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Abstract
With the frequency and impact of data breaches raising, it has become essential

for organizations to automate intrusion detection via machine learning solutions.
This generally comes with numerous challenges, among others high class imbal-
ance, changing target concepts and difficulties to conduct sound evaluation. In this
thesis, we adopt a user-centered anomaly detection perspective to address selected
challenges of intrusion detection, through a real-world use case in the identity and
access management (IAM) domain. In addition to the previous challenges, salient
properties of this particular problem are high relevance of categorical data, limited
feature availability and total absence of ground truth.

First, we ask how to apply anomaly detection to IAM audit logs containing a
restricted set of mixed (i.e. numeric and categorical) attributes. Then, we inquire
how anomalous user behavior can be separated from normality, and this separation
evaluated without ground truth. Finally, we examine how the lack of audit data
can be alleviated in two complementary settings. On the one hand, we ask how to
cope with users without relevant activity history ("cold start" problem). On the other
hand, we seek how to extend audit data collection with heterogeneous attributes (i.e.
categorical, graph and text) to improve insider threat detection.

After aggregating IAM audit data into sessions, we introduce and compare gen-
eral anomaly detection methods for mixed data to a user identification approach,
designed to learn the distinction between normal and malicious user behavior. We
find that user identification outperforms general anomaly detection and is effective
against masquerades. An additional clustering step allows to reduce false positives
among similar users. However, user identification is not effective against insider
threats. Furthermore, results suggest that the current scope of our audit data collec-
tion should be extended.

In order to tackle the "cold start" problem, we adopt a zero-shot learning ap-
proach. Focusing on the CERT insider threat use case, we extend an intrusion detec-
tion system by integrating user relations to organizational entities (like assignments
to projects or teams) in order to better estimate user behavior and improve intrusion
detection performance. Results show that this approach is effective in two realistic
scenarios.

Finally, to support additional sources of audit data for insider threat detection,
we propose a method representing audit events as graph edges with heterogeneous
attributes. By performing detection at fine-grained level, this approach advanta-
geously improves anomaly traceability while reducing the need for aggregation and
feature engineering. Our results show that this method is effective to find intrusions
in authentication and email logs.

Overall, our work suggests that masquerades and insider threats call for different
detection methods. For masquerades, user identification is a promising approach.
To find malicious insiders, graph features representing user context and relations
to other entities can be informative. This opens the door for tighter coupling of
intrusion detection with user identities, roles and privileges used in IAM solutions.
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Chapter 1

Introduction

1.1 Motivation and scope

The growing threat of data breaches In our ever more digitalized world, data
breaches pose a rising threat to public and private organizations. According to
the Cost of Data Breach study by IBM [1], the global average cost of a data breach
has reached $3.94 million in 2019. In addition to their high financial impact, data
breaches are increasingly frequent: the likelihood for an organization to experience
a leak of at least 10 000 data records in the next two years reaches 29.6%, a 31% in-
crease compared to 2014. Moreover, the IBM study only considers medium-sized
breaches (up to 100 000 data records) and does not encompass mega breaches, like
the Equifax incident (2017). In this latter case, sensitive personal data such as so-
cial security numbers, addresses and birth dates from over 147 million people were
stolen from the credit risk assessment company. The incident had a significant finan-
cial impact on Equifax, whose stock price lost approximately one third of its value
in the weeks following the announcement; recently the company agreed to pay at
least $575 million to settle subsequent lawsuits [2]. Despite the far-reaching conse-
quences, many organizations are not prepared against data breaches. As suggested
in the IBM study, their containment takes as long as 279 days on average, even reach-
ing 314 days for malicious incidents, which represent around a half of all breaches.

Intrusion detection systems (IDS) Therefore, robust protection systems are be-
coming vital to mitigate the risk of data breaches and other intrusions in digital
infrastructure. Due to the increasing data volumes produced by organizations, au-
tomated solutions are required, as the effort needed for exhaustive monitoring of
an organization exceeds by far available human resources. This is where intrusion
detection systems come in. The American National Institute of Standards and Tech-
nology (NIST) defines an intrusion detection system as "software that automates the
intrusion detection process, [i.e.] monitoring the events occurring in a computer
system or network and analyzing them for signs of possible incidents, which are
violations or imminent threats of violation of computer security policies, acceptable
use policies, or standard security practices" [3]. In view of the large amounts of
events to monitor, an effective IDS must be capable of finding a needle in a haystack,
whenever such needle is present. Human resources are usually still allocated to a se-
curity operations center, in charge of receiving the alerts and taking counteractions
to contain the threat. In this thesis, we adopt this perspective as well.

Traditionally, intrusion detection systems can be classified into two broad cat-
egories: signature-based and anomaly-based IDS [4]. Signature-based IDS rely on
known patterns of malicious activity (so-called signatures) to be detected. This ap-
proach is very effective (in terms of detection and false positive rate), as long as the
signatures are up-to-date. However, signature-based methods are helpless against
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unseen, i.e. zero-day threats. Nevertheless, these intrusions can be detected with
anomaly-based IDS. Their principle is to build profiles of normal behavior, and as-
sume significant deviations from normality to represent malicious activities. This
last assumption is critical for the performance of anomaly-based IDS: if anomalies
are not malicious, false alerts will be raised. On the contrary, malicious activities
falling within the scope of normal behavior will lead to false negatives, i.e. not rais-
ing alerts when necessary. Methods presented in this thesis fall under anomaly-
based intrusion detection.

Furthermore, intrusion detection systems can be classified based on where they
operate. Host-based intrusion detection systems run on users’ computer where ac-
tivity is inspected locally. On the contrary, network-based intrusion detection sys-
tems rely on analyzing traffic between hosts of an organization’s network to detect
attacks. As both approaches can be complementary, the distinction between host-
based and network-based is not always crisp; hybrid systems have been developed
as well [5]. In this thesis, we adopt a user-centered perspective which exceeds this
distinction. Indeed we try to leverage as many audit data sources as available to de-
scribe user activities, regardless of whether these are performed locally or remotely.
By doing so, we assume that behavior profiles required for anomaly-based intrusion
are best built at user level.

Relation to SIEM and UEBA While this thesis focuses on intrusion detection, secu-
rity information and event management (SIEM) as well as user and entity behavior
analytics (UEBA) are two closely related concepts. SIEM designates the process of
monitoring security events across information systems, in order to generate and re-
spond to alerts [6]. Thus SIEM encompasses intrusion detection, which should be
integrated in this process. UEBA corresponds to anomaly-based profiling of users
and entities (i.e. diverse devices connected to an IT system) in order to detect fraud-
ulent behavior from an internal perspective [7]. Thus, methods presented in this
thesis are highly relevant to UEBA.

Intrusion types Various types of intrusions have been described in literature, in-
cluding network-based attacks, malware, exploitation of hardware and software
vulnerabilities [5]. The landscape of real-world threats is now so vast that special-
ized knowledge bases have emerged to keep trace of possible attack techniques [8].
Given the diversity of attack patterns, it would be naive to think a one-fits-all de-
tection solution can be found. In order to provide a clear boundary to this thesis,
we decide to focus on two types of attacks, for which modeling user behavior is key
to applying anomaly-based detection: masquerades and insider threats. Masquer-
ade refers to credentials being used by someone else as the legitimate owner, usually
without his consent. In this case, credentials are often stolen by the attacker, who can
be internal or external to the organization. On the contrary, insider threats designate
illegitimate and potentially harmful activities conducted by rightfully authorized
(i.e. internal) users.

Machine learning for intrusion detection As the distinction between normal and
anomalous behavior is often non-trivial and difficult to formalize, machine learning
can be used to learn these two concepts using examples (see chapter 2 for a more
detailed literature review). Machine learning methods can be classically divided into
supervised and unsupervised approaches, depending on ground truth availability.
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In the intrusion detection domain, the latter are usually preferred for several rea-
sons. First, manual annotation requires prohibitive human effort, due to the large
volume and variety of audit logs. Second, class imbalance (i.e. scarceness of intru-
sions compared to normal samples) aggravates this problem: in order to find only
one anomalous example, a human annotator would have to go through thousands
if not millions of normal observations. Finally, providing a clear definition of what
constitutes an intrusion is not always straightforward: it can depend on the opera-
tional context [9] and can evolve over time (i.e. concept drift [10]). In this thesis, we
address a real-world intrusion detection problem where ground truth is not avail-
able (more details in section 1.2), thus we use unsupervised learning techniques.

Whether addressed through supervised or unsupervised learning, intrusion de-
tection is generally regarded as a binary classification (in the former setting) or an
anomaly detection task (in the latter). In any case, observations are to be assigned
a binary label (normal or malicious). However, in this thesis we adopt a different
perspective and focus on anomaly ranking. Instead of assigning labels, our aim is to
provide scores quantifying how anomalous audit records are. This presents several
advantages compared to the classification perspective. First, it is more general, as
one can always revert back to binary decisions by applying some threshold on the
anomaly scores. Second, ranking allows to choose a threshold dependent on the op-
erational environment. Lastly, anomaly scores can be used for prioritization of alerts
by security analysts.

Heterogeneous data Finally, it is obvious that intrusion detection systems are to be
applied on real-world audit data, which is often heterogeneous. By heterogeneous
data we refer to data with attributes (or features, following the machine learning
terminology) of different types: numeric, ordinal, categorical, text, image, sound,
video, graph... It appears that the majority of existing methods for anomaly de-
tection in general, and intrusion detection in particular, are designed for numeric
data only. As a consequence, other data types are often simply discarded when us-
ing these methods. This is not desirable: by ignoring some features, we may loose
useful information or context relevant to our problem. Thus we argue that heteroge-
neous data should not be discarded without further analysis. In this thesis, we use
the terms mixed data for the combination of numeric and categorical features, and
heterogeneous data for any combination of several feature types.

1.2 Real-world intrusion detection use case

The research work presented in this thesis addresses particular aspects of a real-
world intrusion detection use case proposed by the company Atos, and which con-
stitutes the background of our study. The long term goal of this use case consists in
laying foundations for the development of an intrusion detection module within an
identity and access management framework. In the following, we first provide some
details about this application context. Then we proceed to outline key characteristics
of this real-world use case.

1.2.1 Application context: identity and access management

To put it very broadly, the goal of identity and access management is to ensure
that the right persons access the right resources at the right time and for the right
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reasons. To achieve this goal, IAM classically relies on three main functions: authen-
tication, authorization and audit. An access to a protected resource consists of an
authentication, where the identity claimed by a user is verified followed by an au-
thorization, where his right to access said resource is verified. IAM solutions notably
allow organizations to manage large number of users along with their credentials
and roles required for authentication and authorization. The third main component
of IAM – audit – is mostly concerned with a posteriori monitoring and analysis of
access logs. Audit is critical to guarantee the proper functioning of IAM solutions,
as well as to comply with legal regulations.

Adding intrusion detection capabilities to IAM systems appears as a natural ex-
tension for several reasons. First, traditional credentials based on something you know
(e.g. password) or something you have (e.g. smart card) are subject to theft and misuse.
Thus methods based on something you are can provide an additional authentication
layer to reduce risk of illegitimate access. Anomaly-based intrusion detection sys-
tems fall into this last category. Secondly, IAM systems already collect user activity
traces for audit purposes, providing a data source to build anomaly-based intrusion
detection models. Last but not least, integrating intrusion detection within IAM sys-
tems allows for automatic counteraction when an intrusion is detected, i.e. denying
access and reporting to the security operations center. This is a crucial first step for
timely containment of intrusions.

1.2.2 Use case particularities

In order to evaluate possible intrusion detection solutions, a real-world dataset
is provided by Atos. It consists of anonymized access logs from the company’s web
single sign-on portal for employees. Through this gateway, numerous online busi-
ness applications and resources are available, such as the employee portal (for time
sheets, leave and travel requests, etc.), the company’s internal social network, HR
and support pages, and many more. These audit logs are in form of authentication
and authorization events; more details can be found in section 3.1.

This dataset has three particular characteristics which we address in our research.
First, it contains mixed (i.e. numeric and categorical) features; other data types could
be added later. Secondly, it was not collected for intrusion detection purposes and
only has a limited number of features to describe user activity. Thirdly, ground truth
is completely absent. Due to the large data size, it is very likely that the Atos audit
logs contain at least some anomalies, but there are no labels of normal or abnormal
behavior. At the time where this work has been conducted, no expert knowledge
was available to annotate particular data samples either: under these conditions,
validation of any detection result is challenging.

1.3 Research objectives

Our first goal is to address particular aspects of the real-world intrusion detection
use case described previously: support of mixed data, limited features and total
absence of ground truth.

However to this aim deploying "off-the-shelf" solutions is impossible for several
reasons. Some are general challenges of intrusion detection: for instance, in this ap-
plication domain there is no standard feature set (unlike in image classification or
credit card fraud detection). Moreover, definitions of what is to be considered an in-
trusion or not largely depends on the organization’s security policy, and therefore on
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the application environment. These two points make intrusion detection solutions
unique and hinder reusing existing methods.

In addition to these general issues, properties of the real-world use case we study
bring specific requirements. Regarding the support of mixed data, most anomaly-
based intrusion detection methods work only on numeric data, hence using them
implies discarding categorical attributes. Concerning features available to describe
user activity, they are limited because the real-world audit logs we use were not col-
lected specifically for intrusion detection purposes. Thus substantial preprocessing
and feature engineering effort is required. This motivates us to formulate the fol-
lowing research question:

RQ. 1: How to apply anomaly detection methods to real-world authentication and
authorization audit logs containing mixed data and limited features?

Regarding the absence of ground truth, the challenge is not only that we have to
restrict ourselves to unsupervised learning methods, but also that detection results
should be evaluated without further gold standard. This constitutes our second re-
search question:

RQ. 2: In total absence of ground truth, how to learn the distinction between
normal and anomalous user behavior and evaluate the results?

We address the absence of ground truth through user identification (see chapter
4). This approach is effective against masquerades but not insider threats; therefore
we lend our full attention to the latter in the remaining chapters of this thesis. Ad-
ditionally, in real-world settings – including ours – the lack of audit data sources
available to describe and characterize user behavior can represent a significant chal-
lenge. This is an important shortcoming affecting anomaly-based intrusion detec-
tion methods in general, as they rely on audit data to build profiles of normal user
behavior.

The "cold start" problem represents a first variant of this challenge: it corresponds
to relevant activity data being inherently unavailable for particular users (e.g. new
recruits of an organization who do not have an activity history yet). Our third re-
search question addresses this setting:

RQ. 3: How to address the "cold start" problem (i.e. absence of activity data) in
anomaly-based intrusion detection?

The cold start problem typically concerns a subset of all users within an organi-
zation. However, the lack of audit data can be more pervasive, in particular when
the scope of collected audit data is just not sufficient to detect intrusions effectively.
This raises the question of how to extend data collection in the future. As discussed
in related work, we have identified that graph and text features are commonly ne-
glected in intrusion detection, which motivates us to investigate how they could be
better integrated in this domain:

RQ. 4: Which heterogeneous data features can be useful to detect intrusions, in
particular insider threats, and how to leverage them?



6 Chapter 1. Introduction

1.4 Contributions

In response to the previous research questions, this thesis brings following con-
tributions. Regarding RQ. 1, we show that authentication and authorization events
from our real-world dataset can be aggregated into user sessions, which represent
consistent and semantically meaningful timespans of user activity. In order to char-
acterize these sessions, we extract diverse features from their corresponding audit
log events. As these sessions contain mixed (numeric and categorical) attributes, we
propose three new unsupervised anomaly detection methods supporting this type
of heterogeneous data. We benchmark these methods on public outlier detection
datasets, before applying them to our audit sessions.

However, in our real-world intrusion detection use case, ground truth is com-
pletely unavailable, including for evaluation. To address RQ. 2 we frame intrusion
detection as user identification task, in order to investigate whether users are distin-
guishable based on their sessions. Our user identification based intrusion detection
approach is usable with any classifier and outperforms previous anomaly detection
baselines for masquerade detection on our real-world dataset. Still, this approach
yields many false positives when users have similar behavior. Using clustering, we
are able to improve masquerade detection by greatly reducing false positives. How-
ever, an evaluation on an insider threat dataset shows that these intrusions must be
addressed differently. Additionally, a feature importance study of the user identifi-
cation classifier shows that most session features are not informative to distinguish
users from each other in our real-world dataset.

These findings motivate us to address the insufficiency of audit data required
to characterize user behavior in anomaly-based intrusion detection. Focusing on
insider threats, we address two variants of this problem. In both cases, our angle of
attack consists in leveraging heterogeneous audit data sources.

Regarding RQ. 3, we show how graph features can be used to tackle the "cold
start" problem in intrusion detection systems: whenever historical data is too scarce,
anomaly-based IDS will have trouble defining normal user behavior. We show that
this can be addressed through zero-shot learning, a technique where semantic rep-
resentations of classes compensates the lack of examples thereof. In particular, we
extend an existing intrusion detection system, in which we integrate information
from the organization’s structure in form of vector representations (graph embed-
dings). This provides more context about users. We compare our extended system
against the existing one in two scenarios where the cold start problem arises: a.
when a new user joins the organization (i.e. history unavailable) and b. when a user
changes working project (i.e. history present but obsolete). Our results show that
taking into account the organization structure graph significantly improves insider
threat detection in both scenarios.

Concerning RQ. 4, we examine how different heterogeneous attributes can be
leveraged and assess precisely which ones are useful for insider threat detection. We
remove the usual data aggregation step: using only one data source (authentications,
emails, web traffic, etc.) at a time, we perform detection at fine-grained (i.e. log line)
level. In order to support graph and text features, we introduce ADSAGE (Anomaly
Detection in Sequences of Attributed Graph Edges). Our evaluation shows that AD-
SAGE ranks among the best performing methods for authentication and email logs;
it also appears that simple rule-based classifiers perform surprisingly well. Our re-
sults show that detection at fine-grained audit event level is feasible.
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1.5 Structure

The rest of this thesis is structured as follows. In chapter 2 we review the state-
of-the-art regarding several topics relevant to this work, outlining existing develop-
ments and research gaps. In chapter 3, we describe the different datasets used in
this study. Chapter 4 addresses research questions RQ. 1 and RQ. 2 in the context
of our real-world intrusion detection use case. In chapter 5, we address research
question RQ. 3 by using zero-shot learning to overcome the "cold start" problem, i.e.
absence activity data for some users. In chapter 6, we address RQ. 4 and leverage
heterogeneous audit log data in the CERT insider threat use case. Finally, chapter 7
concludes this thesis by summarizing our main findings and outlining further de-
velopment perspectives.

1.6 Publications

Parts of this thesis’ content have been published as follows.

• M. Garchery and M. Granitzer, “On the influence of categorical features in
ranking anomalies using mixed data,” Procedia Computer Science, vol. 126, pp. 77–
86, 2018 (section 4.1);

• M. Garchery and M. Granitzer, “Identifying and clustering users for unsuper-
vised intrusion detection in corporate audit sessions,” in 2019 IEEE Interna-
tional Conference on Cognitive Computing (ICCC), IEEE, 2019, pp. 19–27 (section
4.2);

• S. Zerhoudi, M. Garchery, and M. Granitzer, “Improving intrusion detection
systems using zero-shot recognition via graph embeddings,” in IEEE Annual
Computer Software and Applications Conference, COMPSAC 2020, to appear, IEEE,
2020 (section 5.2);

• M. Garchery and M. Granitzer, “Adsage: Anomaly detection in sequences
of attributed graph edges applied to insider threat detection at fine-grained
level,” arXiv preprint arXiv:2007.06985, 2020 (section 6.1, non peer-reviewed).
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Chapter 2

Related work

Research on intrusion detection has attracted a lot of attention since the publica-
tion of the seminal paper by Denning [15] in 1987. Early surveys by Lunt [16] and
Axelsson [4] have provided a first overview of detection techniques, measures and
intrusion types. However the space of existing intrusion detection settings and sys-
tems designed to address them is extremely vast. A synthetic classification mainly
based on detection approach and type of audit data sources used can be found in
[17]. Hindy et al. [5] provide a more recent classification of IDS including extensive
taxonomies of detection systems and threats. Additionally, some surveys focus on
specific perspectives, like network intrusion detection [18] or the use of data mining
and machine learning in this domain [19], [20].

In this chapter, our aim is to review literature concerning selected aspects of in-
trusion detection, which are most relevant to this thesis. First, in section 2.1 we focus
on masquerades and insider threats, the two types of intrusions addressed in this
work. We provide definitions for both intrusion types and review existing methods
to detect them from a data-centered perspective. That is, we emphasize which audit
data sources are most relevant to detect masquerades and insider threats.

Second, in section 2.2 we outline challenges in evaluating intrusion detection
systems, which is particularly difficult for several reasons. This includes lack of
public evaluation datasets and inherent difficulties in aligning evaluation method-
ologies. To illustrate this last point, we examine the state-of-the-art on the CERT
insider threat problem, which we address in this thesis.

Next, in section 2.3 we review the (rare) use of heterogeneous data in unsuper-
vised anomaly detection. We detail general methods to perform anomaly ranking
in mixed data, as required to address our real-world intrusion detection problem
in chapter 4. We then review the use of text and graph data for intrusion detec-
tion, suggesting that they constitute promising features. Nevertheless, we observe
that these heterogeneous features have been largely ignored by IDS addressing the
CERT insider threat problem. Our method ADSAGE, described in chapter 6, fills
this research gap, as well as our system proposed in chapter 5, though in a more
specific setting. We also review anomaly detection methods suited for sequences of
graph edges with heterogeneous attributes, eventually finding that ADSAGE is the
first method to address this particular setting.

Finally, in section 2.4 we provide background on zero-shot learning and its ap-
plication to intrusion detection. The few existing works in this domain concern net-
work intrusion detection; our system described in chapter 5 is the first to use zero-
shot learning against insider threats.
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2.1 Intrusion types and relevant sources of audit data

In the following, we review existing methods to detect two types of intrusions
relevant to this work: masquerades (addressed in chapter 4) and insider threats
(chapters 4, 5 and 6). In addition to providing definitions for these intrusion types,
our focus is on giving an overview of which audit data sources are relevant to detect
them.

2.1.1 Masquerade detection and user identification

In intrusion detection, masquerades refer to a specific scenario, where creden-
tials are used by a different person than the one they were originally assigned to.
Note that although masquerades are often conducted with stolen credentials, this
definition includes "friendly" masquerades, i.e. when a user shares his credentials
with someone else, for legitimate or illegitimate purposes.

Several research works have addressed masquerade detection since the seminal
work by Schonlau et al. [21], which introduced a dataset of Unix commands for eval-
uation. It is noteworthy that this dataset does not contain real masquerades. Instead,
user command histories are contaminated with traces from different users in order
to simulate intrusions. Therefore when considering users individually, masquerades
are expected to differ from (own) normal behavior. However, this does not model
the adversarial setting: in reality, attackers could attempt to cover malicious traces,
which is not the case here. Note that we use a similar approach to inject masquerades
in a real-world dataset of audit sessions (see section 4.2.3).

Using the dataset introduced by Schonlau et al. [21], different methods were pro-
posed to perform masquerade detection in Unix commands. Maxion and Townsend
[22] show that usage of rare commands allows to distinguish between users. Later
approaches focus on taking into account contextual information like the sequence of
commands [23]–[25] or command arguments [26] to extract more precise user pro-
files. In addition to user command logs, masquerade detection methods have been
proposed for process [27] and search [28] logs, as well as network flows [29], [30].

