g .
UNIVERSITAT
~“Z4(| PASSAU

Fakultit fiir Informatik und Mathematik

Improving Digital Forensics and Incident Analysis in
Production Environments by Using Virtual Machine
Introspection

Benjamin Taubmann

Dissertation
zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

Eingereicht an der Fakultit fiir
Informatik und Mathematik der Universitit Passau

Juli 2019

Gutachter: Prof. Dr. Hans P. Reiser
Prof. Dr. Nuno Miguel Carvalho dos Santos

Abstract

Main memory forensics and its special form, virtual machine introspection (VMI),
are powerful tools for digital forensics and can be used to improve the security of
computer-based systems. However, their use in production systems is often not pos-
sible. This work identifies the causes and offers practical solutions to apply these
techniques in cloud computing and on mobile devices to improve digital forensics and
incident analysis.

Four key challenges must be tackled. The first challenge is that many existing solu-
tions are not reproducible, for example, because the corresponding software compo-
nents are not available, obsolete or incompatible. The use of these tools is also often
complex and can lead to a crash of the system to be monitored in case of incorrect
use. To solve this problem, this thesis describes the design and implementation of
Libvmtrace, which is a framework for the introspection of Linux-based virtual ma-
chines. The focus of the developed design is to implement frequently used methods in
encapsulated modules so that they are easy for developers to use, optimize and test.

The second challenge is that many production systems do not provide an interface for
main memory forensics and virtual machine introspection. To address this problem,
this thesis describes possible solutions for how such an interface can be implemented
on mobile devices and in cloud environments designed to protect main memory from
unprivileged access. We discuss how cold boot attacks, the ARM TrustZone and the
hypervisor of cloud servers can be used to acquire data from storage.

The third challenge is how to reconstruct information from main memory efficiently.
This thesis describes how these questions can be solved by employing two practical
examples. The first example involves extracting the keys of encrypted TLS con-
nections from the main memory of applications to decrypt network traffic without
affecting the performance of the monitored application. The TLSKez and DroidKex
architecture describe two approaches to localize the keys efficiently with the help of
semantic knowledge in the main memory of applications. The second example dis-
cusses how to monitor and document SSH sessions of potential attackers from outside
of a virtual machine. It is important that the monitoring routines are not noticed
by an attacker. To achieve this, we evaluate how to optimize the performance of the
monitoring mechanism.

The fourth challenge is how to deal with the performance degradation caused by intro-
spection in productive systems. This thesis discusses how this can be achieved using
the example of a SIEM system. To reduce the performance overhead, we describe how
to configure the monitoring routine to collect only the information needed to detect
incidents. Also, we describe two approaches that permit the monitoring routine to
be dynamically adjusted at runtime to extract more information if necessary so that
incidents can be better analyzed.

Zusammenfassung

Hauptspeicherforensik und dessen Spezialform, die Introspektion von virtuellen Maschi-
nen (VMI), sind leistungsstarke Werkzeuge fiir die digitale Forensik und koénnen zur
Verbesserung der Sicherheit von computergestiitzten Systemen eingesetzt werden. Allerd-
ings ist der Einsatz davon in Produktivsystemen oft nicht mdglich. Diese Arbeit iden-
tifiziert die Ursachen dafiir und bietet praktische Losungen an um diese Techniken in
Cloud-Computing und auf mobilen Endgerdten einzusetzen um digitale Forensik und
Vorfallsanalyse verbessert durchfithren zu kénnen.

Dazu miissen vier wesentliche Herausforderungen gelost werden. Die erste Heraus-
forderung ist, dass viele bereits vorhandene Losungsansétze nicht reproduzierbar sind,
zum Beispiel weil die entsprechenden Softwarekomponenten nicht verfiigbar, veraltet
oder nicht kompatibel sind. Ebenfalls ist die Verwendung dieser Werkzeuge oft kom-
plex und kann bei fehlerhafter Verwendung zum Absturz des zu {iberwachenden Systems
fiihren. Um dieses Problem zu lésen, beschreibt diese Arbeit das Design und die Im-
plementierung von Libvmtrace, welches ein Framework fiir die Introspektion von Linux
basierten virtuellen Maschinen ist. Der Fokus des erarbeiteten Designs liegt dabei darauf
h&ufig verwendete Methoden in abgekapselten Modulen zu implementieren, sodass diese
leicht fiir Entwickler zu verwenden, zu optimieren und zu testen sind.

Die zweite Herausforderung besteht darin, dass viele Produktivsysteme keine Schnittstelle
bereitstellen die fiir Hauptspeicherforensik und die Introspektion von virtuellen Maschi-
nen genutzt werden kann. Um dieses Problem zu adressieren, beschreibt diese Arbeit
Loésungsansétze, wie eine solche Schnittstelle auf mobilen Endgerdten und in Cloud-
Umgebungen umgesetzt werden kann die dafiir entworfen sind, den Hauptspeicher vor
unprivilegierten Zugriff zu schiitzen. Wir betrachten dazu, wie Kaltstartattacken, die
ARM TrustZone und der Hypervisor von Cloud Servern fiir die Datenakquise von Spe-
icher genutzt werden kann.

Die dritte Herausforderung ist die Fragestellung wie Informationen aus dem Hauptspeicher
effizient rekonstruiert werden kénnen. Diese Arbeit beschreibt anhand von zwei praxisna-
hen Beispielen, wie diese Fragestellungen gelost werden kann. In dem ersten Beispiel geht
es darum die Schliissel von verschliisselten TLS-Verbindungen aus dem Hauptspeicher
von Anwendungen zu extrahieren, um den Netzwerkverkehr zu entschliisseln, ohne die
Performanz der iiberwachten Anwendung zu beeintrachtigen. Die TLSKex und DroidKex
Architektur beschreiben dazu zwei Losungsanséitze, um die Schliissel effizient mithilfe von
semantischem Wissen im Hauptspeicher von Anwendungen zu lokalisieren. Das zweite
Beispiel diskutiert wie man SSH-Sitzungen von moglichen Angreifern von auflerhalb einer
virtuellen Maschinen tiberwachen und dokumentieren kann. Dazu ist es wichtig, dass die
Uberwachungsroutinen nicht von einem Angreifer bemerkt werden. Um dies zu erreichen,
evaluieren wir wie man die Performanz der Introspektion optimieren kann.

Die vierte Herausforderung ist wie man mit Leistungseinbuflen, welche durch die Intro-
spektion entstehen, in Produktivsystemen umgehen kann. Die vorliegende Arbeit disku-
tiert anhand von dem Beispiel eines STEM Systemens, wie dies erreicht werden kann. Um
die Leistungseinbuien zu reduzieren, beschreiben wir wie man die Uberwachungsroutine
so konfigurieren kann, dass nur Informationen gesammelt werden die benétigt werden,
um Vorfillle zu erkennen. Ebenfalls, beschreiben wir zwei Ansétze, die es erlauben die
Uberwachungsroutine dynamisch zur Laufzeit anzupassen um gegebenenfalls mehr Infor-
mationen zu extrahieren damit Vorfille besser aufgeklirt werden kénnen.

iii

Acknowledgments

First, I thank Hans P. Reiser for supporting me during the thesis and
for all the discussion we had. I am really grateful, for his advice and to
know that I can always count on him. I also owe him great thanks for
giving me the chance to work on a fascinating topic in a research-friendly
environment.

Second, I thank Nuno Santos for his valuable feedback and his willingness
to support this thesis.

I also want to thank Juan David Parra for sharing the good and bad
sides of publishing research. Moreover, I want to thank Stewart Senta-
noe for supporting my research by building on top of and extending my
implementations. Additionally, I am also very grateful to Siglinde Bock,
who has always helped me to cope with non-scientific things in everyday
life. Besides all that I want to thank all students and colleagues that
contributed to my research: Omar Alabduljaleel, Michael Auer, Alexan-
der B6hm, Dominik Dusold, Christian Fradrich, Miguel Guerra, Manuel
Huber, Thomas Kittel, Stefan Kunz, Bojan Kolosnjaji, Henrich Pohls,
and Noélle Rakatondravony.

Finally, I would like to thank my parents who made it possible for me to
study computer science and to arouse my interest in science at an early
age.

Contents

Contents vii
1 Introduction 1
1.1 Problem Statement 2
1.2 Main Contributions L 3
1.3 Publications e 6
1.4 Structure of this Thesis 8

2 Background 9
2.1 Virtualization 9

2.2 The Xen Hypervisor. 12
2.3 Digital Forensics 13
2.4 Memory Forensics e e 14
2.5 Virtual Machine Introspection oo 16
2.6 LibVMI 18
2.7 TLS Internals 21
2.8 SUMIMATY o o o e e e e e e e e e e 23

3 An Extensible Architecture For Memory Analysis 25
3.1 Stateof the Art L 26
3.2 Requirements of VMI-based Applications 29
3.3 Design Goals L 31
3.3.1 Static Analysis e 31

3.3.2 Dynamic Analysis 31

3.3.3 Network Traffic 33

3.4 System Design e 34
3.5 Libvmtrace e 36
3.5.1 System Monitor 36

3.5.2 Network Monitor 41

3.5.3 Operating System Monitor 42

3.5.4 Library and Process Monitor 43

3.5.5 Plug-ins and Dynamic Reconfiguration. 43

3.5.6 Logging e e e 43

3.6 Evaluation 44
3.6.1 Process List Extraction 44

3.6.2 Breakpoint Performance oo oo 44

3.6.3 Return Value 44

3.6.4 System Call Tracing i i e 45

vii

viii Contents
3.6.5 Process Monitor 46
3.6.6 Accessing Virtual Addresses that are not Present in Physical Memory 46
3.6.7 Stealthiness 47
3.6.8 Network Tracing e 47
3.6.9 Compliance with Principals of Digital Forensics 48

3.7 Summary .. o. oL e e 49
4 Data Acquisition 51
4.1 State of the Art L e 52
4.1.1 Main Memory Access on Mobile Devices. 52
4.1.2 VMI in Cloud Computing Environments. 53

4.2 Improving Cold-boot Based Data Acquisition 55
4.2.1 System Design e 56
4.2.2 Implementation 56
4.2.3 Evaluation 58

4.3 Towards ARM TrustZone Based Monitoring 61
4.3.1 Threat Model and Assumptions 61
4.3.2 System Design e 61
4.3.3 Implementation 62
434 Evaluation 63

4.4 Bringing VMI to Cloud Environments 65
4.4.1 Threat Model and Assumptions 65
4.4.2 System Design e 66
4.4.3 Implementation 67
4.4.4 Evaluation and Discussion L oo 69

4.5 VMI and Live Migration 74
4.5.1 System Design 75
4.5.2 Implementation 79
4.5.3 Evaluation 81

4.6 SUMIMATY o o vttt e e e e e e e e e e e 83
5 Information Retrieval 85
5.1 Stateof the Art 86
5.1.1 Decryption of TLS Communication. 86
5.1.2 SSH Homneypots 88
5.1.3 Stealthiness of VMI 88
5.1.4 Information Retrieval from Memory 89

5.2 TLSKex: Content-based TLS Session Key Extraction from Virtual Machines. . . . 91
5.2.1 System Design 91
5.2.2 Implementation 93
5.2.3 Evaluation 96

5.3 DroidKex: Data structure-based Key Extraction from Mobile Phones 99
5.3.1 System Design 99
5.3.2 TImplementation 102
5.3.3 Evaluation and Discussion oL 106

5.4 VMlI-based SSH Honeypot 110
5.4.1 Threat Model and Assumptions 110
5.4.2 System Design 111
5.4.3 Implementation 111

5.4.4 Evaluation 113

DD Summary e e e 116
6 VMIin SIEM Systems 119
6.1 State of the Art L 120

Contents ix
6.2 Threat Model and Assumptions 121
6.3 System Design 121
6.4 TImplementation e e e e 124
6.5 Evaluation e e 127
6.6 SUmMmMAry e e e e e 128
Conclusions 129
7.1 Contributions e 129
7.2 Future Work e 131

List of Abbreviations 133

List of Figures 135

List of Tables 137

List of Listings 139

Bibliography 141

INTRODUCTION

The Golden Age [of digital forensics] is
quickly coming to an end.

Simson L. Garfinkel, 2010

Digital forensics has become an important and challenging part of many criminal investiga-
tions [CNB17]. It can be divided into post-mortem analysis and live forensics [Sicll]. While
post-mortem analysis mainly operates on persistent memory such as hard disks, live forensics
operates on ephemeral data typically stored in CPU registers and main memory. The main ap-
plication of post-mortem analysis is to gather evidence from systems after an incident already
happened, e.g., by taking snapshots from a hard disk to reconstruct deleted files. Today, these
systems include not only desktop PCs, but also internet of things devices, such as smartphones and
watches, fitness trackers, drones, speakers, and more. Live forensics is used to extract volatile data
from running systems that does not manifest in persistent memory. A commonly used technique
of live forensics is main memory forensics. Main memory forensics analyzes the content in main
memory and, in addition to its application to live forensics, can also be used to proactively learn
more about current or future attacks by collecting evidence from running systems, e.g., in security
information and event management (SIEM) systems, honeypots or dynamic malware analysis.

Main memory forensics analyzes the state of a running operating system from the outside, e.g., by
using a hypervisor that provides access to the system state of a virtual machine, i.e., the contents of
the main memory and CPU registers. In general, memory forensics is often performed on snapshots
that are not changed during analysis. A snapshot of memory can be taken in many ways, but it
depends on the system being analyzed what data acquisition method is available. For example, it
can be acquired by in-guest agents [Syl4+12], cold boot attacks [Hal409], by FireWire [Mar07], or
by using the hypervisor to store the main memory of a virtual machine.

Memory forensics can be divided into static and dynamic analyses'. Static analysis is triggered by
external events, such as a timer, or by a forensic analyst, and retrieves information from a snapshot
or a running virtual machine. Dynamic analysis is triggered when a certain point in the control
flow of the analyzed system is reached, e.g., to extract the parameters of a function call.

Virtual machine introspection (VMI) is a dynamic analysis performed on running virtual machines.
It benefits from the isolation of the analyzing and the analyzed system provided by hardware
virtualization and the hypervisor. It prevents an attacker with full control over the analyzed

1Jain et al. [Jai+14] defines them as asynchronous and synchronous to the execution of the analyzed system. Payne et al. [Pay+08]
defines them as passive and active.

2 1 Introduction

system from disturbing or attacking the analyzing system, e.g., by turning the monitoring off. In
addition, it provides evidence of high value because it has an untainted view of the system state,
making it difficult for attackers to hide information, as opposed to in-guest agents who need to
trust the operating system, which could be manipulated by a (kernel-level) rootkit. Finally, VMI
can be used to extract ephemeral data such as cryptographic keys required to decrypt network
connections or persistent storage. Thus, More et al. [MT14] stated that “VMI, which has its roots
in cloud-based technology virtualization, has the potential to change the security implementation
in cloud environments”.

1.1 Problem Statement

Although memory-based forensic approaches have several advantages, they also present a number
of challenges in practice. This thesis aims to tackle the following four challenges.

@ How should a virtual machine introspection frameworks be designed to be robust and powerful
to help analysts develop application-specific information extraction tools?

The first challenge is the lack of frameworks for virtual machine introspection. Since basic functions
for the introspection of virtual machines (e.g., the handling of software breakpoints) are often
complex and small implementation errors can lead to undefined behavior or even system crashes
of the analyzed system, it is important to implement and test these functions once very well to
be able to reuse them for the development of new applications. However, most of the available
software solutions do not provide an easy-to-use interface for this purpose. For example, LibVMI
does not provide an API for tracing (user-space) function calls. It only provides very rudimentary
functions for handling low-level events generated by the CPU such as traps caused by software
breakpoints. In addition, available software components for virtual machines introspection often
only work with outdated software versions or are very complicated to use. Hence, the first research
question is how to design a powerful VMI framework that can be used to rapidly develop new VMI
applications.

@ How to access the memory of production systems such as cloud environments or mobile devices
while preserving the security of the overall architecture?

The second challenge is the process of data acquisition. Since main memory can contain confi-
dential information, hardware manufacturer of mobile devices try to protect it from unauthorized
access as good as possible [Beul8], e.g., by using biometric data for authentication [Cox18] or by
implementing a secure boot process that prevents booting, installing and using forensic analysis
tools [CNB17; Win08]. On the other side, software vendors encrypt the data of their customers
to protect it from unauthorized access [Ken18]. This is good for users, but it complicates forensic
analysis that requires obtaining user-related data.

In public cloud environments, we face a similar problem, because they are not ready for virtual
machine introspection. Legitimate cloud tenants who want to take advantage of VMI-based security
solutions cannot implement them because there is no interface that gives them access to the
main memory of their virtual machines required for VMI. The Xen hypervisor provides such an
interface. However, this is only available in the most privileged domain Dom0 and grants access to
all virtual machines running on this system. This interface is not enabled in common unprivileged
virtual machines, to protect other virtual machines running on the same system from unauthorized
access. Thus, the challenge of data acquisition is also a problem of implementing an access control
mechanism around the VMI interfaces that grants only legitimate cloud tenants access to their
virtual machines and not to others.

1.2 Main Contributions 3

Applications @\

VMI 0 SIEM System Malware Analysis
Framework [Fis+15; Men+18] [TK17; TR16]

. J

N
Information Retrieval 3)
TG { TLSKex j { DroidKex j { SSH Honeypot j

[Tau+16] [TAR18] [STR18; STR17]
4 J
(1 Data Acquisition @N
Coldboot TrustZone CloudPhylactor TwinPorter
- [Hub+16; Tau+15b] [Gue+17; Gue+18] [TRR16] [TBR19]
A J

Figure 1.1: Contributions of the thesis

@ How to locate and extract information efficiently in main memory when there is little or no
semantic knowledge?

The third challenge is information retrieval from the acquired data. It can be split into two sub-
problems: the semantic gap problem and the performance of the data extraction. The semantic
gap is the problem of extracting high-level information from low-level data sources [Dol+11]. This
knowledge is required to locate data structures in memory and to parse/extract the information
they hold. If the data structure layout is not given or slightly incorrect, e.g., due to updates of the
monitored software, these approaches often fail to retrieve the correct information. Additionally,
for live forensics, it is crucial that this process is implemented fast to minimize the performance
impact on the analyzed system when the dynamic analysis requires to pause the analyzed system
for the information extraction of transient data.

@ How can VMI methods be used to improve the data collection in SIEM systems while keeping
the overhead low?

Live monitoring has in most cases a negative performance impact on the analyzed system. How-
ever, the overhead depends on many factors and is not always the same for different virtual machine
introspection applications. A SIEM system requires to have a low-performance impact on produc-
tion systems to detect intrusions. However, in case of an incident, it can be justified to perform
forensic operations with higher performance impact to obtain more information. Thus, the fourth
challenge is how to select VMI-based methods for SIEM systems to detect incidents and how to
use expensive VMI-based methods to analyze incidents.

1.2 Main Contributions

The following four contributions address the research challenges. Figure 1.1 gives an overview of
the contributions and assigns them to the problems.

The first contribution of this thesis is the design of a VMI architecture — Libumtrace. It provides
a framework for VMI-based monitoring of Linux based virtual machines and is the basis for several
of the proof-of-concept implementations presented in this thesis. Libvmtrace encapsulates the
functions required to trace the execution of virtual machines so that it is easier for developers
to use. Additionally, this approach helps to reduce the risk of crashes of the analyzed system
caused by errors in the implementation of VMI applications because the tracing methods can be
tested independently. Furthermore, the encapsulation also helps to improve the performance of
each module individually. Besides that, an additional contribution of Libumtrace is to provide
an implementation for standard tasks of virtual machine introspection that can be used to build

4 1 Introduction

application-specific monitoring plug-ins. These plug-ins can be activated and deactivated on the
fly, e.g., when a forensic investigator needs more information or when the virtual machine sends
certain network packets. Finally, Libumirace implements an approach for injecting commands to
virtual machines and for accessing memory pages that are not present in physical memory, e.g.,
when they are swapped out or not yet mapped. None of the available VMI frameworks provides
all of these features.

The second contribution of this thesis addresses the research problem of data acquisition in
cloud environments and on mobile devices. To tackle that problem for mobile devices, we im-
prove state-of-the-art cold boot attacks for ARM-based systems by minimizing their footprint in
memory. State-of-the-art solutions use a fully fledged Linux kernel for the data acquisition, which
overwrites the data structures of the previously running system. However, these data structures
contain important information for forensic operations. To solve this problem, we present the de-
sign of a framework for cold boot attacks on smartphones with a minimal footprint in memory.
This approach increases the amount of unchanged memory and leaves the data structures of the
previously running kernel untouched [Hub+16; Tau+15b]. We describe the implementation of a
minimal bootable operating system with the goal of sending requested parts of memory via the
serial console to the system running the forensic analysis. Furthermore, we describe our extension
for the memory forensic tool volatility that requests memory on demand from a device running our
minimal operating system. Thus, only the required data is transferred and not the entire content
in the main memory of the smartphone, which would take much longer, especially via the serial
console.

On top of digital forensics, we discuss how virtual machine introspection can be used on mobile
devices using the ARM TrustZone in order to increase the security level of a running mobile device.
In contrast to VMI-based approaches on virtual machines, there are no tools or interfaces that could
be used to access the main memory of the normal world from the secure world. To achieve that,
we propose to implement the interface of the de facto standard tool for VMI-based applications
— LibVMI — in the secure world of the TrustZone so that developers can port already existing
VMI-based applications to it [Gue+17; Gue+18]. Additionally, we implemented and evaluated
that approach.

With the CloudPhylactor architecture [TRR16] we present a cloud architecture that allows cloud
tenants to perform VMI-based operations on their virtual machines. To achieve that, we introduce
the concept of monitoring virtual machines (MVM) and production virtual machines (PVM) and
describe how the Xen security modules can be used to implement this concept. Monitoring virtual
machines can be created and used by regular customers and provide VMI access to their produc-
tion virtual machines. To achieve that, we implement policies for the Xen security modules that
implement the concept of MVM and PVM and the mapping of the virtual machines to cloud ten-
ants. To test whether our approach works in real-world environments, we extend the OpenNebula
cloud management with this concept and discuss the performance difference of doing VMI from a
monitoring virtual machine and not from the hypervisor.

One shortcoming of the CloudPhylactor architecture is that it does not cover the aspect of live
migration. With the TwinPorter architecture [TBR19] we present a solution for that. TwinPorter
extends the live migration concept of Xen so that a monitoring virtual machine and a production
virtual machine are migrated synchronously to the same target cloud node. This approach ensures
a minimal downtime of both virtual machines and guarantees that there is no point in time when
the production virtual machine is running without monitoring during the migration.

The third contribution addresses the problem of efficient information retrieval based on the
example of extracting TLS session keys from communicating applications and reconstructing SSH
sessions by monitoring function calls. Our first approach to extract TLS session keys is the
TisInspector [Tau+15a] architecture, which has been improved and extended by TLSKex [Tau+16].
Both approaches extract the TLS master secret from the main memory of virtual machines. The
contribution of them is that they provide an approach for locating the master secret in memory

1.2 Main Contributions 5

that is independent of specific key exchange, encryption algorithm, client/server role and of the
application’s implementation. To achieve that, they monitor the network traffic of the virtual
machine and start the extraction of the master secret after a TLS session is negotiated. To locate
the key in memory TLSKex uses a novel brute-force approach that tests every byte sequence in
memory whether it can be used to decrypt a message of the TLS communication correctly. To
improve the performance, we apply several heuristics and optimizations to narrow the address
range of where the key is searched to locate it in memory. However, the performance overhead of
this brute-force approach is not acceptable for many real-world application scenarios.

The contribution of the DroidKez architecture is to improve the performance of the localization
of the master secret in memory. To achieve that, the DroidKez architecture directly accesses the
master secret using the semantic knowledge on how and where the monitored application stores
this information. To obtain the semantic knowledge, it derives the data structure layout in advance
based on memory snapshot and calculates a path by dereferencing pointers used by data structures.
In contrast to TLSKex, DroidKex operates on Android applications.

In Sarracenia [STR18] we describe an SSH honeypot that uses virtual machine introspection to re-
construct SSH sessions. The contribution of the Sarracenia honeypot is to implement SSH session
monitoring and improve the performance in order to make the monitoring stealthy for attackers so
that they do not evade the analysis. Sarracenia uses semantic knowledge to extract the payload
of SSH connections from the SSH daemon handling a connection. However, instead of recon-
structing the data structure layout from memory snapshots like DroidKex, it uses the debugging
information of the SSH binary. To improve the performance of the information extraction, we
discuss which functions of the SSH daemon to monitor to minimize the interceptions caused by the
monitoring. For this discussion, we compare the performance of Sarracenia with our preliminary
architecture [STR17], which reconstructs SSH sessions using the parameters of the read and write
system call.

The fourth contribution tackles the problem of selecting VMI-based tracing for SIEM systems to
maintain low monitoring overhead. In [TK17] we discuss an architecture for efficiently analyzing
malware samples using cloud resources provided by a private cloud that implements the CloudPhy-
lactor [TRR16] architecture. We use this approach to generate malware traces in order to train a
machine learning algorithm that aims to detect malware in virtual machines efficiently. The goal
of this approach is to select features for the detection mechanism that can be traced with minimal
costs.

The CloudIDEA [Fis+15; Tau+15c] and DINGfest [Men+18] architectures describe two approaches
how the VMI-based tracing in SIEM systems can be adjusted at run-time in production environ-
ments in case of an incident. The contribution of these architectures is their approach to handle the
monitoring overhead by keeping the total costs low. The CloudIDEA uses light-weight monitoring
mechanisms to detect incidents and migrates potentially infected virtual machines to an isolated
analysis environment with more resources to keep service level agreements and to ensure that mal-
ware does not spread in the cloud environment of a provider. In this environment, heavy-weight
analysis mechanisms can be used to investigate suspicious behavior. The DINGfest architecture
enables the forensic investigator to dynamically reconfigure the tracing by selecting only those
tracing mechanisms that are adequate to react to potential infections.

1 Introduction

1.3 Publications

Parts of this thesis have been already published in the following publications presented at peer-
reviewed conferences and workshops as well as peer-reviewed journals. In particular, these are:

[Tau+15a]

[Tau+15b]

[Tau+15c¢]

[Fis+15]

[Hub+16]

[Tau+16]

[TR16]

[TRR16]

[STR17]

Benjamin Taubmann, Dominik Dusold, Christoph Fradrich, and Hans P. Reiser.
“Analysing malware attacks in the cloud: A use case for the TLSInspector toolkit.” In:
Proceedings of the Workshop on Security in Highly Connected IT Systems. Sept. 2015

Benjamin Taubmann, Manuel Huber, Sascha Wessel, Lukas Heim, Hans P. Reiser, and
Georg Sigl. “A lightweight framework for cold boot based forensics on mobile devices.”
In: International Conference on Availability, Reliability and Security (ARES). Aug.
2015, pp. 120-128. DOI: 10.1109/ARES.2015.47

Benjamin Taubmann, Hans P. Reiser, Thomas Kittel, Andreas Fischer, Waseem
Mandarawi, and Hermann de Meer. “CloudIDEA: Cloud Intrusion Detection,
Evidence preservation and Analysis” In: FEuroSys poster. Apr. 2015. URL:
http://eurosys2015.1labri.fr/posters/p37.pdf

Andreas Fischer, Thomas Kittel, Bojan Kolosnjaji, Tamas K Lengyel, Waseem
Mandarawi, Hans P. Reiser, Benjamin Taubmann, Eva Weishdupl, Hermann de Meer,
Tilo Miiller, and Mykola Protsenko. “CloudIDEA: A Malware Defense Architecture
for Cloud Data Centers.” In: Cloud and Trusted Computing. 2015. 1SBN: 978-3-319-
26148-5. po1: 10.1007/978-3-319-26148-5_40

Manuel Huber, Benjamin Taubmann, Sascha Wessel, Hans P. Reiser, and Georg
Sigl. “A flexible framework for mobile device forensics based on cold boot at-
tacks” In: EURASIP Journal on Information Security 1 (2016), p. 17. DOL
10.1186/s13635-016-0041-4

Benjamin Taubmann, Christoph Fradrich, Dominik Dusold, and Hans P. Reiser.
“TLSkex: Harnessing virtual machine introspection for decrypting TLS communica-
tion.” In: Digital Investigation 16 (2016), pp. 114-123. por: 10.1016/j.diin.
2016.01.014

Benjamin Taubmann and Hans P. Reiser. “Secure Architecture for VMI-based
Dynamic Malware Analysis in the Cloud” In: DSN fast abstract. 2016. URL:
https://hal.archives—-ouvertes.fr/hal-01316519

Benjamin Taubmann, Noélle Rakotondravony, and Hans P. Reiser. “CloudPhylactor:
Harnessing Mandatory Access Control for Virtual Machine Introspection in Cloud
Data Centers.” In: IEEE Trustcom/BigDataSE/ISPA. Aug. 2016, pp. 957-964. DOL:
10.1109/TrustCom.2016.0162

Stewart Sentanoe, Benjamin Taubmann, and Hans P. Reiser. “Virtual Machine
Introspection Based SSH Honeypot.” 1In: Proceedings of the Workshop on Security
in Highly Connected IT Systems. Neuchatel, Switzerland, 2017, pp. 13-18. ISBN:
978-1-4503-5271-0. pDOI: 10.1145/3099012.3099016

https://doi.org/10.1109/ARES.2015.47
http://eurosys2015.labri.fr/posters/p37.pdf
https://doi.org/10.1007/978-3-319-26148-5_40
https://doi.org/10.1186/s13635-016-0041-4
https://doi.org/10.1016/j.diin.2016.01.014
https://doi.org/10.1016/j.diin.2016.01.014
https://hal.archives-ouvertes.fr/hal-01316519
https://doi.org/10.1109/TrustCom.2016.0162
https://doi.org/10.1145/3099012.3099016

1.3 Publications 7

[TK17]

[Gue+17]

[Gue+18]

[Men+18]

[TARI18]

[STR1S]

[TBR19]

Benjamin Taubmann and Bojan Kolosnjaji. “Architecture for Resource-Aware
VMI-based Cloud Malware Analysis.” In: Proceedings of the Workshop on Security
in Highly Connected IT Systems. Neuchatel, Switzerland, 2017, pp. 43-48. ISBN:
978-1-4503-5271-0. pOI: 10.1145/3099012.3099015

Miguel Guerra, Miguel Correia, Benjamin Taubmann, and Hans P. Reiser. “ITZ: An
Introspection Library for ARM TrustZone.” In: Proceedings of INFORUM. 2017

Miguel Guerra, Benjamin Taubmann, Hans P. Reiser, Sileshi Yalew, and Miguel
Correia. “Introspection for ARM TrustZone with the ITZ Library” 1In: IEEE
International Conference on Software Quality, Reliability and Security (QRS). July
2018, pp. 123-134. DOI: 10.1109/QRS.2018.00026

Florian Menges, Fabian Bohm, Manfred Vielberth, Alexander Puchta, Benjamin
Taubmann, Noélle Rakotondravony, and Tobias Latzo. “Introducing DINGfest: An
architecture for next generation SIEM systems.” In: Short Paper, GI Sicherheit. 2018,
pp- 257-260. ISBN: 978-3-88579-675-6. DOI: 10.18420/sicherheit2018_21

Benjamin Taubmann, Omar Alabduljaleel, and Hans P. Reiser. “DroidKex: Fast
extraction of ephemeral TLS keys from the memory of Android apps.” In: Digital
Investigation 26 (2018), S67-S76. DOI: 10.1016/3.d1in.2018.04.013

Stewart Sentanoe, Benjamin Taubmann, and Hans P. Reiser. “Sarracenia: Enhancing
the Performance and Stealthiness of SSH Honeypots Using Virtual Machine Intro-
spection.” In: Nordic Conference on Secure IT Systems. Springer. 2018, pp. 255-271.
ISBN: 978-3-030-03638-6. po1: 10.1007/978-3-030-03638-6_16

Benjamin Taubmann, Alexander Béhm, and Hans P. Reiser. “TwinPorter — An
Architecture For Enabling the Live Migration of VMI-based Monitored Virtual
Machines.” In: Accepted for publication at TrustCom’19. 2019

https://doi.org/10.1145/3099012.3099015
https://doi.org/10.1109/QRS.2018.00026
https://doi.org/10.18420/sicherheit2018_21
https://doi.org/10.1016/j.diin.2018.04.013
https://doi.org/10.1007/978-3-030-03638-6_16

8 1 Introduction

1.4 Structure of this Thesis

This thesis is structured as follows:

Chapter 2 introduces the most important background knowledge for the remaining chapters. It
discusses the basic concepts of virtualization and the Xen hypervisor that is the foundation for
presented virtual machine introspection mechanisms. Besides that, this chapter discusses the most
important aspects of digital forensics that are used for virtual machine introspection and memory
analysis.

