
University of Passau

Faculty of Computer Science and Mathematics
Chair of Computer Networks and Computer Communications

PhD thesis

Towards High Performability in Advanced Metering
Infrastructures

Michael Niedermeier

1. Reviewer Hermann de Meer
Chair of Computer Networks and Computer Communications
University of Passau

2. Reviewer Anne Remke
Group of Safety-Critical Systems
University of Münster

11/06/2020

Michael Niedermeier

Towards High Performability in Advanced Metering Infrastructures

PhD thesis, 11/06/2020

Reviewers: Hermann de Meer and Anne Remke

University of Passau

Chair of Computer Networks and Computer Communications

Faculty of Computer Science and Mathematics

Innstrasse 43

94032 Passau

Abstract

The current movement towards a smart grid serves as a solution to present power grid challenges
by introducing numerous monitoring and communication technologies. A dependable, yet timely
exchange of data is on the one hand an existential prerequisite to enable Advanced Metering
Infrastructure (AMI) services, yet on the other a challenging endeavor, because the increasing
complexity of the grid fostered by the combination of Information and Communications Technology
(ICT) and utility networks inherently leads to dependability challenges.

To be able to counter this dependability degradation, current approaches based on high-reliability
hardware or physical redundancy are no longer feasible, as they lead to increased hardware costs
or maintenance, if not both. The flexibility of these approaches regarding vendor and regulatory
interoperability is also limited. However, a suitable solution to the AMI dependability challenges is
also required to maintain certain regulatory-set performance and Quality of Service (QoS) levels.

While a part of the challenge is the introduction of ICT into the power grid, it also serves as part of
the solution. In this thesis a Network Functions Virtualization (NFV) based approach is proposed,
which employs virtualized ICT components serving as a replacement for physical devices. By using
virtualization techniques, it is possible to enhance the performability in contrast to hardware based
solutions through the usage of virtual replacements of processes that would otherwise require
dedicated hardware. This approach offers higher flexibility compared to hardware redundancy, as a
broad variety of virtual components can be spawned, adapted and replaced in a short time. Also, as
no additional hardware is necessary, the incurred costs decrease significantly. In addition to that,
most of the virtualized components are deployed on Commercial-Off-The-Shelf (COTS) hardware
solutions, further increasing the monetary benefit.

The approach is developed by first reviewing currently suggested solutions for AMIs and related
services. Using this information, virtualization technologies are investigated for their performance
influences, before a virtualized service infrastructure is devised, which replaces selected components
by virtualized counterparts. Next, a novel model, which allows the separation of services and hosting
substrates is developed, allowing the introduction of virtualization technologies to abstract from the
underlying architecture. Third, the performability as well as monetary savings are investigated by
evaluating the developed approach in several scenarios using analytical and simulative model analysis
as well as proof-of-concept approaches. Last, the practical applicability and possible regulatory
challenges of the approach are identified and discussed.

Results confirm that—under certain assumptions—the developed virtualized AMI is superior to the
currently suggested architecture. The availability of services can be severely increased and network
delays can be minimized through centralized hosting. The availability can be increased from 96.82 %

to 98.66 % in the given scenarios, while decreasing the costs by over 60 % in comparison to the
currently suggested AMI architecture. Lastly, the performability analysis of a virtualized service
prototype employing performance analysis and a Musa-Okumoto approach reveals that the AMI
requirements are fulfilled.

iii

Acknowledgement

Throughout the writing of this dissertation I have received a great deal of support and assistance,
both from a professional academic as well as personal level.

I would first like to express my sincere gratitude to my primary supervisor, Prof. Hermann de Meer.
Over the years of my career, he brought me closer to multiple important aspects of academic research,
among others the importance of correct assumptions, methodological impact, and formalization.
Moreover, he also provided me with numerous opportunities to gain insights into a wide range of
research fields through national and international projects, which in turn enabled me to cooperate
with interesting partners from industry and academia.

Also, I want to cordially thank Prof. Anne Remke for kindly agreeing to serve as second reviewer.

I feel sincerely indebted to my colleagues at the Chair of Computer Networks and Computer
Communications, who made my time at the at the University of Passau the most valuable and
pleasant experience I could hope for. In particular, I want to thank my former colleagues Dr. Patrick
Wüchner, Prof. Andreas Fischer, Prof. Andreas Berl, Ralph Herkenhöhner, and Gergő Lovász,
as well as my current research fellows for their support, inspiration, and fruitful discussions on
research-related and non-research-related topics.

Apart from the colleges in my group, I would like to give special credit to two academic co-workers
and friends, namely Matthias Schmid and Stefan Brand. While Matthias is topic-wise located in
the database domain, he never refrained from listening to questions regarding current research
challenges and offered his critique. Moreover, he provided a more than welcome distraction by
being the most ambitious gym buddy possible, which allowed me to keep a level head in times of
need. Special thanks also go to Stefan Brand, who provided invaluable programming work in the
development of the AMIgo simulation framework. Even after finishing his master thesis he selflessly
provided support and even extended his work, for which I can only provide my severe gratitude.

I am permanently thankful to my parents and brothers for their loving support, no matter if
professional or non-academic questions were regarded.

Last but definitely not least, I want to express my sincere gratefulness to my beloved girlfriend Sabine
for guarding my back and enduring my (for any person except myself) ridiculous thesis writing
sessions throughout uncounted nights.

v

Table of Contents

List of Acronyms xi

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Dependable Smart Grids . 2
1.2 Challenges and Solution Approach . 3
1.3 Contributions . 5
1.4 Thesis Structure . 7

2 Background and Related Work 11
2.1 Background . 12

2.1.1 Dependability, Performance and Performability . 13
2.1.1.1 Dependability . 13
2.1.1.2 Performance . 16
2.1.1.3 Performability . 18

2.1.2 Smart Grid and Advanced Metering Infrastructure 21
2.1.2.1 Smart Grid . 21
2.1.2.2 Advanced Metering Infrastructure . 22

2.1.3 Virtualization . 29
2.1.3.1 Host Virtualization . 29
2.1.3.2 Network Virtualization . 30
2.1.3.3 Network Function Virtualization . 30

2.2 Related Work . 32
2.2.1 Performability/Dependability in Smart Grids . 32
2.2.2 Virtualization for Performability/Dependability . 34
2.2.3 Combining Approaches & Own Contributing Work 35

2.3 Summary . 36

3 Improvement of AMI Systems using Virtualization 39
3.1 Overview of Current AMI Architecture . 40

3.1.1 Architecture Overview . 40
3.1.2 Preliminary Evaluation . 40

3.2 Performability Impact of Virtualization . 41
3.2.1 Reliability . 42
3.2.2 Maintainability . 45

3.2.2.1 Corrective Maintenance . 45
3.2.2.2 Preventive Maintenance . 49

vii

3.2.3 Availability . 51
3.2.4 Performance/Performability . 52

3.2.4.1 Virtualization Overheads . 52
3.2.4.2 Influence of “Bare” Virtualization . 53
3.2.4.3 Influence of “Applied” Virtualization . 57

3.3 Summary . 58

4 Creating a Network Function Virtualized AMI 59
4.1 General Idea . 60
4.2 Hardware Abstraction and Centralization . 61

4.2.1 Hardware Requirements and Abstraction . 61
4.2.2 Relocation of Hardware . 63

4.2.2.1 Dependability . 64
4.2.2.2 Performance . 64
4.2.2.3 Comparison and Server Location Distribution Selection 66

4.3 Softwarized Service Generation and Location . 66
4.3.1 Softwarization of AMI Services . 66
4.3.2 Virtual Network Function Component Composition 67
4.3.3 Embedding of Virtual Network Function Forwarding Graphs 69

4.4 Introducing Performability-Enhancing Methods . 74
4.4.1 Substrate Enhancements . 74

4.4.1.1 Circle Backup Network Layout . 74
4.4.1.2 All-for-All Backup Network Layout . 76

4.4.2 Software Enhancements . 76
4.4.2.1 Software Rejuvenation . 76
4.4.2.2 Service Replication . 79

4.5 Summary . 80

5 Modeling a Virtualized AMI 81
5.1 Current AMI Models and their Shortcomings . 82
5.2 Model Requirements . 83
5.3 Development of an AMI model . 86

5.3.1 Failure Behavior . 86
5.3.1.1 Root Cause Breakdown . 86
5.3.1.2 Hardware and Software Failures . 87
5.3.1.3 Failure Modes . 90

5.3.2 Recovery Behavior . 92
5.3.2.1 Possibility . 92
5.3.2.2 Quality . 92
5.3.2.3 Structure . 93

5.3.3 Macro Model (Inter-System) . 94
5.3.3.1 VNFA Macro Model . 94
5.3.3.2 SSMA Macro Model . 98

5.3.4 Micro Model (Intra-System) . 98
5.3.4.1 Nomenclature . 99
5.3.4.2 Assumptions . 99
5.3.4.3 NFV Failure Behavior . 100
5.3.4.4 Recovery . 102

viii

5.3.4.5 Modeling Performability-Enhancing Methods 103
5.3.4.6 Micro Model Generation . 107

5.4 Overall Model . 110
5.4.1 Idea and Prerequisites . 110
5.4.2 Generation of Overall Queuing Network Model . 112

5.4.2.1 General Properties . 112
5.4.2.2 Converting Non-Virtualized Networks . 112
5.4.2.3 Converting Virtualized Networks . 113

5.5 Summary . 116

6 Analysis 117
6.1 Description of Assumptions and Scenarios . 118

6.1.1 Assumptions . 118
6.1.1.1 Failure and Recovery Properties of Entities 118
6.1.1.2 Communication Networks Properties . 119
6.1.1.3 Location Distributions . 120
6.1.1.4 Further Assumptions . 121

6.1.2 Single Service Scenario . 122
6.1.3 Single User Scenario . 122
6.1.4 Passau City Scenario . 123

6.2 Performability Assessment . 124
6.2.1 Evaluation: Single Service Scenario . 125

6.2.1.1 Test Environment . 125
6.2.1.2 Single Service Scenario: Evaluation of SSMA Model 127
6.2.1.3 Single Service Scenario: Evaluation of VNFA Model 130

6.2.2 Evaluation: Single User Scenario . 136
6.2.2.1 Single User Scenario: Test Environment 136
6.2.2.2 Single User Scenario: Evaluation of SSMA Model 137
6.2.2.3 Single User Scenario: Evaluation of VNFA Model 139

6.2.3 Evaluation: Passau City Scenario . 142
6.2.3.1 Passau City Scenario: Test Environment 142
6.2.3.2 Passau City Scenario: AMIgo Performance Evaluation 143
6.2.3.3 Simulation Parameters . 145
6.2.3.4 Passau City Scenario: Evaluation of SSMA Model 147
6.2.3.5 Passau City Scenario: Evaluation of VNFA Model 150

6.2.4 Result Comparison . 154
6.3 Proof-of-Concept: Virtualized Smart Meter Gateway . 156

6.3.1 Gateway Task Description . 157
6.3.2 Proof-of-Concept Implementation . 158
6.3.3 vSMGW Performability Analysis . 158

6.3.3.1 Test Environment . 158
6.3.3.2 Performance Evaluation . 159
6.3.3.3 Dependability Evaluation . 161

6.3.4 Results . 164
6.4 Cost Analysis . 165

6.4.1 Deriving a Cost Function . 165
6.4.1.1 Example Scenario . 167

ix

6.4.2 Evaluation and Results . 167
6.5 Summary . 169

7 Applicability, Conclusions and Future Work 171
7.1 Practical Applicability . 172

7.1.1 Usability Challenges . 172
7.1.1.1 AMI Hardware Architecture . 172
7.1.1.2 IT Security Considerations . 173

7.1.2 Regulatory Challenges . 175
7.1.2.1 Specific, Realization-Centered AMI Regulations in Germany 175
7.1.2.2 Solution Approaches . 176

7.2 Conclusion and Outlook . 177
7.3 Future Work . 179

A Appendix 181
A.1 AMIgo Configuration File . 181
A.2 Virtualized Smart Meter Gateway Evaluation Data . 185

Bibliography 187

x

List of Acronyms

ALEVIN Algorithms for Embedding of Virtual Networks . 142
AMI Advanced Metering Infrastructure . iii
AMR Automated Meter Reading . 23
AM Aging Related Mandelbug . 78
ANSI American National Standards Institute . 178
BPL Broadband over Power Lines . 123
BSI Bundesamt für Sicherheit in der Informationstechnik 24
BMWi Bundesministerium für Wirtschaft und Energie . 175
CI Confidence Interval . 144
CLS Controllable Local Systems . 25
COSEM Companian Specification for Energy Metering . 178
COTS Commercial-Off-The-Shelf . iii
CPU Central Processing Unit . 52
CSPL C based SPN Language . 125
CTMC Continuous Time Markov Chain . 34
DCE Data Communication Equipment . 30
DES Discrete Event Simulation . 9
DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik 179
DoS Denial of Service . 174
DSL Digital Subscriber Line . 25
DSPN Deterministic and Stochastic Petri Net . 85
DSRN Deterministic and Stochastic Reward Net . 4
DTE Data Terminal Equipment . 30
EIKE European Institute for Climate and Energy . 21
ETSI European Telecommunications Standards Institute 26
EU European Union . 173
FERC Federal Energy Regulatory Commission . 22
FIFO First In – First Out . 121
GPRS General Packet Radio Service . 27
GSPN Generalized Stochastic Petri Net . 86
HAN Home Area Network . 24
HDD Hard Disk Drive . 100
HES Head End System . 24
I/O Input/Output . 52
ICT Information and Communications Technology . iii
IEC International Electrotechnical Commission . 13
IHD In-Home Display . 61
IRET Interrupt Return . 53

xi

IRQ Interrupt Request . 53
JMT Java Modelling Tools . 136
KKT Karush-Kuhn-Tucker . 128
LMN Local Meteorological Network . 24
LTE Long Term Evolution . 123
MDMS Meter Data Management System . 24
MIS Markov Imbeddable Structure . 40
MMU Memory Management Unit . 53
MRGP Markov Regenerative Process . 107
MRM Markov Reward Model . 20
MSE Mean Squared Error . 163
MTTF Mean Time To Failure . 32
MTTR Mean Time To Repair . 41
NAM Non-Aging Related Mandelbug . 101
NAN Neighborhood Area Network . 24
NETL National Energy Technology Laboratory . 167
NFV-MANO Network Functions Virtualization Management/Orchestration 30
NFVI Network Functions Virtualization Infrastructure . 30
NFVO Network Functions Virtualization Orchestrator . 31
NFV Network Functions Virtualization . iii
NHPP Non-Homogeneous Poisson Process . 162
NIC Network Interface Card . 53
NIST National Institute of Standards and Technology . 22
OSGP Open Smart Grid Protocol . 26
OS Operating System . 29
PC Personal Computer . 61
PLC Power Line Communication . 25
PNF Physical Network Function . 30
PV Photovoltaic . 178
QoS Quality of Service . iii
RAID Redundant Array of Independent Disks . 100
RAM Random Access Memory . 53
RBD Reliability Block Diagram . 16
RTP Real-Time Pricing . 27
RTT Round Trip Time . 160
SCP Secure Copy . 160
SDN Software-Defined Networking . 34
SGAM Smart Grid Architecture Model . 82
SMGW Smart Meter Gateway . 23
SPNP Stochastic Petri Net Package . 125
SPN Stochastic Petri Net . 20
SRN Stochastic Reward Net . 20
SSMA Standard Smart Metering Architecture . 9
TLS Transport Layer Security . 25
TPM Trusted Platform Module . 62
TPS Third Party Service . 24
UMTS Universal Mobile Telecommunications System . 123

xii

vCPU Virtual Central Processing Unit . 53
VDE Verband der Elektrotechnik, Elektronik und Informationstechnik 179
VEIN Virtualized Energy Information Network . 35
VIM Virtualized Infrastructure Manager . 31
VL Virtual Link . 30
VMM Virtual Machine Manager . 4
VM Virtual Machine . 4
VNEP Virtual Network Embedding Problem . 69
VNE Virtual Network Embedding . 142
VNF-FG Virtualized Network Function Forwarding Graph 67
VNFA Virtualized Network Function Architecture . 5
VNFC Virtualized Network Function Component . 4
VNFM Virtualized Network Function Manager . 31
VNFR Virtualized Network Function Request . 67
VNF Virtualized Network Function . 4
vNIC Virtual Network Interface Card . 53
VN Virtual Network . 30
VPN Virtual Private Network . 30
vSMGW Virtual Smart Metering Gateway . 9
vTPM Virtual Trusted Platform Module . 176
WAM Wide Area Monitoring . 27
WAN Wide Area Network . 24
WiMAX Worldwide Interoperability for Microwave Access 33
XML eXtensible Markup Language . 142

xiii

List of Figures

1.1 Energy demand and world population: history and projections 2
1.2 Chapter structure, dependencies and contributions . 8

2.1 Overview of thesis’ research areas and their interrelation . 12
2.2 Dependability tree . 14
2.3 Overview of AMI architecture, networks, and technologies 28
2.4 Scheme of the VNF architecture, including VNFs, VNFI, and NFV-MANO 31
2.5 Localization of related work in the research domains covered by this thesis 36

3.1 Standard Smart Metering Architecture scheme . 40
3.2 Reliability and availability of SSMA . 41
3.3 RBD models of non-virtualized and virtualized scenarios . 42
3.4 Number of VMs required to surpass non-virtualized system reliability 44
3.5 Maintenance time relations . 45
3.6 Influence of λvmm

v and M ctvmm
v on M

c t
v compared to M

c t
nv . 47

3.7 Influence of virtual machine and service failure rate on M
c t
v compared to M

c t
nv 48

3.8 Comparison of virtualized and non-virtualized systems’ maintainability 49
3.9 Comparison of CPU performance in substrate and virtualized environment 55
3.10 Comparison of RAM performance in substrate and virtualized environment 55
3.11 Comparison of substrate and virtual I/O read/write performance 56
3.12 Comparison of network performance in substrate and virtualized environment 57

4.1 Rough scheme of VNFA . 60
4.2 VNFR featuring required and optional services and corresponding VNF-FG 68
4.3 Backup strategy in circle backup networks . 74
4.4 Backup strategy in all-for-all backup networks . 76

5.1 Classification of currently used AMI models . 83
5.2 Quantitative evaluation approaches . 85
5.3 Root cause breakdown chart . 87
5.4 Development of hardware failure rate over time, based on IEC 61508 [66] 88
5.5 Development of software failure rate over time . 89
5.6 Failure detection based on function φ and specification ρ 91
5.7 Failure detection based on non-functional requirements . 92
5.8 Service, VM, VMM, and substrate plane of the VNFA macro model 97
5.9 Service, and substrate plane of the SSMA macro model . 98
5.10 Modeling on substrate plane . 100
5.11 Modeling on virtualization plane . 101
5.12 Modeling on service plane . 102
5.13 Deterministic and dynamic rejuvenation models . 104

xv

5.14 Cold (deterministic) service rejuvenation models . 105
5.15 Warm (deterministic) service rejuvenation models . 106
5.16 Migration (deterministic) service rejuvenation models . 107
5.17 Merged VNFA performability stochastic reward net model 108
5.18 SSMA performability stochastic reward net model (cold, deterministic rejuvenation) . . 110
5.19 Overall VNFA AMI model . 111
5.20 Challenges during VNFA AMI conversion . 114

6.1 Influence of δs
nv in deterministic, cold rejuvenation SSMA 127

6.2 Influence of ∇s
nv in dynamic, cold rejuvenation SSMA . 130

6.3 Failure sensitivity analysis of SSMA’s performance and availability 130
6.4 Failure sensitivity analysis of VNFA’s performance and availability 131
6.5 Influence of rejuvenation parameters on performability in deterministic, cold VNFA . . . 132
6.6 Influence of rejuvenation parameters on performability in dynamic, cold VNFA 133
6.7 ∆A of warm and migration compared to cold rejuvenation in deterministic VNFA 134
6.8 ∆Perf of warm and migration compared to cold rejuvenation in deterministic VNFA . . 134
6.9 ∆A of warm and migration compared to cold rejuvenation in dynamic VNFA 135
6.10 ∆Perf of warm and migration compared to cold rejuvenation in dynamic VNFA 135
6.11 Comparison of deterministic and dynamic rejuvenation timing in SSMA 137
6.12 AMIgo program flow . 143
6.13 AMIgo runtime distributions . 144
6.14 AMIgo embedding time requirements . 144
6.15 Investigated AMI topologies . 145
6.16 Influence of sm, r, and gw failures on SSMA dependability 147
6.17 Influence of dc failures on SSMA dependability . 148
6.18 Influence of tpscm failures on SSMA dependability . 148
6.19 Influence of tpseo failures on SSMA dependability . 149
6.20 No redundancy performability test . 151
6.21 Circle backup performability test . 151
6.22 All-for-all backup performability test . 152
6.23 Example of a minimal gateway design . 157
6.24 vSMGW test environment . 159
6.25 Results of the startup time test (sequential starting) . 160
6.26 Results of the startup time test (parallel starting) . 160
6.27 Results of the throughput test . 161
6.28 Results of the latency test . 162
6.29 MSE-based prediction of Musa-Okumoto Θ and λ0 parameters 163
6.30 Development of vSMGW failure rate and reliability . 163
6.31 Availability of vSMGWs in relation to expected MTTR . 164
6.32 Cost development of SSMA compared to VNFA . 167
6.33 VNFA ∆C using replica(s) for dc . 168
6.34 ∆C in VNFA using replica(s) for dc and gw . 169

7.1 Comparison of encryption behavior in SSMA and VNFA . 174

xvi

List of Tables

2.1 Mutual influences between reliability, maintainability and availability 15
2.3 Properties of AMI communication technologies . 26
2.5 AMI communication requirements . 28

3.1 Inherent availability of non-virtualized and virtualized systems 52

4.2 Virtualization possibilities of AMI services . 62

5.2 Requirements of the novel AMI model . 84
5.3 Micro model nomenclature . 99
5.5 Variables used for calculating the link probabilities . 115

6.1 Failure and repair rate information stated in related work 119
6.3 Single service scenario VNFA and SSMA parameters . 123
6.5 Single user scenario VNFA parameters . 124
6.7 Single user scenario SSMA parameters . 125
6.9 Passau city scenario VNFA and SSMA parameters . 126
6.10 Perf i and Ai calculation . 129
6.11 Results of S2

il calculations . 129
6.12 Influence of replicas on service availability in VNFA . 135
6.13 VNFA availability [%] in single user scenario using 0, 1, and 2 replicas for (either dc or

t ps) . 141
6.14 VNFA availability [%] in single user scenario using 0, 1, and 2 replicas each (gw and

either dc or t ps) . 141
6.15 Offered and demanded CPU resources of nodes in AMIgo 146
6.16 Service times and rates of queuing stations . 147
6.18 Results of AMIgo simulation for SSMA (mean values) . 149
6.20 Results of JMT calculations for VNFA (mean values) . 154

A.1 Input and result data for vSMGW test (Θ = 0.58, λ0 = 0.2) 186

xvii

1Introduction

Electricity is needed in nearly every part of people’s lives [121]. From heating and air conditioning,
over transportation, to powering electrical devices, electricity is omnipresent. Especially a modern
society, heavily relying on powered devices, such as computers and the Internet, to fulfill even its
most basic needs, cannot be imagined without a dependable power supply anymore. To overcome the
power grid’s currently present challenges, an updated form of utility infrastructure, namely the smart
grid, is suggested as a solution to most issues at hand [100]. However, as smart grids greatly rely on
the information relayed through the newly created networking technology on top of the existing
utility infrastructure, known as the AMI, its flawless operation is built upon dependable and timely
data originating from this complex network [36]. Because of this development, the AMI’s—and in
turn the smart grid’s—vulnerability against failures on hard- and software level also rises, which
can lead to major disturbances [51]. In this thesis, a solution to this challenge is presented. In
Section 1.1, an overview of the current status of the power grid, its properties and development are
reviewed. Thereafter, in Section 1.2, the scientific challenges are deduced and the approaches taken
to solve them are explained. Section 1.3 delineates the contributions of this thesis to the research
area. Finally, Section 1.4 gives a structural overview of the remaining parts of this thesis.

Contents
1.1 Dependable Smart Grids . 2

1.2 Challenges and Solution Approach . 3

1.3 Contributions . 5

1.4 Thesis Structure . 7

1

1.1 Dependable Smart Grids
The smart grid (as in Definition 2.6 in Section 2.1.2.1) is a current development to counter the failing
modernizations that have accumulated in almost every country’s power grid systems; as a matter of
fact, the vertical structure (production solely at power plant levels, demand mostly at household,
business, and industry level) of the grid and its operation methods have basically remained the
same since the time of their creation. For example, the core infrastructure of the US power grid was
created over a century ago1, while the European system has already about 50 years of age [11].
Along with missing innovations, the power grid faces severe challenges in recent years, such as a
growing tension between reliability and cost, an increasing strain of the old infrastructure, missing
surveillance and situational awareness in wide parts of the grid, and long response times in case of
disruptions. Apart from that, the overall requirement for dependable power delivery has grown and
will continue to grow continuously, as illustrated in Figure 1.1 [67].

1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040
0.0

1.0E5

2.0E5

3.0E5

4.0E5

5.0E5

6.0E5

7.0E5

8.0E5

Year

En
er

gy
de

m
an

d
[T

W
h]

Liquids Coal Natural gas Renewables Nuclear

0.0

2.0E9

4.0E9

6.0E9

8.0E9

1.0E10

1.2E10

W
orld

population

;

History Projections

Figure 1.1.: Energy demand and world population: history and projections up till 2040 based on data of the
International Energy Agency [67]

To overcome these issues, the smart grid, which combines two network types into a network of
networks, namely communication and power infrastructure, was found as a solution. The resulting
grid offers several benefits, such as automatic monitoring and reporting functions, more active
inclusion of consumers, usage of storage capacities (e. g. by electric car accumulators), and more
decentralized generation, among others. To be able to offer these improvements, it becomes apparent
that there needs to be a massive increase in information exchange, especially between service
providers and their consumers, as the currently still used ferrite phase meters only allow to measure
the summarized energy demand over at least monthly billing periods. In order to enable such a

1 American Electric Power, History of AEP, URL: http://www.aep.com/about/history, last accessed: 08/05/2015

2 Chapter 1 Introduction

http://www.aep.com/about/history

growing information exchange, it is important to have a dependable infrastructure that enables two-
way communication, which meets the necessary requirements to facilitate an exchange of real-time
information between the parties mentioned. In smart grids, it is planned to realize this by the AMI
(as in Definition 2.7 in Section 2.1.2.2), an infrastructure that automatically sends fine-granular
demand and billing data from consumers to service providers, as well as price information and
signaling messages to consumers [106].

A more detailed description of the issues present in the power grid and the features smart grids
are going to provide are given in Section 2.1.2.1. While AMIs promise to solve the challenges at
hand in the current power grid, the inherent complexity of the smart grid originates from exactly
the aforementioned combination of ICT and power infrastructure AMIs are based on. This, in turn,
leads to severe challenges in the areas of dependability and financial feasibility in AMIs. While
there have already been approaches to increase the dependability and performance (forming the
concept of performability, being the topic of Section 2.1.1) of AMIs and smart grid communication
infrastructures in general, which are discussed in Sections 2.1.2.2 and 2.2.1, solutions for AMI
improvements were generally focused on the provider’s side of the network. This leaves room for
significant improvements, especially on the consumer’s side and third party services, which benefit
the whole AMI and its stakeholders.

1.2 Challenges and Solution Approach
Section 1.1 introduced the current state of the power supply infrastructures in modern societies and
gave an outlook towards the future. Also, implications of the development and implementation of
smart grid technologies into the power grid were discussed. While smart grids without a doubt have
numerous advantages, e. g. decreased reaction time to incidents and better predictability of power
demand/production, the downside of this development is an inevitably increasing complexity of
the infrastructure, which leads to a rising number of possible failures in ICT that can also impact
the performance of AMIs and the smart grid as a whole [44]. To give an example, missing alarm
signals or the inability to relay information due to component malfunctions might cause cascading
failures throughout the system. This in turn can result in an instability of the grid and might provoke
large-scale outages.

Such challenges are only further fostered by the current trend to focus strategies to strengthen
dependability at the energy provider side, while other parties, such as consumers and third party
service providers, do not receive the required attention and are mainly discussed in the context of
security and privacy questions. However, while these questions have been discussed and mostly
already been solved properly, the lack to consider system-wide dependability, including consumers
and third parties, leads to several issues that potentially have a severe impact on the overall operation
of the smart grid. To understand the far-reaching implications of lacking service dependability, it is
important to see that nearly all of the smart grid’s goals are based and rely on the underlying ICT
infrastructure. However, while a dependable ICT infrastructure may be a key enabler to provide
beneficial new services to consumers as well as service providers, an apparent lack of this property
might lead to the exactly opposite behaviors.

One ostensibly obvious solution to these problems at hand is the introduction of multiple redundant
devices and network links, which has been suggested, e. g. by Niyato et al. [114] and Shi et al. [146].
While the details of these approaches are discussed further in Section 2.2.1, the main findings are
that though the introduction of redundant hardware may improve the reliability and availability

1.2 Challenges and Solution Approach 3

of AMIs, the downsides of such an approach are also numerous. The system suffers from even
more complexity apart from the additional monetary overhead that is inherently present in a highly
redundant infrastructure. This is neither favorable nor feasible, as not only the direct hardware costs
increase massively, but also maintenance, repair and operational costs are rising.

To handle the issue of increasing complexity and the likelihood of failures within the infrastructure
without crippling its cost-effectiveness, a novel approach is needed, which can simultaneously offer
highly dependable services to satisfy the requirements posed by the communication infrastructure of
the smart grid and consolidate the needed functions on as few devices as possible. This way, the
necessary financial expenses as well as the hardware complexity of the approach could be decreased
to a feasible level.

To achieve the required dependability, as well as match the various performance requirements
stated for smart grid communication networks (cf. Table 2.1.2.2), the components comprising this
infrastructure currently realized as hardware entities are transferred into Virtual Machines (VMs)
and combined into softwarized Virtualized Network Functions (VNFs). While such a solution can
offer great benefits, its concrete realization poses numerous questions itself. Hence, to extend and
improve previous solutions in this area, which are discussed in detail in Sections 2.2.1 and 2.2.2, the
challenges posed and solution approaches pursued in this thesis are listed in the following.

1. The first part deals with the general applicability of virtualization to improve the dependabil-
ity characteristics of ICT equipment in the context of AMIs. The question here is if virtualization
is an appropriate technology to increase the dependability of critical infrastructures such as
AMIs; this also includes the absence of any insuperable obstacles (e. g. in the form of require-
ments strongly contradicting the usage of virtualization). Such requirements can originate
from both the reliability/availability part of dependability as well as performance requirements.

2. Second, the virtualization of AMI services, including the core of the infrastructure and third
party services needs further investigation. This includes the question which services can
be virtualized (including possible requirements originating from either the cyber-physical
interaction of these service or their location demands), and the possible benefits/downsides
coming along with such a virtualization.

3. In the third part, the integration of virtualized AMI services into a given smart grid infras-
tructure is investigated. It needs to be questioned if and how VNFs can be integrated into
the current or an extended form of the smart grid infrastructure. To fully benefit from the
novel AMI approach based on NFV, it is required to analyze how services need to be structured
(meaning the sequence and interaction of Virtualized Network Function Components (VNFCs)
realizing VNFs) and distributed (meaning the distribution of VNFs onto their substrate) within
the infrastructure to achieve the desired improved properties.

4. Fourth, the ideas investigated in the previous third part are used to establish a novel, hier-
archical AMI model, which is able to represent NFV AMIs, their service and cyber-physical
demands, virtualization infrastructure (services, VMs, and Virtual Machine Managers (VMMs)),
as well as substrate and logical network links. In addition, it is required that the model supports
the calculation of various performability metrics of a dynamically changing infrastructure. To
do so, a combined performability model of virtualized smart grid communication infrastruc-
tures based on Deterministic and Stochastic Reward Nets (DSRNs) is developed. This model is
on the one hand used to compare the novel designs to currently suggested infrastructures and
evaluate them, and on the other to quantitatively assess them independently from each other.

4 Chapter 1 Introduction

5. The fifth part uses three different scenarios to evaluate and compare the models of the
currently suggested AMI to the developed virtualized AMI. The analyses investigate both
the models’ dependabilities as well as their performances, to ensure their suitability for the
required tasks. Also, the evaluation of the scenarios is used to optimize various parameters of
the virtualized infrastructure, such as rejuvenation settings and substrate backup strategies. As
a result, it is possible to identify the sensitivity of both architecture approaches towards rising
or falling failure/impairment rates, the influences of rejuvenation timings and strategies as
well as the impact of substrate and service backup choices.

6. Sixth, the applicability of the novel NFV AMI approach is investigated, including the usability
challenges, such as necessary updates to the hardware architecture and potential security
implications of such a change. Also, the costs of both the traditional AMI approach and the
NFV AMI are compared in a cost analysis. Last, the regulatory challenges that may intervene
with the realization of a virtualized AMI are analyzed and possible solutions are suggested.

After the challenges as well as potential solution approaches were introduced, the concrete scientific
contributions of this thesis are further elaborated in the upcoming Section 1.3.

1.3 Contributions
In this thesis, a novel solution to the current challenges of smart grid services is proposed focusing
on AMIs as a use case. The solutions are based on current research results, mainly from the areas
of network and service virtualization as well as dependability models. Also, novel solutions are
proposed to counter the rising complexity of utility services and communication networks, which
leads to increased dependability issues that in turn threaten the service availability leading to a
decreased security of supply for end users. In the following, the contributions of this thesis are briefly
listed.

c1) Virtualization performability analysis: In this thesis, the influence of virtualization on the
achievable performability of a service is compared to a substrate-based solution. The results
are used to evaluate if virtualization benefits performability and if so, to derive a virtualization
approach suited for AMIs.

c2) Virtualized AMI services: The developed Virtualized Network Function Architecture (VNFA)
reduces the introduction of new hardware components into the smart grid, which in turn leads
to a less complex infrastructure. As a result, a main source of failures can be significantly
brought down, offering increased service performability. In contrast to approaches requiring
additional, specialized hardware, VNFA instead uses chained VNFCs emulating the functions of
their respective hardware counterparts.

c3) Multi-level performability: While current AMIs rely solely on the durability of components
arranged in serial way trying to achieve performability, VNFA uses a multi-level approach
realizing an architecture offering performability in multiple dimensions.

• In contrast to the currently suggested AMI, VNFA offers substrate-sided redundancy to
be able to mitigate hardware failures without significant monetary drawbacks. This is
enabled by a widely hardware-agnostic virtualized realization of AMI functions hosted on
COTS servers, which backup one another.

1.3 Contributions 5

• Virtualization is used to discard most specialized AMI hardware components, significantly
reducing the overall hardware count. This also leads to significantly lowered restoration
times, as software can be restored much faster than hardware components providing
similar services.

• To further increase the AMI performability, VNFA offers a concept of dynamic service
distribution and migration of services. This enables a dynamic failure mitigation in two
different ways, depending on the failure type present.

– In case of software failures, in most occurrences, a service restart can restore its func-
tionalities, thereby offering increased service availability. Further details regarding
the failure behavior and restoration of software are given in Section 5.3.1.

– In case of a hardware failure, the affected softwarized services can be migrated onto
a nearby, healthy substrate to be able to offer continued availability while the primary
hosting site is reestablished. This is further elaborated in Section 4.4.1.

c4) Classification of AMI models: To provide an overview of currently used AMI models as well
as their respective advantages and downsides, the currently used models to represent AMIs
in literature are identified and classified. This serves as a prerequisite for the subsequent
development of a novel AMI model enabling the evaluation of virtualized AMIs.

c5) Novel AMI and service model: In this thesis, the research fields of smart grids are combined
with virtualization approaches leading to virtualized smart grid AMIs. To represent and analyze
a virtualized AMI, a novel model has to be established, which is capable to handle not only
single virtual services, but whole AMIs comprising vast amounts of interacting services, their
VMs, as well as the hosting substrate and their networking infrastructure.

c6) Scalable architecture: In comparison to current AMI approaches relying on numerous spe-
cialized hardware components, the usage of softwarized services offers not only a less costly
realization of AMI functions, but is also faster and easier to develop, set up and distribute.
This enables both a faster integration of new users into an existing AMI as well as rapidly
deployable upgrades to either satisfy the substrate demands of future services or to adapt
software features to new requirements of stakeholders.

c7) Cost-effective realization: Current AMI architectures are complex infrastructures realized as
a combination of power and communication networks. To enable an infrastructure spanning
from consumers to power distributors, a large variety and number of hardware components are
used. This leads to increased development, maintenance and operational costs inside the smart
grid. VNFA avoids the usage of most currently required hardware by relying on softwarized
entities emulating the functions of their respective hardware counterparts. Apart from the
previously described benefits, there are also monetary advantages:

• The hardware costs can be significantly reduced, as software replacing these hardware
components do not need to be produced on a per consumer basis, but rather only once.

• Even in the case of potential incompatibilities, software can be adapted to new require-
ments much easier than hardware.

• By simultaneously reducing the number of required hardware devices and increasing the
utilization of the hosting substrate, the energy demand can be reduced [93].

6 Chapter 1 Introduction

c8) Adaptable, future-proof architecture: The softwarization of AMI services enables an adapt-
able service provision that can be adjusted to fit various requirements, e. g. regulatory obliga-
tions in other countries, functional service updates or security enhancements. Also, employing
virtualized services is a significant step towards a future-proof AMI, as substrate and virtual
services are independent, offering the benefit of easy to realize upgrades of both hard- and
software.

1.4 Thesis Structure
Chapter 2 consists of two parts. First, it discusses background information related to the thesis’
topics, namely performability, the power grid and virtualization. Regarding performability, first,
its more well-known parts dependability and performance are defined, before performability is
introduced. For the power grid, the current situation and arising challenges are identified. After
that, the evolution from the momentarily used power grid to an emerging smart grid is explained,
stressing the AMI, its goals, benefits, as well as its challenges. Next, some background information
concerning virtualization technologies is given, including system, network and network function
virtualization. Second, the related work that features approaches similar to the one in this thesis are
reviewed. Here, different publications that use dependability/performability in a smart grid context
or virtualization to increase dependability/performability are discussed first. To be precise, several
approaches that either investigate AMI reliability or availability issues, use virtualization to increase
dependability, and/or discuss the usage of NFV are reviewed. At last, the previous work of the author
as well as current concepts and approaches that combine the aforementioned research areas directly
related to the suggested solution in this thesis are discussed and classified.

In Chapter 3, it is evaluated whether virtualization offers a suitable approach to enhance the
performability of computer systems and AMIs in particular. To do so, first, the current AMI and its
architecture are briefly assessed and a preliminary analysis is performed. After that, the performability
impact of virtualization is estimated. This includes its impact on reliability, maintainability, availability,
and performance. To answer the research question of this chapter, two different scenarios for
virtualization are evaluated: First, the possible overheads induced by virtualization itself, i. e. “bare”
virtualization, are discussed, highlighting its negative consequences. Second, “applied” virtualization,
which also estimates the beneficial influences of virtualization, such as increased availability through
redundant service provision and load balancing, is evaluated.

Chapter 4 focuses on the development of VNFA. Before the new infrastructure is explained in detail,
its general ideas and foundation are presented. Afterwards, these general concepts are expanded,
including the hardware abstraction and relocation, the service virtualization, function chain gen-
eration and subsequent embedding. After that, several possible performability-enhancing methods
on both substrate and software layer are introduced: On substrate layer, redundancy mechanisms
are employed to ensure that occasional hardware failures do not lead to severe performability
deterioration; on software layer, VM backups are used to guarantee that important services do not
suffer from long-lasting outages.

The modeling of the developed VNFA approach is detailed in Chapter 5. Before the novel model
is designed, the currently used AMI models are classified and their shortcomings are identified.
After that, the novel model’s requirements are deducted based on the necessities inherited from the
virtualization employed and the metrics to be calculated. This results in a model that is hierarchically
structured into three tiers: micro, macro and overall model. Before these three models are extensively

1.4 Thesis Structure 7

Introduction1

Background and Related Work2

c1) Virtualization performability analysis

Improvement of AMI Systems
using Virtualization3

c2) Virtualized AMI services

c3) Multi-level performability

Creating a Network Function
Virtualized AMI4

c4) Classification of AMI models

c5) Novel AMI and service model

Modeling a Virtualized AMI5

c6) Scalable architecture

c7) Cost-effective realization

Analysis6

c8) Adaptable, future-proof architecture

Applicability, Conclusion and
Future Work7

Research topics

Virtualization, performability metrics

Suitable virtualization techniques

M
ot

iv
at

io
n

,c
ha

ll
en

ge
s

Virtalized AMI architecture

C
u

rr
en

t
A

M
I

ar
ch

it
ec

tu
re

V
ir

tu
al

iz
at

io
n

m
et

ho
ds

AMI models

V
ir

tu
al

iz
at

io
n

ov
er

he
ad

A
M

I
re

qu
ir

em
en

ts

Results

M
ot

iv
at

io
n

,c
ha

ll
en

ge
s

Figure 1.2.: Chapter structure, dependencies and contributions

discussed, the failure and restoration behaviors of the AMI architectures are covered. After the model
generation, the properties of the developed infrastructure are compared to the current AMI design
during a qualitative analysis.

8 Chapter 1 Introduction

Chapter 6 evaluates the previously developed AMI architecture based on NFV in multiple dimensions
using different methodologies. First, a dependability analysis is performed using network graphs
and DSRNs. Second, the computational and network performance of the developed architectures is
evaluated using Discrete Event Simulation (DES) on queuing networks and the previously developed
DSRNs. Also, the costs of VNFA are compared to Standard Smart Metering Architecture (SSMA) the
investigate possible financial benefits. Next, a prototype implementation of a Virtual Smart Metering
Gateway (vSMGW) service is assessed regarding its dependability and performance. At last, the
results of all analytical analysis are analyzed and conclusions are drawn.

In Chapter 7 possible limitations of the approach are evaluated and the practical applicability of
the proposed VNFA is discussed further. In detail, the currently suggested AMI architecture and the
re-usability of its infrastructure for VNFA as well as possible security influences are investigated.
Finally, a conclusion is given and possible future research directions and extensions of the approach
are discussed.

The interplay of the aforementioned chapters is visualized in Figure 1.2, where the thesis’ chapters
structure is depicted along with the present dependencies and the contributions given in Section
1.3.

1.4 Thesis Structure 9

2Background and Related Work

The research areas spanned by the challenges addressed in this thesis are diverse in nature. While
the basic topic of dependability in critical infrastructures is already around for several decades, the
combination with smart grid and virtualization adds recent technological innovations to the mix.
In this chapter, both the background information and the state-of-the-art related to the three main
topics of this thesis (performability, smart grids and virtualization), are presented.

First, the scientific backgrounds of dependability, performance and performability are presented
along with a brief overview of current analysis methods in Section 2.1.1. After that, in Section
2.1.2, the history and development of power grids towards the currently emerging smart grid are
elaborated. In this section, a major focus is the technical background of AMIs. Thereafter, the
history and development of virtualization—including host and network virtualization techniques—
are covered in Section 2.1.3. After that, NFV, which is later on used as a cornerstone of the novel
AMI architecture, is discussed in detail. After the background of all three research areas of this thesis
are covered in the previous sections, the related work is presented in Section 2.2. More specifically,
recent approaches that combine two of the research fields, i. e. performability-enhancement in smart
grids (Section 2.2.1) and virtualization approaches to increase performability (Section 2.2.2) are
presented. In Section 2.2.3, both related work combining all three research areas and the author’s
own contributions to this research field are elaborated. Finally, in Section 2.3, a summary of the
chapter is given.

Contents
2.1 Background . 12

2.1.1 Dependability, Performance and Performability . 13

2.1.2 Smart Grid and Advanced Metering Infrastructure . 21

2.1.3 Virtualization . 29

2.2 Related Work . 32

2.2.1 Performability/Dependability in Smart Grids . 32

2.2.2 Virtualization for Performability/Dependability . 34

2.2.3 Combining Approaches & Own Contributing Work . 35

2.3 Summary . 36

11

To put the three different major research areas of this thesis (smart grids, dependability/perfor-
mance/performability and virtualization) into perspective, Figure 2.1 illustrates their interrelations
and overlaps. The middle of the figure represents the thesis’ research focus. Searching for the number

Dependability,

Performance and

Performability

Smart Grid

AMI

Virtualization

NFV

Figure 2.1.: Overview of thesis’ research areas and their interrelation

of publications in each of the research topics using Google Scholar2, it becomes apparent that the
three basic topics covered in this thesis are broadly researched areas, while in contrast, especially the
usage of NFV in an AMIs context is a relatively new topic featuring only a few publications. It needs
to be noted however that the results of a Google Scholar search may only be used as a rough indicator,
due to possible false negatives using slightly different keywords or false positives mentioning the
research areas indicated by the keywords only as examples, instead of being the main research focus.
The following Chapter 2 is first split in two main sections. First, Section 2.1 encompasses background
information regarding the thesis’ three research areas. After that, in Section 2.2, the related work
relevant in the context of the aforementioned research areas is presented in Section 2.2.3.

2.1 Background
The backgrounds of this thesis’ research topics are discussed in the following, to allow a deeper
insight regarding the motivational and technical drivers behind the scientific approach taken to
realize an AMI based on NFV. To limit the length of this section, the general background of each
topic is only briefly described, while a stronger focus is placed on areas which are further utilized in
the main parts of this thesis.

2 Google Scholar, URL: https://scholar.google.com/, last accessed: 03/12/2019

12 Chapter 2 Background and Related Work

https://scholar.google.com/

2.1.1 Dependability, Performance and Performability
While already having some twenty years of age, performability is—in relation to both concepts it
comprises, namely dependability and performance—a relatively recent concept that was developed
due to the need to model systems experiencing degradable performance in the presence of failures.
Before that, the general approach was to deal with both dependability and performance separately.
Basically, this led to the idea that first, the dependability of a system was analyzed before optimizing
its performance. While such systems perform well under fault-free conditions, as soon as impairments
are present, their performance may face severe degradation. Performability is therefore typically
defined as a composite measure of both dependability and performance of systems.

Examples of systems that face degraded performance are, e. g., distributed or redundant and
fault-tolerant systems, such as complex utility infrastructures employing high levels of redundancy.
Because such systems may be able to deliver proper service, at least up to a certain extent, even in
the presence of failures, neither dependability nor performance analysis alone covers their behavior
properly.

To be able to better grasp the concept of performability, however, the core aspects of dependability as
well as performance analyses are briefly summarized in the next two paragraphs, before a definition
of performability in the context of this thesis is given.

2.1.1.1 Dependability

Dependability is a major concern in nearly all types of systems. While the striving for high depend-
ability of software and hardware entities that only fulfill functional requirements is basically due
to the pursuit of high quality systems in general and lower costs due to maintenance in particular,
especially in safety-relevant systems, such as critical infrastructures, high dependability levels are
of deeper importance. In the following, the goals and metrics associated with dependability are
discussed, before modeling approaches are explained. Finally, the formal analysis methods available
for dependability are reviewed.

Definition. The term dependability was first defined by Laprie [79]. After that, several refinements of
the definition were given, e. g., by Trivedi et al. [164], the International Electrotechnical Commission
(IEC) [65] and Parhami [118]. A recent definition of the term is given by Avižienis et al. [9] and is
cited in Definition 2.1.

Definition 2.1: Dependability

The dependability of a computer system is the ability to deliver a service that can justifiably be
trusted. The service delivered by a system is its behavior as it is perceived by its user(s); a user
is another system (physical, human) that interacts with the former at the service interfaces.

If thought about further, this leads to a number of different, but complementary properties as
well as several metrics, depending on the application area of the system under investigation [78].
The attributes, means and threats to dependability are given by Avižienis & Laprie [7] and were
subsequently extended [9]. They are depicted in Figure 2.2.

The attributes of dependability are availability, reliability, maintainability, safety, and security. In the
context of this thesis, not all attributes of dependability are analyzed in a similar depth, however.
As the main goal is to offer a service that is free of interruptions in a sense of offering mainly high

2.1 Background 13

Dependability

Attributes

Means

Threats

Availability

Reliability

Maintainability

Safety

Security

Fault Prevention

Fault Removal

Fault Tolerance

Fault Forecasting

Fault

Error

Failure

Figure 2.2.: Dependability tree according to Avižienis et al. [9]

availability and performance, the attributes of safety and security are not broadly discussed further.
While both attributes are without a doubt of significant importance for a critical infrastructure,
there are already standards available covering both aspects. For safety in the context of smart
grids, the functional safety standard IEC 61508 is applicable. Similarly, security may be achieved
by measures defined in, among others, ISO 2700x, IEC 62351, IEC 62443, and ASAP-SG Security
Profiles [37]. Therefore, in the rest of this thesis, only the three attributes reliability, availability, and
maintainability are considered to a larger extent, while safety and security are merely covered very
briefly.

The means of achieving dependability include fault prevention, which is achieved by careful system
design (i. e. structured, unambiguous requirements documentation and intersecting requirement
views) to minimize the number of faults present [183], and fault removal, which consists of both
finding and fixing bugs, during testing as well as operation [141]. Fault tolerance means that
different techniques are applied that allow a system to continue its operation despite of component
failures. Fault forecasting deals with the prediction of faults, errors and failures in components [59,
130].

The threats for dependability can be characterized as faults, errors and failures. A fault is the
adjudged or hypothesized cause of an error. A fault is active when it produces an error, otherwise it is
dormant. An error is present if there is any discrepancy between a computed, observed, or measured
quantity and the true, specified, or theoretically correct value or condition. An error is that part of the
system state that may cause a subsequent failure. A failure occurs when an error reaches the service
interface and renders the system unable to perform its required functions within specified performance
requirements [8].

Metrics. Next, the selected attributes of dependability, namely reliability, maintainability and
availability are briefly introduced in a somewhat informal manner; a more elaborate discussion of
the attributes follows in Chapter 3.

14 Chapter 2 Background and Related Work

• Reliability: Reliability is the probability of a system or system component to perform a required
function under stated conditions for a specified period of time. The reliability function R(t) is
mathematically defined as:

R(t) = P[X > t] = 1− F(t),

where F(t) represents the unreliability, meaning the probability that a component has failed
before time t. F(t) = P[X ≤ t], where X ∈ R+0 is a random variable representing the time a
component performs its required function under stated conditions.

• Maintainability: Maintainability is the ability of a system or system element to be retained
in, or restored to, a specified condition when maintenance is performed by personnel having
specified skill levels, using prescribed procedures and resources, at each prescribed level of
maintenance and repair. Mathematically, maintainability is expressed as:

M(t) = P[T ≤ t],

where T ∈ R+ is a random variable representing the restoration time of a repairable component.

• Availability: Availability is the probability that a repairable system or system element is in
operable state and can be used when it is requested at a random point in time. Depending
on the definition of availability, it includes various downtimes, among others repair times,
logistics, or organizational delays. As further elaborated in Section 3.2.3, within this thesis, the
“inherent availability” (Ai) is used, mathematically defined as:

Ai(t) =
MTBF

MTBF+MTTR ,

where MTBF=MTTF+MTTR.

In Table 2.1, the mutual influences between reliability, maintainability and availability are shown.

Reliability Maintainability Availability

higher constant higher

lower constant lower

constant higher higher

constant lower lower

Table 2.1.: Mutual influences between reliability, maintainability and availability

Evaluation. Dependability evaluation deals with the analysis of changes in a system, which are
generally due to disruptions, and how such changes influence the behavior of the system measured
by the metrics associated with dependability, introduced in the previous paragraph. Generally, two
kind of evaluation methods need to be distinguished:

• Measurements: Measurements acquire results by observing an existing system. In case of a
dependability evaluation, the main focus of observation is the occurrence of faults, errors, and
failures as well as their influence on the system’s behavior. After the data gathering phase
is finished, the respective measures and metrics of interest are calculated. The two options
regarding measurements are on the one hand field [4, 58], on the other test measurements
[171, 185].

2.1 Background 15

• Models: In contrast, models are constructed to represent an existing or non-existing system in
an idealized manner. The measures and metrics of interest are gathered through subsequent
evaluation of the finished model. Modeling approaches can be classified in several dimensions,
e. g. being qualitative or quantitative in nature, their modeling and decision power, their mod-
eling formalisms, and their solution method

�

analytical (closed form/numerical) or simulative
�

[163].

While many approaches do exist to model dependability and its associated metrics, only a brief
overview of various dependability modeling formalisms is given next. A model selection in the
context of this thesis and an in-depth description thereof is provided in Section 5.3. Modeling
formalisms can coarsely be separated into three classes:

• Non-state-space models provide a high analytical tractability, yet at the cost of modeling
power, due to the assumption that all analyzed components are independent. Example
formalisms in this class are Reliability Block Diagrams (RBDs), reliability graphs, and fault
trees.

• State-space models provide a high modeling power, yet suffer from low analytical tractability,
because of the need for a state space generation. This easily leads to state space explosions,
especially in complex systems. Example formalisms are Markov chains and Petri nets.

• Multi-level models combine both previously discussed classes. There are two main forms of
such multi-level models, namely hierarchical and fixed-point iterative models.

2.1.1.2 Performance

Performance is one of the most well-known indicators for a system, encompassing many major fields,
e. g. economics, risk management, and computer sciences. In the following, a focus is set on the
performance in networked computing systems, which is defined in the following.

Definition. As performance is a very generic term that may refer to various different properties of a
system, a formal definition of the term is hardly possible. Informally, performance is defined by Allen
[2] as:

“The word performance in computer performance means the same thing that per-
formance means in other contexts, that is, it means ‘how well is the computer doing
the work it is supposed to do?’”

— Arnold O. Allen, 1994

The “work it is supposed to do” can thereby vary greatly, depending on the goal a computer system is
trying to achieve. Several examples of performance metrics relevant in the context of this thesis are
discussed in the following.

Metrics. A performance metric is a measurable quantity that precisely captures a value of interest,
which—in the case of performance—can take many forms. There is no generally defined performance
metric fitting every system, instead, it is system dependent and requires a deep understanding of the
respective system and its users. However, there are several common metrics available for well-known
performance evaluation scenarios that are briefly introduced next.

16 Chapter 2 Background and Related Work

• Latency (L) is the time required for a request to traverse a system. Latency is most often used
as a metric in computer networks and depends on the speed of the transmission medium (e. g.,
copper wire, optical fiber or radio waves) and the delays in the transmission by devices along
the way (e. g., routers and modems). It is therefore calculated as:

L = dq + dp + dt ,

where dq is the queuing delay of the user’s request, and dp is the propagation delay (i. e. the
time a signal change requires to travel over a physical medium from the sender to the receiver),
and dt is the transmission delay of a request.

• Response time (R) is defined as the interval between a user’s request and the system’s response.
While response time can be generically assessed for almost all types of systems, in a computer
network, it is calculated as:

R= ds + dq + 2(dp + dt),

where ds is the service delay of the request and dq, dp, and dt are defined as previously.

• Throughput (T), in general terms, is the rate of production or the rate at which something can
be processed. The associated unit varies based on the system type, including jobs/requests per
seconds, MIPS/MFLOPS, or bbs/bps. Generally speaking, the throughput of a system increases
along with its load until the usable capacity is exceeded, leading to a drop in throughput again.
T is calculated as:

T = n
τ ,

where n is the number of jobs in the system and τ is the time a job requires to be serviced.

• Utilization (U) of a service is measured by the fraction of time the resource is busy servicing
requests, i. e. the ratio of busy time and total time over a predefined time interval. It is
calculated as:

U = n
µt ,

where n is defined as previously, µ is the service rate (= τ−1), and t is the time interval.

Evaluation. To evaluate performance, the same basic methodologies as discussed in Section 2.1.1.1
for dependability are used, i. e. measurements and models [61]. Moreover, the specific types of
analyses for both measurements and models are similar, too, i. e. field and test measurements and
analytical (closed form/numerical) or simulative approaches respectively. Regarding the modeling
formalisms available, there are the shared options of Markov Chain- and Petri net-based solutions
available, as well as the additional option of queuing systems/networks. Petri nets and queuing
system/networks, which are the modeling options used later in this thesis, are described next.

Petri nets are a modeling formalism employed in various fields of computer science, combining a
well defined mathematical theory with a graphical representation allowing the representation of
dynamic systems. Petri nets are bipartite, directed graphs populated by three types of objects (places,
transitions, and directed arcs). Definition 2.2 gives a formalization of Petri nets based on Cassandras
& Lafortune [28].

2.1 Background 17

Definition 2.2: Petri net graph

A Petri net graph (or Petri net structure) is a weighted bipartite graph represented as a 5-tuple
(P, T, A, w, m0), where P is a finite set of places, T is a finite set of transitions, A⊆ (P×T)∪ (T × P)
is a set of arcs from places to transitions and from transitions to places in the graph, w : A→ N
is a weight function on the arcs, and m0 : P → N0 the initial marking.

A queuing system (see Definition 2.3) is a station that consists of a queue and a server. When a
package arrives at a station, it is queued. Eventually it is processed which takes a certain amount of
time (= service time 1

µ). The service time follows a probabilistic distribution which can be defined.

Definition 2.3: Queuing system

A queuing system is defined by Kendall’s notation as A|S|m|B|P|Q, where A is the probability
distribution of inter-arrival times, S is the probability distribution of service times, m is the
number of servers, B is the buffer size, P is the population size, and Q is the queuing discipline.
An abbreviated form of Kendall’s notation is available as A|S|m−Q.

After the processing is done at the queuing station and more stations do exist (forming a queuing
network, see Definition 2.4), the package is sent to that next connected station. If multiple such
connections exist, a probability is assigned to each link which determines how likely the package
is sent through this link. Generically speaking, in queuing networks packages are sent from one
queuing system to another until they reach the end of the network [22].

Definition 2.4: Queuing network

A queuing network is a directed, weighted graph with QN = (V, E, w) with V = {QS}, E = {R},
and w(E)→ R, where QS is a set of queuing systems and R is a set of directed edges

�

E ∈ (V, V)
�

with an associated weight function w(E) representing either routing probabilities or arrival
rates.

Depending on the exact nature of both the queuing systems (e. g. M |M |1− LC FS or M |G|1− FC FS)
and the type of queuing network (e. g. open or closed queuing networks) itself, different solution
strategies are available, which are not further discussed at this point; instead, it is referred to
Haverkort [60] and Bolch et al. [22] for a detailed discussion of the subject.

2.1.1.3 Performability

After a brief introduction to dependability and performance measures, it becomes apparent—as
already shortly announced in Section 2.1.1—that despite sharing several methodological techniques
in their modeling and evaluation, mutual influences of dependability and performance are not
considered in either of them. In today’s complex and distributed systems, however, the individual
assessments of system performance and dependability cannot be easily combined, particularly if
performance in the presence of faults is degradable, i. e., errors or failures do not necessarily cause a
system failure, but may as well only reduce the quality/performance of a delivered service, while the
service itself remains proper [61].

18 Chapter 2 Background and Related Work

Definition. The most well-known formal description of performability is given by Meyer et al. [98].
The performability (Perf) of a system is characterized by two subsystems comprising the total system
(S), namely:

• the object subsystem (C), i. e., the technical system being evaluated, and

• the environment subsystem (E), i. e., external systems (i. e., environment or human) interacting
with the object system.

S can thereby be denoted as a stochastic process X =
�

X (t), t ≥ 0
�

, t ∈ I , describing the structure of
the system at time t; the time base I may be discrete or continuous. The state space of X is denoted
Q, which is a product space of the object and environment subsystems, i. e. Q =QC ×QE . To evaluate
the performability of a system S, a performance variable Y is introduced, specified by

• a utilization period T , where T is an interval of the time base over which object subsystem
performance is being observed, and

• an accomplishment set A in which Y takes its values.

This leads to the following definition of performability:

Definition 2.5: Performability

For a system S with performance Y taking values in accomplishment set A, the performability of S
is the probability measure Perf induced by Y where, for any measurable set B of accomplishment
levels (B ⊆ A),
Perf (B) = P[Y ∈ B], i. e. the probability that S performs at a level in B.

Metrics. The metrics associated with performability are required to reflect both the dependability
and its impact on the performance. Therefore, the metrics are based on two interdependent
components as suggested by Haverkort et al. [61], namely:

• the system structure Q, denoting the set of all possible configurations in which the system can
operate. Also, the associated, previously defined stochastic process X describing which system
components are up and which are down at time t, and

• the associated performance of the system in structure state q ∈Q is given by r(q), where r : Q→
R is a reward function on the state space Q. r(q) has to be defined by multiple performance
analyses, i. e. for every q ∈Q, the value r(q) has to be obtained using a performance analysis.

For x ∈ X , let the row vector π = [. . . ,πx , . . .] denote the initial probability vector on X , the
row vector p = [. . . , px , . . .] the steady-state probability of residing in state x , and the row vector
p(t) = [. . . , px (t), . . .] the (transient) probability of residing in x at time t. The following metrics are
defined:

1. Steady-state performability: Perf (S) =
∑

q∈Q pq r(q)

2. Transient performability: Perf (S, t) =
∑

q∈Q pq(t)r(q)

3. Cumulative performability: Y (t) =
∫ t

0 r
�

X (s)
�

ds

4. Performability distribution: F(t, y) = P[Y (t)≤ y]

2.1 Background 19

The basic model discussed so far is a so-called rate-based reward model which means that when
residing in a particular structure state q ∈ Q at time t, the system performs with rate r(q). The
rates, however, may also depend on the global time t, thus having a reward rate function r(q, t)
for every state q ∈ Q. In contrast to rate-based models, it is also possible to define impulse-based
reward models. With these models, a reward impulse function r : Q ×Q → R has to be defined
which associates a reward r(q, q∗) with every transition from state q ∈Q to state q∗ ∈Q. Every time a
transition from state q to state q∗ takes place, an instantaneous reward of r(q, q∗) is gained. These
rewards may again depend on the global time t, leading to transition reward functions r(q, q∗, t).

Evaluation. While being similar in nature again to both the evaluation approaches discussed for
dependability and performance before, the performability adds an additional layer to all evaluation
techniques: a reward analysis. In the case of measurements, this can easily be achieved by logging
the system state (faults, errors, failures) and its respective influence on the system’s performance.

If modeling is used for performability evaluation, especially state-space based approaches are often
used to represent both the system state/behavior and its associated rewards; non-state-space models
are mostly not suited due to their inherent assumption of system components being mutually
independent. In comparison to the modeling formalisms proposed in Sections 2.1.1.1 and 2.1.1.2, a
performability model is generally build up of two distinct models: a behavior model and its associated
reward structure [98]. The two most well-known formalisms are Markov Reward Models (MRMs)
and Stochastic Reward Nets (SRNs), which are extended versions of Markov models and Stochastic
Petri Nets (SPNs), respectively. Further details regarding their structure, usage, as well as techniques
to solve them are given, e. g., by Haverkort et al. [61], Muppala et al. [103], and Ciardo et al. [34].

20 Chapter 2 Background and Related Work

2.1.2 Smart Grid and Advanced Metering Infrastructure
As briefly described in Chapter 1, a modernization of the existing grid is needed in order to meet
the challenges it faces and the available information technologies could play an important role to
achieve this endeavor. As the smart grid itself is the umbrella technology housing the AMI, it is only
briefly described in Section 2.1.2.1, while the main part of the background in this regard is dealing
with AMIs themselves in Section 2.1.2.2.

2.1.2.1 Smart Grid

While the power grid of Germany is still among the most reliable in the world3, the increasingly
out-of-date and overburdened infrastructure leads to a rising number of challenges, which has e. g.
been confirmed by the Bundesnetzagentur:

“Due to the shutdown of the nuclear power plants and the installation of renewable
energy generation, the existing power grid is however under considerably more
stress. The transmission network operators, who are responsible for the functioning
grid operation, must intervene in the use of the grid far more often in order to
ensure the stable operation of the grid.4”

— Jochen Hoffmann, President of the Bundesnetzagentur, 2014

This trend is also affirmed by the European Institute for Climate and Energy (EIKE) and data from
the German Netztransparenz.de5, stating that the number of emergencies in the power grid, which
needed to be corrected by redispatch measures has risen from 500 in 2011 to approximately 5500 in
2018. The current state of the power grid and its resulting issues are manifold, but can coarsely be
classified into four main categories, according to Alstom6 [92, 143]:

1. Distributed generation: The ongoing rise of small-scale, distributed renewable power gen-
erators, which are usually connected to the distribution grid, do not only offer benefits, but
are also a potential reason for grid disturbances. At low levels of penetration, distributed
generation simply reduces the load at individual substations. Higher levels of penetration
in the system however further increase the uncertainty in supply, and at the same time add
additional stress to the existing infrastructure.

2. Aging power equipment: While the environment the power grid operates in changed dra-
matically over time, the grid, which was not originally designed to reduce emissions or
environmental impacts, be energy efficient, ensure cyber security or integrate renewable en-
ergy sources, stayed nearly the same. Many parts of today’s power grid are already over 40
years old [135]. This causes two types of negative influences on the overall infrastructure:
First, older equipment has higher failure rates, leading to customer interruption rates affecting

3 According to data released by the Bundesnetzagentur, the country’s power grid’s total unplanned outage time was 15:32
minutes in 2013. Overall, these outage levels put Germany in the top five most reliable power grids in the world.

