
University of Passau

Faculty of Computer Science and Mathematics (FIM)
Chair of Distributed Information Systems

Computer Science

Bridging the Realism Gap
for CAD-Based Visual Recognition

Benjamin Planche

A Dissertation Presented to
the Faculty of Computer Science and Mathematics of the University of Passau

in Partial Fulfillment of the Requirements for the
Degree of Doctor of Natural Sciences

1. Reviewer Prof. Dr. Harald Kosch
Chair of Distributed Information Systems
University of Passau

2. Reviewer Prof. Dr. Serge Miguet
LIRIS Laboratory
Université Lumière Lyon 2

Passau – September 17, 2019



Benjamin Planche

Bridging the Realism Gap for CAD-Based Visual Recognition

Computer Science, September 17, 2019

Reviewers: Prof. Dr. Harald Kosch and Prof. Dr. Serge Miguet

University of Passau

Chair of Distributed Information Systems

Faculty of Computer Science and Mathematics (FIM)

Innstr. 33

94032 Passau



Abstract

Computer vision aims at developing algorithms to extract high-level information from
images and videos. In the industry, for instance, such algorithms are applied to guide
manufacturing robots, to visually monitor plants, or to assist human operators in recognizing
specific components. Recent progress in computer vision has been dominated by deep
artificial neural network, i.e., machine learning methods simulating the way that information
flows in our biological brains, and the way that our neural networks adapt and learn from
experience. For these methods to learn how to accurately perform complex visual tasks,
large amounts of annotated images are needed. Collecting and labeling such domain-relevant
training datasets is, however, a tedious—sometimes impossible—task. Therefore, it has
become common practice to leverage pre-available three-dimensional (3D) models instead,
to generate synthetic images for the recognition algorithms to be trained on. However,
methods optimized over synthetic data usually suffer a significant performance drop when
applied to real target images. This is due to the realism gap, i.e., the discrepancies between
synthetic and real images (in terms of noise, clutter, etc.). In my work, three main directions
were explored to bridge this gap.

First, an innovative end-to-end framework is proposed to render realistic depth images
from 3D models, as a growing number of solutions (especially in the industry) are utilizing
low-cost depth cameras (e.g., Microsoft Kinect and Intel RealSense) for recognition tasks.
Based on a thorough study of these devices and the different types of noise impairing them,
the proposed framework simulates their inner mechanisms, comprehensively modeling vital
factors such as sensor noise, material reflectance, surface geometry, etc. Able to simulate a
wide panel of depth sensors and to quickly generate large datasets, this framework is used to
train algorithms for various recognition tasks, consistently and significantly enhancing their
performance compared to other state-of-the-art simulation tools.

In some cases, however, relevant 2D or 3D object representations to generate synthetic
samples are not available. Considering this different case of data scarcity, a solution is then
proposed to incrementally build a representation of visual scenes from partial observations.
Provided observations are localized from one to another based on their content and registered
in a global memory with spatial properties. Simultaneously, this memory can be queried
to render novel views of the scene. Furthermore, unobserved regions can be hallucinated
in memory, in consistence with previous observations, hallucinations, and global priors.

iii



The efficacy of the proposed mnemonic and generative system, trainable end-to-end, is
demonstrated on various 2D and 3D use-cases.

Finally, an advanced convolutional neural network pipeline is introduced, tackling the
realism gap from a novel angle. While most methods addressing this problem focus on
bringing synthetic samples—or the knowledge acquired from them—closer to the real
target domain, the proposed solution performs the opposite process, mapping unseen target
images into controlled synthetic domains. The pre-processed samples can then be handed to
downstream recognition methods, themselves purely trained on similar synthetic data, to
greatly improve their accuracy.

For each approach, a variety of qualitative and quantitative studies are detailed, providing
successful comparisons to state-of-the-art methods. By proposing solutions to bridge the
realism gap from either side, as well as a pipeline to improve the acquisition and generation
of new visual content, this thesis provides a unique perspective on the challenges of data
scarcity when building robust recognition systems.

iv



Zusammenfassung (Abstract in German)

Die Computer Vision strebt an, Algorithmen zum Extrahieren hochwertiger Informationen
von Bildern und Videos zu entwickeln. In der Industrie werden solche Algorithmen
beispielsweise angewendet, um Fertigungsroboter zu steuern, um Betriebe visuell zu
überwachen, oder um Mitarbeiter bei der Erkennung bestimmter Komponenten zu
unterstützen. Die kürzlichen Fortschritte im Bereich Computer Vision wurden von tiefen
künstlichen neuronalen Netzen dominiert. Diese Methoden des maschinelles Lernens
(Machine Learning) simulieren die Art und Weise, in der die Information in unseren
biologischen Gehirnen verarbeitet wird und in der unsere neuronale Netze sich anpassen
und aus Erfahrung lernen. Damit diese Methoden zur genauen Ausführung komplexer
visueller Aufgaben befähigt werden, müssen sie mit einer großen Anzahl von annotierten
Bildern trainiert werden. Die Erhebung und Kennzeichnung entsprechender
Trainingsdatensätze ist jedoch eine langwierige und manchmal sogar unmögliche Aufgabe.
Deswegen ist es zur gängigen Praxis geworden, stattdessen die vorhandenen 3D-Modelle
zur Generierung synthetischer Bilder einzusetzen, damit die Erkennungsalgorithmen mit
Hilfe dieser Bilder trainiert werden. Allerdings, bei der Anwendung auf die realen
Zielbilder, erleiden die Methoden, die durch synthetische Daten angepasst wurden, einen
erheblichen Leistungsabfall. Dies geschieht aufgrund der Realismuslücke (Realism Gap),
das heißt durch die Diskrepanzen zwischen synthetischen und realen Bildern (hinsichtlich
von Rauschen, Störungen usw.). In meiner Arbeit wurden drei Hauptrichtungen untersucht,
um diese Lücke zu schließen.

Zuerst wird ein innovatives End-to-End-Framework vorgeschlagen, um realistische
Tiefenbilder von 3D-Modellen zu rendern, denn immer mehr Lösungen (insbesondere in der
Industrie) verwenden kostengünstige Tiefen-Kameras (z. B. Microsoft Kinect und Intel
RealSense) für die Erkennungsaufgaben. Aufgrund einer gründlichen Untersuchung dieser
Geräte und der verschiedenen Arten von Rauschen, die dem Aufnahmen beeinträchtigen,
simuliert das vorgeschlagene Framework deren innere Mechanismen, indem
Schlüsselfaktoren wie Sensorrauschen, Reflektionsgrade der Materialien,
Oberflächengeometrie usw. umfassend modelliert werden. Dieses Framework ist in der
Lage eine breite Palette von Tiefensensoren zu simulieren und schnell große Datensätze zu
generieren. Dies wird eingesetzt, um die Algorithmen für verschiedene
Erkennungsaufgaben zu trainieren und deren Leistung im Vergleich zu anderen
hochmodernen Simulationsmethoden konsistent und erheblich zu verbessern.

In manchen Fällen sind jedoch keine relevanten 2D- oder 3D-Objektdarstellungen zur
Erzeugung von synthetischen Bildern verfügbar. Ausgehend von dieser Problematik des
Datenmangels wurde eine Lösung vorgeschlagen, in der die Rekonstruktion von visuellen
Szenen aus Teilbeobachtungen schrittweise durchgeführt wird. Die Bilder werden anhand

v



ihres Inhalts in Bezug zueinander lokalisiert und in einer globalen Gedächtnisstruktur mit
räumlichen Eigenschaften registriert Gleichzeitig kann dieses Gedächtnis abgerufen werden,
um neuen Ansichten der Szene zu rendern. Darüber hinaus können bisher unbeobachtete
Regionen in Übereinstimmung mit früheren Beobachtungen, Halluzinationen und globalen
Vorwissen im Gedächtnis halluziniert werden. Die Wirksamkeit des vorgeschlagenen,
durchgehend trainierbaren mnemonischen und generativen Systems, wird anhand von
verschiedenen 2D- und 3D-Anwendungsfällen demonstriert.

Schließlich wird eine auf Convolutional Neural Networks (CNNs) basierte weiter
entwickelte Pipeline vorgestellt, die die Realismuslücke aus einem neuen Blickwinkel
angeht. Während die meisten Methoden, die sich mit diesem Problem befassen, sich darauf
konzentrieren, synthetische Datenproben (bzw. daraus erworbenes Wissen) näher an die
echte/reale Zieldomäne zu bringen, führt die vorgeschlagene Lösung den umgekehrten
Prozess durch, indem ungesehene Zielbilder in den kontrollierten synthetischen Domänen
abgebildet werden. Die vorbehandelten Datenproben können dann für die nachgeschalteten
Erkennungsalgorithmen übergeben werden, die selbst anhand der ähnlichen synthetischen
Daten trainiert wurden, um deren Genauigkeit deutlich zu verbessern.

Für jeden Ansatz werden verschiedene qualitative und quantitative Studien durchgeführt,
um mit sie den neuesten Methoden zu vergleichen. Insgesamt werden in dieser Arbeit
Methoden zur Überbrückung der Realismuslücke auf beiden Seiten sowie eine Lösung zur
Verbesserung der Erfassung und Generierung neuer visueller Inhalte beschrieben. Daher
bietet diese Dissertation eine neuartige Perspektive auf die Herausforderungen der
Datenknappheit bei der Entwicklung robuster Erkennungssysteme.

vi



Acknowledgment

Looking back at the past years, I realize how long the list of people that I have to thank
for the course of my Ph.D. is. My first thoughts go to my supervisors, Prof. Dr. Harald
Kosch and Dr.-Ing. Andreas Hutter. Since I joined the University of Passau, Harald has been
a constant source of warm support and life-changing opportunities, and I will be forever
thankful for the path that he set me on. Andreas has been as supportive, supervising me
since my first days at Siemens as a graduate student. Like everyone in our team, I owe him
the human context and material resources to work and grow. I could not have wished for
better conditions to do my research.

I am also deeply grateful to Dr. Ziyan Wu, who has been my most frequent collaborator
and unofficial adviser. Besides being the nicest person to talk with, Ziyan is a brilliant and
enthusiastic researcher, a real model to follow. Along with Dr. Srikrishna Karanam, Dr.
Jan Ernst, Dr. Erhan Batuhan Arisoy, and so many more, the Princeton-based team has
provided me with invaluable scientific guidance. I cannot wait to meet them again in person,
to properly express my gratitude! Pursuing with scientific guidance, I would also wish to
thank P.D. Dr. Slobodan Ilic, Dr. Peter Amon, and all my co-workers in Munich.

A special thought goes to Sergey Zakharov—a Master student I co-supervised, now a friend
and fellow Ph.D. student—for our fruitful collaboration and fun discussions. I am also
grateful to all the other Siemens students for the vibrant research atmosphere and relaxing
meals together. Similar thoughts go to Prof Dr. Lionel Bruni, Prof Dr. Michael Granitzer,
and all the fellow members of IRIXYS (International Research and Innovation Center for
Intelligent Digital Systems). The scientific workshops that we did together helped me gain
confidence as a researcher and provided me with valuable feedback.

I wholeheartedly thank my family for their love and support throughout my life. My parents,
Michèle and Jean-Christophe, continuously encouraged me to follow my passions, even
though it meant having me roaming the world far from the homeland. My sister, Clémentine,
and my brother, Jérémy, also ended up in various continents, following their own paths, and
I am looking forward to visiting them and catching up.

vii



I owe my sanity to my friends from France and elsewhere. Céline, Jessie, Jorsi, MC, Nicolas,
Patsy, Samuel, Victor, etc. They were there for me, even though I have not been the most
present friend in recent times. I cannot wait to celebrate the summer with them all.

Last and foremost, all my love goes to Varia. Her warm encouragement and presence got
me through the darkest storms, and my best memories are with her. I am deeply grateful for
the colors that she brings to my everyday life. She is an amazingly smart and kind person,
and a true source of inspiration. May the winds carry us to new adventures together!

viii



Contents

List of Figures xiii

List of Tables xv

List of Acronyms xvii

List of Symbols xix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Big Data, Deep Learning, High Expectations . . . . . . . . . . . . 2

1.1.2 Computer Vision for a Smarter Industry . . . . . . . . . . . . . . . 3

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Data Scarcity in Modern Computer Vision . . . . . . . . . . . . . . 5

1.2.2 CAD-based Recognition and Realism Gap . . . . . . . . . . . . . . 6

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background on Visual Recognition from Scarce Training Data 11
2.1 Conceptualization of Computer Vision . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Introduction to Computer Vision . . . . . . . . . . . . . . . . . . . 11

2.1.2 Development of the Field . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Formalization of Computer Vision Models . . . . . . . . . . . . . . 18

2.2 Prevalence and Limits of Deep Learning . . . . . . . . . . . . . . . . . . . 20

2.2.1 Development of Artificial Neural Networks . . . . . . . . . . . . . 20

2.2.2 Rationale for the Success of Deep Learning . . . . . . . . . . . . . 28

2.2.3 Acknowledgment of CNN Limitations . . . . . . . . . . . . . . . . 31

2.3 Data Scarcity and its Ramifications . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Learnability and Data Dependencies . . . . . . . . . . . . . . . . . 33

2.3.2 Dealing with Data Scarcity in Industrial Computer Vision . . . . . 42

3 Realistic Depth Sensor Simulation 47
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Rise of Depth-based Computer Vision . . . . . . . . . . . . . . . . 48

ix



3.1.2 Call for Realistic Depth Simulation Tools . . . . . . . . . . . . . . 49

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Recognition Algorithms and Synthetic Data . . . . . . . . . . . . . 51

3.2.2 Generation of Synthetic Images . . . . . . . . . . . . . . . . . . . 53

3.3 Methodology: Simulation of 2.5D Sensors . . . . . . . . . . . . . . . . . . 54

3.3.1 Study of Structured-Light Depth Sensors . . . . . . . . . . . . . . 55

3.3.2 End-to-End Simulation of Depth Sensors . . . . . . . . . . . . . . 58

3.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.2 Depth Error Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.3 Application to Recognition Tasks . . . . . . . . . . . . . . . . . . 66

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Novel View Synthesis through Incremental Scene Learning 73
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.1 Visual Understanding for Autonomous Agents . . . . . . . . . . . 74

4.1.2 Novel Image Synthesis . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Simultaneous Localization and Mapping . . . . . . . . . . . . . . . 77

4.2.2 Incremental Scene Sampling . . . . . . . . . . . . . . . . . . . . . 78

4.3 Methodology: Neural Pipeline for Incremental Scene Synthesis . . . . . . . 80

4.3.1 Localization and Memorization . . . . . . . . . . . . . . . . . . . 80

4.3.2 Anamnesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.3 Mnemonic Hallucination . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.2 Navigation in 2D Images . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.3 Exploring Virtual and Real 3D Scenes . . . . . . . . . . . . . . . . 94

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Reversed Domain Adaptation Scheme for CAD-based Learning 99
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.1 Bridging the Realism Gap from the Other Side . . . . . . . . . . . 100

5.1.2 Hardening the Data Scarcity Constraint . . . . . . . . . . . . . . . 102

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Domain Adaptation to Bridge the Realism Gap . . . . . . . . . . . 103

5.2.2 Regression of Discriminative Representations . . . . . . . . . . . . 106

5.3 Methodology: Real-to-Synthetic Mapping through Multi-Modal Distillation 107

x



5.3.1 Cross-Domain Mapping via Multi-Modal Distillation . . . . . . . . 109
5.3.2 Learning from Purely Geometrical CAD Data . . . . . . . . . . . . 112

5.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4.2 Experimental Setups . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4.3 Qualitative Observations . . . . . . . . . . . . . . . . . . . . . . . 120
5.4.4 Quantitative Evaluation on Recognition Tasks . . . . . . . . . . . . 121

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Discussion and Future Work 127
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1.1 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.1.2 Overall Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2.1 Integration of Novel Differentiable Image Generators . . . . . . . . 129
6.2.2 Beyond Image Domains . . . . . . . . . . . . . . . . . . . . . . . 131

6.3 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Bibliography 135

xi





List of Figures

1.1 Visualization of the exponential trends in machine learning and computer vision. 3
1.2 Screenshot of the product webpage of Easy Spares IDea®. . . . . . . . . . . 4
1.3 Illustration of the realism gap for industrial applications. . . . . . . . . . . . 6

2.1 Usage of Eigenface features [269]. . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Representation of SIFT key points extracted from a given image (using

OpenCV [28]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Biological neuron and its artificial counterpart. . . . . . . . . . . . . . . . . . 21
2.4 Simple representation of a gradient descent. . . . . . . . . . . . . . . . . . . 23
2.5 Representation of common activation functions used in neural networks (NNs). 24
2.6 LeNet-5 architecture for hand-written digit recognition [141, 142]. . . . . . . 27
2.7 Example of a recognition model trained on a biased dataset. . . . . . . . . . . 39
2.8 Pairs of color and depth images, from T-LESS [102] ans LineMOD [99] datasets. 43

3.1 Real color and depth pictures, opposed to the corresponding CAD model and
simulated depth image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Illustration of a structured-light sensor. . . . . . . . . . . . . . . . . . . . . . 56
3.3 DepthSynth pipeline and results for the simulation of multi-shot depth sensors. 59
3.4 Effects of material specularity on the simulation. . . . . . . . . . . . . . . . . 61
3.5 Effects of surface conditions on the simulation. . . . . . . . . . . . . . . . . 61
3.6 Detailed visual comparison with BlenSor [88]. . . . . . . . . . . . . . . . . . 63
3.7 Detailed visual comparison with Landau’s solution [138, 139]. . . . . . . . . 63
3.8 Standard depth error as a function of the distance and the tilt angle. . . . . . . 65
3.9 Standard depth error as a function of the radial distance. . . . . . . . . . . . . 65
3.10 CAD models, sample real images, and DepthSynth images used in the

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.11 Real data acquisition and processing. . . . . . . . . . . . . . . . . . . . . . . 67
3.12 Cumulative distribution functions on errors in translation and in rotation for

pose estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Proposed solution for scene understanding and novel view synthesis. . . . . . 74
4.2 Detailed pipeline for incremental view synthesis. . . . . . . . . . . . . . . . 75
4.3 Localization and memorization, based on MapNet [98]. . . . . . . . . . . . . 81
4.4 Training of the memorization and anamnesis modules. . . . . . . . . . . . . 82
4.5 Geometrical Memory Culling. . . . . . . . . . . . . . . . . . . . . . . . . . 84

xiii



4.6 Training of the hallucination module. . . . . . . . . . . . . . . . . . . . . . . 85
4.7 Synthesis of memorized and novel views from 2D scenes. . . . . . . . . . . . 87
4.8 Novel view synthesis from 3D scenes. . . . . . . . . . . . . . . . . . . . . . 87
4.9 Incremental and direct memory sampling of complete environments . . . . . 91
4.10 Incremental exploration and hallucination. . . . . . . . . . . . . . . . . . . . 92

5.1 Usage and results of the proposed domain adaptation method . . . . . . . . . 100
5.2 Qualitative results for PixelDA [26] trained with or without realistic texturing. 104
5.3 Training of the proposed network hG. . . . . . . . . . . . . . . . . . . . . . 108
5.4 Detailed architecture of the proposed network hG. . . . . . . . . . . . . . . . 110
5.5 Augmentation and training results. . . . . . . . . . . . . . . . . . . . . . . . 111
5.6 Qualitative results of the proposed generator on LineMOD [99]. . . . . . . . 113
5.7 Qualitative results of the proposed generator on T-LESS [102]. . . . . . . . . 118

xiv



List of Tables

3.1 Comparison of BlenSor [88], Landau’s pipeline [138, 139] and DepthSynth
w.r.t. sensor noise types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Quantitative comparison on 2D and 3D scenes. . . . . . . . . . . . . . . . . 94
4.2 Ablation study on CelebA dataset [155]. . . . . . . . . . . . . . . . . . . . . 94

5.1 Visual comparison of recognition training schemes. . . . . . . . . . . . . . . 105
5.2 Quantitative comparison of recognition pipelines, depending on the available

training data, on T-LESS [102]. . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3 Quantitative comparison of recognition pipelines, depending on the available

training data, on LineMOD [99]. . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4 Architectural ablation study, considering the instance classification task on

LineMOD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xv





List of Acronyms

ERF effective receptive field

2.5D depth

2D two-dimensional

3D three-dimensional

6-DOF six degrees of freedom

AE auto-encoder

AGI artificial general intelligence

AI artificial intelligence

ANN artificial neural network

APE average position error

app mobile application

AR augmented reality

ATE absolute trajectory error

AUC area-under-the-curve

BRDF bidirectional reflectance distribution function

CAD computer-aided design

CCTV closed-circuit television

CDF cumulative distribution function

CNN convolutional neural network

CRF conditional random field

DND differentiable neural dictionary

GAN generative adversarial network

GPS global positioning system

GPU graphics processing unit

GQN generative query network

GTM-SM generative temporal model with spatial memory

HOG histogram of oriented gradients

IC instance classification

ICP iterative closest point

ICPE instance classification and pose estimation

ILSVRC ImageNet Large Scale Visual Recognition Challenge

xvii



IoT Internet of things

IR infrared

IT information technology

LESH local energy-based shape histogram

LSTM long short-term memory

NN neural network

NSS normalized scanpath saliency

PCA principal component analysis

RGB red-green-blue

RGB-D red-green-blue and depth

RNN recurrent neural network

SAD sum of absolute differences

SfM structure-from-motion

SGD stochastic gradient descent

SIFT scale invariant feature transform

SLAM simultaneous localization and mapping

SSIM structural similarity

SURF speeded up robust features

SVM support vector machine

ToF time-of-flight

VAE variational auto-encoder

xviii



List of Symbols

A augmentation pipeline

a encoding of an agent’s action

atan2 2-argument arctangent

b bias value(s) parameterizing an artificial neuron or neuronal layer
(b = (b0, b1, ..., bn) ∈ θ)

c number of channels (or depth)

dbase baseline distance (usually in millimeters)

dH∆H expected H∆H-divergence of two input marginal distributions w.r.t. to the
hypothesis spaceH [16]

d̂H∆H empiricalH∆H-divergence of two input marginal distributions w.r.t. to the
hypothesis spaceH [16]

ddisp disparity (in pixels)

ddisp,i vertical displacement/disparity (in pixels)

dim dimensionality operator

e base of the natural logarithm

ε learning rate

fac activation function applied by a neuron or neuronal layer

fpx focal length (in pixels)

ΠH growth function of a hypothesis spaceH [45, 274]

H hypothesis class

h h ∈ H machine learning model/hypothesis

h height (usually in pixels)

k kernel size in convolutional layers, window size

L loss function, applied to the training of machine learning models

O Big O notation (asymptotic behavior)

o projected feature map representing an agent’s neighborhood

P probability distribution

ψ global memory structure

ReLU rectified linear unit

R̂ empirical risk

R expected risk

sL sigmoid

xix



σ softmax

s stride hyper-parameter in convolutional layers

t time step

tanh hyperbolic tangent

T task a model is set to tackle

Θ ensemble of all possible parameter sets a machine learning model/hypothesis
can have

θ θ ∈ Θ specific set of parameters defining a machine learning model/hypothesis

vc Vapnik-Chervonenkis (VC) dimension of a hypothesis spaceH [45, 274]

W weight tensor parameterizing a neuronal layer (W = (ω0, ω1, ..., ωn) ∈ θ)

ω weight vector parameterizing an artificial neuron

w width (usually in pixels)

X finite set of input elements

x input element (e.g., image or its features)

x X-position in three-dimensional (3D) space

X input space

T set of target elements (typically either unavailable at training time or available
but unlabeled

x̃ element (e.g., image or its features) synthesized by a generative model

S finite set of input elements and their labels available for training

Y finite set of task-specific labels

y true task-specific label of an element x (e.g., its object class or label map, a
relevant decision, etc.)

y Y-position in 3D space

Y task-specific label space

ỹ predicted task-specific label of an element x, returned by a function given x

z Z-position in 3D space, i.e., depth (usually in millimeters)

xx



1Introduction

„
The errors which arise from the absence of facts are far
more numerous and more durable than those which result
from unsound reasoning respecting true data.

— Charles Babbage
(Mathematician and 1st Computer Scientist, in “On the

Economy of Machinery and Manufactures”, 1832)

In recent years, computer vision has grown into a key domain for innovation, with an
increasing number of applications reshaping businesses and lifestyles. However, this
development is still impeded by the recurring lack of relevant images to teach the
machine-learning algorithms their recognition tasks on. As a result, a large number of
methods rely on synthetic images, rendered using computer graphics tools. However, these
solutions often have their performance compromised by the visual discrepancies between
the synthetic images they were trained over and the target real pictures they are applied to.
The present thesis addresses this issue from several angles, resulting in a variety of
contributions with direct industrial impacts.

This prefatory chapter further details the underlying incentives for this research work in
Section 1.1. Section 1.2 states in plain terms the central problem addressed in this thesis.
The chapter ends with an overview of the thesis in Section 1.3, highlighting the main
contributions and outlining the dissertation.

1.1 Motivation

The thesis presented in this document has been completed in collaboration with Siemens
Corporate Technology. There, numerous projects are aiming at integrating computer vision
solutions into industrial processes, in spite of harsh constraints in terms of data availability.
From this concrete framework with direct repercussions, multiple theoretical considerations
were derived, further motivating this research work.

1



1.1.1 Big Data, Deep Learning, High Expectations

The idea of artificial beings, able to reason and dedicated to assisting their creators, goes
back to the most ancient myths (e.g., Talos, the protective bronze giant in Greek mythology,
or the Golem, the servile clay robot in Jewish folklore). It is indeed humankind’s long dream
to rise above its condition and free itself from labor – an extravagant dream that has inspired
a constant flow of philosophical considerations and technical advances.

It seems that humankind has never been closer to achieving its dream, observing the frantic
development of artificial intelligence (AI) the past decades. Though we are still far from
delegating the functioning of our society to robots, to collectively share and enjoy the fruits
of their labor, the variety of tasks automated through computer science is growing by the
day. Two concomitant exponential trends are to be credited for enabling this fast-paced
development of intelligent systems.

First, the quantity of data which is constantly generated and stored has been booming since
the development of the first computers, thanks to the conception of better devices to digitize
and store content, and the development of the Internet to share it. But more importantly, this
exponential increase in the quantity of data created and shared is linked to the development
of sensing technologies. Sensors are everywhere nowadays. Our smartphones come with
a full array of them which we use daily to communicate (camera, mic, etc.); devices are
installed, worn, or implanted to monitor our public infrastructures, homes, health, and more;
produced goods are spawning data during their whole life cycles (manufacturing records,
delivery tracking, etc.); and so on. It did not take long for scientists and investors to measure
the potential of this barely exploited amount of information (big data), labeling it as the
new oil. However, like oil, raw data need first to undergo a refinement process in order to
power new applications – a challenging process given the complexity and scale of the task
at hand.

Thankfully, the second trend that has been shaking up the technological world the past
decades is the exponential increase in the computational capabilities of mankind’s machines
(famously coined as Moore’s law [175]). Data processing algorithms which yesterday
could only run on the best computers are now deployable on mobile devices, and methods
requiring the processing of large amounts of data have seen their runtime decrease year
after year, overall enabling new use-cases and catalyzing research (as illustrated in the
comparative Figure 1.1).

This golden age of data science has been—and is still—benefiting one domain of AI in
particular: machine learning, and more precisely deep learning. With big data as fuel and
powerful computers as motor, deep learning methods—inspired by how the information
flows in our brains—are addressing increasingly complex tasks. In computer vision

2 Chapter 1 Introduction



75 175 356 681 1267 2055 3339 5219
8140

10942
14955

23288

31339

39909

49494

65942

85000

108000

0

5

10

15

20

25

30

35

0

20000

40000

60000

80000

100000

120000

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

0

1000

2000

3000

4000

5000

6000

34952

Fixed Internet traffic (Petabytes/month)

Performance of newly-released GPUs (GFLOPS/USD)

Number of CVPR paper submissions

Fig. 1.1: Visualization of the exponential trends in machine learning and computer vision,
as a multi-scale plotting of the Internet traffic [50] (correlated to data creation and
exchange), the per-dollar power of latest computational units [167], and the number
of paper submissions at the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) [109], over the years.

especially, the domain aiming at the automation of vision-based tasks (e.g., automated
scene understanding from images), deep learning has led to impressive progress and its
solutions are already deployed in numerous applicative domains.

Indeed, as the generation of digital data (images and videos included) becomes ubiquitous
and systemic, so does the application of machine learning, solving a growing number of
complex tasks.

In this context, it is no surprise that the main leaders in AI nowadays are information
technology (IT) companies such as Google and Facebook, i.e., corporations that have both
an abundance of data and the computational infrastructure to process it. More and more
companies are similarly trying to turn the data that they have been collecting over the years
into knowledge, and this knowledge into new business opportunities. Thankfully, lots of
efforts are also made to turn data not only into financial capital but also into smarter systems
that could benefit individuals and our societies as a whole. Leveraging novel cameras and
sensors, algorithms are being developed to help medical experts provide accurate diagnoses,
to assist disabled people in their daily life, to provide insight into social and environmental
phenomena, etc.

1.1.2 Computer Vision for a Smarter Industry

The industrial sector too has plenty of raw data waiting to be mined. From design schematics
to quality measurements, from video streams to label tracking, manufacturing companies

1.1 Motivation 3



Fig. 1.2: Screenshot of the product webpage of Easy Spares IDea® [241], a Siemens industrial
app powered by computer vision which leverages some of the results presented in this
dissertation (all rights over the website are reserved by Siemens AG).

are also accumulating information on the life cycle of their goods, which could be further
leveraged by modern machine learning solutions.

With other recent technical advances in Internet of things (IoT), cloud computing, additive
manufacturing, etc., computer vision systems based on deep learning are the pillars of the
“smart factory” revolution, e.g., promoted as the “Industrie 4.0” by the German government
through a variety of large scale projects. Data-powered computer vision could be applied to
robot automation, simulation, augmented reality (AR) interfacing, etc.

For example, “Mobile 3D-Erfassung und 3D-Druck für industrielle Anwendungen (M3D)”,
one of the Industrie 4.0 projects conducted by Siemens AG, leverages the developments in
additive manufacturing and in computer vision algorithms based on three-dimensional (3D)
models, to improve various aspects of the spare parts supply chain. Another similar project
resulted in the commercialization of Easy Spares IDea®. Combined to Siemens online
platform for spare part orders, this mobile application (app) is meant to assist operators in
charge of the maintenance of Siemens Mobility products (e.g., trains, streetcars). From a
single picture of a defect part that an operator captured with their mobile device, the app
can directly recognize the part (from the Siemens catalog containing tens of thousands of
entries), provide information on the object and its stock availability, let the operator order a
new part in a click, etc.

Leveraging pre-existing and underused data (e.g., Siemens’ rich virtual catalog of
manufactured parts) and novel devices (e.g., smartphones with new visual sensors),
computer vision can, therefore, automate complex procedures and enable more horizontal

4 Chapter 1 Introduction



interactions between industrial actors. Conducted in the context of these aforementioned
projects, the present dissertation contains several contributions directly applied to these
goals.

1.2 Problem Statement

The integration of computer vision systems into industrial processes is, however, not without
obstacles. The following section presents how the scarcity or irrelevance of pre-available data
samples is a major problem for the development of robust recognition system, motivating
the research presented in this dissertation.

1.2.1 Data Scarcity in Modern Computer Vision

Data is the life and blood of deep learning applications, as they need large amounts of
relevant data—usually with precise annotations—to be optimized for their target task (e.g.,
such a method would need to iterate over a multitude of images depicting a specific object,
in order to later recognize it in new pictures). Despite being in the big data era, datasets
large enough to properly optimize these methods are still tedious to gather and even more to
annotate (as human inputs are usually required).

Moreover, oftentimes, relevant images themselves may not be available before the
deployment of the recognition systems. For instance, when building automation models for
the industry, it would be too time and money consuming to ask human operators to capture
an array of images for every manufactured object and their components—assuming they are
available for photography (target objects may not have been manufactured yet or may be in
remote plants).

In the case of the aforementioned Siemens app for industrial part recognition, capturing
and annotating a large-enough sequence of images for each of the tens of thousands of
parts constituting the target rail cars would have been a preposterous task. Furthermore,
this undertaking would have had to be repeated for every new train supported by the app.
Relying on real captured images would be both cost-ineffective and unscalable.

Data scarcity is, consequently, a common problem in computer vision, and much effort has
been expended in trying to train robust models (i.e., to properly parameterize them w.r.t.
their target task) despite the lack of training images or rigorous annotations [27, 53, 77, 192,
254, 272].

1.2 Problem Statement 5



picture from a color camera image from a 3D model

realism gap

Fig. 1.3: Illustration of the realism gap for industrial applications.

1.2.2 CAD-based Recognition and Realism Gap

A common proxy to capturing real images for the training computer vision methods is
the generation of synthetic images from 3D models [37, 147, 162, 216, 233, 250, 286].
Leveraging the latest tools in computer graphics, it is indeed straightforward to render a
huge amount of relevant pictures from 3D models. Such a solution is especially interesting
for industrial use-cases, as 3D computer-aided design (CAD) models of target objects are
commonly pre-available.

However, for a variety of reasons further detailed along this dissertation (low photo-realistic
quality of CAD models, lack of information w.r.t. overall target scenes, difficulty to simulate
the noise induced by actual cameras, etc.), the salient discrepancies between training
synthetic images and target real pictures—known as realism gap—still heavily impairs the
application of synthetically-trained machine-learning algorithms to real-life situations. The
knowledge that these methods acquired over synthetic data does not always apply to real
images, due to the realism gap. For instance, the synthetic images may contain objects
rendered with slightly different colors, the images may be less cluttered or noisy than real
ones, the lighting conditions may differ, etc. Having been trained only w.r.t. this synthetic
domain, it appears normal that algorithms would fail to fulfill their task on real data if they
cannot rely anymore on the only visual cues that they know.

Solving the problem of data scarcity by somehow bridging the realism gap has consequently
become a pivotal issue in computer vision, and is the central motivation behind this thesis.

Several works have already been proposed to partly close this gap, either through the
generation of more relevant synthetic images [27, 88, 139, 254] or through the transfer or
adaptation of the knowledge acquired by algorithms to the target use-cases [77, 192, 272,
300]. But most of these solutions are based on the assumption that either a small set of real
images or highly-realistic 3D models of the target objects (or both) are available at training
time. In other words, with such information at hand, most state-of-the-art methods only
consider use-cases where the realism gap is already narrowed.

6 Chapter 1 Introduction



Motivated by industrial applications where only colorless CAD models of target objects and
a bare knowledge of the target visual conditions are available, the present thesis, therefore,
addresses the realism gap in a more generic and systemic manner.

1.3 Thesis Overview

Articulated around the core themes of data scarcity and realism gap in computer vision, the
present dissertation introduces various contributions, each tackling a different sub-problem.
This section contains a brief overview of the thesis, listing the main contributions and
presenting the outline of the remaining chapters.

1.3.1 Contributions

Considering the development of robust systems for visual recognition from CAD data, the
two main contributions of the present thesis are addressing the realism gap each from a
different rim. A pipeline is proposed to simulate specific visual sensors commonly used
in the industry (depth sensors) in order to render synthetic images closer to the real ones;
whereas another solution is presented to map unseen real images into controlled synthetic
domains for easier recognition. Additionally, this thesis proposes a novel method to build a
global representation of an object or scene from a small set of partial images (e.g., when 3D
modeling has not been done yet or cannot be) and to generate new images from it. Overall,
this dissertation contains the following high-level contributions:

Simulation Pipeline for the Generation of Realistic Depth Scans.
Since their first commercialization almost a decade ago, low-cost commodity depth (2.5D)
sensors such as the Microsoft Kinect and Structure IO have been used in a variety of
recognition systems [70, 164, 223, 242, 247]. Measuring the distance to objects in their
field of view, these devices are especially suitable to CAD-based recognition, i.e., when the
shape of the target objects is known but not necessarily their exact visual appearance (color,
texture, etc.).

When real 2.5D data is unavailable or too scarce to optimize recognition methods, it is
straightforward to render synthetic 2.5D images from 3D models with computer graphics
tools. However, real 2.5D scans are suffering from various types of noise and clutter.
The realism gap is, therefore, also impeding depth-based recognition methods trained on
synthetic data.

Based on a thorough study of depth sensors and the types of noise affecting them, an end-to-
end pipeline is proposed, which simulates the mechanisms of the actual devices in order

1.3 Thesis Overview 7



to generate images with the same visual quality. Quantitative evaluations on a variety of
depth-based recognition tasks demonstrate that training algorithms on images generated by
the proposed simulation pipeline improves their end accuracy when applied to the target real
images, compared to the same algorithms trained over other state-of-the-art simulators.

Generative Method to Map Unseen Real Data into Synthetic Domains.
Addressing the realism gap from the opposite angle, a second solution is proposed to train
an artificial neural network (ANN) to denoise and declutter unseen real images, to map
them closer to the synthetic image domain. The processed images can then be passed to any
recognition methods that have been trained purely on synthetic data. Therefore applied to
images similar to those they were trained on, the recognition methods perform much more
accurately, as demonstrated once again over a series of quantitative experiments.

To learn its mapping from unknown real image domains into the synthetic one when only
texture-less 3D models are provided (i.e., with no real image available at training time),
the solution leverages an advanced neural architecture (with multi-task decoders and self-
attentive distillation) and domain randomization [225, 265] (i.e., learning against a noise
source corrupting the synthetic data).

Mnemonic System for Incremental Scene Registration and Synthesis.
For some applications, data scarcity is such that only a dozen of images capturing a target
object or scene are available, with no 3D model or other representation to generate additional
samples. Similarly, in other instances, one may want an autonomous agent (e.g., a robot or
drone) to learn from its observations as it explores new environments.

Considering the latter case, Henriques and Vedaldi [98] proposed a neural method to
incrementally build a global representation of new scenes from partial observations,
localizing the images one to another based on their content and registering them in a spatial
mnemonic structure. In this thesis, their solution is incorporated into a larger pipeline,
which can interpolate from the memorized features and extrapolate from previous
knowledge to hallucinate the content of unobserved regions at each time step, and can be
used to synthesize novel views (e.g., from unexplored viewpoints). This novel pipeline
ensures the consistency of the generated images from one to another, e.g., enabling the
generation of larger datasets for downstream tasks.

1.3.2 Outline

The remainder of this dissertation is structured as follows:

8 Chapter 1 Introduction



Chapter 2 – Background on Visual Recognition from Scarce Training Data.
The following chapter provides the readers with the necessary theoretical background,
contextualizing the thesis. Starting with a formal presentation of modern computer vision
and deep learning, it details how data scarcity and realism gap impede the training of robust
recognition methods, referring to seminal works on domain adaptation.

Chapter 3 – Realistic Depth Sensor Simulation.
Focusing first on depth-based recognition in industrial settings, this chapter presents a
study of depth sensors and introduces the simulation pipeline aiming at generating realistic
images from CAD models to facilitate the training of recognition methods. Qualitative and
quantitative results are shared to highlight the correctness and versatility of this solution,
followed by a discussion on its usage and limitations.

Chapter 4 – Incremental Novel View Synthesis through Scene Learning.
Despite its effectiveness, the aforementioned simulation pipeline—like many other rendering
solutions—rely on the availability and quality of object representations (e.g., 3D models).
Considering the registration of new representations from partial visual observations and the
direct synthesis of novel views, this chapter formalizes an end-to-end derivable read/write
mnemonic system for incremental scene synthesis. Though it could presumptively benefit
from more powerful generative models and denser memory, this pioneering study provides
satisfying results, shared and discussed in the chapter.

Chapter 5 – Reversed Domain Adaptation Scheme for CAD-based Learning.
Addressing again data scarcity for CAD-based recognition, this chapter proposes a novel
domain adaptation scheme, training an ANN to denoise, declutter, and map unseen real
images into synthetic domains, in order to facilitate downstream recognition tasks. In
this chapter, the method is applied to the projection of real color images into geometrical
representations which can easily be produced from 3D models. A series of experiments
illustrate how this pre-processing greatly improves the accuracy of recognition methods
which had been trained on synthetic data.

Chapter 6 – Discussion and Future Work.
The final chapter summarizes the thesis, discusses its overall contribution to the state-of-the-
art, and provides some insight regarding possible future work.

1.3 Thesis Overview 9





2Background
on Visual Recognition
from Scarce Training Data

„
Learning is not attained by chance, it must be sought for
with ardor and diligence.

— Abigail Adams
(First Lady of the United States, 1780.)

Teaching algorithms to expertly process visual information is a complex task, made much
harder when the relevant data to extract knowledge from is scarce. In this chapter, a formal
background is provided to substantiate this intuitive statement and to put in perspective the
contributions thenceforth.

In Section 2.1, a presentation of the field of computer vision is provided, highlighting its
contemporary challenges and formalizing its models. Section 2.2 expands on artificial neural
networks, their development into deep learning, and their prevalence and limitations for
visual tasks. Section 2.3 concludes this chapter by formalizing the importance of relevant
and rich data for the training of machine learning models, and discussing proxy data sources
specific to computer vision such as synthetically generated training images.

2.1 Conceptualization of Computer Vision

In order to contextualize the contemporary challenges of computer vision that this thesis is
tackling, this research field is briefly introduced, along with the related formalism reused
throughout this document.

2.1.1 Introduction to Computer Vision

Computer vision has become so ubiquitous that its definition can drastically vary from
one expert to another. This introductory section paints a global picture of computer vision,
highlighting its domains of application and challenges.

11



Definition and Motivations

Computer vision covers a large panel of topics, sitting at the crossroad of several research
and development fields, such as computer science (algorithms, data processing, graphics),
physics (optics, sensors), mathematics (calculus, information theory), biology (visual stimuli,
neural processing), etc. Being an interdisciplinary field, computer vision emanates from
a variety of theoretical and practical motivations. For instance, while some scientists
are focusing on simulating our biological visual system through mathematical models,
other experts are developing bottom-up autonomous systems relying on visual stimuli to
interact with their environment [105]. However, down to its core, computer vision can be
summarized as the automatic extraction and understanding of higher-level information from
digital visual contents.

We humans rarely stop to contemplate the wonders our own brain achieves when it comes
to processing visual information. But our ability to decipher the stimuli coming from our
eyes’ photoreceptors, to recognize objects seen only once before, to tell apart faces using
the smallest details, to instantly build a mental geometrical representation of a new room
we are walking in, etc. is little short of incredible. For computers, however, images are just
digital blobs of pixels, matrices of integer values with no further meaning [205].

Therefore, the main goals of computer vision are not only to develop tools for digital systems
to automatically extract meaningful features from these pixel matrices, but also to provide
them with the computational and contextual means to understand the semantic information
relayed by these features. Indeed, plenty of image processing methods are already available
nowadays, to extract basic image features such as edges, gradients, contours, etc. [35, 66,
94, 200]. However, these features themselves are not enough to draw intelligent conclusions.
Background knowledge should be acquired and applied to link some feature arrangements
to specific semantic information.

Taking a concrete example, a low-level understanding is needed to associate some circular
contour and monochrome features to the presence of a red circle in a picture. Then
knowledge of real-world objects is required to understand that this red circle and other
neighboring features represent a traffic light. Finally, the ability to project the position and
orientation of this object from the image coordinate system to the three-dimensional (3D)
world system, e.g., relative to the car the picture was taken from, as well as an
understanding of traffic rules, are required for an autonomous driving system to decide and
take action upon this visual input. This bottom-up process from perception (“a red circle of
pixels is observed”) to decision (“it represents a red traffic light, positioned in front of the
car, meaning the driving agent should carefully stop”) defines modern computer vision.

12 Chapter 2 Background on Visual Recognition from Scarce Training Data



In recent years, thanks to a driven research community fueled by the biggest IT companies
and the ever-increasing availability of data and visual sensors, layers of abstraction and
understanding have been stacked onto this bottom-up approach to visual intelligence. More
and more, scientists are proposing ambitious autonomous systems able to supersede humans
for routine or complex visual tasks (e.g., detection of defect parts in large manufactured
systems, video-surveillance of high-risk areas, vision-based vehicle navigation, etc.) or even
to solve tasks beyond human abilities (e.g., automatic annotation of large media streams,
medical screening using sensors performing in the non-visible light domain, etc.).

Applications and Knowledge Transferability

Applications of computer vision are indeed numerous and varied. This heterogeneity led
to an abundance of theoretical and practical developments over the years, but may also be
holding back the field as a whole.

Computer Vision in the Wild. Content recognition (i.e., the automatic semantic
annotation of visual content) is probably the most ubiquitous task tackled in computer
vision, and can be further divided in a panel of cases based on the granularity of the
recognition (e.g., from image-level recognition for image classification to pixel-level
annotation for semantic segmentation), on the definition of the label space (e.g., predefined
and fixed set of labels for object or category classification, or dynamic partitioning for
person re-identification), on the input dimensionality (e.g., single-image face recognition
versus video-based action classification or instance tracking), etc. Tasks can also have
continuous label spaces, e.g., when developing algorithms to regress the position and
orientation of target elements relative to the camera in the 3D space, i.e., attempting to
reverse the projection from 3D to image space.