Chapter 3 describes the design and implementation of an architecture for virtual machine intro-
spection and discusses the requirements of different forensic applications. Moreover, we describe
how common virtual machine introspection operations can be implemented and evaluate the per-
formance of our implementation.

Chapter 4 describes different approaches for data acquisition on mobile devices and in cloud com-
puting environments. On mobile devices, we discuss how cold boot attacks can be improved to
provide better results and discuss how the TrustZone can be leveraged to enhance the security
of a system. Additionally, we introduced the CloudPhylactor architecture that allows IaaS cloud
customers to use VMI operations on their virtual machines. The TwinPorter architecture extends
this architecture to support live migration while a virtual machine is monitored.

Chapter 5 discusses the problem of fast and efficient information extraction based on two examples.
The first example is the extraction of the TLS master secret from the main memory of communi-
cating applications. We discuss two different approaches: TLSKex and DroidKex. TLSKex uses an
optimized brute-force based approach to locate the master secret in main memory, while DroidKex
directly accesses the information by following pointers from the stack of network related function
calls. The second example is the Sarracenia architecture that aims at efficiently monitoring an
SSH honeypot by extracting SSH sessions from a virtual machine.

Chapter 6 describes how to select VMI-based monitoring and data acquisition mechanisms for
SIEM systems.

Finally, Chapter 7 concludes the thesis, summarizes the most important contributions, and presents
open research challenges for future work.

BACKGROUND

In this chapter, we give the background information required to understand the remaining chapters
of this thesis. While specific topics are discussed in the corresponding sections, this chapter gives
an overview of generic topics used within more than one section. First, we explain in Section 2.1 the
most important concepts of virtualization that are used for virtual machine introspection. Second,
we discuss in Section 2.2 the Xen architecture and its most important components. Third, we
introduce in Section 2.3 the theoretical foundations for digital forensics. Fourth, we discuss the
main concepts of memory forensics (Section 2.4) and virtual machine introspection (Section 2.5).
Fifth, the core components of the de-facto library for virtual machine introspection — LibVMI —
are introduced in Section 2.6. Finally, in Section 2.7 we describe the internals of TLS-based
communication.

2.1 Virtualization

Virtualization is the core concept required for virtual machines and virtual machine introspection.
Hence, this section gives a brief introduction to the main principles of traditional virtualization
technologies that virtualize a processor'. The concept of virtualization can be traced back to the
1960s and has evolved during the decades. It enables that several operating systems can concur-
rently exist on the same processor [CJ06]. “Virtualization refers [...] to the process of decoupling
the hardware from the operating system on a physical machine” [CJ06] and helps to reduce costs
of hardware and energy by maximizing the resource utilization. With the proliferation of mod-
ern, powerful CPUs with hardware virtualization, many software solutions such as VirtualBox,
VMWare Workstation and Xen appeared on the market and opened the way for cloud computing.

Virtual Machine Monitor Types

The component that allocates and manages the resources of virtual machines on a physical machine
is called virtual machine monitor (VMM). Already in 1973, Goldberg defined two types of “virtual
computer systems” which are still used today [Gol73]:

e Type 1: The VMM runs on physical hardware. It is often called bare-metal “hypervisor”
(Examples: Xen, VMWare ESX).

o Type 2: The VMM is an application in the host operating system and is also called hosted
virtualization (Examples: KVM, VirtualBox).

I'This section does not cover other virtualization approaches such as those used by Docker or the Java virtual machine

10 2 Background

Virtual Machine Monitor Properties
The most important properties of a VMM have been defined by Garfinkel and Rosenblum [GR03]:

e [solation: The software running in a virtual machine is isolated from the VMM and can not
subvert the VMM or any other virtual machine running on the same physical machine.

e Inspection: The VMM has full control over the system state (CPU registers, memory, hard
disk, etc.) of a virtual machine. Hence, since the VMM can see everything in a VM it is
difficult for an attacker to evade the analysis.

e Interposition: The VMM can interpose the control flow of a virtual machine at certain virtual
machine operations (e.g. executing privileged instructions).

The property isolation holds only in theory. In the past, there have been several successful attempts
where a virtual machine was able to break the isolation [Com15a; Com15b; Coml5c; Com15d;
Com18a; Com18b; Com18c; Com19].

Requirements for Hardware-based Virtualization

Robin and Irvine [RI00] summarized the requirements discussed by Popek and Goldberg [PG74]
that a processor should have so that it can provide hardware-based virtualization.

e Requirement 1: The method of executing non-privileged instructions must be roughly equiva-
lent in both privileged and user mode. For example, a processor cannot use an additional bit
in an instruction word or in the address portion of an instruction when running in privileged
mode.

o Requirement 2: There must be a method such as a protection system or an address translation
system to protect the real system and any other virtual machines from the active virtual
machine.

e Requirement 3: There must be a way to automatically signal the VMM when a virtual
machine attempts to execute a sensitive instruction, e.g., instructions that interfere with the
state of the underlying VMM or host OS. It must also be possible for the VMM to simulate
the effect of the instruction.

Virtual machine introspection mainly relies on the third requirement to trace the execution of
virtual machines from the perspective of the VMM. It allows the hypervisor to investigate the
state of the virtual machine whenever the virtual machine executes a sensitive instruction. A
frequently used technique to monitor the use of non-sensitive operations such as function calls is
to replace a regular instruction with a sensitive instruction temporarily.

Approaches for Virtualization

In 2000, Robin and Irvine concluded that the TA-32 architecture is unvirtualizable since several
instructions violate the third requirement as it provides sensitive, unprivileged instructions that
do not generate an interrupt or an exception [RI00]. Similarly, Penneman et al. [Pen+13] analyzed
the virtualizability of the ARMv7-A architecture and stated that it is not classically virtualizable.
Even so, there are approaches for using virtual machines on those architectures. The following
sections discuss some of those techniques.

Hardware-Assisted Virtualization

Hardware-Assisted virtualization requires that the underlying processor implements the require-
ments mentioned above. Virtual machines running in hardware-assisted environments do not need
to be adapted since the CPU is capable of signaling the VMM the use of sensitive instructions.
However, it might be useful that the virtual machine implements the drivers for virtual hardware
components such as network cards to improve the performance. The most prominent example for
hardware-assisted virtualization is the Intel VT-x processor extension, which introduces two new

2.1 Virtualization 11

processor modes (VMX root and non-root) and ten new instructions to manage virtual machines.
Guest systems are executed in VMX non-root mode while the hypervisor is running in VMX root
mode [Int17; Uhl+05].

VT-x defines two transitions for the context switch between the two modes [Uhl4-05]:
o VM Entry: the transition from VMX root operation to VMX non-root operation.
o VM Exit: the transition from VMX non-root operation to VMX root operation.

For each transition or context switch, the processor state is saved and loaded from the corresponding
virtual-machine control structure (VMCS). The VMM defines in the VM-execution control fields
for which sensitive instructions in the virtual machine the CPU should trigger a transition to the
VMM.

Para-virtualization

Para-virtualization does not require that the hardware supports virtualization. Para-virtualization
(PV) is a virtualization approach that provides a software interface to the guest operating system
that is similar to the physical hardware but not equal. Thus, the guest does not directly execute
sensitive instructions but requests the hypervisor to do it by invoking a hypercall which imple-
ments a similar concept as system calls. Hence, to run a virtual machine para-virtualized, the
operating system and its drivers must be adapted to use the hypercall ABI of the hypervisor. This
approach can provide better performance and lower virtualization overhead compared to hardware
virtualization [Bar+03; CXZ08].

Other Virtualization Approaches

Besides, there are also different approaches to virtualize a system which are today mainly replaced
by hardware virtualization. Bochs [Law96] is an emulator that does not execute the instruction in
hardware but emulates them. Emulation is nowadays mainly required for debugging or for testing
software on a different architecture. Binary translation was used by VMware Workstation and
Virtual PC to run unmodified guest operating systems on x86 CPUs without hardware virtualiza-
tion [AAO06]. To achieve that, it scans at run-time the instructions for sensitive instructions and
interprets them?.

2VMWare does not support binary translation of 64-Bit guests https: //kb.vmware.com/s/article/10039452?1ang=d
e, accessed 2019-04-30

https://kb.vmware.com/s/article/1003945?lang=de
https://kb.vmware.com/s/article/1003945?lang=de

12 2 Background

2.2 The Xen Hypervisor

Xen [Bar+03] is a type 1 or bare-metal hypervisor and one of the most important VMMs as it is
used in many Infrastructure-as-a-Service (IaaS) cloud data centers®. Xen supports both hardware-
assisted (HVM) and para-virtualized guest (PVM).

At boot, Xen starts the Domain 0 (Dom0) which is a privileged domain that manages other
unprivileged domains (DomU). The Dom0 has access to the physical devices and provides virtual
devices to DomUs. The guest has to implement a front-end driver and the Dom0 the back-end
driver. In general, the Dom0 is a para-virtualized fully-fledged Linux virtual machine and in cloud
infrastructures, it contains the node management software.

XenBus

The XenBus is used for communication between domains and is mainly used by split drivers
of para-virtualization [Suol9]. The XenBus is not designed for data transfer, such as network
traffic. Such data should be exchanged via shared memory regions and virtual interrupts to signal
new data [LL09]. Each domain can grant other domains access to their memory pages, and the
corresponding configuration is stored in the grant tables of each domain.

Xenstore

The Xenstore is a shared database between all domains [Shi+07]. It allows high-level operations
such as reading and writing in a hierarchically organized namespace and is similar to a file system.
It can run as a process in Dom0 or as a separate stub domain. The Xenstore can be directly
accessed in Dom0 but also from DomUs via the XenBus. The Xenstore implements a discretionary
access control (DAC) based access control, and it is possible to grant each domain access to a
specific node in the tree.

Xen Access Control

While old versions of Xen do not allow executing VMI related hypercalls in unprivileged domains,
the implementation of mandatory access control (MAC) makes it possible to restrict the access
between domains in a more fine-grained way, including the possibility to grant selected virtual
machines (VMs) more permissions than regular DomUs.

Xen comes since version 4.3 with an implementation of the flux advanced security kernel (Flask)
architecture, which uses the Xen security modules (XSM) interface [Cok08]. The Xen security
modules control the access and communication of Xen domains, the Xen hypervisor and resources
such as devices or memory, but not of applications and files. The XSM Flask implementation uses
the same language for defining the policies as SELinux [LS01]. However, with a different set of
rules, users, roles and types.

In contrast to DAC, the security of MAC is not defined by the owner of an object but by the
“sensitivity [...] of the information contained in the objects” [Com85]. The decision of whether
access is granted or not is based on rules (policies) and the security label of an object.

A precondition for MAC is that each subject (e.g., processes) and object (e.g., files, sockets,
devices) must be labeled with a security context which consists of a user, role, type and optionally
the security level/category. The policies are static and must be compiled before they can be loaded
to a running system. It is not possible to add new rules or types at run-time without reloading all
rules. Policy rules can prohibit the reloading of rules, in which case the application of new rules
requires rebooting the system.

3This section is based on [TRR16].

2.3 Digital Forensics 13

2.3 Digital Forensics

Virtual machine introspection and memory forensics are valuable tools for digital forensics. There is
a variety of other data sources that are available for digital forensics such as hard disks, storage de-
vices, and network traffic and the analysis for each of the sources have different challenges [Gar10].
Different publications discuss methods of digital forensics [RRK17; Sicll], but in this thesis, we
mainly use the definitions of Casey [Casll1].

In 2001 a group of experts defined the term Digital Forensic Science at the Digital Forensic Research
Workshop (DFRWS) [Pal+01]:

Definition: The use of scientifically derived and proven methods toward the preservation, col-
lection, validation, identification, analysis, interpretation, documentation and presentation of
digital evidence derived from digital sources for the purpose of facilitating or furthering the
reconstruction of events found to be criminal, or helping to anticipate unauthorized actions
shown to be disruptive to planned operations.

Applications

Even so, Casey [Casll] mainly describes digital forensics in the context of computer crime to
provide evidence for law enforcement, digital forensics becomes more relevant for incident response
in organizations or companies. They need to analyze and maybe even to report security incidents
to authorities. Digital forensics does not seek to improve the security or protection level of a
system [Pal4+01]. However, it can be used for incident response to analyze past attacks and learn
from them which can help to improve the security.

Casey [Casl1] describes the main concepts of digital forensics especially in the context of post-
mortem crime investigations. The focus of the German “Leitfaden ,IT-Forensik’ ” [Sic11] is on
detection and analysis of cyber attacks in company networks. In 2016, ENISA [Eurl6] published
a summary of the challenges and approaches to analyze cloud incidents.

Principles of Digital Forensics

There is a wide variety of tools and techniques that can be used to deduce evidence based on digital
traces. However, they need to follow the principals of digital forensics so that they are suitable for
use at court. These principals are soundness, authentication, chain of custody, integrity, objectivity
and repeatability [Cas11].

The forensic soundness of evidence is preserved by not modifying it during the examination.
However, in some situations, it can be acceptable to alter the analyzed object as long as the
process is well documented and reproducible. Nevertheless, all modifications should be kept as
small as possible. The authentication of evidence means that is was not manipulated (during the
analysis or later), that it originates from its reported source and that the metadata is correct and
accurate. The authenticity does not necessarily require that the acquired evidence is the same
as the origin when it is technically not possible. For example, a memory snapshot can never be
compared with the original contents in memory when they are continuously changing [Cas11].
The chain of custody is an aspect of the authentication and documents the origin of evidence and
ensures that no unauthorized modification was made during the examination. Additionally, it is
a proof about where the evidence was stored and who accessed it. Integrity is another aspect of
authentication and makes sure that the evidence was not altered since it was collected. Technically,
this can be implemented by using cryptographic primitives. Objectivity refers to the interpretation
of evidence, which should not be biased by expectations or assumptions of the analyst. Moreover,
it should be possible to reproduce the results of the analysis that led to a specific interpretation of
the original data source.

14 2 Background

2.4 Memory Forensics

Memory forensics is applied digital forensics that uses the contents in the main memory of a
system as a data source to extract evidence out of it. It is “an important component of a forensic
investigation as it can provide a wealth of transient system state information not available in
persistent storage” [Osb13]. Usually, it operates on memory snapshots.

Main memory can contain valuable information such as cryptographic key material or confidential
information. However, the required information can be hidden among several hundreds of gigabytes
with temporal run-time data of programs or even with random data. Thus, for the process of
locating information in main memory, it is crucial to restrain the search space, e.g., to the address
space of a program.

Advantages and Application Areas

The main advantage and purpose of doing memory forensics is that main memory contains transient
system states that are not stored on persistent storage, which can have several reasons. The first
reason is that main memory provides better performance than persistent storage and thus it is
used to store intermediate results and data structures of programs as well as the instructions that
are executed by them. Another reason is that main memory is often considered as more secure
than persistent storage since it loses its information quickly after turning a device off*. Because of
that, key managers and other programs store unencrypted credentials often in plain text in main
memory.

Hence, memory forensics is a valuable extension of traditional hard disk analysis. For example, it
can provide cryptographic key material, which is for example required to analyze encrypted hard
disks. Additionally, memory forensics is used for malware analysis and reverse engineering, e.g.,
to access packed or obfuscated code which is not available with static analysis only [KII10].

Data Acquisition

The data acquisition is the process of getting all relevant contents in main memory of a system.
There are various possibilities to take a snapshot of a running system which can be grouped into
three categories.

The first one accesses the memory from within the analyzed system. In most of the cases, it requires
high system privileges since most parts of the address space are protected by the operating system
against unauthorized access from applications. Thus, the operating system must be involved to
access the full address space of a system. If it is compromised, an attacker can be able to interfere
with the data acquisition and manipulate the data. A common tool for taking a memory snapshot
is the LIME kernel module, which was initially called DMD [Syl12; Syl+12].

The second one accesses the memory from outside via the system bus [CG04; Mar07], debugging
interfaces such as JTAG [Gur+15] or using cold boot attacks [Hal+09]. These approaches require
that the analyzed system has an exposed interface that allows direct access to memory or that
the memory modules can be transferred fast enough to another system and exploit the remanence
effect of DRAM.

The third one uses the architecture of VMMs to access the memory of virtual machines from the
isolated VMM. In this way, the data acquisition is still executed on the same host but separated
from the analyzed system. This approach provides only forensic sound data as long as the VMM
is not compromised. This approach will be discussed in the next section.

4Coldboot attacks and similar approaches have shown that this assumption is not always valid. Because of that, Tresor and TreVi-
sor [MFD11; MTF12] store the keys required for hard disk encryption in plain in the debug registers of the CPU where they are
secure against cold boot attacks.

2.4 Memory Forensics 15

Information Retrieval

To access and extract information from raw memory it must be known where and how an appli-
cation stores it. In some easy cases it might be enough to scan the memory snapshot with regular
expressions for specific information, e.g., to search for kernel versions or IP addresses. However,
this approach has the disadvantage that the time for searching depends on the size of the snapshot
and might also produce false positives, e.g., not only the host IP might be found but also the IPs
of established connections.

Thus, to correctly identify information, semantic knowledge concerning the data structure layout
is required. The identification and localization is one of the main challenges of memory forensics
and was defined as the semantic gap problem:

Definition: The semantic gap is the problem of extracting high-level semantic information from
low-level data sources [Dol+11].

Jain et al. [Jai+14] suggest distinguishing between the weak and the strong semantic gap. The
weak semantic gap can be bridged with information gained from source code or debugging data to
interpret contents in main memory. The strong semantic gap is the problem of interpreting memory
where no information about the data structure is given or even worse when they are obfuscated
or try to mislead the analysis [Bah+10]. In the last decade, various solutions have been presented
that attempt to solve the semantic gap problem in different use cases [HLM15; Jai+14; Pay+08;
Xu+17].

It is important to note that due to the semantic gap problem, information retrieval cannot be
considered as just data acquisition because it is necessary to analyze and interpret the contents in
memory. If an attacker places manipulated data in memory, he can hide information or even fake
the results of the retrieval process [Bah+10].

16 2 Background

2.5 Virtual Machine Introspection

Virtual machine introspection is a particular form of memory forensics, which operates on virtual
machines. Since it does not operate on a single snapshot but can access the contents of the virtual
machine it opens the way to new analysis methods. For example, it allows tracing the execution
of virtual machines and accessing data that resides only for a short time in memory.

In 2003 Garfinkel and Rosenblum defined the term virtual machine introspection [GR03]:

Definition: We call this approach of inspecting a virtual machine from the outside for the purpose of
analyzing the software running inside it virtual machine introspection.

Virtual machine introspection has several characteristics which are shared with memory forensics.
Both approaches work on main memory of systems and aim to extract information out of it and
methods and programs developed for memory forensics usually also work for VMI.

Since VMI operates on live systems, it has different goals and acquisition strategies compared to
standard memory forensics. VMI is not only used to analyze the system state after an incident,
but it can also be used to increase the security level proactively. Hence, VMI is a continuous
process of monitoring a virtual machine, while memory forensics is mostly applied to snapshots.
VMI methods can be either static or dynamic. Static analysis is executed independently of the
control flow of the virtual machine but is triggered by external events such as timers. Similar to
traditional memory forensics static VMI-based analysis extracts information from the contents in
main memory but only on live running virtual machines.

Dynamic analysis is executed synchronous to the control flow of the virtual machine and triggered
by instructions of the monitored virtual machine, e.g., sensitive instructions. To intercept sensitive
instructions in a virtual machine the hypervisor and the CPU must be configured, e.g., in the
Processor-Based VM-Execution Controls data structure of Intel which contains the configuration
for those events [Int17].

Compared to other tracing techniques executed within the analyzed system, VMI takes advantage
of the functionality of VMMs, resulting in the following properties that make VMI interesting for
multiple security relevant use cases:

e Stealthiness: VMI is often considered as stealthy since it is not possible to directly detect the
monitoring. However, in most of the cases, it can be detected indirectly, e.g., by measuring
the timing of intercepted functions or by finding software breakpoints in memory.

o Untampered View: Attackers in the analyzed system cannot alter the data which is acquired
using VMI.

e Protection: Due to the isolation between the analyzed system and the analyzing system, the
monitoring tool is secure against direct attacks.

In the past, there have been various works about applications for VMI [HLM15]. This is a short
list of possible application areas of VMI:

o Intrusion detection system: [BR18b; GR03; Raj+18§]

o Intrusion prevention system: [Sha+09]

e Malware analysis: [Hen+14; Len+14]

e Memory forensics: [BSM14; Fou; ZR15]

o Virtual machines subverting: [FLH13]

e Virtual machines management and configuration: [FL13; FZL14]

e Honeypots: [Len+12; STR17]

2.5 Virtual Machine Introspection 17

Every hypervisor provides a different API with different functionality to access and manipulate the
system state of a virtual machine from outside. Since this interface is different for each hypervisor,
developers need to manually port their VMI-based applications if they want to use it with a
different virtualization solution.

VMI uses the same techniques as memory forensics for bridging the semantic gap to access infor-
mation in main memory. In addition to that, it can trace the execution of a virtual machine by
leveraging the use of sensitive instructions which are signaled to the VMM. The most important
low-level operations for dynamic analysis are:

o Writing to main memory: Writing to the main memory with VMI can be used to modify the
control flow of the virtual machine, to inject software breakpoints and arbitrary code. If this
operation is used for digital forensics, it must be ensured that the analyzed virtual machine
is modified as little as possible and that the modification is documented so that the original
operation is not affected.

o Writing to CPU registers: The write access to registers can be used for VMI applications,
e.g., to change the return value of functions that is sometimes stored in registers.

e Monitoring of memory access: Monitoring write access to main memory can be used to trace
changes to data structures such as the system call table.

e Monitoring of register access: The most important application for this is the monitoring of
the CR3 register where the operating system stores the pointer to the directory table base
(DTB) of the currently active process on this CPU. Every time the scheduler of the operating
system dispatches a new process, it modifies the CR3 register. By monitoring this register,
it is possible to trace userspace process context switches.

o Software breakpoints: Software breakpoints are used to interrupt the control flow at arbitrary
positions. A software breakpoint for the Intel architecture is implemented by replacing the
original with the INT 3 instruction, which can be handled by the hypervisor. When this
instruction is reached the hypervisor can replace it with the original instruction and continue
with the normal operation.

The most common operating system specific, high-level mechanisms for dynamic analysis that
leverage the low-level tracing mechanisms are:

e System call tracing can be used to monitor the invocation of system calls of user-space
applications.

e Function call tracing can be used to trace the use of user-space functions, e.g., library calls
of libc.

e Process list extraction: The process list and the data structures of a process contain important
information for virtual machine introspection. This includes for example, the process ID
(PID), the memory mappings, the open file descriptors.

18 2 Background

Dom0O Introspection DomU
VMI application
LibVMI Applications
libxc —~ Kernel

S
S

Kernel % Memory CPU
o
()
5
< Xen hypervisor

Figure 2.1: Common architecture for virtual machine introspection using Xen and LibVMI

2.6 LibVMI

LibVMI? is the defacto standard library for virtual machine introspection. It is actively maintained
and provides all necessary functionality to implement VMI based applications. It is the successor
of XenAccess [PALOT7]. It works best in conjunction with the Xen Hypervisor and Intel CPUs.
With KVM and AMD CPUs it does not provide event support, i.e., the ability to listen for traps
that are for example caused by software breakpoints.

Listing 2.1 depicts the architecture used by LibVMI in conjunction with Xen. In order to commu-
nicate with the Xen hypervisor, it uses the Xen libxc library. The event channel of Xen is used by
LibVMI to listen for events, such as caused by software breakpoints.

Functions

LibVMI provides functions for accessing the main memory and CPU registers as well as for tracing
software breakpoints, memory (access) events and access to CPU registers. A short list of the
most important functions of LibVMI is depicted in Listing 2.1. It shows the functions that are
provided to translate virtual to physical addresses of a virtual machine and vice versa. Additionally,
there are functions to read and write from/to memory and to access the CPU registers. Moreover,
LibVMI allows pausing and resume the monitored virtual machine. Additionally, LibVMI provides
functions to lookup the DTB of a PID. The DTB is unique for each process and is often easier to
use because it is stored in the CR3 register when a process is running. The mapping of PID to
DTB and vice versa is looked up in the data structure of a process in the kernel.

The functions of LibVMI are very low level. It does not provide functions to manage software
breakpoints. They have to be inserted and managed by a developer using LibVMI.

Cache

To improve the performance, LibVMI uses several caches to prevent requesting the same informa-
tion several times from the monitored virtual machine. For example, it caches address translations
and PID to DTB lookups. The drawback of the caching approach is that the cache can in some
situations contain outdated information, e.g., when a process is terminated. The application de-
veloper needs to call the flush operation of the corresponding cache when the information in the
cache does not match the state in the monitored system anymore. Knowing whether the cache is

Shttps://github.com/libvmi/1libvmi, Accessed 2019-06-17

https://github.com/libvmi/libvmi

2.6 LibVMI 19

outdated is not always possible in VMI-applications since it would require to monitor all access on
the main memory. Thus, it is often better to flush the cache, even it might not be required, when
it is necessary to get the current state of the system. On the other hand, the cache should only
be flushed if really needed to avoid requesting data again from memory. Thus, the application
developer needs to carefully decide when flushing the cache is really necessary.

Event Handling

LibVMI provides functions to trace the execution of a monitored virtual machine. To use it, a
developer can register certain events with call back functions. If such an event occurs, LibVMI
calls the registered call back function.

The most important event types are:

e Memory events can be used to monitor the read, write and execution operation of an address
in main memory.

e Register events can be used to monitor the write access to certain registers, such as the CR3
register.

e Single step events are used to execute single CPU instructions.

e Interrupt events are generated when the CPU executes a software breakpoint.

VMIFS

VMIFS is a tool provided by LibVMI that maps the memory of a virtual machine into a file in the
file system using fuse. With this approach the main memory can be used like a normal snapshot
file, e.g., with rekall and volitility.

After discussing the most important concepts of memory forensics and virtual machine introspec-
tion, we will introduce the core concepts of the TLS protocol that are required for the use case
discussion of TLS session key extraction in Chapter 5.

N —

eI e NV I SOV]

10

11

12

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

20 2 Background

// initialization and deinitialization

status_t vmi_init (vmi_instance_t xvmi, vmi_mode_t mode, wvoid* domain, uint64d_t
init_flags, vmi_init_data_t =*init_data, vmi_init_error_t xerror);

status_t vmi_destroy (prvmi_instance_t wvmi);

// functions to access the VM state
status_t vmi_translate_kv2p (vmi_instance_t vmi, addr_t vaddr, addr_t =xpaddr);

status_t vmi_translate_uv2p (vmi_instance_t vmi, addr_t vaddr, vmmi_pid_t pid, addr_t =«
paddr) ;

status_t vmi_translate_ksym2v (vmi_instance_t vmi, const char xsymbol, addr_t =«
vaddr) ;

status_t vmi_read_va (vmi_instance_t vmi, addr_t vaddr, vmi_pid_t pid, size_t count, void
+*buf, size_t +bytes_read);

status_t vmi_read_pa(vmi_instance_t vmi, addr_t paddr, size_t count, wvoid xbuf, size_t x
bytes_read);

status_t vmi_write_va (vmi_instance_t vmi, addr_t vaddr, vmi_pid_t pid, size_t count,
void xbuf, size_t xbytes_written);

status_t vmi_write_pa (vmi_instance_t vmi, addr_t paddr, size_t count, woid xbuf, size_t
*bytes_written);

status_t vmi_get_vcpuregs (vmi_instance t vmi, registers_t xregs, unsigned long vcpu);

status_t vmi_set_vcpuregs (vmi_instance_t vmi, registers_t xregs, unsigned long vcpu);

status_t vmi_pause_vm(vmi_instance_t vmi);

status_t vmi_resume_vm(vmi_instance_t vmi);

status_t vmi_pid_to_dtb(vmi_instance_t vmi, vmi_pid_t pid, addr_t *dtb);

// functions to handle for events
struct vmi_event {

void =xdata;
event_callback_t callback;
uint32_t vcpu_id; /##< The VCPU relative to which the event occurred. #*/
union {
reg_event_t reg_event;
mem_access_event_t mem_event;
single_step_event_t ss_event;
interrupt_event_t interrupt_event;

bi
x86_registers_t *x86_regs;

bi

status_t vmi_events_listen(vmi_instance_t vmi, uint32_t timeout);
status_t vmi_register_event (vimi_instance_t vmi, vmi_event_t xevent);

Listing 2.1: The most important functions of LibVMI to access the system state of a virtual machine
and to handle events

2.7 TLS Internals 21

2.7 TLS Internals

Transport layer security (TLS) is the successor of secure sockets layer (SSL) and is used to provide
a secure communication channel [DA99]®. TLS uses cryptographic certificates based on asym-
metric cryptography for server authentication and — optionally — client authentication. Hence,
all decryption attempts based on active man-in-the-middle intercepts with fake certificates can be
detected, unless the interceptor has access to the private keys of the original endpoints.