4 As quoted by German national daily FAZ on 06/25/2014.

5 Netztransparenz > EnWG > Redispatch, URL: http://www.netztransparenz.de/de/redispatch.htm, last accessed:
03/01/2019

6 Alstorm | Challenges of electrical grids, URL: http://www.alstom.com/grid/about-us/understanding-electrical-
grids/challenges-of-electrical-grids/, last accessed: 03/01/2019

2.1 Background 21

http://www.netztransparenz.de/de/redispatch.htm
http://www.alstom.com/grid/about-us/understanding-electrical-grids/challenges-of-electrical-grids/
http://www.alstom.com/grid/about-us/understanding-electrical-grids/challenges-of-electrical-grids/

the economy and society. Second, older systems need to be inspected and maintained more
carefully, which increases maintenance and repair costs.

3. Missing situational awareness: As already shortly described in the previous paragraph, the
current power grid is missing the technological features to offer a wide situational awareness
to its operators. To prevent—or contain—failures in the power grid, it is essential to have
real-time information from all levels of the grid, which is currently not available, especially in
the low voltage level.

4. Increasing demand and quality: Our digital society more and more depends on and demands
power supply of high quality and reliability. Even small fluctuations in the power grid can lead
to massive challenges, especially in the area of industrial production. Therefore, the current
power system faces challenges that are constantly growing over time. Examples are a growing
worldwide energy demand, increasing difficulties to access fossil fuels in a feasible manner
[142], as well as criminal and terrorist threats [80].

To cope with the presented challenges and situations the creation of a new electricity infrastructure
is necessary, which is able to improve management, monitoring and use of electricity, allowing
utilities to analyze the status and behavior of the grid efficiently. This new infrastructure also needs
to effectively integrate new sources of energy without negatively affecting the power grid, and to
manage and regulate their volatile power output. This will allow the system to efficiently provide
energy, protect the climate, besides meeting future power demand and quality requirements. This
so-called smart grid (see Definition 2.6) is further explained in the following.

Definition 2.6: Smart Grid

The term “smart grid” refers to a modernization of the electricity delivery system so it monitors,
protects and automatically optimizes the operation of its interconnected elements—from the
central and distributed generator through the high-voltage transmission network and the
distribution system, to industrial users and building automation systems, to energy storage
installations and to end-use consumers and their thermostats, electric vehicles, appliances
and other household devices. The smart grid will be characterized by a two-way flow of
electricity and information to create an automated, widely distributed energy delivery network.
It incorporates into the grid the benefits of distributed computing and communications to deliver
real-time information and enable the near-instantaneous balance of supply and demand at the
device level [42].

While this definition does not give a detailed insight into all areas and technologies employed in the
smart grid, no further clarification is given at this point for the sake of briefness. However, for further
information, it is referred to the National Institute of Standards and Technology (NIST) Framework
and Roadmap for Smart Grid Interoperability Standards [108]. In the following, a short introduction
on AMIs, a major enabler of the smart grid, is given.

2.1.2.2 Advanced Metering Infrastructure

AMI is one of the major technologies employed in smart grids required to enhance the distribution
domain by continuous information acquisition and transmission from and to the customer domain,
as stated in Definition 2.7 from the Federal Energy Regulatory Commission (FERC) [53].

22 Chapter 2 Background and Related Work

Definition 2.7: Advanced Metering Infrastructure

A metering system that records customer consumption hourly or more frequently and that
provides for daily or more frequent transmittal of measurements over a communication network
to a central collection point. It includes communication hardware and software, associated
system and data management software that creates a network between advanced meters and
utility business systems and which allows collection and distribution of information to customers
and other parties such as competitive retail providers, in addition to providing it to the utility
itself.

AMI can therefore be seen as an umbrella term covering multiple systems. In the definition, these
are however only mentioned on an abstract, logical plane, while a detailed realization is not
further explained. Because of that, in the following paragraphs, first, the hardware components are
described; after that, the interconnecting networks are analyzed (based on Mohassel et al. [100]).

AMI Substrate Entities. The AMI’s substrate entities provide the services which—in their interplay—
enable the AMI’s core functionalities as well as optional additions enabled through third parties.

• Smart meters: Smart meters are a significant building block of the AMI. These devices are
a combination of hard- and software that are capable to measure and collect consumption
information in small time intervals. The stored data can then be used both internally and
externally via the Smart Meter Gateway (SMGW). Unlike Automated Meter Reading (AMR), to
communicate with external parties, smart meters are equipped with two-way communications
capabilities, enabling them to both send and receive data and act accordingly. The network
technologies and communication protocols employed by smart meters are further explained
later on. While the internal technical realization of smart meters varies based on vendor,
location and model, there are several essential functionalities which smart meters have to fulfill
regardless of their differences [149]. These functionalities include, among others:

– quantitative measurement of energy consumption,

– two-way communication,

– real-time display of consumption,

– time-based pricing,

– providing consumption data for consumer and utility,

– failure and outage notification,

– remote command (turn on/off) operations,

– load limiting for demand-response purposes,

– power quality monitoring (e. g., phase, voltage and current), and

– energy theft detection.

2.1 Background 23

• AMI smart meter gateway: In difference to most other countries, the usage of SMGWs was
first demanded by the German Bundesamt für Sicherheit in der Informationstechnik (BSI) in
2013 [25]. The first essential objective of the SMGW results from the property of the SMGW
as an interface between Local Meteorological Network (LMN), Home Area Network (HAN),
Neighborhood Area Network (NAN) and Wide Area Network (WAN). For the security of the
overall system, a partitioning of these networks isolating them from one another is beneficial,
which can be realized by firewall mechanisms. Furthermore, every network connection
established by the SMGW generally has to be encrypted and integrity protected [25, 26].
Additionally, as stated by the BSI in 2012, SMGWs may differ in their architecture, depending
on the features they implement (e. g., communication capabilities can either be provided by
the SMGW or by another device, such as a router) [25].

• AMI data concentrator: Another component of an AMI system is the data concentrator. This
element aims to collect and store periodical meter readings, often from multiple meters located
in the LMNs, before forwarding them to the utility’s AMI Head End System (HES). Data
concentrators are usually positioned in transformer centers, and collect communications from
several different homes. They are especially crucial and heavily used in densely-populated
areas. Data concentrators also have capabilities that allow them to establish bidirectional
communication links with the HES, enabling at the same time to monitor and maintain the
status of both network paths. A data concentrator manages 50 to 100 households in more
rural areas, while this number can decrease to 20 to 50 in more urban areas, depending on the
architecture and communication medium [53, 129].

• AMI head end system: The HES is hosted at utility’s site. Among its responsibilities are the
execution of commands and management of metering data and other components in order
to abstract details of the AMI system and communication network [47]. An important part
of the HES is the Meter Data Management Systems (MDMSs), which provides the required
database to store and manage the analysis of data collected from meters. This system allows
keeping track of all meters, their status and communication paths within the network. This
facilitates troubleshooting device’s failures more efficiently, besides enabling remote managing
of firmware updates, reconfigurations, and diagnostics, among others.

• Third party services: In addition to the necessary AMI services—which are key elements of
the infrastructure used to provide the most crucial functionalities of AMIs, such as automated
remote meter reading and bidirectional communication altogether—Third Party Services (TPSs)
offer enhanced functionalities that are not inherently required by AMIs to work, but may yet
provide more convenience for users. An example for such a service is an energy optimization
service that helps to conserve energy by educating end users after analyzing their power
consumption. Such services are not offered by the service provider and run on hardware which
is under the supervision of a third party service provider; however, most TPSs require data
generated by devices such as smart meters, which may either be controlled by the third party
itself or other AMI participants.

AMI Communication Networks. The backbone of future smart grid applications depends on its
communications infrastructure. Without a dependable communication infrastructure, neither the
gathering of information, nor the planned messaging to and control of actuators in the smart grid is
possible.

24 Chapter 2 Background and Related Work

• Network Topology: Trick [161] states that the LMN is used for communication between
the smart meter and the respective SMGW (other meters, such as water and gas meters, are
also connected to the SMGW via the LMN). The transmitted data within the LMN contains
energy consumption and production information of a household as well as locally measured
parameters such as voltage, frequency or phase angle. The BSI [26] specifies the allowed
protocols for this interface as: OMS Part 2 (Open Metering System) based on M-Bus DIN EN
13757-3, DLMS/COSEM DIN EN 62056-61/62/53 or SML prEN 62056-5-8 (Smart Message
Language). Beyond that, also IEC 61850, IEC 61968/61970 CIM, ZigBee SEP2, KNX, OASIS
Energy Interoperation, ANSI C12.22 or FNN SyM2 are allowed. A secure data transfer is
ensured by means of Transport Layer Security (TLS). For data transmission, both a wireless
interface (M-Bus DIN EN 13757-4) as well as a wired Ethernet interface are provided. For
wired interfaces, the standards M-Bus DIN EN 13757-2, DIN EN 13757-6 Lo-Bus and RS 485
are also permitted.

The HANs connects smart meters, smart devices within the home premises, possible energy
storage and generation (solar, wind, etc.), electric vehicles as well as Controllable Local
Systems (CLS) inside of households. As the data flow in HANs is instantaneous/intermittent
rather than continuous, the required bandwidth may vary from 10 Kbps to 100 Kbps for each
device, depending on its task. The network needs be expandable, too, as the number of
devices or data rate may increase in the future. The calculated reliability and accepted delay
are also based on the consideration that the loads and usage are not critical. Given the
above requirements and considering the short distances among nodes that enable low power
transmission, wireless technologies are the dominant solutions for HANs. These technologies
include WiFi, 802.11 wireless networking, ZigBee and HomePlug [100].

The NAN is a network interconnecting data concentrator devices and neighboring gateways
in a specific region. As data from each smart meter is transferred to the concentration points,
they require a high bandwidth, as well as a decent QoS to support a near real-time delivery
of data. Currently, there are several technologies suggested to realize these requirements in
NAN, each having advantages and downsides. Power Line Communication (PLC) addresses
the communication needs between in-home gateways and concentration points in sparsely
populated areas. If communication at the aggregation point is meant to be distributed to each,
or most of the smart devices inside the home rather than the meter, then more bandwidth is
needed which narrowband PLC is unable to provide. Here, existing Internet connections, such
as Digital Subscriber Line (DSL), offer higher bandwidths. However, Internet connections often
suffer from bad QoS due to their best-effort type of service.

The WAN connects the SMGW to external market participants. These include all potential
communication partners, such as the SMGW administrator, meter operators, energy suppliers,
telecommunication providers or third party services. Especially, it also serves as a connection
between SMGWs, data concentrators, and the AMI HES present at the service provider. Since
millions of metering data are transferred in the WAN, the requirements of both bandwidth and
dependability of the network are considerably high, which is detailed further in Table 2.1.2.2.
Currently, several technologies are suggested to realize these requirements in WANs, each
having advantages and downsides. PLC addresses the communication needs between SMGWs
and other participants in sparsely populated areas. However, in densely populated areas, more
bandwidth is needed which PLC is not able to provide. Here, dedicated fiber networks or
existing Internet connections are able to satisfy these requirements. However, dedicated fiber

2.1 Background 25

networks are expensive, while Internet connections often suffer from unpredictable QoS due
to their best-effort type of service.

• AMI Communication Protocols: The communication protocols employed in AMIs are numer-
ous and vary depending on the concrete realization and location of an AMI. In the following,
several well-established standards are discussed, before possible architectures are presented.
The ANSI created a protocol suite (C12.18, C12.19, and C12.21) for the communication with
smart meters which is mainly used in the US. ANSI C12.18 is a protocol used for two-way
communication with smart meters via an ANSI Type 2 optical port. ANSI C12.19 specifies the
data tables to be used. ANSI C12.21 is an extension of C12.18 written for modem instead
of optical communications. In the European Union, the IEC 62056 specifies communication
protocols for sending ASCII data using a serial port.

Technology Protocol Bandwidth Range Networks

HAN NAN WAN

Wired

Optical fiber PON 0.15 – 2.5 Gbps ≤ 60 km 3

WDM 30 – 40 Gbps ≤ 100 km 3

SONET 8 – 10 Gbps ≤ 100 km 3

Cable line DOCSIS 100 – 500 Mbps ≤ 30 km 3

DSL ADSL 1 – 8 Mbps ≤ 5 km 3

HDSL 1 – 2 Mbps ≤ 4 km 3

VDSL 15 – 100 Mbps ≤ 2 km 3

PLC HomePlug 14 – 200 Mbps ≤ 200 m 3

Broadband 0.5 – 500 Mbps ≤ 3 km 3 3

Narrowband 10 – 500 kbps ≤ 3 km 3

Wireless

Wi-Fi 802.11x 2 – 600 Mbps ≤ 100 m 3

Bluetooth 802.15.1 500 – 750 kbps ≤ 100 m 3

ZigBee ZigBee 150 – 250 kbps ≤ 100 m 3

Cellular 2G 10 – 15 kbps ≤ 50 km 3 3

3G 1 – 2 Mbps ≤ 50 km 3

4G 50 – 100 Mbps ≤ 50 km 3

Table 2.3.: Properties of AMI communication technologies, based on Kuzlu et al. [77]

Other options include:

– Open Smart Grid Protocol (OSGP), developed by the European Telecommunications
Standards Institute (ETSI). It is used in conjunction with the ISO/IEC 14908 standard for
smart metering and smart grid applications.

26 Chapter 2 Background and Related Work

– M-Bus (Meter-Bus), which is a European standard (EN 13757-2 physical and link layer, EN
13757-3 application layer) for the remote reading of smart meters. The M-Bus interface
communicates—just as IEC 62056—via a pair of wires, making it very cost effective.

– ZigBee Smart Energy V2.0, which is a special branch of ZigBee defined as a protocol to
monitor and control energy (also smart meters) as an enhancement of the ZigBee Smart
Energy V1.0 specification.

In addition, it is noteworthy that there is a trend toward the usage of TCP/IP technology
as a common communication platform for smart metering, which, e. g., is noticeable in the
employment of ZigBee IP for ZigBee solutions, a network layer that routes standard IPv6
traffic over IEEE 802.15.4. The usage of TCP/IP offers numerous benefits, i. e. utilities can
deploy multiple communication systems, while using IP technology as a common management
platform. This would allow a single product to be used globally even if regional communication
standards vary. An overview of the communication technologies used in AMIs is provided in
Table 2.3.

• AMI Architecture: In the following, several possible architecture options are showcased
in Figure 2.3, based on the approach of NIST [108] and Foreman & Gurugubelli [55]. As
shown, the infrastructure especially differs in the possible communication mediums available
at the NAN and WAN part. At the NAN part, the connection from the user to the data
concentrator, can be established via: radio point-to-point network, radio mesh network, PLC,
and dedicated or public copper/fiber networks. In the WAN part of the infrastructure, the
connections from the data concentrators to the back-haul routers are either realized via cellular
networks, public/private RF, or public/private copper/fiber networks. After that, only wired
connections (based on high-bandwidth copper or fiber) link the back-haul routers to the
providers infrastructure including the AMI HES [97].

It has to be noted however that these different technologies are facing various challenges, such
as reliability, transmission rates, and real-time capability. Apart from the apparent limitations
of the technologies, it is additionally required to assess the advantages and downsides of either
employing a provider-owned, dedicated AMI communication network or relying on public
network infrastructures, such as General Packet Radio Service (GPRS) or DSL. As an example,
public networks may face the disadvantage that—in case of power disturbances—parts of the
AMI are not reachable anymore, which may lead to issues during the restoration. In contrast, a
utility’s dedicated communication infrastructure can be constructed in a way to be operable
even during power outages. However, the construction of a wide area dedicated network
induces increased initial and maintenance costs to the utility.

• AMI Services and Requirements: The service that is the closest to the customers is the
AMR. This service gathers consumption and event data from smart meters and sends it to
the utility for further processing and analysis. It is the main service studied in this thesis.
In a future smart grid realization, every household is expected to participate in AMR. The
Real-Time Pricing (RTP) is part of the demand-response approach that is one of the novel
ideas in smart grids. It gives incentives to users to shift the usage of appliances that demand
large quantities of energy to a specific time when it is abundantly available. RTP requires
bidirectional communication between the utility and the households. Utilities are particularly
interested in Wide Area Monitoring (WAM) services because they are used to continuously
monitor the grid’s health through performance indicators such as frequency, real and reactive
power as well as phase angle.

2.1 Background 27

WAN

NAN

LMN

AMI HES

Utility network

Router

Cell network RF Copper/fiber

Data concentrator

Cell/RF PLC Copper/fiber

HAN

Smart meter

Figure 2.3.: Overview of AMI architecture, networks, and technologies

All services have different attributes like message size and sending intervals as well as different
requirements such as a maximal allowed latency. From this, the necessary data rate can be
calculated for each service, which is an important constraint for the selection of an appropriate
communication technology and network topology. The requirements are of major importance
later within this thesis (mainly throughout Chapter 6) to evaluate whether the suggested
solution developed in Chapter 4 can fulfill the subsequently stated requirements (see Table
2.1.2.2).

Application Data rate Intervals Max. latency Protocols

AMR 10 – 128 kbps 5, 10, 15, 30, 60 min 100 ms HTTP, TCP
RTP 10 – 100 kbps 15, 60 min 200 ms HTTP, TCP
WAM 6 – 24 kbps 40 – 100 ms 10 ms UDP, IP

Table 2.5.: AMI communication requirements based on Ramírez et al. [129] and Shiobara et al. [147]

28 Chapter 2 Background and Related Work

2.1.3 Virtualization

Virtualization is a technology that enables the usage of a common hardware substrate by multiple
virtual appliances in parallel. It was first developed by the company IBM in the 1960s as the
Control Program/Cambridge Monitor System (CP/CMS) which offered a partition of their mainframe
computer, separating it into several logical instances each usable by a separate user. Originally, this
technology was needed, as mainframes were too large and expensive to be used by only one person
at a time. Also, the ability to run multiple processes and applications at the same time increased the
utilization [124, 64].

Since then, the term virtualization has been broadened up and covers several approaches to run
software by isolating and abstracting from lower layer functions and the actual substrate hardware.
By doing so, it is possible to achieve a portability of higher level functions. Also, the resources
on hardware level can either be shared or aggregated into virtual environments. In the following,
several technological branches of virtualization are mentioned.

2.1.3.1 Host Virtualization

In the following, possibilities to perform host virtualization are covered based on Walters et al.
[169].

• Full Virtualization: Using this approach, a VMM is running on top of a host operating system,
usually from user space. The VMs that are hosted on top of the VMM are each provided with
their own set of virtual hardware, which is—in turn—used by a guest Operating System (OS)
that is able to run applications. One important advantage is that guest OSs running inside of
their VMs do not need to be modified in any way to be compatible to full virtualization, as the
required hardware is emulated by the VMM.

• OS-Layer Virtualization: Also known as container-based virtualization, this concept imple-
ments virtualization by running more instances of the same OS in parallel. This means that not
the hardware, but the host OS is the one being virtualized. The resulting VMs all use the same
virtualized OS image. Due to that, this approach has a major drawback: since the VMs use the
same kernel as the host OS, the guest OS must be the same as the host OS (and such, it is not
possible to run, e. g., Windows on top of Linux).

• Hardware-Layer Virtualization: This approach is commonly used on the server market due
to its high virtual machine isolation and performance. Here, the VMM runs directly on
hardware, controlling and synchronizing the access of the guest OSs to the hardware resources.
Paravirtualization is the technique used by Xen which provides a virtual machine interface
representing a slightly modified copy of the underlying hardware, where the non-virtualizable
portions of the x86 original instruction set are replaced with their virtualized equivalents.

• Paravirtualization: Unlike full virtualization, in paravirtualization the running guest OS needs
to be modified in order to be operated in the virtual environment. An interesting fact in this
technology is that the guest machines are aware of the fact that they are running in a virtualized
environment. One of the main characteristics of paravirtualization technology is that the VMM
is simple which allows paravirtualization to achieve performance closer to non-virtualized
hardware [95].

2.1 Background 29

2.1.3.2 Network Virtualization

Network virtualization is the approach of setting up various virtualized networks on top of a substrate
network. A virtual network thereby exists of virtual nodes, interconnected by virtual links. Both
are hosted on a substrate network, which is also composed of nodes and links connecting them.
By applying virtualization to nodes and links, it is possible to create and co-host multiple, logically
isolated virtual networks, each having different properties and requirements (e. g., QoS or security),
on a substrate network [54].

Node Virtualization is thereby done by offering a slice of a substrate node and allow the imple-
mentation of separate customized control protocols on them. Virtual nodes thereby are similar in
functionality as in a physical networks, i. e., a node may offer the services of Data Communication
Equipment (DCE) such as a hub, bridge or switch, or Data Terminal Equipment (DTE), such as a host
computer. In addition, virtual nodes offer a clear mutual isolation as well as dynamic instantiation
and capability. To establish a substrate and protocol agnostic way to connection between virtual
nodes, link virtualization is required. A well-known example employing virtual links exists in the
form of Virtual Private Networks (VPNs), creating isolated tunnels over multiple physical links.
Similar tunneling mechanisms can also be used in case of Virtual Networks (VNs). As virtual nodes,
they allow dynamic instantiation as well as capability changes during runtime. In addition, virtual
links can be aggregated to offer more resources (e. g., bandwidth) [33].

2.1.3.3 Network Function Virtualization

NFV was recently introduced by the NFV Industry Specification Group at the ETSI [50]. It introduces
a network architecture concept employing virtualization technologies to softwarize network functions
previously executed by proprietary (vendor-specific), dedicated hardware. These VNFs replacing
physical network node functions comprise of VNFCs, which realize single functions within the VNF.

NFV is built upon the virtualization technologies introduced in Sections 2.1.3.1 and 2.1.3.2. To realize
a VNF comprised of several VNFCs, a combination of host and network virtualization is required
to generate both the virtual machines running different software and processes (on the Network
Functions Virtualization Infrastructure (NFVI)) and their interconnections, assuming that the VNFCs
are hosted in a distributed way. To realize a NFV architecture, a framework of three main components
(VNF, NFVI, and Network Functions Virtualization Management/Orchestration (NFV-MANO)) is
required. These are covered in the following.

• VNF: VNFs are a softwarized implementation of a network function previously realized in
hardware, capable of running on top of the provided NFVI. The VNF is the entity corresponding
to today’s network nodes, which are now expected to be delivered as pure software free from
hardware dependency. Internally, a VNF comprises several VNFCs connected among each other
to provide a service realized by the VNF in their interplay.

• NFVI: The NFVI provides the virtual resources required to support the execution of VNFs. It
includes COTS hardware as well as a virtualization layer which abstracts from the underlying
substrate hardware and logically partitions it. Above the virtualization layer, VNFCs are
typically mapped to the VMs available through the NFVI. The deployment, execution and
operation of VNFCs on the NFVI are managed by the NFV-MANO.

• NFV-MANO: Since Virtual Links (VLs), Physical Network Functions (PNFs), VNFs, NFVI and
the mutual relationships did not exist before the emergence of NFV, their handling requires a

30 Chapter 2 Background and Related Work

NFVI

Virtual
Computing

Virtual
Storage

Virtual
Network

Virtualization Layer

Computing
Hardware

Storage
Hardware

Network
Hardware

VNFs

VNF VNF VNF

Service Deployment Requirements

NFV-MANO

NFV Orchestrator

VNF Manager

Virtualized Infrastructure Manager

Figure 2.4.: Scheme of the VNF architecture, including VNFs, VNFI, and NFV-MANO

new set of management and orchestration functions. The NFV-MANO architectural framework
has the role to manage the NFVI and to orchestrate the allocation of resources needed by the
VNFs [49]. The NFV-MANO is itself comprised of three interconnected functional blocks:

– Virtualized Infrastructure Manager (VIM): The VIM controls and manages the resources
(compute, storage and network) of the NFVI within an operator’s infrastructure by keeping
an inventory of the allocation of virtual resources to physical resources. This allows the
VIM to orchestrate the allocation, upgrade, release, and reclamation of NFVI resources and
optimize their use. Also, it is responsible for the collection and forwarding of performance
measurements and events.

– Virtualized Network Function Manager (VNFM): The VNFM acts as a lifecycle manager
of VNFs under the control of the Network Functions Virtualization Orchestrator (NFVO),
which it achieves by instructing the VIM. This includes the instantiation, scaling, updating,
and termination of VNFs. All VNFs have an associated VNFM, which may manage a single
or several VNFs at once that may be of the same or different types.

– NFVO: The NFVO provides VNF lifecycle management (including, e. g., instantiation, per-
formance measurements, event correlation, and termination). To do so, the NFVO ensures
that—if possible—a VNF receives an adequate amount of compute, storage, and network
resources from the NFVI. The NFVO supports two operating modes: in coordination with
the VIM; or directly with NFVI resources, depending on the requirements. Thereby, the
NFVO can coordinate, authorize, release, and engage NFVI resources independently of
any specific VIM. To provide service orchestration, the NFVO creates end-to-end service
among different VNFs––that may be managed by different VNFMs with which the NFVO
coordinates.

2.1 Background 31

2.2 Related Work
As the three fields themselves offer extensive related work, in this section, only articles that deal with
a combination of at least two of the scientific areas present in this thesis are covered. In Section 2.2.1,
performability concepts for the smart grid are discussed; in Section 2.2.2, virtualization approaches
to improve smart grids are reviewed; finally, in Section 2.2.3, related work combining all three
scientific fields are presented, including the author’s own previous work in the field.

2.2.1 Performability/Dependability in Smart Grids
Regarding both the dependability and performance of smart grids, numerous works exist encom-
passing the networking infrastructure as well as the hardware and storage facilities involved in the
communication and computation processes in the grid. Both the analysis and improvement of these
properties of the smart grid have been investigated using various approaches in the past. In contrast,
performability in smart grid networks is a widely disregarded topic till today.

For the analysis of smart grids, several schemes have been proposed, e. g., Kaitovic et al. [70]
discuss a unified dependability approach for combined ICT and electric power infrastructures. In
addition, a taxonomy of faults for smart grids is presented and a outlook on the present dependability
state of smart grids is given. A combination of dependability analysis techniques and a novel AMI
architecture proposal is given by Xiang et al. [174], where the dependability modeling and resource
allocation in redundant communication networks using RBDs and SPNs is investigated. Also, several
network redundancy mechanisms under the influence of varying Mean Time To Failure (MTTF) are
compared. Metrics for the analysis of smart grid reliability and resilience are the focus of Albasrawi
et al. [1], providing a reliability and resilience analysis of the ICT components of the smart grid.
Special focus is laid on the metrics available for assessment of two phases of smart grid operation:
the duration before a failure occurs, and the recovery phase after an inevitable failure. The former is
characterized by reliability, which is determined based on information about cascading failures. The
latter is quantified using resilience, which can in turn facilitate comparison of recovery strategies.
Huang proposes a k-to-n interdependence model for smart grids to represent cascading failures
between physical and cyber infrastructure [63]. Through calculating the fraction of functioning
parts (survival ratio) using percolation theory and generating functions, it is revealed that there is
a non-linear relation between controlling cost and system robustness. It is proven that there is a
threshold for the proportion of faulty nodes beyond which the system collapses. Similarly, Chopade
& Bikdash provide a novel approach to analyze vulnerabilities of interdependent smart grid networks
regarding their impact on network survivability based on interdependency modeling [32]. Marashi
& Sarvestani present an approach to model reliability in smart grid communication based on a
preliminary Markov embedded systems and describe how it can be evolved to capture vulnerabilities
[91].

Solutions to increase dependability in AMIs are, e. g., presented by Okabayashi et al. [117], who
investigate the consequences of gateway failures in smart grid communication networks and their
influence on the overall performance of smart grid services. A solution to the found challenges is
presented in the form of an algorithm for dynamic selection of gateways in a multi-homing smart
grid network. Varaiya et al. propose a new reliability concept based on real-time supply and demand
information from the smart grid as well as the stochastic nature of renewable resources and demand-
response [168]. While this model reflects the behavior of renewable energy sources well, there are
no proposals how to decrease observed risks or how the reliability of a given smart grid infrastructure

32 Chapter 2 Background and Related Work

could be improved. Nguyen & Flueck present a survivability strategy for communication networks in
smart grids based on multi-agent systems [110]. The main contribution here is a detection scheme to
track the status of communication links in smart grids. Apart from that, a strategy to handle failures
in the communication links is presented that allows—in the case of permanent failures—to inform an
administrator; in the case of temporary failures, message sending is delayed till the system function
is restored.

Apart from such software-based solutions, Shi et al. propose a redundancy optimization method for
smart grid AMI communication [146]; in particular, the redundancy optimization problem focus
on deciding which data concentrator in an AMI requires redundancy to meet certain reliability
goals. Based on a quantitative analysis model, which comprehensively considers both reliability and
economy, an advanced redundancy deployment method based on genetic algorithms is developed to
solve the proposed problem. Similarly, Niyato et al. also analyze the reliability of smart grids’ data
communication systems [114]. More specifically, the article focuses on a reliability analysis of the
wireless connectivity between a smart meter and the MDMS, given random failures of system devices.
In the end, a cost optimization is performed to determine a redundancy approach minimizing the
cost of failure as well as the cost of deployment of the wireless communications system. More
generally, Moslehi & Kumar [102] and Koziolek et al. [75] investigate reliability challenges in smart
grids in a broader scope, focusing on the reliability of power supply under various challenges. ICT
reliability or dependability are however not further discussed. Also, mainly basic ideas, e. g., the
influence of renewable and demand-response on reliability/survivability, are analyzed using an
abstract framework that deals with possible negative impacts on energy supply reliability.

Regarding dependability modeling, Alves et al. propose a fault tree-based methodology for smart
grid dependability evaluation, which is suitable to be applied in early design stages to evaluate
reliability and availability [5]. Also, potential critical regions and components of a smart grid can be
identified. In contrast to the fault tree-based methodology of Alves et al., this thesis uses a reward
net approach, which is already discussed as a future extension in their paper. The identification
of critical components, which uses a Birnbaum measure in the approach of Alves et al. is instead
covered by a sensitivity analysis in this thesis. Nieße et al. present a process model that allows to
contribute application-oriented research results for distributed control concepts in ICT for power
systems [113]. The process model is set up with an initial conceptualization phase followed by a
cycle of five phases with both analytical and experimental parts. While the process model presented
is not directly used in this thesis, the iterative phases it describes (analysis of designed solutions,
their implementation and subsequent experimentation) is also widely adopted here.

On the side of performance analysis, Priya & Saminadan propose a Worldwide Interoperability
for Microwave Access (WiMAX) based traffic priority model for the NAN and HAN in smart grids
[125]. In particular, three traffic types, differing in their QoS requirements are used to analyze
the suitability of WiMAX for smart grid usage. A similar topic is covered by Neagu & Hamouda
[109]. The investigation covers the performance of several different applications (e. g., metering
and pricing, electric cars, video surveillance and voice support) under the influence of the impulsive
noise over the communication layer. Quang et al. develop a testing framework as a guideline to
assess the performance of several different communication mediums and technologies in smart grid
communication networks [126]. Also, an evaluation of three different technologies in smart grids,
i. e., WiMAX, Mesh RF and PLC, is done based on several performance metrics, i. e., reliability, latency
and throughput. Stress tests are also carried out to determine the operating limit and capacity of
traffic in the communication network. None of the articles however cover infrastructure disruptions
in their analyses.

2.2 Related Work 33

2.2.2 Virtualization for Performability/Dependability

Performability in combination with virtualization techniques has and is still receiving a lot of research
attention. Thein et al. introduce a survivability framework for distributed systems through the
use of virtualization technology and software rejuvenation to provide continued service and fast
recovery [156]. While a detailed analysis regarding the survivability of the virtualized system is
carried out, performance is disregarded in the article. Yeow et al. investigate the impact of substrate
failures on virtual infrastructures, which may lead to cascading failures due to an overload induced
to the remaining servers [179]. To guarantee a certain level of reliability, it is suggested to add
redundant nodes and links that have sufficient capacities to the virtual infrastructure. This way, if
substrate failures occur, sufficient computing resources are available and the virtual network topology
is preserved. Kim et al. develop an availability model for virtualized system based on fault trees
and homogeneous Continuous Time Markov Chains (CTMCs), which incorporates hardware and
software failures, the latter also including virtualization failures (i. e., VMM and VM failures) [72].
The model is tested with high availability services and VM live migration settings. Nguyen et al.
propose a cluster model of virtualized servers using a SRNs approach [111]. The developed model
incorporates standby, VM live migration and failover techniques, as well as simplified failures and
recovery behaviors of physical servers and VMs. Finally, several SRN models are developed based on
different use cases to analyze ways to improve a system’s overall availability. In contrast, Machida et
al. develop a state-of-the-art approach on software rejuvenation in virtualized data centers to enable
an effective mitigation of software aging in both VMs and VMM [86]. By optimizing the placement
of VMs and the rejuvenation schedule, the performability of the overall system is increased. A similar
goal is pursued by Silva et al., where an approach for software rejuvenation based on automated
self-healing techniques is introduced [150]. To detect software aging and transient failures, a
continuous monitoring of system data and performability metrics is used, triggering an automatic
rejuvenation action if abnormal behavior is detected.

The usage of virtualization within the smart grid is a relatively recent approach. Liberatore &
Al-Hammouri proposes the usage of a system of heterogeneous networks to provide high levels of
real-time performance, reliability, and security [82]. The creation and exact nature of the virtual
networks is however not discussed, as well as their implications on performability. More recent
than the development of virtualization based approaches for performability is the usage of NFV and
Software-Defined Networking (SDN). However, these technologies gain more and more importance
currently, not only to increase smart grid performability, but also in other environments. Especially
in combination with cloud computing, NFV has evolved as a proposal from operators for hosting
network services as VNFs. Yu et al. [182] and Cerroni & Callegati [29] state that NFV can be used
to replace currently costly hardware middleware in clouds to provide similar, yet flexible and cost-
effective services. Apart from NFV itself, the underlying substrate infrastructure, namely the NFVI
has come to attention of researchers just recently. Cotroneo et al. [39, 38] evaluate dependability
concerns in NFV by employing fault injection techniques. However, the focus of both articles is
the reliability of NFVI under the influence of challenges originating from the usage of commodity
software and hardware issues, which is not applicable in our scenario, where the NFV is executed
and hosted on servers supervised by professionals. In addition to NFV, SDN is a related approach
currently gaining significant attention, especially to increase performability measures; this is, e. g.,
presented by Di Mauro et al., aiming at selecting the best redundancy scheme for an SDN controller
[41]. The SDN model aims to compare various redundancy schemes under the influence of randomly
occurring failures using a CTMC modeling approach.

34 Chapter 2 Background and Related Work

2.2.3 Combining Approaches & Own Contributing Work
As the previously described approaches showed, there is significant interest in increasing the per-
formability of smart grid communication infrastructures. However, the solution approach of this
thesis is not yet introduced in other authors’ works. However, there have already been approaches
that use virtualization to increase performability in smart grid networks, which are discussed next.

Xin et al. develops a virtual smart grid architecture based on a cloud approach and suggest the
virtualization of various elements within the smart grid and therefore directly support the approach
of this thesis [177]. In contrast to the approach by Xin, the solution presented by the author suggests
a concrete architecture for a AMI communication through virtualization. Similar approaches dealing
with smart grid computations in cloud infrastructures are discussed by Sivapragash et al. [151] and
Xiang et al. [175], among others. While cloud-based approaches offer advantages in flexibility and
scalability, the downsides are possible security, privacy and data protection challenges [31, 145].
On the dependability side, clouds are certainly favorable in the computation domain compared to
single servers due to their decentralized processing. Yet, the infrastructural dependability questions
(especially in the LMN, HAN, and NAN domain) remain unsolved by such approaches. A framework
based on network virtualization for smart grid communications is proposed by Lv et al. [85]. In the
framework, real-time services are supported by virtual networks that are mapped to two physical
networks simultaneously, i. e., wireless mesh and PLC networks. The enhanced transmission diversity
through the two networks contributes to the reliability of real-time services. Since the virtual network
mapping problem is NP-hard, a heuristic solution is developed to solve the problem. Aydeger et al.
presents an SDN solution for redundant communications in smart grids [10]. Specifically, multiple
connection interfaces among distribution substations are developed to provide redundant network
connectivity. An SDN approach to manage smart grid communication is also introduced by Rinaldi et
al. [136]. The preliminary feasibility analysis of the approach seems promising, although a more
detailed modeling and analysis of the system is needed due to the extreme heterogeneity of the
network. Dorsch et al. presents and analyzes a flexible and dynamic network control approach based
on SDN for meeting the specific communication requirements of both distribution and transmission
power grid [44]. Results indicate the advantages of SDN compared to traditional routing and QoS
mechanisms, providing a more reliable communication network, which is able to handle complex
failures. Pfeiffenberger et al. evaluates the use of SDN for reliable communication, especially robust
multi-cast between substations by providing one-link fault tolerance with little packet loss [122].

The solutions detailed here up till now mainly covered the challenges and possible solutions for
communication links, yet not the services included in a smart grid system. The approaches employing
NFV discussed previously focus on other application environments [182, 29] or on the underlying
infrastructure, yet not the provided services [39, 38]. The next paragraph covers several papers
which are (co)authored by this thesis’ author and encompass the research topics of this thesis directly
or partially. The papers are discussed in chronological order of their publication; also, the topics and
results of each publication influencing this thesis are highlighted.

The challenges of interconnecting the legacy power grid with ICT and communication networks are
investigated by Berl et al. [16]. The results show that the communication is challenging within smart
grid communication networks due to numerous requirements, such as privacy, security, resiliency,
and QoS. Particularly, the resilience of communication needs to be considered to maintain the
power grid in a stable and controlled state. The paper suggests a Virtualized Energy Information
Network (VEIN), where the energy information network is divided into multiple virtual networks
that run over a common substrate. The results show that although smart grid related traffic is routed

2.2 Related Work 35

over the public Internet together with other traffic in this approach, VEIN is able to provide a secure
separation between traffic flows. Additionally, VEIN is able to provide a high level of dependability
in terms of fault tolerance, as it allows for a transparent aggregation of access and transmission
technologies within virtual links.

Apart from security and data protection challenges in the smart grid as a whole, the usage of network
virtualization techniques and NFV in AMIs is discussed by Benze et al. [14]. Using both approaches,
it is on the one hand possible to combine multiple substrate networking technologies into a single
logical link, while on the other, using NFV, several services can be hosted on a single substrate
hardware device. This can ensure certain QoS criteria on the network side and enables a rapid
deployment of virtual smart grid services, offering a highly flexible and scalable overall architecture
with superior performability.

Finally, the author discusses the usage of NFV technologies to construct a virtual AMI network to
transmit information in a dependable and cost-effective way is illustrated [112]. After the discussion
of dependability requirements of AMIs and the shortcomings of current approaches, the reliability
and availability of a new architecture based on NFV is analyzed using a Markov Imbeddable Structure
approach. Finally, a cost model is developed to compare the novel approach to current AMIs.

Dependability,

Performance and

Performability

Smart Grid

AMI

Virtualization

NFV

[89], [16], [15],
[14], [44], [10],

[154], [122], [112]

[82], [177], [151],
[175], [85], [31],

[136], [145]

[29], [39],
[182], [38]

[86], [156], [72],
[150], [111], [41]

[102], [168], [114],
[32], [63], [126], [75],
[91], [1], [110], [174],

[125], [146], [117], [70]

Figure 2.5.: Localization of related work in the research domains covered by this thesis

2.3 Summary
As the previous paragraph shows, there are—besides the own works of the author—currently mainly
two general directions that suggest to employ virtualization in critical infrastructures such as the
smart grid.

First, cloud-based architectures, as suggested by Xin et al. [177], Xiang et al. [175], and Sivapragash
et al. [151] that use the on-demand flexibility and scalability to process the large amounts of smart
grid data (mainly AMI related) effectively and efficiently. There are two remarks that need to be

36 Chapter 2 Background and Related Work

mentioned in relation to these solutions. First, only the service provider’s infrastructure benefits
from a cloud approach, leaving the consumer’s side with performability challenges. While the service
provider certainly needs to fulfill high performability requirements, there are usually highly reliable
and well-performing servers present at a utility provider’s data centers. Also, there are legal issues,
which are only mentioned briefly here. As AMI data is classified as highly personally identifiable data,
there are legal restrictions on where and how such data may be stored, transferred and processed
[176]. This directly contradicts the concept of cloud computing, which is based on (worldwide)
distributed processing of data and subcontracting of data center providers from various countries,
each following different legal specifications.

Second, there are approaches that suggest the usage of virtual networks in utility communication or
virtualizing parts of the utility’s hardware infrastructure, e. g., by Yeow et al. [179], Lv et al. [85],
and Aydeger et al. [10]. While both research directions tackle existing challenges within critical
infrastructures, the main issue is that the focus of all approaches lies on the provider’s side of the
utility infrastructure. Also, the goal of using virtual networks in AMIs is the preservation of privacy
by isolation of different communication flows. To increase the performability of smart utilities by
virtualization technologies is however a new research topic that has yet to be investigated in detail.
Finally, in Figure 2.5, the related work is aligned with the research topics covered within this thesis.

2.3 Summary 37

3Improvement of AMI Systems using

Virtualization

In this chapter the question is discussed whether virtualization technologies are suitable to improve
the performability of computing systems—especially AMIs. To do so, first, an overview of the
currently proposed AMI architecture is given in Section 3.1.1; second, a preliminary dependability
evaluation of the architecture is provided in Section 3.1.2. Thereafter, the dependability implications
of virtualization technologies are assessed: In Section 3.2.1, the influence on reliability is highlighted,
in Section 3.2.2 the impact on corrective and preventive maintainability is evaluated, and finally, in
Section 3.2.3, the availability influence of virtualization is analyzed. After that, two scenarios for
virtualization in context of performance/performability are evaluated: First, the possible overhead
types induced by virtualization are investigated in Section 3.2.4.1, before the case of “bare” virtu-
alization (Section 3.2.4.2) is discussed, highlighting the negative consequences of virtualization;
next, the “applied” virtualization scenario (Section 3.2.4.3), that includes the positive influences
of virtualization (i. e. increased availability through redundant service provision, load balancing,
etc.). In the end, a summary is given in Section 3.3, weighing the results of the analyses to answer if
virtualization is a suitable approach to improve smart grid AMIs.

Contents
3.1 Overview of Current AMI Architecture . 40

3.1.1 Architecture Overview . 40

3.1.2 Preliminary Evaluation . 40

3.2 Performability Impact of Virtualization . 41

3.2.1 Reliability . 42

3.2.2 Maintainability . 45

3.2.3 Availability . 51

3.2.4 Performance/Performability . 52

3.3 Summary . 58

39

3.1 Overview of Current AMI Architecture
Before a new AMI architecture is introduced in Chapter 4 of this thesis, it is important to first
evaluate how the currently planned AMI performs regarding performance and dependability to
identify current weaknesses. This is evaluated briefly in Sections 3.1.1 and 3.1.2.

3.1.1 Architecture Overview
The currently proposed AMI (as described by Eckert et al. [45]) is depicted in Figure 3.1. It
is noteworthy that the figure does not depict an AMI with all its actors in its entirety; yet, the
most relevant entities, including those in household, third-party and service provider domain, are
included.

t ps1

. . .

t psn

Customer i

smi

gwi

r i dc h

Figure 3.1.: Standard Smart Metering Architecture scheme

On the left hand of the figure, a common household and its AMI-related devices are depicted: smi

is the smart meter belonging to consumer i. Similarly, gwi is the gateway and r i the router of
the respective consumer i. Consumers are connected to a single data concentrator dc located in
the household’s neighborhood (i. e. its NAN). Beyond that, the WAN including additional services
(t ps1, . . . , t psn) and the AMI HES (h) is present. This AMI architecture is referred to as SSMA from
here on.

3.1.2 Preliminary Evaluation
As the evaluation of SSMA is executed in detail in Chapter 6, within this section, only a brief
description of the main challenges of SSMA is given, based on the results from the author’s previous
work [112]. The results were achieved by using a Markov Imbeddable Structure (MIS) approach to
evaluate the reliability and availability of SSMA. For reasons of briefness, only the most important
parts of the analysis’ methodology are included here, while the focus lies on the achieved results. In
the evaluation part, the same assumptions (see Section 6.1.1) as stated for the analysis performed in
Chapter 6 apply.

For the SSMA MIS evaluation, first, the system’s states need to be defined. As only a binary
distinction of the system’s |C | components into “functional” (represented by a binary 1) or “failed”
(represented by a binary 0) is done, the current state can be visualized by a |C |-dimensional binary
vector V. It follows that the overall state count is 2|C |. Next, a probability vector Π0 is defined,

40 Chapter 3 Improvement of AMI Systems using Virtualization

Π0 = [Pr(Y0 = V0), Pr(Y0 = V1), . . . , Pr(Y0 = VC)]>. The ith entry Pr(Y0 = Vi) illustrates the probability
that the system’s initial state is Vi. > defines a vector transposition. Assuming that the system’s
initial state is fully functional (V0), it follows that Π0 = [1,0, . . . ,0]>. The transition probabilities
are defined for each component c ∈ C as a transition matrix Λc. In each matrix Λc, the entry pi j

states the probability of the system switching from state Vi to Vj due to the failure of component
c. Last, a 2|C |-dimensional binary vector u is defined, whose ith state is 1, if state Vi is considered
functional; and 0, if state Vi is considered failed. Using these variables, the overall reliability of the
system can be expressed as R= (Π0)>

�∏C
c=1Λc

�

u. Using the described methodology, the analysis of
SSMA yields the results illustrated in Figure 3.2.

0 2000 4000 6000 8000 10000

0

20

40

60

80

100

Time [h]

Sy
st

em
re

lia
bi

lit
y

[%
]

(a) Reliability evaluation

0 50 100 150 200

0

20

40

60

80

100

MTTR [h]

Sy
st

em
av

ai
la

bi
lit

y
[%

]

(b) Availability evaluation

Figure 3.2.: Reliability and availability of SSMA

Using SSMA, most devices in the communication infrastructure are under end-user control (namely
smi, gwi, and r i), which makes it hard to predict the Mean Time To Repair (MTTR). The reason
behind this is that it cannot be assumed that failures in the user’s domain are immediately detected,
let alone repaired. Depending on the level of technical experience of a user, the time invested into
repairing or replacing a failed device can vary greatly. Based on the failure rates given in the author’s
previous work [112] and Equation (3.2), the MTTR of SSMA is calculated as MTTRSSMA = 185.15 h.
The availability of SSMA— depicted in Figure 3.2b—is derived using Equation (3.4) and the MTTR.

For SSMA, the inherent availability is ASSMA =
∫∞

0 RSSMA(t)d t
∫∞

0 RSSMA(t)d t +MTTRSSMA
= 94.250%.

While only reliability and availability are analyzed within this section, the results show quantitative
evidence (given the input parameters from [112]) that the dependability of SSMA requires im-
provement, which are qualitatively generalizable under certain input parameter assumptions. These
findings are also confirmed by Xiang et al. [174] and Xu et al. [178]. In the following Section 3.2, the
utilization of virtualization within AMIs is investigated, which aims to increase their performability.

3.2 Performability Impact of Virtualization

Next, it is investigated if the underlying technological approach used in the proposed solution
described in Section 1.2, namely virtualization, is at all an appropriate way to increase the performa-
bility of systems in general, and of critical infrastructures, such as AMIs, in particular. Currently,
virtualization is applied in a large variety of ICT areas, with a prevalent tendency to be treated as a

3.2 Performability Impact of Virtualization 41

panacea. However, at the moment, such one-sided approaches are often made without fully consid-
ering the impact on performability. Therefore, in accordance with the definition of performability
(Definition 2.5) given in Section 2.1.1.3, the following discussion needs to clarify four questions,
namely, if virtualization is able to enhance the:

1. reliability (Section 3.2.1),

2. maintainability (Section 3.2.2),

3. availability (Section 3.2.3), and

4. performance (Section 3.2.4),

of systems.

3.2.1 Reliability
The evaluation regarding the influence of virtualization on reliability is based on the methodological
approach and findings by Ramasamy & Schunter [127]. To be able to give a meaningful, yet not too
lengthy approach, a combinatorial modeling is used in the reliability analysis (as opposed to, e. g.,
Markov modeling) to compare two scenarios where first, a single node is offering a service without
virtualization, and second, with virtualization and several identical services running concurrently
serving as backups. This way, it is possible to derive lower bounds on the VMM reliability and
the number of VMs required for the virtualized scenario to achieve higher reliability than without
virtualization.

In the combinatorial modeling approach used, a system is represented as a RBD. As a simplification,
it is assumed that the failures appearing in different parts of the RBD are independent. While such
assumptions are possibly not completely true for real environments, it needs to be noted that the
reliability results obtained from combinatorial modeling represent upper bounds. Both different
scenarios are depicted in Figure 3.3 below; the non-virtualized case in Figure 3.3a, the virtualized
case in Figure 3.3b.

vm0

vmn

hw s

(a) Non-virtualized scenario

hw vmm

vm0 s0

. . .

vmn sn

(b) Virtualized scenario

Figure 3.3.: RBD models of non-virtualized (left) and virtualized (right) scenarios

In the first scenario, a single non-virtualized node is analyzed. This node itself contains a substrate
(hw) and service part (s) (which includes both operating system and software-based services).
Combining this coarse granularity and the previously made assumptions, the non-virtualized scenario
can be represented as a simple serial system consisting of its substrate and software part. The
reliability is calculated in a straightforward way as Rnv = Rhw

nv Rs
nv, where Rnv denotes the system’s,

Rhw
nv the substrate’s and Rs

nv the (non-virtualized) service part’s reliability, respectively.

In contrast to the non-virtualized case, Figure 3.3b depicts the RBD for a node consisting of a
substrate (hw), a VMM (vmm) running in hardware-virtualization mode, and one or more virtual

42 Chapter 3 Improvement of AMI Systems using Virtualization

machines (vmi), each hosting—as assumed—an identical services (si). It is further assumed that the
VMs provide identical service in a concurrent and independent manner; also, all virtual machines
and identical virtual services are assumed to have the same reliability (Rvm0

v = Rvm1
v = . . .= Rvmn

v ,
Rs0

v = Rs1
v = . . .= Rsn

v). Furthermore, the reliability of non-virtualized services is expected to be the
same as those of virtualized services (i. e., the contents of a virtual machine perform as reliably as the
service part of a non-virtualized node; Rs

nv = Rs
v), same holds for the substrate in the non-virtualized

and virtualized scenario (Rhw
nv = Rhw

v). The combinatorial solution of the resulting RBD can then be

calculated by Rv = Rhw
v Rvmm

v

�

1−
n
∏

i=1
(1− Rvmi

v Rsi
v)
�

.

To evaluate the conditions required for a reliability increase by virtualization, the in-equality Rv > Rnv

needs to be analyzed further, which leads to:

Rhw
v Rvmm

v

�

1−
n
∏

i=1
(1− Rvmi

v Rsi
v)
�

> Rhw
nv Rs

nv . (3.1)

Applying the previously established assumptions to In-equation (3.1) leads to Rvmm
v

�

1 −
n
∏

i=1
(1 −

Rvmi
v Rsi

v)
�

> Rs
nv. As Ramasamy et al. also concluded, this directly yields several conclusions [127].

First, if it is assumed that n= 1, In-equation (3.1) results in Rvmm
v

�

1− (1− Rvm
v Rs)
�

> Rs. Because of
that, it follows that under the generally acknowledged assert that reliability measures are < 1 under
realistic conditions and the assumption that n = 1, a virtualized service cannot achieve the same
reliability as a non-virtualized service. If n> 1, several other results become apparent. As n increases,

the term
�

1−
n
∏

i=1
(1− Rvmi

v Rsi
v)
�

converges, therefore lim
n→∞

�

1−
n
∏

i=1
(1− Rvmi

v Rsi
v)
�

= 1. This further bears

the result that the VMM reliability Rvmm
v is a limiting factor in scenarios where multiple redundant

identical VMs are present. With these two results in mind, the following corollary is formulated.

Corollary 3.1: Reliability of virtualized systems

Given a fixed substrate reliability Rhw, the following conclusions can be drawn:

Rvmm
v < Rs

nv ⇒ Rv < Rnv

Rvmm
v = Rs

nv ⇒

�

1−
n
∏

i=1
(1− Rvmi

v Rsi
v)
�

< 1⇒ Rv < Rnv

�

1−
n
∏

i=1
(1− Rvmi

v Rsi
v)
�

= 1⇒ Rv = Rnv

Rvmm
v > Rs

nv ⇒∃ n ∈ N :
�

1−
n
∏

i=1
(1− Rvmi

v Rsi
v)
�

> Rs
nv ⇒∃ n ∈ N : Rv > Rnv ,

where n is the number of VMs hosted on the VMM of the virtualized system.

Proof 3.1: Reliability of virtualized systems

The proof of Corollary 3.1 follows from In-equation (3.1).
�

To give an example showcasing the influence of virtualization on the reliability, the following
parameters are assumed:

3.2 Performability Impact of Virtualization 43

• Rhw
nv = Rhw

v = 0.99

• Rvmi
v = 0.8

• Rsi
v = 0.8

• Rs
nv = 0.9

• Rnv = Rhw
nv Rs

nv = 0.891

In the example, the number of virtual machines required under a certain level of VMM reliability is
analyzed to match the level of reliability of a non-virtualized system.

0.8

0.9

1.0

1
2

3
4

5
6

7
8

0.4

0.6

0.8

1.0

VMM reliability
(R

vmm
v

)
Number of virtual machines

Vi
rt

ua
ls

ys
te

m
re

lia
bi

lit
y

(R
v)

Figure 3.4.: Number of VMs required to surpass non-virtualized system reliability in relation to the VMM
reliability

Figure 3.4 depicts the results of In-equation (3.1) for the parameters given above and varying number
(1−8) of identical VMs and a VMM reliability in the range of 0.8 to 1.0. The figure also shows the
practical application of Corollary 3.1. All parts of the graphs marked as dotted red lines depict
reliability values that are lower than the non-virtualized system reliability, those marked in solid
green have higher values. It is visible that—in case of a VMM reliability lower than 0.9 (= Rs

nv)—the
reliability of a virtualized system (Rv) cannot be as high as that of a non-virtualized one (Rnv). In
contrast, with Rvmm

v values being higher than 0.9, there exists a number of VMs to outperform the
non-virtualized system regarding reliability.

Summarizing, it can be concluded that an increase in reliability is achievable using virtualization if
certain preconditions are met, among them especially a high VMM reliability. Furthermore, several
assumptions were used in the preceding analysis, which might not hold in certain scenarios, e. g.,
the independence of virtual machines hosted on a single substrate cannot necessarily be guaranteed,
as common cause effects originating from either commonly suffered external effects or single failure
causes originating from missing diversity may impair several VMs in a similar manner. While such
effects require a more in-depth investigation in the analysis (Chapter 6), these possibilities are not
analyzed here.

44 Chapter 3 Improvement of AMI Systems using Virtualization

3.2.2 Maintainability

As the availability of a system is mainly dependent on its reliability and maintainability [21], this
subsection deals with maintainability, before availability is covered in Section 3.2.3. A restoration
process includes several steps required to restore a system’s functionality, which not only consists
of repairs required after the failure of a system, but also preventive maintenance as well as delays
encountered in logistics (e. g., shipping of new hardware) and administration. The types of delays a
system may face during its restoration are given in Figure 3.5.

Time

Uptime

Standby
time

Operating
time

Downtime

Active
maintenance

Corrective
maintenance

Preventive
maintenance

Logistic
delay

Administrative
delay

Figure 3.5.: Maintenance time relations (based on Blanchard et al. [21])

In the current analysis of maintainability in the context of virtualization, not all aspects are deeply
investigated; main subject is the active maintenance, including corrective and preventive maintenance
(green); both are further discussed in the next two paragraphs. The administrative delay and logistic
delay (red) are disregarded in the following analysis.

3.2.2.1 Corrective Maintenance

For the assessment of a system’s maintainability, the corrective maintenance time (M c t) as well
as—for a system-wide assessment—its mean, i. e. the mean corrective maintenance time (M

c t
, also

known as MTTR) is often used. Equation (3.2) defines the (weighted) mean corrective downtime as:

M
ct
=MTTR=

∑

λi M
c ti
∑

λi
, (3.2)

where λi is the failure rate and M ct i is the corrective maintenance time of the ith element of a
system. To be able to calculate maintenance times, a further look at the distribution of repair times
is required. Usually, corrective maintenance times are characterized by one of the following three
distributions [21]:

1. A normal distribution is usually a valid assumption for mechanical/electromechanical equip-
ment with a well-defined concept for repair and replacement or relatively straightforward
maintenance and repair actions (e. g., simple removal and replacement) which leads to a small
amount of variations around the mean.

3.2 Performability Impact of Virtualization 45

2. An exponential distribution applies to maintenance tasks and maintenance actions whose
completion times are independent of previous maintenance experience. This e. g. happens in
cases where several possible fixes of similar likelihood have to be exercised subsequently, until
the correct solution is found.

3. A log-normal distribution approximates the repair behavior of electronic equipment without
fixed repair strategy and the assumption that most maintenance and repair tasks comprise
of several subsidiary tasks of both unequal frequency and time, which leads to an uneven
distribution of repair times.

From the three possible distribution listed above, in the analysis of virtualization benefits in depend-
ability, number 1. and 3. are not applicable due to the specialization of 1. on mechanical devices,
which are clearly not the focus in the given scenario that mainly covers electronic devices. Number
3.’s applicability is limited to systems without a fixed repair strategy in place. However, such an
assumption contradicts the operation of a critical infrastructure, where well-managed maintenance
and repair strategies can be safely assumed. Therefore, an exponential distribution of corrective
repair times, as described above in number 2., are assumed in the following. In a scenario with
exponentially distributed corrective maintenance times, the maintainability

�

M(t)
�

can be calculated
using:

M(t) =
∫ t

0 µe−µt d t = 1− e−µt ,

where µ is the system’s repair rate and t the maximum allowed maintenance time. In the following
comparison of non-virtualized and virtualized systems, the weighted M

c t �
as described in Equation

(3.2)
�

is going to be used to reflect the changing restoration frequency in the virtualized case.
Therefore, to assess the influence of virtualization on a given system, the following two equations
are employed to calculate M

c t
:

M
c t
nv =

λhw
nv M

cthw
nv +λs

nv M c ts
nv

λhw
nv +λs

nv
, and

M
c t
v =

λhw
v M

cthw
v +λvmm

v M c tvmm
v +λvm

v M c tvm
v +λs

v M c ts
v

λhw
v +λvmm

v +λvm
v +λs

v
,

where M
c t
nv stands for the mean corrective maintenance time of a non-virtualized and M

c t
v for the

mean corrective maintenance time of a virtualized system, respectively. The equations above are
however only applicable if a single VM and service is used in the virtualized system. The failure rate
of multiple parallel elements (as depicted in Figure 3.3b) can be estimated by:

λvm/s
v = (n!λ

vm/s

v)q+1

(n−q−1)! (µvm/s
v)q

,

where n is the overall number of parallel VMs/services in the system and q is the number of parallel
VMs/services allowed to fail without causing a system failure (in the given case n− 1).

In a similar scenario as previously used to showcase the behavior of reliability in a virtualized system,
the maintainability is analyzed in the following. The parameters of the example system are assumed
as:

46 Chapter 3 Improvement of AMI Systems using Virtualization

• λvm
v = 5.00E−4

• M c tvm
v = 1.67E−2h

• M c ts
v = 8.30E−3h

• M c ts
nv = 3.34E−2h

• λhw
nv = λhw

v = 1.00E−6

• λs
nv = λv

s = 1.00E−3

• M c thw
nv = M cthw

v = 96h

• M
c t
nv = λhw

nv M
c thw
nv +λs

nv M cts
nv

λhw
nv λ

s
nv

= 1.2933E−1h

The corrective maintenance time of non-virtualized software components is assumed to require
a longer restoration time than their virtualized counterparts, as a software failure may require a
complete restart of the machine, while virtualized software can—in such cases—often be restored
by restarting their hosting VM, which is also possible via remote access. Also, advanced recovery
mechanisms available in virtualized environments, such as checkpointing the application state at
the VM- or byte-code level, allow efficient restarting of the saved state [46]. Such technologies
additionally decrease the software-sided corrective maintenance time in virtualized systems.

0.0

0.1

0.2 1.0E−3

5.0E−3

1.0E−2

0.0

0.1

0.2

0.3

M v
ctvmm [h] λ

vmm
v

M
ct v

[h
]

0.0 h

0.1 h

M
c t
nv

0.2 h

0.3 h

M
c t
nv

0.0 1.0E−2

Figure 3.6.: Influence of λvmm
v and M c tvmm

v on M
c t

v compared to M
c t

nv

In the example, the influence of the VMM failure rate (λvmm
v) as well as the VMM corrective

maintenance time (M c tvmm
v) on the mean corrective maintenance time (M

c t
v) is analyzed and

compared to a non-virtualized system. In the example scenario, it is assumed that two virtual
machines (and their respective offered services) are working in parallel. Figure 3.6 depicts the
results of the VMM analysis. All areas colored in green depict scenarios where M

c t
v < M

c t
nv , all areas

colored in red depict scenarios where M
c t
v ≥ M

c t
nv .

Apart from the properties of the VMM, the number and failure rates of the virtual machines running
on a VMM and the respective influence on the M

v
ct was investigated. The resulting behavior is

3.2 Performability Impact of Virtualization 47

depicted in Figure 3.7. The logarithmic x-axis represents a “failure rate multiplier” (mλ), which is a
parameter m ∈ R+0 that is multiplied to the original failure rate of the VMs/services. This leads to
Equation (3.3).

M
ct
v =

λhw
v M

c thw
v +λvmm

v M ctvmm
v +

(n!λ
vm/s
v)q+1mλ

(n−q−1)! (µvm/s
v)q

M
c tvm/s
v

λhw
v +λvmm

v +
(n!λ

vm/s
v)q+1mλ

(n−q−1)! (µvm/s
v)q

, (3.3)

where mλ is the failure rate multiplier.

1E−3 1E−1 1E1 1E3 1E5 1E7 1E9

0.0

M
c t
nv

0.2

0.4

0.6

mλ

M
ct v

[h
]

1 VM/service 2 VMs/services 3 VMs/services

Figure 3.7.: Influence of virtual machine and service failure rate running in parallel on M
c t

v compared to M
c t

nv

The results of all mean corrective maintenance time tests point to a similar behavior: A low failure
rate of either the VMM or the VMs/services increases the mean corrective maintenance time; which
is due to the relative increase of substrate failures having a longer corrective maintenance time.

In addition to the mean corrective maintenance time, using the relation of M
ct

, µ, and M(t) the
maintainability of both virtualized and non-virtualized systems is derived as:

M(t) = 1− e−
t

Mct .

The maintainability results of the scenario are depicted in Figure 3.8. It is assumed here that λvmm
v =

2.0E−4 and M c tvmm
v = 3.33E−2h. In the figure, the solid white line indicates the maintainability

of the non-virtualized system, the dashed white line represents a virtual system with a single
VM/service, while the dotted white line shows the the maintainability of a virtualized system with
two VMs/services running in parallel. The results indicate two main findings:

1. The properties of the VMM have major influence on the mean corrective downtime and the
maintainability of a virtualized system. The mean corrective downtime is prolonged by either
an increasing VMM corrective maintenance time (M c tvmm

v) or by a decreasing failure rate,
leading to a relative increase in failure rates associated with longer corrective maintenance
times, especially substrate failures.

48 Chapter 3 Improvement of AMI Systems using Virtualization

0

5

10

15

0.0

0.5

1.0
0.0

0.5

1.0

µt [h]

M
(t
)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.8.: Comparison of virtualized and non-virtualized systems’ maintainability

2. The failure rate of VMs and their respective services can be arbitrarily reduced, depending on
the number of VMs running in parallel. Despite the fact that this reduces a virtualized system’s
overall failure rate, the mean corrective maintenance time as well as the maintainability show
a degradation with lower VM/service failure rates. This is a result of the relatively dominating
substrate failures (having a long corrective maintenance time) in case of highly redundant
software. However, it is noted here that a higher mean corrective maintenance time only
implies that in case of a failure, its repair is likely to require a longer restoration time. If a single
VM/service is hosted on a VMM, the same effect manifests in the opposite direction: The mean
corrective maintenance time is decreased because of the higher failure rates in the VMM and
VM/service parts of the systems leading to a quicker recovery on average.

3.2.2.2 Preventive Maintenance

Apart from the corrective maintenance analyzed in the previous paragraph, the influence of virtu-
alization on the preventive maintenance time is discussed briefly next. Preventive maintenance is
mainly used to avoid system deterioration, including both hard- and software. Preventive hardware
maintenance is mainly conducted by regular inspections including the computation hardware itself
and environmental variables, such as humidity and cooling adjusting systems. In contrast, preventive
maintenance on the software side may include updates of software (both applications and the
underlying OS) and drivers, as well as rejuvenation to prevent software aging caused, e. g., by integer
overflows, data corruption, numerical error accumulation or resource leaks.