Note that masquerade detection is by nature tightly linked to user profiling,
which consists of constructing descriptions of normal user behavior [31]. If virtually
all anomaly-based intrusion detection systems rely on some form of user profiling,
it is of primary importance in masquerade detection: user identification is used to
determine if a user’s claimed identity (i.e. corresponding to his credentials) matches
his real identity (as estimated through behavior analysis). Various approaches to
user profiling and identification can be found in literature, for example via process
logs [32], graphical user interface and application usage [33], [34] and web browsing
[35].

In chapter 4, we address masquerade detection in a real-world and a synthetic
dataset (see dataset descriptions in sections 3.1 and 3.2) through user identification.
User profiles of normal behavior are implicitly learned by the classifier used for
user identification. The novelty of our method resides in using clustering on the
user identification confusion matrix to reduce false positives. Other applications of
clustering in intrusion detection include feature extraction [36], discovery of unseen
threats [37] and profile construction [38], [39].
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2.1.2 Insider threats

Whereas masquerades correspond to a well delimited intrusion scenario, insider
threats encompass a much broader range of malicious activities. Hunker and Probst
[40] state that "an insider threat is [posed by] an individual with privileges who mis-
uses them or whose access results in misuse". This rather general definition encom-
passes for example credential theft and misuse (i.e. masquerades), sabotage of IT
systems, theft and public release of private information, and in general any usage of
an organization’s IT infrastructure to conduct illegal activities, possibly for personal
gain. One common point of different insider incidents is that an insider possesses
advanced knowledge about the environment in which he will commit fraud. Ac-
cording to Homoliak et al. [41], "insiders are authorized users that have legitimate
access to sensitive/confidential material, and they may know the vulnerabilities of
the deployed systems and business processes". This knowledge is critical as it can
help the attacker reach his malicious aim, increase attack impact and evade detec-
tion. For this reason, and because malicious insiders possess legitimate access by
definition, their detection is an extremely hard problem. In the following, we review
counteraction approaches from a data-centered perspective, detailing which sources
of audit data to collect for insider threat detection.

An early survey by Salem, Hershkop, and Stolfo [42] insists on the importance to
"derive user intent" in order to detect and characterize insider threats. Indeed, such
intrusions are hidden in the mass of normal activities and individual audit data col-
lections might not be sufficient to characterize whether an action is malicious or not.
For example, a user accessing sensitive documents from the organization he belongs
to cannot be considered anomalous per se, if we admit that he is authorized to do so.
Nevertheless, copying those documents to a personal data storage device or send-
ing them to an external recipient would probably constitute fraud. This shows the
importance of combining different audit data sources – in this case document repos-
itory access, file system and communication logs – in addressing insider threats.

Two common audit data source categories are host-based and network-based
logs, which respectively correspond to activity data collected locally on and re-
motely between user workstations [42]–[44]. Host-based audit traces relevant to in-
sider threat detection include authentication logs [45], [46], user and system issued
commands [47], process logs, program/application usage, file system activity [45],
usage of removable devices [45], [46] and database accesses [48]. Network-based au-
dit data sources can represent web browsing [46], [49]–[51], phone and email com-
munications [45], [50], [52], printer usage [53], but also lower level network traffic
[54]. Of course these lists are not exhaustive, as research efforts continue to craft
and evaluate new forms of data collection for insider threat detection. Examples of
features that can be extracted from these audit data sources can be found in table 2
from [44].

Besides diverse activity logs, another source of information highly relevant to in-
sider threat detection is user "meta-data", also referred to as "contextual data" by Liu
et al. [43]. This includes knowledge collected independently of user activity, such
as HR records or psychological profiles. As Gheyas and Abdallah [44] argue, these
features are helpful to characterize motives of malicious insiders such as predisposi-
tions to malicious behavior, personality traits and emotional state. User roles within
the organization are the most commonly used form of contextual data [52], [55], [56],
as they are much easier to collect than psychometric measures for example.

In this thesis, we adopt a user-centered perspective and try to leverage all activity
features available. Thus we use a mix of host and network-based activity features
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to first detect masquerades (chapters 4) then insider threats (chapters 4, 5 and 6).
A method to leverage contextual data when activity data is missing is presented in
chapter 5.

2.2 Challenges in intrusion detection evaluation

Evaluation of intrusion detection systems faces significant challenges. As shown
next, two main difficulties are the lack of realistic public datasets (section 2.2.1) and
the variety of operational requirements (section 2.2.2). But even for the CERT insider
threat problem, which does not suffer from these two shortcomings, no standard
benchmark methodology has emerged (section 2.2.3). This hinders straightforward
comparison with existing systems.

2.2.1 Data (un)availability

A significant – if not the first – challenge of intrusion detection research is the lack
of public datasets for evaluation. An important reason for that is the sensitivity of
audit records, whose goal is precisely to trace user activities. The considerable effort
required to remove personal identifiable information from audit traces, along with
security by obfuscation strategies, explains why organizations are overwhelmingly
reluctant to release such data.

Furthermore, audit traces alone are not sufficient for sound intrusion detection
evaluation: ground truth, i.e. annotations of anomalies must be provided as well.
This is another blocking point. If some intrusions into an organization were blocked
by detection methods in place, no new development is required and the incentive
to release corresponding traces is low. Conversely, if malicious activities slipped
through existing protection mechanisms, releasing audit traces show vulnerability,
which can damage the organization’s image.

To alleviate these issues, synthetic datasets can be generated. This however raises
the question of their realism. Beyond simulating normal behavior, the main problem
lies in the adversarial setting. In a real-world context, intruders will try to evade
detection. This cannot be reasonably simulated when audit logs data are generated
by the same people who develop intrusion detection systems. One possible solution,
although not perfect, is to collect audit traces representing normal behavior and hire
a "red team" to inject malicious activities. This approach is notably used for the CERT
[57], [58] and LANL authentication [59], [60] datasets in this thesis.

Table 2.1 lists the main public intrusion detection datasets with available ground
truth. Since the publication of the KDD cup dataset in 1999, research interest in
intrusion detection has increased significantly. The KDD cup 99 dataset [61] has long
been the most widely used by the community, despite numerous flaws questioning
its realism [62], [63]. An improved version (NSL-KDD [63]) was later proposed to
address some of these shortcomings. However both datasets contain traces collected
at the end of the 1990s which are now considered outdated [64], [65]. The fact that
both variants are still largely used [20], [64] is quite symptomatic for the lack of test
data in the field.

Additionally, the problem of data scarcity is more or less striking depending on
the type of targeted intrusions: network attacks, masquerades and insider threats.
For network-based intrusion detection, several realistic collections of traces have
been released in recent years [66]–[68].
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In masquerade detection, research has been fostered by the release of the Schon-
lau dataset [69] in 2000, which contains histories of Unix commands issued by users.
However this dataset does not contain realistic intrusions. Subsequent works re-
leased audit logs from different sources to tackle masquerade detection, using pro-
cess traces [70] and file system navigation behavior [71].

Since the 2010s, research has turned to the detection of insider threats, which
cover a broad scope of malicious activities (including masquerades). As malicious
insiders possess authorized access and often advanced knowledge of IT systems
they attack, their detection is very difficult. Audit logs from multiple data sources
such as email, file and browsing activities are usually required to spot them within
the majority of normal users. For this reason, insider threat detection blurs the dis-
tinction between network-based and host-based intrusion detection. To this date, the
CERT datasets [57], [58] represent the most extensive data collection for evaluation
of insider threat detection. We describe their content in detail in section 3.2. An-
other recent data collection for insider threat detection is TWOS [72]; nevertheless,
intrusions are expected to be less realistic as the dataset was collected in a student
competition.
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2.2.2 Operational environment: specificity versus comparability

Besides the lack of evaluation datasets, comparing the performance of intrusion
detection systems is inherently difficult due to the variability of operational envi-
ronments. First, unlike other anomaly detection application domains like credit card
fraud or spam detection, intrusion detection can be performed using various types
of audit data sources. The nature of collected traces depends not only on the targeted
types of intrusions, but also on the sensors available in practice. In some cases, and
as discussed later in this thesis, available data sources are not sufficient, raising the
question of how to extend the audit data collection. Anyway, there is no standard set
of feature shared in all IDS operational environments. Thus in real-world intrusion
detection problems, simply applying existing methods without adaptation is often
not possible, which ultimately discourages comparison with state-of-the-art.

In addition to available audit data sources, the definition of what constitutes an
intrusion is very much context-dependent. Indeed, from the perspective of an orga-
nization deploying an intrusion detection system, ideally all violations of security
policies observable within collected audit data sources should be detected. But the
definition of security policies – and therefore of what constitutes a violation of such
policies – is set by the organization and subjective. For example, should users be
allowed to access their emails at night? Different organizations might provide dif-
ferent answers. Drawing the line between acceptable and forbidden behavior can be
even more difficult for insider threats: is sending documents to one’s private email
address acceptable? The answer is that it highly depends on the context (content of
said documents, confidentiality classification, etc.).

Meanwhile, anomaly-based intrusion detection methods rely on building pro-
files of normal (i.e. frequently observed) behavior and flagging deviations from this
normality. No wonder then if a significant mismatch appears between anomalies –
in the sense of infrequent patterns according to the anomaly detection method – and
intrusions, as defined by the operational environment. This problem, referred to as
"semantic gap" [9], [75], not only leads to poor detection performance in practice; it
also poses a significant challenge to sound evaluation.

Even when applying the same detection methods on the same audit data sources,
in two different operational environments one could get identical anomaly detection
results, but those results would have to be interpreted differently, in light of possi-
bly different definitions of malicious behavior. To make it worse, the cost of errors
– which, by the way, is very difficult to quantify in practice – also depends on the
operational environment. Using custom evaluation metrics can give a clearer pic-
ture of detection performance in a specific context; however at the price of reducing
comparability with existing works.

2.2.3 Lacking benchmark standardization: the example of the CERT in-
sider threat problem

We have previously seen that lack of test data and specific operational envi-
ronment requirements are two major problems in comparing intrusion detection
systems. Still, there are some public evaluation datasets available, which can be
seen as specific intrusion detection problems in their respective operational environ-
ments. Although many approaches have been proposed to address those use cases
(in majority through machine learning solutions), the community lacks standardized
benchmark methodologies in most cases. Across the literature, various changes in
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Ref.
Dataset
version

ROC AUC
Detection rate

(recall)
False

positive rate
Other metrics

[76] r6.2
CR-1000

= 35.7/40 = 0.89
[52] Vegas 0.77
[50] r2 0.50 precision = 0.08
[77] r4.2 0.40 precision = 0.81
[78] r4.2 0.83 0.85 0.20
[79] r4.2 0.95
[80] r4.2 0.81 0.12
[81] r6.2? 0.60 precision = 0.84
[82] r4.2 0.86 0.86 0.20

[83] r4.2
0.81/0.74

(at 25%/5% budget)
[84] r4.2 0.99

TABLE 2.2: Detection performance reported by various systems ad-
dressing the CERT insider threat detection use case.

evaluation methodologies, including metrics choice, data selection and preprocess-
ing among other factors hinder straightforward comparison of experimental results.

To illustrate this, we give an overview of results reported on the CERT insider
threat datasets (which are the most relevant to this thesis, see section 3.2) in table
2.2. In most cases, the ROC AUC score (area under the receiver operating charac-
teristic curve, obtained by plotting the true positive rate against the false positive
rate) is used. It reflects detection performance across all decision thresholds and can
be interpreted as the probability that an anomaly is ranked higher than a normal
observation. For a single decision threshold, detection and false positive rate can be
used. Nevertheless it should be noted that performance at one decision threshold
is not representative of overall system performance. Some systems report detection
performance metrics at both single and multiple thresholds.

Considering ROC AUC, Hall et al. [84] report the highest score of 0.99. However
their data selection is possibly biased, as they train their system exclusively on users
with device activity and consider only one month of data. Furthermore, they rely
on features indicating whether users leave the organization shortly after their logs
were collected, but in practice such information would not be available during au-
dit log collection. Therefore their evaluation setting is unrealistic and whether their
method would perform as well on a broader scope of threats remains an open ques-
tion. Second best performance in terms of ROC AUC is reported by Yuan et al. [79]
(0.95). They heavily rely on specific feature engineering to distinguish activities as-
sociated with higher level of insider threat risk: actions performed after hours, usage
of unassigned computers and browsing of sensitive websites among others. Their
system uses a recurrent neural network to extract matrix representations of activity
sequences and a convolutional neural network to classify extracted matrices. They
claim using around 70% of the dataset for training, and the rest for evaluation, but
give no further details about how the split was performed. Rashid, Agrafiotis, and
Nurse [78] report a ROC AUC of 0.83, again without mentioning which portion of
data was used for evaluation.

When considering detection results at single decision threshold (i.e. detection
and false positive rate), the best performance is reported by Le and Zincir-Heywood
[82], achieving 86% of detected threats with 20% false positives (and 0.86 ROC AUC).
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Unfortunately, because of the very high class imbalance, the false positive rate is
much too high for the system to be useful in practice (e.g. with 1 million samples
it would generate as much as 200 000 false alarms). Lin et al. [80] report a detection
rate of 0.81 along with a false positive rate of 0.12, but provide no further information
about the data selection used for evaluation. Le et al. [83] report detection rate along
with accuracy, a questionable choice given the high class imbalance.

In such imbalanced class setting, it is generally more meaningful to use the (area
under the) precision recall (PR) curve [85]. Böse et al. [50] report precision and recall
plots (against decision threshold) equivalent – but not directly comparable – to a
classical precision-recall curve. Similarly, Lu and Wong [81] plot precision and recall
against a parameter influencing the decision threshold. Lv et al. [77] report recall
and precision at fixed threshold but not the full precision-recall curve.

An interesting alternative to precision and recall consists in using a business met-
ric like Tuor et al. [76]. Here a certain budget represents the resources available to
investigate alerts raised by the intrusion detection system. This budget corresponds
to the number of cases to be investigated per day, therefore setting a realistic decision
threshold. Then the corresponding recall over all days is reported; cumulative recall
values can be used as global detection performance indicator across all thresholds
(see more details in section 6.1.3).

In conclusion, despite several research works addressing the CERT insider threat
use case, no standard evaluation setting has emerged. However the evaluation
methodology proposed by Tuor et al. [76] stands out through its comprehensive de-
scription encouraging reproducibility, and the realism of its recall-based metrics. For
these reasons we rely on this evaluation setting in chapters 5 and 6.

2.3 Unsupervised anomaly detection in heterogeneous data

Heterogeneous data has been widely ignored in unsupervised anomaly detec-
tion, as existing methods mostly support numeric attributes. We summarize existing
approaches from three perspectives related to this thesis. First, in section 2.3.1 we
review anomaly ranking methods applicable to mixed data (i.e. containing numeric
and categorical features). Then we discuss the usage of text and graph features in
intrusion detection (section 2.3.2), with a particular emphasis on the CERT insider
threat use case (section 2.3.3). Finally, in section 2.3.4 we review approaches for se-
quences of graph edges with attributes, as addressed by our method ADSAGE.

2.3.1 Unsupervised anomaly ranking in mixed data

We here review methods for anomaly ranking (i.e. outputting continuous anomaly
scores) in mixed data (i.e. containing categorical and numeric attributes). Taha and
Hadi [86] provide a comprehensive overview of anomaly detection methods for cat-
egorical data, focusing on input parameters and time complexity. However few
methods fit our requirements of performing unsupervised anomaly ranking and
supporting mixed data. In particular, many methods require to provide the num-
ber of anomalies among other parameters, which supposes knowing the optimal
decision threshold beforehand (see table 2 in [86], decision parameter "M"). Simi-
larly, LOADED [87] and ODMAD [88] require parameters to determine the decision
threshold indirectly. This is fundamentally incompatible with ranking. K-LOF [89] is
designed for categorical data, and numeric data is supported through an additional
preprocessing step, but authors do not mention whether it is simply applicable to
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mixed data. In the end, remaining options are count-based method SPAD [90], FRaC
[91] and the method proposed by Rashidi, Hashemi, and Hamzeh [92].

When evaluating our user identification approach for unsupervised intrusion de-
tection (see section 4.2), we use SPAD as baseline anomaly ranking method, which
we selected for its appealing simplicity and performance reported in [90]. We dis-
carded the method from Rashidi, Hashemi, and Hamzeh [92] due to its high time
complexity and unfortunately, we were unaware of FRaC [91] at the time of con-
ducting experiments.

2.3.2 Heterogeneous features for intrusion detection: graph and text

After reviewing general anomaly ranking methods for mixed data, let us now
narrow our scope to intrusion detection. In the following, we review how two types
of heterogeneous features, text and graph, are used in this domain.

Anomaly detection based on graphs and graph features has been successfully
applied to insider threat detection. In many cases, graph features prove useful to
highlight local deviations from normal behavior which would remain undetected
with more simple statistical (i.e. numeric) features. Graph features are used to model
relationships between users and physical devices of information systems [53], user
accesses to resources in collaborative systems [93], [94] or flows from business [95]
and system [96] processes. Interactions among users, such as email communications,
are also of particular interest to detect insider threats [95], [97], [98]. Some works use
graphs to represent links between abstract entities like tasks corresponding to work
roles [99] or knowledge acquired by members of an organization and relevant to
perpetration of malicious activities [100]. As insider threats are often correlated with
employee quitting [52], attrition prediction is sometimes addressed as proxy task for
insider threat detection; social graphs often are informative in this case [56], [98].
Besides insider threats, graph features can be used to detect intrusions in Internet of
Things (IoT) [101] and physical security networks [102] or for malware propagation
[103], [104].

In addition to graphs, the pervasiveness of text in real-world data has moti-
vated researchers to leverage these features for diverse tasks. In recent years, break-
throughs in the domain of language models based on neural networks and semantic
vector representations of words (embeddings) [105] have found many practical ap-
plications, including in intrusion detection. Even though the idea of using natural
language processing on system call logs is not new [106], it was recently revived by
using recurrent neural network language models to find anomalies in log sequences
[107], [108]. Complementing sequence modeling, convolutional neural networks
can be used to extract informative features from text data at character [109] or word
level [110]. Public collections of word embeddings (e.g. [111]–[114]) allow to easily
leverage text sources by converting them to numeric representations without further
training [115]. An example in network intrusion detection can be found in [116]. Fur-
thermore, specific embeddings can be learned for intrusion detection [117], although
it requires a large source of audit logs and sufficient computing resources. For de-
tecting insider threats, text features can be very useful as writing style and usage of
particular words can reveal personality traits and sentiments of the writer, which are
informative markers [55], [118], [119].

In conclusion, heterogeneous features such as graph and text data are promis-
ing for intrusion detection in general, and to better characterize insider threats in
particular.
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2.3.3 Leveraging heterogeneous features in the CERT datasets

In the previous section, we have provided an overview of how heterogeneous
features can be useful for intrusion detection. We now focus on the CERT insider
threat use case by reviewing how previous works use the different data sources
present in the datasets.

The CERT datasets contain multiple sources of audit logs relevant to characterize
malicious insider activities: authentication events, usage of removable devices, web
and email usage as well as file operations. In addition to audit logs, descriptions of
user roles, positions and their assignments to teams and projects are provided. Psy-
chometric profiles quantifying personality traits of users are also available. We refer
the reader to section 3.2 for a detailed description, our current focus being on the us-
age of different data components in existing works, and in particular heterogeneous
features.

As shown in table 2.3, most existing systems addressing the CERT insider threat
use case rely primarily on numeric data. This includes statistical features obtained
directly from audit log events (e.g. time of authentication, file type, size of email
and attachments, etc.). Some systems rely on feature engineering to extract more
complex numeric features (e.g. count of visited URLs per website category [49], [52],
[83], count of emails sent and received in some time interval [76]). These features are
referred to as metadata in table 2.3 and are often used in literature. On the contrary,
heterogeneous features – in particular graph and text attributes – have been widely
ignored despite their pervasiveness in the CERT datasets.

Text data can be found in the content of web pages, email messages and file
browsed by users. Among existing insider threat detection systems, only the one in-
troduced by Legg et al. [120] makes use of web page and file contents, by extracting
bag-of-words count features. Regarding email text content, Gavai et al. [52] use sim-
ple statistical features (like count of punctuation symbols and average word length).
Legg et al. [120] rely on LIWC features (Linguistic Inquiry and Word Count [121])
assigning words to pre-defined sentiment analysis categories.

In addition to text, the CERT datasets contains another type of heterogeneous
data: graph representations. They can model relations between users and resources
(user to computer links in authentications, user to web pages) or among users (email
communications, organization’s hierarchy described as LDAP records). Like text
features, graph attributes are rarely taken into account. For example Gamachchi and
Boztaş [49] are the only ones to use the web page graph. The email communication
graph is used in some cases but not fully exploited: Rashid, Agrafiotis, and Nurse
[78] and Le et al. [83] only distinguish internal from external recipients. Agrafiotis et
al. [122] claim using recipient information to characterize email behavior but do not
give further details. Only one system uses the graph of user to computer relations
[123].

The most exploited source of graph data is probably the organization’s struc-
ture, which comprises hierarchical relations between users and their assignments to
projects, teams and departments. Tuor et al. [76] integrate these contextual attributes
as categorical values but report negative influence on detection performance. Others
use role information to build specific profiles [120], to perform data selection [123]
or to analyze results a posteriori [49]. Note that the two last approaches use LDAP
features indirectly, which is why they are marked as ignoring LDAP features in ta-
ble 2.3. Le and Zincir-Heywood [82] and Le et al. [83] claim using role features but
remain vague about how these features are used. Finally, Hall et al. [84] use LDAP
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features only to determine whether a user has left the organization shortly after his
activity was recorded.
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To summarize, existing insider threat detection systems have widely discarded
graph and text data available in the CERT datasets. However, as suggested in sec-
tion 2.3.2, these heterogeneous features could be very informative to characterize
malicious insider behavior. This thesis aims to tighten this research gap from two
perspectives. First, by leveraging user information independent from activity logs
(such as role and project assignments) to better estimate user behavior when histor-
ical data is unavailable (chapter 5). Second, by proposing a framework to support
heterogeneous data at line level in audit logs, while reducing the need for feature
engineering (chapter 6).

2.3.4 Anomaly detection in sequences of graph edges with attributes

In section 6.1, we address the CERT insider threat use case via unsupervised
graph anomaly detection at edge level. Our method ADSAGE supports sequences of
edges and edge attributes. Moreover the corresponding graphs are dynamic, chang-
ing over time as new edges are added. We here review related methods form litera-
ture.

Akoglu, Tong, and Koutra [124] survey anomaly detection methods for graphs,
but they report being unable to find methods for anomaly detection in dynamically
changing attributed graphs. The vast majority of surveyed methods output anomaly
scores for nodes in static graphs. Some methods support dynamic graphs, but focus
on detecting if the whole graph becomes anomalous at some point (and not on indi-
vidual graph edges). In another survey, Ranshous et al. [125] more specifically focus
on methods for dynamic graphs. They report finding several methods for detec-
tion at edge level, but these methods support neither sequences of edges nor edge
attributes.

Since the publication of the two previous surveys, graph anomaly detection has
attracted much attention in the machine learning community and more methods
were released. We briefly outline the most relevant ones in the following. StreamSpot
[126] and SpotLight [127] detect anomalies in graph streams, however detection is
not performed at edge level. Although EdgeCentric [128] supports edge attributes,
it detects anomalies at node level only and does not support dynamic graphs.

The body of work most similar to ADSAGE consists in a set of recent meth-
ods addressing unsupervised anomaly detection at edge level in dynamic graphs:
SedanSpot [129], NetWalk [130], AddGraph [131], AnomRank [132] and the method
introduced by Ranshous et al. [133]. Unfortunately none of these methods supports
edge attributes, which limits their usability in our use case. There is no benchmark
comparing all methods at once. Authors of AddGraph claim to outperform NetWalk
[131]. Eswaran and Faloutsos [129] report that SedanSpot outperforms the method
from Ranshous et al. [133]. Yoon et al. [132] claim that AnomRank is significantly
faster than SedanSpot, although anomaly detection effectiveness is similar for both
methods.