After the authentication phase of TLS, the communicating entities negotiate a symmetric session
key (master secret) using RSA encryption, Diffie-Hellman (DH) or elliptic-curve Diffie-Hellman
(ECDH) algorithm. Nowadays, DH or ECDH should be the preferred way to negotiate a session
key. In contrast to RSA based key negotiation, DH or ECDH ensure that an attacker, who as access
to the private RSA key of one party, it is not able to decrypt the corresponding TLS connections.
This is because it is not possible to extract the session key from the network traffic. This property
is called perfect forward secrecy (PFS).

Finally, the communication between the endpoints is protected with symmetric encryption and
message authentication based on symmetric keys derived from the master secret. TLS does not rely
on a single fixed cryptographic algorithm; instead, it provides a flexible framework that supports a
large variety of encryption algorithms. At the beginning of a TLS session, the endpoints negotiate
which algorithms and parameters to use.

TLS records

Internally, TLS is composed of several sub-protocols. The lowest protocol layer is the TLS record
protocol, which is used to exchange control and data messages between the communication part-
ners. Each message of the record protocol contains the content type of a record, the TLS version,
the length of a data fragment, and the data fragment (compressed, integrity protected and en-
crypted using the negotiated algorithms). At this layer, only the data fragment is encrypted,
whereas all other fields (record type, TLS version, and length) are exchanged in plain text.

Key negotiation and derivation

During the key negotiation process (see Figure 2.2) the client and server select the cryptographic
parameters of the upcoming encrypted network session. The client initiates the protocol by sending
a TLS record with the content type client hello (CH), and the server responds with a server hello
(SH), to negotiate the encryption algorithm and to exchange a client and server random value.
Afterwards, the client and server define a premaster secret, for example by using the DH algorithm.
In the initial handshake of TLS, no encryption is used, and thus the client and server random values
are exchanged in plain text. If keys are renegotiated on an already encrypted TLS channel, the
parameters are encrypted with the still active configuration.

The premaster secret, client random, and server random are used to calculate the master secret of
a connection. The master secret is used together with the server and client random to compute the
derived keys using a pseudo random function (PRF). Typically, they comprise a MAC secret key
used to verify the integrity of a TLS record, the data encryption key used to encrypt the payload
of a TLS record, and an initialization vector.

In the TLS protocol, a dedicated message is used to signal the transition to new cryptographic
parameters. After completing the computation of the master secret, each communication partner
sends a change cipher spec (CCS) message to the other endpoint and starts encrypting all subse-
quent messages using the new cryptographic parameters. The CCS payload message itself, which
consists of a single constant byte, is encrypted using the previous parameters. Because the message
is sent using the record layer protocol using a dedicated record type, it is possible to detect any
CCS message in an encrypted TLS channel without decryption.

5This section is based on [Tau+16]

22 2 Background

1 Client Hello 1

»

Server Hello, Certificate, Server Hello Done

Client Key Exchange, Change Cipher Spec, Finished

Change Cipher Spec, Finished

Data

Figure 2.2: TLS handshake

Message Authentication Code Computation

TLS protects the integrity of each TLS record using a message authentication code (MAC). For not
encrypted messages or messages encrypted with a standard stream cipher or CBC block cipher,
TLS appends an HMAC [KBC97] to the payload data. The HMAC is keyed with a dedicated
MAC secret derived from the master secret (as described above) and is computed over the implicit
sequence number of the TLS record, the type of the record, the TLS version, the length and the
unencrypted data of the record. The receiver can recompute the HMAC of a decrypted record and
check whether it matches the sent one, to verify the integrity of a TLS record. For authenticated
encryption with associated data (AEAD) ciphers, such as counter with CMC-MAC (CCM) or
Galois/Counter Mode (GCM) an authentication tag is used to verify the integrity of a TLS record
instead of a separated MAC.

Session resumption

TLS supports the resumption of previously established TLS sessions. In session resumptions,
parameters and keys of a previous TLS session are reused instead of negotiating new values,
resulting in a faster initial handshake. The session state includes the choice of cryptographic
parameters as well as the values for client random, server random, and master secret. The session
state can be stored either on the server and is identified using a unique ID that the client includes
in its initial CH message (session ID) or on the client (session tickets) [Sal+08].

2.8 Summary 23

2.8 Summary

Virtualization is an important technology that empowers the proliferation of cloud computing.
Hardware-based virtualization does not require changes to the guest system. However, the CPU
needs to be able to trap to the hypervisor when a sensitive instruction is invoked.

Xen is a widespread bare-metal hypervisor and supports hardware and para-virtualization. The
virtual machine Dom0 has access to physical devices and provides virtual devices to unprivileged
DomUs.

Digital forensics is the process of retrieving evidence reliably from digital sources. The principals
of digital forensics are forensic soundness, authentication, chain of custody, integrity, objectivity,
and reproducibility.

Memory forensics is one technology used for digital forensics. It operates on main memory and
can be used to retrieve information that does not manifest on persistent storage, e.g., passwords
and encryption keys.

A particular form of memory forensics is virtual machine introspection. It analyzes the state of
a virtual machine by looking at its main memory and the CPU registers. In addition to memory
forensics, it can also be used to trace the execution of a virtual machine. To achieve that, normal
instructions are replaced by sensitive instructions that cause the CPU to trap to the hypervisor.
In that way, the hypervisor can intercept the control flow to analyze the system state of the
virtual machine. Afterward, the original instruction is reinserted, and the virtual machine can
be continued. LibVMI is the defacto library for virtual machine introspection and provides all
necessary functions to implement these steps.

The TLS protocol is widely used to provide secure network connections. For each session, the
client and server negotiate new cryptographic parameters. The most important one is the master
secret, which is used to derive the session keys. The master secret is usually only stored in main
memory of the communicating parties while the connection is active.

AN EXTENSIBLE ARCHITECTURE FOR
MEMORY ANALYSIS

Virtual machine introspection and memory forensics are valuable tools for a wide range of appli-
cation areas, such as criminal investigations, intrusion detection, and malware analysis. Because
of that, there is already a wide variety of publications and tools for this purpose. However, their
implementation is often no longer maintained or not available. Furthermore, such tools often do
not support the operating system of the analyzed system or the hypervisor hosting the virtual
machines. Hence, using them in production environments or even for research prototypes is often
complicated or not possible.

The contribution of this chapter is that we first describe the requirements for a VMI framework
that is generic enough to be used in various practical applications. We then discuss how such a
framework must be designed in order to meet the requirements for as many application scenarios
as possible. Furthermore, we show how the design can be implemented and evaluate it based on
the performance of our Libvmtrace implementation.

Section 3.1 discusses related approaches. In Section 3.2, we describe the requirements of applica-
tions used for VMI and memory forensics. Section 3.3 discusses the most important functionality
required by these applications. Next, we describe in Section 3.4 the generic design concepts of an
architecture that can be used for VMI and Section 3.5 describes Libumtrace that implements it.
Section 3.6 evaluates the implementation of Libumtrace concerning its performance and Section 3.7
summarizes this chapter.

25

26 3 An Extensible Architecture For Memory Analysis

W
I O
R o
O o .Zc\ ‘: $:‘\@o Rt
D QT T O ga T ®
Rekall [Coh14] v v X X vV X X Snapshots
Volatility [Fou] v v X X vV X X Snapshots
LibVMI [Pay12] v/ X v X X Xen, KVM
Drakvuf[Len+14] v v V X vV X X Xen
rVMI [PV17] v 7/ X X X v X KVM
libbdvmi [Coj15] X X X v X X X Xen
StackDB [JHE14] v X X X X X X Xen
Vprobes [VMw10] v v X X X v VMware Workstation 8 & Fusion 3
Libvmtrace v X v v v v vV Xen

Table 3.1: Comparison of different virtual machine introspection frameworks

3.1 State of the Art

In this section, we compare the most prominent state-of-the-art frameworks for virtual machine
introspection. We discuss them based on

e The support for the analysis of Linux and Windows systems.

If they allow injecting commands to the guest system.

e If they provide access to memory regions of a process that have a valid virtual address but
are not present in physical memory (e.g., swap).

e If they are maintained.
e If they can be dynamically reconfigured at run-time.

e If they can inspect the network traffic and trigger VMI analysis when certain network packets
are seen.

e The hypervisor they support.

We chose these features as we required them for the implementation of our prototypes presented
in the next chapters. The summary of this discussion is depicted in Table 3.1.

Volatility and Rekall [Coh14; Fou] provide a high amount of different plug-ins to analyze snapshots
of Windows, Linux and MacOS based system. The focus of these frameworks is static analysis, e.g.,
for forensic investigations. Both are written in Python and do not support tracing the execution
of a running system. They can be used to perform VMI on a live running system, e.g., by using
vmifs of LibVMI [Pay12] but none of them is optimized for performance and hence should not be
used to trace the execution of virtual machines.

Lengyel et al. [Len+14] presented in 2014 Drakvuf, which is still actively maintained. The pri-
mary use case of Drakvuf is malware analysis on Windows, and it uses LibVMI with Xen. In
addition, Drakvuf uses the altp2m approach to hide software breakpoints from guests [Lenl6]. To
achieve that it uses Intel EPT to create a shadow copy of the memory mappings of the guest
holding the software breakpoint. If an attacker reads from the memory page with the breakpoint,
Drakvuf changes the mapping back so that he reads the original contents in memory. Similarly, if
a breakpoint is reached Drakvuf does not replace it with the original instruction but only switches
the memory mappings so that the page with the original instruction is active. Drakvuf provides

3.1 State of the Art 27

means to inject code into Windows-based virtual machines. To do so, it uses the Windows func-
tions CreateProcess and ShellExecute to execute commands. Similar solutions to inject code into a
running system are process hollowing [Leill] and process doppelginging [LK17], which are mainly
used to hide malicious activities in a system!. Drakvuf does not do deep packet inspection of the
network traffic. Drakvuf implements different tracing plug-ins, but it is required to restart the
Drakvuf process to select a different set at run-time.

The tool rVMI [PV17] was published in 2017 by FireEye and is similar to Drakvuf. Instead
of using LibVMI and Xen, rVMI uses a patched version of KVM and is designed for malware
analysis. This patch of the KVM functions in the Linux kernel makes it hard to use rVMI with
newer KVM and gemu versions. In contrast to Drakvuf, the publicly available source code is not
actively maintained, and only a little documentation is publicly available. It uses Rekall to parse
the contents in memory and thus provides good support to analyze Windows and Linux guests.
Since the analysis routines are mainly implemented in python, the performance for tracing a virtual
machine can be considered lower as the performance of LibVMI and Drakvuf. However, due to the
use of Python and Rekall, it provides an easy to use command line interface based user interface,
which can be configured at run-time of the analyzed system.

Libbdvmi [Coj15] provides similar functionality as LibVMI and was published by Bitdefender and
is designed for malware analysis. It is written in C++ and does not use the glibc data structures
as LibVMI does. The open source code is not as actively maintained and documented as LibVMI.
In contrast to LibVMI, it provides functions to map the address space of a virtual machine to
the user space of an application using libbdvmi. Similar to LibVMI, it uses the Xen interface to
inject traps causing a page fault in order to access not present memory regions. Libbdvmi does
not provide any means to interpret the contents in memory to bridge the semantic gap. Neither
for Windows nor for Linux. Hence, this needs to be handled by applications using libbdvmi.

Johnson et al. [JHE14] present StackDB, a debugging library with VMI support. It introduces
different layers for interpreting the contents in memory to trace the kernel and user-space appli-
cations in a virtual machine. They use a unified layer for data acquisition and implement support
for ptrace or VMI. In this way, they can use the same analysis code with VMI using (LibVMI and
XenAccess) or the kernel debugging interface (ptrace). Hence, they make it easy for developers to
implement new monitoring applications. However, they do not provide an interface for orchestrat-
ing different tracing mechanisms, such as monitoring network traffic and intercepting system calls
at the same time. Additionally, they do not provide means to inject commands or to access data
at virtual addresses that are not present in physical memory. The source code is available online,
however, it is not maintained anymore since 2017.

Vprobes [VMw10] is the VMI framework of VMware and works with the Workstation and Fusion
virtualization solutions. Vprobes uses the programming language Emmet to build VMI applica-
tions. Emmet supports synchronous and asynchronous tracing of virtual machines. Additionally,
Vprobes supports to use semantic knowledge gained from debugging information and is also able
to learn offsets based on function calls of the operating system at run-time?. The last available
programming reference of Vprobes is from the year 2010. Vprobes can be used together with
PktTrace in order to correlate VMI-based analysis with network packets. It is not clear whether
Vprobes can be dynamically reconfigured.

Based on that discussion we conclude that there is a wide variety of different tools for VMI-related
application scenarios. However, in many cases, they are not well documented, not maintained,
or only work with deprecated hypervisor versions. This holds for libbdvmi, StackDB, rVMI and
Vprobes. Only Drakvuf is well maintained and under active development. It provides a rich set of

!Process hollowing creates a new “innocent” process in suspended state, unmaps the memory and replaces it with the malicious code.
Afterward, the process is resumed. Process doppelgénging is similar to process hollowing. Instead of unmapping the memory of
a running process it stores the malicious code in a file. To hide traces in the filesystem, it uses the transactions of the NTFS
filesystem. After the process is started and before the malicious file is written to memory, the transaction is rolled back. Thus, the
malicious process is never written to the file system.

’https://labs.vmware.com/vmtj/intrusion-detection-using-vprobes, Accessed 2019-07-03

https://labs.vmware.com/vmtj/intrusion-detection-using-vprobes

28 3 An Extensible Architecture For Memory Analysis

features for the dynamic analysis of Windows. However, it supports the analysis of Linux guests
only momentarily and does not combine network analysis with VMI. The support of Linux is
especially important for us because we use Libuvmtrace mainly in application scenarios like cloud
computing and on mobile devices. In both cases, the Linux kernel is mainly used.

3.2 Requirements of VMI-based Applications 29

3.2 Requirements of VMI-based Applications

The application areas where VMI and memory forensics can be used have different requirements.
The following paragraphs discuss and summarize them.

Compliance with the principles of digital forensics: One of the most important aspects of research
in the area of digital forensics is that data collection and analysis comply with the principles of
digital forensics (see Section 2.3). For data acquisition, this means that the data obtained during
the acquisition process is not altered by an attacker or analyst, and represents the original state
as accurately as possible. The same applies to the analysis process, which must be carried out in a
comprehensible and objective manner. In the specific case of VMI, changes to the analyzed system
may be required (for example, by inserting breakpoints) to monitor its execution. To ensure that
this does not violate the principles of digital forensics, the changes must be documented and kept
as minimal as possible. Furthermore, it also means that the integrity of the collected data must
be preserved from data acquisition to a possible court hearing.

Access control: Since the contents in main memory hold confidential information such as pass-
words and keys, it must be protected from unauthorized access. When a new forensic interface is
implemented, the developers must ensure that only authorized entities can access it.

Resilience to attacks: Applications that analyze potentially compromised systems must be resilient
against attacks targeting the interpretation routine of memory. In the past, it has been shown that
these tools can be attacked by placing crafted data in the analyzed system [Bah+10; Ett17]. In
general, there is no easy way to prevent that, however, to minimize the potential harm of a system
that is overtaken by an attacker, the permissions of an analyzing system must be restricted so that
at least no additional system can be affected.

Resilience to software bugs of VMI applications: Digital forensics should not affect the analyzed
system in terms of performance and stability. Especially when it is applied to production systems,
a crash caused by the monitoring is not acceptable. Because it is not possible to always prove
the correctness of analysis software at least the monitoring framework should be implemented
in such a way, that bugs in complex analysis tools can never lead to crashes of the analyzed
system. For example, a crash is often caused when the analysis tool did not remove all software
breakpoint before it was terminated or crashed. In that case, the framework needs to implement
a safe shutdown procedure to ensure, that all breakpoints are removed and handled before it is
terminated.

Performance: The impact monitoring on the analyzed system should be as little as possible to
maintain the quality of the service and keep costs low. Differences in the performance mainly
originate from the interception of the execution, either, because the virtual machine is paused to
take a consistent snapshot of the system or because of the interception of sensitive instructions
that pause the virtual machine during the analysis.

Stealthiness means that an attacker cannot derive information about whether the system is moni-
tored or not. The stealthiness of monitoring is particularly important for use cases where malware
behavior is to be analyzed, as it could change its behavior to evade analysis [Bal+10]. There are
mainly two ways of how an adversary can detect VMI-based monitoring in the analyzed system.
Either by searching for software breakpoints in memory that have been inserted by the monitoring
or by measuring the run-time of potentially monitored functions. By using software breakpoints,
the execution time of functions is increased by additional context changes and by the time required
to analyze this state. Hence, it is possible to detect changes in the run-time if the average execution
time is known. The impact on timing can be minimized by improving the performance of inter-
ception mechanisms, but currently it is an open research question to make VMI-based monitoring
completely stealthy.

Platform independence: Writing VMI-based applications is complex and cumbersome and porting
them to different platforms or operating systems should not require to re-implement everything

30 3 An Extensible Architecture For Memory Analysis

from scratch. Thus, functionality that is specific for certain architectures should be encapsulated
in modules that can be replaced if the application needs to be ported to a different platform. For
example, the basic accessor functions such as read and write should be implemented in the data
acquisition layer that can be exchanged depending on the use case. So, in theory, it should not
make a difference to extract the process list from a snapshot file or directly from the memory of a
virtual machine. Similarly, operating system functionality should be encapsulated in a module.

Expandability and dynamic reconfiguration: Since VMI-based tracing has a significant performance
impact, it is vital to activate only required tracing at run-time and to disable non-required trac-
ing methods. Hence, a monitoring framework should let a user activate and deactivate tracings
methods at run-time, e.g., to request more detailed tracing when suspicious behavior is detected.
Additionally, it should be easy for developers to implement and integrate new tracing mechanisms.

Multiprocessor support: Many systems use more than one CPU, which needs to be considered when
the execution of a virtual machine is monitored since multithreading can lead to race conditions.

3.3 Design Goals 31

3.3 Design Goals

In the following section, we introduce the basic functionalities that are required for the most
common VMI related use cases.

3.3.1 Static Analysis

Static analysis extracts information from the main memory of the guest system. The most im-
portant operations are: reading memory, translating virtual and physical addresses and providing
semantic knowledge about data structures. Writing data to main memory does not play an essential
role in static analysis.

The read operation is the minimal requirement for doing memory forensics. It can be done on live
running systems as well as on memory snapshots or paused systems. It requires two parameters:
the amount of data to read and the physical or virtual address from where the data should be
acquired. A special form of the read operation is implemented by the snapshot routine that stores
all available memory of a system.

It is necessary to translate virtual addresses to physical addresses and vice versa to access the
memory of pointers of a user-space process in the guest system. To translate addresses the page
table from the guest system must be read and parsed accordingly.

Moreover, static analysis requires having semantic knowledge about data structures to extract
the information they hold them from memory. This knowledge can be for instance derived from
kernel source code or debugging information from vendors. The following standard routines of
static analysis can be implemented using the read operation, address translation and semantic
knowledge:

e Parse kernel data structures in memory such as the process list or kernel modules
e Get the memory mappings of processes
e Get the offset used for (kernel) address space randomization

e Parse binaries and kernel data structures to retrieve the logical address of functions and the
data structure layout used in user space processes and the kernel

e Translate the logical address of a function/symbol to the virtual/physical address of where it
is mapped in memory during execution. This requires to know the offsets used for kernel /user-
space address space randomization [GL16].

In order to analyze applications that require a certain run-time environment, e.g., the Java virtual
machine, an additional layer of interpretation can be required.

3.3.2 Dynamic Analysis

Dynamic analysis uses the routines of static memory analysis and extends them by calling them
synchronously to the control flow of the analyzed system. Hence, it can be used to trace the
execution of the analyzed system. For VMI related purposes, the following five methods are the
most relevant: interception, control flow manipulation, code injection, access to unmapped memory
regions and file system access.

Dynamic analysis depends on the hypervisor/CPU to trap at sensitive instructions and on the
write operation that is used to insert breakpoints. Since the write operation changes the object of
investigation, it should be handled carefully. In order to create forensic sound evidence, it can be
necessary to document the use of this operation and use it only in a pre-defined way, e.g., to insert
breakpoints [Cas11].

32 3 An Extensible Architecture For Memory Analysis

Interception

The control flow interception is an important mechanism to trace the execution of a system by
inserting breakpoints, e.g., to monitor function calls. By using a breakpoint, the normal control
flow of the analyzed system should not be affected, except for differences in the timing behavior.

If a breakpoint is inserted to the main memory of a virtual machine, it can be invoked by all process
where the corresponding page is mapped. For example, if it is inserted in a shared library, the
breakpoint can be reached by many processes. In contrast, a common debugger traces only a single
userspace program. To trace only a single process using virtual machine introspection, it must be
either checked which process is running, and the events of non-required processes are disregarded,
or the breakpoints can be set/unset when the scheduler in the analyzed system dispatches a new
process®. The same holds for system call tracing, which is not process-bound but monitors all

system calls.

Since tracing can produce a significant overhead, a good choice can be to restrain the tracing
to specific processes by removing/inserting breakpoint at every process switch. We distinguish
between those two modes [STR17]:

o System-wide tracing means that the system calls of all processes are traced.

e Process-bound tracing intercepts the system calls of only specified processes. To achieve that
it inserts/removes breakpoints whenever a new process is scheduled. By intercepting each
process context switch, we introduce another overhead.

The decision for one of those two modes depends on their overhead. Process-bound tracing should
only be selected when the overhead for monitoring context switches and inserting/removing break-
points is lower than tracing system calls of not required processes.

Control Flow Manipulation

Control flow manipulation changes the normal operation of a program and does not require to
insert any code, but it manipulates values. For example, it can be used to change the control
flow by modifying the return value of functions or by modifying the content of variables so that a
different branch in the execution is taken.

Code Injection

Code injection is the most general control low manipulation mechanism and can be used to instruct
the analyzed system to execute arbitrary code. It is more complicated than the two approaches
mentioned before, as it requires to modify the control flow so that the injected instructions are
executed without affecting the original state and control flow. Command execution can be used,
for example, to implement a lie detector that compares the system state observed from commands
running in a system with the system state extracted with VMI methods.

Accessing Virtual Addresses that are not Present in Physical Memory

A common problem of memory analysis is that some areas belong to the virtual address space
of a process that are not present in physical memory, e.g., areas that are not often accessed and
swapped out at run-time or areas of binaries/files that have not been loaded, to minimize the
required space in physical memory. As a consequence, those areas cannot be directly accessed
from memory and are not available for static analysis. Hence, there needs to be a mechanism to
access those memory areas.

3This approach only works for a single-core CPU. In order to use it on a multi-core CPU the altp2m approach can be used where
each processor has its own page table. Thus pages that include the breakpoints can be activated for each CPU individually based
on the fact whether it runs a process that should be traced.

3.3 Design Goals 33

File System Access

Forensics often requires to access and analyze files and recover files from storage, which is mostly
done by accessing the raw storage medium, e.g., the hard disk, the image or the network storage.
However, this approach does not work for file systems that reside only in memory such as tmpfs or
shared memory. Similarly, files of encrypted storage cannot be accessed, when the cryptographic
key is not known.

3.3.3 Network Traffic

The network traffic of a virtual machine can contain information concerning the system state.
Additionally, it provides the raw network traffic of connections. Extracting the same information
with virtual machine introspection is possible, but can require a higher tracing overhead. Thus,
network traffic can be considered as another source of information to augment the process of
forensic analysis.

34 3 An Extensible Architecture For Memory Analysis

3.4 System Design

r----------------------------I e |

' o '

1 .« . 1 .

ot i | Digital Malware SIEM : ' !
Application 1 | Forensics Analysis Systems ' '
: . :

: ! :

: o :

Information Data Control Packet E ! :
Extraction 1l Structure Flow Payload : . [HIDSERR (HOEERS (HIOEERS '
: Layout, Interception : : 2 g

' Library i

|| Functi . TCP/IP ! :

|| omen | "5 X ,

' Address nipulation L. '

1 ' Kernel 1

: ' :

1 f 1 1

1 f 1 1

1 V! 1

1 o 0 1

1 1 1

Data Ac- ! Read | ‘ Write | Trace : ' SysiiEi S :
quisition ' Network || 1 ! '
: Event E] Memory | | CPU | | Network :

: r ;

1 V! 1

Analyzing System Analyzed System

Forensic Framework

Figure 3.1: Generic design for a forensic framework supporting memory forensics and virtual ma-
chine introspection

In this section, we introduce a software architecture that satisfies the application requirements and
provides common functionalities of virtual machine introspection. The application requirements,
especially the stability and portability requirement, suggest the use of a layered architecture that
allows testing and optimizing each layer to improve the performance and stability of the framework.
We use the architecture depicted in Figure 3.1 to analyze and trace the kernel, library and user-
space processes of the analyzed system.

The layered architecture makes the porting of applications to different platforms and operating
systems easier because only the required data acquisition driver or operating system interpreter
must be replaced. By providing a programming interface for forensics functions, developers can
benefit from it when they build new VMI-based applications.

The core concept of this architecture is designed for virtual machine introspection. However, it
can also be employed for other use cases, such as memory analysis from the secure world of the
ARM TrustZone or even as an in-guest agent.

Data Acquisition

The data acquisition layer provides access to the state of a system stored in main memory and the
CPU registers. Additionally, it provides functions for dynamic analysis and to trace the execution
of the analyzed system and its network traffic.

3.4 System Design 35

Information Retrieval

The information retrieval layer builts on top of the data acquisition and comprises functions for
static and dynamic analysis. For static analysis it provides functions to rebuild high-level informa-
tion from the acquired system state, e.g., to extract the process list or the memory mappings of a
process. In order to bridge the semantic gap, rekall profiles can be used as well as the debugging
and meta-information of binaries.

For dynamic tracing, it provides functions to resolve the address of function calls and to inject
breakpoints on them. Additionally, it provides an event-based programming interface that invokes
call back functions when a breakpoint is reached.

Moreover, similar to the functions for virtual machine introspection, it provides routines that
introspect network connections to retrieve basic information from packets such as the source/target
IP address and port.

Applications

Applications that are implemented in the highest layer use the API provided by the lower layers
to extract information for specific use-cases, such as malware analysis or intrusion detection. To
achieve good results they can combine use-case specific information gained from VMI and network
analysis to accomplish minimal tracing overhead.

One important aspect is that applications can be implemented as plug-ins. Those plug-ins can be
activated and deactivate at run-time, which allows analysts to select only required tracing plug-ins
at run-time to lower the overall tracing overhead.

36 3 An Extensible Architecture For Memory Analysis

3.5 Libvmtrace

®[VMI-based apps)[Plugins & Controler)

(@)
Library and | Process || Process || Process | 2
] [TCP/UDP) Process Monitor : =
IS < | Library | > §

S

§ [Ip) [OS Monitor J | Operating System/Kernel | E
-
=

\ ®[Network Monitor) [System Monitor) | CPU || Mem || Net |)

libnetfilterqueue LibVMI Hypervisor

Figure 3.2: Architecture of Libumtrace: the left side represents libvmtrace and the right one the
layers of an analyzed virtual machine. The components implemented by Libumtrace
have rounded corners. Libvmitrace can run in the Dom0O or a dedicated monitoring
virtual machine (see Section 4.4). Layer 1 is responsible for data acquisition, layer 2
for information retrieval and in layer 3 are VMI applications.

Libvmtrace aims to implement the architecture described in the previous section. It is mainly
designed to be used for VMI and in conjunction with LibVMI and the Xen hypervisor. The
focus of Libumtrace is to analyze Linux based virtual machines since the Linux kernel is widely
used in cloud data centers and also on mobile Android-based devices. The design of the Libumtrace
architecture corresponds to the structure of conventional systems with hardware, operating system,
and applications. The different layers of Libumtrace are depicted in Figure 3.2 and discussed in
the next sections.

The key aspect of this library is to provide a stable framework that abstracts VMI related operations
to make them easy to use, stable without crashing itself or the analysis system and with good
performance. For example, LibVMI provides the means to set up and insert software breakpoints.
However, it requires several steps to manage them. Thus, the main idea of Libumtrace is to abstract
those tasks and to make them easy to use, well tested and easy to adapt for different use cases.

Additionally, Libvmirace should be able to run different tracing mechanisms (plug-ins) at the same
time. Hence, it can be necessary to deliver events such as caused by a breakpoint to different plug-
ins that monitor the same breakpoint. Starting two tracing applications/processes for a single
virtual machine is not possible since they could overwrite the breakpoints of each other and events
would not be correctly processed. Thus, Libumirace implements a monolithic architecture where
the tracing is handled in a single process that manages and delivers the events by invoking callback
functions of plug-ins.

3.5.1 System Monitor

On the lowest layer of Libvmtrace is the System Monitor, which implements the data acquisition. As
a basis for Libvmtrace, we use LibVMI, as it provides a rich set of features for VMI-based analysis.
One goal of this architecture is to support different platforms and to provide an exchangeable
interface for the acquisition process on multiple systems. Encapsulating the interface of LibVMI
with a more generic one that suits other platforms is complex and introduces additional overhead
to the system when all data types must be converted at run-time. Thus, Libumtrace currently

3.5 Libvmtrace 37

only supports the introspection of Xen VMs by using LibVMI*. Additionally, the System Monitor
synchronizes the access to the virtual machine, manages breakpoints, provides functions to access
memory regions that are not present in physical memory, and implements functions to inject code
to a running virtual machine.

