreover, we
present a redirect tracking network clustering and provide protection strategies against redirect tracking.

Our survey on web tracking [22] presents an extensive list on web tracking techniques and
methods as well as their risks, threats and implications. We also discuss available protection
mechanisms, tools and their weaknesses in protecting the user against web tracking. Moreover, we
designed and imple-mented an automated system to detect, analyze and protect against web
tracking. We evaluated the system in a 16 months long term web tracking study, scanning the top
1,634 mostly visited websites in Germany. In this study we detected 1209 trackers and exported
these tracking domains as blocking list for the Internet Explorer, known as Tracking Protection List. In
addition, we establishing the website www.trackyourtracker.de to visualize our results to the public.

A key contributions of this work are the design, implementation and evaluation of two systems provid-
ing protection mechanisms against web tracking. First, “Site Isolation” [23], which is a system to isolate
the locally stored website state into separate containers. Site Isolation protects the user successfully
against the tracking methods using: cookies, HTML5 localStorage, Index DB, browsing cache, Flash LSO
and redirect tracking. In addition, we implemented an improved privacy feature for private browsing
and added a cookie timeout feature in the browser. Moreover, Site Isolation also adds security features
to protect against CORS, CSRF and click-jacking, cache-timing attacks and rendering engine hijacking
automatically into the browser. In the evaluation on 1.6 million websites we then show that Site Isolation
reduces web tracking by 44%.

Second, “Disguised Chromium Browser” [71], which was the first robust protection mechanism against
Flash and canvas fingerprinting. Within the implementation on to different browser fingerprinting pro-
tection mechanisms, we developed a novel approach preventing canvas fingerprinting. In the evaluation,
compared against five other anti-fingerprinting tools, we show in 70,000 browser sessions that our sys-
tem provides a 99% protection against browser fingerprinting.

1.3 Publications and Contributions 21

Additional Publications

Not covered in this thesis are the following publications, which were published during the period of
the PhD:

• SecLab: An Innovative Approach to Learn and Understand Current Security and Privacy Issues
Marco Ghiglieri, Martin Stopczynski
In: SIGITE ’16 Proceedings of the 17th Annual Conference on Information Technology Education.
Pages 67-72, September 2016. ISBN 978-1-4503-4452-4

• Personal DLP for Facebook
Marco Ghiglieri, Martin Stopczynski, Michael Waidner
In: IEEE: Pervasive Computing and Communications Workshops (PERCOM Workshops), p. 629 -
634, March 2014

• Smart Home Dashboard – Das intelligente Energiemanagement
Martin Stopczynski, Marco Ghiglieri
In: VDE KONGRESS 2012 Smart Grid, VDE Verlag GmbH, November 2012. ISBN 978-3-8007-
3446-7. www.vde-verlag.de/proceedings-de/453446061.html

• C4PS: colors for privacy settings
Thomas Paul, Martin Stopczynski, Daniel Puscher, Melanie Volkamer, Thorsten Strufe
In: ACM: Proceedings of the 21st international conference companion on World Wide
Web, vol. WWW ’12 Companion, p. 585–586, May 2012. ISBN 978-1-4503-1230-1.
doi.acm.org/10.1145/2187980.2188139

• C4PS – Helping Facebookers Manage Their Privacy Settings
Thomas Paul, Martin Stopczynski, Daniel Puscher, Melanie Volkamer, Thorsten Strufe
In: Springer Berlin Heidelberg: Lecture Notes in Computer Science, Social Informatics, no. 7710,
p. 188-201, 2012. ISBN 978-3-642-35385-7

1.4 Outline

In this thesis, we provide a detailed description of the tracking ecosystem and present a comprehensive
web tracking background in Chapter 2. Here, we will first summarize the possible risks, threats and
implications of web tracking. Subsequently, we introduce methods and techniques to track the users’
online behavior. Moreover, we present the protection mechanisms and tools against web tracking as well
as describe their weaknesses.

To get an insight in the tracking practice, we developed a general detection and prevent system for
web tracking covering the most visited German websites. In Chapter 3 we give an overview of the system
architecture and present the findings on our 16 months long term evaluation of web tracking on most
visited German websites.

Throughout our research we identified the usage of redirect links as a tracking method. In Chap-
ter 4 we present the first in-depth study on tracking potential of redirect links, in which trackers use
different HTTP redirect techniques for tracking. Mostly hidden in website links, trackers detour users
“intended” connection (link destination) through a chain of (third-party tracking) servers, before loading
the intended (legitimate) link destination. This enables trackers on each redirected page to circumvent
third-party blocking tools by storing first-party tracking elements on the users machine without notice.
Compared to third-party cookies, trackers use the fact that first-party cookies are almost always enabled
and required by websites to handle sessions. In addition, by using redirect links the trackers can collect
valuable meta data such as the site of origin, the desired destination target, the topic/content the user is
viewing and other information.

22 1 Introduction into Web Tracking

Focusing on user privacy, we give a comprehensive insight in the behavior, patterns and the used
redirect link tracking techniques in the wild. Our dataset is based on full HTTP traces browsing the
top 50,000 websites from the Alexa.com ranking7 over a period of several months. With our advanced
simulated user interaction, we provide a much more realistic user browsing behavior dataset as well as
a broad data collection of tracker interaction as other studies. In this evaluation we point out the most
common redirect trackers currently used, classify them and suggest countermeasures that will help to
protect users from redirect trackers beyond the capabilities of the current privacy protection add-ons.

Moreover, we use tracker classification, taking third-party appearance in the HTML source code into
account, and analyze the information content in cookies leading to realistic tracking classification. We
also compare our results to other tracking classifications such as Easylist and OpenWPM [29] and visu-
alize the performance as well as various tracker behaviors to the user in our interactive web graphs8.
In addition, we analyze the behavior of link usage and tracking in the different browser cookie settings
compared to using an ad-blocking tool.

Because of the privacy concerns as well as tracking risks described in this work, most users do not
approve the collection of privacy sensitive data being collected [72, 73, 74]. Further, the weaknesses
in the available tracking protection mechanisms we discovered, a fundamental goal of this work was to
provide a robust tracking prevention system. Therefore, we implemented and successfully evaluated the
first automatic isolation of the locally stored website state into separate containers in Chapter 5. Our
approach eliminates the ability of trackers to re-identify users across different sites, by isolating HTTP
cookies, HTML5 Web Storage, Indexed DB, and the browsing cache. The so-called Site Isolation was
implemented for the Chromium browser and in addition secures the browser against CORS, CSRF, and
click-jacking attacks, while limiting the impact of cache timing, and rendering engine hijacking. We
evaluated the effectiveness of Site Isolation [23] by visiting 1.6 million pages on over 94,000 distinct
domains and compared the data saved against usual browsing. We show that top trackers collect enough
information to identify billions of users reliably. In contrast, with Site Isolation in place the number of
tracked pages can be reduced by 44%.

Protecting the user against fingerprinting, existing tools rely on simply randomizing system parameters
or blocking and deactivating specific features. Traditional methods lack in usability when browsing
websites, are detectable by the trackers [30, 59, 75, 46, 76, 77], or have flaws making the user still
identifiable. Motivated by those challenges, we implemented and evaluated robust methods protecting
the user against browser fingerprinting in a Disguised Chromium Browser (DCB), presented in Chapter
6. Comparing other anti-fingerprinting tools, our solutions overcome existing flaws through enhanced
protection mechanisms. Instead of disabling or randomizing system and browser parameters like other
tools, we use a large set of real world parameters that are fixed for the entire browsing session and change
automatically for next session. This prevents detectability through unrealistic or constantly changing
system parameters, if a fingerprinter requests a parameter multiple times. In addition, we are the first to
effectively protect against Flash as well as canvas fingerprinting without deactivating these features.

Through an intense study of canvas fingerprinting, we developed a novel and deterministic approach
to prevent canvas fingerprinting based on randomly modifying the canvas element in every browsing
session. It is not based on adding patterns or noise to the original canvas like in other tools. Because
no original (unique) canvas element is returned, the fingerprinter is not able to detect the modification,
therefore is not able to remove/delete any changes and is not able to identify any user uniquely. We show
the effectiveness of the algorithm and demonstrate perfect diversity of every generated canvas element.
In contrast to other anti-fingerprinting tools, we also implemented a new and undetectable protection
mechanism against the retrieval of system fonts via Flash.

Our evaluation against real world fingerprinting tools demonstrates that fingerprinters cannot notice
the presence of our counter-fingerprinting techniques. Since changes are applied inside the browser

7 http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
8 https://tracking.dbvis.de/

1.4 Outline 23

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

itself and never reveal one’s own system settings, but output other real world parameters, it is hard for
fingerprinters to circumvent or revert those changes, like suggested in [78].

In Chapter 7 we summaries our findings and conclude with future work as well as recommendation
how prevent the leakage of privacy sensitive data on the web.

24 1 Introduction into Web Tracking

2 Web Tracking Background

This chapter presents a detailed evaluation of web tracking as well as its ecosystem and is based on
our publication Web Tracking Report [22]. We will review the fundamentals of web and cross-domain
tracking as well as give an overview on the market and stakeholders. In this chapter, we will point out
the risks, threats and implications of web tracking for the user. Summarizing the possible methods and
techniques to track the users’ online behavior in Section 2.6, we also gather the protection mechanisms
as well as tools against web tracking. Moreover, we will show the weaknesses and drawbacks of the used
protection mechanisms in Section 2.7.

2.1 Beginning of Web Tracking

While browsing the web, it is common practice to monitor the users’ actions. This is legitimate by the
technical perspective of the websites’ owner. Through the request in displaying the website, all content,
even embedded external (third-party) elements, are downloaded from a server and transmitted to the
user. This includes storing cookies, for example to save the users online shopping items in a private cart
through the browsing session. Since the server needs to process the users request, it will track the users
actions. The same tracking can also by done by other (third) parties when the elements are embedded
on the visited website. Embedding third-party elements is done intentionally by the website owner and
can have multiple purposes. Third-party elements are used to implement specific website features like
external guest-books, chats, online social media buttons, libraries for visual effects or embedding content
that does not need to be stored on the own server, like movies, pictures as well as advertisements.

During the history of the web, the industry noticed the rising business market in placing advertisement
on websites. In using the free Internet content users did not pay attention to ads in the beginning. Web-
site owners on the other hand took their chance to reduce operational costs through additional financing
opportunities with advertising. So the general opinion emerged, that the placement of advertisements
seem not to do any or no harm, since nobody needs to look or click on it. However, by embedding third-
party elements such as advertising or other content, the advertiser is able to view, collect and evaluate
various information on the user when visiting the website and automatically downloading the content
[79]. In consequence, this can create privacy threats to the users. Using different mechanisms, discussed
in Section 2.6, third-parties are able to track the users interests in real time across many websites they
are embedded on. We will show in Section 2.2, that the amount of trackers can (re-)identify users on
about 25-90% of websites [28, 27]. Third-party tracking is mostly done in the background and without
the users notice. The user has no idea what kind of data is gathered and has usually no option to opt-
out. The loss of control of gathering privacy sensible information through third-parties is known as web

tracking and is the topic of this work.

2.2 Cross-Domain Tracking

Tracking companies, in the following trackers, have the goal to establish a detailed and accurate user
behavior profile. This is accomplished through the amount of information gathered by following the users
on as many websites as possible. This tracking behavior is called cross-domain tracking, or sometimes
Re-targeting. Here, the tracker is able to connect different user online behavior data such as the topics
and content of websites the user is visiting, in order to create a specific user profile. With this profile it
is possible to identify the users potential interests, political views, financial status and other information
to serve the best fitting advertising [80, 81, 82, 33, 83, 34].

To track users across domains or devices, the tracker needs to re-identify the user. The primitive
method is by using tracking cookies embedded in advertising or hidden as part of the received website

25

content, which we will show in Chapter 5. Additional user data can also be bought from other trackers
or shared through ad networks [84, 3]. Tracking techniques and methods will be described in detail in
Section 2.6.

An international study [28] on the top 10,000 websites identified that 46% of the websites contain at
least one tracker, and that Google’s doubleclick tracker is embedded in 25% of those 10,000 websites.

User tracking is not only limited to the Internet. Similar techniques are used on Smart TVs and
Smartphone Apps, but are not part of this work.

2.3 Market and Stakeholders

Web tracking with online advertising is a profitable market. The revenues in online ads, which creates
and uses user tracking information, are immense and reached in 2011 $80 billion US-Dollar in global
spending [85]. In 2018 the digital and mobile advertising sales grew globally to $232 billion, expecting
constant rise to $427 billion by the year 2022 [86]. Digital advertising sales outranked TV ad sales in
2017, reaching a 41% market share (compared to 35% for linear television) [87]. By 2020, the share of
digital advertising will reach nearly 50% in total.

Search advertising remains the largest market in online advertising with 40% (around 56 billion rev-
enue) [88] and its market leader is Google with over 50% [89]. But ad space in social media such as
Facebook and Twitter changed this by the end of 2016. In addition, ZenithOptimedia expects that the
main driver in global online ad spending will be the mobile market, gaining up to 70% market size in
Internet advertising [90].

Ad placement and user tracking is a lucrative market. Many websites make money by placing ads or
tracking elements [91, 63]. Here, users not only get specific content, but also personalized advertising
[92]. Products are more focused on users interests, so the probability rises in making the deal [33].
As an example, when searching for a specific item like sport shoes, it is most likely to see sport shoe
advertising on the next visited websites. This is what companies are willing to invest and pay extra
[93, 94, 38]. According to [95] personalized ads are a factor of 670% more successful. This leads to
a rise of personal utilized ads of 15% [96]. The advantage comparing to TV or print advertising is the
possibility of evaluating the audience and success.

The advertising business created its own ecosystem. With advertising companies and advertising net-
works acting like agents, re-marketing ad-space on many websites. Being able to distribute real time ads
on different platforms from a pool of different ads [97, 15]. Top ranked global ad networks are:

• Google Adsense / Adwords / Doubleclick

• Facebook Ads

• Baidu

• Microsoft Ads

• Yahoo / Verizon (AOL)

• Twitter

Out of 4 billion Internet users, Facebook for example has a reach of 50% with 2 billion monthly active
users and could increase their advertisers spending to $40 billion (90% of those ads are mobile) [98].
This makes Facebook together with the leader Google covering about 60% of the U.S. ad market revenue
[99].

The US company Rapleaf was known to tie personal data to email addresses, and selling the informa-
tion of a specific attribute such as gender, interests or creditability. Claiming to have 80% of US email
addresses, companies could buy information for an attribute of a users, which is connected to the users

26 2 Web Tracking Background

email address for one cent. Most companies are interested in user information to increase the awareness
of users with similar profiles in order to gain new customers [96]. To satisfy this rising demand [100],
new companies develop more sophisticated methods and techniques in tracking users [72], which will
be presented in Section 2.6.

2.4 Ad-Ecosystem

Displaying advertisements on websites started as basic banners, similar to ads in newspapers or maga-
zines, fitting a specific topic and a user group that might be interested. Later, the ads are matched with
search results targeting specific topics the user was looking for. Next, contextual advertising opened the
field of automatically targeting the topic/context of an website, using search algorithms based on word
meanings, built upon an underlying lexicon called WordNet. Then advertising platforms evolved to adapt
a richer media environment, such as video, audio and mobile networks with geographical information.
Around 2005, new platforms focused on real-time ad displays within pop-ups. Selling the appearance
of ads were they where viewed, depending on the users actual interests. Unlike traditional ad networks,
these ad exchanges need to aggregate multiple ad networks in order to deliver the best matching ad.

This challenge of finding the best match between a given user in a given context and available ads,
is referred to as computational advertising. The best match, however, is not limited to the ”relevance”
from the traditional informational retrieval research sense, but also includes the best revenue from the
economic perspective. For instance, in the context of sponsored search, the challenge is to find and
display the best ads from advertisers which suit user’s interest (relevance) as well as generating as much
revenue as possible [101]. Solving this challenge depends on computing power, algorithm design and
available data. Companies like Google with a huge user base, data pool as well as computational power
are therefore in a leading position.

User Publisher

Advertiser

Content

$$

Ad space /

 User statistics

Interest / Statistics

Ad spaceAd spaceProfile data

$$

User data & ad exchange:

Bidder, Broker, Supplier

Ad-network

Figure 2.1: Ad-ecosystem

The general view of the ad-ecosystem is displayed in Figure 2.1, with main participants: User, pub-
lisher, advertiser and ad network. In this ecosystem the advertiser wants his ads to be displayed and is
spending a budget to buy ad space from ad-networks or directly from publishers. A publisher provides
content for the user and ad space to sell in order to gain revenue. The ad networks are bringing both
parties together, serving as matcher for ads and available space on various publishers to reach the best
performance. Using the publishers’ service, users spend time on their website, looking at ads as well as
interacting with them. The critical part is matching the ads by their keywords that are most relevant to

2.4 Ad-Ecosystem 27

the user (based on the data gathered), or, if no user data is available, fitting the ad into the websites
content or search query.

In the last years more platforms, services and companies are engaging in the business and provide
new tools to optimize the revenue. Ad networks are becoming a complex structure of various platforms
which contain:

• Demand Side Platforms (DSP): Ad agencies serve advertisers by bidding for their campaigns in
multiple ad networks automatically.

• Supply Side Platforms (SSP): Ad networks serve publishers by registering their ad space in their
ad network.

• Ad Exchanges Services (AES): AES combine multiple ad networks together. When publishers
request ads with a given context to serve users, the AES contacts candidate Ad Networks (ADN) in
real-time for a wider selection of relevant ads.

• Data Management Platforms (DMP): Brokers serve DSP, SSP and AES by providing user profile
data in real-time for better matching (Examples: DoubleClick, Invite Media, AppNexus, Media-
Math).

The emergence of DSP, SSP, AES and DMP is a result of the fact that there are hundreds of ad networks
available on the Internet, which can be a barrier for advertisers as well as publishers when getting
into the online advertising business. Advertisers have to create and maintain campaigns frequently
for better coverage, and analyze data across many platforms for a better impact. Publishers have to
register and compare several ad networks carefully to achieve optimal revenue. The AES came as an
aggregated marketplace of multiple ad networks to help alleviate such problems. Advertisers can create
their campaigns and set desired targeting only once and analyse the performance data stream in a
single place, and publishers can register with AES and collect the optimal profit without any manual
interference [101].

But the borderline between these platforms is becoming less tangible. The DMP collects user data and
sells it anonymously to DSP, SSP, AES as well as advertisers directly in real-time bidding (RTB) for better
matching between ads and users. This technology is usually referred to as behavior targeting. Intuitively,
if a user’s browsing history shows interest in advertisers’ products or services, then advertisers have a
higher chance of securing a transaction by displaying their ads, which results in higher bidding for the
impression. Initially the DMP was a component of other platforms, but now more individual DMPs are
operating alongside analyzing and tracking services [101].

2.5 Risks, Threats and Implications

By the time new web features and technologies were developed, tracking became more sophisticated to
uniquely identify users, their online behavior and the users’ sensitive private data. Users tracking data is
valuable and profitable to create more effective targeted advertisements [31, 32, 33, 34], in particular
when the data can be linked with real world identities including the name, address and other personal
data.

There exist different methods companies use to obtain detailed user data, resulting in various threats
and implications for users that will be presented in this section.

2.5.1 Insecure Data Handling

Threats for users already arise in the insecure handling of their sensitive data by the service provider.
This is the case when private data is stored insecurely, or is sent over insecure channels, not encrypted,

28 2 Web Tracking Background

or encrypted with a weak algorithm or flawed implementation. Here, the data is at risk. For example,
Motorola sent the login data to popular services such as Youtube and Facebook used by the user on the
mobile phone to its own servers [102]. In this scenario the customers’ email addresses were put into URL
parameters of an external http resource. This data could be recorded and evaluated by attackers in the
local network, the Internet Service Provider and various intelligence services. If the data is transmitted
securely, e.g., using state of the art protocols without known weaknesses, tracking companies can still be
attacked directly. These large collections of user data tend to attract external attackers, who routinely
obtain mostly unsecured data sets containing data of millions [103].

2.5.2 Web Services and Social Media

In the recent years many new web services and social media arise. Services such as Facebook.com, Twit-

ter.com, Flickr.com, Pinterest.com, Digg.com and others provide a platform for users to share information,
pictures or thoughts with others. In addition to publishing users uploaded content, these web services
developed interfaces (social media buttons) that can be included on other websites to share (publish)
the websites content in the users own social media account. Using the social button, users can share
website articles, videos or images they saw online with their friends and followers with one click. By
doing so, the content and meta data can be used by the service provider (e.g., Facebook) to derive the
users interests or desires and establish detailed user profiles [104]. This data is then sold indirectly, as a
package of advertising targeted to a specified group of users, e.g., Facebook [105], or sold in anonymized
form, e.g., by Acxiom1 and Nielsen2.

The website embedding those social media buttons on the other hand can get the visitor profile data in
return. Using the personal user data the website can provide personalized ads, which will be rewarded
by the advertising companies with money [92, 106].

Connecting the gathered data from search queries, mobile devices [9] or content published in online
social networks [2, 6] allows revealing further privacy sensitive data [14]. Among others, those include
data on the users real name, address, gender, shopping-behavior or location [15, 4], personal interests,
problems or desires of users, political or religious views, as well as the financial status.

Additional threats exist when attackers maliciously use advertising to distribute various forms of mal-
ware (malvertise) [107, 108, 109].

Search Engines:

All search queries made in popular search engines such as Google.com, Yahoo.com or Bing.com, can be
saved and assigned to a user profile [110]. Is the provider able to connect the search queries to a specific
user while being logged into the account, it is possible to enrich the users’ tracking profiles. With the
knowledge of the website content the user is interested in, the provider can personalize search results
[92, 111, 112]. Moreover, through the identification of users, the provider can place suitable advertising
in real time [91, 111], which is more profitable [94, 113, 114].

E-mail Provider:

E-mail providers have access to the entire e-mail communication, including recipient addresses and
content. Evaluating this content can enable e-mail providers to gather personal data. Google Mail is
an example processing the content of the users e-mails [91, 115], in order to provide topic specific
advertising in the web-based interface.

1 http://acxiom.com/data-solutions/
2 http://www.nielsen.com/us/en/nielsen-solutions/segmentation-strategy.html

2.5 Risks, Threats and Implications 29

http://acxiom.com/data-solutions/
http://www.nielsen.com/us/en/nielsen-solutions/segmentation-strategy.html

2.5.3 When Third-Party Tracking becomes First-Party

Tracking elements such as cookies are mostly embedded as third-party content, since all elements served
from another domain than the visited website, are considered third-party. All elements served from the
domain active in the opened browser window, are called first-party elements and are mostly not treated
as tracking elements. Hence, it is possible to disable third-party cookies through browser settings or by
using ad-block protection software to limit tracking cookies. Nevertheless, many tracking companies are
able to set their cookies as first-party using various methods:

1. When logged into web services such as Twitter, Facebook or Google, the social media buttons Twitter

Follow, Facbooks Like and Googles +1 embedded on websites will report the visit and consequently
the browsing history to the associated service.

2. Advertisers using pop-up windows or iFrames embedded on websites will set first-party tracking
content through this new window.

3. Using HTTP redirects, a website will redirect users through the trackers website, set a first-party
cookie, and redirect back to the original website, without the users notice.

2.5.4 Information Leakage

In a study [116] conducted in 2011 researchers exposed several methods in which first-party service
providers leak user data to other third-party providers. This includes (1) exposing the e-mail address or
user ID through the referrer header, (2) demographic information (gender, interests, ZIP code) in the
request URI, (3) identifiers in shared cookies, (4) usernames or real names embedded in page titles. As
an example, the following procedure is used:

1. GET http://ad.doubleclick.net/adj...

2. Referrer: http://submit.sports.com/...?email=jdoe@email.com

3. Cookie: id=35c192bcfe0000b1...

Here, the user is visiting the website sports.com. Because the website is embedding an ad provided
from doubleclick, the browser sends a GET request to the doublick.net server (1). As an optional part of
HTTP, the sports.com server sends within the referrer header the source URL and adding the logged-in
user profile’s e-mail address in the URL (2). As a response, doubleclick is setting a cookie with a unique
identifier for this user ID (3).

Containing both, the e-mail address as part of the referrer, and the cookie identifier, doubleclick is able
to link both information together and re-identify the user on further visits or other websites containing
doubleclick ads. The researchers identified the leakage of data in 75% of the analyzed websites with this
technique. In a similar study researchers confirm this behavior [12] and present further cases of leaked
sensitive private data like e-mail addresses and real names to third-parties included as a parameter in
the URL.

2.5.5 Buying User Data

The business model of many online companies is gathering and selling user data. For example, websites
conducting user surveys like “Win new iPhone” have affiliations with tracking companies selling the
conducted personal user data. In addition, these websites mostly embeds other third-party tracking
elements. This makes it even easier to associate the user data with the browser history already conducted
by the tracker. Advertising providers like Datalogix.com are buying user identifying information (name,
ZIP code, address, ...) from marketing companies to create detailed user profiles and adjust targeted
advertising [12].

30 2 Web Tracking Background

2.5.6 Web Exploits

Third-parties use web exploits, e.g., cross-site-script vulnerabilities3 on embedded websites to collect
users’ IDs or personal data [117]. Examples are: bugs in Firefox’s error object [118], a bug in Google
spreadsheets [119], using a technique called “history stealing” [120, 121], and bugs in Facebook Instant
Personalization partner sites [122]. The mentioned bugs have been fixed by now, but as other exploits
such as history timing [75] or clickjacking [123] attacks exist, and more exploits will be found and used
in the future.

2.5.7 De-Anonymization of Users

Privacy risks of published user datasets are real, even when identifiers such as names or Social Security
Numbers have been removed. Datasets can be de-anonymized by cross-correlating two datasets, like
shown in early 1998 [124], when a discharge hospital database was joined with a public voter database.
An early study [125] showed that only with the data of birth date, gender and ZIP code, it is possible
to uniquely identify 87% of the US population. This leads to a huge privacy threat, whenever a web
service requests detailed personal data, e.g., in the initial registration process. But even without real
user data, a prominent case in 2006 demonstrates that users could be uniquely identified by analyzing
publicly available search queries [36, 37]. This was possible after AOL published 20 million web search
queries with the intention to help academic research. All queries were anonymized by assigning IDs to
the searcher. By evaluating the search queries it was easy to identify specific users, like using this search
query examples: “60 single men” and “dog that urinates on everything” and “landscapers in Lilburn, GA”.
These queries lead to a 62 year old widow who lives in Lilburn, GA., and loves her dogs.

In 2008 researchers [126] uniquely identified 99% of the user by applying a new algorithm on publicly
available Netflix.com prize dataset, containing anonymous movie ratings of 500,000 subscribers. In
contrast to previous work no assumption to a fixed set of quasi-identifier4 attributes was made. The new
de-anonimization algorithm used only a small amount of background knowledge about the user. Later,
in 2009, the authors present a de-anonimization framework [128] for social networks and where able to
re-identify 31% of Twitter users by using other social network data, in this case Flickr.

The browsing behavior data that online social networks gather, increases with the amount of their
embedded social media buttons on the web. Many websites use these buttons to encourage interaction
with the website and to improve their marketing. Visiting those websites having the social media buttons
embedded, is sufficient to associate the content with the social media user account [116]. Further,
experiments demonstrate that this data can also be assigned to real users without being logged into
the social network [104]. This de-anonymization technique is very powerful to gain detailed personal
user data. Marketing companies often share or sell “anonymized” survey data with tracking companies,
enabling the re-identification of real users with the already gathered data by the tracker [117] or social
media [129].

In an experiment [130] the authors showed that by crawling public groups in online social networks
such as Facebook or Xing, and cross-referencing the crawled users with their browsing history, 37% of
the users could be de-anonymized.

Another example is the de-anonymization of patient data from a German pharmacy data center [131].
Here the sold data was not sufficient anonymized and easily de-anonymized by the companies that
bought the data for commercial purposes.

3 https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
4 A quasi-identifier is a set of attributes that, in combination, can be linked with external information to reidentify (or

reduce uncertainty about) all or some of the respondents to whom information refers [127].

2.5 Risks, Threats and Implications 31

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

2.5.8 Price Discrimination

Many people might not see it as a threat, if services like Google or Amazon display personalized adver-
tising, since no harm is done by displaying ads. But people will agree that by using this data companies
can modify the displayed content, like the price of a product, will affect everybody.

Researchers found out [20] that depending on the geographic location or the website the user visited
before, the price of a displayed product differs up to 166%. Another study [132] by the Wall Street

Journal confirms that websites such as Staples Inc. displays different prices to users in different locations.
Staples showed a lower price when a rival store was near to the user’s geographical location. Within this
investigation several companies reported to the journalists that their online price modification mirrors
the real world. Local stores usually adjust their prices to account for local demand, competition or store
location. But the examination of Staples’ online pricing also discovered differences depending on the
weighted average income among ZIP Codes, based on Internal Revenue Service data.

Further, the travel agency Orbitz Worldwide Inc. [133] found out, that customers using an Apple Mac
tend to spend 30% more on hotel bookings on their website then Microsoft Windows user. As a result,
they started to advertise more expensive products for users browsing with a Mac. Similar, researchers
found evidence [134] that the type of device (mobile or desktop PC) as well as the browsing history
influenced the price of popular websites such as Home Depot, Hotels.com or Expedia. On Expedia and
Hotels.com a technique marketers call “A/B tests” was used to lead a subset of the users towards more
expensive offers. Depending on the users’ cookies (browser history), the companies divide the users into
different groups A/B/C and display hotels with an average price of $187 for group A and B or $170 a
night for group C. Home Depot on the other hand displayed results on an average price per item of $120
for desktop users, and $230 for mobile users. These examples demonstrate that price discrimination
is present and could be applied according to many other personal data like race, gender or financial
background.

2.5.9 Financial Credibility

Tech startups like Lenddo, Kreditech or Kabbage are companies determining a users’ financial creditability
on data based on Facebook friends, eBay, Amazon or PayPal accounts [16] before lending money. For
example, Lenddo sets the user’s creditability depending on weather the Facebook friends are late paying
back a loan to Lenddo. Users borrowing money from Kabbage even need to grant access to their eBay and
PayPal account. Kabbage states that it can determine the creditworthiness and put money into the user’s
account in just seven minutes. For this, Kreditech is using account data gather from Facebook, eBay and
Amazon.

In Germany, the largest credit ranking company Schufa planed to mine Facebook and other social
networking sites to rate person’s creditworthiness [135]. According to Schufa, the goal was “identifying
and assessing the prospects and threats”. Due to intense public and political critics the idea was never
realized.

2.5.10 Insurance Coverage

Tracking can have a negative affect on insurance rates of customers. Consumer habits derived from
credit card spendings, magazine subscriptions or product surveys as well as the online browsing behavior
reveal a lot about the interests and the lifestyle of users. This data can be used by insurance companies to
estimate the risk of accidents through the users hobbies or getting ill because of an unhealthy life [136].
Through consumer-marketing data, traditionally used for advertising purposes, insurance companies
can for example estimate a person’s risk for illnesses like high blood pressure or depression. This data
is supported by algorithms based on Deloitte’s model [137] assuming that many diseases correlate with
factors such as fast-food diets and low exercise habits.

32 2 Web Tracking Background

Acxiom Corporation, one of the biggest data gathering companies, uses 3 billion data items daily.
Those include detailed online purchases as well as browsing history and connects this data with personal
data collected from online social networks. This data helps to identify potential actions for insurers on
different customers. The largest marketing-database companies in the U.S. including Acxiom, Alliance

Data Systems Corp., Experian, PLC, and Infogroup, claim to have detailed information on more than 100
million U.S. households [137].

2.5.11 Government Surveillance

In the wake of the PRISM [138] scandal in mid 2013, the public was made aware of the extent of Internet
surveillance by intelligence services. Here the Tempora [139] and Upstream [140] projects are able to
spy on a large percentage of Internet traffic and share their findings.

Because of the security features of SSL/TLS [141], the are limits to which data can be evaluated by
the governmental surveillance agencies. Therefore, the data that tracking companies obtain on users
is valuable for government agencies and law enforcement authorities. In 2015, governments of all
countries made 35.365 requests for 68.908 user data on Google [142]. This includes personal data such
as name or address as well as all data obtained by Googles’ products such as service usage, geolocation,
Google Mail content, search history, telephone calls through Google Voice, Youtube videos or chats using
Hangout.

By collecting vast amounts of Internet traffic, including the HTTP meta data and cookies [143], the
agency can analyze the users online activities. Since tracking user behavior is done by unique identifiers
in cookies, governmental surveillance agencies like the NSA and British GCHQ make also use of this
technique [144] evaluating the collected Internet traffic data. According to the documents provided by
Edward Snowden [144], both agencies use Googles specific “PREF” cookie, containing an unique client
identifier. This cookie is usually set by all Google services on the web.

A document provided by The Guardian [145] revealed, that the NSA and GCHQ also evaluated dou-

bleclick tracking cookies, in order to identify users browsing with the Tor browser (see Section 2.7.8)
and switching to normal browsing. Because many Tor browser users seam to not deleting cookies while
browsing with or without the Tor browser, their identity can be easily exposed by matching the cookies
during both browsing sessions.

2.5.12 Positive Aspects of Tracking

There exist also benefits of tracking and the exposure of private data. A study by Beales [146] surveying
12 ad networks in 2009 showed that behavioral targeting increased the percentage of users clicking on
an advert by a factor of 7.7 and more than doubled the conversion rate in comparison to non-targeted
advertising. The study shows that users do find targeted advertising more relevant than completely
random ads. On the other side, not only the advertising companies benefit from making money, the
website owners profit too, being able to provide the services for the users.

2.5 Risks, Threats and Implications 33

2.6 Web Tracking Techniques

Methods and techniques to track users on the web evolve over time. While there are different forms of
tracking, we divide them in groups: session based, storage based, cache based, fingerprinting and others.

2.6.1 Session Based

IP Address:

The simplest tracking form is based on collecting IP addresses. Every device connected to the Internet
has a valid IP address. However, this form of tracking has its drawbacks. Even if computers need to have
its own IP address to receive data, there exist several cases where the unique user IP address is hidden:
(1) Behind a NAT or proxy in a private or company network. (2) Using a Virtual Private Network (VPN)
or anonymity networks like TOR. (3) Frequently changing IPs on dial-up connections [147]. For those
reasons IP addresses are not sufficient for tracking users.

Session Identifiers:

Before cookies were introduced in 1994, web services as well as trackers started to pass session identi-
fiers to another website in the URL (GET method) or as a value in a (hidden) field of a web form (POST
method) [148]. This identifier can be any string being able to uniquely identify a user during a single
browsing session. Although these technique can still be used, they are only limited to one session and
one browser [147]. However, the identifier could internally be passed to a third-party or (nowadays)
saved in a cookie.

Document Object Model:

The Document Object Model (DOM) provides another form of tracking [149]. With its access to
the content of web documents, it is also possible to store data in the websites document objects (e.g.,
window.name). Combining multiple values encoded in JSON strings in the window.name property, it will
be resistant to page reloads and is accessible from other domains as well. This gives third-parties the
opportunity to exchange user data without cookies.

2.6.2 Storage Based

HTTP Cookies:

Storing and retrieving persistent data is an efficient method to track users. As our analysis [23, 22]
shows, HTTP cookies5 are the by far mostly used tracking method. This still holds, even when browser
vendors nowadays implement options to delete cookies. This popularity is because cookies can be set
automatically on any HTTP request, store up to 4KB data, with minor bandwidth usage and without any
user interaction or user notice. A tracking pixel (also known as web bug or web beacon), a transparent
1×1 pixel sized image, is the traditional, bandwidth-conserving, and high-performance way of doing
it. The steps that happen on the HTTP level are shown in Listing 2.1. Once implemented, the visitor’s
browser will request the tracking cookie each time a page is loaded (assuming no caching), getting and
transmitting a (third party) cookie. A website can also set so called session cookies used for example for
web-authentication, but because of a limited lifetime the browser will delete those cookies automatically
after closing.

While cookies are used for other purposes such as storing login session data, shopping carts or user
specific website settings, the challenge is to correctly identify tracking cookies. To actually perform
tracking, the trackers have to be able to re-identify users. They can either use static user data directly,

5 http://tools.ietf.org/html/rfc6265

34 2 Web Tracking Background

http://tools.ietf.org/html/rfc6265

1 # f i r s t r e q u e s t

2 GET /pixel HTTP/1.1

3 Host: tracker.com

4 Referer: http://www.some-site.com/

5

6 # f i r s t r e s pon s e

7 HTTP/1.1 200 OK

8 Cache-Control: no-cache

9 Content-Length: 43

10 Last-Modified: Thu, 08 Aug 2013 22:07:11 GMT

11 Date: Fri, 09 Aug 2013 14:03:08 GMT

12 Set-Cookie: id=74abd0e32dbec5db124ff1aa97135bde; Expires=Tue, 19 Jan 2038 3:14:07 ←-

GMT

13

14 # f o l l o w i n g r e q u e s t s

15 GET /pixel HTTP/1.1

16 Host: tracker.com

17 If-Modified-Since: Thu, 08 Aug 2013 22:07:11 GMT

18 Referer: http://www.some-site.com/product/42

19 Cookie: id=74abd0e32dbec5db124ff1aa97135bde

20

21 # f o l l o w i n g r e s p o n s e s

22 HTTP/1.1 304 Not Modified

Listing 2.1: Tracking pixels on the HTTP level. The server defines a third-party cookie on the first

request that gets sent back by the browses on each subsequent request. The private

information (the visited site) is leaked via the Referer header.

such as the IP address or browser fingerprint, or they have to store a custom identifier and retrieve it
later.

In comparison, non-tracking or session cookies have a fixed expiration time limited to the browser
session or one day. Using this findings the researchers were able to identify tracking cookies by a precision
of 99.4% and recall of 100%.

Nowadays, browser vendors try to prevent tracking by disabling third-party cookies by default. In
addition, there exist many browser extensions such as Ghostery6 or AdblockPlus7 and various research
projects trying to detect and prevent cookie tracking [150, 12, 151, 11]. But as our research in Chapter
4 shows, trackers can still set their cookies by redirecting the user to the trackers website, setting a
first-party cookie, and redirecting them back. Similar behavior is possible [13] using pop-up windows
or iFrames, where the tracker will set it is first-party cookies on the users machine. Unfortunately, even
if the awareness of tracking rises, research confirms that only 30% of users delete their cookies within a
month from their acquisition [152].

Cookie Syncing:

Another privacy threat for users exists through cookie syncing between companies [13, 3]. Companies
that are storing a cookie by visiting a domain (e.g., bing.com), pass their cookies also to other domains
(e.g. msn.com and live.com), without the user ever visiting those [12, 56]. The exchange of user infor-
mation and identifiers enables companies such as Microsoft and Google to facilitate targeted ads and real
time advertising across many websites [12, 153].

6 https://www.ghostery.com
7 https://adblockplus.org

2.6 Web Tracking Techniques 35

https://www.ghostery.com
https://adblockplus.org

Advertising Networks:

Advertising networks like admeld.com cooperate with other trackers to share aggregated user infor-
mation [13]. Through the embedded ads on websites, advertising networks make further requests to
cooperating trackers inside the ad code. The request includes a unique user id and the embedded web-
site URL. This makes it possible for other trackers to track the user across multiple sites, without the
need to set their own cookie.

Adobe Flash Cookies:

Similar to HTTP cookies, Adobe Flash uses Local Shared Objects (LSO) and Remote Shared Objects
(RSO) to store persistent tracking data on the users’ computers [154]. Those objects can store up to
100KB of data, are centrally accessible through different browsers, do not expire by default, and are
even harder to delete [44, 155]. These properties enable a greater tracking potential compared to HTTP
cookies. Additionally, Flash can make us of the LocalConnection object8 to communicate between Flash
instances such as SWF files and Flash cookies in normal and even in private browsing mode at the same
time [53].

Microsoft Silverlight and Java:

The competitor Microsoft supports with its product Silverlight a similar Isolated Storage object to track
users [38]. Using the JNLP Persistence-Service [156], also Java provides a method to store tracking data
on the users’ computer. Because of the continuing decreasing usages of those features, the tracking
capabilities are limited.

HTML5 localStorage:

HTML5 introduced in 2011 a new web storage which was quickly integrated by all browser vendors
and similar used by tracking companies [157, 155]. This browser built in feature is capable to store
up to 5MB data objects per site, until it is deleted by the user or the website, giving it an advantage
over cookies. Although the usage of the HTML5 localStorage feature for tracking seam to be low at
the moment [44, 53] comparing to HTTP cookies, it can be used to reconstruct other deleted tracking
elements [158].

Internet Exporer userData Storage:

A specific Internet Explorer tracking method is possible through the feature userData storage [12].
UserData can store persistent information across sessions. Capable of storing 128KB data it behaves
similar as HTML5 Local Storage. The data structure is more dynamic and has a greater capacity than
cookies9. This feature is not integrated in the newest browser Microsoft Edge.

Web SQL Database:

Web SQL Database10 (which later became HTML5) IndexedDB11 gives another possibility to track users
[57] within built-in browser features. This database storage is comparable to HTML5 Local Storage, and
can be used to save and reconstruct tracking cookies.

Server Log Files:

Visiting a website, the browser connects to a server for downloading the websites’ content. In this
process, the server will store this data, e.g., the IP address, user agent and the requested pages in the
servers log files. As long as this data stays on the server and is not shared with other companies, this
kind of tracking does not untermine the users’ privacy.

8 http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/LocalConnection.html
9 https://msdn.microsoft.com/en-us/library/ms531424(v=vs.85).aspx
10 http://dev.w3.org/html5/webdatabase
11 http://www.w3.org/TR/IndexedDB

36 2 Web Tracking Background

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/LocalConnection.html
https://msdn.microsoft.com/en-us/library/ms531424(v=vs.85).aspx
http://dev.w3.org/html5/webdatabase
http://www.w3. org/TR/IndexedDB

2.6.3 Cache Based Tracking

A common practice of tracking companies is to identify a user by obtaining the web browsing history
[44]. This is possible with different cache based techniques. In general, trackers would include a specific
HTML file in the websites’ source code, containing a unique identifier. Once the user visits a website,
an included tracking file will be stored in the browser’s cache. Then, the tracker can determine which
websites have been visited by checking the cache’s tracking file.

Embedded Content Timing Attack:

Websites can use JavaScript to measure the time it takes to display content on websites. Thereby the
script is determining, whether the content such as an image that is placed on a website is downloaded
from the server, or pulled from the browsers cache. When the time to display the images is short, it is an
indication that the image was in the browser cache and the user already visited the website. This timing
attack can be used to check many images, for example the company logos of various websites, to recon-
struct the browsers history of visited websites [159]. Similarly, JavaScript can indirectly cause a DNS
lookup and evaluate the time needed. In case the website has been accessed before, the corresponding
entry will exist in the DNS cache and reduces the lookup time significantly.