In the end, our literature review reveals that there is currently no unsupervised
anomaly detection method in sequences of graph edges with attributes. Our method
ADSAGE, introduced in section 6.1, fills this gap. We compare it to SedanSpot [129],
which provides properly documented implementation. Lastly, note that AddGraph
[131] uses a neural network with negative sampling to generate artificial anomalous
edges in the training phase, like ADSAGE.
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2.4 Zero-shot learning for intrusion detection

In the following, we introduce zero-shot learning, its applications to intrusion
detection and position our system described in chapter 5.

2.4.1 Introduction to zero-shot learning

Zero-shot learning refers to a learning setting designed to allow classification of
unseen class examples. As noted in [134], this ability is important in situations where
sufficient amounts of observations cannot be collected for some classes. This might
be due to intrinsic rarity of said classes, or because labeling is too expensive, e.g. due
to very high total number of classes or concepts changing over time.

Although traditional (i.e. non zero-shot learning) classification methods can only
classify observations of seen classes, it has been noted that humans can easily over-
come this limitation. The archetypal intuitive example of zero-shot learning is that
a person who has never seen a zebra might be able to recognize one, if told that a
zebra looks like a horse with black and white stripes [135], [136].

Wang et al. [134] provide a formal definition of the zero-shot learning setting
as follows. Let S be the set of seen classes, U the set of unseen classes and X the
feature space (typically, a multidimensional real number space). The training set,
corresponding to observations for seen classes xtr associated pairwise with their cor-
responding labels ytr is denoted Dtr = {(xtr, ytr) ∈ X × S}. The test set consists of
test observations Xte = {xte ∈ X} and their corresponding labels Yte = {yte ∈ U},
which are to be predicted. In this setting, the aim of zero-shot learning is to learn a
classifier f : X → U to classify test observations Xte into unseen classes U, given the
training set, i.e. labeled observations Dtr corresponding to seen classes S.

In order to overcome the absence of training observations for unseen classes, a
different source of description is required, which Wang et al. [134] call "auxiliary in-
formation". In the case of human learning (as in the previous zebra example), this is
typically done via semantic description features (e.g. "How many legs does it have?"
or "What color is it?") [137], [138]. These features are represented in a semantic space
and, crucially, must be available for both seen and unseen classes.

More formally, Wang et al. [134] extend their previous definition as follows to
account for the role of the semantic space. Let T denote the semantic space (typically,
a real multidimensional space), TS and TU the sets of semantic representations for
seen and unseen classes respectively (called class prototypes or embeddings). Then
zero-shot learning implies using the class prototypes TS and TU in addition to the
labeled observations Dtr in order to obtain the classifier f .

This quite general definition however leaves many possibilities open as to the
nature of the semantic space, how to obtain it and how the class prototypes are
used in learning the zero-shot classifier. In their survey, Wang et al. [134] provide
an overview and categorization of existing semantic spaces and zero-shot learning
methods.

As pointed out in [134], zero-shot learning can be seen as a special case of trans-
fer learning, in which source and target feature spaces are the same, but source and
target label spaces differ. Note that in "pure" zero-shot learning settings, source and
target label spaces (corresponding to seen and unseen observations respectively) are
disjoint; however in practice they may overlap: this last setting is known as gen-
eralized zero-shot learning [139]. One-shot [140], [141] and few-shot [142] learning
techniques are also closely related; they relax the assumption that unseen classes
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have zero examples. In practice, a small number of instances might be available,
though too few to apply traditional classification methods.

2.4.2 Application to intrusion detection

The most common applications of zero-shot learning are computer vision and
natural language processing tasks, such as image and video recognition or machine
translation [134]. However the usage of zero-shot learning is still rare in the security
domain, and in particular for intrusion detection.

Chowdhury et al. [143] use few-shot learning for network intrusion detection. By
using a convolutional neural network for feature extraction in the attribute learning
stage, they improve recognition for rare classes of attacks. Some works focus on
the attribute learning step only: Li et al. [144] combine feature selection based on
random forest and clustering while Pérez and Ribeiro [145] learn class attributes in
the form of rules. Rivero et al. [146] extend the last approach to include an inference
step, by using a nearest neighbor method in projection space to identify new classes
of network attacks. Zhuang et al. [147] target network intrusion detection with a
particular data format they call "attributed sequences", which consists of a profile
containing diverse attribute value and a sequence of categorical values. Their one-
shot learning framework allows to learn relationships between profile and sequences
while addressing data scarcity.

Further loosely related works include zero-shot learning applied in reinforce-
ment learning context [148] and for other security applications, like device finger-
printing [149] and malware classification [150].

2.4.3 Positioning our approach

To the best of our knowledge, there is no previous work addressing insider threat
detection through zero-shot learning. In chapter 5 of this thesis, we design and
evaluate such a system. According to the classification presented in [134], we use
a learned semantic space obtained via label embedding. More precisely, our class
prototypes are obtained via graph embedding techniques applied on organizational
relations. However classifying our zero-shot learning method into the categories
defined in [134] is not as straightforward. The particularity of our system is that it
predicts user activity while using this same feature space as input, i.e. it works as
an auto-encoder. Hence it does not perform classification and therefore does not fit
into the previous categorization. In our setting, semantic features (user embeddings)
are used as additional input to the auto-encoder to compensate the lack of relevant
description in (user activity) feature space.
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Chapter 3

Datasets

This chapter describes the different intrusion detection evaluation datasets used
in our experiments. First, we describe a real-world, private dataset of user accesses
to business applications over a web portal (section 3.1). We explain how authenti-
cation and authorization events are aggregated into user web sessions to obtain our
audit-sessions dataset. Second, we describe the CERT synthetic datasets for insider
threat detection evaluation (section 3.2). Combining different data sources (authenti-
cation, email, web, file and removable device usage) from the CERT datasets, we cre-
ate a collection of user sessions (cert-sessions) similar to the previous audit-sessions.
Finally, we describe real-world LANL authentication logs which include red team
malicious events (section 3.3).

Datasets mentioned above are used as follows in our experiments. In chapter 4,
we use audit-sessions and cert-sessions for masquerade and insider threat detection
respectively. In chapter 5, we evaluate our extension of an existing insider threat
detection system for the CERT audit data sources. To this effect we reuse the data
aggregation scheme of the baseline system. This data aggregation scheme for the
CERT dataset is not a contribution of this thesis, which is why it is not described
here; the interested reader can refer to [76] for more details. In chapter 6 we focus
on event level insider threat detection, thus our primary data source for evaluation
are the CERT datasets. We use authentication, email and web data sources with
minimal preprocessing, as one of our goals is to reduce feature engineering and
data aggregation. Additionally, we compare results obtained on (synthetic) CERT
authentication logs with those from the (real-world) LANL dataset.

3.1 Real-world audit dataset

We describe a real-world, private dataset of user access logs. This dataset was
collected within the IT company Atos from April 2016 to March 2017. It contains
around 75 million audit events generated by over 100 000 users. Events represent
users logging in (authentication events) or being granted access to a resource (au-
thorization events). These logs were collected in the context of a web single sign-on
portal which delivers access to several online business applications, such as the em-
ployee portal (for time sheets, leave and travel requests), the company’s internal
social network or human resources pages.

In order to understand the nature of the audit logs at hand, important aspects
must be noted. First, for confidentiality reasons the dataset is anonymized. Real user
names are mapped to fictional aliases and other identifiers are removed. Moreover,
users identifiable indirectly with quasi-identifiers are removed as well (e.g. users
working from countries where the company employs only a few people). Second,
note that the dataset encompasses only a fraction of daily activities of a typical em-
ployee. Only accesses to online resources behind the company authentication web
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portal are logged, which excludes all host-based audit traces, but also email and web
traffic to external domains. One exception is VPN (Virtual Private Network) usage,
for which authentication over the single sign-on portal is required (though only the
initial authentication is logged). Third, the single sign-on setting is of great impor-
tance to explain the structure of the dataset: a user will typically authenticate once
then access one or several resources. More technically, this means that one (success-
ful) authentication event will lead to the creation of a new session, in which several
authorization events can take place.

In the following, we describe the raw dataset as provided to us (section 3.1.1).
We then detail how we augment it with a geolocation database for IP addresses to
better characterize user locations (section 3.1.2). Finally, we motivate and describe
our preprocessing approach which consists in aggregating audit events into sessions
(section 3.1.3).

3.1.1 Raw dataset description

The raw audit dataset is provided as a database, whose structure is reproduced
in figure 3.1. The main table (audit_messages) contains all authentication and autho-
rization events. As a consequence, some attributes which are only relevant to one of
both event types are sometimes left empty. Three extension tables (named "identi-
fication", "wherefrom" and "who") provide additional context for each event. They
have unspecific columns (type and val), which are filled with the name and values
of additional attributes for each event from the main table. Table 3.1 describes the
content of columns relevant to this work. Note that certain columns present in the
database schema are absent from this table; the reason is that they either do not
contain any relevant information for our purpose or are redundant with some other
column listed in the table.

Attributes with "identification" prefix characterize the event itself, for example
its category (authentication or authorization), outcome (success or failure), session
identifier, authentication method used or the target resource for which access is be-
ing requested. Columns with "wherefrom" prefix characterize the service requiring
authentication, from a system architecture perspective; they are not relevant for our
work. "Who" attributes provide information about the user requesting authentica-
tion or authorization, comprising mainly the user name, the country where this user
is employed and the IP address from which the user is connecting.

Moreover, figure 3.2 shows the relationships between entities represented in the
audit dataset: users, sessions, authorization and authentication events as well as
some of their attributes. In particular, it should be noted that user IP address and
authentication methods used are only present in authentication events; authoriza-
tion events contain the accessed application. A given event can be associated to a
unique user and a unique session; this session can be associated to a unique user as
well and can be seen as a web activity session. Note also that user information (such
as the country of employment) is part of the events and not accessible independently.

The raw audit dataset contains 31.7 million authentication and 43.8 million au-
thorization events. The distribution of these events with respect to their time of
occurrence is represented in figure 3.3. Unsurprisingly, most events occur on week-
days, with a peak of activity around 9:00 in the morning. Figure 3.4 shows the distri-
bution of total number of authentications performed for each user. One can observe
that a small number of accounts are significantly more active than the majority of
users: they correspond to special credentials (e.g. system administrator or auto-
mated jobs). Figure 3.5 shows the number of authorization events (i.e. application
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FIGURE 3.1: Database schema of the raw audit dataset. The main
table (audit_messages) describes authentication and authorization
events. Extension tables provide additional information for each

event.

FIGURE 3.2: Entity relationship model of events in the real-world au-
dit dataset. Note that certain attributes are specific to authentication
or authorization events, and that associations between user and coun-

try of employment are only defined indirectly over events.
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Table Column Description

audit_messages

id event identifier
identification_category authentication or authorization
identification_cause session identifier
identification_op session creation, update or error
identification_outcome success or failure of authentication
identification_type authentication result and type
identification_when date and time of event
wherefrom_address address of server
who_name user name asking for authentication
who_fromaddress user IP address

who_extensions
country user country of employment
company company or subsidiary employing user

identification_
extensions

AuthnMethod authentication method
AuthnMethodType authentication method type
SAML2:Audience target resource or application

TABLE 3.1: Description of attributes present in the audit dataset. Note
that certain columns present in the database schema are omitted as
they either contain no relevant information or are redundant with

other columns described in this table.

accesses) following an authentication event in the same session. One can note that
many sessions have few authorization events, and the vast majority of sessions have
less than a few tens events. The authentication failure rate is around 3.3%, which
corresponds to around 1 million events. Figure 3.6 shows the proportions of dif-
ferent authentication methods by type (simple password, one-time password, smart
card/certificate and one-time password via SMS). The majority of authentications
are performed with smart card. Figure 3.7 shows the distribution of applications ac-
cessed. It appears that most common applications (1 and 2) are respectively the com-
pany’s internal social network and the employee portal; both represent two thirds
of all accesses. Finally, figure 3.8 shows the distribution of user countries, the most
common ones being France, India, Germany, the United Kingdom and the United
States.

3.1.2 Data augmentation

In order to characterize user location more precisely, we augment the database
of audit events. We use the free GeoLite2 City databases from Maxmind [151] which
provide location information for IP addresses. From these databases we extract a
list of IP address ranges with their corresponding country, region, city, latitude and
longitude. Each audit event can then be matched to its corresponding IP address
range in order to extract the location associated with the user IP address of the event.
Note that this concerns only authentication events, as IP addresses are not logged at
authorization time.

The audit dataset spans over a period of one year, during which assignments of
IP address ranges change. For this reason we have used the Internet Archive [152]
to retrieve several versions of the GeoLite2 City database (corresponding to March
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(A) Number of events per hour

(B) Number of events per day during April 2016

(C) Number of audit events per month

FIGURE 3.3: Distribution of audit events per hour, day and month in
the raw audit dataset.

2016, August 2016 and March 2017). For each authentication event, its location is
determined using the most recent database available at the time of the event.
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FIGURE 3.4: Distribution of the total number of authentication events
per user.
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3.1.3 Session aggregation (audit-sessions dataset)

In the following, we describe why and how we aggregate authentication and
authorization events into sessions.

Our first motivation is to enrich events to provide context, because events alone
contain few relevant attributes, as shown previously. We argue that session aggrega-
tion is a simple yet powerful manner to do so. First, session aggregation is simple to
realize technically, thanks to the session identifiers present in audit events, allowing
to associate individual events to sessions. Second and more importantly, sessions
represent an intuitive delimitation of user activities, for user intention is expected to
be consistent within a session. Moreover, as audit events represent browser-based
accesses, session aggregation is able to separate activities simultaneously performed
in multiple browser instances, which would be impossible with aggregation based
on time windows.

The first step for session aggregation is to collect successful authentication events,
as they represent session beginnings. From these successful authentications, session
identifiers can be retrieved, which in turn allows us to collect all events correspond-
ing to said session. Using events within a session, we extract following features:

• user identifier,

• activity volume: number of events observed during each hour of the day and
during the whole session;

• time features: session length, time of session start and end (month, week, day,
hour, minute, second);

• application accesses: number of accesses to each application, access duration
(until next application access);

• transitions between applications: number of transitions for each application
pair and corresponding duration;

• time elapsed since last previous activity, last failed and last successful authen-
tication for current user;

• usage of authentication methods: number of authentications with each method
(several methods can be used within same session in case of multiple factor
authentication);

• user country of employment;

• IP address at authentication time and its geolocation (country, region, city, lat-
itude, longitude);

• and a boolean value indicating whether user country of employment matches
country derived from IP address.

As users sometimes do not close their session properly (i.e. closing their browser
before logging out), for each session we consider the most recent event to represent
the session end and to compute the session length. Note that failed authentication
attempts are discarded (except when computing duration since last activity and last
failed authentication). This is because failed authentication leads to denied access
thus no intrusion is possible. On the technical level, no session is created so session
aggregation is meaningless in that case.
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Sessions with successful
authentication

Sessions with failed
authentication

Authentication
failure rate

smart card 437923 32769 6,96%
password 57729 14349 19,9%
one-time password 31043 33771 52,1%
SMS 1277 3095 70,8%

TABLE 3.2: Usage of authentication methods and authentication fail-
ure rate in the audit-sessions dataset.
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FIGURE 3.9: Distribution of the number of sessions per user in the
audit-sessions dataset.
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FIGURE 3.10: Distribution of the number of events per session in the
audit-sessions dataset.
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FIGURE 3.12: Distribution of application accesses in the audit-
sessions dataset.
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FIGURE 3.14: Boxplots for features representing time elapsed since
last activity.
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FIGURE 3.15: Distribution of user and IP country co-occurrences in
the audit-sessions dataset.
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In the following, we describe properties of the audit-sessions dataset, consisting
of sessions from April to December 2016 as training set and sessions from January
to March 2017 as test set, which represent around 612 000 sessions combined. This
dataset contains activity for a subset of 3000 randomly chosen users among those
with at least 20 sessions in the training set. Special user accounts like system admin-
istrators are excluded.

Figure 3.9 shows that most users have a few hundreds sessions. As shown on
figure 3.10, most sessions consist of up to a few tens of events; sessions with hun-
dreds of events are rarely observed. Figure 3.11 indicates that most sessions start
between 7:00 and 18:00, with a peak between 8:00 and 10:00. Two applications rep-
resent the vast majority of all user accesses (see full distribution in figure 3.12, note
the logarithmic scale). These two applications are the internal social network and
the employee portal, as mentioned earlier. This prominence also appears in transi-
tions between two applications, i.e. sequences of two successive application accesses
within a same session. The occurrence of these transitions is displayed in figure 3.13.
Most transitions concern one of the two most common applications, or occur within
the same application (diagonal values in figure 3.13). As a consequence, application
transition features are very sparse, since most pairs are very rarely observed. Figure
3.14 shows box plots for the following session features: duration since last activ-
ity of current user (at session start), since last successful authentication and since
last failed authentication. The average duration since last activity is around 80 000
seconds, which corresponds to roughly one day. However, there is an important
number of outlying high values, i.e. user accounts used far less often. Similar values
are observed for the duration since the last successful authentication. However, the
typical duration since the last failed authentication is significantly larger (around 45
days). As shown in table 3.2, authentication failure is relatively uncommon with the
most widely used authentication method (smart card) but more common with other
authentication methods. Distributions of countries associated with user accounts
and IP addresses (logged at authentication time) are similar to the raw dataset (see
figure 3.8) and are not included here. However the co-occurrence of these two coun-
try features is represented in figure 3.15. As expected, it shows the countries associ-
ated with user and IP address match in most sessions (diagonal line in figure 3.15).

3.2 CERT insider threat datasets

In the following, we describe the CERT insider threat datasets [57], [58], a col-
lection of synthetic audit data sources released by Carnegie Mellon University’s
Software Engineering Institute to facilitate research on insider threat detection. The
CERT datasets represent audit traces of users in a large organization and contain
labelled examples of insider threats.

In chapter 4, we use these datasets to complete our evaluation on the Atos audit
real-world dataset which unfortunately has no ground truth. Furthermore, in chap-
ters 5 and 6, CERT datasets allow us to evaluate which heterogeneous data sources
(graph, text) are relevant to intrusion detection and how to take them into account.

We first give an overview of available data sources (section 3.2.1) and insider
threat scenarios (section 3.2.2) present in the CERT datasets. We then show how
we aggregate different audit log sources to obtain sessions similar to the real-world
audit dataset described previously (section 3.2.3).
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3.2.1 Audit log sources

The CERT datasets include different audit data sources. In each data source, a
log line represents an event or individual user action. We here describe events in
the last version of the CERT dataset (6.2), used in chapters 5 and 6. Experiments in
chapter 4 use version 4.2 of the dataset which has slightly different features.

All events contain the identifier of the user performing the action and the corre-
sponding date and time. We list available audit data sources along with their addi-
tional attributes in the following:

• authentication logs ("logon") additionally contain for each event the used com-
puter identifier and a value indicating login or logoff;

• email events contain the currently used computer identifier, email addresses
of sender and receivers (split by email header field: "from", "to", "cc" or "bcc"),
a value indicating whether the email is being sent or viewed, the size of the
message, a list of attachments (file names and sizes) and the content of the
message (text);

• web events represent browsing activities and contain computer identifier, URL
visited, page content (text) and activity type (visit, download and upload);

• removable device usage logs ("device") represent a device being connected
or disconnected to a given computer and includes the file system structure
present on the device;

• file events are described by the name of the concerned file, an activity type
(open, write, copy or delete), boolean values indicating whether this activity
was performed from and to a removable device as well as the file content (text).
Note that some files are decoys; the list of corresponding file names is also
provided.

These data sources representing the activity of users are complemented with sev-
eral static resources. In the context of this thesis, the most important is the LDAP
repository representing the organization’s hierarchy and user roles. Each user is
described by a record indicating his user identifier, email, role (i.e. job title), the
project and organizational units he is currently assigned to. Organizational units
(in decreasing size order) are: business unit, functional unit, department, team and
supervisor. The LDAP repository provides monthly snapshots of the organization,
which allows to determine changes in the organization such as employees joining,
leaving or being assigned to new projects.

Other static resources in the CERT datasets (though not used in our experiments)
include a list of decoy files present on the organization’s computers and psychome-
tric user profiles representing personality traits.

3.2.2 Insider threat scenarios

The CERT datasets contain examples for five insider threat scenarios, each con-
sisting of several malicious activities detectable across different audit data sources.
Insider threat scenarios are described as follows in the dataset documentation [57]:

1. User who did not previously use removable drives or work after hours be-
gins logging in after hours, using a removable drive, and uploading data to
wikileaks.org. Leaves the organization shortly thereafter.
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2. User begins surfing job websites and soliciting employment from a competitor.
Before leaving the company, they use a thumb drive (at markedly higher rates
than their previous activity) to steal data.

3. System administrator becomes disgruntled. Downloads a keylogger and uses
a thumb drive to transfer it to his supervisor’s machine. The next day, he uses
the collected keylogs to log in as his supervisor and send out an alarming mass
email, causing panic in the organization. He leaves the organization immedi-
ately.

4. A user logs into another user’s machine and searches for interesting files, email-
ing to their home email. This behavior occurs more and more frequently over
a three month period.

5. A member of a group decimated by layoffs uploads documents to Dropbox,
planning to use them for personal gain.

Version 6.2 of the dataset contains one instance of each of the five scenarios, while
version 4.2 contains multiple examples of scenarios 1 to 3.

3.2.3 Session aggregation (cert-sessions dataset)

In this section, we describe how we aggregate audit events from the CERT insider
dataset (version 4.2) into sessions, as was done previously with the real-world audit
dataset. The goal is to obtain a second evaluation dataset similar to audit-sessions
described in section 3.1.3. A significant difference is that for cert-sessions, ground
truth about intrusions is available.

However, the process of aggregating events into sessions is more complex than
with the previous dataset because no session identifiers are present in the CERT
dataset. Therefore session boundaries are determined by authentication events. A
session consists of all audit events generated by a given user on a given computer
between a login and the next logout event of said user on said computer. Based
on session start (login) and end (logout), user and computer, corresponding audit
events are retrieved and following session features are extracted:

• user identifier;

• computer identifier;

• time features: session length, time of start and end (month, week, day of week,
day, minute, second);

• duration since last user activity (at session start);

• usage of removable devices: number of uses, average duration and total dura-
tion;

• web usage: number of pages visited, average duration until next page visit;

• file copies to removable devices: number of copies for each file extension and
in total;

• email usage: number of emails sent for each receiver field (to, cc, bcc, all) and
for each type of receiver (internal or external to the organization, as determined
by email address domain), average and sum of email sizes, total number of
attachments sent, ratio of attachment presence.
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Anomaly labels (representing ground truth) are also extracted, a session is con-
sidered anomalous if it contains at least one malicious audit event.

A difficulty when assigning audit events to sessions is that some authentication
events are missing in the CERT datasets (to represent noise in the audit data). For
this reason it is possible to have a logout without preceding login. In that case the
session will only contain the logout event, however the duration since last user ac-
tivity is still set. The case where logout is missing (but login present) is less prob-
lematic: the last audit event in the session can be used to compute session length.
Additionally, there can be several login events (corresponding to screen unlocks, as
per the CERT documentation [57]) in a single session; in this case events are added
to the session until logout occurs.