Theorem 3.1: Preventive maintenance performability

The usage of preventive maintenance measures does not bear a performability benefit for a
system with exponential failure distribution, assuming its services are of non-aging nature.

Especially the latter statement is of special interest in a scenario where exponential failure and repair
times are assumed. If a non-aging software is present (i. e., no performance loss after some time),
preventive maintenance would not be reasonable, due to the constant failure rate and performance
level, leading to Theorem 3.1, which is proven in Proof 3.2.

3.2 Performability Impact of Virtualization 49

Proof 3.2: Preventive maintenance performability

Reliability: Imagine a system with fpt = f0 and exponential failure distribution, then

Rnpm(t0) = e−λt0

Rpm(t0) = e−
λ
f0 e−λ(t0−

1
f0
) = e−

λ
f0 e−λt0+

λ
f0 = e−λt0 = Rnpm(t0).

Rpm represents the reliability of a system with preventive maintenance, Rnpm without,
respectively.

Maintainability: The maintainability measure only regards corrective maintenance time (M ct),
preventive maintenance is of no importance. Therefore no further proof is required.

Availability: Depending on the availability metric employed, different effects are encountered
due to preventive maintenance.

• Inherent availability: Does not consider preventive maintenance, so no proof is required.

• Achieved availability: The achieved availability is defined as:

Aa =
MTBM

MTBM+M
,

where MTBM is the mean time between maintenance and M is the mean active main-
tenance time, M = M

c t
+M

pt

#mc t+#mpt ; #mct is the number of corrective maintenances, #mpt the
number of preventive maintenances performed, respectively. It follows that:

M
pt
= 0⇒ Aa = Ai

M
pt
> 0⇒ Aa < Ai ,

assuming M
c t

, #mct , and #mpt being identical in both cases.

Performance: As non-aging services are assumed, the performance level is binary, i. e., a
constant value pc throughout the available phases of the system, and 0 during its unavailable
phases. As Aa ≤ Ai , it instantly follows that pnpm ≥ ppm.

�

While no benefit regarding dependability or performance under the assumption of non-aging software
components may be observed, preventive maintenance may be successfully applied if this assumption
is loosened. This way, degraded elements of a system may be restored to their initial performance
level, as observed in software rejuvenation. Such measures are further discussed in Section 4.4.2.

To measure the preventive maintenance time required by a system, the mean preventive maintenance
time is used, defined as

M
pt
=
∑n

i=1 fpti
M pti
∑n

i=1 fpti
,

where fpt i
is the preventive maintenance frequency and Mpt i

is the preventive maintenance time
of system element i. Looking at the nature of preventive maintenance tasks, a virtualized system
can circumvent most challenges that arise during the maintenance period. All VMs hosting virtual
applications can be migrated during (planned) hard- and software maintenance procedures, enabling
a through maintenance and testing period before re-migrating the VMs to their original substrate. This
is not necessarily possible in non-virtualized systems. Here, tests in a non-productive environment

50 Chapter 3 Improvement of AMI Systems using Virtualization

are used to reduce the expected downtime during a preventive maintenance; however, it is impossible
to nullify the downtime if no redundant systems are being used.

3.2.3 Availability
Availability—while not being unrelated to reliability—does in contrast to reliability, which represents
the probability of a system to perform its required functions for a desired period of time under
specified conditions, include maintenance operations and represents the probability that the system
is capable of fulfilling its required function when it is called upon.

This leads to the conclusion that availability is not only related to reliability, but also depends on the
maintainability of a system, which are both covered in Sections 3.2.1 and 3.2.2, respectively. There
are multiple definitions of availability, depending on what types of maintenance times are considered
in the analysis. This results in several different classifications of availability, stated below.

• Inherent availability: The inherent availability represents the probability that a system
operates satisfactorily at a given point in time under stated conditions assuming an ideal
support environment (i. e., tools, spares, and personnel are instantly available). It explicitly
excludes logistics and administrative delays, as well as preventive maintenance times. However,
corrective maintenance times are included. Inherent availability is often derived by analyzing
the design of a system and is calculated as

Ai =
MTBF

MTBF+MTTR . (3.4)

• Achieved availability: The probability that a system operates with satisfactorily performance
at a given point in time under stated conditions in an ideal support environment (again
excluding logistics and administrative delays). However, achieved availability comprises—apart
from corrective maintenance times—the complete active maintenance, which also includes
preventive maintenance times. It is calculated as

Aa =
MTBM

MTBM+M
,

where M is the mean active maintenance time, as defined in Section 3.2.2.

• Operational availability: The operational availability is defined as the probability that a
system operates satisfactorily at a given point in time when used in a realistic operating and
support environment. This means that it includes logistics and administrative delays besides
the previously included active maintenance time. It is calculated as

Ao =
MTBM

MTBM+MDT ,

where MDT is the mean down time, defined as MDT =
λM c t+ fpt M pt+ fld M ld

λ+ fpt+ fld
.

As virtualized systems can be safely assumed to have a lower M c t and only corrective maintenance
times were considered previously, in the following, the inherent availability is used; achieved
availability is not considered because of the exponential failure assumption. Considering the
previously discussed example scenario, a slight increase in inherent availability is visible, as shown
in Table 3.1.

3.2 Performability Impact of Virtualization 51

System type Number of VMs Ai

Non-virtual n/a 0.99383
Virtual 1 0.99896
Virtual 2 0.99899

Table 3.1.: Inherent availability of non-virtualized and virtualized systems

Apart from the gains in inherent availability, additional gains are to be expected if other failure
distributions are considered. Main reasons behind this are, e. g., that typically, preventive mainte-
nance tasks, such as patch application, involve system restarts, and thus negatively effects service
availability. A service hosted in a VM however provides a way to remove faults and vulnerabilities at
run-time without affecting its availability, i. e. a copy of the VM is instantiated, the patch is applied,
and a restart is performed. After that, the original VM is gracefully shut down and future service
requests are redirected to the patched VM. Also, as already briefly described in the maintainability
part of the analysis, proactive software rejuvenation can, e. g., be performed easily by rebooting a
service or its hosting substrate. The downside of machine reboot is that the service is unavailable
during the reboot process. A VMM introduces a convenient layer to proactively rejuvenate a service
running inside a VM in a performance- and availability-preserving way. This can be realized by
periodically reinstantiating a VM from a clean image. The booting of the reincarnation VM is done
while the original VM still continues regular operation, thereby maintaining service availability. As
mentioned above in the context of patch application, techniques based on VM checkpointing and live
migration may be used to seamlessly transfer network connections and service state of the original
VM to the clean VM.

3.2.4 Performance/Performability
Finally, after the dependability attributes have been covered in the previous paragraphs, this section
deals with the performance/performability influence virtualization exerts on a system. First, the
possible overheads encountered in virtualization are introduced. After that, two general use cases of
virtualization are distinguished: First, the influence of virtualization on a single service is measured,
to evaluate the overhead induced by the usage of virtualization technology. Second, virtualization
is employed and assessed regarding its performance influence in realistic scenarios, such as load
balancing and failure mitigation.

3.2.4.1 Virtualization Overheads

The overheads encountered using virtualization technologies are mainly originating from two sources.
First, the overhead encountered due to the interference of the VMM acting as a link between the
substrate and the VMs; second, the sharing of substrate resources among multiple VMs leads to
competing requests for resources, causing additional overhead [157, 13]. The overheads encountered
in virtualization are further elaborated next:

• Central Processing Unit (CPU): CPU overhead is produced by several actions. For example,
whenever the virtual machine needs to access real hardware (causing a world switch from
the VMM to the host) or during Input/Output (I/O) interrupts that potentially involve the
VMM, the host and guest OS interrupt handlers. Moreover, network transmissions by guest
OSs involve two device drivers, and, furthermore, an extra copy of the guest OS’s memory is
sent to the host OS’s kernel buffers on a packet transmit. Additional examples are delivering

52 Chapter 3 Improvement of AMI Systems using Virtualization

virtual Interrupt Requests (IRQs) to a guest operating system, handling Interrupt Return (IRET)
instructions, and the Memory Management Unit (MMU) overheads associated with context
switches. All these additional actions require computational cycles, causing a CPU overhead.

• Random Access Memory (RAM): RAM overhead originates from multiple sources. Examples
are the additional time taken to get memory access from inside a VM or the RAM required
by the VMM adding to the overall RAM consumption of each VM. Also, there is a static,
system-wide memory overhead required by the VMM itself and further overhead introduced
by virtualization data structures, such as shadow page tables and reserved memory. The RAM
overhead increases with the number of Virtual Central Processing Units (vCPUs) used by a VM,
too.

• Disk I/O: In order to virtualize an I/O device, a VMM intercepts the I/O operations from
the guest OSs. These access requests are performed using privileged instructions, which are
trapped and emulated by the VMM. This incurs overhead from world switches between the
VMM and the host, and even from the expense of handling the privileged instructions used to
communicate with the hardware. I/O overheads are created by virtualization due to additional
data transfers of the involved device driver domains. Also, VMs running on a single VMM
compete for the available I/O resources from the underlying substrate, leading to a decreased
I/O performance.

• Network: There is an overhead attributed to the processing of VM network traffic by the VMM
layer for network packet processing that performs two important operations: Network Interface
Card (NIC) virtualization and virtual switching. Packet sending and receiving both involve
these two operations of accessing Virtual Network Interface Cards (vNICs) and going through
the virtual switching layer, the cost of which is directly added to the response time. When
the guest accesses vNICs, for instance, to send a packet, the VMM intervenes to identify the
NIC to communicate to. When a packet is received, the VMM processes that event and notifies
the correct vNIC. All the processing done in VMM combined is network related overhead.
Moreover, the CPU resources of the VM may be a limiting factor for network traffic. Due to
the CPU overheads encountered during network traffic, a system that is naively capable of
saturating a network link might instead become CPU bound when run within a VM.

3.2.4.2 Influence of “Bare” Virtualization

Before a performance/performability analysis is performed, it is both easily noticeable and important
to understand that if virtualization is simply introduced to a service without leveraging any of
its beneficial properties, such as, e. g., co-location of several virtual machines isolated among
each other or load-balancing, the overheads (as described in Section 3.2.4.1) decrease the overall
performance. Therefore, the next paragraph discusses a “bare” virtualization scenario, meaning a
single service is virtualized to measure the influence of the previously mentioned overheads on its
performance/performability. To evaluate the overhead present in the scenario, Equation (3.5) based
on Li et al. is employed [81].

O = |Bm−Bb |
Bb

· 100%, (3.5)

where O represents the overhead; Bm denotes the benchmark result of a service; Bb indicates the
baseline benchmark result of the service; |Bm − Bb| represents the corresponding performance loss.

3.2 Performability Impact of Virtualization 53

In the given evaluation, the performance of a service running directly on a substrate machine’s OS is
used as the baseline (i. e. 100% performance =∧ 0% overhead).

Given the description of overheads induced by virtualization in Section 3.2.4.1 and the Equation
(3.5) above, it directly follows that:

Onv =
|100%−100%|

100% · 100%= 0%, and

Ov =
|Bm−100%|

100% · 100%≥ 0%,

where Onv is the overhead present in a non-virtualized system, while Ov represents the overhead in a
virtualized system. Assuming that the overheads introduced by virtualization are ≥ 0%, this leads to
Bm ≤ Bb. Therefore, Ov ≥ Onv .

To give a better example regarding the overheads induced by virtualization as well as to quantify
them, several publications are available, e. g. by Morabito et al. [101], Tong et al. [158] and Li et
al. [81]. Using a similar approach as employed by Morabito et al., the overhead of virtualization is
evaluated using benchmarks in the CPU, RAM, disk I/O and networking dimension [101]. Before
that, the test system’s specifications are given.

Test Environment. In the following, the test setup to evaluate the virtualization overheads is given.
The test system used for the performance evaluation has the given specifications:

• OS: Windows 7 Professional Edition Service Pack 1 (64-bit)

• CPU: Intel Core i7-4770 @ 3.40 GHz

• RAM: 16 GB DDR3 SDRAM PC3-12800, 1.5 V, 800.0 MHz, 11-11-11-28

• Disk: Lite-On LCS-256L9S-11 256 GB, 512 bytes/sector, NTFS, cluster size 4 kB

For virtualization, VMware Workstation Pro 14.0 is used. The VM used during the tests is assigned
the full amount of substrate resources during the tests to offer comparable results. The operating
system installed inside the test VM is the same as on the substrate system7.

CPU. To evaluate the CPU performance, many benchmark tools are available, which differ regarding
the usage of multiple CPU cores, the focus on integer and/or floating point operations as well as
the inclusion of multimedia content. For the virtualization overhead, two benchmark tools are
used: To calculate the integer and floating point performance, the passmark benchmark8 is used; to
evaluate the multi-core efficiency, the y-cruncher9 tool (a multi-threaded benchmark to calculate the
value of Π) is employed, as suggested by Morabito et al. [101]. Figure 3.9 shows the results of the
benchmark.

As visible, virtualization induces a slight decrease in all CPU tests, indicating a low CPU overhead. The
integer computation performance loss due to virtualization is 1.77%, for floating point computations
0.84%, for multi-core efficiency 1.88%.

7 In real-world data centers and COTS servers, a different OS, such as Linux, may be present instead of Windows. While this
case is not investigated in this thesis, the results using either of both OSs are similar, which is confirmed by the findings of
Younge et al. [181].

8 PassMark Software – PC Benchmark and Test Software, URL: http://www.passmark.com, last accessed: 30/01/2018

9 y-cruncher – A Multi-Threaded Pi Program – NumberWorld, URL: http://www.numberworld.org/y-cruncher, last
accessed: 30/01/2018

54 Chapter 3 Improvement of AMI Systems using Virtualization

http://www.passmark.com
http://www.numberworld.org/y-cruncher

Integer Floating point Multi-core efficiency
0.0

0.5E4

1.0E4

1.5E4

2.0E4

Test scenarios

Pe
rf

or
m

an
ce

[M
O

ps
/s

]

0

25

50

75

100

Ef
fic

ie
nc

y
[%

]

Figure 3.9.: Comparison of CPU performance in substrate and virtualized environment

RAM. In order to test the RAM performance and overhead by virtualization, again, the passmark
benchmark is used. The basic RAM operations “read cached” (time taken to read a small block of
RAM held entirely in cache), “read uncached” (time taken to read a large block of RAM too large
to be held in cache), and “write” (time taken to write information into RAM), as well as its latency
(time taken to access RAM) are tested. All tests use a combination of 32-bit and 64-bit data when
reading or writing from or to RAM. The benchmark’s results are depicted in Figure 3.10.

Read cached Read uncached Write Latency
0.0

0.5E4

1.0E4

1.5E4

2.0E4

2.5E4

3.0E4

Test scenarios

Pe
rf

or
m

an
ce

[M
B/

s]

0

5

10

15

20

25

30

35

40

45

La
te

nc
y

[n
s]

Figure 3.10.: Comparison of RAM performance in substrate and virtualized environment

The overhead induced by virtualization is more severe than in the CPU test; in detail, the performance
decreased 4.86 % for “read cached”, 11.63 % for “read uncached”, and 8.23 % for “write”. The latency
in a virtualized environment increased by 6.90 % compared to the substrate.

Disk I/O. Similar to the evaluations performed by Valchanov, the performance impact of virtual-
ization on disk I/O is assessed using the Iozone benchmark10, which allows to test disk I/O with
a broad range of file (128 kB to 512 MB) and record sizes (4 kB to 16 MB) [166]. The disk I/O is

10 Iozone Filesystem Benchmark, URL: http://www.iozone.org, last accessed: 31/01/2018

3.2 Performability Impact of Virtualization 55

http://www.iozone.org

compared using the sequential read and write operations of the disk, which represents the records
being written to a new file, and read from an existing file, from beginning to end.

128 kB 512 kB 2 MB 8 MB 32 MB 128 MB 512 MB

4 kB

8 kB

16 kB

32 kB

64 kB

128 kB

256 kB

512 kB

1 MB

2 MB

4 MB

8 MB

16 MB

File size

R
ec

or
ds

si
ze

0.0 5.0E5 1.0E6 1.5E6 2.0E6

Read/write performance difference [kB/s]

128 kB 512 kB 2 MB 8 MB 32 MB 128 MB 512 MB

4 kB

8 kB

16 kB

32 kB

64 kB

128 kB

256 kB

512 kB

1 MB

2 MB

4 MB

8 MB

16 MB

File size

R
ec

or
ds

si
ze

Figure 3.11.: Difference of substrate and virtual read (upper) and write (lower) I/O performance

56 Chapter 3 Improvement of AMI Systems using Virtualization

The results depicted in Figure 3.11 show that the disk I/O performance in the virtualized environment
is again slightly impaired in comparison to the substrate. The performance decrease in the I/O
reading scenario is 11.41 % on average and 20.16 % at maximum. For the writing scenario, the loss
is 10.48 % on average and 18.92 % at maximum.

Network. To measure the network performance overhead, the application Netperf11 is used. Netperf
offers several predefined tests to measure network performance between two hosts. For the evaluation
of the virtualization overhead in networking, the following test setup was used:

• Two identical machines directly connected by 1 Gbps Ethernet link

• One host is running the netperf client (either on substrate OS or virtualized OS), the other the
netperf server

• The default configuration for socket and message sizes are used

• Each test duration is 300 seconds

• The netperf tests TCP_STREAM, UDP_STREAM, TCP_RR, and UDP_RR are employed

The STREAM test scenarios measure the throughput of incoming data, while the RR tests are used to
measure the request/response time. The test results are depicted in Figure 3.12.

TCP_STREAM UDP_STREAM TCP_RR UDP_RR
0

250

500

750

1000

Test scenarios

Pe
rf

or
m

an
ce

[M
bp

s]

0

25

50

75

100

R
eq

ue
st

/r
es

po
ns

e
la

te
nc

y
[µ

s]

Figure 3.12.: Comparison of network performance in substrate and virtualized environment

The overhead of virtualization causes a performance decrease of 6.46 % in TCP_STREAM and 7.24 %

in UDP_STREAM, in the TCP_RR scenario, a latency increase of 5.81 % is observed, in UDP_RR, the
increase is 4.65 %.

3.2.4.3 Influence of “Applied” Virtualization

While the previous Section 3.2.4.2 showed that virtualization applied to a single service hosted
on a single substrate entity induces overheads, the same is not true for “applied” virtualization,
i. e. scenarios where virtualization is used in a proper context, such as load balancing scenarios
or hot-spare usage of VMs to mitigate outages in certain geographical areas. In such application

11 The Netperf Homepage, URL: http://github.com/HewlettPackard/netperf, last accessed: 31/01/2018

3.2 Performability Impact of Virtualization 57

http://github.com/HewlettPackard/netperf

scenarios, the benefits of virtualization, which have already been covered in Sections 3.2.1 to 3.2.3,
must be weighed against the overheads induced by virtualization solutions, as discussed in Section
3.2.4.2.

According to Wolter et al., the main contributors to an improvement in performance are virtualization-
based software restoration/rejuvenation (increasing performance) on the one hand, and VM replica-
tion techniques (increasing availability) on the other [172]; both are further discussed in Section
4.4. In terms of performance/performability, this has the following consequences:

• As stated in Section 3.2.4.2, the performance (used here as a generic term covering all of the
four aforementioned dimensions, i. e. CPU, RAM, disk I/O, and networking) of a single service
(s1) executed in a virtualized environment is (assuming the virtualization overhead is > 0)
smaller than that of the same service s1 running directly on substrate⇒ Ps1

nv > Ps1
v .

• The availability of s1 hosted in a virtualized environment is increased compared to a substrate
hosting (assuming replicas of s1 are used), which is already argued in Section 3.2.3⇒ As1

v > As1
nv .

• Considering the performability measure of steady-state performability calculated as
Perf (hw1) =
∑

q∈Q pq r(q) (where hw1 is the substrate s1 is hosted on), it is easy to see that
the contributing factors to the performability measure are the steady-state probabilities of the
structural process (pq) and their associated rewards

�

r(q)
�

. Depending on the implementation
of the virtualization (number of VMs running in parallel, usage of software rejuvenation, etc.)
as well as other parameters (e. g., software aging and utilization), the results may lead to three
results:

1. The availability gain of virtualization outweighs the performance loss, leading to a higher
steady-state performability⇒

∑

qv∈Qv
pqv

r(qv)>
∑

qnv∈Qnv
pqnv

r(qnv).

2. The availability gain and performance loss are (nearly) equal, leading to a similar steady-
state performability⇒

∑

qv∈Qv
pqv

r(qv)≈
∑

qnv∈Qnv pqnv
r(qnv).

3. The availability gain is lower than the performance loss incurred by virtualization, thereby
causing a decreased steady-state performability⇒

∑

qv∈Qv
pqv

r(qv)<
∑

qnv∈Qnv
pqnv

r(qnv).

3.3 Summary
As this section shows, virtualization offers capabilities to enhance the dependability and performabil-
ity of a system by employing replication and fast restoration, as Sections 3.2.1, 3.2.2, and 3.2.3 show.
More precisely, the reliability can be arbitrarily increased up to a threshold determined by the product
of the substrate’s and VMM’s reliabilities. The expected maintenance times of virtualized services
depend on the number of virtual machines running in parallel as well as the VMM’s failure and repair
rates. While the failure rate is decreasing with the number of VMs running in parallel, the estimated
mean corrective maintenance time is increasing, due to the predominance of substrate failures in
such scenarios, which tend to have long repair times. The availability, which is directly influenced by
reliability and maintainability, is also increased due to lower overall failure and higher repair rates.
Lastly, performance and performability investigations show that the introduction of virtualization
in a system induces a slight overhead in CPU (average 1.497 %), RAM (average 7.905 %), disk I/O
(average 10.945 %), and network performance (average 6.04 %). The achieved performability is
defined by the ratio of the performance overhead induced by virtualization and the increase in
performability.

58 Chapter 3 Improvement of AMI Systems using Virtualization

4Creating a Network Function Virtualized

AMI

As Chapters 1 and 2 have shown, the current power grid needs to be revised in order to cope with
challenges such as a lack of situational awareness in the grid, the increasing integration of renewable
power sources, and rising power demand. While the smart grid offers significant improvements,
the current AMI has severe drawbacks when it comes to its dependability, as seen in Section 3.1.2.
The main reason behind this is a combination of two factors: the inherent complexity of AMIs and
non-redundant design principles, which in combination lead to an increased proneness to failures on
the communication infrastructure, which can—in turn—lead to challenges in the power grid.

This chapter describes the approach of an AMI architecture based on virtualization technologies. To
do so, first, the general idea of virtualized AMI services and its overall implications on the AMI are
discussed in Section 4.1. Second, in Section 4.2, it is evaluated if there is a possibility to virtualize
AMIs, and, if so, which prerequisites exist so that an AMI service can be virtualized. Also, an
evaluation is performed to identify where the novel virtualized AMI services are to be hosted to
optimize performability. Third, the methodology for generating, composing and hosting softwarized
AMI services is discussed in Section 4.3. The main focus in this section are the customer-specific
service compositions as well as their subsequent embedding into the substrate. In Section 4.4,
measures on substrate and service level to improve VNFA’s performability are discussed. On substrate
level, these measures include two server backup strategies allowing the migration of VMs in the case
of hardware failures. On service level, software rejuvenation techniques are introduced to mitigate
software-aging from negatively impacting the performability. Last, a summary of the chapter is given
in Section 4.5.

Contents
4.1 General Idea . 60

4.2 Hardware Abstraction and Centralization . 61

4.2.1 Hardware Requirements and Abstraction . 61

4.2.2 Relocation of Hardware . 63

4.3 Softwarized Service Generation and Location . 66

4.3.1 Softwarization of AMI Services . 66

4.3.2 Virtual Network Function Component Composition . 67

4.3.3 Embedding of Virtual Network Function Forwarding Graphs 69

4.4 Introducing Performability-Enhancing Methods . 74

4.4.1 Substrate Enhancements . 74

4.4.2 Software Enhancements . 76

4.5 Summary . 80

59

4.1 General Idea
Figure 4.1 depicts both the physical and virtual entities of an AMI concept employing NFV. At the
customer’s side, there is a single smart meter (sm) located within his premises, which forwards
its data via a router (r). On the provider’s side of the infrastructure, the NFVI is realized by
interconnected server sites, which can, e. g., be located inside of power substations that deliver
VNFs to an area with multiple consumers. Each site houses a server that contains a virtualization
layer, including a VMM for each server and an arbitrary number of VMs, hosting all required VNFCs.
The three building blocks of NFV described in Section 2.1.3.3 are the VNFCs located on top of the
virtualization layer forming VNFs (vn f i), the NFVI including the server, its virtualization layer, and
the interconnecting network infrastructure, as well as the AMI HES (h) hosting the NFV-MANO.
Each VNF can be individually configured featuring a combination of VNFCs that are either required
(such as gateway or aggregation functions) or optional (such as additional energy consumption
analysis and optimization functions), if desired. It needs to be mentioned that Figure 4.1 only depicts
a simple example of an infrastructure employing NFV. An architecture could be extended to feature
an arbitrary number of different VNFCs, which could be chained to create numerous individual VNFs.
This does not only lead to a softwarization of the functions previously realized in hardware, but
also shifts the responsibilities (especially supervision and maintenance) from the user domain to the
provider side, as the VNFs are running on servers located within provider premises [24].

Customer i

smi

r i

vn f c i
1 · · · vn f c i

n

s1

vm1
1 · · · vm1

n

vmm1

Server 1

Server m

Physical link Virtual link Virtualization

h

Figure 4.1.: Rough scheme of VNFA

The novel VNFA approach offers several benefits, such as, a) an increased dependability, because of
the possibility to realize an adaptive level of service redundancy (through multiple VMs hosting the
same service, located at the same or a different substrate); b) an improved adaptability, as services
previously realized by proprietary devices are realized in a hardware-agnostic, softwarized manner,
making them adaptable to various environments/locations by software alone; c) a decrease in costs,
as most services are running detached from their original proprietary substrate in a virtualized
environment.

The general idea explained here is investigated further in the following sections, where first, the hard-
ware abstraction and centralization onto off-the-shelf-servers is described; second, the softwarization

60 Chapter 4 Creating a Network Function Virtualized AMI

of the previously proprietary device-bound services is elaborated on. After describing the details of
hard- and software used in the VNFA, its performability-enhancing methods are discussed.

4.2 Hardware Abstraction and Centralization
In this section, two main subjects are covered: First, the prerequisites for the virtualization of
previously hardware-specific services are discussed in Section 4.2.1; second, the benefits and
downsides of two different location distributions of the required virtualization substrate are evaluated
in Section 4.2.2.

4.2.1 Hardware Requirements and Abstraction
Hardware abstraction is required to allow the virtualization of multiple services on a common
substrate. However, before a hardware abstraction can be performed, several prerequisites need to
be clarified. As the common substrate for the virtualization is a set of COTS servers, several functions
required within an AMI (which is a cyber-physical system) cannot be realized by a virtualized service
running on an arbitrary substrate. Basically, all services directly interacting with the physical world,
in a sense of measuring or actuating, can neither be relocated to a server or virtualized on another
substrate; due to the necessity of (a) being in a specific location and/or (b) being equipped with the
required sensors/actuators to interact with the physical world. In an AMI system, prime example
of such a service is smart metering, which measures the power and energy demand of a costumer.
Beyond that, customer-located in-house systems, such as smart thermostats, photovoltaic systems,
in-house displays, etc. are also excluded from virtualization approaches due to the aforementioned
required interaction with the physical world. Formally speaking, each service s ∈ S is assigned three
parameters that capture its requirements regarding hosting substrate (type), location (loc), and
location tolerance (∆loc), allowing a service to be either:

• agnostic towards type and loc; making it a good candidate for virtualization,

• bound to a specific type, yet agnostic towards its loc; allowing a migration between similar
substrate entities,

• bound to a specific loc, yet agnostic towards type; allowing in-place virtualization, yet only
limited migration depending on ∆loc,

• bound by both type and loc; only allowing virtualization on the exact substrate the service is
running on in a non-virtualized scenario, making virtualization an unsuitable approach.

Looking at the systems present inside of an AMI, as described in Section 2.1.2.2, a classification in
respect to the three previously mentioned parameters is done.

• Smart meter: A smart metering services is bound to a specific type (namely a substrate device
offering the capabilities to both measure metering data obtained from a specific household, as
well as store and send this data over a network link), as well as loc with no ∆loc (the metering
service needs to be hosted at a specific user’s smart meter device).

• Local user services: Similar to smart meters, most local user services require a specific
substrate type, such as, e. g., CLSs or In-Home Displays (IHDs). While it is arguable if, for
example, IHDs could run as a virtualized service on any COTS server or Personal Computer (PC),
the meaningfulness of such a virtualized service is highly questionable, as many in-browser

4.2 Hardware Abstraction and Centralization 61

solutions or apps exist fulfilling such a purpose already. For loc and ∆loc, similar restrictions
apply as for smart meters.

• SMGW: SMGWs basically receive and forward information from or to smart meters. Therefore,
no type restriction is given, except for being able to forward messages from and to smart meters
via a network offering the required QoS and bandwidth. Regarding loc and ∆loc, mainly the
QoS requirements of an SMGW could restrict the placement of a virtualized SMGW service.
Further restrictions could arise from the German BSI’s requirements regarding security in
SMGWs: There are proposals to enforce the usage of a so-called “security module” inside of
SMGWs, which is basically a security chip similar to a Trusted Platform Module (TPM). If
required, this would restrict the placement of such a service onto a certain substrate type
(though COTS servers with TPMs are broadly available).

• Data concentrator: A data concentrator is a system that accumulates, stores, analyses, and
forwards data from multiple smart meters to the AMI HES located within the NAN. It is
independent of the substrate type as well as (within certain QoS restrictions) the loc and ∆loc.

• Third party services: Usually, there are numerous third party services available within an AMI,
ranging from customer services, such as energy management and optimization, price-signal
triggered room heating services12, and customer-site based demand-response systems13. To
give a generic classification for all third party services is therefore impossible, due to the sheer
amount of services available. However, there are two cardinally different third party services:
those which are cyber-physically interacting with their environment, thereby being type- and
mostly also loc-bound and low in ∆loc, on the other hand, services which operate based on
data alone, making them independent of the substrate type and loc and high in ∆loc.

• HES: Due to the restriction of this thesis’ topic in addition to the special protection needs of
the HES and its deep interaction with the provider’s infrastructure, it is generally not part of
further analyses and considerations.

To improve readability, the classification above is summarized in Table 4.2.

type loc ∆loc Virtualization Services

7 7
high 3 Non-physical provider field services, third party

services (e. g. energy optimization)low 3

3 7
high 3 Hardware-assisting services, e. g. TPMs
low 3

7 3
high 3 Real-time services, voltage monitoring and control

systems, provider-side systemslow 7

3 3
high 7 Smart metering, sensor systems, local user ser-

vices (e. g. CLSs, IHDs)low 7

Table 4.2.: Virtualization possibilities of AMI services

12 Nest | Create a Connected Home, URL: https://nest.com, last accessed: 12/20/2018

13 EnerNOC – An Enel Group Company, URL: https://www.enernoc.com, last accessed: 12/21/2018

62 Chapter 4 Creating a Network Function Virtualized AMI

https://nest.com
https://www.enernoc.com

4.2.2 Relocation of Hardware
In contrast to SSMA, the virtualization performed to transform the current AMI into a VNFA offers the
possibility to relocate the previously hardware-bound services to several locations (while respecting
the restrictions identified in Section 4.2.1) as virtualized services. The relocation of substrate servers
has however a non-negligible influence on the VNFA in multiple aspects, among others both of the
major topic of this thesis, namely dependability and performance. Finding an appropriate location for
entities within a network is a well-known topic discussed in several fields of study, e. g. management,
energy-efficiency as well as networking. Examples for distribution approaches to achieve various
goals are described by Develder et al. [40] and Jaumard et al. [69].

As pointed out in Section 4.1, the majority of services provided to customers in the VNFA is hosted
on COTS servers. To be able to provide low-delay services and be able to be maintained both on a
physical and cyber level, these servers’ locations need to be carefully selected. In this section, the
placement of the aforementioned servers is considered, pursuing two optimization goals in mind:
First, a highly dependable distribution strategy is created; second, a performance-optimized approach
is elaborated, before both methods are compared and discussed.

To optimize the locations of COTS servers, first, the assumptions for such a distribution are clarified.

• Two-dimensional projection: The location of failures as well as the substrate hardware
is projected onto a two-dimensional (x , y) area, ignoring the z coordinate. All interaction
between entities is expected to happen on ground level.

• Fixed and variable locations: The locations of households as well as their devices
are considered fixed throughout this section. In contrast, the locations of servers may
be chosen arbitrarily

�

as long as the location is within the mission area (MA), where
MA = {(p1, p2) | Location x , y is a part of the mission area}

�

. Formally, this is represented by:
∀ s ∈ S : loc(s) ∈ MA, where S is a set of all substrate servers, loc : S ∪̇ F→ MA, i ∈ S ∪̇ F→
(p1, p2) | i is located at location (p1, p2), the location function.

• Regarded failures: Because only the distribution of substrate servers is considered in the
following, the types of failures which are relevant in this context is intrinsically limited, too. To
give an example, random hardware outages, which do not originate from a location-bound
cause, are excluded from this analysis. Instead, only failures (F) that occur at a certain
location (loc) within the mission area (MA) and are bound to a certain radius of influence
(r ∈ N0). This allows the formalization of the points suffering from a localized outage as
rad : F× r → MA, f, r → {(p1, p2) |dist

�

loc(f), (p1, p2)
�

≤ r}, with dist : p, q ∈ MA→ N0, (p, q) =
|p1 − q1|+ |p2 − q2|, which is also known as the Manhattan distance. The regarded failures are
then defined as ∀ f ∈ F : loc(f) ∈ MA∧ rad(f) 6= ;. Examples of such failures are, e. g., power
outages or detrimental environmental influences.

• Failure impact: All failures in the context of the placement of servers are assumed to cause
a complete outage of a server if it is located within the failure’s influence radius r, i. e. there
is no degradation leading to an impaired, yet working system state, meaning: ∀ s ∈ S, f ∈ F :

Perf (s) = 0 | loc(s) ∈ rad(f).

• Failure distribution: The temporal distribution of failures is irrelevant within the context of
positioning the substrate servers, therefore no assumptions are made. The failure locations
are assumed to be distributed according a uniform distribution within the mission area, i. e.

4.2 Hardware Abstraction and Centralization 63

failures hit each location with the same probability, which is ∀ f ∈ F, (p1, p2) ∈ MA : P[loc(f) =
(p1, p2)] = |MA|−1.

4.2.2.1 Dependability

To increase the dependability of the substrate, the goal is to minimize the impact of failures on
servers as far as possible. Due to the possibility of failures being located anywhere within the
mission area, it is evident that it is impossible to avoid failures to impair the substrate entirely. To
mitigate the impact of localized failures, a solution is to spread the required number of servers over
a large distribution area, maximizing their pairwise distances [73]. This is known as the max-sum
diversification problem.

Formally, problems of this type can be described as a graph G = (V, E) with n vertices, and non-
negative edge weights w(v1, v2) = dist(v1, v2) for (v1, v2) ∈ E, where dist(p, q) =

q

∑n
i=1(qi − pi)2,

which is also known as the Euclidean norm. It is used throughout this thesis, unless specified
otherwise. The max-sum diversification problem itself is formalized as follows: Given k ∈ {2, . . . , n},
find a subset S ⊆ V with |S| = k, such that w(S) =

∑

(vi ,v j)∈E(S) dist(vi , v j) is maximized. Being a
weighted version of a generalization of the problem of deciding the existence of a k-clique, i. e., a
complete subgraph with k vertices, the problem is strongly NP-hard.

However, several heuristics exist providing feasible solutions to the max-sum diversification problem,
among others described by Ravi et al. [131, 132] and Chandra & Halldórsson [30]. A straightforward
approach, based on the work of Ravi et al. [132], is presented in Algorithm 4.1.

Algorithm 4.1: GMA max-sum heuristic

Input: Substrate network graph G, number of servers to place k
Output: Vertices with max-sum distance S

Function main(G, k):
V← G.getVertices();
select vi, vj ∈ V | ∀ vi, vj ∈ V: getDistance(vi, vj) = max;
S← {vi, vj};
while |S| < k do

select vk ∈ V - S |
∑

vl∈S getDistance(vk, vl) = max;
S← S ∪ {vk};

return S;

Another possibility is the construction of the convex hull around all possible locations within the
mission area MA(e. g. by using Graham-Scan or incremental algorithm). After that, the m points
with maximum distance on the hull are selected. After that, if k−m> 0, the remaining k−m points
are selected from the interior, each maximizing the distance from the previously selected points.
This process can additionally be sped up employing randomized search or simulated annealing
heuristics.

4.2.2.2 Performance

The possible performance optimization of the infrastructure through a proper localization of servers
is unlikely to be large. Under the assumption that the servers’ performance properties are not

64 Chapter 4 Creating a Network Function Virtualized AMI

dependent on its location and the communication links’ underlying technologies and properties do
not change during the relocation of servers, the performance remains largely unchanged by the
locations of servers. However, as the lengths of the interconnecting communication links changes
depending on the server locations, the communication delay may be impacted. To calculate the
communication delay, first, the predominant sources of delays in networks are briefly explained
here.

1. Processing delay: The processing delay in a packet switching network is caused by routing
operations which need to process the packet header to determine its destination and check
for possible corruption during the transmission. The processing delay induced by state-of-the-
art routers are typically in the order of microseconds or less [128], assuming no advanced
processing, such as encryption, is performed.

2. Transmission delay: The transmission delay characterizes the time it takes to copy a packet
into the first buffer and serialize it over the communication link. It is assumed that the packets
inside of the AMI are forwarded in a first-come-first-serve manner, which is common practice
in packet-switched networks [76]. Further, to estimate the transmission delay, the size of
messages as well as the bandwidth of the transmission technology employed needs to be
known.

3. Propagation delay: The propagation delay describes the time the physical movement of the
signal requires and is on the one hand determined by the medium it moves through, on the
other by the distance crossed. In wired mediums, such as fiber or copper wire, the speed is
estimated to reach 0.59 c to 0.77 c; in wireless mediums, it is assumed that in environments
free of obstructions blocking the signals, the propagation speed is c, i. e. the speed of light
[76].

4. Queuing delay: If packets are arriving faster than they can be processed, a queue in form of a
buffer is created. If packets keep arriving faster than the processing speed of the router, their
queuing delay also rises. The averagely experienced queuing delay of packets is given by 1

(µ−λ) ,
where µ is the service rate and λ is the arrival rate.

As only the location of servers may be chosen, several of the aforementioned delays are unlikely to
change if the infrastructure locations are altered. Under the assumptions given in the beginning
of this paragraph, the processing, transmission, and queuing delays are of no further relevance.
While the propagation delay changes with the distance between the servers and the other networked
components inside the VNFA, the impact of these changes and the induced propagation delay are
negligible. Even in large cities, this is the case. As an example, the world’s ten most populated cities14

on average each cover approximately an area of 4600 km2, or, making the simplifying assumption
of a square footprint of each city, an area of approximately 68 km × 68 km. Even if the propagation
distance is pessimistically considered to be the diagonal of a city’s square footprint using a point-to-
point link, the propagation delay—in the worst case—is 96167 m

0.59c m/s =∧ 0.32ms, which is, considering
the maximum acceptable latency given in Table 2.1.2.2, inconsequential.

If the previously made assumptions would be loosened, it would be imaginable that all servers are
hosted together in a single data center, interconnecting them with a higher bandwidth networking

14 The Most Populated Cities of the World. World Megacities – Nations Online Project, URL: http://www.nationsonline.
org/oneworld/bigcities.htm, last accessed: 10/05/2018

4.2 Hardware Abstraction and Centralization 65

http://www.nationsonline.org/oneworld/bigcities.htm
http://www.nationsonline.org/oneworld/bigcities.htm

technology than before. While such a scenario is theoretically possible, it is excluded here from
further analysis.

4.2.2.3 Comparison and Server Location Distribution Selection

Depending on the optimization goal pursued, the server positioning approach may differ, as previously
shown. However, the influence of the servers’ locations regarding the achieved performance is mostly
negligible—mainly due to the short distances within cities, which renders the slightly increased
propagation delays irrelevant in the given context. In contrast, the dependability of VNFA is greatly
influenced by the server distribution.

Comparing both highlighted possibilities (max-dispersion vs. centralized server location), it is
evident that while the probability of being impaired by a failure is relatively higher in the max-
dispersion approach (denoted MDA in the following), the impact of a failure is much lower. This is
evident and can be elucidated under the assumption that all servers share the same location in the
centralized approach (denoted CA in the following). Then,

∑

s∈S ps = 0 | ∃ s ∈ S, f ∈ F : loc(s) ∈ rad(f),
i. e. all servers fail at once if a failure impairs the substrate. In the max-dispersion approach,
∑

s∈S ps > 0 |∃ s ∈ S : ∀ f ∈ F : loc(s) /∈ rad(f), i. e. as long as a single server is not impaired by failures,
a part of the server performance is still available to VNFA.

If we compare the likelihood of a failure impairing the substrate in both approaches, the following
equation is used:

∑

s∈S E
�

loc(s) ∈ rad(f)
�

. It is easily visible that in the centralized approach,
∀ si , s j ∈ S : loc(si) = loc(s j), while in the max-dispersion approach, the opposite is true, namely
∀ si , s j ∈ S : loc(si) 6= loc(s j) (under the assumption that |MA| ≥ |S|). Therefore, defining P[MDA] =
P[CA] =
∑

s∈S E
�

loc(s) ∈ rad(f j)
�

as the probability of a failure impairing the servers of the max-
dispersion and centralized approach. Considering that in the max-dispersion approach |

∑

s∈S loc(s)| =
|S|, while in the centralized approach |

∑

s∈S loc(s)|= 1, it is apparent that P[MDA]> P[CA].

Consequently, the choice is if a single point of failure in the system is tolerable or not. As VNFA offers
strategies to mitigate the impact of few server failures through hard- (circle/all-for-all backup, see
Section 4.4.1) and software mitigation strategies (VM warm start and live-migration, see Section
4.4.2), the only reasonable choice which is also pursued in the remainder of this thesis, is the
max-dispersion approach.

4.3 Softwarized Service Generation and Location
This section deals with the generation of softwarized AMI services in Section 4.3.1, consisting of the
VNFC composition (Section 4.3.2) and the subsequent VNF embedding (Section 4.3.3).

4.3.1 Softwarization of AMI Services
The softwarization of AMI services is a non-trivial matter. A VNF is composed of a number of VNFCs,
through which a packet must pass to fulfill the VNF’s function(s). The order in which the VNFCs
composing a VNF are arranged has a strong influence on both the provided network function itself
as well as its non-functional attributes, such as performance and dependability. Apart from that,
before the usage of a VNF is possible, it has to be mapped onto a substrate network, which leads to
the complex challenge of network embedding. The combination of these tasks can be formulated as
a two-step process, being composed of:

66 Chapter 4 Creating a Network Function Virtualized AMI

1. VNFC composition: A VNF is a chain of VNFCs, where the order in which the VNFCs are
arranged has to be carefully considered. While the order of VNFC may often be arbitrary (if
the overall result of a VNF is similar, irrespective of the VNFCs’ order), it may also happen that
certain VNFCs require a specific order (e. g. a data concentrator service must not be placed in
front of a service requiring individual, fine-granular metering data).

2. VNF embedding: After a suitable VNFC composition, the resulting VNF first needs to be
mapped onto and second be embedded into the substrate network in an optimal manner. During
the mapping process, an allocation of VNFCs onto substrate entities is done. The embedding
is performed by allocating the services realized by the VNFCs to VMs and embedding them
into the substrate network’s entities, which has to respect the resource restrictions given
by the substrate as well as the requirements of the VNFCs (being on a single service/entity
level) and VNF (being on an overall service/path level). The optimization goals for the VNF
embedding can thereby differ, including, but not being limited to optimization of QoS metrics,
dependability, or cost minimization.

Both steps are presented in the upcoming Sections 4.3.2 and 4.3.3.

4.3.2 Virtual Network Function Component Composition
To be able to allocate resources for a VNF, first, its VNFCs need to be linked and placed, forming
a Virtualized Network Function Forwarding Graph (VNF-FG), which is subsequently embedded
into a substrate network. Finding a suitable VNFC composition and an appropriate embedding
of its resulting VNF-FG is not a trivial task: While from a service side the goal of maximizing the
performance of a VNF is pursued by composing its respective service in an optimal way, the substrate
demands an embedding strategy focused on resource conservation, thereby maximizing the amount
of embeddable VNFs.

To find the best solution for these two conflicting goals, the order of VNFCs can be exploited to
form an optimal VNF-FG. While there may be some dependencies among VNFCs, other VNFCs (e. g.
most TPSs, which are functionally independent VNFCs) are flexible. Consequently, the order of
VNFCs realizing a VNF is not necessarily deterministic, but can be realized by several different VNFC
compositions. To find the most suitable VNFC composition given a Virtualized Network Function
Request (VNFR) and a substrate specification is known as the VNFC composition problem.

In Figure 4.2, a representation of a VNFR as suggested by Beck & Botero [12] and Ocampo et al.
[115] is depicted. Instead of providing the VNF-FG, a client/service user only needs to provide the
VNFR information, which in turn allows a service provider to derive an optimal VNFC composition
tailored to achieve a predefined goal. Before an individual VNFR of a user is constructed, a generic
VNFR is generated containing all required services {s ∈ S |σs = 1}, where σs is a priority flag, further
elaborated in Section 5.3.3. To generate a generic VNF-FG from the set of required services, it is
necessary to specify five elements:

• The initial bandwidth usage of the network service, which in this case is the data sent by the
smart meter (bsm) via the router.

• The VNFCs of the VNF, in this case VNFCc = {s ∈ S |σs = 1} = {cgw, cdc , ch}, i. e. the gateway,
data concentrator and HES, along with their respective resource demands (dc).

• The VNFCs where the VNF starts (cgw) and ends (ch).

4.3 Softwarized Service Generation and Location 67

VNFR

r cgw

cdc h

ct ps1
1

ct ps2
1

ct ps1
2

dcgw

dcdc

dc
tps11

dc
tps21

dc
tps12

bsm
bgwtps

b gw
dc

bdc

bt ps11

VNF-FG

r cgw

cdc h

ct ps1
1

ct ps2
1

ct ps1
2

dcgw

dcdc

dc
tps11

dc
tps21

dc
tps12

bsm
bgwtps

b
gw

tps

b gw dc

bdc

bt ps11

Realization

Figure 4.2.: VNFR (upper part) featuring required and optional services and corresponding VNF-FG (lower
part)

• The outgoing links of each required VNFC (represented by solid black lines), with their associ-
ated relative bandwidths (b).

• Dependencies between different VNFCs (indicated by dashed red lines), which in this case are
strict, as there is a precise order given for the required VNFCs: cgw⇒ cdc ⇒ ch.

To generate each user’s individual VNFR, the generic VNFR is extended to include optional TPSs,
which are—for each TPS—attached in a separate branch of VNFCs beginning at the gateway of a
user. The properties of each VNFR branch is as follows:

• The initial bandwidth is—as before—the data sent by the smart meter (bsm) via the router.

• The optional VNFCs of the VNF ({s ∈ St psi
|σs = 0}), where St psi

are services belonging to TPS i,
along with their respective resource demands.

68 Chapter 4 Creating a Network Function Virtualized AMI

• The VNFCs where the VNF starts (the first VNFC of the TPS c1
t psi

) and ends (the last VNFC of
the TPS cn

tpsi
).

• The outgoing links of each VNFC of TPS i, with its associated relative bandwidth.

• Dependencies between different VNFCs of TPS i.

A possible individualized VNFR following the previously introduced scheme is depicted in the upper
part of Figure 4.2, featuring several required as well as two optional services. After the VNFRs for
all users are created using above methodology, the VNFRs are realized by constructing VNF-FGs
fulfilling the VNFRs’ requirements. Thereafter, an embedding of the VNF-FGs onto the substrate
infrastructure is performed. To do so, the VNF-FG information is input into Algorithm 4.2, which in
turn provides the required embedding. This is further described in the following Section 4.3.3.

4.3.3 Embedding of Virtual Network Function Forwarding Graphs

The embedding of the composed VNF-FGs is illustrated by first explaining the general Virtual Network
Embedding Problem (VNEP) based on Rost & Schmid [139], before the additional restrictions induced
by the requirements of a virtualized AMI are introduced.

To formalize the embedding process, first, the substrate network is represented as an undirected graph
Ghw = (V hw, Ehw). The resources in the substrate are given by the function rhw : V hw∪Ehw⇒ R+0 ∪{∞}.
The capacity rhw(u) of node u ∈ V hw may represent for example the available CPU resources while
the capacity rhw(u, v) of edge (u, v) ∈ Ehw may represent the available bandwidth. By allowing
to set substrate capacities to ∞, the capacity constraints on the respective substrate elements
can be effectively disabled. We denote by Phw the set of all simple paths in Ghw. A VNF-FG
is similarly modeled as directed graph G f g = (V f g , E f g) together with node and edge demands
d f g : V f g ∪ E f g ⇒ R≥ 0.

The task is to find a mapping of the VNF-FG G f g on the substrate network Ghw, i. e. a mapping of
the VNF-FG’s nodes to substrate nodes and a mapping of VNF-FG’s edges to paths in the substrate.
Virtual nodes and edges can only be mapped on substrate nodes and edges of sufficient capacity.
Accordingly, we denote by V hw

i = {u ∈ V hw | rhw(u) ≥ d f g(i)} the set of substrate nodes supporting
the mapping of node i ∈ V f g and by Ehw

i, j = {(u, v) ∈ Ehw | rhw(u, v) ≥ d f g(i, j)} the substrate edges
supporting the mapping of virtual edge (i, j) ∈ E f g . To solve this challenge known as the VNEP, it is
required to be a valid mapping, leading to allocations forming a feasible embedding; all three terms as
well as the VNEP itself are defined as follows.

Definition 4.1: Valid Mapping

A valid mapping of request G f g to the substrate Ghw is a tuple m= (mV , mE) of functions that
map nodes and edges, respectively, so that the following holds:
The function mV : V f g ⇒ V hw maps virtual nodes to suitable substrate nodes, such that mV (i) ∈
V hw

i holds for i ∈ V f g .
The function mE : E f g ⇒ Phw maps virtual edges (i, j) ∈ E f g to simple paths in Ghw connecting
mV (i) to mV (j), such that mE(i, j) ⊆ Ehw

i, j holds for (i, j) ∈ E f g .

4.3 Softwarized Service Generation and Location 69

Definition 4.2: Allocations

We denote by Am(x) ∈ R+0 the resource allocations induced by valid mapping m= (mV , mE) on
substrate element x ∈ Ghw and define
Am(u) =
∑

i∈V f g :mV (i)=u d f g(i)
Am(u, v) =
∑

(i, j)∈E f g :(u,v)∈mE(i, j)
d f g(i, j)

for node u ∈ V hw and edge (u, v) ∈ Ehw, respectively.

Definition 4.3: Feasible Embedding

A mapping m is a feasible embedding, if the allocations do not exceed the available resources,
i. e. Am(x)≤ rhw(x) holds for x ∈ Ghw.

Definition 4.4: VNEP

Given is a single VNF-FG G f g to be embedded on the substrate graph Ghw. The task is to find
any feasible embedding or to decide that no feasible embedding exists.

The defined VNEP does however not account for the the additional restrictions that apply for VNFs
used in the context of AMIs, as displayed in Sections 2.1.2.2 and 4.2.1, as well as Table 2.1.2.2.
Therefore, to respect these requirements, two additional restrictions need to be included in the
problem description, namely:

• Node placement restrictions: To account for both the type and loc restrictions imposed on
several services in the AMI, as discussed in Section 4.2.1, the node placement needs to be
restricted, which is realized by forbidding the placement of restricted services onto certain
substrate nodes. Formally, this restriction is defined as:

Definition 4.5: Node Placement Restrictions

For each virtual network function component c ∈ V f g a set of forbidden substrate nodes
V

hw
c ⊂ V hw is provided. Accordingly, the set of allowed nodes V hw

c is defined to be

{u ∈ V hw\V
hw
c | r

hw(u)≥ d f g(c)}.

• Latency restrictions: Due to the strict timings imposed on several services within an AMI (as
listed in Table 2.1.2.2), latency restrictions are used to ensure the VNFs and their associated
paths do not lead to an excess of these timing requirements. These restrictions are defined as
follows:

Definition 4.6: Computational Latency

For each virtual network function component c ∈ V f g , the components’ computational
latency is given via lcpu(c) ∈ R+0 . A network function’s latency is the sum of its components’
latencies, calculated as lcpu(vnf f gx) :

∑

c∈vnffgx
lcpu(c) ∈ R+0 .

70 Chapter 4 Creating a Network Function Virtualized AMI

Definition 4.7: Path Latency

For each substrate edge e ∈ Ehw the edge’s latency is given via lnet(e) ∈ R+0 . The path
latency associated with vnf f gx is the sum of the edges’ latencies it is embedded into,
calculated as lnet(vnf f gx) :

∑

e∈mE(i, j)
lnet(e) ∈ R+0 .

Definition 4.8: Latency Restrictions

The latency restrictions for virtual network functions are given by ld : vnf f gx ⇒ R+0 ∪{∞},
such that the sum of latencies of both the virtual network function components and the
path associated with the respective virtual network function forwarding graph x are no
larger than ld(vnf f gx). Formally, the definition of feasible embeddings (see Definition
4.4) is extended by including that lcpu(vnf f gx) + lnet(vnf f gx)≤ ld(vnf f gx).

Algorithm 4.2 is a realization of an algorithm solving a simplified VNEP for AMIs. More specifically,
the algorithm performs an unrestricted initial embedding, i. e. the amount of hosting servers
offering the resources can be adjusted arbitrarily. To increase the performance of VNF-FG embedding
introduced in Algorithm 4.2, a heuristic can be employed that is shown in Algorithm 4.3. The idea
behind the heuristic is to pack each user’s VNF-FG completely onto a single server to avoid splitting
the chains among multiple servers. This does not only simplify the embedding itself, but in addition
avoids communication delays in the overall service chain (see Section 6.2.2.3 for further elaboration).
As only whole chains get embedded, the resource requirements of the individual services of the chain
can be summed up. Also, the link requirements within the chain are nullified, leaving only the link
requirements from type-/loc-bound services to the rest of a user’s VNF-FG. The simplified embedding
therefore does not map individual VNFCs of a VNF-FG, but instead the whole chain of a user onto a
single server, which reduces the complexity to a problem similar bin-packing:

Given a set of servers s1, s2, . . . with the same amount of resources r and a list of n VNF-FGs with
resource demands d1, . . . , dn to pack, find an integer number of servers S and a S-partition s1∪ · · ·∪ sS

of the set {1, . . . , n} such that
∑

i∈sk
di ≤ r for all k = 1, . . . , S.

While the bin-packing problem itself is known to be NP-hard, there are heuristics available here to
solve the challenge in a more efficient manner, too. In the given case, a greedy best-fit decreasing
heuristic is employed, sorting the VNF-FGs by their resource requirements in decreasing order
first and subsequently embedding them onto the server providing enough resources to satisfy the
VNF-FG’s requirements, i. e. the one that will leave the least resources remaining. Doing so, the
complexity decreases to O(n log n) while maintaining an asymptotic worst-case performance ratio
R∞BF D =

11
9 . It needs to be noted here that such an approach is only possible in an offline scenario, i. e.

during the first embedding. If new VNF-FGs are added during the mission time of VNFA, alternative
heuristic solutions exist, such as first fit.

4.3 Softwarized Service Generation and Location 71

Algorithm 4.2: All-for-all backup algorithm

Input: Set of VNF-FGs vnffgSet, maximum relative server usage maxServerUsage
Output: Initial embedding of VNF-FGs onto a set of servers

Function main(vnffgSet, maxServerUsage):
ServerSet S = ;;
while vnffgSet.getNotEmbeddedVnffgs() 6= ; do

// Select VNF-FG with highest resource requirements first
embedVnffg(vnffgSet.getNotEmbeddedVnffgs().getBiggestVnffg(), S,
maxServerUsage);

// Substrate backup strategy as described in Algorithm 4.4 or 4.5
applyBackUpStrategy(S);

Function embedVnffg(vnffg, S, maxServerUsage):
Double vnffgRemainingDelay = vnffg.getMaxAllowedDelay();
Server lastEmbeddingServer = ;;
while vnffg.getNextVnfc() 6= ; do

// Select starting VNFC first
vnfc← vnffg.getNextVnfc();
if S == ; then

s← new Server();
s.spareResources← (Server.MAX_RESOURCES);
S.add(s);

double resourceDistance = Double.MAX;
foreach s ∈ S do

if 1 - ((s.spareResources - vnfc.requiredResources) / Server.MAX_RESOURCES)
<= maxServerUsage then

if 0 <= s.spareResources - vnfc.requiredResources < resourceDistance
then

resourceDistance← s.spareResources - vnfc.requiredResources;
embeddingServer← s;

if resourceDistance == Double.MAX then
s← new Server();
s.spareResources← Server.MAX_RESOURCES;
S.add(s);

else
vnffgRemainingDelay −= vnfc.getServiceDelay(embeddingServer) +
lastEmbeddingServer.getNetworkDelay(embeddingServer);

if vnffgRemainingDelay ≥ 0 then
embeddingServer.embed(vnfc);
embeddingServer.spareResources← (embeddingServer.spareResources
- vnfc.requiredResources);

vnfc.isEmbedded← true;

vnffg.isEmbedded← true

72 Chapter 4 Creating a Network Function Virtualized AMI

Algorithm 4.3: VNF-FG embedding heuristic

Input: Set of VNF-FGs vnffgSet, maximum relative server usage maxServerUsage
Output: Initial embedding of VNF-FGs onto a set of servers

Function main(vnffgSet, maxServerUsage):
ServerSet S = ;;
while vnffgSet.getNotEmbeddedVnffgs() 6= ; do

// Select VNF-FG with highest resource requirements first
embedVnffg(vnffgSet.getNotEmbeddedVnffgs().getBiggestVnffg(), S,
maxServerUsage);

// Substrate backup strategy as described in Algorithm 4.4 or 4.5
applyBackUpStrategy(S);

Function embedVnffg(vnffg, S, maxServerUsage):
if S == ; then

s← new Server();
s.spareResources← (Server.MAX_RESOURCES);
S.add(s);

double resourceDistance = Double.MAX;
foreach s ∈ S do

if 1 - ((s.spareResources - vnffg.requiredResources) / Server.MAX_RESOURCES)
<= maxServerUsage then

if 0 <= s.spareResources - vnffg.requiredResources < resourceDistance then
resourceDistance← s.spareResources - vnffg.requiredResources;
embeddingServer← s;

if resourceDistance == Double.MAX then
s← new Server();
s.spareResources← Server.MAX_RESOURCES;
S.add(s);

else
embeddingServer.embed(vnffg);
embeddingServer.spareResources← (embeddingServer.spareResources -
vnffg.requiredResources);

vnffg.isEmbedded← true;

4.3 Softwarized Service Generation and Location 73

4.4 Introducing Performability-Enhancing Methods
Performability-enhancing methods can be applied on several parts of the system, i. e. the substrate as
well as the software part. Both methods used to increase performability are explained in the following,
where Section 4.4.1 deals with substrate, while Section 4.4.2 discusses software enhancements.

4.4.1 Substrate Enhancements
To enhance the performability of AMIs, redundancy is a well-known and effective method. However,
as already stated in Section 1.2, hardware redundancy needs to be carefully balanced against its
costs. In the following, two redundancy schemes on substrate level are introduced which try to offer
an adjustable level of redundancy, i. e. the service provider may choose the optimization criteria,
being it availability or costs.

4.4.1.1 Circle Backup Network Layout

The backup strategy of the circle backup network is inspired by the author’s previous work [112].
For each server there is exactly one other predefined server that offers its spare resources as backup.
In this context, backup means offering resources to host virtual services of another server in case it
fails. To determine the backup, every server is given a unique ID starting with zero. Let n be the
number of server nodes in the network, then the backup of server with ID i is (i + 1) mod n. This
results in a circular backup strategy depicted in Figure 4.3.

S1

S2

S3

Physical link Backup

Figure 4.3.: Backup strategy in circle backup networks

In case of a backup node failure (due to either unavailable or missing spare resources), the virtual
services of the failed server can no longer be hosted. However, before checking the available
resources, existing non-critical services are temporarily removed from the backup server because
critical services have priority over optional ones, as described in Section 4.3.2. If the virtual data
concentrator service of a household is no longer hosted, the households are already disconnected
even if their virtual gateways are still running. Their virtual gateway services can therefore be
removed from the servers, freeing resources. After having freed as many resources as possible
without deleting critical services of connected households, the circle backup algorithm tries to
migrate as many neighborhoods as possible, one after another. First, the virtual data concentrator
service is migrated. If this does not succeed, the neighborhood is skipped and no virtual gateways
are migrated because the households are already disconnected if the virtual data concentrator
service is not available anymore. If the data concentrator service can be migrated, as many of the

74 Chapter 4 Creating a Network Function Virtualized AMI

virtual gateways as possible are also migrated. The same approach is then applied to the next
neighborhood. Last, after having migrated the mandatory services, as many optional services as
possible are moved. Formally, this results in Algorithm 4.4.

Algorithm 4.4: Circle backup algorithm

Input: Set of servers S
Output: Circle backuped network of S

Function main(ServerSet S):
init(S);
while true do

Sfailed ← scanForFailure(S);
if Sfailed 6= ; then

foreach s ∈ Sfailed do
mitigateFailure(s, false);

Sfailed.empty();

Function init(ServerSet S):
i← 0;
n← S.getLength();
foreach s ∈ S do

s.setId(i);
i++;

for int j = 0; j < n; j++ do
k← j+1 mod n;
S.getServerById(j).setBackupServer(S.getServerById(k));

Function mitigateFailure(Server s, boolean mem):
b← s.getBackupServer();
if b.isAvailable() then

if b.getSpareResources() ≥ s.getServices().getRequiredResources() then
b.host(s.getServices());

else if !mem then
b.releaseLowPriorityServices();
b.releaseUnboundGateways();
mitigateFailure(s, true);

else
concentrator← s.getServices().getConcentratorService();
tryHosting(concentrator);
foreach hpService ∈ s.getServices().getHighPriorityServices() do

tryHosting(hpService);

foreach lpService ∈ s.getServices().getLowPriorityServices() do
tryHosting(lpService);

Function tryHosting(Server b, Service service):
if service 6= null && b.getSpareResources() ≥ service.getRequiredResources() then

b.host(service);

4.4 Introducing Performability-Enhancing Methods 75

4.4.1.2 All-for-All Backup Network Layout

The all-for-all backup networks are similar to the circle backup networks, the only difference being
the employed backup strategy. In contrast to the circle backup, all-for-all backup networks utilize
the spare resources of a server as backup for all other servers. This results in a backup strategy as
illustrated in Figure 4.4.

S1

S2

S3

Physical link Backup

Figure 4.4.: Backup strategy in all-for-all backup networks

Despite being harder to implement because of the increased flexibility of potential backup nodes,
there is only one major difference in the restoration process of the all-for-all backup network
compared to the circle backup. In contrast to failures in circle backup networks, households that are
disconnected can possibly be connected after another server (the backup server in the circle backup
network) fails. This happens in the following scenario. Let u1 be a disconnected user that still has a
virtual data concentrator service dc1 but its virtual gateway node g1 could not be hosted due to lack
of resources. Now another server fails that hosts a virtual data concentrator service dc2 (dc1 6= dc2)
and there are not enough spare resources left on any server to host dc2. Since the virtual gateway
services of all users that are connected to dc2 are also removed, similar to the approach in the circle
backup network, the servers now have free resources to host gw1, which is therefore migrated to the
server offering spare resources. Formally, this results in Algorithm 4.5.

4.4.2 Software Enhancements
Generally, software enhancements are used in a wide variety of systems to various aspects of
applications, yet foremost dependability and performance [155]. While to satisfy the dependability
requirements of certain services, the usage of dependability-enhancing measures such as redundancy
in more (e. g. replication via virtualization, N-version programming) or less (e. g. simple load
balancing) advanced forms is often a sufficient solution, techniques to increase an application’s
performability are discussed in the following using service rejuvenation and replication techniques.

4.4.2.1 Software Rejuvenation

The importance of such performance-enhancing techniques has however grown over the last years,
and given the ever increasing complexity of software, this trend is not likely to change in the future.
To mitigate performance-impairments in applications, several techniques need to be applied in the
testing/debugging phase and the operational phase of software. While the testing/debugging phase
is out of scope of this thesis, the techniques applicable during the operational phase, i. e. measures
to counter the impact of impairments originating from software aging, are going to be covered in the

76 Chapter 4 Creating a Network Function Virtualized AMI

following. More specifically, a preventive maintenance technique to deal with this challenge called
software rejuvenation is going to be introduced.