HTTP Header:

The HTTP header provides the following fields on the first download of an object: Last-Modified, ETag,
Cache-Control, and Expires. With 81864 bits the ETag (entity Tag) field can be used by trackers to store
a unique identifier [12]. Further, the Last-Modified header can be contain any tracking string (unique
user tracking identifier) and not only a date [44]. In this process, when a user re-visits a website, the
browser sends the If-Modified-Since and If-None-Match headers as a part of the HTTP request. These
headers contain values stored in the Last-Modified and ETag fields from the previously cached document.
Subsequently, the web server checks if the cached copy’s time stamp is valid. If the cached copy is still
valid the server returns a short response with the HTTP 304 Not Modified status. In case it is outdated a
new document is returned [53].

Redirect Cache:

The HTTP status code 301 can be used for tracking in the following setup: A user visits a website
containing a hidden tracking iFrame. The iFrame redirects the user to an URL containing an unique
identifier. This identifying request is cached and used by the browser during the next attempts to access
the website [160].

Authentication Cache:

Grossman [161] showed a method to track users by using the HTTP authentication cache. In doing so,
a JavaScript forces the browser to authenticate to the web server without presenting an authentication
request to the user. Once the browser is authenticated, and after receiving the HTTP status code 401,
the browser will cache the credentials and send it with each subsequent HTTP request.

TLS Sessions:

C tracking technique [162] makes it possible to check if a website was already visited by using the TLS
session resumption cache and TLS/SSL session IDs. The TLS session resumption cache stores TLS/SSL
session IDs and avoids full TLS handshakes by reducing latencies. Those are sent by the server to the
client during the hello message in order to use them when connecting to the host in the future. When a
tracker checks for a list of websites if the session IDs are already present in the cache, it can reconstruct
the users browser history.

2.6 Web Tracking Techniques 37

2.6.4 Browser Fingerprinting

Browser fingerprinting refers to a group of techniques to gather all possible device properties in order to
uniquely (re-)identify a user without storing a custom ID and without the users notice. Fingerprinting
scripts embedded on websites use a broad range of technologies such as JavaScript, Flash, HTML5, CSS,
ActiveX or HTTP and TCP headers [53, 55] to retrieving those properties. This unique user identification
originates from various hardware, network, or software configurations that a user’s device may have
[45, 49, 52, 53]. This information, also called fingerprinting features, are mainly used by companies to
track user behavior on the web [30] and to establish detailed user profiles [24, 35].

Because tracking is happening in the background, users have no means to know if being tracked.
Since this tracking technique is in-transparent and relatively new, most users are not aware of it, and
therefore not using any protection methods against it. In addition, as our research in Chapter 6 shows,
the protection methods available have various flaws and are not able to protect the user properly against
fingerprinting.

The following list summaries various fingerprinting features used by trackers we gathered in our re-
search:

System information: Device ID, operating system (version, architecture, kernel), screen resolution,
screen height, screen width, color depth, pixel depth, timezone, system fonts, system language,
date and time, CPU type, clock skew, battery status, mouse movement, keyboard layout, accelerom-
eter, multitouch capability, microphone, camera, audio capabilities, printer support.

Browser information: browser version, browser vendor, User Agent, navigator object, installed plug-
ins, preferred and accepted languages, accepted HTTP headers, cookies enabled, supported MIME
types, browser history, do-not-track, HTML canvas element, JavaScript runtime, CSS Features (font
probing, unicode glyphs, display, position, u.a.).

Network information: IP address, Geographic location, TCP timestamps, TCP/IP parameters, proxy-
piercing.

Flash information: version, manufacturer, serverString, language, screenDPI, screenResolutionX, screen-
ResolutionY, getTimezoneOffset, getLocal, XMLSocket, Math.min, Math.max, ExternalInter-
face.call, ExternalInterface.addCallback, sendAndLoad, URLLoader, navigateToURL, loadMovie,
createUID, getUrl, allowDomain, allowInsecureDomain, loadPolicyFile, URLRequest, LoadVars.

Network Fingerprinting:

Network information can easily be determined by a tracking element embedded on a website and
checked through a HTTP request made to the server. By using the IP address the tracker can calculate
the geo-location. If a computer is inside a local network or proxy, the tracker can use a Flash script to
bypass the proxies in order to discover the real IP address of users [30].

Even when web browsing privacy mechanisms, such as Tor or encrypted tunnels (IPSec, SSL, VPN) are
in place to hide the content of the data transferred, web page fingerprinting is possible. Research has
shown that these defenses do not obscure the size, direction, and timing of packets transmitted between
clients and remote servers exposing the visited website [60, 163].

Proposed defenses, such as traffic morphing [164], randomized pipelining over Tor [165], splitting
individual HTTP requests into multiple partial requests (HTTPOS) [166] try to stop these attacks. As Cai
et al. [76] shows, also these defenses have flaws exposing the visited website. The race between attacks
and defenses continued leaving an open question in a practical deployment, since it requires substantial
changes of Tor or the TCP stack [167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178].

38 2 Web Tracking Background

System and Browser Fingerprinting:

Researchers showed that using JavaScript and Flash scripts fingerprinters can identify very detailed
system properties [51, 179, 50, 180, 181, 30, 46, 57, 182] such as system fonts or the operating system
architecture. Further, very robust browser features can be retrieved using CSS, JavaScript and HTML5
such as unique graphic card rendering characteristics [49], JavaScript engine or performance [52, 49,
45] or CSS font probing. Researchers [49] identified in HTML5 242 tags, attributes and features in
HTML5 that were suitable for browser identification. A detailed discussion of browser fingerprinting can
be found in Chapter 6.

Smart Phone and Search Query Fingerprinting:

In addition to the browser, more techniques exist to uniquely fingerprint users on smart phones [8].
Kurtz et al. [183, 184] presented a feature list to identify Apple iOS users through their personalized
device configurations and applications. Other researchers use different smart phone sensors like the
camera, microphone, speaker or accelerometers to fingerprint the device [185, 186, 187, 188, 189].

Website fingerprinting can also be extended to fingerprint individual search queries or keywords to
web applications [10]. By augmenting traffic analysis using a two-stage approach with new task-specific
feature sets, a passive network adversary can in many cases even defeat the use of Tor to protect search
engine queries.

2.6.5 Redirect Tracking

Redirects can be used in various scenarios and are mostly utilized to enhance the usability of the web.
For example if a website is either too slow, not valid anymore, or when the content is changing often, the
website can redirect the user to another, valid, new or updated web page. The common use case is when
a URL has moved temporarily or permanently to a new URL. The web server will then send the HTTP
status code 302/303/307 (moved temporarily) or 301/308 (moved permanent). The defined differences
between the two groups of redirect status codes are the cache ability and the request method – see details
in RFC723112. It is also common to use client side redirects with HTTP meta refresh, JavaScript or PHP,
see the example code in Listing 2.2.

Nowadays, redirects are used for URL shortening or privacy protection by hiding the HTTP referrer
when leaving the website. On the downside, redirects are also being misused for phishing attacks [190,
191, 192, 193] or to deliver malware through drive-by-download attacks [194, 195, 196].

Since several privacy tools and add-ons try to protect web users’ privacy by blocking third-party con-
nections, advertisers use more and more advanced techniques like redirects to place tracking cookies.

As part of a website, redirect link tracking starts with clicking basic text links as depicted in Figure 2.2.
Redirect links can also be set on image or dynamically generated links via JavaScript that suppose to
lead to further content, but actually detour the user over a chain of other (tracking) servers first. While
the appearance of those (redirect) links is exactly the same as other legitimate website links, the user
will not notice the difference and can not prevent the action when following the links.

As seen in Figure 2.2, the website A.com embeds Link 1 and Link 2 inside their website’s content/nav-
igation. By clicking the links, both navigate the user to further content or services like the News or Jobs

page of the website A.com.
When clicking Link 1, the website (server) will directly open the News page of A.com. If the user clicks

Link 2, the server will first connect to the tracking website B.com, then, automatically redirect to another
tracking server (C.com) and finally redirect to the actual Jobs page of A.com. The redirection through a
chain of potential tracking servers makes it possible to store various tracking cookies. In general, those
redirect tracking websites have no content that is rendered (displayed) in the browser. Loading those
connections takes only a few milliseconds, so a normal user will neither notice nor be able to prevent that

12 https://tools.ietf.org/html/rfc7231

2.6 Web Tracking Techniques 39

https://tools.ietf.org/html/rfc7231

1

2 HTML meta refresh:

3 <meta http-equiv="refresh" content="1; URL=http://www.x.com/redirect.html">

4

5 JavaScript:

6 <script>

7 document.location.replace("http://www.x.com");

8 window.location.assign("http://www.x.com");

9 window.location.href = "http://www.x.com";

10 window.location = "http://www.x.com";

11 </script>

12

13 PHP:

14 <?php

15 header("HTTP/1.1 301 Moved Permanently");

16 header("Location: http://www.x.com");

17 header("Connection: close");

18 ?>

Listing 2.2: Client side redirect code using HTML meta refresh, JavaScript and PHP

Tracking page 1, 2

Tracking

Cookies

Website

< >Link 2

A.com

Link 1< >

Redirect

A.com

 Jobs
Open link

A.com

 News

Link 1

Link 2.

B.com C.com

Figure 2.2: Redirect link tracking behavior

other websites are being loaded. During the process of loading the tracker websites, the server can collect
different meta data and use various tracking techniques to be stored on the user’s machine. Because the
tracking server is being accessed directly (by clicking the link and opening a new connection), first-party
tracking cookies can be stored which is not going to be blocked by anti-tracking tools, as these tools
mostly block third party elements. The tracking information stored inside the cookies can contain data
such as the visited website (A.com) and what element/content was clicked (Link 2 / Jobs). The result is a
much richer user profile compared to basic tracking techniques. There are not many indications for users
to recognize redirect links since they appear and behave like ordinary links. Even checking the status bar
(bottom right corner of the browser) of each link can be misguiding since JavaScript could dynamically
update the link. A real redirect scenario is presented in Figure 2.3. Here, clicking the link Jobsearch on
the the website www.spiegel.de, will open for a few milliseconds different websites in the background of

40 2 Web Tracking Background

the browser using automatic redirects. In addition, tracking cookies are saved on the users’ machine. The
final redirect will open the (legitimate/user intended Jobportal) stellensuche.karriere.spiegel.de website.

Figure 2.3: Real redirect example when clicking the ’Jobsearch’ link at the spiegel.de website

2.6.6 Others

HTTP referrer:

Another way to transmit tracking information about visited websites is through the HTTP referrer
header. The referrer header is attached to outgoing HTTP requests (while following a link) and can be
set optionally by the server to add the current URL. In addition, a tracker could use a JavaScript code
to directly transmit the URL by accessing the document.referrer through the API or send the information
through the GET / POST parameter of a request to the tracker’s domain [13]. Verizon Wireless for
example injects a special X-UIDH header to every outgoing HTTP request with a temporary ID [197].
Websites can then track those users and buy personal information directly from Verizon.

Ultrasound Cross-Device Tracking:

This method enables user tracking across multiple devices, such as smartphones, television and com-
puters [198]. Using inaudible sounds (ultrasound) emitted by one device and detected by the micro-
phone of another device only built-in hardware is necessary. Those signals are also called “audio beacons”
and can be embedded into TV commercials or played by browser ads and be detected by mobile apps
running in the background. While the sound can not be heard by the human ear nearby devices can de-
tect it without extra hardware. Then browser cookies can pair a user to multiple devices and keep track
of what TV programs the users watch or how he interacts with the online ads. Researchers discovered
234 Android apps that ask permission to access the smartphone’s microphone in order to incorporate a
particular type ultrasonic beacon [198]. In addition, the researchers found that 4 of the 35 retail stores
they visited in Germany have ultrasonic beacons installed at the entrance. This method is already in use
since 2015 [199].

Combination and recreation:

Yet another sophisticated tracking method combines various tracking techniques. As discussed earlier,
users can delete cookies and prevent tracking. Therefore trackers started to use Flash or JavaScripts

2.6 Web Tracking Techniques 41

to duplicate and reconstruct deleted tracking cookies [57, 200]. Later, researcher also presented that
ETags and HTML5 localStorage were used to rebuild HTTP cookies [44]. Here, the researchers found
that a popular advertising company KISSmetrics was using this technique to track users on the popular
tv streaming site hulu.com.

Within the evercookie project [158] research demonstrated how to reconstruct a extended list of differ-
ent tracking elements including: HTTP cookies, Flash Local shared Objects, Sliverlight Isolated Storage,
storing cookies in web history, HTTP ETags, storing cookies in web cache, caching in HTTP Authentica-
tion, window.name caching, Internet Explorer userData storage, HTML5 Session Storage, HTML5 local-
Storage, HTML5 Global Storage, HTML5 Database Storage via SQLite, Java JNLP PersistenceService and
even storing cookies in RGB values of auto generating, force-cached PNG’s using HTML5 Canvas tag to
read pixels (Cookies) back out.

The Tor browser shows other potential tracking options and which are covered by the Tor browser
[201]: HTTP auth, SSL state, OCSP state, site-specific content preferences (including HSTS state),
searchbox and findbox text, the Google WiFi geolocation token and the safe browsing key.

2.7 Tracking Protection Mechanisms and Tools

The market is reacting on the user’s disapproval of online advertising. As research shows [202, 203, 58],
78% of users do not want to see ads on websites. Users are concerned about their loss of privacy through
web tracking which can be seen in the exponential rise ad-blocking tools [204]. From 2010 to 2015 the
usage of ad-blocking tools increased from 21 to 198 million. Including mobile devices, the market has
grown to 615 million ad-blocking devices in 2016 [205].

Over the years, a variety of approaches towards protection of data privacy have been proposed, ranging
from blocking a specific tracking technique to hiding the users information. This section evaluates the
solutions to detect and prevent web tracking. A detailed discussion on protection mechanisms against
browser fingerprinting is provided in Section 6.1.

2.7.1 Clearing Browser Cookies, Cache and History

Although it is a good strategy to impede tracking by deleting all browser/Flash cookies, clear the cache
and history manually within the browser, it has its challenges and drawbacks. Most users are unaware
of these options or do not have the technical knowledge to accomplish this task [38]. Even when users
delete cookies, they forget to clear tracking elements such as Flash cookies, the cache and history as well.
There exist tracking techniques that can re-create deleted cookies, as discussed in Section 2.6.6. Users
need to clear all browser data regular to prevent tracking effectively. To delete Flash cookies, users need
to remember to do it in the Flash Player properties.

As an alternative, users can use tools such as Click & Clean13 or BetterPrivacy14 to clear the browser’s
cookies, cache, history, and more tracking elements. The problem with those tool is their limited tracking
protection on selected tracking techniques and the rare usage. If the user is not executing the tools
regularly, tracking is still possible.

2.7.2 Built-In Browser Mechanisms

Although modern web browsers allow to disable third-party cookies, this method does not protect the
user from tracking due to two factors. First, the handling of disabling third-party cookies differs in their
implementation in browsers. When third-party cookies are disabled, Google Chrome for example, only

13 http://www.hotcleaner.com/clickclean_chrome.html
14 https://addons.mozilla.org/de/firefox/addon/betterprivacy

42 2 Web Tracking Background

http://www.hotcleaner.com/clickclean_chrome.html
https://addons.mozilla.org/de/firefox/addon/betterprivacy

prohibits sending third-party cookies back to the tracker, while Firefox prohibits storing and sending
third-party cookies. Second, this implies that all cookies are present in the user’s browser and new first-
party cookies that are set by trackers through other methods such as pop-ups, iFrames or JavaScript, will
still send tracking data [13].

Microsoft was the first browser vendor to implement a feature that was able to block third-party
tracking back in 2011 [206]. The so called Tracking Protection List (TPL) was available for the Internet
Explorer 9-11 and needed to be set up by the user with one or more lists filtering tracking domains (not
provided by Microsoft). In cooperation with Microsoft Germany we implemented an automated system
to create such a list of tracking domains and made it available for public. The work is presented in
Chapter 3.

In 2016, Mozilla Firefox (version 42) enabled ad-blocking by default [207] in the private-browsing
mode (see Section 2.7.3). In cooperation with the tracking protection browser add-on Disconnect15,
Firefox uses the provided tracking list to block tracking content (including ads, analytic trackers, or
social media buttons such as the Facebook Like button) [208]. After three years of evaluation, Mozilla
finally decided to activate this feature in the default browser mode starting Version 65 beginning 2019
[209].

Similarly, the Opera browser added native ad-blocking in 2016 [210] using the EasyList16 tracking
filter list. With those mechanisms both browsers are able to block content loaded from domains using
predefined URL filter lists in order to stop tracking users across websites.

Apple followed in 2015 and introduced an add-on to manipulate page resources in the Safari browser.
This made it possible for ad-block software to integrate into Safari [211]. With the rising popularity of
tracking protection, Apple announced in 2017 its native Intelligent Tracking Prevention (TP 1.0) [212].
Here, WebKit17 has extended its features to reduce tracking. With blocking third-party cookies by default,
ITP 1.0 reduces cross-site tracking by limiting 3rd party cookies and other website data to be accessed
only for one day and being purged after 30 days. Early 2018 Apple updated the tracking protection to
ITP 1.1 [213] by moving 3rd party tracking cookies in a partitioned space when the domain setting those
cookies was not visited within 24 hours. Trackers were not able to access those cookies or set new onces.
The cookies were deleted after the domain had not been accessed within 30 days. Because people com-
plained that 3rd parties were still able to track the user within the 24 hours limit, Apple introduced ITP
2.0 in summer 2018 [214]. Similar to the proposed cookie partinioning, described in Chapter 5, Apple
removed the 24-hour cookie access window to immediately partition cookies for domains determined
to have tracking abilities. With ITP 2.0 in place, websites now have to request tracking privileges and
users must specifically accept. Furthermore, two additional features are implemented in Apples tracking
detection: Protection Against First Party Bounce Trackers and Protection Against Tracker Collusion. The
first feature is going to detect trackers that have not been used as a third party content provider but
tracks the user through navigational redirects. The technique has been discovered in 2014 (see Section
2.6.5). Chapter 4 provides further details. The tracker collusion detection is described in research as
cookie syndication, see Section 2.6.2. Moreover, with restricting the browser to only load built-in fonts,
not providing detailed browser plug-in information and sharing just general system settings, Apple is
following the similar strategy on limiting browser fingerprinting as we proposed in Section 6.2.1 (many
browsers, one configuration). This will make a Mac look more like everyone else’s Mac. How effective
those features are is yet unclear leaving it a future work for research.

15 https://disconnect.me
16 The EasyList filter lists are sets of rules originally designed for the browser add-on ’Adblock’ to automatically remove

unwanted content such like 3rd party tracking, ads, or other tracking scripts from the Internet. URL: https://easylist.to/
17 WebKit is the web browser engine used by Safari and many other apps on macOS, iOS, and Linux.

2.7 Tracking Protection Mechanisms and Tools 43

https://disconnect.me

2.7.3 Private Browsing

In 2008, browser vendors implemented a privacy oriented browsing mode known as “Private Browsing”
(or “Incognito”, as used by Google Chrome). In an ordinary browsing session, all stored cookie, cache
or history elements are kept until they are erased manually. Effectively, the private mode behaves like
a separate browser profile. After the private browsing session is terminated, all saved items such as
cookies, cache and history are automatically deleted. The advantage is that tracking elements are deleted
automatically. However, this method has the drawback that tracking is still possible during the entire
private browsing session. Even if the data is deleted after the browsing session, the tracker can still store
cookies and evaluate the browsing behavior within the session [157].

2.7.4 Opt-Out Cookies

Over the years the advertising market noticed the users’ disprove towards ads. On this behalf, many
advertising companies unite in associations such as the Network Advertising Initiative (NAI)18, Digital
Advertising Alliance (DAA)19, Interactive Advertising Bureau (IAB)20 or European Advertising Standards
Alliance (EASA)21. These associations represent the customer’s interests as well as regulatory demands
by governments towards advertising companies.

In order to protect the users rights the associations developed a method to “opt-out” of personalized
cookie tracking [215]. Personalized tracking means the usage of the tracking data gathered through
the users browsing activities. For example, if the user is searching for new sport shoes, visits different
websites providing sport shoes, a tracker can make use of the online behavior to display personalized
advertising of sport shoes. Trough websites like http://www.networkadvertising.org/choices the user can
select all those participating advertising companies to opt-out of personalized advertising. A script will
then set specific cookies for every selected advertising company in the users browser. Within this cookie
a code indicates to the advertiser that the user disapproves the collection of personal information and
does not want to receive personalized advertising. As stated in the regulations [215] the collected
information should be anonymized. However, the advertiser will still be able to serve ads to the users
and and use web tracking cookies to collect user information. Currently, there is no regulation on the
type of collected data, so the user has no knowledge on the mode of operation. In addition, it does
not cover the use of other web tracking technologies that NAI member companies may use to deliver
personalized advertising.

According to a study [216], the usage of opt-out cookies is around 1%. This can be explained by the
minor knowledge about this technique but also because of their associated disadvantages [12]: (1) Opt-
out cookies does not cover all advertising companies. (2) Web tracking and personalized advertising is
not blocked completely. (3) Opt-out cookies have a limited lifetime. (4) Users needs to set and maintain
opt-out cookies manually. (5) If the user deletes the browser cookies, opt-out cookies will also be deleted.
(6) For using opt-out cookies, user needs to activate third-party cookies in the browser which will allow
the storage of other tracking cookies automatically.

2.7.5 Do-Not-Track Header

Researchers [217] developed a HTTP mechanism that should solve the drawbacks of opt-out cookies. The
project was picked up and endorsed by the US Federal Trade Commission (FTC)22 in their privacy report

18 http://www.networkadvertising.org
19 http://www.aboutads.info
20 http://www.iab.net
21 http://www.easa-alliance.org
22 https://www.ftc.gov/

44 2 Web Tracking Background

http://www.networkadvertising.org
http://www.aboutads.info
http://www.iab.net
http://www.easa-alliance.org
https://www.ftc.gov/

[218]. The W3C worked on a standardization [219, 220] and soon after browser vendors implemented
the mechanism as “DNT” (Do-Not-Track) header [221], an initiative also supported by the European
commission [222].

If the header is set to DN T : 1 advertising companies have to respect the users’ wish to stop behavior
tracking. This mechanism can be seen as a built-in “opt-out” cookie serving the same purpose. But
still, not all browser implement the feature in a similar way. For example, Mozilla Firefox and Microsoft
Internet Explorer set the DNT header by default to 1, Google Chrome sets the header by default to 0
(disabled). Furthermore, there exists neither an standardization nor enforcement on how an advertising
company must response to the received DNT header. Some companies may replace the unique identifier
in their tracking cookies with a generalized ID, preventing user identification. In this case, the companies
can continue collecting the same information but all users would be aggregated. Another advertising
company may respond by by maintaining their method of data collection but alter its usage. Although
DNT should prevent behavior advertising, users’ still have no transparency on how their data is collected
and used.

2.7.6 European Cookie Law

In 2009, the ePricacy directive [223] on the legislation on cookies to regulate the usage of behavioral
cookies was extended. As stated in Article 5(3), website owners are required to inform the user prior to
the storage of cookies and access to information stored on a user’s machine. In other words, all websites
which embed tracking elements such as third-party cookies, need to inform the user in an appropriate
manner about the usage of cookies.

The ePrivacy directive needs to be enforced by legislation of all European countries but does not
regulate any specific rules or sanctions. Most European countries implemented national legislation in
compliance to the ePrivacy directive, advising website owners to inform users about the usage of cook-
ies.Even with the EU’s General Data Protection Regulation (GDPR) to notice users about the general
usage of cookies, tracking did not drop significantly as research shows [39, 40, 41]. Probably, because
most users ignore the notice and just accept the terms in oder to get access to the website. Another expla-
nation is, because not all tracking cookies can be deactivated throughout the complex settings provided
to the user.

2.7.7 Tools to Block Trackers

With the rise of tracking awareness of users, the amount of tracking protection tools and browser add-
ons to block ads highly increased [64, 224]. In 2002, the first generation of tools such as Adblock

disabled the display of ads. Soon after, blocking the requests of advertising (tracking) elements was
implemented. The main idea of most ad blocking tools is to block the connection to known tracking
servers by using filter lists of regex-based rules on tracker domain names and rules that refer to tracking
elements on web pages [224]. No (known) ads or other tracking elements such as ads in Youtube videos,
Facebook newsfeed ads or pop-ups will be downloaded or displayed on the website. Popular ad-block
browser extensions are: Adblock Plus23, AdBlock24 or Ghostery25. It should be noted that the quality of
ad-blocking tools will always depend on the coverage (amount of known/blocked tracking domains) and
the update interval. However, there is widespread criticism about the usage of such tools to white-list
specific trackers through a monetized system [61], or by the utilization of collected user data [69]. In
this scenario a fee is payed by the advertisers to be removed from the tracking block-list as well as added
to the white-list of “accepted ads” [68]. The accepted ads will then be displayed and used for tracking.

23 https://adblockplus.org
24 https://getadblock.com
25 https://ghostery.com/

2.7 Tracking Protection Mechanisms and Tools 45

https://adblockplus.org
https://getadblock.com
https://ghostery.com/

The white-list of acceptable ads has been updated on average every 1.5 days and grew from 9 filters in
2011 to over 5,900 in the Spring of 2015 [225]. The study on 5.000 websites showed that 59% websites
allowed accepted ads. Therewith, using these ad-block tools, users can still be tracked.

Also various research has been done in the field of tracking detection [150, 12, 151, 11], showing
the difficulty of preventing web tracking with third-party tools. Roesner et al. [13] offer a refreshingly
differentiated look into third-party tracking on the web. They classified the different types of tracking and
investigated the top 500 and 500 less popular domains for instances of tracking. Blocking third party
cookies was found to be effective against most trackers, but it is not easy to avoid tracking by major
social networks plug-ins without breaking their functionality completely. To that end, they developed
the ShareMeNot browser extension that strips cookies from the initial requests to these resources, but
allows them if they are clicked. However, this solution is limited to stop tracking of some services like
Twitter.com or Youtube.com, while it does not entirely remove the presence of Facebook and Google. Jang
et al. [226] used information flow analysis to find instances of history stealing and behavior tracking,
i.e., precise recording of mouse movements within websites. They found that 46 sites of the Alexa global
top 50,000 performed history stealing.

Better alternatives are tools such as: Privacy Badger26, Disconnect, uBlock27 and uMatrix28. While
uBlock and Disconnect block trackers mostly by using black-lists, uMatrix uses a more advanced method
to block all (third-party) requests of a website. Those tools cover not only basic tracking elements like
cookies, images or scripts, but also XMLHttpRequest (XHR), Frames, plug-ins and other elements.

Privacy Badger follows the idea of a learning algorithm to identify and block tracking elements through
their appearance while browsing the web. Here, all elements that appear on more than one websites
are categorized as trackers and potentially blocked. In addition to that, the user can manually adjust
the settings and block those tracking elements that have not yet been marked as trackers but are present
on the website. However, the effectiveness of blocking tools is limited due to the lack of usability. If
the tool blocks content that a website needs to display a specific feature, like using Google API29 for
visual effects, the website will not load correctly. In this case, the user needs to adjust the settings or
temporarily disable the blocker, allowing tracking.

In 2016, advertisers estimated a monthly revenue loss between $3.9M and $120K [64] on ten large
publisher sites. With the loss of revenue trough ad-blockers not displaying advertising, many websites
implement anti ad-blocker scripts forcing the user to disable their ad-blocker [65, 66, 67]. Here, the
website tries to detect the absence of known ads and scripts while ”bait” ads check whether a fake ad
gets blocked. Alternatively, side channel timing effects are being checked that might occur due to the ad
blocking code.

As a consequence, ad-blockers make increasing use of filters to detect such scripts and circumvent
them. In the last years, the number of filter lists has grown to nearly 2000 [66]. But as resent research
shows [62, 227], however, even advanced tools can not protect against all trackers and exposed the user
to 10-30% of trackers.

Other research suggests, on the other hand, to detect and filter tracking by analyzing ads on their
visual features [228]. But the solution still needs more profound work to solve basic image obfuscation.

2.7.8 Anonymity Networks / IP Hiding

Users seeking for tools to hide their IP address to provide anonymity make use of tools such as Virtual
Private Networks (VPNs), anonymous proxy servers, or Tor30 and JanDo31. Some proxy services can also

26 https://www.eff.org/de/node/73969
27 https://github.com/gorhill/uBlock
28 https://github.com/gorhill/uMatrix
29 https://developers.google.com/apis-explorer
30 https://www.torproject.org
31 https://anonymous-proxy-servers.net/en/jondo.html

46 2 Web Tracking Background

https://www.eff.org/de/node/73969
https://github.com/gorhill/uBlock
https://github.com/gorhill/uMatrix
https://developers.google.com/apis-explorer
https://www.torproject.org
https://anonymous-proxy-servers.net/en/jondo.html

remove cookies and other tracking elements from HTTP requests or are used to bypass censorship [229].
As we describe next, most tracking techniques can not be stopped using a VPN. Furthermore, one needs
to make sure that the proxy service does not save the HTTP requests, since this can directly be used for
behavior tracking.

The Tor Project aims to provide anonymity against network-based surveillance by encrypting and
routing all TCP-based traffic through multiple Tor nodes. It can provide confidentiality against attackers
on the user’s network, because the data is sent encrypted to the entry node, which re-encrypts the data
and routes it further through the Tor network. Tor also offers “so-called” hidden services, i.e., web
services reachable only via the Tor network providing anonymity and confidentiality for both, client and
server (details how Tor operates can be found online [230]). At this point in time, the Tor browser is
the only browser enabling additional fingerprinting tracking protection features by hiding or disabling
specific browser features and deleting cookies after each session. Unfortunately it has its limitations and
implementation flaws, which are discussed in Section 6.1.

A problem with Tor is, that there is no protection against malicious exit nodes as the servers should
receive the packets just as if the client had sent them directly with a different source address. Threats
are global attackers and leaks by local software. Global attackers can use simple statistics or advanced
techniques [231] to de-anonymize users. Local software, for example by using the File-Transfer-Protocol
in active mode, sends the local IP address as part of the protocol32. Some BitTorrent clients use this
method, together with UDP33, which is not supported by Tor.

2.7.9 Anonymous Search Engines

As mentioned in Section 2.5.2, search engines can track user behavior. With DuckDuckGo34, Startpage

Search Engine35, and Ixquick Search Engine36 a variety of alternative browsers exist claiming not to collect
any private data. In addition, those search engines hide the HTTP referrer header which disallows
websites receiving the used search string.

2.7.10 User Driven (Academic) Advertising Models

Even though users are concerned about their privacy, studies show that about 50% would still be willing
to share personal data with companies in exchange of money [232, 233, 234]. Motivated by these
findings, researchers developed various systems [235] to restructure the distribution of ads. The idea
was to ensure more privacy by stopping tracking, but also keeping ecosystem in which publishers get
paid either by the consumer directly or by advertisers for displaying relevant ads.

The first architecture to provide privacy preserving advertising was proposed by Juels [236] in 2001,
suggesting a client side proxy to manage user profiles and private information retrieval as well as distri-
bution of ads. The usage of mix networks enabled anonymization. The design provided the basis for a
broad range of further research which is detailed in the following. The system Juels proposed was not
designed to retrieving ads in real time, making it impractical in todays web. Aiming to solve the short-
coming of Jules, Riederer et al. [237] proposed a browser plug-in and proxy based network allowing the
user to decide what personal data is shared in order to receiving compensation for it.

With Adnostic, Toubiana et al. [238] proposed an architecture enabling ad targeting without compro-
mising the user privacy to the ad-network. By profiling the user on visited websites, the system decides
within the browser which specific ads, out of a set send by the ad-network, are most relevant to the user’s

32 https://trac.torproject.org/projects/tor/wiki/doc/TorifyHOWTO/FTP
33 https://blog.torproject.org/blog/bittorrent-over-tor-isnt-good-idea
34 https://duckduckgo.com
35 https://startpage.com
36 https://ixquick.com

2.7 Tracking Protection Mechanisms and Tools 47

https://trac.torproject.org/projects/tor/wiki/doc/TorifyHOWTO/FTP
https://blog.torproject.org/blog/bittorrent-over-tor-isnt-good-idea
https://duckduckgo.com
https://startpage.com
https://ixquick.com

interest and be displayed. The profiling is done by categorizing the visited websites on their meta-data
(keywords, description, title) and URL. Accounting in the “charge per click” model remains unchanged
since it is not a privacy violation for the ad-network to know what ad a user clicked. For the “charge per
impression” model, the correct advertiser must be billed without the ad-network learning which ad was
displayed to the user. Here, Adnostic suggests an additively homomorphic encryption and efficient zero
knowledge proofs. Limitations are on the higher network usage, possible attacks as well as the low qual-
ity of user profiling since the information gathered by Adnostic might reflect less personal information
as the ad-networks could gather.

Privad [239] is a similar concept using a sandboxed agent running locally to profile all user activities
and serving most relevant ads sent by an intendant proxy. The proxy is responsible for billing and ad
distribution which is done by encrypted and anonymized connections between the client and ad-broker,
securing the client against tracking as well as attacks. The proxy system is prefetching a set of ads to be
served to the user. The agent will then select most relevant ads based on the local profile. Problems arise
when attackers de-anonimize the user information [35, 37, 36, 14, 6] or the dealer is colluding with the
ad-brocker. In this scenario the user has no control over the shared data.

A different approach is presents by RePriv [240], a system for controlling the release of private infor-
mation within the browser. In contrast to Adnostic and Privad, the system enables the user to decide
which parties may access the various types of data stored inside the browser. Third parties can request
private information through a policy based code, collecting various website information like the topic or
DOM elements. Limiting factors are the overhead for users to get assess to every new services requesting
profile data, higher network timing and the development of data mining policies for ad-companies to
gather the profile data.

ObliviAd [241] presents a novel architecture protecting the privacy of the user by implementing a
secure hardware-based private information retrieval (PIR) protocol for distributing advertisements. For
billing, high-latency mixing of electronic tokens are used without disclosing any information about client
profiles to brokers. The proposed protocol fetches an ad, then the user sends his profile in an encrypted
form to a secure coprocessor that resides on the broker side. Since ObliviAd does not assume any
anonymous channel, the broker may learn the identity of the user, but not the user profile. The secure
coprocessor selects and sends the advertisement in an encrypted form that best fits the user profile ac-
cording to the algorithm specified by the broker, but preventing the broker from learning any information
about the selected advertisement. By the strong security protocol, ObliviAd’s drawback is its increase in
complexity and deployment. Further, as most of the suggested systems, this approach does not guarantee
protection against fingerprinting.

With the work done in MyTrackingChoices [242], and MyAdChoices [243], researchers propose sys-
tems in which the user can decide which website topics/categories (e.g., health, religion, politics or
finance) are privacy-sensitive to them and should be blocked from tracking. The tools allow users to
specify the categories of websites that are privacy-sensitive and block the trackers present on such web-
sites only. Although the tools elaborate control over ads, they do not prevent a consequent as well as
extensive tracking protection, making tracking still possible to profile the user.

2.7.11 Tracking-Free (Paid) Services

Internet users need to understand that publishers and content creators require compensation for their
services to cover the cost associated with its provision and delivery. Costs, that most people do not see or
are willing to pay when they do not see their benefits [244]. But in todays web the old saying “if you’re
not paying, you are the product” holds true in case of publishers using tracking ads to sell user data. In
the following, various tracking-free Internet usage-models will be outlined.

48 2 Web Tracking Background

Subscription Based Plans:

Subscriptions are offered by many services, apps and websites to exclude advertising against payment.
But users do not like to spend time on subscriptions to every new service/website or spend money on a
one time service like reading a news article [244]. This is why it is difficult to get a constant revenue
with this method, which is not practical for most users as well as services.

Micropayment Systems:

Micropayment services like Flattr37 provide an alternative to subscription-based systems. Flattr was
launched in 2010 and bought by AdBlock Plus owner Eyeo in 2017. Flattr pays content creators au-
tomatically the amount depending on the attention the user is giving to specific content. This is done
using a browser add-on calculating the engagement time and mouse action on a URL (or video/podcast).
The algorithm calculates the payable amount while only transmitting the URL to the service provider.
This keeps all the private data used for the decision on the local device. With a minimum fee of $3 a
month, 90% of the amount gets split up with the content creators that the user is supporting (visiting).
Similarly, with the Google Contributor38 a big advertising player is researching on this concept to reduce
the amount of ads delivered by advertising services. Users registered with this service would have pay a
monthly fee to support the ad free sites. However, so far, only few publishers participate.

Within Browser Models:

The first model was proposed by Mozilla in 2014 when Subscribe2Web39 was introduced to eliminate
the web’s dependency on ad-based financing. The aim was to provide a general web API accessible from
any browser through which users would pay a monthly subscription fee in exchange for accessing ad-free
content. Unfortunately this project was discontinued some time later.

The next was the Brave40 open-source browser (based on Chromium), launched in 2016 with the built-
in feature to strip out all ads and trackers. In 2018, Brave announced an ad replacement and revenue
sharing program with its pay-to-surf business model. Users opting in will then receive ads sold by Brave
in replacement of the ads blocked by the browser. Based on the attention the user spend on sites the
browser automatically calculates the reward, which will be received in BATs (Basic Attention Token).
BATs are a utility token in a new, blockchain-based digital advertising and services platform building on
the Ethereum41 technology. It is used as a unit of account between advertisers, publishers, as well as
users on the BAT platform and can be utilized to directly measure, exchange, and verify attention [245].
The revenue on advertising is shared between publishers (55%), ad partners and users (15% each).
While user targeting is done inside the browser by analyzing the anonymized browsing history, billing is
done using the Zero Knowledge Proof technology Anonize [246]. The concept of Brave is interesting, but
placing own ads in front of the original is being discussed controversially [247].

Ad-Free Browser:

An alternative to Brave is the Chromium-based browser Epic42, launched in 2013. The features list of
the privacy friendly browser includes: removing all ads and tracking elements, not passing the referrer
header data, using an Chrome user agent string, all search requests through a build-in VPN-proxy ser-
vice, URL auto-suggest and language translation are deactivated on default, automatic selection of SSL
connection and active Do-Not-Track-Header. A major drawback is, that because of blocked third party
elements, various websites will not work with Epic.

37 https://flattr.com
38 https://contributor.google.com/v/beta
39 https://drive.google.com/file/d/0BzwYn5IpP3wtbmhPMEdNV1Ayb1k/view
40 https://brave.com/
41 https://www.ethereum.org/: Decentralized platform that runs smart contracts (apps) on a custom built blockchain - a

shared global infrastructure that can move value around and represent the ownership of property.
42 https://www.epicbrowser.com

2.7 Tracking Protection Mechanisms and Tools 49

https://flattr.com
https://contributor.google.com/v/beta
https://drive.google.com/file/d/0BzwYn5IpP3wtbmhPMEdNV1Ayb1k/view
https://brave.com/
https://www.ethereum.org/
https://www.epicbrowser.com

Network Level Ad-Blocking:

In 2015 Internet service providers (ISPs) started to block advertising on the network level. The U.K.
mobile carriers EE, Three, O2 and the Caribbean mobile operator Digicel announced to work with the
start-up company Shine to implement network-based ad-blocking features [248]. However, a few months
after the EU net neutrality rules making ISP ad-blocking illegal across the EU end of 2016, Shine switched
their business model into an advertising verification service.

At the moment the open source software Pi-hole43 is the only real alternative. It is designed to run
on embedded devices with network capability such as the Raspberry Pi44. The linux-based network-level
advertising and tracker blocker acts as a DNS sinkhole for blacklisted domains on a private network. Ads
and trackers are blocked before entering the network. This enables blocking ads also on mobile phones,
smart TVs, third-party apps, and streaming video services. User reports state a 30-60% reduction of
network traffic [249, 250]. So far, the ad industry has not taken any actions against Pi-hole since its
launch in 2015, most likely due to the low number of users.

2.8 Summary

On the enormous amount of web tracking techniques, various privacy protection mechanisms try to re-
duce tracking. However, as we pointed out in this chapter, all of the tracking protection mechanisms
have their weaknesses and are not able to prevent the leakage of privacy sensitive data on the web. With
the risks, threats and implications of web tracking we presented in this chapter, like price discrimina-
tion and de-anonymization of users, there is a need to provide better solutions to reduce tracking and
prevent the leakage of privacy sensitive user data on the web. Motivated by open challenges in various
protection techniques, we developed and evaluated new concepts to stop web tracking, presented in the
next chapters.

43 https://pi-hole.net/
44 raspberrypi.org : A small single-board computer.

50 2 Web Tracking Background

https://pi-hole.net/
raspberrypi.org

3 Automated System to Detect, Analyze and Protect Against Tracking

In order to understand the tracking ecosystem and to provide tracking protection, we built an automated
system to detect and evaluate tracking elements. In this chapter, we present the system architecture,
mode of operation and experimental setup. We give insights in the usage of different tracking techniques
and evaluate their appearance on websites as well as the privacy implications for users. The results are
shown in Section 3.5.

As already discussed, web tracking protection depends on blocking a broad range of tracking methods,
the known tracking domains, and providing a mechanism to keep this list of blocked domains up-to-date.
Facing these challenges we implemented a system to scan websites for different tracking techniques and
extracted the tracking domains. Moreover, our systems export a public available Tracking-Protection-List

(TPL)1 that can be used as an ad-block-list2 for the Internet Explorer (Version 9-10).
Because tracking is mostly done in the background, without the user’s notice, it is crucial to us making

our findings understandable for users. To cover this, we visualized and explained our results on a website
publicly available at https://www.sit.fraunhofer.de/de/track-your-tracker/ as well as in our Web

Tracking Report [22].

3.1 Architecture and Implementation

Our tracking detection system, shown in Figure 3.1, is based on a crawler using the Internet Explorer as
browser to open websites and an analysis algorithm to detect as well as extract the tracking domains.
We choose the Internet Explorer to analyze the tracking elements that are specifically rendered in the
browser’s HTML DOM and therefore guaranteed to be blocked by the TPL. The control program of the
crawler is implemented in Java and makes use of a Squid Proxy3, together with an ICAP server4 to
capture and filter the HTTP traffic. The data is then stored in a MySQL5 database. When compiled to a
JAR file, the system is running on a standard Windows computer connected to the Internet. To analyze
the HTTP traffic the system uses the pre-installed Internet Explorer (Version 9-10) to open a predefined
list of websites in an automated manner.

The list of website URLs is extracted in a previous (separate) process using an URL crawler and is
updated every month. This URL list unifies the most frequently visited websites ranked by Alexa (Top
500 websites in Germany6), Netcraft (Top 100 websites in Germany7) and the list of websites obtained
from the Information Community for the Assessment of the Circulation of Media (IVW)8. In order to reduce
crawling time, we only selected the top ranked German websites.