3.3 LANL authentication dataset

In addition to the synthetic CERT datasets, for evaluation of intrusion detection
methods at event level presented in chapter 6, we use real-world authentication logs
from Los Alamos National Laboratory (LANL) multi-source cybersecurity events
[59], [60]. This repository contains different types of audit data sources such as Win-
dows authentications, process traces, DNS data and network flows. These logs were
collected from LANL’s internal network over 58 days and represent the activity of
over 12 000 users. We use only authentication logs, as other data sources do not
contain ground truth about anomalies. In this context, anomalies are malicious au-
thentications injected by a red team.

Our goal is to obtain a collection of authentication logs similar to the logon data
source in the CERT datasets. The major problem with the raw LANL authentication
dataset is that features of normal and anomalous events are not exactly the same.
Indeed, anomalous events do not have all the features of normal events.

To solve this, we align attributes of normal and red team events by keeping only
the timestamp, user, source and destination computer attributes. Normal authenti-
cations events have two user fields: source and destination user; we keep only the
first one. This is justified by the fact that the values of these two attributes are the
same most of the time: source and destination user only differ when user A (source)
authenticates as user B (destination). In this case, by applying our preprocessing, A
will be seen as B after such authentication (which is meaningful in the context of our
application).

After feature alignment, we merge normal and red team events and remove au-
thentications from special aliases and system accounts.
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Chapter 4

Unsupervised intrusion detection
through user identification

In this chapter, we address specific aspects of the real-world intrusion detection
use case presented earlier in sections 1.2 and 3.1. From a high level perspective, our
goal is to detect anomalous user behavior in a dataset of audit logs collected by an
IAM (identity and access management) solution used to manage accesses to web
business applications within a large IT company. Particularities of this task include
a specific structure of audit records (authentication and authorization events, pres-
ence of numeric and categorical features) and more importantly the total absence of
ground truth. An additional challenge is that this real-world dataset contains lim-
ited features to describe user activity (see section 3.1 for more details), hence it is
unclear whether these attributes are informative enough to detect anomalous user
behavior. These stringent constraints have lead us to define following general re-
search questions:

RQ. 1: How to apply anomaly detection methods to real-world authentication and
authorization audit logs containing mixed data and limited features?

RQ. 2: In total absence of ground truth, how to learn the distinction between
normal and anomalous user behavior and evaluate the results?

We have previously described how to aggregate authentication and authoriza-
tion events into user web sessions (section 3.1.3). Session aggregation allows to set
context for individual audit events, whose attributes are limited, by grouping them
into meaningful activity spans. Hence this preprocessing approach can be seen as a
first step toward answering RQ. 1: by providing a well-defined, grounded method
to represent user activity extracted from audit logs for intrusion detection purposes.
Anomaly detection methods can now be applied to this representation.

However evaluating the outcome of anomaly detection methods is not possible
without simultaneously addressing the problem of total ground truth unavailability
(RQ. 2). Note that this goes further than unsupervised learning: in our case, labels
are not only unavailable during the learning process, but also in the evaluation stage.
Hence how can we check that activities flagged as anomalous indeed pose a security
problem? Or to rephrase RQ. 2: how can we be sure that the distinction between
normal and anomalous behaviors, as learned by some anomaly detection model, is
meaningful?

Our general approach to answer these questions is to reformulate the intrusion
detection task as user identification task. Given some audit session, we directly
predict which user has generated this session, instead of assessing whether it falls
within normal user behavior. Therefore this approach strongly relies on learning
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the relation between user identifier (prediction target) and other attributes of audit
sessions. This setting allows to turn an unsupervised problem into a supervised one.
Because prediction targets are user identifiers, sound evaluation is possible. On the
downside, this approach introduces its own new challenges (large number of classes
and need for enough user examples), which are more widely discussed in section 4.3.

In section 4.1 we use the user identification proxy task to seek answers to follow-
ing specific research questions:

RQ. a: Are available features informative enough to characterize user behavior, and
distinguish one user from others?

RQ. b: Which features are useful to characterize user behavior in the real-world
audit dataset?

After gaining insights on the real-world audit sessions dataset, we return to the
unsupervised intrusion detection problem while keeping the user identification per-
spective in mind, focusing on following research questions:

RQ. c: How to turn user identification into intrusion detection?

RQ. d: How to evaluate intrusion detection models without ground truth?

These research questions are addressed in section 4.2, where we propose and
evaluate methods for intrusion detection via user identification.

4.1 Audit session features for user identification

4.1.1 Problem setting

In the following experiments, our goal is to find answers to research questions a
(feature importance) and b (user identification feasibility). We will do so by analyz-
ing the outcome of a classification model trained to perform user identification on
the audit-sessions dataset.

We start by formulating the user identification problem: our goal is to learn a
prediction function f such that f (session) = user, where session is an audit session
as described in section 3.1.3, without its user identifier (which is used as prediction
target).

4.1.2 Methods

The previous problem definition as well as our application context bring sev-
eral challenging requirements for the classification method used. First, it should
support mixed data, as the audit-sessions dataset contains numeric and categorical
attributes, which we want to take into account. Second, it should scale well with
respect to the number of features (in the order of 1000 for audit-sessions). How-
ever, we cannot assume that all features extracted from sessions are informative.
Hence the employed classification method should not be too affected by noisy or
uninformative attributes. A moderately large number of target classes should also
be supported (at least a few hundreds). Last but not least, the classification method
must provide a simple way to evaluate feature importance, in order to provide an
answer to RQ. b.
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Given these requirements, we choose to resort to a random forest classifier [153].
Based on decision trees, random forest is suited for mixed data. As trees are built
on random feature subsets, the classifier scales well with respect to the number of
features while being relatively insensitive to uninformative ones. The random for-
est classification method is also sufficiently fast to handle some hundreds of target
classes in reasonable computation time. According to Fernández-Delgado et al. [154],
it ranks among top performing methods in a large classification benchmark over di-
verse domains. Finally, random forest provides a simple mechanism to evaluate
feature importance via permutation.

Concerning this last point, we use permutation importance based on accuracy as
introduced by Breiman [153]. For each feature (or group of features), we report the
difference in accuracy between the model built on training data where the values
of said feature are intact or randomly shuffled respectively. This allows to charac-
terize how informative this feature is, with respect to the given classification task
(here, user identification) using the random forest classifier. We also report scaled
permutation importance, where the accuracy difference is expressed as ratio of the
maximum accuracy value.

4.1.3 Evaluation setting

We use the random forest implementation from H2O (version 3.22.0.1) [155] with
following hyperparameters: number of trees = 200, maximum depth = 5, maximum
number of categories = 65535, one-hot categorical encoding set to "enum", score tree
interval = 5, stopping rounds = 3 and histogram type set to "auto".

We use the audit-sessions dataset described in section 3.1.3. The period from
April to December 2016 is used as training set and the period from January to March
2017 as test set. We choose to restrict ourselves to a limited number of users to as-
sess the feasibility of the user identification approach. Hence for each experimental
setting, we use sessions of n users randomly drawn from a pool of 1000 users. We
then report results averaged over several runs.

Session features correspond to the ones described in section 3.1.3. Because com-
puting feature importance for a large number of features is time consuming, we first
report importance for groups of features. Features are split into following feature
groups:

• application access counts ("app_count");

• application access duration ("app_duration");

• usage of authentication methods ("auth");

• count of transitions between application pairs ("bigram");

• duration of transitions between application pairs ("transition_delta");

• count of events per hour ("n_events");

• IP address and its derived geolocation ("IP");

• time since previous activity, successful and failed authentication ("since");

• event volume;

• session start and end time features ("session");
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• user country identifier and whether it matches IP country ("user_country").

After having identified the most important feature groups, we report more de-
tailed results for individual features in these groups.

4.1.4 Results

Figure 4.1 shows the user identification accuracy from 100 up to 900 users, as
well as the distribution of per user accuracy for 100, 500 and 900 users. User iden-
tification accuracy is encouraging: it reaches around 0.7 for 100 users then drops
(as expected) slightly below 0.5 for 900 users. The distribution of per user accuracy
(corresponding to the number of rightly attributed sessions for each user) shows
that although some users are not identified at all, the majority of them have some
of their sessions correctly identified as the distribution spreads over all values be-
tween 0 and 1. Hence, user identification is feasible with reasonable accuracy in the
audit-sessions dataset.

We now turn to feature importance. Figure 4.2 shows the feature permutation
importance for groups of features when performing user identification with 100
users. Unsurprisingly, the most important feature group is the IP address and its
geolocation, whose random permutation leads to losing around two thirds of the at-
tainable accuracy. User country features are the second most important group (rep-
resenting 21.8% of attainable accuracy) and "since" features come next (with 3.9% of
attainable accuracy). Surprisingly, all other feature groups are very weak predictors
for user identification.

Figure 4.3 details the individual permutation importance of features within the
three most important features groups: "ip", "user_country" and "since". This shows
that the distribution of permutation importance is unequal among each feature group.
The IP address, the user country identifier and the time since last failed authentica-
tion are the most important from the "ip", "user_country" and "since" groups respec-
tively. This result is particularly surprising for the IP feature group, in which the
contribution of the derived location (city, country and coordinates) is minor com-
pared to the IP address itself. The figure also shows that when considering individ-
ual features, the feature importance gap between IP address and user country is not
as large as when considering their respective feature groups.

As the IP address is by far the most important feature for user identification, how
would the results change in case this feature would be unavailable or unreliable? For
instance, in the Atos setting, this can happen if the user accesses applications over
VPN connection.

In order to answer this question, we compute feature permutation importance
when including and excluding the IP feature group, for 100 and 500 users. Results
are shown in table 4.1. When the IP information is removed, user identification
drops significantly (from 0.70 to 0.47 with 100 users and from 0.52 to 0.20 for 500
users). At the same time, the random forest classifier relies much more on features
from the "user_country" group, whose relative importance jumps (from the 14-22%
range to around 77-78%). Other features groups see their relative importance in-
crease as well, however not so dramatically.

4.1.5 Discussion

Based on previous results, we have gained important insights about the audit
sessions dataset. We are now able to answer our two first specific research questions.
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FIGURE 4.1: A: User identification accuracy from 100 up to 900 users
with 95% confidence intervals over 5 runs. B-D: Distribution of per

user accuracy for 100, 500 and 900 users respectively.

Concerning RQ. a, user identification is indeed feasible using a random forest
classifier: we obtain around 70% accuracy with 100 users, and around 50% with 500
users. This means that users can be distinguished by their behavior, as represented
in audit sessions.

Regarding RQ. b, we have found that using a random forest classifier the IP ad-
dress is by far the most informative feature for user identification. This is hardly
surprising: within some limited time frame, the IP address can almost be seen as a
personal identifier. Whenever this feature is unavailable, the user country attribute
gains importance for user identification. More surprising is that other session fea-
tures, and in particular those representing application usage, have very low impor-
tance in user identification.
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100 users (20 runs) 500 users (5 runs)

Feature group
Feature
count

with IP
(acc = 0.70)

without IP
(acc=0.47)

with IP
(acc = 0.52)

without IP
(acc=0.20)

app_count 33 0.005 (0.8%) 0.021 (4.4%) 0.007 (1.3%) 0.016 (7.9%)
app_duration 64 0.003 (0.4%) 0.004 (0.9%) 0.003 (0.6%) 0.006 (3.2%)
auth 10 0.013 (1.9%) 0.042 (8.9%) 0.010 (2.0%) 0.022 (10.9%)
bigram 285 0.002 (0.3 %) 0.0005 (1.0%) 0.002 (0.5%) 0.006 (3.2%)
hour_events 24 0.003 (0.4%) 0.007 (1.5%) 0.003 (0.6%) 0.005 (2.6%)
ip 6 0.463 (66.1%) - 0.440 (84.0%) -
n_events 1 0.001 (0.1%) 0.000 (0.0%) 0.000 (0.0%) 0.001 (0.3%)
session 11 0.011 (1.5%) 0.033 (7.1%) 0.015 (2.8%) 0.024 (12.0%)
since 3 0.027 (3.9%) 0.052 (11.0%) 0.015 (2.8%) 0.019 (9.4%)
transition_delta 285 0.001 (0.2%) 0.002 (0.4%) 0.002 (0.4%) 0.004 (1.9%)
user_country 2 0.152 (21.8%) 0.367 (77.7%) 0.074 (14.1%) 0.158 (78.6%)

TABLE 4.1: Permutation importance of feature groups including and
excluding the "IP" feature group, for 100 and 500 users.

It is worth mentioning that random forest permutation accuracy may overesti-
mate the importance of categorical attributes with large number of levels (i.e. dis-
tinct values) [156]. This issue comes from the variable selection bias in random for-
est: features with higher number of possible splits are more likely to be used. In
this regard, our results must be interpreted carefully. Feature importance measures
presented here are only valid in the context of a random forest classifier and cannot
be generalized to other methods.

A further limitation of our experiment lies in the limited number of users (up
to 900) supported, which might be insufficient in some real-world deployment set-
tings (e.g. the number of users in our real-world audit dataset is in the order of 105).
This type of setting could be addressed by adapting methods from extreme classi-
fication (i.e. supporting very large number of classes), which we further discuss in
conclusion of this chapter (4.3).

Nevertheless, user identification with random forest is viable for up to some hun-
dreds of users; we next explore how to leverage this approach for intrusion detec-
tion.

4.2 Intrusion detection based on user identification

Our previous experiments have shown that in the audit-sessions dataset, ses-
sions can be attributed back to their corresponding user through user identification.
Now our goal is to use this perspective to perform unsupervised intrusion detection.

4.2.1 Problem setting

Anomaly ranking for intrusion detection in audit sessions

More precisely, we address the problem of unsupervised anomaly-based intru-
sion ranking. Given an audit record, our goal is to assign a score quantifying its
anomalousness, i.e. ideally all intrusions should have higher scores than normal ob-
servations. Anomaly ranking generalizes the binary classification perspective as the
sensitivity of the system can be adapted using a threshold, depending on application
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FIGURE 4.4: User Identification Based Intrusion Detection (UIBID).
The anomaly score for a session is computed based on the probability

of the claimed user being the author of the session.

domain requirements (mainly finding the right balance between false positives and
false negatives).

We focus on user session records. A session s is composed of a user label u
(the author of the session) and different activity features fi: s = {u, f1, ..., fn}. As
stated earlier in 3.1.3, sessions have natural activity boundaries (they start with lo-
gin and end with logout) and therefore should represent consistent user activity
segments. Based on this assumption we use sessions as elementary and indivisible
audit records: they are either completely benign or completely malicious.

Leveraging the user identification perspective

We keep the user identification perspective introduced in 4.1. Thus we first train
a user identification model to predict the discrete user label (user id) from a ses-
sion record: f (s) = u, where s is a session record from user u (s does not contain
a user label, which is the target of the classification task). Using the user identi-
fication model we can predict a probability distribution over users for a session:
p(u1|s), p(u2|s), ..., p(un|s) where u1, ..., un are all possible users.

4.2.2 Methods

In this section, we introduce two methods to derive intrusion detection anomaly
scores from the user identification model. Hence we provide an answer to RQ. c:
How to turn user identification into intrusion detection?

User identification based intrusion detection (UIBID)

Our first method, called User Identification Based Intrusion Detection (UIBID),
is very straightforward. After building the user identification model, the anomaly
score for a session is computed as follows:

score(s, cu) = 1− p(cu|s). (4.1)

where cu is the claimed user in session s and the probability p is obtained from the
user identification model. Thus, the lower the probability that a session belongs to
its corresponding user, the more anomalous it is. Figure 4.4 shows the full process
of training the user identification model and using its predictions for intrusion de-
tection with UIBID.
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User cluster identification based intrusion detection (UCIBID)

Unfortunately, UIBID cannot cope with users having very similar sessions, for
which it retrieves many false positives. Each session which cannot be attributed to
its user with a high confidence will get a high anomaly score. However such sessions
are not necessarily anomalous and corresponding false alarms should be discarded.

To alleviate this issue, we introduce User Cluster Identification Based Intrusion
Detection (UCIBID), which relaxes the user identification problem. Instead of at-
tributing sessions to individual users, UCIBID assigns sessions to clusters of users.
Users are assigned to the same cluster if they are misclassified between each other,
thus indirectly modeling session similarity. For instance, if users A and B are often
misclassified between each other (many sessions of A attributed to B or inversely),
then these users are assumed to be similar and therefore sessions of A attributed to B
(and vice versa) should not be considered anomalous. By assigning both users to the
same cluster, identification errors between A and B are tolerated and corresponding
alarms will no longer be generated.

As pointed out in the example, UCIBID reduces detection sensitivity compared
to UIBID: intrusions within the same user cluster can no longer be detected. We
assume that such intrusions can be safely ignored because users in the same cluster
(i.e. with very similar sessions) (a) cannot be distinguished from each other and (b)
are expected to have similar access rights, thus making masquerade attacks unlikely.
Another related assumption is that user clusters should be very compact: a high
degree of similarity is required for users to be assigned to the same cluster. Therefore
user clusters are expected to be small (in number of users) but numerous. Note that
each user can be assigned to only one cluster or none (in the last case the user will
be considered individually as in UIBID).

For UCIBID, the probability of a session belonging to a user cluster is computed
as the sum of probabilities of users composing the cluster, allowing to re-use the
existing user identification model. The anomaly score for a session is computed as
follows:

score(s, cu) = 1− ∑
u∈Ccu

p(u)p(u|s). (4.2)

where cu is the claimed user of the session, Ccu is the cluster of users containing cu
and p(u|s) is obtained from the user identification model. The term p(u) represents
the prior probability of the user and is ignored in practice (i.e. we assume a uniform
distribution over all users). Figure 4.5 details the process of cluster construction and
anomaly scores computation based on the user identification model in UCIBID.

User clusters are constructed from the confusion matrix of the user identification
classifier. This classifier is assumed to optimize the distinction between users. Each
row of the matrix represents one user as the identification prediction probabilities
for all possible users. Thus each confusion matrix row can be used as a vector repre-
sentation of the corresponding user. We perform clustering on these user vectors in
order to obtain user clusters, hence characteristics of clusters are implicitly defined
by the clustering process. Informally, due to the nature of user vectors, users are
similar if they are often mistaken for one another or mistaken for a third common
user by the user identification model (see figure 4.6).

4.2.3 Evaluation setting

In the following, we detail our evaluation setting in several aspects. First we
introduce baseline anomaly detection models for mixed data. Second we explain
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FIGURE 4.5: User Cluster Identification Based Intrusion Detection
(UCIBID). The anomaly score of a session is computed as the prob-
ability of any user in the same user cluster as the claimed session

user being the author of the session.

FIGURE 4.6: Clustering users represented as rows of the confusion
matrix obtained from the user identification task. In this example,
there are 6 users in total, light to dark shades represent low to high
values in the confusion matrix. All sessions of user A are re-attributed
to A (no user prediction error), thus A constitutes a cluster alone.
Users B and C are partially misclassified for each other (yellow re-
gion) and are merged into a single cluster. Users D and E are assigned
to the cluster of user F as they are often classified as such by the user

identification model (red region).
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our evaluation process for different intrusion types: masquerades (using the audit-
sessions and cert-sessions datasets) and insider threats (cert-sessions only). Third,
we describe classifier and clustering implementation details. Finally we present our
evaluation metrics.

Anomaly ranking baselines for mixed data

As pointed out in section 2.2, the very specific structure of audit records makes
the comparison of different intrusion detection systems very challenging. Due to the
lack of intrusion detection systems operating on audit records similar to ours, we
decided to compare our new methods UIBID and UCIBID to general unsupervised
anomaly detection techniques.

An important constraint imposed by our datasets is that both numeric and cate-
gorical features should be supported, and that the anomaly detection algorithm scale
to some hundreds of thousands of samples. We select following baseline methods:

• IndEnt [11],

• isolation forest [157],

• SPAD [90].

This choice is based on our preliminary benchmark of anomaly ranking methods
for mixed data [11], in which we introduced two anomaly ranking methods based
on entropy. We decided to keep only one (IndEnt) for the present evaluation as
it obtained slightly better results in our previous benchmark. IndEnt relies on the
individual entropy contribution of an observation to derive an anomaly score; the
interested reader can refer to [11] for more details. A second baseline is isolation
forest which has state-of-the-art performance according to [158]; we use our imple-
mentation for better support of mixed data described in [11]. Our last baseline is
SPAD, introduced by Aryal, Ting, and Haffari [90], who claim that this method is as
effective as state-of-the-art methods (including isolation forest) while running faster.
SPAD and IndEnt have been shown to give similar results in our previous bench-
mark.

To allow a fair comparison of our user identification based intrusion detection
methods with the general baseline models (IndEnt, isolation forest and SPAD), we
use the latter as detectors in different configurations. As these methods are unsuper-
vised, the first parameter is to use the training set or not: in the "train+test" setting,
the models are fitted on the training set, while in the "test" setting models are fitted
on the test set. The second parameter is whether to use one unsupervised anomaly
detection model for all users or one model per user. Combining the configuration
possibilities, we obtain four different intrusion detectors for each of the three base-
line methods.

Datasets and intrusion types

We use audit-sessions and cert-sessions datasets for evaluation. Concerning the
audit-sessions dataset (see section 3.1.3), we use sessions from April to December
2016 as training set, sessions from January to March 2017 as test set. As the random
forest classifier used for user identification natively supports a moderate number of
classes, we restrict our evaluation to a subset of 3000 users with at least 20 sessions
in the training set. For the cert-sessions dataset (see section 3.2.3), we use sessions
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Dataset Unique users Features
Train set
records

Test set
records

Intrusion rate
(insider threats)

audit-sessions 3000 990 463K 148K NA

cert-sessions 1000 70 150K 49K
train: 3.0 * 10-4

test: 6.9 * 10-3

TABLE 4.2: Characteristics of datasets used for evaluation of user
identification based intrusion detection methods.

from January to June 2010 as training set and sessions from July to August 2010 as
test set, for all 1000 users.

We first evaluate our methods in a masquerade detection scenario. As neither the
audit-sessions nor the cert-sessions dataset contains masquerade samples, we resort
to generating synthetic ones, similarly to Schonlau et al. [21]. Our assumption is
that some activity of a user A should be considered as masquerade when conducted
by another user B. In this regard we introduce synthetic masquerades by randomly
changing the user label of some sessions so as to obtain an intrusion rate of 0.1%.
As we cannot assume having access to an intrusion-free training set, both training
and test sets are polluted with synthetic intrusions. Moreover, for cert-sessions the
ground truth insider threats – which are a different type of intrusion – are not re-
moved and considered normal observations, since they are indeed conducted by the
rightful user. To summarize, in the masquerade detection scenario, our answer to
RQ. d (How to evaluate intrusion detection methods without ground truth?) is: by
generating synthetic intrusions.

Then we also evaluate our user identification based intrusion detection models
on insider threat scenarios using the cert-sessions dataset, which has annotated in-
trusions. As it contains ground truth about insider threat activities conducted by
users, we label any session containing at least one malicious event as anomalous.
We use these labels to evaluate our methods for the insider threat scenario. Table 4.2
summarizes the number of unique users, features, total and anomalous records (for
the insider threat case) in both datasets.

Classifier and clustering parameters

For the user identification model required by UIBID and UCIBID, we use a ran-
dom forest [153] classifier with 100 trees, which we empirically determined to per-
form best. Note that any other supervised classification models could be used in
general; nevertheless our datasets add two constraints in particular: (a) support of
both numeric and categorical data and (b) scalability to a relatively large number of
classes.

For UCIBID we perform clustering with scikit-learn [159] implementations of
DBSCAN [160] (min_pts = 2, varying epsilon) and hierarchical agglomerative clus-
tering [161] (average linkage, varying number of clusters). In both cases we use
cosine similarity (commonly used for sparse data in high dimensional spaces) and
report the best performing configurations.