Locking

Often it makes sense to use different threads in the VMI application for performing memory
analysis. The most common case is that one thread is regularly extracting the process list while
another one is handling the events of LibVMI. However, some data structures used for VMI, such
as the Libumtrace cache for process lists, can be used simultaneously by each thread and therefore
require synchronization.

Additionally, some VMI operations must be executed without being interrupted by another VMI
thread to avoid that both processes change state in contradicting ways, for example, if one process is
stopping a virtual machine and the other one resumes it. This holds for operations that manipulate
the state of the virtual machine, e.g., pause or resume it.

To solve these two problems of synchronizing the access to data structures and VMI operations,
Libumtrace implements a simple to use locking mechanism in the System Monitor. This lock must
be acquired every time a process is using shared data structures (e.g., the process list cache) or
when a process wants to use any LibVMI function®. After it is finished, the lock must be released.

Breakpoints

Additionally, the System Monitor provides routines that simplify the management of breakpoints
to interrupt the control flow of the analyzed system by implementing the complex steps in a
software module with an easy to use interface. To achieve that, Libvmtrace uses the concept of
software breakpoints to intercept the control flow of a virtual machine. In contrast to a hardware
breakpoint, a software breakpoint replaces the original instruction in memory with the INT 3
instruction. When the CPU is invoking it in the context of a virtual machine, it traps to the
hypervisor, and the VMI-based application that runs the analysis. Afterward, it needs to restore
the original instruction and resume the execution.

Software breakpoints can also be used by applications running in the monitored virtual machine,
e.g., by debuggers. In that case, the hypervisor can ignore it and has to forward the interrupt to
the operating system of the virtual machine. If the interrupt is caused by a breakpoint from the
VMI-based monitoring, it must not be injected to the virtual machine.

Whenever a breakpoint is invoked, the steps in Figure 3.3 are processed by Libvmtrace. The steps
6 to 8 are only required if the breakpoint should be re-inserted. The time 1, when the analyzed
system is paused for a breakpoint can be split into these components (see Figure 3.3):

thp =1tp1 +Htpp +te1 +t2 + 13+ s 3.1

e tp1: Time to retrieve information from the analyzed system when sensitive instruction is
reached

o t,p: Time to retrieve information from the analyzed system after semsitive instruction was
executed

® 1.1 c4: Time spent on context switches and delivering events from the hypervisor the moni-
toring application

4Nevertheless, parts of Libvmtrace are used for our DroidKex architecture as an in-guest agent on ARM devices to take memory
snapshots of Android applications using the kernel debugging interface ptrace (see Section 5.3).

S5This is a coarse-grained locking mechanism that could be enhanced in the future to improve the performance of complex analysis
that uses many threads

38 3 An Extensible Architecture For Memory Analysis

Analyzed Sytem

Analyzing System

Step | Analyzed System

Analyzing System

0 Libvmtrace installs the callback handlers of LibVMI
The VMI-application sets breakpoint for a specific pro-
cess on a physical address of the analyzed system

1 The INT 3 instruction is executed

2 LibVMI invokes the callback function of Libvmtrace
Return, if the breakpoint was not inserted by libvmtrace

3 (paused) The original instruction is reinserted

4 All registered callback functions for this address are
called if they are configured for the currently active pro-
cess

5 Single step: The original instruc-

tion is executed

6 (paused) LibVMI calls the registered handler for the single step of
Libvmtrace

7 The INT 3 instruction is inserted again

8 The VM continues the execution

Figure 3.3: Breakpoint handling mechanism and the time that causes the overhead

Our approach of using software-based breakpoints works only under certain conditions. The first
limitation is that this approach only works when the monitored system has only one CPU. Oth-
erwise, it can occur that, for example, one CPU is executing the single step operation, while the
other CPU executes the same instruction without getting monitored. Another limitation of this
approach is that the software breakpoints can be read or even be manipulated by the monitored
system. However, the modular architecture of Libumtrace allows implementing and selecting a
different breakpoint mechanism without changing the application logic.

Lengyel [Len16] proposed a solution that solves both limitations by employing Intel’s extended page
tables (EPT). With this approach, each CPU has a shadow copy of the original page tables. Instead
of writing and re-writing the software breakpoint, it switches mapping of a page the contains
the software breakpoint. Thus, this approach can be applied to multi-core virtual machines.
Additionally, if someone is reading from that page, the mapping can be changed to the unaltered
view for a single-step, which can be used to hide software breakpoints from applications that search
for software breakpoint in memory.

Accessing Virtual Addresses that are not Present in Physical Memory

Libvmtrace implements a mechanism to access memory regions that are currently not present in
physical memory, i.e., memory areas that a currently swapped out, e.g., when not enough physical
memory is available, or not yet loaded to memory, e.g., when not all parts of a memory mapped
file have been accessed.

There are different approaches on how this problem can be solved, e.g., by directly reading from the
physical location such as the swap partition or an ELF binary. The advantage of this approach is
that it does not require any help from the analyzed system. However, this approach is cumbersome,
since it requires first of all having access to the storage where the information is stored (e.g., swap

3.5 Libvmtrace 39

Analyzed System

Process

Kernel

Libvmtrace| --------- CR3 f---=(BP f----------

Analyzing System

tin Jject

Figure 3.4: Steps required for the injection of the read access

1 push rax ; save the content of register rax
2 mov rax, Oxdeadbeef ; address of the request page

3 mov rax, [rax] ; request the memory

4 pPop rax ; restore the register rax

5 int 3 ; software breakpoint

Listing 3.1: Injected instructions that trigger a page-fault that loads a certain virtual address to
physical memory

partition, swap file, memory mapped file, or ELF binary). Additionally, it requires the knowledge
to interpret the data, e.g., the structure of a ELF-binary. Encrypted storage makes this approach
even more complicated.

Another approach is to inject a page fault trap in the analyzed system using the hypervisor when
the user space application is currently running. The requested address is set in the CR2 register and
informs the operating system which address to load. When the operating system of the analyzed
system handles the trap, it loads the required page to memory. This approach has been lately
implemented in LibVMIS.

Libumtrace inserts a read instruction that accesses the target address into the process to which the
address is assigned. This instruction generates a page fault and forces the memory management
of the guest operating system to load the requested page into memory. The limitation of this
approach is that it requires that the target process is dispatched while the analysis is running. To
employ this approach, we have to address the following challenges:

e Make sure the address is a valid virtual address of that process
e Make sure that the control flow of the target process remains intact
e Find a location in the control flow in the analyzed system where the injected code is executed

Before a read operation is injected, it is necessary to check whether the requested page has a
valid virtual address of the process. The validation can be done either by checking the memory
tables of the process or by checking whether it is in the area of the mapped memory mappings
in task__struct of the process. Inserting an operation that reads from a non-accessible address can
cause a SEGFAULT in the corresponding application.

Shttps://github.com/libvmi/libvmi/commit/34ec2e5df0c0d0ebadd835dae8fad9£38215c440, Accessed
2019-07-02

https://github.com/libvmi/libvmi/commit/34ec2e5df0c0d0eba4d835dae8fa49f38215c440

40 3 An Extensible Architecture For Memory Analysis

target injected
VMI ! process process ! VMI

1

kernel dispatcher

CR3 callback

3 kernel space

inject ""-"_"""s-e_J;""s";\;:-e"
n N u
instructions P
1
0 push rax push rax
mov rax, 0x3A s vEork mov rax, 0x3A '
syscall | T ITTIT L »| syscall 51
I -
H pop rax » pop rax /J:Nwrlte parameters to mem
< int 3 . int 3 H
restore instructions] mov rax, 0x3B . mov rax, 0x3B set the registers
set IP back ! syscall . syscall 17 |move IP to next instruction
continue normally mov rax, 0x3C L mov rax, 0x3C
syscall i syscall

command

Figure 3.5: Libumtrace: steps required for injecting code into the context of a running process

To ensure that the control flow of the target process remains intact, we save the state of the
CPU that is modified by the code injection and restore it later. Otherwise, it leads to undefined
behavior or crashes. To achieve that, we surround the actual read operation with instructions
that save the content of the modified registers to the stack (see Listing 3.1)7. Additionally, we
restore the original instructions that are overwritten by the injected code after the execution of the
injected instructions and set the instruction pointer back to the point where it was intercepted.

To get the location in the target process where the code can be injected, Libvmtrace implements
an approach that monitors changes to the CR3 register written by the operating system when
it dispatches another process. We use the return address in user-space, i.e., the location where
the execution resumes, to inject the operations there. As return address we use the value that is
stored in the instruction pointer, which is stored in the task structure of a process in the kernel.
The instruction pointer points to the next instruction in the user space of a process when it gets
dispatched.

In case the process is dispatched due to a signal, the signal handler of the process is invoked
first. However, after the signal handler exists, the kernel returns to user space and the injected
instruction at the return address is executed [Bar00].

Figure 3.4 depicts all the steps from the dispatching of the target process until the target process
continues with its normal operations. The time #;,j.; estimates the time when the analyzed system
does not execute its normal operations due to the injection.

Command execution

The command execution is implemented similarly to the injection of the read operation. Instead of
using a single move instruction, we insert instructions that execute a command. For this purpose
the system function or a combination of the system calls fork and exec can be used. However,
in both cases the child process is started with the same address space of the parent. Since the
kernel uses a copy-on-write approach, pages are only copied to the new address space when they

TThis could of course overwrite possibly relevant forensic data. Thus, this approach should only be used when its safe to overwrite
contents below the stack pointer, which is usually the case

3.5 Libvmtrace 41

1 push rax ; store rax

2 mov rax, O0x3A ; move the syscall number of vfork to rax
3 syscall ; invoke the vfork syscall

4| pop rax ; restore rax

5 int 3 ; software breakpoint

6 mov rax, 0x3B ; move the syscall number of execve to rax
7 syscall ; invoke the execve syscall

8 mov rax, 0x3C ; move the syscall number of exit to rax

9| syscall ; invoke exit

Listing 3.2: Implanted instructions required to inject a command in a 64-bit Linux virtual machine

are altered. As a consequence, both the child and the parent process have the same VMI software
breakpoints in memory, which can result in race conditions when a breakpoint is removed or added.

To avoid concurrency, we use vfork instead of fork, which pauses the parent process until it either
exits or successfully starts a new process with execve. Both functions are system calls that can
be called by using the syscall instruction so that it is not necessary to know the function address
in a library. Only the parameters of the system call must be placed in the address space of the
memory, either on the heap or the stack. The parameters are passed as pointers in the registers.
In our implementation, we store the parameters for the execve call below the stack pointer of the
child process, when the breakpoint is reached. Afterward, we set the registers so that the values
are passed to the execve system call. To handle the error case when the execve call returns, we
insert an exit call at the end. When the breakpoint in the parent process is reached, we restore
the original instructions and set the instruction pointer to the start of the replaced instructions.
The injected instructions are depicted in Listing 3.2, and the control flow is depicted in Figure 3.5.
When the injected process terminates, the parent process will receive the SIGCHLD signal. Unless
the parent process implements a handler function for this signal, it will be ignored.

The approach of injecting code can be extended to access the contents of the file system, for
example, by injecting a process that reads the requested file and maps the contents to memory.
Hence, the VMI application can read the contents from the file directly from memory. If the file
is too big to be mapped to memory, it must be possible to instruct the injected program to load
only certain areas, e.g., by writing to variables or a shared memory region of the process.

3.5.2 Network Monitor

Besides memory access, the data acquisition layer provides the means to monitor the network
traffic of virtual machines. Thereby, it is possible to extract information from the network traffic
or to trigger memory analysis when certain network packets occur, e.g., to identify the process
of a new network connection. We distinguish between passive sniffing and active interception of
network packets. The difference between those approaches is that passive sniffing is decoupled
from the control flow of the analyzed system, mainly caused by processing time and analysis of the
network traffic. Because of that packets are usually analyzed a significant time after the analyzed
system sent them. In some situations, this is not acceptable, e.g., when VMI analysis operates
on short living data that needs to be executed while a TCP connection is established and data is
exchanged. If the analysis is triggered too late the data might be deleted already (see Chapter 5.2).

One approach for achieving a higher level of synchronicity is to forward packets only if they were
analyzed and if necessary corresponding call back functions are executed. The downside of this
approach is that it can affect network bandwidth and latency. As a consequence, if the analysis
takes too long, network connections can expire, and packets are re-transmitted.

42 3 An Extensible Architecture For Memory Analysis

The Network Monitor of Libumtrace employs the library libnetfilter queue to process packets
before they are delivered®. It uses BPF filters that operate in the kernel and are used to decide
whether a packet is forwarded, dropped or requires further analysis [MJ93]. Packets the match
the filter rule used by libnetfilter queue can be analyzed by a user space applications. For this
purpose, the user space application waits for the payload of each packet on a certain file descriptor,
which is the communication interface with the kernel. The application can then inspect each packet
that matches the filter and decide whether the packet should be forwarded or not.

3.5.3 Operating System Monitor

The Operating System Monitor aims to be a generic interface to access and trace the most com-
monly used data structures and functions of an operating system in main memory, such as the
process list and the properties of each process, e.g., the memory mapping, the established network
connections, and system calls. This interface is implemented in a separate class for each analyzed
operating system.

To retrieve information from the main memory of the operating system, we use rekall profiles
instead of manually computing offsets of data structures. Thus, if only slight changes in the data
structures are made, e.g., due to updates, it is sufficient to generate and use a new rekall profile.

Additionally, a class implementing the Operating System Monitor interface should implement
methods to trace the execution of system calls, since they are operating system specific. System
call monitoring is an important mechanism to study the behavior of a system, e.g., for dynamic
malware analysis, because system calls are the interface between the operating system and processes
of the user space. One approach to invoke a system call from a userspace process is to use the
interrupt 0x80 on Intel-based systems to trigger a system calls and store the number of the system
call in the rax register. However, in the past multiple approaches have evolved that optimize the
performance compared to the interrupt based approach [PSE11]. Since operating systems are often
backward compatible, they support the old way of system calls execution. Internally, the same
functions are called even when a different calling mechanism is used.

The Linux implementation of the Operating System Monitor sets breakpoints on the function that
is called by each system call, and the address of the corresponding function for each system call is
derived from the system call table. This approach allows us to selectively trace system calls and
extract the parameters at the beginning of a function call.

Another important aspect of system call tracing is the extraction of function parameters. In
some cases, it is easy to extract the parameters, when they are integers or bytes and can be
stored directly in registers or on the stack (depending on the calling convention). The extraction
of complex data types, such as the struct sockaddr of the connect call, is cumbersome.
Since Linux provides numerous system calls and each with different data types as parameters, our
implementation extracts only parameters of the most important system calls for the analysis.

To get the return value of a function, a breakpoint should be set to the last instruction of the
function. However, determining the address of the last instruction is in most of the cases not easy
since a function can return at multiple places in the control flow. To retrieve the return value
of system calls, which is stored in the rax register, we set the breakpoint to the next instruction
after the function returns. This address is stored by the call instruction on the stack when the
function is invoked. If a system call returns values in addition to the value in the rax register,
a separate handler for the particular system call must be implemented. For example, Libumtrace
implements a handler for the read system call, as it stores the read values in a buffer of the calling
userspace application.

8For TLSKex we used a different approach that did not yet use libnetfilter_queue. Instead, we implemented a user-space network
bridge that reads network packets from the monitored virtual machine, processes it, and afterward injects it to the outgoing device.
However, one of the main disadvantages of that approach is that it does not integrate very well to the Xen infrastructure. For
example, in our test setup, we need to compute the checksum of each packet in the software bridge because the virtual machine
did not correctly set them.

3.5 Libvmtrace 43

3.5.4 Library and Process Monitor

The library and process monitor provides functions to trace the execution of user space applications
and the use of library function calls. This mainly includes resolving the address of functions and
the interpretation of the data structures of an application. This is similar to the information
extraction and tracing of the operating system, but also has two more challenges:

e Data structures and function symbols must be derived from applications.

e The virtual address of functions in memory must be computed since the linker relocates them
to implement address space randomization.

In order to derive the semantic knowledge of the data structures layout, we use the debugging
information stored in the DWARF format of executable and linking format (ELF) files, created
by the compiler at compile time. This, of course, requires that the application provides this
information.

In order to trace a function call and to set a breakpoint on it, the virtual address of the function
must be known. The logical address of a function is stored in the ELF file headers in DWARF
format [Com+10] and the virtual address of a function in the address range of a process is defined
by the linker that loads a binary to memory when a process is started. In order to get the virtual
address of a function, the logical address and the mappings of the ELF sections in memory are
required. To retrieve the information of where a binary is mapped, we use the information that
is stored in the Linux kernel for each process. The approach of using the information of the ELF
headers requires that the compiler actually stores it and that it is not stripped for obfuscation. In
case of shared libraries, at least the exported functions and variables must not stripped. Otherwise,
other processes cannot use them. Often, Linux maintainers also provide the debugging information
of ELF headers for the applications in their distribution.

3.5.5 Plug-ins and Dynamic Reconfiguration

Libumtrace allows building different tracing plug-ins, e.g., to trace function calls of applications
and their system calls. These plug-ins can be used for various reasons such as simple system call
tracing or extracting the process list periodically. To reconfigure the tracing system Libvmtrace
implements a controller that receives commands from clients to activate and deactivate tracing
plug-ins. Each plug-in needs to implement at least three functions: initialization, de-initialization
and the execution of plug-in specific commands.

In Chapter 6, we describe how VMI can be used in the DINGfest SIEM system. In this architecture,
we use Kafka as a central message broker and storage location. Hence, the communication of
Libuvmtrace with clients is established using the Kafka server. However, other communications
channels should be easy to add.

3.5.6 Logging

VMI-based monitoring generates a vast amount of tracing information, and different analysis mech-
anism might need to access the data. Thus, the traces must be stored for further processing in such
a way that the logging does not affect the performance of the tracing and that the data is stored
in a generic format that is accessible from different components. To achieve high performance, we
separate the tracing from the logging module. Every time a new log entry is produced, it is written
to a shared memory region. Then, the log entry is processed by another process that is sending the
log entry to a configured target, e.g., to standard output or a Kafka server. The standard target
is Kafka since it is optimized for high throughput and different accessors libraries are available so
that the data can be forwarded easily to other databases such as ElasticSearch. To make the data
accessible for different analysis, we store all log entries in json format.

44 3 An Extensible Architecture For Memory Analysis

3.6 Evaluation

To evaluate our architecture, we measure the performance of the standard functions and their
impact on the analyzed system. All measurements presented in this section are executed from a
monitoring virtual machine in one CPU and 4 GB main memory. The analyzed system is running
Ubuntu 16.04.1 LTS, has one CPU and 1 GB of main memory. The virtual machines are pinned
to different cores of the physical CPU (Intel(R) Xeon(R) CPU E5-2609 v3 @ 1.90GHz) using Xen
4.11.1-pre.

3.6.1 Process List Extraction

The extraction of the process list is a standard feature of our framework and can be performed
either asynchronously to the execution of the analyzed system, e.g., to monitor the running process,
or as part of a complex synchronous analysis. To access a non-changing state, the analyzing system
pauses the analyzed system for the extraction of the process list. Hence, performance losses in the
analyzed system are the result. To quantify the slowdown, we measure how long the extraction
of the process list takes and how the performance of the analyzed system is affected. To do so,
we run a process and measure the time of a function that is doing a compute-intensive operation.
Meanwhile, we extract the process list of the analyzed system every 1000, 100 and 10 ms. Without
extracting the process list, the computation takes 14.7 s £ 0.04 s on average for ten times. When
extracting the process list every 1000, 100 and 10 ms the computation time increases as respectively:
14.7s + 0.02 s, 14.8 s £ 0.01 s, and 16.2 s £+ 0.02 s. During the measurement, the system was
idle and thus the amount of processes can be considered as relatively constant. Hence, the time
required to extract the process list can be also considered as constant.

3.6.2 Breakpoint Performance

The use of breakpoints decreases the performance of the analyzed system. The overhead mainly
depends on the number of context switches between the analyzed and analyzing system and the
time for inserting/removing the software breakpoint to memory.

We measure the overhead caused by our breakpoint mechanism, by comparing the run-time of a
function call against the run-time of an intercepted function call. The time #;,, quantifies the time
when the virtual machine is paused due to a breakpoint. This is mainly due to context switches
between the analyzed system and the analyzing system and the time require to inspect the system
state. To measure the time #,, we use a program in the analyzed system that executes the getpid
system call® 1,000,000 times and measure the total run-time. We run this program with and
without a breakpoint on the system call getpid, which can be considered to have a constant
execution time and does not depend on input parameters. The breakpoint is always reinserted
after it was reached. The breakpoint handler simply returns and does not further analysis. Thus,
we can get the minimal time that is required by a breakpoint. For this measurement, we only
monitor the invocation of the getpid system call and do not monitor retrieve its return value.

The mean run-time in 100 iterations of the program calling getpid for 1,000,000 times without
using a breakpoint is 0.36 s &+ 2.75 ms. We measure a run-time of 270.82 s & 2.1 s when the system
call is intercepted. Hence, each breakpoint delays the execution for 1, = 0.27ms.

3.6.3 Return Value

Libuvmtrace sets an additional break point on the instruction that is executed after the analyzed
function returns, to get the return value of a function call. We measure the impact of inserting an
additional break point the same approach as in the preceding section (100 iterations with 1,000,000
getpid calls) and extend it to extract the return value stored in the RAX register after the system

°For our measurement we use the syscall function to invoke getpid to avoid that the compiler uses the vdso based function call

3.6 Evaluation

45

Idle Web server | Compile | Compute

Top 10 lo_getevents 1991 settimeofday 251% Il 15809 | Istat 192% 11275070 | read 3% 1815
gettimeofday 75 | eovfrom . 184% Il 11520 | rt_sigprocmask124% Il 173207 | clock_gettime 2% Il 1355

f“‘l‘“ix Zg poll 113% 117125 | open 101% 11 141354 | close 2% 111252

po clock_gettime 113% 117113 | read 57% 1178284 | open 2% 111219

nanosleep 20| Cndto 84% 115109 | close 50% 11 67395 | fstat 2% 11 1158
clock_gettime 10 | occess 48% 11 2805 | rt_sigaction 42% 1159305 | Istat 1% 111116

select 10 | stat 26% 11523 | brk 41% 11 55399 | mmap 1% 11719

waitd 9 | close 15% 11 746 | fstat 37% 11 48609 | stat 1% |l 546
inotify_add_watch 7 | read 14% 11 724 | l1seek 34% Il 47556 | access 0% Il 485

stat 1 | fentl 12% 11709 | mmap 34% 1147084 | mprotect 0% Il 461

All (count) 454 4469% 1159319 97793% Il 1267245 77.0% Il 15407
All (time) 10s+0s 4569s+14s 97893 s +4.71s 26.1s+0.1s
Base 10s+0s 1.77 s+ 17.8 ms 39.88 s £ 159.9 ms 14.71s £ 162 ms

Table 3.2: Overhead caused by tracing all and the top ten most used system calls for each use

case. The results show the overhead in time (in percent) and the amount of intercepted
system calls.

call returns. When we extract the return value of the getpid system call, each function call is on
average delayed by 0.56ms ~2x1p,,. If functions have parameters that are more complex to extract,
the overhead becomes bigger.

3.6.4 System Call Tracing
We use the following use cases to measure the overhead caused by tracing specific system calls:

e Idle system: we monitor the system only running standard Ubuntu background jobs for ten
seconds. In this case, we only measure the regular system call activity of background jobs
by counting the amount of invoked system calls.

e Compute: we run a program that is performing computation expensive operations. To get
the overhead, we measure the execution time of the computation.

e Compiling: we connect to the system via SSH, extract a zip file that holds the libvmi source
code, and compile it afterward. To get the overhead, we measure the execution time required
for all these steps.

o Web server: the analyzed system is running apache2, and the content management system
WordPress. A client on a different system sends 100 requests using the Apache HT'TP server
benchmarking tool ab. To get the overhead, we measure the time until all requests are
processed.

Each of them uses different system calls and hence tracing one specific system call is more expensive
in one use case. For example, a web server opens many network connections, while compiling source
code does not open any. The measurements in Table 3.2 depict the overhead for intercepting the
top ten most expensive system calls and the count of interception. The values are the average of
running the use case and the corresponding tracing for ten times.

The ten most expensive system calls and their overhead is depicted in Table 3.2. For the idle
use case, we do not measure the overhead in time, since we do not run anything in the virtual
machine where we could measure the run-time. We only measure the system for 10 seconds with
and without tracing and count the number of system calls.

In the web server use case, we monitor many network related system calls and the monitor of the
corresponding file descriptors. In the compile use case, we monitor a different set of used system
calls. They are more related to reading and opening files, which is the case when a large number of
files are compiled. The web server and the compile use case make great use of system calls. Hence,
tracing a single system call can have an overhead of 250% or 192%. Tracing all system calls can
have an overhead of almost 4500% or 10,000%.

46 3 An Extensible Architecture For Memory Analysis
Idle | Web server | Compile | Compute
base [time] 10s+0s 1.77s £ 17.8 ms | 39.88 s+ 1599 ms | 14.71 s £ 16.2 ms
tracing [time] 10s£0s 1048 s £09s 430.54s+4.2s 18.86s£1.7s
tracing [overhead] N/A 492.56% 979.49 % 28.27 %
tracing [count] 1,110 £ 58 | 129,585 + 11,051 | 5,812,845 4+ 9,975 60,327 + 20,226

Table 3.3: Overhead to the analyzed system when monitoring changes to the CR3 register

In contrast, the compute use case does not require many system calls. Hence, the tracing has only
a little impact on the performance.

3.6.5 Process Monitor

Monitoring changes to the CR3 register can be used to trace the currently active process. The
amount of userspace context switches depends on the type and amount of currently active processes.
To estimate the impact caused by the monitoring, we measure the overhead caused by intercepting
write access to the CR3 register for the use cases introduced in the preceding section. Table 3.3
summarizes the measured overhead for these scenarios. Based on these results we conclude that
tracing modifications of the CR3 register can be significantly expensive and should only be used
when necessary.

3.6.6 Accessing Virtual Addresses that are not Present in Physical
Memory

To access memory regions that have a valid virtual address but are currently not present in physical
memory, we inject a read access instruction into the corresponding process. In this section, we
measure the overhead to the analyzed process that is caused by our approach. These factors mainly
have an impact on the performance of the analyzed system:

The time until the process gets dispatched

Tactive

The time to inject and handle the breakpoint directly after the target process gets active (see
Section 3.5.1). This time also includes the time to load the requested page to main memory.

tinject

The time to parse the task_ struct data structure of the operating system to find the location
where to inject the code

Lparse

The validation on whether the address is mapped by the application in order to prevent a
segmentation fault

Lyalid

To measure the impact on a real system, we use the following test setup: the analyzed system
is running a program that first maps a file to memory and afterward performs a mathematical
computation in a loop. The analyzing system injects a read instruction to the mapped file while
the analyzed system is performing the computation. The hard disk of the virtual machine is a
qcow image file that located on an SSD (Samsung SSD 860 EVO 1TB).

In this setup we measure the following times and compute the average over 100 runs:

e The time f,4r5 + tyaiig that is required for identifying the location where the code is in-
jected and whether it is a valid address. The localization is done before the computation
in the analyzed system is started. In our test setup, we measure in the analyzing system
2.958 ms + 0.044 ms. It is executed asynchronously to the analyzed system and thus only
has a little performance impact on it.

e The time from calling the function that injects the read access until the request page is
in memory (factivate + tinject). 1t depends on the analyzed system because the process must
become dispatched and active. The longer it takes until the scheduler activates it, the longer
it takes to inject the read instruction. In our case, the program is active most of the time

3.6 Evaluation 47

since it is doing computation and the rest of the system is idle. In our test setup, we measure
in the analyzing system 3.814 ms + 1.184 ms until a required page is loaded. This time also
depends on the performance of the storage where the data is stored.

e The run-time of the computation in the analyzed system without injection is
14.6652 s + 0.014 s. With injection, we measure 14.6654 s + 0.009 s. The difference is
0.2 ms + 25 ms.

In our evaluation, we measure only the time for accessing a single memory page. Our approach
can be extended to inject multiple read instructions at the same time, to access more than one
page. In that case, the overhead for costly monitoring context switches is only required once.

The results show, that our approach of accessing not present memory regions has only little over-
head. To improve performance, the approach could also be extended to load more than a single
page to physical memory at once. However, as shown in the previous section, the monitoring of
the CR3 register has a significant impact on the performance. Thus, if the target process gets not
quickly dispatched the performance impact increases. Additionally, a limitation of this approach
is that the target process needs to become active at all. If not, the memory can not be loaded.

3.6.7 Stealthiness

The presence of VMI-based monitoring can be detected in various ways. While a full analysis of
the stealthiness has already been discussed [Tuz+18], we only discuss the most important ones
that affect the tracing in our architecture.

The easiest way to detect VMI-based tracing is by searching for software breakpoints in the main
memory of a VM. Memory events can be used to detect read access to pages that contain break-
points, to hide them. In that case, the original page can be restored so that the read access does
not see the software breakpoint. However, this approach slows down the read access, which can be
used as an indicator to detect monitoring.

The timing measurements of this section show that VMI-based tracing adds significant overhead
to the monitored system. The analyzed system can detect the overhead by measuring the timing of
function or system calls. Hence, timing behavior is currently the best indicator to detect whether a
system is monitored. Future work needs to address the problem of minimizing the overhead caused
by VMI-based tracing. This could be for example achieved by integrating parts of the VMI code
directly into the hypervisor, which would help to minimize the amount of context switches and to
reduce the overhead.

3.6.8 Network Tracing
To quantify the overhead caused by introspecting the network, we measure three use cases:

A. We use the webserver benchmarking tool ab to establish 1000 https connections sequentially
to a static website. For each connection we measure the total time of each connection.

B. Same as A but with 4 parallel connections.

C. We use curl to download a large file (60 MB) using https for ten times and measure the
time.

For each use case we measure the time with and without monitoring. The packet monitoring is
executed on the same host as the client (ab and curl). The server is located in the same lab
network. The introspection routine in Libvmtrace calls an empty dummy call back handler for
each https packet that matches the filter (here: packets that are sent/received on port 443). The
callback handler only returns and does no further inspection on each packet. Hence, we only
measure the overhead that is caused by the filter mechanism in the kernel and the time that is
used to involve user space applications in the inspection process.