On each website the system randomly opens additional ten internal links9 in a new window to scan for
additional tracking elements. While the HTTP traffic is routed through the Squid Proxy and forwarded
to the ICAP server, the tracking detection algorithm analyzes the traffic. The tracking evaluation is done
on the fly and is discussed in detail within Section 3.2.

After analyzing the predefined list of websites, the gathered tracking domains are extracted from the
database into a format that is readable by Internet Explorers integrated feature “Tracking Protection List”

1 https://blogs.technet.microsoft.com/iede/2011/04/04/tracking-protection-lists-und-ihre-updates/
2 https://www.microsoft.com/de-de/iegallery
3 http://www.squid-cache.org
4 https://tools.ietf.org/html/rfc3507
5 https://www.mysql.de
6 http://www.alexa.com/topsites/countries/DE
7 http://toolbar.netcraft.com/stats/topsites?c=DE
8 http://ausweisung.ivw-online.de/online
9 We select only links pointing to the website visited at the moment, in order to detect further tracker embedded within

this website.

51

https://www.sit.fraunhofer.de/de/track-your-tracker/
https://blogs.technet.microsoft.com/iede/2011/04/04/tracking-protection-lists-und-ihre-updates/
https://www.microsoft.com/de-de/iegallery
http://www.squid-cache.org
https://tools.ietf.org/html/rfc3507
https://www.mysql.de
http://www.alexa.com/topsites/countries/DE
http://toolbar.netcraft.com/stats/topsites?c=DE
http://ausweisung.ivw-online.de/online

(TPL)10. Then, the TPL file is uploaded to a public server, where users can download and use the list to
block the listed tracking domains11.

Figure 3.1: Tracking detection and protection system architecture

Mode of Operation:

The mode of operation is depicted in Figure 3.1. The main component (blue), exported as Browser-

Tracker.jar, contains the web crawler scanning the websites, the HTTP traffic processing module, the
tracking detection algorithm and the TPL file generator. In the first step (1), the In-Site Links Extractor

module takes one website at a time from the URL list and opens it in the Internet Explorer (step 2). Then,
by scanning the HTML code of the website, this module generates a random list of up to ten additional
internal links that shall be opened as well as scanned next.

All HTTP requests and responses are processed by the Squid proxy and forwarded to the ICAP server

for further processing (step 3-5). The ICAP server evaluates the HTTP traffic in real-time (steps 5-6). The
Tracking Detection module then uses the built-in metrics to detect tracking elements by analyzing the
HTML website data and the HTTP traffic (steps 5-6). The results are saved in the MySQL database (step
7).

The Analysis and TPL Generator module evaluates all tracking elements and exports the tracking do-
mains into a TPL readable text format (steps 8-9). The TPL file is then uploaded to a public server.

The following steps describes the process in more detail (function names are printed bold):

• URL crawler generates a list of domains to be scanned by the crawler

• BrowserTracker processes the web traffic data (main module)

10 https://blogs.technet.microsoft.com/iede/2011/02/09/ie9-tracking-protection/
11 https://www.sit.fraunhofer.de/tpl/

52 3 Automated System to Detect, Analyze and Protect Against Tracking

https://blogs.technet.microsoft.com/iede/2011/02/09/ie9-tracking-protection/
https://www.sit.fraunhofer.de/tpl/

The main component (BrowserTracker) is responsible to start the IcapServer, connect to the proxy host
and setup the Squid server configuration. It then opens a database connection using TPLDBCon. Next,
the crawling process is started by opening one website after the other to scan for tracking elements.
Here, the browser now sends all requests to the proxy server, which are relayed to the ICAP server.
Now, various TrackingDetection modules evaluate the traffic data and HTML source code for tracking
elements. All detected trackers are then inserted into a result list and saved using TPLDbCon. The last
crawling step is to click on links, in order to open additional pages until the page limit is reached.

• TplStatistikCode generates a TPL file by reading the data from the DB

3.2 Tracker Classification and Detection Metric

Through the evaluation of the most commonly used tracking techniques in a two month long pre-study,
we implemented the detection of the following tracking methods:

• HTTP cookies (setCookie header, JavaScript)

• Flash LSO

• HTML5 Local Storage

• Ad images and beacons

• Third-party scripts

• Third-party iFrames

We classified potential tracking elements as tracking if:

1. Cookie is stored as third-party

2. All other elements:

a) The URL of the element appeared on at least two internal web pages AND

b) The URL of the element was present on at least two other websites (of all scanned domains)

Rule 2.a) and b) exclude elements that are only used on the actual website (internal website elements).

3.3 Long Term Evaluation and Results of Web Tracking on German Websites

We evaluated the HTTP traffic data of 1,634 websites during November 2012 and January 2014. The
goal was to identify and analyze different third-party tracking elements as well as their occurrence in
order to develop efficient protection mechanisms.

The research questions for the evaluation were:

• How many trackers are embedded on websites?

• What are the top 25 tracking domains?

• How many websites do trackers cover (amount of websites a tracker can re identify the users
browsing on the web)?

• Are tracking methods changing over time?

3.2 Tracker Classification and Detection Metric 53

• What is the usage of different tracking methods?

In this chapter we present our findings on studying the appearance of tracking elements embedded on
websites. First, we summarize significant results. Subsequently, we provide statistics on the appearance
of trackers: We show their capabilities to establish detailed user browsing profiles by the amount of
websites the trackers are embedded on. We give insights on the total amount of websites the trackers
are able to monitor during the entire data collection and a single browsing session. We then turn the
view on the embedding websites, and show how many different tracking elements the websites embed
on average, during the entire crawl or a single browsing session.

3.4 Experimental Setup

During the time of the evaluation (November 2012 - January 2014), the crawling process was manually
started several times a month. In each run, the crawler visited the generated list of websites and addi-
tional 10 random internal pages of each domain. Because of the amount of websites and the network
speed, each run took two to three days to complete. The crawler was executed in the network of TU
Darmstadt with no restriction to the Internet. To prevent dead links, the crawler generated a new list of
websites to be scanned every month.

3.5 Results

In the entire evaluation period we identified 1,209 distinct tracking domains. Among the top 25 websites
with the highest amount of trackers, on average 45 tracking elements were embedded per website.

The tracker with the highest capabilities to establish a browsing profile was doubleclick.com. In a single
crawl, doubleclick.com was able to monitor 971 websites. After the evaluation time, we found out that
the tracker was embedded on 1,463 websites, covering 90% of the scanned websites.

3.5.1 Top Tracker of Entire Evaluation Period

During the 16 months of our experiment we summed up the amount of websites the trackers were able
to monitor the users browsing habits. Figure 3.2 visualizes the top 25 trackers with the highest amount
of websites they are embedded in and therefore can directly monitor the users browsing profile.

Ranked highest, doubleclick.net is embedded on 1,463 websites, covering 90% of the scanned websites
(aggregated websites we visited in entire crawling period) and having the most capabilities to establish
a detailed user browsing profile. The top four trackers are embedded in nearly 70% of websites, and on
average, the top 25 trackers are able to track users on each scanned website.

3.5.2 Top Tracker in a Single Crawl

To show the capabilities of a tracker in monitoring the browser activities during a single browsing session,
we use the data of a single crawl performed in January 2014. Visualized in Figure 3.3, the top trackers
in this crawl are ivwbox.de and doubleclick.net, followed by the tracking companies adition.com and
nuggad.net. While ivwbox.de was embedded on 994 different websites, the average amount of websites
in the top 25 trackers are able to monitor 330 websites during a single browsing session. In this single
crawl from January 2014 we identified in total 633 different trackers. Notice, the amount of trackers
varies from each crawl and depends on the additional 10 randomly selected internal pages, and the time
of day the crawl was performed.

54 3 Automated System to Detect, Analyze and Protect Against Tracking

1463

1278

1194

1108

946 942

930 887 871

816
793

772

723
701 692

672 667 650 647 647 633 633 631 630 626

0

200

400

600

800

1000

1200

1400

1600

A
m

o
u

n
t

o
f

E
m

b
e

d
d

in
g

 D
o

m
a

in
s

Tracker Domains

Figure 3.2: Top 25 trackers of entire evaluation period with the amount of websites they can monitor.

994

780

474

417
394 386 362 348

346

310 298 286
256 248 246 246 234 222 219 210 203 193 191 188 187

0

200

400

600

800

1000

1200

A
m

o
u

n
t

o
f

E
m

b
e

d
d

in
g

 D
o

m
a

in
s

Tracker Domains

Figure 3.3: Top 25 tracker in a single crawl from Jan. 2014 with amount of websites being embedded in.

3.5 Results 55

3.5.3 Highest Tracker Appearance in Different Crawls

The tracking potential of a single crawl, and therefore a single browsing session, depends on how many
websites are being visited and the time of day when visiting. To compensate the results of a single crawl
we consolidated different crawls to show the highest amount of websites a tracker was embedded in
during a crawl.

Figure 3.4 shows the highest appearance of trackers taken from different single crawls. The top ranked
tracker ivwbox.de was embedded on 1,110 websites in the crawl of May 2013. Ranked second and third
are the trackers doubleclick.net with 971 websites and adition.com with 741 websites being embedded
on. The high amount of websites that ivwbox.de was embedded in can be explained by the high amount
of websites taken from the ivw-online.de list that have been merged to the crawling list of websites.

In the set of all 1,634 crawled websites, the average amount of trackers embedded in websites was
13.74.

1110

971

741

541
526

498

454

394 391 384
367 366 362

346
321

292 289 287 280 270 267 266 264 261 258

0

200

400

600

800

1000

1200

A
m

o
u

n
t

o
f

E
m

b
e

d
d

in
g

 D
o

m
a

in
s

Tracker Domains

Figure 3.4: Highest amount of embedded trackers in crawls between November 2012 and January 2014.

3.5.4 Total Amount of Tracking Elements on Websites

Figure 3.5 shows the top 25 websites with the total amount of different tracking elements that are
embedded on their website.

On average the top 25 websites embed 153 different trackers. An interesting fact is that overall more
then half of the top 25 websites belong to online-news media websites. These findings suggest that news
websites tend to embed far more trackers then other websites.

We conclude that many websites use various tracking techniques from different tracking domains.
Alternatively, this indicates that the tracking companies regularly change their tracking domains, and

56 3 Automated System to Detect, Analyze and Protect Against Tracking

therefore appear as a new tracker in our dataset. Since we could not find any evidence that would allow
us to link tracking domains to tracking companies we cannot provide more insight here.

174
170 170 169

168 165 165 164
163 161 161 160 159 157 157 157 154 154

152 152 150 149 149 148 148

0

20

40

60

80

100

120

140

160

180

200

A
m

o
u

n
t

o
f

T
ra

ck
e

r

Embedding Domains

Figure 3.5: Top 25 websites with different tracking elements observed during the entire crawling period.

3.5.5 Amount of Tracking Elements on Websites in a Single Crawl

To show the appearance of tracking elements a user would experience while visiting various websites
during a browsing session, we use the results conducted during a single crawl. Figure 3.6 presents the top
25 websites with the amount of tracking elements that were embedded in a crawl done in January 2014.
In this crawl rp-online.de embedded the highest amount of tracking elements. Note, that according to our
tracking detection algorithm, the results derive from scanning the website with additional 10 internal
pages. The amount of trackers can vary depending on the visited internal pages. For the crawl of January
2014, on average over 50 tracking elements were found in the top 25 websites.

3.5.6 Average Amount of Tracking Elements Embedded on Websites

Figure 3.7 shows the average amount of trackers we found on websites during the entire crawling period.
The top 25 websites embed on average 45 trackers. The average amount of trackers embedded on
websites in a set of 1,643 websites was 8.68.

3.5.7 Maximum Trackers on Websites in Different Crawls

Similar to Section 3.5.3, we provide the evaluation of the highest amount of trackers found on websites
during the entire crawling period. For each website we extracted the crawl with the most embedded
tracking elements. The list of top 25 websites embedding trackers is presented in Figure 3.8.

3.5 Results 57

78

74

71
69 69

68

65
64

63 63 63 63
62 62

60 60
59

58 57 57

56 55 54 54 54

0

10

20

30

40

50

60

70

80

90

A
m

o
u

n
t

o
f

T
ra

ck
e

r

Embedding Domains

Figure 3.6: Top 25 websites embedding tracking elements in a single crawl in January 2014.

Again, we notice that the amount of trackers being embedded on websites changes during the crawls,
which could be explained by the time of day we accessed a website. On average we found 84 tracker for
the top 25 websites.

3.5.8 Evaluation of Tracking Methods

Figure 3.9 presents the usage of different tracking methods that we identified during the entire browsing
period. It shows that cookies are used most for tracking, followed by third-party scripts, ad-images
and web beacons (tracking pixels). Note that the support for detecting Flash and HTML5 tracking was
added in January 2013. The increase of tracking elements in May 2013 is explained due to the fact
that we added more websites to the list of scanned domains in order to cover a wider range of most
frequently visited websites. We also can not provide statistics for the usage of HTML5 tracking elements
for December 2013 and January 2014 because of an Internet Explorer update that changed the internal
handling of HTML5 elements. Besides that, we notice a constant appearance of tracking elements during
the entire time.

3.6 Summary

In this chapter we presented insights of various tracking techniques used on the web. Visualizing the huge
amount of tracking elements on websites, showing that the top 25 websites embed 153 different trackers,
implicates a privacy problem for users being tracked while browsing online. Google for example can track
the user on 90% of the crawled websites and being able to establish a detailed browsing profile with the
users’ interests. In the next chapter we extend the tracking analysis on further tracking techniques and
present an up-to-date evaluation. In addition, we show the interconnection of trackers within a network
graph, cluster redirect trackers and demonstrate their possibility to share user data with other trackers.

58 3 Automated System to Detect, Analyze and Protect Against Tracking

54

50
48 48 48

47

45 45 45 45 45
44 44 44 44 44 44

43 43 43
42 42 42 42 42

0

10

20

30

40

50

60

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

T
ra

ck
e

r

Embedding Domains

Figure 3.7: Top 25 websites with average amount of embedded trackers during the entire crawling pe-

riod.

113

102

94
92

88 87 86
84 83 83 82 82 82 81 81 81 81 81 80 80 80

78 78 78 78

0

20

40

60

80

100

120

A
m

o
u

n
t

o
f

T
ra

ck
e

r

Embedding Domains

Figure 3.8: Top 25 websites embedding the highest amount of trackers in single crawls out of entire

observation period.

3.6 Summary 59

10

100

1000

Dec
2012

Jan
2013

Feb
2013

March
2013

April
2013

May
2013

June
2013

July
2013

Aug
2013

Sept
2013

Oct
2013

Nov
2013

Dec
2013

Jan
2014

Am
ou

nt
 o

f T
ra

ck
er

Cookies

Pixel

Ad-Images

Scripts

iFrames

Flash

HTML5

Figure 3.9: Usage of different tracking methods.

60 3 Automated System to Detect, Analyze and Protect Against Tracking

4 Dynamic Redirect Link Tracking Evaluation

Preventing the information gathering on users’ online behavior, various privacy tools are available that
try to block third-party elements. However, there exist various tracking techniques that are not covered
by those tools, such as redirect link tracking, introduced in Section 2.6.5. Here, tracking is hidden in
ordinary website links pointing to further content. By clicking those links, or by automatic URL redirects,
the user is being redirected through a chain of potential tracking servers not visible to the user. In this
scenario, the tracker collects valuable data about the content, topic, or user interests of the website.
Additionally, the tracker sets not only third-party but also first-party tracking cookies which are far more
difficult to block by browser settings and ad-block tools. Since the user is forced to follow the redirect,
tracking is inevitable and a chain of (redirect) tracking servers gain more insights in the users’ behavior.

By studying HTTP traces on months long crawls of 50k international websites we noticed that many
trackers use HTTP redirect techniques hidden in website links, to detour users “intended” connection
(link destination) through a chain of (third-party tracking) servers, before loading the intended (legiti-
mate) link destination. Because the third-party server is opened directly, it enables advertisers to store on
each redirected page first-party tracking elements on the users’ machine without notice, circumventing
third-party blocking tools. In addition, by using redirect links the trackers can collect valuable meta data
such as the site of origin, the desired destination target, the topic/content the user is viewing and other
information. Moreover, since the redirect takes only a few milliseconds, trackers can redirect the user
through a chain of various servers, allowing many trackers to save cookies and share the users interests.

In this chapter we present the first in depth study of redirect link tracking focusing on user privacy,
giving a comprehensive insight in the behavior, patterns and used techniques. Our data set is based on
full http traces browsing the top 50,000 websites from the Alexa.com ranking1 over a period of a month.
We modified a version of OpenWPM [29], which uses a real Firefox browser that is instrumented using
Selenium and another custom add-on, which provides a very realistic browsing experience. By crawling
the Alexa top 50k websites and following up to 34 page links, we recorded traces of HTTP requests from
1.2 million individual visits of websites as well as analyzed 108,435 redirect chains originating from
links clicked on those websites. We evaluate the derived redirect network for its tracking ability and
demonstrate that top trackers are able to identify the user on the most visited websites. In addition,
we visualize the main redirect clusters and demonstrate their strong interaction in the network of 9,862
redirect nodes. We also show that 11.6% of the scanned websites use one of the top 100 redirectors
which are able to store non-blocked first-party tracking cookies on users’ machines even when third-
party cookies are disabled. Moreover, we present the effect of various browser cookie settings, resulting
in a privacy loss even when using third-party blocking tools.

4.1 Related Work

Redirects are often miss-used to harm the user without notice. Examples are phishing attacks, where the
user intends to open a legitimate website, but the attacker establishes a redirect to a malicious domain
[190, 191, 192, 193]. Further, attackers use redirects to deliver malware through drive-by-download
attacks [194, 195, 196] and malicious advertising [107, 108, 109]. Here, the user is redirected through
a chain of malicious servers until the malware is being downloaded. Those redirecting procedures make
it difficult for anti-malware or anti-virus tools to track and stop the attacker.

Researchers also discuss the problem using redirects to provide spam. This includes manipulating
search engine crawlers with the goal of improving a website’s ranking [251], and in the context of email,
to camouflage spam websites [252].

1 http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

61

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

Li et al. [253] examined malicious web advertising using redirects and presented a tool to detect such
malware servers. The researchers evaluate redirect chains to determine if an ad server is malicious or
not. In another work, researchers investigate redirects in click-fraud links [254] displayed as an invisible
overlay, which makes the user click on links they did not intend to click. In all these publications the focus
is on evaluating drive-by-downloads or spam content by using redirects. In comparison, we conduct a
large-scale study of redirect appearance on legitimate websites (links) evaluating the privacy impact and
behavior of redirects focusing on user tracking.

Guawardana and Meek [113] look into the case of click-through rates in web advertising, especially in
ad aggregation networks. Since ad aggregators derive revenue from clicks on syndicated ads, they need
to link to the ad network first, which then redirects the user’s click to the advertiser (intended page).
This work only evaluates the behavior of clicking on ads, but does not evaluate the impact of tracking
servers using redirect links on legitimate websites.

Comprehensive studies [255, 227, 25, 58, 256] comparing ad blocking tools such as Ghostery, Adblock
Plus or Easylist, focusing only on the overall performance of blocking tracking elements. Other studies
on various web tracking techniques like cookies, localStorage and Flash were performed earlier in [13,
57, 150]. In contrast to our work, no in-dept studies on redirect behavior on websites was conducted.

Kalavri et al. [257] inspect tracking behavior on user traces collected by a web proxy to explore the
resulting tracking graph. They aim is to automatically identify trackers among the third-parties, based
on structural properties in the collected graph. They show that a simple nearest neighbor approach, as
well as label propagation techniques perform well with this identification method. The limitation is that
no privacy implications are considered on setting tracking cookies on the user’s machine like we show in
our work.

A similar tracking network visualization is done by Gomer et al. [258]. Here the researchers only
captured a small set of websites and focused on search query results. Our dataset includes the top 50k
ranked websites with the addition of following up to 34 page links, providing a much more realistic user
browsing behavior as well as a broad data collection of tracker interaction. Moreover, the graph is based
on Referer connections, which does not cover all relationships between the nodes [259]

Schelter and Kunegi [260] also evaluated the tracking connectivity using a large dataset from 2012.
In comparison to our work, the researchers only looked at HTML source code and did not use any HTTP
traces of real browsing data like in our work. The dataset in our work is based on up-to-date browser
generated HTTP traces with automated user interaction like clicking on links, moving the mouse and
waiting for JavaScripts to load additional tracking elements. Plus, we use a sophisticated tracker classi-
fication, not only taking third-party appearance in the HTML source code into account but also analyze
the information content in cookies. Further, we compare our results to other tracking classifications such
as Easylist and OpenWPM [29] to visualize the performance to the user.

In 2018, Syverson and Traudt reported [261] on the possibility of tracking using HSTS2, were a cached
HTTP connection is redirected to a secure HTTPS connection. Here, the tracker could force the browser
to check cached (visited) domains [262]. As of this, browser vendors added additional tracking preven-
tion methods to mitigate HSTS tracking [263, 264]. Since our focus was on redirect links, we did not
establish a verification setup on the applied prevention mechanisms, which might be indeed an interest-
ing future work. Yet another study by Matte et al. on handling the GDPR cookie policy banners [265]
mentions an unmeasured reference of redirects being used to provide a tracking cookie within the GDPR
cookie banners. With another focus in our study, we did not notice any hints on such practices while
re-evaluating our data set.

Summing up previous work, even though the idea of tracking the user within redirects is known
since 2006 [266] and was discussed in a simple demo in 2011 [160] as well as in [267], to the best
of our knowledge we provide the first large-scale study evaluating the usage of redirects in the wild to
track users. In contrast to other work, whereas tracking is evaluated on the landing pages, we evaluate

2 HTTP Strict Transport Security (HSTS): Security policy mechanism for websites being accessible only via a secure con-
nection. https://tools.ietf.org/html/rfc6797

62 4 Dynamic Redirect Link Tracking Evaluation

https://tools.ietf.org/html/rfc6797

Figure 4.1: Experimental set-up.

tracking when performing user actions such as clicking on links, opening several pages, move the mouse
and waiting for JavaScripts to finish loading as well as follow redirects. Furthermore, we present the
effects of different cookie blocking options as well as various tracking classification methods, including
our own analysis. With the visualization of the gathered data we also present a tracking network of
50,000 websites, clustering redirect tracker in groups.

4.2 Experimental Setup

In order to identify tracking activities, we simulated user browsing behavior within our custom crawler
based on OpenWPM [29]. The crawler automatically visits the Alexa.com top 50k ranked websites, clicks
on a link on these websites (selected by an algorithm described in Section 4.2.4), monitors the web
traffic and the events in the browser such as set or deleted cookies. We extended OpenWPM running on
Firefox because accessing specific browser functions like HTTP event handlers were easier compared to
Chrome. To evaluate the tracking activities we crawled the web for several months between May and
October 2018, evaluated the data, improved our crawler and set up our final crawling framework again
in December 2019.

4.2.1 OpenWPM Framework

We decided to build our custom crawler based on the OpenWPM framework. In a nutshell, OpenWPM is
an Open Source framework written in Python and JavaScript/TypeScript to visit websites automatically.
Further, OpenWPM can perform certain actions on those websites and monitor web traffic as well as
privacy-related events in the browser. This includes HTTP request and response traffic as well as handling
cookies, JavaScript, and other elements.

Technically, OpenWPM consists of a Python script that first configures and starts the browser, then
controls it using Selenium. An additional OpenWPM add-on is installed in the browser (Firefox) that
monitors HTTP requests, cookies, certain JavaScript APIs, and even more. Upon request, additional add-
ons can be loaded in Firefox such as Ghostery to change the behavior of the browser. The gathered data
is then saved in a SQLite database.

4.2.2 Crawler Architecture

We enhanced OpenWPM with several features that are useful to study the effect of redirect links: after
loading a website, we save a list of all links which are available on that site to our database. We also
monitor more JavaScript APIs that might be used by such trackers, like the access to document.location.
Further, we committed other minor bug fixes and improvements to the OpenWPM Github project, such
as collecting the origin of an HTTP request3, we record if the HTTP channel is being replaced, and store
3 We added the fields: document_url, top_document_url, referrer_url, and original_url

4.2 Experimental Setup 63

more details about first/third-party contexts in JavaScript. In addition, we trace if a third-party window
is being opend in a full page load in order to identify redirect trackers.

Since OpenWPM does not support distributing the Firefox instances on multiple machines, we im-
plemented a distributed architecture for our crawler based on Celery4, RabbitMQ5 and Docker6. The
crawler architecture is depicted in Figure 4.1. A central server coordinates many crawling nodes through
a message queue. The central server queues new tasks that specify which site should be visited with
which browser settings. It keeps track of which tasks have already been completed and collects the
SQLite files generated by those tasks. It also keeps track of which links were visited with which browser
settings so that repeated clicks on the same link with the same browser settings are avoided.

The nodes take jobs from the queue and execute them in individual Docker containers in parallel
so that a problem in one of the tasks doesn’t affect the other tasks. During the execution of the task,
OpenWPM selects the next link to click on in coordination with the master node. The task results are
then uploaded to the master node for further analysis.

After the crawl artifacts have been uploaded, the master node imports the individual SQLite files in a
joint Postgresql database for further analysis.

4.2.3 Crawler Configuration

We used Firefox with two different cookie settings: always which corresponds to the default behavior
of Firefox and never, which corresponds with the network.cookie.cookieBehavior=1 setting of Firefox, in
which Firefox would only accept first-party cookies. Firefox supports other cookie settings as well, such
as turning all third party cookies into session cookies or a mode that isolates third party cookies from
different sites. These modes are not interesting for short-running tasks such as the actions we perform.
Instead, they are mostly useful for long time usage browsing various websites.

In addition, we disabled popup windows in Firefox since pop windows would result in a new window
that loads an additional website. We focus on the events that happen in a single browser window
following a link click on that website.

4.2.4 Simulated User Behavior

Our crawler always performs the same task for all browser configurations and a given URL: A fresh
instance of Firefox with a fresh profile is started on the requested browser configuration and navigates
to the specified URL. It then waits until the page is loaded, then performs a bot mitigation (the mouse
pointer is moved around and a mouse scroll down event is performed), which triggers on most websites
the loading of additional resources. The script then waits ten more seconds to give JavaScript on that
page enough time to execute. Later, all links that currently exist in the DOM are collected and stored in
a database. Only <a> tags, including <a> surrounding tags are considered to be a link. Other
HTML tags such as <div> or onClick JavaScript triggered events are not considered to be a link.

In order to achieve a realistic user behavior we used the following methodology to generate a similar
URL/Link selection as in the real world page view by AOL users [268]:

1. Select visible links. This prevents clicking links that only exist in the DOM and are only visible
when the mouse is hovering on the navigation bar.

2. Prioritize links pointing to a domain that had not been visited before. This is done to avoid visiting
popular domains to often, which is unlikely to produce useful data.

4 Software for asynchronous task queues http://www.celeryproject.org/
5 Open source message brocker software https://www.rabbitmq.com/
6 OS-level visualization to deliver software in packages https://www.docker.com/

64 4 Dynamic Redirect Link Tracking Evaluation

http://www.celeryproject.org/
https://www.rabbitmq.com/
https://www.docker.com/

3. When all available links are equal in this regard, we prioritize links that point to a different subdo-
main which had not been visited before.

4. We then selected all other not visited links.

5. We decided to implement a biased link selection instead of a random one because our pre-study
showed that a random selection resulted in visiting Twitter, Google, and Facebook links in 30% of
all crawled pages, since those links are placed more often on websites.

6. After clicking a link we wait until the new page is loaded, perform another bot mitigation, wait for
a few seconds, save the HTTP trace, and then close the session.

We click only external links since our pre-study showed more promising data on finding redirects
and also to reduce crawling time. To open the same link in all browser configurations, the central link
controller (4) selects first the links that had been visited by another browser configuration first. During
a crawl, we aim at visiting links only once for each browser configuration.

For our final crawl, we tried to visit up to 34 different links on each website in the Alexa top 50k with
the two browser configurations. When a website would not have any more links that were not visited
yet in the specific browser configuration, we visited the site again up to 4 times to check for dynamically
updated and unique links to visit.

4.3 Results

Evaluating the HTTP traces in our crawls, we notice that 95,8% (tracking) redirects occur by clicking
on external links when visiting websites. In order to reduce the crawling time to about 33 days for
50,000 websites and to improve the results, we focused our redirect link evaluation on external links.
In total, we ran 1,259,568 individual crawls on the 50k Alexa top-ranked websites using two different
browser configurations. During the crawls we clicked in total on 953,603 links (56% embedded on
HTML image tags) and encountered 108,435 different redirect chains involving at least one additional
external domain. Figure 4.2 displays the number of external links found on websites, indicating that
10% of the websites have no external links and more than half of websites have 4-31 external links.

While only clicking on distinct links, our crawler visited on average 10 external links on each page.
Here, all our browser configuration clicked in 99,7% of the cases the same amount of links. Figure 4.3
depicts equal distribution.

Since both browser configurations did not show a significantly different behavior for most aspects of
the crawl, except for the handling of third-party cookies, we focus on the default (always) configuration
of Firefox for the rest of this section and compare it with the never configuration wherever needed.

Regarding the term domain, we consider everything one level below a public suffix according to the
Public Suffix List a domain for the analysis, since a cookie can be set for at most an entire domain.

4.3.1 Initial Loading

During the initial loading of a website we already encountered various legitimate redirects. Most web-
sites (77%) upgrade from http to https using an HTTP redirect, but we saw other types of redirects as
well. For example, about 1% of the websites redirect to a country-specific website, such as from com-

pany.com to company.fr, changing the top-level domain but leaving the rest of the domain unchanged.
Redirects within the same domain appeared in 25% of our visits, such as a redirect from www.example.tld

to example.tld. For about 5% of our visits, we were redirected to a different domain. We consider every
domain that was visited during the initial loading of a website to be the first-party domain set.

4.3 Results 65

0

2000

4000

6000

8000

10000

W
eb

si
te

s

Links found

always
never

Figure 4.2: Amount of links found on each website (browser cookie config: blue=always, red=never).

5 10 15 20 25 30 35

Links clicked

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

W
e
b
s
it
e
s

Figure 4.3: Amount of links clicked on websites (nearly similar on browser cookie config.

4.3.2 Identifying Redirect Trackers

To detect redirect trackers, we monitored the URLs that were loaded as top window document and their
respective domains. We consider this sequence to be a redirect chain, when URLs from more than one
domain were loaded. All elements except for the last domain in that chain are candidates for redirect
trackers.However, we did not take domains into account that were already part of the first-party domain

set from the initial loading of the website, because those domains were already first-party domains and
can for example set legitimate first-party cookies. We consider the remaining domains to be the middle

domains in a redirect chain.

Identifying the most common redirect domains, we kept track of the middle domains that occurred in
redirect chains starting from the crawled Alexa websites. We built a top 100 list of these domains and
then classified them manually. Not every domain on that list performs redirect tracking, some provide
other types of services as well. In general, we found the following type of services:

66 4 Dynamic Redirect Link Tracking Evaluation

0
100
200
3 00
400
5 00
600
7 00
800
9 00

W
eb

si
te

s
always
never

Figure 4.4: Top redirect occurrence on different browser settings.

a) Public URL shortening services such as bit.ly or goo.gl7.

b) Privately used URL shortening services that only link to a specific service such as youtu.be or amzn.to.

c) Privately used URL shortening services such as t.co which is used internally by Twitter to shorten URLs
in tweets.

d) Traditional click counting services for advertisements or for general websites8.

e) Popup-Advertisements9.

f) Other services that for example redirect a user to a social network (share) page.

4.3.3 Regular Trackers

In addition to the redirect domains, we evaluated the storing of third-party cookies on different websites
during the initial page load. For the domains that accrued most often, we computed their coverage of
the overall Alexa top 50k, presented in Table 4.1. This shows the potential that a tracker can re-identify
the users browsing behavior.

Table 4.2 lists the 30 most common redirect domains we found with our classifications. The column
Sites indicates on how many distinct websites we found at least one link that led to a redirect chain
containing this domain as part of the middle domains. In general, cases d) and f) of Section 4.3.2
are difficult to distinguishs since they sometimes interact with each other. For example a new popup
window is created and the user is redirected over several domains till he reached his final destination.
About 11.6% of the websites on the Alexa top 50,000 had at least one link leading to one of the top 100
redirectors and about 8% had at least one link that lead to one of the top 30 redirectors shown in Table
4.2.

Noteworthy are the redirect trackers yandex.ru, doubleclick.net, google.com and facebook.com that also
cover a significant part of the Alex top 50k domains (see Table 4.1 for a comparison). Besides setting
third-party cookies, doubleclick.net is also used redirects in 4% of the cases pointing back to the domain
the redirect was triggered. This special cased is probably used to set first-party cookies during the redirect
and to mitigate ad-blocking plug-ins, that usually block third-party cookies.

7 Everyone can submit a URL and gets a shortened version of that URL.
8 A website or advertisement links to the service. When a user clicks on these links, the click is tracked by the referenced

server and the user is then redirected to the real destination.
9 When a user clicks on a website, a new window (popup) is opened which loads a new website. In general, the window

loads the URL of the advertiser first and is then redirected to the advertised product. This is quite similar to d) when the
user has popups disabled.

4.3 Results 67

Rank Domain Coverage in %

1 doubleclick.net 42
2 facebook.com 26
3 adnxs.com 19
4 casalemedia.com 16
5 openx.net 15
6 everesttech.net 15
7 pubmatic.com 15
8 quantserve.com 14
9 bidswitch.net 10

10 yahoo.com 10
11 agkn.com 10
12 addthis.com 10
13 mathtag.com 9
14 adform.net 9
15 atdmt.com 9
16 google.com 9
17 adsrvr.org 9
18 teads.tv 8
19 scorecardresearch.com 8
20 turn.com 8
21 dnacdn.net 8
22 mookie1.com 8
23 bing.com 7
24 smartadserver.com 7
25 demdex.net 7
26 taboola.com 7
27 simpli.fi 7
28 spotxchange.com 7
29 innovid.com 7
30 nr-data.net 7

Table 4.1: Top 30 regular trackers encountered in our crawl.

4.3.4 Redirect Trackers and Cookies

Not all redirectors track the user with cookies. For example, youtu.be is a URL shortener for YouTube
and directs only towards youtube.com. It never sets a cookie, which is also not required since the next
hop youtube.com sets cookies to track users. Also goo.gl, which is a URL shortening service operated by
Google does not track users and never sets a cookie during a visit.

To generalize the use of cookies, we classified the use of cookies in three categories:

NV No cookie is set by the redirect domain.

AP While the initial page loads, the redirect domain already sets a (third-party) cookie in the browser.
This happens due to third-party content from this domain being included during the initial page
load as well.

AC No cookie is set from the redirect domain during the initial page load, but after the link is clicked
and the browser follows the redirect chain, a cookie is set.

68 4 Dynamic Redirect Link Tracking Evaluation

co
nfi

g
al

w
ay

s
co

nfi
g

ne
ve

r
R

an
k

D
om

ai
n

C
la

ss
R

ed
ir

ec
ts

Si
te

s
N

V
A

P
A

C
N

V
A

P
A

C
T

C
SR

A
le

xa
EL

EP
G

H
IT

P
1

bi
t.

ly
a

19
41

84
8

0
1

99
0

0
10

0
10

0
24

2
0

x
x

2
go

o.
gl

a
59

3
38

2
10

0
0

0
10

0
0

0
0

55
0

x
x

3
ya

nd
ex

.r
u

d
51

50
38

1
0

10
0

0
0

0
10

0
10

0
4

5
x

x
x

4
do

ub
le

cl
ic

k.
ne

t
d

23
62

36
7

0
98

2
4

0
96

10
0

97
42

x
x

x
5

yo
ut

u.
be

b
53

9
29

1
10

0
0

0
10

0
0

0
0

0
0

x
x

6
t.

co
c

12
44

21
5

0
0

10
0

0
0

10
0

10
0

10
1

0
x

x
7

di
sc

or
d.

gg
b

22
5

20
7

0
0

10
0

0
0

10
0

0
0

0
x

8
al

iy
un

.c
om

d
15

9
15

2
4

1
95

6
0

94
1

1
0

x
x

9
w

w
w

.n
et

.c
n

d
13

1
13

1
10

0
0

0
10

0
0

0
0

0
0

10
au

to
na

vi
.c

om
f

13
0

13
0

10
0

0
0

10
0

0
0

0
0

0
x

x
11

bl
og

ge
r.c

om
f

79
7

12
8

90
10

0
10

0
0

0
10

1
0

x
12

al
iq

in
.c

n
d

12
8

12
8

10
0

0
0

10
0

0
0

0
12

2
0

x
x

13
go

og
le

.c
om

d
56

5
12

7
27

40
32

35
0

65
72

24
9

x
x

x
x

14
ad

ju
st

.c
om

d
26

0
12

6
0

0
10

0
0

0
10

0
0

28
0

x
x

15
od

no
kl

as
sn

ik
i.r

u
f

13
3

11
2

10
0

0
0

10
0

0
0

0
0

0
x

x
16

m
ed

iu
m

.c
om

f
16

0
11

0
0

1
99

0
0

10
0

10
0

86
0

x
x

17
ex

os
rv

.c
om

d
80

8
10

6
0

95
5

0
0

10
0

0
0

1
18

pi
nt

er
es

t.
co

m
f

10
6

10
4

0
7

93
10

0
0

0
6

0
1

x
x

x
19

ta
ob

ao
.c

om
d

55
2

10
2

0
7

93
0

0
10

0
76

3
0

x
x

x
20

ad
fo

x.
ru

d
75

5
10

0
51

47
3

10
0

0
0

49
58

0
x

21
on

el
in

k.
m

e
d

15
5

96
1

6
93

3
0

97
99

31
0

x
x

22
do

to
m

i.c
om

d
18

1
96

0
1

99
0

0
10

0
10

0
0

0
x

x
x

x
23

oj
rq

.n
et

d
18

1
92

0
2

98
0

0
10

0
35

1
0

x
x

24
ye

kt
an

et
.c

om
d

16
56

88
0

95
5

0
0

10
0

99
1

1
x

x
25

fa
ce

bo
ok

.c
om

f
10

1
86

45
53

2
10

0
0

0
0

4
26

x
26

w
a.

m
e

f
10

30
86

10
0

0
0

10
0

0
0

0
0

0
x

27
m

.m
e

f
96

0
82

10
0

0
0

10
0

0
0

0
0

0
28

ap
p.

lin
k

d
23

0
78

0
47

53
0

0
10

0
10

0
25

0
x

x
x

29
se

cu
re

cl
ou

d-
sm

ar
t.

co
m

d
96

78
0

0
10

0
0

0
10

0
0

0
0

30
bu

ys
el

la
ds

.c
om

d
10

72
77

0
0

10
0

0
0

10
0

0
0

0
x

T
a
b
le

4
.2
:
To

p
re
d
ir
e
ct
o
rs

a
n
d
th
e
ir
p
ro
p
e
rt
ie
s.

C
la
ss
:
D
e
sc
ri
b
e
s
th
e
re
d
ir
e
ct

cl
a
ss
ifi
ca
ti
o
n
.
R
e
d
ir
e
ct
s:

H
o
w

m
a
n
y
re
d
ir
e
ct

ch
a
in
s
w
e
o
b
se
rv
e
d
th
a
t

in
cl
u
d
e
d
th
is
re
d
ir
e
ct
o
r.
Si
te
s:
O
n
h
o
w

m
a
n
y
d
iff
e
re
n
t
w
e
b
si
te
s
w
e
o
b
se
rv
e
d
th
is
re
d
ir
e
ct
o
r.
T
h
e
co

n
fi
g
a
lw

a
ys

a
n
d
co

n
fi
g
n
e
ve
r
co

lu
m
n
s

sh
o
w

h
o
w

m
a
n
y
ti
m
e
s
(i
n
p
e
rc
e
n
t)
a
co

o
k
ie
w
a
s
se
t
fr
o
m

th
is
d
o
m
a
in
.
N
V
:
C
o
o
k
ie
w
a
s
n
e
ve
r
se
t,
A
P
:
C
o
o
k
ie
w
a
s
se
t
a
ft
e
r
th
e
in
it
ia
lp

a
g
e

lo
a
d
,A

C
:C

o
o
k
ie
w
a
s
se
t
a
ft
e
r
th
e
cl
ic
k
o
n
a
lin

k
d
u
ri
n
g
th
e
fo
llo

w
in
g
re
d
ir
e
ct

ch
a
in
,T

C
:P

e
rc
e
n
ta
g
e
o
f
re
d
ir
e
ct
s
in

w
h
ic
h
th
e
re
d
ir
e
ct
o
r
se
t

a
tr
a
ck
in
g
co

o
k
ie
,
SR

:
N
u
m
b
e
r
o
f
se
lf
re
d
ir
e
ct
s
o
b
se
rv
e
d
fo
r
th
is
re
d
ir
e
ct

p
o
in
ti
n
g
b
a
ck

to
th
e
o
ri
g
in
a
lw

e
b
si
te

th
e
re
d
ir
e
ct

lin
k
w
a
s
cl
ic
ke

d

o
n
.
A
le
xa
:
P
e
rc
e
n
ta
g
e
o
f
th
e
A
le
xa

to
p
5
0
k
th
a
t
h
a
d
th
ir
d
-p
a
rt
y
co

o
k
ie
s
fr
o
m

th
is
d
o
m
a
in
,
E
L:
D
o
m
a
in

is
o
n
th
e
E
a
sy
lis
t,
E
P
:
D
o
m
a
in

is
o
n

th
e
E
a
sy
P
ri
va
cy

lis
t,
G
H
:
D
o
m
a
in

se
ts
co

o
k
ie
s
w
it
h
in

G
h
o
st
e
ry

p
lu
g
in
,
IT
P
:
D
o
m
a
in

se
ts
co

o
k
ie
s
w
it
h
in

Sa
fa
ri
IT
P
2
.3

(r
e
le
a
se

M
a
rc
h
2
0
2
0
).

4.3 Results 69

Not all encountered redirectors behave similarly. For example yandex.ru operates different services
such as advertisement and posting links to social media feeds under the same domain. Also, app.link

uses different subdomains for different customers and some customers embed additional tracking script
as well while others just include a link towards app.link. Depending on which service is used and
how the service is used, the redirector sets a cookie during the initial page load (AP). Table 4.2 shows
an overview of how often (in percent of the redirect chains) we encountered each behavior for the
default cookie settings (always) of Firefox as well as for the more restrictive never setting that prevents
third-party domains from setting cookies.