Metrics

We compare all methods using area under the precision-recall curve (AUPRC),
which is more informative than the ROC curve for strongly imbalanced problems
like ours [85]. We perform cross-validation with 10 folds of 500 randomly selected
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audit-sessions user id. accuracy = 0.535 ± 0.010

overall AUPRC mean AUPRC per fold
UIBID 0.055 0.092 ± 0.044
SPAD_test_per-user 0.004 0.004 ± 0.001
IndEnt_test_per-user 0.021 0.027 ± 0.014
ExtendedIsoForest_test_per-user 0.005 0.007 ± 0.003
UCIBID_dbscan_eps=0.384_minpts=2 0.102 0.138 ± 0.061
UCIBID_agg_120 0.141 0.167 ± 0.033

cert-sessions user id. accuracy = 0.876 ± 0.008

overall AUPRC mean AUPRC per fold
UIBID 0.800 0.799 ± 0.042
SPAD_test_per-user 0.014 0.016 ± 0.010
SPAD_train+test_per-user 0.044 0.054 ± 0.024
IndEnt_test_per-user 0.139 0.146 ± 0.041
IndEnt_train+test_per-user 0.004 0.004 ± 0.001
ExtendedIsoForest_test_per-user 0.222 0.233 ± 0.043
ExtendedIsoForest_train+test_per-user 0.051 0.065 ± 0.025

TABLE 4.3: User identification accuracy and masquerade detection
scores (overall AUPRC, mean average AUPRC per fold with 95% con-
fidence interval) for audit-sessions and cert-sessions datasets with 10

folds of 500 users.

users for each dataset. We report the overall AUPRC, computed from the full PR-
curve over all, as well as the average AUPRC per fold and the user identification
accuracy (proportion of sessions attributed to the claimed user). In the insider threat
scenario, we similarly run methods on 10 folds of 500 users and report the area under
their full precision-recall curve (AUPRC).

4.2.4 Results

Masquerade detection

For the masquerade detection setting, table 4.3 reports the overall AUPRC as
well as the average AUPRC per fold and the user identification accuracy (propor-
tion of sessions attributed to the claimed user). Figure 4.7 shows the full PR-curve,
computed from all 10 runs.

On the audit-sessions dataset, UCIBID with agglomerative clustering (for n=120
clusters) performs best with 0.141 overall AUPRC. UCIBID with DBSCAN comes
second with 0.102 overall AUPRC, although the difference is not significant when
considering average AUPRC per fold. Both UCIBID models significantly outper-
form UIBID (0.055 overall AUPRC). Baseline methods SPAD, IndEnt and isolation
forest are significantly worse. Results are only reported for the "test" configuration
with one model per user, as other settings have poor performance (i.e. they do not
perform significantly better than a model raising an alert for each session, which
would achieve 0.001 AUPRC).

On the cert-sessions dataset, UIBID outperforms all other methods by far, with
an overall AUPRC as high as 0.800. Results for UCIBID methods are not reported be-
cause we determined that the best configurations were those which lead to each user
being assigned to a separate cluster, thus defaulting to the UIBID model. Concerning
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FIGURE 4.7: Precision-recall curves for masquerade detection in
audit-sessions dataset for UIBID and UCIBID methods. UCIBID is
able to reduce the false positive rate (higher precision at same recall
level) compared to UIBID, particularly in the low recall domain (i.e.

for most anomalous records).
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Intrusions by event type
device email http logon

Test intr. rate 2.10 * 10-3 1.84 * 10-3 5.08 * 10-3 6.33 * 10-4

AUPRC
SPAD 0.011 0.010 0.021 0.013
IndEnt 0.022 0.010 0.022 0.019
IsoForest 0.033 0.009 0.030 0.124
UIBID 0.012 0.003 0.009 0.025
UCIBID - 0.014 0.019 0.029

Intrusions by scenario
all 1 2 3

Test intr. rate 6.85 * 10-3 4.49 * 10-4 6.10 * 10-3 3.06 * 10-4

AUPRC
SPAD 0.026 0.013 0.018 0.002
IndEnt 0.033 0.013 0.022 0.012
IsoForest 0.035 0.118 0.016 0.011
UIBID 0.012 0.034 0.008 0.001
UCIBID 0.024 0.039 0.024 0.013

TABLE 4.4: Insider threat detection performance (area under full
precision-recall for all cross-validation folds) for all intrusions, intru-
sions split by type of malicious event and intrusions split by insider

threat scenario.

the baseline models, the best performing configuration is "test" with one model per
user for IndEnt (0.139 overall AUPRC) and isolation forest (0.222), whereas SPAD
works best with the "train+test" setting (0.044 AUPRC). Average AUPRC per fold
scores show a similar picture.

Insider threat detection

We report results for insider threat detection in table 4.4. For anomaly detection
baselines only the results for the "train+test" configuration with one model per user
are reported, as this strategy performs consistently better than others. Note that for
UCIBID we report only the performance of the best model in each detection setting.

Overall, our new methods do not outperform the baselines on the insider threat
detection task: while isolation forest gives 0.035 AUPRC, UIBID and UCIBID reach
only 0.012 and 0.024 AUPRC respectively.

4.2.5 Discussion

It can seem surprising that UIBID is by far the best intrusion detection method
in our benchmark on cert-sessions, while it is significantly worse than UCIBID for
audit-sessions. An explanation to this phenomenon lies in the user identification ac-
curacy, considerably higher for cert-sessions (0.876) than for audit-sessions (0.535). If
users can be identified with a high accuracy, UIBID will perform better than UCIBID
as it is more precise and sensitive by considering users individually. Indeed, at-
tributing users A and B to the same cluster in UCIBID leads to masquerades of A
among activity of B being undetected (i.e. false negatives), as long as they can be
identified as A. The same is true for masquerades of B in activity of A.
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On the contrary, UCIBID outperforms UIBID if user identification accuracy is av-
erage as it can reduce false positives due to systematically misidentified users, thus
increasing precision for a same recall level (see precision-recall curve in figure 4.7).
Moreover, the advantage of UCIBID over UIBID is significant in the low recall do-
main (i.e. left part of the curve, corresponding to most anomalous records) which is
typically where IDS are mostly used. Overall, low AUPRC values must be consid-
ered in light of the difficulty of the problem, and in particular the very low intrusion
rate.

Our results for insider threat detection are in line with the results of Emmott et
al. [158] who have found isolation forest to be the best general anomaly detection
method. The relatively low performance of our methods UIBID and UCIBID shows
that they are rather adapted to masquerade detection than to insider threat detection.
However scores of anomaly baselines are very low as well, suggesting a difficult
problem.

Ground truth annotations in the cert-sessions dataset allow to characterize intru-
sions in a precise way. Indeed, for each intrusion session we know which type(s) of
malicious events it contains and which insider threat scenario was carried out (see
sections 3.2.1 and 3.2.2). Event type and intrusion scenario labels allow us to pro-
vide a more precise analysis of how well each type of anomaly is detected or not
(see table 4.4). Note that detection performance for anomalous "file" events is not
reported because of too few occurrences in the test set. For the "device" event type,
performance of UCIBID is not reported as the best model defaults to UIBID (i.e. each
user being assigned to a separate cluster).

Splitting the anomalies by event type shows that isolation forest has best per-
formance to detect malicious "device", "http" and "logon" activity, whereas UCIBID
outperforms other methods for anomalous "email" activity detection. This in turn
explains the results split by intrusion scenario. For example scenario 1 involves the
usage of removable drives after typical office hours, thus the best method for detect-
ing such threats is isolation forest, which outperforms others in detecting anomalous
"device" (characterizing removable drive usage) and "logon" (representing session
time boundaries) events. Similarly, threat scenario 3 – involving massive email ac-
tivity – is best detected with UCIBID. For scenario 2 the interpretation is less clear as
it contains anomalous http, email and device events.

Overall, it is worth mentioning that per user anomaly detection models outper-
form global (all users) models, in both masquerade and insider threat detection set-
tings. This means that these intrusions are best detected within a local context, i.e. by
learning the behavior of an individual user – as opposed to finding global anomalies
in the traces of all users.

4.3 Conclusion and perspectives

In this chapter, we have proposed to address the real-world intrusion detection
use case in corporate audit logs from a user identification perspective. This ap-
proach has allowed us to gain first important insights about this problem and the
corresponding audit-sessions dataset. Among others, major difficulties are the total
absence of ground truth (intrusion labels) and lack of expert knowledge about the
collected audit logs.

Through a supervised user identification approach permitting performance eval-
uation, we have determined that users can be distinguished based on their activity
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traces, after aggregating these into web sessions. This partly answers RQ. 2; addi-
tionally synthetic masquerades can be used for evaluation. For user identification,
we have found that IP addresses are strong predictors for the user identification
task. However, this is not the case for other activity features. In particular, features
representing application usage are not discriminative.

Subsequently, we have shown that user identification constitutes an interesting
approach to intrusion detection as well. We have presented two methods to perform
unsupervised intrusion detection in audit sessions through user identification. For
each user the profile of normal behavior is represented implicitly within the user
identification model. Our first method (UIBID) is very simple and turns user prob-
ability distributions into an anomaly score for user sessions. However UIBID raises
many false alarms when users cannot be identified reliably from their audit sessions.

To address this issue we have proposed UCIBID, an extension of UIBID capa-
ble of clustering indistinguishable users in order to ignore false positives due to
misidentifications among such users. User clusters are based on confusion matrix
to indirectly model their similarity. One drawback is that users within a same clus-
ter can no longer be distinguished, which however appears inevitable due to low
feature discriminative power.

We have compared our methods to unsupervised anomaly detection baselines
on the real-world audit-sessions dataset (thus answering RQ. 1) and the synthetic
cert-sessions dataset. Results show that UIBID and UCIBID are particularly adapted
to detect masquerades. UIBID works best when user identification rate is high, oth-
erwise UCIBID is preferable. Overall, the user (cluster) identification perspective is
suitable for masquerade detection, but insider threats require different methods.

A significant limitation of our user identification approach is that our current
implementation only supports moderately large numbers of users (up to some hun-
dreds). Thus an extension to support a larger number of classes will be required for
the real-world intrusion detection case. In this regard, extreme classification meth-
ods [162], [163] could be adapted.

Work presented in this chapter only represents a first step toward understand-
ing and addressing the real-world intrusion case. In this context, given our results
we recommend building a simple rule-based classifier which would, for each user,
classify known IP addresses as normal and the rest as anomalous. We expect this
rule-based approach to constitute a strong baseline for this use case. However eval-
uating it is currently impossible due to lack of ground truth. Hence a substantial
effort is required to gather domain knowledge and label the audit traces at hand, or
at least some part of it.

Another important insight is that, except for IP addresses, the current log col-
lection lacks informative features to characterize user behavior. In order to increase
intrusion detection possibilities, more user activity traces should be logged. In this
regard, focusing on the CERT insider threat use (for evaluation purposes), we ad-
dress the search for additional useful features for intrusion detection in chapters 5
(RQ. 3) and 6 (RQ. 4).

Finally, methods presented in this chapter rely on the presence of sufficient audit
data for each user, which might not be available in practice. Next chapter introduces
a solution regarding this issue.
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Chapter 5

Addressing the "cold start"
problem with zero-shot learning

In chapter 4, we have addressed specific aspects of a real-world intrusion de-
tection use case via user identification. This approach, like other anomaly-based
intrusion detection methods, relies on user activity data to build profiles of normal
behavior. However in some real-world situations, such activity data might be inher-
ently unavailable (e.g. for users with no activity history). In this chapter, we present
a solution based on zero-shot learning.

On a general level, zero-shot learning provides an extension of the supervised
classification setting, allowing objects to be attributed to classes for which no exam-
ples were observed (i.e. unseen classes). To achieve this, an intermediary mapping
is used to represent semantic properties of target classes. The classification of an
object is classically performed in two steps: attribute learning and inference. First,
in attribute learning, one has to determine which semantic properties are embod-
ied by the object and to which degree; the result can be thought of as the position
of said object in a multidimensional semantic space. Second, during inference, the
best matching class is selected based on the position of the object in semantic space.
Zero-shot learning is predominantly used in image classification, where text is clas-
sically used to extract semantic properties of classes (represented as word vectors
called embeddings). We refer the interested reader to section 2.4 for a more formal
introduction to zero-shot learning and its application to intrusion detection.

In the following, we use a zero-shot learning approach to improve an anomaly-
based intrusion detection system. As such systems rely on the availability of audit
log data to learn some representation of normal user behavior, they are subject to
the "cold start" problem. Indeed, sufficient amounts of relevant activity data must
be available to characterize anomalous behavior. The absence of activity traces can
be quite problematic, as an organization cannot necessarily afford to wait until audit
logs are collected before deploying protection. A second, slightly different variant of
this problem, lies not in the absence but irrelevance of available data. Should normal
user behavior change significantly at some point, then previous audit logs could no
longer be used reliably to estimate future normal behavior and identify deviations
thereof.

However these issues can be addressed through the zero-shot learning paradigm.
The central idea is to rely on context data (i.e. independent from user activity) to es-
timate expected user behavior, when no previous activity logs are available (or if
available logs are irrelevant). Hence in our problem, unseen classes correspond to
users whose behavior we cannot estimate well using their activity logs. It is also
worth mentioning that our system conceptually departs from the traditional zero-
shot learning setting in two ways. First, it does not exactly perform classification:
this would be similar to user identification as described in chapter 4, where the goal



62 Chapter 5. Addressing the "cold start" problem with zero-shot learning

is to predict which user has generated some activity trace. On the contrary, the intru-
sion detection system implemented hereafter can be seen as performing "soft" clas-
sification: given some user history and newly observed activity, it assigns anomaly
scores to this last activity, which can be understood as the likelihood of the user (pro-
file) given observed activity. Second, our system does not clearly separate the two
attribute learning and inference stages; indeed it uses semantic class (user) descrip-
tions in conjunction with observable examples (available activity logs).

On a more conceptual level, the zero-shot learning solution presented here com-
plements the user identification approach presented in chapter 4, which relies on
learning one behavioral profile per user. As we have seen, this can be challenging
for a very large pool of users. However our zero-shot learning solution relies on
contextual data to improve profile modeling, under the assumption that users with
similar context (semantic description) will behave similarly. This relaxes the need to
have a profile for each user and in this regard addresses very large user pools.

More concretely, we focus on the CERT insider threat use case [57], [58], which
contains activity logs for users within a large organization and different labeled in-
trusion scenarios (see section 3.2 for further details). As described in section 3.2.1,
the CERT datasets also contain information about the organization’s hierarchy, user
roles and their assignments to projects in the form of an LDAP repository. The con-
tent of this repository evolves over time as the organization’s structure changes; the
CERT datasets contain snapshot of the repository at beginning of each month for the
whole period corresponding to activity logs. A closer look at the repository’s evolu-
tion shows that two common types of changes occur: on one hand, some users leave
the organization (though surprisingly, no new users are joining); on the other hand,
users are successively assigned to different projects. In the following, we address
two realistic scenarios in which anomaly-based intrusion detection systems suffer
from unavailability of activity data:

• scenario 1: new users joining the organization;

• scenario 2: users changing their current project assignment.

Although there are no examples of new users joining in the CERT use case, this
scenario is realistic and important, for it is observed in the life cycle of virtually any
organization. Nevertheless it represents a significant challenge for anomaly-based
intrusion detection due to unavailability of previous activity data. Within the CERT
use case, it is possible that this scenario was omitted on purpose for simplification.
The second scenario (project change) is already present in the CERT use case and
corresponds to available but irrelevant logs of previous activities: our assumption is
that change of project assignment leads to change of behavior.

Our primary goal is to propose and evaluate a solution for anomaly-based intru-
sion detection whenever activity logs are unavailable or irrelevant. Our approach
to do so consists in using zero-shot learning principles to leverage contextual user
attributes like project assignments and relations to organizational entities and users
within the organization. Thus we address the general research question:

RQ. 3: How to address the "cold start" problem (i.e. absence of activity data) in
anomaly-based intrusion detection?

Focusing on our concrete problem, our specific research questions can be stated as
follows:
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RQ a. How to obtain semantic class (i.e. user) representations useful to address
the "cold start" problem in intrusion detection?

RQ b. How can the zero-shot learning paradigm be used in intrusion detection?
Does it improve detection performance?

The rest of this chapter is structured as follows. In section 5.1, we propose and
qualitatively evaluate different approaches to build a graph of user relationships to
diverse organizational entities. Our goal is to model user similarity such that prox-
imity in the graph will likely lead to similar behavior. Hence we partially address
RQ. a, our emphasis being on which relations to select among available informa-
tion. Then in section 5.2, we integrate these user relations into an existing intrusion
detection system. We use graph node embedding methods to retain user proxim-
ity defined by the previously obtained graph. We benchmark our extended system
against the corresponding baseline in the two scenarios presented earlier. Section 5.3
summarizes our findings and concludes the chapter with a broader view of perspec-
tives opened by this work.

5.1 Construction of organizational graph

A requirement to integrate zero-shot learning capabilities into our intrusion de-
tection use case lies in the availability of semantic descriptions of classes. In this
section, we investigate how such representations can be adequately constructed in
the CERT insider threat use case.

5.1.1 Problem setting

In our case, classes for which semantic representations are needed correspond to
users or employees of the organization depicted in the CERT use case. As our goal
is to use zero-shot learning to address scarcity of activity data, it is clear that these
descriptions should be obtained from context data independent of user activity.

In this regard, the organization structure provided as LDAP repository in the
CERT datasets constitutes a very useful resource. For each user, the CERT LDAP
repository provides following relations:

• user’s current role;

• user’s current project;

• user’s affectation to organization units (in order of increasing size): supervisor,
team, department, functional unit and business unit.

Figure 5.1 gives an overview of these relations. In the following experiment,
we set out to determine a way of constructing a graph of user relations in which
user proximity correlates with (expected) similarity of working behavior observ-
able in activity logs, based on the relations described in the LDAP repository. This
graph will be later used to learn vector representations (embeddings) for users, cor-
responding to semantic class descriptions required for our intrusion detection sys-
tem based on zero-shot learning.

In theory, determining the optimal graph construction can be seen as tuning yet
another hyperparameter of the intrusion detection system; ultimately it should yield



64 Chapter 5. Addressing the "cold start" problem with zero-shot learning

FIGURE 5.1: Entities and relations described in the LDAP repository
of the CERT datasets.

Setting Graph edges are all links from user to...

Project role, supervisor, project, members of same project
Team role, supervisor, team, members of same team
Department role, supervisor, department, members of same department
Functional unit role, supervisor, functional unit, members of same functional unit

TABLE 5.1: Settings for constructing the organizational graph of the
CERT insider threat use case.

the best possible detection results. However in practice running and evaluating dif-
ferent graph constructions along with other hyperparameters is too costly in time.
Moreover, using meaningful semantic class descriptions is key to our approach. In
order to ensure this is the case, we carefully construct and qualitatively evaluate
different graph constructions as described next.

5.1.2 Methods

We compare four different settings for constructing an organizational graph of
users in the CERT dataset (version 6.2). We start by defining a baseline consisting of
most specific relations: each user is connected to his closest collaborators (supervisor
and members of the same project) and organization entities (role, assigned project).
This baseline (named "project") represents this first graph construction setting.

We then define three other settings by progressively increasing the generality of
relations to organization entities (i.e. by connecting a user to entities of increasing
size). In the "team" setting project members are replaced by members of the same
team, and a relation to corresponding team entity is added. "Department" and "func-
tional unit" settings are defined similarly, by replacing relations of an organization
unit with the parent unit (see figure 5.1). We omit the "business unit" as user assign-
ment to these units are too general to be informative. Table 5.1 summarizes relations
used in the four graph construction settings.

Note that all settings link users to their role and supervisor, which we expect
to be highly relevant with regard to their working behavior. Nevertheless the four
graph construction settings described above differ in which organization unit is used
to define user relations, from most specific (project) to most general (functional unit).

We then apply existing graph embedding methods to obtain user vector repre-
sentations preserving similarities from the graph, i.e. node neighborhood. The gen-
eral goal of graph embedding is to map a graph (or its components, like nodes, edges
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or substructures) to a space of low dimension while retaining the structure and/or
relations defined by the graph. A large variety of graph embedding methods ex-
ist to address different requirements, depending on graph embedding input, output
and learning strategy for the mapping [164]. In our experiment, we use node2vec
[165], one of the most commonly used graph embedding method for nodes. Like the
closely related method Deepwalk [166], it uses random walks to obtain sequences of
adjacent nodes. Then the word2vec [111] algorithm is applied to obtain vector rep-
resentations preserving node neighborhood, i.e. neighbor nodes are close in embed-
ding space. According to its authors, node2vec outperforms Deepwalk by allowing
more flexibility in random walks [165], which is why we prefer it over Deepwalk in
this experiment.

Intuitively, applying graph embedding methods on a graph of very specific re-
lations, we expect to get small user clusters in which behavior similarity should be
high. However estimating the distance between two dissimilar users is problematic
as there will be no path joining users from a different unit. On the contrary, us-
ing general relations we expect to link all users together to the detriment of loosing
fine-grained similarities.

We evaluate the four proposed graph construction settings qualitatively from
two perspectives, after applying a graph embedding learning algorithm to obtain
vector representations for nodes. In this experiment we use node2vec with default
parameters as provided by Grover and Leskovec [165]; however when evaluating
the full intrusion detection system we compare different embedding methods. The
first evaluation perspective consists in verifying that the nearest neighbors of some
nodes (as defined by their embeddings) correspond to the expected LDAP relations.
The second consists in projecting the embeddings obtained with node2vec using t-
SNE [167]. By visualizing these projected vector representations we want to verify
that the user similarities defined by the relations from LDAP repository are pre-
served.

5.1.3 Results and discussion

Table 5.2 summarizes the nature of nearest neighbors obtained from node2vec
embeddings of different nodes. A quick look at neighbor nodes of units (middle
column) shows that similar entities in embedding space are members of the corre-
sponding unit, hence relations are preserved as expected. The same is true for role
relations (last column), for which similarities in embedding space allow, given some
role, to retrieve members with this role, related roles and members of units where
this role is common.

However our main interest lies in neighbors of user nodes (first column), as
they are the entities for which we require semantic vector representations. Using
the "project" graph construction, neighbors of a user in embedding space are either
members of the same project or have the same role. In the "team" setting, user neigh-
bors are mostly members of the same team and working on the same project. Thus
in both project and team graph, fine-grained work relations are preserved. Using
links to larger units than team (department, functional unit), the obtained graph
(and vector representations extracted from it) do reflect membership to the corre-
sponding unit, but user neighbors are no longer on the same team or project. Thus
organizational structures of smaller scale are lost, and fine-grained relations with
them.

Visualization of learned embedding representations for nodes confirm these first
impressions. t-SNE visualizations of node2vec embeddings obtained in the project,
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Graph node used to inspect neighbors

User
Unit

(= setting)
Role

Setting

Project
members of same project
or same role

project members,
users with same role

role members
related roles

Team
members of same team
and same project,
or same department

team members
related roles,
members of unit
containing role

Department
members of same
department and role,
but different projects

department
members

members of unit
containing role

Functional
unit

members of same
functional unit,
but different
dpt/team/project

functional unit
members

role members,
related roles,
members of unit
containing role

TABLE 5.2: Neighbors retrieved from graph embeddings in the dif-
ferent graph construction settings.

team, department and functional unit settings are shown in figures 5.2, 5.3, 5.4 and
5.5 respectively. When user memberships to large organizational units are used to
construct the graph (department, functional unit), we obtain clusters representing
precisely these units. Unfortunately, this level of granularity is too high for our pur-
pose, since we want to relate users to their closest collaborators. Thus we should use
the "project" or "team" graph construction settings. Visual inspection of embeddings
shows that small clusters are obtained in both settings. However, team relations
seem to lead groups of more consistent size. Unlike team assignments which are
rather constant, project assignments evolve over time. Some users can be temporar-
ily free of any project assignment, which explains the "out of cluster" nodes visible
in figure 5.2.