Other algorithms are focusing on extracting and matching features from sets of images, to
understand their relations and build higher-level models. The most widespread examples
are stereo-matching (the process of regressing the distance to the camera for every pair of
pixels in stereo-images, as done by two-eyed animals) and simultaneous localization and
mapping (SLAM, the simultaneous registration of images from an agent into a common
map representation and tracking of the agent inside this representation).

Learning recurrent features and their relations in larger datasets, computer vision models
can also be used to infer new relevant content, for tasks like image completion (generating
relevant content for missing image patches) or dataset augmentation (generating novel
images following the content distribution of a given dataset).

2.1 Conceptualization of Computer Vision 13



Toward Generalisable Models? However, like machine learning, computer vision is still
far from achieving a visual artificial general intelligence (AGI), i.e., a generic, all-in-one,
model for visual understanding. Experts are still tackling applications separately, applying
various solutions to the heterogeneous input data and target predictions. As later discussed
in this thesis, current models are not yet able to efficiently transfer their expertise from one
task to another (at least without undergoing some adaptation).

This lack of transferability is a key challenge of modern computer vision, as it impairs both
the generalisability of state-of-the-art solutions (toward building an AGI) and also their
proper adaptation to visual tasks that do not meet the requirements in terms of knowledge
base (e.g., lacking the pre-available samples and annotations to tune the solutions).

2.1.2 Development of the Field

According to Confucius, one should “study the past if [one] would define the future.” By
painting the evolution of computer vision in the decades since its creation, this subsection
highlights and puts in perspective some of the modern challenges of this field.1

Early Approaches to Computer Recognition

From the start, researchers underestimated the complexity of visual recognition. The
evolution of our understanding w.r.t. biological cognition and perception not only had
important sociological and philosophical consequences on our modern societies, but it also
heavily impacted the development of artificial intelligence (AI) and computer vision.

Abstract Cognition versus Animal Functions. Computer vision as a domain started
in the sixties, among the AI research community which was dominated by the symbolic
approach [194]. According to this paradigm, many aspects of intelligence can be achieved
through the manipulation of symbols. This assumes that “a sharp line can be drawn between
the physical and intellectual abilities” of an intelligent agent (e.g., a human being) [267].

This way of thinking is reminiscent of the Cartesian mind-body dualism, according to
which, mental phenomena are “non-physical”, and mind and body are distinct and separable.
Building on this assumption, researchers hence focused on solving purely intellectual tasks
such as chess and checkers [228, 236]. Proposing ad hoc technical solutions to well-defined
but constrained problems, this line of research originated from an assumption that solutions

1This section reuses some paragraphs and figures which I authored for the first chapter of the book Hands-On
Computer Vision With TensorFlow 2 [205]. Authorization to share this content has been kindly granted by
the publisher.

14 Chapter 2 Background on Visual Recognition from Scarce Training Data



to such problems might be significant to solving AGI (e.g., that dealing with the particular
task of playing chess can be transferable to a broader class of problems such as filter design,
language translation, etc.).

While we owe the symbolists the foundations of the domain and various works still relevant
nowadays—e.g., Turing’s Imitation Game [267], his primitive formulation of reinforcement
learning [268], or the rule-based systems [228, 236]—one could object to their approach that
intelligence should be regarded as the ability to accomplish a wide variety of goals, or that
trying to reproduce human intelligence—seen as the pinnacle—is a classic anthropocentric
error (human self-importance). As these researchers underestimated the complexity of
lower animal functions such as perception, it took years for computer vision to be given the
attention matching its challenges and to grow into a field of its own.

Understating Perception. Marvin Minsky was one of the first to outline an approach
towards building AI systems based on perception [170]. Minsky argued that with the use
of lower functions such as pattern recognition, learning, planning, and induction, it could
be possible to build machines capable of solving a variety of higher-level problems. He
also pointed out the importance of perception and the concept of an agent interacting with
the environment, termed as a “reinforcement” machine. While some of these ideas might
be considered a transition towards embodied learning, the approach was still substantially
symbolic. Minsky too underestimated the complexity of perception problems such as object
recognition and missed the strong connection between perception and action.

In the eighties, it was clear that the symbolic approach was stalling, and the aforementioned
objections grew louder. Researchers in the field of robotics switched their focus to solving
problems that would allow their machines to perceive, learn, recognize and thus act and
interact with the environment—aspects of intelligence that were considered less important
by the symbolists. Led by John McCarthy, the Dartmouth proposal [165] is a clear example
of how the symbolists misconstructed the problem, disregarding whole aspects of what
makes intelligent agents able to interact.

Subsymbolic Revolution. This observed failure of the figureheads of symbolism led
other researchers to look into new ways of considering intelligence and developing
machines capable of solving concrete challenges, focusing on perception and action. This
“subsymbolic” movement aimed to approach intelligence by acknowledging the strong
connection between perception and action, hence without requiring a symbolic
representation of knowledge.

In 1984, in support of the importance of perception to the development of intelligent systems,
Hans Moravec [176] noted that our nervous system, through the process of evolution, has

2.1 Conceptualization of Computer Vision 15



+ 0.91 × − 3.07 × + 3.27 × − 2.63 × + …=

mean image weighted sum of the database‘s eigen vectors

Fig. 2.1: Usage of Eigenface features [269]. A portrait image is decomposed into the mean image
and weighted sum of eigen images. These mean and eigen images were computed over a
larger face dataset.

developed specifically to tackle perceptual tasks. As he noted, even if modern computers are
extremely efficient at arithmetic, they cannot compete with such perceptual abilities. In this
sense, programming a computer to solve purely intellectual tasks (e.g., playing chess) does
not necessarily contribute to the development of systems that are intelligent in a general
sense or relative to human intelligence.

Among the major contributions to the reshaping of AI were those made by Rodney A.
Brooks [30, 31], who rejected symbolic AI and proposed to focus on embodied intelligence.
Brooks dwelt onto the importance of testing developed AI systems in the real world. He was
a great defender of a modular approach to intelligence that would slowly link perception to
action. In particular, he believed that robotic behavior should not be guided by symbolic
representations of the world. Instead, sensory information should guide action selection,
following a bottom-up approach—the one mentioned in the introduction, that would become
central to computer vision and artificial intelligence.

From Feature Extraction to Decision

Therefore, tackling computer vision from the bottom, researchers focused their efforts on
mimicking the primitive mechanisms of animal perception. This shift in the approach to
computer vision marked the beginning of feature-based recognition.

Crafting Visual Features. Inspiration came from developments in sensory neurobiology,
which highlighted the presence of simple, highly specialized, cellular blocks (e.g., in animals’
visual cortex) in charge of detecting basic features like edges, color changes, etc. [106, 144,
161]. Computer scientists developed matricial and gradient-based methods to extract such
features in digital images. According to Richard Szeliski in the introduction of his famous
book “Computer vision: algorithms and applications” [260], the first computer vision
algorithms were based on the extraction of lines and edges, which could be used to gain a
basic understanding of the two-dimensional (2D) projected geometry and, e.g., to identify
letters and digits in scanned texts [51, 107]. Texture and lighting information was then
also taken into account, leading to early object classifiers based on feature correspondences.
Over the years, increasingly expressive and robust features were considered.

16 Chapter 2 Background on Visual Recognition from Scarce Training Data



Fig. 2.2: Representation of SIFT key points extracted from a given image (using
OpenCV [28]). For each localized key point, the radius of the circle represents the
size of its meaningful neighborhood, and the line shows its orientation (i.e., the main
orientation of the local gradient).

In the nineties, features based on statistical analyses of image datasets—such as principal
component analysis (PCA) [287]—were successfully applied to complex recognition
problems such as face classification (c.f . the “Eigenface” features proposed by Turk and
Pentland [269] and illustrated in Figure 2.1). Later that decade, the popular scale invariant
feature transform (SIFT) method was also proposed by Lowe [156], based on pairs of key
points extracted from images and their respective local gradient-based features computed to
be robust to changes in scale and orientation (c.f . Figure 2.2). Other local feature extractors
were proposed the following decades, like speeded up robust features (SURF) [13] and local
energy-based shape histograms (LESHs) [230].

Researchers had indeed become more and more ingenious at hand-crafting visual features,
combining local gradients, histograms, etc. As the expressiveness and robustness of
engineered features kept improving, so did the decision-making methods relying on these
features. While direct matching of features extracted from query images to labeled features
from a known dataset is fine for concise problems like character recognition, such
correspondence-based methods cannot easily scale up to larger problems or deal with
intra-category variations (e.g., matching features across images for face recognition may fail
if the lighting conditions are different, if the person got a new haircut in between, etc.).

Development and Limitations of Decision-Making Models. Therefore, machine
learning methods have been adopted and adapted by the computer vision community to
reduce the prediction search space or to statistically model potential feature variability
among classes. For instance, in the late nineties, support vector machines

2.1 Conceptualization of Computer Vision 17



(SVMs)—standardized by Cortes and Vapnik [52]—became the default solution to map
high-dimensional structures (like images or their feature vectors) to simpler labels (like
classes).

Such machine learning methods are typically defined by a set of parameters which can be
tuned to approximate the non-linear function mapping the provided inputs to the desired
labels. Proper parameters for a specific task are learned by the algorithms during a training
phase. This training usually consists of an iterative supervised optimization process done
over relevant data samples and their ground-truth labels. Other significant machine learning
methods applied to computer vision are Bayesian models [190, 259], random forests [146],
bags of words [298], and neural networks [140, 220].

With the overwhelming success of convolutional neural networks (CNNs) after 2012 [130],
researchers in computer vision went from hand-crafting features to teaching computational
models to extract optimal features w.r.t. their target tasks. While CNNs brought a new era
of vision-based applications, the unequivocal reliance on these models has been criticized
by many, as detailed in the next sections of this chapter. Nevertheless, the cognitive
layer CNNs added to the bottom-up visual intelligence is most valuable if not an end by
itself. Researchers are nowadays exploring additional solutions built upon the current stack,
especially with the goal to finally increase the horizontal coverage of current intelligent
systems (i.e., their generalisability and ability to connect heterogeneous abstract concepts).

2.1.3 Formalization of Computer Vision Models

Adopting notations commonly used in machine learning and computer vision [15, 16, 42,
53, 54, 117, 132, 192, 193, 215, 277] and borrowed from statistical learning theory [273],
let X ⊂ Rd be a d-dimensional input space and X ∈ X be an observable variable with an
arbitrary but fixed marginal probability distribution P(X) (e.g., {x0, x1, ..., xn} sampled
i.i.d. according to P(X) are input images, or their vectors of extracted features, that a model
may have to process). Similarly, let Y be the label space and Y ∈ Y be an observable
variable with a distribution P(Y ). Y can be discrete (e.g., categories of pictured objects,
next actions an autonomous agent should take w.r.t. the latest visual inputs) or continuous
(e.g., the states of the pictured objects like their 3D poses).

Discriminative Models

In computer vision and machine learning, most solutions have a discriminative role [18].
They can be defined as parameterized predictive functions (or hypotheses) belonging to the
hypothesis classHD = {hθ : X → Y | θ ∈ Θ} with Θ ensemble of all possible parameter
sets for this family of hypotheses. Configured by a set of parameters θ and given x sampled

18 Chapter 2 Background on Visual Recognition from Scarce Training Data



i.i.d. according to P(X), a function hθ(x) = h(x; θ) = ỹ has for purpose to return ỹ = y,
i.e., to estimate the true task-specific label y out of all other candidates belonging to the
target space Y .

Therefore, a discriminative task T D can be expressed as T D = {Y, fD}, i.e., defined by
its label space Y and its objective labeling function fD which has to be approximated.
Pushing the probabilistic approach further, discriminative methods h ∈ HD tackling T D
can be considered as modeling the posterior probability distribution P(Y |X) (this applies to
solutions for logistic or softmax regression, i.e., methods whose predictions are normalized
applying the logistic/sigmoid or softmax function).

The optimal hypothesis h∗ is the function parameterized by θ∗ such that:

θ∗ = arg min
θ∈Θ
R(hθ) = arg min

θ∈Θ
Ex∼P(X)

[
L
(
fD(x), h(x; θ)

)]
, (2.1)

i.e., so that the hypothesis minimizes the expected risk R (also named expected loss,
generalization risk, or out-of-sample risk) expressed by a loss function L that quantifies the
difference between each predicted ỹ and ground-truth y according to the task context (e.g., a
loss function could more heavily punish false negatives than false positives for safety-related
tasks).

In practice, since the distribution P(X) is unknown, the expected risk cannot be directly
computed and can only be approximated over an empirical dataset of m pairs {(x, y)}mi=1
with xi input elements gathered i.i.d. from P(X) and y = fD(x) ∈ Y their respective true
labels. Given this available dataset, hypotheses should be minimizing the empirical risk R̂
defined as:

R̂(hθ) = 1
m

m∑
i=1
L
(
fD(xi), h(xi; θ)

)
. (2.2)

Generative Models

Another type of computer vision methods is instead applied to generative tasks T G =
{X , fG} [18], i.e., trying to approximate fG and to infer the true distribution P(X). In
other words, whereas discriminative models learn to label input samples based on specific
features (e.g., to classify cat pictures per breed), generative models can be used to sample
new plausible elements from X according to P(X) (e.g., to generate realistic images from
the domain “cat pictures”). In some cases, generative methods can also be trained to model
P(X|Y ), i.e., to approximate the unknown function fG : Y → X which samples valid
inputs x w.r.t. provided labels y (e.g., realistic cat images x corresponding to a specific breed
y).

2.1 Conceptualization of Computer Vision 19



According to a majority of experts, such generative models hold the key to the next stage
of machine learning. To be able to generate a large and varied amount of novel elements
despite their mnemonic and computational limitations, these solutions have to distillate the
dataset, to uncover its structure and key features, etc. They have to understand the data.

While the following section will detail the progress made in that direction with the
development of CNNs, computer vision as a whole still has a long way to go. Nevertheless,
modern discriminative and generative models are already covering advanced real-life
applications, leading to the most interesting results when applied jointly, as the remaining of
this thesis will highlight.

2.2 Prevalence and Limits of Deep Learning

The past decade has seen the rise of deep learning. Outshining most of the traditional
computer vision methods, deep neural networks have been adopted by the vast majority
of the community. This section provides the necessary background to understand their
mechanisms and their success, while discussing their limitations.

2.2.1 Development of Artificial Neural Networks

Interestingly, before the current decade, not many people would have bet on the supremacy
of artificial neural networks (ANNs) observed nowadays in machine learning and related
domains. Indeed, since their invention, it has been a bumpy road to success as presented in
this subsection, along with details on their functioning.

Birth of the Perceptron

In the fifties, Frank Rosenblatt proposed the perceptron, a linear classifier and the underlying
block of first ANNs.

Biological inspiration. ANNs are loosely inspired by the biological mechanisms
supporting animal cognition (e.g., our own thoughts). Our brain is a complex network of
neurons, passing information to each other, processing sensory inputs (as electrical and
chemical signals) into thoughts and actions.

Each neuron receives its electrical inputs from its dendrites, some cell fibers which propagate
the electrical signal from the synapses (the junctions with preceding neurons) to the soma
(the neuron’s main body). If the accumulated electrical stimulation exceeds a specific

20 Chapter 2 Background on Visual Recognition from Scarce Training Data



input

process

output

dendrites

soma

axon

nucleus

x(0) x(1) x(i)

*w(0) w(i)

w(1)

* *

Σ sum + b

…

ഥ𝒚

Fig. 2.3: Biological neuron and its artificial counterpart. On the left, a simplified biological
neuron is depicted,; and on the right, a perceptron is represented.

threshold, the cell is activated and the electrical impulse is propagated further to the next
cells through the neuron’s axon (its “output cable” ending with several synapses linking to
other neurons). Each neuron can thus be seen as a relatively simple signal processing unit (a
filter).

Mathematical model. Like its biological counterpart (represented in Figure 2.3), the
artificial neuron accepts multiple input values, i.e., an input vector x. The model sums
its values together and finally applies an activation function to obtain the output signal
which can be passed to the next neurons in the network (the latter can be seen as a directed
graph).

The input summation performed by the perceptrons is done in a weighted way. Each value
x(i) ∈ x is scaled by a specific weight w(i) ∈ ω. Oftentimes, a bias value is added to
this weighted sum, before passing the result to the activation function of the perceptron.
Historically, as the first perceptrons were used as binary classifiers, the centered step function
(fac(z) = 0 if z < 0 else 1) was applied, its binary output corresponding to the model’s
prediction ỹ [220]. The whole process can be summarized as ỹ = fac(x · ω + b), with
{ω, b} = θ the parameters of the perceptrons to be trained in order to achieve proper
recognition (a simple iterative linear algorithm was presented to optimize a perceptron over
available samples [220]).

Once again mimicking our brain, perceptrons can be grouped into layers linearly combining
them. A dense layer fully-connecting n artificial neurons can be defined by its trainable

2.2 Prevalence and Limits of Deep Learning 21



weight matrix W = (ω0, ω1, ..., ωn) and bias vector b = (b0, b1, ..., bn); and its prediction
ỹ ∈ Zn2 (i.e., ỹ a n-dimensional binary vector) can be obtained as ỹ = fac(x ·W + b).

Winter of Connectionism. Though the perceptrons and other connectionist models
earned a certain fame in the sixties, it all ended in 1969 when Marvin Minsky and Seymor
Papert published a book highlighting the perceived limitations of these models, famously
demonstrating that the perceptron could not learn a function as simple as XOR (i.e.,
exclusive OR) [171]—as a perceptron can only fit linear functions (XOR is not).

This proto-AI winter affected the research into ANNs for years, until it was demonstrated
that, unlike single-layer perceptrons, fully-connected ANNs composed of multiple layers
stacked together could actually model nonlinear functions (i.e., performing as a directed
graph, passing the output vector of a layer as input to the next until the final prediction).

Optimizing by Backpropagation

To efficiently optimize multi-layer neural networks (NNs) for their tasks, more advanced
techniques had to be developed. Invented in the sixties [33, 122] and refined in the
seventies [60, 151] by multiple research teams, the backpropagation method became the
preferred solution to train neural networks [209, 224]. This training procedure works by
computing the network’s error and back-propagating it through the layers of perceptrons to
update their parameters, using derivatives.

Gradient Descent. As mentioned in Subsection 2.1.3, a recognition model is evaluated by
an empirical risk expressed by the mean value of a task-specific loss function L quantifying
the discrepancies between the true labels yi = f(xi) and predictions ỹi = h(xi; θ) over the
available dataset S = {(xi, yi)}mi=1, with f the target labeling function that the network hθ
is tasked to approximate (c.f . Equation 2.2).

To tune the parameters θ so to minimize the loss in this supervised setting2, one needs
to further evaluate the role that each parameter is playing in the resulting predictions and
error of the NN. Therefore, a solution to tune a parameter (e.g., W ∈ θ) is to compute the
derivative of the loss w.r.t. this parameter (e.g., dL

dW ). Once this derivative computed for
each parameter of an NN after a round of predictions, those parameters can be updated as
follows: θ ← θ− εdLdθ (with ε a learning rate affecting the update amplitude of each training
iteration).

2A supervised training can be seen as the procedure of teaching to a method a mapping between two modalities,
with a supervisor entity providing feedback for every prediction the method makes in order to optimize its
parameters θ accordingly.

22 Chapter 2 Background on Visual Recognition from Scarce Training Data



Loss ℒ

Parameter 𝜃

ℒt

𝜃t 𝜃t+1

ℒt+1

1. Loss of the network at iteration t

2. Negative gradient of the loss for 
this particular parameter

(“slope”)

4. Loss minima to reach by repeating this 
“gradient descent” to optimize 𝜃

3. Parameter 
update based on 

the gradient value

−𝝐
𝑑ℒ𝒕
𝑑𝜃

Fig. 2.4: Simple representation of a gradient descent, to optimize the parameter θ of a function
h according to a loss L

(
y, h(x; θ)

)
for (x, y) ∈ S.

This iterative optimization can be pictured as walking step by step down the “slope” of
the loss function w.r.t. each parameter, hence its name gradient descent (illustrated in
Figure 2.4).

Backpropagation. In order to estimate the derivatives of the loss function w.r.t. the
parameters of each layer composing a neural network, the backpropagation technique makes
use of the chain rule. The chain rule offers an elegant formula to express the derivative
of composed functions: (f (2) ◦ f (1))′ = (f (2)′ ◦ f (1)) · f (1)′. Considering each layer
as a function h(i)( · ; θ(i)) for i ∈ [0, k] (k number of stacked layers) with, therefore,
ỹ(i) = h(i) ◦h(i−1) ◦ ...◦h(0)(x) (parameters θ(i) are omitted for clarity) and ỹ = ỹ(k), their
derivatives can be recursively computed as follows:

dL
dθ(i) = dL

dỹ(k)
dỹ(k)

dθ(i) = dL
dỹ(k)

dỹ(k)

dỹ(k−1)
dỹ(k−1)

dθ(i) = dL
dỹ

dỹ(k)

dỹ(k−1) ...
dỹi+1

dỹ(i)
dỹ(i)

dθ(i)

= dL
dỹ

k−i∏
j=1

(dỹ
(k−j+1)

dỹ(k−j) )dỹ
(i)

dθ(i) . (2.3)

Considering NNs composed of fully-connected layers h(i)(ỹ(i−1); θ(i)) = f
(i)
ac (z(i)) with

z(i) = ỹ(i−1) · W (i) + b(i), each final term of the above equation can be conveniently
computed as:

dỹ(i)

dỹ(i−1) =
d
(
f

(i)
ac (z(i))

)
dỹ(i−1) =

d
(
f

(i)
ac (z(i))

)
z(i)

d(z(i))
dỹ(i−1) = f i

′
ac(z(i))d(ỹ(i−1) ·W (i) + b(i))

dỹ(i−1)

=
(
W (i))ᵀf (i)

ac

′(z(i)) , (2.4)

dỹ(i)

dθ(i) =
{ dỹ(i)

dW (i) ,
dỹ(i)

db(i)

}
=
{ dỹ(i)

dW (i) ,
dỹ(i)

db(i)

}
=
{(
ỹ(i))ᵀf (i)

ac

′(z(i)) , f (i)
ac

′(z(i))
}
, (2.5)

2.2 Prevalence and Limits of Deep Learning 23



-1

1

-1-2 21
-1

1

-1-2 21
-1

1

-1-2 21

-1

1

-1-2 21

step sigmoid tanh ReLU

Fig. 2.5: Representation of common activation functions used in NNs.

with f (i)
ac
′
(z(i)) the derivative of the activation function fac(i) w.r.t. its input z(i). This

justifies the common usage of easily and continuously derivable functions such as (c.f .
Figure 2.5):

• sigmoid sL(z) = 1
1+e−z with sL′(z) = sL(z)− sL(z)2;

• tanh(z) = ez−e−z
ez+e−z with tanh′(z) = 1− tanh(z)2;

• rectified linear unit ReLU(z) = max(0, z) with ReLU′(z) = 1 if z > 0 or
ReLU′(z) = 0 if z < 0;

• etc.

Similarly, the backpropagation technique requires the usage of a loss that is derivable w.r.t.
to its input ỹ, i.e., in order to compute the term dL

dỹ
. Therefore, typical losses are based on

the Manhattan or Euclidean distance between y and ỹ (Lp(y, ỹ) = ‖y − ỹ‖p with p = 1 or
2), or based on their cross-entropy, etc.

Training Sequence. The supervised training of a neural network over an available labeled
dataset S is an iterative process. Each iteration, the loss is either computed and directly
back-propagated after a single prediction h(x; θ) with (x, y) usually randomly picked from
S hence the name stochastic gradient descent (SGD); or the loss is first accumulated over a
mini-batch of n predictions (with n ≤ |S|) before being back-propagated at once, e.g., as its
mean value. In both cases, the sequence of forward and backward propagations through the
models to be trained is repeated until convergence, according to Equation 2.2 (a sequence of
iterations covering the whole training set S is called an epoch).

The integration of the backpropagation technique made it theoretically possible to train deep
NN models (i.e., NNs with larger numbers of layers stacked vertically)3, but the hardware
capability in the eighties was heavily constraining any larger-scale experimentation.

3The term “deep learning” was first coined by Dechter [56] in 1986 and was applied to NNs a decade after [4,
100]. The expression entered popular domain only after 2012 and the breakthrough of “really-deep” NNs.

24 Chapter 2 Background on Visual Recognition from Scarce Training Data



Convolutional neural networks

Inherently, fully-connected neural networks are poorly adapted to tensorial inputs like
images, which led to the development of a different family of NNs: the convolutional neural
networks (CNNs).

Limitations of Traditional Neural Networks. First of all, due to their dense connectivity,
the number |θ| of parameters a fully-connected NN should tune is proportional to the
dimensionality of its input and output vectors. When considering multi-layered networks to
process images (i.e., X ⊂ Rc×h×w with h × w its spatial dimensions and c its number of
channels), the number of parameters can easily explode.

Furthermore, as the neurons in fully-connected layers have indifferently access to all input
elements, any spatial relation in the tensors is lost. For instance, considering images
again, the networks have no notion of proximity/distance between the pixels, nor notion of
depth/channels.

Constraining the Spatial Connectivity of Neurons. Developed in parallel in the
eighties [73, 74] and refined over the following decades [142, 243], CNNs offer efficient
solutions to these shortcomings. While they work the same way as traditional NNs
(feed-forward, backpropagation, etc.), changes were brought to their architecture.

Unlike fully-connected networks, neurons in CNNs have limited spatial connectivity, i.e.,
they only have access to values in the neighboring region of their previous layer. The region
(of c× kh × kw pixels for images) that each neuron is connected to is called its receptive
field. This limited connectivity not only drastically reduces the number of parameters to
train (for each of these neurons, |θ| = dim(W ) + dim(b) = c× kh × kw + 1, a number of
parameters which is not proportional to the input size anymore), but it also preserves the
localization of image features.

Convolutional Layers. CNNs are named after the convolutional layers at the core of
their architecture. In these layers, the number of parameters is further reduced by sharing
the same weights and bias among all neurons linked to the same output channel c̄. These
neurons with shared parameters and limited spatial connectivity (W c̄ ∈ Rc×kh×kw , bc̄ ∈ R)
can be modeled as a single neuron—called filter or kernel—sliding over the whole input
tensor with a vertical and horizontal stride (sh, sw).

2.2 Prevalence and Limits of Deep Learning 25



At each position (hi,wj) that it can take over the input tensor4 (considering the stride), this
neuron still behaves like traditional ones, linearly combining the values in its receptive field
at this position and applying an activation function to the result:

ỹc̄hi,wj = fac
(
bc̄ +

c−1∑
l=0

kh−1∑
m=0

kw−1∑
n=0

W c̄
l,m,n · xl,hi+m,wj+n

)
. (2.6)

After sliding a kernel over the whole input tensor (optionally padded with ph rows and pw

columns on each side, e.g., with constant values), ỹc̄ ∈ Rhout×wout is obtained, with:

hout = h− kh + 2ph
sh

+ 1 , wout = w− kw + 2pw
sw

+ 1 . (2.7)

Given a layer composed of cout kernels, its response maps are stacked into {ỹc̄}coutc̄=1 = ỹ ∈
Rcout×hout×wout , which can then be passed to other layers. The fact that Equation 2.6 can
be efficiently performed as a convolution5 gave the name to the corresponding layers.

Architectures and Properties of CNNs. Convolutional layers are powerful tools for data
processing. As mentioned earlier, they can be applied to large input images without suffering
from an explosive number of parameters. It is, therefore, possible to stack a larger number
of such layers, compensating for their limited spatial connectivity. Indeed, the effective
receptive field ERF(i) of a layer f (i)—i.e., the region in the input image x which affects the
activation of its neurons—increases the deeper the layer is, as expressed by the following
recursive formula (applicable to the horizontal and vertical dimensions):

ERF(i) = ERF(i−1) + (k(i) − 1)
(i−1)∏
j=1

s(j) , (2.8)

with k(i) the layer’s kernel size (k(i)
h or k(i)

w , though mostly square kernels are used in
practice) and s(j) the stride of a previous layer h(j) (similarly, commonly s(j)

h = s
(j)
w ).

To further increase the effective receptive field of their final layers, CNNs are often also
4From now on, to simplify notations, only image-like tensors are considered, i.e., from X ⊂ Rc×h×w.
5Actually, the proper mathematical term for this operation is “cross-correlation”, though “convolution” is

commonly used in the machine learning community. For all valid positions (hi,wj) of ω over x, the
cross-correlation of a matrix x ∈ Rh×w with a kernel W ∈ Rkh×kw is:

(W ∗ x)hi,wj =
kh−1∑
l=0

kw−1∑
m=0

Wl,m · xhi+l,wj +m ,

whereas the mathematical convolution of these elements would be:

(W ? x)hi,wj =
kh−1∑
l=0

kw−1∑
m=0

wl,m · xhi−l,wj−m .

Note that these operations are, however, quite similar in such a setup, and convolution results can be obtained
from the cross-correlation operation by simply flipping the filters before. Unless specified differently, to
follow the current convention in the field of machine learning, the term “convolution” and the symbol “∗”
will be used when referring to the operation performed by CNNs.

26 Chapter 2 Background on Visual Recognition from Scarce Training Data



1

conv #1
(cout = 6, 𝑘 = 5, 𝑠 = 1, 𝑝 = 2)

32

32

6

28

28

6

14

14

16

10

10

conv #2
(cout = 16, 𝑘 = 5, 𝑠 = 1, 𝑝 = 0)

max-pool #1
(𝑘 = 2, 𝑠 = 2 𝑝 = 0)

max-pool #2
(𝑘 = 2, 𝑠 = 2 𝑝 = 0)

16

5

5

FC #1
( 𝑖𝑛 = 400,
𝑜𝑢𝑡 = 120 )

FC #2
( 𝑖𝑛 = 120,
𝑜𝑢𝑡 = 84 )

FC #3
( 𝑖𝑛 = 84,
𝑜𝑢𝑡 = 10 )

120

84

10

Fig. 2.6: LeNet-5 architecture for hand-written digit recognition [141, 142]. “conv” are
convolutional layers, “max-pool” are maxpooling ones, and “FC” are fully-connected
ones. Observe how the spatial dimensionality decreases with each layer, leading to the
prediction – a vector of 10 probabilities, corresponding to the belief the network has that
the input image corresponds to the 10 considered digit classes (figure rendered with the
NN-SVG tool by Alexander Lenail [143]).

composed of pooling layers. Those layers have the specificity of not having any trainable
parameters (their operation is fixed), making them lightweight. Applied over the whole input
tensor with strides (sh, sw), average-pooling neurons simply return the average value in their
k

(i)
h × k

(i)
w receptive field (computed over each channel separately), whereas max-pooling

neurons return the maximal value. Note that the previously introduced fully-connected layers
are also commonly used in CNNs, usually as final layers leading to the models’ predictions
by linearly interpolating and activating over the features extracted by the convolutional and
pooling layers.

Indeed, convolutional layers also have interesting properties related to image processing
and feature extraction. With training, each kernel learns to react to a specific local feature
wherever it appears in the input tensor (convolutional results are invariant to translation
in the image coordinate space). The response map of a kernel over an input tensor can be
described as a feature map, i.e., an output tensor expressing the positions where the kernel
responded to its target feature. The deeper a layer in a CNN, the more abstract the features
its neurons will react to are. Typically, the first convolutional layers in CNNs activate for
specific lines, color gradients, etc., whereas deeper layers are fed with these feature maps
and thus react to combinations of features, like shapes or textures, then facial features,
specific objects, etc.

CNN Winter and Spring. Despite their numerous advantages, CNNs were still
computationally too heavy for the eighties’ hardware capabilities, and researchers favored
more lightweight methods such as SVMs. Even though a handful of research teams kept
refining and optimizing CNNs and their implementations [100, 189, 276] (e.g., with the
famous LeNet-5 architecture proposed by LeCun et al. [142] for hand-written digit
recognition and illustrated in Figure 2.6), the application of these models to real-life
problems staled for more than a decade.

2.2 Prevalence and Limits of Deep Learning 27



It was a major breakthrough in 2012 which finally gave CNNs their actual prominence,
drastically changing their status from underdogs to unchallenged solutions to visual tasks.
Indeed, that year, the third edition of the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC)—an image classification benchmark over the large ImageNet
dataset [58] composed of ~14 million images from 1,000 classes—was won by Alex
Krizhevsky, Ilya Sutskever, and Geoff Hinton and their eight-layer CNN later named
AlexNet [57, 130]. This victory was significant not only because it embodied the first
successful application of CNN to such a large-scale task, but also because AlexNet won with
a staggeringly low classification error rate of 16%, outshining previous methods stuck at
26%.6

All the following editions of ILSVRC and other famous computer vision challenges were
won by CNN-based methods, refined and derived to tackle more and more complex tasks.
So began the ongoing deep learning era of computer vision.

2.2.2 Rationale for the Success of Deep Learning

If neural networks finally took over computer vision after decades of being shunned, it
was the result of concomitant developments and change of mindsets in computer and data
science.

Concomitant Development of Computer Science

Indeed, besides the tenacity of some researchers who kept refining CNNs the past decades,
the main reasons for the resurgence of deep learning are twofold, linked to the expansion of
digitalization and computer hardware (as superficially mentioned in the introduction of this
thesis, c.f . Figure 1.1).

Information Age. With the exponential development of the Internet and digital content,
data scientists had soon access to the largest data sources in the history of mankind, the
so-called big data. By simply indexing the content shared online first by experts, soon
followed by an increasingly large proportion of mankind as well as automated devices, data
scientists started building the first large-scale media datasets, such as the aforementioned
ImageNet [58].

This novel access to such databases was a blessing for data-hungry machine learning
algorithms like NNs, i.e., algorithms requiring large amounts of data (and often the

6The main metric used for ILSVRC is the top-5 accuracy, i.e., algorithms can return up to 5 predicted classes,
and the overall prediction is deemed erroneous if the ground-truth image class does not appear in this set.

28 Chapter 2 Background on Visual Recognition from Scarce Training Data



corresponding annotations) to be trained. It also created a new, urgent need for such
algorithms. As the cold data accumulated by companies increased exponentially, so did the
demand to convert this data into strategic knowledge.

Hardware Accelerators. Thankfully, concomitantly to the digitalization of society,
hardware capability also kept increasing exponentially (c.f . the aforementioned Moore’s
law [175]). As personal computers multiplied and became faster, a new processing unit was
created to meet popular needs for effective 3D computations, e.g., for graphics interfaces
and video-games: the graphics processing units (GPUs). GPUs are build to efficiently
perform and parallelize matrix operations, e.g., for image manipulation. Though invented in
the eighties, they became affordable only with the new millennia.

In 2007, Nvidia, one of the main GPU manufacturers, released the first version of
CUDA [229], a programming language for developers to build and run programs on
compatible GPUs. OpenCL [178], a similar language, appeared soon after. It did not take
long for researchers to harness the GPU acceleration for their algorithms, dividing the
training and inference time of CNNs by a significant number (from ~20 to 100 time
faster) [130, 189].

With this increasing demand for applied machine learning models and finally the technical
mean to meet it, the time was ripe for NN advocates to demonstrate their potential.

Democratization of Model Crafting

Though this explains why CNNs finally became viable solutions, it does not justify their
success over previous methods, e.g., combining the extraction of statistical features and the
use of regression models like SVMs. In the following paragraphs, reasons for the current
CNN hegemony are discussed.

Hierarchical Approach and Modularity. First, an interesting parallel can be drawn
between the aforementioned bottom-up approach to computer vision—which has become
its main paradigm—and the layered architecture of CNNs themselves. Indeed, these models
are composed of layers, each an independent function, which hierarchically extract
increasingly complex features. They react to multiple levels of representation, from basic
visual features to semantically rich concepts. This pyramidal processing is thus an attractive
extension of the robotists’ approach to perception.

Furthermore, the layers (convolutional, pooling, dense, etc.), as basic components of CNNs,
can be combined and derived into a large variety of architectures, adapted for specific
use-cases (e.g., one could edit or replace the final layers of LeNet-5 shown in Figure 2.6

2.2 Prevalence and Limits of Deep Learning 29



to tackle instead the recognition of handwritten roman letters). The modular properties of
CNNs, along with the development of efficient frameworks to simplify their implementation
(Caffe [113], TensorFlow [1], PyTorch [198], etc.), led many experts to experiment with
CNNs and apply them to new problems, building up their popularity.

Automatized Feature Learning and Transfer. Compared to traditional methods, CNNs
also streamlined the recognition process and the approach to new image domains. Traditional
feature-based recognition systems are composed of three steps. First, a keypoint detector is
applied to the data to identify regions of interest. For each region, a local feature is computed
as a lower-dimensional and robust representation. Finally, local features are concatenated
into a descriptor vector which is handed to a classification or regression algorithm for
recognition [180]. Besides their complexity, such systems require some expertise to be
transferred to different applications.

Indeed, as mentioned in Subsection 2.1.2 and explained in a survey by Nanni et al. [180],
experts used to predominantly rely on manually designed features (“hand-crafted”). Facing
new tasks often implied having to manually configure or merge different feature models,
which itself implied having prior knowledge on the target domains. Feature engineering was
and is still a craft and, as such, it is often tedious to adapt it.

In comparison, neural networks can be considered as end-to-end adaptive solutions. With
their trainable kernels convolved over images and feature maps, CNNs learn inductively to
identify and extract features suitable for the task at hand. Furthermore, like other machine-
learning algorithms, their expertise acquired during training can be transferred to other
models, i.e., by sharing the totality or a subset of their tuned parameters.

For instance, a common and often successful practice when setting up a model ht( · ; θt) for
a new target task T t = {Yt, f t} consists of reusing the feature-extracting layers of another
model hs( · ; θs) succesfully trained to tackle a well-covered source task T s = {Ys, fs},
and adding on top new layers leading to the desired output format. Mathematically, this
means considering hs = hspred ◦ hsextr, with hsextr feature-extracting layers of hs and hspred
its final layers processing the features into predictions in Ys; and this means defining ht

as ht = htpred ◦ hsextr with htpred new layers to process features into predictions in Yt

(θsextr ∩ θtpred = ∅ and θsextr ∪ θtpred = θt). If the source and target tasks T s and T t are
similar (e.g., if their input distributions are almost identical), only θtpred need to be optimized
for the new task, greatly reducing the complexity of the training process (i.e., freezing
θsextr). Even if the tasks differ significantly, transfer learning can benefit the new model.
The transferred parameters θsextr can be optimized (i.e., fine-tuned) along with θtpred, often
reaching better optima than training with θt randomly initialized [76, 299].

30 Chapter 2 Background on Visual Recognition from Scarce Training Data



Their ability to cover complex recognition tasks from end to end, building upon previous
models in a modular fashion, has been key to the success of CNNs. Research based on
these models, as well as their integration into industrial systems, keep gaining impetus, with
direct applications in a large panel of domains (autonomous driving, industrial automation,
medical screening, augmented reality, etc.)

2.2.3 Acknowledgment of CNN Limitations

The dominion of CNN-based methods over computer vision is such nowadays that more
and more researchers are voicing their concerns, alarmed that deep learning may be seen
as an end rather than a mean. CNNs indeed have intrinsic limitations which need to be
acknowledged.

“Black Box” Argument

One of the long-standing arguments against ANNs is their “black-box” nature [19, 221],
impairing their integration into sensitive decision-making systems.

Lack of Interpretability. Indeed, a common criticism of machine learning models is their
lack of interpretability. Because these models perform over high dimensionality and rely on
overwhelming numbers of parameters, the logical connection between their predictions and
the observed features leading to them is usually obscured and hard to trace back. This lack
of visibility/interpretability of the end-to-end procedure led to the term “black box” [166,
221].

For some critical applications like autonomous driving or medical screening, the inability to
provide human-readable explanations to the resulting predictions has been hindering the
integration of CNN-based systems, for safety/juridical reasons. While more and more works
are focusing on “opening the black box” (e.g., combining CNNs with natural-language
question-answering systems [285], studying and highlighting which features methods are
attentive to [90, 238], etc.), we are still far from interpretable AI [91].

Sensitivity to Perturbations. This lack of interpretability is also correlated to the inability
of deep learning methods to represent causal relationships or to directly perform on symbols
(as opposed to vectors), e.g., to interact with structured knowledge databases [93, 159].

As typical CNNs are unable to integrate abstract knowledge, they have to purely rely on
the empirical observations provided during their training phase and can fail to generalize to
new out-of-distribution samples (e.g., to generalize to uncommon poses of target elements,

2.2 Prevalence and Limits of Deep Learning 31



to different light settings or sensor quality, etc.) [6, 159]. Multiple research projects have
demonstrated the sensitivity of CNNs to adversarial attacks (i.e., to slight corruptions of
visual inputs invisible to humans but leading to the complete failure of advanced artificial
models) [5, 214].

Deep learning solutions are thus subordinate to their pseudo-empirical knowledge and,
therefore, conditioned by any bias the training data may have. While the rise of very-
large—and thus diverse-enough—datasets circumvented this problem and allowed CNNs to
shine, this inherent flaw is still present and resurfaces for applications with limited access to
training data.

Dependency on Data Quantity and Quality

Another common argument raised against deep learning models is, therefore, their
dependency on large amounts of training samples, and the data collection and
pre-processing issues arising from it.

Data-Hungry Solutions Neural networks not only require large and diverse amounts of
training images to reach robust optima, most models also need the corresponding ground-
truth labels, being taught in a supervised manner.

Annotating datasets is typically a tedious and costly process. For complex tasks, it can take
several minutes to annotate a single image (e.g., to create pixel-precise labels for semantic
segmentation), and some annotations may have to be validated/corrected by experts (e.g.,
when labeling medical images) [205].

While transfer learning and derived methods can relax the need for large application-specific
datasets by capitalizing on previous tasks, data still represents the life and blood of deep-
learning solutions. As we will formalize in Section 2.3, scarcity of training data still deeply
impair the performance of CNNs in many real-life scenarios.

Upstream Feature and Model Crafting For many, deep learning thus only moved the
task of feature crafting upstream. Instead of engineering features relevant for the task at
hand, scientists are now focusing much effort on pre-processing the available training data
before passing it to their models (balancing labels, augmenting samples, extrapolating
new ones, etc.). Another part of their effort is dedicated to network engineering, i.e., the
development and refinement of CNN architectures able to best capture the distinctive and
informative features of the dataset.

32 Chapter 2 Background on Visual Recognition from Scarce Training Data



Developed too early for their time, deep neural networks now completely revolutionized
computer vision thanks to the concomitant rise of hardware accelerators and big data.
However, as CNNs are more and more refined by academicians and adopted by industries,
their intrinsic constraints have come under increasing scrutiny. Many companies with the
ambition to leverage their power to automate complex recognition tasks come to realize that
the data that they intended to feed the models is either not comprehensive enough or require
expert processing to yield robust systems.

2.3 Data Scarcity and its Ramifications

The field of machine learning has already an extensive literature evaluating the data
requirements of learning algorithms, as well as the effects of distribution divergence
between training and target domains. After expanding on these theories, the following
section also provides some considerations specific to data quantity and relevance in
computer vision.

2.3.1 Learnability and Data Dependencies

For any intelligent system, learning how to perform a specific task requires relevant data
samples, in large enough quantity, to distill effective knowledge. If the provided examples
are not relevant enough to the task, or if they do not fully cover all its aspects, one cannot
expect the acquired knowledge to generalize properly. In this subsection, key machine
learning concepts are summarized to formalize the needs for rich and relevant data to train
algorithms.

Sample Complexity of Machine Learning Models

In machine learning, the sample complexity represents an estimation of the minimum number
of training samples a model would need to effectively learn the objective function. Such an
estimation is paramount in order to choose adequate models, taking into consideration the
trade-off between the algorithms’ complexity and the amount of available training data.

Risk Convergence and Dataset Size. Subsection 2.1.3 formalized how machine learning
models are selected/trained with the goal to minimize the expected risk R for their task
(c.f . Equation 2.1) even though, in practice, they can only be evaluated over the empirical
risk R̂ (c.f . Equation 2.2). Therefore, the key purpose of machine learning is to obtain
hypotheses which minimize this empirical risk over the training data S = {(xi, yi)}mi=1
(where xi sampled i.i.d. from P(X) and yi = f(xi) with f true labeling function) and

2.3 Data Scarcity and its Ramifications 33



which generalize well when applied to new elements from the same distribution, i.e., also
minimizing the expected risk (R̂ is thus also named in-sample risk, whereasR can be named
out-of-sample risk or generalization risk).