Besides the cookies that were set in our crawl, we also compared the redirector domains we encoun-
tered with the EasyList and the EasyPrivacy list10, which are well-known lists of domains that perform
tracking or deliver advertisements. While most of the domains that serve advertisements and set cookies
are included in one of the lists, a few such as exosrv.com are not classified as tracking or advertisement.
Similar, URL shortening services that set cookies such as bit.ly or t.co are classified as trackers by EasyList.

In addition, we evaluated the top 30 redirect tracker domains within the Ghostery plug-in of Firefox
as well as the recent release of Safari ITP 2.3 (March 2020) [269]. Both claim to block tracking cookies
also during redirection. Since we could not automate the analysis process with Safari, we manually
opened and clicked the same crawled websites as well as redirect links extracted from the database.
Our analysis visualized in Table 4.2 shows, Ghostery could only block 11 out of 30 top redirect domain
cookies, whereas Safari blocked 9 out of 30. Here, Ghostery removed in 5 out of 11 blocked test cases
the complete redirect link, not being able to start the redirect process. While Safari was blocking 9
redirect cookie domains, those cookies were still present in the browser cache. Moreover, different other
cookies have been set in all test cases during the redirect process, showing that only a portion of the
known trackers are blocked within Ghostery as well as Safari. Notice, during our pre-studies as well as
the manual evaluation we did not notice any CAPTCHA anomalies, which is the reason we did not look
into this topic in more detail.

To check whether the appearance of specific redirector domains changes when we modify our cookie
settings in the browser, we compared the top 30 redirectors for our two browser configurations. Figure
4.4 displays the results and shows that using more restrictive cookie settings does not affect to which
redirector we are directed to.

4.3.5 Cookie classification

Not every cookie is a tracking cookie. In general, a cookie is a tracking cookie when it is used to track
the activity of a user. This is hard to determine since this can only be determined with knowledge about
how the cookie is processed on the server. However, tracking a user with a cookie is only possible when
(1) the cookie has sufficient entropy so that it can be distinguished from cookies of other users and (2)

when the cookie has a sufficient lifetime and is not just a session cookie. Other properties of the cookie
might give a hint whether it is used as a tracking cookie or for other purposes as well.

We decided to implement a cookie classification algorithm similar to the algorithm used in [270, 29]
with a few modifications. We consider a cookie to be tracking cookie when:

• It is not a session cookie and the lifetime is at least 90 days.

• The length of the cookie value is at least 8 bytes.

• The length of the different values observed during our crawl differs by at most 25%.

• It is user-specific, so every value for this cookie is only seen in a single visit.

10 https://easylist.to/

70 4 Dynamic Redirect Link Tracking Evaluation

https://easylist.to/

• The similarity of the value compared to other values of the same cookie according to the Ratclif-
f/Obershelp string comparison algorithm[271] is 66% or less for at least half of the other values
we observed in our other visits.

The original algorithm suggested checking for a constant cookie value length. However, we found cookie
values encoded using url encoding so that the length of the cookie value changed a lot, while the under-
lying data changed only slightly. Furthermore, we found integers in the cookie values encoded without
leading zeros for small integers, which had an additional effect on the length. Manual investigation
on those examples showed that those cookie might be used for tracking, which is why we modified the
tracking classification algorithm as described above. The result of the automatic cookie classification can
be found in Table 4.2 in the TC column. While we believe this is mostly accurate, there are a few unclear
cases such as exosrv.com, with url encoded cookie values. The cookie is an encoded data structure and
some elements of the structure might be used as identifiers for tracking as well11.

4.3.6 Clusters of Trackers

Since redirect trackers often appear in chains with more than a single tracker in the chain, we decided
to take a look at the interplay between the 100 most common redirectors as well. We considered the
length of the sequence of all domains we encountered after clicking the link before we reached the
final destination with consecutive identical domains only represented as a single entry to be the length
of the chain. For example, when we click a link on a.com and then go to b.com/a, b.com/b, c.com,
and then finally arrive at target.com, this sequence has length 2, since b.com, b.com, and c.com are the
middle domains, but since b.com appears twice, we remove the second appearance and just consider the
sequence b.com, c.com, which has length 2. Table 4.3 shows the distribution of the lengths of the chains
we encountered according to this definition.

Number of redirects 41414 7970 3432 771 288 114 32 10 5 3 6 6
Chain length 1 2 3 4 5 6 7 8 9 10 11 ≥12

Table 4.3: Redirect chain length (chain length 1 indicates only a single redirector appeared between start

and target).

To understand this behavior, we build a directed graph of connected redirect domains shown in Figure
4.5. We also created a total graph with all the 9,862 redirectors we encountered in our crawl, but only
used to compute metrics shown in Table 4.4. Due to the high number of nodes it’s not visualized here.
The nodes in our graph are the redirectors that appeared most often in a redirect chain. An edge is
drawn from node A to node B when node A redirected the user to node B during our crawl. The edges
are weighted by the number of redirects we observed from node A to node B during our crawl. Only
redirects within a redirect chain are considered here. The more connection exists, the darker shade of
red and the thicker the edge is plotted (e. g., buysellads.com had 507 connections to doubleclick.net -
shown in the bottom of the figure). The nodes size depicts the out-degree of a redirect domain. For
example doubleclick.net has an out-degree of 22 and bit.ly 21 outgoing connection.

We then used the Louvain community detection method [272] to cluster the redirectors. Each cluster
is represented in a different color. The ten main communities contain between 3 (red color) and 21
(purple) nodes. One of the biggest clusters forms around bit.ly, connecting to 21 nodes in the top 100
graph and to 167 other domains (in and out-going connection) in the total graph, including e. g.,
smartadsrv.com, goo.gl, amazon-adsystem.com, servedbyadbutler.com, youtube.be. Another major cluster
exists around doubleclick.com, connecting to 22 nodes in the top 100 graph and 84 in the total graph,

11 Sample cookie exosrv.com: a%3A1%3A%7Bi%3A0%3Bs %3A33%3A%225e01e859d10810.010044542057158735%22%3B

4.3 Results 71

Graph Total Top 100

Weakly connected components 606 25
Strongly connected components 3534 79

Modularity 0.81 0.83
Average clustering coefficient 0.019 0.072

Average path length 6.027 3.273

Table 4.4: Redirect graph statistic.

1 https://share.yandex.net/go.xml?service=gplus\&url=http\%3A\%2F\%2Fkino-history.

2 net\%2F\&title=Kino\%20History\%20-\%20\%D1\%81\%D0\%B0\%D0\%B9\%D1\%82\%20\%D0

3 \%B8\%D1\%81\%D1\%82\%D0\%BE\%D1\%80\%D0\%B8\%D1\%87\%D0\%B5\%D1\%81\%D0\%BA\

4 %D0\%B8\%D1\%85\%20\%D1\%84\%D0\%B8\%D0\%BB\%D1\%8C\%D0\%BC\%D0\%BE\%D0\%B2\%20

5 \%D0\%BE\%D0\%BD\%D0\%BB\%D0\%B0\%D0\%B9\%D0\%BD

Listing 4.1: The URL is used to direct the user to Google+ so that he can share a posting about kini-

history.net there. While it points to share.yandex.net, the real destination can be easily

concluded from the URL.

including e.g., buysellads.com, carbonads.net, smartadserver.com, bit.ly, and others. Table 4.4 gives an
insight into the graph statistics of the total redirect connection graph as well as the filtered top 100
graph. We see that the top 100 graph has a high number of strongly connected nodes while the total
graph is less connected and has only a clustering coefficient of 0,019.

We can see that users are often directed to bit.ly in a redirect chain from a lot of different origins and
URL shortening services often interact with it. Another major cluster appears around yandex.ru and yan-

dex.net that is connected to many other services from Russia. We can also see that doubleclick.net, which
is a major platform for advertisements regularly interacts with other smaller advertisement services as
well. Some redirectors are not connected with other nodes in the graph at all.

4.3.7 Structure of the Redirect URLs

While we managed to locate many redirect trackers, they often share a common structure in their URLs.
In general, we encountered the following cases:

Fixed destination, target easy visible For some URLs, the real target is easily visible when looking at the
URL. An example for such URLs can be found in the Listing 4.1. We think that such URLs can be
easily rewritten to their real target using regular expressions.

Fixed destination, target hard not obvious Some other URLs redirect the user always to the same page,
but the redirection target is not easily visible. An example of such an URL is given in Listing 4.2.

Fixed destination, target known to server This is typical for the URL shortener. For example https:

//bit.ly/2AGeopq redirects the user to https://petsymposium.org. However, only the server
knows that this is the destination for this URL.

Random destination This is often encountered for advertisements. The URL just points to a server, which
then decides based on the users tracking cookie, the IP address and probably many other factors to
which page the user is then redirected to.

72 4 Dynamic Redirect Link Tracking Evaluation

https://bit.ly/2AGeopq
https://bit.ly/2AGeopq
https://petsymposium.org

buysellads.com

doubleclick.net

carbonads.net

blogger.com

google.com

people.com.cn

people.cn

agkn.com

tmall.com

taobao.com

yandex.net

yandex.ru

valuecommerce.com

valuecommerce.ne.jp

wg-aff.com

wargaming.net

semi-cod.com

psocialx.com

doublepimp.com
crptgate.com

etao.com

runative-syndicate.com

unicornpride123.com

dotomi.com

emjcd.com

utarget.ru

patientzerotech.com

madoffers.com

t.co

bit.ly

exosrv.com

envato.market
ojrq.net

engageya.com

mgid.com

yandex.com

gortoh.com

lis-gor.com

atdmt.com

revcontent.com
thriveads.co

yektanet.com

wpu.sh

adskeeper.co.uk

odnoklassniki.ru
hubspot.com

deloplen.com

bebi.com
stremanp.com

exdynsrv.com

tsyndicate.com
trafficfactory.biz

appsflyer.com

adform.net

newmedia.az

skimresources.com
linksynergy.com

imedia.cz

gemius.pl

serconmp.com

outbrain.com

youtu.be

adfox.ru

smartadserver.com

aliqin.cn

onelink.me

microsoft.com

adjust.com

taboola.com

popcash.net

adition.com
amzn.to

adriver.ru
goo.gl discord.gg

servedbyadbutler.com

app.link

cpmstar.com

pinterest.com wa.me

amazon-adsystem.com

richrelevance.com

ebay.com

mediaad.org

cxense.com

medium.com

aliyun.com

promo-bc.com

popfa.ir

blockchain.info

dmm.com

www.net.cn

autonavi.com

adnxs.com

recreativ.ru

getback.ch

facebook.com

addthis.com

securecloud-smart.com

digidip.net

Figure 4.5: Dependencies between the redirectors. The width of an arrow from a to b shows how often

we have seen a redirect from a to b in our crawls.

4.3 Results 73

1 https://clck.yandex.ru/redir/dRu0iBr5YqxShfdSGFXg7CqFK -IM7KfY?data=eE03aEhZNGdu

2 WC1aR1BqRE9uSW1PYUdtOVMzbzV2eUdDYmhFOHZCbjIwZkpJZTk1TU1yRzNMS0VIWWdJOW5keGtrU3R

3 paXJlcUdVMGJ5QWxiT05sYzV3QjhhUDFESzVBSlRMQTFrcEZPWFNFWkFtNm90WElIOVAxVnBTMHJuLW

4 VOYlFZTXFTazFQdW9nUmdMLTltM0lmd1hUWkppN0s2OHB1LTB2TVMyVjBDaklfR2xVYWo5TDBnbWV4U

5 nJuMmNYTVFkY3B3V1dIZlh2Z01abFZ0c1AxaGFvaXZaOTlvVDgtX1NiZXlTbldEVWdGNWlOZXlBanFk

6 ODhTS0RGWFh4SXl6LWlUV2JwRUppb25vRXR3\&b64e=2\&sign=489b163e63fdd8d4ad5bc56de4b5

7 be68\&keyno=3

Listing 4.2: The URL directs the user to Facebook to post something about kino-filmi.net on his

timeline. However, from the URL itself, it is less obvious that this is the target of this

redirect.

4.4 Countermeasures

Since blocking third-party cookies might become more common, we assume that tracking through redi-
rects might become more common too. To counter redirect tracking, we propose the following counter-
measures.

4.4.1 Rewriting URLs in the Browser

There are a few redirectors for which the destination URL can be easily predicted from the URL param-
eters, we recommend to build rules for the most prominent redirect trackers that rewrite the requests
directly to the destination server. The redirecting hop is then skipped and therefore no cookie is set. The
tracker doesn’t even know whether the URL was assessed or not. A similar approach is used by many
ad-blocking add-ons, that keep lists of URLs that should be blacklisted. The disadvantage here is that
those lists need to be maintained and less prominent redirect trackers might not appear in those lists.

4.4.2 Blocking Cookies from 1st Party Redirects

The redirect trackers for which the URL cannot be automatically rewritten, we have to contact the
redirector to get the final destination. Yet, we can block all cookies from those hosts. Safari has already
implemented a similar procedure [273], but lacks in many cases as our analysis shows. Nevertheless, it
might be possible that redirect trackers will then move to other redirection techniques such as loading a
website that then redirects the user using JavaScript. Our crawler is based on Firefox 70, which currently
provides no protection against redirect tracking. In general, we think that it is a good idea to turn cookie
from domains that were a first-party just for an HTTP redirect into session cookies with a short lifetime
or to block them in general. Since redirects can also be performed using HTML meta tags or JavaScript,
one may require user interaction here as well as Safari does.

A few redirect trackers we encountered are also known to ad-blocking or privacy-enhancing add-
ons such as Ghostery. Previous versions of Ghostery blocked some redirectors so that instead of being
redirected to the final destination of the chain, an error message was displayed in the browser window.
Since this harms the user experience, this was disabled recently by Ghostery and the user is redirected
through the redirect chain to the final destination, but the cookies of those domains are blocked. This
works in most of the cases as our analysis shows.

Another effective technique is to automatically isolate the locally stored website state (including cook-
ies, LocalStorage, and browser cache) into separate containers [23]. As shown in the large scale study,
the isolation concept reduces the number of pages tracked by 44%. Mozilla has been working on a similar
concept called First Party Isolation, separating cookies on a per-domain basis, for several years. Orig-
inated in the Tor Project, where it was known as Cross-Origin Identifier Unlinkability (double-keying)

74 4 Dynamic Redirect Link Tracking Evaluation

[274], it was added to Firefox 52 as part of the Tor Uplift project [275, 276]. Since Firefox 77, the
so-called Dynamic First Party Isolation feature was made available to configure the isolation of cookies
through the user interface [277]. As discussed in [23], a reason why it was not enabled by default by
Mozilla, is that it may break some websites when activated.

4.4.3 Blocking Popups

We disabled popups for our crawl since we wanted to focus on the events in a single browser window.
However, we also noticed that popups are sometimes combined with redirectors and when a new popup
window is created, it is first directed to a chain of redirectors before the content of that window is loaded.
Disabling popups is another way to reduce the number of redirectors encountered while browsing the
web.

4.4.4 Blocking Ads

A significant part of the top 30 redirectors we encountered comes from clicks on advertisements (mostly
on images, which make 56% of redirect links). By simply filtering advertisements, like ad-blocking plug-
ins such as Ghostery are doing, those links will not show up in the browser so no user is not able to click
on them. However, not all redirect image links are ads, other categories are for example social media
icons or news pictures, which are difficult to distinguish. In addition, as our manual evaluation on the
top 30 redirect trackers showed, there also exist text links to further content such as news or suggested
page content. Filtering out those links is also difficult.

4.4.5 Browser Add-on LinkTrackExchange

We developed the proof of concept browser tool LinkTrackExchange to mitigate redirect link tracking.
The general concept is replacing (redirect tracking) links inside a visited website with their final URL,
striping out redirect tracking chains. LinkTrackExchange is based on a client/server architecture similar
to ad-blocking tools. By using our crawling architecture, the server continuously crawls a given and
updated list of (Alexa) domain URLs in order to follow all links inside the website to identifying redirect
chains. In addition, the server is storing the clicked links together with the final link destination URL in
a SQL database.

The client-side browser add-on then queries the server for each visited website if any (redirect track-
ing) links on that website needs to be replaced in the DOM by the final destination URL (stripping out
all redirect tracking chains).

Implementation: On the client-side, we implemented LinkTrackExchange as a Greasemonkey12 user-
script. Greasemonkey is a Firefox extension that allows users to install scripts customizing a website
on-the-fly. The script can also be installed on different browsers supporting user-scripts such as Chrome,
Safari, or Opera by using built-in features or extensions such as Greasemonkey or Tampermonkey13. We
chose Greasemonkey due to the multi-browser compatibility.

LinkTrackExchange is using the Document Object Model (DOM) of a website to exchange all redirect
tracking links before the website is displayed to the user. Running in the browser’s background, Link-

TrackExchange waits until the DOM of the requested website has been build and the DOMContentLoaded

event is fired. At that point the in-line dependencies like scripts have been loaded.
Process: In the initialization process LinkTrackExchange checks if the latest version of the redirect

database is already saved locally at the client’s machine or was saved within a predefined time (default
is 24 hours). If no database is available or is older then the predefined time, LinkTrackExchange opens

12 http://www.greasespot.net
13 http://tampermonkey.net

4.4 Countermeasures 75

http://www.greasespot.net
http://tampermonkey.net

an XMLHttpRequest (XHR) to the database server. A server-side PHP script triggers a SQL query to obtain
the requested redirect data from the database. The server then sends the database output back to the
browser formatted in JSON. Next, LinkTrackExchange parses the data containing the redirect links for
every redirect-tracking website. The data is saved in the local SQLite database. This caching mechanism
helps to increase the performance of exchanging the redirect links and to preserve the users browsing
privacy by not querying the server on every visited website. Once LinkTrackExchange is up to date, the
tool verifies if the requested website is saved in the local database and therewith contains redirect links.
On a positive match, LinkTrackExchange scans all <a> tag elements to replace the redirect links with
the final destination URL saved in the database. If the website is not in the database, the script sends
the host URL together with a random list of 10 other URLs out of the saved URL list to our scanning
server using additional random URLs within the request will give an additional privacy feature to the
user, obfuscating the visited and unknown URL. If the domain was not already in the scanned list, a PHP
script adds this URL to the list of websites that needs to be scanned in the next crawling process.

Limitations: If a link contains parameters that are generated on every request, link replacement
problem could accrue. By using machine learning algorithms we plan to predict the correct parameters
in future releases. However, as our analysis shows, tracking IDs are the frequently changing part of
redirect links. By stripping out those parameters we enable an additional privacy feature to the user. If a
website is dynamically changing the redirect links after a page load, we plan to intercept those changes
during page load.

Mobile usage: When using the redirect protection tool on mobile browsers (smart-phones), we do
not download the entire redirect database on the user’s device. This saves network bandwidth and
storage capacity. Instead, when a user requests a website, LinkTrackExchange queries our redirect server
(together with a random URL list) if any redirect links for those hosts exist. On a positive match, the
redirect server sends all redirect links with the corresponding target links to be exchanged back to the
client. LinkTrackExchange then parses all <a> tag elements, to replaces all redirect links with the final
destination URLs.

For future work we will evaluate the performance of a proxy server to process all requests and to
exchange redirect tracking links on-the-fly instead of the local script.

Figure 4.6: Top 100 publishers, colored/sized by tracker intensity.

76 4 Dynamic Redirect Link Tracking Evaluation

Figure 4.7: Top 100 publishers showing embedded tracker.

4.5 Visualization

Presenting the massive tracking potential of visited websites (publisher) of a single crawl we imple-
mented various interactive web based visualizations. Each visualization allows to gather a specific
perspective on the dataset. The visualizations of our data are realized with the popular JavaScript
library for interactive data-driven visualizations D3.js [278]. The visualization is not just limited to
redirect tracking, but shows a general overview of all kind of tracking elements such as tracking pixels,
external JavaScript or iFrames embedded into the website.

4.5.1 Bubblechart

Within the Bubblechart the user can select various options to visualize the appearance of third-party
and tracking elements found on the crawled websites. The intensity of classified tracking elements is
displayed by the size and color of the bubbles representing a domain. A bigger size and darker red
color represents an intense tracking activity. No tracking activity is represented in white. A publisher
embedding more tracking elements and a tracker with a higher cookie information content is colored
in a darker red hue. Using additional configuration settings it is possible to highlight the appearance of
specific trackers, visualize the effect of different tracking classification methods, or the effect when using
different third-party cookie settings as well as the ad-blocker plug-in Ghostery within the browser. For
example, in the Easylist and OpenWPM tracking classification we only use red for tracking and a white
color for no tracking, since the classification is binary.

The Bubblechart visualizes the publisher with its third-party and tracking elements in four representa-
tions (Top, Visit, Alexa and TP) the user can choose from (Figure 4.7).

TOP: Represents publisher that include the top most trackers. The tool displays the top X (10 - 200)
ranked websites (publisher), that include the most tracking elements. A tracker is defined by the
selected tracker classification (cookie information content, calculated by Shannon’s information
entropy / Easylist / Extended Easylist / OpenWPM).

Visit: Displays the custom selected publishers and their tracking elements.

Alexa: Shows the publishers that are most visited by users (ranked by Alexa.com).

4.5 Visualization 77

TP: Displays all websites interacting with the selected third-party domains.

Configure display settings: The following settings can be adjusted to change the view.

• Select settings: Display/hide tracking elements according to the following browser settings: ”save

third-party cookie” setting: Always, Only from visited, Never / Activate Ghostery plug-in and cookie

setting always.

• Highlight third-party domains: Highlights all websites that are interacting with the selected third-
party domains.

• Color third-party nodes by: Publisher and third-parties are colored according to four different
tracking classification methods: Cookie information content, Easylist, extended Easylist, OpenWPM.

• Show third-party domains: Toggle showing all third-party elements, that are involved when
visiting a publisher. Size of the bubble is mapped to the percentage of a domain’s requests among
all third-party requests that happened during the visit.

• Filter cookie setting domains: Only show those third-party domains that are setting cookies.

• Filter session cookies: Only show tracking domains, that do not use session cookies.

• Filter shared domains: Only show those third party domains which are interacting with all visible
websites.

4.5.2 Redirect-Graph

Selecting specific publishers (bubble), the redirect-graphs visualize the appearance of redirect tracker
within the different browser cookie/Ghostery settings captured during the crawl. The interactive graph
highlights the tracking domains while hovering over the bubbles and shows how many redirect hops
happen.

Filter options:

• Aggregate breadth: Aggregate the redirect trees by breadth. All nodes of the same domain of each
depth are aggregated to one node.

• Aggregate depth: Aggregate the redirect trees by depth. Consecutive nodes with the same do-
main get aggregated into one domain, e.g. google.com–google.com–ad.com–google.com will be
aggregated to google.com–ad.com–google.com.

• Highlight visit domain: Highlights all redirects that were going back to the website the redirect
started from.

• Toggle columns: Toggle the columns of the visualization between showing all four or just the
column.

4.5.3 Select different statistic data

Statistic data comparing the cookie saving settings (always/never/from-visited) on the amount of first-
and third-party cookies, HTTP and JavaScript cookies as well as external links is displayed in histograms
(Figure 4.8, bottom). The histogram shows the distribution of embedded third-parties within the visited
publishers as well as showing the trackers with the highest tracking cookie information content.

• Count: Show the amount of first- and third-party requests, profile cookies, JavaScript cookies,
found links, and clicked links that are detected in the data set.

78 4 Dynamic Redirect Link Tracking Evaluation

• Top:

– Third-Party Embedder: The websites with the most embedded third-parties.

– Tracking Embedder: The publisher embedding the most trackers (tracker = cookie information
content > 72).

– Tracker: The tracker with the highest information content. Third-Parties present in less than
10 websites are ignored.

• Third-Parties: The third-parties present in the most websites.

– Entropy Dist.: A histogram with 10 bins, binning the cookie information content.

– Tracker Dist.: A histogram with 10 bins, binning the number of trackers in a website. Tracker
= cookie information content > 72; For example, in bin 1 are 3564 websites that contain 0-5
trackers.

4.5.4 Network-Graph

The network graphs depicted in Figure 4.9 displays the interconnection between publishers and trackers
as well as a separate redirect network structure we discovered during our crawl. The interactive graphs
visualize most dominant tracker as well as publisher by color and size. Hovering on each node/bubble,
the tool highlights the connections to each tracker or publisher and shows individual clusters of connect-
ing nodes. In the redirect network graph we also set a darker color as well as bigger size on the edges
(connections) between the trackers that have higher interactions, showing more dominant players.

• Alexa top 200 websites.

• Redirects found during the crawl: Visualizing interaction by linking connections/redirects between
publisher and tracker. Highlighting selected connection while hovering over the nodes.

Additional Settings:

• Cookie saving options (always, never, only when visited, Ghostery plug-in)

• Color coding by tracker classification (cookie information content, Easylist, extended Easylist, Open-

WPM)

• Pruning nodes by degree (2-20)

4.6 Summary

We studied tracking techniques hidden behind link redirection. Our evaluation shows that 11.6% of the
Alexa top 50k ranked websites contain links that lead the user to the final destination over one of the
100 most common redirectors. We demonstrate that many of those redirectors set (tracking) cookies
even when the browser is configured to accept first-party cookies only. This is because the redirector
will become the first-party domain during the redirect. Further, we show that many of the domains that
perform redirect tracking also perform regular user tracking and are widespread in the Alexa top 50k.
Therefore, redirect trackers have an enormous potential for tracking users and once browser vendors
restrict the use of third-party cookies by default in the upcoming browser releases, this might become
even more common. Moreover, in our redirect community network graph we show how well-connected
the redirect trackers are. This makes sharing the gathered user browsing behavior possible for redirect
trackers.

4.6 Summary 79

Figure 4.8: Redirect-Graph highlighting ’microsoft.com’ and statistic data below.

On the other hand, redirect trackers are rather easy to detect. With our method, it is possible to
compile a list of the currently most common redirect trackers on the web and their use of cookies in
an automated way. The list can further be refined by a more in-depth analysis of the cookies set by
those redirectors, which can be partially automated based on entropy or manual investigation. Current
browser add-ons such as Ghostery or ad-blocking add-ons, in general, will already detect some of those
redirectors and block their cookies.

There are also positive aspects of redirect trackers. As long as the redirect is performed by HTTP only,
it cannot be combined with other techniques such as browser fingerprinting, which requires JavaScript
code to be executed to collect all the fingerprinting features.

We see the potential for further research in many directions. First of all, we hope for new and inno-
vative ways of how tracking through redirectors can be mitigated without having to rely on a blacklist.
Treating first-party cookies from domains that were only encountered through an HTTP redirect chain in
a special way (such as session cookies with a short lifetime) is a good start for that. We would also like
to see a long term study on redirect tracking and how it evolves over time. Many of the improvements
we have mentioned can probably be implemented using the add-on API of Firefox or Chrome and similar
APIs of other browsers. In addition, it will be interesting to see how the current trackers will react to the
tracking prevention that was introduced recently in Apple Safari [269] as well as Mozilla Firefox [279].

Finally, it would be nice to have the detection of potentially privacy-invasive redirect trackers included
in automatic analysis tools such as for example PrivacyScore14 so that normal users are made more
aware of them.

14 https://privacyscore.org/

80 4 Dynamic Redirect Link Tracking Evaluation

https://privacyscore.org/

Figure 4.9: Ordered network graph: Publisher colored white with black border connecting to embedded

third-party elements colored/sized by tracking intensity.

4.6 Summary 81

5 Reducing User Tracking through Automatic Website State Isolation

As research shows [44] and our evaluation in Chapter 3 confirms, the most common way for third-party
trackers to identify users is by storing a unique ID on the client and retrieving it on every page the
tracking code is embedded. The most basic method to save this ID is by using an HTTP cookie. Any
HTTP request suffices for this, but a tracking pixel, a transparent 1:1 pixel sized image, is the traditional,
bandwidth-conserving, and high-performance way of doing it. Once implemented, the visitor’s browser
will request the tracking cookie each time a page is loaded, because caching this image is forbidden by
the server. After the first request where the cookie is set, every further request carries the (third-party)
cookie and the tracking server can re-identify a user on every page that includes the server’s tracking
pixel. Gathering more data on visited websites allows more detailed user profiles to be built.

To avoid a customized ID being saved by the trackers, users can disable all mechanisms to save data.
This will eliminate tracking based on storing custom identifiers, but cannot protect against using pre-
existing data, i.e., browser fingerprinting. More importantly, it affects every site that tries to use the
saved data for any purpose such as an user login. Since nearly every interactive website uses cookies to
save session data, this is hardly practical. A less restrictive method is to disable only third-party cookies.
Third-party cookies are cookies being set (or retrieved) from a different domain than the one in the
browser’s address bar. If a cookie is considered first-party or third-party therefore depends not only on
the cookie itself, but also the currently opened page. When visiting a.com a tracking pixel tries to set a
cookie for b.com, this cookie is considered third-party and is ignored. Ambiguities arise when first-party
cookies are later used in a third-party context. Consider a user visiting facebook.com, which sets first-
party cookies for facebook.com. On the site a.com, which contains an iframe loaded from facebook.com,
these cookies are now considered third-party. If they are sent back to Facebook depends on the browser:
One group of browsers completely blocks third-party cookies, the other group only prohibits third-party
websites from setting cookies, but does allow them to send pre-existing cookies. To which group a browser
belongs can change. Roesner et al. [13] report Firefox as the only major browser that also blocks sending
third-party cookies.

The most serious issue of blocking third-party cookies is the loss of functionally on most websites that
share cookie data with multiple domains [38]. A new approach to provide a similar benefit is to isolate
websites from each other, which will be described as Site Isolation in this work and is based on our
publication [23].

The basic principle of isolation can prohibit some linkage of visited websites and is already used in
different varieties:

• Regularly clearing all site data, for example when exiting the browser. Deleting all data from
visited websites inside the browser history helps to reduce tracking. Unfortunately, this cannot
protect against data leaks involving longterm identifiers like the linkage of an e-mail address or a
Facebook account id.

• Using different browsers to isolate some high profile sites from others, for example to isolate online
banking from regular web browsing. Site Isolation aims to scale up this approach to all visited sites,
because it is not feasible to do it manually.

• The private browsing modes that major browsers implemented over the last years provide an ad-
ditional isolated profile that is only stored in RAM. This protects the private browsing session from
the normal browsing session, but has the drawback that trackers can still read all associated cookies
in the active private browsing session.

The proposed concept of Site Isolation in this work transfers these principles into the core of the
browser to isolate every site by default, similar like using different browsers vendors for each website.

83

Higher privacy when compared to manual isolation is achieved by combining the strengths of the differ-
ent isolating varieties and applying them to everyday browsing. Site Isolation principally limits tracking
to each individual site and is able to reduce the number of pages tracked by the top 10 most used trackers
by over 50%. It cannot provide as much privacy as would be achieved by blocking all third-party cook-
ies, but it breaks less websites. In addition, the isolated browsing cache also limits various cache-based
tracking methods and cache-timing attacks, which are not affected by blocking third-party cookies.

In this chapter we will show that with our Site Isolation concept it is possible to isolate the locally
stored website state into separate containers and eliminate the ability of trackers to re-identify users
across different sites. This is done by isolating HTTP cookies, HTML5 Web Storage, Indexed DB, and
the browsing cache. We show that website functionality is less impaired than by blocking all third party
cookies, with a comparable level of protection against cookie-based tracking. In addition, Site Isolation
reduces the effect of tracking using the remaining storage methods, and secures against CORS, CSRF,
and click-jacking attacks, while limiting the impact of cache timing, and rendering engine hijacking.

We implemented an automated Site Isolation system for the Chromium browser to reduce tracking.
In order to evaluate our system, we performed a large scale study on Site Isolation effectiveness visiting
1.6 million pages. This was done by crawling the Alexa global top 40.000 websites and clicking up to 50
selected links by our algorithm. Comparing the link selection algorithm to real user browsing behavior
data collected by AOL [268], shows a similar page distribution. For the purposes of this evaluation this
means our automated data is realistic. We also added a user-defined cookie timeout as well as support
for multiple incognito profiles in Chromium.

Moreover, we show that the top suspected trackers all store enough information to reliable identify
billions of users and that Site Isolation can reduce the number of pages tracked by 44 %.

5.1 Design Decisions

There exist different options of adding new functionality to browsers, each with its pro and cons. In this
section we evaluate various options.

5.1.1 Intercepting Proxy

The least invasive method is not to modify the browser at all and use a proxy server instead to inject
code or modify the visited pages otherwise. Examples of systems are BrowserShield [280], Privoxy1 and
the approach presented by Jang et al. [226]. The benefit of a proxy architecture is the support for all
machines in the network regardless of the browser or underlaying system. Disadvantages are the few
possible modifications, limiting Site Isolation only in the context of website changes. That would require
capturing and rewriting all cookie, Web Storage, and cache access, but no possibility of filtering access
to or modifying the browser cache from a regular web page. Further, it is difficult to make this code
injection transparent to the websites while not breaking it functionalities. In addition, modification need
to consider various browsers, HTML parsers, JavaScript engines and DOM implementations.

Even if implementing Site Isolation for HTTP cookies and Web Storage using a proxy, it would come
at a great expense and still not isolate the caches.

5.1.2 Extension or Add-On

The most common method providing new features for a browser is by implementing an external API

(under Chrome: Extension, and Firefox: Add-on). Both are implemented using JavaScript and have
much deeper access to the browser and system functionalities as JavaScript embedded into web pages.

1 http://privoxy.org

84 5 Reducing User Tracking through Automatic Website State Isolation

http://privoxy.org

The advantages of implementing new features as an extension are flexibility for the user. Installing and
removing browser extension can be done easily. Still, because it is not possible to access low-level API’s
functionalities to manage profile directories for the browser, we could not implement Site Isolation as an
extension.

5.1.3 Plugin

Before most browsers used an extension interface, they used an interface designed to support additional
file formats embedded in <object> or <embed> tags.

Netscape Plugin API (NPAPI):

The NPAPI interface is supported by most browsers and allows registration of a plugin for one or
more MIME types. The browser then automatically tries to find a suitable plugin, when it encounters an
unsupported MIME type. Technically, NPAPI plugins are dynamic libraries, that expose specific functions
called by the browser for setup and destruction. To communicate with the browser, they can call the
functions defined by the API2. But NPAPI plugins have full control. For example, Adobe Flash 11.2
for Linux (libflashplayer.so) is linked against 76 other libraries, including libnss, libgtk, libz,
libXrandr, libGL, libwayland, libxcb, and libudev. This lack of security mechanisms for plugins
makes them extremely dangerous. For almost all privacy enhancing features, the MIME type registration
architecture makes NPAPI plugins unsuitable to implement our concept.

Pepper Plugin API (PPAPI):

Chromium introduced the PPAPI as an improvement of NPAPI to allow better sandboxing. In contrast
to NPAPI, PPAPI plugins run in a sandbox and must use the APIs provided by the browser to access
files, perform graphic operations and others. This makes the plugins mostly usable cross-platform [281].
Since it is only supported by Chromium (and Google Chrome), there are not many third-party plugins,
other than those shipped directly with Chromium (and some additional proprietary plugins shipped with
Google Chrome). Mozilla has expressed no intention of implementing PPAPI3.

PPAPI keeps the MIME type registration model of NPAPI, so it is also not possible to get code executed
on every page. This limits what malicious and questionable plugins could do with the browser, but also
makes it impractical to develop a plugin for the purpose of improving privacy on the web.

5.1.4 Modifying the Browser Source

The most efficient and well integrated changes can be made by modifying the browser’s source, when
using open source browsers such as Firefox and Chromium. We decided to use Chromium, since Chrome
has the highest market share of over 60%4. With the advantage of having the power of implementing
our concept in a popular browser also comes with a few challenges:

• Users need to be willing to switch to our new browser.

• Bug fixes have to be incorporated rapidly to fix vulnerabilities.

• Supplying updates requires the necessary infrastructure.

2 https://developer.mozilla.org/en-US/docs/Gecko_Plugin_API_Reference
3 https://wiki.mozilla.org/NPAPI:Pepper
4 http://gs.statcounter.com/browser-market-share

5.1 Design Decisions 85

https://developer.mozilla.org/en-US/docs/Gecko_Plugin_API_Reference
https://wiki.mozilla.org/NPAPI:Pepper
http://gs.statcounter.com/browser-market-share

a.com tracker b.com

Figure 5.1: Regular storage.

Tab 1

a.com tracker

Tab 2

b.com tracker

Figure 5.2: Isolated storage.

5.2 Concept and Implementation

Considering the typical methods trackers are employing, like storing an ID on the users computer as
well as the privacy impact resulting from re-identifying the ID on multiple sites, we developed various
methods to reduce tracking and improve the users’ privacy. First, the Site Isolation strategy to isolate
tracking elements into container, second, the user-defined cookie timeout and third, the support for
multiple incognito profiles.

Site Isolation builds upon the best practices regarding content isolation and pushes the boundaries by
applying isolation to every site. Persistent data is stored for each site individually, instead of directly in
the browser’s profile, together with the data of all other sites visited, see Figure 5.3. With Site Isolation
each site gets its own storage partition, which is essentially a miniature version of the regular browser
profile, where the data would be stored usually. A storage partition is specific to a certain website, other
sites have no possibility of accessing it, contributing to it or even checking if it exists. Site Isolation splits
up HTTP cookies, HTML5 Web Storage (formerly Local Storage), IndexDB, and caches. Figures 5.1 and
5.2 illustrate the difference between a global cookie storage and cookies stored in two storage partitions.

The goal of Site Isolation is to avoid automatic data flows between distinct websites. This is typically
used to facilitate user tracking, in the form of third-party cookies using JavaScript or when requesting
external resources. But it is also used for many mechanisms users expect to work, such as logins or
shopping carts.

Mechanism:

For the implementation of Site Isolation we extended the Chromium browser. As an entry point to al-
low storage partitions for any site we extended the GetStoragePartitionConfigForSite method of Chrome-

ContentBrowserClient. By default, this function checks if the URL has the extension:// scheme and if
isolation is enabled for the extension. It was extended to enable all sites to be isolated, see Listing 5.1.
The storage partition class itself was extended to contain a label, which can be shown to the user, to
identify the current storage partition. This value corresponds to the host name and is the same as the
subfolder used for the storage partition, as seen on disk (illustrated in Figure 5.3).

User Interface:

We implemented the user interface by extending the easily accessible site preference dialog of
Chromium. The UI opens by clicking the page icon in the address bar. The existing dialog is used
for example to disable cookies, JavaScript or other elements for each individual site. As shown in Figure
5.4 we added a new entry Force Isolation, under the Permissions sections. The additional entry allows
the user to set if a website should be isolated or not. This makes the isolation feature very discoverable,
because users already using this dialog to black- or whitelist access to cookies or plugins manually and
are already familiar with it. In addition to enable or disabling isolation, the currently active storage par-
tition is shown in the UI, to see where the data on the current web site will be stored. Since the dialog is
platform-specific, it was implemented for the GTK back-end (first), so the additional entries are only in
the Linux and Chromium OS version.

86 5 Reducing User Tracking through Automatic Website State Isolation

1 void ChromeContentBrowserClient::GetStoragePartitionConfigForSite(

2 content::BrowserContext* browser_context ,

3 const GURL& site,

4 bool can_be_default ,

5 std::string* partition_domain ,

6 std::string* partition_name ,

7 bool* in_memory) {

8

9 // [. . .] I n i t i a l i z a t i o n

10 // [. . .] Se t up s t o r a g e p a r t i t i o n s f o r packaged apps and e x t e n s i o n s

11

12 // Al low * a l l * s i t e s to become i s o l a t e d

13 i f (can_be_default && site.has_host()) {

14 Profile* profile = Profile::FromBrowserContext(browser_context);

15 i f (shouldBeIsolated(profile, site))

16 *partition_domain = site.host();

17 }

18 // [. . .] A s s e r t i o n s

19 }

Listing 5.1:Modified GetStoragePartitionConfigForSite method to give each site a distinct

storage partition. The policy decision of which sites to isolate is delegated to the

shouldBeIsolatedmethod.

Figure 5.3: Folder structure. Figure 5.4: User Interface.

User-Defined Cookie Timeout:

In order to provide better user privacy, a user-defined cookie timeout was implemented also in the site
permission dialog - see Figure 5.6. Instead of removing cookies after the corresponding tab is closed,
cookies will be deleted if they have not been read or changed for a user-defined period of time. Removing
cookies automatically from tabs that are still open can result in a better protection, for example when
the tabs have not been used for a long time. By giving users the option to manually limit the lifetime
of cookies, which previously have been saved by the third-party for years, can now be edited or deleted
automatically. The per-site timeout can also be set to infinite, in order to white list important sites. A
downside to this strategy is that trackers appearing on many sites, will still have a big privacy impact
and the least affected by this change. If third-party cookies are constantly used on websites, they will
not be deleted unless the user stops browsing for a while.

5.2 Concept and Implementation 87

Figure 5.5: Original preference dialog. Figure 5.6: Cookie timeout feature.

1 bool shouldBeIsolated(Profile* profile, const GURL& url) {

2 HostContentSettingsMap* map = profile->GetHostContentSettingsMap();

3 ContentSetting setting = map->GetContentSetting(

4 url, url, CONTENT_SETTINGS_TYPE_ISOLATION , std::string());

5 return setting == CONTENT_SETTING_ALLOW;

6 }

Listing 5.2: Implementation of shouldBeIsolated. It uses the HostContentSettingsMap to decide

if a site should be isolated or not. It looks up the saved data by retrieving the value of the

newly added CONTENT_SETTINGS_TYPE_ISOLATION.

5.2.1 Storage Policy

With the isolation mechanism in place, a policy is required to decide which tab should map to which
storage partition. Using the host name of the visited site as the storage partition name turned out not to
be ideal (using Chromium’s GURL::host() method), because it often results in bigger storage partitions
than necessary. For example, a.blogspot.com and b.blogspot.com are both put together into blogspot.com,
although they are owned by different persons. This is similar to some registrars allowing or forcing the
registration of domains not directly under the Top- Level Domain (TLD), such as bbc.co.uk. This could
allow dangerously far-reaching cookies to be set.

The solution is Mozilla’s public suffix list5, which is already integrated in Chromium. It can be used to
find out the top private domain (the name used by Google’s Guava library6), which is the largest part of
the domain, where cookies are allowed to be set to. For example, a.b.c.co.uk has the top private domain
c.co.uk.

In our policy the user can also enable/disable the isolation for specific sites. Allowing more customiza-
tion, such as to switch to arbitrary storage partitions, is possible and more powerful, but also difficult
to make usable. Another improvement that may have merit would be to allow making the storage par-
titions finer or coarser, i.e., changing how many subdomains are used to construct the storage partition

5 http://publicsuffix.org
6 https://code.google.com/p/guava-libraries/wiki/InternetDomainNameExplained

88 5 Reducing User Tracking through Automatic Website State Isolation

http://publicsuffix.org
https://code.google.com/p/guava-libraries/wiki/InternetDomainNameExplained

name, like to allow to isolate www.google.com from maps.google.com or play.google.com. To implement
this policy, the mechanism for the existing per-site preferences was reused. This results in a very compact
definition of the shouldBeIsolated method, shown in Listing 5.2.