48 3 An Extensible Architecture For Memory Analysis

30 . L |
ot |]
= 20| Z18e = B
= Ak o ¥
2 8 2 3
E 2 NN o= — 2 |
e 10p A & 03 g
8 no monitoring
0 0+ s . 0 monitoring
= =T = T
B C
Use case No tracing Tracing
A 20.60 ms £ 0.93 ms 21.05 ms £ 0.77 ms
B 23.56 ms £ 0.97 ms 24.80 ms £ 1.75 ms
C 0.56 s =+ 0.0008 s 1.29 s+0.05s

Figure 3.6: Overhead of monitoring https network connections

Figure 3.6 depicts the results of the measurement. Based on them, we can see a inspection overhead
of about 2% for short connections (A) and 130% (B) for connections where a file is downloaded.
For many monitoring applications the overhead can be reduced by using specific filter rules that
accept packets in the kernel so that they are not analyzed in the user space. For example, it may
be sufficient to check only the first packets of a connection and ignore the following packets of a
session to extract the URL of an http connection. After obtaining the URL of the GET request, a
new connection-specific rule can be inserted into the kernel to prevent further examination of that
particular connection.

3.6.9 Compliance with Principals of Digital Forensics

The most important principals for a VMI-based framework are forensic integrity and forensic
soundness. The term forensic integrity refers to the integrity of the evidence after the acquisition.
The associated problem of preserving integrity of log data in cloud environments is for example
discussed by Dykstra et al. [DS13]. Libumtrace currently does not implement means that enable
a forensic investigator to verify the integrity of acquired traces. However, the logging mechanism
could be for example extended to calculate hashes over log messages at run-time.

The term forensic soundness means that the evidence acquisition is reliable, repeatable, and docu-
mented. Libvmtrace helps to accomplish that because the core parts are implemented in separate
modules that can be re-used for different purposes. This helps to minimized software flaws in VMI
applications. Additionally, this modular design concepts helps to document the implementation.
Besides, forensic soundness also means to keep the modifications to the analyzed system as min-
imal as possible. The most critical operations are the break point, the code injection, the access
to non-present memory, and the write function because they alter the system state. Thus, these
functions should be used only if really necessary to keep the modifications as small as possible. To
support the forensic soundness of the evidence gained with our framework, Libumtrace could be
extended to log the use of these operations.

3.7 Summary 49

3.7 Summary

In this chapter, we introduced the Libvmtrace framework. The main contribution of it is that
it simplifies the implementation process of VMI applications for monitoring Linux-based virtual
machines on Xen using LibVMI. To achieve that, Libvmtrace encapsulates frequently used operations
such as inserting and handling breakpoints required for tracing the execution of a virtual machine
and to analyze its system state from outside. With this approach, we make sure that it gets easier
to port VMI applications using this framework to new platforms as only platform specific parts of
it must be adapted. The concept of plug-ins helps to dynamically reconfigure the tracing and to
enable or disable tracing mechanisms at run-time or to trigger certain operations remotely, e.g., to
take a snapshot. Moreover, another contribution of Libvmtrace is that we propose a mechanism
to access memory regions that are currently not mapped, e.g., when they are swapped out or not
yet mapped to memory. Additionally, in contrast to other VMI frameworks, Libvmtrace allows
combining VMI with network monitoring, so that VMI operations can be triggered when the
monitored virtual machine sends/receives certain network packets.

In this chapter, we also measured the performance of Libvmirace. Based on these measurements we
can show that polling-based monitoring approaches can have only little performance on the impact
of the monitored system as long as the polling interval is chosen appropriately. Additionally, the
measurements show that the breakpoint mechanism can have a significant impact on the perfor-
mance of the analyzed system if it is reached often during the analysis (0.27 ms per breakpoint
invocation). Hence, VMI-based tracing is not stealthy against an detection mechanism that mea-
sures the time of monitored function calls. Similarly, system call tracing can also have a negative
impact on the performance (from 77% in the use case that runs computation intensive operations
to up to 97793% in the use case that compiles source code). Thus, for production systems that are
monitored it is important to trace only system calls that cause low tracing overhead, i.e., are less
frequently called. Nevertheless, the injection of read instructions to memory areas that are not
present in physical memory has only very little impact on the performance of the analyzed system.
Similarly, the deep packet inspection of the network monitoring can be implemented efficiently
when many packets are already pre-filtered in the kernel. Thus, network monitoring can support
the VMI-based monitoring (see Section 5.2).

The practicability of Libuvmtrace is demonstrated in the following chapters. They show that the
Libuvmtrace framework can be used to implement new VMI applications, such as an SSH honeypot
(see Section 5.4), a TLS session key extraction approach from main memory (see Section 5.2), and
for data acquisition in a SIEM system (see Chapter 6).

To support future VMI-based research, we published the source code of Libumtrace!.

Ohttps://github.com/libvmtrace/libvmtrace

https://github.com/libvmtrace/libvmtrace

DATA ACQUISITION

Access to the system state is the prerequisite for memory forensics and virtual machine intro-
spection. However, in most of the systems the contents in main memory are protected against
unauthorized access with different techniques that hinder the data acquisition process. In this
chapter, we discuss approaches that improve the process of data acquisition for mobile devices and
cloud environments.

One approach for data acquisition of main memory on mobile devices is to use a cold boot attack.
For this approach, the device under analysis is rebooted, and a new analysis operating system is
started. Since the memory is often not wiped during the restart, the contents from the previously
running operating system are still in memory. Frost [MS13] starts a fully-fledged Linux kernel
for the analysis. However, this approach overwrites parts of the previously running operating
system, and thus they are not available for the analysis. The first contribution of this chapter is a
framework for cold boot attacks on mobile devices that does not overwrite the data structures of
the previously running operating system.

The TrustZone is an extension for ARM-based CPUs [PS19], and it introduces two modes: the
normal world, which runs the normal operating system, and the secure world, which run security
services such as a key store. Memory assigned to the secure world is not accessible from the normal
world. This property makes the secure world an exciting target for memory forensics because by
executing the monitoring in the secure world it is protected from the normal world. However, there
is currently no framework for that purpose. Hence, the second contribution of this chapter is the
discussion about how the interface of LibVMI can be ported to the secure world of TrustZone.

Public cloud providers do not provide an interface for VMI-based analysis to cloud tenants. Hence,
customers cannot use security solutions that benefit from virtual machine introspection. The third
contribution of this chapter is the CloudPhylactor architecture, which discusses an approach on how
to grant cloud tenants the access to functions required for performing virtual machine introspection
on their virtual machines. Additionally, it introduces the concept of monitoring and production
virtual machines. To do so, we leverage the Xen security modules to grant a second virtual machine
of the same customers the permissions for VMI operations. With this approach, we move VMI from
the most privileged operating system to a virtual machine with restricted access. By restricting
the permissions of the VMI application we increase the security of the overall system.

The CloudPhylactor architecture has a drawback that it does not support live migration of virtual
machines while they are monitored. The fourth contribution of this chapter is the TwinPorter
architecture that addresses this shortcoming by extending the live migration approach of Xen in
such a way that the monitoring and the production virtual machine are migrated at the same time.

51

52 4 Data Acquisition

In Section 4.1, we describe state-of-the-art techniques for the subsequent sections. In Section 4.2,
we present the architecture that uses a minimal bare metal application for cold boot attack based
data acquisition on mobile devices. The second approach in Section 4.3, is a pro-active method
to increase the security level of mobile devices by implementing the monitoring application the
ARM TrustZone. In Section 4.4, we describe the CloudPhylactor architecture that allows cloud
customers to use VMI on their virtual machines in a cloud environment. Section 4.5 extends the
concept of the CloudPhylactor architecture so that it is possible to live migrate a pair of monitoring
and monitored virtual machine to a new cloud node. Section 4.6 summarizes this chapter.

4.1 State of the Art

This section provides an overview of state-of-the-art techniques used for data acquisition on mobile
devices and in cloud computing environments.

4.1.1 Main Memory Access on Mobile Devices

Coldboot attacks provide access to the main memory of a system, but since cold boot attacks
require restarting the system, they can only be used once to take a snapshot. Thus, cold boot
attacks are not feasible for monitoring running systems but instead, they are eligible for situations
where only physical access to a device is given, and the credentials or functionality is missing that
allows accessing the main memory, for example in crime investigation scenarios. The first cold
boot attack was described by Halderman et al. [Hal+09] on desktop PCs. The Frost architecture
by Miiller et al. [MS13] ported this approach to a mobile device [MS13]. To obtain the memory
of the system, they boot a fully-fledged Linux kernel with the lime kernel module [Syl4+12]. The
problem of their solution is that the analysis system overwrites the data structures of the previously
running kernel that are necessary for the analysis, e.g., to get the list of processes and their memory
mappings.

Wichter et al. [WG15] study the practicability of common data acquisition on Android devices.
As a result they state that the acquisition was only successful on one out of eight devices in the
stock configuration. This is mainly caused, because stock phone are not rooted and have a locked
boot loader.

Sun et al. [Sun+14] use the secure world of the TrustZone for the data acquisition process. Similarly
to coldboot attacks, the TrustZone provides an isolation between the analyzed system and the
analyzing system. They leverage the secure world TrustZone for the data acquisition to get a
trustworthy snapshot. The memory is sent via the serial port to a remote workstation that analyses
the contents. This approach is fine for static analysis that does not intercept the control flow of
the normal world. However, they do not discuss how dynamic tracing could be implemented with
this approach.

TZ-RKP is the approach used by Samsung Knox architecture to monitor the integrity of the An-
droid kernel running in the normal world from the secure world [Aza+14]. In general, this approach
could be also used for forensic investigations and other security related solutions. However, it is a
commercial product and the source code is not available.

SPROBES [GVJ14] is similar to TZ-RKP and aims to protect the operating systems in the normal
world running on mobile devices using the Android TrustZone. SPROBES can monitor the control
at any place in the normal world. They use an instrumentation technique that is similar to the
monitoring of sensitive instructions of the Intel architecture by the hypervisor. To achieve that,
they inject smc instructions that induce a context switch to the secure world. The key aspect of
their approach is to ensure that the smc instruction is not removed by attackers in the normal
world.

T2Droid [Yal+17] uses tracing modules in the normal world to monitor system calls and API calls
of Android applications. The integrity of the tracing modules is monitored from the secure world

4.1 State of the Art 53

to make sure that they are not compromised. The traces are processed in the secure world by a
classifier to detect malware. The limitation of T2Droid is that the dynamic analysis mechanisms
are running in the same environment as Android and are vulnerable to attacks.

Duarte et al. [Dua+18] present SafeChecker. It allows a remote verifier to obtain integrity proofs
of function execution in the normal world. The authors use a similar approach as T2Droid to
monitor function and system calls of applications and process them later in the secure world. In
order to verify the program execution they use the approach of SNARKs [Ben+13].

4.1.2 VMI in Cloud Computing Environments

There have been various attempts that bring VMI to IaaS cloud environments and run forensic op-
erations on virtual machines. LiveCloudInspector [ZR15] extends the cloud management interface
so that cloud customers can start a limited set of VMI-based operations, i.e., volatility commands,
on their machines. To achieve that it installs the required forensic tools on each cloud node. When-
ever a user is issuing a forensic command using the LiveCloudInspector interface, the framework
executes the required tool on the corresponding cloud node. The architecture also ensures that a
user cannot perform any VMI operation on a VM that does not belong to him. One drawback
of this approach is the limited amount of commands and that it does not allow the execution of
code from a customer. That is caused by the fact that the operations are executed in the most
privileged context of the cloud node that has access to all VMs running on it. Thus, if one user
would be able to break out and gain access to the most privileged context, it would be possible to
access all data. Another problem of this approaches is that the core part of the VMI functionality
is running in the most privileged domain (such as the Dom0 VM on a Xen hypervisor). VMI-based
systems heavily depend on the interpretation of data extracted from a guest system [Bah+10]. If
an attacker can exploit flaws in routines that interpret the contents in memory, he might be able to
gain access to the privileged domain that has full access to all VMs running on the same physical
node [CER03; Com04].

CloudVMI [BSM14] provides another approach for VMI in cloud environments. It implements
a service that uses remote procedure calls around LibVMI. Thus, a developer can use the same
interface as LibVMI, but the actual command is sent over the network to the VMI service. The
service is checking the access rights and executes the command afterwards. The advantage of this
approach is that applications using LibVMI do not need to be adopted since they use the same
API. The downside of this approach is that the network latency slows down that management of
synchronous events, e.g., when a breakpoint is reached. Then, the virtual machine is paused for the
time of the callback is invoked and the time that is required to encapsulate and send the callback
command over the network. The introduced latency has a high impact on the performance of
the monitored virtual machine, which is a show stopper for VMI-based monitoring that requires
to handle these events in a very short time. The CryptVMI architecture [YC14] has presented a
similar idea.

If the cloud provider does not implement any method to access the memory of a virtual machine
from outside, nested virtualization can be used. Beham et al. [BVR13] describe a feasible way to
install a VMM into a virtual machine and then to perform VMI-based operations on the nested
virtual machines with the goal of implementing an intrusion detection system. The drawback of this
approach is that the use of nested virtualization and especially the complex memory management
harms the average performance on a virtual machine.

Furnace [BR18a] is a framework that allows cloud tenants to run VMI tools on their virtual ma-
chines and combines the concept of CloudPhylactor and CloudVMI. In contrast to CloudPhylactor,
it executes the VMI applications of cloud tenants in sandboxes running in the Dom0 instead of in
dedicated virtual machines. The sandbox that is running customer code is implemented with Linux
namespaces and restricted by SELinux and Seccomp-BPF. To execute VMI operations, it needs
to use inter-process-communication to send commands to a privileged container that is running
LibVMI. Furnace does not address the problem of VMI and live migration. Besides, Bushouse et

54 4 Data Acquisition

al. [BR18b| discuss how the in-guest agents of the forensics framework GRR [GRR] can be moved
to the Dom0 to use virtual machine introspection.

Using VMI in cloud environments has been discussed by various researchers and has been imple-
mented in several ways. For example, Martini et al. [MC12] describes an integrated conceptual
digital forensic framework for cloud computing. Poisel et al. [PMT13] discusses how data from the
hypervisor can be used for forensic purposes in cloud environments.

Shaw et al. [Sha+14] introduces the concept of forensic virtual machines. They are using the Xen
hypervisor to implement and evaluate this approach. However, they do not restrict the permissions
of a FVM fine-grained and proposed that more research in this field is needed.

Aderholdt et al. [AL13] present an approach for migrating the state of a VMI-based intrusion
detection system while the monitored virtual machine is migrated. Hence, by migrating the state
of an application, they need to extend the application logic to send its state. Additionally, they
only support asynchronous monitoring, i.e., they only extract the list of kernel modules, the process
list and check the integrity of the kernel and its modules. Because of that, their architecture does
not allow tracing the execution of the monitored system, e.g., to monitor the invocation of system
calls.

4.2 Improving Cold-boot Based Data Acquisition

55

Mobile Device

4 Address Space

Device Memory

Old Kernel Code & BMA

Host System

-~

Forensic Framework

~

-

(Data Acquisition Module J

~

Kernel Dat:
erne’ Data ‘ Virtual Address Translation
System RAM
‘ Data Request Layer ’
\ 7y
Application l

[Bare Metal Application

.

)
!

(UART Driver

J

(N

!

Serial Cable

Figure 4.1: Architecture for cold boot based data acquisition over a serial cable [Tau+15b]

4.2 Improving Cold-boot Based Data Acquisition

Mobile devices such as smartphones and tablets contain much information about their owners such
as pictures, and documents. Thus, these devices are of particular interest for forensic investigators
as well as for attackers. Since these devices often have a high-security level provided by to the
ARM architecture, the data acquisition process for memory forensics is a complicated task and
cannot be accomplished on a standard device, since a regular Android user account does not have
the permissions to access the whole main memory.

A common way for main memory acquisition on systems with physical access but without having
any privileges on the system is a cold boot attack. Cold boot attacks take advantage of DRAM’s
remanence effect, which causes the data not to disappear immediately, but to degrade over time
when the power supply is interrupted. Hence, a device that is restarted fast (cold booted), still
contains the data of the applications and operating system that was running before. The time to
degrade all data can be extended by cooling the DRAM module, so that it is even possible to move
the modules to another computer and access the contents afterwards.

Since it is often not possible to unsolder a DRAM module from a smartphone and put it into another
system, we have to start an analysis tool on the same system, which leads to the alternation of
memory when the analysis system is loaded to memory. Miiller et al. [MS13] use a fully fledged
operating is used for that purpose. However, it overwrites the contents of the previously running
operating system and might even initialize devices and destroys their state and contents in memory.

To minimize the memory footprint of the analysis system and to improve the amount of available
data for forensic investigations, we show how a minimal system can be used for accessing data
of a cold booted system for forensic purposes. The challenges of this approach are first of all to
implement a minimal bare metal application (BMA) for a mobile phone. Additionally, a driver
for this operating system is required that allows transferring commands and information between
the forensic workstation and the mobile device via the serial bus. The complex analysis logic
is implemented on the forensic workstation while the minimal operating system remains small.
For the analysis, we use volatility as it provides a large set of analysis plug-ins. To integrate it
into our architecture we extend it so that it transparently sends requests for memory pages to
the mobile device via the serial interface. The following discussion is largely based on [Tau+15b]
and [Hub+16].

56 4 Data Acquisition

Power
Storage on Memory
' N

ROM ¢
Bootloader |_4{ Hardware Initialization J—v Bootloader

eMMc partitions

T
Boot

)

Bootloader Jﬁ*‘ BMA

System i Kernel Code Segment

Cache [BMA j

System

Recovery (BMA)

Kernel Data Segment

A

Figure 4.2: Boot procedure starting the bare metal application from the recovery partition on a
cold booted device [Tau+15b]

4.2.1 System Design

The primary goal of the approach described in [Tau+15b] and [Hub+16] is to keep the memory
footprint, i.e., the amount of data that is modified due to the started program, as small as possible.
To achieve that, we implement a bare metal application for the data acquisition process, while the
memory analysis is executed on a different system. Hence, the data contents in the main memory
are transferred from the mobile device to the analysis system or forensic workstation. The program
code is mapped to the kernel text code segment of the previously running kernel that was mapped
read-only. It contains only the kernel image, which can be easily reconstructed from the persistent
storage. This way, we ensure that important run-time data, e.g., the kernel heap is left intact for
the analysis. Besides the small footprint, our bare metal application does not initialize devices,
and thus the contents in their memory regions also remain unmodified.

The proposed architecture has two components: a minimal bare metal application and the forensic
analysis tool that requests memory from it (see Figure 4.1). To transfer the data between those
systems, the serial interface is used because it is easy to implement a driver for it and the driver
requires only a few instructions, which keeps the memory footprint low.

This approach allows taking a full memory snapshot. However, it takes approximately 42 hours
to transfer the data of a 2 GB main memory snapshot. In some situations, a full snapshot is not
required, e.g., when only parts of the memory are required. Thus, we modified the analysis tool
volatility, to request only the required data for the analysis on demand from the mobile device for
the analysis procedure.

4.2.2 Implementation

To test our approach, we implemented a BMA for the Samsung Galaxy S4 GT-I9505 smartphone
and installed it to its recovery partition before the analysis. That allows us to boot it directly after
a power cut-off by triggering the recovery boot mode that is started after pressing the volume up
and power button. To establish the connection between the test device and the host system, a
conventional PC, we use the Samsung Anyway Jig, which is a universal maintenance tool'. This
adapter allows accessing the serial interface of the smartphone via the Micro-USB port.

Vww . xda-developers.com/what-is-the-samsung-anyway-jig

www.xda-developers.com/what-is-the-samsung-anyway-jig

4.2 Improving Cold-boot Based Data Acquisition 57

Bare Metal Application
The BMA provides the following functionalities:
e Initializing the driver of the serial interface

e Receiving and parsing commands to get the specified amount of memory from physical ad-
dress

e Returning the contents

Volatility Extension

The analysis tool is an extended version of volatility, which instead of using a snapshot file, requests
on-demand data from the mobile device via the serial interface. Additionally, it uses a cache to
improve the performance, which avoids requesting the same address after it was already transferred.

With the concept of address spaces (AS), volatility provides the possibility to translate addresses.
In our case, this is the translation of virtual to physical addresses or determining the correct
position of an address in a memory dump. Depending on the use case, Volatility allows combining
and stacking address spaces. We applied the ARM Address Space in our concept for virtual
to physical address translation. According to our architecture, we extended Volatility with the
implementation of an AS that requests data over the serial port, instead of from a memory dump
file. Furthermore, we created a Volatility profile for the specific device under analysis.

We implemented a new Volatility AS for data acquisition via the serial port. We call this AS the
Serial Address Space, which resembles the file address space. The latter requests the contents from
a local memory dump file. Instead, the Serial Address Space implements the protocol required
to request data from the BMA via the UART interface. The AS opens the serial port upon its
initialization. Consequently, when a plug-in requests data from an address, the AS directly passes
the request to the BMA on the target device. The AS writes the dump command with the start
and end address of the request to the UART interface. The BMA then reads and parses the dump
command. In the next step, the BMA writes the requested data back to the UART interface. The
AS then reads the requested data and returns it to overlying ASs. As some address requests are
frequently made, such as for reading the page tables, we equipped the Serial Address Space with
a cache that stores the data from former requests. In case a request occurs again, we immediately
return the data from the cache instead of consulting the BMA. This likely decreases the duration of
the analysis many times over. Figure 4.1 depicts the different layers used by a standard Volatility
plug-in, such as linux pslist. The plug-in retrieves the list of running processes by following the
linked list of task structures, called task struct, in the Linux kernel. Since our target system is
on the ARM architecture, Volatility makes use of the ARM Address Space for virtual to physical
address translation. The Serial Address Space sends the request from the layer above to the BMA
via the UART interface. The BMA reads the requested memory and returns it via the UART
interface to Volatility.

Device Specific Realization

We selected the Samsung Galaxy S4 GT-19505 device for our specific implementation case. This de-
vice is a commonly used mobile phone and provides a serial port. Since we deployed the Cyanogen-
Mod Android distribution on our target device, we utilized the corresponding kernel source for the
Volatility profile. Our solution is easy to port to other devices that offer a serial interface. We
integrated the BMA onto the device’s recovery partition after the short power cut-off, respectively
the hardware reset of the device. We then boot from the recovery partition in order to launch the
BMA.

Figure 4.2 depicts the boot procedure of the Galaxy S4 device in our use case scenario from the
point of pressing the power button until the system is started. First, the hardware gets initialized,
and the instructions of the bootloader, which is stored in the read-only memory are loaded and

58 4 Data Acquisition

executed. Then, the bootloader checks whether buttons are pressed and boots the corresponding
mode. The device supports three different modes: normal, recovery and download. The normal
mode started the regular Android OS with the kernel from the boot partition when no buttons are
pressed. The recovery mode starts the system stored on the recovery partition when the Volume
Up and Power buttons are pressed. The recovery mode is mainly used to update, install repair
an Android system. The download mode allows to directly write data to partitions via USB and
is triggered via the Volume Down and Power button. For writing data to the recovery partition,
the bootloader of the device must be unlocked. However, the unlock procedure erases the data
partition that stores all user data to prevent attacks that install a malicious kernel for the extraction
of confidential information.

For our implementation, we install the BMA to the recovery partition, so that we can directly boot
it using the recovery mode after the normal Android was running. To deploy the BMA on the
recovery partition of the mobile device, we wrapped the BMA into an Android boot image. The
device’s bootloader is thus capable of loading this image. For this purpose, the image contains the
configuration for the mapping of the BMA in memory at runtime. Our configuration maps the
BMA to the address 0x80208000, where the code segment of the formerly running Linux kernel is
located (see Figure 4.2). Furthermore, the configuration defines the top of the stack of the BMA
at address 0x80209400, i.e., also in the kernel code section (see Figure 2). In doing so, we only
overwrite about 5 kB of memory completely located in the kernel code segment. This segment
solely contains constant data deduced from kernel code. To launch the BMA, we flashed the
generated Android boot image to the recovery partition of the device with the tool heimdall.

4.2.3 Evaluation

To evaluate our approach, we measure the information loss caused by the cold boot attack and
the time of standard forensic routines on our test device. We evaluate our proposed framework
on the Samsung Galaxy S4 device. We measure the amount of data that degrades during the cold
boot attack and show the feasibility of our approach. Additionally, we demonstrate an application
of our approach by comparison of the Volatility analysis on a traditional LiIME memory dump
to a cold boot based analysis using our framework. We also assess the framework’s aspects of
implementation.

Information Loss

One important practical aspect of cold boot attacks is the loss of information caused by a power cut
off. The amount and the location of degradation is unpredictable and can cause problems for the
analysis system. For example, if the pointers of a linked list get corrupted, it can not be traversed
anymore, which might lead to wrong results of the analysis. Thus, analysis tools using cold boot
attacks for data acquisition must be able to detect and handle corrupted data. We evaluate the loss
of information with our architecture considering three aspects: the decay of information through
the device restart, the duration of the analysis, and the BMA’s size.

Decay based on the cold boot attack

Before rebooting the device, we wrote an array of 10,000 known bytes to main memory with a
kernel module printing the physical start address of the array. Afterward, we read the contents
of the array’s physical address and count the unimpaired bytes. We executed the analysis several
times. In case of the fast cold boot attack, we re-inserted the battery as fast as possible. In case
of the slow cold boot attack, we re-inserted the battery after approximately 1 second. For the
reset-based cold boot attack we press the power button press for a few seconds while the phone
is still running, which causes a hardware-based reset. We executed both attacks at a temperature
of approximately 20° Celsius. The measurements in Table 4.1 show that an analyst can expect an
information loss of less than one percent.

4.2 Improving Cold-boot Based Data Acquisition 59

Attack | min | max | average

Fast Cold Boot 9,983 9,998 9,991
Slow Cold Boot 26 9,521 3,379
Reset Cold Boot | 9,998 | 10,000 9,999

Table 4.1: Number of successfully retrieved bytes of a 10,000-byte array with different cold boot
attacks [Tau+15b]

The depicted results mainly show that a non-reset-based cold boot attack did not always return
reliable results as it depends on multiple factors like the temperature and the abilities of an
adversary. In case of the fast cold boot attack, we retrieved 9,991 of the 10,000 known bytes in
average. Despite the only weak degradation, the application of Volatility plug-ins became difficult.
When conducting a slow cold boot attack, the degradation proceeded quickly. In this case, the
successful application of Volatility plug-ins got infeasible. However, the reset-based attack provided
the better results during our tests. This scenario is more reliable as it does not depend on how fast
the battery can be re-inserted. In most cases, we retrieved all of the bytes successfully and had
occasional bit flips only in few test cases. This shows that even in case of the reset attack, where
we did not remove the battery at all, the memory occasionally decays. In normal cases, where
we retrieved all of the bytes correctly, the application of Volatility plug-ins was always successful.
In our test set-up, it was also possible to successfully extract data with our architecture from the
device when it was restarted twice, e.g., for first installing the BMA. Nevertheless, additional data
might decay during the second reboot.

Decay during the analysis

As we do not completely save the data in main memory at once, we rely on the data to remain
intact on the target device during the whole analysis process. To prove that this requirement is
given, we executed our cold boot attack-based data acquisition multiple times 15 minutes after the
device has booted the BMA. As expected, we retrieved exactly the same unaltered data between
the test requests. For this reason, we may assume that the data does not decay any further as long
as the memory is supplied with power and the DRAM modules are refreshing the capacitors.

Information loss based on the size of the BMA

Another important source of data loss is the amount of data in RAM that the BMA occupies. The
boot image containing our BMA has a size of 4 kB and the stack size is 1024 bytes. Thus, we
overwrite no more than 5 kB of memory. This is less than the previously running kernel’s size.
The kernel code segment forms a set of constant and known bytes. The segment does not change
between different runs of the system. This means that the overwritten bytes do not impair relevant
data as the code segment of the formerly running kernel is mapped to this address range.

Volatility Plug-ins

In Table 4.2 we measure the execution time of standard volatility plug-ins in comparison to the run-
time on a pre-captured snapshot of the same system. We created a memory dump on the running
phone with the LiME kernel module right before we executed the cold boot attack. Afterward,
we executed the Volatility plug-ins on the memory dump, as well as in conjunction with the BMA
running on the phone. The plug-in linux_ pslist extracts a list of running processes. The resulting
entries of our measurements differed between the dump file (230 entries) and the cold boot analysis
(225 entries) by solely five more threads. This comes from the LiME kernel module creating these
threads during the acquisition process. The analysis with the BMA took 24.23 seconds, whereas
the LIME dump analysis took 3.54 seconds. The plug-in linux_iomem extracts the map of the
system’s memory for physical devices. The results received from the cold boot-based analysis were
equal to the memory dump analysis. As in the scenario before, the runtime of the plug-in was

60 4 Data Acquisition

Plug-in Results (LIME Dump) [Results (BMA) | Time (LiME Dump) | Time (BMA)
linux_pslist 230 entries 225 entries 3.54s 24.23 s
linux_iomem 138 entries 138 entries 2.18 s 08.97 s
proc_maps (init) 9 entries 9 entries 2.00s 06.03 s
dump_maps (init, heap) 340.0 kB 340.0 kB 1.98 s 35.84s
dump_maps (init, stack) 139.3 kB 139.3 kB 1.94s 07.02 s
proc_maps (rild) 156 entries 156 entries 5.38s 18.55s
dump_maps (rild,heap) 380.9 kB 380.9 kB 2.05s 4148 s
dump_maps (rild,stack) 139.3 kB 139.3 kB 2.06 s 08.29 s

Table 4.2: Different volatility plug-ins and their run-time using a dump file and the bare-metal
application [Tau+15b]

longer in case of the BMA application. Compared to the LIME dump analysis with a duration of
2.18 seconds, the analysis with the BMA took 8.97 seconds. This emerged in every test case.

The plug-in proc maps returns the memory mappings of a single process. This renders results
similar to contents in /proc/<pid>/maps. For our measurements, we requested the mappings
of the init and the rild process. The latter is responsible for the Radio Interface Layer (RIL)
functionality of an Android phone. In both cases, the measurements returned exactly the same
results: 9 entries in case of the init process and 156 entries in case of the rild process. We finally
requested the stack and heap memory segments of the rild and the init process with the plug-in
dump maps. The amount of data in bytes was for both processes the same for the stack and
heap. The data of the stack of the init process turned out to be consistent between the two data
acquisition methods. The same holds for the rild process. In every test case, the required time for
executing a plug-in, which operates on the memory using the BMA, was significantly higher. This
emerged as a result of the low transfer rate of the UART interface.