In conclusion, it appears that the position of users within the organization de-
scribed in the CERT datasets can be characterized by a combination of their links to
their role, supervisor, project colleagues and team colleagues. Using graph node em-
bedding techniques like node2vec, we can obtain a vector representation preserving
these links. Our expectation is that this representation characterizes user working
behavior and thus can be used as semantic description of user classes for zero-shot
learning.
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FIGURE 5.2: 2D t-SNE projections of node2vec embeddings obtained
in the "project" graph construction setting. Colors represent projects
(non-user nodes in black) while markers represent functional units.
Note that the top right legend contains only a subset of all functional

units for brevity. Figure taken from [168].
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FIGURE 5.3: 2D t-SNE projections of node2vec embeddings obtained
in the "team" graph construction setting. Colors represent teams (non-
user nodes in black) while markers represent functional units. Note
that the top right legend contains only a subset of all functional units

for brevity. Figure taken from [168].
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FIGURE 5.4: 2D t-SNE projections of node2vec embeddings obtained
in the "department" graph construction setting. Colors represent de-
partments (non-user nodes in black) while markers represent func-
tional units. Note that the top right legend contains only a subset of

all functional units for brevity. Figure taken from [168].
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FIGURE 5.5: 2D t-SNE projections of node2vec embeddings obtained
in the "functional unit" graph construction setting. Colors and mark-
ers represent functional units (non-user nodes in black). Note that
the top right legend contains only a subset of all functional units for

brevity. Figure taken from [168].
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5.2 Improving an intrusion detection system with zero-shot
learning

In the previous analysis, we have given an overview of contextual attributes rep-
resenting the organization’s structure in the CERT datasets and shown how they can
be used to build semantic representations of users via graph embeddings.

In this section, we describe how we extend an existing intrusion detection system
in zero-shot learning fashion using these semantic representations. We then evaluate
our system in two scenarios where activity data is unavailable or irrelevant.

This section is structured as follows. First, we introduce our problem setting
more precisely in section 5.2.1. We then describe the baseline intrusion detection
system and present our zero-shot learning extension in section 5.2.2. After detailing
our evaluation setting (section 5.2.3), we present experimental results (section 5.2.4)
and discuss our findings (section 5.2.5).

5.2.1 Problem setting

In the following experiments, we address intrusion detection by focusing on the
CERT insider threat use case. That is, we seek to detect threat scenarios described in
section 3.2.2 using the diverse audit data sources provided in the CERT datasets (see
section 3.2.1). However our method for extending intrusion detection systems with
zero-shot learning described hereafter is not specific to this use case and could be
used in other settings. In that regard, the work presented in the following consists
of a possible implementation for the CERT insider threat use case, nevertheless its
applicability is not limited to this specific context.

As in the rest of this thesis, we address intrusion detection through an anomaly
ranking approach. More precisely, our goal is to compute anomaly scores for fixed
time frames of user activity. In particular, the length of such time frames is chosen to
correspond to one day, and we extract features describing the actions performed by
each user during this period. Hence in the rest of this section, observations processed
by the intrusion detection systems are referred to as "user-days".

Therefore detection level differs from the methods presented previously in this
thesis, which use session-level detection (chapter 4) or event-level detection (chapter
6). The main reason is that our zero-shot learning intrusion detection system extends
the framework introduced by Tuor et al. [76]. As their system constitutes our base-
line, we keep their evaluation setting (including the user-day aggregation) schema
to allow performance comparison. Moreover, we believe that detection techniques at
different granularity levels should be seen as complementary rather than competing
(this point is discussed more deeply in chapter 7).

5.2.2 Methods

In this section, we describe two intrusion detection systems used in our experi-
ments. First, we present the intrusion detection system introduced by Tuor et al. [76],
which we use as baseline. Second, we detail our extension of this system through
zero-shot learning with the aim to improve user behavior prediction, and therefore
intrusion detection.
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FIGURE 5.6: Overview of the baseline intrusion detection system in-
troduced in [76]. The feature extractor aggregates audit events into
user-days by computing features described in figure 5.7. Figure taken

from the original paper.

Baseline

In the following experiments, we use a slightly modified version of intrusion de-
tection system proposed by Tuor et al. [76] as baseline. Figure 5.6 shows an overview
of this system.

First, raw audit events from the CERT insider threat dataset (see section 3.2.1)
are aggregated into "user-day" feature vectors. Each vector represents the activity of
one user during one day. The exact list of features describing one user-day can be
found in figure 5.7. However the original paper does not describe feature extraction
in a fully reproducible way: In particular, what corresponds to "uncommon" and
"common" web pages, email correspondents and computers is not explicitly speci-
fied. Our re-implementation of the pre-processing step defines events as common
if more than n occurrences are observed in the training period (n is set to 5 in the
experiments presented here); other events are considered uncommon.

Another difference is that we also use following attributes available from the
LDAP descriptions in the CERT datasets: role, project, functional unit, department,
team and supervisor of each user. These features are simply encoded as categorical
values. Finally, we concatenate categorical values (describing the user) and numeric
values (describing his activity during each day) to obtain feature vectors as shown
in figure 5.8.

Feature vectors are then fed into an auto-encoder neural network, i.e. hidden
layers are of smaller dimensionality than the input and the network is trained to re-
construct the input at its output layer. Although figure 5.6 indicates that a recurrent
neural network is used, the original implementation also provides a feed-forward
network as auto-encoder. We use the feed-forward network as it is simpler and
faster to train, and gives similar detection performance according to Tuor et al. [76].
This model takes as an input a series of T feature vectors xu

1 , xu
2 , ..., xu

T for a user
u and outputs a series of T hidden state vectors hu

1 , hu
2 , ..., hu

T after passing through
each hidden layer l with non-linear activation function g according to:

hu
l,t = g(Wlhu

l−1,t + bl) (5.1)

where Wl and bl represent the parameters of layer l. The model is trained over
all users.
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FIGURE 5.7: Hierarchy of features extracted to describe each user-
day in the baseline system. For each path (bottom to top of the tree),
the count of audit events matching the corresponding conditions is
computed and added to the feature set. For example, the first feature
(from the top) would be the number of file openings where a remov-
able device is used, the opened file is a decoy and the action took

place between 12am and 6am. Figure taken from [76].

FIGURE 5.8: Example of a feature vector used as input in the baseline
intrusion detection system. Figure taken from [168].
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FIGURE 5.9: Predicting input probabilities in the baseline feed-
forward neural network model. Figure taken from [168].

Finally, we follow the original method of Tuor et al. [76] to turn auto-encoder
outputs into probabilistic anomaly scores. The anomaly score assigned to input xu

t
corresponds to the log-probability:

au
t = − log P(xu

t |hu
t−1) (5.2)

Assuming conditional independence for simplification, this probability is ap-
proximated by the joint probability of categorical and numeric (count) inputs:

P(x|h) ≈ P(xcounts|h) ∏
c∈C

P(xc|h) (5.3)

where xcounts and xc respectively represent the continuous (blue in figure 5.9)
and categorical (green in figure 5.9) components of feature vector x. At this point, an
additional linear layer (parameters noted U, b and output y) is used to map predicted
outputs to probabilities:

• for categorical components, the probability of observed value corresponds to
a simple softmax: P(xc = i) = yi

c = so f tmax(UTh + b)i where yi
c denotes the

component corresponding to value i;

• for the continuous count vector, the probability of observed value is computed
via the multivariate normal density: P(xcounts) = N(xcounts, µ(y), Σ(y)) where
mean vector µ and covariance Σ (assumed to be diagonal) are obtained from
the model.

Figure 5.9 summarizes this probability estimation step.

Zero-shot learning based intrusion detection system

Our zero-shot learning based intrusion detection system is an extension of the
baseline system described above, as shown in figure 5.10. Feature extraction (step 2)
and prediction of anomaly scores (step 3) are the same as for the baseline system.

However, an additional set of features is input to the model, namely graph em-
beddings used to characterize user context. These embedddings are obtained sim-
ilarly to the process described in section 5.1. First, a graph containing users, their
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FIGURE 5.10: Overview of our intrusion detection system using zero-
shot learning. We extend the system introduced in [76] (see figure
5.6) by concatenating activity features with graph embeddings con-

structed from the organizational graph. Figure taken from [168].
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positions and relations in the organization’s structure (as described in the LDAP
repository provided in the CERT datasets) is built. In our preliminary analysis, we
have found that assignments to projects and teams, as well as roles, allow to char-
acterize user positions with adequate granularity. For this reason, we construct the
graph of user relations as follows. Nodes are created for all user, team, project and
role entities. In order to represent user roles within teams and projects, we also cre-
ate nodes for existing combinations of roles and projects on the one hand, and roles
and team on the other hand. For each user, edges are created to represent existing
relations to following entities:

• project;

• team;

• role;

• role-project combination;

• supervisor;

• coworkers (users on the same team);

• roles of coworkers;

• role-project combinations of coworkers;

• role-team combinations of coworkers.

We then use some graph embedding technique to learn vector representations
for entities present in this graph. The choice of the graph embedding method itself
and of its configuration is regarded as hyper-parameters of our system.

In each of our two evaluation scenarios, following graph embeddings are used
to characterize user context. For the first scenario (when a new user joins the organi-
zation), the embedding of the user node is used as additional input. For the second
scenario (change of project assignment), we compare two approaches, named "role-
project" and "role-project-team". In the role-project setting, we use the embedding
representing the role-project entity (corresponding to the newly assigned project).
However it is possible that such node does not exist; in this case the user embedding
will be used as default. In the role-project-team setting, we use the embedding for
the first existing entity in the following order: role-project, role-team, project. If none
of these nodes exist, we use the user embedding as default.

Note that users can be idle between two project assignments. To address this
issue we use a virtual "empty" project to which users are assigned when they have
no real project ongoing.

5.2.3 Evaluation setting

In this section, we describe implementation details of our experiments for repro-
ducibility. We first detail data selection and how our two evaluation scenarios (new
users joining the organization and users project assignments) are implemented. Sec-
ond we list hyper-parameters and how they were tuned in our study. A particular
attention is given to the choice of graph embedding method used to extract vec-
tor representations for users, which we present separately. Finally, we describe the
recall-based detection metric used for evaluation.
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Scenarios

We compare our intrusion detection system to the baseline in two scenarios where
no user activity data is available. The first of these scenarios represents new users
joining the organization described in the CERT dataset. However, it turns out that
the dataset contains only instances of existing users leaving and none of new users
joining. Hence to implement our scenario, we select a random subset of users who
will be added to the organization at a later time: at the end of the training period.
For this we remove all their activity traces from the training set. The result is that
joining users are present in the test set only. On their first work day, no previous
activity history is available; however their LDAP attributes are known.

In the second scenario, we evaluate how our zero-shot learning approach im-
proves detection performance when users are changing their project assignments.
Unlike new users joining, project changes are already present in the CERT dataset
hence no further modification of the original dataset is required in this case.

Data selection

We use version 6.2 of the CERT dataset, which contains approximately 135 mil-
lion audit events and 5 threat cases. Following Tuor et al. [76], the first 418 days
represent the training period while the last 98 days constitute the test set.

Hyper-parameters

Hyper-parameters of the feed-forward neural network used for prediction are set
as follows. Following Tuor et al. [76], we use a batch size of 256 and set the learning
rate to 0.01. We use hyperbolic tangent as activation function and the Adam opti-
mizer [169] stochastic gradient descent. We tune the number of hidden layers (1 to
6), the hidden layer dimension (20 to 500) and the dimensionality of embeddings for
categorical inputs (as ratio from the number of categories for each feature, between
0.25 and 1). In all cases we vary one parameter at a time and report results in the
best performing configuration.

For the zero-shot learning system, another hyper-parameter is the graph embed-
ding method used to obtain vector representations for users and other entities. We
have experimented with following methods: node2vec [165], DeepWalk [166], LINE
[170], SDNE [171] and struc2vec [172] with the parameters recommended by their
authors. We have found that for our application best results were obtained with
struc2vec.

Metrics

We use the recall curves and cumulative recall metrics introduced by Tuor et al.
[76]. Cumulative recall values are normalized by their maximum attainable value
in order to obtain a score between 0 and 1. These metrics are the same as the ones
used in chapter 6 thus we refer the reader to their description in section 6.1.3. In the
following results, we report cumulative recall values at budgets 1500 and 3500.

5.2.4 Results

Scenario 1: new users joining

Table 5.3 shows detection scores obtained for the baseline detection system and
our zero-shot learning approach based on user embeddings in 3 configurations,
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Model CR-1500 CR-3500

Without user embeddings (baseline) 0.0 0.123

With user embeddings
200 users joining 0.343 0.457
500 users joining 0.226 0.270
1000 users joining 0.136 0.263

TABLE 5.3: Normalized cumulative recall values at budgets 1500 and
3500 in the first evaluation scenario, for different numbers of new

users joining the organization.

Model CR-1500 CR-3500

Without user embeddings (baseline) 0.109 0.126
With user embeddings 0.471 0.630

TABLE 5.4: Normalized cumulative recall values at budgets 1500 and
3500 in the first evaluation scenario, for 200 new users joining, includ-

ing all malicious insiders.

varying the number of new users considered. CR-1500 scores show that our ap-
proach outperforms the baseline in all configurations with scores in the range 0.136–
0.343, while the baseline scores 0. Similarly, our detection system also outperforms
the baseline on CR-3500 scores (0.236–0.457 against 0.123). At the two budgets con-
sidered, our approach integrating user embeddings has better intrusion detection
performance. We also note that increasing the number of new users joining the
CERT organization degrades detection performance. This result was expected be-
cause joining users are users whose activities are more difficult to predict than for
other users. Hence by increasing the proportion of joining users among all users, the
overall difficulty of predicting user activity increases as well.

In table 5.4, we compare the detection performance of our system and the base-
line, in the case where all malicious insiders are among joining users (we set the
number of joining users to 200). In this setting, integrating user embeddings is ben-
eficial as well, leading to CR-1500 = 0.471 (baseline = 0.109) and CR-3500 = 0.630
(baseline = 0.126). Here, the detection performance boost surpasses the one obtained
previously, where joining users were selected randomly. This can be explained by
the fact that our approach specifically focuses on improving the activity prediction
for some users (i.e. the ones who join the organization).

Finally, in figure 5.11, we show daily anomaly scores computed for two single
users: one with only normal activities, and one malicious insider. Using recall at
different budgets as described in section 6.1.3, anomaly scores are relative: at budget
k, each day the k most anomalous users are scrutinized. Thus the absolute value of
individual anomaly scores is not necessarily meaningful. However, the evolution of
anomaly scores can be quite insightful. In figure 5.11a, we can see that our system
yields more stable scores for a normal user, which should decrease false positives.
On the contrary, malicious activities lead to higher fluctuations in the anomaly score
(see figure 5.11b). Of course this only reflects the functioning of our approach on
two specific users, however it provides an explanation to how our system is able to
achieve better detection results than the baseline.
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(A) Normal user (GSM0930) (B) Malicious user (CMP2946)

FIGURE 5.11: Representation of daily anomaly scores for two users
(one without malicious behavior, left and one malicious insider,
right), using the baseline detection system without embeddings
(green curve) and our zero-shot learning system with user embed-
dings (red curve). Note that anomaly score values are meant to be in-
terpreted relatively (absolute values are not necessarily meaningful).
For the normal user, we expect the daily anomaly score value to fluc-
tuate as little as possible, as high peaks could lead to false alarms. In
this regard, our detection system with embeddings seems to compute
much more stable scores than the baseline. For the malicious insider,
we expect to observe the opposite: high peaks indicating anomalous
activities, between days 400 and 460. Anomaly scores using our de-
tection system match this expectation while the baseline system does
not and might lead to false negatives in this case. Both figures taken

from [168].

Scenario 2: project change

Table 5.5 shows detection scores obtained in the second scenario (project change)
using the role-project and role-project-team approaches for user embeddings. With
the role-project method, our system outperforms the baseline at both budgets 1500
(0.088 vs. 0.0) and 3500 (0.198 vs. 0.062). With the role-project-team approach, higher
cumulative recall scores are attained and the baseline is outperformed by a larger
margin (CR-1500 = 0.460 vs. 0.138 and CR-3500 = 0.658 vs. 0.140).

Figure 5.12 shows the evolution of the average anomaly score of two sets of users:
one set contains users assigned to the same project; the other contains the same num-
ber of users but selected at random. When considering the set of random users,
adding embeddings has little influence on anomaly scores, which are more or less
constant in the represented time frame (keep in mind that score values are relative).
However when considering the set of users which are simultaneously affected by
project change (on day 486, vertical line), we see that without user embeddings (i.e.
in the baseline setting), this change leads to higher anomaly scores. However project
change is part of the normal life cycle of the organization and should not be consid-
ered malicious; hence these higher anomaly scores can possibly lead to false alarms.
When user embeddings are integrated (i.e. in our system), the average anomaly
score increase following project change is still observable, however the difference is
less important.
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Model CR-1500 CR-3500

Role-project
Without user embeddings (baseline) 0.0 0.062
With user embeddings 0.088 0.198

Role-project-team
Without user embeddings (baseline) 0.138 0.140
With user embeddings 0.460 0.658

TABLE 5.5: Normalized cumulative recall values at budgets 1500 and
3500 in the second evaluation scenario (project change).

FIGURE 5.12: Daily average of anomaly scores for two sets of users
in the second evaluation scenario (project change). Yellow and green
curves respectively represent anomaly scores computed by the base-
line (without embeddings) and our system (with embeddings) for a
set of users assigned to the same project. The date of project change
is indicated by the blue vertical line (day 486). Blue and red curves
respectively represent anomaly scores obtained with the baseline and
our system for a same size set of random users (i.e. not assigned to

the same project). Figure taken from [168].
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5.2.5 Discussion

Our experiments show that our proposed zero-shot learning approach allows to
increase intrusion detection performance in two evaluation scenarios on the CERT
insider threat dataset. By learning graph embeddings on user relations to organiza-
tional entities, like projects, teams and roles, we are able to extract vector represen-
tations which are meaningful to model user context.

In the first scenario, predicting user behavior – in the form of features summa-
rizing user activity on the next day – is difficult for new users whose activity history
is empty. However additional contextual information about users improves user be-
havior modeling, which translates into improved intrusion detection performance,
through reduction of false positives and false negatives. Due to prediction being
more difficult, detection performance of our system decreases as the number of new
users increases; however the baseline system of Tuor et al. [76] is still outperformed
for an unrealistically high proportion of new users (1000 out of 4000). Performance
gain of our system compared to the baseline is even higher when malicious users are
among the new users.

In the second scenario, which corresponds to users changing their project as-
signments, semantic embeddings also allow to improve intrusion detection perfor-
mance. The choice of how to construct these embeddings of course has an influence
on detection performance, but in the two settings tested, we find that our system
outperforms the baseline. Moreover observing anomaly scores of individual users
confirms our hypothesis that affectation to new projects is followed by a change of
user behavior.

These findings are in line with intuitions and expectations which motivated the
design of our system, as described in the introduction to this chapter. What is more
surprising however is that our baseline system could not match performance lev-
els reported in [76]; indeed our baseline scores far lower than expected. Note that
our evaluation settings differ from the ones used in this previous study in several
regards. First, this is due to reproducibility issues: Tuor et al. [76] do not provide
exact descriptions for the extraction of user-day features, so we had to re-implement
it (see section 5.2.2). Similarly, optimal hyper-parameter values are not stated. Sec-
ond, unlike them we do include LDAP attributes as categorical values (in addition
to user embeddings) and third we remove periods of user activity to simulate "new"
users in the first evaluation scenario. Whether these differences can entirely explain
the performance gap between our baseline and results reported by [76] should be
further investigated.

5.3 Conclusion and perspectives

In this chapter, we have proposed to address the "cold start" problem of anomaly-
based intrusion detection systems. These systems rely on past activity data to con-
struct some profile of normal observations and flag deviations from this norm as
anomalies. However, there are situations in which no relevant activity history is
available: for example, for new users or when user change their behavior follow-
ing new work conditions. We have addressed these two cases through the zero-shot
learning paradigm, using semantic descriptions of users built from their relations
to other entities within their work organization. A key point is that such relations
are available independently of user activity, hence the "cold start" problem can be
tackled.



82 Chapter 5. Addressing the "cold start" problem with zero-shot learning

Focusing on the CERT insider threat use case, we have shown how to obtain
semantic representations of users and other organizational entities such as teams,
projects and roles. The core of our approach consists in first constructing a graph
representing users, entities and their relations within the organization, before ap-
plying graph embedding methods to extract vector representations of these graph
nodes. With this process, we answer our research question RQ a.

Once such semantic representations of users (and entities) are obtained, they can
be used as additional input feature for an intrusion detection system to address the
"cold start" problem. Our experimental results show that this approach is able to
outperform the baseline system where semantic descriptions are not included; this
answers our research question RQ b.

Furthermore, our work shows that significant intrusion detection improvements
can be attained, even with qualitative evaluation of different configurations for the
construction of semantic representations (i.e. graph construction, embedding method
and its parameters). This methodology has allowed us to demonstrate the feasibil-
ity of our zero-shot learning approach, while getting an intuitive comprehension of
learned embeddings. Now that effectiveness of this approach is established, further
improvement can be sought, in particular by integrating embedding learning and
activity prediction into an end-to-end process.

The methodology employed here represents a specific embodiment of the zero-
shot learning paradigm, designed to address the CERT insider threat case. However
our approach is not applicable to this context only: contextual descriptions of users
can be used to improve intrusion detection in other operational settings. With re-
gard to research question RQ. 3, LDAP attributes representing user roles and their
relations to organizational units constitute a particularly useful resource that can be
leveraged via zero-shot learning. This calls for tighter coupling of intrusion detec-
tion with user identities, roles and privileges used in identity and access manage-
ment solutions.
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Chapter 6

Insider threat detection using
heterogeneous data

In chapter 4, we have addressed a real-world intrusion detection case and found
that user identification constitutes an effective approach to detect masquerades, but
not insider threats. It also appears that currently collected audit data are not suffi-
cient to characterize user behavior. As pointed out in section 2.3.2, heterogeneous
features like graph and text data can provide informative context to detect insider
threats. Thus we wish to extend our log data collection in this direction and ask fol-
lowing general research question:

RQ. 4: Which heterogeneous data features can be useful to detect intrusions, in
particular insider threats, and how to leverage them?

We address RQ. 4 in the context of the CERT insider threat use case, which
contains different sources of audit data and ground truth about intrusions. CERT
datasets are described in more detail in section 3.2. Although generally helpful in
insider threat detection, heterogeneous features have been widely ignored in the
CERT case, as shown in section 2.3.3. Thus our first specific research question can be
stated as follows:

RQ. a: How to leverage heterogeneous data in the CERT datasets?

Our main contribution consists in introducing ADSAGE (Anomaly Detection in
Sequences of Graph Edges), a new method for anomaly-based intrusion detection
supporting heterogeneous data. In particular, we leverage graph features by mod-
eling user events (equivalent to log lines) as graph edges representing interactions
between entities. For instance, an email being sent corresponds to an edge from
the sender to the receiver. Edges can be augmented with attributes to provide con-
text, such as the time the email was sent or its text content. Note that ADSAGE’s
applicability is not limited to insider threat detection; our method can be used for
anomaly detection in sequences of attributed graph edges in general. To the best
of our knowledge, no existing method for anomaly detection at edge level supports
both edge sequences and attributed edges (see related work in section 2.3.4).