Intuitively, we can expect that the larger the training set (i.e., the larger the number m of
samples it has), the more likely the empirical risk of a given hypothesis h ∈ H will be close
to the expected one, because the more likely the available samples will be representative of
the true distribution P(X). This intuition can be formalized through the weak law of large
numbers:

Theorem 2.1 (Weak Law of Large Numbers). Let {ai}mi=1 be a set of i.i.d. samples of a
random variable A following a distribution P(A). Then for all ε > 0:

lim
m→∞

P
(∣∣∣∣Ea∼P(A)[a]− 1

m

m∑
i=1

ai

∣∣∣∣ ≥ ε
)

= 0 .

Referring to Equations 2.1 and 2.2, it can thus be written that for a fixed hypothesis hθ ∈ H:

lim
m→∞

P
(∣∣∣R(hθ)− R̂(hθ)

∣∣∣ ≥ ε) = 0 . (2.9)

Furthermore, according to the Chebyshev’s inequality [232], for a fixed hypothesis hθ ∈ H,
a given dataset S = {(xi, yi)}mi=1 with xi sampled i.i.d. from P(X) and yi = f(xi), and
for all ε > 0:

P
(∣∣∣R(hθ)− R̂(hθ)

∣∣∣ ≥ ε) ≤ var
(
{xi}mi=1

)
ε2

= var(X)
mε2

with var the variance. (2.10)

This equation confirms the earlier intuition, showing that the probability that R̂ calculated
over S diverges from true R by ε > 0 at most decreases as the sample size augments. It
also demonstrates the impact of the data variance. The larger the variance a considered
population has, the larger the sampled dataset should be to probabilistically ensure that
a specific hypothesis would perform nearly as well (or as bad) out-of-sample as it does
in-sample [2, 3].

Concentration inequalities can further be applied to bind the divergence between a set
of randomly sampled variables and their true distribution. One of the most famous is
Heoffding’s inequality [103].

Theorem 2.2 (Heoffding’s Inequality [103]). Let {ai}mi=1 be a set of i.i.d. samples of a
random variable A following a distribution P(A), and let ∀i, amin ≤ ai ≤ amax. Then for
all ε > 0:

P
(∣∣∣∣Ea∼P(A)[a]− 1

m

m∑
i=1

ai

∣∣∣∣ ≥ ε
)
≤ 2e

−2mε2
(amax−amin)2 .

34 Chapter 2 Background on Visual Recognition from Scarce Training Data



Assuming that the loss L returns normalized values between 0 and 1 (amin = 0, amax = 1)),
replacing the expected and empirical risks in Heoffding’s inequality provides a stricter
upper-bound to the probability that the distance between R̂ andR exceeds ε: the probability
decays exponentially as the number of samples in the available dataset increases [3, 227].

Learnability Theory. While these inequalities provide interesting upper-bounds to the
generalization ability of a given hθ ∈ H (i.e., to the probability of R(hθ) being close to
R̂(hθ)), they only apply to this fixed hθ and do not indicate how to select/train a hypothesis
which would minimize R̂ andR (i.e., so that R̂ ≈ R ≈ 0).

In training settings, hθ can be considered as a random variable depending on the sampled
training set S of size m. The goal is, therefore, to obtain a proper uniform convergence
bound, i.e., to prove that for the task, the probability (noted δ) is small that ∃h ∈ H such
thatR(h) differs significantly from R̂(h) (i.e., by more than a value ε > 0) [2, 23, 227]:

P
(

sup
h∈H

∣∣∣R(h)− R̂(h)
∣∣∣ ≥ ε) ≤ δ , (2.11)

where sup represents the supremum. For finite hypothesis spaces (i.e., |H| cardinality
of H countable), the union bound inequality can be applied. By then injecting results of
Theorem 2.2 (supposing the values of L normalized), the left term of this equation can be
rewritten as:

P
(

sup
h∈H

∣∣∣R(h)− R̂(h)
∣∣∣ ≥ ε) = P

( ⋃
h∈H

∣∣∣R(h)− R̂(h)
∣∣∣ ≥ ε)

≤
∑
h∈H

P
(∣∣∣R(h)− R̂(h)

∣∣∣ ≥ ε)
≤ 2|H|e−2mε2 . (2.12)

Considering the notation in Equation 2.11 and solving Equation 2.12 for ε, the following
theorem defines the learnability of discriminative functions forH finite, with an upper-bound
function of the size of the hypothesis space and of the training dataset:

Theorem 2.3 (Generalization Bound forH finite [2, 23, 227]). LetH = {hθ : X → Y | θ ∈
Θ} be a finite hypothesis set, and let S = {(xi, yi)}mi=1 be the available training data with
xi sampled i.i.d. according to P(X) and yi = f(xi) where f is the objective labeling
function. Then, for any δ > 0, with probability at least 1− δ, the following inequality holds
for all hypotheses hθ ∈ H:

R(hθ) ≤ R̂(hθ) +
√

1
2m

(
ln |H|+ ln 2

δ

)
.

2.3 Data Scarcity and its Ramifications 35



While this inequality elegantly combines expected and empirical risks, size/complexity
of the model space, and size of the training set, it becomes useless as |H| increases. For
instance, for CNNs with millions of real-valued parameters, the number of different models
is near infinite, and so becomes the right-hand term of the above inequality.

Generalization Bounds for Near-Infinite Hypothesis Spaces. When considering
infinite or near-infinite hypothesis spaces, an inequality stricter than the union bound is thus
needed in order to get rid of the problematic |H| term. A key intuition is to take into
account the possible similarities among numerous hypotheses in H and, therefore, the
overlaps among the probabilistic events that

∣∣R(h) − R̂(h)
∣∣ ≥ ε (while the union bound

supposes no overlapping).

Following those lines, the seminal work of Vapnik and Chervonenkis [45, 274] and the
later study by Blumer et al. [23] offer a tighter measure of the effective complexity/size
of hypotheses spaces. Considering the tasks of binary classification7—i.e., forH = {hθ :
X → Y | θ ∈ Θ} with Y = {0, 1}—they demonstrated that the tasks are learnable if
and only if the Vapnik-Chervonenkis (VC) dimension ofH—noted vc(H)—is finite. This
dimension vc(H) is defined as the largest value of m = |S| such that any configuration of
labels on this sampled set is consistent with the results of at least one h ∈ H.

As explained in a theoretical survey by Galanti et al. [76], this analysis relies on the growth
function defined for the considered hypothesis space H, which expresses the maximum
number of different labels thatH can return over m samples [45, 274]:

ΠH(m) = max
Sx∼P(X)m

∣∣∣{h(x1), ..., h(xm) : h ∈ H}
∣∣∣ with Sx = {x1, ..., xm} . (2.13)

Lemma 2.1 (Perles–Sauer–Shelah’s Lemma [231, 237]). If the VC dimension of a
hypothesis space H is finite, then its growth function ΠH(m) is polynomial in m and for
m > vc(H):

ΠH(m) ≤
(

em

vc(H)

)vc(H)
.

Putting everything together, the aforementioned theorem of Vapnik and Chervonenkis can
be expressed as follows.

Theorem 2.4 (Vapnik and Chervonenkis’ Theorem [23, 45, 274]). Let H =
{
hθ : X →

{0, 1} | θ ∈ Θ
}

be a finite hypothesis set, let S = {(xi, yi)}mi=1 be the available training
data with xi sampled i.i.d. according to P(X) and yi the corresponding true labels, and let

7Other recent studies have been proposing different measures of the complexity/size of hypothesis spaces for
more complex tasks such as multi-class classification [17, 182, 295] and regression [210]. However,
whichever complexity measure is chosen, the resulting inequalities binding the difference between
empirical and expected risks keeps a form similar to the one presented here with the Vapnik-Chervonenkis
measure [227].

36 Chapter 2 Background on Visual Recognition from Scarce Training Data



the empirical and expected risks R̂ andR be computed from a loss L with values in [0, 1].
Then:

P
(

sup
hθ∈H

∣∣∣R(hθ)− R̂(hθ)
∣∣∣ ≥ ε) ≤ 4ΠH(2m)e−

1
8mε

2
.

Therefore, if ΠH is polynomial, the right term of the inequality converges toward 0 as m
increases (as the rest of the term decays exponentially with m), meaning that the expected
and empirical risks uniformly converge toward each other [2, 76]. Theorem 2.4 can be
rewritten similarly to Theorem 2.3, i.e., for any δ > 0 and for all hθ ∈ H, with probability
at least 1− δ:

R(hθ) ≤ R̂(hθ) + 2
√

2
m

(
ln ΠH(2m) + ln 4

δ

)

≤ R̂(hθ) + 2

√√√√ 2
m

[
vc(H)

(
ln 2m

vc(H) + 1
)

+ ln 4
δ

]
.

Theorem 2.5 (VC Theorem – Dataset Size [11, 23, 45, 274]). Considering the same settings
as Theorem 2.4, for any ε > 0 and δ > 0, if S contains m samples such that

m = O

(
1
ε2

(
vc(H) + ln 1

δ

))
,

then for all hθ ∈ H, with probability at least 1− δ:∣∣∣R(hθ)− R̂(hθ)
∣∣∣ ≤ ε .

Overall, the more complex/largeH, the higher its VC dimension vc(H) is (indicating how
likely its hypotheses can generalize) but also the larger the training dataset S should be to
ensure generalization [2].

CNN Expressiveness and Data Hungriness. Considering NNs, their VC-dimension
ranges from O

(
|Θ| ln |Θ|

)
to O

(
d2|Θ|2

)
, with |Θ| their number of parameters and d their

depth, depending on the considered architectures (type of activation functions, use of
dropout [249] and other regularization methods, etc.) [12, 95].

Though ample discussions are still trying to explain why deep learning models, with
their millions of parameters, generalize better than what the inequality of Theorem 2.4
is expressing [303], the aforementioned theorems still provide an important formalism to
the hunger for data characterizing deep learning. Recent empirical studies like the one
performed by Sun et al. [256] confirm the “unreasonable effectiveness of data in deep
learning era”, presenting a logarithmic increase in performance of CNNs on visual tasks
w.r.t. the size of the training dataset.

2.3 Data Scarcity and its Ramifications 37



The formal analysis drawn from statistical machine learning and these empirical works
justify the need to balance the current race towards increasingly complex CNNs with the
sampling and gathering of increasingly larger and more varied datasets, in order to unlock
the full potential of deep learning.

Domain Gaps and their Impact

However, these previous conclusions rely on a significant assumption: it is considered that
the samples available for training are drawn from the same distribution P(X) as the samples
the models will be applied to afterward.

In practice, this assumption usually does not hold. In the following paragraphs, typical shifts
between distributions are introduced, and a new generalization bound accounting for the
divergence is presented from the literature.

From now on, the marginal probability distribution which the input samples in the source
training dataset S = {(xi, yi)}mSi=1 are drawn i.i.d. from is named PXS = PS(X), and the
probability distribution of the input data from the target domain is PXT = PT (X). In some
cases, we will also assume access to an unlabeled and usually scarce dataset from the target
domain at training time: T = {xi}mTi=1, with xi sampled i.i.d. according to PXT .

Domain Shifts. A variety of reasons can be behind the discrepancies between the
distribution of available training samples and the distribution of target data. In computer
vision like other fields, these domain shifts can be caused by a biased experimental
sampling protocol, leading to a training dataset non-representative of the target domain.

For example and as illustrated in Figure 2.7, training images can be captured by cameras
with a different image quality than the target sensors, or captured under different lighting
and clutter conditions [53], e.g., by capturing out-of-assembly images of manufactured
object (i.e., each object separately on a clean background) though recognition should be
then done in more cluttered conditions. If, these distribution discrepancies are observed (i.e.,
PS(X,Y ) 6= PT (X,Y )), but it is assumed that the true labeling function f is the same
for the training and testing data (i.e., f(x) = y for x sampled i.i.d. from PXS or PXT ; i.e.,
PS(Y |X) = PT (Y |X)) then the models are facing a covariance drift [53, 255].

Class imbalance or prior shift can also plague training datasets, i.e., when the true label
distributions PS(Y ) and PT (Y ) are different but not the related conditional distributions
PS(Y |X) and PT (Y |X) (e.g., when labels are under or over-represented in the available
samples) [53, 255].

38 Chapter 2 Background on Visual Recognition from Scarce Training Data



brush
brush

brush

pen
pen

pen
pen

✔

training set (biased)

classifier

brush?

pen?

✘classifier

test set

Fig. 2.7: Example of a recognition model trained on a biased dataset. Suppose a company
wants to develop a CNN to discriminate pictures of pens and pictures of brushes. However,
the training images for each class were gathered by two entities which did not agree on a
precise acquisition protocol beforehand (e.g., opting for a same camera model or setting
similar lighting conditions). As a result, the sampled brush images are distinctly darker
and noisier than the pen ones. Since NNs are trained to use any visual cues for their
tasks, the CNN taught on this dataset may end up relying on these obvious yet biased
visual discrepancies to classify the objects, instead of purely focusing on the concept
representations (e.g., the shape of the objects, their texture, etc.). In production, this model
would fare poorly, unable to rely on these biases anymore.

As explained by Kouw [129], concept shift happens when the posteriors are different in the
source domain and in the target one, even though the data distributions are the same.

Note that in practice, machine-learning models have to face a combination of these various
domain shifts with differences in both the marginal and conditional distributions [53, 129].
It is also important to note that, often, these domain drifts can be deliberate, exemplified
by transfer learning. One may want to apply a recognition system trained for our source
domain to another, e.g., when training data cannot be collected for that target domain.

Effects on Generalization. Whichever the drift(s), models trained in one domain usually
perform poorly if applied to a different one. As mentioned in Subsection 2.2.3, this can be
intuitively deduced for CNNs. Trained on a specific dataset, they learn to extract and rely on
specific visual features (e.g., discriminative patterns and shades in training images). If later
test images do not exhibit the same cues, the models won’t be able to infer properly.

Therefore, when evaluating the generalization capacity of models, it is crucial not only to
factor in the size and variance of training datasets, but also their relevance to the target
tasks. Significant effort has been expanded toward accounting for domains shifts in the
generalization bounds [15, 16, 81, 125, 129, 132, 215, 255, 277], as well as toward
developing models more robust to these shifts [27, 42, 53, 77, 78, 192, 265, 272].

In domain adaptation, the goal is indeed to minimize the expected riskRT w.r.t. the target
domain while only being able to measure the empirical risk R̂S over the training source
dataset S:

RT (hθ) = Ex∼PXT

[
L
(
f(x), hθ(x)

)]
, (2.14)

R̂S(hθ) = 1
mS

mS∑
i=1
L
(
yi, hθ(xi)

)
over S = {(xi, yi)}mSi=1 . (2.15)

2.3 Data Scarcity and its Ramifications 39



Similarly, for convenience, the expected risk w.r.t. the source domain is defined asRS =
Ex∼PXS

[
L
(
f(x), hθ(x)

)]
. In this setting, still considering Y binary for simplicity (though

once again, the study is extendable to more complex tasks [78]), Ben-David et al. provided
the following definitions and theorem to bind the generalization capacity of hypotheses for
domain adaptation.

Definition 2.1 (Ideal Joint Hypothesis [15, 16]). The ideal joint hypothesis h∗θ ∈ H is the
hypothesis minimizing the combined expected risks over the source and target domains, i.e.:

h∗θ = argmin
hθ∈H

RS(hθ) +RT (hθ) .

Ben-David et al. note the combined loss of h∗θ as λH = RS(h∗θ) +RT (h∗θ).

Definition 2.2 (H∆H-Divergence [16]). Given the hypothesis space H =
{
hθ : X →

{0, 1} | θ ∈ Θ
}

and two marginal distributions PXS and PXT over X , theH∆H-divergence
of these distributions is defined as:

dH∆H
(
PXS ,PXT

)
= 2 sup

(h,h′)∈H2

∣∣RPXT
(h, h′)−RPXS

(h, h′)
∣∣ ,

with RPXS
(h, h′) = Ex∼PXS

[
L
(
h(x), h′(x)

)]
the expected source disagreement of two

hypotheses h and h′, and RPXT
(h, h′) similarly defined as their expected disagreement

over the target domain. dH∆H
(
PXS ,PT

)
represents the capacity of hypotheses in H to

discriminate elements from the two marginal distributions.

Lemma 2.2 (H∆H-Divergence Bound [16]). Let H =
{
hθ : X → {0, 1} | θ ∈ Θ

}
be a hypothesis set of finite VC dimension vc(H) and let S ∼

(
PXS
)m (available source

labels are not represented here) and T ∼
(
PXT
)m be two input datasets of m i.i.d. samples.

The symmetric difference hypothesis space H∆H is defined as H∆H =
{
g : X →

{0, 1} | g(x) = h(x)⊕ h′(x), for (h, h′) ∈ H2} (with ⊕ the XOR operator. It represents
the sets of disagreements between any couple of hypotheses and has thus at most a VC
dimension vc(H∆H) ≤ 2vc(H). Considering the results of Theorem 2.4, then for any
δ > 0 and ∀hθ ∈ H, with probability at least 1− δ:

dH∆H
(
PXS ,PXT

)
≤ d̂H∆H

(
S, T ) + 2

√√√√ 2
m

[
2 vc(H)

(
ln m

vc(H) + 1
)

+ ln 4
δ

]
,

with d̂H∆H
(
S, T ) the empiricalH∆H-divergence between the two domains w.r.t.H.

Theorem 2.6 (Generalization Bound for Domain Adaptation [15, 16, 125]). Let H ={
hθ : X → {0, 1} | θ ∈ Θ

}
be a hypothesis set of finite VC dimension vc(H), let

S = {(xi, yi)}mSi=1 be the available training data from the source domain with xi sampled

40 Chapter 2 Background on Visual Recognition from Scarce Training Data



i.i.d. according to PXS and yi the corresponding true labels, and let S′ ∼
(
PXS
)m and

T ∼
(
PXT
)m be two unlabeled datasets of m i.i.d. samples (e.g., S′ subset of input elements

in S when m ≤ mS). Let the risks be computed from a loss function L with values in [0, 1].
Then for any δ > 0 and ∀hθ ∈ H, with probability at least 1− δ:

RT (hθ) ≤ RS(hθ) + 1
2dH∆H

(
PXS ,PXT

)
+ λH

≤ RS(hθ) + 1
2 d̂H∆H

(
S′, T ) +

√√√√ 2
m

[
2 vc(H)

(
ln m

vc(H) + 1
)

+ ln 4
δ

]
+ λH .

This inequality can further be expanded by replacingRS(hθ) with its upper-bound relative
to R̂S(hθ) according to Theorem 2.4.

Interpretation of the Generalization Bound for Domain Adaptation. Theorem 2.6
elegantly binds the expected risk of a model over the target domain when trained over a
dataset drawn from a source domain and formalizes some intuitions. Analyzing each term
of its inequality, a model hθ ∈ H can generalize to the target domain only if:

• The model minimizes the expected source risk RS(hθ), i.e., if it minimizes the
empirical source risk R̂S(hθ) over a training dataset S large and varied enough;

• The divergence between the two domains is small enough, at least with regard
to H and the inability of its hypotheses to discriminate the two distributions (c.f .
1
2dH∆H

(
PXS ,PXT

)
);

• There exist hypotheses inH which can perform well on both domains, i.e., the tasks
on the source and target domains are similar and can be solved by hypotheses inH
accurately enough (c.f . λH).

Assuming that the hypothesis space is adequately chosen for the task (a common hypothesis
in domain adaptation), the last term is considered small. Therefore, Theorem 2.6 expresses
the trade-off between the accuracy of a model, the size/complexity of its hypothesis family
H, the inability of models inH to distinguish source and target samples, and the richness
and relevance of the training dataset [15, 16, 78, 81].

In this study, the hypothesis families are considered as fixed/provided (e.g., common CNN
architectures are used out-of-the-box). This leaves the term w.r.t. the domain divergence to
minimize, by exploring solutions to bridge the gap between training/source and test/target
data in terms of absolute discrepancies or with regard to the models’ ability to tell them
apart.

2.3 Data Scarcity and its Ramifications 41



2.3.2 Dealing with Data Scarcity in Industrial Computer
Vision

As hinted in the introductory Chapter 1, despite the increasing availability of large image
datasets, a variety of specific computer vision applications still suffer from data scarcity.
Indeed, as deep learning solutions are being adopted by more and more companies, their
target applications are becoming more increasingly specific (e.g., recognition of
manufactured components, medical image analysis, etc.) and thus diverging too much from
the domains covered by pre-available large image databases. This justifies the growing need
for data sampling and domain adaptation solutions.

This subsection expands further on this problematic, elaborating on the heterogeneousness
of visual data and its consequences on machine learning models, as well as detailing the
usage of synthetic data to compensate for the lack or relevant samples.

Visual Supports of Recognition and their Availability

Visual data have high dimensionality and a myriad of factors can affect their content. An
infinite number of images can be derived from a single concept (e.g., a specific object or
individual). Advanced algorithms, themselves characterized by high sample complexity, are
thus required to capture this variability inherent to image or video-based recognition.

The following paragraphs further develop on how the high variability of target visual
domains, combined with the data requirements for the convergence of designated models,
sent scientists on a quest to collect large yet relevant training datasets.

Heterogeneousness of Visual Data and Sensors. With the proliferation of
smartphones, the expansion of closed-circuit television (CCTV) networks, the development
of specialized devices for industries, etc., cameras have become completely ubiquitous.
With these sensors easily accessible to the public and to professionals, a wide range of
behaviors and applications are being revolutionized, such as social interactions, artistic
expression, visual monitoring, augmented reality (AR), etc.

However, not all cameras have the same properties (field of view, aperture, sensor size
and precision, color balance, sensibility to specific wavelengths in the visible spectrum or
beyond, etc.) or the same target applications (commodity camera versus specialized sensors,
e.g., for medical or industrial imaging). Besides sensor properties, a broad variety of factors
can affect the quality and content of images captured by a color camera: the layout of the
captured scene (projection of the subject in the image, clutter, occlusion, background), the

42 Chapter 2 Background on Visual Recognition from Scarce Training Data



TLESS dataset LineMOD dataset

Fig. 2.8: Pairs of color and depth images, from T-LESS [102] ans LineMOD [99] datasets.

lighting conditions (projected shadows, under/over-exposition, lens flare, etc.), the texture
of captured elements (color variability due to specular and diffuse properties, mutability,
e.g., from wear-and-tear, etc.), and so on.

As color images of the same concepts can vary tremendously, some researchers have been
investigating alternative sensing devices for visual recognition, i.e., devices more robust to
some of these changes. In the industry especially, many experts have been adopting depth
sensors [63, 138, 245] for instance, i.e., sensors measuring the distance to elements in their
field of view (c.f . Figure 2.8)8. Providing range images more robust to some aforementioned
visual variations (e.g., to color and lighting changes), these sensors had known a concomitant
development leading to their popularization. As further detailed in Chapter 3, low-cost
commodity depth sensors—such as the Microsoft Kinect V1 and V2—are being nowadays
applied to a wide panel of applications [70, 135, 158, 184, 223, 239].

Still, a majority of companies made the strategic choice to keep color images as visual input
modality of their recognition systems, given the ubiquity of color cameras compared to other
more specialized devices. For instance, in contrast to commodity cameras, only a handful of
smartphones or tablets on the market are integrating depth sensors (e.g., the now-defunct
Google’s Tango brand, or Apple’s new iPhone devices incorporating the TrueDepth sensor),
and these depth sensors usually have limited capability.

Nevertheless, taking into account other specialized sensors (e.g., medical scanners), the
list of devices which can be linked to computer vision systems is long. Domain adaptation
methods are, therefore, crucial in our domain, in order to train models despite common
discrepancies between source and target domains, both in terms of image content and sensing
quality.

From Generic to Specialized Datasets. To tackle this issue of data availability and
relevance, part of the community has been in parallel focusing on gathering increasingly
large generic datasets (e.g., ImageNet [58] and, more recently, Microsoft COCO [150] or
Google Open-Images [134]), collecting images from heterogeneous domains (e.g., from
different sources, cameras, format, etc.). As mentioned in Subsection 2.2.2, big data has
provided the metaphorical fuel leading to the booming of deep learning, and the bigger and

8Most depth sensors return image structures or files where the value of each pixel represents the measured
distance to the sensed surface (e.g., in millimeters or according to a device-specific scale). For visualization,
these values are commonly scaled to display the depth scans as grayscale images (i.e., the brighter, the
further). This representation is used all along this thesis.

2.3 Data Scarcity and its Ramifications 43



more varied the available data becomes, the more recognition models can robustly learn [15,
16, 256]. Even if these large datasets can quite diverge from the target task domains, their
availability often reduces the quantity of task-relevant data required to train models, e.g., by
benefiting from transfer learning [76, 299].

However, as mentioned both in Chapter 1 and in the introduction of this subsection, an
increasing number of applications are targeting niche domains, i.e., highly-specific image
domains in terms of content (e.g., industrial components, body scans, etc.) and/or visual
modality (e.g., range imaging, thermography, etc.). While transfer learning could be
considered, the target domains of these specific applications are often too alien compared to
the common large-scale datasets. Transferring pre-trained weights for CNN models could
benefit their first, more generic layers (c.f . Section 2.2.2), but the domain gaps are overall
too big for the entire models to generalize to the target distribution.

Furthermore, for such use-cases, it is often challenging, if not impossible, to gather samples
to properly train or fine-tune the recognition models (e.g., when the target objects are not
produced yet or are only available at some remote manufacturing location). To deal with this
scarcity or non-existence of relevant data, some efforts have been expanded toward gathering
and sharing datasets for some of these specialized use-cases (e.g., the IKEA [148] or T-
LESS [102] datasets for manufactured elements, the MIMIC-CXR [84, 114] or fastMRI [302]
datasets for medical imaging, etc.). However, by definition, such datasets do not generalize
well to other specific applications.

Still, an alternative solution to obtain relevant-enough images—when capturing proper ones
is not possible—has been exploited by researchers for years; a solution which furthermore
suits most industrial applications: the generation of synthetic images.

Synthetic Datasets and Realism Gap

In these final paragraphs of the background chapter, the generation and usage of synthetic
data in computer vision are detailed, and the current limitations of using such images as
training surrogate are developed.

Creation of Synthetic Datasets. In computer vision, synthetic data are
computer-generated images, as opposed to real pictures captured by sensing devices. While
some synthetic images are purely rendered from procedural or physics engines modeling
some realistic phenomena (e.g., synthetic images of meteorological or astronomical events,
like the scientifically-rendered black hole in the Hollywood movie Interstellar [111]), most
images are based on 3D models.

44 Chapter 2 Background on Visual Recognition from Scarce Training Data



A 3D model is a computer file containing a representation of the geometry of an object or
scene (e.g., storing the 3D positions of its key surface points), and sometimes of some of its
physical or visual properties (e.g., the texture of its surfaces). Computer graphics algorithms,
nowadays combined into powerful systems named 3D engines, can be used to render images
from these 3D models; by defining a simulated camera, projecting the 3D coordinates of the
scene into the image plane of this camera, ignoring occluded elements, interpolating the
color of each pixel based on the texture and lighting properties, etc.

Thanks to the lucrative entertainment industry, computer graphics have come a long way the
past decades, and rendering engines can nowadays generate highly realistic images from 3D
models (e.g., for video games, 3D animated movies, special effects, etc.). Scientists were
quick to grasp the potential for computer vision.

Databases of 3D models started appearing [38, 244, 248, 293], and scripts were developed
and shared to render huge datasets of pseudo-realistic images from these models (changing
the viewpoints, intrinsic properties of the virtual cameras, lighting conditions, scene setups,
etc.). Having full control over the scene content and capture process, all kinds of annotations
can also be generated along the synthetic images to train recognition systems (e.g., keeping
track of the position of the objects in the scene for the training of object-detection algorithms,
using the 3D engine to render binary masks for semantic segmentation, etc.). Additionally,
3D models and game engines can also be used to create interactive simulation environments,
which can be used to teach complex skills to any sort of intelligent agents. For example, in
the aerospace domain, pilots and engineers are commonly trained to perform key tasks in
virtual environments, as cheap and safe surrogates to real scenarios [108]. An increasing
number of such simulation platforms are being dedicated to the training of autonomous
agents like self-driving cars, robots, etc. [29, 264, 290].

Synthetic Data for Industrial Recognition Systems. As a result, the literature exploring
the usage of synthetic data to train recognition system started abounding the past decade [37,
70, 80, 147, 162, 216, 233, 250, 286], and more and more companies started considering this
as a solution to their problem of data scarcity. Indeed, especially in the industry, 3D models
of target objects are often pre-available, e.g., developed for the manufacturing process like
3D computer-aided design (CAD) models.

However, most industrial CAD models are not conceived to be visually realistic, but rather
to be used as blueprints for the manufacturing process, to perform virtual quality tests, etc.
(c.f . Figure 1.3). To develop highly-realistic 3D models like those used in the entertainment
industry, hours should be spent gathering visual information and modeling it (i.e., analyzing
and compiling the textures of the real objects, refining the virtual geometry, etc.). Such
a task requires access to the original objects and is extremely costly – even more so than
directly building a dataset of real images of these objects.

2.3 Data Scarcity and its Ramifications 45



Furthermore, even in the few instances that real-looking CAD models are available, rendered
images may diverge from real ones for a variety of reasons: the appearance of real objects
may be evolving during their service life (e.g., because of deterioration, dirt, etc.), the rest
of the environment may be different or unknown (leading to discrepancies in terms of image
clutter and background), the rendering engine cannot comprehensively simulate the visual
result of target sensing devices, etc.

As a result, it is often impossible to generate realistic synthetic data to train industrial
recognition algorithms. Like other domain discrepancies, this realism gap between computer-
generated training data and the real target images harms the performance of the models (c.f .
Subsection 2.3.1).

Overcoming the Realism Gap. Currently, a lot of effort is being devoted to tackling the
realism gap for computer vision. Solutions can be divided into two categories depending on
if they address the problem from a data-centrist or a model-centrist angle.

In the former case, some methods have been proposed to more easily capture visual
properties of target objects, to build more precise 3D data models [14, 82]. Other research
works have been focusing on improving the quality or variety of rendering algorithms, e.g.,
to simulate specific sensing devices [7, 88].

Other experts have instead adopted concepts from domain adaptation, and adapted those
to bridging the realism gap for the training of visual recognition methods, i.e., so that the
knowledge these algorithms acquired from synthetic environments can be better transferred
to real situations [25, 27, 78, 265].

In this thesis, the realism gap is approached according to these two paradigms. In that
regard, the following chapters further expand on the respective state-of-the-art landscapes
and propose novel solutions dedicated to the training of robust industrial systems.

46 Chapter 2 Background on Visual Recognition from Scarce Training Data



3Realistic Depth Sensor Simulation

„
More data beats clever algorithms, but better data beats
more data.

— Peter Norvig
(Google’s Director of Research, 2009.)

Recent progress in computer vision has been dominated by deep neural networks trained over
large amounts of labeled data. As mentioned in previous chapters, collecting such datasets
is however a tedious, often impossible task; hence a surge in approaches relying solely
on synthetic data as surrogates for their training. However, for range imaging especially,
discrepancies with real depth scans still noticeably affect the end performance, as research
focusing on simulating these sensors is still in its early stage.

In this chapter, an end-to-end framework, named DepthSynth [207], is proposed to
comprehensively simulate the mechanisms of depth sensors and to model vital factors, in
order to generate realistic depth data from three-dimensional (3D) models (c.f . Figure 3.1).
As demonstrated through qualitative and quantitative evaluations, this pipeline covers a
wider range of sensors and achieves more realistic results compared to previous methods.
Optimized to generate synthetic data in near-real-time (i.e., enabling trainings over datasets
of larger size m, c.f . Theorems 2.4 and 2.6) and closer to the target real domain (i.e.,
reducing the divergence dH∆H, c.f . Theorem 2.6), the proposed solution thus enhances the
performance of recognition systems trained on its data, as confirmed empirically.

The motivation behind this first work is detailed in Section 3.1. A survey of pertinent
studies is then provided to the reader in Section 3.2, and the proposed framework is then
presented in Section 3.3, detailing each step. Section 3.4 elaborates on the experimental
protocol; first comparing the sensing errors induced by the pipeline to experimental data
and theoretical models, then demonstrating its usefulness by applying it to the training of
recognition algorithms for various visual tasks. Finally, Section 3.5 concludes the chapter
with some insightful discussions.

47



real DepthSynth

Fig. 3.1: Real color and depth pictures, opposed to the corresponding CAD model and
simulated depth image.

3.1 Motivation

This thesis has been articulated around several industrial projects investigating the usage of
depth sensors to tackle specific visual tasks requiring accurate predictions. These industrial
use-cases shared similar constraints which motivated the development of a simulation tool
for depth sensors. The following section expands on these constraints and motivations.

3.1.1 Rise of Depth-based Computer Vision

As explained in this subsection, the adoption of depth sensors for industrial recognition
projects has been a global trend in past years, hence a growing demand for theoretical
evaluation and technical solutions related to these devices.

Advent of Low-Cost Depth Sensors

Range-imaging devices have been around for decades, relying on a variety of techniques
such as stereo-vision, interferometry, triangulation, photogrammetry, etc. [133, 138]. More
recent solutions are based on:

• Structured-light, i.e., the process of projecting a known coded pattern onto a scene
and capturing the visual result with a camera, to measure the distortion of the pattern
and infer the depth accordingly (taking into account the distance between pattern
projector and camera for triangulation);

48 Chapter 3 Realistic Depth Sensor Simulation



• Time-of-flight (ToF), i.e., the radar technique consisting of measuring the time that the
beams of light projected by the sensor take to reach a surface in the scene and to be
reflected back to the device; in order to deduce the distance.

However, as explained by Landau in his thesis [138], any of these sensing methods require
advanced electronic and optic components, and the price of depth sensors used to be in the
four digits until the end of the 2000s.

When the cost of some of these components finally dropped, commodity sensors like
the Microsoft Kinect V1 and Intel RealSense quickly appeared on the market. Originally
released in 2010 as a gaming accessory for motion sensing, the Kinect was soon adopted by
researchers for a large panel of technical use-cases related to 3D computer vision.

Depth Data for Robust 3D Computer Vision

Understanding the 3D layout and semantic content of real-world scenes captured in two-
dimensional (2D) images has been a classic computer vision problem for decades [43,
83, 307]. Therefore, the release of low-cost depth sensors—specifically structured light
cameras—resulted in a significant paradigm shift. What in the past revolved around the
interpretation of raw pixels in 2D projections has now become the analysis of real-valued
depth (2.5D) data.

This has drastically increased the scope of practical applications ranging from recovering
3D geometry of complex surfaces [158, 184] to real-time recognition of human actions [163,
239], inspiring research in automatic object detection [70, 223, 242, 247], classification [136,
164, 223, 244, 246, 247] and pose estimation [70, 148, 234].

3.1.2 Call for Realistic Depth Simulation Tools

Though depth data has enabled novel applications, it suffers—like other visual modalities—
from representational complexity. The following paragraphs expand on the specificities of
data scarcity and realism gap w.r.t. depth scans, justifying the need for advanced simulation
tooling.

Adoption of Synthetic Data in Computer Vision

As detailed in Chapter 2, while access to target real data is paramount to the training of
robust machine-learning systems, it is common for real-life use-cases not to meet this

3.1 Motivation 49



condition. Therefore, a large number of the aforementioned recent studies decompose their
tasks into matching acquired depth images of real-world objects to synthetic ones rendered
from a database of pre-existing 3D models [37, 70, 148, 223, 244, 246, 247]. With no
theoretical upper bound to the number of synthetic images one can generate to either train
complex models for classification [164, 234, 253, 291] or fill large databases for retrieval
tasks [80, 281], research continues to gain impetus in this direction.

Despite the simplicity of the above flavor of approaches, their performance is often
constrained by the realism gap (i.e., the discrepancy between real and synthetic data,
mentioned in Section 2.3) or by the lack of variability (limited configurability) of their
rendering process. As a workaround, some approaches fine-tune their systems on a small set
of real scans [286]; but in many cases, real data is too scarce to bridge the discrepancy gap.
Other methods try instead to post-process the real images to clear some of their noise,
making them more similar to synthetic data but losing details in the process [291] which
can be crucial for tasks such as pose estimation or fine-grained classification.

Realism Gap for Depth Data

Structured-light and ToF depth sensors are inherently more robust to visual variations caused
by the lighting conditions of target scenes and the material properties of the objects in, so one
would assume that rendering realistic synthetic depth data should be more straightforward
than rendering color ones. But simulation tools for “red-green-blue” (RGB) image rendering
have been polished for decades by researchers in computer graphics and by entertainment
companies, which have had little interest in the simulation of depth sensors.

Jump-started after the recent dissemination of low-cost devices, research toward the
generation of realistic depth scans is, therefore, still at an infant stage compared to other
visual modalities. A key motivation of the proposed method is thus to reduce the
discrepancies between the simplistic synthetic data and the noisy scans from commodity
sensors, in order to facilitate the development of depth-based computer vision.

3.2 Related Work

With the popular advocacy of 2.5D/3D sensor for vision applications nowadays, depth
information is the support of active research within computer vision. This section emphasizes
on recent approaches which employ synthetic scans, and presents previous methods to
generate such 2.5D data from 3D computer-aided design (CAD) models.

50 Chapter 3 Realistic Depth Sensor Simulation



3.2.1 Recognition Algorithms and Synthetic Data

This first subsection delivers a brief overview of recent methods taking advantage of 3D
models and synthetic data to learn visual features. Among these solutions, additional details
are provided for the deep-learning method used in this chapter to demonstrate the effects of
simulated data on its training.

CNN-based Recognition from Scarce Data

As detailed in Chapter 2, crafting features to efficiently detect objects, discriminate them,
evaluate their poses, etc. has long been a tedious task for computer vision researchers. With
the rise of machine learning algorithms, these existing models have been complemented [83,
234, 250], before being almost fully replaced by statistically-learned representations.
Multiple recent approaches based on deep convolutional neural networks (CNNs)
unequivocally outshone previous methods [164, 253, 254, 291], taking advantage of
growing image datasets (such as ImageNet [58]) for their extensive training.

As a matter of fact, and as mentioned previously, collecting and accurately labeling large
amounts of real data is an extremely tedious task, especially when 3D poses are considered
for ground truth. In order to tackle this limitation, and concomitantly with the emergence of
3D model databases, renewed efforts [216, 254] were put into the synthetic extension of
image or depth scan datasets, by applying various deformations and noise to the original
pictures or by rendering images from missing viewpoints. These augmented datasets were
then used to train more flexible estimators.

Among other deep learning-based methods for class and pose retrieval recently proposed
[164, 253, 291], Wu et al. 3D Shapenets [291] and Su et al. Render-for-CNN [254] methods
are two great examples of a second trend: using the ModelNet [291] and ShapeNet [38]
3D model datasets they put together, they let their networks learn features from this purely
synthetic data, achieving consistent results in object registration, next-best-view prediction,
or pose estimation.

Triplet CNN as Exemplary Recognition Method

Diving further into the problem of depth-based instance classification and pose estimation
(ICPE) chosen to illustrate the present work, Wohlhart and Lepetit [286] proposed a scalable
feature learning approach addressing a two-degree-of-freedom pose estimation problem.
Though they used real images to train their main network modality, their study showed
promising results using synthetic data without structured noise simulation. This method

3.2 Related Work 51



has been extended by Zakharov et al. [300], a student (now colleague and friend) whose
Master’s thesis I co-supervised.

According to this method, a CNN is trained to extract relevant features from an image x ∈ X
and encode them into a low-dimensional feature vector yinter ∈ Y inter with Y ⊂ Rd and d
low dimensionality (e.g., mapping the images to a descriptor space where object instances
and their poses are well separated). The feature vectors yinter representing known images
can then be stored along with their labels y ∈ Y (e.g., the class and pose of the main object
in each picture), so that given a new image, the CNN can be used to extract its corresponding
vector and compare it with the stored ones for recognition.

Therefore, to learn discriminative features, Wohlhart et al. method applies the following
loss to the training of the convolutional network noted hθ : X → Y inter with θ its learnable
parameters:

L(θ) = Ltri(θ) + Lpair(θ) + λ‖θ‖22 , (3.1)

where Ltri is a triplet loss function, Lpair a pairwise one, and λ an optional regularization
factor (the regularization term is to prevent over-fitting). This loss is thus computed over
batches composed of triplets and pairs of samples.

A triplet is defined as (xb, x+, x−), with xb an input image, from the training dataset S, used
as binding anchor representing a specific class (cb) and pose (e.g., defined by a quaternion
qb), x+ a positive image similar to xb in terms of label (similar class c+ = cb and/or pose
q+ ≈ qb), and x− a negative sample with dissimilar content (different class c− and/or pose
q−). The triplet loss function is, therefore, designed to force the network to extract features
similar for xb and x+, and dissimilar for xb and x−:

Ltri(θ) =
∑

(xb,x+,x−)∈S3

max
(

0, 1− ‖hθ(xb)− hθ(x−)‖22
‖hθ(xb)− hθ(x+)‖22 + ε

)

where ε =

2 arccos(|qb · q+|) if cb = c+,

n else, for n > π,
(3.2)

with ε is the margin setting the minimum ratio for the distance between similar and dissimilar
pairs of samples. This task-related dynamic margin (here defined for the training of a model
for instance classification and pose estimation) was introduced by Zakharov et al. [300].

On the other hand, pairs (xb, x′b) are composed of an anchor sample xb and a similar one x′b
with the label but, for instance, with a perturbation in terms of image noise or lighting (if all
training images are synthetic) or from a different image domain (e.g., if the training dataset
also contains real images). The pairwise loss is thus defined to enforce proximity between

52 Chapter 3 Realistic Depth Sensor Simulation



descriptors of samples with different visual cues but similar labels (this can, therefore, be
considered as an unsupervised domain adaptation scheme):

Lpair(θ) =
∑

(xb,x′b)∈S2

‖hθ(xb)− hθ(x′b)‖22 . (3.3)

For recognition applications, once trained, the method hθ is used to compute the feature
vectors of a subset of S. These vectors are then used as keys to index the labels of samples,
to form a feature-descriptor database Sdb. Recognition is done on test data by using the
trained network to compute the descriptor of each provided image and then by applying a
nearest-neighbor search algorithm to find its closest descriptor in Sdb.

In this chapter, this triplet CNN method is extended to recognizing 3D pose with six degrees
of freedom (6-DOF) (as done by Zakharov et al. [300]) and is fed only with realistic
synthetic images from DepthSynth. As demonstrated in the following sections, this leads
to significantly higher flexibility and scalability of the system, as well as a more seamless
application to real-world use-cases.

3.2.2 Generation of Synthetic Images

Though mostly applicable to color images, a variety of research projects have been exploring
solutions to generate synthetic images from 3D models, in quantity and quality satisfying to
the training of machine-learning algorithms.

Toward Relevant Synthetic Images for Machine Learning

Early research along the direction of rendering synthetic ranging images involves the work of
Marr and Nishihara [160] and Brooks et al. [32], wherein search based on 3D representations
are introduced. More recently, Rozantsev et al. presented a thorough method for generating
synthetic images from 3D models [223]. Instead of focusing on making them look similar
to real data for an empirical eye, they worked on a similarity metric based on the features
extracted during the machine training. However, their model is tightly bound to properties
impairing regular cameras (e.g., lighting and motion blur), which cannot be applied to depth
sensors.

Su et al. [254] worked concurrently on a similar pipeline, optimizing a synthetic red-green-
blue (RGB) image renderer for the training of CNNs. While working on finding the best
compromise between quality and scalability, they notice the ability CNNs have to cheat
at learning from too simplistic images (e.g., by using the constant lighting to deduce the

3.2 Related Work 53



models poses, or by relying too much on contours for pictures rendered without background,
etc.). Their pipeline has thus been divided into three steps: the rendering from 3D models,
using random lighting parameters; the alpha composition with background images sampled
from the SUN dataset [294]; and randomized cropping. By outperforming state-of-the-art
pose estimation methods with their own one trained on synthetic images, they demonstrated
the benefits that such pipelines can bring to computer vision. Inspired by this work applied
to color images, DepthSynth is composed of similar steps to generate its images

Simulation Tools for Depth Sensors

As mentioned among the reasons behind this work, only a handful of simulation tools
for depth sensors have been developed so far. One of the most recent and realistic, the
solution proposed by Landau et al. [138, 139] reproduces the Microsoft Kinect’s behavior by
simulating the infrared capture and stereo-matching process. While inspired by their latter
step, the solution detailed in this chapter is based on a less empirical, more exhaustive and
generic model for the simulated projection and capture of pattern(s).

Similar simulation processes were also developed to reproduce the results of ToF
sensors [121, 203]. If this chapter mostly focuses on single-shot and multi-shot
structured-light sensors, DepthSynth’s genericity allows it to simulate ToF sensors as well,
by using a subset of its operations (discarding the baseline distance within the device,
defining a simpler projector with phase shift, etc.). Such a subset is then comparable to the
method developed by Keller and Kolb [121].