5.2.2 Support of Complex Interaction

Considering realistic browsing sessions where users click links to other pages or where websites commu-
nicate with other domains, we have to make sure not to break features provided by websites, as soon as
there are multiple storage partitions involved. In the next paragraphs we show how Site Isolation reacts
to different browsing scenarios to make the site (or feature) usable.

Cross Subdomain Cookies:

Providers often use different subdomains for their services like POST the login data of mail.a.com to
accounts.a.com and get a session ID as a first party cookie. This does not involve third-party cookies or
multiple storage partitions, so it cannot break our concept. The proposed enhancement to allow the user
to make the isolation finer-grained, however, would (when enabled) put mail.a.com and accounts.a.com

in a different storage partition, which will most likely break the login. Not switching storage partitions
on redirects fixes this problem, by keeping both cookies in the same storage partition. In that case, using
docs.a.com would require a fresh login, as expected, considering the user has explicitly opted to have all
subdomains of a.com isolated.

Unusual Logins:

Google uses accounts.google.com to validate the data entered into the login form on mail.google.com.
Since only the subdomain is different, it is possible by setting the cookie for .google.com from ac-

counts.google.com, that will be sent in subsequent requests to mail.google.com. Using the login also
for YouTube, which will not be sent because of the same origin policy, Google uses a workaround. Here,
accounts.google.com sets its own cookies and then redirects to a URI on youtube.com. Then, the server
sets the same cookies for youtube.com and redirects back to mail.google.com. These redirects are hardly
noticeable, because they are done server side using HTTP 302 Found and the Location header. Switching
the storage partition during the redirects would set the login cookie in the youtube.com storage partition,
keeping it would set it in the google.com storage partition. Both options are viable and have their own
advantages, which will be discussed in Section 5.2.3.

Social Plugins:

The variety of social media plugins like Facebook like or Google +1 buttons are an important use case
for Site Isolation. Considering a like button on a website the user has to perform a login at some point
to use the service when clicking the button.

If this login is implemented as an overlay on the main site, which uses further iframe/AJAX techniques
to log in without redirecting to a different site, this will work fine with Site Isolation. The address bar
and therefore the storage partition was never changed, resulting in the user being logged in, but only
for the actual site. If implemented as an iframe, as on most pages, the iframe runs in the same storage
partition as the main page, but neither the plugin has access to the page it is embedded on nor has the
page access to the plugin iframe’s content. When clicking, a new page is opened, avoiding trivial login
phishing. This works also with Site Isolation, if the social plugin is implemented robustly. The following
possibilities will cover most existing interaction strategies.

Simple Link:

The social plugin always uses a link directly to the intended destination, regardless of any cookies
set, for example linking to /like?page=a.com. This works, because when clicking the link, the storage
partition switches and the user is logged in (or will be prompted to login on the new page). Note, that

5.2 Concept and Implementation 89

switching or not the storage partition does not have any effect on redirects here, since there are no
(cross-domain) redirects involved.

Login Detection:

The social media plugin detects that there is no login cookie in the currently active storage partition
and behaves differently. It might create a link with enough information to redirect back to the original
destination, e.g. instead of linking to /like?page=a.com, the link now points to /login?redirect=%2Flike

%3Fpage%3Da.com. The login page will be loaded with a different storage partition and can automat-
ically redirect back to /like?page=a.com. To avoid redirect problems, navigation events from inside
frames could keep the currently active storage partition if the user wants to.

5.2.3 Storage Strategies

To avoid some of the potential website functionality issues, there are many enhancements possible, that
can be changed in an advanced configuration mode. But it is important to keep their side effects in mind,
especially on usability. In the following we explain the configuration settings behind the default storage
strategies.

Keep Storage Partition on Automatic Redirects:

In the current implementation we only change the storage partition in response to user-initiated ac-
tions. This seems to be counter-intuitive, as generally more storage partitions lead to more isolation and
privacy. However, this solution will isolate an automatic redirect, which might store third-party tracking
cookies, even when they are disabled by the user. Keeping automatic redirects in the same partition will
improve the functionality of websites and is more user friendly, though users will have to login multiple
times. Otherwise the user might get confused about already being logged-in on another site despite
using isolation.

As explained in Section 5.2.2, Google for example uses redirects across different domains to set first-
party cookies on multiple domains, which will all stay inside one storage partition. Here the user benefits
from keeping the intended login into multiple services such as Youtube and GoogleMail, even it might
confuse the user being logged into another service while still using Site Isolation. If we would have
chosen different, it would make the web application not usable. Another drawback of keeping the
storage partition on automatic redirects is that it does not limit tracking during the redirect process.
Luckily, this does not effect limiting tracking on iFrames, which will put the cookies from the iFrame
domain into another container then the original website.

Challenges arise when elements are styled like links but are used in combination with a onclick-
handlers, to make them look and behave like links. While this is technically a JavaScript initiated
redirect, it should be considered as user-initiated.

Keep Storage Partition when Clicking Links Inside Frames:

A different strategy is to ensure that pages linked from inside frames have access to the same set
of cookies as the frame did. In other words, it means keeping the storage partition, if the redirect
originated from inside a frame. It has similar usability problems as all stateful storage partition selection
has, namely that visiting exactly the same URL can result in a different storage partition being used. But
it avoids the issues of a frame showing a user to be logged in, but after clicking on a link the user is
suddenly logged out. Conversely, it also avoids a frame showing a user to be logged out, then switching
to logged in after clicking on a link. This might be a usability hindrance, since previously there was no
additional login required. But it is also easy to construct an example where it is beneficial. Usually, it
takes just a single misplaced click to like a page on a dubious website accidentally. By keeping the storage
partition when clicking links inside frames, users are not logged in on the first try to like a page. They
can now decide to go back or log in, in which case future likes from the same page will work directly.

90 5 Reducing User Tracking through Automatic Website State Isolation

Manual Storage Partition Selection:

In the case where automatic selection should not work, users can take control of how storage partitions
are assigned. In the advanced user mode, the complete storage partition name can be specified on a per-
site basis.

Whitelisting to allow Communication Between Sites:

As an alternative the user can define which websites should share a storage partition by selecting it
in a list. The list is built from the set of domains referenced on the current page as resources and the
domains it has links to. Here, the user can select sites to be part of the same storage partition.

Additional Link open Modes:

Additional options to open links that explicitly keep or change the current storage partition can help
power users to manually work around defects or improve isolation further. These would be available in
the context menu of links, as an additional entry, besides opening the link in a new tab, new window, or
incognito window.

Keep Storage Partition Mode:

Instead of using one of the mentioned modes, a simple switch to disable switching between storage
partitions temporarily can help fixing website isolation problems. Activating the storage partition lock

and reloading the page should fix problems caused by Site Isolation.

Multiple Incognito Profiles:

The private browsing features that are integrated into most of the browsers, essentially provide a
convenient isolation for two profiles. Both profile types are isolated from each other, meaning that
websites opened in the incognito profile cannot read cookies or local storage from the base profile and
vice versa. Two sites opened in two incognito tabs, however, can freely share data. Unlike Site Isolation,
it requires explicit manual intervention to activate and is less powerful. In Site Isolation we combined
both strategies and enabled for each incognito window its own profile. Closing an incognito window
would always cause the associated data to be deleted, where previously the data would only be deleted
if it was the last incognito window.

Summary:

The built-in storage partition mechanism of Chromium 29 was extended with different storages strate-
gies to isolate Cookies, Web Storage, IndexDB and caches of each visited site automatically, based on its
top private domain. The benefits from these changes are:

• Improved privacy by limiting cookie-based web tracking to each visited site. The effectiveness of
the privacy benefits will be shown in Section 5.3.1.

• Improved security by isolating websites by default, making it harder for malicious sites to affect
security-critical sites opened in the same browser. CORS, CSRF, and click-jacking attacks are no
longer possible.

• Improved cookie management, while the locally stored data is split up per site and can be cleaned
up selectively.

• Protection against stored or cached tracking mechanisms like Web Storage, IndexDB, ETags or
cached images [12], [11].

5.2 Concept and Implementation 91

5.2.4 Isolation Classifications

Site Isolation operates on different boundaries than previous isolation strategies. Compared to other
isolation strategies Site Isolation has numerous benefits and advantages.

• Compared to private browsing, Site Isolation works for every site and is not limited to two partitions.
In private browsing, trackers can still retrieve the data from different sites opened in a private
browsing session [157]. Site Isolation prohibits this behavior by using a new storage partition (on
disk) for each visited website.

• In contrast to using multiple browsers, Site Isolation works automatically, so the user cannot forget
to use it. Multiple browsers can be used to have different states for the same site, but this can be
achieved more easily by using multiple incognito profiles, presented in Section 5.2.3.

• Site Isolation works orthogonal in respect to clearing site data (cookies). It partitions in space,
while clearing cookies partitions in time. Both can be used complementary to improve privacy
further.

Benefits compared with third-party cookie blocking:

Site Isolation prevents trackers from using a single identifier for users across their entire browsing
session. Each time a new site is visited, the cookies will be read from a different, initially empty storage
partition. Trackers can no longer follow the user around the web, because the user appears to be a
different one on each site. As a result, Site Isolation has largely the same effect as blocking third-party
cookies, despite being conceptually different. This results in the following advantages:

• Third-parties can easily check if third-party cookie blocking is enabled and try to use a different
tracking method. Site Isolation behaves in this example as if third-party cookie blocking is disabled,
and an isolated cookie will be sent.

• Blocking third-party cookies can easily break websites [38]. By not blocking cookies, Site Isolation
helps to retain the website functionalities.

• Site Isolation can interfere with multiple websites in a similar manner, but only if they actively
redirect the top level window. Only when the domain (host) in the address bar changes, there are
observable effects. Redirections and links to the same domain and cross-site frames will always
keep the storage partition, meaning that no breakage can occur. Facebook Apps, for example,
are always running in a third-party iframe on facebook.com. If they are using cookies, blocking
third-party cookies will break them; with Site Isolation, they continue to work.

Positive effects of cache isolation:

The isolation of the browsing cache severely limits the scope of cache-timing attacks [159, 282] that
can be used to get information about the browsing history. However, it does not impact other kinds of
timing attacks to steal history data, such as the recently discovered rendering time attack [75]. Isolating
caches can also limit cache-based tracking methods where trackers try to store a random identifier in the
browser cache and retrieve it from the cache later.

While Jackson et al. [266] propose a same-origin restriction for cache access forbidding third-party
content to read from the cache, Site Isolation already eliminates most of the privacy issues. Because
every site has its own cache, tracking is limited to each individual site. Just as with cookie-based tracking,
trackers cannot re-identify a user on a different site by using cached data.

Summary:

Site Isolation provides a similar privacy benefit as blocking third-party cookies, but it is more practical,
as it breaks less websites and enables new privacy features like user-defined cookie timeout and multiple

92 5 Reducing User Tracking through Automatic Website State Isolation

incognito windows. It can limit different tracking strategies, such as cache-based or using additional
storage options besides cookies, for example Web Storage, IndexDB or tracking images. Additional
security is provided by avoiding CORS, click-jacking, CSRF and limiting history hijacking, cache timing,
and rendering engine hijacking, as already analyzed by Chen et al. [283].

5.3 Evaluation

Demonstrating the performance of Site Isolation we conduct an analysis of the reliability, the effective-
ness, and correct handling of real browsing behavior. To test the reliability of usual browsing we use a
script to open 1.6 million pages automatically in the patched Chromium. The next aspect is effectiveness.
Here, we compare this data in normal browsing mode and with Site Isolation. Lastly, it is also important
to ensure that Site Isolation does not break any widely used web techniques that provide features to
users, while still hindering web tracking. Automating such tests is hardly possible and depends on a
solid definition of break, which is why general browsing examples were evaluated manually.

Test Environment:

Chromium was compiled and executed on a Linux (Ubuntu 12.04 LTS) system. A Java-based control
program started and managed multiple Chromium instances. The test machine, powered by an Intel Core
i7, 16 GiB RAM and a 50 MBit/s Internet connection, handled 40 parallel browsers without problems
and 75% CPU usage.

Automation using a Control Program:

A Java-based control tool starts and automates the Chromium instances. These are directed to load a
custom extension, which sends the following data back and receives new commands:

• The list of all HTTP requests made by the current page, which are used later to identify the biggest
privacy leaks, and the content of the address bar are sent whenever it changes. This is done to be
able to handle redirects, which could lead to a different site, such as redirects between http and
https, subdomains or to forward to the corresponding country TLD.

• The list of all links on the loaded web page. To consider links that are added by other scripts while
waiting for the page to be completely loaded, a configurable delay is introduced, before gathering
links. We also filtered and validated this list to discard links like “#top” or invalid targets.

• The control tool replies with a random URI from this list. The extension now sends a click event to
the associated DOM element, so onclick actions do not get skipped and the correct HTTP Referer
is sent with the request.

• Navigation errors and timeouts are directly reported by Chromium to the control tool, and a ran-
dom previously visited URI is opened.

After each browsing session, Chromium’s internal databases in the profile directory are read out. Both
Cookies and HTML5 Local Storage are stored in a SQLite databases. The cookies are stored in the
profile directory in a file named Cookies, Local Storage is saved per-site in the Local Storage direc-
tory. Adobe Flash was installed and enabled for the tests, and the Pepper Plugin API (PPAPI) version
distributed with Google Chrome was used. The PPAPI version of Flash stores Local Shared Objects in the
Pepper Data/Shockwave Flash/ directory of the browser profile, so it was copied over from Google
Chrome 29. It involved copying the libpepflashplayer.so file and pointing Chromium to it using the
�ppapi-flash-path flag.

The corresponding data inside the storage partitions is read, too. They contain their own Cookies

and Local Storage/ databases, located in the Storage/ext/ subfolder. Unfortunately, the PPAPI Flash

5.3 Evaluation 93

meta

key: String

value: String

browsing_session

starting_uri: String

top_private_domain: String

time_start: Integer

cookielike

type: String

storage_partition: String

domain: String

top_private_domain: String

name: String

value: String

session_site

time: Integer

storage_partition: String

top_private_domain: String

uri: String

resources

type: String

top_private_domain: String

uri: String

referer_top_private_domain: String

referer: String

*

*
*

Figure 5.7: Database structure of the crawling results in form a UML class diagram.

plugin doesn’t use storage partitions and always saves the LSOs directly in the profile. It seems fixable,
however, since the PPAPI version is sandboxed and has to access the disk via Chromium.

The database structure is visualized in Figure 5.7. The meta table stores all configurable settings used
for the crawling and the start and finish time. Each browsing session, i.e., each Chromium instance
started, is represented by an entry in the browsing_session table. Each cookie and other cookie-like
objects are stored in cookielike. They are only associated to the browsing session, because they are read
out after the browser exists and not on every page view. Each page that is visited by each browser is listed
in the session_site table. Each resource loaded by browser when visiting a page is logged in resources.

5.3.1 Browsing Sessions

Automated browsing sessions are used because they are much more feasible and comparable than using
browsing sessions by real users. There is also an inherent privacy problem of using users’ generated
browsing histories. Simply recording all visited URIs is not enough, because many websites’ URIs are
valid only for a short period of time. After a few days or even earlier, the content of these pages changes,
typically to an error page that links back to the home page. To get around this problem, the content
would have to be recorded in addition to the URIs, which creates further privacy and technical issues. To
avoid these issues, the main evaluation uses automated browsing sessions. These are, just as recorded
user sessions, not perfectly reproducible, but can produce a vast amount of data in a short time, without
much manual effort.

Biased Crawling

As entry points for the browsing sessions the Alexa global top 40.000 list is used. Each domain is then
selected as the entry point of a browsing session. After opening the home page of each domain, the work
flow described above applies, and selected links are clicked until 50 pages have been visited. At this
point Chromium is closed, the data of the profile read out and added to the database. When finished,
another session is started using an empty profile, until all domains have been visited.

In order to avoid problems with completely random link selected crawling and to produce data that is
more useful the following mechanism was used:

94 5 Reducing User Tracking through Automatic Website State Isolation

Domain Present on pages (%)

google-analytics.com (54.0 %)
doubleclick.net (26.4 %)
facebook.com (23.2 %)
google.com (21.6 %)
gstatic.com (16.4 %)
fbcdn.net (14.2 %)
twitter.com (12.1 %)
googlesyndication.com (11.2 %)
scorecardresearch.com (11.1 %)
googleapis.com (7.8 %)

Table 5.1: Top 10 domains referencedmost

from other pages.

Domain Sessions with Cookies

doubleclick.net 27,844 (97.8 %)
google.com 22,951 (75.6 %)
twitter.com 20,828 (92.2 %)
scorecardresearch.com 19,263 (98.7 %)
youtube.com 15,339 (96.9 %)
adnxs.com 13,417 (98.9 %)
quantserve.com 11,495 (97.3 %)
yahoo.com 10,951 (97.1 %)
addthis.com 10,377 (90.8 %)
yieldmanager.com 9,569 (84.8 %)

Table 5.2: Top 10 domains that had themost cookies

set in browsing sessions.

1. Only pages that have not yet been visited in any other browsing session are considered for link
clicks.

2. Domains that have been visited less often than others are favored, instead of selecting them com-
pletely at random.

3. To avoid visiting a lot of obscure domains that users are not very likely to ever visit, domains
ranking high in the Alexa list are favored.

The resulting list has the links to the least visited sites first, but unpopular sites are slightly disadvan-
taged. The goal of this mechanism was to visit more of the smaller sites at the expense of larger ones. As
pre-tests have shown, completely random link selection resulted in visiting Twitter, Google and Facebook
links in 30% of all crawled pages (since those domains occur the most on websites), but is unlikely to
result in realistic user behavior and therefore no useful data.

We implemented the biased link selection by choosing the index for the list as i = ⌊r b ·n⌋, with r being
a random floating point number in the interval [0.0, 1.0[, b being the bias exponent, and n being the
number of elements in the list. The value b = 1.2 is used to provide just a slight bias towards the first
elements of the list. Note that the sheer number of links to a site still has a big impact on link selection.

In result of the biased link selection, the cumulative distribution of the domains visited is plotted in
Figure 5.8 as shaded green area (bordered with green crosses). When compared to a real world page
view, data by AOL users reformatted from [268], shown as rounded blue circles in the same Figure 5.8,
a similar shape can be noticed (just with a less distinct curvature). For the purposes of this evaluation,
this means the biased link selection is somewhat realistic compared to real world page views.

The curvature in the range from 0 to 50 page views can be explained by the 50 link click limit and
corresponds to the end of the 40,000 sites, that received very few incoming links from other sites (or
that were left early in the session because an external link was followed).

Crawling Results

To evaluate how Site Isolation performs, a few metrics are needed. Every request to an external domain
is considered a tracker, except user initiated clicks, because they direct to a different storage partition.
The more domains are referenced by websites, the bigger their tracking potential. Table 5.1 shows the
results of the 10 domains with the biggest tracking potential (out of 1,608,038 visited pages).

5.3 Evaluation 95

Tracking Data:

The occurrence of external content and potential tracking by setting cookies is not a sufficient defini-
tion of tracking. To actually perform tracking, the trackers have to be able to re-identify users. They can
either use static user data directly, such as the IP address or browser fingerprinting, or they have to store
a custom identifier and retrieve it later.

In this section, the latter method is investigated. Table 5.2 shows the top 10 cookie setting domains.
When comparing with Table 5.1, the Content Delivery Network (CDN) domains are notably absent,
because they do not set any cookies. Also note that google-analytics.com, which has by far the biggest
tracking potential, in fact does not even set a single tracking cookie for its domain. Instead, it uses first
party cookies on each website it is embedded. To find out which of these cookies are used (or are usable)
for tracking, we calculate the information content of cookies.

In theory, just 33 bits are enough to uniquely identify 8.5 billion people. To calculate the information
content of a web site’s cookies, Shannon’s information entropy [284] was used. The entropy of the
cookie data is equivalent to the number of bits required to encode one symbol (i.e., a byte) of the cookie
data and can be calculated using H = −

∑

pi log2 pi. Multiplying the entropy H by the total number of
symbols results in the size that the data can be compressed to when using Huffman coding [285]. In
order to avoid over-interpreting cookies with a high information content, like web sites storing settings
with the similar data for all users, the data gathered from multiple sessions can be used to differentiate
between random and highly structured cookies. This can be performed by calculating the information
content of the concatenation of a web site’s complete set of cookies in all sessions.

The actual string that will be analyzed is a concatenation of the sorted cookie names followed by the
sorted cookie values (skipping duplicates). The benefits for this method are:

• All cookies are concatenated because information might be split across multiple cookies.

• Names are included because information may only reside in the cookie names.

• Identical names and values are included only once, to get a smaller size estimation from Huffman
coding, which does not check for identical blocks in the uncompressed data.

• Almost identical names and values will not compress well when just using Huffman coding. To
avoid this problem a state of the art compression algorithm is used in addition.

• To improve compression, the names and values are sorted to get similar names/values next to each
other.

The additional compression algorithm used is LZMA2 [286], because of its great compression ratio
[287] and because it is based in a different principle than Huffman-coding. In the calculation LZMA2
tends to win over Huffman-Coding in 39% of the cases, typically when data is large enough to offset the
overhead, that is ignored for Huffman-coding. The lower estimate of both algorithms is then used as an
estimation of the information content, and if a suspected tracker domain has a very low content, it is
analyzed manually. Table 5.3 summarizes the findings, showing that all of the heavily referenced and
cookie setting domains can use their cookies to track users (high information bit ratio).

Other researchers [28] confirmed our findings, showing that 80% of tracking cookies use more than
35 characters in the information value field. In addition, they show that 90% tracking cookies have an
expiration date greater than one day.

Isolation Effectiveness:

Site Isolation impacts the previously gathered data in a number of ways, by not using the global profile
to store data but instead storing it on a per-site basis. Each of the 40,000 cookie stores (sessions) can
now have an unlimited amount of storage partitions. The total number of distinct storage partitions
seen across all sessions was 94,701. But since not every storage partition is present in every session,
there were only 176,330 non-empty storage partitions in total. The main effect of Site Isolation is that

96 5 Reducing User Tracking through Automatic Website State Isolation

10
0

10
1

10
2

10
3

10
4

10
5

Page views (v)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
r(

X

≥

v
)

Figure 5.8: Pages crawled (crosses) / viewed

by AOL users (blue circles).

0 5 10 15 20 25 30
Number of storage partitions

0

1000

2000

3000

4000

5000

6000

7000

Nu
m

be
r o

f b
ro

w
si

ng
 s

es
si

on
s

Figure 5.9: Storage partition usage in browsing

sessions.

Domain
Cookies in Pages Cookies in Pages Inf.

Sessions tracked S. Partitions tracked* bits

doubleclick.net 27,844 (97.8 %) 414,808 30,104 (51.2 %) 217,320 69
google.com 22,951 (75.6 %) 263,019 24,742 (35.4 %) 123,170 375
twitter.com 20,828 (92.2 %) 178,853 22,624 (49.6 %) 96,178 143
scorecardresearch.com 19,263 (98.7 %) 175,727 20,576 (62.4 %) 111,169 35
facebook.com 8,974 (32.0 %) 119,628 9,390 (15.2 %) 56,743 97
quantserve.com 11,495 (97.3 %) 99,217 12,280 (66.8 %) 68,096 54
adnxs.com 13,417 (98.9 %) 93,785 14,117 (72.9 %) 69,167 357
addthis.com 10,377 (90.8 %) 80,840 10,890 (64.3 %) 57,289 153
youtube.com 15,339 (96.9 %) 56,598 16,012 (66.7 %) 38,929 272
baidu.com 2,152 (95.3 %) 47,923 2,606 (45.6 %) 22,939 104

Table 5.3: Effects of storage partitions on the top trackers. The pages tracked metric dropped by 44 %,

compared with not using Site Isolation.

tracking cookies are not global to the browsing session and are instead local to each storage partition.
As the evaluation of cookies show, trackers assign multiple different identities per session, making the
tracking effectively limited to a single site, no more than what would be possible using completely
passive server logs or using first-party cookies. The number of storage partitions per browsing session
is visualized in Figure 5.9. The statistics indicate that on average the storage partition is switched
every 11.2 pages. As each switch means all trackers up to this point will continue with an empty set
of data, this sets the limit for how long users can be tracked. An interesting and unexpected result is
the high percentage of empty storage partitions. These numbers, shown in Table 5.3 were generated by
calculating the cookie statistics based not on the whole browsing sessions, but based on the individual
storage partitions.

The Cookies in Sessions metric (from Table 5.2) was supplemented by Cookies in Storage Partitions

and the Pages tracked metric was recalculated. While the absolute number of used cookie stores is
always higher in the storage partition case, the total number of cookie stores where the domains were
referenced is much higher still. This results in a comparatively huge number of storage partitions that
do not have any cookies, while many trackers previously had cookies in nearly 100% of sessions. This
has a corresponding drastic effect on the pages’ tracked metric that fell immensely, indicating that Site
Isolation can completely avoid various tracking mechanisms and is not merely reducing it to within-site
tracking. All with fully functioning websites.

5.3 Evaluation 97

5.3.2 Discussion

Using Site Isolation brings a slightly higher resource usage on disk space, CPU, RAM and bandwidth.
As already analyzed by Chen et al. [283], showing that visiting 12 sites in isolated storage partitions
instead of a single profile increased the disk usage 4.5-fold, while RAM usage grew by just 1 MB. As our
experiments confirm, no noticeable performance loss could be noticed while using Site Isolation on the
test computer.

Currently the storage partition name is determined by the address bar URI. One option that could
improve compatibility and isolation, is to make the selection stateful and consider how the browser
arrived at the current page. If a normal link was clicked, the storage partition should change according
to the address bar, as usual. If a HTTP, HTML or JavaScript based redirect was used, however, keeping
the last storage partition can be beneficial. Reducing the number of storage partition switches cannot
make compatibility worse, but tends to reduce isolation, as no switches also mean no isolation. But
these redirects are often used to set cookies, giving websites an easy way of setting identical cookies
in multiple storage partitions. Another possibility is to use more information for selecting the storage
partition name, for example by using numerical ids and an associated database. Multiple sites could then
be mapped into a single storage partition, to allow a user-configurable whitelist. Any changes that affect
the behavior of the storage partitions itself, for example allowing sites to read from multiple storage
partitions at the same time, are not considered.

Flash usage is widespread in the current web but dropping in recent years. Unfortunately Chromium
does not yet confine the Flash plugin to storage partitions yet, which makes data exchange across storage
partitions possible using Flash LSOs. However, instances of Flash LSO based tracking are rare, and in our
study only 1,886 domains (0.11%) in total used Flash LSOs. Comparing the top domains using Flash LSO
to the tables of sites present on most pages, or the domains having cookies in most sessions, no overlap
domains (in the top 10) can be found. We are not aware of any conceptual issues with integrating the
PPAPI7 Flash plugin into the Site Isolation concept, but actually implementing it was left as future work.

5.4 Related Work

When comparing Site Isolation to tracking prevention tools such as Ghostery8 or AdblockPlus9, various
disadvantages in those tools can be identified. One drawback is that they rely on detecting tracking
elements and reactively blocking them. Therefore, elements not categorized as trackers will not be
blocked and can still be used for tracking. In addition, if legitimate elements are falsely classified (false
positives) as trackers and blocked, website functionalities may break. The most serious privacy problems
exist in the commercial purpose of such tools, i.e., a third-party can avoid that certain tracking elements
will be blocked (by making a contract) [61], or by the utilization of the gathered user data [69] to allow
building a user web profile. With Site Isolation elements from a website are isolated from other websites
and will stop cross-domain tracking without breaking the website functionalities. Furthermore, website
owner can use ads to earn money without enabling trackers to re-identify the user in order to learn the
user’s web behavior.

The doublekey cookie concept proposed on Mozilla Bugtracker [288] is similar to Site Isolation. Its
core idea is to replace the cookie domain with a tuple consisting of the cookie domain and the domain
of the currently open web page. As a result, each visited first-party site has its own storage location for
third-party cookies. In 2014 the TOR project was in the process of implementing this concept [289],
finishing it in 2018. Site Isolation is a superset of this concept, not only isolating cookies, but also other
storage methods. Thereby, our solution is limiting many more tracking avenues such as cache based
tracking (e.g. using ETags or modified PNG images), Web Storage and others [11]. Site Isolation is also
7 https://code.google.com/p/ppapi
8 https://www.ghostery.com
9 https://adblockplus.org

98 5 Reducing User Tracking through Automatic Website State Isolation

https://www.ghostery.com
https://adblockplus.org

extensible for storage methods not yet isolated, such as data from Flash. Since no other implementation
has been done before, we were able to present the first large scale study on this topic and analyze the
effectiveness of this concept.

Chen et al. [283] investigated which security benefits are possible using multiple, separate browsers
and showed how they can be brought to a single browser using App Isolation. Here, the researchers
implemented entry-point and state isolation for Chromium, which sets a whitelist of allowed entry-
points into a website, to avoid reflected XSS, session fixation, Cross-Origin Resource Import and CSRF
attacks. The disadvantage is that this whitelisting has to be done manually for each website and every
entry point separately. In comparison, our State Isolation brings the same security features and confines
each website automatically into a separate, from other websites isolated data container, where the cache,
cookies and other locally persisted state are saved. On a high level, App Isolation is targeted at protecting
users from manipulation of a few select high-profile sites, while Site Isolation is targeted at protecting
users against privacy breaches resulting from third-party trackers embedded on all pages with no changes
on the web.

Other strategies to gain security by isolating web elements like plug-ins or JavaScript and better control
the execution of those exist [290, 291, 266, 292]. Unfortunately, these strategies do not consider privacy
aspects related to tracking, since they allow the communication between storage elements like cookies,
which still have access to all tracking related elements. In contrast, our isolation strategy benefits from
the same security aspects while protecting the users privacy from being tracked online.

5.5 Summary

As seen in the evaluation, Site Isolation has a huge effect on the abilities of web trackers to follow
users across the web. It limits their ability to re-identify users switching to a different site, making
tracking much less invasive. On average, the storage partition was switched every 11.2 pages, providing
credibility to that claim. On top of that, the number of pages that can still be tracked, was shown to be
reduced by 44%, compared the number of pages tracked by the 10 most prevalent trackers when not
using Site Isolation. This was unexpected and suggests that external trackers do not set tracking cookies
on all occasions, which helps Site Isolation achieve this huge reduction in the pages’ tracked metric. The
findings confirm the tracking statistics of Roesner et al. [13], that the biggest trackers are now present
on over 20% of web pages. As research shows [293], Facebook has stopped indiscriminately tracking
even non-users. It set cookies in just 32.0% of sessions it was referenced, dropping further to having
cookies in only 15.2% of storage partitions.

The evaluation of countermeasures against Site Isolation in Section 5.3.2 demonstrates that the cur-
rently known evasion techniques are impractical. Neither using Flash LSOs nor redirects to set first party
cookies are well suited for avoiding Site Isolation on a massive scale. Finally, compared with blocking
third-party cookies, Site Isolation is more user friendly and does not depend on the definition of what
exactly constitutes a third-party cookie. Combined with the security benefits of preventing CORS, CSRF,
click-jacking, and limiting the effects of cache-based tracking, cache-timing attacks as well as rendering
engine hijacking, Site Isolation is a promising approach for improving user privacy and security.

5.5 Summary 99

6 Robust Browser Fingerprinting Protection

Browser fingerprinting is a technique for uniquely identifying a user through slight variations in the
system setup, which are retrievable by websites mostly using JavaScript, Java or Flash scripts [51]. The
differences originate from various hardware, network, or software configurations that a user’s computer
may have [45, 49, 52, 53, 47]. These fingerprinting features are widely used to track user behavior across
different websites [30, 54] and to establish detailed user profiles [24, 35] for targeted advertisements
[32].

Mayer [56] and Eckersley [46] demonstrated that it was possible to uniquely identify 94% of 470,161
users by rather simple fingerprinting techniques. Further studies [57, 50] revealed the prevalence of
browser fingerprinting in real world applications and showed that pretty sophisticated fingerprinting
methods exist. Fingerprinters commonly use detailed information, such as system fonts, plug-in ver-
sion numbers, or even differences in graphic rendering engines (using the HTML5 canvas element) as
fingerprinting features [49]. Conceptually, every parameter which is rather stable over time and likely
different between users, is a potential fingerprinting feature. This includes exotic features like measuring
the dimensions of Unicode glyphs [294], checking for the existence of certain JavaScript functionalities
[49, 45], utilizing the drift from exact time in TCP timestamps [180], checking the leakage of the battery
status [182] or retrieving a partial subset of visited websites [75]. However, these advanced approaches
have limited reliability (e.g., due to network latencies) [295], and are mostly not used in the wild.

To protect the user against fingerprinting, a few tools [289, 179, 296, 297] were proposed, trying
to hide unique browser features by randomizing, blocking or deactivating them. Unfortunately, there
methods lack usability when browsing websites due to blocked features, they are detectable by the
fingerprinter [30, 59, 75, 46, 77] due to unrealistic features, or have flaws making users still identifiable.
We expose these issues in Section 6.1.

In this chapter, we present a robust approach to protect a user against browser fingerprinting, im-
plemented in our Disguised Chromium Browser (DCB), published in [71]. Instead of disabling or ran-
domizing system and browser parameters, we use a large set of real world parameters that are fixed for
the entire browsing session and change automatically for the next session. This prevents detectability
through unrealistic or constantly changing system parameters, if a fingerprinter requests a parameter
multiple times. In addition, we are the first to effectively protect against Flash as well as canvas fin-
gerprinting without completely deactivating these features. This significantly enhances the usability of
web browsers with integrated anti-fingerprinting strategies. Through a thorough study of canvas finger-
printing, we developed a novel and deterministic approach to prevent canvas fingerprinting based on
transparently modifying the canvas element in every browsing session. In contrast to other approaches,
our solution is not based on adding patterns or noise to the canvas output. Because the canvas element
is never unique, the fingerprinter is not able to detect our modifications and is not able to re-identify the
user. We show the robustness of the algorithm and demonstrate that every generated canvas element is
unique. In contrast to other anti-fingerprinting tools, we also implement a new protection mechanism
against the retrieval of system fonts via Flash.

Finally, we evaluate our solution against real world fingerprinting tools and demonstrate its effective
protection against fingerprinting by creating unique fingerprints in over 99% of 70.000 browser sessions.
We show that fingerprinters cannot notice the presence of our counter-fingerprinting techniques due to
enhanced protection mechanisms inside the browser itself and the usage of real world parameters.

101

6.1 Related Work

Fingerprinting Features

Various research has been conducted on browser fingerprinting features as well as user protection [53].
To obtain an extensive and up to date list of fingerprinting features, we analyzed popular fingerprinting
scripts such as FingerprintJS1, Coinbase Payment Button2, and BlueCava3 as well as data gathered by
other researchers [46, 12, 45, 52, 30, 50, 179, 298]. The following list contains popular fingerprinting
features that are retrievable through JavaScript, Flash, CSS or the HTTP header [53]:

System information: Device id, operating system (version, architecture, kernel), screen (resolution,
height, width), color depth, pixel depth, timezone, system fonts, system language, date and time, CPU
type, clock skew, battery status, mouse movement, keyboard, accelerometer, multitouch capability, mi-
crophone, camera, audio capabilities.

Browser information: Browser (version, vendor), User Agent, navigator object, installed plug-ins,
preferred and accepted languages, HTTP headers, cookies enabled parameter, supported MIME types,
browser history, do-not-track, HTML canvas element, JavaScript runtime, CSS features (font probing,
display, etc.).

Network information: IP address, geographic location, TCP timestamps, TCP/IP parameters, proxy-
piercing.

Flash Capability Class: Version, manufacturer, serverString, language, screenDPI4.
Canvas: HTML 5 provides a canvas element that can be used for drawing / rendering 2D graphics and

to inspect the image data with pixel accuracy via JavaScript. In order to use the canvas element as fin-
gerprint, typically a fingerprinter first renders a defined text using the function fillText() or strokeText().
Subsequently, the fingerprinter inspects the unique rendering output using the function getImageData(),
containing the RGBA values for every pixel. Similarly, by using the function toDataURL(), a Base64
encoding of the PNG image containing the entire contents of the canvas can be obtained. The unique
fingerprint is then produced by hashing the extracted pixel data. Because different graphic cards and
rendering engines produce slightly different (but stable) outputs, fingerprinters routinely make use of
this element [75, 57].

Fingerprinting Protection

In the following we discuss prominent anti-fingerprinting tools and show their weaknesses which we
were able to overcome within our proposed Disguised Chromium Browser (DCB).

The Tor Browser [289] implements several countermeasures against browser fingerprinting [59],
while focusing on anonymity rather than usability. The anti-fingerprinting techniques rely on disabling
specific browser features like plug-ins and the canvas element entirely, resulting in a limited usability and
web experience (while those features can still be activated by the user to display common web content
like Flash, the protection methods become ineffective). Note that even with activated fingerprinting
protection the usage of Tor itself is detectable by fingerprinters [30, 59].

In addition, our experiments confirm that Tor’s font probing fingerprint protection can still be cir-
cumvented [299] by using many dynamically generated iframes. In summary, the Tor Browser can not
effectively protect the user against fingerprinting. In contrast to Tor’s strategy, our solution uses a large
set of real word data to substitute original browser features; furthermore we manipulate Flash and
canvas outputs, rather than disabling these functionalities altogether.

FireGloves [51] is a Firefox browser extension that disables access to specific JavaScript objects (like
navigator.plugins) instead of disabling browser plug-ins entirely. However, an empty list of plug-ins might
be used as fingerprinting feature, since this is not a common behavior. Moreover, plug-ins can still be

1 https://valve.github.io/fingerprintjs
2 https://www.coinbase.com/docs/merchant_tools/payment_buttons
3 http://bluecava.com/opt-out/
4 http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/system/Capabilities.html

102 6 Robust Browser Fingerprinting Protection

https://valve.github.io/fingerprintjs
https://www.coinbase.com/docs/merchant_tools/payment_buttons
http://bluecava.com/opt-out/
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/system/Capabilities.html

instantiated and detected. In comparison, DCB performs a smart manipulation of the plug-ins minor
version number in order to guarantee plug-in functionality while preventing fingerprinting. Further,
FireGloves allows automatic randomization of specific browser settings. This strategy can be detected by
fingerprinters through constant changes to (potentially) unrealistic random settings. Similar to the font
probing prevention of the Tor Browser, FireGloves limits the number of fonts retrievable by a website –
an approach which can be easily circumvented (see above).

In addition, other font fingerprinting methods like Flash and canvas font probing are not covered. In
contrast, DCB manipulates the browser internal font handling itself, instead of limiting the font access.
Another drawback of FireGloves is the fact that it is a browser extension, and needs to manipulate
JavaScript functions instead of directly accessing browser functionalities. This behavior can be detected
and potentially circumvented [30, 179]: A fingerprinter might use Object:getOwnPropertyDescriptor to
check for manipulated JavaScript objects. To avoid this, we implemented DCB directly in the browser.

PriVaricator [179] is a modified Chromium browser that tries to prevent fingerprinting by randomly
changing the browser properties whenever they are queried. For example, PriVaricator returns a random
subset of the actual plug-in list by filtering out single entries from the navigator.plugin property. Never-
theless, since these plug-ins can still be instantiated, it is possible to detect them. Further, PriVaricator
randomly manipulates the properties offsetHeight, offsetWidth, and the function getBoundingClientRect()

to prevent font probing. Unfortunately, this implementation is detectable by simply checking for devia-
tions in the output of consecutive requests to the same functions. Additionally, PriVaricator provides no
means against the retrieval of system fonts using Flash or the HTML 5 canvas element.

FPGuard [296] is a combination of a browser extension and a customized version of Chromium for
detecting and preventing browser fingerprinting at runtime. It uses different hard coded heuristics for
detecting browser fingerprinting activities on each website separately. The user can then decide to block
or randomize the output of the fingerprintable feature on untrustworthy websites.

Unfortunately, the authors do not go into detail on how the fingerprinting features are randomized.
More importantly, as shown in [46, 30], simple randomization will increase a user’s identifiability, as
unrealistic values will occur. Furthermore, as studies have shown [300], users are not able to decide
whether a website is trustworthy or not and will tend to trust a website, so that fingerprinting protection
will likely be disabled by users. In comparison, our solution automatically randomizes fingerprintable
settings with a set of realistic values.

As another feature, FPGuard randomizes HTML5 canvas images by adding slight noise before the im-
age is read out. We assume that the image manipulation done by FPGuard is non-deterministic. As
stated in previous research [49, 52], this approach is detectable. Fingerprinters can create two identical
canvas objects and check for differences in the generated image data. Our solution uses a determin-
istic and transparent algorithm to manipulate canvas rendering itself. This makes it undetectable to
fingerprinters, since the output will be the same for the entire browsing-session and different in the next.

In order to prevent font enumeration, FPGuard randomly hides fonts once a certain number of fonts
has been loaded. This approach is also non-deterministic, and can be detected by a fingerprinter by
checking for the existence of a font through several independent requests. Flash based font enumeration
is only blocked within FPGuard by disabling Flash. This not only reduces the usability of websites, but
the absence of Flash can be used as fingerprintable information [49]. Moreover, if the fingerprinter cir-
cumvents the above mentioned hardcoded thresholds by requesting only a few browser features through
a set of dynamically generated iframes, FPGuard will not be able to provide any protection. In con-
trast, our solution is automatically applied to the fingerprintable features without disabling any browser
capabilities or loss of usability.

FPBlock [297] is another anti-fingerprinting tool intercepting a set of HTTP / JavaScript requests and
modifying or blocking requested potential fingerprinting features. The goal of the tool is only to stop
third-party, cross-website fingerprinting by returning the same modified browser features saved for the
this website, whenever the site is visited again. The main disadvantage of FPBlock is its detectabil-
ity, since fingerprinters will notice the changing browser features trough subsequently visited websites.

6.1 Related Work 103

Taking our discussion on canvas fingerprinting in Section 6.3 into account, the canvas fingerprinting so-
lution employed in FPBlock is also potentially detectable, since it only adds random noise to the canvas
element.

CanvasFingerprintBlock [301] is a Google Chrome extension that prevents canvas fingerprinting by
modifying the functions toDataURL() and getImageData() to only return an empty image when called.
Here, the fingerprint of a canvas element will always by the same, hiding system-specific quirks. Un-
fortunately, this approach decreases the usability of common websites, and increases the potential
identifiability of a user, since the output is always unique. Our implementation does not manipulate
the functions that are used to retrieve the image data from the canvas. We chose a transparent and
undetectable randomization of the image itself, which does not impair the user experience.