Algorithm 4.5: All-for-all backup algorithm

Input: Set of servers S
Output: All-for-all backuped network of S

Function main(ServerSet S):
init(S);
while true do

Sfailed ← scanForFailure(S);
if Sfailed 6= ; then

foreach s ∈ Sfailed do
mitigateFailure(S, s, 0, s.getServices(), false);

Sfailed.empty();

Function init(ServerSet S):
i← 0;
n← S.getLength();
foreach s ∈ S do

s.setId(i);
i++;

Function mitigateFailure(ServerSet S, Server s, int offset, ServiceSet services, boolean
mem):

b← S.getServerById(offset);
if b.isAvailable() then

if b.getSpareResources() ≥ services.getRequiredResources() then
b.host(services);

else if !mem then
b.releaseNonCriticalServices();
b.releaseUnboundGatewayServices();
mitigateFailure(S, s, offset, services, true);

else
concentrator← services.getConcentratorService();
tryHosting(concentrator);
foreach hpService ∈ services.getHighPriorityServices() do

tryHosting(hpService);

foreach lpService ∈ services.getLowPriorityServices() do
tryHosting(lpService);

if services 6= ; && offset < n-1 then
mitigateFailure(S, s, offset++, services, false);

Function tryHosting(Server b, Service service, ServiceSet services):
if service 6= null && b.getSpareResources() ≥ service.getRequiredResources() then

b.host(service);
services = services.remove(service);

4.4 Introducing Performability-Enhancing Methods 77

To prevent service degradation, software rejuvenation can be applied proactively as aging leads
not only to reduced performance, but also increased failure rates in software systems. Software
rejuvenation works by removing accumulated error conditions and freeing up system resources,
for example by clearing OS kernel tables, using garbage collection, re-initializing data structures,
or—maybe the simplest and most often applied solution—to reboot the system [62]. To develop
appropriate rejuvenation strategies, three general dimensions of rejuvenation concepts are defined.

First, the rejuvenation timing needs to be set. Here two possibilities can be adopted: on the one hand,
time-based techniques, which use a static time-schedule, or, on the other hand, inspection-based
techniques, which initiate a rejuvenation after determining certain system parameters.

The strategy adopted during the rejuvenation is considered in the second dimension, discriminating
between cold, warm and migrate rejuvenation. A cold rejuvenation approach is the most straight-
forward, not employing any features to decrease the restart time of services after a rejuvenation
procedure. It is however important to notice that the restoration times encountered after a re-
juvenation event are by far lower than after a failure, as the restoration of the system requires
investigation, failure detection and repair, which is extensively covered in Section 5.3.1. In contrast,
the system restoration after a deliberately performed rejuvenation action is much faster, as the
effort of failure investigation and restoration planning is eliminated. It is noteworthy that both
of the other rejuvenation strategies, namely warm and migrate rejuvenation, which are described
in the next paragraphs, are only beneficial solutions in the case of VMM impairments, as either
service or both the VMs and services maintain their previous states. Warm rejuvenation—in contrast
to cold rejuvenation—uses persistent memory to suspend and re-initialize a VM’s services after a
rejuvenation to decrease the restart time. While a warm rejuvenation requires additional time for
service suspension, the service restoration time is decreased in comparison to cold rejuvenation.
Migration rejuvenation employs a live-migration strategy to move VMs, which would be impaired
by a rejuvenation, to another substrate to minimize their downtime. During the rejuvenation event
taking place on the original host, the migrated VM maintains its functionality (assuming the host
it migrated to remains operational throughout the rejuvenation event on the original host). The
re-migration of a VM can only be performed once it’s hosting substrate and VMM are back online
after a rejuvenation is performed.

The third dimension of a rejuvenation concept is its target. As highlighted in Section 5.3.1 later
on, in the given case, the service application itself, its underlying VM or the VMM can suffer from
Aging Related Mandelbugs (AMs). Therefore, the respective targets of the rejuvenation are either
the service, the VM, or the VMM. All targets and their impact on the system are described in the
following list.

• Service: The most basic type of software rejuvenation is the shutdown and restart of a service
including all of its components [62]. The assumption behind this technique is that on OS-level,
so-called state initialization mechanisms de-allocate all resources of a service once it is shut
down, thereby freeing up memory and terminating any file handles and possibly remaining
sockets. Furthermore, once the program is restarted, it is once more in a clean slate state,
meaning any accumulated AMs are reset. It is important to note that a service rejuvenation does
not influence other origins of performance degradation, such as VM, VMM and environmental
reasons causing performance issues.

• VM: As a second software rejuvenation option, a restart of the VM hosting a service is possible.
VMs also face the risks of software aging depending on the software running in the VMs, such
as OS, middleware or user applications. A rejuvenation on VM level can be used to clear the

78 Chapter 4 Creating a Network Function Virtualized AMI

two main reasons for decreased performance, which originate from frequent VM migrations as
well as by repeated VM suspend/resume operations [88].

• VMM: The final rejuvenation option is a restart of the virtual machine infrastructure, namely
its VMM. Basically, before a VMM rejuvenation is executed, it needs to be determined if its VMs
are to be re-run from a clean slate (cold rejuvenation), their execution states are to be restored
after the VMM’s restoration (warm rejuvenation), or—if continuous operation is required—the
respective VMs are migrated to another host while the VMM is being rejuvenated, in order
to keep them available during the restart process (migrate rejuvenation). Depending on the
rejuvenation method chosen, the aging of the service running within a VM hosted on the VMM
may also be rejuvenated (cold rejuvenation) or return to its aged state (warm or migrate
rejuvenation). It is additionally noted here the the impairment state of a hosted VM also
persists if migration rejuvenation is employed; this is not the case in cold or warm migration
settings.

The best set of techniques to employ depends on several aspects, such as the storage and migrating
performance, the statefulness of the services, the host capacities available, as well as the aging rates
of services, VMs and VMMs [87].

4.4.2.2 Service Replication

To provide enhanced performability to system components, a commonly used strategy is to provide
redundancy, either hard- or software based; this is also known as replication. Here, service replication
is going to be discussed, which may be differentiated into two classes:

1. Active replication: Using this approach, one or more redundant systems receive copies of all
inputs to the parent system and calculate the results of these inputs independently. If required,
it is also possible to use the replica systems to detect incorrect behavior of the parent system by
comparing its results to the ones generated by each replica (in case of ≥ 2 replicas, a Byzantine
algorithm may be used in order to vote on the correct output). In case of a primary system
failure, one of the replicas is promoted to parent system status and takes over its functionalities.
Since the replica’s state is identical to that of the parent system, this transition only requires
negligible time. However, this type of replication incurs severe overheads and costs in case
hardware is replicated (cf. Section 1.2), as the system costs nearly double without increasing
the computational capacity of the system [160].

2. Passive replication: Here, a “cold spare” system is used as a replica for the parent. In contrast
to active replication, this replica system typically resides in idle state, not receiving the inputs
of the parent system. If the parent system fails, the replica first takes over the responsibilities
of the parent system; however, this may incur some service interruption, depending on the idle
state of the replica. Also, passive replicas are not able to constantly monitor the results of their
parent systems due to remaining idle while not being called upon [160].

In the given context of virtualized AMIs, by using replication, it is possible to improve performability
(see also Section 3.2.1). However, a certain resource overhead is incurred during the hosting.
Depending on where service replicas are hosted, different failures may be mitigated:

• Replica on different substrate: Running replicas on a different substrate allows to mitigate
all failures on the primary substrate, VMM, VM, and service. However, this might lead to

4.4 Introducing Performability-Enhancing Methods 79

performance overheads due to additional data transfer between substrate entities, as data sent
to the service on the primary hosting site needs to be forwarded to the second hosting site.

• Replica on same substrate: As multiple VMMs on the same substrate are not within the scope
of this thesis, this case is excluded from further consideration.

• Replica on same VMM: Replicas hosted on a separate VM, but the same VMM lead to an
avoidance of VM and service level impairments, yet VMM and substrate degradation still
impacts such replicas.

• Replica on same VM: Running a service replica from within the same VM allows only minimal
failure mitigation, i. e. service impairments are avoided.

4.5 Summary
In this chapter, the functional ideas behind VNFA are described in detail after an overview is provided
in Section 4.1.

To realize a virtualized AMI system, first, the forced interconnection of substrate and software present
in current AMIs needs to be loosened, which is described in Section 4.2. In Section 4.2.1, it is clarified
if, and if so in which way, virtualization of AMI related services is possible. This results in the insight
that services which are non-interacting with the physical world (i. e. bound to a certain type of
substrate) as well as not heavily location-bound are potential candidates for virtualization. After that,
in Section 4.2.2, it is discussed how the newly created virtualized services can be distributed onto a
COTS server substrate to achieve optimal dependability and/or performance. Main result here is that
a performance optimization would require all servers to be located in close proximity to one another
to minimize the communication delays incurred. However, such a location strategy would lead to a
single-point-of-failure system structure, thereby leading to a severe dependability degradation.

After the relocation of substrate entities, the virtualized services, their structure and embedding are
further elaborated in Section 4.3. In Section 4.3.1, the softwarization of AMI services into forwarding
graphs consisting of multiple VNFCs is explained, along with their subsequent embedding into a
substrate network. Both steps are further detailed in Sections 4.3.2 and 4.3.3, respectively. The most
important findings are that while the composition of VNFCs may be flexible in many scenarios, AMIs
tend to have an almost completely fixed structure, providing little to no flexibility regarding the
order of their VNFCs. In contrast, the embedding of VNFCs for VNFA users provides many options
and optimization possibilities, especially due to the manifold embedding goals, e. g. maximization of
acceptance rate, embedding of high priority services first, performance optimizations by embedding
complete VNF-FGs of users onto the same server, et cetera.

Finally, in Section 4.4, the possibilities to enhance the performability of VNFA are introduced, which
are split into improvements on the one hand on substrate (Section 4.4.1), and on the other hand
on service level (Section 4.4.2). On the substrate level, two backup strategies are introduced,
namely, the circle and all-for-all backup networks, which are further evaluated in Section 6.2.2.3.
On service level, rejuvenation techniques for services, VMs and VMMs are described. The available
techniques can be distinguished regarding their trigger (deterministic time- or dynamic performance
threshold-based) and—on VMM-level—the behavior towards the hosted VMs: cold, warm or migrate
rejuvenation. A further analysis of rejuvenation and its influence on VNFA’s performability is given
in Section 5.3.4.5.

80 Chapter 4 Creating a Network Function Virtualized AMI

5Modeling a Virtualized AMI

The goal of this chapter is the development of an AMI performability model based on its physical and
logical infrastructure, as well as the separation of substrate and service layers. In contrast to previous
modeling approaches for AMI (e. g., by Xiang et al. [174]) focusing to represent a single property of
an AMI (which are further elaborated in Section 5.1), this novel model includes multiple features
such as the integration of virtualization of services on an arbitrary substrate and the modeling of
performability measures.

To exactly determine the model features necessary, its requirements are derived from the shortcomings
of previous models discussed in Section 5.1, the idea of the VNFA extensively illustrated in Chapter 4
and the overarching functional and non-functional requirements for AMIs in Section 5.2.

Based on that information, in Section 5.3, the hierarchically arranged parts of a novel AMI model
are generated that allow a fine granular definition of hardware and network capabilities as well as
a matching of services and their requirements onto the substrate. The overall model, which is the
focus of Section 5.4, is made up of two hierarchical layers, namely a macro model (Section 5.3.3),
which is used to represent the inter-system interactions of the virtualized AMI system and a micro
model (Section 5.3.4), describing the system’s behavior on an internal level. This allows a modeling
of both substrate and virtualized AMIs and a later analysis of their performability.

The chapter’s content is summarized in Section 5.5.

Contents
5.1 Current AMI Models and their Shortcomings . 82

5.2 Model Requirements . 83

5.3 Development of an AMI model . 86

5.3.1 Failure Behavior . 86

5.3.2 Recovery Behavior . 92

5.3.3 Macro Model (Inter-System) . 94

5.3.4 Micro Model (Intra-System) . 98

5.4 Overall Model .110

5.4.1 Idea and Prerequisites . 110

5.4.2 Generation of Overall Queuing Network Model . 112

5.5 Summary .116

81

5.1 Current AMI Models and their Shortcomings
Several approaches in the research domains of smart grids and especially smart metering are covered
in Section 2.2. In this section, the focus is set on classifying the currently used models in AMI
research and identify their shortcomings, before the actual AMI model of this thesis is described.
To classify AMI models, a qualitative approach is used that orders the currently used AMI models
according to seven dimensions using the rating none, low, medium, high, very high. The seven
dimensions investigated are listed next.

• Dependability: The dimension dependability rates whether the model is capable to be used to
calculate/estimate a system’s reliability, availability or other dependability-related metrics.

• Performance: Similar to the dependability dimension, the performance rating is used to grade
a model’s suitability regarding the calculation of an AMI’s performance-related metrics.

• AMI context: Here a model’s specialization regarding the AMI context is qualified. If a model
is perfectly suited to be used in an AMI-context, a high rating is present, if it is a very generic
model that requires further adaptation to be usable for AMIs, a low rating is given.

• Generality: This dimension grades how generically applicable a model is. It needs to be
mentioned that this rating is not the opposite of the “AMI context” dimension: A model
that fits the AMI use case very well does not necessarily imply being non-general; vice-versa,
“non-general” does not directly imply that the model is well-suited for usage in an AMI-related
context.

• Communication: Depending on the level that communication is regarded in a model, the
qualitative rating in the dimension communication is set. A low rating means that communi-
cation is disregarded, focusing on the substrate/hardware, while a high rating implies that a
strong focus is set on the communication in between substrate nodes.

• Specific model: This dimension grades how specific a model is formalized. If only a vague
modeling scheme is given, a low rating is given; in contrast, a highly formalized model leads to
a high rating.

• Virtualization: In this dimension, a higher grading implies that virtualization is supported
by the model in one or multiple ways (e. g. NFV, SDN, or other types of system or network
virtualization).

Using the scheme described above to classify the currently employed AMI models, it becomes
apparent that recent AMI models are either:

• Abstract, non-quantitative models: In this case only conceptual models are used, with a
mainly explanatory intention. A prominent example is the Smart Grid Architecture Model
(SGAM), which can be used to classify affected smart grid domains and zones if technological
changes are introduced into AMIs (e. g. by Uslar et al. [165]). Apart from that, the NIST also
provides a smart grid model that offers a well-structured overview of the smart grid as well as
AMI domains and involved systems [108]; yet, they are not suitable for further analysis, due to
missing evaluation possibilities and lack of employable quantitative metrics.

82 Chapter 5 Modeling a Virtualized AMI

Performance

Dependability

Virtualization

Specific model

Communication

Generality

AMI context

Uslar [165]

Zhou [187]

NIST [108]

Xiang [174]

Dong [43]

Figure 5.1.: Classification of currently used AMI models

• Highly specialized, quantitative models: Here, the modeling approach taken is highly fo-
cused on the specific domain and goal; typical models used include RBDs and SPNs for
reliability/dependability analyses (e. g. by Xiang et al. [174]) and network graphs for topolo-
gy/architectural analyses (e. g. by Zhou et al. [187]). The shortcomings in these models are
often that they are either not specifically made for/adapted to the usage in AMI environments,
leading to gaps within the approach, which is e. g. encountered in Dong et al.’s work [43],
where SDN-based virtualization approaches in smart grid communications are presented which
however fail to include details regarding AMIs as well as performance considerations. Similar
shortcomings are present in Xiang et al.’s work [174], where the communication in AMI
environments is not considered explicitly; instead, only substrate entities (i. e. smart meters)
are used to predict the whole infrastructure’s dependability.

A classification of the models mentioned in the previous paragraphs is depicted in Figure 5.1. For
readability reasons, only five representative models are included in the figure. While there are more
AMI-related models available, the resulting classification is similar as described before. Therefore,
the requirements for an AMI model which supports both virtualization and performability evaluation
are discussed in the upcoming Section 5.2.

5.2 Model Requirements
A suitable performability model for a NFV-based AMI requires a combination of several approaches
that were previously not researched at all or only treated in isolation in AMI scenarios, namely virtual
service embedding, dependability, as well as performance. The requirements to combine these three
features are explained in the following.

The abstraction of network functions from their respective substrate, separating the previously
merged substrate and service planes is enabled through the introduction of additional VMM and
VM planes. The result of the mentioned separation of substrate and service planes is that the
(previously fixed) static substrate can now be exchanged, leading to a dynamic and flexible indirect

5.2 Model Requirements 83

interconnection through the VMM and VM planes, due to possible migration of services onto
changing substrate entities. This leads to the requirement of a dynamic mapping between the
network functions and links located within the service layer and the entities of the VM, VMM, and
finally substrate layer. In addition to that, the model needs to be able to represent both bidirectional
links (present at the substrate plane) as well as unidirectional links (at the service plane). The
unidirectional links are required to give a fixed order to the services (VNFCs) forming a user’s VNF,
which cannot be arbitrary. Therefore, it is required that the model supports unidirectional links on
the service and bidirectional links on the substrate layer, respectively. While this would be enough
to represent a generic mapping of services, the model has to further respect several additional
requirements and limitations given by all layers during their mapping. As the details of the
considered values are given in Section 5.3.3.1, only several examples are briefly mentioned here.
The substrate entities (comprising both nodes and links) are limited regarding their resources, which
are given as CPU, bandwidth, et cetera. During a mapping, these limitations need to be considered
and reconciled with the prerequisites given by the services, which each require a certain amount
of resources. Therefore, a model is required to allow the assignment of resource/requirement
properties to all entities.

To later be able to calculate the performability of the NFV AMI, several requirements emerge. The
granularity of the model needs to allow a performability estimation of all entities’ states. This
includes both the nodes and links and the VNFCs themselves, their hosting VMs, as well as their
respective VMMs. Main inputs are the failure, aging, and repair rates associated with both
services and substrate entities, which have a significant impact on their performability. Therefore a
proper representation of this property needs to be ensured. In addition, the model shall support both
the calculation of steady-state and transient measures, to allow both general and time-dependent
statements regarding the behavior of VNFA.

• Dynamic mapping ⇒
Separate model planes for services, virtual-
ization and substrate entities that change
over time: dynamic model

• Uni- and bidirectional links

⇒ Model has multiple, arbitrary properties
assigned, allowing explicit modeling

• Failure and repair rates on substrate, virtu-
alization and service levels

• Mapping requirements and limitations

• Assign resource/requirement properties

• Performability estimation for substrate
and/or services

⇒ Model allows both individual and com-
bined plane calculations

• Steady-state and transient dependability
and performance measures

⇒ Model needs to offer quantitative solutions

• Performability estimation for VNFs based
on different VNFC properties

⇒ An optimization model is used

Table 5.2.: Requirements of the novel AMI model

To be able to estimate the overall AMI performability, a modeling of the performability of each
VNFC and their respective interconnections is required, leading to an exegesis of performance into
both computational and network performance. Both measures need to be modeled respecting
the influences of the service and substrate plane (e. g., a virtual link could artificially restrict the

84 Chapter 5 Modeling a Virtualized AMI

bandwidth of a substrate link). The overall model also needs to be able to calculate both steady-state
and transient performance measures.

Looking at these prerequisites for a model capable of handling NFV AMIs, the model requirements
are derived in Table 5.2.

It is apparent that the requirements identified in this section cannot be fulfilled by a single modeling
mechanism. Based on the requirements, however, a modeling strategy can be selected. As a
quantitative evaluation is required, either measurements or abstract models are possible options.
Measurements are impossible to realize due to two reasons; first, the suggested VNFA does not
yet exist; second, a construction of such a large scale installation is beyond the capabilities of the
author. Therefore, abstract models are constructed for evaluation purposes, more precisely, both
discrete-event simulation and analytic approaches are employed.

Quantitative evaluation

Measurements Modeling

Analytic models

State-space
methods

Non-homogenous
Markov models

Markovian
models

Discrete-time
Markov chains

Continuous-time
Markov chains

Markov
reward models

Non-Markovian
models

Non-state-space
methods

Dependability
models

Performance
models

Queuing
models

Task precedence
graphs

Discrete event
simulation

Figure 5.2.: Quantitative evaluation approaches (based on Trivedi [162])

The discrete-event simulation is required to evaluate scenarios where non-exponential transition
rates are present in models, e. g. if deterministic and other non-exponential transition rates are
required. While certain approaches exist to solve also non-exponential transition rates, such as
Deterministic and Stochastic Petri Nets (DSPNs) for deterministic distributions, they are often limited,
e. g. they only provide steady-state solutions. Therefore, discrete-event simulation is preferred in the
aforementioned scenarios [84].

When analytic models are employed, both state-space methods and non-state-space methods are
used: non-state-space methods in the macro model (representing the inter-system behavior, see
Section 5.3.3); state-space methods in the micro model (representing the intra-system behavior, see
Section 5.3.4), due to the manageable state-space size.

5.2 Model Requirements 85

Within the domain of state-space methods, there are non-Markovian, non-homogeneous Marko-
vian, and Markovian models. While non-homogeneous Markov models (i. e. semi-Markov and
Markov regenerative processes) and non-Markovian models offer support for general and Weibull
distributed event/failure distributions, due to the failure and repair rates (which are explained in
Sections 5.3.1 and 5.3.2) Markovian models are chosen, more precisely continuous-time Markov
chains (as well as their F1 models, i. e. Generalized Stochastic Petri Nets (GSPNs) [60]) and Markov
reward models.

For non-state-space methods, both dependability models and performance models are available;
however, the dependability models (i. e. RBDs and fault trees), while being easy to use, assume a
statistical independence that is not given in the systems analyzed within this thesis. In contrast, the
performance models are able to handle failure/repair dependencies, such as non-zero switching
times or travel time of repair persons. Therefore, for performance assessments of the overall model,
queuing models are employed.

An overview of the selected modeling formalisms is given in Figure 5.2.

5.3 Development of an AMI model
Before the macro and micro models are developed in Sections 5.3.3 and 5.3.4, respectively, several
prerequisites need to be clarified. In Section 5.3.1 the failure behavior of hard- and software, as well
as the resulting stochastic distributions assumed in the subsequently developed models are derived.
Similarly, in Section 5.3.2 the properties of the recovery mechanisms are investigated.

5.3.1 Failure Behavior
In the following, an overview regarding the types of failures present in ICT systems as well as their
importance to the overall failures of a device is given in Section 5.3.1.1. After that, the difference in
failure behavior of hard- and software is discussed in Section 5.3.1.2.

5.3.1.1 Root Cause Breakdown

Before the failure and recovery behaviors of ICT systems are discussed, an obvious question when
analyzing computer systems is what is the cause that triggers a system failure. Based on an analysis by
Schroeder & Gibson the causes for a system outage are classified into six different origins: Hardware,
software, human, environmental, network, and unknown [144]. Figure 5.3 depicts the results, where
it is clearly visible that hardware failures are by far the biggest contributor to ICT system failures
(60 %), followed by software (18 %), unknown (12 %), environmental (5 %), network (3 %) and
human (2 %) failures.

It is further noteworthy that there is no significant change regarding the root cause breakdown over
the lifetime of a system (i. e., as time progresses from initial deployment to later times of operation).
According to Schroeder & Gibson, the main change is that in some systems the percentage of failures
with unknown origin drops over time [144]; the relative frequency of the other types of failures
however remains relatively unchanged.

As this brief analysis shows, the main contributors to the overall failures in ICT devices are hard- and
software failures, accounting for over 75 % of outages. Therefore, in the following modeling and
analyses, the regarded failures are restricted to both of the aforementioned failure types.

86 Chapter 5 Modeling a Virtualized AMI

Hardware

60%

Software

18%

Unknown

12%

Environment

5%

Human

2%

Network

3%

Figure 5.3.: Root cause breakdown chart

5.3.1.2 Hardware and Software Failures

After the main contributors to failures in ICT systems are identified, a clarification regarding the
different failure behavior characteristics in hard- and software is regarded as necessary. While both
hard- and software are subject to failures, their nature is quite dissimilar, which leads to unalike
failure models and developments over time.

In the case of hardware, physical causes (e. g., random failures during useful life or wear-out failures)
are the predominant cause of failures; in contrast, software malfunctions solely appear as a symptom
of systematic failures (e. g., due to a wrongly defined interface in the software design phase) [6].

In addition to that, the behavior of hardware failure rates along the component’s lifetime is well-
known and follows a three-stage pattern. During the “infant mortality” phase, a decreasing failure
rate can be observed, the “useful life” period is characterized by a quasi-constant failure rate (which
are random failures), while the “wear-out” phase is showing an increasing failure rate due to wear-out
until the system’s end of life. This behavior is illustrated in Figure 5.4.

While the failure behavior of hardware is widely agreed upon [66, 159], this is not true in the case
of software failure rate development. There are various theories and models regarding the behavior
of software failure rates over time; these are going to be discussed here briefly.

It is agreed upon that software failures are inherently deterministic in nature, as they do not result
from randomly appearing challenges, but rather from bugs present inside the software’s code, which
are triggered under specific conditions. This leads to software failures themselves being systematic
and reproducible; however, when looked at from a temporal rather than a causal point-of-view, the
times at which a bug is triggered leading to a system failure needs to be modeled using stochastic
processes, as it is impossible to predict when a software failure will occur in a complex system.

The failure rate development of software over time therefore follows a three-stage pattern (debugging,
useful life, obsolescence), too. While there is a consensus on the behavior during the debugging
phase, being that possible bugs present during the first software deployment are identified and fixed,

5.3 Development of an AMI model 87

Time t

Fa
ilu

re
ra

te
(λ

)

Infant mortality Random failures
Wear out Assumed failure rate

Decreasing
failure rate

Constant
failure rate

Increasing
failure rate

Figure 5.4.: Development of hardware failure rate over time, based on IEC 61508 [66]

leading to a decreasing failure rate, both following phases are still discussed by experts. The major
points of discussion are:

• Patching: There are ongoing discussions if, and if so how much patching of software—which
is required during the useful life phase of software to extend or adapt features—leads to
new bugs that may lead to failures. Youn & Yi [180] and Rawat et al. [133] state that
each introduction of a patch causes an initial increase in failure rate, as patches are causing
new bugs to appear due to imperfect programming. The initially rising failure rate is then
reduced by subsequent patches, which is captured in software reliability growth models, such
as the Jelinski-Moranda, Littlewood and Goel-Okumoto models [137]. In contrast, Jalote &
Murphy [68] and Rosenberg et al. [138] claim that such strong influences of patches are not
present anymore in modern software patches. Rather a constantly decreasing failure rate is
observable in software, somewhat resembling the shape of the “infant mortality” curve present
in hardware.

• Aging property: There is a disagreement regarding the existence of an “aging property” in
software with progressing obsolescence. Friedman et al. [56], Parnas et al. [120] and
Rosenberg et al. [138] argue that software does not deteriorate like hardware does in a sense
that the failure occurrence rate changes due to its own physical aging properties. This would
lead to software failure rates being constant during time progression if it is not subject to any
changes. In contrast, Ogheneovo [116] and Parnas [119] agree on the fact that while it is true
that when software has reached a certain age (obsolescent state), there are no more upgrades
made to the program (leading to nearly constant failure rate). However, several other reasons
for deterioration lead to a similar “wear-out” effect as observed with hardware:

88 Chapter 5 Modeling a Virtualized AMI

– Changing operational profile: The system is used according to the original specifications,
however, the usage patterns change so that functions that were previously used infre-
quently are now invoked more often. Therefore, failures that were previously experienced
only seldom are now occurring more frequently, necessitating system changes.

– Changing requirements: Business and functional requirements typically change over
time. This is usually the result of innovation, security-related adaption and changes in the
market, regulatory environment and competitive landscape.

– Changing technology stack: System software platforms such as operating systems and
database management systems evolve with time. In order to avoid obsolescence, software
systems must be migrated from old technology platforms to newer ones. This is true even
if the functional and business requirements have not changed. There are situations where
there is a business or functional requirement that requires that changes be made to the
technology stack.

Figure 5.5 depicts the failure behavior of software over time. The dotted lines represent possible
behaviors that are however not used during the modeling within this thesis; the assumed failure
behavior is depicted as a blue, solid line.

Time t

Fa
ilu

re
ra

te
(λ

)

Increasing post-patch failure rate (e. g. Youn & Yi [180])
Constant obsolescence failure rate (e. g. Friedman et al. [56])
Increasing obsolescence failure rate (e. g. Ogheneovo [116])
Assumed failure rate (e. g. Jalote & Murphy [68] and Friedman et al. [56])

Debugging Useful life Obsolescence

Figure 5.5.: Development of software failure rate over time

The reasons for the assumed software failure behavior are:

• Assuming an AMI environment as a part of a critical infrastructure, it is likely that the software
services themselves are not subject to many changes, but rather restricted and constant in their
functions. A high amount of modifications during their useful life phase is not realistic.

5.3 Development of an AMI model 89

• In addition, if patches are applied in a critical infrastructure environment, it is probable that
these software modifications are well-tested, leading to a lower probability of post-patch failure
rate increases.

• In contrast to “normal” software, services in critical infrastructures are required to have a long
support time, therefore an obsolescence time will be highly delayed.

After the failure behaviors of both hard- and software over time was discussed in this section, an
exact definition of the types of failures regarded in this thesis is given in Section 5.3.1.3.

5.3.1.3 Failure Modes

To be able to subsequently model system failures, the term “failure”, which was only informally
used previously in this chapter, needs to formalized. In contrast to Ammar et al. [6], who stated
that a system failure is only present if the actual output of the system for a specific input differs
from its expected output, in this thesis, an extension to this definition is devised to include the QoS
requirements of systems. First, the failure definition focusing on the function of a system—based
on Ammar et al. [6]—are introduced, after that, failures stemming from unfulfilled non-functional
requirements are discussed.

Functional Failures. Ammar et al. argued that defining a failure as a difference between the actual
and expected output of a system for a specific input leads to two additional issues which need to be
addressed [6]. First, it is required to investigate if, and if so how system behavior can be modeled
by its input-output pairs; second, a system needs to have a well-defined expected behavior that is
known a priori.

The first issue may be regarded as trivial for straightforward hard- and software components, such
as basic mathematical operations. However, more complex systems, such as, e. g. OSs or similar
are much harder to formalize in such manner. Skuce & Mili shows how such complex systems are
represented by pairs of the form (h, y), where h is an input sequence and y is an output [152]. To
model the expected behavior of a system, it is required to distinguish between two distinct definitions
of the term failure discussed next.

• A failure to fulfill the function that the system needs to compute. The function of a system
defines specific expected outputs to inputs. A failure is therefore present if any input leads to
an output failing to fulfill the specified function.

• A failure to fulfill the specification that the system is built to satisfy. Using this definition, there
is no check whether a system fulfills a function correctly, however, a failure of the system is
detected if its specification (e. g., result out of range of possible results) is not satisfied.

The definitions of both types of failures are given in Definitions 5.1 and 5.2, respectively. For both
definitions a system σ, which computes a function φ from space S to space S′ (i. e., φ ⊆ S × S′) is
considered.

Definition 5.1: Failure with respect to function

A failure of system σ with respect to its function φ is present if and only if for an initial state s
the corresponding output state s′ does not satisfy the condition (s, s′) ∈ φ.

90 Chapter 5 Modeling a Virtualized AMI

Definition 5.2: Failure with respect to specification

A failure of system σ with respect to specification ρ is present if and only if for an initial state s
the corresponding output state s′ does not satisfy the condition (s, s′) ∈ ρ.

As an example, a simple addition system for two positive integers (x , y) is considered. The expected
behavior of such a system can straightforward be described as a function φ, defined as:

φ = {(〈x , y〉, z) | z = x + y}.

If the system function would not be clear a priori, a specification ρ could be:

ρ = {(〈x , y〉, z) | x ≥ 0∧ y ≥ 0∧ |z|= x + y}.

Using the addition system, a function-based failure is for example present if for two given integers,
x = +15 and y = +12, the output z = −27 is obtained; the system does no longer fulfill its function
φ = {(〈x , y〉, z) | z = x + y}. Using the same example, however, no specification-based failure is
detected, as the system still satisfies ρ = {(〈x , y〉, z) | x ≥ 0∧ y ≥ 0∧ |z|= x + y}.

This can be generalized in the following way: A function-based failure detection is always a part
of any valid specification-based failure detection. In most cases, a specification is going to be more
coarse and allows more solutions than a function; this is also depicted in Figure 5.6. Here, the
dashed circle represents valid (non-failing) solutions using a specification; the point marked by the
arrowhead is the solution valid using a function-based failure detection.

φ

ρ

Figure 5.6.: Failure detection based on function φ and specification ρ (based on Ammar et al. [6])

Within Chapters 5 and 6, functional failures are included in the given failure rates λ. While a
function/specification check would be possible for certain simple services, such as data concentrators,
they are not done on a system-wide level. However, functional failures are considered in Section
6.3.3, where a proof-of-concept implementation of a virtualized SMGW is analyzed.

Non-functional Failures. In contrast to functional failures, a non-functional failure is present if
a correct result is delivered by a system, however, at least one non-functional requirement (e. g.
timing) for the result is not met. The specification of the non-functional requirements may include
parameters such as latency and throughput, both in a minimum and maximum allowed amount.
Mathematically, non-functional failures closely resemble the definition of specification-based failures,
as they are only defining a minimum/maximum threshold, not a precise value to be fulfilled. It is
noteworthy that non-functional requirements may include both maximum (ζ) and minimum (η) non-
function requirements. Taking the addition system as an example again, a maximum non-functional
requirement may include, e. g., a maximum latency (Lmax). This results in:

ζ= {σ | L(σ)≤ Lmax}.

5.3 Development of an AMI model 91

Definition 5.3: Failure with respect to non-function requirements

A failure of system σ with respect to non-function requirements is present if and only if for an
initial state s the corresponding output state s′ does not satisfy the condition (s, s′) ∈ ζ∩η.

Non-functional failures are considered during the evaluation of the overall model (which is further
elaborated in Section 5.4) performed in Section 6.2.3. Here, the performance achieved by SSMA
and VNFA are compared to the non-functional requirements of AMIs.

ζ η

(Maximum) (Minimum)

Figure 5.7.: Failure detection based on non-functional requirements

5.3.2 Recovery Behavior
Upon a (sub)system failure (as explained in Section 5.3.1.3), a (hard-/software) system’s performa-
bility may be impaired. The failures present in a system may be restored during a recovery phase. A
system’s recovery is mainly characterized in three dimensions: possibility, quality, and structure of
the recovery.

5.3.2.1 Possibility

First, it needs to be distinguished if a system is able to be recovered from any state that requires
repairs back to an acceptable performance level (perfect recovery) or if there is at least one non-
performing state that cannot be recovered (imperfect recovery). Formally, a perfect recovery is
defined as:

∀ i ∈ Sdown,∃k ∈ Sup : ∃p ∈P | i
p
−→ k,

where Sdown is a set of all “down” states of a system i. e. ∀ i ∈ Sdown : P(i) < Pthreshold , where P(i)
is the performance during recovery phase i

�

P(i) ∈ R+0 ≤ 1
�

, Pthreshold the performance threshold
which needs to be exceeded for a system to be considered operational. Sup is a set of “up” states, i. e.
Sup = S \ Sdown. p is an arbitrary path within P, the set of all finite paths within the system states S.
In contrast, an imperfect recovery is defined as:

∃ i ∈ Sdown, k ∈ Sup : > p ∈P | i
p
−→ k.

5.3.2.2 Quality

The second characteristic of a recovery is its quality. Despite the possibility to recover from impaired
system states, which was discussed in the previous Section 5.3.1.3, the resulting performance after
a recovery may vary. If the system always offers a performance level similar to a new, i. e. never
impaired, system after a recovery, it offers an optimal recovery. This is formalized as:

∀ p ∈P | i
p
−→ k : P(k) = Pmax ,

where Pmax denotes the maximum performance level achievable by the system.

92 Chapter 5 Modeling a Virtualized AMI

If after a recovery attempt the system shows a varying performance level—which in some cases is
optimal, while in others, a decreased performance level persists—an unstable recovery is present,
expressed as:

∃ p,q ∈P : i
p
−→ k, P(k) = Pmax ∧ j

q
−→ l, P(l)< Pmax ,

where i, j ∈ Sdown and k, l ∈ Sup.

If no recovery attempt is able to restore the system’s maximum, but instead only a lower performance
level, a deteriorated recovery is present. This is mathematically expressed as:

∀ p ∈P | i
p
−→ k : P(k)< Pmax .

5.3.2.3 Structure

The structure of a recovery process expresses if multiple states are present during the recovery itself
and if the performance levels do change. Two main types of recovery structures exist: single and
multi-phase; both are described next.

Single Phase Recovery. In a single phase recovery approach, all required restoration actions are
modeled into a single activity while assuming the performance being unchanging during this recovery.
To be able to estimate the required restoration time appropriately, it is necessary to not only calculate
the maximum, minimum, and mean restoration time required, but also its distribution; otherwise,
inadequate assumptions regarding the recovery time may lead to under- or overprovisioning of
recovery resources. Using a single phase recovery model, the recovery time must include all required
actions to restore the system, including all recovery attempts until a successful recovery is achieved
as well as all actions that are part of the recovery. Formally defined, this leads to:

|R|= 1∧ P(i) = 1− ξi ∧ t(i) = τi ,

where R is a set of recovery phases; |R| is the number of recovery phases; ξi is the performance loss
during recovery phase i, where i ∈ R and ξi ∈ R+0 ≤ 1; P(i) is the performance during recovery phase
i; t(i) is the recovery time required for a single attempt to restore the system from recovery phase
i.

Multi-phase Recovery. The multi-phase recovery allows changing performance levels during a
system’s restoration. This behavior is achieved by modeling the recovery in multiple, escalating
phases of recovery, where each represents a new restoration attempt [96]. Usually, the simplest
recovery approach (i. e. the one requiring the shortest time) is attempted first. If this approach
is unsuccessful, the subsequent phases of recovery are attempted until the system is restored.
Depending on the structure of the multi-phase recovery, two sub-classes may be distinguished:

• Multi-phase, single level: This recovery type assumes that the performability level remains
unchanged during multiple recovery phases—similar to the single phase recovery. Effectively,
this leads to multiple escalating recovery phases sharing the same performance level, which is
formalized as:

|R|> 1∧∀ i, j ∈ R : P(i) = P(j)∧ ∃ k, l ∈ R : t(k) 6= t(l)

5.3 Development of an AMI model 93

• Multi-phase, multi-level: In contrast, if the performance level may change for each phase
during the recovery process, a multi-phase, multi-level process is present. A formal expression
of such a recovery process is:

|R|> 1∧ ∃ i, j ∈ R : P(i) 6= P(j)∧ ∃ k, l ∈ R : t(k) 6= t(l)

Examples for such a recovery are often found after complex systems suffered severe degra-
dations. The recovery after such a failure is often divided into several recovery phases, each
changing the performability level of the overall system. It needs to be noted that after each
recovery phase, several possible outcomes need to be distinguished:

– Improved: The system performance level is increased after the recovery phase is finished.
Formally, this is the case if:

i, i + 1 ∈ R : P(i)< P(i + 1)

– Unchanged: The performance level remains unchanged if the restoration remains unsuc-
cessful after the recovery phase finished, which is formalized as:

i, i + 1 ∈ R : P(i) = P(i + 1)

– Degraded: If another failure (either related to the recovery attempt or unrelated) occurs
during the recovery, the performance level is decreased. This happens if:

i, i + 1 ∈ R : P(i)> P(i + 1)

An example for a failure caused by a restoration attempt is e. g. a software upgrade
intended to restore a system, which may introduce another failure.

In the scenario investigated in this thesis, a perfect, unstable, multi-phase, single level recovery is
assumed, which is further elaborated upon in Section 5.3.4.4.

5.3.3 Macro Model (Inter-System)
The macro model represents the interactions between several systems, the performance-enhancing
methods on substrate level and the embedding of VNFs stretching across multiple substrate entities.
To generate the model, it is first required to determine whether VNFA or SSMA is used. In the case
of VNFA, a more detailed explanation is given in the following Section 5.3.3.1, while the generation
of the macro model in SSMA’s case is described later in Section 5.3.3.2.

5.3.3.1 VNFA Macro Model

In the VNFA macro model the VNF-FG of each user is embedded using the embedding technique
formalized in Algorithm 4.2 and the substrate redundancy scheme to be employed (Section 4.4.1), a
macro model can be generated which represents the hosting and interaction across multiple substrate
entities, which—in turn—allows to generate the micro models for each substrate node. To cover the
requirements of the macro model discovered in Section 4.3.3, a model based on networks graphs
(see Definition 5.4 for a general definition), which are already actively used both in virtual network
embedding as well as other network theoretical fields, is developed. In the given case, the substrate
plane is modeled as a graph Ghw = (V hw, Ehw) that is

• undirected, representing the bidirectional links of the substrate plane,

94 Chapter 5 Modeling a Virtualized AMI

• finite, due to the inherently finite number of entities represented by the vertices and edges in
the graph, and

• weighted, due to the resource limitations present in the substrate.

Definition 5.4: Network graph

A network graph is an ordered pair G = (V, E) comprising a set V of vertices or nodes together
with a set E of edges or lines, which are 2-element subsets of V . [18]

To represent the properties of an entity (being it a node or link), its “weight” is not defined as a single
value, but as a weight vector. For vertices, this vector consists of its available hardware resources (CPU
rhw

cpu ∈ R
+
0 and type rhw

t ype ∈ T, where T = {sm, gw, r, dc, t ps, g} with g being a generic type representing
no substrate type requirements) and an owner ohw ∈ N0. In addition, there are three vectors present
for the failure

�

λhw ∈ (R+0)
3
�

and repair rates
�

µhw ∈ (R+0)
3
�

associated with the substrate entity, as

well as a backup vector (νhw ∈ S∗). The vectors are defined as λhw =
�

λhos λhom λhol

�>
and µhw =

�

µhrs µhrm µhrl

�>
, respectively, containing the variables on substrate level as detailed in Section

5.3.4. νhw is a vector of arbitrary length containing all backup nodes of a substrate entity. Details
regarding νhw and its implications are further elaborated upon later in this section. The resulting

substrate weight vector for vertices is given as w(vhw
i ∈ V hw) =
�

rhw
cpui

rhw
t ypei

ohw
i λhw

i µhw
i νhw

i

�>
.

For edges, the weight is defined by the available link bandwidth rhw
b ∈ R

+
0 , a failure rate λhw ∈ R+0 ,

and a repair rate µhw ∈ R+0 . Formally, the weight is given as w(ehw
i j ∈ Ehw) =
�

rhw
bi j

λhw
i j µhw

i j

�>
.

Both virtualization planes, namely the VMM and VM planes, are modeled in a similar way as the
substrate plane, however, there are no edges defined for the virtualization layers. Two vectors
in VMM vertices represent the failure rates

�

λvmm ∈ (R+0)
3
�

and repair rates
�

µvmm ∈ (R+0)
2
�

. The

failure rate vector is defined as λvmm =
�

λvmmo λvmmd λvmmod

�>
, the repair rate vector as µvmm =

�

µvmmr µvmmre j

�>
. Instead of providing resources, the virtualization induces a certain overhead,

as described in Section 3.2.4.2. This is represented by two parameters, namely the CPU overhead
(Ωcpu ∈ R+ ≥ 1) and the network overhead (Ωnet ∈ R+ ≥ 1). Formally the VMM weight vector for

vertices is given as w(vvmm
k ∈ V vmm) =

�

λvmm
k µvmm

k Ωcpu Ωnet

�>
.

While the VM plane is technologically deeply linked with the VMM plane, a significant difference
distinguishes them: Multiple VMs may be hosted on a single VMM, therefore a 1 : n relationship
is present between VMMs and VMs. This leads to the following definition regarding the VM
plane: A CPU (d vm

cpu ∈ R
+
0) and type demand (d vm

t ype ∈ T) are defined; these values are inherited
from the service plane. Again, there are two vectors in VM vertices that represent the failure rates
�

λvm ∈ (R+0)
3
�

and repair rates
�

µvm ∈ (R+0)
2
�

. The failure rate vector is λvm =
�

λvmo λvmd λvmod

�>
,

the repair rate vector µvm =
�

µvmr µvmre j

�>
. The VM vertices weight vector is w(vvm

l ∈ V vm) =
�

d vm
cpul

d vm
t ypel

λvm
l µvm

l

�>
.

After the definition of the substrate and virtualization planes of the AMI model, the service plane is
defined; however, the properties of the service network graph Gs = (V s, Es) are different compared to
the previous graphs; Gs it is finite, directed and weighted. Compared to the substrate graph, the service
plane requires a directed graph model to represent the logical order of services. The weights of service
vertices include the required CPU resources of the service (CPU ds

cpu ∈ R
+
0), a required type ds

t ype ∈ T,

5.3 Development of an AMI model 95

a service failure rate vector λs ∈ (R+0)
5, a service repair rate vector µs ∈ (R+0)

3, a service priority

flag σs ∈ {0, 1}, and a service’s user u ∈ N0: w(vs
m ∈ V s) =
�

ds
cpum

ds
t ypem

λs
m µs

m σs
m us
�>

. The

vectors are defined as follows: λs =
�

λso λsol λsd λsod λsold

�>
, and µs =
�

µsr µsr l µsre j

�>
.

For service graph edges, the weight parameters are the required link bandwidth ds
b ∈ N, a failure rate

λs ∈ R+0 , and a repair rate µs ∈ R+0 . The respective definition is w(es
mn ∈ Es) =
�

bs
mn λs

mn µs
mn

�>
.

In addition to the representation of the individual layers using network graphs, to formalize the
relationship between the layers (i. e. the hosting relationship), a set of directed, finite, unweighted
edges Em is created, where:

em
i j ∈ Em :

j ∈ V vm for i ∈ V s

j ∈ V vmm for i ∈ V vm

j ∈ V hw for i ∈ V vmm

Em includes edges that represent the mapping of an entity onto another: ∃ em
i j ∈ Em : i is mapped to

j. This mapping is unambiguous, i. e. the out-degree of each node regarding Em that is not on the
bottom-most layer is always 1; on the bottom-most layer, it is 0:

outdegEm
(i) :

(

1 for i ∈ {V s ∪ V vm ∪ V vmm}

0 for i ∈ V hw.

Also, the mapping induced by Em needs to respect the type demands given by ds
t ype and/or d vm

t ype.
This is enforced by requiring:

em
i j ∈ Em :

rhw
t ype j

∈ V hw = x for ds
t ypei
∈ V s = g

rhw
t ype j

∈ V hw = y for ds
t ypei
∈ V s = y 6= g,

where x , y ∈ T.

The scheme of the model is illustrated using an example including a single substrate and VMM entity,
two VMs and three service entities in Figure 5.8. Using the substrate and service plane of the novel
modeling approach, it becomes possible to represent both standard (non-virtualized) as well as
virtualized AMIs. At this point, it should be noted that the substrate plane is only required to embed
the logical entities of the service plane, i. e. the substrate plane itself could also be realized as virtual
machines (in which case the embedding of logical services would lead to a nested virtualization).
This way, it would be possible to achieve an even further abstraction from the bottom-most, physical
substrate. However, it is also worth mentioning that every layer of virtualization induces an additional
overhead leading to possible performance impairments, as discussed in Section 3.2. Because of that,
the substrate plane is assumed to be realized as physical hardware throughout this thesis.

Concerning the modeling of either non-virtualized or virtual logical services, it can be seen that the
usage of non-virtualized services implies that each service requires a separate substrate, leading to a
1 : 1 relationship of service to substrate nodes (|V hw|= |V s|); in the virtualized case, this relationship
does usually not hold, as many services can be embedded onto a single substrate, therefore, a
n : 1 relationship between service and substrate nodes is given. In contrast to the |V hw| = |V s|
relationship in the non-virtualized case, if virtualized services are hosted, no assumptions concerning
the number of logical and substrate nodes are possible, as a dynamic redistribution of VMs is possible,
leading, e. g., to the possibility of abandoned substrate nodes. In VNFA, in addition, it holds that
|V hw|= |V vmm| (a single VMM per substrate node) and a m : 1 relationship of |V vmm| to |V vm|.

96 Chapter 5 Modeling a Virtualized AMI

1 2

Substrate plane

1

VMM plane

1

2

1

2

3

Service plane

w(vhw
1) = rhw

cpu1
, rhw

t ype1
, ohw

1 , λhw
1 , µhw

1 , νhw
1

w(ehw
12) = rhw

b12
, λhw

12 , µhw
12

w(vvmm
1) = λvmm

1 , µvmm
1 , Ωcpu, Ωnet

w(vvm
1) = d vm

cpu1
, d vm

t ype1
, λvm

1 , µvm
1

w(vs
1) = ds

cpu1
, ds

t ype1
, λs

1, µs
1, σs

1, us
1

w(es
23) = ds

b23
, λs

23, µs
23, us

23

VM plane

Figure 5.8.: Service, VM, VMM, and substrate plane of the VNFA macro model

As introduced in Section 4.4, on substrate level, there are three performance-enhancing methods,
which focus on dependability by providing backup substrate nodes in case of outages. The three
options are: (a) no substrate backup, (b) circle backup, and (c) all-for-all backup. In contrast to the
performability-enhancing methods in the micro model, the macro model does not require extensive
alterations to include the backup options discussed in Section 4.4. To specify which servers are to be
used as backup nodes in case of a failure, the parameter νhw

i is present for each substrate entity i.
There are three cases to be distinguished for νhw

i :

5.3 Development of an AMI model 97

|νhw
i |=

0 if no backup is defined

1 if circle backup is used

|V hw| − 1 if all-for-all backup is used

5.3.3.2 SSMA Macro Model

The SSMA macro model is realized in a similar manner as the VNFA model, mainly distinguishing
itself in the removal of the VMM and VM layers. Furthermore, due to the non-virtualized system
architecture, every service is directly “mapped” onto its corresponding substrate, with ds

t ypei
= rhw

t ypei
,

which is not self-evident, as in the virtualized case, several services with different type demands may
be hosted on the same substrate node. The backup strategy used in VNFA and represented by the
vector ν is also removed from the model in SSMA, as no servers hosting virtual machines are present.
The resulting model is displayed in Figure 5.9.

1

2

3

Substrate plane

1

2

3

Service plane

w(vhw
1) = rhw

cpu1
, rhw

t ype1
, ohw

1 , λhw
1 , µhw

1

w(ehw
12) = rhw

b12
, λhw

12 , µhw
12

w(vs
1) = ds

cpu1
, ds

t ype1
, λs

1, µs
1, σs

1, us
1

w(es
23) = ds

b23
, us

23

Figure 5.9.: Service, and substrate plane of the SSMA macro model

5.3.4 Micro Model (Intra-System)

The micro model represents the behavior of the virtualized AMI system on a system-internal level.
This includes the modeling of failure and restoration behaviors, which are based on the findings
in Sections 5.3.1 and 5.3.2, as well as the interplay of system components. After the basic model
description, the performability-enhancing methods introduced to system components in Section
5.3.4.5 are included. Finally, in Section 5.3.4.6, the micro model of a virtualized AMI is generated.
During the model generation, w.l.o.g. a single service being hosted in a VM is assumed, until stated
otherwise. The micro model for SSMA is also presented at the end of Section 5.3.4.6.

98 Chapter 5 Modeling a Virtualized AMI

5.3.4.1 Nomenclature

During the development of the micro models for VNFA and SSMA, several abbreviations are used
to describe firing rates (such as repair and failure) as well as other parameters. Though these are
elaborated further when they are first encountered, a list of the most important abbreviations used
in the micro models is given in the following Table 5.3.

Abbreviation Meaning

λso Service failure rate

λsd Service degradation/aging/impairment rate

λsol Long service failure rate

λsod Degraded/aged/impaired service failure rate

λsold Long degraded/aged/impaired service failure rate

µsr Service repair rate

µsr l Long service repair rate

λvmo VM failure rate

λvmd VM degradation/aging/impairment rate

λvmod Degraded/aged/impaired VM failure rate

µvmr VM repair rate

λvmmo VMM failure rate

λvmmd VMM degradation/aging/impairment rate

λvmmod Degraded/aged/impaired VMM failure rate

µvmmr VMM repair rate

λhos Short hardware failure rate

λhom Medium hardware failure rate

λhol Long hardware failure rate

µhrs Short hardware repair rate

µhrm Medium hardware repair rate

µhrl Long hardware repair rate

τd Failure detection time

τdl Long failure detection time

δ Deterministic rejuvenation interval

∇ Dynamic rejuvenation threshold

Table 5.3.: Micro model nomenclature

5.3.4.2 Assumptions

Several assumptions are taken during the establishment of the micro models, which are listed in the
upcoming paragraph.

• Impairments due to aging-related Mandelbugs are assumed to cause the same amount of
performance loss each time. Also, the performance loss associated with either a VMM, VM or

5.3 Development of an AMI model 99

service impairment, as well as any combination of the aforementioned do not immediately
lead to a non-functional failure as stated in Definition 5.3. This is due to the AMI performance
constraints being present on VNF-, not VNFC-level.

• Performability impairments of VMMs, VMs, and services are assumed to be additive, i. e. the
combined performability impairment (lPe rf) is obtained by lPe rf =

∑

i∈Simp

�

1 − r(i)
�

, where
Simp = { j ∈ S | 0< r(j)< 1}. It is further assumed that max(lPe rf) = 1.

• While the overall model of VNFA is dynamic, in a sense that it captures changes to the structure
of the model due to failures, VM migrations, etc., as stated in Section 5.2, the micro model in
itself is static, i. e. apart from changing firing rates, the structure of the model is static.

5.3.4.3 NFV Failure Behavior

Using the information from the previous Section 5.3.1, the behavior of an infrastructure employing
NFV is further analyzed here. Failures in VNFs can either originate from the NFVI level (affecting the
host, consisting of hardware, VMMs, or VMs) or the service level. Both are explained further next:

• Substrate failures occur because of failing hardware and impair the NFVI. Well-known failures
related to hardware are CPU/memory damage or defects in other parts of the hardware, such
as power supply or Hard Disk Drives (HDDs). Hardware failures are expected to occur less
often than most other failures; however, they also require a long repair time. On substrate
level, three levels of failure difficulties are further distinguished, as hardware failures may have
highly different likelihoods and respective required repair effort.

server up

server downserver down

server down

λhos

µhrs

λhom

µhrm

λhol µhrl

Figure 5.10.: Modeling on substrate plane

Short hardware failures (e. g. failure of a single component fixable by simple replacement)
have a failure rate of λhos and a repair rate of µhrs. Medium hardware failures are present if,
e. g., components fail that require a partial hardware disassembly such as CPU or mainboard. In
this case, the failure rate is λhom, the repair rate is µhrm. Last, there are long hardware failures,
which are events such as the destruction of multiple hardware components by common cause
failures, such as over-voltage. The associated failure rate is λhol , the respective repair rate is
µhrl . Also, on the substrate plane, there is only a difference between working and failed states,
a further performance distinction of failure states is not done. Similar to availability, on the
substrate plane, the hardware either runs smoothly, performing at its optimal level, or fails
completely. While there are certain states that could be seen as impaired, such as, e. g., single
HDD failures in a Redundant Array of Independent Disks (RAID) array, these do not impair

100 Chapter 5 Modeling a Virtualized AMI

the system’s performance significantly—unless a repair that requires the system to be shut
down is performed. Also, as previously explained, the repair times need to be considered in the
analysis, which is covered in Section 5.3.2. Figure 5.10 illustrates the behavior on substrate
level as a Petri net model.

• Virtualization failures can either manifest on VMM level, where multiple VMs are impaired
at once, or only impact a single VM. The failure modes which are usually considered in
virtualization scenarios are Mandelbugs and Bohrbugs, where the former describe software-
related failures which go unnoticed while the VMMs/VMs are deployed and running; in
contrast, the latter are failures discovered during the deployment of VMMs/VMs. For the given
scenario, Bohrbugs are excluded from the analysis, as the deployment is not within the scope
of this thesis.

vmm up vmm down

vmm impaired

λvmmo

µvmmr

λvmmod

λvmmd

(a) Modeling on VMM level

vm up vm down

vm impaired

λvmo

µvmr

λvmod

λvmd

(b) Modeling on VM level

Figure 5.11.: Modeling on virtualization plane

Regarding the Mandelbugs, there is a further difference made between Non-Aging Related
Mandelbugs (NAMs) and AMs. NAMs are considered as software failures in a classical sense,
leading to an outage, while AMs are impairments, downgrading the performance of an entity.
In case of an AM appearing on VMM level, the performance is reduced from P = 1 (in a fully
functional state) to P = 1−α, where α ∈ [0, 1]. In case of a VM AM, the resulting performance
is P = 1− β , where β ∈ [0, 1]. Figure 5.11a illustrates the behavior on VMM, Figure 5.11b on
VM level.

• Services failures behave quite similar to the ones on VMM/VM level, as services can run in a
degraded, aged state, too. This leads to a performance loss of γ, so the remaining performance
in such a state is 1 − γ, where γ ∈ [0,1]. Depending on the interconnection with other
services, it might be possible that the overall availability of the NFV-based AMI is impaired
if services become unavailable or not. To represent this in a model, an additional distinction
has to be made to separate critical services (e. g. mandatory AMI-related services, such as
gateway components) from non-critical ones (e. g., third-party energy optimization consultation
services), as introduced in Section 5.3.3.1. The failure of a critical service directly leads to
an outage of the main functionality of the AMI for a user, the unavailability of a non-critical
service represents a minor impairment.

Regarding the failure behavior present on the service level, an additional distinction is made
regarding the type of failure present. The failures on service level can be classified by the
persistence of failures in regard to restarts of the service. This represents the fundamentally
different behavior between a service failure due to a transient/intermittent challenge in the

5.3 Development of an AMI model 101

service, e. g., caused by very high loads or a single bit-flip in memory and a persistent challenge,
which requires to patch/update the service to run it again. To model this, two versions including
both failure persistence behaviors are depicted in Figure 5.12.

service up

service impaired

λsol

µsr l

λsd

λsold λsod

λso

µsr

service down

service down

(long)

(a) Modeling of persistent failures

service up

service impaired

λsd

λsod
λso

µsr

service down

(b) Modeling of non-persistent failures

Figure 5.12.: Modeling on service plane

In Figure 5.12a, persistent failures are modeled, which are not cleared with a repair rate of µsr ,
but take a much longer time (µsl r) to be resolved. In contrast to that, Figure 5.12b illustrates a
non-persistent failure model. Here, all failures are repaired in the same short amount of time
(µsr).

Apart from the individual failures in each layer, there are interdependencies between them that may
cause failure propagations. The concrete influences the planes have upon each other are further
investigated in Section 5.3.4.6. In the following Section 5.3.4.4, the recovery model for a NFV-based
AMI is illustrated.

5.3.4.4 Recovery

As stated in Section 5.3.2, the recovery of the system is perfect, unstable, multi-phase, single level,
which is justified in the following. It is assumed that the system is repairable (as most ICT systems are
[20]), more precisely speaking it has a perfect recovery, i. e., the system has no absorbing down-states,
which is a valid assumption for a regularly maintained system present in a critical infrastructure,
such as the smart grid’s AMI [19]. Apart from that, a multi-phase, single level restoration process
is implemented by a recovery starting with the easiest recovery option and escalated further until
a restoration of the system is achieved. In the given case, four escalating levels of recovery are
considered:

1. Service restart: The simplest recovery approach is a service restart. While only non-persistent
service failures are fixed doing this, the time required to restart a service (τsr) is very short. A
service patch is not part of the first recovery level.

2. VM restart: If a service restart does not restore the operation, it is assumed that the next
restoration measure is the restart of the VM hosting the failed service. To do so, the time τvmr

is required.

102 Chapter 5 Modeling a Virtualized AMI

3. VMM restart: After an unsuccessful recovery attempt using VM restart, the VMM hosting the
failed service is restarted. This operation consumes a time of τvmmr .

4. Hardware repair/software patch: After all other restoration attempts have failed, another
check for the cause of the outage is performed, requiring a time of τdl . Depending on the result,
either a hardware repair or service patch process is issued to recover the service operation. The
former is expressed by the times τhrs, τhrm, or τhrl (depending on the severity of the hardware
failure), the latter takes τsr l .

In addition, before any action is taken, a time τd is required to detect the presence of a failure. This
leads to the following mapping of repair times (τ) to recovery rates (µ):

• µsr = (τd +τsr)−1

• µsr l = (τd +τsr +τvmr +τvmmr +τdl +τsr l)−1

• µvmr = (τd +τsr +τvmr)−1

• µvmmr = (τd +τsr +τvmr +τvmmr)−1

• µhrs = (τd +τsr +τvmr +τvmmr +τdl +τhrs)−1

• µhrm = (τd +τsr +τvmr +τvmmr +τdl +τhrm)−1

• µhrl = (τd +τsr +τvmr +τvmmr +τdl +τhrl)−1

During the recovery, the service is assumed to be unavailable and non-performing, because a failure
of either component (service, VM, VMM, or substrate) leads to a non-available service, i. e. a
performance of 0. This holds as long as no redundancy options (such as replication) are considered.
The influence of such measures is discussed in Section 5.3.4.5.

5.3.4.5 Modeling Performability-Enhancing Methods

In the upcoming paragraphs, the modeling of performability-enhancing methods is described,
featuring service rejuvenation techniques first; service replication second.

Service Rejuvenation. As described in Section 4.4.2, the introduction of a service rejuvenation may
lead to an overall service performance enhancement. However, finding an appropriate rejuvenation
interval requires a careful analysis, as every service restart may reduce the infrastructure’s availabil-
ity, which needs to be balanced against the possible performance benefits, particularly in critical
infrastructure scenarios. For the given scenario, the rejuvenation policies introduced in Section
4.4.2 are further specified by differentiating them in two dimensions (the third dimension “target” is
given implicitly by the Petri net model). In the first dimension (“timing”) two different rejuvenation
activation intervals are analyzed. The first activation threshold is implemented statically, meaning the
rejuvenation interval (δ) is set to a deterministic value. The second is a dynamic activation threshold
based on the currently achieved performance of the system, which is realized as a guard function
�

re jd yn()
�

in the Petri net model. s_up() represents a guard function, which blocks the activation of
rejuvenations until the system is once again in an operational state after a rejuvenation happened.
Both the deterministic and dynamic rejuvenation are depicted in Figure 5.13a and Figure 5.13b,
respectively. The transitions and rates belonging to the original VMM model without rejuvenation
are displayed in gray to improve readability. re jd yn() can be defined in several ways, depending on
the rejuvenation behavior that is to be implemented. In the given case, once the reward function
r() undershoots a certain threshold value ∇, a rejuvenation is triggered (a more formal definition
on the reward function is given later on in this section). Possible alternatives would, e. g., be a

5.3 Development of an AMI model 103

λ f ail

λimpair

µrepair

λ f ailδ

δ

µre juvenation

(a) Deterministic rejuvenation

λ f ail

λimpair

µrepair

λ f ail

re
j d

yn
()

,s
_u

p(
)

re jd yn(), s_up()

µre juvenation

(b) Dynamic rejuvenation

Figure 5.13.: Deterministic (left) and dynamic (right) rejuvenation models

sliding window technique to get a time-averaged performance measure, which is however not further
elaborated in this thesis. Both guard functions re jd yn() and s_up() are defined as follows:

re jd yn() =

(

1 for r ≤∇

0 otherwise

s_up() =

(

1 for mark(”serviceDown”) == 0

0 otherwise

The mark() function is used in Petri/reward nets to indicate the number of tokens present in a
certain place.

The second dimension (“strategy”) differentiates between cold, warm and migrate rejuvenation.
The base case is a cold rejuvenation, which is described in Section 4.4.2 and depicted in Figure
5.14. As previously highlighted, it is noteworthy that the repair rate (µre juvenation) introduced in the
rejuvenation model is higher than the repair rates after a failure is encountered (µrepair).

The usage of persistent memory in warm rejuvenation is depicted in Figure 5.15. To model this
behavior, four new rates are introduced: On VM level, ηvm, representing the VM suspending time and
µwarm

vmre j for the re-instantiation of a VM after its warm rejuvenation, where 1
µwarm

vmre j
+ 1
ηvm
< 1
µcold

vmre j
� 1

µvmr
.