For the sake of completeness, tools such as BlenSor [88] or pcl::simulation [7, 67] should
also be mentioned. However, such simulators were implemented to help testing vision
applications and rely on simplistic modeling of the sensors, e.g., ignoring reflectance effects
or using fractal noise to approximate sensing errors.

3.3 Methodology: Simulation of 2.5D Sensors

The following section details the proposed simulation method for the generation of realistic
depth images, based on a study of the actual devices.

54 Chapter 3 Realistic Depth Sensor Simulation



3.3.1 Study of Structured-Light Depth Sensors

To realistically generate synthetic depth data, one should first understand the mechanisms
behind their generation, and how some of these mechanisms can cause the various kinds of
noise observed in scans from real structured-light sensors.

Sensing Mechanisms

Structured-light depth sensors work as follows:

1. A light emitter projects a predefined pattern onto the scene;

2. A camera sensitive to the emitter’s wavelength(s) captures an image of the scene with
the pattern projected onto;

3. Original and captured pattern images are processed by a stereo-matching algorithm
which infers the depth based on the discrepancies between the two, for each pixel;

4. Optionally, some post-processing operations are performed to compensate for sensing
errors.

This process is illustrated in Figure 3.2 and further detailed in the following paragraphs.

Pattern Projection and Capture. The first two steps consisting of pattern projection and
capture are key to the quality of the estimated depth. First, for the triangulation process to
even work, the pattern emitter and the receptor should be separated by a known baseline
distance dbase. It is, therefore, common for depth devices to have the projector and camera
mounted together in a common structure to fix this distance. Furthermore, to simplify the
tasks of depth estimation algorithms in step 3, it is also common to have their image planes
aligned and to have the baseline parallel to the horizontal axis of the common image plane
(as represented in Figure 3.2).

Projected patterns vary from one depth sensor to another. Some devices rely on stripped
patterns, others on dot patterns, or on continuous ones, etc. Patterns can also be multicolored,
or be emitted in the IR domain (as Microsoft Kinect and Occipital Structure do for instance,
with the advantage of making the procedure invisible to the human eye and robust to
some lighting conditions). Patterns are typically predefined, i.e., pre-coded so that their
structure can be robustly captured (e.g., by being heavily contrasted) and can facilitate
the depth estimation process (step 3) which require to find correspondences between the

3.3 Methodology: Simulation of 2.5D Sensors 55



IR sensor IR emitter

scene content

𝒅𝒃

𝒛
𝒛𝒎𝒊𝒏

𝒛𝒎𝒂𝒙

captured pattern  original/projected pattern  

+

disparity estimation &
depth reconstruction

resulting depth scan

Fig. 3.2: Illustration of a structured-light sensor using an infrared (IR) dot pattern (credits to
Pierre Yves P. for the Microsoft Kinect 3D model1used to render this figure).

original pattern image and the captured reflection (e.g., by opting for projected content with
non-repetitive patterns).

Note that some devices, called multi-shot depth sensors, rely on a sequence of projections
and captures to generate a single depth image (i.e., repeating steps 1 and 2 multiple times,
possibly with different patterns, before combining all the captured information to reconstruct
a depth image in step 3).

Stereo-Matching and Depth Reconstruction. Relying on the principles of stereo vision,
the captured reflection of the pattern is then matched with the reference image, in order to
extract the depth information from their disparity map. Both images are here used as the
stereo stimuli, with these two virtual eyes (the projector and the camera) being separated by
dbase.

The disparity map represents the distortion in the 2D image plane that a pattern underwent
by being projected onto a scene, with each disparity value expressing the displacement of
a pattern element (when the emitter and receiver are aligned as previously mentioned, the

1https://3dwarehouse.sketchup.com/model/32ab2192d875d85e58aeac7d536d442b/
Kinect-sensor

56 Chapter 3 Realistic Depth Sensor Simulation

https://3dwarehouse.sketchup.com/model/32ab2192d875d85e58aeac7d536d442b/Kinect-sensor
https://3dwarehouse.sketchup.com/model/32ab2192d875d85e58aeac7d536d442b/Kinect-sensor


displacement is then only horizontal/epipolar). Various computer vision methods are used
to compute disparity maps from image pairs, i.e., to find correspondences from one image
to another in order to measure the displacements (usually performing image block by image
block, also known as block-matching) [101, 118, 128].

For each pixel, the depth value z is then a direct function of the horizontal disparity ddisp:

z = fpx ·
dbase
ddisp

(3.4)

where fpx is the focal length of the receiver (in pixels). Because disparity maps can be
noisy or missing data (as explained in the following subsection), some devices include
additional methods to smooth the resulting depth maps or interpolate missing values (e.g.,
using hole-filling/region-growing methods), c.f . step 4.

Noise Sources

As I joined my first Siemens industrial project relying on structured-light depth sensors,
colleagues had already started analyzing these devices and compiling a list of the different
kinds of noise impairing them, along with their sources and characteristics. Extended
further, this study highlights how each step of the sensing process introduces its own
artifacts [207].

During the initial step of projection and capture of the pattern(s), noise can be induced by
the lighting and material properties of the surfaces (e.g., too low or strong reflection of
the pattern can prevent its capture), by the composition of the scene (e.g., the density per
unit area of the patterns drops quadratically with increasing distance causing axial noise,
non-uniformity at edges causing lateral noise, and objects obstructing the path of the emitter,
of the camera or both causing shadow noise), or by the sensor structure itself (e.g., its low
spatial resolution or the warping of the pattern by the lenses cause structural noise). Note
that ToF sensors also share many of the listed noise types. One can observe that several
types of noise are related to lighting and surface material properties (axial and lateral noise,
capture errors due to too low/high specularity of surfaces, structural noise), impacting the
projection and capture of the light beams.

Further errors and approximations are then introduced during the block-matching and hole-
filling operations—such as structural noise caused by the disparity-to-depth transform, band
noise caused by windowing effect during block correlation, or growing step size as depth
increases during quantization.

3.3 Methodology: Simulation of 2.5D Sensors 57



Tab. 3.1: Comparison of BlenSor [88], Landau’s pipeline [138, 139] and DepthSynth w.r.t.
sensor noise types.

Type of Noise BlenSor [88] Landau’s [138, 139] DepthSynth

Axial and Lateral Noise Yes Yes Yes
Specular Surface Yes No Yes
Non-specular Surface No No Yes
Structural Noise No Partial Yes
Lens Distortion and Effects No No Yes
Quantization Step Noise No Yes Yes
Motion and Rolling Shutter No No Yes
Shadow No Partial Yes

This aforementioned list of noise types deduced from the sensing mechanisms is later
used to qualitatively assess the quality of the proposed pipeline, as shown in Table 3.1 or
Figures 3.6-3.7.

3.3.2 End-to-End Simulation of Depth Sensors

The proposed end-to-end pipeline for low-latency generation of realistic depth images from
3D CAD data covers various types of 3D/2.5D sensors including single-shot/multi-shot
structured light sensors, as well as ToF sensors (relatively simpler than structured-light ones
to simulate, using a sub-set of the pipeline’s components e.g., i.i.d. per-pixel noise based
on distance and object surface material, etc.). From this point, emphasis is however put on
single-shot sensors (e.g., Microsoft Kinect, Occipital Structure and Xtion Pro Live), given
their popularity among the research community.

This proposed pipeline can be defined as a sequence of procedures directly inspired by
the underlying mechanisms of the target sensors (c.f . Subsection 3.3.1; i.e., from pattern
projection and capture, followed by pre-processing and depth reconstruction using the
acquired image and original pattern, to post-processing (as illustrated in Figure 3.3).

Pattern Projection and Capture

In the first part of the presented pipeline, a 3D rendering platform is extended to reproduce
the realistic pattern projection and capture mechanism. Thanks to an extensive set of
parameters, this platform is able to behave like a wide panel of depth sensors. Indeed, any
kind of pattern can first be provided as an image asset for the projection, in order to adapt to
the single-shot—or multi-shot—depth sensing device one wants to simulate. Moreover, the
intrinsic and extrinsic parameters of the camera and projector are configurable.

An optional procedure, suggested by Siemens colleagues Wu et al., covers both the full
calibration of real structured light sensors and the reconstruction of their projected pattern

58 Chapter 3 Realistic Depth Sensor Simulation



(B) (C)

(D) (E)

(F) (G)(A)

CAD Model

Object Modeling
• Motion Control
• Illumination
• Material Properties
• Surface Micro-Geometry 

Modeling

Camera Modeling
• Distortion
• Motion Blur
• Lens Grain
• Other Noise

Projector Modeling
• Pattern(s)
• Motion between 

exposures
• Projector lens effects

OR Reconstruction

Post-processing (compute shader)
• Smoothing + Hole filling

Fig. 3.3: DepthSynth pipeline and results for the simulation of multi-shot depth sensors. (A)
Pipeline representation. (B) Rendering of projected patterns under realistic lighting and
surface materials. (C) Ideal depth data. (D) DepthSynth generated data without motion or
ambient light; (E) with strong ambient light; (F) with motion between exposures (5 cm/s
constant speed); (G) with rolling shutter effect (10 cm/s constant speed).

with the help of an extra camera. Once the original pattern obtained, the simulation pipeline
automatically generates a binary version of it, followed by other different ones of different
scales later used as references in the block matching procedure according to the image
resolution of the camera.

Once obtained, these parameters can be handed to the 3D platform to initialize the simulation.
The 3D model of the target object or scene must then be provided, along with its material(s).
Even though not all 3D models come with realistic textures, the quality of the synthetic
results highly depends on such characteristics, especially on their specularity definition.

Indeed, given also a list of viewpoints, the computer graphics platform performs each pattern
capture and projection, simulating realistic illumination sources and shadows, taking into
account surface and material characteristics. In addition to the object model, the 3D scene is
thus populated with:

• A virtual spotlight projector, using the desired high-resolution pattern as light cookie
(i.e., as a mask placed over the virtual light source);

• A camera model, set up with the intrinsic and extrinsic parameters of the real sensor,
separated from the projector by the provided baseline distance in the horizontal plane
of the simulated device;

• Optional light sources, to simulate the effect of environmental illuminations;

3.3 Methodology: Simulation of 2.5D Sensors 59



• Other optional 3D models (e.g., ground, occluding objects, etc.), e.g., to add realistic
background or clutter.

By defining a virtual light projector using the provided pattern(s) and a virtual camera with
the proper optical characteristics, the exact light projection/capture performed by the actual
devices is reproduced, obtaining out of the 3D engine a captured image with the chosen
resolution, similar to the intermediate output of depth sensors (e.g., the IR captured patterns
from Microsoft Kinect or Occipital Structure devices).

Pre-processing of Pattern Captures

This intermediate result, captured in real-time by the virtual camera, is then pre-processed
(fed into a compute shader layer), in order to get closer to the original quality, impinged
by imaging sensor noise. In this module, noise effects are added, including radial and
tangential lens distortion, lens scratch and grain, motion blur, and independent and identically
distributed random noise.

Stereo-matching

As explained in Subsection 3.3.1 (step 3 of the sensing procedure), the rendered picture is
then matched with its reference pattern to obtain the disparity map.

Here, the disparity map is computed by applying a block-matching process using small
sum of absolute differences (SAD) windows to find the correspondences [128], sliding the
window along the epipolar line. As a function of the displacement (u, v) (or only of ddisp,i
if the image planes of the emitter and camera are aligned). the SAD value for the pixel
location (hi,wj) in the captured image is expressed as:

fSADhi,wj (u, v) =
k−1∑
m=0

k−1∑
n=0
|xchi+m,wj+n − x

o
hi+u+m,wj+v+n| , (3.5)

where k is the window size, xc the image captured by the camera, and xo the original pattern
image. The matched location on the pattern image can then be obtained as follows:

(um, vm) = argmin
(u,v)

fSADhi,wj (u, v) . (3.6)

The disparity value ddisp can be computed by:

ddisp(hi,wj) =
{
um − hi for horizontal stereo,
vm − wj for vertical stereo.

(3.7)

60 Chapter 3 Realistic Depth Sensor Simulation



color rendering basic 2.5D rendering DepthSynth rendering with varying specularity for the metal texture

Fig. 3.4: Effects of material specularity on the simulation. The specularity of the metallic
material (e.g., for the tubes of the motor) has been increased between each of the three
simulated depth scans, impacting their perceived quality as expected from real sensors.

color rendering captured pattern DepthSynth result

Fig. 3.5: Effects of surface conditions on the simulation, applying a textured normal map to the
target cube models.

Based on pixel offsets, each disparity value is, therefore, an integer. To reduce quantization,
refinement is performed by interpolating between the closest matching block and its
neighbors, achieving a sub-pixel accuracy. Given the direct relation between z and ddisp
expressed in Equation 3.4, the possible disparity values are directly bound to the sensor’s
operational depth range, limiting the search range itself.

Post-processing of Depth Scans

Finally, another compute shader layer post-processes the depth maps, smoothing and
trimming them according to the sensor’s specifications. If these specifications are not
available, one can obtain a reasonable estimation by feeding real images of captured
pattern(s) from the sensor into the reconstruction pipeline and derive the parameters from
the differences between this reconstructed depth image and the one actually obtained from
the sensor, iterating if necessary. Imitating once more the original systems, a hole-filling
step is optionally performed to reduce the proportion of missing data.

Figures 3.4 and 3.5 illustrate how DepthSynth is able to realistically reproduce the spatial
sensitivity of the devices or the impact of surface materials. Similarly, Figure 3.3 (D)-
(G) reveals how the data quality of simulated multi-shot structured light sensors is highly
sensitive to motion—an observation in accordance with the expectations.

As highlighted in Figures 3.6 and 3.7 through the visual comparisons between DepthSynth
and other state-of-the-art simulation pipelines, the latter ones are not sensitive to some

3.3 Methodology: Simulation of 2.5D Sensors 61



realistic effects during capture, or they preserve fine details which are actually smoothed-
out up to the window size in block-matching. By closely reproducing the end-to-end
process performed by the actual depth devices, DepthSynth more exhaustively reproduces
the possible sources of noise (c.f . Table 3.1).

Background Blending

Most of the depth rendering tools ignore background addition (which can be performed, e.g.,
by simple alpha compositing), causing significant discrepancy with real data and biasing
the learner. Background modeling is hence another key component of DepthSynth. Added
backgrounds can be:

• From static predefined geometry (i.e., 3D objects added to the scene);

• From predefined geometry with motion (i.e., dynamic 3D objects);

• From large amounts of random primitive 3D shapes (before capture step) or 2D shapes
(after capture and reconstruction);

• From a set of real depth scans (i.e., alpha-blending part of these images in a post-
processing step).

Optimized for GPU operations (c.f . usage of shaders for rendering and post-processing), the
whole process can generate ~10 scans (VGA resolution) and their labels (e.g., viewpoints,
label map, binary mask, etc.) per second on a middle-range computer (Intel E5-1620v2,
16GB RAM, Nvidia Quadro K4200).

3.4 Experiments and Results

To demonstrate the accuracy and practicality of the method detailed in this chapter,
Subsection 3.4.2 analyzes the depth error it induces when simulating the Microsoft Kinect
device, comparing with experimental depth images, other simulation tools, and theoretical
models for this device. In Subsection 3.4.3, a state-of-the-art algorithm for classification
and pose estimation is chosen to demonstrate how supervised 2.5D recognition methods
benefit from using the generated data.

62 Chapter 3 Realistic Depth Sensor Simulation



fine structures

structural loss

quantization
lateral

incident angle
reflection

DepthSynthBlenSor

Fig. 3.6: Detailed visual comparison with BlenSor [88] highlighting the salient differences, based
on the noise study presented in Subsection 3.3.1.

shadow caused by baseline

reflective surface

ambient illumination

background

wrong depth value

sharp noise

distorted pattern

DepthSynthLandau’s

RGB rendering

Fig. 3.7: Detailed visual comparison with Landau’s solution [138, 139], based on the noise
study presented in Subsection 3.3.1.

3.4 Experiments and Results 63



3.4.1 Implementation Details

Before presenting the experiments, additional implementation details are provided for
reproducibility. Though a proof of concept had been first implemented in Matlab, the
simulation pipeline used in the following subsections is an optimized version reproduced by
colleagues at Siemens Princeton (as DepthSynth was immediately needed for an industrial
project there).

This version of DepthSynth is built on top of Unity 3D Game Engine [64], leveraging its
computer graphics capability to project and capture the structured-light patterns in the virtual
3D scenes. The pattern emitter is simulated as a virtual directional light source, which has
the pattern image(s) assigned as light cookie.

For the stereo-matching step, instead of trying to reverse-engineer or imitate the algorithms
used by the actual depth devices (usually patented), the pipeline that is leveraged in this
section simply uses the default stereo-correspondence functions provided by the OpenCV
library [28], based on the work of Felzenszwalb and Huttenlocher [69].

3.4.2 Depth Error Evaluation

To validate the correctness of the simulation pipeline, the set of experiments used by
Landau et al. [138, 139] is reproduced, to compare the depth error induced by DepthSynth
to experimental values, as well as to the results from Landau et al. [138, 139], from
BlenSor [88], and from 3 theoretical error models for the Kinect device—respectively from
Menna et al. [168], Nguyen et al. [185] and Choo et al. [46, 138]. All the synthetic and
experimental datasets consist of scans of a flat surface placed in front of the 2.5D sensor
at various known distances, and at various tilt angles to the focal plane. For each position,
several images are captured. The experimental real data was kindly provided by Landau [138,
139].

Figure 3.8-A shows how the distance between the plane and the sensor influences the
standard depth error in the resulting scans. The trend in DepthSynth data matches well
the one observed in experimental scans and in Choo et al. model recalibrated by Landau
on the same experimental data [138]. As noted by Landau et al. [138], these models are
based on experimental results which are inherently correlated to the characteristics of their
environment and sensor. Therefore, one could expect the error from samples captured in
different conditions not to perfectly align with such models (as proved by the discrepancies
among them). One can also notice that the quality of DepthSynth images degenerates slightly
faster as distance increases, compared to real scans; though the proposed method behaves
overall more realistically than the others.

64 Chapter 3 Realistic Depth Sensor Simulation



1

10

100

1000

10 20 30 40 50 60 70 80

Lo
g 

Sc
al

e
o

f
St

an
d

ar
d

 D
e

p
th

Er
ro

r 
(m

m
)

Angle of tilted plane (deg)

BlenSor's (1000mm) BlenSor's (1400mm)

Landau's (1000mm) Landau's (1400mm)

Exp. (1000mm) Exp. (1400mm)

Ours (1000mm) Ours (1400mm)

0

10

20

30

40

50

800 1600 2400 3200 4000

St
an

d
ar

d
 D

e
p

th
 E

rr
o

r 
(m

m
)

Distance to vertical plane (mm)

Choo Model

Nguyen Model

Menna Model

Experimental Data

BlenSor Data

Landau Data

Our Data

(A) (B)

Fig. 3.8: Standard depth error (in mm) computed (A) as a function of the distance (in mm) to a
vertical flat wall for various fixed distances; and (B) as a function of its tilt angle (in deg);
plotted for the experimental images and the synthetic data from the various solutions and
for various fixed distances.

0

5

10

15

20

25

30

20 70 120 170 220

Exp.

0

5

10

15

20

25

30

20 70 120 170 220

Ours

800 mm

1600 mm

2400 mm

3200 mm

0

5

10

15

20

25

30

20 70 120 170 220

Landau's

Distance from center of focal plane (px)

0

5

10

15

20

25

30

20 70 120 170 220

BlenSor's

St
an

d
ar

d
 D

e
p

th
 E

rr
o

r 
(m

m
)

Fig. 3.9: Standard depth error (in mm) as a function of the radial distance (in px) to the focal
center; plotted for the experimental images and the synthetic data from the various solutions
and for various fixed distances.

Figure 3.8-B represents how the synthetic methods fares when gradually tilting the plane
from orthogonal to almost parallel to the optical axis. The errors induced by the proposed
pipeline matches closely the experimental results for tilt angles below 70◦, with some
overestimation for steeper angles. A proper trend is nevertheless observed, unlike for other
methods. It should be noted that for larger incident angles, both real scans and DepthSynth
ones have most of the depth information missing, due to the poor reflection and stretching
of the projected pattern(s), heavily impairing the reconstruction.

As a final experiment related to the error modeling, the standard depth error as a function
of the radial distance to the focal center is computed. Again, Figure 3.9 highlights the
realistic superiority of the proposed pipeline in terms of noise reproduction (despite inducing
slightly more noise for larger distances and thus more distorted pattern(s), compared to real
devices). DepthSynth even satisfyingly reproduces the oscillating evolution of the noise
when increasing the distance and reaching the edges of the scans—a well-documented
phenomenon caused by “wiggling” and distortion of the pattern(s) [75, 135].

3.4 Experiments and Results 65



3.4.3 Application to Recognition Tasks

Among the applications which can benefit from the proposed pipeline, the following problem
is considered. ICPE is the task of estimating the 6-DOF camera pose and classifying an
object instance from single images (2.5D scans here). In the following experiments, it
is formulated as an image retrieval problem, supposing no real images can be acquired
for the training of the chosen method. However, the 3D models of target objects are
considered provided. Therefore, m camera poses are discretized and synthetic 2.5D images
are generated, for each pose and each object using DepthSynth.

To achieve recognition (c.f . recognition solution detailed in Subsection 3.2.1), each available
picture is encoded into a discriminative, low-dimensional image representation with its
corresponding class and camera pose. This way, a database is built for pose and class
retrieval problems. At testing time, given an unseen image, its representation is computed
the same way and queried in the database, in order to find the k-nearest neighbor(s) and to
return the corresponding class and pose.

In this framework, two components play an important role in ensuring successful indexing.
One is the 2.5D image simulation, and the other one is the image representation. A data
simulation process is considered valid when it minimizes the quality gap between synthetic
and acquired depth data – a minimization achieved here as explained in Section 3.3. On
the other hand, a fitting image representation should carry discriminative pose and class
information, resulting in successful searches. The degree of discrimination for recognition
problems can be defined as the distance between two image representations, which should
be small when the objects are similar and their camera poses close to each other, and
respectively big when the objects and/or poses are different.

Therefore, to demonstrate the advantages of using DepthSynth data irrespective of the
selected features, the triplet method [286, 300] introduced in Subsection 3.2.1 is selected.
For CNN, a simple LeNet architecture [142] is applied with custom hyper-parameters. As
shown in Figure 2.6, this network is composed of two 5×5 convolution layers, each followed
by a ReLU layer and a 2× 2 max-pooling layer; with two fully connected layers leading
to the output one, also fully connected. This final layer is configured to return the feature
vectors, of size d = 64 for the following experiments.

Given such a state-of-the-art recognition method (re-implemented in Caffe [113]), the
accuracy of CNN instancse trained on DepthSynth data is compared with the accuracy
of other CNN instances trained on simple synthetic depth data or on BlenSor data. The
remaining of this subsection further presents the experiments and discusses their results.

66 Chapter 3 Realistic Depth Sensor Simulation



Chair A Chair B Chair C

real
images

CAD
models

simu.
images

Fig. 3.10: CAD models, sample real images, and DepthSynth images used in the experiments
(note the strong similarities among these chairs).

2.5D image RGB image (showing markers) camera trajectory

Fig. 3.11: Real data acquisition and processing. From left to right: sample real depth data ;
sample RGB data with markers ; recovered trajectory (poses) for each samples (for
Chair C).

Data Preparation

As target objects for the experiment, three similar-looking office chairs are selected, with
their CAD models obtained from the manufacturers’ websites (Figure 3.10)2. In order to
capture the test dataset of real depth images with ground-truth pose annotations, Siemens
colleagues performed the following procedure.

Augmented reality (AR) markers were placed on the floor around each chair, an Occipital
Structure sensor was mounted on a tablet, and its infrared camera was calibrated according
to the RGB camera of the tablet. Using this tablet, an operator captured sequences of
1,024 RGB and depth frames per object, walking around the chairs (trajectory shown in
Figure 3.11).

2At the time this experiment was set, only a few benchmark datasets containing clean 3D models along with
labeled depth scans were available (gathering such datasets is tedious, c.f . the actual motivation behind this
work). The rare datasets meeting these requirements (e.g., LineMOD [99], Rutbers APC [217]) contain
toy-like models, too small or too noisily reconstructed for the evaluation of image-rendering solutions; hence
the decision to build instead a custom dataset of large and challenging objects.

3.4 Experiments and Results 67



Clean/Clean

Clean+FT/Clean

BlenSor/Clean

BlenSor/BlenSor

BlenSor+FT/BlenSor

Ours/Clean

Ours/Ours

Ours+FT/Ours
62,9

76,5

70,2

74,7

83,6

71,5

86,4
87,7

60

70

80

90

100

0

20

40

60

80

100

0

10 20 30 40 50 60 70 80 90

10
0

C
D

F 
(%

)

0

20

40

60

80

100

0 200 400 600 800 1000

C
D

F 
(%

)

(A) (B) (C)
Max Translational Error (mm) Max Rotational Error (deg) Recognition Accuracy (%)

Fig. 3.12: Cumulative distribution functions (CDFs) on errors (A) in translation and (B) in
rotation for pose estimation on the Chair C dataset. (C) Classification results over the
3-Chairs dataset, using the method trained over different datasets (“FT” = “fine-tuning”).

In a comprehensive and redundant annotation procedure using robust direct linear
transform, 2D-3D correspondences on chairs regions were manually generated based on
visual landmarks, choosing a representative set of approximately 60 frames. These
estimated camera poses and the detected 2D locations of markers were used to generate
triangulated 3D markers locations in the CAD coordinate system. Given the objects’
movable parts, the actual chairs deviate from their model. The deviation was iteratively
reduced for the final ground-truth sequence by verifying the reprojections and the
consistency of the triangulated markers positions relative to the elements of the chairs.

The IR and RGB camera calibration parameters were then used to align the depth scans into
a common 3D coordinate system. In a final fine-tuning step, the poses and 3D models were
fed into the simulation pipeline, to generate corresponding noiseless depth maps, used by an
iterative closest point (ICP) method [20] to be aligned to the real images; optimizing the
ground-truth for the final real test dataset.

DepthSynth images (noisy and noiseless ones) used for the training steps are generated
according to the intrinsic parameters of the Occipital Structure sensor, sampling viewpoints
on a half icosahedron centered on the target CAD models with small pose perturbations
(see results in Figure 3.10). In total, 30,000 different synthetic depth images are rendered
from the three CAD models, adding a horizontal flat plane as ground floor to the 3D scene.
BlenSor dataset is generated according to the same procedure and parameters.

Evaluation on Pose Estimation

As a first experiment, the aforementioned approach is limited to pose estimation only,
training and testing it over the data of Chair C. For the CNN training, the synthetic depth
scans are used to form 100,000 triplets and pairs. The learned representation is then applied
for the indexation of all the 30,000 images, using the FLANN library [177]. At test time,
the representations of the real depth images are extracted and indexed. For each, the nearest

68 Chapter 3 Realistic Depth Sensor Simulation



neighbor’s pose is then rendered and aligned to the input scan to refine the final 3D pose
estimation (using ICP).

To demonstrate how the quality of the synthetic training data impacts the recognition
performance, the three different datasets—noiseless/clean depth images, BlenSor ones, and
DepthSynth ones—are used either for both representation-learning and database indexing,
or only for learning with the clean dataset then used for indexing. Furthermore, additional
CNN instances are fine-tuned on a subset of 200 real scans, forming 3,000 training samples
(triplets and pairs). Estimated 3D poses are compared to the ground-truth values, and the
CDFs on errors in rotation and translation are shown in Figure 3.12(A-B).

This figure reveals how the CNN instance trained over DepthSynth data gives consistently
better results on both translation and rotation estimations; furthermore not gaining much in
accuracy after fine-tuning with real data.

Evaluation on Classification

Finally, the classification task for the three similar-looking chairs is considered. Using the
same synthetic training datasets extended to all three objects, the accuracy of the recognition
methods is computed over a testing dataset of 1,024 real depth images per object, taking as
final estimation the class of the nearest neighbor in the descriptor database for each extracted
image representation.

Despite the strong similarities among the objects, the recognition method performs
reasonably well, as shown in Figure 3.12(C). Again, it can be seen that it gives consistently
better results when trained over DepthSynth data; and that unlike with other training
datasets, the accuracy does not significantly increase with the addition of real data for
fine-tuning, validating the inherent realism of the rendered images.

3.5 Discussion

To conclude the presentation of this first study, this section summarizes the contributions,
before providing some insights for possible future work.

3.5.1 Contributions

Developed for an industrial project aiming at assisting human operators in recognizing
defect parts for train maintenance, this first solution to data scarcity developed during my

3.5 Discussion 69



thesis has had concrete impacts on the performance of the system. Addressing the realism
gap problem for 2.5D data, its key contributions are the following:

Generic Simulation Pipeline for Depth Sensors. Based on a study of depth sensors and
the noise impairing them, an end-to-end pipeline is proposed, to synthetically generate depth
images from a wide panel of sensors by virtually and comprehensively reproducing the
mechanisms of the target devices.

Rendering of Large and Realistic 2.5D Datasets. Presenting realistic properties (i.e.,
in terms of noise), the resulting images—which can be generated in large numbers as the
pipeline leverages graphics processing unit (GPU) operations—can be used to effectively
train recognition algorithms when relevant real depth scans are not available (or available in
too small numbers). Able to generate large training datasets closer to the real data
distribution (i.e., improving the generalization bound and reducing the domain divergence,
c.f . Subsection 2.3.1), DepthSynth facilitates the training of robust 2.5D recognition
applications, regardless the ulterior choice of algorithm or feature space.

Versatile Solution Reproducing Sensing Mechanisms. Unlike common domain
adaptation methods which are usually statistical in nature, the proposed simulation method
is mostly based on deterministic operations (except for some of the post-processing steps,
but the intensity of the random noise which they bring is entirely parameterizable).
Therefore, DepthSynth can be applied as-is to a large variety of applications (e.g., without
suffering from dataset bias).

Multi-Stage Validation of 2.5D Simulation Tools. Multiple procedures and their results
are shared to validate the proposed solution, comparing to state-of-the-art depth simulation
tools. The noise distribution in the resulting images is compared to theoretical models and
experimental data, and the effectiveness and flexibility of DepthSynth are demonstrated on
the training of recognition systems targeting real depth scans.

This concept will hopefully prove itself greatly useful to the community, leveraging the
parallel efforts to gather detailed 3D datasets. The generation of realistic depth data and
corresponding ground truth can promote a large number of data-driven algorithms, by
providing the training and benchmarking resources they need.

3.5.2 Limitations

However, the application of the proposed method to more advanced industrial use-cases
highlighted some current limitations, which mostly come from the tight correlation between
the quality of the resulting synthetic images and the quality of the 3D models themselves.

70 Chapter 3 Realistic Depth Sensor Simulation



Impact of Model Quality on the Simulation. First, while CAD models have well-defined
geometries, the same cannot be said to some other models, e.g., obtained through 3D
reconstruction from images. Such models may have holes in their mesh, wrongly defined
surface normals, etc., which affect the rendering process done by the computer graphics
engine.

Furthermore, for the simulation to be as realistic as possible, the reflectance of the various
materials forming the target objects should be finely defined. While some CAD applications
provide catalogs of common material properties which can be applied to 3D models (e.g.,
model textures simulating iron, concrete, wood, etc.), not all models come with such
information. However, various methods already exist to capture and assign material
reflectance, e.g., as bidirectional reflectance distribution functions (BRDFs) [85, 89, 187].

Finally, when generating synthetic images of target objects, it is common not to know in
advance the composition of the environment(s) in which the real objects will be found, or
to have 3D models or even images of said environments. In such cases, it is, therefore,
challenging to generate relevant visual clutter (background, occlusions, etc.).

Leveraging Subset of Real Pictures to Improve Domain Knowledge. To tackle these
aforementioned limitations, a possible future work would be to combine DepthSynth with
post-processing methods such as PixelDA [26] or SimGAN [240]. Assuming the availability
of some real images depicting the target objects, these methods teach generative adversarial
networks (GANs) (a type of unsupervised generative models further described in the
following chapters) to refine synthetic images, e.g., adding statistically-learned camera noise
or background to them.

When a small number of real pictures are available, another approach would be to correlate
these images in order to understand and virtually reconstruct the target objects/scenes. The
resulting models could then be used to directly generate relevant, realistic images. Such an
approach is the topic of the next chapter.

3.5 Discussion 71





4Novel View Synthesis through
Incremental Scene Learning

„
Man shapes himself through decision that shape his
environment.

— René Dubos
(French-American microbiologist and humanist,

20th century)

Another family of scenarios related to data scarcity in computer vision is now tackled, where
a subset of images but no relevant models of target objects or scenes are available. More
formally, an agent is considered (e.g., a human operator with a camera, a drone exploring
a new environment, an autonomous car on the road, etc.), which provides sequences of
unlocalized images. From these partial observations of an environment, the goal is to
understand its distribution in order to generate new, relevant, and consistent images (e.g.,
images of the observed scene, from new viewpoints).

To that end, the following method is proposed, depicted in Figure 4.1 and detailed in this
chapter [206]. Extending a state-of-the-art solution for image localization and
registration [98], this method incrementally builds and refines global representations of the
target two-dimensional (2D) or three-dimensional (3D) scenes from unlocalized
observations. These representations can then be used to render novel images, consistent
from one to another. These representations are stored in a global read/write derivable
memory with spatial properties, in which, additionally, unobserved regions can be
hallucinated in consistency with previous observations, hallucinations, and global priors.
The efficacy of the proposed mnemonic and generative pipeline, trainable end-to-end, is
demonstrated on various 2D as well as 3D use-cases.

Following a traditional structure, this chapter starts by detailing the motivation in
Section 4.1, followed by a study of related work in Section 4.2. Section 4.3 introduces the
proposed solution, which is then qualitatively and quantitatively evaluated in Section 4.4.
Section 4.5 concludes the chapter, summarizing the contributions and providing some
additional insights.

73



“Here is what I have seen so far.” “What would other locations look like?”

sequential synthesis of unobserved viewsagent observations feature encoding incremental memory update

global memory

(with observed or previously synthesized views)

hallucination

Fig. 4.1: Proposed solution for scene understanding and novel view synthesis, given non-
localized agents.

4.1 Motivation

Though the work presented in this chapter also originated from assessing the problems
linked to data scarcity in computer vision, further-reaching considerations also motivated
and influenced its development.

4.1.1 Visual Understanding for Autonomous Agents

To begin with, it is hard nowadays to think of solutions for scene modeling without
considering their potential applications to autonomous systems.

Scene Exploration by Autonomous Agents

Powered by deep learning solutions, an increasing number of autonomous systems are
integrating vision-based methods to navigate in—or interact with—their surroundings.
The development of self-driving cars is a well-known contemporary example, though
the range of applications is constantly broadening: rescue robots operating in hazardous
environments, drones monitoring infrastructures in remote areas, etc. These autonomous
agents have in common the need to understand their 3D environment based on their sensory
input, in order to perform their downstream tasks such as planning, exploration, and target
navigation [40].

Moreover, like actual creatures, these agents should be able to perform and anticipate under
uncertainty. The information gathered at each instant from sensory stimuli only provides
a partial picture of the surroundings. Therefore, the ability to patch together these partial
observations as they come to build a global representation, and the ability to complete it from
experience, are primordial to understand new environments and plan actions accordingly.

We, humans, perform this process all the time. For instance, as we walk through the streets
of a new city, we are able to build a mental representation of its layout. Based on this
representation and our knowledge of other agglomerations, we can also predict, with more

74 Chapter 4 Novel View Synthesis through Incremental Scene Learning



global allocentric memory“Here is what I have seen so far.”

Legend: requested poses 𝑙𝑟𝑒𝑞

𝑥𝑡
𝑛

𝑜0..𝑡
1

𝑜𝑟𝑒𝑞

𝜓𝑡

𝑏𝑡

Op trained neural networksOp geometrical transforms

Incremental Observation

“What would other locations look like?”

𝑜𝑡
𝑛

U
p

d
at

e

R
eg

is
te

r

H
al

lu
ci

n
at

e

Memory Update Memory Hallucination

𝑥0..𝑡
1

… …

registered poses 𝑙𝑡

𝜓𝑡
ℎ

Sequential Synthesis
𝑥𝑟𝑒𝑞

En
co

d
e

P
ro

je
ct

En
co

d
e

P
ro

je
ct

U
p

d
at

e

R
eg

is
te

r

…

C
u

ll

D
ec

o
d

e

C
u

ll

D
ec

o
d

e

… …

Fig. 4.2: Detailed pipeline for incremental view synthesis, considering non-localized agents
exploring new scenes. Observations xt are sequentially encoded and registered in a global
feature map ψt with spatial properties, used to extrapolate unobserved content and generate
consistent novel views x̃req from requested viewpoints.

or less confidence, how parts of the city which have not been explored yet may look like,
and we can act upon these predictions (e.g., heading to larger boulevards when looking for a
tramway station).

To perform these mental tasks, we rely on multiple high-level neural processes: spatial
localization and memorization, mnemonic querying and mental visualization, knowledge
transfer, etc. While the current state-of-the-art in machine learning cannot compare to
our neurological aptitudes, autonomous agents able to emulate such mental and visual
tasks—even to some extent—would greatly gain in adaptability.

Capturing and Modeling New Scenes

The ability to incrementally build global representations from visual observations would
benefit not only the agents in their current tasks, but also systems which could capitalize on
the acquired information.

Picking once again the case of self-driving vehicles as an example, more and more companies
are trying to leverage the continuous data flow captured by these vehicles. As they are
typically connected to global positioning system (GPS), the data captured by their sensors
can directly be localized and registered in global topographic representations, e.g., to
update or refine urban maps. These databases of higher definition can then be applied to
the development of more precise and robust navigational algorithms, for example. Note,
however, that this registration process becomes much more complex when provided data
samples are not localized (e.g., images captured by a human operator walking in a new
scene).

Overall, the capacity to build appropriate representations from sets of partial observations
could benefit the training of recognition methods, for scenes or objects which have not been
modeled yet.

4.1 Motivation 75



4.1.2 Novel Image Synthesis

Besides these far-reaching considerations, the proposed method was mainly developed to
tackle the problem of data scarcity when training robust solutions for visual recognition.

Shortcomings of Simulation

In Chapter 3, we saw how simulation tools can be powerful solutions to the generation
of large amount of realistic images. As demonstrated, synthetic datasets can then be
successfully applied, e.g., to the training of machine learning methods.

However, this previous chapter also highlighted the limitations of simulation-based solutions
w.r.t. the problem of data scarcity. High-quality simulated data implies the acquisition
of models, themselves of high-quality. In many cases, it would be as costly (in terms of
hardware requirements and human efforts) to build such realistic models as to simply gather
and annotate images (if not more). There is, therefore, a need for any method that could
further automate the modeling of new objects or scenes.

Interpolation and Extrapolation of Novel Images

The most practical motivation behind the following work is thus the capacity to model the
content of a subset of images, in order to generate new relevant images.

Applications could go from the creation or larger datasets from small sequences of target
images (“given this handful of observations of a scene, generate more images of the scene
from any viewpoint”) to the guiding of autonomous agents, as mentioned before (“given
previous observations, what could be found in different parts of the scene?”).

Unlike the usual use-case of generative models (c.f . Subsection 2.1.3), the considered
images are here not independently and randomly sampled from a target distribution, but
are sequences of partial observations provided by an agent whose policy and localization
are unknown. The target task is, therefore, to sequentially learn the distribution of the
target scene, in order to sample relevant and globally consistent images from it. These
images should be interpolated from the representation, or extrapolated from domain-relevant
knowledge for unexplored/unobserved regions.

76 Chapter 4 Novel View Synthesis through Incremental Scene Learning



4.2 Related Work

The problem tackled in this chapter relates to image-conditioned localization, mapping, and
view synthesis. Relevant work is discussed in the following section, presenting traditional
methods, as well as novel neural solutions which the proposed pipeline will be compared
with.

4.2.1 Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) is a long-standing problem in computer
vision. Given an agent exploring an unknown environment and providing regular
observations (e.g., RGB images, depth scans, radar measurements, etc., depending on the
use-cases), the task consists of localizing the agent at each time step while registering the
observations in a global map structure (e.g., a topographic map or RGB point cloud).

Traditional SLAM

Different from structure-from-motion (SfM) solutions [188, 252, 289] that typically operate
offline and on unordered images, classic SLAM methods [59, 71, 116, 124, 174, 179,
251] usually rely on real-time continuous cues in videos and on visual consistency among
frames. Traditional methods are composed of several carefully engineered deterministic
or statistical modules for tracking, mapping, and re-localization (e.g., bundle adjustment
modules, Kalman filtering, etc.).

While current SLAM methods can perform efficiently for a wide range of applications (from
autonomous driving to augmented reality for instance), they are rigid systems. As argued
by Zhang et al. [305], authors of the Neural SLAM technique, traditional SLAM methods
cannot be tightly integrated into end-to-end systems for autonomous agents, given the
current predominance of ANN-based solutions for decision making and other downstream
tasks. Unable to interact directly with—and adapt to—non-derivable systems, neural-based
methods can only be passed the final output of SLAM algorithms (e.g., as done by Bhatti
et al. [21]). Zhang et al. [305] further argue that if the SLAM system and the modules in
charge of the downstream tasks (navigation, exploration, novel view synthesis, etc.) could
be “deeply integrated as a whole”, they would benefit from their mutual training and from
feature sharing.

4.2 Related Work 77



Neural Scene Understanding

This conclusion, recently and simultaneously drawn by various research teams in the domain
of reinforcement learning, led to a variety of methods trying to solve SLAM with neural
networks.

Some of these novel methods, such as CNN-SLAM [263], have been focusing on replacing
specific modules in classical SLAM systems with neural components. More experimental
solutions have been instead developed from scratch with derivable components only. These
solutions are typically relying on recurrent neural networks (RNNs), used to accumulate
features from image sequences, e.g., to predict the camera trajectory [197, 219] or infer
novel views [308].

Extending these solutions with a queryable memory, state-of-the-art models are mostly
egocentric and action-conditioned [40, 72, 196, 211, 305]. They usually consider an agent
exploring the environment, which can provide not only an observation xt at each time step t,
but also its state st (e.g., its pose) or action at leading to this new observation (e.g., “move
forward”, “rotate clockwise”, etc.). It is, therefore, assumed that some “oracle” is providing
the agent’s state or action at each time step t [196]—a condition not applicable to many
real-life scenarios. The aforementioned methods use the agent’s state (obtained directly from
the oracle or regressed from the provided action) to index the corresponding observation xt
or its features in a memory structure.

In the spirit of SLAM, Neural SLAM [305] and MapNet [98] are two neural methods relying
solely on the visual observations to regress the poses. Both propose a spatial memory system
for autonomous agents. Whereas the former deeply interconnects memory operations with
other predictions (e.g., motion planning), the latter offers a more generic solution with no
assumption on the agents’ range of action or goal. Extending MapNet, the proposed model
not only attempts to build a map of the environment, but also makes incremental predictions
and hallucinations based on both past experience and current observations.

4.2.2 Incremental Scene Sampling

While the localization and registration steps are a necessity given the considered applications,
the end goal is the generation of novel views over a partially observed scene, irrespective of
the agent’s nature and the view density.

78 Chapter 4 Novel View Synthesis through Incremental Scene Learning



3D Modeling for Image Rendering

Most SLAM methods register the observations in a global structure which can then be
queried to generate new samples. For example, the 3D point clouds returned by some
RGB-D solutions can be passed to computer graphics pipelines to render images, e.g., from
different viewpoints [47, 124, 179, 251].

Methods based on convolutional neural networks (CNNs) have also been proposed to model
3D content from 2D or 2.5D images. Relying on advanced 3D convolutions, these solutions
can predict voxels, point clouds, or meshes [48, 68, 149]. Trained in a supervised manner,
these CNNs, however, require 3D data to learn their model regression.

Capitalizing on the advances in computer graphics, all the aforementioned methods yield
satisfying results when enough source samples are provided to build a dense 3D
representation. However, they cannot compensate for sparse information (i.e., the graphics
engines can only render images from observed and registered content; missing elements
cannot be inferred, and may create artifacts in the resulting images).

Novel View Synthesis

Motivated by the idea of an end-to-end neural framework, the task of generating new
images is tackled from a different angle in this chapter. Given a sequence of non-localized
observations from a target scene, neural solutions should be able, at any time step, to directly
return images from new, requested viewpoints.

A number of existing methods [65, 262, 297] follow the encoder-decoder paradigm. Either
fed to the network altogether or sequentially (with an RNN used as encoder) along with
the requested viewpoint, the features extracted from the input images are combined, before
being decoded into the target view. Other methods try instead to predict a per-pixel mapping
from the provided images to the requested one. For instance, Zhou et al. [309] apply a CNN
to estimate the visual flows which map the pixels in the source images to the target one.
Comparably, Ji et al. [112] teach a neural network (NN) to predict the dense correspondences
to infer the intermediate image between two consecutive observations.