Summary

Various existing anti-fingerprinting tools try to protect the user against fingerprinting tracking us-
ing different approaches. Unfortunately, all of them only focus on specific aspects fingerprinting tools
use to uniquely identify the user. For example, FireGloves and PriVaricatorby randomize just browser
settings without blocking font probing, making it possible to re-identify the user. In addition, the anti-
fingerprinting tools like the Tor Browser or FPGuard disable important websites features like flash or
canvas, making websites unusable. With the proposed DCB we tackle those disadvantages and demon-
strate an anti-fingerprinting tool that provides user protection without deactivating website features.

6.2 Anti-Fingerprinting: Disguised Chromium Browser

In order to counter fingerprinting and prohibit re-identification of users, two main strategies can be
employed: (1) hide fingerprintable features in order to make all users look the same, such as propagated
by Tor, and (2) hide the original features through randomization, like done by FireGloves or PriVaricator.

In our anti-fingerprinting research we identified the advantages of both strategies. On this basis we en-
hanced the strategies by new protection mechanisms, and implemented them in one Disguised Chromium

Browser (DCB). In this section, we first present the architecture of DCB and subsequently describe our
strategies, the implementation, and the operation of DCB.

6.2.1 Architecture and Implementation

We implemented DCB directly in the Chromium browser version 34.0.1847.131 [302] because of three
reasons: First, to avoiding the detection of fingerprinting countermeasures through blocked or inter-
cepted JavaScript CallBacks [30, 49]. Second, to bind all fingerprinting protections in one tool. Third,
to provide better performance and browser speed.

We decided against modifying the Tor Browser [303], since it applies certain countermeasures against
fingerprinting that might impede with our strategies. To tackle the effect of other tracking mechanisms
like cookies [53], we implemented our strategies to use the private browsing mode of Chromium. The re-
quired effort to port our implementation to newer versions of Chromium mainly depends on the changes
that have been applied in Chromium’s source code in the meantime. Compiling our modified Chromium
browser takes a few minutes. Once updated and compiled, there is no performance loss during runtime.

DCB relies on a client-server architecture, where a server-side algorithm maintains a database of real
world fingerprinting features to enforce a robust browser configuration on the client. On the client side,
DCB applies the configuration selected by the server, together with the implemented Flash and canvas
fingerprinting protection. DCB allows two strategies for distribution of browser configurations to the
client:

104 6 Robust Browser Fingerprinting Protection

N:1 – Many Browsers, One Configuration:

Since fingerprinters collect a multitude of fingerprinting features, the likelihood of several browsers
sharing the same system properties is considerably low. For that reason, when fingerprinters observe
the same fingerprint more than once, they most likely will assume the fingerprint to belong to the same
browser as in a previous observation. The N : 1 strategy aims at configuring as many browsers (N) as
possible to share the same configuration, making all those browsers look the same to the fingerprinter.
This decreases the surprisal of observing a specific configuration and limits the re-identification of one
specific user.

1:N – One Browser, Many Configurations:

In the 1 : N strategy, the actual browser and system configuration is hidden to the outer world in
order to prevent re-identification by fingerprinters. DCB in 1 : N mode constantly changes the browser
configuration on each start. Compared to existing tools like PriVaricator [179] or FPGuard [296], which
randomly change fingerprintable parameters, our approach randomizes features to realistic values and
prevents constantly changing system parameters. This limits detectability.

Configuration Server:

Every browser has a configuration (its original), consisting of single-value features (like the Windows
version), and of multi-value features (such as a list of fonts). The configuration server is responsible to
store such real world system and browser properties (fingerprinting features) and to generate or assign
configurations to clients based on the selected strategy. To ensure a realistic randomization of features,
we use a pre-stored data set of 23,709 real-world fingerprinting features. These anonymized features
were gathered in a large scale study [304] similar to Panopticlick [46]. Furthermore, upon DCB startup,
clients send their initial configuration to the server, which is added to the database.

DCB can work either with a local or a global configuration server. To guarantee trust, configuration
servers may be operated by trustworthy organizations such as the CCC5 or EFF6. Tackling potential
single-point-of-failure problems, the amount of servers needs to be raised while the user base grows.
To avoid traceability and privacy problems, the server never saves any connection details such as the IP
address of users, and can be verified due to the open source implementation.

We implemented the configuration server using CakePHP7, since it is an easily expandable, model-
view-control orientated framework. The upload of a client’s configuration is done via HTTPS. Once the
client identifies a configuration change, the new configuration will be sent to the sever.

Configuration Groups:

It is important to pay attention to inconsistencies and usability constraints when changing or hiding
system and browser properties. For example, if a specific operating system (OS) is propagated, the list
of plug-ins reported should match the OS. We decided to use groups of configurations sharing similar
values, so that no browser adapts a configuration that contradicts its actual system configuration. One
specific configuration group could consist of all users using browsers on the same OS and language.
Here, all browsers in this configuration group will only get those configurations (e.g., list of plug-ins),
that are available for the given OS. Because a large number of configuration groups is counterproductive
in hiding the user effectively, we predefined configuration groups for the user’s language and different
Windows versions (like Windows Version NT6.1 & English or Windows Version NT5.0 & French). The
fewer groups exist, the smaller the surprisal observing any browser.

Depending on the actual system and therefore the configuration group, the N : 1 strategy aims to
set all fingerprintable features to the most frequent parameters in this configuration group, fitting with
the user’s environment. This guarantees robustness and usability. At the moment of development the

5 https://www.ccc.de
6 https://www.eff.org
7 http://cakephp.org

6.2 Anti-Fingerprinting: Disguised Chromium Browser 105

https://www.ccc.de
https://www.eff.org
http://cakephp.org

DB

Config

Config

Config 3. Generate new

config

2. Save original

config

5. Manipulate

Flash & canvasServer Client

1. Generate

Session ID

4. Adapt config

Figure 6.1: DCB: Initialization of a browser session and mode of operation.

configuration contained the following parameters: screen information, browser language, user agent
(Chrome & WebKit/Blink version, Windows architecture), time and date, system fonts and plug-ins.
Further, we use the most common intersection of fonts and plug-ins of all browsers in the group.

6.2.2 DCB: Mode of Operation

Once a new browser session is started, several steps are performed, shown in Figure 6.1. First, DCB
generates a random session identifier ID (step 1). The ID is used as input in the canvas fingerprinting
protection algorithm as well as an identifier for the browsing session. In the second step, DCB collects
configuration information on the client (such as fonts, User Agent, or plug-ins) into a JSON encoded
configuration file and sends it to the server.

If the N : 1 strategy is selected, the configuration server checks if there exist a configuration group

of clients that share similar features. If not, the server creates a new group that fits to the browser’s
configuration. Otherwise, if a browser fits into an existing group, the group’s configuration is revised
and if necessary updated. This may be necessary to adjust the property of a feature to the majority of
users’ configurations. Subsequently, the server returns the selected configuration, encoded in JSON, to
the DCB browser (step 3). This strategy assures that the generated group configuration is based on the
most frequent, already stored configuration data, and the best fitting configuration group for the client
(depending on general system features). The browser then adapts the new configuration as its own (step
4), and manipulates the DLL file of Adobe Flash Player (step 5) in order to change propagated values
such as the screen resolution or operating system. A full description on the general manipulation of Flash
and system fonts are presented in Section 6.2.3. Specific manipulations to the fingerprinting features
according to the N : 1 strategy are detailed in Section 6.2.4.

If the 1 : N strategy is used, the server responds with a random configuration taken from the database.
This configuration is encoded in JSON and subsequently sent to the browser (step 3). Steps 4 and 5
are equivalent to the procedure described for N : 1. Since DCB modifies browser and Flash equally, a
fingerprinter will see the same parameters when settings are retrieved by JavaScript or Flash. Finally,
changes are fixed for the entire browsing session and reset automatically for the next session. Details on
how fingerprinting features are manipulated in the 1 : N case are given in Section 6.2.5.

Note that a server is needed to gather and generate accurate configurations for both strategies. The
server aides in adapting one configuration for a set of users (1 : N); in addition it stores realistic (original)
configurations for the N : 1 strategy.

6.2.3 Flash and System Font Protection Mechanisms

DCB enables a general Flash and system font fingerprinting protection for both N : 1 and 1 : N strategies.
In the following, we present the details on the implementation.

106 6 Robust Browser Fingerprinting Protection

Flash Player Capabilities-Class: This class provides a wide range of fingerprintable system informa-
tion such as screen information or Windows version, which are not covered by other anti-fingerprinting
tools when Flash is activated in the browser. The Capabilities functionality is compiled and encoded as
hex strings inside the pepperflash.dll file. To ensure fingerprinting protection we therefore use Python to
manipulate the Capabilities-Class on all system parameters that are accessible by Flash. The parameters
are changed to match the values that are retrievable by JavaScript (like User Agent, screen object or
others), and were already modified by the DCB configuration.
System Fonts: To counter font probing via CSS and JavaScript, we internally change requested font
names either to existing fonts or non-existing fonts, depending on the strategy, whether we want to
fake the existence or non-existence of a system font. For example, we might hide the existence of the
font Comic Sans by changing the request into a fictive font ’aaa’. Internally, the font will not be found
and therefore the browser’s default fallback font will be used, even the font is actually installed on the
system. Analogously, to fake the existence of a non-installed font, DCB automatically renders the text
with another existing system font such as Comic Sans. Since Comic Sans is not the fallback font, the
fingerprinter will then assume the existence of the requested font. We also manipulate the list of fonts
returned by Flash. Here, we either add new font names or filter out existing names from Chromium’s
internal font list (see Sections 6.2.4 and 6.2.5 for a detailed description).

6.2.4 Specific N:1 Implementation

In this section we describe the specific method how fingerprinting features are manipulated in the N : 1

strategy.

Screen Information: In order to achieve a common screen configuration, the server will determine
the most frequent screen resolution, color depth, and pixel depth for every configuration group. The
server will also choose among those information that fit with the available users’ screen (monitor).
Browser Language: Browsers using the same main language and operating system are joined into a con-
figuration group. All other languages that are part of the HTTP_ACCEPT_LANGUAGE header commonly
have a lower priority (q value) than the main language. We adapt a language with a lower priority only
to a configuration group in case that at least 3/4 of all browsers in the configuration group share that
common language.
Plug-in Information: Since we want to create configuration groups that are as large as possible, our
goal for the N : 1 strategy is to reduce the revealing of information to a minimum, making it easier to
join browsers into anonymity groups. For this reason we disable all plug-ins that are not part of every
browser of a configuration group, which consequently can result in disabling all plug-ins that are not
shipped with Chromium. Along with this step, the most common name and description of a plug-in
is adopted in order to equalize the possible version information. Note that we could have considered
plug-ins as usability constraint and therefore avoided the chance of disabling any plug-ins. However,
as this would reduce the size of the configuration groups we decided against it. Yet, anti-fingerprinting
tools with a large user base could choose to handle plug-ins as constraint feature.
User Agent: For every configuration group the most common Chrome version, WebKit/Blink version and
Windows architecture are selected and then shared between all browsers of that group.
System Fonts: The list of fonts is set to the common intersection of fonts of all browsers in the configura-
tion group. To share and apply the list of fonts among the browsers of a configuration group, we use the
fact that the Windows version will be the same for all browsers sharing the same configuration. Here, the
final font configuration only contains the fonts delivered with the initial operating system installation.
Time and Date: In order to set a common time zone offset for every browser of a configuration group,
the most frequent offset of all browsers in group is selected.

6.2 Anti-Fingerprinting: Disguised Chromium Browser 107

6.2.5 Specific 1:N Implementation

DCB applies the following fingerprint feature modifications in the 1 : N strategy to achieve the goal of a
diverse browser configuration.

Screen Information: The screen resolution, color depth, and pixel depth, are randomly selected among
the already observed (pre-stored) values. Regarding the available resolution, the height of the selected
screen resolution is reduced according to the height of the taskbar of the selected Windows version. For
example in Windows 7 the taskbar might have a height of 30 or 40 pixels depending on the user choice.
If more than one value is possible, the height is chosen randomly.
Browser Language: While Flash and navigator.language only return the main language of the user, we
do not need to change these values, as we keep the main language for usability reasons. We only manip-
ulate the list of additional languages returned by HTTP_ACCEPT_LANGUAGE. Languages are separated
by a comma, the language code and priority q are separated by a semicolon. Note that the priority of
the main language with the highest priority of 1 is omitted in the language header. Besides the main
language and every language with a priority ≥0.8, we randomly select up to three additional languages
with a random quality between 0.7 and 0.1 (steps of 0.1). We only add language codes according
to language tag detection standard BCP 47 [305] in order to prevent implausible language codes. An
exemplary language acceptance header and the priority of the corresponding languages looks like: de-
DE,de;q=0.8,en-US;q=0.6,en;q=0.4
Plug-in Information: If at least 5 different versions of a plug-in are available in the database, the server
will select a plug-in description randomly. Otherwise, the server searches for version numbers in the
name and description and manipulates the minor version numbers. If the minor version is not available,
we randomly change the provided version number.
User Agent: We do not hide the actual browser vendor, as it could be detected using vendor specific
features [30]. Instead, we manipulate the version numbers according to real browser which provides the
necessary fingerprint diversity. The WebKit/Blink and Chrome version numbers are changed according to
the algorithm used to manipulate the plug-in version numbers (described above). The Windows version
is randomly chosen among the already observed and pre-stored Windows versions. The Windows archi-
tecture is chosen from the fixed list of possible, vendor specific values, which depend on the processor
and the bit version of the operating system.
System Fonts: The list of fonts contains 90 to 320 randomly chosen fonts from the list of previously ob-
served fonts (i.e., from the configuration server), along with the fonts that are shipped with the specific
Windows version. Therefore, only realistic font names will be observed by a fingerprinter.
Time and Date: The function getTimezoneOffset() is commonly used as a fingerprinting feature. In order
to maintain consistency, we change the time zone offset along with all other time and date information
retrievable by the Date class.

6.3 Canvas Anti-Fingerprinting

Existing canvas anti-fingerprinting tools manipulate the canvas readout functions toDataURL() and
getImageData() so that random noise is added in order to prevent fingerprinting. As researchers noted
[75], it is not suffice to add random noise whenever image data is requested from the canvas. Fin-
gerprinters can detect this noise through subsequent identical function calls and comparing the results.
Various strategies could be applied to counter the detection of modifying getImageData() or toDataURL(),
but we argue that any approach would face the common problem of detectability (see the detailed de-
scription in Section 6.3.1). In contrast, in our approach we modify the rendering of the canvas itself, and
always perform the same modification for the entire browsing session.

108 6 Robust Browser Fingerprinting Protection

6.3.1 Weaknesses in Counter Detection Strategies of Canvas Manipulation

Although the below described strategies could be applied to hide the manipulation of toDataURL() or
getImageData(), the weaknesses that may lead to their detection still exist:

(1) One may store hashes of previously generated canvases along with their modified version for the
duration of a browser session. As soon as an image with the same hash is requested, the previous mod-
ification of the image is returned to prevent the detection of differences. Yet, this approach would be
detectable if a fingerprinter would add a localized change to the canvas and only compare non-effected
parts to a previously returned output. Since this approach calculates the hash of the overall image, a
new modification is applied causing the hash to change, unmasking the anti-fingerprinting measures.
(2) To circumvent the comparison of localized changes, an anti-fingerprinting algorithm could modify
the localized changes and copy the old modification of those parts that are exactly the same. Still, the
problem exists if many different changes are added and the fingerprinter would compare a partial hash
of those areas.
(3) In order to avoid the detectability of small modifications, an algorithm could store all distinct can-
vases of a session. When a new canvas is about to be manipulated, all areas of similarity of prior canvases
need to be re-placed with their respective recorded images. Newly observed areas would be then modi-
fied separately with random noise. Again, this approach could be detectable when a fingerprinting script
would render the same image information twice on one image. If the image was new to the algorithm,
it would randomize both parts differently.

6.3.2 Robust Canvas Fingerprinting Protection

Instead of randomly manipulating the canvas readout functions toDataURL() or getImageData(), DCB
deterministically changes the canvas rendering function CanvasRenderingContext2D::drawTextInternal()

directly for each browsing session. This function is using fillText() and strokeText(), which covers all
known canvas fingerprinting approaches. Moreover, the approach can be applied to new rendering
functions used for fingerprinting.

We use the random session identifier, generated at Chromium startup, to steer the modifications. Due
to the randomness of the session identifier, it is guaranteed that fillText() returns deterministic values
during a browser session but different ones in subsequent browser sessions. Figure 6.2 illustrates the
process. When the internal method for handling fillText() requests is called, we first backup the image
buffer (step 1), and wait until the function has finished rendering text (as part of the fingerprinting
process) into the buffer (step 2). In the next step we compare the previously saved image data with the
new image data in the buffer and store the positions of every pixel that has changed (step 3). In the next
step we apply the image manipulation algorithm (step 4) as described in the next paragraph. Finally, the
image data is returned (step 5).

Step 1 Step 2 Step 3 Step 4 Step 5 | c=3 Step 5 | c=50

Figure 6.2: Canvas processing algorithm.

6.3 Canvas Anti-Fingerprinting 109

6.3.3 Image manipulation algorithm

The algorithm is implemented in C++, since native functions will render canvas elements faster8. The
image manipulation algorithm works on a per-pixel basis, and is only applied to pixels that are close to a
color border; i.e., to pixels where its top, right, left, and bottom neighbor do not share the same values.
We encode a pixel p as a triple (r, g, b, a), where r, b, g, a are the red, green, blue, and alpha values
r, g, b, a ∈ {0,..., 255}. We modify p to p′ by adding an offset to r, g, b. We first concatenate r, g, b and
a with the pseudo random session identifier s generated at startup, apply the SHA256 hash, and call the
result t. The offset is computed by taking subsequent blocks of 20 characters from t modulo a constant
c, which is by default set to 3. Then, for each r, g, b we either add or subtract the offset depending on
whether their value was above or below 128, resulting in p′.

Note that the image manipulation is deterministic and not visible to the user (using the default setting
c = 3). Therefore, it is not possible for fingerprinters to detect this strategy and to remove or subtract
any modification from the canvas to reconstruct the original image, like suggested in [78]. Using high
values for c, for example c = 50, is not necessary, as it does not increase the effectiveness of the algorithm
and will only make the changes more visible. Assuming a canvas with 1806 pixels, containing a total
of 1030 different colors, and using the standard value of c = 3, we already get 31030 ≈ 2.722 × 10491

possible combinations in changing the pixel values. As shown in Section 6.4.1, this is enough to prevent
fingerprinting.

Mathematic description of the Canvas image manipulation algorithm:

c = 3

p ∈ P, P = (r, g, b, a), r, g, b, a ∈ x |0≤ x ≤ 255

s ∈ S, S = (ci)
64
i=1

, ci ∈ 0, 1, ...9∪ ′A′,′ B′, ...,′ F ′

SHA256(x) : (x i)
n
i=0
→ S

Hex2Dex(x) : 0, 1, ...9∪ A, B, ...F → 0, 1..., 15

i)

t = SHA256(r1, r2, r3, g1, g2, g3, b1, b2, b3, s1, s2, ..., s64),

r1 = ⌊
r

100
⌋, r2 = ⌊

r−r1×100

10
⌋, r3 = ⌊r − 100r1 − 10r2⌋

g1 = ⌊
g

100
⌋, g2 = ⌊

g−g1×100

10
⌋, g3 = ⌊g − 100g1 − 10g2⌋

b1 = ⌊
b

100
⌋, b2 = ⌊

b−b1×100

10
⌋, b3 = ⌊b− 100r1 − 10b2⌋

ii)

ro f f set = (
∑20

i=1
(t i))modc

go f f set = (
∑40

i=21
(t i))modc

bo f f set = (
∑60

i=41
(t i))modc

iii)

r ′ =

§

r + ro f f set , r < 128

r − ro f f set , r ≥ 128
g ′ =

§

g + go f f set , g < 128

g − go f f set , g ≥ 128

b′ =

§

b+ bo f f set , b < 128

b− bo f f set , b ≥ 128

p′ = (r ′, g ′, b′, a)

6.4 Evaluation

We tested DCB with both strategies N : 1 (many browser, one configuration) and 1 : N (one browser,
many configurations) for its effectiveness against real world fingerprinters. In addition, we also evalu-

8 A JavaScript implementation would also be possible. However, as noted before, JavaScript CallBacks are detectable and
can potentially be circumvented.

110 6 Robust Browser Fingerprinting Protection

ated our canvas anti-fingerprinting strategy independently from the other features to show the robustness
and practicality of our approach.

6.4.1 1:N – One Browser, Many Configurations

The goal of the 1 : N strategy is to establish on each browser startup a completely new configuration
(fingerprint) so that fingerprinters will not be able to re-identify the user in the next browser session. In
addition, the strategy shall guarantee realistic settings and an unchanged user experience on the web.
We examined the effectiveness of DCB running in 1 : N mode by analyzing the reported fingerprint of
three popular fingerprinters: FingerprintJS, Coinbase Payment Button, and BlueCava.

Experimental Set-Up:

We evaluated DCB under realistic conditions on a standard Windows PC. To automatically simulate
user behavior and the generation of a new (modified) configuration by DCB, we started the browser
10,000 times on specific web pages (described next) for each fingerprinter. In every session and for
every fingerprinter we saved and compared the generated fingerprint.

FingerprintJS is an open source fingerprinting library written in JavaScript. For retrieving Finger-
printJS fingerprints we created a web page that sends the fingerprint to a PHP script via an AJAX re-
quest. To derive the fingerprint, we chose three fingerprinting feature sets FS1-FS3 that were present
in an exemplary HTML file delivered along with the library. Feature set FS1 includes the features:
User Agent, navigator language, color depth, time zone offset, plug-in list, this.hasSessionStorage(),
this.hasLocalStorage(), window.indexedDB, typeof document.body.addBehavior, typeof undefined, typeof

window.openDatabase, navigator.cpuClass, navigator.platform, navigator.doNotTrack. FS2 uses the same
fingerprinting features along with canvas information. FS3 adds the screen resolution to the fingerprint
of FS1.

Coinbase generates a fingerprint on the client via JavaScript (its intended use is to protect Bitcoin
payments against fraud). We identified two functions, browserAnalytics() and fingerprint(), that Coinbase
uses to retrieve various information9 about a user’s computer. While browserAnalytics() returns the
information in plaintext, fingerprint() creates the actual fingerprint by hashing the collected information
using MD5. In order to compare the values of browserAnalytics(), we also hash them with MD5 and
store them along with the value returned by fingerprint() in the database. For this we isolated the
fingerprinting code from the Coinbase website and applied it on our own website.

BlueCava is a top 5 fingerprinter [179] that calculates its fingerprint on the server side using a large
quantity of fingerprinting features10. However, it provides an opt-out page where the fingerprint of
the browser can be retrieved. We make use of this feature in our test and grab the fingerprint in an
automated manner by using JavaScript.

Fingerprint Robustness of BlueCava:

Eckersley [46] suggested that a fingerprinter might easily compensate changes in some of the used
features. In order to evaluate the effectiveness of our strategies, we first analyzed the robustness of
fingerprints against manual configuration changes. For this experiment we used BlueCava, since it scans
a large set of fingerprinting features.

We set up a virtual machine running Windows 7 and installed Google Chrome version 34. We then
installed a set of 2000 fonts (BlueCava uses font probing with Flash and JavaScript [30]) and started
Chrome in private mode to retrieve the fingerprint from BlueCava’s opt-out page. To estimate the ro-
bustness to changing fingerprint features, we compared the fingerprints on random system font changes,
by adding 5 fonts, then deleting 173 fonts. In all cases the fingerprint was identical. The fingerprint

9 https://coinbase.com/assets/application.js
10 http://ds.bluecava.com/v50/AC/BCAC5.js

6.4 Evaluation 111

https://coinbase.com/assets/application.js
http://ds.bluecava.com/v50/AC/BCAC5.js

Table 6.1: Resulting fingerprints on evaluating 1:N strategy in 10,000 browser sessions [higher is better],

and N:1 on 12 systems [lower is better].

Fingerprints Bluecava FingerprintJS Coinbase Canvas

in strategy FS1 FS2 FS3 FP1 FP2 script

1:N 10,000 9,910 10,000 9,992 10,000 10,000 10,000
N:1 1 1 2 1 7 8 N/A

changed after deleting all fonts apart from the standard system fonts and additionally disabling four of
Chrome’s standard plug-ins (not Flash). This indicates that BlueCava’s fingerprint seems to be robust to-
wards changes of a user’s system configuration, making it a good benchmark to evaluate the effectiveness
of our 1 : N strategy.

Canvas Fingerprinting Set-Up:

We implemented our countermeasures against canvas fingerprinting in conjunction with the 1 : N

strategy. We isolated the canvas fingerprinting script of AddThis11 (a popular fingerprinter [57]), im-
plemented it on our website and examined the reported fingerprints in an extensive study. In a run
of 10,000 browser sessions we stored every generated fingerprinting canvas image as MD5 hash in our
database. To create the rendered image, the canvas fingerprinting function uses fillText(), rendering text
with the fallback font.

Results

Table 6.1 presents the effectiveness of our 1 : N strategy in creating distinct fingerprints. For both
BlueCava and Coinbase, every fingerprint in the set of 10,000 fingerprints of different DCB browser
sessions turned out to be unique. As the fingerprint change protection of BlueCava overcame the course
of all 10,000 browser sessions, it would have been impossible for BlueCava to track DCB users over
consecutive browser sessions.

On FingerprintJS we recorded 99 duplicates on two out of three tested feature sets. For the features set
FS1, 88 fingerprints occurred twice and one fingerprint occurred three times. We explain this behavior
by the small amount of features that FingerprintJS collects to generate the fingerprint. FS3, which is an
extension of FS1, additionally using the computer’s screen resolution, produced only nine duplicates, as
it uses more fingerprinting features that can be modified by DCB. In practice, if a fingerprinter uses a
smaller fingerprint feature set, the fingerprint becomes less reliable and also less unique, as can be seen
in column FS1 and FS3. Note that FingerprintJS collects no information about the system fonts, which
normally contributes greatly to a fingerprint’s entropy and would otherwise produce a unique fingerprint
like for FS2.

Further, FS2, which adds HTML 5 canvas information to FS1’s fingerprinted information, resulted
in a set of 10,000 unique fingerprints. This is due to our canvas fingerprinting protection mechanism
described in Section 6.3.2. In order to assess the effectives of our strategy against canvas fingerprinting
we also applied a separate test run of canvas specific fingerprinting as described in Section 6.4.1.

It turned out that every single fingerprinting image in our set of 10,000 browser sessions was unique
(Table 6.1, column Canvas). Therefore, our strategy against canvas fingerprinting is highly effective, as
duplicate fingerprints are nearly impossible (see Section 6.3.2).

Preliminary Conclusion:

The non-commercial open source library FingerprintJS produced over 99% unique fingerpints in
10,000 browser sessions. The commercial fingerprinting scripts of Coinbase and BlueCava produced

11 http://ct1.addthis.com/static/r07/core130.js

112 6 Robust Browser Fingerprinting Protection

http://ct1.addthis.com/static/r07/core130.js

100% unique fingerprints in the run of 10,000 browser sessions. More important, even though BlueCava
is applying means to compensate for fingerprint changes, our 1 : N strategy produced changes that were
large enough to break out of these compensation mechanisms. Therefore, we can conclude that our
1 : N strategy is highly effective against long-term traceability, as a fingerprint cannot be used to identify
a user over consecutive browser sessions. In addition, we ensure website usability through automatic
Flash and canvas anti-fingerprinting protection mechanisms without disabling those features. We also
manually verified the perfect functionality of the top 20 ranked Alxa.com websites.

6.4.2 N:1 – Many Browsers, One Configuration

The N : 1 strategy aims at decreasing the surprisal of observing a browser instance by increasing the
number of browsers sharing the same configuration. Therefore, evaluating this strategy required the
execution of DCB on several systems with varying configurations. As above, we tested the N : 1 strategy
by matching fingerprints generated by the three introduced fingerprinters.

Experimental Set-Up:

We installed our DCB on ten virtual machines (VM) and on two physical computers as a reference.
Since we wanted to guarantee that these systems shared the same configuration group, we configured
all systems to have the same operating system (Windows 7, Home Premium 32 bit or Professional 64 bit
with Service Pack 1), and set the same browser language. We deliberately prepared different VMs, by
installing various programs, including different office suites, PDF readers and other software. After the
installation we observed that up to 105 additional fonts were installed, with an average of 22 fonts per
virtual machine, and up to ten new browser plug-ins. In addition, we added another 25 distinct fonts for
every VM, chose different screen resolutions, and selected various time zones. Then, we executed DCB
in N : 1 mode on all 12 systems and tested it separately against each fingerprinter (BlueCava, Coinbase,
FingerprintJS) and the canvas fingerprinting script presented in Section 6.4.1.

Results

Table 6.1 summarizes the results. For BlueCava as well as the feature set FS1 and FS3 on FingerprintJS
all 12 systems generated the same fingerprint, as intended. FS2, which adds the canvas element, gen-
erated one indistinct fingerprint on one of the PCs, since the canvas protection mechanism can not be
shared between DCB browsers and is therefore not implemented in N : 1. For the Coinbase script our
algorithm performed not as good as expected. Only 46% of the systems shared the same fingerprint.
This could be explained by the fact that Coinbase applies less sophisticated compensation mechanism
against configuration changes.

We can conclude that the N : 1 strategy is prone to additional fingerprinting features that might not
be covered by the implementation, as additional entropy for distinguishing between otherwise equal
configurations might be introduced. Therefore, this requires to constantly consider new fingerprinting
features.

6.4.3 Comparison of Anti-Fingerprinting Features

Finally, we show in Table 6.2 the advantages of DCB by comparing it against other anti-fingerprinting
tools: Tor Browser [303], FireGloves [51], FPGuard [298], FPBlock [297], PriVaricator [179].

We were able to successfully overcome the weaknesses and flaws of existing anti-fingerprinting tools
and additionally implemented new Flash as well as canvas fingerprinting protection. For future work we
want to implement further functionality which by now are neither implemented in existing tools, nor
used by fingerprinters in the wild (mostly because of to limited reliability and network latency [295]).

6.4 Evaluation 113

Table 6.2: Comparison of fingerprinting feature coverage: PriVaricator (PV), FireGloves (FG), FPGuard

(FPG), FPBlock (FPB), Tor, DCB.

Feature Retrieval PV FG FPG FPB Tor DCB

Browser History Rend. timing attack Ø x ? x Ø Ø

Browser
JS engine x x x x x0 x
navigator.appVersion x Ø1 Ø2 x Ø3 Ø

Clock skew TCP/ICMP x x x x Ø4 x

Flash Version
Adope Flash x x Ø5 Ø5 Ø5 Ø

JavaScript x Ø1 x ? Ø3 Ø

Fonts
Using Flash x x Ø5 Ø5 Ø5 Ø

Using CSS Ø6 Ø6 Ø6 Ø6 Ø6 Ø

HTML5 canvas x x x x Ø6 Ø

IP/Network info TCP/IP stack x x x x Ø x

Language
HTTP header x Ø1 ? Ø Ø3 Ø

JavaScript x Ø1 ? Ø Ø3 Ø

Math constants JavaScript x x x x x x
Mime types JavaScript Ø7 Ø7 Ø7 Ø7 Ø7 Ø

Plugins JavaScript Ø7 Ø7 Ø7 Ø7 Ø7 Ø

Canvas JavaScript x x Ø8 Ø8 Ø2 Ø

Screen height JavaScript x Ø1 Ø2 Ø Ø3 Ø

Screen width JavaScript x Ø1 Ø2 Ø Ø3 Ø

Screen color depth JavaScript x x Ø2 Ø Ø3 Ø

Screen pixel depth JavaScript x x Ø2 Ø Ø3 Ø

Screen resolution
Adobe Flash x x Ø5 Ø5 Ø5 Ø

JavaScript x Ø1 Ø2 Ø Ø3 Ø

Time & date JavaScript x x x x Ø3 Ø

Time zone offset JavaScript x Ø1 x Ø Ø3 Ø

User Agent
HTTP header x Ø1 ? Ø Ø3 Ø

JavaScript x Ø1 Ø2 Ø Ø3 Ø

Windows version
Adobe Flash x x Ø5 Ø5 x5 Ø

User Agent x Ø1 Ø2 Ø Ø3 Ø

0) Protection only implemented for a subset of functions. 1) Randomization through constantly
changing unrealistic system parameters causes detectability. 2) Expects user approval. Inexperienced
users might reveal data to trackers. 3) Blocks access or sets parameter to a fixed value. This causes
usability constraints and can be used as fingerprintable information. 4) IP address is hidden due to
default usage of an anonymity network. 5) Blocks Flash and impedes the usability of websites. Flash
can be activated by the user and become a source of fingerprintable information. 6) It only limits font
probing. This can be circumvented by using dynamic generated iframs scanning for small amount
of fonts. 7) Randomly removes plug-ins or adds non existing plug-ins from/to plug-in list (causing
usability constraints and is detectable since plug-ins can still be instantiated). 8) Non-deterministic
usage by adding noise limits usability. This makes it detectable by creating multiple canvas outputs
in same browsing session by checking for differences.

6.5 Summary

We showed flaws in existing anti-fingerprinting tools and presented new approaches preventing finger-
printing. Futher, we implemented and evaluated the effectiveness of two strategies N : 1 and 1 : N , which
enhance browser/system fingerprinting protection with the first built-in Flash fingerprinting protection

114 6 Robust Browser Fingerprinting Protection

without deactivating Flash. The N : 1 strategy aims at decreasing the chance of being uniquely identifi-
able in a large set of DCB browser instances by using the same browser configuration for all users. The
1 : N strategy aims at breaking the fingerprint by applying major browser/system configuration changes
using real word properties every time a new browser session is started.

Moreover, we demonstrated the effectiveness of the first robust solution against canvas fingerprinting
that, in contrast to other approaches, does neither block nor randomly manipulate any canvas function-
ality used to retrieve the rendered image data.

6.5 Summary 115

7 Conclusion and Future Work

The results of this work show the risks, threats and implications of web tracking. We demonstrate that the
usage of personal data gathered by third-parties is not limited to personalized ads. For example, sensitive
private user data can also be used to estimate the private credit score, affect the personal health insurance
contract, or alter the prize of goods displayed for specific users. Since the personal data are stored on
long term, we can not predict all further use cases invading the users personal life. In our description of
the web tracking ecosystem, including the market and stakeholder, we present the tracking techniques
used in the wild as well as available protection mechanisms along with their weaknesses. By crawling
the 1,634 mostly visited websites in Germany for 16 months, our long term tracking analysis shows that
trackers are able to follow the users on 90% of the scanned websites. Moreover, we demonstrate that the
top trackers such as Google and Facebook are able to gather user data on 25% of the top 40,000 global
ranked websites. Tackling this problem, we implemented an automated system to detect and protect
against the most common tracking elements used. Those include cookies, web-beacons, JavaScripts,
HTML5 LokalStorage, Flash LSO, and iFrames. The list of resulting tracking domains has been used
successfully within the ad-blocking feature TPL in the Internet Explorer. In addition, a publicly available
website www.trackyourtracker.de was set up for many years to provide users an interactive tool showing
how many trackers within the 1,634 mostly visited websites in Germany can track the user’s online
behavior.

Further, we crawled the top 50,000 global ranked websites for several months to evaluate the tracking
technique using redirect links. By analyzing 1.2 million redirect traces we were able to classify the
top redirect trackers and found that 11.6% domains use redirect tracking. To visualize our findings
and make the data publicly available, we implemented an interactive web tool showing the clusters of
redirect trackers in a network graph. Furthermore, we compare different tracking classification methods
and provide possible protection strategies against redirect tracking. Since tracking elements are placed
as first-party on a redirect page, third-party add-ons will not help against this kind of tracking. These
contribution fulfilled our first research focus to systematically analyze and classify web tracking.

The evaluation of available tracking protection mechanisms was the second research focus of this
thesis. We showed for example, that ad-blocking tools still track users by not blocking certain tracking
domains after making paid contracts with trackers. Other protection mechanisms, such as the private
browsing mode, are not sufficient to stop tracking, since they still allow trackers to record the users’
Internet activity and collect privacy sensitive data throughout the entire browsing session.

In order to prevent the leakage of privacy sensitive user data, our third and fourth research focus was
to design a reference architecture as well as develop an automated test environment under real-world
conditions to evaluate it’s effectiveness. Therefor, we first extended the Chrome browser with our Site

Isolation feature to locally store the website’s state into separate containers. Here, we introduce a novel
tracking classification, calculating the entropy of the information content of a website’s cookies. We
then evaluated our new cookie isolation concept Site Isolation on 1.6 million websites, showing that our
prototype can reduce tracking by 44%. Compared to blocking third-party cookies, Site Isolation is more
user-friendly and does not depend on the definition of what exactly constitutes a third-party cookie.
Within the Site Isolation prototype we also improved the privacy for private browsing and implemented
a cookie timeout feature. Moreover, with Site Isolation the user benefits from the security features
preventing CORS, CSRF, click-jacking, and limiting the effects of cache-based tracking, cache-timing
attacks as well as rendering engine hijacking.

Furthermore, we designed and evaluated in this work a robust approach to protect users against the
web tracking technique browser fingerprinting, implemented in our Disguised Chromium Browser (DCB).
This is the first browser prototype which effectively protects against Flash as well as canvas fingerprinting
without completely deactivating these features. We evaluate our solution against real world fingerprint-

117

ing tools and demonstrate its protection against fingerprinting by creating unique fingerprints in over
99% of 70,000 browser sessions. Comparing our Disguised Chromium Browser to five anti-fingerprinting
tools, we show that fingerprinters cannot notice the presence of our counter-fingerprinting techniques
due to enhanced protection mechanisms inside the browser itself and the usage of real world parameters.

Concluding our research, we see that protecting the privacy of web users against tracking by just
blocking third-party content has become a cat-and-mouse game. Continuously changing tracking meth-
ods make it difficult to block all third-party content. On the other hand, it is necessary to accept some
third-party content to ensure website functionality. Furthermore, since websites include scripts to detect
ad-blocking tools, the users’ need to deactivate them to access the website. In this work we present
implemented concepts for the automatic isolation of the locally stored website state into separate con-
tainers as well as a robust browser fingerprinting protection covering most commonly used tracking
techniques. This eliminates the ability of trackers to re-identify users across different sites, by isolating
HTTP cookies, HTML5Web Storage, Indexed DB, and the browsing cache.

Future work:

A future research should analyze http traces, embedded (third-party) website elements and JavaScripts
for tracking patterns in order to identify new tracking techniques. Here, future work should focus on
detection methods based on machine learning algorithms. By improving the crawler with new detection
methods, it should be possible to automatically detect tracking elements without any kind of human
support. Especially the identification of new browser fingerprinting features is necessary to improve
our anti-fingerprinting strategies. As we presented in this work, various browser as well as computer
properties can be accesses through the browser, JavaScripts or other plug-ins such as Flash or Java. New
browser features or techniques to identify the user for example by keyboard type patterns are useful for
trackers to (re-)identify the user and need to be blocked. Furthermore, in order to improve our anti-
fingerprinting strategy against font probing, we plan to use more than one strategy in replacing fonts.
This makes sure that a fingerprinter cannot check for repetitive font sizes in order to detect the strategy.
We could achieve this by using font size data of fonts whose existence has been hidden or by installing
an additional set of fonts. Regarding the manipulation of Flash binaries, future research needs to be
done implementing our manipulation functionality directly in the browser rather than using an external
Python script. In a future study it would also be interesting to examine whether fingerprint databases of
fingerprinters aiming at detecting configuration changes could be poisoned by a large set of false data,
caused by an intensive usage of our 1 : N implementation.

Using our crawling architecture for further long term studies would help to display active tracking
techniques. This should point out which methods are most effective and probably less covered by pro-
tection mechanisms. In addition, there is a need of evaluating which privacy sensible data leads to more
precise personalized ads in real-time bidding. Better insights would help to develop more sophisticated
protection mechanisms.

Moreover, evaluating the effect of the GDPR (General Data Protection Regulations - making the user
aware of third-party elements on websites in the European Union), would be an interesting future re-
search focus. Here, one should evaluate if all third-party elements are presented to the user and can be
deactivated. Further, an analysis of the user behavior would be interesting, how many users accept the
GDPR terms without knowing the consequences. We also see a research focus on the effects of newly
introduces tracking-protection methods in the Firefox and Safari browser.

While our solution is resistant to various tracking techniques, we have no means to prevent tracking via
IP addresses. This should be solved by using an anonymity network such as Tor or by using proxy servers.
Another opportunity for future work is the continuous improvement of tracking countermeasures and the
integration of our solutions in all common browsers. Many of the improvements we have mentioned can
probably be implemented using the add-on API of Firefox or Chrome and similar APIs of other browsers.
Also, there is a need to develop a proper mobile browser protection, since the API, access rights as well
as user interfaces are different to the one we used in the Chromium browser.

118 7 Conclusion and Future Work

Bibliography

[1] M. Kosinski, D. Stillwell, and T. Graepel, “Private traits and attributes are predictable from digital
records of human behavior,” Proceedings of the National Academy of Sciences, vol. 110, no. 15,
pp. 5802–5805, 2013.

[2] J. Angwin and J. Valentino-DeVries, “Race Is On to ’Fingerprint’ Phones, PCs.” http://www.wsj.
com/articles/SB10001424052748704679204575646704100959546, 2010.

[3] P. Papadopoulos, N. Kourtellis, and E. P. Markatos, “Cookie synchronization: Everything you al-
ways wanted to know but were afraid to ask,” CoRR, vol. abs/1805.10505, 2018.

[4] C. Cadwalladr and E. Graham-Harrison, “Revealed: 50 million Facebook profiles harvested for
Cambridge Analytica in major data breach.” https://www.theguardian.com/news/2018/mar/

17/cambridge-analytica-facebook-influence-us-election, 2018.

[5] A. Chaabane, G. Acs, and M. A. Kaafar, “You Are What You Like! Information Leakage Through
Users’ Interests,” in NDSS Symposium 2012 - 19th Annual Network and Distributed System Security

Symposium, (San Diego, United States), pp. 1–14, Feb. 2012.

[6] J. Su, A. Shukla, S. Goel, and A. Narayanan, “De-anonymizing web browsing data with social
networks,” in Proceedings of the 26th International Conference on World Wide Web, WWW ’17,
(Republic and Canton of Geneva, Switzerland), pp. 1261–1269, International World Wide Web
Conferences Steering Committee, 2017.

[7] A. D. Miyazaki and A. Fernandez, “Consumer perceptions of privacy and security risks for online
shopping,” Journal of Consumer Affairs, vol. 35, no. 1, pp. 27–44, 2001.