On service level, ηs represents the service suspending time and µwarm
sre j stands for the service restoration

after a warm rejuvenation, where 1
µwarm

sre j
+ 1
ηs
< 1
µcold

sre j
� 1

µsr
. In addition, both µwarm

vmre j and µwarm
sre j are not

constant values, but distribution functions, which have a variable rate depending on the level of
rejuvenation currently running: If a VMM level rejuvenation is active, the fast re-initialization of
a VM’s services is possible, in cases of a VM or service level rejuvenation, this is not the case, so
the restoration will proceed slower. The distribution functions µvmre j() and µsre j() are defined as
follows:

104 Chapter 5 Modeling a Virtualized AMI

λvmo

λvmd

µvmr

λvmodδ

δ

µcold
vmre j

(a) Cold VM rejuvenation

λsol

µsr l

λsd

λsold λsod

λso

µsr

δ

δ

µcold
sre j

(b) Cold service rejuvenation

Figure 5.14.: Cold (deterministic) service rejuvenation models

µvmre j() =

(

µwarm
vmre j for mark(”vmmRe juvenation”) == 1

µcold
vmre j otherwise

µsre j() =

(

µwarm
sre j for mark(”vmmRe juvenation”) == 1

µcold
sre j otherwise

The live-migration events performed during a migration rejuvenation is modeled in Figure 5.16,
where ψvm and ψs are the virtual machine’s and service’s transfer times encountered during live
migration. The requirement that both the substrate and the VMM hosting the migrated VM and
its service need to be restored before a re-migration takes place is realized by the guard functions
vmm_up() and vm_up(), defined as:

vmm_up() =

(

1 for mark(”vmmU p”) == 1 ||mark(”vmmImpaired”) == 1

0 otherwise

vm_up() =

(

1 for mark(”vmU p”) == 1 ||mark(”vmImpaired”) == 1

0 otherwise

5.3 Development of an AMI model 105

λvmo

λvmd

µvmr

λvmodδ

ηvm

δηvm

µvmre j(), vmm_up()

(a) Warm VM rejuvenation

λsol

µsr l

λsd

λsold λsod

λso

µsr

δ ηs

δ

ηs

µsre j()

µ
sr

ej
()

,v
m

_u
p(
)

(b) Warm service rejuvenation

Figure 5.15.: Warm (deterministic) service rejuvenation models

To be able to employ a migration rejuvenation, another prerequisite is the existence of a backup
server, i. e. |ν| ≥ 1. It directly follows that in an AMI with no substrate backups, no migration
rejuvenation is usable.

Service Replication. Several assumptions regarding the usage of replication mechanisms are given
in the following. For the remainder of this thesis, the assumptions stated next are present (in case
replication is employed):

1. Replicas are assumed to feature the same failure, impairment and repair parameters as their
parent service.

2. All services of similar type use the same amount of replicas.

3. All replicas employ the same rejuvenation as their parent service (timing & strategy).

4. Replicas are not used for load-balancing purposes. While investigating the benefits of load-
balancing is certain a worthwhile endeavor, it is not within the scope of this thesis. Instead,
research in this area is part of future work.

Also, it is argued here that the most suitable approach for replication discussed in Section 4.4.2 is
a hosting of replica system on the same VMM. The reason is that substrate failures are mitigated
by migration mechanisms of VNFA, which redistribute VMs/services once they get impacted by a
substrate failure. Therefore, hosting a replica on another server to mitigate substrate failures would
lead to additional communication overheads. Because of that, replication is only used to mitigate
VM and service impairments in the following.

106 Chapter 5 Modeling a Virtualized AMI

λvmo

λvmd

µvmr

λvmodδ

ψvm

δψvm

vmm_up() ψvm

vm
m

_u
p(
)

ψvm

ψ
vm

(a) Migration VM rejuvenation

λsol

µsr l

λsd

λsold λsod

λso

µsr

δ ψs

δ

ψs

ψs

vm
_u

p(
)

ψs vm_up()

(b) Migration service rejuvenation

Figure 5.16.: Migration (deterministic) service rejuvenation models

Due to the separation of substrate, VMM, VM, and service layer in the DSPN model (cf. Figure 5.17),
replication may easily be integrated by duplicating the respective parts of the model. Including the
assumptions stated in this paragraph, replication is modeled by doubling the VM and service part for
each replica.

5.3.4.6 Micro Model Generation

In the upcoming section, the generation of the VNFA and SSMA micro models is explained in detail.

VNFA Model Generation. The performability micro model needs to be able to estimate both a
service’s performance and its availability. While the availability analysis only distinguishes between
two possible system states (namely available or unavailable), the performance model needs to include
several levels of performance degradation. To do so, the separately defined Petri net models of
substrate, VMM, VM and service layer (Figures 5.10, 5.11a, 5.11b, and 5.12) are merged, extended,
and—by adding reward functions to measure the achieved performability—converted to an SRN.
Furthermore, if a deterministic timing strategy is employed, it is required to alter the used SRN
to a DSRN, allowing the definition of immediate, exponential and deterministic transitions. Its
underlying stochastic process is thereby also changed from a CTMC to a Markov Regenerative
Process (MRGP).

The resulting model is depicted in Figure 5.17, where the substrate part is located in the lower
right, VMM part in the lower left, VM part in the upper left and the service part in the upper right.
To merge the separate models, the dependencies between the different layers are added through
immediate transitions on VMM, VM, and service layer which represent the results of happenings on

5.3 Development of an AMI model 107

λhos

µhrs

λhom

µhrm

λhol µhrl

λvmmo

λvmmd

µvmmr , hw_up()

hw_ f ()

λvmmod

hw
_

f(
)

δvmm

δvmm

µvmmre j , hw_up()

λvmo

λvmd

µvmr , vmm_up()

vmm_ f ()

λvmod

vm
m

_
f(
)

vmm_re j()

δvm

vm
m

_r
ej
()

δvm

µvmre j , vmm_up()

λsol

µsr l , vm_up()

λsd

λsold λsod

λso

µsr , vm_up()

vm(m)_re j()

δs

δs

vm
(m
)_

re
j(
)

µsre j , vm_up()

vm_ f ()

vm
_

f()

Figure 5.17.: Merged VNFA performability stochastic reward net model (cold, deterministic rejuvenation)

the lower layers. This leads to the following definitions of the guard functions hw_ f (), vmm_ f (),
vmm_re j(), vm_ f (), and vm(m)_re j():

hw_ f () =

(

1 for mark(”subst rateU p”) == 0

0 otherwise

hw_up() =

(

1 for mark(”subst rateU p”) == 1

0 otherwise

vmm_ f () =

(

1 for mark(”vmmDown”) == 1

0 otherwise

vmm_up() =

(

1 for mark(”vmmDown”) == 0

0 otherwise

108 Chapter 5 Modeling a Virtualized AMI

vmm_re j() =

(

1 for mark(”vmmRe juvenation”) == 1

0 otherwise

vm_ f () =

(

1 for mark(”vmDown”) == 1

0 otherwise

vm_up() =

(

1 for mark(”vmDown”) == 0

0 otherwise

vm(m)_re j() =

(

1 for mark(”vmmRe juvenation”) == 1 ||mark(”vmRe juvenation”) == 1

0 otherwise

This is achieved by first adding additional states to the VMM and service parts of the model, resulting
in the model in Figure 5.17.

To measure the performability metrics introduced in Section 2.1.1.3, a reward function r, where
r : S→ R is introduced. Because the reward function is later on used in the performance analysis
in Chapter 6, at this point, only a brief introduction is given. As also stated in the performability
background, reward functions can either be rate- or impulse-based. The reward function r in this
case is rate-based, with the reward gained per unit of time for each state i ∈ S is denoted by r(i). In
the given model, the performance measure P is used as the reward rate per unit of time. This results
in the reward rates displayed in Equation (5.1).

r(i) = 1−

0 if state i is fully operational

α if state i has an impaired VMM

β if state i has an impaired VM

γ if state i has an impaired service

(α+ β) if state i has an impaired VMM and VM

(α+ γ) if state i has an impaired VMM and service

(β + γ) if state i has an impaired VM and service

(α+ β + γ) if state i has an impaired VMM, VM and service

1 else

(5.1)

To investigate the performance of a VNFA, the model from Figure 5.17 is used to model the
performability (as defined in Section 2.1.1.3) of services in a VNFC. For the transient case, Equation
(5.2) is used, Equation (5.3) for the steady-state case.

Perf (j, t) =
∏

hw∈Shw
j ,vmm∈Svmm

j ,
vm∈Svm

j ,s∈Ss
j

πhw(t)r(hw)πvmm(t)r(vmm)πvm(t)r(vm)πs(t)r(s) (5.2)

Perf (j) =
∏

hw∈Shw
j ,vmm∈Svmm

j ,
vm∈Svm

j ,s∈Ss
j

πhwr(hw)πvmmr(vmm)πvmr(vm)πs r(s), (5.3)

where j is a VNFC, Shw
j , Svmm

j , Svm
j , and Ss

j are j’s hardware, VMM, VM, and service states, respectively.
π j(x , t) is the transient, π j(x) the steady-state probability of j’s x ∈ S x

j being non-empty.

5.3 Development of an AMI model 109

SSMA Model Generation. In a similar manner as the VNFA model, the stochastic reward net model
for SSMA is generated using the information stated in Section 5.3.4.6 and stripping the VMM and VM
parts from the model. The substrate part of the model stays structurally identical, while the service
part faces two alterations: First, the immediate transitions leading to failure states due to outages of
the lower layer are now considering substrate instead of VM failures; second, rejuvenation actions in
the VMM or VM parts of the model, which previously lead to a transition to the rejuvenation state
of the model, are removed. This leads to the DSRN depicted in Figure 5.18. The guard function
hw_down() is identical to the one defined in the VNFA micro model previously.

λhos

µhrs

λhom

µhrm

λhol µhrl

λsol

µsr l

λsd

λsold λsod

λso

µsr

δs

δs

µsre j

hw_ f ()

hw
_

f()

Figure 5.18.: SSMA performability stochastic reward net model (cold, deterministic rejuvenation)

The reward function r() is basically the same as in the VNFA model, however, all performance
impairments due to VMM or VM aging are stripped from the function, resulting in Equation (5.4).

r(i) = 1−

0 if state i is fully operational

γ if state i has an impaired service

1 else

(5.4)

5.4 Overall Model
To construct the overall AMI and service model, first, the main ideas and prerequisites are covered in
Section 5.4.1, before the actual model generation is described in Section 5.4.2.

5.4.1 Idea and Prerequisites
To generate the overall model, the macro (Section 5.3.3) and micro model (Section 5.3.4) need
to be combined, as well as—if VNFA is used—the network embedding algorithm (Section 4.3.2).

110 Chapter 5 Modeling a Virtualized AMI

Using the macro model, the micro models for each substrate entity are generated. The resulting
micro models are in turn analyzed to determine the performability measures required to generate
the overall model, which itself is a queuing network.

λ dnet

HW
HW

VMM

VM

S
S

S

A(), Perf () A(), Perf ()

Figure 5.19.: Overall VNFA AMI model

Moreover, the network delays encountered during the data transfer in between different servers
use the information from the macro model—to determine the queuing network’s structure and link
bandwidth—as well as the results of the queuing network itself to estimate the data rate sent over a
link. A scheme of the overall model is depicted in Figure 5.19.

To construct the overall model, several steps are to be taken beforehand, listed in the following:

1. Realization of network request: As detailed in Section 4.3.2, using the VNFR of all users,
their VNF-FGs can be constructed applying the methodology described in the aforementioned
section. For SSMA, the network request is already inherently present.

2. Embedding of request onto substrate graph: The mapping algorithm of the VNF-FGs in case
of VNFA or the network requests in SSMA is introduced in Section 4.3.3. The remainder of this
thesis postulates that the initial embedding is completed successfully.

3. Generation of macro model: After the embedding is performed, the information is used to
construct the macro model by adding the failure and repair rates for each of the services, (VMs
and VMMs in case of VNFA) and substrate entities. In addition, the links between the substrate
nodes are given their respective bandwidths as well as failure and repair rates.

4. Generation of micro models: Using the macro model information, micro models are gen-
erated for each substrate node. This in turn allows the estimation of the performability and
availability measures for each substrate node and its hosted services, which is subsequently
handed over to the overall model.

5.4 Overall Model 111

5.4.2 Generation of Overall Queuing Network Model
Queuing systems and networks, as briefly introduced in background Section 2.1.1.2 are used to form
the overall model and estimate the performance of the SSMA and VNFA AMIs. To create the queuing
network used for the analysis, the macro and micro models generated before are transformed into
queuing networks. This process is described next, first covering the properties of the queuing network
models in general, second differentiating between and adapting the method to SSMA and VNFA,
respectively.

5.4.2.1 General Properties

Several properties apply for both VNFA and SSMA. First, the queuing networks are open, modeling
the traffic arriving from smart meters, which exit the system at the provider’s HES (represented by
a sink). As smart meters generate packets in regular time intervals, the source’s arrival rate λsmo

follows a deterministic distribution.

5.4.2.2 Converting Non-Virtualized Networks

Due to the structure of the non-virtualized SSMA networks, the SSMA macro model layout can
almost completely be used in the queuing networks with few exception listed in the following.

• Smart meters are not directly included in the queuing networks, instead they act as the source
of data arriving into the queuing network. Since the generated queuing networks only possess
a single source shared among all users, the arrival rate is adjusted by altering the deterministic
distribution (λsmo

) to a uniform arrival rate (suggesting non-synchronized sending of metering
data). This results in λsm =

1
λsmo /|{V s | ds

t ype=”smar t meter”}|−0 . It is assumed that |{V s | ds
t ype =

”smar t meter”}| ≥ 1, which is a safe assumption, as |{V s | ds
t ype = ”smar t meter”}|< 1 would

imply that no user would own a smart meter. Such a case is neither relevant nor further
regarded in this thesis.

• A drain is added to the generated queuing networks.

• Third party services are the most complex part of the conversion process as they require
the generation of copies of the packets sent to the queuing system representing the data
concentrator of an SSMA infrastructure. This is modeled by the usage of forks, which allows
to create multiple tasks out of a single packet. Depending on the number of TPS used by a
user, the number of outgoing links of the fork defines the number of tasks the packet is split
into. Using k TPSs, the overall number of tasks is k+1, where k tasks are forwarded to the
respective TPSs, while a single task remains to be sent to the data concentrator.

The path from the households to the HES is modeled in two sections. The queuing network Qh models
the connection from the data concentrators to the HES and is separated from the network Qsm that
connects the smart meters to the data concentrators. The steps highlighted above are only necessary
for Qsm. For Qh the generation of the queuing network is more straightforward. The combined
concentrators act as the source of packages. Similar to the source in Qsm, their arrival rates λdco

are
deterministic, leading to a combined uniform distribution of λh =

1
λdco / |{V s | ds

t ype=”data concent rator”}|−0 ,
similar to the calculation of the overall arrival rate λsm in the HAN. The only other node is the
HES which is connected directly to the drain. This part about Qh is mainly included for the sake of
completeness because the HES is not within the scope of the studies done in this thesis. This leads

112 Chapter 5 Modeling a Virtualized AMI

to the queuing network generation algorithm in Algorithm 5.1 for Qsm. The generation of Qh is not
further elaborated upon.

Algorithm 5.1: Generation of Qsm of SSMA AMIs

Input: Macro model graph G, micro model petri nets P
Output: SSMA queuing network Qsm

Function main(G, P, Qsm):
senders← 0;
stationConnections← ;;
foreach s ∈ G.getServices() do

switch s.type do
case "smart meter" do

senders++;
break;

case "gateway" do
qg← new QueuingSystem();
Qsm.addSystem(qg);
qg.addForks(|s.getOutgoingConnections()|);
stationConnections.add(qg, s.getConnections());
break;

otherwise do
q← new QueuingSystem();
Qsm.addSystem(q);
q.setServiceRate(µs · P.getPerformance(s));
stationConnections.add(q, s.getConnections());
break;

qs← new Source();
Qsm.addSource(qs);
qs.setArrivalRate(senders · λsm);
qd← new Drain();
Qsm.addDrain(qd);
foreach q ∈ Qsm do

q.setConnections(stationConnections.getConnections(q));

5.4.2.3 Converting Virtualized Networks

As described in the previous section, converting non-virtualized networks is mostly straightforward.
Converting virtualized networks, however, presents itself as a more challenging task that is explained
next. After describing the general idea of the algorithm, first, an approach ignoring TPSs is introduced,
as they introduce significant complexity to the networks that would hinder the basic understanding.
The addition of TPSs is explained subsequently after the basic algorithm is defined. Again, as
previously described, the path from smart meter to HES is split in two queuing network Qsm and
Qh.

The main challenges which lead to complexity during a conversion of VNFA AMI systems are:

1. Multiple types of services run on the same queuing station.

5.4 Overall Model 113

2. Queuing networks do not support explicit destination addresses. Their routing behavior is
limited to probabilistic distributions and processing by the station they arrive to.

The first challenge (see Figure 5.20a) occurs if at least two different services are hosted on the same
substrate node. Since every type of service may require different service times, the queuing network
has to be extended to use multiple classes—one class for each service type. This introduces the
challenge that the conversion of packages from one class to another is performed if (and only if) it is
required.

Second, a challenge is present if substrate nodes are shared among multiple users (see Figure 5.20b).
This results in the need to route packages through the queuing network, which is not possible, as
packages are processed and sent to the next queuing system (if multiple links exist, a stochastic
distribution is used to determine the target of a package). For SSMA AMI queuing networks this is
irrelevant, as only a single link to sent the package to does exist. For VNFA, in contrast, multiple
possible links exist, with

∑

e∈Eo
q

P(e) = 1,

where Eo is the set of outgoing links in the whole network, Eo
q ⊆ Eo is the set of outgoing links for

queuing station q and P : Eo → [0,1] is the function that assigns probabilities to an outgoing link.
By adjusting those probabilities, the package still cannot be routed exactly, however the number of
packages that are sent to each queuing station can be adjusted to fit in steady-state.

1

Substrate plane

1

VMM plane

1
2

1
2

Service plane

ds
t ype1

= "gateway"
ds

t ype2
= "data concentrator"

VM plane

(a) Service rate challenge in VNFA AMI conversion

1
2

Substrate plane

1
2

VMM plane

1
2

1

2
3

Service plane

?
?

ds
t ype2

= "gateway"

ds
t ype1

= "data concentrator"

ds
t ype3

= "data concentrator"

VM plane

(b) Routing challenge in VNFA AMI conversion

Figure 5.20.: Challenges during VNFA AMI conversion

114 Chapter 5 Modeling a Virtualized AMI

Variable Description

S Set of server nodes

T Set of TPS types

H Set of users

Hs ⊆ H Set of users with virtual gateway in node s ∈ S

Hs,s′ ⊆ Hs Set of users with virtual gateway in node s ∈ S and virtual data concentrator in
s′ ∈ S

H t
s,s′,s′′ ⊆ Hs,s′ Set of users as in Hs,s′ with substrate node of TPS t ∈ T in node s′′ ∈ S

H t
s,s′,− ⊆ Hs,s′ Set of users as in Hs,s′ with no TPS of type t ∈ T assigned

F Set of forks

fs,s′ ∈ F Fork that multiplies packages that go from s ∈ S to s′ ∈ S

Table 5.5.: Variables used for calculating the link probabilities

If only high priority services are considered, the model contains at least two different classes.
Packages arrive at the network in the gateway class. As the name suggests, packages of this class
are processed by a virtual gateway service. After being processed at the gateway, packages are
converted to the data concentrator class, which is required to forward the packages to the provider’s
HES. In addition to those mandatory classes, additional classes may be required, depending on the
number of third party services employed. Because every TPS may require a different service time, a
separate class is needed. The packages are therefore converted to a TPS’s class after being processed
and forked at the virtual gateway node. To enable class changes, class switcher nodes are added
to the queuing network. Every switcher node contains a conversion matrix Mc defining stochastic
probabilities pi j representing the likelihood of a package changing from class i to j. Since all values
are probabilities, for a m × n conversion matrix it holds that:

∑m
i=0 pi j = 1. Because the virtual

machines belonging to the VNF-FGs of a user may be distributed all over the substrate network, each
connection is given its own class switchers.

After explaining the queuing network class switching process, in the following, the calculation of the
link probabilities is covered in detail. Table 5.5 defines all variables used. Several link probabilities
are trivial, namely all links with the property |{Eo

s }| = 1, i. e. all queuing stations which have an
outdegree of 1. However, server nodes most likely feature multiple outgoing links—one link per
server node. In the following, the calculation of the probabilities is explained.

The goal is to find an equation to calculate the probability Pt(s′′, fs,s′), t ∈ T, s, s′, s′′ ∈ S that a package
destined for TPS type t is routed to the server node s′′ if the package currently is in fork fs,s′ . As
all users send the same amount of packages, the problem reduces to counting the number of users.
The number of households that send packages to fork fs,s′ is |Hs,s′ |. For every TPS type a package is
either sent to a virtual TPS node or the household has no TPS of type t. This leads to the following
equations:

∀ t ∈ T :
�∑

s′′∈S |H
t
s,s′,s′′ |
�

+ |H t
s,s′,−|= |Hs,s′ |, and

∀ t ∈ T :
�∑

s′′∈S

|H t
s,s′ ,s′′ |
|Hs,s′ |

�

+
|H t

s,s′ ,−|
|Hs,s′ |

= 1.

5.4 Overall Model 115

The required probabilities are obtained by:

Pt(s′′, fs,s′) =
|H t

s,s′ ,s′′ |
|Hs,s′ |

.

After the overall model generation, the service rates (µ) of each queuing station may be adjusted
based on the package type processed and the performability measures obtained from the micro
model. Based on this model, the analysis is performed in the upcoming Chapter 6.

5.5 Summary
In this chapter, first, the currently suggested AMI models are discussed and classified. After that,
their shortcomings are discussed, leading to the finding that current models are either abstract,
non-quantitative or highly specialized, quantitative models. However, the the best of the author’s
knowledge, no appropriate model fulfilling the requirements of virtualized AMIs currently exists.
The requirements for a model which supports the analysis of performability in virtualized AMIs are
thereafter specified explicitly and realized by the separation of the model into three hierarchical
parts, being the macro, micro and overall model.

The macro model employs a network-graph based model to offer a separation of service, VM, VMM,
and substrate plane. This enables a dynamic embedding of services into the virtualization planes
which are in turn embedded into the substrate. This way, a flexible assignment of services to virtual
machines and substrate hardware is possible.

The micro model allows the calculation of performability in AMIs after the initial embedding finished.
To do so, a DSPN-based approach is used that enables the modeling of failures and their respective
influences on the overall infrastructure. This is extended by additionally including performability
measures, thereby forming a DSRN model. As all software-based entities (i. e. VMMs, VMs, and
services) are prone to performance impairments (e. g., due to aging), the micro model adds impaired
states to the model that merely influence the achieved reward of the services. The resulting reward
nets can properly represent the performability of VNFA AMIs.

The overall model combines the information of the macro and micro models to offer a queuing
network-based representation of the overall AMI system. This enables the assessment of the perfor-
mance that is achieved by the AMI.

116 Chapter 5 Modeling a Virtualized AMI

6Analysis

The goal of this chapter is the analysis of VNFA and its comparison to SSMA. In Section 6.1, the
assumptions made during the analysis are stated. Next, three scenarios used in this chapter are
described: In the first, a single service hosted on substrate (i. e. SSMA) is compared to a virtualized
VNFC realizing the same function (i. e. VNFA). The results are used to compare the performability
as well as to highlight how to find the optimal rejuvenation/replication method for a single service.
The second scenario analyzes the performability of a single user that uses either VNFA or SSMA,
respectively. The third scenario extends the use case from a single user to the whole city of Passau.
Subsequently, a performability assessment of the three example scenarios is executed in Sections
6.2.1, 6.2.2, and 6.2.3, respectively. Each of the evaluations first focuses on the dependability
and performance assessment of SSMA, then VNFA. The results of the analyses are evaluated and
conclusions are drawn in Section 6.2.4. To validate the feasibility of virtualizing AMI components,
in Section 6.3, a vSMGW is developed and analyzed. Using a proof-of-concept implementation
of a vSMGW, both its dependability and performance are evaluated in Section 6.3.3. Results and
conclusions are presented in Section 6.3.4. Furthermore, the costs of SSMA and VNFA are calculated
and compared in Section 6.4, which is done by first deriving a cost function that is in turn used to
evaluate both AMI architectures. A summary of the chapter is given in Section 6.5.

Contents
6.1 Description of Assumptions and Scenarios .118

6.1.1 Assumptions . 118

6.1.2 Single Service Scenario . 122

6.1.3 Single User Scenario . 122

6.1.4 Passau City Scenario . 123

6.2 Performability Assessment . 124

6.2.1 Evaluation: Single Service Scenario . 125

6.2.2 Evaluation: Single User Scenario . 136

6.2.3 Evaluation: Passau City Scenario . 142

6.2.4 Result Comparison . 154

6.3 Proof-of-Concept: Virtualized Smart Meter Gateway .156

6.3.1 Gateway Task Description . 157

6.3.2 Proof-of-Concept Implementation . 158

6.3.3 vSMGW Performability Analysis . 158

6.3.4 Results . 164

6.4 Cost Analysis .165

6.4.1 Deriving a Cost Function . 165

6.4.2 Evaluation and Results . 167

6.5 Summary . 169

117

6.1 Description of Assumptions and Scenarios
This section contains three main parts: First, the assumptions made throughout the example scenarios
are described in Section 6.1.1. After that, the three example scenarios used to analyze and compare
VNFA to SSMA are explained: In Section 6.1.2, a scenario analyzing and optimizing a single service
is defined. Second, a scenario analyzing a single user is described in Section 6.1.3. Third, in Section
6.1.4, a scenario comprising an imaginary, VNFA-enabled AMI is assumed to be implemented in the
city of Passau, Germany, and compared to SSMA.

6.1.1 Assumptions
In this section, the assumptions for the analyses performed later are illustrated. The main areas
assumptions are taken in contain the failure and recovery properties (Section 6.1.1.1), the properties
of the communication networks (Section 6.1.1.2) and location distributions (Section 6.1.1.3). Further
assumptions of the analyses are covered in Section 6.1.1.4.

6.1.1.1 Failure and Recovery Properties of Entities

• Useful life: During the upcoming performability analysis, the system is expected to perform
within its useful life phase, as discussed in Section 5.3.1. The restriction of the analysis to
the useful life period is done to show only the failure rate during the operational period of
the devices. This is of particular interest, because it allows to make estimations concerning
long-term failure rates and the system’s dependability. In the given analysis, the assumption is
made that all systems are comprised of electronic components, whose lifetime and failure rate
can be estimated using the “bath tub curve”, depicted in Figure 5.4. The figure also depicts the
development of the failure rate λ over the life time of a system and the position of the useful
life phase.

• Failure types: The evaluations are based solely on the system model created in Chapter 5,
the failure and repair rates illustrated in Tables 6.3, 6.5, 6.7, and 6.9, respectively, as well
as the assumptions stated in this paragraph. Other influences, such as operation conditions
(temperature, humidity and similar effects) are not respected in the assessment. Failure of end
devices in the HAN are—except for smart meters—not considered in the evaluation, because
the failure of such end devices is not expected to cause a non-negligible disturbance in the
function of the AMI.

• Failure rates: Also, during the useful life, the failure rate is assumed to have a quasi-constant
value [71]. The failures that occur during this period are random in nature, i. e. neither caused
by infant mortality or wear out. To estimate the numeric failure rate values for the example
scenarios, the estimations given by Kim et al. [72], Almeroth et al. [3], Matos et al. [94],
Shojaee et al. [148], and Manel et al. [90] are used as a guideline; however, the articles
vary regarding the information provided and the failure as well as repair rates. All relevant
information is summarized in Table 6.1. The information is ordered by publication date of the
source, no implication regarding data quality is intended. A general assumption is that the
virtualization of a service does not impair the quality of the software itself, i. e. λs

nv = λ
s
v . This

is not to be confused with the additional failures originating from the VMM or VM, which are
to be regarded in addition to the service failures.

118 Chapter 6 Analysis

• Repair rates: The repair rates differ depending on two factors: First, there is a difference
between entities under direct supervision of the service provider and those under control of a
user (i. e. smart meter, router, and—in case of SSMA—the gateway). Second, depending on
being virtualized or not, services experience varying repair rates, as virtualized environments
offer more restoration options.

• Statelessness: Moreover, all VMs and services are assumed to be stateless, so they can be
re-instantiated after a failure. The assumption is that no large amounts of data are gathered
in virtual machines between the sending of packages. Due to the immediate forwarding of
packages after data reception, a negligible amount of data is lost so that this assumption can
be made without major impairment of the model.

Source λho λhr λvmmo λvmmd λvmmr λvmo λvmd λvmr λso λs r

[156] - - - - - 4.5E−4 4.0E−3 5.0E−1 - -

[72] - - 3.5E−4 - 1.0E0 - - 2.0E0 3.0E−3 3.0E0

[87] - - - 1.5E−3 1.0E0 - 6.0E−3 2.0E0 - -

[170] 1.0E−4 4.0E−2 1.5E−3 - 1.5E−1 6.0E−3 - 1.5E−1 - -

[94] 4.0E−4 6.0E−1 - - - 3.5E−4 - 2.0E0 5.5E−3 6.0E1

[148] 2.5E−4 2.0E−2 1.5E−3 - 4.0E−2 4.0E−3 - 1.5E−1 - -

[186] - - - 1.5E−3 1.0E0 1.5E−2 1.5E−2 2.0E0 - -

[110] 1.0E−4 1.5E−2 4.0E−4 1.5E−3 6.0E−1 3.5E−4 6.0E−3 2.0E0 - -

[90] - - - 1.5E−3 1.0E0 - 6.0E−3 2.0E0 - -

Table 6.1.: Failure and repair rate information stated in related work

6.1.1.2 Communication Networks Properties

• Technologies used: From the technologies available within the example scenario, the currently
most commonly suggested combination for AMI installations is assumed. Within both the LMN
and HAN, the ZigBee standard is used. The NAN is equipped with PLC links; inside the WAN,
DSL links are present.

• Bandwidth: The bandwidth in a real-life scenario is expected to fluctuate depending on
the daytime and current load situation, however, such variances are disregarded within the
example scenario. Static link bandwidths increase both the performance of the analysis and
the reproducibility of results (due to lower amount of stochastically derived parameters).
Because of that, static link bandwidths are used, which can be estimated using three different
approaches: minimum, average, or maximum bandwidth; all three are derived as Algorithm 6.1
illustrates. In the upcoming scenario, a worst-case assumption is taken, therefore, the strategy
parameter is set to min, resulting in the minimum expected bandwidth for each communication
medium to be selected.

6.1 Description of Assumptions and Scenarios 119

Algorithm 6.1: Algorithm to estimated a link’s bandwidth

Input: Link medium, bandwith calculation strategy
Output: Bandwidth of the medium

minBandwidth← medium.getMinBandwidth();
maxBandwidth← medium.getMaxBandwidth();
switch strategy do

case min do
return minBandwidth;

case avg do
∆← maxBandwidth - minBandwidth;
// α ∈ [0, 1], indicating a lower or higher average bandwidth
return minBandwidth + α∆;

case max do
return maxBandwidth;

• Delay: The delays encountered during the data transfers from the users’ smart meters to
the service provider’s HES are twofold: the processing delays which are dependent on the
performance of the services on the one hand; the network delays encountered during the data
transmission (see Section 4.2.2), on the other. For the network delay, only the transmission and
queuing delays are regarded, as the processing and propagation delays can be safely assumed
to cause a combined delay of < 1 ms, making them negligible in comparison to the other delays
encountered (cf. Section 4.2.2). Also, usually, it is expected that there are various types of
traffic present within communication networks. This may lead to additional latency compared
to a network that only serves one service. However, it is assumed that only AMI services exist
in the network because the traffic of other services cannot be predicted reliably. In-network
package routing and associated delay besides the service time directly encountered in the
household’s router are ignored in the model.

• Reachability: Every substrate node is assumed to be able to reach any other substrate node
that is available, even if the connection is not explicitly modeled. This assumption represents
packages being routed through the Internet even without a direct connection between two
substrate nodes.

6.1.1.3 Location Distributions

• Smart meters: The locations and number of deployed smart meters is derived by assuming
that every household is equipped with a single smart meter, usually located within a switchbox.
In the case that several households are situated within a single building, sub-switchboxes are
used to house the different meters [27]. The distribution of smart meters is therefore logically
bound to that of households, which applies for both SSMA and VNFA.

• Gateways: In the example scenario it is assumed that gateways are located within household
premises, therefore, both the number and distribution is similar to those of the previously
discussed smart meters. This assumption applies only for SSMA.

• Servers: The server locations and their respective influence on the VNFA is discussed exten-
sively in Section 4.2.2. Following the results obtained in that section, servers are distributed

120 Chapter 6 Analysis

using a maximum dispersion scheme described in the same section. If the maximum dispersion
scheme would place a server within an area that is inherently unsuited (e. g. due to other
buildings or rivers covering that area), the placement is shifted to the nearest possible suitable
location. The shifting is performed after the initial placement is calculated and does not
influence the positions of other servers. As COTS server are only used in VNFA, this assumption
does not apply to SSMA.

• Data concentrators: The data concentrators are located within the NAN part of an AMI
network. The main purpose of data concentrators are to compress and communicate metering
information to the service provider’s AMI HES. The provider in turn can use this information
for billing services, but also enhanced consumer services such as real-time energy analysis and
communication of usage information.

• Third party services: In both the single user and Passau city scenario, two third party services
are assumed to be available to users: an energy optimization advisor service (t pseo), offering
valuable insights by analyzing and evaluating users’ energy demand and giving advice regarding
possible ways to save energy, and a car monitoring service (t pscm), allowing users to monitor
the battery status of their electric cars. Third party services are not expected to be located
within the mission area of the scenario; rather, they are located in a data center/servers of
the third party that offers a specific service. Due to the privacy-relevant nature of the energy
data sent to the third party services, it is assumed the servers processing it are located within
Germany. Because third party services are only present in a virtualized form in VNFA, the
assumptions made are only relevant for SSMA.

6.1.1.4 Further Assumptions

• Message arrivals: Inside an AMI system, several types of messages may be exchanged, such
as, e. g., metering data, pricing information, firmware updates, as well as demand-response
or signaling messages. While these messages are of major importance for the system and its
functionality, apart from the metering data, none are part of the upcoming analysis, as they do
not undergo any complex processing. For the smart metering data of each user, a deterministic
arrival time with δ = 60 is assumed (i. e. the user’s smart meter data is sent every minute,
as given in Section 2.1.2.2). It is noted here that though each user’s smart metering data is
arriving in a deterministic process, the messages are not sent out in a synchronized manner,
which leads to an overall arrival process that is distributed in a uniform manner with α =
0,β = 60

n , where n is the number of users of VNFA. The data concentrator is sending data
every 15 minutes (see Section 2.1.2.2) to the HES at the providers side, leading to a uniform
distribution with α = 0,β = 900

m , where m is the number of data concentrators in the VNFA
infrastructure.

• Queuing stations: Every queuing station is expected to model a single substrate server. The
queuing network is comprised of queuing stations having an exponential service rate. In
addition, it is assumed that all queues have infinite queuing capacity and use a First In – First
Out (FIFO) strategy.

• Initial state: For every entity in the models used, the assumption is that it starts in an
unimpaired, fully available state, achieving its optimal performance, unless specified differently.

• Model analysis method: Depending on the rejuvenation method chosen, the resulting model
is either an SRN (dynamic rejuvenation timing) or a DSRN (deterministic rejuvenation timing).

6.1 Description of Assumptions and Scenarios 121

SRN models are analyzed using a numerical solution approach by constructing the SRN’s un-
derlying CTMC and solving it by successive over-relaxation for steady-state and uniformization
for transient analysis. DSRNs in contrast are solved by employing a simulation approach. Each
simulation is repeated 50 times initially. To estimate whether these simulation runs suffice,
Equation (6.1) is used.

R≥
� Z1−α / 2 · s0

ε · x0

�2
, (6.1)

where R is the number of required simulation runs, Z1−α/2 is the 1−(α / 2) quantile of the
standard normal distribution, α is the allowed level of uncertainty (here 0.02), s0 is the
standard deviation of the R0 simulation results, R0 is the default number of runs (in the given
analysis R0 = 50), x0 is the mean value of the R0 simulation results, and ε is the allowed level
of error (here 0.02).

6.1.2 Single Service Scenario
The single service scenario is used to identify the optimal configuration of a single service in SSMA
and VNFA, mainly focusing on the rejuvenation methods employed. More specifically, this means in
case of VNFA, both the rejuvenation timing and strategy (as defined in Section 4.4.2) are assessed.
However, it is assumed that only a single server is present in the scenario, i. e. no backup servers
are present, or formally expressed: |νhw

i | = 0, where i is the server used. In case of SSMA, the
rejuvenation strategy is limited to a cold rejuvenation approach, due to missing virtualization. In
this scenario, a virtualizable SMGW service is assumed. As only a single service is evaluated in
the scenario, no formal embedding is performed for VNFA, as it is assumed that rhw

cpu >> ds
cpu and

rhw
t ype = ds

t ype. The parameters used for the service are depicted in Table 6.3 for both VNFA and SSMA.
Furthermore, the benefit of using service replicas is investigated.

The evaluation of the single service scenario is continued in Section 6.2.1.

6.1.3 Single User Scenario
In the single user scenario, the difference between SSMA and VNFA for a single user is evaluated. To
do so, the services required for a fully functioning VNFA and SSMA are set up

�

i. e. a smart meter
(sm), an SMGW (gw), a router (r), a data concentrator (dc), as well as two additional, optional
TPSs (t ps)
�

. Besides the comparison of VNFA and SSMA, a goal of the evaluation of this scenario is
to analyze and judge if the performability of both architectures is able to fulfill the requirements
of AMIs elaborated in Section 2.1.2.2. A formal embedding process is also skipped here, due to
the fact that the resources provided by a single server (rcpu) by far exceed the resources required
to serve a single user’s VNF-FG (

∑

i∈vn f f g ds
cpui
Ωcpu), i. e. rhw

cpu >>
∑

i∈vn f f g ds
cpui
Ωcpu, where Ωcpu is

the CPU overhead induced by the virtualization. Also, in contrast to the single service scenario, not
only the case where no additional substrate server is present is investigated, but also the circle and
all-for-all backup strategies. For reasons of simplicity, a generalization of the failure rates in the
scenario is applied, which groups services (and, in case of SSMA, substrate) into two classes: simple
(grs) or complex (grc). This classification is based on two contributing factors: the complexity of the
functions provided as well as the amount of user interaction required. This leads to the following
grouping: grs = {sm, gw, r} and grc = {dc, t ps}. The parameters assumed in the single user scenario
are given in Table 6.5.

122 Chapter 6 Analysis

VNFA

λhos 6.0E−5 λhom 3.0E−5 λhol 1.0E−5

µhrs 2.0E−1 µhrm 5.0E−2 µhrl 1.0E−2

λvmmo 4.0E−5 λvmmod 8.0E−5 λvmmd 8.0E−5

µvmmr 1.0E0 µvmmre j 2.0E1

λvmo 1.0E−3 λvmod 2.0E−3 λvmd 1.0E−3

µvmr 2.0E0 µcold
vmre j 3.0E1 µwarm

vmre j 6.0E1

λso 2.0E−3 λsol 4.0E−5 λsod 4.0E−3 λsd 4.0E−3

µsr 3.0E0 µsr l 3.0E1 µcold
sre j 6.0E1 µwarm

sre j 2.4E2

ηvm 9.6E2 ηs 9.6E2 ψvm 1.8E3 ψs 1.8E3

α 1.0E−1 β 2.0E−1 γ 3.0E−1

SSMA

λhos 6.0E−5 λhom 3.0E−5 λhol 1.0E−5

µhrs 1.0E−1 µhrm 2.0E−2 µhrl 6.0E−3

λso 2.0E−3 λsol 4.0E−5 λsod 4.0E−3 λsd 4.0E−3

µsr 5.0E−1 µsr l 1.0E−2 µcold
sre j 6.0E1

γ 3.0E−1

Table 6.3.: Single service scenario VNFA and SSMA parameters

In Section 6.2.2, the evaluation and results of the single user scenario are discussed further.

6.1.4 Passau City Scenario
The investigated scenario area is estimated to be similar to the current coverage of the power supply
provided by Stadtwerke Passau GmbH. The power grid of Passau supplies an approximate area
of 85 km2. The number of users (= households) in the city of Passau is 1383515. While there is
currently no AMI present in Passau, several different communication technologies are available,
which would allow the construction of AMIs. Among others, there are Internet access options via
optical fiber, DSL and cable line networks, PLC/Broadband over Power Lines (BPL), as well as
wireless options such as GPRS, Universal Mobile Telecommunications System (UMTS), or Long Term
Evolution (LTE) available. These options allow the realization of the link technologies mentioned
in the assumptions in Section 6.1.1. There are two main goals present in this scenario: First, the
dependability of a city-size AMI infrastructure is investigated especially focusing on the impact
of persistent substrate failures—as introduced in Section 4.2.2—on the three backup topologies
discussed in Section 4.4.1. Second, it is investigated whether VNFA/SSMA are capable to fulfill

15 Data is taken from the 2018 annual report of Stadtwerke Passau GmbH.

6.1 Description of Assumptions and Scenarios 123

VNFA

λs
hos 6.0E−5 λs

hom 3.0E−5 λs
hol 1.0E−5

µs
hrs 2.0E−1 µs

hrm 5.0E−2 µs
hrl 1.0E−2

λvmmo 4.0E−5 λvmmod 8.0E−5 λvmmd 8.0E−5

µvmmr 1.0E0 µvmmre j 6.0E0

λvmo 1.0E−3 λvmod 2.0E−3 λvmd 1.0E−3

µvmr 2.0E0 µcold
vmre j 3.0E1 µwarm

vmre j 6.0E1

λso 2.0E−3 λsol 4.0E−5 λsod 4.0E−3 λsd 4.0E−3

µsr 2.0E0 µsr l 3.0E1 µcold
sre j 6.0E1 µwarm

sre j 2.4E2

λso 2.0E−3 λsol 4.0E−5 λsod 4.0E−3 λsd 4.0E−3

µsr 2.0E0 µsr l 3.0E1 µcold
sre j 6.0E1 µwarm

sre j 2.4E2

ηvm 9.6E2 ηs 9.6E2 ψvm 1.8E3 ψs 1.8E3

Ωcpu 1.02E0 Ωnet 1.06E0

Table 6.5.: Single user scenario VNFA parameters

the requirements of AMIs regarding performability. During this scenario, it is assumed for both
SSMA and VNFA that the optimal choices regarding rejuvenation are used, i. e., for SSMA: dynamic
rejuvenation with ∇s

nv = 0.7; for VNFA: dynamic migration rejuvenation with ∇s
v = 0.7, ∇vm

v = 0.8,
and ∇vmm

v = 0.9, until stated differently16.

The results of the Passau city scenarios evaluation are investigated in Section 6.2.3.

6.2 Performability Assessment
The performability assessment is executed to analyze and compare both architectures in Sections
6.2.1, 6.2.2, and 6.2.3. After the evaluation, the results are compared in Section 6.2.4 and conclusions
are drawn. As for the hardware, for the performability analysis, a single server is used. Apart from
that, neither is further equipment required, nor used. The server has the following properties:

• OS: Windows 10 Professional Edition Version 1803 (64-bit)

• CPU: Intel Core i7-2600K @ 3.40 GHz

• RAM: 24GB DDR3 SDRAM PC3-10600, 1333.0 MHz, 11-11-11-28

• Disk: Lite-On LCS-256L9S-11 256 MB, 512 bytes/sector, NTFS, cluster size 4 kB

16 How the optimal rejuvenation configurations for both SSMA and VNFA are derived is explained in the evaluation Sections
6.2.1 and 6.2.2.

124 Chapter 6 Analysis

SSMA

g rs

λhos 3.0E−5 λhom 2.0E−5 λhol 1.0E−5

µhrs 1.5E−1 µhrm 3.5E−2 µhrl 8.0E−3

λso 2.0E−3 λsol 4.0E−5 λsod 4.0E−3 λsd 4.0E−3

µsr 2.0E0 µsr l 3.0E1 µcold
sre j 6.0E1 µwarm

sre j 2.4E2

g rc

λhos 1.2E−4 λhom 4.0E−5 λhol 2.0E−5

µhrs 1.5E−1 µhrm 3.5E−2 µhrl 8.0E−3

λso 4.0E−3 λsol 8.0E−5 λsod 8.0E−3 λsd 8.0E−3

µsr 2.0E0 µsr l 3.0E1 µcold
sre j 6.0E1 µwarm

sre j 2.4E2

Table 6.7.: Single user scenario SSMA parameters

6.2.1 Evaluation: Single Service Scenario
The results of the single service evaluation are used to evaluate the optimal rejuvenation strategy to
achieve the highest possible performability while maintaining the required level of availability.

6.2.1.1 Test Environment

For the evaluation process and comparison of VNFA and SSMA as well as its various variants differing
in their rejuvenation details, the Stochastic Petri Net Package (SPNP)17 is used for the evaluation
of the micro model. This package allows the creation and analysis of SRNs and was developed by
Ciardo et al. [35]. SPNP uses a C based SPN Language (CSPL) for the specification of SRN models.
During the analysis process, SPNP automatically converts SRN specifications to Markov reward
models, which are subsequently solved to compute a variety of transient, steady-state, cumulative,
and sensitivity measures.

For both numerical and simulative analyses, the standard configuration of the application is used,
except for the analytical iterations/simulation length (which is adjusted to a higher value to enable
the evaluation of large δ values). The parameters of both evaluation methods are given in the
following two listings:

• Numerical analysis:

– Approach: CTMC

– Stead-state method: Successive overrelaxation

– Transient method: Uniformization Fox & Glynn

17 SPNP | Duke High Availability Assurance Laboratory (DHAAL), URL: https://trivedi.pratt.duke.edu/software_
packages/spnp, last accessed: 01/03/2019

6.2 Performability Assessment 125

https://trivedi.pratt.duke.edu/software_packages/spnp
https://trivedi.pratt.duke.edu/software_packages/spnp

VNFA

rhw
cpusm

2.0E0 rhw
cpur

2.0E0 rhw
cpugw

3.0E0 rhw
cpudc

1.0E2

rhw
cpus

5.0E1

ds
cpusm

1.5E0 ds
cpur

1.5E0 ds
cpugw

2.5E0 ds
cpudc

5.0E0

ds
bsm→

1.4E1 ds
bdc→

1.4E0

µsm 1.0E1 µgw 1.0E1 µr 1.0E1 µdc 1.0E2

µt pseo
1.0E1 µt pscm

1.0E1

lt pseo
4.0E−1 lt pscm

7.0E−1

Uhw
smax

8.0E−1

Ωcpu 1.02E0 Ωnet 1.06E0

SSMA

rhw
cpusm

2.0E0 rhw
cpur

2.0E0 rhw
cpugw

3.0E0 rhw
cpudc

1.0E2

rhw
cpus

5.0E1

ds
cpusm

1.5E0 ds
cpur

1.5E0 ds
cpugw

2.5E0 ds
cpudc

5.0E0

ds
bsm→

1.4E1 ds
bdc→

1.4E1

µsm 1.0E1 µgw 1.0E1 µr 1.0E1 µdc 1.0E2

µt pseo
1.0E1 µt pscm

1.0E1

lt pseo
4.0E−1 lt pscm

7.0E−1

Uhw
smax

8.0E−1

Table 6.9.: Passau city scenario VNFA and SSMA parameters

– Maximum # of iterations: 50000

– Minimum precision: 0.000001

– M0 return rate: 0.0

• Simulative analysis:

– Simulation method: Discrete event simulation with independent replications

– Number of replications/batches: 50

– Required confidence of the simulation: 95 %

– Length of each simulation iteration: 50000

– Used for comparing the fluid places content: 0.000001

– Used for comparing the firing time conflict: 0.000001

126 Chapter 6 Analysis

6.2.1.2 Single Service Scenario: Evaluation of SSMA Model

For SSMA, the rejuvenation strategy is simplified, as both the warm and migrate strategies are not
applicable because of the missing virtualization. Therefore, the rejuvenation dimension strategy
is skipped here, reducing the analysis to a distinction between no, deterministic and dynamic
rejuvenation in this case. The results for no rejuvenation is described next, the deterministic and
dynamic approaches are depicted in Figures 6.1 and 6.2, respectively.

In the no rejuvenation case, while a relatively high availability
�

A(SSMA) = 99.326 %
�

is achieved, the
performability suffers from the relatively high residual times in an impaired state (πsimp

= 51.471 %),
leading to Perf (SSMA) = 84.682 %.

In contrast, for deterministic rejuvenation, the results heavily depend on the time intervals in which
the rejuvenation is triggered, as the results show.

A(SSMA) =

0% for δs
nv = 0

≤ 99.320% for 0< δs
nv ≤ 10000

99.326% for δs
nv →∞

Perf (SSMA) =

0% for δs
nv = 0

≤ 98.468% for 0< δs
nv ≤ 10000

84.682% for δs
nv →∞

If the rejuvenation interval is short, the increasing number of restarts leads to a decreasing avail-
ability and performability; an extreme δs

nv of 0 causes constant rejuvenation actions, leading to an
availability and performability value of 0. In contrast, high values of δs

nv achieve a similar behavior
as no rejuvenation, i. e. high availability and low performability. An optimal performance using
deterministic rejuvenation is achieved in between both extremes.

1E−1 1E0 1E1 1E2 1E3 1E4

0

20

40

60

80

100

δs
nv

Pe
rf

[%
]

Figure 6.1.: Influence of parameter δs
nv in deterministic, cold rejuvenation (non-virtualized case)

To find the optimal deterministic rejuvenation parameters, first, it is required to define an optimization
goal for an AMI system. Two goals are possible in the given scenario, namely availability or
performance. This results in a non-trivial multi-objective optimization challenge, where trade-offs

6.2 Performability Assessment 127

between the two conflicting objectives are required. To solve this challenge, two basic methodological
approaches are possible; either a simulation-based optimization or multi-objective optimization
approaches (such as a Pareto-optimization or an optimization under constraints) are feasible. As
the DSPNs are solved using a simulative approach in this thesis, a simulation-based optimization
approach based on indifference zone methods is chosen.

For a multi-objective optimization approach, the steady-states of the DSPNs could be calculated
using solution approaches as applied by Lindemann [83]. Thereafter an optimization such as Karush-
Kuhn-Tucker (KKT) could be used to find the optimal value of δs

nv given the hard constraint that the
AMI’s availability may not drop under 98 %: maximize Perf (δs

nv) subject to A(δs
nv)≥

np0.98, where
A(δs

nv)≥
np0.98 is the availability inequality hard constraint that needs to be satisfied assuming that

n entities (with σ = 1) having the same availability each are present in the AMI of a user. In the
given single service scenario, however, n= 1.

The simulative indifference zone method optimization chosen is a multi-stage KN procedure, which
operates using the following method [74]:

1. Setup: Select a confidence level (1−α), an indifference parameter δ and the first-stage sample
size n0. Set η= 1

2

�

(2α
k−1)

−2
n0−1 − 1
�

.

2. Initialization: Let I = {1,2, ..., k} be the set of systems in contention. Set h2 =2η(n0−1). Next,
obtain the n0 outputs Perfi j , where j = 1, . . . , n0 from each system. Calculate the sample means
of observations from each system and sample variance of differences between observations
from systems i and l, using Equation (6.2).

S2
il =

1
n0 − 1

n0
∑

j=1

�

Perfi j − Perfl j −
�

Perf i(n0)− Perf l(n0)
�

�2
∀ l 6= i. (6.2)

Set r = n0.

3. Screening: Set I old = I . Define the new set of systems in contention as I = {i : i ∈
I old and Perf i(r)≥ Perf l(r)−Wil(r) ∀ l ∈ I old , l 6= i}, where

Wil(r) =max{0,
δ

2r

�

(
hSil

δ
)2 − 1
�

}. (6.3)

4. Selection: If |I | = 1 then stop the procedure and return i ∈ I as the best system. Otherwise,
take an additional output Perfi,r+1 from each i ∈ I , set r = r+1 and return to the screening
stage.

The following parameter definitions are used in the equations above:

(1−α) = Confidence level = 0.01

δ = Indifference parameter = 0.0001

n0 = First-stage sample size = 10

k = Number of systems to choose between = 10

Perfi j = jth performability observation of ith system

resulting in:

η = 1
2

�

(1.98
9)

-2
9 − 1
�

= 0.2
h2 = 0.4 · 9 = 3.6

128 Chapter 6 Analysis

i 0 1 2 3 4 5 6 7 8 9

δs
nv 3 4 5 6 7 8 9 10 11 12

Perf i [%] 97.850 98.155 98.301 98.380 98.4316 98.450 98.448 98.433 98.398 98.362

Ai [%] 98.675 98.786 98.839 98.869 98.878 98.885 98.893 98.896 98.899 98.901

Table 6.10.: Perf i and Ai calculation

Table 6.10 shows the intermediate results for Perf i and Ai. Thereafter, it is possible to calculate S2
il

using Equation (6.2), as depicted in Table 6.11. After that, using Equation (6.3), the values of Wil

are derived, allowing to determine a set of candidate systems I (marked in green in Table 6.11).

i / l 0 1 2 3 4 5 6 7 8 9

0 - 2.50E−7 7.11E−8 7.11E−8 1.34E−7 1.60E−7 7.11E−8 1.60E−7 1.87E−7 4.00E−8

1 1.00E−8 - 7.11E−8 1.11E−9 9.00E−8 5.44E−8 1.00E−8 1.87E−7 3.21E−7 9.00E−8

2 1.00E−8 1.77E−8 - 4.44E−9 1.00E−8 4.44E−9 5.44E−8 1.11E−9 2.77E−8 4.44E−8

3 1.11E−9 1.77E−8 4.44E−9 - 1.00E−8 5.44E−8 1.11E−9 1.00E−8 1.11E−9 2.33E−8

4 5.44E−8 4.00E−8 1.60E−7 4.00E−8 - 9.00E−8 1.34E−7 7.11E−8 2.17E−7 1.11E−7

5 4.00E−8 4.00E−8 1.88E−7 1.11E−9 1.11E−9 - 1.11E−9 1.00E−8 5.44E−8 1.00E−8

6 1.877E−7 4.00E−8 1.00E−8 9.00E−8 4.44E−9 7.11E−8 - 4.44E−9 1.00E−8 7.11E−8

7 3.21E−7 3.21E−7 9.00E−8 1.11E−7 1.878E−7 4.00E−8 7.11E−7 - 4.00E−8 4.00E−8

8 1.00E−8 2.77E−8 2.18E−7 1.00E−8 5.44E−8 4.44E−9 2.77E−8 5.44E−8 - 2.77E−8

9 9.00E−8 1.11E−9 1.77E−8 7.11E−8 1.11E−9 4.44E−9 4.00E−8 5.44E−8 9.00E−8 -

Table 6.11.: Results of S2
il calculations

Using the aforementioned approach, the result yields δs
nv = 8.25h.

The results show that, in the dynamic rejuvenation case:

A(SSMA) =

0% for ∇s
nv ≥ 1

99.323% for 0.7≤∇s
nv < 1

99.328% for ∇s
nv < 0.7

Perf (SSMA) =

0% for ∇s
nv ≥ 1

99.323% for 0.7≤∇s
nv < 1

84.682% for ∇s
nv < 0.7

Failure Sensitivity Analysis. In the sensitivity analysis, the influence of the various failure rates on
the overall performability of SSMA and VNFA is investigated. While especially the impact of λsol and
λhos,λhom and λhol is similar for both architectures, software failures λso have a much higher impact
in SSMA, which is attributable to the longer repair times encountered. These originate from the
fact a software failure can sometimes not be remotely solved in a non-virtualized environment and
requires an employee to fix the failure on-site, which induces delays. This is depicted in Figure 6.3.

6.2 Performability Assessment 129

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

20

40

60

80

100

∇s
nv

Pe
rf

[%
]

Figure 6.2.: Influence of parameter ∇s
nv in dynamic, cold rejuvenation (non-virtualized case)

1E−3 1E−2 1E−1 1E0 1E1 1E2 1E3

0

20

40

60

80

100

mλ

Pe
rf

[%
]

λhw
o

λs
o λs

d

(a) Influence of failure rate on Perf of SSMA

1E−3 1E−2 1E−1 1E0 1E1 1E2 1E3

0

20

40

60

80

100

mλ

A
[%

]

λhw
o

λs
o λs

d

(b) Influence of failure rate on A of SSMA

Figure 6.3.: Failure sensitivity analysis of SSMA regarding performance (left) and availability (right)

6.2.1.3 Single Service Scenario: Evaluation of VNFA Model

NFV AMI Architecture, No Rejuvenation. As the analysis of the no rejuvenation has shown in the
SSMA case, it is similar to using a dynamic rejuvenation with ∇-parameters set to a value lower than
1−(α+β +γ). Therefore, the no rejuvenation case is not regarded separately in this analysis, instead,
it is referred to the respective part of the VNFA dynamic, cold rejuvenation analysis.

Failure Sensitivity Analysis. For VNFA, the parameters’ influences can be classified into two basic
groups, more specifically into those parameters showing negligible and those having strong influence
on the overall availability/performability of the architecture. The main parameter difference usable
for the classification is the repair rate associated with the respective failure, where a lower repair
rate implies a higher impact of a parameter on the system’s dependability. Therefore, the influence
of hardware and software failures requiring a longer restoration time to fix (λsol and λhom and λhol)
have by far the strongest impact, followed by λhos, λvmmo and λvmo; increasing any of the impairment

130 Chapter 6 Analysis

rates results in comparably small availability losses of < 1 %, while performability is moderately
impacted (on average 11.320% loss). These results are depicted in Figure 6.4.

1E−3 1E−2 1E−1 1E0 1E1 1E2 1E3

0

20

40

60

80

100

mλ

Pe
rf

[%
]

λhw
o

λvmm
o λvmm

d
λvm

o λvm
d λs

o
λs

d

(a) Influence of failure rate on Perf of VNFA

1E−3 1E−2 1E−1 1E0 1E1 1E2 1E3

0

20

40

60

80

100

mλ

A
[%

]

λhw
o

λvmm
o λvmm

d
λvm

o λvm
d λs

o
λs

d

(b) Influence of failure rate on A of VNFA

Figure 6.4.: Sensitivity analysis of VNFA regarding performability (left) and availability (right)

NFV AMI Architecture, Cold Rejuvenation Strategy. Regarding VNFA, in case of a cold rejuvenation
strategy, it is visible that especially high frequencies of service rejuvenation cause a significant drop
in both availability and performance. The results are depicted in Figure 6.5, where the areas of the
graph marked in red represent parameter settings that do not achieve the required availability of
98 %. All areas marked in yellow have an availability of ≥ 98%, but < 99%. Areas marked in green
represent an availability of ≥ 99%. This color scheme is also used in the upcoming evaluations.

For deterministic rejuvenation, generally speaking, if δs
v or δvmm

v ≤ 1, the availability decreases to
< 98%, making it not suitable. In scenarios where δs

v , δ
vm
v , and δvmm

v > 1, optimization methods (as
shown in Section 6.2.1.2) lead to a peak performance at δvmm

v = 43.25h, while δvm
v and δs

v is to be
set to∞, resulting in A(VNFA) = 99.186% and Perf (VNFA) = 99.045%.

The results show that, in the dynamic rejuvenation case, both availability and performance are 0 in
scenarios where either ∇vmm

v , ∇vm
v or ∇s

v ≥ 1. The reason behind this outcome is that any ∇v value
of ≥ 1 leads to a constant triggering of the rejuvenation. Second, it is apparent that especially high
∇s

v in combination with low ∇vm values have a high impact on both availability and performance.
This is due to the fact that in the given scenario, α= 0.1, β = 0.2 while γ= 0.3. Therefore, a high
∇s

v value leads to unnecessary reboots which do however not fix the impairments on VM and VMM
levels. The highest performance values that fulfill the availability requirements are observable in
scenarios where ∇vmm

v = 0.9, ∇vm
v < 0.9, and ∇s

v < 0.9. These results are depicted in Figure 6.6.

NFV AMI Architecture, Warm/Migration Rejuvenation Strategy. Generally speaking, the availability
and performability improvements for both warm and migration rejuvenation behave in a similar
manner: If a VMM rejuvenation is triggered, warm and migration rejuvenation offer an alternative
restoration to cold rejuvenation, which is faster, thereby preserving a higher performability. However,
as described in Section 5.3.4, during a VMM rejuvenation event, warm rejuvenation does not trigger
a service rejuvenation automatically. In the case of migration rejuvenation, VM and service do
not get rejuvenated, respectively. The exact influences of these behaviors are described next. The

6.2 Performability Assessment 131

1E5

1E4

1E3

1E2

1E1

1E0

1E5

1E4

1E3

1E2

1E1

1E0

0

25

50

75

100

δ
vm

v

δ s
v

Pe
rf

[%
]

1E−1

(a) Deterministic, cold rejuvenation (δvmm
v = 1E5)

1E5

1E4

1E3

1E2

1E1

1E0

1E5

1E4

1E3

1E2

1E1

1E0

0

25

50

75

100

δ
vm

v

δ s
v

Pe
rf

[%
]

1E−1

(b) Deterministic, cold rejuvenation (δvmm
v = 1E4)

1E5

1E4

1E3

1E2

1E1

1E0

1E5

1E4

1E3

1E2

1E1

1E0

0

25

50

75

100

δ
vm

v

δ s
v

Pe
rf

[%
]

1E−1

(c) Deterministic, cold rejuvenation (δvmm
v = 1E3)

1E5

1E4

1E3

1E2

1E1

1E0

1E5

1E4

1E3

1E2

1E1

1E0

0

25

50

75

100

δ
vm

v

δ s
v

Pe
rf

[%
]

1E−1

(d) Deterministic, cold rejuvenation (δvmm
v = 1E2)

1E5

1E4

1E3

1E2

1E1

1E0

1E5

1E4

1E3

1E2

1E1

1E0

0

25

50

75

100

δ
vm

v

δ s
v

Pe
rf

[%
]

1E−1

(e) Deterministic, cold rejuvenation (δvmm
v = 1E1)

1E5

1E4

1E3

1E2

1E1

1E0

1E5

1E4

1E3

1E2

1E1

1E0

0

25

50

75

100

δ
vm

v

δ s
v

Pe
rf

[%
]

1E−1

(f) Deterministic, cold rejuvenation (δvmm
v = 1E0)

Figure 6.5.: Influence of rejuvenation parameters on performability (deterministic, cold rejuvenation,
virtualized case)

performability changes are always given for the peak availability and performability being achieved,
i. e., for the difference between cold and warm rejuvenation: ∆A = max(Acold

vnfa)−max(Awarm
vnfa) and

∆Perf =max(Perf cold
vnfa)−max(Perf warm

vnfa).

• Deterministic timing: Using deterministic warm rejuvenation, the availability gain is 0.083 %,
the performability increase is 0.149 %. A similar phenomenon can be observed in migration
rejuvenation, however, the effect is even stronger compared to warm rejuvenation. Using

132 Chapter 6 Analysis

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

25

50

75

100

∇
vm

v

∇ s
v

Pe
rf

[%
]

(a) Dynamic, cold rejuvenation (∇vmm
v ≤ 0.3)

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

25

50

75

100

∇
vm

v

∇ s
v

Pe
rf

[%
]

(b) Dynamic, cold rejuvenation (∇vmm
v = 0.4)

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

25

50

75

100

∇
vm

v

∇ s
v

Pe
rf

[%
]

(c) Dynamic, cold rejuvenation (∇vmm
v = 0.5)

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

25

50

75

100

∇
vm

v

∇ s
v

Pe
rf

[%
]

(d) Dynamic, cold rejuvenation (∇vmm
v = 0.6)

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

25

50

75

100

∇
vm

v

∇ s
v

Pe
rf

[%
]

(e) Dynamic, cold rejuvenation (∇vmm
v = 0.7)

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

25

50

75

100

∇
vm

v

∇ s
v

Pe
rf

[%
]

(f) Dynamic, cold rejuvenation (∇vmm
v = 0.8)

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

25

50

75

100

∇
vm

v

∇ s
v

Pe
rf

[%
]

(g) Dynamic, cold rejuvenation (∇vmm
v = 0.9)

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

25

50

75

100

∇
vm

v

∇ s
v

Pe
rf

[%
]

(h) Dynamic, cold rejuvenation (∇vmm
v = 1.0)

Figure 6.6.: Influence of rejuvenation parameters on performability (dynamic, cold rejuvenation, virtualized
case)

6.2 Performability Assessment 133

deterministic rejuvenation, the availability gain is 0.121 %, the performability increase is
0.187 %.

• Dynamic timing: Warm rejuvenation offers a benefit of 0.105 % in availability and 0.105 %

in performability, using dynamic rejuvenation. Migration rejuvenation offers a benefit of
0.219 % in availability and 0.213 % in performability, using dynamic rejuvenation. In migration
rejuvenation, a special case needs to be discussed, namely if ∇vmm ≥ 1. In such a case, a
migrated VM will never return to its original host, as there is a constant triggering of VMM
rejuvenation. While the difference in availability and performability in such cases is severe
(∆A and ∆Perf ≥ 90%), setting ∇vmm ≥ 1 is not feasible, as the original host would constantly
migrate all VMs to other substrate hosts. Therefore, this case is disregarded from hereon
forward.

The obtained results are visualized in Figures 6.7 and 6.8 for deterministic and Figures 6.9 and 6.10
for dynamic rejuvenation, respectively. Here, the color scheme implies a decrease (colored red) or
increase (colored green) of A or Perf , respectively.