Extending the generative query network (GQN) proposed by Eslami et al. [65] with a
derivable memory structure, the generative temporal model with spatial memory (GTM-SM)
developed by Fraccaro et al. [72] is most probably the pipeline closest to the one proposed
in this chapter, both in terms of target applications and overall structure. GTM-SM takes for
inputs a sequence of observations xt from an agent and the corresponding encoded actions
at. The actions are passed to a first network tasked to infer from them the agent’s states st

4.2 Related Work 79



(i.e., its pose at each time step), while the observations are passed in parallel to the GQN in
order to be encoded. The code vectors are then stored into a differentiable neural dictionary
(DND) used as memory [211], with the inferred states st used as keys. Once the observation
phase over, new images can be synthesized while the agent continues to virtually navigate
in the scene. Inferring again its state from its latest action, the DND can be queried to
retrieve relevant features from the closest memorized states. Interpolating and decoding
these features, a novel image is then generated.

While yielding impressive results when agents densely explore and observe the scenes first,
GTM-SM—like other methods mentioned in this subsection—cannot extrapolate beyond
the observed domain, unlike the proposed framework.

4.3 Methodology: Neural Pipeline for Incremental
Scene Synthesis

While the current state of the art in scene registration yields satisfying results, methods rely
on several assumptions, including prior knowledge of the agent’s range of actions, as well as
the actions at themselves at each time step. Here, unknown agents are considered, with only
their observations xt provided during the memorization phase. In the spirit of the MapNet
solution [98], an allocentric spatial memory map is used. Projected features from the
input observations are registered together in a coordinate system relative to the first inputs,
allowing to regress the position and orientation (i.e., pose) of the agent in this coordinate
system at each step. Moreover, given viewpoints and camera intrinsic parameters, features
can be extracted from the spatial memory (frustum culling) to recover views. Crucially, at
each step, memory “holes” can be temporarily filled by a NN trained to generate domain-
relevant features while ensuring global consistency. Put together (c.f . Figure 4.2), this
pipeline (trainable both separately and end-to-end) can be seen as an explicit topographic
memory system with localization, registration, and retrieval properties, as well as consistent
memory-extrapolation from prior knowledge. The proposed approach is detailed in this
section.

4.3.1 Localization and Memorization

The solution first takes a sequence of observed images xt ∈ Rc×h×w (e.g., with c = 3 for
RGB images or 4 for RGB-D ones) for t = 1, . . . , τ as input, localizing them and updating
the spatial memory ψ ∈ Rn×u×v accordingly. The memory ψ is a discrete global map of
dimensions u× v and feature size n. ψt represents its state at time t, after updating ψt−1

with features from xt.

80 Chapter 4 Novel View Synthesis through Incremental Scene Learning



Sampler

Cross-Correlation

Convolution

LSTM

𝜓𝑡−1 𝜓𝑡

𝑜𝑡

𝑜𝑡
′

𝑝𝑡

ො𝑜𝑡

Fig. 4.3: Localization and memorization, based on MapNet [98].

Encoding Memories. Observations are encoded to fit the memory format. For each
observation, a feature map x′t ∈ Rn×h′×w′ is extracted by an encoding convolutional neural
network (with n the feature size). Each feature map is then projected from the 2D image
domain into a tensor ot ∈ Rn×q×q representing the agent’s spatial neighborhood (to simplify
later equations, u, v, q are supposed to be odd numbers). This operation is data and use-case
dependent.

For instance, for 2D scenes (i.e., agents walking on an image plane), this operation can
be done by cropping x′t into a square tensor of shape n × q′ × q′ with q′ = min(h′, w′),
followed by scaling the features from q′ × q′ to q × q using bilinear interpolation.

For RGB-D observations of 3D scenes (or for RGB images extended by some monocular
depth estimation method, e.g., [36, 61, 123, 137, 222, 296]), the feature maps are first
converted into 3D point clouds (after registering color and depth images together) using the
depth values and the camera intrinsic parameters (assuming like Henriques and Vedaldi [98]
that the ground plane is approximately known). To project the inputs into point clounds,
∀i ∈ {0, ...,h− 1} and ∀j ∈ {0, ...,w − 1}, each feature x′t,i,j ∈ Rn in x′t is assigned the
coordinates (x, y, z), as performed in [98]:

z = xDt,i,j ,

x = (j − cx) z
fpx,x

,

y = (i− cy) z
fpx,y

,

(4.1)

with xD the depth (2.5D) map, fpx,x, fpx,y the horizontal and vertical pixel focal lengths of
the 2.5D sensor, and cx, cy its pixel focal center.

4.3 Methodology: Neural Pipeline for Incremental Scene Synthesis 81



𝑥0..𝑡

𝜓𝑡

𝓛𝒂𝒏𝒂𝒎

𝑥𝑟𝑒𝑞

Enc.

C
N

N

P
ro

j.

R
eg

i.

LS
TM

C
N

N

P
ro

j.

R
eg

i.

LS
TM

C
N

N

P
ro

j.

R
eg

i.

LS
TM

Dec.

C
u

ll

C
N

N
2

C
u

ll

C
N

N
2

C
u

ll

C
N

N
2

𝑝𝑡𝑝𝑡

𝓛𝒍𝒐𝒄

Legend:
ground-truth data

Op trained neural networksOp geometrical transforms

predictionsOp frozen neural networks

Fig. 4.4: Training of the memorization and anamnesis modules. These pipeline components
can be seen as a particular auto-encoder (i.e., with memory), and can be trained end-to-
end as such. Lloc measures the accuracy of the predicted allocentric poses i.e., training
the encoding CNN to extract meaningful features and the LSTM to update the memory
properly. Lanam measures the quality of the recalled views—rendered from ψt using the
ground-truth poses—compared to the original ones (note: though the training steps are
shown separately in Figures 4.4-4.6, the whole method is trained in a single pass).

Each set of coordinates is then discretized to obtain the neighborhood bin that the feature
belongs to. Given q × q bins of dimensions (xq, zq) in world units, the bin coordinates
(xb, zb) of each feature are computed as follows:

xb = b x
xq
c+ q − 1

2 ,

zb = b z
zq
c+ q − 1

2 ,
(4.2)

with b·c the integer flooring operation. Features projected out of the q × q area are ignored.
Finally, ot is obtained by applying a max-pooling operation over each bin (i.e., handling
many-to-one feature aggregation by keeping only the maximum values for features projected
into the same bin [212]). Empty bins result in a null value1.

Localizing and Storing Memories. Given a projected feature map ot and the current
memory state ψt−1, the registration process involves densely matching ot with ψt−1,
considering all possible positions and rotations. As explained by Henriques and Vedaldi
[98], this can be efficiently done through cross-correlation (c.f . Figure 4.3). Considering a
set of r yaw rotations, a bank o′t ∈ Rr×n×q×q is built by rotating ot r times:

o′t =
{
R(ot , 2π i

r
, cq,q)

}r
i=0 , (4.3)

1Max-pooling over a sparse tensor (point cloud) as done here is a complex operation not yet covered by
all deep learning frameworks at the time of this project. I thus implemented my own (for the PyTorch
library [198]).

82 Chapter 4 Novel View Synthesis through Incremental Scene Learning



with cq,q = ( q+1
2 , q+1

2 ) horizontal center of the patch, and R(o, α, c) the function rotating
each element in o around the position c by an angle α in the horizontal plane.

The dense matching can, therefore, be achieved by sliding this bank of r feature maps
across the global memory ψt−1 and comparing the correlation responses. In other terms,
the localization probability field p̃t ∈ Rr×u×v is efficiently obtained by computing the
cross-correlation (i.e., “convolution", operator ?, in deep learning literature) between ψt−1

and o′t and normalizing the response map (softmax activation σ). The higher a value in
p̃t, the stronger the belief the observation comes from the corresponding pose. Given this
probability map, it is possible to register ot into the global map space (i.e., rotating and
translating it according to p̃t estimation) by directly convolving ot with p̃t. This registered
feature tensor ôt ∈ Rn×u×v can finally be inserted into memory:

ôt = p̃t ∗ o′t with p̃t = σ(ψt−1 ? o
′
t) , (4.4)

ψt = LSTM(ψt−1, ôt, θLSTM) . (4.5)

A long short-term memory (LSTM) unit is used, to update ψt−1 (the unit’s hidden state)
with ôt (the unit’s input) in a knowledgeable manner (c.f . trainable parameters θLSTM).
During training, the RNN will indeed learn to properly blend overlapping features, and
to use ôt to solve potential uncertainties in previous insertions (uncertainties in p result in
blurred ô after convolution). The LSTM is also trained to update an occupancy mask of the
global memory, later used for constrained hallucination (c.f . Section 4.3.3).

Training. The aforementioned process is trained in a supervised manner given the ground-
truth agent’s poses. For each sequence, the feature vector ot=0 from the first observation is
registered at the center of the global map without rotation (origin of the allocentric system).
Given pt the one-hot encoding of the actual state at time t, the network’s loss Lloc at time τ
is computed over the remaining predicted poses using binary cross-entropy:

Lloc = 1
τ

τ∑
t=1

[
− pt · log(p̃t) + (1− pt) · log(1− p̃t)

]
. (4.6)

4.3.2 Anamnesis

Applying a novel combination of geometrical transforms and decoding operations,
memorized content can be recalled from ψt and new images from unexplored locations
synthesized. This process can be seen as a many-to-one recurrent generative network, with
image synthesis conditioned by the global memory and the requested viewpoint. The
following subsection presents how the entire neural network can thus be advantageously
trained as an auto-encoder (AE) with a recurrent neural encoder and a persistent latent
space.

4.3 Methodology: Neural Pipeline for Incremental Scene Synthesis 83



𝑐𝑢,𝑣
(0,0)

(0,0) 𝑣

𝑢 𝑠
𝑠

(0,0)

𝑙𝑟𝑒𝑞

𝛼𝑟𝑒𝑞
𝛼𝑓𝑜𝑣

𝑐𝑠,𝑠

Fig. 4.5: Geometrical Memory Culling (2D representation). The feature vector oreq, defining
the observation for an agent positioned at lreq and rotated by an angle αreq in the
allocentric system, is extracted fromψt through a series of geometrical transforms (rotation,
translation, clipping, culling). Coordinates and distances in the allocentric coordinate
system are represented in white; in yellow for the ψt matrix system; and red for the ot one.

Culling Memories. While a decoder can retrieve observations conditioned by the full
memory and requested pose, it would have to disentangle the visual and spatial information
itself, which is not a trivial task to learn (c.f . ablation study in Section 4.4.2). Instead,
taking advantage of the spatial properties of the proposed allocentric memory, the features
in the requested viewing volumes are first culled, before being passed as only inputs to
the image decoder. More formally, given the allocentric coordinates lreq = (ureq, vreq),
orientation αreq = 2π rreqr , and view field αfov, oreq ∈ Rn×q×q representing the requested
neighborhood is filled as follows:

oreq,kij =

ôreq,kij if atan2 (j − q+1
2 , i− q+1

2 ) < αfov
2 ,

−1 otherwise,
(4.7)

with ôreq the unculled feature patch extracted from ψt rotated by −αreq. Formally, ∀k ∈
[0 . . n− 1], ∀(i, j) ∈ [0 . . q − 1]2:

ôreq,kij = R(ψt, −αreq, cu,v + lreq)kξη
with (ξ, η) = (i, j) + cu,v + lreq − cq,q .

(4.8)

Note that for this step, one can use a larger view field than requested (αfov), in order to
provide the feature decoder with more context (e.g., to properly recover visual elements at
the limit of the agent’s view field).

This differentiable operation, illustrated in Figure 4.5, combines feature extraction (through
translation and rotation) and viewing frustum culling (c.f . computer graphics to render large
3D scenes).

84 Chapter 4 Novel View Synthesis through Incremental Scene Learning



𝜓𝑡
ℎ

Hallu.

𝓛𝒉𝒂𝒍𝒍𝒖

𝑥0..𝑡

𝑥0
ℎ

𝑥1
ℎ

𝑥𝑡
ℎ

𝓛𝒄𝒐𝒓𝒓𝒖𝒑𝒕

𝑏𝑡

𝜓𝑡

Enc. Dec.

D
A

E
D

A
E

D
A

E

Legend: ground-truth dataOp trained neural networksOp geometrical transforms predictionsOp frozen neural networks

Fig. 4.6: Training of the hallucination module. The goal of this sub-network is to fill the “holes”
in the global memory/map, hallucinating domain-relevant features which could be used to
generate novel views (while keeping existing/memorized features uncorrupted). Therefore,
it is trained to predict all future observations at each step (Lhallu), while being punished
for any corruption to the global map and recalled observations (Lcorrupt) (note: though
the training steps are shown separately in Figures 4.4-4.6, the whole method is trained in a
single pass).

Decoding Memories. As input observations undergo encoding and projection, feature
maps culled from the memory go through a reverse procedure to be projected back into
the image domain. With the synthesis conditioning covered in the previous step, a decoder
directly takes oreq (i.e., the view-encoding features) and returns x̃req, the corresponding
image.

This back-projection is still a complex task. The decoder must both project the features from
voxel domain to image plane, and decode them into visual stimuli. Previous works (e.g., [120,
212]) and qualitative results demonstrate that a well-defined (e.g., geometry-aware) network
can successfully accomplish this task.

Training. The pipeline can be trained end-to-end as an image-sequence AE, by requesting
it to recall given observations—i.e., setting lreq,t = lt and rreq,t = rt, ∀t ∈ [1, τ ], with lt
and rt the agent’s ground-truth position/orientation at each step t (c.f . Figure 4.4). Therefore,
its loss Lanam is computed as the L1 distance between xt and x̃req,t, ∀t ∈ [0, τ ], averaged
over the sequences. Note that thanks to the modularity of the proposed framework, the
global map and registration steps can be removed to pre-train the encoder and decoder
together (passing the features directly from one to the other). It has been observed that such
a pre-training tends to stabilize the overall learning process.

4.3.3 Mnemonic Hallucination

While the presented pipeline can generate novel views (i.e., from poses not explored
by the agent yet), these views have to overlap previous observations for the solution to
extract enough features for anamnesis. Therefore, the memory system is extended with an
extrapolation module. Given prior domain-relevant knowledge (i.e., an estimation of the

4.3 Methodology: Neural Pipeline for Incremental Scene Synthesis 85



scene distributions learned during training), this module can hallucinate relevant features
for unexplored regions.

Hole Filling with Global Constraints. Under global constraints, an AE is defined to
perform in the feature domain, taking ψt as input and returning a convincingly hole-filled
version ψht while leaving registered features uncorrupted. In other words, this module should
provide relevant features which seamlessly integrate existing content according to prior
domain knowledge.

Training. Assuming the agent homogeneously explores training environments, the
hallucinatory module is trained at each step t ∈ [0, τcur] by generating ψht , hole-filled
memory used to predict yet-to-be-observed views {xt}τt=τcur+1. To ensure that registered
features are not corrupted, the training process also verifies that all observations {xt}τcurt=0
can be retrieved from ψht (c.f . Figure 4.6). This generative loss is computed as follows:

Lhallu = 1
τ(τ − 1)

τ−1∑
t=0

τ∑
i=0
‖x̃hi − xi‖1 , (4.9)

with x̃hi the view recovered from ψhi using the agent’s true location li and orientation ri for
its observation xi.

Additionally, another loss is directly computed in the feature domain, using memory
occupancy masks bt to penalize any changes to the registered features (given � Hadamard
product):

Lcorrupt = 1
τ

τ∑
t=0
‖(ψht − ψt)� bt‖1 . (4.10)

Trainable end-to-end, the model efficiently acquires domain knowledge to register,
hallucinate, and synthesize scenes.

4.4 Experiments and Results

In order to demonstrate the capabilities of the proposed mnemonic and generative system,
the following section details several experiments on various synthetic and real 2D and 3D
environments. For each experiment, an unknown agent is considered, which is exploring the
scenes and only providing a short sequence of partial observations (limited view field). The
solution has to localize and register the observations and build a global representation of the
scene. Given a set of requested viewpoints, it should then render the corresponding views.
This section proposes qualitative and quantitative evaluations of the predicted trajectories
and views, comparing with GTM-SM [72].

86 Chapter 4 Novel View Synthesis through Incremental Scene Learning



input
observations

(scale x3)

GTM-SM
outputs
(scale x3)

Ours
(scale x3)

ground-truth
observations

(scale x3)

GTM-SM
outputs
(scale x3)

Ours
(scale x3)

requested
viewpoints

ground-truth
viewpoints … …

… …

… …

… …

ground-truth
environment

input
observations

(scale x3)

GTM-SM
outputs
(scale x3)

Ours
(scale x3)

ground-truth
observations

(scale x3)

GTM-SM
outputs
(scale x3)

Ours
(scale x3)

requested
viewpoints

ground-truth
viewpoints … …

… …

… …

… …

ground-truth
environment

input
observations

(scale x3)

GTM-SM
outputs
(scale x3)

Ours
(scale x3)

ground-truth
observations

(scale x3)

GTM-SM
outputs
(scale x3)

Ours
(scale x3)

requested
viewpoints

ground-truth
viewpoints … …

… …

… …

… …

ground-truth
environment

input
observations

(scale x3)

GTM-SM
outputs
(scale x3)

Ours
(scale x3)

ground-truth
observations

(scale x3)

GTM-SM
outputs
(scale x3)

Ours
(scale x3)

requested
viewpoints

ground-truth
viewpoints … …

… …

… …

… …

ground-truth
environment

Fig. 4.7: Synthesis of memorized and novel views from 2D scenes (c.f . setups in
Subsection 4.4.2). Compared to GTM-SM [72], the proposed method benefits from
prior knowledge and global representation.

predictions
(GTM_SM)

observed
sequence

predictions
(Ours)

GT target
sequence

Fig. 4.8: Novel view synthesis from 3D scenes (c.f . setups in Subsection 4.4.3).

4.4 Experiments and Results 87



4.4.1 Implementation Details

Before developing on the experiments themselves, the following subsection provides further
details regarding the several interlaced components of the pipeline and their implementation,
for reproducibility.

Module Architectures

The solution presented in this chapter is orthogonal to the choice of neural networks for its
various modules. Therefore, to evaluate the pipeline in easy-to-reproduce settings and to
compare on an equal footing with GTM-SM in the following experiments, the observation-
encoding network, the hallucinatory AE, and the image decoder are all implemented as
shallow residual networks (ResNets) [97] with 4 blocks. Note that the whole pipeline is
implemented using the PyTorch framework [198].

Encoder and Decoder. The encoder is thus configured to output feature maps x′t ∈
Rn×h′×w′ with the same dimensions as the inputs xt ∈ Rc×h×w, i.e., h = h′,w = w′. The
decoder network receives inputs feature tensors oreq ∈ Rn×s×s and its last convolutional
layers are parametrized to output the image tensors x̃req ∈ Rc×h×w. For the experiments
in which the global memory is directly sampled into an image, another ResNet-4 decoder
is trained, directly receiving ψht ∈ Rn×u×v for input and returning x̃g,t ∈ Rc×hg×wg (with
hg,wg dimensions of global images for the target experiment), to compare the generated
image with the original global image (L1 loss).

Hallucinatory AE. The hallucinatory AE is, by definition, parametrized to output a hole-
filled tensor of same dimensions as the input memory structure. In order to improve the
sampling of hallucinated features and the global awareness of this network, several concepts
from SAGAN [304] are adopted:

• Spectral normalization [172] is applied to the weights of each convolution layer in the
feature-extracting blocks of the AE network (as SAGAN authors demonstrated it can
prevent unusual gradients and stabilize training);

• To model relationships between distant regions, self-attention layers [44, 195, 275,
304] replace the two last convolutions of the network.

Given a feature map o ∈ Rn×u×v, the result osa of the self-attention operation is:

osa = o+ γ(W h ? o)σ
(
(W f ? o)ᵀ(W g ? o)

)ᵀ
, (4.11)

88 Chapter 4 Novel View Synthesis through Incremental Scene Learning



with W f ∈ Rn̄×n, W g ∈ Rn̄×n, W h ∈ Rn×n learned weight matrices (opting for n̄ = n/8

as in [304]); and γ a trainable scalar weight.

Additionally, following a generative adversarial network (GAN) strategy [86, 110, 213,
226], this conditioned generative network is also trained against a discriminative one whose
task is to evaluate the realism of feature patches oht culled from ψht . This discriminator is
itself trained over ot (real samples) and oht (fake ones). Note that the architecture of the
discriminator also draws from SAGAN [304]; i.e., it is a simple convolutional architecture
with spectral normalization and self-attention layers.

Given this setup, the losses Lhallu and Lcorrupt are combined to Ldisc, a discriminative loss
obtained by playing the generator hH against its discriminator hD. As a conditional GAN
with recurrent elements, the objective this module has to maximize over a complete training
sequence is, therefore:

H∗ = arg min
hH

max
hD
Ldisc + Lhallu + Lcorrupt , (4.12)

with Ldisc =
τ∑
t=0

[
log hD(ot)

]
+
[
log

(
1− hD

(
oht )
)]
. (4.13)

LSTM. Once the observation features are localized and registered into the allocentric
memory (c.f . Figure 4.3), the LSTM is used to update the global memory accordingly.
Following the original MapNet implementation [98], each spatial location is updated
independently to preserve spatial invariance, sharing weights among the LSTM cells.

The occupancy mask bt of the global memory is updated in a similar manner, using another
LSTM with shared-weights to update the memory mask with a binary version of ot (i.e., 1
for bins containing projected features, 0 otherwise).

Additional Hyperparameters

The following lists complete the architectural and training choices for the experiments.

Architectural Hyperparameters:

• Instance normalization is applied inside the ResNet blocks;

• All Dropout layers have a dropout rate of 50%;

• All LeakyReLU layers have a leakiness of 0.2;

4.4 Experiments and Results 89



• As a trade-off between computational performance and feature density, the depth n of
the global maps is set to either 16 to 32 (as specified for each experiment);

• Image values are normalized between -1 and 1.

Training Hyperparameters:

• Weights are initialized from a zero-centered Gaussian distribution, with a standard
deviation of 0.02 ;

• The Adam optimizer [126] is used, with β1 = 0.5;

• The base learning rate is initialized at 2× 10−4;

• The overall training of the system is divided in three main phases:

1. Feature encoder and decoder networks are first pre-trained together for 10,000
iterations;

2. The complete memorization and anamnesis process (encoder, LSTM, decoder)
is then trained for 10,000 more iterations;

3. The hallucinatory GAN is then added and the complete solution is trained until
convergence.

4.4.2 Navigation in 2D Images

In this first part, 2D experiments are proposed, which consider agents exploring images
(randomly walking, accelerating, rotating) and observing the image patch in their view field
at each step.

Experimental Setup

The two following datasets are selected. A synthetic dataset (named HoME-2D) of indoor
83 × 83 floor plans is rendered using the HoME platform [29] and SUNCG data [247]
(8,640 training and 2,240 test images from random rooms “office", “living", and “bedroom").
Similar to Fraccaro et al. [72], the CelebA dataset [155], containing real portrait images of
celebrities (cropped and scaled to 43× 43px), is also used. For each dataset, two types of
agents are considered, with more or less realistic characteristics.

90 Chapter 4 Novel View Synthesis through Incremental Scene Learning



… … … …

… … … …

… … … …

… … … …

… … … …

… … … …

global target image predicted trajectory with registered observations requested views for full sampling global memory sampling

Fig. 4.9: Incremental and direct memory sampling of complete environments from partial
observations (on CelebA).

To reproduce Fraccaro et al. [72] experiments, non-rotating agents are first considered.
These agents As are only able to translate in the four directions and have a 360◦ view field
covering an image patch centered on the agents’ position. The CelebA agent Ascel has a
15 × 15px square view field; while the view field of the HoME-2D agent Ashom reaches
20px away, and is, therefore, circular (in the 41× 41 patches, pixels further than 20px are
left blank).

To consider more complex scenarios, agents Accel and Achom are also designed. They can
rotate and translate (in the gaze direction), observing patches rotated accordingly. On
CelebA images, Accel can rotate by ±45◦ or ±90◦ each step, and only observes 8 × 15
patches in front (180◦ rectangular view field); while for HoME-2D, Achom can rotate by
±90◦ and has a 150◦ view field limited to 20px.

All agents can move from 1/4 to 3/4 of their view field each step. Input sequences are 10
steps long. For quantitative studies, methods have to render views covering the whole scenes
w.r.t. the agents’ properties.

To the best of our knowledge, no other neural method covers agent localization, topographic
memorization, scene understanding and relevant novel view synthesis in an end-to-end,
integrated manner. The closest state-of-the-art solution to compare with is the recent
GTM-SM project [72], detailed in Subection 4.2.2.

Unlike the proposed method which localizes and registers together the views with no further
context needed, GTM-SM requires an encoding of the agent’s actions leading to each new
observation, as additional inputs. Therefore, for each experiment, the data preparation

4.4 Experiments and Results 91



… … … … … … … … … … … … … … … …

Legend: global target image predicted trajectory with recalled observations requested trajectory with predicted views direct global memory sampling

Fig. 4.10: Incremental exploration and hallucination (on 2D use-cases). Scene representations
evolve with the registration of observed or hallucinated views (e.g., adapting hair color,
face orientation, furniture, etc.).

pipeline is adapted for GTM-SM so that the agent returns its actions (encoding the direction
changes and step lengths) besides the observations.

Qualitative Results

As shown in Figure 4.7, the proposed method efficiently uses prior knowledge to register
observations and extrapolate novel views, consistent with the global scene and requested
viewpoints. While an encoding of the agent’s actions is also provided to GTM-SM [72]
(guiding the localization), it cannot properly build a global representation from short input
sequences, and thus fails at rendering completely novel views.

Moreover, unlike the dictionary-like memory structure of GTM-SM, the proposed method
stores its representation into a single feature map, which can, therefore, be queried in
several ways. As shown in Figure 4.9, for a varying number of conditioning inputs, one can
request novel views one by one, culling and decoding features; with the option to register
hallucinated views back into memory (i.e., saving them as “valid" observations to be reused).
But one can also directly query the full memory, training another decoder to convert all
the features. Figure 4.10 also demonstrates how different trajectories may lead to different
intermediate representations, although they converge as the scene coverage increases.

Quantitative Evaluations

Quantitative evaluations are now performed, measuring the methods’ ability to register
observations at the proper positions in their respective coordinate systems (i.e., to predict
agent trajectories), to retrieve observations from memory, and to synthesize new ones.

92 Chapter 4 Novel View Synthesis through Incremental Scene Learning



Comparison Protocol. At each time step, GTM-SM uses the provided action at to
regress the agent’s state st, i.e., its relative pose in the experiments. For a fair comparison
with the ground-truth trajectories, the relative pose sequences predicted by GTM-SM are
converted into world coordinates. For that, a least-square optimization process is applied to
fit its predicted trajectories over the ground-truth ones, i.e., computing the most favorable
transform to apply before comparison (scaling, rotating and translating the trajectories).
For the proposed method, the allocentric coordinates are also converted into world units
by scaling the values according to the bin dimensions (xs, zs) and applying an offset
corresponding to the absolute initial pose of the agent.

Metrics. For localization, two metrics commonly used to evaluate SLAM and tracking
systems [98, 116, 179, 251] are short-listed. The average position error (APE) is computed
as the mean Euclidean distance between the predicted positions and their ground-truths
for each sequence. The absolute trajectory error (ATE) is obtained by calculating the
root-mean-squared error in the positions of each sequence, after transforming the predicted
trajectory to best fit the ground-truth (giving an advantage to GTM-SM predictions given
the post-processing operation explained in the previous paragraph).

For image synthesis, the distinction is made between recalling images already observed
(anamnesis) and generating unseen views (hallucination). For each case, two metrics are
used. The common L1 distance is computed as the per-pixel absolute difference between
the predicted and expected values, averaged over each image. The structural similarity
(SSIM) index [282, 284], prevalent in the assessment of perceptual quality [87, 283, 306], is
computed over N ×N windows extracted from the predicted and ground-truth images, as
follows:

SSIM(x, x̄) = (2µxµx̄ + c1) + (2σxx̄ + c2)
(µ2
x + µ2

x̄ + c1)(σ2
x + σ2

x̄ + c2)
(4.14)

with x and x̄ the windows extracted from the predicted and ground-truth images, µx
and µx̄ the mean values of the respective windows, σ2

x and σ2
x̄ their respective variance,

c1 = 0.0012 and c2 = 0.0032 two constants for numerical stability. The final index is
computed by averaging the values obtained by sliding the windows over the whole images
(no overlapping). For the CelebA experiments, N = 5, and for the HoME-2D ones, N = 13
(i.e., splitting the observations in 9 windows). Note that the closer to 1 the computed index
is, the better the perceived image quality.

Results and Analysis. Table 4.1.A-C shows the comparison on 2D cases. Though GTM-
SM leverages the provided actions to infer trajectories, the proposed method is overall
more precise, directly using the observations. Moreover, while GTM-SM fares well enough
in recovering seen images from memory, it cannot synthesize views out of the observed
domain. The proposed pipeline not only extrapolates adequately from prior knowledge, but
also generates views which are consistent from one to another (c.f . Figure 4.10 showing
views stitched into a consistent global image). Note that on a Nvidia Titan X, the whole

4.4 Experiments and Results 93



Tab. 4.1: Quantitative comparison on 2D and 3D scenes, c.f . setups in Subsections 4.4.2-4.4.3
(↘ the lower the better;↗ the higher the better; “u" horizontal bin unit according to 3D
setup).

Exp. Methods Average Position Error Absolute Trajectory Error Anam. Metr. Hall. Metr.
Med.↘ Mean↘ Std.↘ Med.↘ Mean↘ Std.↘ L1↘ SSIM↗ L1↘ SSIM↗

A)As
cel

GTM-SM 4.0px 4.78px 4.32px 6.40px 6.86px 3.55px 0.14 0.57 0.14 0.41
Proposed 1.0px 0.68px 1.02px 0.49px 0.60px 0.64px 0.06 0.80 0.09 0.72

B)Ac
cel

GTM-SM 3.60px 5.04px 4.42px 2.74px 1.97px 2.48px 0.21 0.50 0.32 0.41
Proposed 1.0px 2.21px 3.76px 1.44px 1.72px 2.25px 0.08 0.79 0.20 0.70

C)As
cel

GTM-SM 4.0px 4.78px 4.32px 6.40px 6.86px 3.55px 0.14 0.57 0.14 0.41
Proposed 1.0px 0.68px 1.02px 0.49px 0.60px 0.64px 0.06 0.80 0.09 0.72

D) Doom GTM-SM 1.41u 2.15u 1.84u 1.73u 1.81u 1.06u 0.09 0.52 0.13 0.49
Proposed 1.00u 1.64u 1.41u 1.75u 1.95u 1.24u 0.08 0.61 0.11 0.54

E) AVD GTM-SM 1.00u 1.12u 1.01u 0.90u 1.02u 0.64u 0.37 0.14 0.48 0.09
Proposed 1.00u 0.77u 0.79u 0.83u 0.92u 0.53u 0.24 0.29 0.27 0.22

Tab. 4.2: Ablation study on CelebA dataset [155] with agent Ac
cel. Removed modules are replaced

by identity mappings; remaining ones are adapted to the new input shapes when necessary.
LSTM, memory, and decoder are present in all instances (“Localization” is the MapNet
module).

Pipeline Modules Anamnesis Metrics Hallucination Metrics

Encoder Localization Hallucinatory AE Culling L1↘ SSIM↗ L1↘ SSIM↗

∅ ∅ ∅ ∅ 0.18 0.62 0.24 0.59
X ∅ ∅ ∅ 0.17 0.62 0.24 0.58
X X ∅ ∅ 0.15 0.66 0.20 0.61
X X X ∅ 0.15 0.65 0.19 0.62
X ∅ X X 0.14 0.69 0.19 0.63
∅ X X X 0.13 0.71 0.17 0.66
X X ∅ X 0.08 0.80 0.18 0.66
X X X X 0.08 0.80 0.15 0.70

process (registering 5 views, localizing the agent, recalling the 5 images, and generating 5
new ones) takes less than one second.

Additionally, an ablation study is performed to demonstrate the contribution of each module,
and its results shared in Table 4.2. Note that the APE/ATE are not represented, as they
stay constant as long as the MapNet localization is included. In other words, the proposed
extensions cause no regression in terms of localization.

One can observe from Table 4.2 that localizing and clipping features facilitate the decoding
process, i.e., by disentangling the visual and spatial information, thus improving the synthesis
quality. Moreover, hallucinating features directly in the memory ensures image consistency,
further improving the visual results.

4.4.3 Exploring Virtual and Real 3D Scenes

The capability of the proposed method is now demonstrated on the more complex case of
3D scenes.

94 Chapter 4 Novel View Synthesis through Incremental Scene Learning



Experimental Setup

As done in the previous set of experiments, two different datasets of RGB-D images are
selected.

As a first 3D experiment, the Vizdoom platform [292] has been used to record 34 training and
6 testing episodes of 300 RGB-D observations from a human-controlled agent navigating
in various static virtual scenes of a vintage video-game, Doom. At each time step, the
agent can move in one of four directions with variable speed, or rotate by 30◦. Poses are
discretized into 2D bins of 30× 30 game units. Trajectories of 10 continuous frames are
sampled and passed to the methods (the first 5 images as observations, and the last 5 as
training ground-truths).

Finally, the Active Vision Dataset (AVD) [8] is considered. This dataset is composed of
∼20, 000 RGB-D images from various real indoor scenes (most scenes are composed of
several rooms each). Images are densely captured every 30cm on horizontal grids covering
each scene, as well as every 30◦ in rotation. As suggested by Ammirato et al. [8], 15 scenes
are used for the training of the methods, and 4 are kept for testing (i.e., to have different
rooms and content during testing than those trained over). For each scene, 5, 000 trajectories
of 10 continuous frames are randomly sampled and stored.

For both experiments, 10-frame sequences are passed to the methods—the first 5 images as
observations and the last 5 as ground-truths during training. Again, GTM-SM also receives
the action encodings. For the proposed method, ψ is defined as a 32× 43× 43 tensor for
the Doom setup and as a 32× 29× 29 one for AVD.

Qualitative Results

Though a denser memory could be used to obtain less coarse results, Figure 4.8 shows
that the proposed solution is able to register meaningful features and to understand the
topography of new scenes simply from 5 partial observations. In comparison, GTM-SM
generally fails to properly adapt its variational auto-encoder (VAE) prior, returning image
sequences which are often not correlated to the target ones.

Quantitative Evaluations

Finally, the two methods are once again quantitatively compared, adopting the same metrics
as in Section 4.4.2. As seen in Table 4.1.D-E, the proposed solution slightly underperforms

4.4 Experiments and Results 95



in terms of localization in the Doom environment. This may be due to the approximate
rendering process that VizDoom uses for the depth observations, with discretized values
which do not match the distances in game units. Unlike GTM-SM which relies on action
encodings for localization, these unit discrepancies affect the proposed observation-based
method.

As to the quality of retrieved and hallucinated images, the proposed method shows superior
performance. Moreover, to further demonstrate the salient properties of the generated images
(despite their lower visual quality), the following metrics have been also considered. First,
the Wasserstein metric was computed between the histogram of oriented gradients (HOG)
descriptors [55] extracted from the unseen ground-truth images and the corresponding
predictions. GTM-SM scored 1.1, whereas the proposed method obtained 0.8 (the lower
the better). Second, the saliency maps [34] of ground-truth and predicted images were
compared, computing the area-under-the-curve (AUC) metric proposed by Judd et al. [115]
and the normalized scanpath saliency (NSS) [202]. GTM-SM scored 0.40 for the AUC-Judd
and 0.14 for the NSS, whereas the proposed framework obtained 0.63 and 0.38 respectively
(the higher the better for both metrics).

While the current results are still far from visually pleasing, the proposed method is
promising, with improvements expected from the adoption of more powerful generative
networks.

4.5 Discussion

Research into incorporating read/write mnemonic systems with synthesis and localization
capabilities into NN-based autonomous systems is still at its first steps. Therefore, while the
proposed solution may be considered closer to a proof-of-concept than a deployable system,
its contributions to the field are numerous.

This section concludes the current chapter with a summary of said contributions, as well as
some insightful directions for the long-term development of this framework.

4.5.1 Contributions

Existing methods for novel view synthesis have multiple limitations. State-of-the-art
solutions often require non-trivial 3D/2D supervision for their training (e.g., computing the
reprojection loss) [48, 68, 149], or they assume that the exact agent’s poses or actions are
provided for all observations, which is not a practical requirement [40, 72, 211, 305]. Other
solutions only consider the task of predicting pixel displacements between different views,
without the capability to understand the underlying scenes [257, 262, 309].

96 Chapter 4 Novel View Synthesis through Incremental Scene Learning



This work addresses these issues with a unified framework that incrementally registers
and samples complete 2D or 3D scene. The proposed solution builds upon the MapNet
system [98], which offers an elegant solution to the registration problem but has no memory-
reading capability. In comparison, the presented method not only provides a functional
mnemonic system, but also displays superior generative results when compared to the other
deep reinforcement learning methods (e.g., [72]). Its key contributions are summarized
below:

Mnemonic System for Incremental Scene Understanding and Synthesis. Starting
with only scene observations from a non-localized agent (i.e., no location/action inputs, as
opposed to many similar methods [72, 219, 305], novel mechanisms are proposed to update
a global memory with encoded features, to hallucinate unobserved regions, and to query the
memory for novel view synthesis.

Globally Consistent Registration and Hallucination. Memory updates are done with
either observed or hallucinated data. In both cases, the proposed domain-aware operations
to update the memory explicitly ensure the global consistency of the representation (i.e.,
across sampled images) w.r.t. the underlying scene properties. The hallucinatory operation
can be interpreted as the expectation of the agent at the current step through the scene and
can be leveraged, e.g., in autonomous navigation. In the limit of observing real data at each
time step, the method converges to solving the SLAM problem; whereas in the limit of never
observing real data, it samples entirely imagined scenes from the prior distribution.

End-to-End Derivable Framework. The proposed framework integrates observation,
localization, globally consistent scene learning, and hallucination-aware representation
updating to enable incremental scene synthesis. Trainable end-to-end, this framework
benefits from the synergy among its modules’ sub-tasks.

In short, to the best of our knowledge, the proposed solution is the first end-to-end trainable
read/write allocentric spatial memory for scarce visual inputs.

4.5.2 Limitations

Given the multiplicity of the challenges addressed in this chapter and the novelty of this
domain in machine-learning, the present work has some limitations worth discussing.

Memory Densification and Computational Footprint. As highlighted through the
qualitative experiments, the framework’s results tend to be coarse. This statement applies
both to the synthesized images and to the predicted trajectories, and can be linked to the
structure of the memory.

4.5 Discussion 97



The agent’s horizontal poses are discretized during ground-projection. The same applies
to the projected and encoded observations, with their features being accumulated for each
memory bin. Therefore, the localization precision and the density of the memorized content
are both tied to the choice of hyperparameters for the global memory. The overall predictions
would benefit from a denser memory—in terms of lower word units per bin and in terms of
higher value for the feature depth. However, this densification of the memory would also
make the localization and registration steps much more compute-intensive.

One possible direction for future work could be, for instance, the implementation of a
pyramidal/multi-scale combination of memories for refined registration and synthesis w.r.t.
the aforementioned constraints.

Image Quality in Complex Environments. Due to these current limitations affecting
the resolution of synthetized images, it seems difficult to see the method applied as-is to
the generation of high-definition datasets for downstream tasks (such as the training of
recognition models, c.f . motivations in Subsection 4.1.2). The recalled and hallucinated
images can still be utilized for a variety of applications (next-frame prediction, topography
estimation, etc.). Moreover, the quality of decoded images could certainly gain from
borrowing more recent and specialized generative network architectures advances (e.g.,
[280]).

Showing superior performance in 2D and 3D experiments with harsh constraints (input
scarcity, no oracle, etc.) compared to the state-of-the-art, the conceptual pipeline presented
in this chapter is promising. This work also emphasizes the difficulty of modeling the
complexity of real distributions. Circling back to bridging the gap between real and synthetic
representations, one could, therefore, wonder if the common choice of approximating
mappings from synthetic to real domains is actually optimal. This observation motivated the
final domain adaptation scheme developed during the present thesis and presented in the
next chapter.

98 Chapter 4 Novel View Synthesis through Incremental Scene Learning



5Reversed Domain Adaptation
Scheme for CAD-based Learning

„
Reality is not always probable, or likely.

— Jorge Luis Borges
(Argentine writer, 20th century)

As demonstrated so far, defining a solution to generate samples closer to target real
distributions is a difficult task, which require a careful study of relevant phenomena (c.f .
Chapter 3) or statistical modeling (c.f . Chapter 4). However, the scarcer the information on
the target domain, the harder it becomes to propose a generalizable solution (c.f .
Theorem 2.6), which can handle the variability and complexity of real-world data.

Considering the problem of domain adaptation for recognition methods trained on synthetic
images from a different angle, this chapter introduces a solution to map unseen target
samples into the synthetic domain used to train the task-specific methods [208]. Denoising
the data and retaining only the features that these recognition algorithms are familiar with,
the solution greatly improves their performance after deployment. As this mapping is
easier to learn than the opposite one (i.e., to learn to generate realistic features to augment
the source samples), the proposed pipeline can be trained purely on augmented synthetic
data, while still performing better than adaptation methods trained over domain-relevant
information (e.g., over real images or synthetic images rendered from realistically-textured
3D models). Applying this approach to object recognition from texture-less computer-aided
design (CAD) data, a custom generative network is presented, which fully utilizes the purely
geometrical information to learn robust features and achieve a more refined mapping for
unseen real color images.

Once again, this chapter opens with the motivation behind this new solution in Section 5.1,
followed by a study of the state-of-the-art in Section 5.2. The solution itself is described
in details in Section 5.3, before being thoroughly evaluated in Section 5.4. Finally, a
discussion regarding the overall contributions and limitations of this approach is started in
Section 5.5.

99



Legend

real 
image 𝑥𝑇

output
data 𝑥𝑆

estimated
labels ℎ𝑅

𝑆( 𝑥𝑆)

𝒉𝑮

benc iron tel

𝒉𝑹
𝑺

real
domain

synthetic
domain

task-
specific

estimation
punclamp cup cam

Fig. 5.1: Usage and results of the proposed domain adaptation method. hG is a custom
generative network which maps unseen real data into a discriminative synthetic domain
defined in a space XS with a marginal distribution PX

S known during training (e.g.,
normal maps rendered from CAD models). The pre-processed data can then be handed
to recognition methods hS

R, themselves simply trained on S—a training set sampled i.i.d.
according to PX

S —for accurate results despite the realism gap.

5.1 Motivation

To contextualize this final work, this chapter also starts by detailing the challenges and
intuitions which motivated the research.

5.1.1 Bridging the Realism Gap from the Other Side

In this chapter, a different approach to domain adaptation is proposed, questioning the
dominant paradigm applied to real/synthetic distributions which consists of finding a
mapping from the latter to the former.

Complexity of Mapping from Synthetic to Real Domains

As this thesis has been highlighting already, modeling real data is a demanding task. When
it comes to partial observations of target objects or scenes, like images captured by sensing

100 Chapter 5 Reversed Domain Adaptation Scheme for CAD-based Learning



devices, one should take into account both the complexity of the content itself (appearance
of the target objects, presence of other elements, scene properties like lighting and motion,
etc.) and the characteristics of the cameras (intrinsic properties, modality of the captured
images, sensing limitations, etc.).

Extensive knowledge of both is, therefore, required – be it to develop an exhaustive
simulation pipeline or to define a generative model able to mimic the target real distribution.
While this knowledge can be manually or algorithmically extracted from relevant samples,
one has rarely access to a dataset large enough—and to models complex enough—to
understand and reproduce all the phenomena impacting the visual distribution.

Intuitively, however, the opposite process appears much simpler. For instance, learning
to remove indiscriminately the background content in real images to bring them closer to
the uncluttered synthetic data requires less skills than the creation from scratch of realistic
backgrounds to ornate rendered images.

Teaching Recognition Methods in Controlled Environments

Moreover, when building a virtual representation of an object or concept (e.g., a CAD model),
efforts are focused first on characteristics key to the target applications. Therefore, while
virtual models are inherently simpler, they usually contain all the information actually needed
for downstream tasks. For instance, given the three-dimensional (3D) model representing
the shape of an unknown object, a human can easily learn to recognize the actual object in
real environments.

Most domain adaptation methods are basically defined to add complexity (i.e., as noise) to
the synthetic representations (e.g., rendered images or features learned from them), actually
cluttering the data with elements which do not directly benefit the semantic recognition (e.g.,
sensor noise, background, etc.). As a result, task-specific models trained in such domain
adaptation frameworks learn on noisier data, smearing their training in the hope that they
will later better handle the harsh complexity of real situations.