Besides better support of heterogeneous data, we address the issue of alert trace-
ability. Existing insider threat detection systems heavily rely on data aggregation
and feature engineering [50], [52], [76]. Indeed, this strategy can be effective, nev-
ertheless at the cost of alert traceability. For instance in [76], users are assigned an
anomaly score based on their daily activity, thus determining specifically which ac-
tion(s) lead to an alert is not straightforward.
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On the contrary, our method operates at event (i.e. log line) level with a unique
data source. This allows flagging anomalies at a fine-grained level and reduces the
need for feature engineering and data aggregation. However, it is important to note
that direct performance comparison with existing systems like [76], which leverage
multiple audit data sources, is unfair. In this study, we rather seek answers to fol-
lowing specific research questions:

RQ. b: Is detection at fine-grained level feasible with individual sources of audit
data?
RQ. c: Which sources of audit data can be useful for insider threat detection and for
which threat scenarios?

Finally, as pointed out in section 2.2.3, the CERT insider threat use case currently
lacks a standard benchmark methodology. Existing works use different metrics and
data subsets for evaluation, rendering performance comparison difficult. As an ef-
fort towards benchmark standardization we adopt the evaluation setting from [76],
chosen for its business-realistic metrics.

The rest of this chapter is structured as follows. We first introduce our method
ADSAGE and evaluate it on the CERT insider threat datasets in section 6.1. In section
6.2, we analyze properties of the graphs representing the different audit data sources
in the CERT datasets, providing additional insight with regard to RQ. c. Section 6.3
concludes this chapter by summarizing findings, answering our research questions
and suggesting possible extensions.

6.1 ADSAGE: Anomaly Detection in Sequence of Attributed
Graph Edges

6.1.1 Problem setting: anomaly detection at event level

We address the CERT insider threat use case through an anomaly detection per-
spective, i.e. we aim at modeling normal user behavior to detect deviations from
this norm. Such anomalies are then considered as insider threat alarms. While this
perspective has been widely adopted for intrusion detection, unlike existing sys-
tems our approach is to perform detection at fine-grained event level. In the CERT
insider threat use case, one event (i.e. log line) represents an elementary user ac-
tion and usually contains features to describe its context. For instance, an event can
represent a logon to a particular computer and features can be the event time or the
device used. Our goal is to assign an anomaly score to each audit event.

The primary reason to perform detection at fine-grained event level is to enhance
alert traceability. Intrusion detection systems are typically not used as standalone
solution, but rather perform a first selection of suspicious activities to be further
scrutinized by security analysts. In this context, flagging anomalies at fine-grained
event level eases traceability, as analysts will be able to determine exactly which
user action lead to an alert. On the contrary, using a system like [76], an anomaly
score is assigned to a whole day of user activity, thus when an alarm is raised the
question of which exact elements triggered it remains open. A second advantage is
that data aggregation and feature engineering efforts are greatly reduced compared
to systems like [50], [52], [76]. As we will show next, except for time features (which
we transform only to model their periodical nature), our methods use audit event
attributes without further preprocessing.
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FIGURE 6.1: Joint training architecture for the recurrent (RNN) and
feed-forward neural network (FFNN) used in ADSAGE. This exam-
ple shows the anomaly score prediction for event e4 given previous
events e1...e3. Note that ADSAGE components are delimited by the
blue area, while the seq2one baseline corresponds to the orange area.
The grey area corresponds to components shared by both models.
Seq2one is trained on normal events only, predicts the entire next
event ẽ4 and compares it to the real e4 to derive an anomaly score.
ADSAGE is trained on both normal and anomalous events being gen-

erated with negative sampling (e.g. e′4).

6.1.2 Methods

Seq2one baseline

To detect insider threats at event level, we adapt DeepLog [107], a log line anomaly
detector for system traces. As we take into account one audit data source at a time,
we only keep DeepLog’s event features prediction module. It computes an anomaly
score based on the error between predicted and observed value for the next event.
We adapt the error function to support numeric and categorical attributes. For nu-
meric features, mean squared error is used and for categorical attributes the error
is 1− p, where p is the probability of the true category, obtained by applying the
softmax function. Each error is then normalized by using its quantile (e.g. 0.99 if the
error is greater than 99% of observed errors for this feature). Quantiles are finally
averaged to obtain an event anomaly score. This method is referred to as "seq2one"
and corresponds to the orange area in figure 6.1.

Unfortunately, our preliminary experiments on the CERT datasets have shown
that seq2one gives poor threat recall. One plausible explanation is that user behavior
in far less predictable than machine behavior, hence predicting the next event is



86 Chapter 6. Insider threat detection using heterogeneous data

FIGURE 6.2: Representation of audit events as attributed graph edges
in ADSAGE on the example of authentication events. An authentica-
tion event corresponds to a user-computer edge and is represented as
the concatenation of user and computer embeddings. Edge attributes
can be added as well (i.e. time features, flag indicating logon or lo-
goff). The user history (RNN state) representing previous activities
of current user A is also appended. Here, the first authentication
event is encoded to be processed by ADSAGE’s FFNN. On the right,
the upper row represents the normal event. The lower row repre-
sents an anomalous version of the same event, obtained with nega-
tive sampling on the edge destination (indicated by the asterisk). The
accessed computer in the anomalous event (PC_32) is selected at ran-

dom among all computers never used by user A.

much more difficult with user activity traces than with system logs used in [107].
This motivates us to extend DeepLog to better learn the distinction between normal
and anomalous behavior.

ADSAGE: Anomaly Detection in Sequence of Attributed Graph Edges

As predicting the exact features of the next event is difficult for user generated
events, we propose ADSAGE, a method focusing on predicting the validity of graph
edges. In the following, we detail how events can be represented as attributed graph
edges and how ADSAGE is trained to predict the validity of such events, by relying
on negative sampling.

Representing events as attributed graph edges In ADSAGE, events are repre-
sented as attributed graph edges. Figure 6.2 shows an example on authentication
events similar to logs from CERT. An authentication event is an interaction between
a user and a computer, corresponding to an edge in the graph of users and comput-
ers. In ADSAGE, this edge is represented as the concatenation of its source (user)
and destination (computer) entities. As ADSAGE is based on neural network mod-
els, an embedding layer is used for each entity feature. Thus source and destination
embeddings are optimized according to the prediction task.

In addition to its source and destination entity, an edge can also have features ex-
tracted from its event context (e.g. time features and logon/logoff attributes in figure
6.2). Different types of features are possible: numeric values, categorical attributes
(as one-hot or embedding representation) or even text content (via pre-trained word
embeddings). Therefore heterogeneous data sources are supported.

Note that ADSAGE can be easily extended to the case where an event has multi-
ple sources and/or destinations. Events with a fixed and limited number of sources
or destinations can be represented as concatenation of corresponding embeddings.
For events with a high and/or varying number of sources or destinations, it is pos-
sible to use an embedding bag layer [173] (i.e. an embedding layer with pooling
function such as average or max) to obtain a fixed-length representation.
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Training FFNN and RNN jointly to learn edge validity To perform anomaly de-
tection in sequences of attributed edges, we use a combination of sequence-to-one
RNN (similar to seq2one) and feedforward neural network (FFNN), both trained
jointly. Given a sequence of events for a given user, the RNN is trained to predict
the next event and outputs an RNN state representing the event history up to this
instant. The RNN’s training loss is computed as the sum of mean squared error (for
numeric features), cross-entropy loss (for one-hot encoded features) and cosine loss
(for embeddings).

The RNN state encoding history of previous events is used as input for the
FFNN, together with the next event. The FFNN is trained to predict a binary la-
bel (representing whether the next event is valid or not) using binary cross-entropy
loss.

Figure 6.1 shows the full architecture with RNN and FFNN, and algorithm 1 de-
tails how both are trained simultaneously. Both our seq2one baseline and ADSAGE
maintain a separate RNN state for each user. With this mechanism each user event
sequence can be modeled individually while the model is trained on all users.

Note that ADSAGE is trained on both normal and anomalous events (gener-
ated by negative sampling, see next section) and outputs anomaly scores directly
while seq2one is trained on observed events only and predicts entire events. As
shown later in evaluation, these differences allow ADSAGE to better detect anoma-
lous events.

Algorithm 1 Training ADSAGE

function train_ADSAGE (n_epochs, batches):
for ep in n_epochs do

reset_rnn_states() // set all user RNN states to zero
for ffnn_x, ffnn_y, rnn_x, rnn_y in batches do

// ffnn_x: next events including negative samples
// ffnn_y: event validity labels
// rnn_x: sequences of true (positive) events
// rnn_y_true: next true event for each sequence in rnn_x
// FFNN step
// retrieve current RNN states for FFNN inputs
ffnn_states = get_user_rnn_states(ffnn_x)
// concat input events and user histories
ffnn_input = {ffnn_x, ffnn_states}
// predict validity of events (anomaly scores)
ffnn_y_pred = FFNN(ffnn_input)
backprop(ffnn_y_pred, ffnn_y)
// RNN step
// retrieve current RNN states for RNN inputs
rnn_states = get_user_rnn_states(rnn_x)
// predict the next event for each sequence
rnn_y_pred, rnn_states = RNN(rnn_x, rnn_states)
backprop(rnn_y_pred, rnn_y)
save_user_rnn_states(rnn_states)

end for
end for
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Generating anomalous edges through negative sampling In order to get negative
examples for the event validity classification task (i.e. anomalous edges), we artifi-
cially replace the destination entity through negative sampling (see figure 6.2). In a
negative event, the destination entity should be anomalous in the sense that interac-
tions from the source entity are usually not observed. In practice we randomly draw
a destination entity (e.g. computer for logons) from the set of destinations never ac-
cessed from the source entity (e.g. user) during the training period, while other edge
attributes are left unchanged. We use a constant negative sampling rate of 0.5 (i.e.
for one positive event, we generate a corresponding negative event), however this
value could be tuned as desired.

6.1.3 Evaluation setting

Baselines

In each evaluation setting, we benchmark ADSAGE against 3 different types of
baselines. The first is "seq2one" which uses an RNN model to predict the features of
next event given previous events (see section 6.1.2).

Simple rule-based classifiers constitute the second type of baselines. These mod-
els are not expected to be competitive for insider threat detection in practice, but
they should be outperformed by ADSAGE to ensure that detected anomalies are not
trivial. For example, if each user is assigned a computer, a simple rule is to con-
sider all authentication attempts to a different computer as anomalous. Similar rules
can be used for other types of events, the general pattern being that an edge from a
source to a destination entity is flagged as anomalous if it was not observed in the
train set, and as normal otherwise.

The last baseline we use is SedanSpot [129], a general anomaly detection method
applicable to sequences of graph edges. SedanSpot takes into account the timestamp
of each edge, but does not support additional edge attributes. Note that SedanSpot
and rule-based methods are deterministic and do not depend on initialization. This
is why we report exact performance metrics for these methods, unlike for ADSAGE
and seq2one.

Feature selection

ADSAGE and seq2one allow a flexible selection of features. However as our
goal is to reduce feature engineering and preprocessing, we consistently use follow-
ing approach for all events from CERT. First, we extract two time features from the
date/time of each event: the minute of day and day of week. We represent both
through their cosine and sine values in order to model their periodical nature. Sec-
ond, we use all other (i.e. non time) available event attributes without further mod-
ification (except for categorical values, for which we use one-hot encoding). In each
experiment, we list these additional features for completeness.

Tuning hyper-parameters

For each dataset we optimize ADSAGE’s hyperparameters. Most of them are
related to the underlying neural networks (RNN and FFNN). We tune following hy-
perparameters: number of timesteps, number of hidden units and layers in the RNN,
batch size, dimension of embeddings used to represent graph features, learning rate
and use different types of pre-trained word embeddings (for datasets containing text
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features). To speed up training on large datasets, we reduce training set size by sam-
pling users randomly. The user sample rate is another hyperparameter to tune, and
one can also choose to sample only from users presenting no malicious behavior.
Testing is always performed on all users. We tune one hyperparameter at a time
to determine its optimal value, then combine all best parameter values as final con-
figuration. Although this process does not take into account dependencies between
hyperparameters, it is much faster than extensive grid search. For each evaluation
setting we report the optimal configuration found.

Recall-based metrics

For our evaluation, we use recall-based metrics introduced in [76]: recall curves
and cumulative recall at budget k (CRk). These metrics are realistic from the per-
spective of an organization with a fixed budget to investigate alerts generated by
an insider threat detection system. The organization’s daily budget k represents the
number of (most suspicious) users to be investigated each day. If a malicious user
is investigated on a given day, all his malicious activities conducted that day are
considered as detected. Recall (at budget k) Rk is computed as the recall of mali-
cious users per day, averaged over all test days (days with no malicious activity are
ignored).

Rk reflects detection performance at a fixed daily investigation budget. To assess
performance across multiple budgets, Rk can be plotted against k up to a maximum
budget kmax to obtain a recall curve. Such curve can be summarized with normalized
cumulative recall computed as CRk = ∑i=k

i=0 Ri /n, where n is the number of budget
steps. CRk can be seen as an approximation of the area under recall curve up to
budget k.

We report cumulative recall (CR) at budgets 400 and 1000 and at maximum bud-
get 4000 for completeness. We also report recall metrics based on detecting all threats
present in the test set, i.e. malicious activity across all event types, including log data
sources not seen by the detector. This is possible with daily budget-based recall met-
rics, by assuming that investigators review all user activity that day, even if the alert
was generated by a single type of event. For example, an anomaly alert triggered by
an unusual logon event might lead to an investigation which will uncover malicious
email activity from the same user on the same day. This setting leads to metrics
aligned with [76]. However keep in mind that the performance comparison is unfair
since ADSAGE and other baselines see a single log data source.

Moreover, note that although ADSAGE detects threats at event level, recall at
budget is computed at user-day level, i.e. in terms of number of anomalous users
detected for a given day. The first reason to do so is to allow a comparison with [76].
The second is that when a user is investigated following an alert, the investigator will
have to review the entire user activity (at least the whole user-day) to have sufficient
context to come to a decision.

Data selection, audit log sources and threat scenarios

Using the CERT dataset version 6.2, we perform the same data split as [76] to
compare our results to theirs (days 1 to 418 for training, days 419 to 516 for evalua-
tion).

We also detail results for individual threat scenarios. This helps understanding
which types of malicious behaviors are well detected by each method, and whether
"blind spots" remain. Certain scenarios are virtually impossible to detect using some
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log data sources. For example, scenario 2 does not involve any logon activity, mean-
ing that logon event detectors only cannot possibly alert about threats of this type.

For these reasons, methods presented in the following experiments should not
be viewed as standalone, "one-fits-all" detectors. They rather are complementary,
and each one addresses the CERT insider threat detection problem from a different
perspective, depending on its data source. Though we compare our results to those
of [76] (who performs detection at user-day level and uses all data sources), our
focus is on understanding which event types are relevant (in general and for each
scenario) and finding out whether insider threat detection is feasible at fine-grained
event level.

To complement our results on the synthetic CERT datasets, we evaluate our
methods on real-world authentication logs from the LANL cyber-security datasets.

6.1.4 Results

Detecting threats in CERT logon events

In a first experiment, we apply ADSAGE and other baselines to detect insider
threats in logon events from the CERT dataset. In addition to edge sources and
destinations and time features, we include the binary attribute indicating whether
the action performed was a login or a logoff.

We use two simple rule-based baseline detectors. "Own PC" flags all logon events
occurring on user’s own machine (defined as the most used computer for this user)
as normal; all other events are considered anomalous. "Known PC" considers a lo-
gon event to be normal if the corresponding user-computer edge was observed in
the training set; otherwise it will be flagged as anomalous. Both methods provide
binary decisions.

We use following hyperparameters for seq2one and ADSAGE’s RNN: 1 layer
of 30 LSTM units, 15 timesteps, batch size = 100, learning rate = 0.001 with decay
factor of 0.5 after 1 epoch without improvement and the dimensionality of computer
embeddings is set to 20. For ADSAGE’s FFNN we use 3 layers of respectively 50, 30
and 10 units with relu activation and dropout set to 0.2. We perform 5 runs with 10
epochs.

Detection results are shown in table 6.1. When it comes to detecting threats
present in logon events only, ADSAGE outperforms all other methods, with cumu-
lative recall at maximum budget of 0.981. Cumulative recalls at lower budgets show
a similar picture, and full recall curves presented in figure 6.3 confirm that ADSAGE
performs best at almost any budget. However, for the task of detecting all threats
(i.e. including the ones not present in logon activity), ADSAGE is outperformed by
the system of [76].

Detecting threats in CERT email events

In a second experiment, we use email events as log data source. Email events
from the CERT dataset represent an email being sent or received/read. Considering
the significant overlap between the two, we only use "send" events.

In addition to time features, we use following attributes from email events: email
size (numeric), sender and receiver fields represented as embeddings ("from", "to",
"cc", "bcc") and email content (text). Representing the sender is straightforward as
it contains only one email address, so we use a simple embedding layer. However,
receiver fields can contain several entities, so we combine them with an embedding
bag layer [173] to obtain a fixed length representation. All three receiver fields are
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Logon threats CR-400 CR-1000 CR-4000

own pc 0.633 0.853 0.963
known pc 0.617 0.847 0.962
SedanSpot 0.219 0.513 0.874
seq2one 0.039 ± 0.061 0.171 ± 0.151 0.679 ± 0.084
ADSAGE 0.813 ± 0.172 0.925 ± 0.069 0.981 ± 0.017

All threats CR-400 CR-1000 CR-4000

own pc 0.268 0.420 0.772
known pc 0.280 0.426 0.772
SedanSpot 0.119 0.338 0.814
seq2one 0.047 ± 0.088 0.155 ± 0.073 0.679 ± 0.084
[76] 0.731 0.893 not reported
ADSAGE 0.432 ± 0.037 0.605 ± 0.102 0.842 ± 0.104

TABLE 6.1: Detection results on logon events. For seq2one and AD-
SAGE we report 95% confidence intervals over 10 runs. Top table:
detecting threats present in logon events only, bottom table: detect-

ing all threats (including those not present in logon events).
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adsage CR-4000 = 0.981 ± 0.017 
seq2one CR-4000 = 0.679 ± 0.084
own pc baseline CR-4000 = 0.963 ± nan 
known pc baseline CR-4000 = 0.962 ± nan 
sedanspot CR-4000 = 0.874 ± nan

FIGURE 6.3: Recall curves with 95% confidence intervals over 5 runs
for detecting threats present in logon events.
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Email threats CR-400 CR-1000 CR-4000

known receivers 0.106 0.340 0.782
known receiver set 0.138 0.278 0.725
SedanSpot 0.044 0.098 0.628
seq2one 0.217 ± 0.124 0.431 ± 0.109 0.830 ± 0.035
ADSAGE 0.332 ± 0.226 0.646 ± 0.117 0.907 ± 0.026

All threats CR-400 CR-1000 CR-4000

known receivers 0.116 0.408 0.827
known receiver set 0.134 0.318 0.754
SedanSpot 0.280 0.415 0.784
seq2one 0.199 ± 0.093 0.426 ± 0.100 0.822 ± 0.036
[76] 0.731 0.893 not reported
ADSAGE 0.447 ± 0.118 0.728 ± 0.67 0.930 ± 0.017

TABLE 6.2: Detection results on email events. For seq2one and AD-
SAGE we report 95% confidence intervals over 5 runs. Top table:
scores when detecting threats present in email events only, bottom
table: scores when detecting all threats (including those not present

in email events).

encoded as separate features; senders and receivers are embedded into a unique
vector space. Text content of emails is represented through pre-trained word vectors,
combined with a pooling scheme [115]. We have empirically determined that GloVe
[113] vectors with average pooling work best for our problem.

We use two rule-based baselines for anomaly detection in email events. In the
first, called "known receivers", each email event is assigned a score representing the
proportion of unobserved receivers, i.e. receivers that were never contacted by the
sender during the training period. The second is referred to as "known receiver set".
It assigns a binary score depending on whether the exact set of receivers was ob-
served in the training set for the corresponding sender (normal) or not (anomalous).

We use following hyperparameters for seq2one and ADSAGE’s RNN: 1 layer of
100 LSTM units, 20 timesteps, batch size 1024, 5 epochs, learning rate of 0.01 with 0.5
decay factor after 1 epoch without improvement. Embeddings of email senders and
receivers are of dimension 20. For ADSAGE’s FFNN we use 3 layers of respectively
50, 30 and 10 units with relu activation and dropout = 0.2. We perform 5 runs with
5 epochs and use the same data split as for logon events, but we train only on a
random sample of all users (10%). Due to the large number of email events, this
speeds up the training process without significantly altering performance.

Detection results are shown in table 6.2. For threats present in email events,
ADSAGE outperforms other methods and reaches a cumulative recall at maximum
budget CR-4000 = 0.907. As shown in figure 6.4, a budget of around 800 allows to
detect 90% of threats in email events. Applying ADSAGE to email events also allows
to detect threats present in all events effectively (CR-4000 = 0.930), even though the
system of [76] still performs best. Nevertheless it suggests that email events are a
good marker for insider threats.
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adsage CR-4000 = 0.907 ± 0.026
seq2one CR-4000 = 0.830 ± 0.035
known receivers baseline CR-4000 = 0.782 ± nan 
known receiver set baseline CR-4000 = 0.725 ± nan 
sedanspot CR-4000 = 0.628 ± nan

FIGURE 6.4: Recall curves with 95% confidence intervals over 5 runs
for detecting threats present in email events.

Detecting threats in CERT web events

In a third experiment on the CERT dataset, we use web events as data source.
Web events represent user browsing activities. In addition to edge sources and des-
tinations and time features, we tried adding the content of web page as text feature
but ended up discarding it as it did not improve detection performance significantly.

We use a rule-based baseline for anomaly detection which we call "known do-
main". It assigns binary anomaly scores based on whether the web domain of an
event has been observed in the training period for the corresponding user. Thus all
accesses to new, unobserved domains are considered anomalous; the rest is deemed
normal.

We use following hyperparameters for seq2one and ADSAGE’s RNN: 1 layer of
100 LSTM units, 20 timesteps, batch size 2048, 5 epochs and learning rate of 0.001
with 0.5 decay factor after 1 epoch without improvement. Embeddings of email
senders and receivers are of dimension 50. For ADSAGE’s FFNN we use 3 layers
of respectively 50, 30 and 10 units with relu activation and dropout = 0.2. As the
volume of web events is much larger than for other audit data sources, we train on
a random sample of 5% of all users, discarding malicious ones and perform 5 runs
with 5 epochs.

Table 6.3 shows detection results. SedanSpot outperforms other methods with
CR-4000 = 0.928 when detecting threats present in web events only. As shown in fig-
ure 6.5, a budget of around 600 allows to detect all threats in web events. When con-
sidering recall of all threats, SedanSpot gives the best results (followed by seq2one,
difference not statistically significant), but is not as effective as the system from [76],
which uses all data sources. Overall, ADSAGE is not adapted to detect anomalies
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Web threats CR-400 CR-1000 CR-4000

known domain 0 0.150 0.598
SedanSpot 0.313 0.711 0.928
seq2one 0.175 ± 0.129 0.344 ± 0.054 0.745 ± 0.078
ADSAGE 0.054 ± 0.070 0.179 ± 0.127 0.696 ± 0.102

All threats CR-400 CR-1000 CR-4000

known domain 0.042 0.148 0.588
SedanSpot 0.199 0.432 0.736
seq2one 0.132 ± 0.078 0.259 ± 0.087 0.693 ± 0.061
[76] 0.731 0.893 not reported
ADSAGE 0.035 ± 0.030 0.109 ± 0.026 0.608 ± 0.031

TABLE 6.3: Detection results on web events. For seq2one and AD-
SAGE we report 95% confidence intervals over 5 runs. Top table:
scores when detecting threats present in web events only, bottom ta-
ble: scores when detecting all threats (including those not present in

web events).

in web events represented as user to web domain edges. One possible explanation
is that the domain identifier is not informative enough to characterize browsing be-
havior.