1E4
1E3

1E2
1E1

1E0
1E−1

1E41E31E21E11E01E−1

-0.2

-0.1

0

0.1

0.2

δ
vm

m

v
δ vm

v

∆
A

[%
]

1E5

(a) ∆A of warm compared to cold rejuvenation

1E5
1E4

1E3
1E2

1E1
1E0

1E−1

1E51E41E31E21E11E01E−1

-0.2

-0.1

0

0.1

0.2

δ
vm

m

v
δ vm

v

∆
A

[%
]

(b) ∆A of migration compared to cold rejuvenation

Figure 6.7.: ∆A of warm (left) and migration (right) compared to cold rejuvenation (deterministic, virtualized
case)

1E4
1E3

1E2
1E1

1E0
1E−1

1E41E31E21E11E01E−1

-0.2

-0.1

0

0.1

0.2

δ
vm

m

v
δ vm

v

∆
Pe

rf
[%

]

1E5

(a) ∆Perf of warm compared to cold rejuvenation

1E4
1E3

1E2
1E1

1E0
1E−1

1E41E31E21E11E01E−1

-0.2

-0.1

0

0.1

0.2

δ
vm

m

v
δ vm

v

∆
Pe

rf
[%

]

1E5

(b) ∆Perf of migration compared to cold rejuvenation

Figure 6.8.: ∆Perf of warm (left) and migration (right) compared to cold rejuvenation (deterministic,
virtualized case)

134 Chapter 6 Analysis

1.0
0.9

0.8
0.7

0.6
0.5

0.4
0.3

1.0 0.9 0.8 0.7
0.6 0.5 0.4 0.3

-0.2

-0.1

0

0.1

0.2

∇
vm

m

v

∇ vm
v

∆
A

[%
]

(a) ∆A of warm compared to cold rejuvenation

1.0
0.9

0.8
0.7

0.6
0.5

0.4
0.3

1.0 0.9 0.8 0.7
0.6 0.5 0.4 0.3

-0.2

-0.1

0

0.1

0.2

∇
vm

m

v

∇ vm
v

∆
A

[%
]

(b) ∆A of migration compared to cold rejuvenation

Figure 6.9.: ∆A of warm (left) and migration (right) compared to cold rejuvenation (dynamic, virtualized case)

1.0
0.9

0.8
0.7

0.6
0.5

0.4
0.3

1.0 0.9 0.8 0.7
0.6 0.5 0.4 0.3

-0.2

-0.1

0

0.1

0.2

∇
vm

m

v

∇ vm
v

∆
Pe

rf
[%

]

(a) ∆Perf of warm compared to cold rejuvenation

1.0
0.9

0.8
0.7

0.6
0.5

0.4
0.3

1.0 0.9 0.8 0.7
0.6 0.5 0.4 0.3

-0.2

-0.1

0

0.1

0.2

∇
vm

m

v

∇ vm
v

∆
Pe

rf
[%

]

(b) ∆Perf of migration compared to cold rejuvenation

Figure 6.10.: ∆Perf of warm (left) and migration (right) compared to cold rejuvenation (dynamic, virtualized
case)

Number of replicas

0 1 2

No rejuvenation 99.424 % 99.915 % 99.932 %

Cold rejuvenation
deterministic 99.186 % 99.746 % 99.658 %

dynamic 99.423 % 99.923 % 99.934 %

Warm rejuvenation
deterministic 99.269 % 99.821 % 99.857 %

dynamic 99.528 % 99.931 % 99.947 %

Migration rejuvenation
deterministic 99.307 % 99.934 % 99.985 %

dynamic 99.642 % 99.969 % 99.992 %

Table 6.12.: Influence of replicas on service availability in VNFA

Replica Usage. Besides the employed rejuvenation method, a VNFC’s dependability also depends
on whether and if so, how many replicas are used to offer service backups (the performance is not

6.2 Performability Assessment 135

affected by the usage of replicas as stated in the assumptions). To evaluate the benefit of replicas, the
dependability gain of introducing an increasing number of replicas is analyzed. Using one replica,
VNFA with no rejuvenation the availability rises from to 99.424% to 99.915%. Increasing the number
to two replicas only bears a minor increase in availability to 99.932%, which is to be expected, as
gross of the remaining failures occurs at substrate or VMM level. The availability development using
replicas behaves in a similar manner with both deterministic and dynamic rejuvenation in place, as
well as cold, warm or migration rejuvenation. Table 6.12 summarizes the findings.

Despite the apparent gain in dependability, it is noted that each additional replica also demands
resources. Therefore, improving each service’s dependability by employing multiple replicas is not
an economically feasible solution, as discussed in Section 1.2. To determine the proper amount
of replicas, two requirements need to be evaluated. The most important is upholding the 98 %

availability requirement posed by AMIs. Secondly, there are the costs incurred by the additional
replicas, which—in turn—lead to increased resource demands and substrate nodes to provide them.
Therefore, an optimization that minimizes the costs while maintaining an availability ≥ 98% is
performed. Finding an optimal number of replicas for each service individually is not part of this
thesis. However, the influence of employing system-wide replicas (i. e. a static number of replicas per
service entity of a specific type) is analyzed in both single user and Passau city scenario. If replicas
are employed, the service featuring the highest in-degree and σ = 1 in the macro model is identified
and replicated to offer the achieved dependability benefit to a maximum amount of users [184]. To
weight the dependability gain against the additional resources required to realize replicas, a cost
analysis is provided in Section 6.4.2.

6.2.2 Evaluation: Single User Scenario
While the results of the single service evaluation are partially applicable in the single user scenario,
it is important to once more review the rejuvenation strategy that achieves optimal results in the
single service scenario. Here, dynamic rejuvenation results in the optimal performability under a set
availability threshold. However, in the single user scenario, multiple services are working serially
aligned, i. e. if a single service is under rejuvenation while the other services are performing at full
capacity, the performance of the user’s service chain is insufficient. Therefore, it needs to be evaluated
if a synchronized, deterministic rejuvenation of all services offers a higher overall performability
than dynamic rejuvenation, or if the usage of replicas is superior. To maximize the performability of
services, a migration rejuvenation strategy is used (if applicable), as shown in Section 6.2.1.3.

6.2.2.1 Single User Scenario: Test Environment

In addition to the SPNP tool described in the single service scenario, for the performability analysis
of the overall model, the open source suite Java Modelling Tools (JMT)18 [17], consisting of tools
for performance evaluation and modeling of computer and communication systems, is used. The
suite implements several state-of-the-art algorithms for the exact, approximate or simulative analysis
of queuing network models. To be more precise, the JMT tool JSIMgraph is used, which is a discrete-
event simulator for the analysis of queuing network and Petri net models. The application supports
numerous probability distributions (e. g. deterministic, Erlang, exponential, gamma, normal) for
characterizing service and inter-arrival times as well as state-independent and state-dependent
routing strategies.

18 Java Modelling Tools – Introduction, URL: http://jmt.sourceforge.net/, last accessed: 05/01/2019

136 Chapter 6 Analysis

http://jmt.sourceforge.net/

6.2.2.2 Single User Scenario: Evaluation of SSMA Model

Before the actual calculations to analyze the behavior and properties of a single user’s service chain
in SSMA are done, it needs to be clarified which rejuvenation timing and strategy offer an optimal
performability. Because the only applicable strategy in case of SSMA is cold rejuvenation, the variants
break down to the timing dimension. In this case it is required to evaluate whether a synchronized
deterministic timing might outperform a dynamic rejuvenation, which is triggered based on the
performance of each service individually. To do so, both rejuvenation timings are tested on a set of n
sequentially aligned services. δs

nv is assumed to be set to the optimal setting of 8.25h; ∇s
nv is set to

0.7, respectively.

1 2 3 4
95

96

97

98

99

100

Number of sequentially aligned services (n)

Pe
rc

en
ta

ge
[%

]

Deterministic A Deterministic Perf Dynamic A Dynamic Perf

Figure 6.11.: Comparison of deterministic and dynamic rejuvenation timing in SSMA

Figure 6.11 depicts the findings of the experiment, showing that with an increasing number of
sequential services, a synchronized, deterministic rejuvenation offers a less steep dependability
decrease than a dynamic approach, which is also verified by Myint & Thein [105]. Though the
performability difference of deterministic and dynamic rejuvenation timing is decreased using
synchronized deterministic rejuvenations, it cannot be equalized, therefore dynamic rejuvenation
still offers a higher performability in the given scenario.

As the analysis in Section 6.2.1.2 already revealed, the results for grs are: A = 99.323%, for
Perf = 99.323%. For grc, the evaluation results in A= 98.749%, for Perf = 98.745%. This results
in the following service rates for the SSMA services:

µ(gw) = Perf (gw) · µo(gw) = 0.99323 · 40 = 39.73

µ(r) = Perf (r) · µo(r) = 0.99323 · 1000 = 993.23

µ(dc) = Perf (dc) · µo(dc) = 0.98745 · 60 = 59.25

µ(t ps) = Perf (t ps) · µo(t ps) = 0.98745 · 30 = 29.62

µo is the maximum unimpaired performance achieved by a service. Employing the service rates
introduced in Table 6.7, the overall performance/delay for a single SSMA user x is calculated by:
d(x) =
∑

i, j∈S|us
i ,u

s
j=x d(i) + d(i, j), where d(i) is the delay introduced by service i, while d(i, j) is the

delay caused by traffic traversing the link between services i and j. dnc(x) is the delay encountered

6.2 Performability Assessment 137

by traffic traversing from the smart meter to the TPSs for user x , dc(x) respectively from the smart
meter to HES of user x .

dnc(x) = d(sm, gw) + d(gw) + d(gw, r) + d(r) + d(r, t ps) + d(t ps)

dc(x) = d(sm, gw) + d(gw) + d(gw, r) + d(r) + d(r, dc) + d(dc) + d(dc, h),

where d(x) denotes the processing delay incurred by service x , d(x , y) is the network delay of traffic
traversing from services x to y.

Due to the delay calculations only respecting transmission and queuing delays (see assumptions in
Section 6.1.1) and the disregard of in-network routers, the network delays calculate as follows:

d(sm, gw) = d(gw, r) = 1600
250000 = 0.0064s = 6.4ms

d(r, t ps) = 1600
1000000 = 0.0016s = 1.6ms

d(r, dc) = 1600
500000 = 0.0032s = 3.2ms

d(dc, h) = 1600
15000000 = 0.0001s = 0.1ms

This in turn leads to the following delays:

• dnc(x) = d(gw) + d(r) + d(t ps) + d(sm, gw) + d(gw, r) + d(r, t ps) = 25.2ms+ 1ms+ 34.3ms+
6.4ms+ 6.4ms+ 1.6ms= 74.9ms, and

• dc(x) = d(gw) + d(r) + d(dc) + d(sw, gw) + d(gw, r) + d(r, dc) + d(dc, h) = 25.2ms + 1ms +
17.4ms+ 6.4ms+ 6.4ms+ 3.2ms+ 0.1ms= 59.7ms.

To evaluate the availability of the overall SSMA for a single user, two cases need to be distinguished,
similar to the delay calculation before. As not all services running within an AMI are necessarily
required to provide its core functionality, the priority of each service, indicated by the priority flag σ,
is of importance. Based on this, the following two metrics are distinguished:

• Critical availability (Ac), defined as the percent of operational time of the critical AMI path,
encompassing all required services

�

s ∈ S : σ(s) = 1
�

and the respective links connecting them.

• Non-critical availability (Anc), defined as the percent of operational time of the optional AMI
path, which are the paths ending in optional services

�

s ∈ S : σ(s) = 0, outdeg(s) = 0
�

and the
respective links connecting them.

To find the complete availability of an AMI, the individual availabilities of the services comprising
the AMI have to be multiplied. Equations (6.4) and (6.5) illustrate the required calculations for the
critical and non-critical availability of an AMI of user x .

Ac =
∏

i∈S

A(i) : us
i = x ∧σ(vs

i) = 1 (6.4)

Anc =
∏

i∈S

A(i) : us
i = x ∧
�

σ(vs
i) = 0 | outdeg(vs

i) = 0
�

(6.5)

For SSMA, this results in Anc = A(sm) · A(gw) · A(r) · A(t ps) ⇒ Anc = A(gs)3 · A(gc) and Ac = A(sm) ·
A(gw)·A(r)·A(dc)⇒ Ac = A(gs)3 ·A(gc), leading to Ac = Anc , which calculates as: 0.993233 ·0.98749 =
0.96757.

138 Chapter 6 Analysis

6.2.2.3 Single User Scenario: Evaluation of VNFA Model

For VNFA, the evaluation methodology is similar to SSMA; however, two additional influences need
to be included within the evaluation:

1. Hosting substrate influence: Depending on the spread of a user’s embedded VNF, i. e. how
many VMs, VMMs, substrate servers, and connecting links are involved in the hosting of a
user’s VNF, the performability is changing. In the following, two cases are going to be analyzed:
(a) all virtualized VNFs of a user are embedded on a single substrate server, (b) all virtualized
VNFs of a user are distributed onto different substrate servers. Scenario (a) is thereby the
optimal, scenario (b) the worst case from a performability perspective.

2. Substrate backup strategy: As extensively explained in Section 4.4.1, three possibilities for
the substrate backup strategy are available: no, circle, or all-for-all backup. Depending on the
strategy employed, the performability of a user’s VNF changes. Before both backup strategies
are compared, the no backup case is analyzed first.

The obtained results are discussed to answer these aforementioned questions.

1. In a similar manner as in Section 6.2.2.2, the network delay can be calculated; however, the
virtualization overhead needs to be respected, which results for cases (a) and (b) in:

(a) In the first scenario, the network-induced delays are minimized, as all VNFCs are located
on the same server. This leads to the following network delays between services:

Ωnet

�

d(sm, r)
�

= Ωnet(
1600

250000) = Ωnet(0.0064s) = 6.784ms

Ωnet

�

d(r, s)
�

= Ωnet(
1600

1000000) = Ωnet(0.0016s) = 1.696ms

Ωnet

�

d(s, h)
�

= Ωnet(
1600

15000000) = Ωnet(0.0001s) = 0.106ms

The overall network delay (currently ignoring service delays) results in:

dnet
nc (x) = Ωnet

�

d(sm, r) + d(r, s)
�

= 6.784ms+ 1.696ms= 8.48ms

dnet
c (x) = Ωnet

�

d(sm, r) + d(r, s) + d(dc, h)
�

= 6.784ms+ 1.696ms+ 0.106ms= 8.586ms

(b) The second scenario induces an increased network delay due to transmissions required
between various servers. The resulting network delays between services are:

Ωnet

�

d(sm, r)
�

= Ωnet(
1600

250000) = Ωnet(0.0064s) = 6.784ms

Ωnet

�

d(r, s)
�

= Ωnet(
1600

1000000) = Ωnet(0.0016s) = 1.696ms

Ωnet

�

d(si , s j)
�

= Ωnet

�

d(s, h)
�

= Ωnet(
1600

15000000) = Ωnet(0.0001s) = 0.106ms

The overall network delay, again ignoring service delays is therefore:

dnet
nc (x) = Ωnet

�

d(sm, r)+d(r, sgw)+d(sgw, st ps)
�

= 6.784ms+1.696ms+0.106ms = 8.586ms

dnet
c (x) = Ωnet

�

d(sm, r)+d(r, sgw)+d(sgw, sdc)+d(sdc , h)
�

= 6.784ms+1.696ms+0.106ms+
0.106ms= 8.692ms

As the results show, a slight network delay increase is suffered if services are distributed among
multiple servers (1.250 % in the non-critical path, 1.235 % in the critical path). In comparison
to SSMA, the hosting of multiple services on a single substrate may help to mitigate the
virtualization overhead on network level.

6.2 Performability Assessment 139

The encountered network delays in VNFA scenario (a) are 41.111 % shorter than in SSMA in
the critical path, 46.671 % in the non-critical, in scenario (b), the decrease is 40.375 % in the
critical path and 46.012 % in the non-critical path, respectively.

2. To evaluate the influence of the introduction of hardware redundancy, more specifically the
circle backup redundancy introduced in Section 4.4.2, it is assumed that the backup system has
similar properties to the main system. In the case of the single user scenario, again, a check
for resource availability and embedding possibility is skipped, due to the assumptions given in
Section 6.1.3.

The assumption for the all-for-all backup analysis are the same as for the circle backup.
However, to estimate Perf and A for this type of substrate redundancy, the number of employed
servers in the VNFA infrastructure need to be known. As in the single user scenario, the number
of required substrate servers is limited to one by default, in the case of all-for-all backup, the
number of available backup servers (which is n−1, where n is the number of overall servers)
influences how often services may migrate in the presence of substrate failures.

Due to these restrictions, to give a meaningful availability estimation for VNFA (which is
impossible using only a single server, thereby effectively nullifying any substrate redundancy
options) an evaluation using one to three available substrate servers is done. The results are
displayed in Tables 6.13 and 6.14.

The results show two key findings: First, if either circle or all-for-all backup are used, the required
availability ≥ 98% can be achieved in both scenarios (a) or (b) (assuming that two or more servers
are present). Second, if no substrate redundancy is employed, however, the required availability is
not reached (if no other dependability-enhancing measures are used, such as replicas).

The usage of replicas can enhance the dependability of VNFCs, however, the limit of replica usage
can be estimated using the results of Sections 3.2.1, 3.2.3 and 6.2.1. This leads to the conclusion
that the availability of a VNFA AMI can—without the introduction of either higher quality smart
meters/routers or the usage of hardware sided replicas, which is not part of this thesis—never exceed
98.651 %.

140 Chapter 6 Analysis

N
u

m
be

r
of

se
rv

er
s

1
2

3

R
ep

lic
as

R
ep

lic
as

R
ep

lic
as

0
1

2
0

1
2

0
1

2

Sc
en

ar
io

(a
)

N
o

re
du

nd
an

cy
97

.7
24

98
.1

26
98

.1
42

97
.7

24
98

.1
26

98
.1

42
97

.7
24

98
.1

36
98

.1
52

C
ir

cl
e

ba
ck

up
97

.7
24

98
.1

26
98

.1
42

97
.9

55
98

.2
55

98
.2

85
97

.9
55

98
.2

55
98

.2
85

A
ll-

fo
r-

al
lb

ac
ku

p
97

.7
24

98
.1

26
98

.1
42

97
.9

55
98

.2
55

98
.2

85
97

.9
94

98
.2

97
98

.3
26

Sc
en

ar
io

(b
)

N
o

re
du

nd
an

cy
97

.7
12

98
.1

13
98

.1
29

97
.7

12
98

.1
13

98
.1

29
97

.7
12

98
.1

23
98

.1
39

C
ir

cl
e

ba
ck

up
97

.7
12

98
.1

13
98

.1
29

97
.9

43
98

.2
42

98
.2

72
97

.9
43

98
.2

42
98

.2
72

A
ll-

fo
r-

al
lb

ac
ku

p
97

.7
12

98
.1

13
98

.1
29

97
.9

43
98

.2
42

98
.2

72
97

.9
81

98
.2

84
98

.3
13

Ta
bl

e
6.

13
.:

V
N

FA
av

ai
la

bi
lit

y
[%

]
in

si
ng

le
us

er
sc

en
ar

io
us

in
g

0,
1,

an
d

2
re

pl
ic

as
fo

r
(e

it
he

r
d

c
or

tp
s)

N
u

m
be

r
of

se
rv

er
s

1
2

3

R
ep

lic
as

(e
ac

h)
R

ep
lic

as
(e

ac
h)

R
ep

lic
as

(e
ac

h)

0
1

2
0

1
2

0
1

2

Sc
en

ar
io

(a
)

N
o

re
du

nd
an

cy
97

.7
24

98
.5

33
98

.5
65

97
.7

24
98

.5
33

98
.5

65
97

.7
24

98
.5

33
98

.5
65

C
ir

cl
e

ba
ck

up
97

.7
24

98
.5

33
98

.5
65

97
.9

55
98

.5
74

98
.6

15
97

.9
55

98
.5

74
98

.6
24

A
ll-

fo
r-

al
lb

ac
ku

p
97

.7
24

98
.5

33
98

.5
65

97
.9

55
98

.5
74

98
.6

15
97

.9
94

98
.6

15
98

.6
57

Sc
en

ar
io

(b
)

N
o

re
du

nd
an

cy
97

.7
12

98
.5

20
98

.5
52

97
.7

12
98

.5
20

98
.5

52
97

.7
12

98
.1

57
98

.5
52

C
ir

cl
e

ba
ck

up
97

.7
12

98
.5

20
98

.5
52

97
.9

43
98

.5
87

98
.6

11
97

.9
43

98
.5

61
98

.6
02

A
ll-

fo
r-

al
lb

ac
ku

p
97

.7
12

98
.5

20
98

.5
52

97
.9

43
98

.5
87

98
.6

11
97

.9
81

98
.5

61
98

.6
02

Ta
bl

e
6.

14
.:

V
N

FA
av

ai
la

bi
lit

y
[%

]
in

si
ng

le
us

er
sc

en
ar

io
us

in
g

0,
1,

an
d

2
re

pl
ic

as
ea

ch
(g

w
an

d
ei

th
er

d
c

or
tp

s)

6.2 Performability Assessment 141

6.2.3 Evaluation: Passau City Scenario
Using the results of the single service and single user evaluations, the Passau city scenario is analyzed
to offer further insights regarding the performability of VNFA in a larger application environment
and a comparison between SSMA and VNFA.

6.2.3.1 Passau City Scenario: Test Environment

In order to evaluate different virtualization models and their impact on the AMI performance, a
set of tools is used to create and analyze suitable test networks. As there exists—to the best of the
author’s knowledge—no application that can be used for every single aspect of the necessary studies,
multiple existing programs are used. To be able to automatically generate, analyze and compare
VNFA scenarios, a software framework called AMIgo is implemented that can create models of the
studied AMI networks and convert them from their model representation into queuing networks
to be subsequently evaluated. A description of this software and its interaction with other tools is
provided in the following. In AMIgo, the Algorithms for Embedding of Virtual Networks (ALEVIN)
framework is used for both mapping and validation purposes, which are both explained in the
upcoming paragraphs.

Embedding. ALEVIN is used for embedding when creating the virtualized AMI networks. The
virtual gateway, data concentrator and third party nodes of the neighborhoods need to be mapped
onto the substrate servers. Every type of virtual node has its own demands that need be respected.
For the embedding, the algorithm detailed in Algorithm 4.3 is used.

Validation. In non-virtualized networks, ALEVIN is used for validation. As the name suggests, no
virtual machines are used in this topology. Nevertheless, they are introduced artificially to have
ALEVIN check the CPU and bandwidth requirements of the AMI services. This ensures that the
network has enough resources to serve all its customers. The actual embedding is done by AMIgo as
the network structure defines exactly which virtual machines are supposed to be hosted on which
substrate node. The resource model employed in this VNF embedding simulation regards two types
of resources, namely CPU cycles and link bandwidth.

AMIgo Program Flow. When running AMIgo, at first, a plan for all neighborhoods, each consisting
of multiple users, is generated. The plan respects the settings that are made in the network definition
file (see Appendix A.1). The result of this step is a template for each neighborhood that follows the
basic architecture of an AMI as depicted in Section 2.1.2.2. Every neighborhood has its own data
concentrator and multiple users. Each user in a neighborhood has one smart meter, one router, one
gateway, and optionally TPSs.

Depending on the topology, the generated network nodes are either marked as virtual or physical. The
plan for each of the neighborhoods is the same for all network topologies to provide comparability.
Three copies of this plan are sent to the different topology handlers, where at first the neighborhoods
are converted so that ALEVIN can map the virtual nodes.

After the Virtual Network Embedding (VNE) is finished, the embedded networks are converted into
an eXtensible Markup Language (XML)-based format required by JMT and analyzed. To account for
possible failures in the substrate network and analyze their impact, after the networks are created and
assessed, substrate servers are eliminated according to a crash plan. The crash plan determines the
order in which servers are eliminated from the substrate network. AMIgo subsequently determines

142 Chapter 6 Analysis

Plan for all neighborhoods

• Number of households

• Number and type of TPSs per
household

Circle backup

Create substrate net

Create virtual net

Embedding

JMT
converter

No redundancy

Create substrate net

Create virtual net

Embedding

JMT
converter

All-for-all backup

Create substrate net

Create virtual net

Embedding

JMT
converter

Hardware failure modeling
according to crash plan

Apply circle
backup strategy

Damage
report

JMT
converter

Apply all-for-all
backup strategy

Damage
report

JMT
converter

Damage
report

New crash plan

Figure 6.12.: AMIgo program flow

the amount of damage that is inflicted to the network and checks whether the virtual machines can
be migrated to other servers. The resulting networks are again converted to queuing networks for
performance measurements. Finally, another crash plan is constructed in which one additional server
fails and the process is repeated until all servers have failed. Figure 6.12 depicts the algorithm as a
flow chart.

6.2.3.2 Passau City Scenario: AMIgo Performance Evaluation

In order to subsequently be able to analyze complex AMI scenarios, first, the AMIgo simulator itself
is evaluated regarding its computational performance using the following scenario: An increasing
number of neighborhoods (one to 20) is created, every neighborhood has a random number (between
five and ten) of users. For each number of neighborhoods, the tests are repeated ten times to counter
random effects. The values in the figures depict the mean values of those ten runs. In the tests, the
simple Dijkstra algorithm is not used, as none of the embeddings succeeded, which is due to its too
simplistic embedding strategy making it unsuited for complex networks.

At first, the analysis focuses on finding the most computationally complex part of the simulation
process. Figure 6.13 illustrates the results of this analysis (using an example AMI network with
twelve neighborhoods, each featuring ten users). The legend of those figures contains four entries.

6.2 Performability Assessment 143

No redundancy Circle backup All-for-all backup
0

20

40

60

80

100

R
eq

ui
re

d
co

m
pu

ta
ti

on
ti

m
e

[%
]

VNE JMT Network generation Failure and restore

Figure 6.13.: AMIgo runtime distributions

VNE describes the time that ALEVIN requires to perform the VNE, JMT summarizes the run time of
the queuing network converter, the export into the JMT XML format and writing the files to disk.
Network generation includes the time to convert the neighborhood template into a finished network.
Failure and restore is the maximum time required to simulate the failure impact including applying
the backup strategy of the topology.

0 2 4 6 8 10 12 14 16 18 20
0.0

0.5

1.0

1.5

2.0

Neighborhoods

Em
be

dd
in

g
ti

m
e

[s
]

Users No redundancy Circle backup All-for-all backup

0

50

100

150

U
se

rs

Figure 6.14.: AMIgo embedding time requirements

The results clearly indicate that the VNE induces the highest computational burden, therefore it is
further analyzed. The other steps are insignificant in comparison: The network generation has a
similar duration for all topologies and increases slightly with a growing number of neighborhoods
up to 160 ms (95 % Confidence Interval (CI) 15.32 ms). This is one order of magnitude lower than

144 Chapter 6 Analysis

the embedding time. The conversion to queuing networks takes 90 ms (95 % CI 8.49 ms). The failure
simulation and restoration is also negligible taking less than 10 ms (95 % CI 2.14 ms). The results of
the embedding benchmark are shown in Figure 6.14. In addition to the embedding times it shows
the number of users which grows linearly as expected.

6.2.3.3 Simulation Parameters

The simulation parameters used during the assessments are described next.

• Investigated AMI topologies: The three backup options introduced in Section 4.4.1 are
implemented so that they can be compared. Figure 6.15 depicts them in a graph: For SSMA,
only the no redundancy option is available, while for VNFA, all three topologies (no redundancy,
circle, all-for-all backup) are investigated.

Topology

SSMA

No redundancy

VNFA

No redundancy Circle backup All-for-all backup

Figure 6.15.: Investigated AMI topologies

The no redundancy topology is similar to the currently suggested SSMA AMI systems, which
are elaborated in detail in Section 2.1.2.2. In this architecture every neighborhood has its
own physical data concentrator node; every user has its own physical smart meter, gateway
and router; every third party service has its own physical server. As the name suggests, no
backups exist that can be used if any nodes fail. Every failure results in users that are no longer
connected to the AMI network or that have no access to third party services.

In addition to the no redundancy topology, the two VNFA backup approaches are analyzed. In
the circle backup topology, every neighborhood has a virtual data concentrator; every user still
has a physical smart meter and router, but the gateway and third party services are virtualized.
All the virtual nodes are placed on COTS servers that host services. Every server has exactly
one predefined node which offers its spare resources as backup. The all-for-all backup is closely
related to the circle backup approach. It also uses virtualization but instead of a fixed physical
backup server, every other server offers its spare resources as backup to all other servers.

• ALEVIN: The offered and demanded resources for ALEVIN nodes are directly transferred
off the macro model. As described in Section 6.1.1, PLC is used in NAN, DSL in the WAN
environment, while ZigBee is employed in the HAN. The links demand different bandwidths
depending on their usage purpose, as depicted in Table 2.1.2.2. From the smart meters to the
data concentrators, which includes third party services, 9 kbps are required; the WAM part of
the networks requires 6 kbps in SSMA. In VNFA, the overhead is included by multiplying these
values with Ωnet each.

The values of CPU for the nodes represent a relative value, not real-life CPU cycles; they
are used to compare the resources and demands of different nodes. Depending on the AMI

6.2 Performability Assessment 145

architecture present (SSMA or VNFA), different substrate node types are available (cf. Section
5.3.3): In SSMA networks, rhw

t ype ∈ T,T = {sm, gw, r, dc, t ps} are available, whereas in VNFA
networks, rhw

t ype ∈ T,T = {sm, r, g} can be found. Table 6.15 gives a summary of the offered and
demanded CPU cycles. Because the main task of a data concentrator is assumed to be similar to
that of a gateway (en-/decryption of data), the CPU demand of a data concentrator is assumed
to be a multiple of a gateway’s CPU demand depending on the users served. Equation (6.6) is
used to estimate the parameter ds

cpudc
.

ds
cpudc

= ds
cpugw

E(u)χ, (6.6)

where ds
cpudc

is the data concentrator’s CPU demand, ds
cpugw

the CPU demand of the gateway,
E(u) the expected number of users and χ a correction factor. The expected number of users is
based on the numbers in Section 2.1.2.2. χ is chosen to represent that not all smart meters
send data at the same time, but unsynchronized. The numerical value for ds

cpudc
is therefore

2.5 · 100 · 0.8= 200. The TPSs have same CPU demand as the gateway. The resources present
are calculated as follows:

The resources that a TPS substrate node in a non-virtualized network needs to offer are
calculated by AMIgo. This is done by considering the maximum number of users that are
assigned to a TPS substrate node, the resources a single user demands and by respecting the
maximum load that the server is allowed to have. This is formalized as:

Let T be the set of TPS types. Let Ct ∈ N, t ∈ T be the maximum number of users that a
substrate node of TPS type t can serve. Let ds

cput
∈ R+0 , t ∈ T be the amount of demanded

CPU resources per customer by TPS type t. Let lmax ∈ R+ ≤ 1 be the maximum load that is
allowed on a substrate server. Then the offered resources of a substrate node hosting TPS type
t, designated Λt , need to be:

Λt : T ⇒ R+0 , (t)⇒
ds

cput
· Ct

lmax

If more users are assigned to a TPS of type t, additional substrate nodes of the same TPS type
are created by AMIgo automatically during the initial embedding. In the Passau city scenario
both Ccm and Ceo are assumed to be 1000 each, leading to Λcm = Λeo =

3 · 1000
0.8 = 3750.

Node type r hw
cpu d s

cpu

sm 2 1.5
r 2 1.5
gw 3 2.5
dc 200.5 200
t pscm * 3
t pseo * 3
g 1000 -

Table 6.15.: Offered and demanded CPU resources of nodes in AMIgo

• Queuing Networks: Two types of rates must be defined for the queuing networks: Arrival and
service rates. As described in the assumptions (cf. Section 6.1.1), the arrival rates are given as
uniformly distributed random variables λsm and λh, respectively. The estimated service rates
for SSMA are taken from Section 6.2.2.2; for VNFA, service times and rates highly depend on

146 Chapter 6 Analysis

three main factors: the substrate resources dedicated to a virtualized service, the virtualization
overhead, and the service’s performability.

Node type τ [s] µ [1
s] (at Perf = 1.0)

r 0.001 1000
gw 0.025 40
dc 0.0167 60
t pscm 0.0333 30
t pseo 0.0333 30

Table 6.16.: Service times and rates of queuing stations

Except for ALEVIN, AMIgo utilizes JMT for the performance analysis. To be able to process the
previously generated and mapped networks, it is important to state that ALEVIN networks cannot
be directly read by queuing network tools; therefore, a conversion is required that is handled by
AMIgo and not further elaborated here, though it is noted that the conversion of virtualized networks
into queuing networks presents itself as a challenging task. For further details regarding this, it is
suggested to refer to Brand [23].

6.2.3.4 Passau City Scenario: Evaluation of SSMA Model

After the analysis of the run time performance of the AMIgo simulation framework and the parameter
definition, the dependability and performance of SSMA are analyzed.

Dependability Results. The dependability analysis for SSMA shows expected results. As failures
impact specific substrate entities (as no “common” substrate nodes, such as servers in VNFA, exist),
the resulting impact on the AMI depends on the substrate entity failing. The impairments suffered
are depicted in Figures 6.16 (sm, r and gw failures), 6.17 (dc failures), 6.18 (t pscm failures), and
6.19 (t pseo failures).

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Percentage of failed gateways [%]

Pe
rc

en
ta

ge
[%

]

Disconnected users Users missing TPSs

Figure 6.16.: Influence of sm, r, and gw failures on SSMA dependability

As the results show, the impact of sw, r and gw outages is deterministic regarding the number of
disconnected users, which is to be expected, as each of these entities is required for a single user to
transfer his data to a TPS and/or the dc and finally the service provider’s HES. Therefore, each sw, r
or gw failure results in exactly one user being disconnected. The result differs for the number of
users losing their TPSs: As only 40 % of users use a t pscm and 70 % a t pseo service, the number of

6.2 Performability Assessment 147

users missing a TPS has a slight variation and is not as consistent with the number of failed gws as
the amount of disconnected users, however, the trend is similar.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Percentage of failed data concentrators [%]

Pe
rc

en
ta

ge
[%

]

Disconnected users Users missing TPSs

Figure 6.17.: Influence of dc failures on SSMA dependability

A failure in a dc effects a single neighborhood, each containing 70 to 100 users. These users get
disconnected once their neighborhood’s dc fails. TPSs are generally not impaired if dc nodes fail.
Due to the varying number of users within each neighborhood, the overall number of disconnected
users slightly varies in subsequent simulation runs, however it keeps monotonically rising.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Percentage of failed car management TPS servers [%]

Pe
rc

en
ta

ge
[%

]

Disconnected users Users missing CM TPS

Figure 6.18.: Influence of t pscm failures on SSMA dependability

Finally, looking at failures in either t pscm or t pseo, it is apparent that neither do effect the connections
of users to the dc and the provider’s HES. Instead, as previously noticed in this paragraph, the
maximum amount of users impaired by outages—in the case of t pscm—are d0.4|U |e= 5534, where
U is the set of users. For t pseo, the maximum amount of affected users is therefore d0.7|U |e= 9686.
Assuming the server capacity being calculated as Λ (cf. Section 6.2.3.3), the server count accounts to
d

0.4|U |ds
cpucm

Λcm
e= 6 for t pscm; in case of t pseo, this results in d

0.7|U |ds
cpueo

Λeo
e= 10. These results are reflected

in Figures 6.18 and 6.19, depicting the rising number of users missing TPSs as more and more
servers of the respective TPS type fail.

With the dependability results of the single user scenario present, it is possible to estimate the amount
of disconnected users in a transient manner, enabling a calculation of how many users’ metering
data is unavailable to the service provider at each point in time.

148 Chapter 6 Analysis

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Percentage of failed energy optimization TPS servers [%]

Pe
rc

en
ta

ge
[%

]

Disconnected users Users missing EO TPS

Figure 6.19.: Influence of t pseo failures on SSMA dependability

Performance Results. Table 6.18 shows the results of the JMT calculations. All values are means
of the ten simulation runs in JMT and have a relative error of 0.02. t pscm and t pseo are the car
management and energy optimization TPSs that are used as example services in this scenario. The
offered CPU resources and demands as well as service rates are as defined in Tables 6.15 and 6.16.
The 95 % CIs are given in brackets.

Node Queuing time [ms] Response time [ms] Utilization [%]

r 0.0 (± 0.0) 1.6 (± 0.2) 0.01 (± 0.0)

gw 0.0 (± 0.0) 26.3 (± 3.7) 0.17 (± 0.0)

dc 0.5 (± 0.1) 17.6 (± 2.5) 5.68 (± 0.6)

t pscm 8.6 (± 1.4) 36.2 (± 4.9) 27.98 (± 4.3)

t pseo 5.2 (± 0.8) 34.5 (± 4.4) 17.33 (± 3.7)

Table 6.18.: Results of AMIgo simulation for SSMA (mean values)

Comparing the previous results of the single user scenario with Table 6.18, two conclusions can be
drawn: First, the results of both analyses closely match; second, the latency calculated in the Passau
city scenario are slightly higher (3.740 % in the non-critical path, 3.360 % in the critical path) than
the single user results, which is attributed to queuing delays due to more users being present:

• Single user scenario results:

dnc(x) = 74.9ms

dc(x) = 59.7ms

• Passau city scenario results:

dnc = d(gw) + d(r) + d(t ps) + dnet
nc = 1.6ms+ 26.3ms+ 35.4ms+ 14.4ms = 77.7ms

dc = d(gw) + d(r) + d(dc) + dnet
c = 1.6ms+ 26.3ms+ 17.6ms+ 16.1ms = 61.6ms

For the estimation of the non-critical path latency, the mean values of both TPSs are used. This
calculation style is also employed in the upcoming VNFA analysis.

6.2 Performability Assessment 149

6.2.3.5 Passau City Scenario: Evaluation of VNFA Model

The dependability analysis of VNFA and the performance measurement using queuing networks
is described in the following sections. In the performability evaluation, it is on the one hand
investigated whether VNFA is able to satisfy AMI’s performance requirements; on the other hand, it
is tested how different backup approaches influence VNFA’s dependability.

Dependability Results. The dependability analysis of VNFA is much more complex than of SSMA,
mainly due to two reasons. First, the hosting of various service types belonging to multiple users
on a single substrate server leads to more unpredictable results upon a substrate failure. Second,
the backup strategies used in VNFA lead to a more sophisticated handling of failures, which in turn
allows to cope with a higher number of substrate failures. To be able to capture all of these effects,
AMIgo generates detailed reports regarding the effects of substrate failures. This includes, among
other metrics:

• the neighborhoods and users that are affected by the failure,

• the VMs (gateway, data concentrator, TPSs) that are re-instantiated at other hosts,

• the users with missing TPSs because of failures,

• the mandatory and optional services that have to be shut down due to insufficient system
resources, and

• the server load.

The example network consists of 160 neighborhoods, each having between 70 and 100 users, which
results in a total of 13835 users in the scenario. A detailed analysis and comparison of the three
investigated VNFA topologies (see Figure 6.15) is performed in the following. To be able to compare
the behavior of the three network topologies, again, persistent failures are used to gradually reduce
the amount of available substrate servers. Doing so, the impact of an increasing number of failures
on each topology can be measured and compared. In these test, only ten repetitions are used; this
way, it is deliberately taken into account that the standard deviations remain higher than in other
evaluations to estimate the stability of each approach.

If there are no substrate backups available, failures in the hosting servers lead to a similar amount
of disconnections and lost TPSs among users. As no redistribution actions are triggered to migrate
services from a failed server to another after a substrate failure, each failure causes the unavailability
of a certain amount of households and TPSs. The exact number of failed services and disconnected
users depends on the service composition hosted on each server. The server load is relatively
constant, disregarding the outages on substrate level. This is to be expected, because no services are
redistributed to the remaining servers, therefore, the server load is indifferent towards failures on
substrate level. Figure 6.20 depicts these findings.

For the circle backup topology, the system load behaves similarly to the no redundancy case except
for its higher CIs. This is due to the premise that only one specific server may act as a backup. If this
node has no spare resources or has also failed already, no restoration is possible. This leads to an
instant disconnection of users—their numbers rise monotonously. No clear relation between missing
TPSs and disconnected users can be drawn, but the number of users with missing TPSs decreases
at one point (60 to 50 available servers). This happens if one or more virtual data concentrator
services can no longer be hosted. Then, the virtual gateways are removed and their resources are
freed, which are offered to the TPSs that had to be suspended formerly. A similar effect is described

150 Chapter 6 Analysis

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

0

20

40

60

80

100

Available servers

Pe
rc

en
ta

ge
[%

]

Server load Disconnected users Users missing TPSs

Figure 6.20.: No redundancy performability test

in Section 4.4.1, where the re-connection of formerly disconnected users is explained. These results
are visible in Figure 6.20.

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

0

20

40

60

80

100

Available servers

Pe
rc

en
ta

ge
[%

]

Server load Disconnected users Users missing TPSs

Figure 6.21.: Circle backup performability test

6.2 Performability Assessment 151

The all-for-all backup topology behaves strongly different compared to both previous topologies. In
Figure 6.22, three phases can be distinguished. In the beginning, the spare resources of servers can
compensate the failure of substrate nodes up to a point where the load reaches 100 % (available
servers≥ 110). Until then, no users become disconnected and all TPS services can be kept operational.
However, once more servers fail and no spare resources are available, the service priorities are used
to decide that the optional TPSs are gradually removed to free resources for the users’ mandatory
services (available servers ≥ 70). In the last phase users start to become disconnected. At this point,
no TPSs are left that can be removed, therefore virtual data concentrators and gateways can no
longer be hosted.

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

0

20

40

60

80

100

Available servers

Pe
rc

en
ta

ge
[%

]

Server load Disconnected users Users missing TPSs

Figure 6.22.: All-for-all backup performability test

The results show that the behavior of all-for-all backups are stable, i. e. the amount of disconnected
users, missing TPSs and the server load is predictable. Although suffering from much larger CIs, the
circle backup topology also offers a better dependability as the no redundancy topology. The system
load does not reach 100 % although users become disconnected, which is the main disadvantage
compared to the all-for-all backup strategy, besides the more unstable results achieved.

Performance Results. To assess the performance of VNFA, AMIgo obtains the following metrics
during each JMT simulation run:

• System response time

• System throughput

• Information about metrics of an individual node both per class and for all classes combined:

– Number of packages

– Queuing time of packages

152 Chapter 6 Analysis

– Response time of packages at one single station (= queuing time + service time)

– Utilization

– Throughput

In VNFA the virtualization overheads Ωcpu and Ωnet apply. The arrival rate for both queuing networks
is the same. In Table 6.20, the results of the JMT analysis are displayed using ten randomly selected
servers as an example. Dashed table cells represent that a server did not process any packages
of the respective service class. The results of the VNFA evaluation show that the response times
approximately equal the sum of queuing and service times. An exact match cannot be expected
because all service rates are modeled as exponentially distributed random variables.

It is notable that the queuing times in all classes are higher than in the SSMA approach, which is a
result of the co-location of numerous virtual services on a single substrate server. This challenge could
be fixed by using multi-processor stations in the queuing network, which would not be unrealistic,
as multi-core systems are widely adopted in real life environments. Although a multi-core server
analysis is not part of this thesis, it is a worthwhile topic for future work. Thus, the mean response
times of VNFA service are slightly higher than those of SSMA services, which is further discussed in
Section 6.2.4.

Using the performance results of VNFA in combination with the network delays as calculated in
Section 6.2.2.3, the overall delays encountered can be estimated. It is noteworthy at this point that
the results for the VNFA no redundancy and circle backup strategies are not listed in their entirety;
instead, only the results are given in the following. Again, the two scenarios (a) and (b) from Section
6.2.2.3, where in the first, all VNFCs are located on the same host, while in the second, all VNFCs
are distributed and therefore hosted on different substrate nodes.

• VNFA, all-for-all backup:

(a) Combining the network delays dnet
nc (x) for non-critical paths and dnet

c (x) for critical paths
of a user x , the following overall delays are derived:

dnc(x) = d(r) + d(gw) + d(t ps) + dnet
nc = 1ms+ 27.5ms+ 44.1ms+ 8.48ms ≈ 81.1ms

dc(x) = d(r) + d(gw) + d(dc) + dnet
c = 1ms+ 27.5ms+ 23.7ms+ 8.59ms ≈ 60.8ms

(b) As already established in Section 6.2.2.3, the differences of scenarios (a) and (b) are
minimal in the given scenario, as the upcoming calculations show:

dnc(x) = d(r) + d(gw) + d(t ps) + dnet
nc = 1ms+ 27.5ms+ 44.1ms+ 8.59ms ≈ 81.2ms

dc(x) = d(r) + d(gw) + d(dc) + dnet
c = 1ms+ 27.5ms+ 23.7ms+ 8.69ms ≈ 60.9ms

• VNFA, circle backup:

(a) dnc(x) ≈ 81.3ms, dc(x) ≈ 61.0ms

(b) dnc(x) ≈ 81.4ms, dc(x) ≈ 61.1ms

• VNFA, no redundancy19:

(a) dnc(x) ≈ 81.6ms, dc(x) ≈ 61.3ms

(b) dnc(x) ≈ 81.8ms, dc(x) ≈ 61.4ms

19 As no migration rejuvenation is available in the no redundancy topology, a warm rejuvenation strategy is employed.

6.2 Performability Assessment 153

Metric Node
Service class

gw dc tpscm t pseo

Queuing time [ms]

S0 2.8 (± 0.3) 17.9 (± 1.7) 18.8 (± 2.1) 17.9 (± 2.1)

S1 2.3 (± 0.1) 14.7 (± 1.1) 15.2 (± 1.4) 15.4 (± 1.5)

S2 2.7 (± 0.2) - 16.7 (± 1.4) 16.6 (± 1.8)

S3 2.1 (± 0.1) 18.4 (± 2.1) 15.7 (± 1.6) 15.3 (± 1.2)

S4 2.2 (± 0.2) 15.8 (± 1.9) 16.1 (± 1.9) 16.5 (± 1.6)

S5 1.8 (± 0.1) 17.4 (± 2.2) 15.9 (± 1.8) 15.0 (± 1.1)

S6 2.4 (± 0.2) 18.6 (± 2.4) 16.6 (± 2.0) 16.3 (± 2.0)

S7 2.3 (± 0.3) 15.1 (± 1.4) 16.4 (± 1.8) 16.2 (± 1.8)

S8 1.9 (± 0.1) - 16.0 (± 1.5) 16.1 (± 1.7)

S9 1.9 (± 0.2) 16.6 (± 1.7) 15.8 (± 1.6) 15.9 (± 1.4)

Mean 2.2 (± 0.2) 16.8 (± 1.8) 16.3 (± 1.7) 16.1 (± 1.6)

Response time [ms]

S0 28.6 (± 3.1) 23.8 (± 2.7) 41.3 (± 4.2) 42.1 (± 3.8)

S1 26.7 (± 2.7) 23.5 (± 2.3) 43.1 (± 4.1) 42.2 (± 4.2)

S2 26.9 (± 2.7) - 47.9 (± 5.0) 46.2 (± 4.7)

S3 27.1 (± 2.8) 23.7 (± 2.5) 44.1 (± 5.4) 45.8 (± 4.9)

S4 27.9 (± 3.3) 22.8 (± 2.0) 41.2 (± 3.8) 40.2 (± 3.6)

S5 28.3 (± 2.4) 23.0 (± 1.8) 45.4 (± 4.6) 44.2 (± 4.8)

S6 26.5 (± 1.9) 23.3 (± 2.3) 46.7 (± 5.2) 47.8 (± 3.9)

S7 27.0 (± 3.3) 22.9 (± 2.9) 42.2 (± 3.7) 43.1 (± 4.3)

S8 27.2 (± 3.1) - 45.9 (± 4.3) 47.2 (± 4.8)

S9 27.8 (± 2.6) 23.4 (± 1.9) 41.5 (± 5.5) 42.8 (± 3.8)

Mean 27.5 (± 2.8) 23.5 (± 2.3) 43.9 (± 4.6) 44.2 (± 4.3)

Utilization [%]

S0 0.20 (± 0.0) 3.43 (± 0.4) 3.49 (± 0.2) 3.46 (± 0.2)

S1 0.21 (± 0.0) 3.43 (± 0.3) 3.48 (± 0.3) 3.52 (± 0.2)

S2 0.17 (± 0.0) - 3.46 (± 0.2) 3.47 (± 0.1)

S3 0.19 (± 0.0) 3.47 (± 0.3) 3.39 (± 0.2) 3.33 (± 0.3)

S4 0.15 (± 0.0) 3.35 (± 0.4) 3.55 (± 0.3) 3.50 (± 0.2)

S5 0.20 (± 0.0) 3.41 (± 0.2) 3.46 (± 0.3) 3.47 (± 0.2)

S6 0.22 (± 0.0) 3.71 (± 0.3) 3.48 (± 0.1) 3.49 (± 0.2)

S7 0.23 (± 0.0) 3.49 (± 0.2) 3.50 (± 0.2) 3.52 (± 0.2)

S8 0.17 (± 0.0) - 3.46 (± 0.2) 3.44 (± 0.3)

S9 0.21 (± 0.0) 3.29 (± 0.1) 3.57 (± 0.3) 3.48 (± 0.1)

Mean 0.19 (± 0.0) 3.45 (± 0.2) 3.48 (± 0.2) 3.47 (± 0.2)

Table 6.20.: Results of JMT calculations for VNFA (mean values)

6.2.4 Result Comparison

In this chapter the VNFA approach introduced in Chapter 4 and modeled in Chapter 5 is analyzed
and compared to SSMA regarding its performability. To do so, three scenarios (single service, single
user, and Passau city) are introduced in Section 6.1 along with several assumptions made during

154 Chapter 6 Analysis

the evaluation. After that, the performability assessments are covered in Section 6.2. The results of
the analysis are compared in the following by first analyzing the properties of the AMIgo simulation
framework; second, conclusions are drawn from the simulation findings of each AMI architecture
separately for all three scenarios. Third, the overall consequences resulting from these individual
findings are drawn.

• AMIgo simulation framework: Regarding the performance of AMIgo, it became apparent that
small simulations are solvable within a matter of seconds; however, the Passau city scenario,
comprising more than 10000 users, requires the generation and analysis of “city-sized” queuing
networks, which leads to a very high computational complexity in JMT. However, to counter
this effect, only minor changes to the generated queuing networks would be required (e. g.
the simplification of networks by committing an explicit modeling of routers). The AMIgo
simulation also revealed that the dependability of the all-for-all backup topology is higher in
comparison to both the circle backup and no redundancy topologies. Also, employing service
priorities (σ) during the embedding algorithm has positive effects on dependability in cases
where a resource shortage is present in the substrate.

• SSMA: Looking at the results of SSMA, several properties of the infrastructure become apparent.
Depending on the concrete realization of an SSMA service, its performability properties vary. If
no replica and no rejuvenation is present, an SSMA service offers a steady-state availability of
99.326 %. While this is reasonably high, the performability is severely degraded, achieving no
more than 84.682 %. Using rejuvenation, the performability may be enhanced to 99.323 % while
maintaining an availability of 99.323 % using dynamic rejuvenation and—using deterministic
rejuvenation—a performability of 98.468 % with an availability of 98.891 %, respectively.

Due to the limited availability of a single service in SSMA, in the single user scenario SSMA is
unable to reach an availability higher than 96.815 %, i. e. the overall availability is not able to
achieve the required 98 %. In the preliminary analysis given in Section 3.1.2, the availability of
SSMA for a single user is calculated as 94.25 %, which aligns well with the analysis made here,
resulting in an SSMA availability of 96.815 %. The performance of SSMA shows that it is able
to achieve the required AMI performance in a single user scenario, having a latency of 74.9 ms

for non-critical and 59.7 ms for critical traffic.

In the Passau city scenario, the dependability of SSMA shows straightforward results if perma-
nent failures of substrate entities are considered. Depending on the type of failing substrate
node, varying effects are observable: In case of gateway failures, traffic directed at both TPSs
and the HES is impaired; if data concentrators fail, only HES, if TPS servers fail, only TPS
traffic is impaired, respectively. The steady-state availability of SSMA in the Passau city scenario
is mainly influenced by the “shared” entities of the AMI, i. e. the data concentrators (each
serving up to 100 users) and TPS servers (each serving up to 1000 users)20.

Regarding the performance of SSMA, the observations of the single user scenario translate
to the Passau city scenario, as stated in Section 6.2.3.4 with a slight increase in the observed
overall latency. This is due to queuing effects caused by multiple users sending jobs to the
same substrate server. The results show that the 100 ms requirements are fulfilled in all cases
for SSMA, though the maximum latency reaches up to 77.7 ms for non-critical and 61.6 ms for
critical traffic.

20 If the service provider’s HES would be part of the performed dependability analysis, it would need to be listed here too;
however, the HES is excluded as stated in the assumptions given in Section 6.1.1.

6.2 Performability Assessment 155

• VNFA: For the VNFA approach, in addition to the deterministic and dynamic timings, three
different rejuvenation strategies are compared: cold, warm, and migration. The results
show that warm and migration rejuvenation perform slightly better than the cold rejuvenation
strategy in both availability and performance comparisons. Using a combination of deterministic
and warm rejuvenation has an availability increase of 0.083 % and a performance increase of
0.149 %. With dynamic rejuvenation the availability increases by 0.105 % and performance is
increased by 0.105 %.

The availability increase of migration rejuvenation is 0.121 % and a performance increase
of 0.187 % using a deterministic rejuvenation timing. A combination of dynamic timing and
migration rejuvenation yields an availability increase of 0.219 % and the performability increase
of 0.213 %.

In the Passau city scenario, VNFA’s dependability behavior severely differs from SSMA; even
using different VNFA backup strategies have a strong influence on the results. The comparison
of the no redundancy, circle backup and all-for-all backup shows that the behavior of all-for-all
backups behaves more stable (i. e. much lower CIs), thus having a more predictable amount
of disconnected users, missing TPSs and server load. Although suffering from much larger
CIs, the circle backup topology also offers a higher dependability than the no redundancy
topology. In circle backups, the system load does not reach 100 % although users become
disconnected, which is the main disadvantage compared to the all-for-all backup strategy,
besides the more unstable results achieved. Using the no redundancy topology, each failing
server leads to missing TPSs and disconnected users, the severity of each failure depends on
the service composition hosted on each substrate server. Thus, the consequences of a server
failure are hardly predictable if no a priori knowledge regarding the service composition is
given, which cannot be safely assumed as services get distributed without a predetermined
composition for each substrate node. Furthermore, the servers’ load is almost independent
from the amount of failures occurring, which is due to the fact that no services are migrated in
the event of failures. Similar to the SSMA case, the steady-state availability in the Passau city
scenario is majorly influenced by the loss of "shared" entities of the AMI.

Performance-wise VNFA behaves in a similar manner as SSMA: The overall latency of VNFA is
81.1ms for non-critical and 60.8ms for critical traffic in cases where all services are hosted on
the same substrate server using the all-for-all backup strategy (the latency increase using circle
backup is 0.250 % for non-critical and 0.330 % for critical traffic, using no redundancy 0.620 %

for non-critical and 0.820 % for critical traffic, respectively). In cases where all services are
distributed among different substrate nodes, the respective latency is 81.2ms for non-critical
and 60.9ms for critical traffic (increasing 0.250 % for non-critical and 0.490 % for critical traffic
using circle backup, 0.740 % for non-critical and 0.990 % for critical traffic if no redundancy is
employed).

6.3 Proof-of-Concept: Virtualized Smart Meter
Gateway

As a full implementation and subsequent validation of the performability results of VNFA is impossible,
an example of a VNFA service—namely a vSMGW—is demonstrated and analyzed in the next sections
to answer if:

156 Chapter 6 Analysis

• vSMGWs can provide the functionalities required in AMIs,

• the performance of vSMGWs is sufficient, and

• vSMGWs offer an acceptable dependability.

To analyze the properties of the suggested vSMGWs, a prototypical implementation of a vSMGW is
assessed regarding its network and computational performance as well as its dependability properties.
Before that, the tasks of an SMGW are briefly summarized and the implementation of a vSMGW is
explained.

6.3.1 Gateway Task Description
Before the virtualization of the gateway devices is performed, in the following, their architecture and
functionality is analyzed. As the BSI states, gateways may differ in their architecture, depending on
the features they implement (e. g. communication capabilities can either be provided by the gateway
or by another device, such as a router) [25]. Figure 6.23 depicts a scenario that uses the minimal
architecture presented by the BSI, where the gateway does not include an internal communication
subsystem, but relies on an external communication device (here a user’s router) [25]. The inner
organization of a gateway realizing a minimal architecture is depicted in Figure 6.23. The gateway
module requires connectivity to three independent communication interfaces, which in our case
are located inside the router. These communication interfaces interconnect the gateway with the
LMN, HAN and NAN/WAN. The security module offers additional security-related functions to the
gateway. The gateway is also the central component that collects, processes, and stores meter data.
It is in charge of handling meter data and submission to authorized external entities (e. g. a TPS
provider).

LMN

HAN

NAN / WAN

Gateway

Security Module

Gateway

Router

Communication

Communication

Communication

Figure 6.23.: Example of a minimal gateway design, based on the BSI [25]

Summarizing, the following features and tasks have to be fulfilled by gateway devices and need to
be implemented in their virtual counterparts.

• LMN interface: At the LMN interface, the measured values of the attached meter(s) are
collected in regular intervals and timestamped. It is determined which data needs to be derived
from measured data based on a set of rules. Finally, the derived data is sent to eligible external
participants.

6.3 Proof-of-Concept: Virtualized Smart Meter Gateway 157

• HAN interface: The HAN interface provides three internal communication interfaces: First, a
CLS interface through which CLS can communicate with external market participants in the
WAN over a secure TLS connection. The second interface is for end users through which the
client is able to retrieve his stored information; third an interface for service technicians to
view configuration profiles and system logs for diagnostics.

• NAN/WAN interface: The wide-area interface is used for the transmission of measured values
on the basis of analysis and communication profiles. It provides pseudonymization functions
for not billing-relevant data to protect the identity of customers. In addition, it is required
for the reception of administration and configuration information from smart meter gateway
administrators, as well as the handling of firmware updates. Lastly, the NAN/WAN interface
offers a wake-up service, which, upon receipt of a particular data packet of the smart meter
gateway administrator, sets up a communication connection to the same.

6.3.2 Proof-of-Concept Implementation
The vSMGWs are implemented using a Java runtime environment, realizing the following key
features:

• Creation of three isolated network interfaces (LMN, HAN, NAN/WAN)

• Reception and storage of energy consumption information originating from LMN interface

• Output of energy consumption information through HAN interface

• Establishment of connection to NAN/WAN (by request of gateway administrator)

• Output of energy consumption information through NAN/WAN interface (after connection
establishment)

• Modification of CLS power state from NAN/WAN interface

Moreover, each SMGW runs within an isolated VM preventing mutual influence of vSMGWs. The
vSMGWs use three different LAN-ports of the substrate server to ensure not only logical, but also
physical isolation of the LMN, HAN and NAN/WAN interfaces.

6.3.3 vSMGW Performability Analysis
The performability analysis of the vSMGWs is executed by first selecting a suitable test environment
in Section 6.3.3.1. After that, the different test scenarios and subsequent evaluations are covered.

6.3.3.1 Test Environment

To evaluate vSMGWs, a test environment is set up consisting of two hosts h1 and h2 (h1: Windows 7,
Genuine Intel CPU U4200 @ 1.30 GHz, 4 GB RAM; h2: Windows 7, Intel Core 2 Duo CPU T9400 @
2.53 GHz, 4 GB RAM), and a server s1 (Debian 9.0.0, Intel XEON @ 2.53 GHz, 4 GB RAM). h1 sends
data to h2 via server s1 over a network path composed of Ethernet links li, each having a length of
1.5 m and a bandwidth of 100 Mbps. For the data transfer, HTTP/2 was used in conjunction with
TCP/IP.

For the evaluation, several vSMGWs (vSMGW 1
i) are spawned at server s1. If the entire memory

is made available to s1, a large number vSMGWs (depending on the memory requirements of the

158 Chapter 6 Analysis

vSMGWs) can be hosted. To limit the number of creatable vSMGWs and thereby decreasing the
evaluation time, the memory available on s1 for the creation of vSMGWs is limited to 512 MB. The
test environment is depicted in Figure 6.24.

l1 l2
h2s1h1

vSMGW 1
1

. . . vSMGW 1
n

Figure 6.24.: vSMGW test environment

The maximum number of simultaneously hostable vSMGWs can be estimated by dividing the available
memory (512 MB) by the required memory of each vSMGW, which is, using a minimal installation
of Linux as a base for a vSMGW, 36 MB. This results in a maximum of 14 co-hosted vSMGWs at a
time.

6.3.3.2 Performance Evaluation

The performance of the vSMGWs is analyzed in two ways: First, the startup performance is evaluated
to test how long a vSMGW takes from execution to actual readiness; Second, the throughput and
latency of vSMGWs is assessed using several test scenarios with focus on the behavioral changes if
many vSMGWs are active simultaneously.

• Startup time test: This test assesses the startup times of vSMGWs. The performed assessments
are organized in two scenarios: First, it is investigated how long the generation vSMGWs takes
starting one after another in sequential order. Precisely, the time from the generation request
to the point where the vSMGW is booted up and in an operational state is measured. The test
is run while the hosting router is running an increasing number of additional vSMGWs at the
same time.

As the results in Figure 6.25 show, the startup time increases if more vSMGWs are hosted,
which is a logical consequence of the fewer available resources. Precisely, on average, the first
gateway takes 2.8 s to start, while the 14th takes 5.3 s, which is an increase of 89.3 %. The
sequential startup time test results clearly have an exponential growth, as the approximation
function f (x) = 0.000005355exp(x) + 0.081x + 8.335 obtained by symbolic regression shows.

Second, the simultaneous startup of several vSMGWs and its influence on the overall startup
time is investigated. To do so, the number of simultaneously starting routers is varied from
two to 14. The first observation is that a parallel start of several gateways takes shorter than a
sequential start. For example, starting 14 vSMGWs in parallel takes 38.7 s, while the sequential
start would need 44.9 s, which is approximately 16.0 % faster. The results are illustrated in
Figure 6.26. The parallel startup time test suggest a nearly linear growth, as visible in the
approximation function f (x) = 7.76x − 3.24.

• Throughput test: The data throughput is a critical value of a server, especially in its func-
tionality as a vSMGW, where QoS restrictions apply. Therefore, in this test, it is determined
how big the impact of a different number of active vSMGWs is on T . In the assessment, the T

6.3 Proof-of-Concept: Virtualized Smart Meter Gateway 159

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1

2

3

4

5

6

Number of starting vSMGWs

Ti
m

e
[s

]

Startup time Approximation funtion f (x)

Figure 6.25.: Results of the startup time test (sequential starting)

2 3 4 5 6 7 8 9 10 11 12 13 14
0

5

10

15

20

25

30

35

40

45

Number of simultaneously starting vSMGWs

Ti
m

e
[s

]

Startup time ∆t between readyness of first and last vSMGW Approximation funtion f (x)

Figure 6.26.: Results of the startup time test (parallel starting)

from h1 to h2 is measured and the impact originating from the number of active vSMGWs is
observed. As might be expected, T decreases with each additional active vSMGW. To test the
impact of active vSMGWs on T , a 30 MB file is transferred via Secure Copy (SCP). This test
is carried out with up to 14 simultaneously active vSMGWs. The evaluation shows that the
number of active vSMGWs impacts T on a vSMGW to host level. The transfer time while 14
vSMGWs are active is 144.500 % higher than with one active vSMGW on average. However,
the throughput does not decrease linearly, rather, a polynomial time requirement increase is
approximated by f (x) = 0.000825x4 + 24.3822, as depicted in Figure 6.27.

• Latency test: To investigate L, the Round Trip Time (RTT) is measured to calculate the system’s
response time. As before, the tests are conducted using up to 14 active vSMGWs. In each test,

160 Chapter 6 Analysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

10

20

30

40

50

60

70

Number of hosted vSMGWs

Ti
m

e
[s

]

Throughput (s1 to h2) Approximation funtion f (x)

Figure 6.27.: Results of the throughput test (s1 to h2)

50 pings of 65535 B are sent with the tool hrPING21 to the receiving system using the following
commandline:

hrping.exe 1.1.1.2 -l 65535 -n 50 -W

For each number of running vSMGWs ten test repetitions with 50 pings are performed. In
addition, it is evaluated whether the latency of the system itself changes due to a different
number of active vSMGWs. For this, a connection to the vSMGW HAN interface is established
and a data transfer is initiated. Here, the time between the issuing of the “transfer data”
command and the complete reception of data is measured. This corresponds to the sum of the
processing time and transmission time (the connection establishment time is ignored). The
test is repeated 10 times for one active vSMGW and each additionally running vSMGW.

The results are illustrated in Figure 6.28. It becomes visible that L is only marginally influenced
by a rising number of vSMGWs. More precisely, the latency in case of ping testing with
14 active vSMGWs is 12.3 % higher than with one vSMGW, using data requests, 14 active
vSMGWs have a 20.9 % higher L value than with one vSMGW. The approximation function
f (x) = 0.1563x + 16.17 indicates a linear increase in latency with rising number of active
vSMGWs. Also, the latency and throughput requirements stated in 2.1.2.2 can be fulfilled
using vSMGWs, as the influence of virtualization on latency is negligible in the assessment and
required throughput of 100 kbps can even be met with 14 active vSMGWs.