The acknowledgement that such a strategy may not be the most pedagogical is a key
motivation behind this last work. Indeed, it seems sensible to train instead task-specific
recognition models on noiseless information so they learn clean discriminative features,
and then develop a mapping function from real to synthetic data; rather than to focus on
developing or learning pseudo-realistic noise models to train against (though the two can be
complementary to bridge the realism gap both ways).

5.1 Motivation 101



5.1.2 Hardening the Data Scarcity Constraint

Circling back to the key motivation behind the present thesis, this chapter also focuses on
bridging the realism gap for the training of recognition methods, when real relevant data
samples are unavailable.

Learning from Texture-less CAD Models Only

A critical shortcoming of many state-of-the-art domain adaptation solutions is their
assumption that real relevant samples are available (even if unlabeled). This includes the
access to a subset of real target images, or to synthetic models too precise for scalable
real-world use-cases (e.g., 3D models with realistic textures defined from real
observations).

Considering industrial use-cases, one has often only access to 3D CAD models of the
components to recognize. Originally meant for the manufacturing process, these 3D models
are mostly texture-less, or assigned basic synthetic materials.

Without any information w.r.t. the target real distributions to learn a mapping from (in the
image or feature domains), unsupervised domain adaptation methods cannot be applied.
The proposed work is, therefore, a successful attempt at reducing the realism gap when
assumptions w.r.t. the target real domain are kept to their bare minimum.

Shortcomings of Direct Domain Randomization

State-of-the-art solutions tackling the same level of data scarcity are based on the concept
of domain randomization [225, 265]. Following this technique, synthetic training images
are heavily augmented (e.g., using random textures and random lighting conditions when
rendering images, adding random background, etc.), in order to teach the recognition models
to handle visual variability (even if most of the variations during training are not realistic).

While this flavor of solutions has been yielding promising results given the unfavorableness
of considered scenarios, it follows the unintuitive learning scheme pointed out in
Subsection 5.1.1. Clean synthetic data is being tampered with during the training of the
task-specific recognition methods, which should learn both to extract the relevant features
and to ignore the tampered ones. The present work is thus also motivated by the idea to
divide these two tasks in order to better conquer them. On one hand, the recognition
methods themselves are trained on clean, representative data. On the other hand, in parallel,

102 Chapter 5 Reversed Domain Adaptation Scheme for CAD-based Learning



another model is trained using domain randomization to map unseen target images closer to
the synthetic domain so that the recognition methods can then handle them.

To summarize, the proposed approach is based on the assumptions that real-world images
can be mapped to the synthetic domain; and that, in absence of any real training data, this
mapping can be learned by recovering the synthetic samples altered by a stochastic noise
source. Since this novel method only needs to eliminate noise and retain features, it performs
better than usual generative solutions for domain adaptation, which learns the more difficult
task of generating complex features to mimic the target data. As long as the synthetic
domains contain all relevant features and as long as those features are present in real images,
the proposed approach successfully enhances CAD-based recognition in color pictures, as
demonstrated through the empirical evaluation in Section 5.4.

5.2 Related Work

Domain adaptation became an increasingly present challenge with the rise of deep-learning
methods. Most of the following literature review is, therefore, dedicated to listing such
solutions developed to bridge the gap between real and synthetic data. In a second time,
convolutional neural network (CNN) methods for shape regression are introduced, as
the present work puts an emphasis on the mapping from real color images to synthetic
geometrical domains.

5.2.1 Domain Adaptation to Bridge the Realism Gap

Previous chapters have already highlighted how the realism gap is a well known problem
for computer vision methods that rely on synthetic data, as the knowledge acquired on these
modalities usually poorly translates to the more complex real domain, resulting in a dramatic
accuracy drop.

Generation of Realistic Color Images

Several ways to tackle the realism gap issue have been investigated so far, starting with
the generation of more realistic images from 3D models. Chapter 3 presented how, in the
case of ranging imagery, in-depth studies of sensing devices and other visual phenomena
can lead to the development of realistic simulation tools. Such an approach works well for
depth (2.5D) data, as the mechanisms impairing the quality of these scans can be rather well
reproduced

5.2 Related Work 103



re
al

 
o

u
tp

u
t 

re
al

 
in

p
u

t 
o

u
p

u
t 

in
p

u
t 

Fig. 5.2: Qualitative results for PixelDA [26] trained with or without realistic texturing of the
target objects. The method fails to bridge the realism gap when the latter is too wide.

In case of color data however, the problem lies not in the sensor simulation but in the
actual complexity and variability of the color domain (e.g., sensibility to lighting conditions,
texture changes with wear-and-tear, etc.). This makes it extremely arduous to come up with
a satisfactory mapping, unless precise, exhaustive, synthetic models are provided (e.g., by
capturing realistic textures). Proper modeling of target classes is however often not enough,
as recognition methods would also need information on their environment (background,
occlusions, etc.) to be applied to real-life scenarios.

For this reason, and sometimes in complement of simulation tools, recent CNN-based
methods are trying to further bridge the realism gap by learning a mapping from rendered to
real data, directly in the image domain. Mostly based on unsupervised conditional generative
adversarial networks (GANs) [26, 240, 261] or style-transfer solutions [79], these methods
still need a set of real samples to learn their mapping.

Training Schemes for Cross-Domain Recognition

Other approaches are instead focusing on adapting the recognition methods themselves,
to make them more robust to domain changes. For instance, solutions like DANN [78] or
ADDA [271] are also using unlabeled samples from the target domain along the source data
to teach the task-specific method domain-invariant features.

Table 5.1 contains a schematic comparison of such training and testing solutions for
recognition tasks, which are addressed in the chapter, depending on the type of data

104 Chapter 5 Reversed Domain Adaptation Scheme for CAD-based Learning



Tab. 5.1: Visual comparison of recognition schemes, depending on the available modalities w.r.t.
training data.

Training Inference
Data Method

GT supervised B A B A ✓ T B A B A ✓ T 

DANN [78]
B A B A ✓ 

T 
A 

cdom 

× × × × × × × × 
T B A B A ✓ 

PixelDA [26]
B A B A ✓ T 

G 

T B A B A ✓ 

DANN [78]
A B A B A ✓ 

T 

cdom 

× × × × × × × × 
T B A B A × 

PixelDA [26]
B A B A ✓ T 

G 

T B A B A × 

supervised B A B A ✓ T T B A B A × 

supervised
+ augment.

B A B A ✓ T A T B A B A × 

supervised
+ generic
regressor

[137]

G 

B A B A ✓ T B A B A × 

G 

T 

supervised
+ augment.

B A B A ✓ T A T B A B A × 

SynDA
(proposed)

G 
A 

B A B A ✓ T 

G 

T B A B A ✓ 

un-real 

G 
T A 

real 
geometry 
synthetic 

augmented 

pseudo-real 

augmentation 
pipeline 

task-specific 
network 

image 
generator 
 Le

ge
n

d
 

textured 
synthetic 

processed 

trained on 

generated 

task results ✓ × 

5.2 Related Work 105



available at training time (relevant real images, related annotations, CAD models,
corresponding realistic textures, or real images from different domains). As mentioned
already, state-of-the-art domain adaptation methods such as PixelDA [26] and DANN [78]
require real-world data – unlabeled target images but also realistic textures for the 3D
models. When such texture information cannot be provided and the resulting synthetic
images are far from realistic, both PixelDA [26] and DANN [78] fail to map the two image
domains, as illustrated in Figure 5.2.

Considering real-world and industrial use-cases when only texture-less CAD models are
provided, some researchers [225, 265] are compensating the lack of target domain
information by training their recognition algorithms against heavy image augmentations or
against a randomized rendering engine. The claim behind this domain randomization
scheme (c.f . Subsection 5.1.2) is that with enough variability added to the training set, real
data may appear just as another variation to the model. This idea was also adopted by
Sundermeyer et al. [258] who are training auto-encoders on augmented synthetic data, then
using the resulting encoders inside an object detection and pose estimation pipeline.
However, their auto-encoders are trained on single objects, leaving the recognition to a
detection module itself trained on real/realistic images.

Considering applications when no real samples nor texture information are available, the
proposed method follows the same principle, but applies it to the training of a domain-
mapping function instead of the recognition networks. This chapter demonstrates how this
different approach not only improves the end accuracy but also makes the overall solution
more modular.

5.2.2 Regression of Discriminative Representations

As no textural information is provided for training, the proposed domain adaptation method
is applied to the mapping of real cluttered color images into the only prior domain: the
geometrical representation of target objects, extracted from their CAD data.

Geometry Regression from Monocular Images

The regression of such view-based shape information (e.g., normal or depth maps) from
monocular color images is not a new task in the field of computer vision, and it has been
already explored in several works.

Pioneer methods tackled this complex mapping either by using probabilistic graphical
models relying on hand-crafted features [104, 152], or by using feature matching between

106 Chapter 5 Reversed Domain Adaptation Scheme for CAD-based Learning



an RGB image and a set of RGB-D samples to find the nearest neighbors and warp them
into a final result [119, 154].

Unsurprisingly, the latest solutions employ CNNs as a basis for their algorithms [61, 137,
222]. Eigen et al. [62] are the first ones to apply a CNN (the popular AlexNet [130]) to
this problem, making predictions in a two-stage fashion: coarse prediction and refinement.
This approach was further improved by additionally regressing labels and normals, with a
refinement step for the final estimation [61].

Advanced Architectures for Multimodal Regression

Another way of improving the quality of predicted 2.5D or normal data is to use neural
networks together with graph probabilistic models. Liu et al. [153] use a unified deep
convolutional neural field (DCNF) framework based on the combination of a CNN and
conditional random field (CRF) to regress depth from monocular color images of various
scenes. Their pipeline consists of two sub-CNNs with a common CRF loss layer and yields
detailed 2.5D maps.

Building on the previous framework, Cao et al. [36] train the DCNF model jointly for depth
regression and semantic segmentation, demonstrating how joint training can improve the
overall results. Similarly, Kendall et al. [123] proposed a multi-task Bayesian network
approach (including 2.5D regression) which weighs multiple loss functions by considering
the uncertainty of each task. Another way of efficiently combining a multi-task output was
presented by Xu et al. [296], with the use of so-called distillation modules to supervise and
improve the output result.

Unfortunately, all aforementioned methods require real labeled images from the target
domain for their training, which is too strong a constraint for real-life scalable applications.
The present method does build upon their conclusions [61, 92, 123, 131, 279, 296], making
use of a custom cross-modality network with advanced distillation to learn a robust mapping
from noisy domains to synthetic ones.

5.3 Methodology: Real-to-Synthetic Mapping
through Multi-Modal Distillation

Driven by the necessity of learning only from synthetic data for scalable recognition
processes, the following method has been developed to map unseen real samples (e.g., color
images) into the noiseless synthetic domain (e.g., normal maps rendered from CAD models)

5.3 Methodology: Real-to-Synthetic Mapping through Multi-Modal Distillation 107



intermediary
data 𝑥𝐷 , 𝑥𝑁 , 𝑥𝐿 , …

Legend
synthetic
data 𝑥𝑆

output
data 𝑥𝑆

augmented
data 𝑥𝐴𝑧

Fig. 5.3: Training of the proposed network hGhGhG. Taking full advantage of available synthetic
data, e.g., texture-less CAD models, hG consists of a custom multi-modal pipeline with
self-attentive distillation, trained to recover noiseless geometrical and semantic modalities
from randomly augmented synthetic samples (detailed architecture in Figure 5.4).

that the task-specific solutions were trained on (c.f . Figure 5.1), to enable recognition.
Conceived to itself be trained on synthetic data, the proposed SynDA pipeline is able to
segment the objects in color images and recover their geometrical information, even under
partial occlusion.

Let S = {xS,i}mi=1 be a dataset made of a number m of uncluttered, noiseless training
samples xS ∈ X s, i.i.d. drawn according to a marginal probability distribution PXS = PS(X)
and representing the target elements to be recognized (e.g., synthetic images of objects from
C semantic classes). Similarly, let T be the set of target real data xT ∈ X T following an
unknown distribution PXT and completely unavailable at training time.

Note that samples xT can also be of a different modality than xS , i.e., X T 6= X S (e.g.,
xT being color images and xS normal maps, when no texture were available to render
synthetic color images). The only assumption regarding the two domains is that they contain
the same semantic content w.r.t. the recognition task (i.e., PS(Y |X) ≈ PT (Y |X), c.f .
Subsection 2.3.1).

Finally, let hR(x; θR)→ ỹ be any recognition algorithm with a set of parameters θR which
given a sample x returns an estimate ỹ of a task-specific label or feature y ∈ Y (e.g., class,
pose, mask image, hash vector, etc.). The hypothesis hSR : X S → Y represents the version
(parameterized by θSR) performing the task-specific recognition in the synthetic domain.

Given this setup, the proposed pipeline trains a function hG : X T → X S purely on synthetic
data (and, therefore, with no need for direct human supervision), to learn a mapping from
complex instances to their corresponding clean signal (c.f . Figure 5.3). To achieve this when

108 Chapter 5 Reversed Domain Adaptation Scheme for CAD-based Learning



no domain-relevant data is available for training, the following section describes how hG

is trained against a data augmentation pipeline A : X S × Zk → X T , i.e., A(xS , z)→ xAz ,
with z a k-dimensional noise vector randomly defined at every training iteration and xzA the
resulting noisy data (note that, while A is defined to project samples from X S to X T , it is
not assumed that the augmented images follow PXT , e.g., that they look like real samples).

The proposed training scheme assumes that hG removes the artificially introduced noise
z and maps the data such that only the original synthetic signals xS are retained. Thus,
hG can be seen as a noise filter that removes unneeded elements in input data, and can be
also applied over the domain X T of real samples as long as synthetic information can be
extracted from them.

This work demonstrates that, in the case of CAD-based visual recognition, it is indeed
possible to define a new generative method hG fully utilizing the synthetic modalities, and
a complex and stochastic augmentation pipeline A to train hG against, such that hG maps
real images into the learned synthetic domain with high accuracy. The present work even
highlights how this process increases the probability that hSR ◦ hG(xT ) is accurate (i.e.,
ỹ = y) compared to hAR(xT ), with hAR the task-specific algorithm directly trained on data
augmented byA. Though the rest of the chapter is focused on CAD-based visual recognition
for clarity, the principles behind our domain adaptation solution can be directly applied to
other use-cases.

5.3.1 Cross-Domain Mapping via Multi-Modal Distillation

Multi-Modal U-Net Architecture

As demonstrated in previous works tackling multi-task learning [61, 92, 123, 131, 279, 296],
it is often advantageous to train a network on several tasks (even when considering only
one), as the synergy between the tasks can make each of them perform better, and make the
common layers for feature extraction more robust and focused on abstract, cross-modality
information.

Such a scheme is, therefore, adopted to guide the proposed generator in its main task of
extracting the chosen synthetic features from noisy samples. Not limited to the
scarce—sometimes imprecise—annotations of real training datasets, the pipeline can rely
on a multitude of different synthetically-rendered modalities. For industrial CAD-based
recognition, hG would learn to map real images into a geometrical domain (normal and/or
2.5D maps), using for sub-tasks the regression of depth and normal maps, semantic or
contour mask, etc. (c.f . Section 5.3.2).

5.3 Methodology: Real-to-Synthetic Mapping through Multi-Modal Distillation 109



in e1
32x32x64

e2 e3 
8x8x256

e4 
4x4x512

e5
2x2x512

e6
1x1x512

code
1x1x512

BC11

cT
HxWxCi

b
HxWxCi

out
HxWxCi

convT
k4s2

batch
norm

relu

2) BD out
H xW xClW

2
H
2

Encoder

𝒉𝑬

decoders

𝒉𝑫
𝟏..𝒍 d6m

32x32x128

d5m

16x16x256

d4m

8x8x512

d3m

4x4x1024

d2m

2x2x1024

d1m

1x1x512

d7m

64x64xCm

logitm

64x64xCm

outm

64x64xCm

d6m

32x32x128

d5m

16x16x256

d4m

8x8x512

d3m

4x4x1024

d2m

2x2x1024

d1m

1x1x512

d7m

64x64xCm

logitm

64x64xCm

outm

64x64xCm

d6m d5m d4m

8x8x512

d3m

4x4x1024

d2m

2x2x1024

d1m

1x1x512

BD2

d7m

64x64xCm

BD2

logitm

64x64xCm

outm

conv
k4s1tanh

f
HxWxC

in
HxWxC

out 

conv
k1s1

o
HxWxC

conv
k1s1

C
8

h
HxWxC

mrg
HxWxHxW

beta
HxWxHxW

g
HxWxCC

8

mat
mul

soft
max

mat
mul

add

3) SA

…

out1 re11

32x32x64

re21

16x16x64

BC1 BC1

sf-at1

16x16x64

SA3 mrg
16x16x64

add

rd2 
64x64xC

rd1
32x32x64

BD2 BD2

logit
64x64xC

out
64x64xC

tanh

distillator

𝒉𝑹
outm re1m

32x32x64

re2m

16x16x64

sf-atm

16x16x64

BC1 SA3BC1

conv
k4s1

(except for BC1)

in
HxWxCi

conv
k4s2

batch
norm

leaky
relu

1) BC c
H xW xCl

b
H xW xCl

out
H xW xClW

2
W
2

W
2

H
2

H
2

H
2

64x64xCm

16x16x12864x64x3

16x16x25632x32x128

64x64xC1

64x64xCm

BC1 BC1 BC1 BC1 BC1 BC1

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

BD2BD2BD2BD2BD2

Fig. 5.4: Detailed architecture of the proposed network hGhGhG, on the left. Reused layer blocks
(BC for encoding, BD for decoding, SA for self-attention) are detailed on the right. conv
k4s2 stands for a convolutional layer with 4× 4 filters and a stride of 2; convT stands for a
transposed convolution.

Inspired by previous multi-modal generative pipelines [123, 131, 296], the network is
composed of a single convolutional encoder hE and l decoders hD, with l the number of
sub-tasks. For the rest of the chapter, only the four following sub-tasks are considered:
normal regression (performed by hND ), depth regression (hDD), semantic segmentation (hMD ),
foreground lightness evaluation (hLD. Note that it would be straightforward to add more
sub-tasks, e.g., contour extraction as done by Xu et al. [296].

According to the proposed solution, each intermediary modality is fully decoded in order
to be compared to its synthetic ground-truth. Each generative loss Lg (L1 distance for
real-valued images, cross-entropy for binary masks) is back-propagated through its decoder,
then jointly through the common encoder (c.f . Figure 5.3).

A triplet loss Lt, inspired by the work of Wohlhart and Lepetit [286] and Zakharov et al.
[300] and presented in Subsection 3.2.1 (c.f . Equation 3.2), is optionally added at the
network bottleneck to improve the feature distribution in the embedding space, using task-
specific metrics to push apart encoded features from semantically-different images, while
bringing together features from similar elements:

Lt(hE) =
∑

(xb,x+,x−)∈A(S)3

max
(

0, 1− ‖hE(xb)− hE(x−)‖22
‖hE(xb)− hE(x+)‖22 + ε

)
, (5.1)

with xb the input image used as binding anchor, x+ a positive or similar sample, x−
a negative or dissimilar one, and ε the task-specific margin setting the minimum ratio
for the distance between similar and dissimilar pairs of samples. For instance, for the
task of instance classification and pose estimation (ICPE), Zakharov et al. [300] set ε =
2 arccos(|qb · q+|) if xb and x+ are images of the same class, else ε = n (with qb and q+ the
pose quaternions corresponding to xb and x+, and n > π a fixed margin).

110 Chapter 5 Reversed Domain Adaptation Scheme for CAD-based Learning



𝒉𝑹𝒉𝑫 ∘ 𝒉𝑬

input

input

shading texturing b-ground occlusion blur

A

A

aug. input mask normals depth lightness output

Fig. 5.5: Augmentation and training results. On the left is represented the step-by-step
transformation of normal maps into complex, random color images by our online
augmentation pipeline. On the right is shown how hG is trained on these images, learning
to map them back to the noiseless geometrical information.

Further distinguishing our solution from usual multi-modal auto-encoders, skip connections
are added from each encoding block to its reciprocal decoding block. As demonstrated with
the U-Net work [218] and other solutions making use of it (e.g., [131, 301, 310]), passing
high-resolution features from the contracting layers along with the outputs of previous
decoding blocks not only improves the training by avoiding vanishing gradients, but also
guides the decoding blocks in upsampling and localizing the features. This change results in
a clear performance boost, as shown in Table 5.4.

Distillation with Self-Attention

While training the target decoder in parallel to others already improves its performance
by synergy, several works [92, 183, 266, 270, 296] demonstrated how one can further
take advantage of multi-modal architectures by adding a distillation module on top of the
decoders, merging their outputs to distill a final result.

In their work [296], Pad-Net authors present several distillation strategies, with the most
efficient one making use of attention mechanism [9, 157, 173] to better weigh the cross-
modality merging, bringing forward the most relevant features for the final modality.

Using this insight, a new module hR is defined to refine the target results from the partially
re-encoded intermediary modalities by using self-attention computations [44, 195, 275,
304]. As mentioned in Subsection 4.4.1 and formalized in Equation 4.11, this mechanism,
proposed by Zhang et al. [304] for image generation (further detailed in Figure 5.4), is used
to efficiently model relationships between widely-separated spatial regions. Instantiating and
applying this process to each re-encoded modality, the resulting feature maps are summed
together and then decoded to obtain the final output. This new distillation process not only
allows to pass messages between the intermediary modalities, but also between distant
regions in each of them.

5.3 Methodology: Real-to-Synthetic Mapping through Multi-Modal Distillation 111



The proposed distillator is trained jointly with the rest of the generator, with a final generative
loss Lg (L1 distance here) applied to the distillation results. Not only the whole generator
can thus be efficiently trained in a single pass, but no manual weighing of the sub-task
losses is needed, as the distillator implicitly covers it (this furthermore suits the considered
use-cases, as manual fine-tuning is technically possible only when validation data from
target domains are available).

5.3.2 Learning from Purely Geometrical CAD Data

Synthetic Data Generation

The aforementioned architecture has been developed to especially shine for one particular
use-case, poorly covered in the literature despite being common in industrial applications:
the training of recognition methods on pure 3D CAD data, i.e., without any real relevant
images and their annotations, nor captured textures for the 3D models to render realistic
images.

Despite the apparent meagerness of the available training data, covering only the geometrical
aspects of target classes with no appearance information, it is still possible to render multiple
synthetic modalities from the CAD models in order to build a rich annotated dataset, to
guide the training of complex generative networks such as our proposed one.

Without any relevant texture information, usual dataset rendering and training methods for
the color domain cannot be directly applied. Since only geometrical information is made
available, the surface normal and/or depth domains are selected as target modalities for
the mapping performed by hG. For this reason and similarly to other view-based training
methods from CAD data [286, 300, 301], a simple 3D engine is set up to generate noiseless
normal and depth maps for each target object or scene from a large set of relevant viewpoints
(e.g., defined as vertices of an icosahedron centered on the target elements).

This dataset of geometrical mappings is both used as ground-truth for the final outputs of
hG and some of its sub-tasks, and as inputs for the augmentation pipeline A deployed when
no color data is available to train hG.

Online Color Rendering and Augmentation

To train the mapping neural network hG, an extensive online augmentation pipeline
A(xS , z)→ xAz is considered, parametrized by a noise vector z randomly sampled at every
call from a k-dimensional finite set Zk, with k the number of augmentation parameters. In

112 Chapter 5 Reversed Domain Adaptation Scheme for CAD-based Learning



𝒉𝑹𝒉𝑫 ∘ 𝒉𝑬 𝒉𝑹𝒉𝑫 ∘ 𝒉𝑬

mask normals depth lightness outputinput groud-truthmask normals depth lightness outputinput groud-truth

Fig. 5.6: Qualitative results of the proposed generator (intermediary and final mappings), when
applying hG purely trained on synthetic data to real samples, on LineMOD [99].

order to make up for the complete lack of appearance and clutter information, A follows the
principle of domain randomization [25, 265, 301], i.e., its purpose is to add enough visual
variability to the training inputs so that the trained method can generalize to real unseen
samples. This means conceiving an augmentation pipeline with k large enough.

By definition, this pipeline is, therefore, modality-specific (i.e., different augmentation
transforms are considered if the target domain is composed of RGB images, depth images,
or other data modalities). In this present work focusing on visual recognition from RGB
images, A first dynamically transforms the input geometrical views into color images
through random shading and texturing, before applying further noise and clutter to the
images, in order to prepare hG for the complexity of real data.

Inspired by the literature both in computer vision [41, 49, 243] and computer graphics [22,
201, 204], the following operations are thus composing A (illustrated in Figure 5.5):

Simple Random Shading. The proposed A first takes the provided normal maps and
convert them into color images by applying a custom version of the simple Blinn-Phong
shading method [22, 204], as described in Algorithm 5.1. Randomly sampling ambient
and directional light sources, as well as diffusion and specular color factors for the objects,
the provided surface normals are used to compute the diffuse and specular lightness maps
through direct matrix products. Since distance information is lost in normal maps, this
shading model is simplified by supposing the light sources at an infinite distance, hence

5.3 Methodology: Real-to-Synthetic Mapping through Multi-Modal Distillation 113



Algorithm 5.1: Approximate Blinn-Phong shading [22] from normal maps.

Input: X = xN ∈ Rh×w×3 normal map (xN renamed into X here to clarify the usage
of exponents), L ∈ R3 directional light vector, a ∈ R3 RGB ambient light
coefficient, d ∈ R3 RGB diffusion coefficient, s ∈ R3 RGB specularity
coefficient, ŝ ∈ R specular hardness, F = fpx ∈ R2 pixel focal range used to
render xN (also renamed for clarity).

Output: Y = xL ∈ Rh×w×3 color lightness map (also renamed for clarity).
/* - Simplification #1: we recover an approximate viewer

vector V from xN indices and fpx. */
/* - Simplification #2: we suppose the light source at

+∞ distance, hence the same L for every surface
point. */

/* - Note: we use Einstein notation for matrix-vector
operations. */

/* */
/* View vector approximation: */

1 V ←
{
(j, i, 1)

}h,w
j=0,i=0;

2 Vj ← − (Vj−h/2)
Fj

;Vi ← − (Vi−w/2)
Fi

;

3 V ← V
‖V ‖ ;

/* Computation of half-way vector map: */
4 H ← V + L;
/* Diffuse shading: */

5 Dji ← Xji
kL

k;
/* Specular shading: */

6 Sji ←
(
Xji

kH
k
ji
)ŝ;

/* Adding all contributions (given eijc = ei ⊗ ej ⊗ ec) : */
7 Y ijc ← min

(
max(a · eijc + d ·Djiec + s · Sjiec , 0) , 1

)
;

8 return Y

the same light source vector for every surface point. This way, one can easily simulate an
infinite number of lighting conditions and obtain the resulting lightness map.

Stochastic Texturing. Given the lack of relevant texture information, random texture
maps are procedurally generated using noise functions, such as fractal Perlin noise [201]
and Voronoi texturing [288] (i.e., generating random hue and saturation maps which are
merged with the lightness map obtained from the shading operation). Downsampled to
two-dimensional (2D) vector maps, the original normals are used to index the generated
textures; to achieve a more “organic” appearance, with patterns sometimes following some
of the shape features.

Background Addition. To simulate cluttered scenes, backgrounds are added to the
rendered images, either re-using the previously-introduced noise functions, or using random
patches from any publicly available image dataset. Lightness maps from the shading step
are furthermore used to homogenize the background brightness.

114 Chapter 5 Reversed Domain Adaptation Scheme for CAD-based Learning



Algorithm 5.2: Random polygon generation for image occlusion, adapted from the
algorithm proposed by Ounsworth [191].
Input: n ∈ N number of points defining the polygon, C ∈ R2 center of polygon in

image plane, rµ ∈ R>0 average radius of the polygon, σ ∈ R “spikeyness”
factor, ε ∈ R angular “irregularity” factor (note: all these input values are
supposedly sampled from z).

Output: p = {pi ∈ R2}Nverti=0 points defining the polygon.
/* generation of angle steps: */

1 for i ∈ {1, . . . , n} do
2 δθi ← U(2π/n− ε, 2π/n + ε) ;
3 end
/* steps normalization: */

4 for i ∈ {1, . . . , Nvert} do
5 δθi ← 2π δθi

‖δθ‖2
;

6 end
/* polygon points generation: */

7 θ1 ← U(0, 2π) ;
8 for i ∈ {1, . . . , n} do
9 r ← N (rµ, σ) ;

10 pi ← C + {r cos(θi), r sin(θi)} ;
11 θi+1 ← θi + δθi ;
12 end
13 return p

Random Occlusion. Occlusions are introduced to further simulate clutter, but also so
that hG can learn to recover hidden or lost geometrical information. Based on the work of
Ounsworth [191] (who generates 2D obstacles for a drone moving planning simulation),
occluding polygons are generated by walking around the image, taking random angular
steps and random radii at each step; then by painting it on top of the images with color noise
(c.f . Algorithm 5.2). The complexity of the polygons is controlled by two parameters: σ
(“spikeyness”), which controls how much point coordinates vary from the chosen average
radius rµ, and ε (“irregularity”), which sets an error to the default uniform angular
distribution of the polygon points.

Blur. To reproduce possible motion blur or unfocused images, Gaussian, uniform or
median blur is applied with variable intensity.

To maximize the training variability, A is built to run in parallel of GPU-based trainings
(online), providing new randomized samples every iteration. Note that the proposed
Algorithm 5.1 differs from traditional shading methods for this reason. It was edited so that
it does not perform on 3D input data but instead on normal maps—themselves pre-rendered
from 3D models. Therefore, the computation-heavy task of projecting 3D models into 2D
images (normal maps here) can be conveniently performed in a preliminary step, before
(and not in parallel of) the training itself. Computation-savvy, Algorithm 5.1—as well as

5.3 Methodology: Real-to-Synthetic Mapping through Multi-Modal Distillation 115



the other aforementioned operations composing A—can thus perform in parallel of the
training loop (online augmentation). As a result, the CNNs undergoing this training can
receive at each iteration different images (unlike with offline augmentation pipelines used to
generate a fixed training dataset beforehand), conveniently maximize the variability of the
training data and reducing the risks of overfitting.

Of course, additional operations could be considered to make A either more complex or
more adapted to the target domains if some of their aspects are known at training time. As
illustrated in the following section, the proposed generic augmentation pipeline already
enables the training of robust methods for color-to-normal mapping.

5.4 Experiments and Results

Applying SynDA to CAD-based recognition tasks, the method is evaluated on two different
tasks of localized instance classification and pose estimation, opting for well-known
algorithms on datasets commonly used in this domain [26, 286, 301]. After some concise
qualitative observations, extensive qualitative experiments are presented, comparing the
performance of SynDA to state-of-the-art solutions depending on the available training
modalities, and providing an ablation study.

5.4.1 Implementation Details

This first subsection contains more in depth details on the architecture and parameters of the
network, and on the augmentation pipeline.

Network Architecture

Figure 5.4 already presents to the readers with an exhaustive overview of the proposed state-
of-the-art architecture, layer by layer. It is implemented in Python using the TensorFlow
framework [1].

Layer Parameters:

• All Convolution layers have 4× 4 filter kernels;

• All Dropout layers have a dropout rate of 50%;

• All LeakyReLU layers have a leakiness of 0.2;

116 Chapter 5 Reversed Domain Adaptation Scheme for CAD-based Learning



• Input and output images are 64× 64px, normalized between −1 and 1.

Training Parameters:

• Weights are initialized from a zero-centered Gaussian distribution, with a standard
deviation of 0.02;

• The Adam optimizer [126] is used, with β1 = 0.5;

• The base learning rate is initialized at 2e−4.

Augmentation Pipeline Details

The augmentation operations are also implemented using TensorFlow. As detailed in the
following paragraphs, each parameter of the augmentation pipeline is randomly picked
according to a predefined distribution (with B – Bernoulli, U – Uniform, andN – Gaussian),
at each iteration (the set of all randomly sampled parameters forming z). The pipeline
receives as input synthetic normal images from the 3D models of target objects, rendered
using OpenGL [235].

Simple Random Shading. Lighting parameters are sampled using uniform distributions,
e.g., a ∼ U(0.05, 0.3)3, d ∼ U(0.1, 0.8)3, s ∼ U(0, 0.1)3, ŝ ∼ U(0.9, 1.1), etc. (c.f .
Algorithm 5.1).

Stochastic Texturing. Perlin noise [201], cellular noise [288], and white noise are used,
sampled from the uniform distribution U(0.0001, 0.9), to obtain hue and saturation maps.

Background Addition. Backgrounds are added to the synthetic images, by randomly
cropping and resizing color images from a public dataset (COCO [150] here).

Random Occlusions. For the experiments defined thereafter, the following sampling
distributions are used for the random occlusions: Cy ∼ B

(
U(0, h/4), U(h/4,h)

)
, Cx ∼

B
(
U(0, w/4), U(w/4,w)

)
, rµ ∼ U(10,m/4) (with m = min(h,w)), n ∼ U(3, 10), ε ∼

U(0, 0.5), and σ ∼ U(0, 0.5).

5.4 Experiments and Results 117



𝒉𝑹𝒉𝑫 ∘ 𝒉𝑬 𝒉𝑹𝒉𝑫 ∘ 𝒉𝑬

mask normals depth lightness outputinput groud-truthmask normals depth lightness outputinput groud-truth

Fig. 5.7: Qualitative results of the proposed generator (intermediary and final mappings), when
applying hG purely trained on synthetic data to real samples, on T-LESS [102].

5.4.2 Experimental Setups

Instance Classification on T-LESS

Task. As a preliminary experiment, the task of localized classification is considered,
performed on T-LESS [102], a dataset of industrial objects with texture-less CAD models
and red-green-blue and depth (RGB-D) images from different complex scenes. Strong
textural and geometrical similarities between the objects, as well as heavy occlusions, make
it a challenging dataset for geometry-based instance classification (IC).

Data. The first three scenes and their eleven objects are selected (objects numbered 2, 5,
6, 7, 8, 11, 12, 18, 25, 29 and 30), building a set of 7,514 red-green-blue (RGB) test patches
of 64 × 64px, representing objects occluded up to 60%. The real color images are split
50/50 into a test set Stest, and a training set named S for simplicity. The latter is used for
the training of some of state-of-the-art methods which require real data.

The synthetic training data S (normal, depth, and semantic maps) are generated with a basic
3D engine (while lightness maps are obtained from A), following the procedure described
in Section 5.3.2. Images are rendered from the CAD models from viewpoint defined by the
vertices of an subdivided icosahedron of radius 600mm centered on target objects, as done
by Wohlhart and Lepetit [286] and Zakharov et al. [300] in their experiments. This resulted
in the generation of 642 synthetic samples per object.

118 Chapter 5 Reversed Domain Adaptation Scheme for CAD-based Learning



Finally, a dataset Sna is also used to train some methods SynDA is compared with. It
contains real images, but irrelevant to the task (to demonstrate the effect of other domain
shifts besides the realism gap).

Recognition Method. Considering the task-specific recognition algorithm fixed and
provided, a ResNet [96, 97] with 9 residual blocks is used.

Instance Classification and Pose Estimation (ICPE) on LineMOD

Task. The ICPE task performed on LineMOD [99] is addressed in a second time.
Following the same setup as in Section 3.4.3 (for the evaluation of DepthSynth), this dataset
(which contains fifteen 3D mesh models of distinctive textured objects, along with their
RGB-D sequences and camera poses) is advantageously used to demonstrate how texture
information is too often taken for granted in CAD-based application, and how its absence
can heavily impact usual methods (e.g., in industrial settings).

Data. As done in the previous experiment, the +15, 000 real LineMOD images (cropped
to 64×64px) are split into a testing dataset and a training one (only for comparative methods
requiring real training data).

Similarly, the synthetic images are once again generated using an icosahedron of radius
600mm, with 3 consecutive subdivisions. However in this case, only the upper part of
the icosahedron is kept since all objects are captured from above in real image sequences.
Furthermore, in-plane rotations are added for each vertex, parametrized from -45◦ to 45◦

with a stride of 15◦.

However, LineMOD has four symmetric objects (bowl, cup, eggbox, and glue), meaning that
images from different viewpoints may contain the same visual content, which may confuse
algorithms tasked to regress the poses. While some works simply remove these ambiguous
elements to facilitate the evaluation [26, 27], others only constrain the real views by keeping
the unambiguous poses for these four objects (pruning the sampling vertices to take into
account the rotation or plane invariance) [286, 300, 301]. The latter solution is opted for in
this work, to highlight the generalization capabilities of SynDA w.r.t. the number of objects.
All in all, 2,359 images are generated for each of the eleven irregular objects, 1,239 for
the three plane-symmetric objects (cup, glue, and eggbox), and 119 for the axis-symmetric
bowl.

Moreover, a dataset Stex is rendered, containing realistic color images from the textured
LineMOD 3D models to train some comparative state-of-the-art methods on (this applies
only to LineMOD, as T-LESS industrial 3D models are not textured).

5.4 Experiments and Results 119



Tab. 5.2: Quantitative comparison of recognition pipelines, depending on the available training
data, for the task of localized instance classification on T-LESS [102] with hR ResNet-9
network [97] (refer to Table 5.1 for a visual description of each method).

Training Classification
accuracy

Data Method

GT hR(xT )→ ỹ (∅) 99.34%

hdR

(
A(xS) ; xT

)
→ {ỹ, c̃dom} (DANN) 60.58%

hpixG (xS , xT )→ x̃T , hR(x̃T )→ ỹ (PixelDA) 63.12%

hrgb2dG (xTNA
)→ x̃S , hR(xS)→ ỹ (Iro et al.) 36.03%

hR
(
A(xS)

)
→ ỹ (∅) 53.81%

hG
(
A(xS)

)
→ x̃S , hR(xS)→ ỹ (SynDA) 71.78%

Recognition Method. As in Subsection 3.4.3, to further demonstrate that the proposed
method is tailored neither to a dataset nor to a specific recognition method and features,
a different algorithm is selected for the task: the so-called triplet CNN [286, 300], which
uses the aforementioned triplet loss to map images to an embedding space which enforces
separation for distinct classes and poses.

5.4.3 Qualitative Observations

Qualitative results can be found in Figures 5.1, 5.5, 5.6, and 5.7. For both datasets, the
proposed method clearly learns to recover the clean geometrical features of target objects in
unseen real images (c.f . Figure 5.6), even though it has been trained with no information
w.r.t. the real target domain (c.f . Figure 5.5).

The monochrome appearance of T-LESS objects may make the task easier; but as this
information is not known during training, hG is still trained on random noisy textures, and
yet manages to map the real samples and even to recover occluded parts. As demonstrated on
LineMOD, the proposed solution indeed learns to ignore visual properties such as textures
to retain the synthetic features, using the prior CAD data.

GAN-based domain adaptation methods such as PixelDA [26] fail to learn their opposite
mapping when only geometrical properties are provided, as shown in Figure 5.2. Indeed,
learning both to add clutter and assign the proper texture to each class is a much more
complex task, which would require further supervision (for instance, the
foreground-similarity loss of PixelDA cannot be used in this setting to guide the
network).

120 Chapter 5 Reversed Domain Adaptation Scheme for CAD-based Learning



Tab. 5.3: Quantitative comparison of recognition pipelines, depending on the available training
data, for the task of localized instance classification and pose estimation on LineMOD [99]
with hR triplet CNN [286, 300].

Training Angular error Classification
accuracy

Data Method Median Mean

GT hR(xT )→ ỹ (∅) 9.50◦◦◦ 12.42◦◦◦ 99.72%

hdR
(
A(xStex) ; xT

)
→ {ỹ, c̃dom} (DANN) 14.33◦ 30.45◦ 89.84%

hpixG (xStex , xT )→ x̃T , hR(x̃T )→ ỹ (PixelDA) 15.38◦ 35.17◦ 91.06%

hdR
(
A(xS) ; xT

)
→ ỹ, c̃dom (DANN) 43.63◦ 68.59◦ 40.13%

hpixG (xS , xT )→ x̃T , hR(x̃T )→ ỹ (PixelDA) 95.14◦ 97.36◦ 35.39%

hR(xStex)→ ỹ (∅) 88.62◦ 92.35◦ 43.62%
hR
(
A(xStex)

)
→ ỹ (∅) 70.18◦ 84.22◦ 49.11%

hrgb2dG (xTNA)→ x̃S , hR(xS)→ ỹ (Iro et al.) 52.43◦ 71.69◦ 41.49%

hR
(
A(xS)

)
→ ỹ (∅) 41.23◦ 67.50◦ 34.38%

hG
(
A(xS)

)
→ x̃S , hR(xS)→ ỹ (SynDA) 13.37◦ 27.46◦ 91.28%

Finally, once can observe the empirical improvements between the intermediary normal
maps (directly from decoder hND ) and the refined outputs after self-attentive distillation, both
in terms of segmentation and internal details. As mentioned in Section 5.3.1, one could
easily add or replace intermediary modalities (for instance, regressing the objects lightness
maps may not seem fully relevant, though it can be used to provide the latest layers of the
network with information from the original color domain).

5.4.4 Quantitative Evaluation on Recognition Tasks

Given the two predefined evaluation tasks, the performance of the proposed pipeline is also
quantitatively evaluated through a comparative study and an ablation one.

Comparison with other Domain Adaptation Approaches

First, a comparison is performed with well-known state-of-the-art methods, depending on the
available training data (real images, corresponding annotations, CAD models, corresponding
realistic textures, or real images from a different domain).

For each setup, multiple instances of the same task-specific network (ResNet for IC on T-
LESS, triplet CNN for ICPE on LineMOD) are used, trained alone against the augmentation
pipeline A presented in Subsection 5.3.2 (with texturing augmentation disabled for pre-
textured data), or trained along with some auxiliary generators or sub-networks for domain
adaptation (e.g., for PixelDA [26] or DANN [78]; for hR used with a pre-trained monocular-
RGB-to-depth generator hrgb2dG [137]; or for SynDA).

5.4 Experiments and Results 121



Tab. 5.4: Architectural ablation study, considering the instance classification task on LineMOD.

Encoder Decoders Distill. Layers Losses Angular error Classification
accuracy

hE hND hDD hMD hLD hR
−→
SA

−−→
skip L1..l

g Lt Median Mean

X X X X 15.75◦ 32.80◦ 87.35%

X X X X X 15.76◦ 33.76◦ 88.04%

X X X X X X X X 14.32◦ 30.31◦ 89.00%

X X X X X X X X 14.48◦ 30.71◦ 89.32%

X X X X X X X X X 14.22◦ 29.26◦ 89.67%

X X X X X X X X 14.66◦ 30.83◦ 88.59%

X X X X X X X X 16.07◦ 33.22◦ 87.69%

X X X X X X X X X 14.43◦ 29.56◦ 90.38%

X X X X X X X X X X 13.37◦◦◦ 27.46◦◦◦ 91.28%

For both tasks, one can consistently observe the positive impact of SynDA on recognition,
as shown in Tables 5.2 and 5.3. Despite being trained on the scarcest data, with the
largest domain gap, the proposed generator hG brings the performance of the task-specific
methods hR above other solutions trained on more relevant information. The accuracy
improvement appears even more clearly for the pose regression task, as SynDA precisely
recovers geometrical features.

It also appears that decoupling data augmentation and recognition training is beneficial, as
illustrated by the accuracy difference between the last two lines of each table. This follows
the initial intuition on the logic of teaching task methods in the available clean synthetic
domain, while learning in parallel a mapping to project real data into this prior domain
(cf Subsection 5.1.1). Furthermore, this separation makes it straightforward to train new
task-specific methods, with hG ready to be plugged on top (modularisation).

Architecture Validation through Ablation

Table 5.4 presents the results of an extensive ablation study done on the proposed network
architecture. By consolidating several state-of-the-art works on generative networks [123,
131, 296, 304], a robust architecture was developed to tackle extreme domain mappings
(e.g., real RGB images to synthetic normal maps).

As mentioned in Section 5.4.3, one can observe how the addition of decoders for auxiliary
tasks improves the final output, by synergy. The inclusion of self-attention mechanism (SA
layers) in the distillation module further enhances this effect, weighting the contribution of
features between intermediary modalities, but also between distant internal regions. Finally,
the benefits of passing messages directly between the encoder blocks and their opposite
blocks for each decoder hD, through the use of skip layers (c.f . U-Net architecture [131,

122 Chapter 5 Reversed Domain Adaptation Scheme for CAD-based Learning



218, 310]), is clearly highlighted in the table, as well as the use of a triplet loss Lt at the
bottleneck to improve the quality of the embedding space.

All in all, the network relies on a powerful multi-task architecture, structured to tackle the
challenges of real-to-synthetic mapping, by utilizing any synthetic modalities available to
learn robust features. One could easily build on this solution by considering additional or
more use-case relevant sub-tasks (e.g., contour regression, part segmentation, etc.).

5.5 Discussion

Addressing the problem caused by the realism gap in CAD-based visual recognition, this
final work proposes to bridge the two domains through a neural-based mapping antipodal
to the one performed by state-of-the-art solutions. Its contributions are summarized in this
section, ending with some possible directions for future work.