A full dump of the 2 GB RAM of the test device required about 42 hours. For our purposes, the
low transfer rate was acceptable, since all plug-ins terminate within less than 45 seconds.

The measurements show that doing memory forensics via the serial interface is possible and that
the run-time for most of the standard forensic operations, e.g., getting the process list, is below one
minute. However, when it comes to analysis that requires iterating over the full address space, the
analysis logic of those plugins should at least be partially implemented in the minimal operating
system, e.g., the search operation that locates specific strings in memory.

Limitations

The approach of using a cold boot attack only works on devices with an unlocked boot loader.
If the device is still locked, it must be unlocked, which often requires to wipe the data partition
containing the personal data. Thus, the described approach is only feasible for a limited set of
application areas when an unlocked phone is given or when it can be unlocked without information
loss.

Nevertheless, this approach can be useful to investigate the contents in memory that are usually
not accessible even when having root permissions, such as memory areas that are used by devices
or the TrustZone that are made inaccessible after the initialization by the kernel.

Finally, this approach requires that the target device provides an interface that is suitable for trans-
ferring data to an analysis host and implementing the corresponding low-level driver. In [Hub+16]
we discussed the required steps to port it to the Nexus 5 device.

4.3 Towards ARM TrustZone Based Monitoring 61

4.3 Towards ARM TrustZone Based Monitoring

Cold boot attacks can only be used to investigate past incidents or the current state of a system.
Since they require to reboot a system, they can not be used to trace a system to improve secu-
rity permanently. Virtual machine introspection can do that since it leverages the properties of
virtualization.

The ARM TrustZone processor extension [ARMO09] provides another way to achieve a similar
level of isolation on mobile devices. It introduces two different processor modes: the normal and
the secure world. The normal world is designed to run the fully fledged (Android) operating
system. The secure world runs services with higher security requirements, e.g., a key manager.
This approach accepts that an attacker can take over the operating system in the normal world,
without losing control over the data that is maintained in the secure world of the TrustZone. The
fact that programs running in the secure world have access to the full address space of the normal
world makes the secure world of the TrustZone an exciting place to deploy memory forensic based
monitoring approaches that attempt to increase the security of the normal world.

For example, the secure world of the TrustZone can be used to access whole system state in the
main memory of the normal world without relying on kernel level functions of the normal world that
could be manipulated by a rootkit. Moreover, the full analysis framework, i.e., the interpretation
of contents in main memory can be moved to the secure world.

This section is based on [Gue+17; Gue+18] and describes the design of the ITZ library which
implements parts of the interface of LibVMI in the secure world of the TrustZone. With such an
interface in the secure world, it should be possible to port already existing VMI-based applications
from cloud environments to the TrustZone. The contribution of this section is the discussion and
evaluation of the system design of this approach.

4.3.1 Threat Model and Assumptions

Before going into the details of the system design, we discuss the threat model and trust assump-
tions. We assume that the normal world and all of its components can be compromised by an
attacker. Hence, we also assume that all communication coming from the normal world to the
secure world cannot be trusted.

We assume that the processor works as expected and provides isolation between the secure and
normal world. Additionally, we assume that the operating system used in the secure world is not
compromised and trustworthy. This also includes, that the boot process is secure and starts the
trusted operating system in the secure world.

4.3.2 System Design

The primary goal of the ITZ library is to provide the same API as LibVMI in the secure world to be
able to re-use code that analyzes the state of virtual machines for the system running in the normal
world. The proposed architecture has its components divided among the two worlds as shown in
Figure 4.3. The architecture is built on top of the microkernel architecture of Genode [Gen],
including the Trustzone VMM.

Normal World

The normal world runs a fully-fledged operating system, e.g., Linux or Android. For the interaction
with the secure world, the kernel in the normal world implements a driver that allocates a shared
memory region that can be accessed by the secure and normal world and serves as a buffer to
exchange data such as commands and their results. The shared memory region is only used by the
secure world to return data. Every time the secure world needs to retrieve data from the normal
world, it can access the memory directly.

62 4 Data Acquisition

Normal World Secure World
[1zvMMm | —] 17z Library [¢——{ Application
A
Application | | Application | | Application |

: Kernel Microkernel

Linux Kernel
Module

introspect
£ \ 4
\ 4
Unsecure Memory Shared Memory Secure Memory

Figure 4.3: The TrustZone system architecture including the ITZ library [Gue+18]

In order to invoke functions of the secure world, the smc instruction is used. It switches the context
from the normal world to the secure world.

Secure World

The secure world runs the Genode microkernel that provides basic resource management functions
(memory, CPU, I/0). Additionally, it runs the virtual machine monitor of the microkernel that
manages the shared memory buffer and communication with the normal world.

Moreover, the secure world runs the I'TZ library and on top applications that do the introspection,
such as extracting the process list.

4.3.3 Implementation

This section describes the implementation of the discussed architecture. For the implementation,
we use in the secure world the microkernel from Genode labs [Gen]. In the normal world, we run
a modified Linux kernel in version 2.6.53.3 that implements the kernel module required for the
shared memory.

System Configuration

The prototype of the ITZ library is implemented on the Freescale NXP i.MX53 Quick Start Board,
which contains an ARM cortex-A8 processor with TrustZone, 1IGB DDR3, an SD/MMC card slot,
two USB adapters, and other interfaces and chips.

The i.MX53 QSB has a mechanism to assure that memory regions are protected from unauthorized
access. This works as part of the dynamic random-access (DDR) memory controller, through the
multi-master multi-memory interface (M4IF). This interface guarantees that a configurable range
of memory is protected and used exclusively by the secure world. The i.MX53 QSB has its 1GB
of RAM split into two memory banks, RAM 0 and RAM 1. Each memory bank has 512MB of
memory that can be configured and used. For our work, and due to the limitations of the M4IF,
that only allows for up to 256MB of memory to be protected in each bank, we choose to protect
the initial 256MB of the first memory bank [Frel2]. This process is done at boot time and assures
that 256 MB of memory are reserved for our secure world, while the rest of the bank is used for the
normal world OS.

4.3 Towards ARM TrustZone Based Monitoring 63

World \ Component \ Lines of Code
Normal world | Linux kernel 9132 K
Secure world | Microkernel 20K
Secure world | Genode OS framework 10K
Secure world | TZ VMM 3K
Secure world | ITZ Library 2K

Table 4.3: Code Base Size of the Components [Gue+18]

The ITZ Library

The secure world runs the ITZ library which provides a subset of the API of LibVMI. For accessing
the memory of the normal world it uses the TZ VMM. The most important functions are the read,
write, and translate functions. The translate functions are required to translate virtual addresses

of the normal world to physical ones and vice versa?.

4.3.4 Evaluation

To evaluate the concept of monitoring the normal world from the secure world, we will discuss the
feasibility of porting LibVMI to the secure world. A deeper analysis of the performance of the ITZ
library together with introspection application has been done by Guerra et al. [Gue+18].

Portability and Code Size

One of the main problems of porting LibVMI to the secure world is missing software dependencies.
The genode secure world implementation does not include the Linux library glibc, which is heavily
used by LibVMI, e.g., to implement the cache®. Porting all required libraries to the secure world is
not an easy task and increases the size of the code base installed to the secure world, which results
in a higher chance of containing a flaw that can be compromised by an attacker. Moreover, if this
code should be migrated to another TrustZone implementation, such as the OP-TEE operating
system [Lin], all the libraries have to be migrated there as well. Table 4.3 summarizes the size
of the code base for all the components of our architecture. The lines are counted using the tool
cloc?.

Validity of Data coming from the Secure World

Besides, if an application invokes the introspection function of the secure world it cannot make sure
that the return value is not altered. This is because the whole system in the normal world could
be compromised and there is no direct way to validate if the result comes from the application
running in the secure world or from a malicious component in the normal world that overwrote
the results. One way to tackle this problem is to sign the results with cryptographic primitives,
which of course only works under the assumption that the secure world has access to a private key
that is not available in the normal world.

Future Work

Using the ARM TrustZone for increasing the security of normal world seems to be a good idea.
Unfortunately, the TrustZone is a very closed environment, and it is usually not possible to deploy
any code there on common end-user devices without breaking security mechanisms, which makes
the TrustZone a very unattractive target for research activities. However, the OP-TEE operating

2 A more detailed discussion of the internals can be found in [Gue+18]

3The authors of LibVMI provide a lite version of glib that only brings the required functions of LibVMI for porting it to systems that
do not have their version of glib (https://github.com/libvmi/glib_lite, Accessed on 2019-07-08)

4cloc - https://github.com/AlDanial/cloc, Accessed on 2019-07-08

https://github.com/libvmi/glib_lite
https://github.com/AlDanial/cloc

64 4 Data Acquisition

system seems to provide a stable environment for future research since it has already been ported to
several existing systems such as the Raspberry Pi3. Thus, porting the ITZ library to the OP-TEE
operating system and extending it seems to be a good start for further research.

The ITZ-library does not support synchronous monitoring of the normal world. A possible mech-
anism how this could be implemented is described by Ge et al. [GVJ14].

4.4 Bringing VMI to Cloud Environments 65

4.4 Bringing VMI to Cloud Environments

In this section, we discuss the CloudPhylactor architecture, which aims to provide VMI-based
monitoring mechanisms to cloud tenants. The discussion is based on [TRR16]. There are different
reasons for using virtual machine introspection in cloud environments either as customers or as
providers. Cloud providers may want to detect malware in the virtual machines of their customers
to make sure that it does not infect the virtual machines of other customers, which could harm
the reputation of the provider [Fis+15]. Additionally, cloud providers might be forced to give VMI
access to law enforcement, e.g., to take a snapshot of a suspicious tenant. Cloud customers might
want to have VMI access on their virtual machines to run a VMI-based virus scanner or to monitor
the integrity of running software components. However, there are no public cloud providers that
offer their customers access for VMI-based operations to their virtual machines.

Several significant problems make it impractical to use VMI in current cloud environments. First,
in most (if not all) real cloud infrastructures, there is a lack of access for the cloud customer
to VMI functionality. In addition, there is no established billing model for using VMI services.
The few available research prototype solutions for the access problem are insufficient due to lack
of functionality and lack of performance. And finally, security risks are an additional issue for
enabling VMI in production cloud infrastructures.

The CloudPhylactor® architecture is an approach to solve these problems by leveraging MAC. In
particular, we show how the implementation of the Flask architecture of the Xen hypervisor can
be used to grant a dedicated monitoring VM the rights to run VMI on other guest VMs. This
enables cloud customers to use the Xen API for VMI on their VMs.

Additionally, the access of these monitoring VMs can be restricted to a single guest VM or a
subset of all VMs. Thus, even if an attacker can gain access to the monitoring VM, he does not
gain full control over the physical cloud node. Thereby, we increase the security of VMI-based
monitoring approaches. In contrast to other cloud forensic solutions like CloudVMI [BSM14]
and LiveCloudInspector [ZR15], CloudPhylactor does not introduce significant overhead to the
monitoring process, as it can access the Xen interface directly and is therefore not restricted to
use another more limited API. Moreover, this approach does not require fundamental changes to
the cloud management software.

4.4.1 Threat Model and Assumptions

VMI requires powerful permissions and can, therefore, pose a potential security threat to cloud
environments. This section describes the two most important attack vectors to VMI-based moni-
toring tools in cloud environments, which use a VMI component installed in the most privileged
virtual machine of the cloud node, such as LiveCloudInspector [ZR15] or CloudVMI [BSM14].
Users can interact with those tools using their API, which could be exposed via the cloud manage-
ment software (LiveCloudInspector) or directly by using a network connection to the tool inside
the Dom0 (CloudVMI).

The first attack vector are flaws in the VMI framework that can be exploited regular. If an attacker
is able to inject malicious code into the VMI-based framework (e.g., by exploiting buffer overflows),
he could gain access to the cloud node or use the monitoring tool to access virtual machines of other
users. Additionally, flaws in the authentication module could be used to bypass the authentication
to access the virtual machines of other users.

The second attack targets the interpretation of main memory of virtual machines. It requires an
attacker who has full control over a virtual machine (e.g., an internal attacker) and can modify
all entries in memory of a VM. By placing crafted data in memory, it is possible to attack the
interpretation routine. Similar attacks already exist for Tripwire [Com04] and Snort [CER03] and
other forensic software [Ett17]. They show that an attacker can interact with a target system in

3The name CloudPhylactor is a combination of Cloud and the Greek word @vA ok (phulak), which means watch or guard.

66 4 Data Acquisition

PVM (user 1) MVM (user 1) PVM (user 1)

Dom0 Dom0
% % VMI
Frame- ?
\ work
customer 1 VMI

F customer 1
T PVM (user2) q MVM (user2) PVM (user2)
work L
/|

\

. . VMI
e % l----=-A - - ¥ Frame- [t - - ->
- work

customer 2

Hypervisor) [Hypervisor)

customer 2 [

[Hardware) [Hardware)

Figure 4.4: The left side represents the most used architecture: all VMI-based operations are
executed in the privileged domain. The right side represents the CloudPhylactor archi-
tecture where a dedicated monitoring virtual machine monitors a production virtual
machine. [TRR16]

a way such that the collected monitoring data exploits vulnerabilities in an intrusion detection
system. In the case of VMI, a flaw in the interpretation of the monitoring framework can be used
by an attacker to get access to the system where the monitoring framework is running. If the
monitoring tool is installed in Dom0, an attacker gets access to the virtual machines of other users
or to the system running in Dom0.

VMI-based systems heavily depend on the interpretation of data extracted from a guest system.
Bahram et al. [Bah+10] demonstrate that manipulating a VMI-based system by changing in-guest
data structures is feasible, e.g., for placing misleading or wrong information to fool the analysis tool
or to hide traces [Bah+10]. The problem of incorrect interpretation of the state of a VM that has
been manipulated by an attacker is known as the strong semantic gap and needs to be addressed
by the monitoring tool [Jai+14]. This problem, which concerns the validity of the results obtained
by the monitoring tool, is outside the scope of the CloudPhylactor architecture. Our focus is on
preventing any malicious impact outside of the monitoring tool.

A general threat to cloud computing are malicious cloud administrators. This threat is out of the
scope of the CloudPhylactor architecture.

4.4.2 System Design

Our proposed architecture — CloudPhylactor — allows cloud customers to perform VMI-based oper-
ations from a dedicated monitoring virtual machine on their production virtual machines. Further-
more, it minimizes the risk of privilege escalation, when an attacker exploits flaws in the monitoring
software and gains control over the virtual machine that runs the VMI software. For this purpose,
we move the VMI-based operations into a dedicated virtual machine with limited access to other
domains (see Figure 4.4). In the following, we call a virtual machine with normal permissions
production virtual machine (PVM) and a virtual machine with permissions to run VMI monitoring
virtual machine (MVM). Additionally, we use the term user in the context of a cloud customer
and not for different entities such as administrators and forensic investigators. Instead, we are
discussing the permissions of VMs and not entities that are using them. The mapping of entity
roles to policy users is out of the scope of the CloudPhylactor architecture.

The concept that we are describing is independent of a specific hypervisor. However, only Xen
supports MAC or at least a fine-grained access control that supports to define that a VM has
permissions to access another VM’s main memory. Thus, we use the terminology of Xen in the
architecture description.

4.4 Bringing VMI to Cloud Environments 67

Monitoring Virtual Machine

An MVM must have at least the permissions for these operations on another domain for static
VMI, e.g., to extract the process list:

e read access on main memory to extract low-level information, e.g., to extract the process list
of the operating system.

e read access on CPU registers to extract the current CPU state, e.g., to determine the process
that is currently running on a CPU by accessing the CR3 register.

To trace the execution of a VM and do dynamic analysis, writing permissions are required, which
includes:

e write access to main memory to modify program code, e.g., to insert necessary software
breakpoints to trace the execution of a process or to inject code. A software breakpoint is
an instruction that causes the CPU to throw an interrupt.

e write access to CPU registers to change CPU state, e.g., to change return values.

e access the Xen event channel; it allows monitoring VM events such as interrupts of a VM
that can be caused by software breakpoints.

An MVM should contain only the necessary tools to minimize the attack surface [Sha+14]. The
operating system of an MVM can be either a fully-fledged Linux system with several forensic tools
or a minimal domain, where the kernel is the forensic tool. The last approach helps to minimize
the number of additional resources and reduces the attack surface to a minimum.

Mandatory Access Control

The goal of CloudPhylactor is to grant MVMs the permissions to run VMI-based operations on
PVMs by using the MAC of Xen. To do so, we introduce a new Flask type for MVMs. The Flask
type is part of the label that is assigned to a VM when it is launched, and it cannot be changed
during run-time. This label also includes the name of a Flask user. We use it to constrain the
access of MVMs so that they can access only PVMs of the same user but not of others. The
enforcement of the policies is performed at run-time by the Xen hypervisor. As Flask users are
part of the policy that is static, all users must be known before they are compiled. We create
dummy users in the Flask database and map cloud customers to them, to handle new users at
run-time. The mapping process is performed by the cloud management.

Cloud Management

The cloud management is the interface between the user and the cloud infrastructure, e.g., Xen.
It provide a user interface to allow users to set the type (PVM or MVM) of a VM and the group
of PVMs that can be monitored by an MVM. When a VM is launched, the cloud management has
to compute the security label of it, based on the user input. Additionally, it has to manage the
mapping from cloud users to dummy flask users.

4.4.3 Implementation

For our implementation of the CloudPhylactor architecture, we use OpenNebula 4.12.3 as the cloud
management platform and Xen 4.5 as the hypervisor. To use MAC for our architecture, we define
a new policy type for MVMs and its permissions on PVMs. Then we assign domains to users so
that an MVM is able to access only domains of the owner but no others. Additionally, we generate
Flask users and map them to cloud customers. We will discuss these steps in detail in the following
paragraphs.

68 4 Data Acquisition

Policies

To grant an MVM access to the main memory of other VM, we introduce a new domain type —
domU_monitoring_t in the Xen Flask policies and derive it from the permissions of a regular
DomU. Furthermore, we define rules that grant an MVM the permissions to execute VMI-based
operations on domains of the type domU_t (see Section 4.4.2).

User management

When a domain is started in the context of domU_monitoring_t, it can perform all granted
operations on every domain running in the context of domU_t even if the VM belongs to another
customer. Usually such global access is unwanted, and instead, access should be restricted on a
per-customer basis. To achieve that, we restrict VMI permissions to the domains that belong to
the same user or only a subset of his domains if a more fine-grained restriction is required.

As the policies are static and cannot be modified, all users must be known before the rules are
compiled. Otherwise, rules must be adapted, compiled and loaded whenever a new user registers.
As the user set of cloud providers is changing permanently and reloading of rules can introduce
security and performance drawbacks, this approach is not feasible for production environments.

To avoid the generation of Flask users at run-time, we create a set of dummy users and map
cloud users to them. The mapping can be cloud wide or cloud node local. A cloud-wide mapping
maps each customer to the same Flask user on all nodes, which requires that all cloud nodes must
have at least as many Flask users as real cloud customers. This approach does not scale for huge
installations, as every cloud node has to provide Flask users for all cloud users. Cloud node local
mapping solves this problem. As the mapping is local, a user might be mapped to a different Flask
user on every cloud node or might not be mapped at all when he has no VM running on this node.
In both cases, the cloud management must handle the mappings.

Additionally, not all monitoring domains of one user should be able to monitor all PVMs of
that user. If VMs contain data of different levels of clearance and an attacker can subvert
their monitoring domain, he can also gain access to data with a higher level of clearance. To
solve this problem, VMs can be assigned to sub-users where access is only granted in between
sub-users. For example, one cloud customer has the user ID 1. Then the sub-users would be
cloud_customer_1_{0..n}. By choosing a sub-user ID, the cloud customer can define the
group of VMs that can be monitored by an MVM as it is only able to monitor other VMs with
the same sub-user ID. More fine-grained policies, e.g., those that only grant read access would be
also possible.

Another approach is the usage of Multi-level security (MLS)/Multi-category security (MCS) poli-
cies. This concept assigns each unit (i.e., domain) a sensitivity level and a category. It is based on
the model of Bell and LaPadula [BL73; Han06]. However, the MLS and MCS support of Xen 4.5
is incomplete.

Cloud Management

We extend OpenNebula so that a cloud customer can create monitoring machines by adding two
flags to the template of a VM. One flag defines whether a VM is an MVM and the other one defines
the sub-user ID. Both flags are translated in the Xen deployment configuration to the corresponding
security label. Furthermore, we implement a mapping mechanism from OpenNebula to users in
the Flask policies. To achieve that, we use a one-to-one mapping that translates the OpenNebula
user ID to a Flask user with the same ID. The computed security label of a VM has the form:

customer_{userid}_{class}:vm_r: {type}

The variable userid is defined by the cloud management and derived from the ID of an OpenNeb-
ula user. The class variable and the type of a VM is defined by the customer in the template

4.4 Bringing VMI to Cloud Environments 69

variables of a VM. Moreover, the cloud customer can use the user interface to choose on which
cloud node his VM shall be launched to place the MVM on the same cloud node where the PVM
is running.

XenStore

The Xenstore holds the domain name of each VM, which is required to perform translation from
a domain name to a domain id. As a VM can only be addressed with the domain id and not the
name we modify the permissions of the Xenstore entries so that a cloud customer can perform the
translation for his VMs. Hence, we grant a monitoring VM the read access to the domain name
entry of all domains that belong to the same user. We perform this job with a script every time a
VM is launched.

Monitoring VM

Another part of the CloudPhylactor architecture is the MVM. In our implementation, it is a
fully fledged Linux that contains all necessary libraries to communicate with the Xen hypervisor.
Additionally, we have installed tools such as LibVMI and Volatility to run standard forensic oper-
ations [Fou]. Finally, the MVM must be paravirtualized. Otherwise, some hypercalls required for
VMI are not available to the guest system.

4.4.4 Evaluation and Discussion

In this section, we measure the performance of the CloudPhylactor architecture and discuss its
security. All described tests are executed on a server with an Intel(R) Xeon(R) CPU E5-2609 v3
@ 1.90GHz CPU with six cores and 32 GB RAM.

Performance

To determine the performance difference between the access from Dom0 and an MVM, we run four
tests that mimic the behavior of often used real-world VMI operations. These are:

1. A four-byte read operation commonly used to retrieve integer values or pointers
2. A four byte write operation commonly used to insert software breakpoints

3. A read operation that requests a full page (4096 Bytes), e.g., to take a snapshot of process
memory

4. Extraction of PVM’s process list

These are real-life use case scenarios that can be used to detect suspicious processes or for doing
forensic operations on main memory. Even if more complex VMI-based monitoring tools are
used, they rely on the same operations as the extraction of the process list requires, i.e., the read
operation to extract data structures. Using more complex VMI operations would partially conceal
and clutter with noise the observed overhead values. The extraction of the process list is not trivial
and uses most common LibVMI features for parsing and traversing kernel data structures, and we
consider it representative for a VMI tool that analyses guest kernel data structures.

We measure the performance of the VMI operations for the four test cases in different config-
urations. The VMI operations are either executed (as done traditionally) in Dom0, or (using
our CloudPhylactor architecture) in MVM. We also use different mappings of virtual machines to
physical CPUs to find out if such mapping has an impact on performance, e.g., due to some cache
effects.

In total, the following five configurations are used, and VMI operations are executed from:

A Dom0: PVM is pinned to the same CPU as Dom0

70 4 Data Acquisition

1.5F —
T OIr Ee Z £
& 5 aled e 2 t
5 S AR ’ : B8 read
S 05|)| 00 wite
0@ read page
2|1 R 2% S 0B process list
0 T I A T
A C D E
Dom0)(PVM (Domo)(MVM}) | (Dom0) Dom0 CPU 0
pvM Y- | (MvM)(PVM) | (PVYM CPU 1
' MVM CPU 2

Figure 4.5: Relation between the time that is required for the VMI access methods of the test cases
B to E compared to test case A [TRR16]

| | | | | | | |
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

A B C D E

Figure 4.6: The timing of 300 read-page operations measurements for the five different configura-
tions of Figure 4.5

B Dom0: PVM is pinned to a different CPU then Dom0

C MVM: Dom0O and MVM are pinned to the same CPU; PVM is pinned to another CPU
D MVM: PVM and MVM are pinned to the same CPU; Dom0 is on another CPU

E MVM: Every virtual machine is pinned to another CPU

To prevent the caching from LibVMI, we disable this feature for all measurements. During this
measurement the PVM is mostly in idle state. For the access time, we measure the time that is
required for 10,000 operations and take the average and standard deviation of 100 runs. Figure 4.5
shows the results of this measurement. We use configuration A (VMI on Dom0, on the same CPU
as PVM) as a baseline, and for all other configuration, we plot the relative execution time of the
VMI operations (smaller values are better). We can conclude that even in the worst case the VMI
performance loss is less than 3%. The overhead of about 17% percent for the test case C is caused
by the fact that Dom0 and MVM are pinned to the same CPU. Thus, the VMI access is delayed by
the execution of Dom0. Figure 4.6 depicts the detailed results of the read page operation for each
configuration. The time of each measurement is the average time of 100,000 read page operations
in 300 iterations. The measurements show that the average access times of all configurations are
similar. However, the configuration C has multiple outliers, which are caused by the fact that the
Dom0 and the MVM share the same CPU. In this case, when Dom0 gets active (e.g., due I/O
operations), it can pause the MVM and cause delays of the read operation.

4.4 Bringing VMI to Cloud Environments 71

)
T
®H
e
e
NEm

= = I
[+~] LL L
}_:) Ft Lt
51| Ft C N 08 read
> Fo FL .
) E 2 0O write
: B8 read page
I ke 32 HEE 03 process list
O “‘_ P 727 ‘\‘ P “‘L P “‘_L

A B C D

Figure 4.7: Relative access time of the VMI access methods when the PVM is running a Benchmark
compared to test case of Figure 4.5 [TRR16]

| |
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

A B C D E

Figure 4.8: The absolute timing of the read page operation for the five different configurations of
Figure 4.7

The low access latency is an advantage compared to the CloudVMI [BSM14] solution as their
approach uses remote procedure calls. Thus, depending on where the measurements are executed
— on the same or a remote cloud node — they experience a high overhead up to two hundred
percent, which causes a negative performance impact when events are used, e.g., to monitor soft-
ware breakpoints. In that case, the execution of the PVM is paused until the event is processed
by the monitoring tool. Thus, when the execution is delayed by the latency of the network, the
performance of the PVM decreases.

To evaluate the impact that is caused by the placement of the virtual machines when a virtual
machine is polluting the CPU cache, we run the same measurements while the PVM is running a
benchmark. To achieve that we run the Dhrystone and pipe-based context switching benchmark
of the byte-unix benchmark suite® in a loop in the PVM. The results of the relative access times
are depicted in Figure 4.7, where we use the measurements of Figure 4.5 as a baseline. When the
virtual machine running the VMI operations shares the CPU with the PVM (case A and C), we
have a significant impact on the read, readpage and process list operation. Hence, there is no big
difference when the VMI application is executed on Dom0 or in the MVM. In case C we again have
a bigger standard deviation than in the other cases, because the Dom0 can interrupt the MVM
during the measurement.

The write access is not delayed because of the measurement method: we pause the PVM for the
write operation to avoid incomnsistency of the virtual machine state as we write the value that
has been read before. Thus, the PVM is not scheduled during the VMI operation and does not
affect the time for the VMI access. The other operations do not pause the PVM. Thus, the VMI

%Byte-unixbench - https://github.com/kdlucas/byte-unixbench, Accessed on 2019-07-08

https://github.com/kdlucas/byte-unixbench

72 4 Data Acquisition

Users \ 1,000 \ 10,000 \ 50,000

Compile 0.20s+0.03s | 2.90s£ 0.14s | 50.93 s+ 2.33s
Load 0.0035 s+0.01s | 0.30s£0.02s | 5.63 s+ 0.20s
Size 96 KB 860 KB 4.2 MB

Table 4.4: Average time in seconds and standard deviation to compile and load policies measured
in relation to the amount of users [TRR16]

operation can be interrupted by the PVM that is doing the CPU intense benchmark.

Size of Policy Database

Another aspect that might influence the performance of VMI-based operations is the size of the
policy database. The Xen hypervisor checks for each access if it is allowed or not. To do that, it
looks up each decision in the database. To check if the lookup operation for an access operation
takes longer with a bigger database, we run the same measurements as in Section 4.4.4 but with a
bigger policy database, i.e., 10,000 and 50,000 users instead of 1000 users. Depending on how the
lookup operation is implemented, it could take longer to find the policy for an access operation in
the set of policies. Figure 4.9 and 4.10 shows the overhead for these measurements. Figure 4.11
and Figure 4.12 depict the results of the individual measurements for the read page operations.
Based on these results, we conclude that there is no significant difference at run-time between a
big policy database and a small one.

Additionally, we measure the size of the database and the time that is required to compile and
load the policy database. The results in Table 4.4 show that the size correlates linearly with the
number of users but the time does not. These measurements show that both global and local user
mapping is feasible. However, the policy database should not become too big. Otherwise, it is
not possible to load it anymore to main memory. In that case, it is necessary to switch to a local
mapping to keep the policy database small on each cloud node (see Section 4.4.3).

Resources

Compared to LiveCloudInspector our approach requires — in the worst case — a separate MVM for
each PVM instead of only a monitoring process. However, one MVM can monitor more than one
PVM. Thus, additional resources such as main memory, CPU time and storage are necessary for
each MVM. The amount depends on the configuration and the memory that is required by the
processes that are running in the VM. The MVM can be stripped down to a minimal system, e.g.,
use only a very minimal kernel [Mal8]. Moreover, with VMI on Dom0, it is impossible to attribute
CPU and memory consumed by monitoring to a customer. With MVM, the cloud customer can
rent an MVM of appropriate size (small for lightweight VMI monitoring, larger for more complex
processing of VMI data), and the billing infrastructure of the cloud can be reused without adding
any additional complexity.

Security

Attack Impact: In Section 4.4.1, we describe the risks that come along with the installation of an
analysis tool in a privileged VM including the access to another VM or the execution of commands
in the privileged domain. By moving the analysis tool to a dedicated MVM we protect the cloud
management infrastructure and other cloud customers. In the worst case, an attacker is only
able to instrument the analysis tool in an MVM and execute commands in this domain or to
access the PVM of the same customer. However, he is not able to attack other parts of the cloud
infrastructure.