Detecting different threat scenarios

In order to characterize which methods and data sources allow to detect each
CERT insider threat scenario (see section 3.2.2), we evaluate logon, email and web
detectors using a different data split. We use the period from January to July 2010
as train set and test on August 2010 to April 2011. This allows us to assess detection
performance on all threat scenarios, whereas the test set used by [76] contains only
scenarios 2 and 4. Hyperparameter values determined earlier are kept unchanged.

For completeness, we also add detectors for file and device events, which rep-
resent the two remaining audit data sources in the CERT datasets. However, repre-
senting these events as user relations to entities is not as natural as for logon, email
and web events.

File events are represented as user to text content relations, i.e. for one log line,
its destination node in ADSAGE is the embedding representing the content of the
accessed file. Text embeddings are obtained through pre-trained word vectors com-
bined with pooling [115] and kept fixed during training. ADSAGE is trained with
negative sampling, where for each user, negative examples are randomly drawn
from the set of never accessed files.

We also report results obtained with seq2one and a rule-based baseline called
"known file activity". In this last model, a given event is flagged as normal if the
current combination of activity type (file open or write) and file type (extension) has
been observed in the train set for current user; otherwise the event is considered
anomalous. SedanSpot is not applicable here as destination nodes consist of text
data.

Device events represent the usage of removable devices by users. Within AD-
SAGE, a device log line is regarded as link between a user and the file structure
present on the device. This file structure corresponds to the "file tree" attribute of
the CERT dataset, i.e. the list of directories present on the device. We encode this
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adsage CR-4000 = 0.696 ± 0.102
seq2one CR-4000 = 0.745 ± 0.078
known domain baseline CR-4000 = 0.598 ± nan
sedanspot CR-4000 = 0.928 ± nan

FIGURE 6.5: Recall curves with 95% confidence intervals over 5 runs
for detecting threats present in web events.

destination node attribute as set of categorical values using an embedding bag [173]:
each directory is encoded as separate embedding, and all embeddings are combined
using pooling [115]. As for the other event types, ADSAGE is trained with negative
sampling, for which negative examples consist of unobserved links between source
(i.e. users) and destination nodes (i.e. file structures).

In addition to ADSAGE, we report results for the seq2one baseline and a binary
rule-based classifier "known device activity". This last baseline flags events as ab-
normal if their combination of activity (connect/disconnect), pc and file tree was
not observed in the train set for the corresponding user; and as normal otherwise.

Detection results (CR-4000 scores) for each scenario presented by detector and
data source are shown in tables 6.4 (scenarios 1 to 3) and 6.4 (scenarios 4, 5 and all
threats present in each audit data source).

It appears that monitoring logon events can be effective (CR-4000 ≥ 0.85) to de-
tect scenarios 3, 4 and 5. Rule-based methods ("own PC", "known PC") give good
performance for these scenarios, however ADSAGE and SedanSpot can be better
for 3 and 5 respectively. Email traffic is a good audit data source to detect scenar-
ios 2, 4 and 5. ADSAGE ranks among the best detectors for scenarios 2 to 5, while
SedanSpot is particularly effective for scenario 2 and the "known receivers" baseline
proves strong against scenarios 4 and 5. Web browsing logs can be used to uncover
scenarios 2 (using SedanSpot or "known domain"), 4 and 5 (with "known domain").
File logs allow to detect all five scenarios using ADSAGE or the "known file activ-
ity" rule-based method. Finally, device detectors are effective to flag scenarios 1 to 3
(scenarios 4 and 5 do not imply usage of removable devices).
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Threat scenario
1 2 3

Logon
own pc baseline 0.392 0.636 0.848
known pc baseline 0.598 0.646 0.855
SedanSpot 0.117 0.642 0.364
seq2one 0.618 ± 0.099 0.614 ± 0.019 0.695 ± 0.017
ADSAGE 0.645 ± 0.109 0.667 ± 0.086 0.825 ± 0.012
Email
known receivers baseline 0.652 0.810 0.600
known receiver set baseline 0.617 0.714 0.646
SedanSpot 0.823 0.928 0.664
seq2one 0.762 ± 0.124 0.770 ± 0.036 0.669 ± 0.054
ADSAGE 0.668 ± 0.120 0.853 ± 0.132 0.669 ± 0.043
Web
known domain baseline 0.731 0.853 0.717
SedanSpot 0.294 0.944 0.554
seq2one 0.743 ± 0.089 0.720 ± 0.021 0.619 ± 0.029
ADSAGE 0.468 ± 0.075 0.704 ± 0.112 0.727 ± 0.029
File
known file activity baseline 0.979 0.937 0.905
seq2one 0.870 ± 0.050 0.917 ± 0.007 0.915 ± 0.014
ADSAGE 0.930 ± 0.012 0.900 ± 0.015 0.931 ± 0.017
Device
known device activity baseline 1.000 0.963 1.000
seq2one 0.909 ± 0.059 0.958 ± 0.006 0.935 ± 0.022
ADSAGE 0.980 ± 0.010 0.973 ± 0.022 0.968 ± 0.032

TABLE 6.4: Detection performance (cumulative recall at maximum
budget, CR-4000) for insider threat scenarios 1 to 3.
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Threat scenario
4 5 all

Logon
own pc baseline 0.966 0.963 0.845
known pc baseline 0.963 0.963 0.884
SedanSpot 0.875 0.969 0.633
seq2one 0.690 ± 0.046 0.515 ± 0.185 0.687 ± 0.038
ADSAGE 0.975 ± 0.007 0.495 ± 0.135 0.876 ± 0.033
Email
known receivers baseline 0.885 0.900 0.702
known receiver set baseline 0.783 0.894 0.695
SedanSpot 0.548 0.763 0.682
seq2one 0.815 ± 0.032 0.730 ± 0.210 0.712 ± 0.032
ADSAGE 0.798 ± 0.138 0.942 ± 0.071 0.722 ± 0.039
Web
known domain baseline 0.837 1.000 0.930
SedanSpot 0.433 0.906 0.880
seq2one 0.638 ± 0.039 0.680 ± 0.257 0.721 ± 0.044
ADSAGE 0.446 ± 0.056 0.631 ± 0.287 0.690 ± 0.099
File
known file activity baseline 0.906 0.956 0.930
seq2one 0.908 ± 0.021 0.879 ± 0.050 0.903 ± 0.011
ADSAGE 0.911 ± 0.013 0.899 ± 0.071 0.924 ± 0.008
Device
known device activity baseline - - 0.971
seq2one - - 0.951 ± 0.014
ADSAGE - - 0.980 ± 0.013

TABLE 6.5: Detection performance (cumulative recall at maximum
budget, CR-4000) for insider threat scenarios 4, 5 and all threats

present in each respective audit data source.
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Detecting red team events
in LANL authentications

CR-1000 CR-4000 CR-12000

known dest pc 0.237 0.566 0.829
known source pc 0.254 0.669 0.890
SedanSpot (dest) pc 0.016 0.104 0.490
SedanSpot (source) pc 0.089 0.191 0.538
seq2one 0.167 ± 0.023 0.423 ± 0.031 0.752 ± 0.014
ADSAGE 0.255 ± 0.078 0.653 ± 0.042 0.877 ± 0.014

TABLE 6.6: Detection results for red team anomalies in LANL authen-
tication events. We report normalized cumulative recalls at budgets
1000, 4000 and 12000 for 5.2. For seq2one and ADSAGE we report

95% confidence intervals over 5 runs.

Detecting anomalies in real authentications

To complement our results on the synthetic CERT datasets, we evaluate our
methods on real-world authentication logs from the LANL’s multi-source cyberse-
curity events, preprocessed as described in section 3.3.

For ADSAGE and seq2one, we use the same time features as for CERT data.
Graph features are the source and destination computer of an authentication event,
meaning that we have two attributed edges (user to source computer and user to
destination computer). For this reason, we implement two rule-based baselines
"known source PC" and "known destination PC", which are equivalent to "known
PC" for logon events for each corresponding graph feature. We also run two in-
stances of SedanSpot, one for edges from user to source computer and the other for
user to destination computer.

We use following hyperparameters for seq2one and ADSAGE’s RNN: 1 layer of
50 LSTM units, 10 timesteps, batch size 512, 15 epochs, learning rate of 0.001 with
0.5 decay factor after 1 epoch without improvement and no dropout. Embeddings
of source and destination computers have a dimensionality of 20. For ADSAGE’s
FFNN we use 3 layers of respectively 50, 30 and 10 units with relu activation with
dropout = 0.2. Due to the large volume of events, we train on a 10% random sample
of all users.

Cumulative recall values at budgets 1000, 4000 and 12000 are presented in table
6.6. ADSAGE and the "known source pc" rule-based classifier outperform all other
methods at all 3 budget values. At maximum budget, their cumulative recall reaches
0.88 and 0.89 respectively (though the difference is not statistically significant). De-
tection results from SedanSpot and our rule-based classifier also suggest that the
source computer attribute in LANL authentication events is more informative than
the destination computer. ADSAGE has the advantage to support both attributes
simultaneously.

6.1.5 Discussion

Our experimental results on the CERT insider threat datasets show that our
method ADSAGE outperforms concurrent approaches to detect intrusions in logon
and email events, which are respectively modeled as user to computer and sender
to receiver links. For web events, which we regard as user to web domain relations,
ADSAGE’s detection performance is not better than baselines, but SedanSpot can
be used instead. Hence graph representations are useful to detect insider threats in
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6.2 (Tuor dataset) CR-400 CR-1000 CR-4000
[76] 0.731 0.893 -
max 0.475 ± 0.118 0.753 ± 0.023 0.938 ± 0.006
mean 0.432 ± 0.050 0.722 ± 0.034 0.932 ± 0.009
6.2 (all scenarios) CR-400 CR-1000 CR-4000
max 0.448 ± 0.076 0.619 ± 0.054 0.861 ± 0.015
mean 0.363 ± 0.044 0.528 ± 0.035 0.845 ± 0.005

TABLE 6.7: Detection results over 5 runs for combining detectors.
Two dataset splits are used: the one used by Tuor et al. [76] (top) and

the one containing all threat scenarios (bottom).

these three types of audit data. However, other event types representing file activ-
ities and usage of removable devices are less straightforward to represent as graph
edges, thus rule-based classifiers are preferable.

Note that results obtained on LANL authentications and CERT logon events are
consistent. This suggests that the CERT datasets are quite realistic, even if they are
synthetic.

Detection results split by threat scenarios suggest that anomalies flagged by dis-
tinct detectors overlap only partially, thus methods can be complementary in detect-
ing insider threats. By combining anomaly scores obtained from several perspec-
tives (i.e. computed by distinct methods using different audit data sources), we can
expect detection performance improvement.

To test whether this is feasible, we combine anomaly scores from detectors using
a very simple scheme. For each user, for each day of activity, we compute a daily
anomaly score using some aggregation function (mean, max) on all scores collected
for that user on that day. We try all possible combinations of detectors (using only
one detector for each audit data source) and report best performance in table 6.7.
Unfortunately, detection performance does not match results reported by Tuor et
al. [76], with CR-1000 scores around 0.75 (versus 0.893). CR-4000 scores reach 0.93
(no value available for comparison from Tuor et al. [76]). On the dataset with all
scenarios, CR-1000 scores are up to 0.62 and CR-4000 up to 0.86. Overall, mean
and max aggregation schemes give similar results and improve slightly over using
detectors on single audit data sources.

6.2 Properties of audit data graphs

We have previously introduced our method ADSAGE which treats audit events
as graph edges with attributes. We have shown that ADSAGE can be straightfor-
wardly applied to different audit data domains where user actions can be seen as
interactions with some other entities. For example, authentications can be seen as
interactions between users and computers, emails as sender to receivers interactions
and web browsing as user to web domain interactions.

Our experimental results show that ADSAGE is effective to detect anomalies cor-
responding to insider threats in the authentication and email domain, but not in web
browsing events. In the following, our goal is to better understand why this is the
case, by inspecting and comparing different properties of the corresponding logon,
email and web graphs.
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6.2.1 Methodology

We compute and represent the distribution of following graph node centrality
measures using NetworkX [174]: node degree, betweenness, and closeness central-
ity.

For each type of event (logon, email or web), we build two undirected graphs
corresponding to normal and anomalous behavior respectively. The normal graph
contains positive (i.e. observed) edges, while the anomalous one consists of negative
edges, generated by ADSAGE’s negative sampling mechanism (i.e. destination en-
tity randomly sampled from the list of unobserved values). Graphs are built using
events from January to July 2010, and user sampling is set to 0.1 for email and 0.05
for web (this corresponds to the same setting as in our experiment to characterize
detection performance on all threat scenarios).

6.2.2 Results
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FIGURE 6.6: Node degree, closeness and betweenness centrality dis-
tributions for logon, email and web graphs. Centrality distributions
for positive graphs are shown in blue, orange is used for negative

graphs.

Figure 6.6 shows the distributions of node degree, closeness and betweenness
centrality for the three graph types (logon, email or web). The first notable obser-
vation is that logon and email graphs contain a larger amount of nodes than the
web graph, which can be explained by the relatively small number of web domains,
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compared to the number of computers or email addresses. Node degree distribu-
tions show that for all three graphs, positive observations have smaller node degrees
than negative samples on average. Nevertheless, the logon graph also contains some
normal nodes with high degree; and the web graph shows a significant overlap of
normal and anomalous nodes in terms of node degree.

Closeness centrality gives a clearer picture. For the logon and email graphs, the
closeness distributions of normal and anomalous nodes are clearly different and do
not overlap. In both cases, the graph obtained with negative sampling contains
nodes with higher closeness values than the graph representing normal observa-
tions. However this is not the case for web graphs, for which node closeness values
for the positive and negative observations overlap.

On the contrary, betweenness centrality distributions show no major differences
between logon, email and web graphs. In all cases, most positive and negatives
nodes concentrate around low betweenness values. Hence betweenness cannot be
used as relevant criterion to distinguish normal from anomalous events.

6.2.3 Discussion

In the end, we find that the distribution of closeness node centrality sheds some
light on why ADSAGE is effective for anomaly detection in logon and email events,
but not web browsing activities. In the web graph, the overlap of closeness values
for positive and negative observations suggests that the negative sampling proce-
dure used to train ADSAGE is not adapted. Overlapping closeness values can be
interpreted as negative events (i.e. browsing on a random website) not being signifi-
cantly more unusual than true browsing activities. Hence if negative samples, which
are supposed to represent anomalous behavior, are similar to the norm of positive,
observed samples then ADSAGE’s task of learning the distinction between the two
is made more difficult, if not impossible. We thus conclude that web browsing, seen
as an interaction between a user and a web domain, involves more randomness than
other activities logged in audit data sources of the CERT insider threat dataset.

In order to perform anomaly detection web browsing events, changes in the AD-
SAGE training procedure are required. In this regard, two complementary modifica-
tion possibilities are: a. representing web browsing differently (in particular, using a
different destination entity for attributed edges) and b. adapting the negative sam-
pling procedure to generate clearer deviations from normal activities.

6.3 Conclusion and perspectives

Surprisingly, graph and text features have been widely ignored in the CERT in-
sider threat use case. In this chapter, we have proposed methods to allow better inte-
gration of such heterogeneous data sources in intrusion detection models. Our main
contribution is the introduction of ADSAGE, an anomaly detection method for se-
quences of graph edges with heterogeneous attributes. ADSAGE is the first method
to support both edges sequences and attributes. Our method learns to predict the
validity of graph edges through negative sampling: unobserved graph edges with
true source but wrong destination entity are used as anomalous examples.

We have shown how ADSAGE can be applied for insider threat detection in the
CERT case, thus answering research question RQ. a: we regard audit events (log
lines) as graph edges and apply anomaly detection at this fine-grained event level,
using a single audit data source at a time.
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We have compared our method against several baselines, using the evaluation
setting from Tuor et al. [76], chosen for its realistic recall-based metric. Our experi-
mental results show that ADSAGE is able to detect insider threats in authentication
and email data, which are respectively represented as user to computer and sender
to receiver edges. For CERT web browsing logs, regarded as user to web domain
relations, ADSAGE is not appropriate but other methods such as SedanSpot [129]
or rule-based detectors can be used instead. Hence these findings answer RQ. b by
showing that fine-grained detection is feasible.

Although we could not meet state-of-the-art performance of [76] when detecting
threats over all audit source domains, a direct comparison is unfair as our method
relies on a unique audit data source. Still, we believe the performance gap is encour-
aging given that preprocessing and feature engineering effort are reduced, while
alert traceability is improved.

In order to answer RQ. c, we have presented detection results for different threat
scenarios using different detectors. Our results showed that most detectors are com-
plementary and combining them could lead to detection improvement. We tested a
simple aggregation scheme of anomaly scores, which lead to slight improvements.
We believe that further performance gain is possible with more complex aggrega-
tion schemes. For instance, a more sophisticated approach could be to run several
synchronized instances of ADSAGE (one for each audit data source) sharing their
RNN states. This could help provide context from other data sources while still per-
forming fine-grained anomaly detection.

Beyond the choice of detection method and on a more general level, we have
found that graph (in particular user to computer relations, email communications)
and text features (email contents) from the CERT datasets can be informative to spot
insider threats. This provides an answer to RQ. 4, at least in the context of the CERT
insider threat use case. Concerning our real-world intrusion detection case, these
insights can guide us in extending the current audit data collection to better charac-
terize user behavior.
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Chapter 7

Conclusion and perspectives

7.1 Main findings

The main goal of this thesis consists in addressing specific aspects of a real-world
intrusion detection case in the identity and access management domain through
anomaly detection. Salient characteristics of this problem are as follows. First, real-
world audit data sources contain mixed (i.e. numeric and categorical) data, which
are not supported by most anomaly detection methods. Second, a significant diffi-
culty lies in the total absence of ground truth. Third, available audit logs are limited
as they were not initially collected for intrusion detection purposes. Focusing on
two types of intrusions (masquerades and insider threats), we have tackled these
challenges through several complementary contributions.

In chapter 4, we have addressed the first two challenges. In order to support
mixed attributes (i.e. numeric and categorical data), we have introduced new unsu-
pervised anomaly detection methods based on entropy. Concerning the problem of
learning normal versus anomalous user behavior in total absence of ground truth,
we have shown that unsupervised intrusion detection can be turned into supervised
user identification from audit data activity. We have proposed two methods based
on this approach, one of which uses clustering to reduce false positives among sim-
ilar users. Our empirical evaluation on the real-world dataset of audit sessions has
demonstrated the effectiveness of this user identification approach to detect mas-
querades. However, we have also discovered that the current audit data collection
is insufficient to characterize user behavior and that our methods are ineffective
against insider threats.

This has lead us to investigate how audit data collection could be extended to
better detect insider threats. In this regard, we have targeted the CERT insider threat
use case, which contains diverse sources of annotated audit data, providing a sound
evaluation framework. We have chosen to focus on heterogeneous data (i.e. cate-
gorical, graph and text features), which are often discarded due to incompatibility
of many anomaly detection methods. As shown in our literature review, this repre-
sents a research gap in the CERT use case: graph and text attributes remain largely
underutilized, although they have been found useful to detect insider threats in sim-
ilar settings. Therefore, we have proposed methods to leverage such heterogeneous
data from two complementary perspectives.

On one hand, in chapter 5 we have focused on addressing the "cold start" prob-
lem, i.e. the inherent lack of relevant activity history for certain users. Anomaly-
based intrusion detection systems usually cannot cope with this issue, although it
is highly relevant in practice. Our approach is inspired by zero-shot learning; the
central idea consists in compensating the lack of observed user activity data with
some semantic description of the corresponding user, which does not depend on
activity. To this aim, we have shown how user assignments to organizational units
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(like teams, projects, departments) from the CERT use case can be represented as
graph features and integrated into an intrusion detection system. As shown by our
evaluation, this additional data source allows to improve insider threat detection in
cases where user activity data is scarce or irrelevant.

On the other hand, in chapter 6 we have introduced ADSAGE (Anomaly De-
tection in Sequences of Attributes Graph Edges). This method is designed to detect
anomalous graph edges in sequences thereof. We have demonstrated how ADSAGE
can be used to leverage heterogeneous data in the CERT use case: log events from
several domains can be represented as interactions between a source and destina-
tion entity, on which ADSAGE can straightforwardly be applied. These interac-
tions/edges can be augmented with different types of attributes to provide context;
hence heterogeneous data is supported. Contrary to concurrent detection systems,
ADSAGE is able to compute anomaly scores at fine-grained audit event level with-
out relying on data aggregation and feature engineering. Our empirical evaluation
has shown the effectiveness of our method for authentication and email logs; for
web browsing logs other methods (such as rule-based classifiers) can be used. Over-
all, representing audit events as graph edges (i.e. interactions between two entities)
with heterogeneous attributes can help detecting insider threats in activity logs.

These two complementary studies suggest that graph features are particularly
useful for insider threat detection.

7.2 Perspectives

Throughout this thesis, we have gained valuable insight about the real-world
intrusion detection use case proposed by Atos. This has opened up new perspec-
tives on future developments. In the following, we outline some promising research
directions to extend this thesis.

Our first extension suggestion is directly applicable to the current audit dataset
(see section 3.1) and consists in developing rule-based anomaly detectors for the
most relevant categorical features, which are the IP address at authentication time
and its derived geolocation. Until more informative attributes are available to char-
acterize user behavior, these features remain the most discriminant across users (as
shown in chapter 4). Hence one could focus on detecting anomalies in these fea-
tures specifically. Moreover, our experiments from chapter 6 have suggested that
simple rule-based methods applied to targeted, highly relevant audit data sources
can perform surprisingly well. Thus we expect such anomaly detection models to
be effective in our real-world use case as well.

In parallel, the current audit data collection should be extended with additional
attributes to better characterize user behavior and intentions. This is an important
step towards detecting insider threats. Our work presented in chapters 5 and 6
has already explored two complementary approaches to do so: integration of user
contextual data and anomaly detection at fine-grained level in heterogeneous data.
However we have only addressed the CERT insider threat use case, as it usefully
provides ground truth for evaluation. The next natural step is to adapt these ap-
proaches to the real-world intrusion detection case. On one hand, using ADSAGE
would be straightforward for audit data sources which represent interactions be-
tween two entities. On the other hand, the integration of user contextual data in
zero-shot learning fashion fits very well into identity and access management, which
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relies on and handles user roles, permissions and work group assignments. In a real-
world setting, one can expect user contextual data to be of far greater extent than in
the CERT use case, which in our opinion is very promising.

Finally, in future work we would like to explore the combination of anomaly
detectors based on different audit data sources, such as the ones described in chapter
6. Given the variety of insider threat attacks, useful audit data domains surpass
the scope of identity and access management. Considering additional audit data
sources can be helpful, but also poses the challenge of how to aggregate different
anomaly perspectives effectively. In this regard, an additional dimension to consider
is the level of detection. In this thesis, we have explored detection at event (chapter
6), session (chapter 4) and user-day level (chapter 5). We have demonstrated the
effectiveness of each of them in different evaluation scenarios. A thorough analysis
of which detection level(s) to prefer will be insightful when it comes to combining
anomaly detectors from different domains. This is in line with the general tendency
of broadening the scope of audit data collection for insider threats, as observed in
user and entity behavior analytics.
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