5.5.1 Contributions

Applied to several CAD-based recognition tasks and making use of an advanced generative
network, SynDA outperforms other supervised or unsupervised methods. For the challenging
task of localized instance classification and pose estimation (e.g., on RGB LineMOD data),
the proposed solution more than doubles the angular and class accuracy compared to other
methods trained on synthetic data, and even surpasses previous domain adaptation methods
requiring real data. Overall, the following contributions are made.

Synthetic Modality Regression for Domain Adaptation. A novel framework is defined
to learn a mapping from unseen real data to relevant synthetic domains, denoising and
recovering the information needed for further recognition. Therefore, this solution not
only covers the real-synthetic gap, but also takes care of cross-modality mapping. More
specifically, this chapter highlights how color images can be mapped to normal maps,
to facilitate the tasks of pose-regression and classification in absence of reliable textural
information for training.

Decoupling of Domain Adaptation and Recognition. Most domain adaptation schemes
constrain the training of the recognition methods, by adding pseudo-realistic or noisy features
to their training set, editing their architecture or losses, etc. In the proposed framework,
task-specific algorithms simply learn on available, relevant synthetic data (e.g., clean normal
maps from CAD models), while the proposed network hG is trained separately on augmented
data to map them back into the selected synthetic domain. This decoupling makes training
more straightforward, and makes it possible to use hG along with any number of recognition

5.5 Discussion 123



methods. Furthermore, better results are observed compared to recognition methods directly
trained on augmented data. Results even compare to solutions using real information for
training.

Performance in Complete Absence of Real Training Data. Domain adaptation
approaches usually assume the realism gap to be already partially bridged, requiring access
to some target domain images or realistic synthetic models (e.g., textured 3D data). Opting
for recognition tasks with texture-less CAD data for only prior, this chapter shows how our
pipeline can be trained on purely synthetic data and still generalize well to real situations.
To that purpose, an extensive augmentation pipeline is leveraged, used as a noise source
applied to training samples so the solution learns to denoise and retain the relevant
features.

Multi-Task Network with Self-Attentive Distillation. The one advantage of synthetic
models such as CAD data is the possibility to easily extract various precise modalities and
ground-truths to learn from. Consolidating several state-of-the-art works [123, 131, 296,
304], a custom generator is, therefore, defined with multiple convolutional decoders for
each relevant synthetic modality (e.g., normal maps, semantic masks, etc.), and a distillation
module on top making use of self-attention maps to refine the final outputs.

Mirroring the work presented in Chapter 3, the domain-mapping method developed in this
chapter could be applied to problems beyond visual recognition (e.g., image denoising,
augmented reality, etc.).

5.5.2 Limitations

Interestingly, the parallel with the opposite DepthSynth method presented in Chapter 3 also
applies to their acknowledged limitations.

Importance of the Augmentation Operations. In spite of its ability to render realistic
training images, DepthSynth is limited by the knowledge w.r.t. the target real domains (c.f .
Subsection 3.5.2), and so is SynDA. For example, in the former work, if no image of the
target scenes are provided, the simulation pipeline can only fill the synthetic images with
backgrounds generated from random noise or picked from irrelevant datasets. SynDA has to
rely on similar artifices to generate the augmented images it is learning from. Therefore, the
quality of the real-to-synthetic mapping that the method learns is only as good as the quality
of the augmentation pipeline, and its relevance w.r.t. the target domains.

The focus of this chapter was put on recognition tasks from RGB images, and assumptions
regarding the target domains were kept minimal (RGB patches representing the target

124 Chapter 5 Reversed Domain Adaptation Scheme for CAD-based Learning



objects). Given this setup, a generic and optimized augmentation pipeline has been
developed. Yet, the selected operations are not meant to be exhaustive, and a variety of
alternative solutions could be considered to generate the noisy data (e.g., more advanced
computer graphics engines).

As proposed for DepthSynth, it could also be interesting to explore solutions to integrate
into the augmentation pipeline any prior w.r.t. the target real domains, e.g., when the data
scarcity constraint is relaxed.

Impact of Data Model Quality. To push the comparison with DepthSynth further, both
methods are also dependent on the quality of the provided synthetic data models (e.g., the
3D models representing the target objects). If the provided models deviate from the actual
target objects (e.g., if the real objects is damaged or if it has non-rigid parts), the generator
hG may fail to recover the representation from real images, impacting the performance of
the downstream recognition methods too.

The recognition of deformable entities is a long-standing and well-documented problem
in computer vision [24, 169, 181]. Though it goes beyond the scope of the current thesis,
it could be interesting to evaluate the feasibility of including some developments in that
domain into the present work, to train a more robust mapping function1.

As it is, the proposed framework can be successfully applied to the training of a wide panel
of recognition solutions for CAD-based uses-cases.

1For industrial applications, when considering manufactured objects with movable parts, a direct solution is
the generation of a larger dataset of synthetic images, discretizing the various states that the objects and its
parts can take.

5.5 Discussion 125





6Discussion and Future Work

„
No book can ever be finished. While working on it we learn
just enough to find it immature the moment we turn away
from it.

— Karl Popper
(Philosopher, in “The Open Society and Its Enemies: The

spell of Plato”, 1971)

To conclude this document, a brief summary is first proposed in Section 6.1. It is followed
by some higher-level considerations w.r.t. future work in Section 6.2. Section 6.3 ends the
dissertation with some final, more philosophical thoughts.

6.1 Summary

This thesis has been focused on advancing the frontier of visual intelligence, proposing a
variety of solutions for machines to gain a practical understanding for high-level recognition
tasks, despite the scarcity or irrelevance of the available observations.

6.1.1 Significance

As current recognition algorithms require a large number of representative samples to learn
their task properly, having to tediously gather and annotate such datasets represents a strong
constraint, hindering the systemic adoption of computer vision solutions.

Many previous projects anchored in industrial contexts have been leveraging synthetic
images—rendered from computer-aided design (CAD) models often pre-available in the
industry—as proxy data to train convolutional neural networks (CNNs). However, empirical
and theoretical studies have demonstrated how the discrepancies between synthetic and real
domains heavily impairs the performance of the resulting recognition systems (c.f .
Chapter 2). Furthermore, the assumption that relevant three-dimensional (3D)
representations are available does not always hold, e.g., for systems routinely confronted to
news objects or scenes. State-of-the-art solutions considering data scarcity and realism gap

127



often make further assumptions—e.g., availability of some real relevant samples,
exhaustiveness of the available synthetic representation, etc.—that greatly limit their
application to real scenarios.

Addressing consequential industrial use-cases, this thesis offers effective and novel solutions
to build and leverage synthetic representations, in order to train more robust and versatile
recognition systems.

6.1.2 Overall Contribution

The main solutions proposed in this thesis result from attempts at bridging the realism gap
from either side. Instead of repeating the conclusions of the three previous chapters which
already detail their respective contributions, the present section offers to take a step back
and to address the distinct results of this thesis from a more encompassing and abstract
perspective.

In order to bridge the realism gap and train efficient recognition models on synthetic images
only, assumptions have to be made. Although this thesis also presents a novel framework
to incrementally capture new representations (c.f . Chapter 4), a postulate central to most
use-cases is that synthetic representations of target objects are available to generate training
images (i.e., their 3D models) and that they contain the necessary visual information to
perform the target recognition task. While most state-of-the-art solutions assume that 3D
models with realistic textures are provided, this thesis demonstrate how the 3D shape alone
can be leveraged for accurate recognition in industrial applications. If the choice of visual
sensors is known a training time, the present work illustrates—on depth sensors—how an
in-depth study of the sensing mechanisms can enable the development of realistic simulation
tools (c.f . Chapter 3). Otherwise, if no specific sensing devices are targeted or if the
variability of the target image domain is not clearly bounded, results presented in this thesis
suggest that teaching a method to instead project the target samples into a well-defined
synthetic domain is an effective strategy (c.f . Chapter 5). Either way, the distance between
synthetic and real domains is reduced, facilitating the task of machine learning algorithms
as theorized by seminal research in domain adaptation (c.f . Chapter 2).

Pictures, semantic annotations, 3D models, textual descriptions, etc. A more abstract take-
away message is that data is nowadays everywhere and bountiful—as long as expectations
w.r.t. specific modalities are lowered. Although the usage of real images to train computer
vision algorithms is historically a low-hanging fruit and a promise of success, studies like
this thesis are proof that solutions can leverage less relevant modalities to achieve satisfactory
results (as humans often intuitively do).

128 Chapter 6 Discussion and Future Work



6.2 Future Work

Among the propositions made in previous chapters, two main directions for future work can
be highlighted.

6.2.1 Integration of Novel Differentiable Image Generators

Orthogonal to the contributions brought by the present thesis, a number of papers in the past
years have been proposing novel, sometimes groundbreaking, solutions for image generation
that tightly integrate into existing neural-based frameworks. The adoption of such novel
methods could certainly improve the results of the pipeline presented in this dissertation.

Improving Image Quality with Recent GANs

Generative adversarial networks (GANs), especially, have been the focus of much interest
in the past five years and have known significant developments.

Compensating for Simulation Limitations with GAN Post-Processing. As presented
in Chapter 5, the literature already contains a variety of solutions based on unsupervised
GANs, trained to map synthetic images closer to the target real domains, when some relevant
images are provided (e.g., SimGAN [240] and PixelDA [26]). In these papers, the solutions
are applied to images rendered using simple tools (e.g., without simulated noise for depth
images).

Therefore, it could be interesting to evaluate if post-processing with proper GANs synthetic
images which already have realistic features could lead to enhanced image quality. To that
end, a possible direction for future work could be toward extending the simulation pipeline
proposed in Chapter 3 with such methods, to compensate for the approximations in the
simulation of complex phenomena and for the lack of structured data representing the target
scenes (i.e., to generate relevant background).

Compensating for Coarse Memorized Features with Novel GANs. The solution for
incremental scene synthesis presented in Chapter 4 could also benefit from the latest
development in generative models (e.g., the impressive work by Wang et al. [280]) in
order to hallucinate sharper features in the memory structure, as well as to reproject these
accumulated features into detailed images.

Indeed, the current pipeline suffers from the quantization of the 3D space in memory and
from the coarseness of the memorized features. While the overall pipeline could capitalize

6.2 Future Work 129



on more powerful hardware to densify the memory structure, it could be interesting to
observe how far the quality of generated images could be brought by leveraging some of the
aforementioned novel neural networks for conditioned image generation.

Doing so, it could also be worthwhile to measure if the hallucination of more
detailed/realistic content impacts or not the consistency of the localization and
memorization processes of the overall pipeline. Indeed, in the present solution, the
hallucination of uncertain content can be of lower quality due to the trade-off between
representing uncertainties w.r.t. missing content and unsure localization (which leads to
blurred results), and synthesizing detailed (but likely incorrect) images. The statistical
nature of soft registration and hallucinations can add “uncertainty”, whereas the generative
components of the pipeline partially compensate for them (e.g., the choice of GAN models
to improve the image sampling). For data generation use-cases, relaxing hallucination
constraints and scaling up the generative training losses (Lanam and Lhallu in
Subsections 4.3.2 and 4.3.3) can improve image detail, at the price of possible memory
corruption. Therefore, future work towards improving the quality of sampled images should
certainly take into account the trade-off with memory consistency.

Leveraging Differentiable Image Renderer for 2D-3D Mapping

Arguably one of the most interesting developments in neural-based image generation the
past two years is the refinement and democratization (c.f . the release of TensorFlow
Graphics [10] for instance) of differentiable 3D renderers [120, 145, 186]. Like traditional
3D renderers, these solutions take for input a 3D mesh, the camera parameters, and for
some some additional scene properties (e.g., light sources), and they return a corresponding
color image. However, by leveraging novel rendering operations, these solutions are
differentiable end-to-end and, therefore, can be trained like—or integrated with—neural
networks (NNs), tightening the possible correspondences between 2D and 3D data.
Applications are numerous, and research based on these renderers is gaining impetus.

Learning Image Recognition Directly from 3D Data. CAD-based training of visual
recognition methods is typically performed in two steps due to limitations in computing
power (c.f . GPU usage): first, a set of images are rendered from the target 3D models, then
the recognition method is trained by iterating over this image set. This two-step process
implies, therefore, a discretization of the image domain obtainable from the 3D data which
can impact the end accuracy (i.e., only a certain number of images, from a limited number
of viewpoints and scene setups, can be rendered, e.g., due to storage limitations). The
advanced augmentation pipeline proposed in Chapter 5 partially covers this issue, being
able to generate a virtually infinite number of color images (with different textures, lighting,

130 Chapter 6 Discussion and Future Work



background) from a set of pre-rendered normal maps. However, this pre-rendering step still
implies a discretization of the viewpoint space. Moreover, there is no exchange between the
rendering and training procedures, e.g., to generate images which cover the current flaws of
the trained algorithms (e.g., bias towards some lighting or background conditions).

These aforementioned generation and augmentation solutions to provide training images
from 3D models to a CNN could ultimately be replaced by a differentiable renderer. Besides
the simplification of the training process this would bring (i.e., directly learning from 3D
models), the adoption of these renderers could lead to potential accuracy boost. By back-
propagating the gradient of the recognition loss all the way back into the differentiable
renderer, one could build an adversarial training scheme, optimizing the parameters of
the renderer (viewpoints, lighting conditions, etc.) to generate images which would be
challenging for the current recognition network and, therefore, to possibly push that network
toward more robust optima.

Mapping 2D Information back to 3D Models. Differentiable renderers have many more
possible applications, such as regressing/reprojecting useful information from the 2D domain
back to the 3D one. Some researchers such as Wang et al. [278] are already exploring such
usages, e.g., recovering partial 3D meshes from single color images. For industrial CAD
models, it could be interesting to try regressing the texture information from images, in
order to later render more realistic images from that model.

6.2.2 Beyond Image Domains

While this thesis is grounded into the field of image-based recognition, with its specific
challenges and use-cases, some of the presented contributions could be applied beyond the
image domain.

Applications to Different Modalities

The pipeline for incremental synthesis of 2D and 3D scenes detailed in Chapter 4 could
possibly be applied to other data modalities, such as the generation of musical samples
from partial audio inputs. Also, by opting for one-dimensional convolutions and memory
structure in the proposed pipeline, one could attempt to piece together fragments of texts
and to extrapolate missing content.

It could be as interesting to apply the SynDA domain adaptation scheme presented in
Chapter 5 to different domains like audio or text, training the method to map real samples
into synthetic or more simple domains to facilitate the end recognition tasks.

6.2 Future Work 131



Intermediate Solution to Domain Adaptation

Finally, the originality of this thesis resides in its dual approach to the realism gap in
computer vision, addressing it from both sides. The proposed solutions suggest to bridge
this gap either by generating synthetic training data with more realistic features, or by
projecting unseen target real images into the synthetic domain mastered by the recognition
algorithms. I would be inclined to merge these two antipodal approaches, searching for a
possible intermediate domain in which synthetic data could be projected during training, as
well as the target images later in production (e.g., a feature domain such as the one used to
store the observations in the mnemonic pipeline).

Defining such a comprehensive domain (which could also include samples projected from
other modalities) would be undoubtedly challenging but would also be a significant step
toward the development of more versatile (i.e., cross-domain) intelligent systems.

6.3 Epilogue

This thesis could be considered, rightfully, as substantiating the usage of synthetic data
in computer vision – data clearly underemployed in state-of-the-art solutions. The fact
that access to texture-less CAD models only is considered as a case of data scarcity is
symptomatic of the current limitations of machine learning algorithms, which are still far
from human capabilities and plasticity. Given some 3D models and an interface to visualize
them, any average person could easily learn to identify the represented objects in real settings.
Some researchers are exploring new methods in transfer learning and zero-shot learning [39,
127, 199], but solutions may lie beyond deep learning, the current main paradigm in machine
learning.

Nevertheless, artificial visual intelligence won’t be solved at once, and the only ambition
of the present work is to add its targeted contributions to the much larger and collective
undertaking. Although still imperfect, the virtual Golems (c.f . Section 1.1) that humankind
has already shaped from the effusive developments in machine learning are presently
metamorphosing our society. That artificial intelligence (AI) would one day free humankind
from labor is probably wishful thinking (and an underestimation of our industrious nature),
but its potential w.r.t. improving the work and life conditions of many is manifest. However,
as told in the tale of the docile Golem of Chelm, people looking for solutions to automate
vital tasks should be careful that their creations do not end up threatening the fabric of
society.

While leveraging the data that we now continuously produce could be the antidote to a
variety of long-standing problems, we should be careful not to give the synthetic digital

132 Chapter 6 Discussion and Future Work



world too much power over ours. Philosophically speaking, we should certainly never fully
bridge the realism gap...

6.3 Epilogue 133





Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, et al. “Tensorflow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems”. In: arXiv preprint arXiv:1603.04467
(2016) (cit. on pp. 30, 116).

[2] Yaser S Abu-Mostafa. “The Vapnik-Chervonenkis dimension: Information versus complexity
in learning”. In: Neural Computation 1.3 (1989), pp. 312–317 (cit. on pp. 34, 35, 37).

[3] Yaser S Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning from data. Vol. 4.
AMLBook New York, NY, USA: 2012 (cit. on pp. 34, 35).

[4] IN Aizenberg, NN Aizenberg, and J Vandewalle. “Multi-Valued and Universal Binary Neurons:
Theory, Learning, and Applications”. In: IEEE Transactions on Neural Networks 12.3 (2001),
p. 647 (cit. on p. 24).

[5] Naveed Akhtar and Ajmal Mian. “Threat of adversarial attacks on deep learning in computer
vision: A survey”. In: IEEE Access 6 (2018), pp. 14410–14430 (cit. on p. 32).

[6] Michael A Alcorn, Qi Li, Zhitao Gong, et al. “Strike (with) a pose: Neural networks are easily
fooled by strange poses of familiar objects”. In: arXiv preprint arXiv:1811.11553 (2018)
(cit. on p. 32).

[7] Aitor Aldoma, Zoltan-Csaba Marton, Federico Tombari, et al. “Point Cloud Library”. In: IEEE
Robotics & Automation Magazine 1070.9932/12 (2012) (cit. on pp. 46, 54).

[8] Phil Ammirato, Patrick Poirson, Eunbyung Park, Jana Kosecka, and Alexander C. Berg. “A
Dataset for Developing and Benchmarking Active Vision”. In: IEEE International Conference
on Robotics and Automation (ICRA). 2017 (cit. on p. 95).

[9] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. “Multiple Object Recognition with
Visual Attention”. In: arXiv preprint arXiv:1412.7755 (2014) (cit. on p. 111).

[10] Paige Bailey, Sofien Bouaziz, Shan Carter, et al. “Differentiable graphics with TensorFlow
2.0”. In: ACM SIGGRAPH 2019 Courses. ACM. 2019, p. 10 (cit. on p. 130).

[11] Maria-Florina Balcan and Avrim Blum. “A PAC-style model for learning from labeled and
unlabeled data”. In: International Conference on Computational Learning Theory. Springer.
2005, pp. 111–126 (cit. on p. 37).

[12] Peter L Bartlett and Wolfgang Maass. “Vapnik-Chervonenkis dimension of neural nets”. In:
The handbook of brain theory and neural networks (2003), pp. 1188–1192 (cit. on p. 37).

[13] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. “Speeded-up robust features
(SURF)”. In: Computer vision and image understanding 110.3 (2008), pp. 346–359 (cit. on
p. 17).

[14] Thabo Beeler, Bernd Bickel, Paul Beardsley, Bob Sumner, and Markus Gross. “High-quality
single-shot capture of facial geometry”. In: ACM Transactions on Graphics (ToG). Vol. 29. 4.
ACM. 2010, p. 40 (cit. on p. 46).

[15] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. “Analysis of
representations for domain adaptation”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2007, pp. 137–144 (cit. on pp. 18, 39–41, 44).

[16] Shai Ben-David, John Blitzer, Koby Crammer, et al. “A theory of learning from different
domains”. In: Machine learning 79.1-2 (2010), pp. 151–175 (cit. on pp. xix, 18, 39–41, 44).

135



[17] Shai Bendavid, Nicolo Cesabianchi, David Haussler, and Philip M Long. “Characterizations
of Learnability for Classes of 0,..., n-Valued Functions”. In: Journal of Computer and System
Sciences 50.1 (1995), pp. 74–86 (cit. on p. 36).

[18] Yoshua Bengio et al. “Learning deep architectures for AI”. In: Foundations and trends® in
Machine Learning 2.1 (2009), pp. 1–127 (cit. on pp. 18, 19).

[19] José Manuel Benítez, Juan Luis Castro, and Ignacio Requena. “Are artificial neural networks
black boxes?” In: IEEE Transactions on neural networks 8.5 (1997), pp. 1156–1164 (cit. on
p. 31).

[20] P.J. Besl and D McKay. “Method for Registration of 3-D Shapes”. In: Robotics-DL Tentative.
International Society for Optics and Photonics, 1992, pp. 586–606 (cit. on p. 68).

[21] Shehroze Bhatti, Alban Desmaison, Ondrej Miksik, et al. “Playing doom with slam-augmented
deep reinforcement learning”. In: arXiv preprint arXiv:1612.00380 (2016) (cit. on p. 77).

[22] James F Blinn. “Models of Light Reflection for Computer Synthesized Pictures”. In: ACM
SIGGRAPH Computer Graphics. Vol. 11. 2. ACM. 1977, pp. 192–198 (cit. on pp. 113, 114).

[23] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. “Learnability
and the Vapnik-Chervonenkis dimension”. In: Journal of the ACM (JACM) 36.4 (1989),
pp. 929–965 (cit. on pp. 35–37).

[24] Davide Boscaini, Jonathan Masci, Simone Melzi, et al. “Learning class-specific descriptors for
deformable shapes using localized spectral convolutional networks”. In: Computer Graphics
Forum. Vol. 34. 5. Wiley Online Library. 2015, pp. 13–23 (cit. on p. 125).

[25] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, et al. “Using Simulation and Domain
Adaptation to Improve Efficiency of Deep Robotic Grasping”. In: arXiv preprint
arXiv:1709.07857 (2017) (cit. on pp. 46, 113).

[26] Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip Krishnan.
“Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks”. In:
arXiv preprint arXiv:1612.05424 (2016) (cit. on pp. 71, 104–106, 116, 119–121, 129).

[27] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru
Erhan. “Domain Separation Networks”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2016, pp. 343–351 (cit. on pp. 5, 6, 39, 46, 119).

[28] G. Bradski. “OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools (2000) (cit. on
pp. 17, 64).

[29] Simon Brodeur, Ethan Perez, Ankesh Anand, et al. “HoME: A Household Multimodal
Environment”. In: arXiv preprint arXiv:1711.11017 (2017) (cit. on pp. 45, 90).

[30] Rodney A. Brooks. “Intelligence without Reason”. In: Artificial Intelligence 47.1-3 (1991),
pp. 139–159 (cit. on p. 16).

[31] Rodney A. Brooks. “Intelligence without representation”. In: Artificial intelligence 47.1-3
(1991), pp. 139–159 (cit. on p. 16).

[32] Rodney A. Brooks, Russell Creiner, and Thomas O. Binford. “The ACRONYM Model-
Based Vision System”. In: Proceedings of the 6th International Joint Conference on Artificial
Intelligence - Volume 1. IJCAI’79. Morgan Kaufmann Publishers Inc., 1979, pp. 105–113
(cit. on p. 53).

[33] Arthur E Bryson. “A gradient method for optimizing multi-stage allocation processes”. In:
Proc. Harvard Univ. Symposium on digital computers and their applications. Vol. 72. 1961
(cit. on p. 22).

[34] Zoya Bylinskii, Tilke Judd, Aude Oliva, Antonio Torralba, and Frédo Durand. “What do
different evaluation metrics tell us about saliency models?” In: arXiv preprint (2016) (cit. on
p. 96).

[35] John Canny. “A computational approach to edge detection”. In: Readings in computer vision.
Elsevier, 1987, pp. 184–203 (cit. on p. 12).

[36] Yuanzhouhan Cao, Chunhua Shen, and Heng Tao Shen. “Exploiting depth from single
monocular images for object detection and semantic segmentation”. In: IEEE Trans. Image
Processing 26.2 (2017), pp. 836–846 (cit. on pp. 81, 107).

136 Bibliography



[37] Fabio Maria Carlucci, Paolo Russo, and Barbara Caputo. “A Deep Representation for Depth
Images from Synthetic Data”. In: arXiv:1609.09713 [cs] (Sept. 2016). arXiv: 1609.09713
[cs] (cit. on pp. 6, 45, 50).

[38] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, et al. “Shapenet: An Information-Rich
3d Model Repository”. In: arXiv preprint arXiv:1512.03012 (2015) (cit. on pp. 45, 51).

[39] Soravit Changpinyo, Wei-Lun Chao, Boqing Gong, and Fei Sha. “Synthesized classifiers for
zero-shot learning”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2016, pp. 5327–5336 (cit. on p. 132).

[40] Devendra Singh Chaplot, Emilio Parisotto, and Ruslan Salakhutdinov. “Active Neural
Localization”. In: ICLR. 2018 (cit. on pp. 74, 78, 96).

[41] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Return of the Devil
in the Details: Delving Deep into Convolutional Nets”. In: arXiv preprint arXiv:1405.3531
(2014) (cit. on p. 113).

[42] Chao Chen, Zhihong Chen, Boyuan Jiang, and Xinyu Jin. “Joint domain alignment and
discriminative feature learning for unsupervised deep domain adaptation”. In: arXiv preprint
arXiv:1808.09347 (2018) (cit. on pp. 18, 39).

[43] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. “On Visual Similarity
Based 3D Model Retrieval”. In: Computer Graphics Forum. Vol. 22. Wiley Online Library,
2003, pp. 223–232 (cit. on p. 49).

[44] Jianpeng Cheng, Li Dong, and Mirella Lapata. “Long Short-Term Memory-Networks for
Machine Reading”. In: arXiv preprint arXiv:1601.06733 (2016) (cit. on pp. 88, 111).

[45] AIA Chervonenkis and VN Vapnik. “Theory of uniform convergence of frequencies of events
to their probabilities and problems of search for an optimal solution from empirical
data(Average risk minimization based on empirical data, showing relationship of problem to
uniform convergence of averages toward expectation value)”. In: Automation and Remote
Control 32 (1971), pp. 207–217 (cit. on pp. xix, xx, 36, 37).

[46] Benjamin Choo, Michael Landau, Michael DeVore, and Peter A Beling. “Statistical Analysis-
Based Error Models for the Microsoft KinectTM Depth Sensor”. In: Sensors 14.9 (2014),
pp. 17430–17450 (cit. on p. 64).

[47] Siddharth Choudhary, Vadim Indelman, Henrik I Christensen, and Frank Dellaert.
“Information-based reduced landmark SLAM”. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2015, pp. 4620–4627 (cit. on p. 79).

[48] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. “3d-
R2n2: A Unified Approach for Single and Multi-View 3d Object Reconstruction”. In: ECCV.
Springer. 2016, pp. 628–644 (cit. on pp. 79, 96).

[49] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. “Multi-Column Deep Neural Networks
for Image Classification”. In: CVPR. IEEE. 2012, pp. 3642–3649 (cit. on p. 113).

[50] Cisco. VNI Global Fixed and Mobile Internet Traffic Forecasts. URL:
https://cisco.com/c/en/us/solutions/service-provider/visual-
networking-index-vni/ (visited on May 11, 2019) (cit. on p. 3).

[51] Maxwell B Clowes. “On seeing things”. In: Artificial intelligence 2.1 (1971), pp. 79–116
(cit. on p. 16).

[52] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks”. In: Machine learning 20.3
(1995), pp. 273–297 (cit. on p. 18).

[53] Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. “Optimal transport
for domain adaptation”. In: IEEE transactions on pattern analysis and machine intelligence
39.9 (2017), pp. 1853–1865 (cit. on pp. 5, 18, 38, 39).

[54] Gabriela Csurka. Domain adaptation in computer vision applications. Springer, 2017 (cit. on
p. 18).

[55] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human detection”. In:
international Conference on computer vision & Pattern Recognition (CVPR’05). Vol. 1. IEEE
Computer Society. 2005, pp. 886–893 (cit. on p. 96).

Bibliography 137

https://arxiv.org/abs/1609.09713
https://arxiv.org/abs/1609.09713
https://cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/
https://cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/


[56] Rina Dechter. Learning while searching in constraint-satisfaction problems. University of
California, Computer Science Department, Cognitive Systems . . ., 1986 (cit. on p. 24).

[57] J Deng, A Berg, S Satheesh, et al. “ILSVRC-2012, 2012”. In: URL http://www. image-net.
org/challenges/LSVRC (2012) (cit. on p. 28).

[58] Jia Deng, Wei Dong, Richard Socher, et al. “Imagenet: A large-scale hierarchical image
database”. In: 2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009,
pp. 248–255 (cit. on pp. 28, 43, 51).

[59] Hugh Durrant-Whyte and Tim Bailey. “Simultaneous Localization and Mapping: Part I”. In:
IEEE robotics & automation magazine 13.2 (2006), pp. 99–110 (cit. on p. 77).

[60] Bryson Arthur Earl and Yu-Chi Ho. Applied optimal control: optimization, estimation, and
control. 1969 (cit. on p. 22).

[61] David Eigen and Rob Fergus. “Predicting Depth, Surface Normals and Semantic Labels with
a Common Multi-Scale Convolutional Architecture”. In: CVPR. 2015, pp. 2650–2658 (cit. on
pp. 81, 107, 109).

[62] David Eigen, Christian Puhrsch, and Rob Fergus. “Depth Map Prediction from a Single Image
Using a Multi-Scale Deep Network”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2014, pp. 2366–2374 (cit. on p. 107).

[63] Riyad A El-laithy, Jidong Huang, and Michael Yeh. “Study on the Use of Microsoft Kinect
for Robotics Applications”. In: Position Location and Navigation Symposium (PLANS), 2012
IEEE/ION. IEEE, 2012, pp. 1280–1288 (cit. on p. 43).

[64] Unity Game Engine. “Unity Game Engine-Official Site”. In: Online][Cited: October 9, 2008.]
http://unity3d. com (), pp. 1534–4320 (cit. on p. 64).

[65] SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, et al. “Neural scene representation
and rendering”. In: Science 360.6394 (2018), pp. 1204–1210 (cit. on p. 79).

[66] Adrian N Evans and Xin U Liu. “A morphological gradient approach to color edge detection”.
In: IEEE Transactions on Image Processing 15.6 (2006), pp. 1454–1463 (cit. on p. 12).

[67] Maurice F Fallon, Hordur Johannsson, and John J Leonard. Point Cloud Simulation &
Applications. 2012. URL:
http://www.pointclouds.org/assets/icra2012/localization.pdf
(visited on Sept. 23, 2015) (cit. on p. 54).

[68] Haoqiang Fan, Hao Su, and Leonidas J Guibas. “A Point Set Generation Network for 3D
Object Reconstruction from a Single Image.” In: IEEE CVPR. 2017 (cit. on pp. 79, 96).

[69] Pedro F Felzenszwalb and Daniel P Huttenlocher. “Efficient belief propagation for early
vision”. In: International journal of computer vision 70.1 (2006), pp. 41–54 (cit. on p. 64).

[70] Sanja Fidler, Sven Dickinson, and Raquel Urtasun. “3d Object Detection and Viewpoint
Estimation with a Deformable 3d Cuboid Model”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2012, pp. 611–619 (cit. on pp. 7, 43, 45, 49, 50).

[71] David A Forsyth and Jean Ponce. “Computer Vision: A Modern Approach”. In: Computer
vision: a modern approach (2003), pp. 88–101 (cit. on p. 77).

[72] Marco Fraccaro, Danilo Jimenez Rezende, Yori Zwols, et al. “Generative Temporal Models
with Spatial Memory for Partially Observed Environments”. en. In: arXiv:1804.09401 [cs,
stat] (Apr. 2018). arXiv: 1804.09401 [cs, stat] (cit. on pp. 78, 79, 86, 87, 90–92, 96,
97).

[73] Kunihiko Fukushima. “Neocognitron: A hierarchical neural network capable of visual pattern
recognition”. In: Neural networks 1.2 (1988), pp. 119–130 (cit. on p. 25).

[74] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position”. In: Biological cybernetics
36.4 (1980), pp. 193–202 (cit. on p. 25).

[75] Peter Fürsattel, Simon Placht, Michael Balda, et al. “A Comparative Error Analysis of Current
Time-of-Flight Sensors”. In: IEEE Transactions on Computational Imaging 2.1 (2016),
pp. 27–41 (cit. on p. 65).

138 Bibliography

http://www.pointclouds.org/assets/icra2012/localization.pdf
https://arxiv.org/abs/1804.09401


[76] Tomer Galanti, Lior Wolf, and Tamir Hazan. “A theoretical framework for deep transfer
learning”. In: Information and Inference: A Journal of the IMA 5.2 (2016), pp. 159–209
(cit. on pp. 30, 36, 37, 44).

[77] Yaroslav Ganin and Victor Lempitsky. “Unsupervised Domain Adaptation by
Backpropagation”. In: International Conference on Machine Learning. 2015, pp. 1180–1189
(cit. on pp. 5, 6, 39).

[78] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, et al. “Domain-Adversarial Training of
Neural Networks”. In: The Journal of Machine Learning Research 17.1 (2016), pp. 2096–2030
(cit. on pp. 39–41, 46, 104–106, 121).

[79] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. “Image Style Transfer Using
Convolutional Neural Networks”. In: CVPR. 2016, pp. 2414–2423 (cit. on p. 104).

[80] Andreas Geiger, Martin Roser, and Raquel Urtasun. “Efficient Large-Scale Stereo Matching”.
In: ACCV. 2011, pp. 25–38 (cit. on pp. 45, 50).

[81] Pascal Germain, Amaury Habrard, François Laviolette, and Emilie Morvant. “A PAC-Bayesian
approach for domain adaptation with specialization to linear classifiers”. In: International
conference on machine learning. 2013, pp. 738–746 (cit. on pp. 39, 41).

[82] Abhijeet Ghosh, Shruthi Achutha, Wolfgang Heidrich, and Matthew O’Toole. “BRDF
acquisition with basis illumination”. In: 2007 IEEE 11th International Conference on
Computer Vision. IEEE. 2007, pp. 1–8 (cit. on p. 46).

[83] Steven Gold, Anand Rangarajan, Chien-ping Lu, and Eric Mjolsness. “New Algorithms for
2D and 3D Point Matching: Pose Estimation and Correspondence”. In: Pattern Recognition 31
(1997), pp. 957–964 (cit. on pp. 49, 51).

[84] Ary L Goldberger, Luis AN Amaral, Leon Glass, et al. “PhysioBank, PhysioToolkit, and
PhysioNet: components of a new research resource for complex physiologic signals”. In:
Circulation 101.23 (2000), pp. 215–220 (cit. on p. 44).

[85] Dan B Goldman, Brian Curless, Aaron Hertzmann, and Steven M Seitz. “Shape and spatially-
varying brdfs from photometric stereo”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 32.6 (2009), pp. 1060–1071 (cit. on p. 71).

[86] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, et al. “Generative Adversarial Nets”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2014, pp. 2672–2680 (cit. on
p. 89).

[87] Akshay Gore and Savita Gupta. “Full Reference Image Quality Metrics for JPEG Compressed
Images”. In: AEU-International Journal of Electronics and Communications 69.2 (2015),
pp. 604–608 (cit. on p. 93).

[88] Michael Gschwandtner, Roland Kwitt, Andreas Uhl, and Wolfgang Pree. “BlenSor: Blender
Sensor Simulation Toolbox”. In: Advances in Visual Computing. Springer, 2011, pp. 199–208
(cit. on pp. 6, 46, 54, 58, 63, 64).

[89] Darya Guarnera, Giuseppe Claudio Guarnera, Abhijeet Ghosh, Cornelia Denk, and Mashhuda
Glencross. “BRDF representation and acquisition”. In: Computer Graphics Forum. Vol. 35. 2.
Wiley Online Library. 2016, pp. 625–650 (cit. on p. 71).

[90] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, et al. “A survey of methods for
explaining black box models”. In: ACM computing surveys (CSUR) 51.5 (2018), p. 93 (cit. on
p. 31).

[91] David Gunning. “Explainable artificial intelligence (xai)”. In: Defense Advanced Research
Projects Agency (DARPA), nd Web (2017) (cit. on p. 31).

[92] Saurabh Gupta, Judy Hoffman, and Jitendra Malik. “Cross Modal Distillation for Supervision
Transfer”. In: CVPR. 2016, pp. 2827–2836 (cit. on pp. 107, 109, 111).

[93] Barbara Hammer and Pascal Hitzler. Perspectives of neural-symbolic integration. Vol. 77.
Springer, 2007 (cit. on p. 31).

[94] Christopher G Harris, Mike Stephens, et al. “A combined corner and edge detector.” In: Alvey
vision conference. Vol. 15. 50. Citeseer. 1988, pp. 10–5244 (cit. on p. 12).

[95] Nick Harvey, Christopher Liaw, and Abbas Mehrabian. “Nearly-tight VC-dimension bounds
for piecewise linear neural networks”. In: Proceedings of the 2017 Conference on Learning

Bibliography 139



Theory. Ed. by Satyen Kale and Ohad Shamir. Vol. 65. Proceedings of Machine Learning
Research. Amsterdam, Netherlands: PMLR, 2017, pp. 1064–1068 (cit. on p. 37).

[96] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning for
Image Recognition”. In: CVPR. 2016, pp. 770–778 (cit. on p. 119).

[97] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Identity Mappings in Deep
Residual Networks”. In: ECCV. Springer. 2016, pp. 630–645 (cit. on pp. 88, 119, 120).

[98] Joao F Henriques and Andrea Vedaldi. “MapNet: An Allocentric Spatial Memory for Mapping
Environments”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 8476–8484 (cit. on pp. 8, 73, 78, 80–82, 89, 93, 97).

[99] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, et al. “Model Based Training, Detection
and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes”. In: ACCV.
2012, pp. 548–562 (cit. on pp. 43, 67, 113, 119, 121).

[100] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast learning algorithm for deep
belief nets”. In: Neural computation 18.7 (2006), pp. 1527–1554 (cit. on pp. 24, 27).

[101] Heiko Hirschmuller and Daniel Scharstein. “Evaluation of cost functions for stereo matching”.
In: 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 2007, pp. 1–8
(cit. on p. 57).

[102] Tomáš Hodan, Pavel Haluza, Štepán Obdržálek, et al. “T-LESS: An RGB-D Dataset for 6D
Pose Estimation of Texture-Less Objects”. In: WACV. 2017 (cit. on pp. 43, 44, 118, 120).

[103] Wassily Hoeffding. “Asymptotically optimal tests for multinomial distributions”. In: The
Annals of Mathematical Statistics (1965), pp. 369–401 (cit. on p. 34).

[104] Derek Hoiem, Alexei A Efros, and Martial Hebert. “Geometric Context from a Single Image”.
In: ICCV. IEEE. 2005 (cit. on p. 106).

[105] T Huang. “Computer vision: Evolution and promise”. In: 1996 CERN School of Computing
(1996), p. 21 (cit. on p. 12).

[106] David H Hubel and Torsten N Wiesel. “Receptive fields of single neurones in the cat’s striate
cortex”. In: The Journal of physiology 148.3 (1959), pp. 574–591 (cit. on p. 16).

[107] David A Huffman. “Impossible object as nonsense sentences”. In: Machine intelligence 6
(1971), pp. 295–324 (cit. on p. 16).

[108] Georg Hummel. “On synthetic datasets for development of computer vision algorithms in
airborne reconnaissance applications.” PhD thesis. Bundeswehr University Munich, Neubiberg
(Munich), Germany, 2017 (cit. on p. 45).

[109] Computer Society IEEE. CVPR 2018 Opening. Salt Lake City, UT, USA, June 2019 (cit. on
p. 3).

[110] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. “Image-to-Image Translation
with Conditional Adversarial Networks”. In: IEEE CVPR. 2017 (cit. on p. 89).

[111] Oliver James, Eugénie von Tunzelmann, Paul Franklin, and Kip S Thorne. “Gravitational
lensing by spinning black holes in astrophysics, and in the movie Interstellar”. In: Classical
and Quantum Gravity 32.6 (2015), p. 065001 (cit. on p. 44).

[112] Dinghuang Ji, Junghyun Kwon, Max McFarland, and Silvio Savarese. “Deep View Morphing”.
In: IEEE CVPR. 2017 (cit. on p. 79).

[113] Yangqing Jia, Evan Shelhamer, Jeff Donahue, et al. “Caffe: Convolutional architecture for fast
feature embedding”. In: Proceedings of the 22nd ACM international conference on Multimedia.
ACM. 2014, pp. 675–678 (cit. on pp. 30, 66).

[114] Alistair EW Johnson, Tom J Pollard, Seth Berkowitz, et al. “MIMIC-CXR: A large publicly
available database of labeled chest radiographs”. In: arXiv preprint arXiv:1901.07042 (2019)
(cit. on p. 44).

[115] Tilke Judd, Krista Ehinger, Frédo Durand, and Antonio Torralba. “Learning to predict where
humans look”. In: IEEE ICCV. 2009 (cit. on p. 96).

[116] Simon Julier. “The Stability of Covariance Inflation Methods for SLAM”. In: Intelligent Robots
and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference On.
Vol. 3. IEEE. 2003, pp. 2749–2754 (cit. on pp. 77, 93).

140 Bibliography



[117] Maya Kabkab, Emily Hand, and Rama Chellappa. “On the size of convolutional neural
networks and generalization performance”. In: 2016 23rd International Conference on Pattern
Recognition (ICPR). IEEE. 2016, pp. 3572–3577 (cit. on p. 18).

[118] Takeo Kanade and Masatoshi Okutomi. “A stereo matching algorithm with an adaptive
window: Theory and experiment”. In: Proceedings. 1991 IEEE International Conference on
Robotics and Automation. IEEE. 1991, pp. 1088–1095 (cit. on p. 57).

[119] Kevin Karsch, Ce Liu, and Sing Bing Kang. “Depth Transfer: Depth Extraction from Video
Using Non-Parametric Sampling”. In: TPAMI (2014) (cit. on p. 107).

[120] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. “Neural 3d Mesh Renderer”. In: IEEE
CVPR. 2018, pp. 3907–3916 (cit. on pp. 85, 130).

[121] Maik Keller and Andreas Kolb. “Real-Time Simulation of Time-of-Flight Sensors”. en. In:
Simulation Modelling Practice and Theory 17.5 (May 2009), pp. 967–978. ISSN: 1569190X
(cit. on p. 54).

[122] Henry J Kelley. “Gradient theory of optimal flight paths”. In: Ars Journal 30.10 (1960),
pp. 947–954 (cit. on p. 22).

[123] Alex Kendall, Yarin Gal, and Roberto Cipolla. “Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics”. In: arXiv preprint arXiv:1705.07115 3 (2017)
(cit. on pp. 81, 107, 109, 110, 122, 124).

[124] Christian Kerl, Jürgen Sturm, and Daniel Cremers. “Dense visual SLAM for RGB-D cameras”.
In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2013,
pp. 2100–2106 (cit. on pp. 77, 79).

[125] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. “Detecting change in data streams”. In:
Proceedings of the Thirtieth international conference on Very large data bases-Volume 30.
VLDB Endowment. 2004, pp. 180–191 (cit. on pp. 39, 40).

[126] Diederik P Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In: arXiv
preprint arXiv:1412.6980 (2014) (cit. on pp. 90, 117).

[127] Elyor Kodirov, Tao Xiang, Zhenyong Fu, and Shaogang Gong. “Unsupervised domain
adaptation for zero-shot learning”. In: Proceedings of the IEEE International Conference on
Computer Vision. 2015, pp. 2452–2460 (cit. on p. 132).

[128] Kurt Konolige. “Small Vision Systems: Hardware and Implementation”. In: Robotics Research.
Springer, 1998, pp. 203–212 (cit. on pp. 57, 60).

[129] Wouter M Kouw. “An introduction to domain adaptation and transfer learning”. In: arXiv
preprint arXiv:1812.11806 (2018) (cit. on p. 39).

[130] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet Classification with Deep
Convolutional Neural Networks”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2012, pp. 1097–1105 (cit. on pp. 18, 28, 29, 107).

[131] Ryohei Kuga, Asako Kanezaki, Masaki Samejima, Yusuke Sugano, and Yasuyuki Matsushita.
“Multi-Task Learning Using Multi-Modal Encoderdecoder Networks with Shared Skip
Connections”. In: ICCV Workshop. 2017 (cit. on pp. 107, 109–111, 122, 124).

[132] Wataru Kumagai. “Learning bound for parameter transfer learning”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2016, pp. 2721–2729 (cit. on pp. 18, 39).