[8] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the Beast: Diverting modern web
browsers to build unique browser fingerprints,” in 37th IEEE Symposium on Security and Pri-

vacy (S&P 2016), (San Jose, United States), 5 2016.

[9] J. Brookman, P. Rouge, A. Alva, and C. Yeung, “Cross-device tracking: Measurement and disclo-
sures,” Proceedings on Privacy Enhancing Technologies, vol. 2017, no. 2, pp. 133–148, 2017.

[10] S. E. Oh, S. Li, and N. Hopper, “Fingerprinting keywords in search queries over tor,” Proceedings

on Privacy Enhancing Technologies, vol. 2017, no. 4, pp. 251–270, 2017.

[11] M. S. Siddiqui, “Evercookies: Extremely persistent cookies,” IJCSIS, 2011.

[12] J. R. Mayer and J. C. Mitchell, “Third-Party Web Tracking: Policy and Technology,” IEEE Sympo-

sium on Security and Privacy, 2012.

[13] F. Roesner, T. Kohno, and D. Wetherall, “Detecting and Defending Against Third-Party Tracking on
the Web,” in Usenix NSDI, 2012.

[14] A. Narayanan and V. Shmatikov, “How To Break Anonymity of the Netflix Prize Dataset,” CoRR,
2006.

[15] J. Angwin and T. Mc Ginty, “Sites feed personal details to new track-
ing industry.” The Wall Street Journal, http://online.wsj.com/article/

SB10001424052748703977004575393173432219064.html, July 30, 2010.

119

http://www.wsj.com/articles/SB10001424052748704679204575646704100959546
http://www.wsj.com/articles/SB10001424052748704679204575646704100959546
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
http://online.wsj.com/article/SB10001424052748703977004575393173432219064.html
http://online.wsj.com/article/SB10001424052748703977004575393173432219064.html

[16] K. Lobosco, “Facebook friends could change your credit score.” http://money.cnn.com/2013/

08/26/technology/social/facebook-credit-score/index.html, 2013.

[17] The Economist, “Marketing information offers insurers another way to analyse risk.” http://www.
economist.com/node/21556263, 2012.

[18] S. Gittelman, V. Lange, C. A. Gotway Crawford, C. Okoro, E. Lieb, S. Dhingra, and E. Trimarchi,
“A new source of data for public health surveillance: Facebook likes,” Journal of Medical Internet

Research, 2015.

[19] T. Vissers, N. Nikiforakis, N. Bielova, and W. Joosen, “Crying Wolf? On the Price Discrimination of
Online Airline Tickets,” in HotPETs), 2014.

[20] J. Mikians, L. Gyarmati, V. Erramilli, and N. Laoutaris, “Detecting price and search discrimination
on the internet,” in HotNets, 2012.

[21] C. Duhigg, “How Companies Learn Your Secrets.” http://www.nytimes.com/2012/02/19/

magazine/shopping-habits.html?pagewanted=all&_r=0, 2012. Accessed on 2013-10-25.

[22] M. Schneider, M. Enzmann, and M. Stopczynski, “Web-tracking-report 2014,” Tech. Rep. SIT-TR-
2014-01, Fraunhofer-Institut für Sichere Informationstechnologie, Feb. 2014.

[23] M. Stopczynski and M. Zugelder, “Reducing user tracking through automatic web site state iso-
lations,” in Information Security: 17th International Conference, ISC 2014, Hong Kong, China,

October 12-14, 2014., pp. 309–327, Springer International Publishing, 2014.

[24] B. Krishnamurthy, F. Park, and C. E. Wills, “Privacy Diffusion on the Web : A Longitudinal Perspec-
tive,” in WWW, pp. 541–550, ACM, 2009.

[25] G. Merzdovnik, M. Huber, D. Buhov, N. Nikiforakis, S. Neuner, M. Schmiedecker, and E. Weippl,
“Block me if you can: A large-scale study of tracker-blocking tools,” in 2017 IEEE European Sym-

posium on Security and Privacy, pp. 319–333, 4 2017.

[26] S. Baviskar and P. S. Thilagam, “Protection of Web User’s Privacy by Securing Browser from Web
Privacy Attacks,” IJCTA, 2011.

[27] A. Karaj, S. Macbeth, R. Berson, and J. M. Pujol, “Whotracks.me: Monitoring the online tracking
landscape at scale,” CoRR, vol. abs/1804.08959, 2018.

[28] T. Li, H. Hang, M. Faloutsos, and P. Efstathopoulos, “Trackadvisor: Taking back browsing privacy
from third-party trackers,” in Passive and Active Measurement - 16th International Conference, PAM

2015, New York, NY, USA, March 19-20, 2015, Proceedings, pp. 277–289, 2015.

[29] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site measurement and analysis,”
in Proceedings of ACM CCS 2016, 2016.

[30] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna, “Cookieless Mon-
ster: Exploring the Ecosystem of Web-based Device Fingerprinting,” IEEE Symposium on Security

and Privacy, 2013.

[31] B. Liu, A. Sheth, U. Weinsberg, J. Chandrashekar, and R. Govindan, “Adreveal: Improving trans-
parency into online targeted advertising,” in Proceedings of the Twelfth ACM Workshop on Hot

Topics in Networks, HotNets-XII, (New York, NY, USA), pp. 12:1–12:7, ACM, 2013.

[32] nugg.ad AG, “Predictive Behavioral Targeting.” https://www.nugg.ad/en/

smart-audience-platform/audience-toolbox.html, 2016. Accessed on 2016-02-19.

120 Bibliography

http://money.cnn.com/2013/08/26/technology/social/facebook-credit-score/index.html
http://money.cnn.com/2013/08/26/technology/social/facebook-credit-score/index.html
http://www.economist.com/node/21556263
http://www.economist.com/node/21556263
http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html?pagewanted=all&_r=0
http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html?pagewanted=all&_r=0
https://www.nugg.ad/en/smart-audience-platform/audience-toolbox.html
https://www.nugg.ad/en/smart-audience-platform/audience-toolbox.html

[33] A. Lambrecht and C. Tucker, “When does retargeting work? information specificity in online
advertising,” Journal of Marketing Research, vol. 50, no. 5, pp. 561–576, 2013.

[34] J. M. Carrascosa, J. Mikians, R. Cuevas, V. Erramilli, and N. Laoutaris, “I always feel like some-
body’s watching me: Measuring online behavioural advertising,” in Proceedings of the 11th ACM

Conference on Emerging Networking Experiments and Technologies, CoNEXT ’15, (New York, NY,
USA), pp. 13:1–13:13, ACM, 2015.

[35] C. Castelluccia, M.-A. Kaafar, and M.-D. Tran, “Betrayed by your ads!,” in Privacy Enhancing Tech-

nologies (S. Fischer-Hübner and M. Wright, eds.), (Berlin, Heidelberg), pp. 1–17, Springer Berlin
Heidelberg, 2012.

[36] M. Barbaro and T. Zeller, Jr., “A Face Is Exposed for AOL Searcher No. 4417749.”
http://www.nytimes.com/2006/08/09/technology/09aol.html?ex=1312776000&en=

f6f61949c6da4d38&ei=5090, 2006. Accessed on 2013-10-25.

[37] P. Ohm, “Broken Promises of Privacy: Responding to the Surprising Failure of Anonymization,”
UCLA Law Review, 2009.

[38] P. G. Leon, B. Ur, R. Balebako, L. F. Cranor, R. Shay, and Y. Wang, “Why Johnny Can’t Opt Out: A
Usability Evaluation of Tools to Limit Online Behavioral Advertising,” CHI, 2012.

[39] R. N. Timothy Libert, Lucas Graves, “Changes in third-party content on european news websites
after gdpr,” Reuters Institute, 2018.

[40] X. Hu and N. Sastry, “Characterising third party cookie usage in the EU after GDPR,” CoRR,
vol. abs/1905.01267, 2019.

[41] J. Sørensen and S. Kosta, “Before and after gdpr: The changes in third party presence at public
and private european websites,” in The World Wide Web Conference, WWW ’19, (New York, NY,
USA), pp. 1590–1600, ACM, 2019.

[42] B. Schneier, “The Internet is a surveillance state.” http://edition.cnn.com/2013/03/16/

opinion/schneier-internet-surveillance, 2013. Accessed on 2013-10-25.

[43] E. Steel and G. A. Fowler, “Facebook in Privacy Breach.” http://online.wsj.com/article/

SB10001424052702304772804575558484075236968.html, 2010. Accessed on 2013-10-25.

[44] C. Scientist and T. Italia, “Flash Cookies and Privacy II: Now with HTML5 and ETag Respawning,”
World Wide Web Internet And Web Information Systems, 2009.

[45] M. Mulazzani and P. Reschl, “Fast and reliable browser identification with javascript engine fin-
gerprinting,” W2SP, 2013.

[46] P. Eckersley, “How unique is your web browser?,” PETs, 2010.

[47] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy, “Fp-stalker: Tracking browser fingerprint
evolutions,” in 2018 IEEE Symposium on Security and Privacy (SP), pp. 728–741, 5 2018.

[48] N. Anderson, “Firm uses typing cadence to finger unauthorized users.” http://arstechnica.

com/tech-policy/2010/02/firm-uses-typing-cadence-to-finger-unauthorized-users,
2010. Accessed on 2013-10-30.

[49] K. Mowery and H. Shacham, “Pixel Perfect: Fingerprinting Canvas in HTML5,” in W2SP, IEEE
Computer Society, 2012.

Bibliography 121

http://www.nytimes.com/2006/08/09/technology/09aol.html?ex=1312776000&en=f6f61949c6da4d38&ei=5090
http://www.nytimes.com/2006/08/09/technology/09aol.html?ex=1312776000&en=f6f61949c6da4d38&ei=5090
http://edition.cnn.com/2013/03/16/opinion/schneier-internet-surveillance
http://edition.cnn.com/2013/03/16/opinion/schneier-internet-surveillance
http://online.wsj.com/article/SB10001424052702304772804575558484075236968.html
http://online.wsj.com/article/SB10001424052702304772804575558484075236968.html
http://arstechnica.com/tech-policy/2010/02/firm-uses-typing-cadence-to-finger-unauthorized-users
http://arstechnica.com/tech-policy/2010/02/firm-uses-typing-cadence-to-finger-unauthorized-users

[50] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens, and B. Preneel, “FPDetective:
Dusting the web for fingerprinters,” in CCS, 2013.

[51] K. Boda, Á. M. Földes, G. G. Gulyás, and S. Imre, “User tracking on the web via cross-browser
fingerprinting,” in Information Security Technology for Applications, pp. 31–46, Springer, 2012.

[52] K. Mowery and D. Bogenreif, “Fingerprinting information in JavaScript implementations,” W2SP,
2011.

[53] T. Bujlow, V. Carela-Español, J. Solé-Pareta, and P. Barlet-Ros, “Web tracking: Mechanisms, impli-
cations, and defenses,” CoRR, 2015.

[54] S. Li, M. Imani, and N. Hopper, “Measuring Information Leakage in Website Fingerprinting Attacks
and Defenses,” in Proceedings of ACM CCS 2018, 2018.

[55] T. Bujlow, V. Carela-Español, J. Solé-Pareta, and P. Barlet-Ros, “A survey on web tracking: Mecha-
nisms, implications, and defenses,” Proceedings of the IEEE, vol. 105, pp. 1476–1510, 8 2017.

[56] J. Mayer, “Tracking the Trackers: Microsoft Advertising.” http://cyberlaw.stanford.edu/

node/6715, 2011. Online.

[57] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and C. Diaz, “The web never forgets:
Persistent tracking mechanisms in the wild,” in Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security, CCS ’14, (New York, NY, USA), pp. 674–689, ACM,
2014.

[58] A. Mathur, J. Vitak, A. Narayanan, and M. Chetty, “Characterizing the use of browser-based block-
ing extensions to prevent online tracking,” in Fourteenth Symposium on Usable Privacy and Security

(SOUPS 2018), (Baltimore, MD), pp. 103–116, USENIX Association, 2018.

[59] S. Murdoch, M. Perry, and E. Clark, “Tor: Cross-origin fingerprinting unlinkabilit.” https://www.
torproject.org/projects/torbrowser/design/#fingerprinting-linkability, 2014. Ac-
cessed on 2014-11-30.

[60] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website fingerprinting in onion routing based
anonymization networks,” in Proceedings of the 10th Annual ACM Workshop on Privacy in the

Electronic Society, WPES ’11, (New York, NY, USA), pp. 103–114, ACM, 2011.

[61] Eyeo GmbH, “Allowing acceptable ads in Adblock Plus.” https://adblockplus.org/en/

acceptable-ads, 2014. Accessed on 2014-08-13.

[62] K. Garimella, O. Kostakis, and M. Mathioudakis, “Ad-blocking: A study on performance, privacy
and counter-measures,” in Proceedings of the 2017 ACM on Web Science Conference, WebSci ’17,
(New York, NY, USA), pp. 259–262, ACM, 2017.

[63] B. Shiller, J. Waldfogel, and J. Ryan, “The effect of ad blocking on website traffic and quality,” The

RAND Journal of Economics, vol. 49, no. 1, pp. 43–63, 2018.

[64] M. Malloy, M. McNamara, A. Cahn, and P. Barford, “Ad blockers: Global prevalence and impact,” in
Proceedings of the 2016 Internet Measurement Conference, IMC ’16, (New York, NY, USA), pp. 119–
125, ACM, 2016.

[65] R. Nithyanand, S. Khattak, M. Javed, N. Vallina-Rodriguez, M. Falahrastegar, J. E. Powles, E. D.
Cristofaro, H. Haddadi, and S. J. Murdoch, “Adblocking and counter blocking: A slice of the
arms race,” in 6th USENIX Workshop on Free and Open Communications on the Internet (FOCI 16),
(Austin, TX), USENIX Association, 2016.

122 Bibliography

http://cyberlaw.stanford.edu/node/6715
http://cyberlaw.stanford.edu/node/6715
https://www.torproject.org/projects/torbrowser/design/# fingerprinting-linkability
https://www.torproject.org/projects/torbrowser/design/# fingerprinting-linkability
https://adblockplus.org/en/acceptable-ads
https://adblockplus.org/en/acceptable-ads

[66] U. Iqbal, Z. Shafiq, and Z. Qian, “The ad wars: Retrospective measurement and analysis of anti-
adblock filter lists,” in Proceedings of the 2017 Internet Measurement Conference, IMC ’17, (New
York, NY, USA), pp. 171–183, ACM, 2017.

[67] M. H. Mughees, Z. Qian, and Z. Shafiq, “Detecting anti ad-blockers in the wild,” Proceedings on

Privacy Enhancing Technologies, vol. 2017, no. 3, pp. 130–146, 2017.

[68] M. Geuss, “Over 300 businesses now whitelisted on AdBlock Plus,
10play.” https://arstechnica.com/information-technology/2015/02/

over-300-businesses-now-whitelisted-on-adblock-plus-10-pay-to-play/, 2015.

[69] R. Bilton, “Ghostery: A Web tracking blocker that actu-
ally helps the ad industry.” http://venturebeat.com/2012/07/31/

ghostery-a-web-tracking-blocker-that-actually-helps-the-ad-industry, 2012.
Accessed on 2014-08-13.

[70] M. Koop, E. Tews, and S. Katzenbeisser, “In-depth evaluation of redirect tracking and link usage,”
Proceedings on Privacy Enhancing Technologies, vol. 2020, no. 4, pp. 394 – 413, 2020.

[71] P. Baumann, S. Katzenbeisser, M. Stopczynski, and E. Tews, “Disguised chromium browser: Robust
browser, flash and canvas fingerprinting protection,” in Proceedings of the 2016 ACM on Workshop

on Privacy in the Electronic Society, WPES ’16, (New York, NY, USA), pp. 37–46, ACM, 2016.

[72] C. Hoofnagle, A. Soltani, N. Good, D. Wambach, and M. Ayenson, “Behavioral advertising: The
offer you cannot refuse,” Harvard Law & Policy Review, vol. 6, no. 2, pp. 273–296, 2012.

[73] J. B. Kristen Purcell and L. Rainie, “Search engine use.” http://pewinternet.org/Reports/

2012/Search-Engine-Use-2012.aspx, 2012.

[74] TRUSTe and Harris Interactive, “Privacy and online behavioral advertising.” https://www.eff.

org/files/truste-2011-consumer-behavioral-advertising-survey-results.pdf, 2012.

[75] P. Stone, “Pixel Perfect Timing Attacks with HTML5.” White Paper, 2013. http://contextis.co.
uk/files/Browser_Timing_Attacks.pdf.

[76] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a distance: Website fingerprinting at-
tacks and defenses,” in Proceedings of the 2012 ACM Conference on Computer and Communications

Security, CCS ’12, (New York, NY, USA), pp. 605–616, ACM, 2012.

[77] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep Fingerprinting: Undermining Website
Fingerprinting Defenses with Deep Learning,” in Proceedings of ACM CCS 2018, 2018.

[78] D. Agrawal and C. C. Aggarwal, “On the design and quantification of privacy preserving data
mining algorithms,” PODS ’01, 2001.

[79] J. Parra-Arnau, D. Rebollo-Monedero, and J. Forne, “Measuring the privacy of user profiles in
personalized information systems,” Future Generation Computer Systems, vol. 33, pp. 53 – 63,
2014. Special Section on Applications of Intelligent Data and Knowledge Processing Technologies.

[80] M. Helft and T. Vega, “Retargeting ads follow surfers to other sites.” New York Times, http:

//www.nytimes.com/2010/08/30/technology/30adstalk.html?_r=0, August 29, 2010.

[81] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas, “Adnostic: Privacy preserv-
ing targeted advertising,” in NDSS, 2010.

Bibliography 123

https://arstechnica.com/information-technology/2015/02/over-300-businesses-now-whitelisted-on-adblock-plus-10-pay-to-play/
https://arstechnica.com/information-technology/2015/02/over-300-businesses-now-whitelisted-on-adblock-plus-10-pay-to-play/
http://venturebeat.com/2012/07/31/ghostery-a-web-tracking-blocker-that-actually-helps-the-ad-industry
http://venturebeat.com/2012/07/31/ghostery-a-web-tracking-blocker-that-actually-helps-the-ad-industry
http://pewinternet.org/Reports/2012/Search-Engine-Use-2012.aspx
http://pewinternet.org/Reports/2012/Search-Engine-Use-2012.aspx
https://www.eff.org/files/truste-2011-consumer-behavioral-advertising-survey-results.pdf
https://www.eff.org/files/truste-2011-consumer-behavioral-advertising-survey-results.pdf
http://contextis.co.uk/files/Browser_Timing_Attacks.pdf
http://contextis.co.uk/files/Browser_Timing_Attacks.pdf
http://www.nytimes.com/2010/08/30/technology/30adstalk.html?_r=0
http://www.nytimes.com/2010/08/30/technology/30adstalk.html?_r=0

[82] S. Ellis, “The future of retargeting, remarketing and remessaging.” Marketing Land, http://

marketingland.com/the-future-of-retargeting-remarketing-and-remessaging-7643, Au-
gust 29, 2012.

[83] A. Goldfarb, “What is different about online advertising?,” Review of Industrial Organization,
vol. 43, no. 1-2, pp. 1–15, 2013.

[84] M. Falahrastegar, H. Haddadi, S. Uhlig, and R. Mortier, “Tracking personal identifiers across the
web,” in Passive and Active Measurement (T. Karagiannis and X. Dimitropoulos, eds.), (Cham),
pp. 30–41, Springer International Publishing, 2016.

[85] S. Ward, “Web tracking has become a privacy time bomb.” https://usatoday30.usatoday.com/
tech/news/2011-08-03-internet-tracking-mobile-privacy_n.htm, 2011.

[86] eMarketer, “eMarketer Releases New Global Media Ad Spending Estimates.” emarketer.com/

content/emarketer-total-media-ad-spending-worldwide-will-rise-7-4-in-2018, 2018.

[87] campaign, “Group M unveils upbeat global adspend forecast for 2018.” https://www.

campaignlive.co.uk/article/group-m-unveils-upbeat-global-adspend-forecast-2018/

1451805, 2017.

[88] PWC, “Global entertainment and media outlook.” http://www.pwc.com/gx/en/industries/

entertainment-media/outlook/segment-insights/internet-advertising.html, 2015.

[89] eMarketer, “Google Will Take 55% of Search Ad Dollars Globally in 2015.” emarketer.com/

Article/Google-Will-Take-55-of-Search-Ad-Dollars-Globally-2015/1012294, 2015.

[90] A. Nanji, “Global Ad Spend Forecast by Medium and Region.” http://www.marketingprofs.com/
charts/2015/27999/2015-global-ad-spend-forecast-by-medium-and-region, 2015.

[91] D. Evans, “The online advertising industry: Economics, evolution, and privacy,” Journal of Eco-

nomic Perspectives, vol. 23, no. 3, pp. 37–60, 2009.

[92] S. Guha, B. Cheng, and P. Francis, “Challenges in measuring online advertising systems,” in 10th

ACM SIGCOMM Conference on Internet Measurement (IMC 2010), Proceedings, pp. 81–87, 2010.

[93] J. Harper, “It’s modern trade: Web users get as much as they give.” The Wall Street Journal,
http://online.wsj.com/article/SB10001424052748703748904575411530096840958.html#,
August 6, 2010.

[94] A. Goldfarb and C. Tucker, “Online advertising, behavioral targeting, and privacy,” Communica-

tions of the ACM, vol. 54, no. 5, pp. 25–27, 2011.

[95] J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and Z. Chen, “How much can behavioral targeting
help online advertising?,” in Proceedings of the 18th International Conference on World Wide Web,
WWW ’09, (New York, NY, USA), pp. 261–270, ACM, 2009.

[96] R. Carroll, “The alchemy of behavioral targeting.” http://www.destinationcrm.com/Articles/
PrintArticle.aspx?ArticleID=81719, April 13, 2012.

[97] J. Angwin, “The web’s new gold mine: Your secrets.” The Wall Street Journal, http://online.
wsj.com/article/SB10001424052748703940904575395073512989404.html, July 30, 2010.

[98] hootsuite, “Social Media Advertising Stats that Matter to Marketers in 2018.” https://blog.

hootsuite.com/social-media-advertising-stats/, 2017.

124 Bibliography

http://marketingland.com/the-future-of-retargeting-remarketing-and-remessaging-7643
http://marketingland.com/the-future-of-retargeting-remarketing-and-remessaging-7643
https://usatoday30.usatoday.com/tech/news/2011-08-03-internet-tracking-mobile-privacy_n.htm
https://usatoday30.usatoday.com/tech/news/2011-08-03-internet-tracking-mobile-privacy_n.htm
emarketer.com/content/emarketer-total-media-ad-spending-worldwide-will-rise-7-4-in-2018
emarketer.com/content/emarketer-total-media-ad-spending-worldwide-will-rise-7-4-in-2018
https://www.campaignlive.co.uk/article/group-m-unveils-upbeat-global-adspend-forecast-2018/1451805
https://www.campaignlive.co.uk/article/group-m-unveils-upbeat-global-adspend-forecast-2018/1451805
https://www.campaignlive.co.uk/article/group-m-unveils-upbeat-global-adspend-forecast-2018/1451805
http://www.pwc.com/gx/en/industries/entertainment-media/outlook/segment-insights/internet-advertising.html
http://www.pwc.com/gx/en/industries/entertainment-media/outlook/segment-insights/internet-advertising.html
emarketer.com/Article/Google-Will-Take-55-of-Search-Ad-Dollars-Globally-2015/1012294
emarketer.com/Article/Google-Will-Take-55-of-Search-Ad-Dollars-Globally-2015/1012294
http://www.marketingprofs.com/charts/2015/27999/2015-global-ad-spend-forecast-by-medium-and-region
http://www.marketingprofs.com/charts/2015/27999/2015-global-ad-spend-forecast-by-medium-and-region
http://online.wsj.com/article/SB10001424052748703748904575411530096840958.html#
http://www.destinationcrm.com/Articles/PrintArticle.aspx?ArticleID=81719
http://www.destinationcrm.com/Articles/PrintArticle.aspx?ArticleID=81719
http://online.wsj.com/article/SB10001424052748703940904575395073512989404.html
http://online.wsj.com/article/SB10001424052748703940904575395073512989404.html
https://blog.hootsuite.com/social-media-advertising-stats/
https://blog.hootsuite.com/social-media-advertising-stats/

[99] D. Liberto, “Facebook, Google Digital Ad Market Share Drops as Amazon Climbs.” https://www.
investopedia.com/news/facebook-google-digital-ad-market-share-drops-amazon-climbs/,
2018.

[100] Spiegel Online, “Handel mit vertraulichen Daten – Millionen deutsche Patienten
und Ärzte werden ausgespäht.” http://www.spiegel.de/netzwelt/netzpolitik/

patienten-apotheken-verkaufen-vertrauliche-daten-a-917118.html,Accessed on 2013-
08-18, 2013.

[101] S. Yuan, A. Z. Abidin, M. Sloan, and J. Wang, “Internet advertising: An interplay among advertis-
ers, online publishers, ad exchanges and web users,” CoRR, vol. abs/1206.1754, 2012.

[102] B. Lincoln, “Motorola Is Listening.” http://www.beneaththewaves.net/Projects/Motorola_

Is_Listening.html, 2013. Accessed on 2013-10-25.

[103] R. Behar, “Never Heard Of Acxiom? Chances Are It’s Heard Of You. How a little-known Little Rock
company—the world’s largest processor of consumer data—found itself at the center of a very
big national security debate..” http://money.cnn.com/magazines/fortune/fortune_archive/
2004/02/23/362182/index.htm, 2004. Accessed on 2013-10-25.

[104] A. Chaabane, M. Kaafar, and R. Boreli, “Big friend is watching you: analyzing online social net-
works tracking capabilities,” in WOSN, pp. 7–12, 2012.

[105] J. Constine, “Facebook Lets Businesses Plug In CRM Email Addresses To Target Customers With
Hyper-Relevant Ads.” http://techcrunch.com/2012/09/20/facebook-crm-ads/, 2012. Ac-
cessed on 2013-10-30.

[106] C. Tucker, “Social networks, personalized advertising, and privacy controls.” The Tenth Workshop
on Economics of Information Security (WEIS 2011), http://weis2011.econinfosec.org/

papers/Social%20Networks,%20Personalized%20Advertising,%20and%20Privacy%20Cont.

pdf, June 2011.

[107] L. Zeltser, “Malvertising: The Use of Malicious Ads to Install Malware.” http://infosecisland.
com/blogview/14371-Malvertising-The-Use-of-Malicious-Ads-to-Install-Malware.

html, 2011. Accessed on 2013-10-30.

[108] A. Sood and R. Enbody, “Malvertising - exploiting web advertising,” Computer Fraud and Security,
vol. 2011, no. 4, pp. 11 – 16, 2011.

[109] X. Xing, W. Meng, B. Lee, U. Weinsberg, A. Sheth, R. Perdisci, and W. Lee, “Understanding malver-
tising through ad-injecting browser extensions,” in Proceedings of the 24th International Conference

on World Wide Web, WWW ’15, (Republic and Canton of Geneva, Switzerland), pp. 1286–1295,
International World Wide Web Conferences Steering Committee, 2015.

[110] E. Kosta, C. Kalloniatis, L. Mitrou, and E. Kavakli, “Search engines: Gateway to a new panopticon,”
in Trust, Privacy and Security in Digital Business, 6th International Conference (TrustBus 2009),

Proceedings, vol. 5695 of Lecture Notes on Computer Science, pp. 11–21, Springer Verlag, 2009.

[111] L. Kaufman, “How private is the internet?,” IEEE Security & Privacy, vol. 9, no. 1, pp. 73–75, 2011.

[112] A. Hannak, P. Sapieżyński, A. M. Kakhki, B. Krishnamurthy, D. Lazer, A. Mislove, and C. Wilson,
“Measuring Personalization of Web Search,” in WWW, 2013.

[113] A. Gunawardana and C. Meek, “Aggregators and Contextual Effects in Search Ad Markets,” in
WWW Workshop on Targeting and Ranking for Online Advertising, 4 2008.

Bibliography 125

https://www.investopedia.com/news/facebook-google-digital-ad-market-share-drops-amazon-climbs/
https://www.investopedia.com/news/facebook-google-digital-ad-market-share-drops-amazon-climbs/
http://www.spiegel.de/netzwelt/netzpolitik/patienten-apotheken-verkaufen-vertrauliche-daten-a-917118.html
http://www.spiegel.de/netzwelt/netzpolitik/patienten-apotheken-verkaufen-vertrauliche-daten-a-917118.html
http://www.beneaththewaves.net/Projects/Motorola_Is_Listening.html
http://www.beneaththewaves.net/Projects/Motorola_Is_Listening.html
http://money.cnn.com/magazines/fortune/fortune_archive/2004/02/23/362182/index.htm
http://money.cnn.com/magazines/fortune/fortune_archive/2004/02/23/362182/index.htm
http://techcrunch.com/2012/09/20/facebook-crm-ads/
http://weis2011.econinfosec.org/papers/Social%20Networks,%20Personalized%20Advertising,%20and%20Privacy%20Cont.pdf
http://weis2011.econinfosec.org/papers/Social%20Networks,%20Personalized%20Advertising,%20and%20Privacy%20Cont.pdf
http://weis2011.econinfosec.org/papers/Social%20Networks,%20Personalized%20Advertising,%20and%20Privacy%20Cont.pdf
http://infosecisland.com/blogview/14371-Malvertising-The-Use-of-Malicious-Ads-to-Install-Malware.html
http://infosecisland.com/blogview/14371-Malvertising-The-Use-of-Malicious-Ads-to-Install-Malware.html
http://infosecisland.com/blogview/14371-Malvertising-The-Use-of-Malicious-Ads-to-Install-Malware.html

[114] J. Vascellaro, “Google agonizes on privacy as ad world vaults ahead.” The Wall Street Journal,
http://online.wsj.com/article/SB10001424052748703309704575413553851854026.html,
August 9, 2010.

[115] J. Healey, “Privacy advocates attack gmail - again - for email scanning.” Los Ange-
les Times, August 15, 2013, http://www.latimes.com/news/opinion/opinion-la/

la-ol-google-gmail-privacy-reasonable-expectation-20130814,0,2662122.story,
2013.

[116] B. Krishnamurthy and K. Naryshkin, “Privacy leakage vs. Protection measures: the growing dis-
connect,” Web 2.0 Security and Privacy Workshop, 2011.

[117] A. Narayanan, “There is no such thing as anonymous online tracking.” http://cyberlaw.

stanford.edu/blog/2011/07/there-no-such-thing-anonymous-online-tracking, 2011.

[118] A. Narayanan, “Yet Another Identity Stealing Bug. Will Creep-
ing Normalcy be the Result?.” http://33bits.org/2010/06/01/

yet-another-identity-stealing-bug-will-creeping-normalcy-be-the-result/, 2010.

[119] A. Narayanan, “How Google Docs Leaks Your Identity.” http://33bits.org/2010/02/22/

google-docs-leaks-identity/, 2010.

[120] A. Narayanan, “Ubercookies Part 2: History Stealing meets the Social Web.” http://33bits.org/
2010/02/19/ubercookies-history-stealing-social-web/, 2010.

[121] A. Narayanan, “Cookies, Supercookies and Ubercookies: Steal-
ing the Identity of Web Visitors.” http://33bits.org/2010/02/18/

cookies-supercookies-and-ubercookies-stealing-the-identity-of-web-visitors/,
2010.

[122] A. Narayanan, “Facebook’s Instant Personalization: An Analysis of Fundamental Privacy Flaws.”
http://33bits.org/2010/09/28/instant-personalization-privacy-flaws/, 2010.

[123] L.-S. Huang and C. Jackson, “Clickjacking Attacks Unresolved.” http://nhonhangheo.blogspot.
ca/2015/05/clickjacking-attacks-unresolved.html, 2015.

[124] L. Sweeney, “Weaving technology and policy together to maintain confidentiality,” The Journal of

Law, Medicine and Ethics, vol. 25, no. 2-3, pp. 98–110, 1997.

[125] L. Sweeney, “Uniqueness of Simple Demographics in the U.S. Population,” 2000.

[126] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse datasets,” in IEEE

Symposium on Security and Privacy, pp. 111–125, 2008.

[127] S. Vimercati and S. Foresti, Encyclopedia of Cryptography and Security, ch. Quasi-Identifier,
pp. 1010–1011. Boston, MA: Springer US, 2011.

[128] A. Narayanan and V. Shmatikov, “De-anonymizing Social Networks,” IEEE Symposium on Security

and Privacy, 2009.

[129] G. Friedland, G. Maier, R. Sommer, and N. Weaver, “Sherlock holmes’ evil twin: on the impact of
global inference for online privacy,” in New security paradigms workshop (NSPW 2011), Proceed-

ings, pp. 105–114, 2011.

[130] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel, “A practical attack to de-anonymize social net-
work users,” in IEEE Symposium on Security and Privacy, pp. 223–238, 2010.

126 Bibliography

http://online.wsj.com/article/SB10001424052748703309704575413553851854026.html
http://www.latimes.com/news/opinion/opinion-la/la-ol-google-gmail-privacy-reasonable-expectation-20130814,0,2662122.story
http://www.latimes.com/news/opinion/opinion-la/la-ol-google-gmail-privacy-reasonable-expectation-20130814,0,2662122.story
http://cyberlaw.stanford.edu/blog/2011/07/there-no-such-thing-anonymous-online-tracking
http://cyberlaw.stanford.edu/blog/2011/07/there-no-such-thing-anonymous-online-tracking
http://33bits.org/2010/06/01/yet-another-identity-stealing-bug-will-creeping-normalcy-be-the-result/
http://33bits.org/2010/06/01/yet-another-identity-stealing-bug-will-creeping-normalcy-be-the-result/
http://33bits.org/2010/02/22/google-docs-leaks-identity/
http://33bits.org/2010/02/22/google-docs-leaks-identity/
http://33bits.org/2010/02/19/ubercookies-history-stealing-social-web/
http://33bits.org/2010/02/19/ubercookies-history-stealing-social-web/
http://33bits.org/2010/02/18/cookies-supercookies-and-ubercookies-stealing-the-identity-of-web-visitors/
http://33bits.org/2010/02/18/cookies-supercookies-and-ubercookies-stealing-the-identity-of-web-visitors/
http://33bits.org/2010/09/28/instant-personalization-privacy-flaws/
http://nhonhangheo.blogspot.ca/2015/05/clickjacking-attacks-unresolved.html
http://nhonhangheo.blogspot.ca/2015/05/clickjacking-attacks-unresolved.html

[131] G. Himmelein, “Bericht: Apotheken verkaufen ungenügend
anonymisierte Patientendaten.” http://www.heise.de/newsticker/meldung/

Bericht-Apotheken-verkaufen-ungenuegend-anonymisierte-Patientendaten-1937568.

html, 2013. Accessed on 2013-10-25.

[132] J. Valentino-Devries, J. Singer-Vine, and A. Soltani, “Websites Vary Prices,
Deals Based on Users’ Information.” http://online.wsj.com/news/articles/

SB10001424127887323777204578189391813881534, 2012. Accessed on 2013-11-25.

[133] D. Mattioli, “On Orbitz, Mac Users Steered to Pricier Hotels.” http://online.wsj.com/news/

articles/SB10001424052702304458604577488822667325882, 2012. Accessed on 2013-10-25.

[134] A. Hannak, G. Soeller, D. Lazer, A. Mislove, and C. Wilson, “Measuring Price Discrimination and
Steering on E-commerce Web Sites,” in Proceedings of the 14th ACM/USENIX Internet Measurement

Conference (IMC’14), (Vancouver, Canada), 11 2014.

[135] Spiegel Online, “German Agency to Mine Facebook to Assess
Creditworthiness.” http://www.spiegel.de/international/germany/

german-credit-agency-plans-to-analyze-individual-facebook-pages-a-837539.html,
2012.

[136] J. Barnes, “Big data bring risks and benefits to insurance customers.” http://www.ft.com/cms/
s/0/21e289c4-97ef-11e3-8dc3-00144feab7de.html#axzz41oCbtf9J, 2014.

[137] L. Scism and M. Maremont, “Insurers Test Data Profiles to Identify Risky Clients.” http://www.

wsj.com/news/articles/SB10001424052748704648604575620750998072986, 2010.

[138] B. Gellman and L. Poitras, “U.S., British intelligence mining data from nine U.S. Inter-
net companies in broad secret program.” http://www.washingtonpost.com/investigations/

us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/

2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_print.html, 2013. Accessed on 2013-
10-30.

[139] P. Bump, “The UK Tempora Program Captures Vast Amounts of Data - and Shares with NSA.” http:
//www.theatlanticwire.com/national/2013/06/uk-tempora-program/66490/, 2013. Ac-
cessed on 2013-10-30.

[140] C. Timberg, “The NSA slide you haven’t seen.” http://www.washingtonpost.

com/business/economy/the-nsa-slide-you-havent-seen/2013/07/10/

32801426-e8e6-11e2-aa9f-c03a72e2d342_print.html, 2013. Accessed on 2013-10-30.

[141] D. McCullagh, “Feds put heat on Web firms for master en-
cryption keys.” http://news.cnet.com/8301-13578_3-57595202-38/

feds-put-heat-on-web-firms-for-master-encryption-keys/, 2013. Accessed on 2013-10-
30.

[142] Google Inc., “Transparency Report - Requests for user information.” https://www.google.com/

transparencyreport/userdatarequests/, 2015.

[143] G. Greenwald and S. Ackerman, “How the NSA is still harvesting your online data .” http://www.
theguardian.com/world/2013/jun/27/nsa-online-metadata-collection, 2013.

[144] A. Soltani, A. Peterson, and B. Gellman, “NSA uses Google cookies to pinpoint
targets for hacking.” https://www.washingtonpost.com/news/the-switch/wp/2013/12/10/

nsa-uses-google-cookies-to-pinpoint-targets-for-hacking, 2013.

Bibliography 127

http://www.heise.de/newsticker/meldung/Bericht-Apotheken-verkaufen-ungenuegend-anonymisierte-Patientendaten-1937568.html
http://www.heise.de/newsticker/meldung/Bericht-Apotheken-verkaufen-ungenuegend-anonymisierte-Patientendaten-1937568.html
http://www.heise.de/newsticker/meldung/Bericht-Apotheken-verkaufen-ungenuegend-anonymisierte-Patientendaten-1937568.html
http://online.wsj.com/news/articles/SB10001424127887323777204578189391813881534
http://online.wsj.com/news/articles/SB10001424127887323777204578189391813881534
http://online.wsj.com/news/articles/SB10001424052702304458604577488822667325882
http://online.wsj.com/news/articles/SB10001424052702304458604577488822667325882
http://www.spiegel.de/international/germany/german-credit-agency-plans-to-analyze-individual-facebook-pages-a-837539.html
http://www.spiegel.de/international/germany/german-credit-agency-plans-to-analyze-individual-facebook-pages-a-837539.html
http://www.ft.com/cms/s/0/21e289c4-97ef-11e3-8dc3-00144feab7de.html#axzz41oCbtf9J
http://www.ft.com/cms/s/0/21e289c4-97ef-11e3-8dc3-00144feab7de.html#axzz41oCbtf9J
http://www.wsj.com/news/articles/SB10001424052748704648604575620750998072986
http://www.wsj.com/news/articles/SB10001424052748704648604575620750998072986
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_print.html
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_print.html
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_print.html
http://www.theatlanticwire.com/national/2013/06/uk-tempora-program/66490/
http://www.theatlanticwire.com/national/2013/06/uk-tempora-program/66490/
http://www.washingtonpost.com/business/economy/the-nsa-slide-you-havent-seen/2013/07/10/32801426-e8e6-11e2-aa9f-c03a72e2d342_print.html
http://www.washingtonpost.com/business/economy/the-nsa-slide-you-havent-seen/2013/07/10/32801426-e8e6-11e2-aa9f-c03a72e2d342_print.html
http://www.washingtonpost.com/business/economy/the-nsa-slide-you-havent-seen/2013/07/10/32801426-e8e6-11e2-aa9f-c03a72e2d342_print.html
http://news.cnet.com/8301-13578_3-57595202-38/feds-put-heat-on-web-firms-for-master-encryption-keys/
http://news.cnet.com/8301-13578_3-57595202-38/feds-put-heat-on-web-firms-for-master-encryption-keys/
https://www.google.com/transparencyreport/userdatarequests/
https://www.google.com/transparencyreport/userdatarequests/
http://www.theguardian.com/world/2013/jun/27/nsa-online-metadata-collection
http://www.theguardian.com/world/2013/jun/27/nsa-online-metadata-collection
https://www.washingtonpost.com/news/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking
https://www.washingtonpost.com/news/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking

[145] The Guardian, “Tor Stinks.” http://www.theguardian.com/world/interactive/2013/oct/04/
tor-stinks-nsa-presentation-document, 2013.

[146] H. Beales, “The Value of Behavioral Targeting,” Network Advertising Initiative, 2010.

[147] N. Schmücker, “Web tracking.” SNET2 Seminar Paper. Berlin University of Technology, 2011.

[148] K. McKinley, “Cleaning Up After Cookies.” https://www.isecpartners.com/media/11976/isec_
cleaning_up_after_cookies.pdf, 2008.

[149] T. Frank, “Javascript session variables without cookies.” http://www.thomasfrank.se/

sessionvars.html, 2008.

[150] M. Tran, X. Dong, Z. Liang, and X. Jiang, “Tracking the trackers: fast and scalable dynamic analysis
of web content for privacy violations,” ACNS, 2012.

[151] J. Bau, J. Mayer, H. Paskov, and J. Mitchell, “A Promising Direction for Web Tracking Counter-
measures,” in W2SP, 2013.

[152] Comscore, Inc., “The Impact of Cookie Deletion on Site-Server and Ad- Server Metrics
in Australia.” http://www.comscore.com/content/download/7251/125689/file/Impact+of+

Cookie+Deletion+Australia_January+2011.pdf, 2011.

[153] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner, “Internet jones and the raiders of the lost
trackers: An archaeological study of web tracking from 1996 to 2016,” in 25th USENIX Security

Symposium (USENIX Security 16), (Austin, TX), USENIX Association, 2016.

[154] G. Fleischer, “Implementing web tracking.” https://media.blackhat.com/bh-us-12/

Briefings/Fleischer/BH_US_12_Fleischer_Implementing_Web_Tracking_gfleischer_

WP.pdf, 2012. Black Hat.

[155] S. Mittal, “User Privacy and the Evolution of Third-party Tracking Mechanisms on the World Wide
Web,” 2012.

[156] Oracle, “PersistenceService.” https://docs.oracle.com/javase/7/docs/jre/api/javaws/

jnlp/javax/jnlp/PersistenceService.html, 2014.

[157] G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh, “An analysis of private browsing modes in
modern browsers,” in Usenix Security Symposium, 2010.