6.3.3.3 Dependability Evaluation

The dependability evaluation assesses both reliability and availability of the developed vSMGWs.
To evaluate the dependability of a software application, several approaches are available. There is
no comprehensive list of methodologies given here, because of briefness on the one hand, and the
following restrictions, which further reduce the amount of applicable analysis methodologies, on the
other hand:

21 Ping Utility hrPING, URL: http://www.cfos.de/en/ping/ping.htm, last accessed: 06/14/2018

6.3 Proof-of-Concept: Virtualized Smart Meter Gateway 161

http://www.cfos.de/en/ping/ping.htm

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

5

10

15

20

25

Number of hosted vSMGWs

La
te

nc
y

[m
s]

Latency by requests Latency by ping Symbolic regression funtion

Figure 6.28.: Results of the latency test

• A source code testing of the vSMGW software is not performed, as it could not represent the
failure behavior of vSMGWs in a real-life scenario properly. This is due to the lack of real-life
input test data as well as the focus on the observable software behavior, which cannot be
captured using source code-based white-box tests alone.

• As SMGWs—as well as vSMGWs—do not offer a possibility to interact with end users directly
(i. e. via a user interface), no user-centric analysis is feasible/possible. Instead, analytic,
automated processes are required for testing.

• While there were tests performed on a vSMGW application for a total time of 600 h, no longer
term tests were possible due to time restrictions making a purely measurement-based analysis
nearly impossible.

Therefore, to estimate the dependability of vSMGWs, the failure data obtained during the initial
tests22 conducted with vSMGWs is used as input into a software reliability growth model, more
precisely a logarithmic Musa-Okumoto model, to predict the future failure rate, reliability and
availability of vSMGWs. Musa-Okumoto models are based on several assumptions briefly listed in
the following [104]:

• At time t = 0 no failures have been observed, i. e. Pr
�

M(0) = 0
�

= 1.

• The cumulative number of failures follows a Non-Homogeneous Poisson Process (NHPP) by its
expected value function µ(t).

• The failure intensity decreases exponentially with the expected number of failures observed.
This can be formally expressed as λ(t) = λ0e−Θµ(t), where by λ0 and Θ the initial failure rate
and the failure rate decay is defined, respectively.

22 The initial tests for the vSMGW were performed in a lab environment under constant supervision of the system. Once
a system failure occurred, the vSMGW was restarted, using the escalating, multi-phase recovery approach described in
Section 5.3.4.4. A detailed list of failure and recovery times are given in Appendix A.2.

162 Chapter 6 Analysis

0.2
0.4

0.6
0.8

1.0
0.2

0.4

0.6

0.8

1.0

0

2

4

Θ

λ 0

M
S

E−
1

0

1

2

3

4

5

Figure 6.29.: MSE-based prediction of Musa-Okumoto Θ and λ0 parameters

The logarithmic Musa-Okumoto model predicts the failures at time t using the equation µ(t) =
Θ−1ln(λ0Θt+1). To estimate the Θ and λ0 parameters of the model, a fitting using a Mean Squared
Error (MSE) approach is used, which is depicted in Figure 6.29. The figure displays an inverse MSE
for the sake of easier visibility of the result. This yields Θ = 0.58 and λ0 = 0.2. While the result for Θ
seems unusually high at first, it is reminded here that the vSMGW software is a minimal example of
a vSMGW implementation, which only contains approximately 3000 lines of code. Therefore, the
amount of bugs are also limited and mostly easy to fix, which leads to a high failure rate decay. Using

0 100 200 300 400 500 600

0.00

0.05

0.10

0.15

0.20

∆t [h]

Fa
ilu

re
ra

te
λ

[1 h
]

λ
pre
vSMGW λ

post
vSMGW

(a) vSMGW failure rate (pre- and post-burn-in)

0 100 200 300 400 500 600

0

20

40

60

80

100

∆t [h]

Sy
st

em
re

lia
bi

lit
y

[%
]

Rpre
vSMGW Rpost

vSMGW

(b) vSMGW reliability (pre- and post-burn-in)

Figure 6.30.: Development of vSMGW failure rate and reliability

the estimated Θ and λ0 parameters, the expected future failure rate
�

using Equation (6.7)
�

as well
as reliability
�

using Equation (6.8)
�

is possible. Two different scenarios are used to provide a good
insight regarding the behavior of vSMGWs. On the one hand, the failure rate as well as the reliability

6.3 Proof-of-Concept: Virtualized Smart Meter Gateway 163

are analyzed right after the initial start (tstar t = 0 h, leading to λ = λ(0h) = 0.2); on the other hand,
both reliability and failure rate are evaluated with the expected parameters after roughly one year
�

tstar t = 10000 h, leading to λ= λ(10000 h) = 1.723E−4
�

. The results are depicted in Figures 6.30a
and 6.30b.

λ(t) =
λ0

λ0Θt + 1
(6.7)

RvSMGW = 1− e−λ(t)t (6.8)

For the evaluation of the availability, Equation (6.9) is used. As described previously in Section
5.3.1, the availability estimation is focused on the useful life phase of the application, meaning a
nearly constant failure rate is reached. While a constant failure rate can never be reached using a
Musa-Okumoto model (due to the constant Θ parameter), the availability is calculated assuming
λ= λ(10000 h) in Equation (6.9), yielding the results visible in Figure 6.31. Assuming the MTTR
stays constant during the lifetime of the vSMGW application (which results in a MTTR of 1.833 h),
the resulting availability is 99.968 %.

AvSMGW =
λ−1

λ−1 +MTTR
(6.9)

0 25 50 75 100

98.5

99.0

99.5

100

MTTR [h]

Sy
st

em
av

ai
la

bi
lit

y
[%

]

AvSMGW

Figure 6.31.: Availability of vSMGWs in relation to expected MTTR

6.3.4 Results
Although the evaluation of vSMGWs in Section 6.3.3 only uses a non-optimized, minimal prototype,
the results show that the approach works as a proof-of-concept implementation. Both the depend-
ability and performance evaluations show results that are well within the acceptable levels stated in
Table 2.1.2.2 in Section 2.1.2.2.

The performance analysis shows two main findings: The simultaneous hosting of multiple vSMGWs
is both possible and feasible. The startup performance of vSMGWs is almost unimpaired up until

164 Chapter 6 Analysis

the resources of the hosting substrate are running low. The startup jitter between the first and
the 12th starting vSMGW is only 14.54 %. Once the resources are depleted to over ≈ 90 %, severe
increases become visible. The 13th vSMGW startup is 39.01 %, the 14th 88.06 % slower than the first
one, respectively. The second result is that the network performance shows contradicting behavior
comparing throughput and latency. While the influence of multiple vSMGWs on throughput is
significant (maximum increase 144.5 %), the latency stays nearly constant, disregarding the number
of hosted vSMGWs

�

maximum increase 12.3 % (ping)/20.9 % (request)
�

.

In the dependability assessment, the failure data obtained during the tests conducted with a proof-
of-concept vSMGW is used and input into a logarithmic Musa-Okumoto software reliability growth
model. This yields the Musa-Okumoto parameters Θ = 0.58 and λ0 = 0.2. Using the Θ and
λ0 parameters, the current and expected future failure rates are calculated as λ(0h) = 0.2 and
λ(10000 h) = 1.72265E−4. The estimation of dependability yields that the reliability is 351.3 %

higher on average comparing a prototype at starting time tstar t = 0h and after one year of service
tstar t = 10000 h over a service time of 600 h. The availability after one service year—assuming the
MTTR stays constant during the lifetime of the vSMGW application at 1.833 h—is 99.968 %.

6.4 Cost Analysis
After the performability analysis and a proof-of-concept implementation of virtualized AMIs, another
important aspect is the monetary costs associated with an AMI implementation23. First off, it is
required to state that the overall costs as well as benefits of an AMI system, being it a standard
or virtualized solution, are hardly predictable if all factors are considered. This would include
not only direct costs (including infrastructural establishment, intermittently occurring costs such
as maintenance/repairs, as well as continuously/running costs, such as energy demand), but also
potential changes that are either immediately triggered or established in a long-term manner by the
introduction of AMIs, both on an individual and societal level. Each consumer could benefit through
lower energy costs, innovative tariff schemes and the improved information on consumption, among
others. On a societal level, the benefits include behavioral changes brought about by the compliance
with energy savings and emission reduction targets, leading to reduced capacity demand, improved
quality of supply, et cetera.

While this brief list is by far not exhaustive, it already shows that the estimation of the changes
induced by AMIs exhaust multiple dimensions, therefore, not all effects are covered within the
upcoming analysis. Instead, to be able to provide a reliable, quantitative cost analysis, only the direct
costs mentioned in this paragraph are compared between SSMA and VNFA.

6.4.1 Deriving a Cost Function
To derive an appropriate cost function suitable for both non-virtualized SSMA AMIs as well as VNFA,
the direct costs are analyzed. As already suggested in the AMI cost model developed by Wu et al., the
costs included and the assumptions made in the developed cost model are grouped by the continuity
of their occurrence in the following list [173].

23 Smart Meter werden teuer für Verbraucher - WELT, URL: https://www.welt.de/finanzen/immobilien/
article164365881/Die-neuen-digitalen-Stromzaehler-Sparhilfe-oder-Kostenfalle.html, last accessed:
07/16/2019

6.4 Cost Analysis 165

https://www.welt.de/finanzen/immobilien/article164365881/Die-neuen-digitalen-Stromzaehler-Sparhilfe-oder-Kostenfalle.html
https://www.welt.de/finanzen/immobilien/article164365881/Die-neuen-digitalen-Stromzaehler-Sparhilfe-oder-Kostenfalle.html

1. Static costs (Cs): Static costs only occur once in the mission time of a system. Prime examples
are both hardware and software that needs to be developed/bought/deployed prior to an
infrastructure’s operation. It is assumed that the network infrastructure, i. e. the substrate
network links and routers/switches, are already present and do not need to be installed
beforehand. Also, software used on COTS components, such as OSs, router firmware, etc., is
assumed to be already present free of charge. The static costs are calculated by:

Cs(t, |U |) =
Chw
∑

i=1

(‖
|U |
capi
‖ · chwi

) +
Cs
∑

j=1

cs j
, (6.10)

where t is the mission time, |U | the number of users, Chw a set of all hardware components,
capi the number of users served by one component of type i, chwi

the costs of one hardware
component of type i, Cs a set of all software components, and cs j

the software development
costs for component type j.

2. Interval costs (Ci): These costs occur in regular or irregular intervals. Examples are the costs
produced by maintenance operations to fix unplanned failures. On the one hand, the results of
these failures are direct, as briefly discussed in Section 1.2, Niyato et al. [114], and Piaszeck et
al. [123]: If no energy demand data is available to the service provider, this leads to the usage
of estimations rather than current data, which in turn can incur costs due to power demand
estimation errors resulting in power over- or under-supply. On the other hand, failed devices
have to be repaired by the provider. The interval costs are calculated using:

Ci(t, |U |) =
t

MTBF
· (αMTTRhwcrephw

+ βMTTRscreps
) + t · |U | · UA · cUA, (6.11)

where, in addition to the previously defined parameters, α and β are weighting factors
(α,β ∈ [0,1] : α+ β = 1), which determine the percentage of soft- and hardware entities in the
AMI system. crephw

represents the hardware repair costs, creps
the software repair costs, UA the

unavailability of the AMI architecture, and cUA the mean AMI communication failure cost per
user and hour.

3. Continuous costs (Cc): Continuous costs are constantly required while the infrastructure is
active. These upkeep costs are mainly caused by the energy demand of the infrastructure’s
devices. It is assumed that devices demand energy both in failed and operational state.

Cc(t, |U |) = t
Chw
∑

k=1

(‖
|U |

capk
‖ · dpk

) · ceWh
, (6.12)

where, in addition to the previously defined parameters, dpk
the power demand of one compo-

nent of type k, and ceWh
the energy costs per Wh.

To estimate the overall costs of an infrastructure design, it is necessary to first define a cost function
that approximates the costs that need to be accounted in an AMI. As already suggested by Fawaz et
al., the dependability is an important, yet not the only factor that needs to be considered in AMIs
[52]. To calculate the expected overall costs, the sum of Equations (6.10), (6.11) and (6.12) is taken,
as shown in the proposed cost function Equation (6.13).

C(t, |U |) = Cs(t, |U |) + Ci(t, |U |) + Cc(t, |U |) (6.13)

166 Chapter 6 Analysis

6.4.1.1 Example Scenario

To evaluate and compare the monetary impact of SSMA and VNFA, an example scenario is created.
While the mission time and the number of users were left variable (0h ≤ t ≤ 10000 h, 0 ≤ |U | ≤
14000), the following static parameter values are assumed, based on values given by the National
Energy Technology Laboratory (NETL) in 2008 [107]:

smhw rhw g whw dchw shw g wv dcv

cap 1 1 1 100 100 1 1

chw [€] 100 50 100 1000 5000 0 0

cs [€] 100000 0 100000 100 000 0 100 000 100 000

dp [W] 500 10 10 50 5 0 0

ceWh
[€/Wh] 0.0002

crephw
[€/h] 1000

creps
[€/h] 100

cUA [€/h] 5

6.4.2 Evaluation and Results

Using the results from Section 6.2.4, the unavailability (UA) of both architectures is derived as UA=
1−A, resulting in UASSMA = 3.185% and UAVNFA = 1.385%. The expected costs can then be derived
using the parameters from the example scenario in Equation (6.13). The evaluation’s results of both
SSMA and VNFA are depicted in Figure 6.32.

0

5E3

1E4

0
5E3

1E4

0

2E7

4E7

t [h]
|U |

C
os

ts
[€

]

(a) Cost development of SSMA

0

5E3

1E4

0
5E3

1E4

0

2E7

4E7

t [h]
|U |

C
os

ts
[€

]

(b) Cost development of VNFA

Figure 6.32.: Cost development of SSMA compared to VNFA, based on Equation (6.13)

As clearly visible, the proposed VNFA approach significantly decreases the overall costs of the
infrastructure. More precisely, the costs are lowered in both the time and per-user dimension. To
give a quantitative measure of the expected monetary savings, the mean costs of both architectures

6.4 Cost Analysis 167

(i. e. the average of all scenarios with 0h≤ t ≤ 10000 h and 0≤ |U | ≤ 14000) are calculated as given
in Equation (6.14).

C
�

max(t),max(|U |)
�

=
1

max(|U |) ·max(t)

max(|U |)
∫

0

max(t)
∫

0

C(t, |U |)d td|U |, (6.14)

where max(|U |) is the maximum number of users (in the given scenario 14000), max(t) is the
maximum time during the investigation (in the given scenario 10000 h). The results show that VNFA
costs 64.72 % less on average in the given scenario than SSMA. The main reason is on the one hand
the reduction of unavailability times, leading to a more precise forecast of energy demand. On the
other, the usage of VNFs offers the benefit of reduced hardware requirements per user.

To estimate the influence of replicas on the costs of VNFA, Equation (6.13) is employed again; the
differences being the number of servers required (as additional replicas require more resources to
be hosted) and the estimated downtime, which is reduced by having multiple replicas. In the first
case, the cost difference between VNFA using no replicas and a VNFA variant using a single replica
for the dc services are compared in Figure 6.33a; the cost difference of VNFA using a single and two
replicas for the dc services are depicted in Figure 6.33b.

0

5E3

1E4

0
5E3

1E4

-5.0E5

-2.5E5

0.0

2.5E5

5.0E5

t [h]
|U |

∆
C

[€
]

(a) VNFA ∆C using no/one replica for dc

0

5E3

1E4

0
5E3

1E4

-1.0E4

-5.0E3

0.0

5.0E3

1.0E4

t [h]
|U |

∆
C

[€
]

(b) VNFA ∆C using one/two replica(s) for dc

Figure 6.33.: ∆C in VNFA using replica(s) for dc

The results show that the usage of a single replica for thew dc service is beneficial regarding the
VNFA costs. This is mainly due to the significant increase in availability and the only moderate
increase in required hosting resources (as each dc service serves up to 100 users). This leads to a
mean cost decrease of 2.453 %. On the contrary, there is no benefit in using two replicas, as the
additional availability increase is only minute, while the additional resource requirements outweigh
the benefits. This leads to a relative mean cost increase of 0.105 %.

Using a single replica for each dc and gw service, a lower benefit compared to only one dc service
replica is achieved. The decreased availability gain is due to the lower failure rates encountered in
gw services being of simpler nature than dc services, as described in Table 6.5. The benefit is a mean
cost decrease of 0.920 % compared to using a single replica for each dc service. Similar to the effect
of running two replicas for dc services, employing two replicas for each dc and gw service increases
the costs. The relative mean cost increase comparing a single replica for dc services and two replicas
for each dc and gw service is 0.152 %.

168 Chapter 6 Analysis

0

5E3

1E4

0
5E3

1E4

-5.0E5

-2.5E5

0.0

2.5E5

5.0E5

t [h]
|U |

∆
C

[€
]

(a) VNFA ∆C using one replica for dc/one replica for dc
and gw each

0

5E3

1E4

0
5E3

1E4

-1.0E4

-5.0E3

0.0

5.0E3

1.0E4

t [h]
|U |

∆
C

[€
]

(b) VNFA ∆C using one/two replica(s) for dc and gw each

Figure 6.34.: ∆C in VNFA using replica(s) for both dc and gw

6.5 Summary
In the analysis chapter, first, the assumptions for the evaluation and comparison of SSMA and VNFA
are given and the three test scenarios (single service, single user, and Passau city) are described
in detail. After that, the models developed in Section 5.3 are analyzed and results are drawn and
compared. Thereafter, a validation of the approach is performed using an implementation of a
vSMGW. Finally, a monetary cost analysis is performed to compare SSMA and VNFA.

Briefly speaking, the findings confirm that VNFA is superior to the currently suggested SSMA model
in most aspects. The availability of services are increased and network delays are shortened by
centralizing the hosting locations of services to COTS servers interlinked by a high-bandwidth
network. Due to the extensive coverage of the dependability and performance analysis of SSMA
and VNFA in Section 6.2.4, no extensive repetition is given here. Instead, it is referred to the
aforementioned section.

From a monetary perspective, VNFA offers severe benefits in comparison to SSMA. Using VNFA
without any replicas, a cost decease of 64.72 % is achieved. Using a single replica for the dc service,
this benefit is further increased by 2.453 %. In contrast, the usage of two replicas for each dc service is
monetary-wise not beneficial, as the additional resource requirements exceed the gained availability.
This leads to a mean cost increase of 0.105 % in comparison to using a single replica for each dc
service. A similar situation unfolds if replicas are used for both the dc and gw services. Here, the
overall lowest cost is achieved, decreasing the mean costs by an additional 0.920 % in comparison
to using a single replica for dc only. As before, employing two replicas for each dc and gw service
increases the mean costs, in this case by 0.152 % compared to using a single replica for each dc and
gw service.

Lastly, the evaluation of a prototype vSMGW implementation reveals that it is possible and feasible to
run multiple instances of vSMGWs on a single substrate server. Depending on the performance metric
assessed, the influence of co-hosting several instances of vSMGW varies. While e. g. the latency is
nearly unimpaired by the number of co-hosted vSMGW instances, the throughput suffers severe
degradation once ≈ 80% of substrate resources are occupied. Therefore, generally speaking, as
long as a certain hosting substrate resource threshold is not exceeded, the performance impairment
incurred is minor. Concerning the dependability of vSMGWs, a Musa-Okumoto approach reveals
that—even though only a proof-of-concept prototype was analyzed—the dependability requirements

6.5 Summary 169

of AMIs are fulfilled after a “burn-in” period. The availability of the prototype is expected to reach
99.968% assuming an MTTR of 1.833h.

170 Chapter 6 Analysis

7Applicability, Conclusions and Future Work

The final chapter is split into two parts. The first deals with practical considerations regarding the
realization of VNFA in Section 7.1, including the possible challenges that a real-life implementation
of VNFA might face, which are covered in Section 7.1.1. This includes, among others, the re-usability
of existing AMI resources, the additional hard- and software required by VNFA, and IT security
considerations. In Section 7.1.2 legal and regulatory challenges relevant in the scope of virtualized
AMIs are discussed.

After that, the second part of the chapter deals with the conclusion in Section 7.2, summarizing the
current state of AMIs in Germany and the contributions of this thesis, and the future work, which
is elaborated upon in Section 7.3. Main future research directions include the optimization of the
AMIgo simulation framework regarding performance and adding specialized embedding algorithms
for virtual AMIs, the development of a more elaborate and fine-granular communication sub-model
to include in the AMI model, as well as the usage of advanced network virtualization features, such
as SDN, to offer improved communication features, such as message prioritization.

Contents
7.1 Practical Applicability . 172

7.1.1 Usability Challenges . 172

7.1.2 Regulatory Challenges . 175

7.2 Conclusion and Outlook . 177

7.3 Future Work . 179

171

7.1 Practical Applicability
Apart from the long-standing criticism towards the operation of AMIs in general, which are usually
based on concerns regarding their health and safety24, possible privacy infringements25, and the
forced installation in new buildings26, in this section, the change from an SSMA towards the novel
VNFA is investigated and analyzed concerning its practical feasibility.

First, the general usability challenges regarding the realization of the VNFA are discussed in Section
7.1.1. This includes required changes in the AMI hardware architecture, resource considerations
which deal with the re-usability of currently suggested AMI hardware in the novel architecture
and additional resources required for the realization of VNFA, as well as the possible IT security
implications. After that, in Section 7.1.2, the legal and regulatory challenges associated with a
change to VNFA are elaborated. With a focus on the current regulatory requirements in the EU as
well as Germany in particular, possible legal hurdles are identified and discussed.

7.1.1 Usability Challenges
The introduction of VNFA to replace the currently planned SSMA may introduce several usability
challenges, which need to be elaborated to give an educated estimation of the incurred hardships
while doing so. To give an overview regarding the usability challenges which might arrive when
deploying VNFA, several contributing factors are discussed next.

7.1.1.1 AMI Hardware Architecture

Comparing Figures 3.1 and 4.1 in Sections 3.1.1 and 4.1, respectively, several differences in the
hardware architecture of SSMA and VNFA are apparent. In the next two paragraphs, these differences
are further elaborated upon, including the re-usability of resources of SSMA in VNFA, as well as
an investigation of additional resources required during the implementation of VNFA, including
substrate/hardware entities as well as human investments.

Re-Usability of Existing Resources. Depending on the degree of implementing VNFA, different
subsets of entities are reusable. First off, all entities which cannot be virtualized due to either type
or location restrictions (or both) are re-usable in VNFA, as their substrate is required to be present
in an AMI, no matter if SSMA or VNFA (see Section 4.2.1). This includes, among others, smart
meters, IHDs, CLSs, and cyber-physical provider-side systems. If VNFA is used in its entirety, an
additional challenge during the re-usage of smart meters is implied in Figure 7.1 that depicts the
challenges encountered during encryption due the the relocation of the vSMGW in comparison to
the substrate-based SMGW. Here, it might be required to upgrade the currently used SMGW firm-
and/or hardware to allow encryption operations. This challenge could be circumvented if vSMGWs
are hosted on VMs running on home routers instead of COTSs located in the WAN. This idea is
further discussed in Section 4.2.2 as well as by Steidele [153].

24 Stop Smart Meters! (UK), URL: http://stopsmartmeters.org.uk/, last accessed: 01/03/2019

25 How Smart Meters Invade Individual Privacy, URL: https://smartgridawareness.org/privacy-and-data-security/
how-smart-meters-invade-individual-privacy/, last accessed: 01/03/2019

26 Smart Meters: Forced Installation, Energy Usage and Higher Bills, URL: http://emfsafetynetwork.org/smart-meters-
forced-installation-energy-usage-and-your-higher-bills/, last accessed: 01/03/2019

172 Chapter 7 Applicability, Conclusions and Future Work

http://stopsmartmeters.org.uk/
https://smartgridawareness.org/privacy-and-data-security/how-smart-meters-invade-individual-privacy/
https://smartgridawareness.org/privacy-and-data-security/how-smart-meters-invade-individual-privacy/
http://emfsafetynetwork.org/smart-meters-forced-installation-energy-usage-and-your-higher-bills/
http://emfsafetynetwork.org/smart-meters-forced-installation-energy-usage-and-your-higher-bills/

Additional Resources Required by VNFA. To host the virtualized counterparts of the SSMA substrate
entities, COTS have to be acquired. The number of required server is thereby linked to three main
factors: first, the number of users present in the VNFA AMI determines the amount of virtualized
services (and their VMs), which—in turn—decide the amount of resources (Ωcpuds

cpu) necessary on
the substrate entities. Apart from that, the second factor is the resource threshold (see Section
4.4.1) set for the servers. Last, the embedding process may lead to non-allocated resources being
left unused on substrate servers due to either the amount of resources left on the server cannot fit
another virtualized service (∀ i ∈ V s : Ωcpuds

cpui
< rhw

cpu) (due to the relatively small demands, the
unused resource amount here is expected to be low) or because of heuristics being employed during
the embedding. To host the servers, depending on their location distribution (see Section 4.2.2),
either a single data center (using “centralized hosting”) or several tamper-proof server casings (using
“distributed hosting”) need to be acquired.

Using a centralized server location, another decision would be if TPSs are integrated into the same
data center as service provider AMI functions. This would allow for a more efficient hardware usage
through higher server utilization as well as better performability as potentially more backup servers
are available. In addition, a lower communication overhead is to be expected as distances between
servers are lowered (in-house communication only) or non-existent (VMs hosted on same server).
In contrast, using a separate substrate would allow a better separation of responsibilities as well as
an increased isolation of substrates, therefore it would be less likely that harmful events caused by
either side spread throughout the AMI.

Besides the properties of distributed hosting pointed out in Section 4.2.2, such an approach induces
an increased demand regarding physical protection. This can either be satisfied by re-using the
existing, tamper-proof casings employed to house in-field hardware, such as local transformers etc.,
or by the acquisition of new, tamper- and weather-proof casings to harbor the required COTS servers.
The later option would on the one hand increase the costs, on the other, however, the placement of
servers is more flexible if legacy infrastructure may be disregarded.

Apart from the physical resources required by VNFA, it shall be mentioned here that the author is
aware of the possibly specialized human resources required to maintain the VNFA infrastructure.
However, as the maintenance is also required in current legacy power grids as well as in SSMA
architectures, giving a well-educated prediction of the difference in amount of human resources
required and their level of competence needed to operate VNFA is challenging and is not done within
the scope of this thesis.

7.1.1.2 IT Security Considerations

Although IT security is not regarded as a main topic within this thesis, the author still considers
the need to address potential security challenges accompanying the introduction of VNFA. Due to
the strict regulations of AMI and smart grid related ICT systems in the European Union (EU), and
Germany in particular, special care is required when introducing modifications to such systems.
Several possible challenges are discussed here.

The introduction of virtualization and the associated relocation of services onto servers is not solely
advantageous, but comes with a caveat: The virtualization of the gateway, as discussed in Section
4.2.2, moves it from the HAN to the WAN. This is particularly problematic when security, more
specifically the security goal confidentiality, is considered, because the data sent by smart meters may
not be encrypted. When the gateway is not longer within the trusted HAN, unencrypted data might

7.1 Practical Applicability 173

be sent through public networks. This problem is illustrated in Figure 7.1. However, two possible
solutions to remediate this challenge do exist.

HAN

sm gw r dc

NAN

h

WAN

(a) Encryption within HAN environment in SSMA

HAN

sm r

NAN

Unencrypted traffic Encrypted traffic

gw dc h

WAN

(b) Missing encryption in VNFA

Figure 7.1.: Comparison of encryption behavior in SSMA and VNFA

1. Add encryption to the smart meter: Since smart meters are handed out by the utility company,
symmetric encryption routines and the respective keys could be added. In principle, symmetric
encryption is feasible on resource constrained devices such as smart meters. This would
eliminate the need for a gateway, from a strictly smart meter-centered, confidentiality-wise
point-of-view.

2. Relocation of virtualized gateways: It is possible to host the virtualized gateway on com-
modity routers, which are present in user households. By doing so, the metering data do not
leave the HAN before the encryption is performed. A prototype of this idea is implemented
and tested by Steidele [153]. This approach, however, places the virtualized gateway inside
the customer’s premises and therefore dampens some advantages discussed in Section 1.3.

Throughout this thesis, the first option is assumed. As smart metering devices work at increasing
computational performance levels (and can safely be expected to continue to do so in the future), a
minor overhead due to symmetric encryption is anticipated to be acceptable.

Also, virtualization opens up several possible attack vectors by itself, which is e. g. discussed in detail
by Sahoo et al. [140]. Due to detailed explanations given by Sahoo et al., several security issues are
only going to be listed here:

• Communication among VMs or between VMs and host,

• VM escape,

• VM monitoring from host/another VM,

• Denial of Service (DoS),

• guest-to-guest attacks,

• external modifications of VMs,

• external modification of the hypervisor.

174 Chapter 7 Applicability, Conclusions and Future Work

Besides the possible negative impacts or challenges VNFA causes regarding IT security, several
benefits are also possible: If properly configured and maintained, the isolation of virtual machines
may help to separate compromised VMs. Moreover, using VNFA, a tighter security supervision is
possible, as more parts of the infrastructure are hosted by a professional service provider. This
reduces both the time for experts to detect a possible malfunction or failure as well as the repair
times. Both in case of substrate failures, the required items for repairs are much more likely to
be readily available at a service provider’s location than at a user’s household. Also, in case of
software failures (which are increasing in likelihood using a virtualized AMI environment), remotely
triggered recovery mechanisms would offer much shorter repair times than conventional restoration,
as detailed in Section 3.2.2.

7.1.2 Regulatory Challenges
Apart from the technical challenges of introducing VNFA, several regulatory restrictions need to be
discussed in this context, too. As briefly introduced in Section 1.2, depending on the location where
AMIs are established, the regulatory bodies may enforce different requirements and constraints on
smart metering infrastructures. Such regulations may affect data protection and privacy, IT security
mechanisms to be employed in services as well as performability requirements of the AMI. To analyze
the influence of regulatory requirements on the realization of VNFA, two sets of rules need to be
distinguished:

1. Abstract, goal-centered regulations: Such rules are defined to make sure certain abstract
goals are met, while the way these goals are achieved is not explicitly stated. Examples for such
regulations are e. g. to provide certain levels of security, a certain maximum communication
delay as well as a specified availability of the overall infrastructure. Abstract, goal-centered
regulations therefore specify a goal (typically a minimum or maximum requirement), however
the implementation details leading to the realization of the stated goal are not specified.

2. Specific, realization-centered regulations: In contrast to the abstract rules presented before,
specific, realization-centric regulations provide exact rules regarding implementation details,
especially regarding hardware components to be used in a system. Specific, realization-centered
regulations do or do not specify the goal of a certain action, however, they require to strictly
abide to the implementation details specified within the regulation.

The first regulations are of no further concern in the following, because virtualized services provide
an increased performability compared to non-virtualized ones, as shown in Section 6.2.4; in addition,
other requirements, such as security or privacy, are rather improved by virtualization, as e. g. Cleeff
et al. states [167]. The second type of regulations, namely specific, realization-centered ones, may
lead to challenges regarding the possible usage of VNFA. However, in the following paragraphs, it is
shown that at least current rules in Germany may have viable alternatives which are feasible. To do
so, first, several examples of currently active specific, realization-centered regulations in Germany
are collected (an exhaustive collection and discussion of such regulations is beyond the scope of this
thesis). Second, possible solutions satisfying the previously collected regulations in similar quality in
virtualized environments are discussed.

7.1.2.1 Specific, Realization-Centered AMI Regulations in Germany

In Germany, the functional and non-functional rule sets for AMIs are set by several cooperating
regulatory bodies and persons: Bundesministerium für Wirtschaft und Energie (BMWi), BSI, the

7.1 Practical Applicability 175

federal commissioner for data protection and freedom of information (Bundesbeauftragter für den
Datenschutz und die Informationsfreiheit), the federal network agency, as well as the physico-
technical federal institute (Physikalisch-Technische Bundesanstalt). In the upcoming paragraph,
several AMI regulations currently active in Germany are briefly described, capturing the main ideas
and challenges while realizing these rules within VNFA.

• BSI TR-03109-2: The BSI TR-03109-2 specifies the usage of a hardware security module that
provides cryptographic core routines for signature creation and validation, key generation, key
negotiation, and random number generation for the SMGW and serves as a secure storage
for cryptographic key material. Both the functionality and its integration with the SMGW is
standardized in the security profile BSI TR-03109-2. Due to the virtualization used in VNFA,
a separate hardware security module might not be present for each vSMGW. As the virtual
services get embedded and possibly migrated between different servers, it would add additional
complexity, restrictions and monetary overhead to ensure that each server features at least a
certain number of security modules for all hosted vSMGWs.

• BSI CC-PP-0073/BSI TR-03109-1: Both documents demand the usage of physically separate
network ports for the connection of the SMGW with each of its interconnected network areas
(LMN, HAN, and WAN). In VNFA, as a nearly arbitrary number (n) of vSMGW may be spawned
on a server, it is likely that there are not 3n network ports available. While the standards do
not explicitly demand that each physical port is a wired network port, even the additional
usage of wireless interfaces is not likely to be able to satisfy the aforementioned requirement
of 3n network ports altogether.

• Law on metering point operation and data communication in intelligent energy net-
works (Messstellenbetriebsgesetz – MsbG): Due to the possible manipulation of data sent
via home routers, their usage is restricted. While home router were proclaimed as a feasible
solution to forward smart meter data until 2014 even by the BSI, with the introduction of the
revised Messstellenbetriebsgesetz, their usage within AMIs was prohibited. The main downside
of home routers that led to their ban from AMI networks is the inability to ensure data integrity.
With the usage of VNFA, this leads to issues as home routers are used to forward traffic from
the HAN part of the network to the NAN and WAN parts of the AMI.

7.1.2.2 Solution Approaches

With the regulatory challenges discussed in Section 7.1.2, several solution approaches are investigated
next.

• BSI TR-03109-2: Especially within virtualized systems, the challenge of supporting hardware-
based security is a well-known issue. While the BSI TR-03109-2 in its current version strictly
requires such a hardware-based solution for each SMGW, a possible solution would be the
usage of virtualized hardware-based security modules, similar to the Virtual Trusted Platform
Module (vTPM) approach used to virtualize TPMs. Such a solution could be feasible, since the
tasks of a TPM and the hardware security module required by an SMGW are almost completely
similar. To be able to virtualize a TPM, which uses a trust approach rooted in hardware, several
important key features must be fulfilled:

– Same usage model and command set

– Strong association between VM and its vTPM instance

176 Chapter 7 Applicability, Conclusions and Future Work

– Strong association between real TPM and vTPM

– Easy to distinguish between real and virtual TPM

Currently, the vTPM approach is already supported by several virtualization solutions, such
as VMware, HyperV, and XEN, and has even been extended to allow the migration of VMs
employing a vTPM.

• BSI CC-PP-0073/BSI TR-03109-1: In a similar manner as the challenges encountered with
the BSI TR-03109-2’s demand for a physically present security module, virtualization may offer
a solution to enforce the isolation of multiple networks on a single server. This has already
been shown to be an effective and feasible solution by Steidele [153], where the concept was
employed to separate the network connections of a vSMGW to the LMN, HAN, and NAN/WAN
with a single hardware network port using internal network virtualization (offering several
vNICs).

• Law on metering point operation and data communication in intelligent energy net-
works (Messstellenbetriebsgesetz – MsbG): To exclude common household routers from the
communication in AMIs is theoretically possible in SSMA and VNFA—however, it would require
the usage of dedicated communication hardware to do so, that would need to be embedded
inside a device located in the LMN or HAN in a tamper-proof way, most probably the SMGW.
Instead, several alternatives exist that circumvent the problems of data manipulation in home
routers. One possibility, which is discussed in Section 4.2.2, is the introduction of encryption on
smart meters, which can hinder targeted manipulation attacks. Secondly, the usage of isolated,
virtualized network connections realized e. g. by VPNs could be a viable solution.

7.2 Conclusion and Outlook
Summarizing the results of this thesis, several main conclusions can be drawn. First, it is unquestion-
able that the usage of virtualization offers numerous benefits, especially in the areas of performability,
adaptability, and cost efficiency of systems, which is once more briefly addressed in the following:

• Performability: Using the VNFA approach with its choices between deterministic and dynamic
timings and three rejuvenation strategies (cold, warm, and migration), as well as optional
replica usage an improved performability compared to SSMA is achievable on service level
(0.313 %). In addition, the availability of an AMI also increases using VNFA compared to SSMA.
On service level, the maximum increase is 0.669 %, on infrastructure level VNFA can achieve
an availability of 98.657 %, SSMA, in comparison, 96.815 %.

• Adaptability: VNFA offers adaptability in several dimensions: For once, as described, modeled
and finally evaluated in Chapters 4–6, VNFA enables the deployment of VMs on COTS servers.
Using this approach, the hardware required for adding additional users to an AMI can be
reduced from a smart meter, SMGW as well as potentially a new data concentrator to a single
smart meter. All other components are realized as virtualized services, which improves the
approach’s scalability, as the performance analysis in Section 6.2.3.5 reveals. In addition,
employing virtualized services enables a rapid response to changing operational requirements,
as software updates to the VMs (which are under the central control of the service provider)
are deployable with much lower effort than providing updates to multiple distributed devices,

7.2 Conclusion and Outlook 177

each being vendor-specific, featuring its own update mechanism and—if an international usage
scenario is envisioned—its own set of regulatory requirements.

• Cost efficiency: From a monetary perspective, VNFA offers severe benefits in comparison to
SSMA. The maximum monetary benefit is achieved using a single replica for each dc and gw
service, offering a cost decrease of ≈ 65 % in comparison to SSMA using the scenario given in
Section 6.4.

However, despite these numerous advantages, to make an educated judgment on the outlook if the
adoption of VNFA in Germany would be possible, it is important to discuss the current state of smart
grid development. While there are concrete plans on the installation of smart meters and their usage,
they are currently more theoretical than practically realized. Looking at the practical state of AMI
and smart grid usage in Germany, it is apparent that the AMI roll-out is on a forced halt, which has
several reasons27:

First off, the currently still lacking level of certification is hindering the adaption of AMI solutions
in Germany, because of the requirement set by the Smart Meter Act that the roll-out can only start
once three SMGWs by different manufacturers have been certified in accordance with the technical
regulations. The first certification has been announced only recently. Second, the smart meter roll-out
in Germany lacks a sophisticated, independent cost-benefit analysis. Commonly, such analyses
are performed by multiple cooperating partners from various domains, such as legal, economic and
ICT experts. Despite this fact, the German cost-benefit analysis has been carried out in its entirety
by a single consultancy (Ernst & Young GmbH [48]), whose manager has a working history at the
German heavyweight electric utilities company RWE28. In close relation to the second point, third, the
current smart metering fees are based on unrealistically high energy saving estimates, which
in turn leads to consumers required to pay their saving potential on top of the metering fee for
old meters. These additional costs especially put the profitability of small-scale projects at risk.
In addition, it is even questionable whether small-scale Photovoltaic (PV) is of any relevance for
a grid operators’ service portfolio, as there is most likely no need to shut down small-scale PV to
guarantee grid security, while the obligation to include small-scale PV is heavily straining their staff
and technological capabilities.

This leads to several simultaneous developments.

Service providers in Germany are hesitant to install smart meters and the AMI backbone infrastruc-
ture due to these missing certifications and the possibility of imminent changes to the certification
process, which would in turn lead to high expenses to upgrade/change currently made investments.
One example of such a change is the currently ongoing discussion if the previously required usage of
the Companian Specification for Energy Metering (COSEM) protocol is even going to be supported
in AMI environments in the future; from the side of industrial stakeholders, other standards, such as
American National Standards Institute (ANSI), received tremendously more support, which is the
reason for a possible change of the standard. The certification process itself as introduced by the BSI
is criticized29, and drastic changes are asked for. From the industry’s side, it is demanded that in

27 Smart Meter - The German ’Sonderweg’ at a crossroads – Energy Democracy, URL: https://energy-democracy.org/
smart-meter-the-german-sonderweg-at-a-crossroads/, last accessed: 05/03/2019

28 Biography - Dr. Helmut Edelmann, URL: https://www.ey.com/de/de/industries/power-–utilities/biography-
–dr-helmut-edelmann, last accessed: 05/03/2019

29 According to the German federal association of the new energy industry (Bundesverband Neue Energiewirtschaft) the
legally required certification process is “structurally problematic”.

178 Chapter 7 Applicability, Conclusions and Future Work

https://energy-democracy.org/smart-meter-the-german-sonderweg-at-a-crossroads/
https://energy-democracy.org/smart-meter-the-german-sonderweg-at-a-crossroads/
https://www.ey.com/de/de/industries/power---utilities/biography---dr-helmut-edelmann
https://www.ey.com/de/de/industries/power---utilities/biography---dr-helmut-edelmann

the future, the BSI should only determine which security requirements of smart metering systems
have to be met. The manufacturers would then carry out a self-certification in combination with
calibration regulations30. The installation of smart meters lead to a considerable investment and
operating expenses, which are (at least partially) invoiced to end customers. Therefore, the decision
whether the currently planned AMI realization will be widely accepted has still not been made;
deciding factors will be the perceived smart meter benefits contesting against the incurred costs [57].

The conclusion to be drawn from these developments is that the AMI standardization and regu-
lation is still in flux; also, customers are still not fully convinced of the currently proposed AMI
strategy. Therefore, requirements regarding the concrete implementation and realization of certain
features may be adjusted in the future. The author already introduced the idea of virtualized
AMIs in discussions with the German regulatory bodies Verband der Elektrotechnik, Elektronik
und Informationstechnik (VDE) and Deutsche Kommission Elektrotechnik Elektronik Information-
stechnik (DKE) (e. g. by Benze et al. [14]), which realized the potential benefits of virtualization
approaches. Despite that, a wide-scale adoption of VNFA is unlikely in the near future, however,
certain features or concepts might be used as an inspiration for upcoming improvements to current
ideas and regulations.

7.3 Future Work
Regarding concrete future work, there are several further optimizations possible with the proposed
virtualized AMI approach given in this thesis, which are listed in the following.

1. AMIgo optimizations: During the validation of the VNFA virtual AMI embedding, the AMIgo
software tool is used to evaluate the VNFA embedding onto a given substrate and estimate the
performance and required resources for such an embedding. While the results obtained are
promising, both the performance and the embedding strategy of the software tool still require
further optimizations.

The performance of AMIgo is currently not able to work feasibly in large embedding scenarios.
An approach on how to improve the performance further exists already; a slight change in
the structure of the queuing network could possibly enhance the tool’s performance. First
and foremost, the explicit modeling of routers leads to a severe performance bottleneck in
the virtualized network embedding algorithm. If the model could implicitly model routers by
including their properties in other entities and omit them, connecting the servers directly to
the smart meters, the overall number of nodes in the queuing network could be drastically
reduced and should therefore increase computation speed.

2. More elaborate communication sub-model: The communication inside the AMI model is
currently modeled in a simplified way, featuring several assumptions that might not be able to
represent the delays encountered in all scenarios accurately. Depending on the used protocols
(e. g. OSGP, ANSI C-Series, etc.31) and current transmission stage (before or after data
compression by a data concentrator), the induced delay may vary. In addition, the failure

30 Handelsblatt: Regierung bremst intelligente Stromzähler aus, URL: https://www.handelsblatt.com/politik/
deutschland/smart-meter-regierung-bremst-intelligente-stromzaehler-aus/23688518.html, last accessed:
10/01/2019

31 For a full list of network protocols used in AMIs see Section 2.1.2.2

7.3 Future Work 179

https://www.handelsblatt.com/politik/deutschland/smart-meter-regierung-bremst-intelligente-stromzaehler-aus/23688518.html
https://www.handelsblatt.com/politik/deutschland/smart-meter-regierung-bremst-intelligente-stromzaehler-aus/23688518.html

rates of communication channels were excluded during the analysis, which is—in general—a
valid assumption, as in 1st world countries communication networks offer a high availability
[99]; however, if this assumption is removed, more dependability and performance measures
for links might be required to be included, e. g. channel bit errors, possibly required packet
re-transmissions, and propagation delay, among others. This would require a more detailed
communication channel model to be developed and implemented.

3. Advanced usage of virtualization: Network virtualization is introduced in VNFA briefly in
Section 4.3 as a measure to link a user’s VNFCs in an optimal way to create a VNF-FG. Several
improvements might be considered when network virtualization techniques are employed:
On the one hand, the resolution at which VNFCs are defined might be increased. Currently,
a service level resolution is used to embed and organize VNFCs to a VNF-FG. In future
extensions to VNFA, the components of each service might be modeled (adding a sub-service
layer to the existing micro- and macro- model layers), making a single service comprising,
e. g. data logic, compression, and encryption components. While the composition of the
currently used “coarse” VNFs is already not a trivial task in all scenarios (as described in
Section 4.3.2), a more fine-granular resolution would result in a higher complexity during
the VNF-FG composition, but it might be possible to optimize the composition of VNFCs even
further, leading to improved embedding results. Apart from that, virtual networking could
be further used to adapt to channel properties and requirements of certain message types in
the AMI environment by employing SDN. Research in this direction has already been started
by Rehmani et al. [134], where several key benefits of SDN in AMIs are stated as isolation
of different traffic types, traffic prioritization, increased dependability/fast failure recovery
and enhanced interoperability. Especially the combination of traffic isolation and prioritization
could be employed to reserve certain amounts of the channel to be able to better harness the
performance, e. g. using more priority for low-delay tolerant messages, such as (i. e. critical
measurement data and control commands), while billing or other optional messages might get
sent via another virtual link offering less priority/speed/dependability.

4. Dynamic services and prioritization: Currently, the modeling of services is performed in a
static manner, i. e. the properties of the service, such as its priority flag, its resource demand,
etc. remain constant throughout its lifetime. While this assumption is reasonable for the gross
of all services in currently planned AMIs, it could be worthwhile to consider a greater number
of services in the future. This would allow to not only harness the benefits of virtualization in
an AMI context, but rather throughout a smart grid. Noteworthy in this respect are especially
monitoring and reporting services, which could receive varying priorities depending on the
current state of a smart grid. An example could be the prioritization of measurement and
sensing services as soon as unusual sensor data is detected for the first time to ensure timely
reporting of potentially escalating deviations.

This kind of prioritization would be an addition to the current used concept, where different
VNFCs are ranked over others within a VNF. On the larger scale, whole VNFs may be prioritized
over others, especially in the context of the previously described non-user services, such as
monitoring or reporting. These services often have importance over individual users’ AMI
services due to their contribution to overall smart grid stability.

180 Chapter 7 Applicability, Conclusions and Future Work

AAppendix

A.1 AMIgo Configuration File
In the following an example AMIgo configuration file (using slight naming adjustments to improve
readability) is given.

{
"PROJECT_NAME": "defaultproject",
"SAVE_NETWORK_STACK": false,
"SAVE_FOR_JMT_CLASSICAL": true,
"SAVE_FOR_JMT_V": true,
"USE_MULTI_THREADING": false,
"PROCESS_NR": true,
"PROCESS_CB": true,
"PROCESS_AFA": true,
"PROCESS_NR_V": true,
"PRINT_DAMAGE_REPORT": false,
"PRINT_WRITE_TO_DISK": true,
"PRINT_JSON": true,
"PRINT_NEIGHBORHOOD_TEMPLATE": true,
"PRINT_SUMMARY": true,
"MAPPING_ALGORITHM": "SubgraphIsomorphism",
"SERVER_FAILURE_INCREMENTAL": false,
"SERVER_FAILURE_BUCKET_COUNT": 1,
"ARRIVAL_UNIFORM_DC_MIN": 0.0,
"ARRIVAL_UNIFORM_DC_MAX": 900.0,
"ARRIVAL_UNIFORM_SM_MIN": 0.0,
"ARRIVAL_UNIFORM_SM_MAX": 60.0,
"PENALTY_MULTIPLIER_FOR_VIRTUALIZATION": 1.0,
"PERFORMABILITY_V_GW": 1.0,
"PERFORMABILITY_V_R": 1.0,
"PERFORMABILITY_V_DC": 1.0,
"PERFORMABILITY_V_A": 1.0,
"PERFORMABILITY_V_EO": 1.0,
"PERFORMABILITY_NV_GW": 1.0,
"PERFORMABILITY_NV_R": 1.0,
"PERFORMABILITY_NV_DC": 1.0,
"PERFORMABILITY_NV_A": 1.0,
"PERFORMABILITY_NV_EO": 1.0,
"SERVICE_RATE_HES": 1000.0,

181

"SERVICE_RATE_DC": 60.0,
"SERVICE_RATE_SM": 20.0,
"SERVICE_RATE_GW": 40.0,
"SERVICE_RATE_R": 1000.0,
"SERVER_COUNT": 3,
"SERVER_MAX_LOAD": 0.8,
"NEIGHBORHOODS_COUNT": 3,
"HOUSEHOLDS_PER_NEIGHBORHOOD_MAX": 100,
"HOUSEHOLDS_PER_NEIGHBORHOOD_MIN": 100,
"RANDOM_POLICY": "Random",
"RANDOM_POLICY_ADD": 1,
"CPU_HES": 0.0,
"CPU_DC": 200.5,
"CPU_GW": 3.0,
"CPU_R": 2.0,
"CPU_SM": 2.0,
"CPU_SERVER": 1000.0,
"LINK_MEDIUM_HAN": "ZigBee",
"LINK_MEDIUM_WAN": "OpticalFiber",
"LINK_MEDIUM_NAN": "PLC",
"LINK_MEDIUM_PERFORMANCE": "MIN",
"LINK_MEDIUM_SERVER": "Gigabit",
"DEMAND_CPU_HES": 0.0,
"DEMAND_CPU_GW": 2.5,
"DEMAND_CPU_DC": 200.0,
"DEMAND_CPU_R": 1.5,
"DEMAND_CPU_SM": 1.5,
"DEMAND_BANDWIDTH_DC": 6000.0,
"DEMAND_BANDWIDTH_SM": 9000.0,
"TPS_SUBSTRATE_MAX_LOAD": 0.8,
"TPS_A_PERCENT": 0.7,
"TPS_EO_PERCENT": 0.4,
"TPS_A_HOUSEHOLDS_PER_SERVER": 1000,
"TPS_EO_HOUSEHOLDS_PER_SERVER": 1000,
"TPS_EO_CPU_OFFERED": 3750.0,
"TPS_A_CPU_OFFERED": 3750.0,
"TPS_EO_SERVICE_RATE": 30.0,
"TPS_A_SERVICE_RATE": 30.0,
"PATH_STACK_HEALTHY_PRE_MAPPING_NR": "healthy_stack_pre_mapping_nr.txt",
"PATH_STACK_HEALTHY_POST_MAPPING_NR": "healthy_stack_post_mapping_nr.txt",
"PATH_STACK_HEALTHY_PRE_MAPPING_CB": "healthy_stack_pre_mapping_cb.txt",
"PATH_STACK_HEALTHY_POST_MAPPING_CB": "healthy_stack_post_mapping_cb.txt",
"PATH_STACK_HEALTHY_PRE_MAPPING_AFA": "healthy_stack_pre_mapping_afa.txt",
"PATH_STACK_HEALTHY_POST_MAPPING_AFA": "healthy_stack_post_mapping_afa.txt",
"PATH_STACK_HEALTHY_PRE_MAPPING_NR_V": "healthy_stack_pre_mapping_nr_v.txt",
"PATH_STACK_HEALTHY_POST_MAPPING_NR_V": "healthy_stack_post_mapping_nr_v.txt",
"PATH_TGF_JMT_HEALTHY_NR": "jmt_healthy_nr.tgf",

182 Chapter A Appendix

"PATH_JMT_HEALTHY_NR": "jmt_healthy_nr.jsimg",
"PATH_TGF_JMT_HEALTHY_TO_HES_NR": "jmt_healthy_to_headend_nr.tgf",
"PATH_JMT_HEALTHY_TO_HES_NR": "jmt_healthy_to_headend_nr.jsimg",
"PATH_TGF_JMT_HEALTHY_CB": "jmt_healthy_cb.tgf",
"PATH_JMT_HEALTHY_CB": "jmt_healthy_cb.jsimg",
"PATH_TGF_JMT_HEALTHY_TO_HES_CB": "jmt_healthy_to_headend_cb.tgf",
"PATH_JMT_HEALTHY_TO_HES_CB": "jmt_healthy_to_headend_cb.jsimg",
"PATH_TGF_JMT_FIXED_CB": "jmt_fixed_cb.tgf",
"PATH_JMT_FIXED_CB": "jmt_fixed_cb.jsimg",
"PATH_TGF_JMT_FIXED_TO_HES_CB": "jmt_fixed_to_headend_cb.tgf",
"PATH_JMT_FIXED_TO_HES_CB": "jmt_fixed_to_headend_cb.jsimg",
"PATH_TGF_JMT_HEALTHY_AFA": "jmt_healthy_afa.tgf",
"PATH_JMT_HEALTHY_AFA": "jmt_healthy_afa.jsimg",
"PATH_TGF_JMT_HEALTHY_TO_HES_AFA": "jmt_healthy_to_headend_afa.tgf",
"PATH_JMT_HEALTHY_TO_HES_AFA": "jmt_healthy_to_headend_afa.jsimg",
"PATH_TGF_JMT_FIXED_AFA": "jmt_fixed_afa.tgf",
"PATH_JMT_FIXED_AFA": "jmt_fixed_afa.jsimg",
"PATH_TGF_JMT_FIXED_TO_HES_AFA": "jmt_fixed_to_headend_afa.tgf",
"PATH_JMT_FIXED_TO_HES_AFA": "jmt_fixed_to_headend_afa.jsimg",
"PATH_TGF_JMT_HEALTHY_NR_V": "jmt_healthy_nr_v.tgf",
"PATH_JMT_HEALTHY_NR_V": "jmt_healthy_nr_v.jsimg",
"PATH_TGF_JMT_HEALTHY_TO_HES_NR_V": "jmt_healthy_to_headend_nr_v.tgf",
"PATH_JMT_HEALTHY_TO_HES_NR_V": "jmt_healthy_to_headend_nr_v.jsimg",
"PATH_TGF_JMT_FIXED_NR_V": "jmt_fixed_nr_v.tgf",
"PATH_JMT_FIXED_NR_V": "jmt_fixed_nr_v.jsimg",
"PATH_TGF_JMT_FIXED_TO_HES_NR_V": "jmt_fixed_to_headend_nr_v.tgf",
"PATH_JMT_FIXED_TO_HES_NR_V": "jmt_fixed_to_headend_nr_v.jsimg",
"PATH_TGF_SUBSTRATE_HEALTHY_NR": "healthy_substrate_nr.tgf",
"PATH_TGF_VIRTUAL_HEALTHY_NR": "healthy_virtual_nr.tgf",
"PATH_TGF_MAPPING_NR": "mapping_nr.tgf",
"PATH_TGF_SUBSTRATE_HEALTHY_CB": "healthy_substrate_cb.tgf",
"PATH_TGF_SUBSTRATE_FIXED_CB": "fixed_substrate_cb.tgf",
"PATH_TGF_VIRTUAL_HEALTHY_CB": "healthy_virtual_cb.tgf",
"PATH_TGF_VIRTUAL_FIXED_CB": "fixed_virtual_cb.tgf",
"PATH_TGF_MAPPING_CB": "mapping_cb.tgf",
"PATH_TGF_MAPPING_SIMPLIFIED_CB": "mapping_simplified_cb.tgf",
"PATH_TGF_MAPPING_FIXED_CB": "mapping_fixed_cb.tgf",
"PATH_TGF_SUBSTRATE_HEALTHY_AFA": "healthy_substrate_afa.tgf",
"PATH_TGF_SUBSTRATE_FIXED_AFA": "fixed_substrate_afa.tgf",
"PATH_TGF_VIRTUAL_HEALTHY_AFA": "healthy_virtual_afa.tgf",
"PATH_TGF_VIRTUAL_FIXED_AFA": "fixed_virtual_afa.tgf",
"PATH_TGF_MAPPING_AFA": "mapping_afa.tgf",
"PATH_TGF_MAPPING_SIMPLIFIED_AFA": "mapping_simplified_afa.tgf",
"PATH_TGF_MAPPING_FIXED_AFA": "mapping_fixed_afa.tgf",
"PATH_TGF_SUBSTRATE_HEALTHY_NR_V": "healthy_substrate_nr_v.tgf",
"PATH_TGF_SUBSTRATE_FIXED_NR_V": "fixed_substrate_nr_v.tgf",
"PATH_TGF_VIRTUAL_HEALTHY_NR_V": "healthy_virtual_nr_v.tgf",

A.1 AMIgo Configuration File 183

"PATH_TGF_VIRTUAL_FIXED_NR_V": "fixed_virtual_nr_v.tgf",
"PATH_TGF_MAPPING_NR_V": "mapping_nr_v.tgf",
"PATH_TGF_MAPPING_SIMPLIFIED_NR_V": "mapping_simplified_nr_v.tgf",
"PATH_TGF_MAPPING_FIXED_NR_V": "mapping_fixed_nr_v.tgf",
"PATH_NETWORK_TEMPLATE_STATS": "network_template_stats.txt",
"PATH_NETWORK_LOAD_NR": "network_load_nr.txt",
"PATH_NETWORK_LOAD_CB": "network_load_cb.txt",
"PATH_NETWORK_LOAD_AFA": "network_load_afa.txt",
"PATH_NETWORK_LOAD_NR_V": "network_load_nr_v.txt",
"PATH_NETWORK_LOAD_FIXED_CB": "network_load_fixed_cb.txt",
"PATH_NETWORK_LOAD_FIXED_AFA": "network_load_fixed_afa.txt",
"PATH_NETWORK_LOAD_FIXED_NR_V": "network_load_fixed_nr_v.txt",
"PATH_CRASH_PLAN": "crashplan.txt",
"PATH_DAMAGE_REPORT_CB": "damagereport_cb.txt",
"PATH_DAMAGE_REPORT_AFA": "damagereport_afa.txt",
"PATH_DAMAGE_REPORT_NR_V": "damagereport_nr_v.txt",
"PATH_DAMAGE_REPORT_CSV_CB": "damagereport_cb.tsv",
"PATH_DAMAGE_REPORT_CSV_AFA": "damagereport_afa.tsv",
"PATH_DAMAGE_REPORT_CSV_NR_V": "damagereport_nr_v.tsv",
"PATH_BENCHMARK": "benchmark.txt",
"JMT_LOG_DIR": "jmt_logs",
"JMT_MAX_STEPS": 10000000

}

184 Chapter A Appendix

A.2 Virtualized Smart Meter Gateway Evaluation Data
In the following, the raw failure evaluation data of a proof-of-concept vSMGW implementation is
listed.

t [h] # of failures Cumulative failures MTTR [h] λ(t) µ(t)

0 2 2 1.25 2.000E−1 1.892E−1

10 0 2 n/a 9.259E−2 1.328E0

20 1 3 0.75 6.024E−2 2.069E0

30 0 3 n/a 4.464E−2 2.586E0

40 0 3 n/a 3.546E−2 2.983E0

50 0 3 n/a 2.941E−2 3.305E0

60 1 4 0.50 2.513E−2 3.577E0

70 0 4 n/a 2.193E−2 3.811E0

80 0 4 n/a 1.946E−2 4.018E0

90 0 4 n/a 1.748E−2 4.202E0

100 0 4 n/a 1.587E−2 4.368E0

110 0 4 n/a 1.453E−2 4.520E0

120 0 4 n/a 1.340E−2 4.660E0

130 0 4 n/a 1.244E−2 4.789E0

140 0 4 n/a 1.160E−2 4.909E0

150 1 5 1.75 1.087E−2 5.021E0

160 0 5 n/a 1.022E−2 5.127E0

170 0 5 n/a 9.653E−3 5.226E0

180 0 5 n/a 9.141E−3 5.320E0

190 0 5 n/a 8.681E−3 5.409E0

200 0 5 n/a 8.264E−3 5.494E0

210 0 5 n/a 7.886E−3 5.574E0

220 0 5 n/a 7.541E−3 5.652E0

230 1 6 0.75 7.225E−3 5.725E0

240 0 6 n/a 6.935E−3 5.796E0

250 0 6 n/a 6.667E−3 5.864E0

260 0 6 n/a 6.418E−3 5.930E0

270 0 6 n/a 6.188E−3 5.993E0

280 0 6 n/a 5.974E−3 6.053E0

290 0 6 n/a 5.774E−3 6.112E0

300 0 6 n/a 5.587E−3 6.169E0

310 0 6 n/a 5.411E−3 6.224E0

320 0 6 n/a 5.247E−3 6.277E0

330 0 6 n/a 5.092E−3 6.329E0

340 0 6 n/a 4.946E−3 6.379E0

350 1 7 6.00 4.808E−3 6.428E0

360 0 7 n/a 4.677E−3 6.475E0

370 0 7 n/a 4.554E−3 6.521E0

380 0 7 n/a 4.437E−3 6.566E0

Table continues on the next page⇒

A.2 Virtualized Smart Meter Gateway Evaluation Data 185

t [h] # of failures Cumulative failures MTTR [h] λ(t) µ(t)

390 0 7 n/a 4.325E−3 6.610E0

400 0 7 n/a 4.219E−3 6.653E0

410 0 7 n/a 4.119E−3 6.694E0

420 0 7 n/a 4.023E−3 6.735E0

430 0 7 n/a 3.931E−3 6.775E0

440 0 7 n/a 3.843E−3 6.814E0

450 0 7 n/a 3.759E−3 6.852E0

460 0 7 n/a 3.679E−3 6.889E0

470 0 7 n/a 3.602E−3 6.925E0

480 0 7 n/a 3.529E−3 6.961E0

490 0 7 n/a 3.458E−3 6.996E0

500 0 7 n/a 3.390E−3 7.030E0

510 0 7 n/a 3.324E−3 7.064E0

520 0 7 n/a 3.262E−3 7.097E0

530 0 7 n/a 3.201E−3 7.129E0

540 0 7 n/a 3.143E−3 7.161E0

550 0 7 n/a 3.086E−3 7.192E0

560 0 7 n/a 3.032E−3 7.222E0

570 0 7 n/a 2.980E−3 7.253E0

580 0 7 n/a 2.929E−3 7.282E0

590 0 7 n/a 2.880E−3 7.311E0

600 0 7 n/a 2.833E−3 7.340E0

Table A.1.: Input and result data for vSMGW test (Θ = 0.58, λ0 = 0.2)

186 Chapter A Appendix

Bibliography

[1] M. N. Albasrawi, N. Jarus, K. A. Joshi, and S. S. Sarvestani. “Analysis of Reliability and Resilience
for Smart Grids.” In: IEEE 38th Annual Computer Software and Applications Conference. July 2014,
pp. 529–534. DOI: 10.1109/COMPSAC.2014.75.

[2] A. O. Allen. Introduction to Computer Performance Analysis with Mathematica. San Diego, CA, USA:
Academic Press Professional, Inc., 1994. ISBN: 978-0-12-051070-2.

[3] T. Almeroth, O. Kühn, and G. Linß. “Lifetime Prediction of Smart Meter - Estimation of Lifetime
Paramters.” In: Proceedings of the 56. IWK: Innovation in Mechanical Engineering – Shaping the Future.
Vol. 56. 2011.

[4] J. Alonso, M. Grottke, A. P. Nikora, and K. S. Trivedi. “The Nature of the Times to Flight Software
Failure during Space Missions.” In: IEEE 23rd International Symposium on Software Reliability Engineering.
Nov. 2012, pp. 331–340. DOI: 10.1109/ISSRE.2012.32.

[5] G. Alves, D. Marques, I. Silva, L. A. Guedes, and M. Silva. “A Methodology for Dependability Evalua-
tion of Smart Grids.” In: Energies 12 (2019), p. 1817. DOI: 10.3390/en12091817.

[6] H. H. Ammar, B. Cukic, A. Mili, and C. Fuhrman. “A Comparative Analysis of Hardware and Software
Fault Tolerance: Impact on Software Reliability Engineering.” In: Annals of Software Engineering 10.1-4
(Jan. 2000), pp. 103–150. ISSN: 1022-7091. DOI: 10.1023/A:1018987616443.

[7] A. Avižienis and J.-C. Laprie. “Dependable Computing: From Concepts to Design Diversity.” In: Pro-
ceedings of the IEEE 74.5 (May 1986), pp. 629–638. ISSN: 0018-9219. DOI: 10.1109/PROC.1986.13527.

[8] A. Avižienis, J.-C. Laprie, and B. Randell. Fundamental Concepts of Dependability. University of New-
castle upon Tyne, Computing Science, 2001.

[9] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. “Basic Concepts and Taxonomy of Dependable
and Secure Computing.” In: IEEE Transactions on Dependable and Secure Computing 1.1 (Jan. 2004),
pp. 11–33. ISSN: 1545-5971. DOI: 10.1109/TDSC.2004.2.

[10] A. Aydeger, K. Akkaya, and A. S. Uluagac. “SDN-based Resilience for Smart Grid Communications.” In:
IEEE Conference on Network Function Virtualization and Software Defined Network. Nov. 2015, pp. 31–33.
DOI: 10.1109/NFV-SDN.2015.7387401.