[133] Kiriakos N. Kutulakos and Eron Steger. “A Theory of Refractive and Specular 3D Shape by
Light-Path Triangulation”. In: IEEE ICCV. 2005, pp. 1448–1455 (cit. on p. 48).

[134] Alina Kuznetsova, Hassan Rom, Neil Alldrin, et al. “The open images dataset v4: Unified
image classification, object detection, and visual relationship detection at scale”. In: arXiv
preprint arXiv:1811.00982 (2018) (cit. on p. 43).

[135] E Lachat, H Macher, MA Mittet, T Landes, and P Grussenmeyer. “First Experiences with
Kinect v2 Sensor for Close Range 3D Modelling”. In: The International Archives of
Photogrammetry, Remote Sensing and Spatial Information Sciences 40.5 (2015), p. 93 (cit. on
pp. 43, 65).

[136] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. “A Large-Scale Hierarchical Multi-View
Rgb-d Object Dataset”. In: IEEE ICRA. IEEE, 2011, pp. 1817–1824 (cit. on p. 49).

Bibliography 141



[137] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir Navab.
“Deeper Depth Prediction with Fully Convolutional Residual Networks”. In: 3DV. IEEE. 2016
(cit. on pp. 81, 105, 107, 121).

[138] Michael J Landau. “Optimal 6D Object Pose Estimation with Commodity Depth Sensors”.
http://search.lib.virginia.edu/catalog/hq37vn57mhttp://search.lib.virginia.edu/catalog/hq37vn57m.
Accessed: 2017-10-20. PhD thesis. University of Virginia, 2016 (cit. on pp. 43, 48, 49, 54, 58,
63, 64).

[139] Michael J. Landau, Benjamin Y. Choo, and Peter A. Beling. “Simulating Kinect Infrared and
Depth Images”. In: IEEE Transactions on Cybernetics 46.12 (Dec. 2016), pp. 3018–3031.
ISSN: 2168-2267, 2168-2275 (cit. on pp. 6, 54, 58, 63, 64).

[140] Yann LeCun, Yoshua Bengio, et al. “Convolutional networks for images, speech, and time
series”. In: The handbook of brain theory and neural networks 3361.10 (1995), p. 1995 (cit. on
p. 18).

[141] Yann LeCun, Bernhard E Boser, John S Denker, et al. “Handwritten Digit Recognition
with a Back-Propagation Network”. In: Advances in Neural Information Processing Systems
(NeurIPS). 1990, pp. 396–404 (cit. on p. 27).

[142] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. “Gradient-based learning
applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324
(cit. on pp. 25, 27, 66).

[143] Alexander LeNail. “NN-SVG: Publication-Ready Neural Network Architecture Schematics”.
In: The Journal of Open Source Software 4 (2019), p. 747 (cit. on p. 27).

[144] Jerome Y Lettvin, Humberto R Maturana, Warren S McCulloch, and Walter H Pitts. “What
the frog’s eye tells the frog’s brain”. In: Proceedings of the IRE 47.11 (1959), pp. 1940–1951
(cit. on p. 16).

[145] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. “Differentiable monte carlo
ray tracing through edge sampling”. In: SIGGRAPH Asia 2018 Technical Papers. ACM. 2018,
p. 222 (cit. on p. 130).

[146] Andy Liaw, Matthew Wiener, et al. “Classification and regression by randomForest”. In: R
news 2.3 (2002), pp. 18–22 (cit. on p. 18).

[147] Joerg Liebelt and Cordelia Schmid. “Multi-View Object Class Detection with a 3D Geometric
Model”. In: IEEE CVPR. 2010, pp. 1688–1695 (cit. on pp. 6, 45).

[148] Joseph J Lim, Hamed Pirsiavash, and Antonio Torralba. “Parsing ikea objects: Fine pose
estimation”. In: Proceedings of the IEEE International Conference on Computer Vision. 2013,
pp. 2992–2999 (cit. on pp. 44, 49, 50).

[149] Chen-Hsuan Lin, Chen Kong, and Simon Lucey. “Learning Efficient Point Cloud Generation
for Dense 3D Object Reconstruction”. In: AAAI Conference on Artificial Intelligence (AAAI).
2018 (cit. on pp. 79, 96).

[150] Tsung-Yi Lin, Michael Maire, Serge Belongie, et al. “Microsoft coco: Common objects in
context”. In: European conference on computer vision. Springer. 2014, pp. 740–755 (cit. on
pp. 43, 117).

[151] Seppo Linnainmaa. “The representation of the cumulative rounding error of an algorithm as a
Taylor expansion of the local rounding errors”. In: Master’s Thesis (in Finnish), Univ. Helsinki
(1970), pp. 6–7 (cit. on p. 22).

[152] Ce Liu, Jenny Yuen, and Antonio Torralba. “Sift Flow: Dense Correspondence across Scenes
and Its Applications”. In: TPAMI (2011) (cit. on p. 106).

[153] Fayao Liu, Chunhua Shen, and Guosheng Lin. “Deep Convolutional Neural Fields for Depth
Estimation from a Single Image”. In: CVPR. 2015, pp. 5162–5170 (cit. on p. 107).

[154] Miaomiao Liu, Mathieu Salzmann, and Xuming He. “Discrete-Continuous Depth Estimation
from a Single Image”. In: CVPR. 2014, pp. 716–723 (cit. on p. 107).

[155] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Deep Learning Face Attributes
in the Wild”. In: Proceedings of International Conference on Computer Vision (ICCV). Dec.
2015 (cit. on pp. 90, 94).

142 Bibliography



[156] David G Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. In: International
journal of computer vision 60.2 (2004), pp. 91–110 (cit. on p. 17).

[157] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. “Effective Approaches to
Attention-Based Neural Machine Translation”. In: arXiv preprint arXiv:1508.04025 (2015)
(cit. on p. 111).

[158] Yuhao Ma, Kyle Boos, Joshua Ferguson, Donald Patterson, and Kevin Jonaitis. “Collaborative
Geometry-Aware Augmented Reality with Depth Sensors”. In: Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication.
ACM, 2014, pp. 251–254 (cit. on pp. 43, 49).

[159] Gary Marcus. “Deep learning: A critical appraisal”. In: arXiv preprint arXiv:1801.00631
(2018) (cit. on pp. 31, 32).

[160] D. Marr and H. K. Nishihara. “Representation and Recognition of the Spatial Organization of
Three-Dimensional Shapes”. In: Proceedings of the Royal Society of London B: Biological
Sciences 200.1140 (1978), pp. 269–294 (cit. on p. 53).

[161] Kevan AC Martin. “A brief history of the “feature detector””. In: Cerebral cortex 4.1 (1994),
pp. 1–7 (cit. on p. 16).

[162] Georgios Mastorakis. “Human fall detection methodologies: from machine learning using
acted data to fall modelling using myoskeletal simulation”. PhD thesis. Kingston University,
2018 (cit. on pp. 6, 45).

[163] Georgios Mastorakis and Dimitrios Makris. “Fall detection system using Kinect’s infrared
sensor”. In: Journal of Real-Time Image Processing 9.4 (2014), pp. 635–646 (cit. on p. 49).

[164] Daniel Maturana and Sebastian Scherer. “VoxNet: A 3D Convolutional Neural Network for
Real-Time Object Recognition”. In: IEEE IROS. Sept. 2015 (cit. on pp. 7, 49–51).

[165] John McCarthy, Marvin L Minsky, Nathaniel Rochester, and Claude E Shannon. “A proposal
for the dartmouth summer research project on artificial intelligence, august 31, 1955”. In: AI
magazine 27.4 (2006), p. 12 (cit. on p. 15).

[166] Sean McClure. Sean McClure’s Answer to What Was Leo Breiman Trying to Convey in His
Research Paper Statistical Modeling - The Two Cultures? - Quora. URL:
https://www.quora.com/What-was-Leo-Breiman-trying-to-convey-
in-his-research-paper-Statistical-Modeling-The-Two-Cultures-
Was-he-trying-to-say-that-the-field-is-odd-Did-he-mean-that-
algorithmic - modelling - machine - learning - is - superior - to -
traditional-data-modelling/answer/Sean-McClure-3 (visited on Apr. 8,
2019) (cit. on p. 31).

[167] Median Group. How Rapidly Are GPUs Improving in Price Performance? URL: http:
//mediangroup.org/gpu.html (visited on May 11, 2019) (cit. on p. 3).

[168] Fabio Menna, Fabio Remondino, Roberto Battisti, and Erica Nocerino. “Geometric
Investigation of a Gaming Active Device”. In: SPIE Optical Metrology. International Society
for Optics and Photonics, 2011, 80850G–80850G (cit. on p. 64).

[169] Dimitris N Metaxas. Physics-based deformable models: applications to computer vision,
graphics and medical imaging. Vol. 389. Springer Science & Business Media, 2012 (cit. on
p. 125).

[170] Marvin Minsky. “Steps toward Artificial Intelligence”. In: Proceedings of the IRE 49.1 (1961),
pp. 8–30 (cit. on p. 15).

[171] Marvin Minsky and Seymour A Papert. Perceptrons: An Introduction to Computational
Geometry. MIT press, 2017 (cit. on p. 22).

[172] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. “Spectral
Normalization for Generative Adversarial Networks”. In: arXiv preprint arXiv:1802.05957
(2018) (cit. on p. 88).

[173] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. “Recurrent Models of Visual Attention”.
In: NIPS. 2014, pp. 2204–2212 (cit. on p. 111).

Bibliography 143

https://www.quora.com/What-was-Leo-Breiman-trying-to-convey-in-his-research-paper-Statistical-Modeling-The-Two-Cultures-Was-he-trying-to-say-that-the-field-is-odd-Did-he-mean-that-algorithmic-modelling-machine-learning-is-superior-to-traditional-data-modelling/answer/Sean-McClure-3
https://www.quora.com/What-was-Leo-Breiman-trying-to-convey-in-his-research-paper-Statistical-Modeling-The-Two-Cultures-Was-he-trying-to-say-that-the-field-is-odd-Did-he-mean-that-algorithmic-modelling-machine-learning-is-superior-to-traditional-data-modelling/answer/Sean-McClure-3
https://www.quora.com/What-was-Leo-Breiman-trying-to-convey-in-his-research-paper-Statistical-Modeling-The-Two-Cultures-Was-he-trying-to-say-that-the-field-is-odd-Did-he-mean-that-algorithmic-modelling-machine-learning-is-superior-to-traditional-data-modelling/answer/Sean-McClure-3
https://www.quora.com/What-was-Leo-Breiman-trying-to-convey-in-his-research-paper-Statistical-Modeling-The-Two-Cultures-Was-he-trying-to-say-that-the-field-is-odd-Did-he-mean-that-algorithmic-modelling-machine-learning-is-superior-to-traditional-data-modelling/answer/Sean-McClure-3
https://www.quora.com/What-was-Leo-Breiman-trying-to-convey-in-his-research-paper-Statistical-Modeling-The-Two-Cultures-Was-he-trying-to-say-that-the-field-is-odd-Did-he-mean-that-algorithmic-modelling-machine-learning-is-superior-to-traditional-data-modelling/answer/Sean-McClure-3
http://mediangroup.org/gpu.html
http://mediangroup.org/gpu.html


[174] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit, et al. “FastSLAM: A
Factored Solution to the Simultaneous Localization and Mapping Problem”. In: Aaai/iaai
593598 (2002) (cit. on p. 77).

[175] Gordon E Moore et al. Cramming more components onto integrated circuits. 1965 (cit. on
pp. 2, 29).

[176] Hans Moravec. “Locomotion, Vision and Intelligence”. In: (1984). Ed. by Michael Brady and
Richard Paul, pp. 215–224 (cit. on p. 15).

[177] Marius Muja and David G. Lowe. “Scalable Nearest Neighbor Algorithms for High
Dimensional Data”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 36
(2014) (cit. on p. 68).

[178] Aaftab Munshi. “The opencl specification”. In: 2009 IEEE Hot Chips 21 Symposium (HCS).
IEEE. 2009, pp. 1–314 (cit. on p. 29).

[179] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. “ORB-SLAM: A Versatile
and Accurate Monocular SLAM System”. In: IEEE Transactions on Robotics 31.5 (2015),
pp. 1147–1163 (cit. on pp. 77, 79, 93).

[180] Loris Nanni, Stefano Ghidoni, and Sheryl Brahnam. “Handcrafted vs. non-handcrafted features
for computer vision classification”. In: Pattern Recognition 71 (2017), pp. 158–172 (cit. on
p. 30).

[181] Chahab Nastar and Nicholas Ayache. “Fast segmentation, tracking, and analysis of
deformable objects”. In: 1993 (4th) International Conference on Computer Vision. IEEE.
1993, pp. 275–279 (cit. on p. 125).

[182] Balas K Natarajan. “On learning sets and functions”. In: Machine Learning 4.1 (1989),
pp. 67–97 (cit. on p. 36).

[183] Natalia Neverova, Pauline Luc, Camille Couprie, Jakob Verbeek, and Yann LeCun. “Predicting
Deeper into the Future of Semantic Segmentation”. In: ICCV. 2017, pp. 1–10 (cit. on p. 111).

[184] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, et al. “KinectFusion: Real-Time
Dense Surface Mapping and Tracking”. In: Proceedings of the 2011 10th IEEE International
Symposium on Mixed and Augmented Reality. ISMAR ’11. 2011, pp. 127–136 (cit. on pp. 43,
49).

[185] Chuong V Nguyen, Shahram Izadi, and David Lovell. “Modeling Kinect Sensor Noise for
Improved 3d Reconstruction and Tracking”. In: 3D Imaging, Modeling, Processing,
Visualization and Transmission (3DIMPVT), 2012 Second International Conference On.
IEEE, 2012, pp. 524–530 (cit. on p. 64).

[186] Thu H Nguyen-Phuoc, Chuan Li, Stephen Balaban, and Yongliang Yang. “Rendernet: A deep
convolutional network for differentiable rendering from 3d shapes”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2018, pp. 7891–7901 (cit. on p. 130).

[187] Jannik Boll Nielsen, Henrik Wann Jensen, and Ravi Ramamoorthi. “On optimal, minimal
BRDF sampling for reflectance acquisition”. In: ACM Transactions on Graphics (TOG) 34.6
(2015), p. 186 (cit. on p. 71).

[188] David Nistér. “Preemptive RANSAC for Live Structure and Motion Estimation”. In: Machine
Vision and Applications 16.5 (2005), pp. 321–329 (cit. on p. 77).

[189] Kyoung-Su Oh and Keechul Jung. “GPU implementation of neural networks”. In: Pattern
Recognition 37.6 (2004), pp. 1311–1314 (cit. on pp. 27, 29).

[190] Nuria M Oliver, Barbara Rosario, and Alex P Pentland. “A bayesian computer vision system
for modeling human interactions”. In: IEEE transactions on pattern analysis and machine
intelligence 22.8 (2000), pp. 831–843 (cit. on p. 18).

[191] Michael Ounsworth. “Anticipatory Movement Planning for Quadrotor Visual Servoeing”.
PhD thesis. McGill University Libraries, 2015 (cit. on p. 115).

[192] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. “Domain adaptation
via transfer component analysis”. In: IEEE Transactions on Neural Networks 22.2 (2011),
pp. 199–210 (cit. on pp. 5, 6, 18, 39).

[193] Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning”. In: IEEE Transactions on
knowledge and data engineering 22.10 (2010), pp. 1345–1359 (cit. on p. 18).

144 Bibliography



[194] S. Papert. “The Summer Vision Project”. In: AI memo (1966) (cit. on p. 14).
[195] Ankur P Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. “A Decomposable

Attention Model for Natural Language Inference”. In: arXiv preprint arXiv:1606.01933 (2016)
(cit. on pp. 88, 111).

[196] Emilio Parisotto and Ruslan Salakhutdinov. “Neural Map: Structured Memory for Deep
Reinforcement Learning”. In: ICLR. 2018 (cit. on p. 78).

[197] Emilio Parisotto, Devendra Singh Chaplot, Jian Zhang, and Ruslan Salakhutdinov. “Global
pose estimation with an attention-based recurrent network”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops. 2018, pp. 237–246
(cit. on p. 78).

[198] Adam Paszke, Sam Gross, Soumith Chintala, et al. “Automatic Differentiation in PyTorch”.
In: OpenReview - NIPS 2017 Workshop Autodiff Submission (2017) (cit. on pp. 30, 82, 88).

[199] Kuan-Chuan Peng, Ziyan Wu, and Jan Ernst. “Zero-shot deep domain adaptation”. In:
Proceedings of the European Conference on Computer Vision (ECCV). 2018, pp. 764–781
(cit. on p. 132).

[200] Patrick Pérez, Michel Gangnet, and Andrew Blake. “Poisson image editing”. In: ACM
Transactions on graphics (TOG) 22.3 (2003), pp. 313–318 (cit. on p. 12).

[201] Ken Perlin. “Improving Noise”. In: ACM Transactions on Graphics (TOG). Vol. 21. 3. ACM.
2002, pp. 681–682 (cit. on pp. 113, 114, 117).

[202] Robert J Peters, Asha Iyer, Laurent Itti, and Christof Koch. “Components of bottom-up gaze
allocation in natural images”. In: Vision research 45.18 (2005), pp. 2397–2416 (cit. on p. 96).

[203] Valerij Peters and Otmar Loffeld. “A Bistatic Simulation Approach for a High-Resolution
3D PMD (Photonic Mixer Device)-Camera”. In: International Journal of Intelligent Systems
Technologies and Applications 5.3-4 (2008), pp. 414–424 (cit. on p. 54).

[204] Bui Tuong Phong. “Illumination for Computer Generated Pictures”. In: Communications of
the ACM 18.6 (1975), pp. 311–317 (cit. on p. 113).

[205] Benjamin Planche and Eliot Andres. Hands-On Computer Vision with TensorFlow 2. Packt
Publishing, May 2019. ISBN: 9781788830645 (cit. on pp. 12, 14, 32).

[206] Benjamin Planche, Xuejian Rong, Ziyan Wu, et al. “Incremental Scene Synthesis”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2019 (cit. on p. 73).

[207] Benjamin Planche, Ziyan Wu, Kai Ma, et al. “DepthSynth: Real-Time Realistic Synthetic Data
Generation from CAD Models for 2.5 D Recognition”. In: 2017 International Conference on
3D Vision (3DV). IEEE. 2017, pp. 1–10 (cit. on pp. 47, 57).

[208] Benjamin Planche, Sergey Zakharov, Ziyan Wu, et al. “Seeing Beyond Appearance - Mapping
Real Images into Geometrical Domains for Unsupervised CAD-based Recognition”. In: 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2019
(cit. on p. 99).

[209] DC Plaut, SJ Nowlan, and GE Hinton. “Experiments on learning by Backpropagation Technical
Report CMU–CS–86–126”. In: Computer Science Department, Carnegie-Mellon University,
Pittsburgh, PA (1986) (cit. on p. 22).

[210] David Pollard. Convergence of stochastic processes. Springer Science & Business Media,
2012 (cit. on p. 36).

[211] Alexander Pritzel, Benigno Uria, Sriram Srinivasan, et al. “Neural Episodic Control”. en. In:
arXiv:1703.01988 [cs, stat] (Mar. 2017). arXiv: 1703.01988 [cs, stat] (cit. on pp. 78,
80, 96).

[212] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. “Pointnet: Deep Learning on
Point Sets for 3d Classification and Segmentation”. In: Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE 1.2 (2017), p. 4 (cit. on pp. 82, 85).

[213] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised representation learning with
deep convolutional generative adversarial networks”. In: arXiv preprint arXiv:1511.06434
(2015) (cit. on p. 89).

Bibliography 145

https://arxiv.org/abs/1703.01988


[214] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. “Do CIFAR-10
Classifiers Generalize to CIFAR-10?” In: arXiv preprint arXiv:1806.00451 (2018) (cit. on
p. 32).

[215] Ievgen Redko, Amaury Habrard, and Marc Sebban. “Theoretical analysis of domain adaptation
with optimal transport”. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer. 2017, pp. 737–753 (cit. on pp. 18, 39).

[216] Konstantinos Rematas, Tobias Ritschel, Matt Fritz, and Tinne Tuytelaars. “Image-Based
Synthesis and Re-Synthesis of Viewpoints Guided by 3d Models”. In: Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference On. IEEE, 2014, pp. 3898–3905 (cit. on
pp. 6, 45, 51).

[217] C. Rennie, R. Shome, K. E. Bekris, and A. Ferreira De Souza. “A Dataset for Improved
RGBD-Based Object Detection and Pose Estimation for Warehouse Pick-and-Place”. In: IEEE
Robotics and Automation Letters 1 (Feb. 2016), pp. 1179–1185 (cit. on p. 67).

[218] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Networks for
Biomedical Image Segmentation”. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer. 2015, pp. 234–241 (cit. on pp. 111, 122).

[219] Dan Rosenbaum, Frederic Besse, Fabio Viola, Danilo J Rezende, and SM Eslami. “Learning
models for visual 3D localization with implicit mapping”. In: arXiv preprint arXiv:1807.03149
(2018) (cit. on pp. 78, 97).

[220] Frank Rosenblatt. “The perceptron: a probabilistic model for information storage and
organization in the brain.” In: Psychological review 65.6 (1958), p. 386 (cit. on pp. 18, 21).

[221] William B Rouse and Nancy M Morris. “On looking into the black box: Prospects and limits in
the search for mental models.” In: Psychological bulletin 100.3 (1986), p. 349 (cit. on p. 31).

[222] Anirban Roy and Sinisa Todorovic. “Monocular Depth Estimation Using Neural Regression
Forest”. In: CVPR. 2016, pp. 5506–5514 (cit. on pp. 81, 107).

[223] Artem Rozantsev, Vincent Lepetit, and Pascal Fua. “On Rendering Synthetic Images for
Training an Object Detector”. In: Computer Vision and Image Understanding (2015) (cit. on
pp. 7, 43, 49, 50, 53).

[224] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. “Learning representations
by back-propagating errors”. In: Cognitive modeling 5.3 (1988), p. 1 (cit. on p. 22).

[225] Fereshteh Sadeghi and Sergey Levine. “(CAD)2RL: Real Single-Image Flight without a Single
Real Image”. In: arXiv preprint arXiv:1611.04201 (2016) (cit. on pp. 8, 102, 106).

[226] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, et al. “Improved Techniques for Training
Gans”. In: Advances in Neural Information Processing Systems. 2016, pp. 2234–2242 (cit. on
p. 89).

[227] Mostafa Samir. Machine Learning Theory - Part 2: Generalization Bounds. URL: https:
//mostafa-samir.github.io/ml-theory-pt2/ (visited on Apr. 11, 2019)
(cit. on pp. 35, 36).

[228] A.L. Samuel. “Some studies in machine learning using the game of checkers”. In: IBM Journal
of research and development 3.3 (1959), pp. 210–229 (cit. on pp. 14, 15).

[229] Jason Sanders and Edward Kandrot. CUDA by example: an introduction to general-purpose
GPU programming. Addison-Wesley Professional, 2010 (cit. on p. 29).

[230] M Saquib Sarfraz and Olaf Hellwich. “Head Pose Estimation in Face Recognition Across Pose
Scenarios.” In: VISAPP (1) 8 (2008), pp. 235–242 (cit. on p. 17).

[231] Norbert Sauer. “On the density of families of sets”. In: Journal of Combinatorial Theory,
Series A 13.1 (1972), pp. 145–147 (cit. on p. 36).

[232] John G Saw, Mark CK Yang, and Tse Chin Mo. “Chebyshev inequality with estimated mean
and variance”. In: The American Statistician 38.2 (1984), pp. 130–132 (cit. on p. 34).

[233] Ashutosh Saxena, Justin Driemeyer, and Andrew Y. Ng. “Learning 3-D Object Orientation
from Images”. In: IEEE ICRA. 2009, pp. 4266–4272 (cit. on pp. 6, 45).

[234] Ashutosh Saxena, Min Sun, and Andrew Y Ng. “Learning 3-d Scene Structure from a Single
Still Image”. In: ICCV. IEEE. 2007, pp. 1–8 (cit. on pp. 49–51).

146 Bibliography

https://mostafa-samir.github.io/ml-theory-pt2/
https://mostafa-samir.github.io/ml-theory-pt2/


[235] Mark Segal and Kurt Akeley. “The OpenGL® Graphics System: A Specification (Version 4.5
(Core Profile)-May 28, 2015)”. In: The Khronos Group Inc (2015) (cit. on p. 117).

[236] Claude E. Shannon. “Programming a Computer for Playing Chess”. In: Philosophical
Magazine 41.314 (1950), pp. 256–275 (cit. on pp. 14, 15).

[237] Saharon Shelah. “A combinatorial problem; stability and order for models and theories in
infinitary languages”. In: Pacific Journal of Mathematics 41.1 (1972), pp. 247–261 (cit. on
p. 36).

[238] Bonggun Shin, Falgun H Chokshi, Timothy Lee, and Jinho D Choi. “Classification of radiology
reports using neural attention models”. In: 2017 International Joint Conference on Neural
Networks (IJCNN). IEEE. 2017, pp. 4363–4370 (cit. on p. 31).

[239] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, et al. “Real-Time Human Pose Recognition in
Parts from a Single Depth Image”. In: IEEE CVPR. June 2011 (cit. on pp. 43, 49).

[240] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, et al. “Learning from Simulated and
Unsupervised Images through Adversarial Training”. In: arXiv preprint arXiv:1612.07828
(2016) (cit. on pp. 71, 104, 129).

[241] Siemens. Easy Spares IDea. URL:
https://new.siemens.com/global/en/products/mobility/rail-
solutions/services/spare-part-services/easy-spares-idea.html
(visited on May 11, 2019) (cit. on p. 4).

[242] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. “Indoor Segmentation
and Support Inference from RGBD Images”. In: ECCV. Springer, 2012, pp. 746–760 (cit. on
pp. 7, 49).

[243] Patrice Y Simard, Dave Steinkraus, and John C Platt. “Best Practices for Convolutional Neural
Networks Applied to Visual Document Analysis”. In: Null. IEEE. 2003, p. 958 (cit. on pp. 25,
113).

[244] Ashutosh Singh, Jin Sha, Karthik S Narayan, Tudor Achim, and Pieter Abbeel. “Bigbird: A
Large-Scale 3d Database of Object Instances”. In: IEEE ICRA. IEEE, 2014, pp. 509–516
(cit. on pp. 45, 49, 50).

[245] Jan Smisek, Michal Jancosek, and Tomas Pajdla. “3D with Kinect”. In: Consumer Depth
Cameras for Computer Vision. Springer, 2013, pp. 3–25 (cit. on p. 43).

[246] Richard Socher, Brody Huval, Bharath Bath, Christopher D Manning, and Andrew Y Ng.
“Convolutional-Recursive Deep Learning for 3d Object Classification”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2012, pp. 665–673 (cit. on pp. 49, 50).

[247] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. “SUN RGB-D: A RGB-D Scene
Understanding Benchmark Suite”. In: IEEE CVPR. 2015, pp. 567–576 (cit. on pp. 7, 49, 50,
90).

[248] Shuran Song, Fisher Yu, Andy Zeng, et al. “Semantic Scene Completion from a Single Depth
Image”. In: arXiv preprint arXiv:1611.08974 (2016) (cit. on p. 45).

[249] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15 (2014), pp. 1929–1958 (cit. on
p. 37).

[250] Michael Stark, Michael Goesele, and Bernt Schiele. “Back to the Future: Learning Shape
Models from 3D CAD Data.” In: BMVC. Vol. 2. 2010, p. 5 (cit. on pp. 6, 45, 51).

[251] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers. “A
Benchmark for the Evaluation of RGB-D SLAM Systems”. In: Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference On. IEEE. 2012, pp. 573–580 (cit. on pp. 77,
79, 93).

[252] Peter Sturm and Bill Triggs. “A Factorization Based Algorithm for Multi-Image Projective
Structure and Motion”. In: European Conference on Computer Vision. Springer. 1996,
pp. 709–720 (cit. on p. 77).

Bibliography 147

https://new.siemens.com/global/en/products/mobility/rail-solutions/services/spare-part-services/easy-spares-idea.html
https://new.siemens.com/global/en/products/mobility/rail-solutions/services/spare-part-services/easy-spares-idea.html


[253] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-Miller. “Multi-View
Convolutional Neural Networks for 3d Shape Recognition”. In: IEEE ICCV. 2015 (cit. on
pp. 50, 51).

[254] Hao Su, Charles R Qi, Yangyan Li, and Leonidas Guibas. “Render for CNN: Viewpoint
Estimation in Images Using CNNs Trained with Rendered 3D Model Views”. In: arXiv
preprint arXiv:1505.05641 (2015) (cit. on pp. 5, 6, 51, 53).

[255] Masashi Sugiyama, Makoto Yamada, and Marthinus Christoffel du Plessis. “Learning under
nonstationarity: covariate shift and class-balance change”. In: Wiley Interdisciplinary Reviews:
Computational Statistics 5.6 (2013), pp. 465–477 (cit. on pp. 38, 39).

[256] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. “Revisiting Unreasonable
Effectiveness of Data in Deep Learning Era”. In: CoRR abs/1707.02968 (2017). arXiv: 1707.
02968 (cit. on pp. 37, 44).

[257] Shao-Hua Sun, Minyoung Huh, Yuan-Hong Liao, Ning Zhang, and Joseph J Lim. “Multi-View
to Novel View: Synthesizing Novel Views with Self-Learned Confidence”. In: ECCV. 2018,
pp. 155–171 (cit. on p. 96).

[258] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian Durner, Manuel Brucker, and
Rudolph Triebel. “Implicit 3d orientation learning for 6d object detection from rgb images”.
In: Proceedings of the European Conference on Computer Vision (ECCV). 2018, pp. 699–715
(cit. on p. 106).

[259] Richard Szeliski. “Bayesian modeling of uncertainty in low-level vision”. In: International
Journal of Computer Vision 5.3 (1990), pp. 271–301 (cit. on p. 18).

[260] Richard Szeliski. Computer vision: algorithms and applications. Springer Science & Business
Media, 2010 (cit. on p. 16).

[261] Yaniv Taigman, Adam Polyak, and Lior Wolf. “Unsupervised Cross-Domain Image
Generation”. In: arXiv preprint arXiv:1611.02200 (2016) (cit. on p. 104).

[262] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. “Multi-View 3d Models from
Single Images with a Convolutional Network”. In: ECCV. Springer. 2016, pp. 322–337 (cit. on
pp. 79, 96).

[263] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. “CNN-SLAM: Real-Time
Dense Monocular SLAM with Learned Depth Prediction”. In: IEEE CVPR. 2017 (cit. on
p. 78).

[264] Geoffrey R Taylor, Andrew J Chosak, and Paul C Brewer. “Ovvv: Using virtual worlds to
design and evaluate surveillance systems”. In: 2007 IEEE conference on computer vision and
pattern recognition. IEEE. 2007, pp. 1–8 (cit. on p. 45).

[265] Josh Tobin, Rachel Fong, Alex Ray, et al. “Domain Randomization for Transferring Deep
Neural Networks from Simulation to the Real World”. In: IROS. IEEE. 2017, pp. 23–30 (cit. on
pp. 8, 39, 46, 102, 106, 113).

[266] Michael Treml, José Arjona-Medina, Thomas Unterthiner, et al. “Speeding up Semantic
Segmentation for Autonomous Driving”. In: MLITS, NIPS Workshop. 2016 (cit. on p. 111).

[267] Alan M. Turing. “Computing machinery and intelligence”. In: Mind 59.236 (1950),
pp. 433–460 (cit. on pp. 14, 15).

[268] Alan M Turing. “Intelligent machinery, a heretical theory”. In: The Turing Test: Verbal
Behavior as the Hallmark of Intelligence 105 (1948) (cit. on p. 15).

[269] Matthew Turk and Alex Pentland. “Eigenfaces for recognition”. In: Journal of cognitive
neuroscience 3.1 (1991), pp. 71–86 (cit. on pp. 16, 17).

[270] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. “Simultaneous Deep Transfer
across Domains and Tasks”. In: ICCV. 2015, pp. 4068–4076 (cit. on p. 111).

[271] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. “Adversarial discriminative
domain adaptation”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 7167–7176 (cit. on p. 104).

[272] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. “Deep Domain
Confusion: Maximizing for Domain Invariance”. In: arXiv preprint arXiv:1412.3474 (2014)
(cit. on pp. 5, 6, 39).

148 Bibliography

https://arxiv.org/abs/1707.02968
https://arxiv.org/abs/1707.02968


[273] Vladimir Vapnik. The nature of statistical learning theory. 2013 (cit. on p. 18).
[274] Vladimir N Vapnik and A Ya Chervonenkis. “On the uniform convergence of relative

frequencies of events to their probabilities”. In: Measures of complexity. Springer, 2015,
pp. 11–30 (cit. on pp. xix, xx, 36, 37).

[275] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. “Attention Is All You Need”. In: NIPS.
2017, pp. 5998–6008 (cit. on pp. 88, 111).

[276] Armando Vieira and Nuno Barradas. “A training algorithm for classification of
high-dimensional data”. In: Neurocomputing 50 (2003), pp. 461–472 (cit. on p. 27).

[277] Mei Wang and Weihong Deng. “Deep visual domain adaptation: A survey”. In:
Neurocomputing 312 (2018), pp. 135–153 (cit. on pp. 18, 39).

[278] Nanyang Wang, Yinda Zhang, Zhuwen Li, et al. “Pixel2mesh: Generating 3d mesh models
from single rgb images”. In: Proceedings of the European Conference on Computer Vision
(ECCV). 2018, pp. 52–67 (cit. on p. 131).

[279] Peng Wang, Xiaohui Shen, Zhe Lin, et al. “Towards Unified Depth and Semantic Prediction
from a Single Image”. In: CVPR. 2015, pp. 2800–2809 (cit. on pp. 107, 109).

[280] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, et al. “High-resolution image synthesis and
semantic manipulation with conditional gans”. In: IEEE CVPR. 2018 (cit. on pp. 98, 129).

[281] Yan Wang, Jie Feng, Zhixiang Wu, Jun Wang, and Shih-Fu Chang. “From Low-Cost Depth
Sensors to Cad: Cross-Domain 3d Shape Retrieval via Regression Tree Fields”. In: European
Conference on Computer Vision. Springer, 2014, pp. 489–504 (cit. on p. 50).

[282] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. “Image Quality
Assessment: From Error Visibility to Structural Similarity”. In: IEEE transactions on image
processing 13.4 (2004), pp. 600–612 (cit. on p. 93).

[283] Zhou Wang and Qiang Li. “Information Content Weighting for Perceptual Image Quality
Assessment”. In: IEEE Transactions on Image Processing 20.5 (2011), pp. 1185–1198 (cit. on
p. 93).

[284] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. “Multiscale Structural Similarity for Image
Quality Assessment”. In: The Thrity-Seventh Asilomar Conference on Signals, Systems &
Computers, 2003. Vol. 2. IEEE. 2003, pp. 1398–1402 (cit. on p. 93).

[285] Georg Wiese, Dirk Weissenborn, and Mariana Neves. “Neural domain adaptation for
biomedical question answering”. In: arXiv preprint arXiv:1706.03610 (2017) (cit. on p. 31).

[286] Paul Wohlhart and Vincent Lepetit. “Learning Descriptors for Object Recognition and 3d
Pose Estimation”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2015, pp. 3109–3118 (cit. on pp. 6, 45, 50, 51, 66, 110, 112, 116, 118–121).

[287] Svante Wold, Kim Esbensen, and Paul Geladi. “Principal Component Analysis”. In:
Chemometrics and intelligent laboratory systems 2.1-3 (1987), pp. 37–52 (cit. on p. 17).

[288] Steven Worley. “A Cellular Texture Basis Function”. In: Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques. ACM. 1996, pp. 291–294
(cit. on pp. 114, 117).

[289] Changchang Wu. “Towards Linear-Time Incremental Structure from Motion”. In: 3D Vision-
3DV 2013, 2013 International Conference On. IEEE. 2013, pp. 127–134 (cit. on p. 77).

[290] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. “Building generalizable agents
with a realistic and rich 3D environment”. In: arXiv preprint arXiv:1801.02209 (2018) (cit. on
p. 45).

[291] Zhirong Wu, Shuran Song, Aditya Khosla, et al. “3d Shapenets: A Deep Representation for
Volumetric Shapes”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2015, pp. 1912–1920 (cit. on pp. 50, 51).

[292] Marek Wydmuch, Michał Kempka, and Wojciech Jaśkowski. “ViZDoom Competitions:
Playing Doom from Pixels”. In: IEEE Transactions on Games (2018) (cit. on p. 95).

[293] Yu Xiang, Wonhui Kim, Wei Chen, et al. “Objectnet3d: A large scale database for 3d object
recognition”. In: European conference on computer vision. Springer. 2016, pp. 160–176
(cit. on p. 45).

Bibliography 149



[294] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. “Sun
database: Large-scale scene recognition from abbey to zoo”. In: 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. IEEE. 2010, pp. 3485–3492 (cit. on
p. 54).

[295] Chang Xu, Tongliang Liu, Dacheng Tao, and Chao Xu. “Local rademacher complexity for
multi-label learning”. In: IEEE Transactions on Image Processing 25.3 (2016), pp. 1495–1507
(cit. on p. 36).

[296] Dan Xu, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe. “PAD-Net: Multi-Tasks Guided
Prediction-and-Distillation Network for Simultaneous Depth Estimation and Scene Parsing”.
In: arXiv preprint arXiv:1805.04409 (2018) (cit. on pp. 81, 107, 109–111, 122, 124).

[297] Jimei Yang, Scott E Reed, Ming-Hsuan Yang, and Honglak Lee. “Weakly-Supervised
Disentangling with Recurrent Transformations for 3d View Synthesis”. In: Advances in
Neural Information Processing Systems (NeurIPS). 2015, pp. 1099–1107 (cit. on p. 79).

[298] Jun Yang, Yu-Gang Jiang, Alexander G Hauptmann, and Chong-Wah Ngo. “Evaluating bag-
of-visual-words representations in scene classification”. In: Proceedings of the international
workshop on Workshop on multimedia information retrieval. ACM. 2007, pp. 197–206 (cit. on
p. 18).

[299] Ting Yu, Tony Jan, Simeon Simoff, and John Debenham. “Incorporating prior domain
knowledge into inductive machine learning”. In: Unpublished doctoral dissertation Computer
Sciences (2007) (cit. on pp. 30, 44).

[300] Sergey Zakharov, Wadim Kehl, Benjamin Planche, Andreas Hutter, and Slobodan Ilic. “3D
Object Instance Recognition & Pose Estimation Using Triplet Loss with Dynamic Margin”.
In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
2017, pp. 552–559 (cit. on pp. 6, 52, 53, 66, 110, 112, 118–121).

[301] Sergey Zakharov, Benjamin Planche, Ziyan Wu, et al. “Keep it Unreal: Bridging the Realism
Gap for 2.5D Recognition with Geometry Priors Only”. In: 2018 International Conference on
3D Vision (3DV). IEEE. 2018, pp. 1–11 (cit. on pp. 111–113, 116, 119).

[302] Jure Zbontar, Florian Knoll, Anuroop Sriram, et al. “fastmri: An open dataset and benchmarks
for accelerated mri”. In: arXiv preprint arXiv:1811.08839 (2018) (cit. on p. 44).

[303] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
“Understanding deep learning requires rethinking generalization”. In: CoRR abs/1611.03530
(2016) (cit. on p. 37).

[304] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. “Self-Attention
Generative Adversarial Networks”. In: arXiv preprint arXiv:1805.08318 (2018) (cit. on
pp. 88, 89, 111, 122, 124).

[305] Jingwei Zhang, Lei Tai, Joschka Boedecker, Wolfram Burgard, and Ming Liu. “Neural SLAM:
Learning to explore with external memory”. In: arXiv preprint arXiv:1706.09520 (2017)
(cit. on pp. 77, 78, 96, 97).

[306] Lin Zhang, Lei Zhang, Xuanqin Mou, and David Zhang. “A Comprehensive Evaluation of
Full Reference Image Quality Assessment Algorithms”. In: Image Processing (ICIP), 2012
19th IEEE International Conference On. IEEE. 2012, pp. 1477–1480 (cit. on p. 93).

[307] Ruo Zhang, P.-S. Tsai, J.E. Cryer, and M. Shah. “Shape-from-Shading: A Survey”. In: IEEE
TPAMI 21.8 (1999), pp. 690–706 (cit. on p. 49).

[308] Fang Zhao, Jiashi Feng, Jian Zhao, Wenhan Yang, and Shuicheng Yan. “Robust
Lstm-Autoencoders for Face de-Occlusion in the Wild”. In: IEEE Transactions on Image
Processing 27.2 (2018), pp. 778–790 (cit. on p. 78).

[309] Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, and Alexei A Efros. “View
Synthesis by Appearance Flow”. In: ECCV. Springer. 2016, pp. 286–301 (cit. on pp. 79, 96).

[310] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. “Unpaired Image-to-Image
Translation Using Cycle-Consistent Adversarial Networks”. In: ICCV. 2017 (cit. on pp. 111,
123).

150 Bibliography



Colophon

This thesis was typeset with LATEX 2ε. It uses the Clean Thesis style developed by Ricardo
Langner. The design of the Clean Thesis style is inspired by user guide documents from
Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/



	Titlepage
	Abstract
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols
	1 Introduction
	1.1 Motivation
	1.1.1 Big Data, Deep Learning, High Expectations
	1.1.2 Computer Vision for a Smarter Industry

	1.2 Problem Statement
	1.2.1 Data Scarcity in Modern Computer Vision
	1.2.2 CAD-based Recognition and Realism Gap

	1.3 Thesis Overview
	1.3.1 Contributions
	1.3.2 Outline


	2 Background on Visual Recognition from Scarce Training Data
	2.1 Conceptualization of Computer Vision
	2.1.1 Introduction to Computer Vision
	2.1.2 Development of the Field
	2.1.3 Formalization of Computer Vision Models

	2.2 Prevalence and Limits of Deep Learning
	2.2.1 Development of Artificial Neural Networks
	2.2.2 Rationale for the Success of Deep Learning
	2.2.3 Acknowledgment of CNN Limitations

	2.3 Data Scarcity and its Ramifications
	2.3.1 Learnability and Data Dependencies
	2.3.2 Dealing with Data Scarcity in Industrial Computer Vision


	3 Realistic Depth Sensor Simulation
	3.1 Motivation
	3.1.1 Rise of Depth-based Computer Vision
	3.1.2 Call for Realistic Depth Simulation Tools

	3.2 Related Work
	3.2.1 Recognition Algorithms and Synthetic Data
	3.2.2 Generation of Synthetic Images

	3.3 Methodology: Simulation of 2.5D Sensors
	3.3.1 Study of Structured-Light Depth Sensors
	3.3.2 End-to-End Simulation of Depth Sensors

	3.4 Experiments and Results
	3.4.1 Implementation Details
	3.4.2 Depth Error Evaluation
	3.4.3 Application to Recognition Tasks

	3.5 Discussion
	3.5.1 Contributions
	3.5.2 Limitations


	4 Novel View Synthesis through Incremental Scene Learning
	4.1 Motivation
	4.1.1 Visual Understanding for Autonomous Agents
	4.1.2 Novel Image Synthesis

	4.2 Related Work
	4.2.1 Simultaneous Localization and Mapping
	4.2.2 Incremental Scene Sampling

	4.3 Methodology: Neural Pipeline for Incremental Scene Synthesis
	4.3.1 Localization and Memorization
	4.3.2 Anamnesis
	4.3.3 Mnemonic Hallucination

	4.4 Experiments and Results
	4.4.1 Implementation Details
	4.4.2 Navigation in 2D Images
	4.4.3 Exploring Virtual and Real 3D Scenes

	4.5 Discussion
	4.5.1 Contributions
	4.5.2 Limitations


	5 Reversed Domain Adaptation Scheme for CAD-based Learning
	5.1 Motivation
	5.1.1 Bridging the Realism Gap from the Other Side
	5.1.2 Hardening the Data Scarcity Constraint

	5.2 Related Work
	5.2.1 Domain Adaptation to Bridge the Realism Gap
	5.2.2 Regression of Discriminative Representations

	5.3 Methodology: Real-to-Synthetic Mapping through Multi-Modal Distillation
	5.3.1 Cross-Domain Mapping via Multi-Modal Distillation
	5.3.2 Learning from Purely Geometrical CAD Data

	5.4 Experiments and Results
	5.4.1 Implementation Details
	5.4.2 Experimental Setups
	5.4.3 Qualitative Observations
	5.4.4 Quantitative Evaluation on Recognition Tasks

	5.5 Discussion
	5.5.1 Contributions
	5.5.2 Limitations


	6 Discussion and Future Work
	6.1 Summary
	6.1.1 Significance
	6.1.2 Overall Contribution

	6.2 Future Work
	6.2.1 Integration of Novel Differentiable Image Generators
	6.2.2 Beyond Image Domains

	6.3 Epilogue

	Bibliography
	Colophon