4.4 Bringing VMI to Cloud Environments

73
= 1r N
g 08 read
S 05l i 00 write
z 0.
B8 read page
C i e process list
0 JEe: AL

C D

Figure 4.9: Relative VMI access time with 10,000 flask users compared to the same measurement
with 1,000 users in Figure 4.5 [TRR16]

T .
£ i 08 read
205 Hi 0O write
: 08 read page
0 A E 0o process list
T

C

Figure 4.10: Relative VMI access time with 50,000 flask users compared to the same measurement
with 1,000 users in Figure 4.5 [TRR16]

3 3 3 3 3
2 2 2 2
1 11 1F
| | | | | | | | | | | | | | |
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
A B C D E

Figure 4.11: The timing of the read page operation for the five different configurations of Figure 4.9

3 T 3 T 3 T 3 T
2 2 AS
Ll 17m7
! ! ! ! ! ! | | | ! ! ! ! ! !
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
A B C D E

Figure 4.12: The timing of the read page operation for the five different configurations of Figure 4.10

74 4 Data Acquisition

4.5 VMI and Live Migration

In this section, we discuss the TwinPorter architecture that extends CloudPhylactor to support
live migration of monitored virtual machines. This discussion is based on [TBR19]. Live migration
is the dynamic relocation of a virtual machine without the need for shutting down and restarting
the virtual machine. In cloud computing environments, live migration of virtual machines from
one host to another is sometimes necessary, for reasons such as load balancing or maintenance
operations. For example, if the overall system load is low, the cloud management system can
migrate virtual machines to a subset of all hosts and shut down the remaining hosts to save energy.
The main advantage of live migration is that it minimizes the down-times of virtual machines since
it does not require restarting the virtual machine.

CloudPhylactor 4.4 enables virtual machine introspection for cloud customers by introducing ded-
icated monitoring virtual machines that cloud customers can access. Since the CloudPhylactor
architecture always deploys the MVM and PVM on the same cloud node, the MVM can access
the PVM without introducing any significant overhead that could be caused by sending the com-
mands and results of virtual machine introspection via network. However, the CloudPhylactor
architecture does not handle the live migration of virtual machines while they are monitored.

To support live migration, the monitoring application must be migrated jointly with the monitored
virtual machine. In the CloudPhylactor architecture, the apparently simple solution of indepen-
dently migrating the PVM and the MVM is insufficient. First of all, careful synchronization
between the migration of monitoring application and monitored virtual machine is mandatory, to
avoid fatal failures of the monitoring application because of access to the (not yet or no longer
locally available) PVM. Second, asynchronous monitoring requires the monitoring application to
be aware of the migration, because the application needs to re-attach itself to the VMI-interface
of the hypervisor. Third, synchronous monitoring intercepts the control flow in the PVM and uses
callback functions that are triggered by the interception mechanisms. The interception mecha-
nisms and callback functions need to be re-initialized after migration. Otherwise, the control flow
in the PVM might trigger the invocation of a callback handler that does not yet (or no longer)
exists, and in the worst case cause a failure of the monitored system. Hence, the live migration of
monitored virtual machines must be carefully synchronized among all components.

TwinPorter extends the concept of CloudPhylactor to support live migration. To achieve that it
migrates both MVM and PVM at the same time to the same cloud node. With this approach, we
ensure that the MVM and PVM are always executed on the same cloud node and that operations
required for virtual machine introspection are not sent via network, which makes sure that no
additional overhead is introduced. In addition, our approach allows synchronous and asynchronous
tracing of the PVM in the MVM. To achieve that, we implement a synchronization approach
between the monitoring application and the migration tools on the source and target hypervisors.
To keep the downtime of the PVM minimal and to make sure that there is no point in time during
live migration where no VMI-based monitoring is possible, we extend the concept the pre-copy
base live migration of Xen.

The main contributions of this section that discusses the TwinPorter architecture are:

e A novel live migration protocol that enables coordinated migration of an MVM and a PVM
such that PVM downtime is minimized and continuous VMI monitoring of the PVM by the
MVM is guaranteed;

e The support for synchronous and asynchronous VMI-based monitoring;

e The non-invasive design and implementation of this protocol for LibVMI-based introspection
on the Xen hypervisor;

e An experimental evaluation of the performance and the downtime induced by our approach.

4.5 VMI and Live Migration 75

4.5.1 System Design

We make a few assumptions about the environment. We define these assumptions as generic as
possible, to make them applicable to potentially different virtualization environments. Additionally,
we explain the problems for monitoring a virtual machine that is live migrated in detail.

Local dedicated monitoring virtual machines. Our first assumption is that we have a concept
for VMI-based monitoring of a target virtual machine (PVM) using a dedicated monitoring virtual
machine (MVM) on the same host. This assumption yields the requirement of migrating both
virtual machines together in a coordinated way.

A potential alternative is to run the VMI-based analysis framework as a normal process in the
most privileged domain of the hypervisor. However, in this case, the VMI application itself would
have to be responsible for transferring its state to the target host, since there is no generic solution
for live migration of processes to another system. Thus, encapsulating the analysis application in
a virtual machine minimizes the effort for migrating the state of the analysis.

Remote VMI operation, for example, supported by CloudVMI [BSM14], are an alternative to
local VMI operations. Remote VMI eliminates the need for simultaneously migrating MVM and
PVM, but it adds significant latency. For example, the CloudVMI authors show that a cross-host
extraction of the process list in a sample use case takes more than three times longer than the
same local VMI operation. CloudVMI supports only asynchronous VMI operations. We know of no
system that supports synchronous VMI operation with a remote VMI tool. Probably the network
latency would have a too disastrous impact on PVM performance. Due to these disadvantages,
remote VMI operation is not an acceptable approach.

Fine-grained VMI access control. The second assumption is that we have fine-grained per-user
access control for VMI operations. There is a static assignment of permissions that allow an MVM
to access exactly one PVM. If we limited VMI operations to entities with privileged access to the
hypervisor, such as the root user of a Dom0 for the Xen hypervisor, no access control would be
required. However, as soon as ordinary cloud users should be enabled to use VMI applications
directly, fine-grained access control is necessary that limits the privileges of some user’s MVM to
access only PVM’s of the same user.

Live VM migration. The third assumption we make is that the virtualization environment sup-
ports live migration. The normal live migration of Xen is implemented using a pre-copy strategy,
which uses these consecutive steps [Cla+05]

1. Reservation: The selected target host reserves the resources for the virtual machine to be
migrated.

2. Pre-Copy: The source host transfers all memory pages of the virtual machine to the target
host, while the virtual machine is still running. Afterward, in additional iterations, it sends
updates for dirty pages (i.e., memory pages that have changed after the transfer) to the
target.

3. Stop-and-Copy: The virtual machine is suspended on the source host, and the remaining
dirty pages are transferred to the target.

4. Commitment: The target host signals the successful transfer.

5. Activation: The migrated virtual machine is resumed on the target host and removed on the
source host.

76 4 Data Acquisition

Source Host Destination Host
production virtual machine » production virtual machine :
7Y RO A :
monitoring virtual machine » monitoring virtual machine :
Xen toolstack Xen toolstack

Figure 4.13: Migration of a PVM and MVM [TBR19]

Goals
Based on such an environment, we aim at achieving the following goals with TwinPorter:

e Ensure that the PVM never runs without the being actively monitored, i.e., we must not
pause the MVM on the migration source before we pause the PVM,; and we must not resume
the PVM before the MVM. For synchronous VMI, we must make sure that there is always a
callback handler available for monitored events in the PVM.

e Support synchronous and asynchronous operations of virtual machine introspection.
e Minimize the impact on the downtime of the PVM caused by VMI-based monitoring.
e Keep the changes to the hypervisor as small as possible.

e Fully transparent live migration of the PVM. The PVM is not required to be aware of VMI
monitoring (in fact VMI operations should be stealthy and in the ideal case not noticeable
by the PVM), nor of any differences compared to simple migration of a virtual machine.

e Automatically define access permissions such that VMI is permitted on the target system
with the same permissions as we had on the source system.

e Do not increase the VMI overhead.

Problem Description

The parallel migration of the MVM and PVM has the advantage that the state of the monitoring
application is implicitly migrated to the target node. However, this introduces the problem to
synchronize the process of live migration among the involved components.

To support asynchronous VMI-based monitoring of live migrated virtual machines, the application
needs to re-initialize the communication interface with the hypervisor. Otherwise, VMI-operations
may fail or cannot be executed, and the system is not monitored anymore. Hence, the application
must be aware of the migration of the monitored system.

Migrating VMI-applications that employ synchronous VMI-based monitoring is even more compli-
cated because it requires that the correct callback handlers for software breakpoints are registered.
Software breakpoints for VMI on Intel-based systems are implemented by replacing the original
instruction with the INT 3 instruction. The execution of this instruction causes a trap to the
hypervisor which then can be handled by inserting the original instruction. When the monitored
system executes such a software breakpoint while the VMI-application is not registered and does
not handle the software breakpoint with inserting the original instruction, the monitored system
may crash because the monitored system is not aware of the original instruction and does not know

4.5 VMI and Live Migration 77

how to handle the software breakpoint. Depending on where the breakpoint is, the corresponding
userspace application or the kernel may crash.

A potential approach to solve these problems is to use the standard tools for live migration and
migrate both PVM and MVM and pause the PVM during the migration. However, depending on
the size of the main memory of both virtual machines, the downtime can increase significantly.
Hence, the live migration approach should be extended so that the PVM is still executed during
the pre-copy phase and that it is only paused for the stop-and-copy phase where no monitoring is
possible because in this phase it cannot be ensured that the PVM and MVM are always running
on the same system.

Concept

Ideally, the migration of the MVM should happen entirely transparently for the VMI. However,
during our investigation, it turned out that fully transparent migration of MVMs is faced with the
problem that VMI operations in the MVM require initialization of a hypervisor’s VMI function-
ality, and additional initialization of callback and interception points for synchronous VMI. Such
hypervisor-internal state is not migrated automatically by standard migration mechanisms of a
hypervisor, and thus fully transparent migration would imply significant internal modifications to
the hypervisor, which contradicts our goal of minimal changes to the hypervisor. For these reasons,
it is acceptable for us to require a migration-aware VMI application that actively interacts with
our migration infrastructure to satisfy the goals above.

We want to ensure that the PVM is never executed without being monitored. This means on
the one hand that on the source host, the MVM must not be stopped before the PVM has been
stopped. In the pre-copy phase of PVM’s live migration — which usually takes the most time of
the migration — the VMI application still needs to be running in the MVM. On the other hand,
on the target host, the PVM must not be resumed before the VMI application in the MVM has
received its state from the source host and completed initialization.

The whole process of the migration needs the following components, besides the common tools of
the virtualization software:

e A migration tool (source) that supports the migration of the MVM and PVM in parallel
informs MVM about migration and sends the target node the configuration of both VMs,
including the access permissions between them.

e A migration tool (target) that sets the permissions of the MVM on the target host and
informs the MVM about the current state of the migration.

e A fast communication interface between the migration tools (source and target) and the
MVM to inform about the current state of the migration.

78 4 Data Acquisition

VMM Source: VMI application: VMM Target:
source

precopyPVMMVM)D

VT send memory ‘D
done

copy-commit(MVM,PVYM)®

finalize migration

resume MVM

t t
E notify ©

set permissions (7)

Figure 4.14: The interaction of the components during migration. The upper part is executed
while both machines are executed on the source node. The lower part is executed
when both virtual machines are running on the target node [TBR19]

The general steps for migration are the following (see Figure 4.14):

(D The migration tool starts the migration of both virtual machines simultaneously on the source
host; the target host needs to allocate enough resources for the PVM and MVM.

@ The migration tool on the source host pauses the PVM after the pre-copy phase is finished.
@ The migration tool on the source informs the MVM to deinitialize the VMI-based monitoring.
@ The migration tool on the source sends the permissions of the virtual machines to the target.

(® The migration tool on the sources finalizes the migration. The PVM remains paused on the
target host while the MVM is automatically resumed.

® The target VMM informs the migration tool on the target host about the finished migration.
(@ The migration tool on the target host sets the permissions of the MVM on the PVM.

The migration tool on the target informs the MVM that the migration is completed and that
it can re-initialize the monitoring.

@ After the MVM acknowledged the re-initialization, the migration tool resumes the PVM.

4.5 VMI and Live Migration 79

MVM DomO
VMI Application | Management |
A
‘ TwinSender ” TwinReceiver |
A A
,_____!V_ _____ | Y Y
I
] EaE
A A A
‘ XenBus |

| Xen Hypervisor I

Figure 4.15: The communication channels of the TwinPorter architecture [TBR19].

4.5.2 Implementation

This section discusses the components of the TwinPorter implementation and their interactions
(see Figure 4.15). The proof-of-concept implementation uses the Xen hypervisor. Xen [Bar+03]
is a type 1 hypervisor and is located between the operating system and the actual hardware. It
supports para- and hardware virtualization. The most privileged virtual machine that is started at
boot and manages the other virtual machines is call Dom0. Other, unprivileged virtual machines
are called DomU.

Components

The TwinPorter architecture requires four components. The first component is the VMI application
which is performing virtual machine introspection based analysis of a PVM in the MVM. In addition
to common virtual machine introspection based applications, it needs to be able to pause its analysis
routine during the migration and to process messages that signal the start and end of a migration.

The second component is the TwinCommunicationInterface (TCI). It serves as the communication
interface between the VMI application and the tools handling the migration. The TCI has two
components: an unprivileged frontend driver in the MVM, and a privileged backend driver in
Dom0. If the migration tool in the Dom0 wants to inform the VMI application in the MVM about
state changes, the migration tool needs to send the new state information to the backend driver.
Afterward, the backend driver delivers this information to the frontend driver in the MVM using
the XenBus. Then, the frontend driver sends a SIGUSR1 signal to the corresponding process
of the VMI application so that it can immediately react to the new state. The sending of state
changes from the VMI application to the migration tool works similar but in reverse order.

The third component is the TwinSender (TS). It is required to initiate the migration of the MVM
and PVM and is executed in the most privileged domain (Dom0) of the source host. When the
migration is started, it informs the VMI application via the TCI about the upcoming migration
so that it can react to it. Additionally, it sends the permissions of the MVM required for VMI
operations on the PVM to the target cloud node. Internally, the TS uses a modified version of the
command line tool zl of Xen that supports parallel migration and behaves according to the steps
described in Section 4.5.2. To achieve that, it needs to support the parallel migration of virtual
machines and to implement the modified protocol for live migration (see Figure 4.14). The normal
x1 command does not support the migration of two VMs in parallel since it uses a user-space file
lock in the reservation phase to ensure that enough resources are available for a virtual machine.
This prevents the parallel migration of two virtual machines. To achieve parallel migration of two

80 4 Data Acquisition

virtual machines, we remove the lock operation in the prototype of TwinPorter to support parallel
migration. For production use, the locking mechanism in the reservation phase should be extended
to ensure that the target host allocates enough resources for the PVM and the MVM before the
live migration starts.

The fourth component is the TwinReceiver (TR). It is executed on the target host and waits for
incoming virtual machines. The communication between the TR and TS is established via a TCP
connection. As soon as the migration process is completed, the TR sets the permissions of the
MVM on the PVM in the XenStore, which is a storage location for all virtual machines on a Xen
system and contains their configuration and is used by split drivers. Additionally, the TR informs
the VMI application via the TCI about the finished migration, so the VMI-application in the MVM
can re-initialize introspection.

Permissions

TwinPorter uses the same concept as CloudPhylactor for defining the VMI permissions using the
Xen security modules. The decision on whether access to a resource is granted is implemented
using mandatory accesses control and is based on a set of policies and the labels assigned to a
resource. These policies can be used to define the permissions of each virtual machine very fine-
grained and cannot be changed at run-time [RVJ09]. However, a complete set of policies can be
reloaded, unless the active policies prevent it. The label of a resource such as a virtual machine
cannot be changed at run-time. During migration, the label of a virtual machine can be changed,
but the proof-of-concept implementation currently does not do that. The permissions of entries in
the XenStore are set for each entry and are independent of the security label for virtual machines
used for the Xen security modules.

The Migration Process

The migration process of TwinPorter extends the default migration process for Xen by imple-
menting the steps described in Section 4.5.1. As long as no migration is ongoing, virtual machine
introspection can be performed without any limitations. The request for a live migration is gener-
ated, for example, by the cloud management and executed by the T'S on the source node. Then, as
a first step, the pre-copy phase of the migration is started which transfers the contents of the MVM
and PVM to the target node. After the pre-copy phase of the migration is finished, the T'S pauses
the PVM. Additionally, the TS signals the VMI application via the TCI that a live migration for
the given machine is in progress and that it should de-initialize the virtual machine introspection
hooks and structures. As soon as the VMI application has called the LibVMI de-initialization
routine, the VMI application informs the TR via the TCI that the migration can be finalized.

After the migration of both virtual machines is finalized, the TR restores Xenstore permissions for
the TCI driver and resumes the monitoring virtual machine on the target host. Then, the TR tells
the VMI application that the migration is finished and that it should re-initialize VMI functions.
After the re-initialization, the VMI application continues with the normal monitoring and informs
the TR that re-initialization has been completed and that the production virtual machine can be
resumed. Then, the TR resumes the PVM and signals that to the PVM to finish the migration
process.

4.5 VMI and Live Migration 81

Step | Async. Monitoring [s] | Sync. Monitoring [s]
pre-copy + pause PVM 16.424+0.5 16.434+0.48
stop VMI 0.03+0.0 0.051+0.04
send config 0.01+0.0 0.01+0.0
finalize migration 2.98+0.17 3.28+0.16
restart VMI 0.15+0.01 0.24+0.39
resume PVM 0.05+0.01 0.06+0.01

Table 4.5: Time required for the migration steps [TBR19]

4.5.3 Evaluation

The evaluation described in this section is executed on two machines with the following identical
specifications: The CPU is an Intel(R) Core(TM)2 Quad Q9300, model 23, family 6 and consists
of four cores, each of them having a processor base frequency of 2.50 GHz. Its instruction set is
64-bit, and it supports Intel VT-x and VT-d. Each host is equipped with 8 GB of RAM As hard
disk, a TOSHIBA MQO1ABF050 with 500 GB size is used. The hard disk image of both virtual
machines is stored on the sending host and exported via NFS to the receiving host. In the Dom0
of both physical hosts and in the MVM the T'CT kernel module is loaded.

Each virtual machine has one vCPU, and the swap space is deactivated during the evaluation. The
MVM is para-virtualized and has 512 MB of main memory while the PVM is hardware-virtualized
and has 1024 MB of main memory.

VMI Application

We evaluate the downtime during migration, with two standard use cases of VMI. First, we run
a VMI application for asynchronous monitoring based on the LibVMI process-list example that
extracts the list of processes running in the PVM in a loop and pauses for 500 s afterward. Second,
we use a VMI application for synchronous monitoring that traces write access to the CR3 register
which is a standard method for VMI-based monitoring and can be used to trace userspace context
switches in the monitored virtual machine [JAAO06]. Both VMI applications react to changes of
the live migration, which are signaled via the T'CI in such a way that the VMI application disables
the process list extraction during migration and calls the functions vmi_destroy of LibVMI.
After the migration is finished, the VMI application calls vmi_init and continues extracting the
process list.

Normal Migration

To get a baseline for how long the migration takes in our environment, we measure the time that is
required to migrate only the PVM by migrating the (idling) PVM ten times. For each migration,
we measure the time of all migrations steps, i.e., the run-time of the xl command. In average, it
takes 18.18+0.46 s to migrate the PVM from the source to the target node.

To estimate the downtime of the PVM during migration when the PVM is not reachable via
network, we send a ping request every 0.01 s and consider the longest time frame without response
as the downtime. Due to the measurement method, this downtime includes the time required for
reconfiguring the network infrastructure when the VM is deployed on another system, and the time
required for refreshing the ARP tables. In our test setup, we measure a downtime of 2.09+£0.12 s
in which the PVM does not respond to ICMP messages during migration.

TwinPorter Migration

To evaluate the live migration approach of TwinPorter, we measure the time required by all the
steps in the TS and TR. To do so, we migrate the PVM and MVM in parallel for five times and

82 4 Data Acquisition

Migration \ Time [s]
normal migration (only PVM, no mon.) 18.18+0.46
normal downtime (only PVM, no mon.) 2.0940.12
parallel migration (PVM & MVM, async mon) 19.64+0.24
parallel downtime (PVM & MVM, async mon.) 3.83+0.20
parallel migration (PVM & MVM, sync mon.) 20.03+£1.08
parallel downtime (PVM & MVM, sync mon.) 4.08+0.58

Table 4.6: Total time required for the migration and the corresponding downtime

measure the time required for each step. Table 4.5 shows the time: required for the pre-copy phase
of both virtual machines; to stop the monitoring in the VMI application; to send the config of the
virtual machines via network; to finalize the migration of both virtual machines; to reactivate the
monitoring and the time required to resume the PVM. The total migration time with asynchronous
monitoring is 19.6440.24s and with synchronous monitoring 20.03+1.08s.

The downtime of the PVM using ping with asynchronous monitoring is 3.834+0.20 s and with
synchronous monitoring it is 4.08+0.58 s. Hence, the overhead introduced by TwinPorter compared
to normal migration of the PVM is about 2 s. All migration times are summarized in Table 4.6.

Limitations

TwinPorter requires stopping the VMI-based analysis in the MVM before the migration can be
finalized. Hence, in the worst case, a malicious cloud user that owns an MVM could stall the
migration of his PVM by not stopping the VMI-based analysis.

4.6 Summary 83

4.6 Summary

In this chapter, we introduced novel memory acquisition techniques for mobile devices and cloud
computing. Each of the discussed data acquisition techniques leverages the features of the under-
lying hardware and hence is suitable for specific applications.

The first contribution, the framework for cold boot attacks on mobile devices, enhances the current
state-of-the-art of cold boot attacks on ARM by minimizing the footprint of the analysis system
on the analyzed system. With this approach, it gets possible to analyze the kernel data structures
of the previously running operating system.

The second contribution addresses the problem that the implementation of security-related memory
forensics applications for the TrustZone is complicated. This is primarily a problem because there
is no framework, similar to LibVMI, available that at least provides the basic routines for accessing
the main memory of the normal world from the secure world. We addressed that by implementing
the interface of LibVMI in the secure world of the TrustZone.

The third contribution of this chapter addresses the problem that cloud tenants cannot use VMI-
based operations on their virtual machines. The CloudPhylactor architecture tackles this problem
by introducing the concept of monitoring virtual machines that have the permissions to run VMI
operations on production virtual machines of the same customer. Besides, the cloud management is
extended to give users the ability to start monitoring virtual machines to monitor their production
virtual machines.

The fourth contribution deals with the problem of the CloudPhylactor architecture that the live
migration of monitored systems is not possible. The TwinPorter architecture extends the Cloud-
Phylactor architecture so that virtual production machines can be migrated in cloud environments.
Additionally, the TwinPorter architecture ensures that there is no time interval during migration
where the production virtual machine is running not monitored. For this purpose, both the pro-
duction and the virtual monitoring machine are migrated simultaneously. To achieve this, we
have extended Xen’s live pre-copy-based migration approach to ensure minimal downtime of the
productive virtual machine and it does not run unmonitored.

INFORMATION RETRIEVAL

Information extraction is one of the most important and challenging tasks of virtual machine
introspection. It comprises three aspects: bridging the semantic gap, the timing of when to extract
the information, and the performance of the extraction routine.

The first and most significant challenge is to bridge the semantic gap. Obtaining the semantic
knowledge required to interpret the contents in memory is still challenging in practice. Thus, the
associated research question is how to obtain the semantic knowledge of the data structure of
applications.

Second, the timing aspect is vital for the extraction of transient data, i.e., information that resides
only for a short time in memory. Otherwise, if the information extraction is started too early
or late, it may fail because the data is not present (anymore) in memory. Hence, the associated
research question is what are potential trigger mechanisms for starting the VMI-based analysis?

Third, the performance of VMI-based analysis can have a significant impact on the performance
of the analyzed system. Traditional memory forensic tools operate memory snapshots and thus
the performance of the extraction process is usually not important. However, VMI-based analysis
tools have to extract information efficiently which mainly originates in the dynamic analysis, i.e.,
the process of extraction information when a sensitive instruction is executed. In that case, the
virtual machine is paused until the data extraction is finished. The associated research task is to
optimize the performance of the information extraction process.

Since the optimization of the extraction routines is application-dependent, we discuss how these
questions can be addressed using two examples: the extracting of TLS session keys from memory
and the implementation of a VMI-based SSH honeypot.

The remainder of this chapter is as follows: First, Section 5.1 gives an overview of the state-
of-the-art approaches concerning information retrieval from memory, TLS decryption, and SSH
honeypots. Then, Section 5.2 describes the TLSKez architecture that extracts the session key
from virtual machines using a brute-force approach. Section 5.3 optimizes the key extraction of
DroidKez by deriving the semantic knowledge of the data structures holding it and demonstrates
the feasibility of the approach on Android applications. Section 5.4 discusses two approaches of
how to implement a VMI-based SSH honeypot that uses control flow interception to monitor the
behavior of attackers. Finally, Section 5.5 summarizes the approaches described in this chapter.

85

86 5 Information Retrieval

Approach Performance Access Cert. pinning Security Level

Proxy mitmproxy [Mit] middle Network no low
Haystack [Raz+16] middle Android App no low

Decryption ssldump [Ivel4] Private Key/Log yes good
Wireshark [Wirl5] Private Key/Log yes good

Key Extraction TLSKex [Tau+16] low Virtual Machine yes good
TeLeScope [Carl6] low Virtual Machine yes good

Control Flow Cuckoo [Jurl5] high Windows Process yes good
jsslkeylog [Mic] high Java VM yes good

Frida Pinning Bypass [Piel7] middle Android Process yes low

DroidKex [TAR18] middle Android Process yes good

Table 5.1: Comparison of different TLS decryption solutions [TAR18]

5.1 State of the Art

This section describes state-of-the-art approaches for decryption of TLS connections, SSH honey-
pots, and information retreival from memory.

5.1.1 Decryption of TLS Communication

This section is based on [TARI18] and discusses different approaches and related work that ad-
dresses the problem of extracting cryptographic key material, decrypting network communication
and recomputing data structures. There are three approaches for decrypting network communica-
tion: the usage of a man-in-the-middle proxy that modifies the communication traffic, a passive
knowledge-based approach that decrypts network connections by having access to the session key,
and the interception of the application control flow to access the key material. Table 5.1 shows a
comparison between implementations of the three approaches. The comparison is made based on
performance overhead at run-time, in which layer the key extraction occurs, the ability to overcome
certificate pinning, and the impact on the security of the encrypted connections.

Man-in-the-Middle Proxy

The usage of man-in-the-middle proxies is the most common approach to decrypt TLS communi-
cation. An example of this approach is mitmproxy [Mit], which operates on network level. Thus,
it does not require access to or patching any of the communicating parties. It modifies network
traffic to use self-generated certificates allowing it to de-/encrypt communication between the two
entities. Haystack [Raz+16] is an application that can be installed on a regular Android device.
It redirects all traffic of applications using a VPN tunnel to a man-in-the-middle proxy to decrypt
their TLS traffic. For these approaches, it is necessary, that the application installs a self-signed
certificate. If an application uses key pinning, i.e., check the server certificate, this approach is not
feasible.

By actively modifying the crypto parameters of a TLS connection, man-in-the-middle approaches
lower the security of the communication. Carnavalet et al. [Xav16] summarize the weaknesses of
widely used TLS Proxy implementations. US-cert published an alert concerning the usage of these
systems [Cer17]. Durumeric et al. [Dur+17] also investigated the impact of proxy solutions on the
security of TLS connections.

Knowledge Based

Another way to decrypt TLS communication is by knowing the cryptographic key material that is
used for the symmetric encryption during a session. Wireshark [Wirl5] and SSLdump [Ivel4] are
passive approaches that monitor the network traffic and decrypt TLS connections when appropriate
key material is provided.

5.1 State of the Art 87

There are two ways to negotiate session keys with TLS, either using asymmetric encryption or
by using the key exchange algorithms such as Diffie-Hellman (DH) and Elliptic curve Diffie-
Hellman (ECDH) protocol. In the first case, it is sufficient to know the corresponding private
key of the server to extract and decrypt the session keys used in encrypted sessions following the
TLS handshake. The private key can be obtained for example by extracting it from the hard
disk of the server that uses the key. Saxon et al. [SBH15] describe a way how to extract RSA
keys from virtual machines efficiently. If the position of a key in a memory dump is not known,
heuristics help to identify potential keys. Shamir et al. [SS99] describe theoretical approaches
to find RSA cryptographic keys efficiently using stochastic information. Klein [Kle06] uses an
alternative approach by searching for sequences of the ASN.1 encoding, which is commonly used
to store such keys.

When Diffie-Hellman (DH) or Elliptic curve Diffie-Hellman (ECDH) is used to negotiate the sym-
metric key, it is not possible to obtain the symmetric session keys used in TLS sessions even if the
private key of any peer is known. In such a case, session keys can be acquired if the application
logs them or by extracting the master secret from the application’s memory.

Control Flow Interception

The Cuckoo sandbox [OM13] instruments the pseudo random function PRF function of the local
security authority subsystem service (LSASS) process of Windows to extract the server random
(SR) and client random (CR) in addition to the MS [Jur15]. The lsass process is handling the TLS
encryption in Windows. The PRF functions gets as a parameter the server and client random as
well as the master secret which is used to derive the individual session keys. Hence, by intercepting
the function call, the master secret and the server and client random can be extracted. However,
this method does not work when an application comes with its own TLS implementation and hence
does not use crypto services of the operating system.

Key material can also be extracted by intercepting the function calls of crypto libraries. For
example, SSLKeyLog [Mic] intercepts SSL function calls using Java agents mechanism. Since
Dalvik/ART environments do not support Java agents, SSLKeyLog cannot be deployed in Android.
Wu [Wul6] intercepts OpenSSL function calls to extract the MS from the memory of applications
and relies on the fact that the exact layout of the data structures is known. He uses the GNU
debugger (GDB) to intercept the control flow of applications.

Cipolloni [Piel7] describes an approach with the Frida framework that manipulates the control
flow of Android applications so that it accepts the self-signed certificate of a man-in-the-middle
proxy to bypass the problem of certificate pinning. As described before, this method can lower the
security of encrypted communication.