[11] A. Battaglini, J. Lilliestam, and G. Knies. “The SuperSmart Grid – Paving the Way for a Completely
Renewable Power System.” In: Global Sustainability: A Nobel Cause. Ed. by H. J. Schellnhuber, M. Molina,
N. Stern, V. Huber, and S. Kadner. Global Sustainability – A Nobel Cause. Cambridge University Press,
2010. Chap. 25, pp. 289–305. ISBN: 978-0-521-76934-1. URL: http://www.nobel-cause.de/potsdam-
2007/book/NobelCauseBook_chapter25.pdf.

[12] M. T. Beck and J. F. Botero. “Coordinated Allocation of Service Function Chains.” In: IEEE Global
Communications Conference. Dec. 2015, pp. 1–6. DOI: 10.1109/GLOCOM.2015.7417401.

[13] F. Benevenuto, C. Fernandes, M. C. Santos, V. Almeida, and J. Almeida. A Quantitative Analysis of
the Xen Virtualization Overhead. Tech. rep. Federal University of Minas Gerais, 2018.

[14] J. Benze, A. Berl, K. Daniel, et al. “VDE-Positionspapier Energieinformationsnetze und -systeme (Smart
Grid Security).” In: VDE-Kongress Smart Cities. VDE, 2014.

187

https://doi.org/10.1109/COMPSAC.2014.75
https://doi.org/10.1109/ISSRE.2012.32
https://doi.org/10.3390/en12091817
https://doi.org/10.1023/A:1018987616443
https://doi.org/10.1109/PROC.1986.13527
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/NFV-SDN.2015.7387401
http://www.nobel-cause.de/potsdam-2007/book/NobelCauseBook_chapter25.pdf
http://www.nobel-cause.de/potsdam-2007/book/NobelCauseBook_chapter25.pdf
https://doi.org/10.1109/GLOCOM.2015.7417401

[15] A. Berl, M. Niedermeier, and H. De Meer. “Smart Grid Considerations – Energy Efficiency vs. Security.”
In: Green and Sustainable Computing: Part II. Ed. by Ali Hurson. Vol. 88. Advances in Computers. Elsevier
B.V., 2013, pp. 159–198. DOI: 10.1016/B978-0-12-407725-6.00004-6.

[16] A. Berl, M. Niedermeier, A. Fischer, H. De Meer, and D. Hutchison. “Virtual Energy Information
Network: A Resilience Perspective.” In: e & i Elektrotechnik und Informationstechnik 130.4–5 (2013),
pp. 121–126. ISSN: 0932-383X. DOI: 10.1007/s00502-013-0142-4.

[17] M. Bertoli, G. Casale, and G. Serazzi. “JMT: Performance Engineering Tools for System Modeling.”
In: ACM SIGMETRICS Performance Evaluation Review 36.4 (2009), pp. 10–15. ISSN: 0163-5999. DOI:
http://doi.acm.org/10.1145/1530873.1530877.

[18] N. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory, 1736-1936. New York, NY, USA: Clarendon
Press, 1986. ISBN: 978-0-19-853916-2.

[19] B. E. Biringer, E. D. Vugrin, and D. E. Warren. Critical Infrastructure System Security and Resiliency.
CRC Press, 2013.

[20] A. Birolini. “Reliability and Availability of Repairable Systems.” In: Reliability Engineering: Theory and
Practice. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 162–276. ISBN: 978-3-540-49390-7.
DOI: 10.1007/978-3-540-49390-7_6.

[21] B. S. Blanchard, D. C. Verma, and E. L. Peterson. Maintainability: A Key to Effective Serviceability and
Maintenance Management. Wiley-Interscience, 1995.

[22] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi. Queueing Networks and Markov Chains: Modeling
and Performance Evaluation with Computer Science Applications. Wiley-Interscience, 2001, pp. 263–309.
ISBN: 978-0-471-19366-1.

[23] S. Brand. “On Performance and Dependability in Virtualized AMI Systems.” MA thesis. University of
Passau, 2018.

[24] Z. Bronstein and E. Shraga. “NFV Virtualisation of the Home Environment.” In: IEEE 11th Con-
sumer Communications and Networking Conference. Jan. 2014, pp. 899–904. DOI: 10.1109/C-
CNC.2014.6940493.

[25] Bundesamt für Sicherheit in der Informationstechnik. Protection Profile for the Gateway of a Smart
Metering System (Smart Meter Gateway PP). Bundesamt für Sicherheit in der Informationstechnik. Mar.
2013.

[26] Bundesamt für Sicherheit in der Informationstechnik. Technische Richtlinie BSI-TR-03109-1: An-
forderungen an die Interoperabilität der Kommunikationseinheit eines intelligenten Messsystem. Bundesamt
für Sicherheit in der Informationstechnik. 2013. URL: https://www.bsi.bund.de/SharedDocs/
Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03109/TR03109-1.pdf?__blob=
publicationFile&v=3.

[27] Bundesverband der Energie- und Wasserwirtschaft e.V. TAB 2007 (Ausgabe 2011). Tech. rep. Berlin:
Bundesverband der Energie- und Wasserwirtschaft e.V., 2011.

[28] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. 2nd ed. Springer US, 2008.
772 pp. ISBN: 978-0-387-33332-8. DOI: 10.1007/978-0-387-68612-7.

[29] W. Cerroni and F. Callegati. “Live Migration of Virtual Network Functions in Cloud-Based Edge
Networks.” In: IEEE International Conference on Communications. June 2014, pp. 2963–2968. DOI:
10.1109/ICC.2014.6883775.

[30] B. Chandra and M. M. Halldórsson. “Approximation Algorithms for Dispersion Problems.” In: Journal
of Algorithms 38.2 (Feb. 2001), pp. 438–465. ISSN: 0196-6774.

[31] H. Cheng, W. Wang, and C. Rong. “Privacy Protection beyond Encryption for Cloud Big Data.” In: 2nd
International Conference on Information Technology and Electronic Commerce. Dec. 2014, pp. 188–191.
DOI: 10.1109/ICITEC.2014.7105598.

188 Bibliography

https://doi.org/10.1016/B978-0-12-407725-6.00004-6
https://doi.org/10.1007/s00502-013-0142-4
https://doi.org/http://doi.acm.org/10.1145/1530873.1530877
https://doi.org/10.1007/978-3-540-49390-7_6
https://doi.org/10.1109/CCNC.2014.6940493
https://doi.org/10.1109/CCNC.2014.6940493
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03109/TR03109-1.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03109/TR03109-1.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03109/TR03109-1.pdf?__blob=publicationFile&v=3
https://doi.org/10.1007/978-0-387-68612-7
https://doi.org/10.1109/ICC.2014.6883775
https://doi.org/10.1109/ICITEC.2014.7105598

[32] P. Chopade and M. Bikdash. “Structural and Functional Vulnerability Analysis for Survivability of Smart
Grid and SCADA Network under Severe Emergencies and WMD Attacks.” In: IEEE International Conference
on Technologies for Homeland Security. Nov. 2013, pp. 99–105. DOI: 10.1109/THS.2013.6698983.

[33] N. M. M. K. Chowdhury and R. Boutaba. “A Survey of Network Virtualization.” In: Computer Networks
54.5 (2010), pp. 862–876. ISSN: 1389-1286. DOI: http://dx.doi.org/10.1016/j.comnet.2009.10.017.
URL: http://www.sciencedirect.com/science/article/pii/S1389128609003387.

[34] G. Ciardo, A. Blakemore, P. F. Chimento, J. K. Muppala, and K. S. Trivedi. “Automated Generation
and Analysis of Markov Reward Models using Stochastic Reward Nets.” In: Linear Algebra, Markov
Chains, and Queueing Models. Ed. by C. D. Meyer and Robert J. Plemmons. New York, NY: Springer New
York, 1993, pp. 145–191. ISBN: 978-1-4613-8351-2. DOI: 10.1007/978-1-4613-8351-2_11.

[35] G. Ciardo, J. Muppala, and K. S. Trivedi. “SPNP: Stochastic Petri Net Package.” In: Proceedings of
the Third International Workshop on Petri Nets and Performance Models. Dec. 1989, pp. 142–151. DOI:
10.1109/PNPM.1989.68548.

[36] F. M. Cleveland. “Cyber Security Issues for Advanced Metering Infrastructure (AMI).” In: IEEE Power
and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century. July
2008, pp. 1–5. DOI: 10.1109/PES.2008.4596535.

[37] F. M. Cleveland. List of Cybersecurity for Smart Grid Standards and Guideines. Whitepaper. IEC, May
2013.

[38] D. Cotroneo, L. De Simone, A. K. Iannillo, A. Lanzaro, and R. Natella. “Dependability Evaluation and
Benchmarking of Network Function Virtualization Infrastructures.” In: 1st IEEE Conference on Network
Softwarization. Apr. 2015, pp. 1–9. DOI: 10.1109/NETSOFT.2015.7116123.

[39] D. Cotroneo, L. De Simone, A. K. Iannillo, et al. “Network Function Virtualization: Challenges and
Directions for Reliability Assurance.” In: IEEE International Symposium on Software Reliability Engineering
Workshops. Nov. 2014, pp. 37–42. DOI: 10.1109/ISSREW.2014.48.

[40] C. Develder, J. Buysse, B. Dhoedt, and B. Jaumard. “Joint Dimensioning of Server and Network
Infrastructure for Resilient Optical Grids/Clouds.” In: IEEE/ACM Transactions on Networking 22.5 (Oct.
2014), pp. 1591–1606. ISSN: 1063-6692. DOI: 10.1109/TNET.2013.2283924.

[41] M. Di Mauro, M. Longo, and F. Postiglione. “Performability Evaluation of Software Defined Network-
ing Infrastructures.” In: Proceedings of the 10th EAI International Conference on Performance Evaluation
Methodologies and Tools. Taormina, Italy: ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2017, pp. 88–95. ISBN: 978-1-63190-141-6. DOI: 10.4108/eai.25-
10-2016.2266605.

[42] D. V. Dollen. Report to NIST on the Smart Grid Interoperability Standards Roadmap. Tech. rep. National
Institute of Standards and Technology, 2009.

[43] X. Dong, H. Lin, R. Tan, R. K. Iyer, and Z. Kalbarczyk. “Software-Defined Networking for Smart Grid
Resilience: Opportunities and Challenges.” In: Proceedings of the 1st ACM Workshop on Cyber-Physical
System Security - CPSS ’15. ACM Press, 2015. DOI: 10.1145/2732198.2732203.

[44] N. Dorsch, F. Kurtz, H. Georg, C. Hagerling, and C. Wietfeld. “Software-Defined Networking for Smart
Grid Communications: Applications, Challenges and Advantages.” In: IEEE International Conference on
Smart Grid Communications. Nov. 2014, pp. 422–427. DOI: 10.1109/SmartGridComm.2014.7007683.

[45] C. Eckert, C. Krauß, and P. Schoo. Sicherheit im Smart Grid – Eckpunkte für ein Energieinformation-
snetz. Stiftung-Verbundkolleg / Projekt Newise Nr. 90. 2011. URL: https://www.aisec.fraunhofer.
de / content / dam / aisec / Dokumente / Publikationen / Studien _ TechReports / deutsch / sr90 _
sicherheit_im_energieinformationsnetz_gesamt.pdf.

[46] B. Egger, Y. Cho, C. Jo, E. Park, and J. Lee. “Efficient Checkpointing of Live Virtual Machines.”
In: IEEE Transactions on Computers 65.10 (Oct. 2016), pp. 3041–3054. ISSN: 0018-9340. DOI:
10.1109/TC.2016.2519890.

Bibliography 189

https://doi.org/10.1109/THS.2013.6698983
https://doi.org/http://dx.doi.org/10.1016/j.comnet.2009.10.017
http://www.sciencedirect.com/science/article/pii/S1389128609003387
https://doi.org/10.1007/978-1-4613-8351-2_11
https://doi.org/10.1109/PNPM.1989.68548
https://doi.org/10.1109/PES.2008.4596535
https://doi.org/10.1109/NETSOFT.2015.7116123
https://doi.org/10.1109/ISSREW.2014.48
https://doi.org/10.1109/TNET.2013.2283924
https://doi.org/10.4108/eai.25-10-2016.2266605
https://doi.org/10.4108/eai.25-10-2016.2266605
https://doi.org/10.1145/2732198.2732203
https://doi.org/10.1109/SmartGridComm.2014.7007683
https://www.aisec.fraunhofer.de/content/dam/aisec/Dokumente/Publikationen/Studien_TechReports/deutsch/sr90_sicherheit_im_energieinformationsnetz_gesamt.pdf
https://www.aisec.fraunhofer.de/content/dam/aisec/Dokumente/Publikationen/Studien_TechReports/deutsch/sr90_sicherheit_im_energieinformationsnetz_gesamt.pdf
https://www.aisec.fraunhofer.de/content/dam/aisec/Dokumente/Publikationen/Studien_TechReports/deutsch/sr90_sicherheit_im_energieinformationsnetz_gesamt.pdf
https://doi.org/10.1109/TC.2016.2519890

[47] EnerNex Corporation. Advanced Security Acceleration Project for the Smart Grid (ASAP-SG). Report
prepared for the SG Security Working Group (UCAIug) and the NIST Cyber Security Coordination Task
Group. Version 1.0, p. 16. EnerNex Corporation, Dec. 2009.

[48] Ernst & Young GmbH. Kosten-Nutzen-Analyse für einen flächendeckenden Einsatz intelligenter Zähler.
Endbericht zur Studie im Auftrag des Bundesministeriums für Wirtschaft und Technologie. Report. Bun-
desministerium für Wirtschaft und Technologie, 2013. 239 pp.

[49] European Telecommunications Standards Institute. Network Functions Virtualisation (NFV); Manage-
ment and Orchestration, ETSI GS NFV-MAN 001 V1.1.1 (2014-12). Tech. rep. European Telecommunica-
tions Standards Institute, 2014.

[50] European Telecommunications Standards Institute. Network Functions Virtualisation: An Introduction,
Benefits, Enablers, Challenges & Call for Action. Tech. rep. European Telecommunications Standards
Institute, 2012. URL: https://portal.etsi.org/nfv/nfv_white_paper.pdf.

[51] Z. Fan, P. Kulkarni, S. Gormus, et al. “Smart Grid Communications: Overview of Research Challenges,
Solutions, and Standardization Activities.” In: IEEE Communications Surveys Tutorials 15.1 (2013),
pp. 21–38. ISSN: 1553-877X. DOI: 10.1109/SURV.2011.122211.00021.

[52] A. Fawaz, R. Berthier, and W. H. Sanders. “A Response Cost Model for Advanced Metering Infras-
tructures.” In: IEEE Transactions on Smart Grid 7.2 (Mar. 2016), pp. 543–553. ISSN: 1949-3053. DOI:
10.1109/TSG.2015.2418736.

[53] Federal Energy Regulatory Commission. Assessment of Demand Response & Advanced Metering. Tech.
rep. pp. 17, 20-24, 31, Appendix C, Report required by the Energy Policy Act of 2005. Federal Energy
Regulatory Commission, Dec. 2008.

[54] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach. “Virtual Network Embed-
ding: A Survey.” In: IEEE Communications Surveys & Tutorials 15.4 (2013), pp. 1888–1906. DOI:
10.1109/SURV.2013.013013.00155.

[55] J. C. Foreman and D. Gurugubelli. Cyber Attack Surface Analysis of Advanced Metering Infrastructure.
2016. URL: https://arxiv.org/abs/1607.04811.

[56] M. A. Friedman, P. Y. Tran, and P. L. Goddard. Reliability of Software Intensive Systems. Advanced
computing and telecommunications series. Noyes Data Corporation, 1995. ISBN: 978-0-8155-1361-2.

[57] T. J. Gerpott and M. Paukert. “Determinants of Willingness to Pay for Smart Meters: An Empirical
Analysis of Household Customers in Germany.” In: Energy Policy 61 (2013), pp. 483–495. ISSN: 0301-
4215. DOI: 10.1016/j.enpol.2013.06.012. URL: http://www.sciencedirect.com/science/article/
pii/S0301421513004977.

[58] M. Grottke, A. P. Nikora, and K. S. Trivedi. “An Empirical Investigation of Fault Types in Space Mission
System Software.” In: IEEE/IFIP International Conference on Dependable Systems Networks. June 2010,
pp. 447–456. DOI: 10.1109/DSN.2010.5544284.

[59] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. “A Systematic Literature Review on Fault
Prediction Performance in Software Engineering.” In: IEEE Transactions on Software Engineering 38.6
(Nov. 2012), pp. 1276–1304. ISSN: 0098-5589. DOI: 10.1109/TSE.2011.103.

[60] B. R. Haverkort. Performance of Computer Communication Systems: A Model-Based Approach. New York,
NY, USA: John Wiley & Sons, Inc., 1998. ISBN: 978-0-471-97228-0.

[61] B. R. Haverkort, R. Marie, G. Rubino, and K. S. Trivedi. Performability Modelling Techniques and Tools.
John Wiley & Sons Academic Press Professional, Inc., 2001. 338 pp. ISBN: 978-0-471-49195-8.

[62] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. “Software Rejuvenation: Analysis, Module and
Applications.” In: 25th International Symposium on Fault-Tolerant Computing. Digest of Papers. June
1995, pp. 381–390. DOI: 10.1109/FTCS.1995.466961.

190 Bibliography

https://portal.etsi.org/nfv/nfv_white_paper.pdf
https://doi.org/10.1109/SURV.2011.122211.00021
https://doi.org/10.1109/TSG.2015.2418736
https://doi.org/10.1109/SURV.2013.013013.00155
https://arxiv.org/abs/1607.04811
https://doi.org/10.1016/j.enpol.2013.06.012
http://www.sciencedirect.com/science/article/pii/S0301421513004977
http://www.sciencedirect.com/science/article/pii/S0301421513004977
https://doi.org/10.1109/DSN.2010.5544284
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1109/FTCS.1995.466961

[63] Z. Huang, C. Wang, M. Stojmenovic, and A. Nayak. “Balancing System Survivability and Cost of Smart
Grid Via Modeling Cascading Failures.” In: IEEE Transactions on Emerging Topics in Computing 1.1 (June
2013), pp. 45–56. ISSN: 2168-6750. DOI: 10.1109/TETC.2013.2273079.

[64] J. Y. Hwang, S. B. Suh, S. K. Heo, et al. “Xen on ARM: System Virtualization Using Xen Hypervisor for
ARM-Based Secure Mobile Phones.” In: 5th IEEE Consumer Communications and Networking Conference.
Jan. 2008, pp. 257–261. DOI: 10.1109/ccnc08.2007.64.

[65] International Electrotechnical Commission. International Electrotechnical Vocabulary: Chapter 191:
Dependability and Quality of Service. Standard. Geneva, Switzerland: International Electrotechnical
Commission, 2001.

[66] IEC SC 65A. Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems.
Standard IEC 61508. International Electrotechnical Commission, 2010.

[67] International Energy Agency. World Energy Outlook 2017. 2017, p. 763. DOI: 10.1787/weo-2017-en.
URL: https://www.oecd-ilibrary.org/content/publication/weo-2017-en.

[68] P. Jalote and B. Murphy. “Reliability Growth in Software Products.” In: 15th International Symposium
on Software Reliability Engineering. Nov. 2004, pp. 47–53. DOI: 10.1109/ISSRE.2004.34.

[69] B. Jaumard, A. Shaikh, and C. Develder. “Selecting the Best Locations for Data Centers in Resilient
Optical Grid/Cloud Dimensioning.” In: 14th International Conference on Transparent Optical Networks.
July 2012, pp. 1–4. DOI: 10.1109/ICTON.2012.6253739.

[70] I. Kaitovic, S. Lukovic, and M. Malek. “Unifying Dependability of Critical Infrastructures: Electric
Power System and ICT: Concepts, Figures of Merit and Taxonomy.” In: IEEE 21st Pacific Rim International
Symposium on Dependable Computing. Nov. 2015, pp. 50–59. DOI: 10.1109/PRDC.2015.38.

[71] K. C. Kapur and M. Pecht. Reliability Engineering. Wiley Series in Systems Engineering and Management.
Wiley, 2014. ISBN: 978-1-118-14067-3.

[72] D. S. Kim, F. Machida, and K. S. Trivedi. “Availability Modeling and Analysis of a Virtualized System.”
In: 15th IEEE Pacific Rim International Symposium on Dependable Computing. Nov. 2009, pp. 365–371.
DOI: 10.1109/PRDC.2009.64.

[73] H. Kim. “Reliable p-Hub Location Problems and Protection Models for Hub Network Design.” PhD
Thesis. Ohio State University, 2008.

[74] S.-H. Kim and B. L. Nelson. “A Fully Sequential Procedure for Indifference-zone Selection in Simula-
tion.” In: ACM Transactions on Modeling and Computer Simulation 11.3 (July 2001), pp. 251–273. ISSN:
1049-3301. DOI: 10.1145/502109.502111.

[75] A. Koziolek, A. Avritzer, S. Suresh, et al. “Design of Distribution Automation Networks Using Sur-
vivability Modeling and Power Flow Equations.” In: IEEE 24th International Symposium on Software
Reliability Engineering. Nov. 2013, pp. 41–50. DOI: 10.1109/ISSRE.2013.6698903.

[76] J. F. Kurose and K. W. Ross. Computer Networking: A Top-down Approach. Pearson, 2013. ISBN:
978-0-13-285620-1.

[77] M. Kuzlu, M. Pipattanasomporn, and S. Rahman. “Communication Network Requirements for Major
Smart Grid Applications in HAN, NAN and WAN.” In: Computer Networks 67 (2014), pp. 74–88. ISSN:
1389-1286. DOI: 10.1016/j.comnet.2014.03.029. URL: http://www.sciencedirect.com/science/
article/pii/S1389128614001431.

[78] J.-C. Laprie. Dependability: Basic Concepts and Terminology. Ed. by Springer-Verlag Wien. Springer-Verlag
Wien, 1992. DOI: 10.1007/978-3-7091-9170-5.

[79] J.-C. Laprie. “Dependable Computing and Fault Tolerance: Concepts and Terminology.” In: 25th Interna-
tional Symposium on Fault-Tolerant Computing. June 1995, pp. 2–11. DOI: 10.1109/FTCSH.1995.532603.

[80] M. G. Lauby, J. Bian, A. Bennett, et al. 2009 Long-Term Reliability Assessment. Annual Evaluation of
the Reliability of the Bulk Power System. Tech. rep. North American Electric Reliability Corporation, Oct.
2009.

Bibliography 191

https://doi.org/10.1109/TETC.2013.2273079
https://doi.org/10.1109/ccnc08.2007.64
https://doi.org/10.1787/weo-2017-en
https://www.oecd-ilibrary.org/content/publication/weo-2017-en
https://doi.org/10.1109/ISSRE.2004.34
https://doi.org/10.1109/ICTON.2012.6253739
https://doi.org/10.1109/PRDC.2015.38
https://doi.org/10.1109/PRDC.2009.64
https://doi.org/10.1145/502109.502111
https://doi.org/10.1109/ISSRE.2013.6698903
https://doi.org/10.1016/j.comnet.2014.03.029
http://www.sciencedirect.com/science/article/pii/S1389128614001431
http://www.sciencedirect.com/science/article/pii/S1389128614001431
https://doi.org/10.1007/978-3-7091-9170-5
https://doi.org/10.1109/FTCSH.1995.532603

[81] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson. “Performance Overhead Comparison between Hypervisor
and Container Based Virtualization.” In: IEEE 31st International Conference on Advanced Information
Networking and Applications. Mar. 2017, pp. 955–962. DOI: 10.1109/AINA.2017.79.

[82] V. Liberatore and A. Al-Hammouri. “Smart Grid Communication and Co-Simulation.” In: IEEE Ener-
gytech. May 2011, pp. 1–5. DOI: 10.1109/EnergyTech.2011.5948542.

[83] C. Lindemann. “An Improved Numerical Algorithm for Calculating Steady-state Solutions of Determin-
istic and Stochastic Petri Net Models.” In: Proceedings of the 4th International Workshop on Petri Nets and
Performance Models. Dec. 1991, pp. 176–185. DOI: 10.1109/PNPM.1991.238803.

[84] C. Lindemann. “Employing the Randomization Technique for Solving Stochastic Petri Net Models.”
In: A. Lehmann and F. Lehmann. Messung, Modellierung und Bewertung von Rechensystemen: 6. GI/ITG-
Fachtagung, Neubiberg, 18.–20. September 1991. Informatik-Fachberichte. Springer Berlin Heidelberg,
1991, p. 388. ISBN: 978-3-642-76934-4.

[85] P. Lv, X. Wang, Y. Yang, and M. Xu. “Network Virtualization for Smart Grid Communications.” In: IEEE
Systems Journal 8.2 (June 2014), pp. 471–482. ISSN: 1932-8184. DOI: 10.1109/JSYST.2013.2260695.

[86] F. Machida, D. S. Kim, J. S. Park, and K. S. Trivedi. “Toward Optimal Virtual Machine Placement and
Rejuvenation Scheduling in a Virtualized Data Center.” In: IEEE International Conference on Software
Reliability Engineering Workshops. Nov. 2008, pp. 1–3. DOI: 10.1109/ISSREW.2008.5355515.

[87] F. Machida, D. S. Kim, and K. S. Trivedi. “Modeling and Analysis of Software Rejuvenation in a Server
Virtualized System.” In: IEEE 2nd International Workshop on Software Aging and Rejuvenation. Nov. 2010,
pp. 1–6. DOI: 10.1109/WOSAR.2010.5722098.

[88] F. Machida, J. Xiang, K. Tadano, and Y. Maeno. “Combined Server Rejuvenation in a Virtualized
Data Center.” In: 9th International Conference on Ubiquitous Intelligence and Computing and 9th Interna-
tional Conference on Autonomic and Trusted Computing. Sept. 2012, pp. 486–493. DOI: 10.1109/UIC-
ATC.2012.52.

[89] K. Maheshwari, M. Lim, L. Wang, K. Birman, and R. van Renesse. “Toward a Reliable, Secure and
Fault Tolerant Smart Grid State Estimation in the Cloud.” In: IEEE PES Innovative Smart Grid Technologies.
Feb. 2013, pp. 1–6. DOI: 10.1109/ISGT.2013.6497831.

[90] S. Manel, A. Ridha, and M. Alia. “Optimised Migrate Virtual Machine Rejuvenation.” In: Journal of
Computer and Communications 3.8 (2015), pp. 33–40. DOI: 10.4236/jcc.2015.38004.

[91] K. Marashi and S. S. Sarvestani. “Towards Comprehensive Modeling of Reliability for Smart Grids:
Requirements and Challenges.” In: IEEE 15th International Symposium on High-Assurance Systems
Engineering. Jan. 2014, pp. 105–112. DOI: 10.1109/HASE.2014.23.

[92] Massachusetts Institute of Technology. The Future of the Electric Grid – an Interdisciplinary MIT Study.
Tech. rep. Massachusetts Institute of Technology, 2011.

[93] V. Mathew, R. K. Sitaraman, and P. Shenoy. “Energy-aware Load Balancing in Content Delivery Net-
works.” In: Proceedings IEEE INFOCOM. Mar. 2012, pp. 954–962. DOI: 10.1109/INFCOM.2012.6195846.

[94] R. D. S. Matos, P. R. M. Maciel, F. Machida, D. S. Kim, and K. S. Trivedi. “Sensitivity Analysis of
Server Virtualized System Availability.” In: IEEE Transactions on Reliability 61.4 (Dec. 2012), pp. 994–
1006. DOI: 10.1109/tr.2012.2220711.

[95] D. A. Menascé. “Virtualization: Concepts, Applications, and Performance Modeling.” In: 31th Interna-
tional Computer Measurement Group Conference, December 4-9, 2005, Orlando, Florida, USA, Proceedings.
2005, pp. 407–414. URL: http://www.cmg.org/?s2member%5C_file%5C_download=/proceedings/
2005/5189.pdf.

[96] D. S. Menasché, A. Avritzer, S. Suresh, et al. “Assessing Survivability of Smart Grid Distribution
Network Designs Accounting for Multiple Failures.” In: Concurrency and Computation: Practice and
Experience 26.12 (Aug. 2014), pp. 1949–1974. ISSN: 1532-0626. DOI: 10.1002/cpe.3241.

192 Bibliography

https://doi.org/10.1109/AINA.2017.79
https://doi.org/10.1109/EnergyTech.2011.5948542
https://doi.org/10.1109/PNPM.1991.238803
https://doi.org/10.1109/JSYST.2013.2260695
https://doi.org/10.1109/ISSREW.2008.5355515
https://doi.org/10.1109/WOSAR.2010.5722098
https://doi.org/10.1109/UIC-ATC.2012.52
https://doi.org/10.1109/UIC-ATC.2012.52
https://doi.org/10.1109/ISGT.2013.6497831
https://doi.org/10.4236/jcc.2015.38004
https://doi.org/10.1109/HASE.2014.23
https://doi.org/10.1109/INFCOM.2012.6195846
https://doi.org/10.1109/tr.2012.2220711
http://www.cmg.org/?s2member%5C_file%5C_download=/proceedings/2005/5189.pdf
http://www.cmg.org/?s2member%5C_file%5C_download=/proceedings/2005/5189.pdf
https://doi.org/10.1002/cpe.3241

[97] W. Meng, R. Ma, and H. H. Chen. “Smart Grid Neighborhood Area Networks: A Survey.” In: IEEE
Network 28.1 (Jan. 2014), pp. 24–32. ISSN: 0890-8044. DOI: 10.1109/MNET.2014.6724103.

[98] J. F. Meyer. “Performability: A Retrospective and some Pointers to the Future.” In: Performance Evaluation
14.3 (1992), pp. 139–156. ISSN: 0166-5316. DOI: http://dx.doi.org/10.1016/0166-5316(92)90002-X.
URL: http://www.sciencedirect.com/science/article/pii/016653169290002X.

[99] L. Mirtskhulava, R. Kakubava, N. Ananiashvili, and G. Gugunashvili. “Internet Reliability and Avail-
ability Analysis Using Markov Method.” In: AMSS 16th International Conference on Computer Modelling
and Simulation. Mar. 2014, pp. 423–427. DOI: 10.1109/UKSim.2014.14.

[100] R. R. Mohassel, A. Fung, F. Mohammadi, and K. Raahemifar. “A Survey on Advanced Metering Infras-
tructure.” In: International Journal of Electrical Power & Energy Systems 63 (2014), pp. 473–484. ISSN:
0142-0615. DOI: http://dx.doi.org/10.1016/j.ijepes.2014.06.025. URL: http://www.sciencedirect.
com/science/article/pii/S0142061514003743.

[101] R. Morabito, J. Kjällman, and M. Komu. “Hypervisors vs. Lightweight Virtualization: A Performance
Comparison.” In: IEEE International Conference on Cloud Engineering. Mar. 2015, pp. 386–393. DOI:
10.1109/IC2E.2015.74.

[102] K. Moslehi and R. Kumar. “A Reliability Perspective of the Smart Grid.” In: IEEE Transactions on Smart
Grid 1.1 (June 2010), pp. 57–64. ISSN: 1949-3053. DOI: 10.1109/TSG.2010.2046346.

[103] J. K. Muppala, G. Ciardo, and K. S. Trivedi. “Stochastic Reward Nets for Reliability Prediction.” In:
Communications in Reliability, Maintainability and Serviceability. 1994, pp. 9–20.

[104] J. D. Musa and K. Okumoto. “A Logarithmic Poisson Execution Time Model for Software Reliability
Measurement.” In: Proceedings of the 7th International Conference on Software Engineering. ICSE ’84.
IEEE Press, 1984, pp. 230–238. ISBN: 978-0-8186-0528-4.

[105] M. T. H. Myint and T. Thein. “Availability Improvement in Virtualized Multiple Servers with Software
Rejuvenation and Virtualization.” In: 4th International Conference on Secure Software Integration and
Reliability Improvement. June 2010, pp. 156–162. DOI: 10.1109/SSIRI.2010.19.

[106] National Energy Technology Laboratory. A Systems View of the Modern Grid. Tech. rep. Report con-
ducted for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability. National
Energy Technology Laboratory, Jan. 2007.

[107] National Energy Technology Laboratory. The NETL Modern Grid Strategy Powering our 21st-Century
Economy: Advanced Metering Infrastructure. Tech. rep. National Energy Technology Laboratory, 2008.
URL: https : / / www . smartgrid . gov / files / NIST _ SG _ Interop _ Report _ Postcommentperiod _
version_200808.pdf.

[108] National Institute of Standards and Technology. NIST Framework and Roadmap for Smart Grid
Interoperability Standards, Release 3.0 (NIST Special Publication 1108). National Institute of Standards
and Technology. Jan. 2014.

[109] O. Neagu and W. Hamouda. “Performance of Smart Grid Communication in the Presence of Impulsive
Noise.” In: International Conference on Selected Topics in Mobile Wireless Networking. Apr. 2016, pp. 1–5.
DOI: 10.1109/MoWNet.2016.7496614.

[110] C. P. Nguyen and A. J. Flueck. “A Novel Strategy for Failure-tolerant Communication in
Smart Grids.” In: IEEE PES General Meeting, Conference Exposition. July 2014, pp. 1–5. DOI:
10.1109/PESGM.2014.6939516.

[111] T. A. Nguyen, D. Min, and E. Choi. “A Comprehensive Evaluation of Availability and Operational Cost
for a Virtualized Server System Using Stochastic Reward Nets.” In: The Journal of Supercomputing (Aug.
2017). ISSN: 1573-0484. DOI: 10.1007/s11227-017-2127-2.

[112] M. Niedermeier and H. De Meer. “Constructing Dependable Smart Grid Networks using Network
Functions Virtualization.” In: Journal of Network and Systems Management (2016), pp. 1–21. ISSN:
1573-7705. DOI: 10.1007/s10922-016-9380-1.

Bibliography 193

https://doi.org/10.1109/MNET.2014.6724103
https://doi.org/http://dx.doi.org/10.1016/0166-5316(92)90002-X
http://www.sciencedirect.com/science/article/pii/016653169290002X
https://doi.org/10.1109/UKSim.2014.14
https://doi.org/http://dx.doi.org/10.1016/j.ijepes.2014.06.025
http://www.sciencedirect.com/science/article/pii/S0142061514003743
http://www.sciencedirect.com/science/article/pii/S0142061514003743
https://doi.org/10.1109/IC2E.2015.74
https://doi.org/10.1109/TSG.2010.2046346
https://doi.org/10.1109/SSIRI.2010.19
https://www.smartgrid.gov/files/NIST_SG_Interop_Report_Postcommentperiod_version_200808.pdf
https://www.smartgrid.gov/files/NIST_SG_Interop_Report_Postcommentperiod_version_200808.pdf
https://doi.org/10.1109/MoWNet.2016.7496614
https://doi.org/10.1109/PESGM.2014.6939516
https://doi.org/10.1007/s11227-017-2127-2
https://doi.org/10.1007/s10922-016-9380-1

[113] A. Nieße, M. Tröschel, and M. Sonnenschein. “Designing Dependable and Sustainable Smart Grids
– How to apply Algorithm Engineering to Distributed Control in Power Systems.” In: Environmental
Modelling & Software 56 (2014). Thematic Issue on Modelling and Evaluating the Sustainability of
Smart Solutions, pp. 37–51. ISSN: 1364-8152. DOI: 10.1016/j.envsoft.2013.12.003. URL: http://www.
sciencedirect.com/science/article/pii/S136481521300306X.

[114] D. Niyato, P. Wang, and E. Hossain. “Reliability Analysis and Redundancy Design of Smart Grid
Wireless Communications System for Demand Side Management.” In: IEEE Wireless Communications
19.3 (June 2012), pp. 38–46. ISSN: 1536-1284. DOI: 10.1109/MWC.2012.6231158.

[115] A. F. Ocampo, J. Gil-Herrera, P. H. Isolani, et al. “Optimal Service Function Chain Composition in
Network Functions Virtualization.” In: Security of Networks and Services in an All-Connected World.
Ed. by D. Tuncer, R. Koch, R. Badonnel, and B. Stiller. Cham: Springer International Publishing, 2017,
pp. 62–76. ISBN: 978-3-319-60774-0.

[116] E. E. Ogheneovo. “Software Maintenance and Evolution: The Implication for Software Development.”
In: West African Journal of Industrial and Academic Research 7.1 (2013), pp. 81–92.

[117] V. H. Okabayashi, I. C. G. Ribeiro, D. M. Passos, and C. V. N. Albuquerque. “A Resilient Dynamic
Gateway Selection Algorithm Based on Quality Aware Metrics for Smart Grids.” In: Proceedings of
the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mo-
bile Systems. MSWiM ’15. Cancun, Mexico: ACM, 2015, pp. 91–98. ISBN: 978-1-4503-3762-5. DOI:
10.1145/2811587.2811613.

[118] B. Parhami. “From Defects to Failures: A View of Dependable Computing.” In: ACM SIGARCH Computer
Architecture News 16.4 (Sept. 1988), pp. 157–168. ISSN: 0163-5964. DOI: 10.1145/54331.54345.

[119] D. L. Parnas. “Software Aging.” In: Proceedings of 16th International Conference on Software Engineering.
May 1994, pp. 279–287. DOI: 10.1109/ICSE.1994.296790.

[120] D. L. Parnas, A. J. van Schouwen, and S. P. Kwan. “Evaluation of Safety-critical Software.” In: Com-
munications of the ACM 33.6 (June 1990), pp. 636–648. ISSN: 0001-0782. DOI: 10.1145/78973.78974.

[121] T. Petermann, H. Bradke, A. Lüllmann, M. Poetzsch, and U. Riehm. Was bei einem Blackout geschieht.
Folgen eines langandauernden und großflächigen Stromausfalls. Studien des Büros für Technikfolgen-
Abschätzung beim Deutschen Bundestag, Bd. 33. Berlin: Edition Sigma, 2011. ISBN: 978-3-8360-8133-7.
URL: http://www.tab-beim-bundestag.de/de/pdf/publikationen/buecher/petermann-etal-
2011-141.pdf.

[122] T. Pfeiffenberger, J. L. Du, P. B. Arruda, and A. Anzaloni. “Reliable and Flexible Communications for
Power Systems: Fault-tolerant Multicast with SDN/OpenFlow.” In: 7th International Conference on New
Technologies, Mobility and Security. July 2015, pp. 1–6. DOI: 10.1109/NTMS.2015.7266517.

[123] S. Piaszeck, L. Wenzel, and A. Wolf. Regional Diversity in the Costs of Electricity Outages: Results for
German Counties. Tech. rep. Hamburg Institute of International Economics, Sept. 2013.

[124] G. J. Popek and R. P. Goldberg. “Formal Requirements for Virtualizable Third Generation Architec-
tures.” In: SIGOPS Operating Systems Review 7.4 (Jan. 1973), pp. 412–421. ISSN: 0163-5980. DOI:
10.1145/957195.808061.

[125] P. P. S. Priya and V. Saminadan. “Performance Analysis of WiMAX Based Smart Grid Communication
Traffic Priority Model.” In: International Conference on Communication and Signal Processing. Apr. 2014,
pp. 778–782. DOI: 10.1109/ICCSP.2014.6949949.

[126] D. N. Quang, O. H. See, L. L. Chee, C. Y. Xuen, and S. Karuppiah. “Performance Testing Framework
for Smart Grid Communication Network.” In: IOP Conference Series: Earth and Environmental Science
16.1 (2013), pp. 1–4. URL: http://stacks.iop.org/1755-1315/16/i=1/a=012147.

[127] H. V. Ramasamy and M. Schunter. “Architecting Dependable Systems using Virtualization.” In: Work-
shop on Architecting Dependable Systems in conjunction with 2007 International Conference on Dependable
Systems and Networks. 2007.

194 Bibliography

https://doi.org/10.1016/j.envsoft.2013.12.003
http://www.sciencedirect.com/science/article/pii/S136481521300306X
http://www.sciencedirect.com/science/article/pii/S136481521300306X
https://doi.org/10.1109/MWC.2012.6231158
https://doi.org/10.1145/2811587.2811613
https://doi.org/10.1145/54331.54345
https://doi.org/10.1109/ICSE.1994.296790
https://doi.org/10.1145/78973.78974
http://www.tab-beim-bundestag.de/de/pdf/publikationen/buecher/petermann-etal-2011-141.pdf
http://www.tab-beim-bundestag.de/de/pdf/publikationen/buecher/petermann-etal-2011-141.pdf
https://doi.org/10.1109/NTMS.2015.7266517
https://doi.org/10.1145/957195.808061
https://doi.org/10.1109/ICCSP.2014.6949949
http://stacks.iop.org/1755-1315/16/i=1/a=012147

[128] R. Ramaswamy, N. Weng, and T. Wolf. “Characterizing Network Processing Delay.” In: IEEE
Global Telecommunications Conference. Vol. 3. Nov. 2004, pp. 1629–1634. DOI: 10.1109/GLO-
COM.2004.1378257.

[129] D. F. Ramírez, S. Cespedes, C. H. R. Becerra, and C. Lazo. “Performance Evaluation of Future
Ami Applications in Smart Grid Neighborhood Area Networks.” In: IEEE Colombian Conference on
Communication and Computing (2015), pp. 1–6.

[130] S. S. Rathore and S. Kumar. “A Study on Software Fault Prediction Techniques.” In: Artificial Intelligence
Review (May 2017). ISSN: 1573-7462. DOI: 10.1007/s10462-017-9563-5.

[131] S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. “Facility Dispersion Problems: Heuristics and Special
Cases.” In: Algorithms and Data Structures. Ed. by F. Dehne, J.-R. Sack, and N. Santoro. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1991, pp. 355–366. ISBN: 978-3-540-47566-8.

[132] S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. “Heuristic and Special Case Algorithms for Dispersion
Problems.” In: Operations Research 42.2 (Apr. 1994), pp. 299–310. ISSN: 0030-364X.

[133] S. Rawat, N. Goyal, and M. Ram. “Software Reliability Growth Modeling for Agile Software Devel-
opment.” In: International Journal of Applied Mathematics and Computer Science 27.4 (Dec. 2017),
pp. 777–783. DOI: 10.1515/amcs-2017-0054.

[134] M. H. Rehmani, A. Davy, B. Jennings, and C. Assi. Software Defined Networks based Smart Grid
Communication: A Comprehensive Survey. 2018. URL: http://arxiv.org/abs/1801.04613v3.

[135] C. Rehtanz. Autonomous Systems and Intelligent Agents in Power System Control and Operation (Power
Systems). Springer Verlag, 2003. ISBN: 978-3-540-40202-2.

[136] S. Rinaldi, P. Ferrari, D. Brandao, and S. Sulis. “Software Defined Networking Applied to the Hetero-
geneous Infrastructure of Smart Grid.” In: IEEE World Conference on Factory Communication Systems.
May 2015, pp. 1–4. DOI: 10.1109/WFCS.2015.7160573.

[137] P. Rook. Software Reliability Handbook. New York, NY, USA: Elsevier Science Inc., 1990. ISBN: 978-1-
85166-400-9.

[138] L. Rosenberg, T. Hammer, and J. Shaw. “Software Metrics and Reliability.” In: 9th International
Symposium on Software Reliability Engineering. 1998.

[139] M. Rost and S. Schmid. “NP-Completeness and Inapproximability of the Virtual Network Embedding
Problem and Its Variants.” In: CoRR abs/1801.03162 (2018).

[140] J. Sahoo, S. Mohapatra, and R. Lath. “Virtualization: A Survey on Concepts, Taxonomy and Associated
Security Issues.” In: 2nd International Conference on Computer and Network Technology. Apr. 2010,
pp. 222–226. DOI: 10.1109/ICCNT.2010.49.

[141] F. Salfner and M. Malek. “Proactive Fault Handling for System Availability Enhancement.” In:
19th IEEE International Parallel and Distributed Processing Symposium. Apr. 2005, pp. 7–13. DOI:
10.1109/IPDPS.2005.360.

[142] A. Sauhats, V. Chuvychin, N. Gurov, et al. “The Latvian Experience and Problems of the Grid Integra-
tion of Renewable Energy Sources in the Power System.” In: IEEE Power Tech Russia. June 2005, pp. 1–7.
DOI: 10.1109/PTC.2005.4524794.

[143] R. R. Schrieber, H. L. Willis, and E. Philips. Aging Power Delivery Infrastructures. Ed. by CRC Press.
2nd ed. Power Engineering (Willis). CRC Press, 2013. ISBN: 978-0-203-91091-7.

[144] B. Schroeder and G. Gibson. “A Large-Scale Study of Failures in High-Performance Computing Sys-
tems.” In: IEEE Transactions on Dependable and Secure Computing 7.4 (Oct. 2010), pp. 337–350. ISSN:
1545-5971. DOI: 10.1109/TDSC.2009.4.

[145] S. M. Shariati, A. Abouzarjomehri, and M. H. Ahmadzadegan. “Challenges and Security Issues in
Cloud Computing from Two Perspectives: Data Security and Privacy Protection.” In: 2nd International
Conference on Knowledge-Based Engineering and Innovation. Nov. 2015, pp. 1078–1082. DOI: 10.1109/K-
BEI.2015.7436196.

Bibliography 195

https://doi.org/10.1109/GLOCOM.2004.1378257
https://doi.org/10.1109/GLOCOM.2004.1378257
https://doi.org/10.1007/s10462-017-9563-5
https://doi.org/10.1515/amcs-2017-0054
http://arxiv.org/abs/1801.04613v3
https://doi.org/10.1109/WFCS.2015.7160573
https://doi.org/10.1109/ICCNT.2010.49
https://doi.org/10.1109/IPDPS.2005.360
https://doi.org/10.1109/PTC.2005.4524794
https://doi.org/10.1109/TDSC.2009.4
https://doi.org/10.1109/KBEI.2015.7436196
https://doi.org/10.1109/KBEI.2015.7436196

[146] Y. Shi, X. Qiu, and S. Guo. “Genetic Algorithm-based Redundancy Optimization Method for Smart Grid
Communication Network.” In: China Communications 12.8 (Aug. 2015), pp. 73–84. ISSN: 1673-5447.
DOI: 10.1109/CC.2015.7224708.

[147] T. Shiobara, P. Palensky, and H. Nishi. “Effective Metering Data Aggregation for Smart Grid Communi-
cation Infrastructure.” In: 41st Annual Conference of the IEEE Industrial Electronics Society. Institute of Elec-
trical and Electronics Engineers Inc., Jan. 2015, pp. 2136–2141. DOI: 10.1109/IECON.2015.7392417.

[148] R. Shojaee, A. Latifi, and N. Yazdani. “A Stochastic Reward Net Approach to Model Availability of
Cloud Virtualization.” In: 7th International Symposium on Telecommunications. Sept. 2014, pp. 683–688.
DOI: 10.1109/ISTEL.2014.7000790.

[149] Silicon Laboratories, Inc. Smart Metering Brings Intelligence and Connectivity to Utilities, Green Energy
and Natural Resource Management. Tech. rep. Silicon Laboratories, Inc., 2012. URL: http://www.silabs.
com/Support%20Documents/TechnicalDocs/Designing-Low-Power-Metering-Applications.pdf.

[150] L. M. Silva, J. Alonso, and J. Torres. “Using Virtualization to Improve Software Rejuvenation.”
In: IEEE Transactions on Computers 58.11 (Nov. 2009), pp. 1525–1538. ISSN: 0018-9340. DOI:
10.1109/TC.2009.119.

[151] C. Sivapragash, S. R. Thilaga, and S. S. Kumar. “Advanced Cloud Computing in Smart Power Grid.”
In: IET Chennai 3rd International on Sustainable Energy and Intelligent Systems. Dec. 2012, pp. 1–6. DOI:
10.1049/cp.2012.2238.

[152] D. R. Skuce and A. Mili. “Behavorial Specifications in Object-Oriented Programming.” In: Journal of
Object Oriented Programming 7.8 (1995), pp. 41–49.

[153] M. J. Steidele. “Virtualisierung von Smart Grid Gateways.” MA thesis. University of Passau, 2015.

[154] Z. Sui, M. Niedermeier, and H. De Meer. “RESA: A Robust and Efficient Secure Aggregation Scheme
in Smart Grids.” In: 10th International Conference on Critical Information Infrastructures Security. 2015,
pp. 183–194.

[155] A. T. Tai, J. F. Meyer, and A. Avizienis. “Performability Enhancement of Fault-tolerant Soft-
ware.” In: IEEE Transactions on Reliability 42.2 (May 1993), pp. 227–237. ISSN: 0018-9529. DOI:
10.1109/24.229492.

[156] T. Thein, M. Pokharel, S. D. Chi, and J. S. Park. “A Recovery Model for Survivable Distributed Systems
through the Use of Virtualization.” In: 4th International Conference on Networked Computing and Advanced
Information Management. Vol. 1. Sept. 2008, pp. 79–84. DOI: 10.1109/NCM.2008.213.

[157] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell. “Modeling Virtual Machine Performance: Challenges
and Approaches.” In: SIGMETRICS Performance Evaluation Review 37.3 (Jan. 2010), pp. 55–60. ISSN:
0163-5999. DOI: 10.1145/1710115.1710126.

[158] G. Tong, H. Jin, X. Xie, W. Cao, and P. Yuan. “Measuring and Analyzing CPU Overhead of Virtual-
ization System.” In: IEEE Asia-Pacific Services Computing Conference. Dec. 2011, pp. 243–250. DOI:
10.1109/APSCC.2011.40.

[159] W. Torell and V. Avelar. Mean Time Between Failure: Explanation and Standards. Tech. rep. Schneider
Electric, Jan. 2004.

[160] M. Treaster. A Survey of Fault-Tolerance and Fault-Recovery Techniques in Parallel Systems. 2005. URL:
http://arxiv.org/abs/cs/0501002.

[161] U. Trick, M. Steinheimer, P. Ruhrig, et al. “Herausforderungen an die Kommunikationstechnik im
Smart Home/Grid.” In: VDE/ITG Fachtagung Mobilkommunikation. May 2012. URL: https://www.vde-
verlag.de/proceedings-en/453438016.html.

[162] K. S. Trivedi. Probability and Statistics with Reliability, Queuing and Computer Science Applications.
2nd ed. John Wiley and Sons Ltd., 2002. ISBN: 978-0-471-33341-8.

[163] K. S. Trivedi and A. Bobbio. Reliability and Availability Engineering: Modeling, Analysis, and Applications.
Cambridge University Press, 2017. ISBN: 978-1-107-09950-0.

196 Bibliography

https://doi.org/10.1109/CC.2015.7224708
https://doi.org/10.1109/IECON.2015.7392417
https://doi.org/10.1109/ISTEL.2014.7000790
http://www.silabs.com/Support%20Documents/TechnicalDocs/Designing-Low-Power-Metering-Applications.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/Designing-Low-Power-Metering-Applications.pdf
https://doi.org/10.1109/TC.2009.119
https://doi.org/10.1049/cp.2012.2238
https://doi.org/10.1109/24.229492
https://doi.org/10.1109/NCM.2008.213
https://doi.org/10.1145/1710115.1710126
https://doi.org/10.1109/APSCC.2011.40
http://arxiv.org/abs/cs/0501002
https://www.vde-verlag.de/proceedings-en/453438016.html
https://www.vde-verlag.de/proceedings-en/453438016.html

[164] K. S. Trivedi, D. S. Kim, A. Roy, and D. Medhi. “Dependability and Security Models.” In: 7th In-
ternational Workshop on Design of Reliable Communication Networks. Oct. 2009, pp. 11–20. DOI:
10.1109/DRCN.2009.5340029.

[165] M. Uslar, M. Specht, C. Dänekas, et al. Standardization in Smart Grids: Introduction to IT-Related
Methodologies, Architectures and Standards. Power Systems. Springer Berlin Heidelberg, 2012. ISBN:
978-3-642-34916-4.

[166] H. Valchanov. “Performance Study of Virtualization Platforms for Virtual Networking Laboratory.” In:
Proceedings of the International Scientific Conference on Information, Communication and Energy Systems
and Technologies. June 2012, pp. 443–446.

[167] A. van Cleeff, W. Pieters, and R. J. Wieringa. “Security Implications of Virtualization: A Literature
Study.” In: International Conference on Computational Science and Engineering. Vol. 3. Aug. 2009, pp. 353–
358. DOI: 10.1109/CSE.2009.267.

[168] P. P. Varaiya, F. F. Wu, and J. W. Bialek. “Smart Operation of Smart Grid: Risk-Limiting
Dispatch.” In: Proceedings of the IEEE 99.1 (Jan. 2011), pp. 40–57. ISSN: 0018-9219. DOI:
10.1109/JPROC.2010.2080250.

[169] J. P. Walters, V. Chaudhary, M. Cha, S. Guercio Jr., and S. Gallo. “A Comparison of Virtualization
Technologies for HPC.” In: 22nd International Conference on Advanced Information Networking and
Applications. Mar. 2008, pp. 861–868. DOI: 10.1109/AINA.2008.45.

[170] B. Wei, C. Lin, and X. Kong. “Dependability Modeling and Analysis for the Virtual Data Center of Cloud
Computing.” In: IEEE International Conference on High Performance Computing and Communications.
Sept. 2011, pp. 784–789. DOI: 10.1109/HPCC.2011.111.

[171] L. Wenting, L. Jiang, X. Zongyou, Q. Guangping, and Z. Hu. “Step-stress Accelerated Life Testing to
Predict Service Life for Space Vehicle Electrical System.” In: IEEE Chinese Guidance, Navigation and
Control Conference. Aug. 2016, pp. 1120–1125. DOI: 10.1109/CGNCC.2016.7828945.

[172] K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel. Resilience Assessment and Evaluation of Comput-
ing Systems. Springer Berlin Heidelberg, 2012. ISBN: 978-3-642-29032-9.

[173] C. X. Wu, C. Y. Chung, F. S. Wen, and D. Y. Du. “Reliability / Cost Evaluation With PEV and Wind
Generation System.” In: IEEE Transactions on Sustainable Energy 5.1 (Jan. 2014), pp. 273–281. ISSN:
1949-3029. DOI: 10.1109/TSTE.2013.2281515.

[174] M. Xiang, S. Tauch, and W. Liu. “Dependability and Resource Optimation Analysis for Smart Grid
Communication Networks.” In: IEEE 4th International Conference on Big Data and Cloud Computing. Dec.
2014, pp. 676–681. DOI: 10.1109/BDCloud.2014.115.

[175] Y. Xiang, L. Wang, and T. Fu. “A Preliminary Study of Power System Reliability Considering Cloud
Service Reliability.” In: International Conference on Power System Technology. Oct. 2014, pp. 2031–2036.
DOI: 10.1109/POWERCON.2014.6993999.

[176] Y. Xie, H. Wen, J. Wu, et al. “Three-Layers Secure Access Control for Cloud-Based Smart Grids.” In:
IEEE 82nd Vehicular Technology Conference. Sept. 2015, pp. 1–5. DOI: 10.1109/VTCFall.2015.7391174.

[177] Y. Xin, I. Baldine, J. Chase, et al. “Virtual Smart Grid Architecture and Control Framework.” In: IEEE
International Conference on Smart Grid Communications. Oct. 2011, pp. 1–6.

[178] S. Xu, Y. Qian, and R. Q. Hu. “On Reliability of Smart Grid Neighborhood Area Networks.” In: IEEE
Access 3 (2015), pp. 2352–2365. DOI: 10.1109/ACCESS.2015.2502250.

[179] W.-L. Yeow, C. Westphal, and U. Kozat. “Designing and Embedding Reliable Virtual Infrastructures.”
In: Proceedings of the 2nd ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and Ar-
chitectures. VISA ’10. New Delhi, India: ACM, 2010, pp. 33–40. ISBN: 978-1-4503-0199-2. DOI:
10.1145/1851399.1851406.

Bibliography 197

https://doi.org/10.1109/DRCN.2009.5340029
https://doi.org/10.1109/CSE.2009.267
https://doi.org/10.1109/JPROC.2010.2080250
https://doi.org/10.1109/AINA.2008.45
https://doi.org/10.1109/HPCC.2011.111
https://doi.org/10.1109/CGNCC.2016.7828945
https://doi.org/10.1109/TSTE.2013.2281515
https://doi.org/10.1109/BDCloud.2014.115
https://doi.org/10.1109/POWERCON.2014.6993999
https://doi.org/10.1109/VTCFall.2015.7391174
https://doi.org/10.1109/ACCESS.2015.2502250
https://doi.org/10.1145/1851399.1851406

[180] W. Youn and B. Yi. “Software and Hardware Certification of Safety-critical Avionic Systems: A Com-
parison Study.” In: Computer Standards & Interfaces 36.6 (2014), pp. 889–898. ISSN: 0920-5489.
DOI: 10.1016/j.csi.2014.02.005. URL: http://www.sciencedirect.com/science/article/pii/
S0920548914000415.

[181] A. J. Younge, R. Henschel, J. T. Brown, et al. “Analysis of Virtualization Technologies for High
Performance Computing Environments.” In: IEEE 4th International Conference on Cloud Computing. July
2011, pp. 9–16. DOI: 10.1109/CLOUD.2011.29.

[182] R. Yu, G. Xue, V. T. Kilari, and X. Zhang. “Network Function Virtualization in the Multi-Tenant Cloud.”
In: IEEE Network 29.3 (May 2015), pp. 42–47. ISSN: 0890-8044. DOI: 10.1109/MNET.2015.7113224.

[183] W. D. Yu. “A Software Fault Prevention Approach in Coding and Root Cause Analysis.” In: Bell Labs
Technical Journal 3.2 (Apr. 1998), pp. 3–21. ISSN: 1089-7089. DOI: 10.1002/bltj.2101.

[184] D. Zhang and J. P. G. Sterbenz. “Modelling Critical Node Attacks in MANETs.” In: Self-Organizing
Systems. Ed. by W. Elmenreich, F. Dressler, and V. Loreto. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 127–138. ISBN: 978-3-642-54140-7.

[185] G. Zhang, J. Li, G. Bao, and B. Zhang. “A New Method for Product Field Reliability Assessment Based
on Accelerated Life Test.” In: 11th International Conference on Reliability, Maintainability and Safety. Oct.
2016, pp. 1–5. DOI: 10.1109/ICRMS.2016.8050035.

[186] Y. Zhong, J. Xu, J. Zhong, and F. Liu. “Research on Rejuvenation Analytical Models for a Virtualized
System with Live VM Migration.” In: Computer Modelling & New Technologies. 12A 18 (2014), pp. 439–
445.

[187] J. Zhou, R. Q. Hu, and Y. Qian. “Scalable Distributed Communication Architectures to Support Ad-
vanced Metering Infrastructure in Smart Grid.” In: IEEE Transactions on Parallel and Distributed Systems
23.9 (Sept. 2012), pp. 1632–1642. ISSN: 1045-9219. DOI: 10.1109/TPDS.2012.53.

198 Bibliography

https://doi.org/10.1016/j.csi.2014.02.005
http://www.sciencedirect.com/science/article/pii/S0920548914000415
http://www.sciencedirect.com/science/article/pii/S0920548914000415
https://doi.org/10.1109/CLOUD.2011.29
https://doi.org/10.1109/MNET.2015.7113224
https://doi.org/10.1002/bltj.2101
https://doi.org/10.1109/ICRMS.2016.8050035
https://doi.org/10.1109/TPDS.2012.53

	Titlepage
	Abstract
	Acknowledgement
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Dependable Smart Grids
	1.2 Challenges and Solution Approach
	1.3 Contributions
	1.4 Thesis Structure

	2 Background and Related Work
	2.1 Background
	2.1.1 Dependability, Performance and Performability
	2.1.1.1 Dependability
	2.1.1.2 Performance
	2.1.1.3 Performability

	2.1.2 Smart Grid and Advanced Metering Infrastructure
	2.1.2.1 Smart Grid
	2.1.2.2 Advanced Metering Infrastructure

	2.1.3 Virtualization
	2.1.3.1 Host Virtualization
	2.1.3.2 Network Virtualization
	2.1.3.3 Network Function Virtualization

	2.2 Related Work
	2.2.1 Performability/Dependability in Smart Grids
	2.2.2 Virtualization for Performability/Dependability
	2.2.3 Combining Approaches & Own Contributing Work

	2.3 Summary

	3 Improvement of AMI Systems using Virtualization
	3.1 Overview of Current AMI Architecture
	3.1.1 Architecture Overview
	3.1.2 Preliminary Evaluation

	3.2 Performability Impact of Virtualization
	3.2.1 Reliability
	3.2.2 Maintainability
	3.2.2.1 Corrective Maintenance
	3.2.2.2 Preventive Maintenance

	3.2.3 Availability
	3.2.4 Performance/Performability
	3.2.4.1 Virtualization Overheads
	3.2.4.2 Influence of "Bare" Virtualization
	3.2.4.3 Influence of "Applied" Virtualization

	3.3 Summary

	4 Creating a Network Function Virtualized AMI
	4.1 General Idea
	4.2 Hardware Abstraction and Centralization
	4.2.1 Hardware Requirements and Abstraction
	4.2.2 Relocation of Hardware
	4.2.2.1 Dependability
	4.2.2.2 Performance
	4.2.2.3 Comparison and Server Location Distribution Selection

	4.3 Softwarized Service Generation and Location
	4.3.1 Softwarization of AMI Services
	4.3.2 Virtual Network Function Component Composition
	4.3.3 Embedding of Virtual Network Function Forwarding Graphs

	4.4 Introducing Performability-Enhancing Methods
	4.4.1 Substrate Enhancements
	4.4.1.1 Circle Backup Network Layout
	4.4.1.2 All-for-All Backup Network Layout

	4.4.2 Software Enhancements
	4.4.2.1 Software Rejuvenation
	4.4.2.2 Service Replication

	4.5 Summary

	5 Modeling a Virtualized AMI
	5.1 Current AMI Models and their Shortcomings
	5.2 Model Requirements
	5.3 Development of an AMI model
	5.3.1 Failure Behavior
	5.3.1.1 Root Cause Breakdown
	5.3.1.2 Hardware and Software Failures
	5.3.1.3 Failure Modes

	5.3.2 Recovery Behavior
	5.3.2.1 Possibility
	5.3.2.2 Quality
	5.3.2.3 Structure

	5.3.3 Macro Model (Inter-System)
	5.3.3.1 VNFA Macro Model
	5.3.3.2 SSMA Macro Model

	5.3.4 Micro Model (Intra-System)
	5.3.4.1 Nomenclature
	5.3.4.2 Assumptions
	5.3.4.3 NFV Failure Behavior
	5.3.4.4 Recovery
	5.3.4.5 Modeling Performability-Enhancing Methods
	5.3.4.6 Micro Model Generation

	5.4 Overall Model
	5.4.1 Idea and Prerequisites
	5.4.2 Generation of Overall Queuing Network Model
	5.4.2.1 General Properties
	5.4.2.2 Converting Non-Virtualized Networks
	5.4.2.3 Converting Virtualized Networks

	5.5 Summary

	6 Analysis
	6.1 Description of Assumptions and Scenarios
	6.1.1 Assumptions
	6.1.1.1 Failure and Recovery Properties of Entities
	6.1.1.2 Communication Networks Properties
	6.1.1.3 Location Distributions
	6.1.1.4 Further Assumptions

	6.1.2 Single Service Scenario
	6.1.3 Single User Scenario
	6.1.4 Passau City Scenario

	6.2 Performability Assessment
	6.2.1 Evaluation: Single Service Scenario
	6.2.1.1 Test Environment
	6.2.1.2 Single Service Scenario: Evaluation of SSMA Model
	6.2.1.3 Single Service Scenario: Evaluation of VNFA Model

	6.2.2 Evaluation: Single User Scenario
	6.2.2.1 Single User Scenario: Test Environment
	6.2.2.2 Single User Scenario: Evaluation of SSMA Model
	6.2.2.3 Single User Scenario: Evaluation of VNFA Model

	6.2.3 Evaluation: Passau City Scenario
	6.2.3.1 Passau City Scenario: Test Environment
	6.2.3.2 Passau City Scenario: AMIgo Performance Evaluation
	6.2.3.3 Simulation Parameters
	6.2.3.4 Passau City Scenario: Evaluation of SSMA Model
	6.2.3.5 Passau City Scenario: Evaluation of VNFA Model

	6.2.4 Result Comparison

	6.3 Proof-of-Concept: Virtualized Smart Meter Gateway
	6.3.1 Gateway Task Description
	6.3.2 Proof-of-Concept Implementation
	6.3.3 vSMGW Performability Analysis
	6.3.3.1 Test Environment
	6.3.3.2 Performance Evaluation
	6.3.3.3 Dependability Evaluation

	6.3.4 Results

	6.4 Cost Analysis
	6.4.1 Deriving a Cost Function
	6.4.1.1 Example Scenario

	6.4.2 Evaluation and Results

	6.5 Summary

	7 Applicability, Conclusions and Future Work
	7.1 Practical Applicability
	7.1.1 Usability Challenges
	7.1.1.1 AMI Hardware Architecture
	7.1.1.2 IT Security Considerations

	7.1.2 Regulatory Challenges
	7.1.2.1 Specific, Realization-Centered AMI Regulations in Germany
	7.1.2.2 Solution Approaches

	7.2 Conclusion and Outlook
	7.3 Future Work

	A Appendix
	A.1 AMIgo Configuration File
	A.2 Virtualized Smart Meter Gateway Evaluation Data

	Bibliography