[158] S. Kamkar, “evercookie - virtually irrevocable persistent cookies.” http://samy.pl/evercookie,
2011. Accessed on 2015-02-10.

[159] E. Felten and M. Schneider, “Timing attacks on Web privacy,” in CCS, 2000.

[160] E. Bursztein, “Tracking users that block cookies with a HTTP redirect.” http://elie.im/blog/

security/tracking-users-that-block-cookies-with-a-http-redirect, 2011.

[161] J. Grossman, “Tracking users with Basic Auth.” http://jeremiahgrossman.blogspot.com.es/

2007/04/trackingusers-without-cookies.html, 2007.

[162] Tor Bug Tracker, “Disable TLS Session resumption and Session IDs.” https://trac.torproject.
org/projects/tor/ticket/4099, 2011.

[163] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo, i still see you: Why efficient
traffic analysis countermeasures fail,” in 2012 IEEE Symposium on Security and Privacy, pp. 332–
346, 5 2012.

128 Bibliography

http://www.theguardian.com/world/interactive/2013/oct/04/tor-stinks-nsa-presentation-document
http://www.theguardian.com/world/interactive/2013/oct/04/tor-stinks-nsa-presentation-document
https://www.isecpartners.com/media/ 11976/isec_cleaning_up_after_cookies.pdf
https://www.isecpartners.com/media/ 11976/isec_cleaning_up_after_cookies.pdf
http://www.thomasfrank.se/sessionvars.html
http://www.thomasfrank.se/sessionvars.html
http://www.comscore.com/content/download/7251/125689/ file/Impact+of+Cookie+Deletion+Australia_January+2011.pdf
http://www.comscore.com/content/download/7251/125689/ file/Impact+of+Cookie+Deletion+Australia_January+2011.pdf
https://media.blackhat.com/bh-us-12/Briefings/Fleischer/BH_ US_12_Fleischer_Implementing_Web_Tracking_gfleischer_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Fleischer/BH_ US_12_Fleischer_Implementing_Web_Tracking_gfleischer_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Fleischer/BH_ US_12_Fleischer_Implementing_Web_Tracking_gfleischer_WP.pdf
https://docs.oracle.com/javase/7/docs/jre/api/javaws/jnlp/javax/jnlp/PersistenceService.html
https://docs.oracle.com/javase/7/docs/jre/api/javaws/jnlp/javax/jnlp/PersistenceService.html
http://samy.pl/evercookie
http://elie.im/blog/security/ tracking-users-that-block-cookies-with-a-http-redirect
http://elie.im/blog/security/ tracking-users-that-block-cookies-with-a-http-redirect
http://jeremiahgrossman.blogspot.com.es/2007/04/trackingusers- without-cookies.html
http://jeremiahgrossman.blogspot.com.es/2007/04/trackingusers- without-cookies.html
https://trac.torproject.org/projects/tor/ticket/4099
https://trac.torproject.org/projects/tor/ticket/4099

[164] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing: An efficient defense against statis-
tical traffic analysis,” in In Proceedings of the 16th Network and Distributed Security Symposium,
pp. 237–250, IEEE, 2009.

[165] M. Perry, “Experimental defense for website traffic fingerprinting.” https://blog.torproject.

org/blog/experimental-defense-website-traffic-fingerprinting, 2011.

[166] X. Luo, P. Zhou, E. W. W. Chan, W. Lee, R. K. C. Chang, and R. Perdisci, “Httpos: Sealing informa-
tion leaks with browser-side obfuscation of encrypted flows,” in In Proc. Network and Distributed

Systems Symposium (NDSS). The Internet Society, 2011.

[167] T. Wang and I. Goldberg, “Improved website fingerprinting on tor,” in Proceedings of the 12th

ACM Workshop on Workshop on Privacy in the Electronic Society, WPES ’13, (New York, NY, USA),
pp. 201–212, ACM, 2013.

[168] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A critical evaluation of website finger-
printing attacks,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS ’14, (New York, NY, USA), pp. 263–274, ACM, 2014.

[169] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective attacks and provable
defenses for website fingerprinting,” in Proceedings of the 23rd USENIX Conference on Security

Symposium, SEC’14, (Berkeley, CA, USA), pp. 143–157, USENIX Association, 2014.

[170] X. Cai, R. Nithyanand, and R. Johnson, “Cs-buflo: A congestion sensitive website fingerprinting
defense,” in Proceedings of the 13th Workshop on Privacy in the Electronic Society, WPES ’14, (New
York, NY, USA), pp. 121–130, ACM, 2014.

[171] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A systematic approach to developing
and evaluating website fingerprinting defenses,” in Proceedings of the 2014 ACM SIGSAC Confer-

ence on Computer and Communications Security, CCS ’14, (New York, NY, USA), pp. 227–238,
ACM, 2014.

[172] R. Nithyanand, X. Cai, and R. Johnson, “Glove: A bespoke website fingerprinting defense,” in
Proceedings of the 13th Workshop on Privacy in the Electronic Society, WPES ’14, (New York, NY,
USA), pp. 131–134, ACM, 2014.

[173] M. Perry, “A Critique of Website Traffic Fingerprinting Attacks.” https://blog.torproject.org/
blog/critique-website-traffic-fingerprinting-attacks, 2015.

[174] T. Wang and I. Goldberg, “On realistically attacking tor with website fingerprinting,” Proceedings

on Privacy Enhancing Technologies, vol. 2016, no. 4, pp. 21–36, 2016.

[175] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp, K. Wehrle, and T. Engel, “Website
fingerprinting at Internet scale,” in NDSS, The Internet Society, 2016.

[176] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable website fingerprinting technique,”
in 25th USENIX Security Symposium (USENIX Security 16), (Austin, TX), pp. 1187–1203, USENIX
Association, 2016.

[177] T. Wang and I. Goldberg, “Walkie-talkie: An efficient defense against passive website fingerprint-
ing attacks,” in Proceedings of the 26th USENIX Conference on Security Symposium, SEC’17, (Berke-
ley, CA, USA), pp. 1375–1390, USENIX Association, 2017.

[178] G. Cherubin, J. Hayes, and M. Juarez, “Website fingerprinting defenses at the application layer,”
Proceedings on Privacy Enhancing Technologies, vol. 2017, no. 2, pp. 186–203, 2017.

Bibliography 129

https://blog.torproject.org/blog/experimental-defense- website-traffic-fingerprinting
https://blog.torproject.org/blog/experimental-defense- website-traffic-fingerprinting
https://blog.torproject.org/blog/critique- website-traffic-fingerprinting-attacks
https://blog.torproject.org/blog/critique- website-traffic-fingerprinting-attacks

[179] N. Nikiforakis, W. Joosen, and B. Livshits, “Privaricator: Deceiving fingerprinters with little white
lies,” in research.microsoft.com, 2014.

[180] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device fingerprinting,” IEEE Transactions

on Dependable and Secure Computing, vol. 2, pp. 93–108, 4 2005.

[181] T. Yen, Y. Xie, F. Yu, R. Yu, and M. Abadi, “Host fingerprinting and tracking on the web: Privacy
and security implications,” 2012.

[182] L. Olejnik, G. Acar, C. Castelluccia, and C. Díaz, “The leaking battery: A privacy analysis of the
HTML5 battery status API,” IACR Cryptology ePrint Archive, vol. 2015.

[183] A. Kurtz, H. Gascon, T. Becker, K. Rieck, and F. C. Freiling, “Fingerprinting mobile devices using
personalized configurations,” PoPETs, vol. 2016, pp. 4–19, 2016.

[184] S. Seneviratne, A. Seneviratne, P. Mohapatra, and A. Mahanti, “Predicting user traits from a snap-
shot of apps installed on a smartphone,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 18, pp. 1–8,
June 2014.

[185] J. R. Corripio, D. M. A. González, A. L. S. Orozco, L. J. G. Villalba, J. Hernandez-Castro, and S. J.
Gibson, “Source smartphone identification using sensor pattern noise and wavelet transform,” in
5th International Conference on Imaging for Crime Detection and Prevention (ICDP 2013), pp. 1–6,
12 2013.

[186] H. Bojinov, Y. Michalevsky, G. Nakibly, and D. Boneh, “Mobile device identification via sensor
fingerprinting,” CoRR, vol. abs/1408.1416, 2014.

[187] A. Das, N. Borisov, and M. Caesar, “Do you hear what i hear?: Fingerprinting smart devices
through embedded acoustic components,” in Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’14, (New York, NY, USA), pp. 441–452, ACM, 2014.

[188] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi, “Accelprint: Imperfections of accelerom-
eters make smartphones trackable,” in NDSS, The Internet Society, 2014.

[189] Z. Zhou, W. Diao, X. Liu, and K. Zhang, “Acoustic fingerprinting revisited: Generate stable device id
stealthily with inaudible sound,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer

and Communications Security, CCS ’14, (New York, NY, USA), pp. 429–440, ACM, 2014.

[190] W. D. Yu, S. Nargundkar, and N. Tiruthani, “A phishing vulnerability analysis of web based sys-
tems,” pp. 326–331, 7 2008.

[191] J. Chen and C. Guo, “Online detection and prevention of phishing attacks,” in 2006 First Interna-

tional Conference on Communications and Networking in China, pp. 1–7, 10 2006.

[192] K. Tian, K. Cooper, K. Zhang, and S. Liu, “Towards a new understanding of advice interference,” in
Fourth International Conference on Secure Software Integration and Reliability Improvement, SSIRI

2010, Singapore, June 9-11, 2010, pp. 180–189, 2010.

[193] S. Abu-Nimeh and S. Nair, “Circumventing security toolbars and phishing filters via rogue wireless
access points,” Wireless Communications and Mobile Computing, vol. 10, no. 8, pp. 1128–1139,
2010.

[194] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose, “All your iframes point to us,” in Proceed-

ings of the 17th Conference on Security Symposium, SS’08, (Berkeley, CA, USA), pp. 1–15, USENIX
Association, 2008.

130 Bibliography

[195] J. Zhang, C. Seifert, J. W. Stokes, and W. Lee, “Arrow: Generating signatures to detect drive-by
downloads,” in Proceedings of the 20th International Conference on World Wide Web, WWW ’11,
(New York, NY, USA), pp. 187–196, ACM, 2011.

[196] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-by-download attacks and
malicious javascript code,” in Proceedings of the 19th International Conference on World Wide Web,
WWW ’10, (New York, NY, USA), pp. 281–290, ACM, 2010.

[197] J. Mayer, “How Verizon’s Advertising Header Works | Web Policy.” http://webpolicy.org/2014/
10/24/how-verizons-advertising-header-works, 2014.

[198] D. Arp, E. Quiring, C. Wressnegger, and K. Rieck, “Privacy threats through ultrasonic side channels
on mobile devices,” in 2017 IEEE European Symposium on Security and Privacy, pp. 35–47, 4 2017.

[199] D. Goodin, “Beware of ads that use inaudible sound to link your phone,
TV, tablet, and PC.” https://arstechnica.com/tech-policy/2015/11/

beware-of-ads-that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/,
2015.

[200] A. Soltani, S. Canty, Q. Mayo, L. Thomas, and C. J. Hoofnagle, “Flash cookies and privacy,” in
AAAI, 2010.

[201] S. Murdoch, M. Perry, and E. Clark, “Identifier Unlinkability Defenses in the Tor Browser.” https:
//www.torproject.org/projects/torbrowser/design/, 2014.

[202] J. Turow, J. King, C. Hoofnagle, A. Bleakley, and M. Hennessy, “Americans reject tailored adver-
tising and three activities that enable it.” Social Science Research Network, SSRN Working Paper
Series, http://ssrn.com/abstract=1478214, 2009.

[203] E. Pujol, O. Hohlfeld, and A. Feldmann, “Annoyed users: Ads and ad-block usage in the wild,” in
Proceedings of the 2015 Internet Measurement Conference, IMC ’15, (New York, NY, USA), pp. 93–
106, ACM, 2015.

[204] Pagefair, “Ad Blocking Report.” https://blog.pagefair.com/2015/ad-blocking-report,
2015.

[205] PageFair, “The state of the blocked web.” https://pagefair.com/downloads/2017/01/

PageFair-2017-Adblock-Report.pdf, 2017.

[206] A. Zeigler, A. Bateman, and E. Graff, “Web Tracking Protection.” https://www.w3.org/

Submission/2011/SUBM-web-tracking-protection-20110224/#list-format/, 2016.

[207] Mozilla Foundation, “Tracking Protection.” https://developer.mozilla.org/en-US/docs/

Mozilla/Firefox/Privacy/Tracking_Protection, 2011.

[208] Mozilla Foundation, “Private Browsing.” https://blog.mozilla.org/press-de/2015/12/16/

mehr-kontrolle-uber-private-daten-im-private-browsing-modus-von-firefox/, 2015.

[209] Mozilla Foundation, “Wie wir den Tracking-Schutz in Firefox noch besser
machen möchten.” hhttps://blog.mozilla.org/press-de/2018/08/30/

wie-wir-den-tracking-schutz-in-firefox-noch-besser-machen-moechten/, 2018.

[210] Opera Software, “Introducing native ad-blocking feature for faster browsing.” https://blogs.

opera.com/desktop/2016/03/native-ad-blocking-feature-opera-for-computers/, 2016.

[211] A. Morris, “Apple’s iOS 9 Creates a Digital Marketing Crisis in the Wake of Ad Blocker Success.”
https://www.allbusiness.com/ios-9-ad-blockers-100836-1.html, 2015.

Bibliography 131

http://webpolicy.org/2014/10/24/how-verizons-advertising-header-works
http://webpolicy.org/2014/10/24/how-verizons-advertising-header-works
https://arstechnica.com/tech-policy/2015/11/beware-of-ads-that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/
https://arstechnica.com/tech-policy/2015/11/beware-of-ads-that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/
https://www.torproject.org/projects/torbrowser/design/
https://www.torproject.org/projects/torbrowser/design/
http://ssrn.com/abstract=1478214
https://blog.pagefair.com/2015/ad-blocking-report
https://pagefair.com/downloads/2017/01/ PageFair-2017-Adblock-Report.pdf
https://pagefair.com/downloads/2017/01/ PageFair-2017-Adblock-Report.pdf
https://www.w3.org/Submission/2011/SUBM-web-tracking-protection-20110224/#list-format/
https://www.w3.org/Submission/2011/SUBM-web-tracking-protection-20110224/#list-format/
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Tracking_Protection
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Tracking_Protection
https://blog.mozilla.org/press-de/2015/12/16/mehr-kontrolle-uber-private-daten-im-private-browsing-modus-von-firefox/
https://blog.mozilla.org/press-de/2015/12/16/mehr-kontrolle-uber-private-daten-im-private-browsing-modus-von-firefox/
hhttps://blog.mozilla.org/press-de/2018/08/30/wie-wir-den-tracking-schutz-in-firefox-noch-besser-machen-moechten/
hhttps://blog.mozilla.org/press-de/2018/08/30/wie-wir-den-tracking-schutz-in-firefox-noch-besser-machen-moechten/
https://blogs.opera.com/desktop/2016/03/native-ad-blocking-feature-opera-for-computers/
https://blogs.opera.com/desktop/2016/03/native-ad-blocking-feature-opera-for-computers/
https://www.allbusiness.com/ios-9-ad-blockers-100836-1.html

[212] Webkit, “Intelligent Tracking Prevention.” https://webkit.org/blog/7675/

intelligent-tracking-prevention/, 2017.

[213] Webkit, “Intelligent Tracking Prevention 1.1.” https://webkit.org/blog/8142/

intelligent-tracking-prevention-1-1/, 2018.

[214] Webkit, “Intelligent Tracking Prevention 2.0.” https://webkit.org/blog/8311/

intelligent-tracking-prevention-2-0/, 2018.

[215] Network Advertising Initiative, “Opt Out of Interest-Based Advertising.” http://www.

networkadvertising.org/choices/, 2016.

[216] W3C, “Web Tracking and User Privacy Workshop.” http://www.w3.org/2011/04/

29-w3cdnt-minutes.html, 2011.

[217] J. Mayer and A. Narayanan, “Do Not Track - Universal Web Tracking Opt Out.” http://www.

donottrack.us/, 2010.

[218] FTC, “FTC Staff Issues Privacy Report - Endorses Do Not Track to Facilitate Consumer
Choice About Online Tracking.” https://www.ftc.gov/news-events/press-releases/2010/

12/ftc-staff-issues-privacy-report-offers-framework-consumers, 2010.

[219] J. Mayer, A. Narayanan, and S. Stamm, “Do not track: A universal third-party web tracking
opt out.” IETF Internet-Draft, http://tools.ietf.org/html/draft-mayer-do-not-track-00,
March 7, 2011.

[220] R. Fielding and D. Singer, “Tracking preference expression (dnt).” W3C Working Draft, http:
//www.w3.org/TR/tracking-dnt, September 12, 2013.

[221] R. Reitman, “Mozilla Leads the Way on Do Not Track.” https://www.eff.org/deeplinks/2011/
01/mozilla-leads-the-way-on-do-not-track, 2011.

[222] N. Kroes, “Online privacy and online business: An update on do not track.” European Commission,
Press Releases Database, http://europa.eu/rapid/press-release_SPEECH-12-716_en.htm,
October 11, 2012.

[223] Network Advertising Initiative, “EU legislation on cookies.” http://ec.europa.eu/ipg/basics/
legal/cookies/index_en.htm, 2009.

[224] J. Mazel, R. Garnier, and K. Fukuda, “A comparison of web privacy protection techniques,” CoRR,
vol. abs/1712.06850, 2017.

[225] R. J. Walls, E. D. Kilmer, N. Lageman, and P. D. McDaniel, “Measuring the impact and perception
of acceptable advertisements,” in Proceedings of the 2015 ACM Conference on Internet Measurement

Conference, IMC ’15, (New York, NY, USA), pp. 107–120, ACM, 2015.

[226] D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An Empirical Study of Privacy-Violating Information
Flows in JavaScript Web Applications,” in Proceedings of the 17th ACM Conference on Computer

and Communications Security, CCS ’10, (New York, NY, USA), pp. 270–283, ACM, 2010. http:

//cseweb.ucsd.edu/~d1jang/papers/ccs10.pdf.

[227] M. Ikram, H. J. Asghar, M. A. Kâafar, A. Mahanti, and B. Krishnamurthy, “Towards seamless
tracking-free web: Improved detection of trackers via one-class learning,” PoPETs, vol. 2017,
no. 1, pp. 79–99, 2017.

[228] G. Storey, D. Reisman, J. Mayer, and A. Narayanan, “The future of ad blocking: An analytical
framework and new techniques,” CoRR, vol. abs/1705.08568, 2017.

132 Bibliography

https://webkit.org/blog/7675/intelligent-tracking-prevention/
https://webkit.org/blog/7675/intelligent-tracking-prevention/
https://webkit.org/blog/8142/intelligent-tracking-prevention-1-1/
https://webkit.org/blog/8142/intelligent-tracking-prevention-1-1/
https://webkit.org/blog/8311/intelligent-tracking-prevention-2-0/
https://webkit.org/blog/8311/intelligent-tracking-prevention-2-0/
http://www.networkadvertising.org/choices/
http://www.networkadvertising.org/choices/
http://www.w3.org/2011/04/29-w3cdnt-minutes.html
http://www.w3.org/2011/04/29-w3cdnt-minutes.html
http://www.donottrack.us/
http://www.donottrack.us/
https://www.ftc.gov/news-events/press-releases/2010/12/ftc-staff-issues-privacy-report-offers-framework-consumers
https://www.ftc.gov/news-events/press-releases/2010/12/ftc-staff-issues-privacy-report-offers-framework-consumers
http://tools.ietf.org/html/draft-mayer-do-not-track-00
http://www.w3.org/TR/tracking-dnt
http://www.w3.org/TR/tracking-dnt
https://www.eff.org/deeplinks/2011/01/mozilla-leads-the-way-on-do-not-track
https://www.eff.org/deeplinks/2011/01/mozilla-leads-the-way-on-do-not-track
http://europa.eu/rapid/press-release_SPEECH-12-716_en.htm
http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm
http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm
http://cseweb.ucsd.edu/~d1jang/papers/ccs10.pdf
http://cseweb.ucsd.edu/~d1jang/papers/ccs10.pdf

[229] Security-in-a-Box, “Remain anonymous and bypass censorship on the Internet.” https://

securityinabox.org/en/guide/anonymity-and-circumvention/, 2015.

[230] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-Generation Onion Router,” in
Usenix Security Symposium, 2004.

[231] S. J. Murdoch and P. Zieliński, “Sampled Traffic Analysis by Internet-Exchange-level Adversaries,”
PETs, 2007.

[232] A. Acquisti, L. K. John, and G. Loewenstein, “What is privacy worth?,” The Journal of Legal Studies,
vol. 42, no. 2, pp. 249 – 274, 2013.

[233] Logicalis, “The age of digital enlightenment.” https://www.uk.logicalis.com/globalassets/
united-kingdom/microsites/real-time-generation/realtime-generation-2016-report.

pdf, 2017. Accessed on 2018-10-25.

[234] K. C. Gina Pingitore, Vikram Rao and K. Dwivedi, “To share or not to share.” https://www2.

deloitte.com/content/dam/insights/us/articles/4020_To-share-or-not-to-share/DUP_

To-share-or-not-to-share.pdf, 2017.

[235] J. Estrada-Jiménez, J. Parra-Arnau, A. Rodríguez-Hoyos, and J. Forné, “Online advertising: Anal-
ysis of privacy threats and protection approaches,” Computer Communications, vol. 100, pp. 32 –
51, 2017.

[236] A. Juels, “Targeted advertising ... and privacy too,” in Proceedings of the 2001 Conference on Topics

in Cryptology: The Cryptographer’s Track at RSA, CT-RSA 2001, (Berlin, Heidelberg), pp. 408–424,
Springer-Verlag, 2001.

[237] C. Riederer, V. Erramilli, A. Chaintreau, B. Krishnamurthy, and P. Rodriguez, “For sale : Your data:
By : You,” in Proceedings of the 10th ACM Workshop on Hot Topics in Networks, HotNets-X, (New
York, NY, USA), pp. 13:1–13:6, ACM, 2011.

[238] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas, “Adnostic: Privacy preserv-
ing targeted advertising,” in NDSS, 2010.

[239] S. Guha, B. Cheng, and P. Francis, “Privad: Practical privacy in online advertising,” in Proceed-

ings of the 8th USENIX Conference on Networked Systems Design and Implementation, NSDI’11,
(Berkeley, CA, USA), pp. 169–182, USENIX Association, 2011.

[240] M. Fredrikson and B. Livshits, “Repriv: Re-envisioning in-browser privacy,” 2010.

[241] M. Backes, A. Kate, M. Maffei, and K. Pecina, “Obliviad: Provably secure and practical online
behavioral advertising,” in 2012 IEEE Symposium on Security and Privacy, pp. 257–271, 5 2012.

[242] J. P. Achara, J. Parra-Arnau, and C. Castelluccia, “Mytrackingchoices: Pacifying the ad-block war
by enforcing user privacy preferences,” CoRR, vol. abs/1604.04495, 2016.

[243] J. Parra-Arnau, J. P. Achara, and C. Castelluccia, “Myadchoices: Bringing transparency and control
to online advertising,” ACM Trans. Web, vol. 11, pp. 7:1–7:47, Mar. 2017.

[244] C. Lu Wang, Y. J. Zhang, L. Richard Ye, and D. Nguyen, “Subscription to fee-based online services:
What makes consumer pay for online content?,” vol. 6, 01 2005.

[245] B. Software, “Basic attention token.” https://basicattentiontoken.org/faq/

BasicAttentionTokenWhitePaper-4.pdf, 2018.

Bibliography 133

https://securityinabox.org/en/guide/anonymity-and-circumvention/
https://securityinabox.org/en/guide/anonymity-and-circumvention/
https://www.uk.logicalis.com/globalassets/united-kingdom/microsites/real-time-generation/realtime-generation-2016-report.pdf
https://www.uk.logicalis.com/globalassets/united-kingdom/microsites/real-time-generation/realtime-generation-2016-report.pdf
https://www.uk.logicalis.com/globalassets/united-kingdom/microsites/real-time-generation/realtime-generation-2016-report.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/4020_To-share-or-not-to-share/DUP_To-share-or-not-to-share.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/4020_To-share-or-not-to-share/DUP_To-share-or-not-to-share.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/4020_To-share-or-not-to-share/DUP_To-share-or-not-to-share.pdf
https://basicattentiontoken.org/faq/BasicAttentionTokenWhitePaper-4.pdf
https://basicattentiontoken.org/faq/BasicAttentionTokenWhitePaper-4.pdf

[246] S. Hohenberger, S. Myers, R. Pass, and a. shelat, “Anonize: A large-scale anonymous survey sys-
tem,” in 2014 IEEE Symposium on Security and Privacy, pp. 375–389, 5 2014.

[247] G. Keizer, “Brave browser begins controversial ad repeal-and-replace
tests.” https://www.computerworld.com/article/3284076/web-browsers/

brave-browser-begins-controversial-ad-repeal-and-replace-tests.html, April 13,
2018.

[248] N. Lomas, “Shine signs first european carriers to its network-
level ad blocking tech.” https://techcrunch.com/2016/02/18/

shine-bags-first-european-carrier-as-three-uk-deploys-network-level-ad-blocking/,
2015.

[249] bloomberg, “Inside the brotherhood of the ad blockers.” https://www.bloomberg.com/news/

features/2018-05-10/inside-the-brotherhood-of-pi-hole-ad-blockers, 2018.

[250] Beauftragte für den Datenschutz der EKD, “"pi-hole - ein erfahrungsbericht".” https://

datenschutz.ekd.de/2018/04/12/pi-hole-ein-erfahrungsbericht/, 2018.

[251] K. Chellapilla and A. Maykov, “A taxonomy of javascript redirection spam,” in Proceedings of the

3rd International Workshop on Adversarial Information Retrieval on the Web, AIRWeb ’07, (New
York, NY, USA), pp. 81–88, ACM, 2007.

[252] K. Bhargrava, B. Gsrc, D. Brewer, B. Gsrc, and B. Gsrc, “A Study of URL Redirection Indicating
Spam,” in CEAS, 2009.

[253] L. Li, X. Jin, S. J. Pan, and J. Sun, “Multi-domain active learning for text classification,” in The

18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12,

Beijing, China, August 12-16, 2012, pp. 1086–1094, 2012.

[254] M. Gandhi, M. Jakobsson, and J. Ratkiewicz, “Badvertisements: Stealthy Click-Fraud with Unwit-
ting Accessories,” Journal of Digital Forensic Practice, vol. 1, pp. 131–142, 2006.

[255] C. E. Wills and D. C. Uzunoglu, “What ad blockers are (and are not) doing,” in 2016 Fourth IEEE

Workshop on Hot Topics in Web Systems and Technologies (HotWeb), pp. 72–77, 10 2016.

[256] G. Franken, T. V. Goethem, and W. Joosen, “Who left open the cookie jar? a comprehensive
evaluation of third-party cookie policies,” in 27th USENIX Security Symposium (USENIX Security

18), (Baltimore, MD), pp. 151–168, USENIX Association, 2018.

[257] V. Kalavri, J. Blackburn, M. Varvello, and K. Papagiannaki, “Like a Pack of Wolves: Community
Structure of Web Trackers,” in Passive and Active Measurement, pp. 42–54, Springer International
Publishing, 2016.

[258] R. Gomer, E. M. Rodrigues, N. Milic-Frayling, and M. C. Schraefel, “Network analysis of third party
tracking: User exposure to tracking cookies through search,” in 2013 IEEE/WIC/ACM International

Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 1, pp. 549–
556, 11 2013.

[259] M. A. Bashir and C. Wilson, “Diffusion of User Tracking Data in the Online Advertising Ecosystem,”
in Proceedings on Privacy Enhancing Technologies (PETS 2018), (Barcelona, Spain), July 2018.

[260] S. Schelter and J. Kunegis, “On the ubiquity of web tracking: Insights from a billion-page web
crawl,” J. Web Science, vol. 4, pp. 53–66, 2018.

134 Bibliography

https://www.computerworld.com/article/3284076/web-browsers/brave-browser-begins-controversial-ad-repeal-and-replace-tests.html
https://www.computerworld.com/article/3284076/web-browsers/brave-browser-begins-controversial-ad-repeal-and-replace-tests.html
https://techcrunch.com/2016/02/18/shine-bags-first-european-carrier-as-three-uk-deploys-network-level-ad-blocking/
https://techcrunch.com/2016/02/18/shine-bags-first-european-carrier-as-three-uk-deploys-network-level-ad-blocking/
https://www.bloomberg.com/news/features/2018-05-10/inside-the-brotherhood-of-pi-hole-ad-blockers
https://www.bloomberg.com/news/features/2018-05-10/inside-the-brotherhood-of-pi-hole-ad-blockers
https://datenschutz.ekd.de/2018/04/12/pi-hole-ein-erfahrungsbericht/
https://datenschutz.ekd.de/2018/04/12/pi-hole-ein-erfahrungsbericht/

[261] P. Syverson and M. Traudt, “HSTS supports targeted surveillance,” in 8th USENIX Workshop on

Free and Open Communications on the Internet (FOCI 18), (Baltimore, MD), USENIX Association,
Aug. 2018.

[262] B. Fulgham, “Protecting against hsts abuse.” https://webkit.org/blog/8146/

protecting-against-hsts-abuse/, 2018. Accessed on 2020-02-02.

[263] J. Wilander, “Preventing tracking prevention tracking.” https://webkit.org/blog/9661/

preventing-tracking-prevention-tracking/, 2019. Accessed on 2020-02-02.

[264] Mozilla, “Security/Anti tracking policy.” https://wiki.mozilla.org/Security/Anti_

tracking_policy, 2019. Accessed on 2020-02-02.

[265] C. Matte, N. Bielova, and C. Santos, “Do cookie banners respect my choice? measuring legal
compliance of banners from iab europe’s transparency and consent framework,” 2019.

[266] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell, “Protecting browser state from web privacy
attacks,” 2006.

[267] I. Fouad, N. Bielova, A. Legout, and N. Sarafijanovic-Djukic, “Missed by filter lists: Detecting
unknown third-party trackers with invisible pixels,” in PETS 2020-20th Privacy Enhancing Tech-

nologies Symposium, 2020.

[268] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-Law Distributions in Empirical Data,”
SIAM Rev., 2009.

[269] J. Wilander, “Full Third-Party Cookie Blocking and More.” https://webkit.org/blog/10218/

full-third-party-cookie-blocking-and-more/, 2020.

[270] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman, J. Mayer, A. Narayanan, and E. W. Felten,
“Cookies that give you away: The surveillance implications of web tracking,” in Proceedings of the

24th International Conference on World Wide Web, pp. 289–299, 2015.

[271] P. E. Black, “Ratcliff/obershelp pattern recognition,” Dictionary of algorithms and data structures,
vol. 17, 2004.

[272] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of communities
in large networks,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2008, no. 10,
p. P10008, 2008.

[273] J. Wilander, “Intelligent tracking prevention 2.0.” https://webkit.org/blog/8311/

intelligent-tracking-prevention-2-0/, June 2018.

[274] S. Murdoch, M. Perry, and E. Clark, “Tor: Cross-Origin Identifier Unlinkability.” https://2019.

www.torproject.org/projects/torbrowser/design/#identifier-linkability, 2018. Ac-
cessed on 2020-04-20.

[275] Mozilla, “Tor Uplift Project.” https://wiki.mozilla.org/Security/Tor_Uplift, 2017. Ac-
cessed on 2020-04-20.

[276] Tor Project, “Tor at the Heart: Firefox.” https://blog.torproject.org/tor-heart-firefox,
2016. Accessed on 2020-04-20.

[277] M. Brinkmann, “Mozilla adds Dynamic First Party Isola-
tion option to Firefox 77.” https://www.ghacks.net/2020/04/17/

mozilla-adds-dynamic-first-party-isolation-option-to-firefox-77/, 2020. Ac-
cessed on 2020-04-30.

Bibliography 135

https://webkit.org/blog/8146/protecting-against-hsts-abuse/
https://webkit.org/blog/8146/protecting-against-hsts-abuse/
https://webkit.org/blog/9661/preventing-tracking-prevention-tracking/
https://webkit.org/blog/9661/preventing-tracking-prevention-tracking/
https://wiki.mozilla.org/Security/Anti_tracking_policy
https://wiki.mozilla.org/Security/Anti_tracking_policy
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://webkit.org/blog/8311/intelligent-tracking-prevention-2-0/
https://webkit.org/blog/8311/intelligent-tracking-prevention-2-0/
https://2019.www.torproject.org/projects/torbrowser/design/#identifier-linkability
https://2019.www.torproject.org/projects/torbrowser/design/#identifier-linkability
https://wiki.mozilla.org/Security/Tor_Uplift
https://blog.torproject.org/tor-heart-firefox
https://www.ghacks.net/2020/04/17/mozilla-adds-dynamic-first-party-isolation-option-to-firefox-77/
https://www.ghacks.net/2020/04/17/mozilla-adds-dynamic-first-party-isolation-option-to-firefox-77/

[278] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,” IEEE Transactions on Visual-

ization and Computer Graphics, vol. 17, pp. 2301–2309, 2011.

[279] S. Englehardt, “Firefox 72 blocks third-party fingerprinting resources.” https://blog.mozilla.
org/security/2020/01/07/firefox-72-fingerprinting/, 2020.

[280] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir, “BrowserShield: Vulnerability-
Driven Filtering of Dynamic HTML,” ACM Trans. Web, 2007.

[281] G. Tavares, “Thoughts on asm.js vs PNaCl.” http://games.greggman.com/game/

thoughts-on-asm-js-vs-pnacl/, 2013. Accessed on 2013-10-30.

[282] Z. Weinberg, E. Chen, and C. Jackson, “I Still Know What You Visited Last Summer: Leaking
Browsing History Via User Interaction and Side Channel Attacks,” in IEEE Symposium on Security

and Privacy, 2011.

[283] E. Y. Chen, J. Bau, C. Reis, A. Barth, and C. Jackson, “App Isolation: Get the Security of Multiple
Browsers with Just One,” in CCS, 2011.

[284] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell System Technical Journal,
1948.

[285] D. A. Huffman, “A Method for the Construction of Minimum-Redundancy Codes,” Institute of

Radio Engineers, 1952.

[286] I. Pavlov, “LZMA specification.” http://dl.7-zip.org/lzma-specification.zip, 2013. Ac-
cessed on 2013-10-30.

[287] K. G. Morse, Jr., “Compression Tools Compared,” Linux J., 2005.

[288] D. Witte, “(doublekey) Key cookies on setting domain * toplevel load domain.” https://

bugzilla.mozilla.org/show_bug.cgi?id=565965, 2010. Accessed on 2014-07-10.

[289] M. Perry, “Apply third party cookie patch.” https://trac.torproject.org/projects/tor/

ticket/3246, 2011. Accessed on 2014-07-10.

[290] C. Reis and S. D. Gribble, “Isolating web programs in modern browser architectures,” EuroSys ’09,
2009.

[291] H. Wang, C. Grier, and A. Moshchuk, “The Multi-Principal OS Construction of the Gazelle Web
Browser,” in Usenix Securitys Symposiom, 2009.

[292] C. Grier, S. Tang, and S. T. King, “Secure Web Browsing with the OP Web Browser,” IEEE Sympo-

sium on Security and Privacy, 2008.

[293] A. Eferati, “’Like’ Button Follows Web Users.” http://online.wsj.com/news/articles/

SB10001424052748704281504576329441432995616, 2011. Accessed on 2013-10-30.

[294] D. Fifield and S. Egelman, “Fingerprinting web users through font metrics,” in Financial Cryptog-

raphy and Data Security, 2015.

[295] D. Herrmann, K. Fuchs, and H. Federrath, “Fingerprinting Techniques for Target-oriented Investi-
gations in Network Forensics,” Sicherheit, 2014.

[296] A. FaizKhademi, M. Zulkernine, and K. Weldemariam, “FPGuard: Detection and Prevention of
Browser Fingerprinting,” IFIP, 2015.

136 Bibliography

https://blog.mozilla.org/security/2020/01/07/firefox-72-fingerprinting/
https://blog.mozilla.org/security/2020/01/07/firefox-72-fingerprinting/
http://games.greggman.com/game/thoughts-on-asm-js-vs-pnacl/
http://games.greggman.com/game/thoughts-on-asm-js-vs-pnacl/
http://dl.7-zip.org/lzma-specification.zip
https://bugzilla.mozilla.org/show_bug.cgi?id=565965
https://bugzilla.mozilla.org/show_bug.cgi?id=565965
https://trac.torproject.org/projects/tor/ticket/3246
https://trac.torproject.org/projects/tor/ticket/3246
http://online.wsj.com/news/articles/SB10001424052748704281504576329441432995616
http://online.wsj.com/news/articles/SB10001424052748704281504576329441432995616

[297] C. Torres, H. Jonker, and S. Mauw, “FP-Block: usable web privacy by controlling browser finger-
printing,” ESORICS, 2015.

[298] A. Khademi, “Browser fingerprinting: Analysis, detection, and prevention at runtime,” in M.S.

thesis, School of Computing, Queen’s University, Kingston, 2014.

[299] Gacar, “Circumventing TOR font-limits by using multiple frames.” https://www.torproject.

org/projects/torbrowser.html.en, 2013.

[300] M. Wu, R. Miller, and S. Garfinkel, “Do security toolbars actually prevent phishing attacks?,” CHI,
2006.

[301] Appodrome, “CanvasFingerprintBlock.” https://chrome.google.com/webstore/detail/

canvasfingerprintblock/ipmjngkmngdcdpmgmiebdmfbkcecdndc, 2014. Accessed on 2015-02-
02.

[302] The Chromium Project, “Chrome Browser.” http://www.chromium.org/Home, 2015.

[303] Tor Project, “Tor Browser.” https://trac.torproject.org/projects/tor/ticket/5798#

comment:13, 2015. Accessed on 2015-01-11.

[304] H. Tillmann, “Browser Fingerprinting Dataset.” http://www.henning-tillmann.de/2013/10/

browser-fingerprinting-93-der-nutzer-hinterlassen-eindeutige-spuren/, 2014. Ac-
cessed on 2014-09-10.

[305] A. Phillips and M. Davis, “BCP47 - Tags for Identifying Languages,” IETF Trust, 2009.

Bibliography 137

https://www.torproject.org/projects/torbrowser.html.en
https://www.torproject.org/projects/torbrowser.html.en
https://chrome.google.com/webstore/detail/canvasfingerprintblock/ipmjngkmngdcdpmgmiebdmfbkcecdndc
https://chrome.google.com/webstore/detail/canvasfingerprintblock/ipmjngkmngdcdpmgmiebdmfbkcecdndc
http://www.chromium.org/Home
https://trac.torproject.org/projects/tor/ticket/5798#comment:13
https://trac.torproject.org/projects/tor/ticket/5798#comment:13
http://www.henning-tillmann.de/2013/10/browser-fingerprinting-93-der-nutzer-hinterlassen-eindeutige-spuren/
http://www.henning-tillmann.de/2013/10/browser-fingerprinting-93-der-nutzer-hinterlassen-eindeutige-spuren/

	Introduction into Web Tracking
	Web Tracking Methods
	Web Tracking Defenses
	Publications and Contributions
	Outline

	Web Tracking Background
	Beginning of Web Tracking
	Cross-Domain Tracking
	Market and Stakeholders
	Ad-Ecosystem
	Risks, Threats and Implications
	Insecure Data Handling
	Web Services and Social Media
	When Third-Party Tracking becomes First-Party
	Information Leakage
	Buying User Data
	Web Exploits
	De-Anonymization of Users
	Price Discrimination
	Financial Credibility
	Insurance Coverage
	Government Surveillance
	Positive Aspects of Tracking

	Web Tracking Techniques
	Session Based
	Storage Based
	Cache Based Tracking
	Browser Fingerprinting
	Redirect Tracking
	Others

	Tracking Protection Mechanisms and Tools
	Clearing Browser Cookies, Cache and History
	Built-In Browser Mechanisms
	Private Browsing
	Opt-Out Cookies
	Do-Not-Track Header
	European Cookie Law
	Tools to Block Trackers
	Anonymity Networks / IP Hiding
	Anonymous Search Engines
	User Driven (Academic) Advertising Models
	Tracking-Free (Paid) Services

	Summary

	Automated System to Detect, Analyze and Protect Against Tracking
	Architecture and Implementation
	Tracker Classification and Detection Metric
	Long Term Evaluation and Results of Web Tracking on German Websites
	Experimental Setup
	Results
	Top Tracker of Entire Evaluation Period
	Top Tracker in a Single Crawl
	Highest Tracker Appearance in Different Crawls
	Total Amount of Tracking Elements on Websites
	Amount of Tracking Elements on Websites in a Single Crawl
	Average Amount of Tracking Elements Embedded on Websites
	Maximum Trackers on Websites in Different Crawls
	Evaluation of Tracking Methods

	Summary

	Dynamic Redirect Link Tracking Evaluation
	Related Work
	Experimental Setup
	OpenWPM Framework
	Crawler Architecture
	Crawler Configuration
	Simulated User Behavior

	Results
	Initial Loading
	Identifying Redirect Trackers
	Regular Trackers
	Redirect Trackers and Cookies
	Cookie classification
	Clusters of Trackers
	Structure of the Redirect URLs

	Countermeasures
	Rewriting URLs in the Browser
	Blocking Cookies from 1st Party Redirects
	Blocking Popups
	Blocking Ads
	Browser Add-on LinkTrackExchange

	Visualization
	Bubblechart
	Redirect-Graph
	Select different statistic data
	Network-Graph

	Summary

	Reducing User Tracking through Automatic Website State Isolation
	Design Decisions
	Intercepting Proxy
	Extension or Add-On
	Plugin
	Modifying the Browser Source

	Concept and Implementation
	Storage Policy
	Support of Complex Interaction
	Storage Strategies
	Isolation Classifications

	Evaluation
	Browsing Sessions
	Biased Crawling
	Crawling Results

	Discussion

	Related Work
	Summary

	Robust Browser Fingerprinting Protection
	Related Work
	Anti-Fingerprinting: Disguised Chromium Browser
	Architecture and Implementation
	DCB: Mode of Operation
	Flash and System Font Protection Mechanisms
	Specific N:1 Implementation
	Specific 1:N Implementation

	Canvas Anti-Fingerprinting
	Weaknesses in Counter Detection Strategies of Canvas Manipulation
	Robust Canvas Fingerprinting Protection
	Image manipulation algorithm

	Evaluation
	1:N – One Browser, Many Configurations
	Results

	N:1 – Many Browsers, One Configuration
	Results

	Comparison of Anti-Fingerprinting Features

	Summary

	Conclusion and Future Work