Lee and Wallach analyzed the lifetime of the TLS master secret in Android applications [LW18]. For
finding the master secret in main memory, they use a format based approach that uses knowledge
about the surrounding data in the SSI._Session structure of BoringSSL, which allows them to
locate the master secret in seconds from gigabytes of a memory image. They found out that the
keys might remain recoverable in main memory even after a connection is terminated. They also
proposed changes to Android that mitigate those problems.

All of these approaches that manipulate the control flow require semantic knowledge about the
monitored application such as the data structure layout and the functions that are used by the
application. Thus, these solutions often do not work for malware analysis, when the application is
obfuscated or when it uses its own TLS library.

88 5 Information Retrieval

Concept Interaction Shell Stealthiness File sftp Session Play- Port Extracted
com- Change and Recon- able For- infor-
mands Detec- scp struc- Log warding mation

tion tion
Kojoney [Cor06] Emulation O O O Q O 6 O O O
Cowrie [Oos14] Emulation O 0 O 0 . . . O O
SSHHiPot [McM16] MiTM o [o O @ O O [D
ssh-mitm [Tes17) MiTM o L o O @ o O [J D
Sarracenia VMI i 6 i i i i 6 i i

Table 5.2: Comparison of SSH honeypots. A full circle means that a feature is supported or has
high performance, and an empty circle means the opposite. [STR18]

5.1.2 SSH Honeypots

This section discusses state-of-the-art approach of honeypots and is based on [STR18]. The main
problem of honeypots is to provide an environment that cannot be distinguished from normal
systems while still providing in-depth traces of attacks. Hence, honeypots can be classified as
high, medium, and low interaction based on the amount of features they mimic. Low interactions
honeypots, for example, do not provide detailed traces since they only provide a very reduced set
of feature of the original system. Hence, they are easy to detect by attackers. However, they can
provide alerts for potential misuse. Figure 5.2 summarizes the features of the most common SSH
honeypots.

Kojoney [Cor06] is a low interaction SSH honeypot and provides only a rudimentary interface
to an adversary. It logs the username, password, and the entered commands. Cowrie [Oos14]
is a medium interaction SSH honeypot and extends Kojoney with some additional features that
make it behave more like a real Debian system. For example, it allows creating files and provides
commands that emulate a real system. Both, Cowrie and Kojoney are written in python and do
not provide an attacker access to a real system.

SSHHiPot [McM16] and SSH-mitm [Tes17] are a high-interaction SSH honeypots. They implement
a man-in-the-middle SSH proxy and redirect an attacker to a real system, which makes it difficult
for an attacker to detect the monitoring. The downside of this approach is that the system state
is not monitored. For example, if an attacker downloads binaries over a TLS secured connection
and deletes them directly after the execution, this approach fails to reconstruct the downloaded
binary.

Lengyel et al. [Len+12] implemented VMI-Honeymon which is a hybrid honeypot architecture. It
combines a low-interaction honeypot to collect malware and a high-interaction honeypot (sandbox)
to analyze the captured malware. To analyze the honeypot, they use volatility to scan the main
memory periodically. However, this approach does not provide means to dynamically trace the
activities of an attacker. Furthermore, they do not discuss how VMI can contribute to make the
anlaysis stealthy.

5.1.3 Stealthiness of VMI

While, at first glance, VMI-based analysis is isolated from the analyzed virtual machine due to
the virtualization layer, the tracing can often be detected and is not stealthy. The stealthiness
is critical for the implementation of honeypots and the analysis because malware and attacker
can behave differently when running in a monitored environment to evade the analysis [Bal+10;
HRO5]. Testing whether the system is monitored can be done by searching for artifacts, such
as breakpoints in memory, or by testing whether the system is emulated [RKKO07]. Holz and
Raynal [HRO5] describe different approaches on how attackers can detect whether a system is a
honeypot based on the emulation technique.

Another approach for attackers to detect the presence of monitoring tools is to measure the perfor-

5.1 State of the Art 89

mance of certain function and system calls because tracing function calls reduces performance so
that the total runtime is longer. To analyze this, Tuzel et al. [Tuz+18] discuss the stealthiness of
VMI-based tracing using LibVMI and the Xen hypervisor and measured timing changes of memory
access instructions at the run-time of a program caused by VMI operations. The result of this
work is that the presence of monitoring can be detected.

Miramirkhani et al. [Mir+17] describe another approach that analyzes how wear-and-tear artifacts
can be used to detect whether a system is a sandbox or a real-world system of a user. Such
artifacts are for example the recently opened files or the amount of currently running processes.
The absence of those traces can be a indication whether a system is a real used system or a sandbox
environment. Even if a tracing technique is completely secret, this approach would allow malware
to evade the analysis based on how the environments looks.

In the past years, many approaches for malware analysis have been presented [BY17]. Bare-
cloud [KVK14] addresses the problem of evasive malware that checks the presence of virtualization.
To detect whether malware behaves differently on a normal PC and a virtual machine, they run the
malware sample on a bare-metal computer without any active tracing, but they stored the changes
to the disk. Additionally, they run the sample in Anubis [Int], Ether [Din+08] and Virtualbox
and compared the behavior of the malware in the different systems. This approach requires many
resources (physical and virtual machines) for tracing and thus does not scale very well for many
samples. Additionally, they only detect that there is a difference in the behavior, but they do not
provide means to actually analyze malicious behaviour.

5.1.4 Information Retrieval from Memory

There are different approaches and techniques on how to bridge the semantic gap to locate data
in the main memory. A survey of different approaches that bridge the semantic gap is presented
by Jain et al. [Jai+14] and Xu et al. [Xu+17]. Jain et al. [Jai+14] distinguish between four different
techniques to bridge the semantic gap:

e Hand-crafted data structure signatures are obtained with experts knowledge.

o Automated learning and reconstruction use source code analysis and debugging information.
Those approaches often use a training phase to deduce semantic information in several iter-
ations.

e (Code implanting injects code to running a virtual machine to retrieve information. It does
not interpret the contents in memory but relies on the fact that the injected code can retrieve
correct information and that it does not rely on possibly tampered functions (of the kernel).

e Process outgrafting relocates in-guest agents to a dedicated virtual machine, which has access
to the main memory of the monitored system.

The most prominent approach for information retrieval of information stored in main memory
is implemented by Volatility [Fou] and Rekall [Coh14]. Both tools employ semantic knowledge
stored in profiles that are obtained from debugging information, which is, for example, stored in
the DWARF format of Linux binaries [Com+10]. Their information retrieval approach does not
work when no profile is available or contains wrong information, e.g., when the operating systems
or application is not known or in a different version. Additionally, they are not optimized for
performance and are not suitable for online monitoring and the extraction of ephemeral data,
when the analyzed system requires to be paused for the extraction.

Sigpath [Urb+414] uses a data-centric approach to compute graphs of data structures in memory
of unknown applications, which means that they do not need the source code, debugging symbols,
or API information from the target program for the analysis. Hence, this approach is classified
as automated learning and reconstruction. They create several snapshots of the application and
compute the graph based on them. This approach mostly works on simple data structures that
can be accessed by following a static path. Data structures such as lists, unions, and arrays are

90 5 Information Retrieval

not supported. Additionally, this approach does not work when the application uses obfuscation
techniques that aim to randomize the data structure layout [LRX09]. They applied the approach
for game hacking and memory forensics. In both cases, the required information stays longer in
the memory of the analyzed application. However, they do not discuss an approach that could be
used to trigger the extraction of ephemeral information.

Dolan-Gavitt et al. [Dol411] present Virtuoso, which uses an instruction-centric approach to narrow
the semantic gap. Jain et al. [Jai+14] classify their approach as process outgrafting. Virtuoso
monitors the instructions of a process in several iterations and isolates those that are used to
access the required information. Their approach seems to be promising, even so, it is very complex
since it requires tracing applications on instruction level. Unfortunately, they do not provide the
source code of their implementation.

5.2 TLSKex: Content-based TLS Session Key Extraction from Virtual Machines 91

5.2 TLSKex: Content-based TLS Session Key Extraction from
Virtual Machines

The extraction of TLS session keys from the main memory is a good example to discuss the chal-
lenges of VMI (the semantic gap, performance, and timing) and possible solutions. In this section
— which is mostly based on [Tau+16] — we present the TLSKez architecture that implements that
approach. The extraction of TLS sessions key from the main memory of applications has several
advantages compared to state-of-the-art TLS analysis solutions. For example, it can be applied
when a man-in-the-middle based proxy approach is not feasible, e.g., when the client application
implements certificate pinning. Such a solution can work in a non-intrusive and universal way.
Being non-intrusive implies the following two requirements:

e No active manipulation of communication: The communication should be monitored pas-
sively without modifying the contents of the communication (we do not exclude a possible
impact on the timing of messages).

e No modification of the monitored application: The decryption should work without internal
modifications to the communicating applications (such as exporting the session key to a file).

Being universal implies the following four requirements:

e Independence of specific key exchange: The decryption key extraction should work for any
key exchange algorithm.

e Independence of encryption algorithm: The decryption and key extraction should work inde-
pendently of a specific cryptographic algorithm.

e Independence of client/server role: It should work for local applications that operate as a
server, as well as for local client applications that connect to a remote server.

e Independence of the implementation: The key extraction should work for every TLS imple-
mentation. The only assumption we make is that the application stores the master secret in
a consecutive 48 byte array.

To implement such a solution, the following research challenges must be solved: First, how can the
session key of a TLS connection be located in main memory, when no semantic knowledge about
the applications is given, e.g., for malware analysis? Second, when should the extraction routine
be started and how can it be determined that the session key of a TLS connection is in memory?
Third, how does the extraction affect the monitored system and how can the performance be
improved?

With TLSKez, we present an architecture that extracts the TLS session keys from the main
memory of virtual machines. The main idea of TLSKex is to take a snapshot of the application in
a virtual machine after the application negotiated a new TLS connection. For the identification of
the key in memory, we use a brute-force approach, which iterates over the snapshot and decrypts
the first encrypted TLS record of the corresponding connection with each byte sequence. Each
byte sequence serves as a master secret to derive the required session keys. The key was found
when the message was successfully decrypted. To detect a new TLS connection, we monitor the
network traffic of the analyzed system. To improve the speed, we implemented and evaluated
several heuristics that allow ignoring large portions of the contents in the main memory to limit
the search space. This section is based on [Tau+16].

5.2.1 System Design

This section presents all the components that are necessary to decrypt TLS secured connections
(see Figure 5.1) The TLS decryption process can be separated into two stages — an on-line and
an off-line part. The on-line functions must be executed synchronous to the TLS communication
and include capturing of the network traffic, detecting TLS sessions, and taking a snapshot of the

92 5 Information Retrieval

memory in which the key is stored, e.g., a snapshot of the whole virtual machine main memory.
The off-line part can be executed later, whenever the decrypted content of a TLS connection needs
to be accessed. The process of extracting the master secret from memory uses the information
captured by the online parts.

Network Logging

Network logging is responsible for capturing the network traffic of all TLS connections that shall be
monitored. This task can be executed by any standard network logging tool, such as a dedicated
device on a promiscuous network switch port or a local capturing process on the host running a
virtual machine.

Trigger Mechanism

The acquisition of virtual machine memory must be triggered at the right point in time when
the key material is present in main memory. The master secret and the derived key material is
available as soon as the TLS handshake for key negotiation has finished and the key calculation
has been executed. According to the TLS protocol, a CCS message is sent when a node is ready to
use new key material in subsequent messages. Hence, the right moment for taking a snapshot can
be detected by monitoring the network traffic for TLS records that contains the CCS message.

During a TLS session, the key material can be renegotiated. This means that the key extraction
routine must be triggered each time when new cryptographic parameters are exchanged. We can
detect the subsequent CCS messages in the network traffic even if these messages themselves are
encrypted because they are sent with a unique payload type in the TLS record layer header, which
is not encrypted (as explained in the previous section).

Memory Acquisition

The memory acquisition must be performed synchronously to the triggered snapshot request and
network traffic. If it is performed asynchronously, the connection or the program might be termi-
nated, and the key could be gone. Thus, it is essential that the memory acquisition is executed
synchronously. Additionally, it is important to take the snapshot fast to decrease the impact on
the timing of network communication.

There are several ways how the time required to take a snapshot can be decreased. For example,
LibVMI supported copy on write snapshots of virtual machines. However, this feature is currently
not available anymore!. The other way to decrease the time is to reduce the size of the snapshot.
However, this requires contextual knowledge about the guest operating system, for example, which
process is communicating and where its memory is located in physical memory.

Key Extraction

There are several ways how the master secret can be obtained from a memory snapshot. In contrast
to RSA keys, there is no standardized way to store the master secret of a TLS session. Thus, there
is no general approach to find it with a simple pattern matching approach. However, there are
several other ways of how this can be achieved.

One way is to parse the structures of a process to find the TLS session structure, which requires
contextual knowledge about the program. Thus, this approach is not feasible for unknown programs
such as malware. However, this approach is very fast because no complex computation is required.
The search routine only needs to follow pointers in memory.

A similar alternative is to search for well-known TLS session structures of different implementations
that include the master secret. These sessions structures often contain values such as the TLS

'LibVMI https://github.com/libvmi/libvmi/commit/3a53dcde860a0f9f8bbde83a05671a7d44d6c56a,
Accessed on 2019-07-08

https://github.com/libvmi/libvmi/commit/3a53dcde860a0f9f8bbde83a05671a7d44d6c56a

5.2 TLSKex: Content-based TLS Session Key Extraction from Virtual Machines 93

Virtual Machine

Network [Trigger mechanism
- Process Memory
g
‘Q@rs
Sy,
‘9,0&"
éo[Main Memory
[@ Network logging J t@ Memory acquisition]
online
offline

[Network dump)\ /C Memory snapshot j

[@ Key extraction]

Viewer)

Figure 5.1: The main steps for decrypting TLS connections: network logging, TLS detection, mem-
ory acquisition, and key extraction [Tau+16]

version or the IP address of the communication partner. Thus, these structures can be found
easily when some parts of them are known [Hom13]. This approach requires searching for parts of
the key structure in the whole address range of a process, but no complex computation is required
to identify the key. However, the key structure must be known a priori. If malware uses an
unknown TLS implementation, this approach does not work.

When no a priori knowledge about a process is given, there is still the option to try every byte
sequence as a potential master secret. This approach is slow as the testing of a byte sequence
includes the key derivation and the decryption of a data block. Thus, first of all, the size of the
snapshot should be reduced to memory areas that potentially contain the key. For example, in
most of the cases, it would not make sense to search the master secret in the read-only mapped
text segment of a process. With a high probability, it is stored in a memory region that is writeable
as it is negotiated dynamically at runtime. This approach can be further optimized with heuristics
that filter byte sequences that are no possible keys, e.g., by checking the entropy.

After a potential master secret is found in memory, it must be tested whether it belongs to the
corresponding connection. This can be achieved by decrypting a TLS record and verifying the
HMAC that is included in every TLS record. As the HMAC is computed over the sequence
number of a TLS record, this number must be known. Thus, the first encrypted message should
be used as it always has sequence number zero.

5.2.2 Implementation

TLSKex implements the concepts described in the previous section. It is a framework written in
the programming language C that uses LibVMI to access the memory of a virtual machine running
under the Xen hypervisor.

TLSKex is designed with the focus on the following goals: It shall obtain the master secret of a
virtual machine without active manipulation of the TLS channel itself, and without manipulation
of the communicating application. TLSKez shall work independently of the specific key exchange
mechanism and selected cryptographic algorithms and independent of whether a client or a server
application runs within the virtual machine.

94 5 Information Retrieval

Client TLSkex actions Server

exract Client
client random Hello
extract 3
server random & Server
setup memory : Hello
events]
[...] : L]
: Change
Cipher Spec
take Change
snapshot Cipher Spec
first
extract
record

Figure 5.2: TLS key negotiation process and the corresponding TLSkex actions [Tau+16]

Trigger Mechanism

We need to trigger the snapshot process after observing a network packet containing a CCS message,
but before the connection is closed and the master secret removed from main memory. It is not
sufficient to monitor the network passively and trigger the key extraction process asynchronously.
With such a passive approach, triggering the creation of the memory snapshot might take longer
than the lifespan of the TLS connection, and thus fail to capture the master secret. This is
primarily a problem for very short living connections. Instead, we implemented an active network
monitoring approach.

Thus, TLSkex includes an active network monitoring component that is able to analyze every
packet coming from or to the monitored virtual machine. The network analyzer forwards packets
only after they have been inspected. It is equipped with two virtual TUN network interfaces.
One interface is bridged to the virtual machine, and the other interface is bridged to the rest of
the network. In general, the network analyzer receives a packet from one interface, analyzes its
content, and writes it to the other one.

The network analyzer must recognize various types of TLS messages. These messages together with
the corresponding actions of the network analyzer are depicted in Figure 5.2. The most important
message is the CCS because it triggers the memory snapshot?. As both communication partners
send a CCS message, the snapshot is triggered when the monitored virtual machine sends it. The
corresponding packet is not passed to the destination interface until a memory snapshot is taken.
Additionally, the client and server hello messages must be monitored. They contain the client and
server random, which is extracted from the network packets.

Memory Acquisition

Every time the trigger mechanism detects a new TLS connection, the master secret that is present
in virtual machine memory needs to be recorded. This can either be achieved by directly searching

2The CCS and the first encrypted TLS record do not need to be sent in two separate packets. They can also be transferred in the same
network packet

5.2 TLSKex: Content-based TLS Session Key Extraction from Virtual Machines 95

the memory for the key, or by taking a snapshot of (parts of) the virtual machine and extract the
key from the snapshot later when the communication needs to be decrypted.

In both cases, the snapshot process has to be executed fast to keep the delay impact on the
connection as low as possible. Therefore, we decrease the time required to take the snapshot by
minimizing its size. Thus, we have to find out where the master secret is stored in the main
memory of a virtual machine. First of all, we restrict the snapshot to the memory of the process
that handles the TLS session. Therefore, we parse the kernel task structures of each process to find
the process that handles the connection. To get this information we parse the file descriptor table
of each process in the task structure and compare the source and destination IP /port combination.
For this purpose, we wrote a custom utility extracting the required information from the guest
Linux kernel as we found existing tools like Volatility or Rekall as too slow for that time-critical
operation.

Additionally, we consider only those pages of a process that are mapped writeable and anonymous.
Anonymous pages do not have a reference to a file in their description structure. This usually
holds for the heap and stack of a process as they are allocated dynamically.

Furthermore, we decrease the size of the snapshot by considering only pages that have been altered
between the establishment of the connection and the key negotiation of the session key. To do so, we
register memory access handlers that monitor the process memory between the sending/receiving
of the SH record and the CCS message. The occurrence of the SH marks the last point in time
where the session key is not existing and the CCS message indicates that that key was computed.
Thus, the key can be found in pages that have been modified or newly allocated during this period.

This approach does not work, when the session key is stored in main memory before the connection
is established, e.g., for resumed sessions. In this case, we can assume that we have captured the
first key negotiation and do not need to extract it again. If this is not the case, only a snapshot of
the whole address space of a process works.

Key extraction

TLSkex implements a brute force approach to find TLS master secrets in main memory. To achieve
that, it takes each 48-byte sequence in the snapshot as a master key and checks whether its derived
write__key can successfully decrypt a TLS record of the connection. To test whether the decryption
was successful we compute the HMAC of a decrypted TLS record and compare it with the given
one. If they match, the key is correct. All necessary parameters, e.g., the server random, are
extracted from the network flow by the proxy component.

As the key validation process is slow, it is vital that we do not test every byte sequence as a master
secret. Hence, we have implemented several strategies to pre-check whether a byte sequence is a
potential key. The first optimization is that we assume that a key is stored four bytes aligned in
memory. This increases the speed by a factor of four. The second optimization is that we look
at the stochastic properties of a byte sequence. As the master secret is generated by a pseudo-
random function, we assume that it contains about the same amount of zero and one bits and the
amount is distributed binomially. For example, a 48-byte sequence that is randomly generated
and binomial distributed has with a probability of about 90 percent between 176 and 208 one bits.
The parameter u is the expected count of one bits in the master secret. The TLS master secret is
48 bytes long and the probability p that a bit is one is 0.5. Thus, p is 0.5 x 48 x 8 = 192.

wik o,
y (k)pk* (1—p)"*>=0.89

k=16,1=192,p=0.5

5.1

96 5 Information Retrieval

Process | total | anon&write able | new | modified | dumped | tyup sarr | tsnap_siop | tsearch
Apache2 | 72090 3715 0 26 26 4.3 ms 44 ms | 30 ms
Curl 38264 3438 15 19 34 3.3 ms 40ms | 2ms
Wget 22813 1378 16 13 29 4.0 ms 3.5ms 2 ms
s_client 6114 152 9 22 31 0.4 ms 0.6 ms 8 ms

Table 5.3: Amount of mapped and changed memory pages (4096 bytes) of different processes during
the key negotiation procedure and the time to prepare (fuap sarr) and take (fspap sop) @
differential snapshot; s denotes the time to extract a key from a snapshot [Tau+16]

Thus, we first test bytes sequences in the snapshot that have between 176 and 208 one bits. If we
do not find a key with these properties, we increase the borders and iterate again over the snapshot.
Another heuristic to minimize the search space is to check whether a byte sequence consists only
of ASCII characters. If so, the highest bit of each byte must be unset. The probability that
such a 48-byte sequence with only ASCII characters is a key is about 0.5*, which is negligibly
small. The number of required characters could also be reduced, but the chance that a key gets
pre-eliminated increases. The last heuristic that is implemented in TLSkex is to check whether
an eight-byte sequence contains either only one bits or only zero bit. This can be tested easily
as the bit counting function takes eight bytes as input and returns the number of one bits. The
probability that a key contains at least one sequence with 64 zero or one bits is also negligible
(2-48-0.5% ~ 10~1%). TLSKer combines all three heuristics to decrease the search space as much
as possible without eliminating too many potential keys. If the key was not found, the heuristics
can be switched off in order to search again for the key in the snapshot. After we have found the
session key of a connection, we write it into a key log file that serves as in input for Wireshark to
decrypt TLS streams.

Network Logging & Traffic Decryption

TLSKex extracts only the master secret of TLS connections from main memory. It does not save
the corresponding network traffic. To save the network traffic standard tools like tcpdump [TCP)]
can be used. Depending on the use case, the network sniffer should store only TLS connections to
save space.

Moreover, TLSKex does not decrypt TLS sessions directly. It only extracts the TLS master secret
from main memory. However, it can be used together with Wireshark to decrypt TLS encrypted
network connections based on the extracted master key.

5.2.3 Evaluation

In this section, we measure the time to take a snapshot of several programs and the time that is
required to extract the key out of it. Additionally, we discuss the limitations and stealthiness of
TLSKez. All measurements in this section are executed on a machine with an Intel(R) Core(TM)
i5-2500 CPU @ 3.30GHz and 4 GB of RAM. The hypervisor is Xen in version 4.4.1 out of the
Debian stable repository. The dom0 and guest operating system is a 64-Bit Debian Linux with
kernel version 3.16.0-4.

Memory Acquisition

To measure the throughput of the memory acquisition process we read the whole main memory of
a virtual machine using LibVMI. To do so, we requested each page sequentially by starting from
the guest physical address 0. For a guest system with 1024 MB of main memory the snapshot took
2.4 seconds, with 256 MB it took 0.6 seconds. These results do not include the time for storing
the data on persistent storage. It only includes the time for the read operation, but not for the
write operation.

5.2 TLSKex: Content-based TLS Session Key Extraction from Virtual Machines 97

a b c d
Process k=1 k=2 [k=4 [k=8| k=16 | k=32 | nostring | notall0/1 [combined (k=16)
key included 8.12 16.2 31.6 58.5 89.7 999 [1-1005 1-1077 87.7
Apache2 0.10% | 0.28% | 0.64% | 1.27% | 2.33% | 4.26% 85.49% 43.54% 1.69%
Curl 0.15% | 0.45% | 1.04% | 2.11% | 3.50% | 4.75% 77.53% 10.55% 3.32%
Waget 0.15% | 0.46% | 1.06% | 2.15% | 3.60% | 4.91% 78.10% 10.68% 3.38%
s_client 0.054% | 0.18% | 0.49% | 0.96% | 1.89% | 3.40% 56.52% 37.35% 1.63%

Table 5.4: First row: probability that a key is not eliminated by the heuristic. Other rows: percent-
age of a memory snapshot that contains a 48 byte long and four byte aligned sequence
with: a) 192 +k one bits, b) the byte sequence is not an ASCII string c) no 8 byte
sequence with only zero or only one bits d) a to ¢ combined [Tau+16]

Table 5.3 depicts the total amount of memory pages of a sample set of processes, the number
of pages that are mapped anonymous and writeable and the amount of pages that are allocated
(new) and altered (modified) during the key negotiation process and dumped as a snapshot. The
time #g,4p srarr describes the time that is required to set the memory events and #,4p s0p the time
that is required to take the snapshot and find newly allocated pages. The time that is required
to extract the session key out of a snapshot is denoted fsqen. All values in this table are based
on single run measurements to provide the dimension of the timing values. The Apache2 process
acted as a server, the other ones as clients.

The first notable observation in Table 5.3 is that the differential snapshot is tiny compared to the
size of the anonymous and writeable pages. For example, the differential snapshot of the Apache2
process is about one percent as big as the snapshot of the anonymous and writeable mapped pages.
This decreases the search space for the master secret dramatically.

Additionally, we can see that the time required to take a snapshot does not only correlate to its
size. It also depends on the size of the address space of an application. For example, the differential
snapshot of the s_ client process has about the same size as the other ones. However, it is six to ten
times faster than the other ones because its address space is smaller. This is caused by the fact,
that we iterate over the address space to set/remove the memory events to detect modifications
on each page.

Key Extraction

In Table 5.3 we present the time that is required to extract the TLS master secret from the memory
dump of different processes. The different times to find the key by having the same snapshot size
are caused by the position of the cryptographic key and the entropy of a snapshot. For example,
if the key was stored in the heap of the process, it is at the beginning of the process dump and is
found faster. However, when the key is on the stack, it is in the rear part of the memory dump,
and it takes longer to find it. Additionally, the time depends on the number of bytes that are
filtered out by our heuristics.

Our brute-force implementation was able to test about 131 thousand keys per second. This means
that every sequential 48-byte sequence of a memory snapshot with a size of 131 KB can be tested in
one second. The low throughput is mainly caused by the key derivation of TLS and the decryption
process. However, this can be executed offline and does not affect the monitoring process.

In Table 5.4 we show how the performance of different heuristics can decrease the size of the search
space of a memory snapshot by selecting only byte sequences that have the characteristics of a
random encryption key. The first row shows the computed probability that a key matches the
heuristic.

The first six columns show how many four-byte-aligned 48 byte sequences have between 192 —k
and 192+ k one bits. For k=16 only about two to four percent of the memory meet this condition.

98 5 Information Retrieval

However, there is a chance of about 90% that a random master key satisfies this condition. In
other words, we find the master key with a probability of about 90% if we just search the small
part of the memory that matches this condition. The bit counting heuristic is implemented very
efficiently. Thus, the pretesting reduces the time for finding the key dramatically.

In Table 5.4 we depict as well the performance of two other heuristics. The first one is testing
whether a byte sequence is not an ASCII string. This is accomplished by testing if the highest
bit of each byte is set. Depending on the application, this simple heuristic reduced the time for
the key search in our experiments by between 56% and 85%. Another approach is to test whether
each of the eight-byte blocks, where we count the bits in, has either 0 or 64 one bits. This reduced
the search space by between 10% and 44%, again depending on the application process. The
last column shows how much of the memory snapshot contains potential keys when all presented
heuristics are combined.

Network Proxy

Two factors mainly influence the performance of the network: (1) The overhead of each packet
caused by the deep packet inspection proxy that analyzes the contents of the TCP headers to
check if it belongs to a TLS connection. We currently ignore this overhead in our proof-of-concept
implementation as it is a constant factor that affects all packets. (2) The overhead that is caused
by analyzing the TLS records and the corresponding actions, e.g., the acquisition of the snapshot
depends on the TLS records that are included in a TLS record. For example packets with only
application, data records are simply forwarded. The only packets that are delayed noticeable are
packets with a SH and outgoing CCS records. Packets with a SH record are delayed by fyap srare
and CCS messages by fgap siop.- Both values depend on the size of the address space of a process
and the amount of changed pages.

Limitations

We have made several assumptions to increase performance. For example, we only take a snapshot
of the process that handles the connection. However, malware might spawn a dedicated crypto
process that runs the encryption routine. In that case, our approach would not work. Thus, it
might be better to save a snapshot of the whole virtual machine. A malware might also obfuscate
the key in memory, e.g., by shifting the byte order to hide it from TLSKex. However, a human
operator might notice this problem when the key was not extracted and can implement a custom
strategy for the specific use case.

Another way to circumvent the automatic key extraction process of TLSkex is to use a slightly
changed version of the TLS protocol, e.g., by modifying the default numbers of some commands.
However, this requires that the client and the server use the same modified protocol version.

TLSkex trusts the kernel structures of the guest to be uncorrupted and reliable and uses them for
example to extract memory mappings of a process. Thus, a guest system might foil VMI based
analysis by placing crafted data structures in memory [Bah+10]. This is a general problem of VMI
based analysis and is out of the scope of this paper.

Finally, TLSkex could serve as a DoS vector, for example, when many TLS connections are estab-
lished, and many snapshots must be taken. Thus, it is important to find ways to minimize the
overhead of TLSkex in the future. Additionally, we have to investigate how this problem can be
circumvented in practice.

5.3 DroidKex: Data structure-based Key Extraction from Mobile Phones 99

5.3 DroidKex: Data structure-based Key Extraction from
Mobile Phones

The TLSKex architecture — presented in the preceding section — is a generic approach to decrypt
TLS based communication by extracting the TLS session keys from main memory of processes with
unknown application logic. The main disadvantage of this approach is that the data acquisition
and the brute-force key extraction is too slow for production environments, even though it was
already optimized using several heuristics. This holds especially for applications that have a big
address space and use multiple TLS connections at once.

The DroidKex architecture aims to address the problem of performance by using two assumptions
about the application being analyzed. The first assumption is that the application is using the
Boring/OpenSSL or libnspr library for TLS connections. However, the concrete data structure
layout — which can change among versions — is not known. This assumption holds especially for
most of the Android applications. The second assumption is that the monitored application uses
network related system calls (send, recv, write and read) for communication. Hence, instead of
monitoring the network traffic we can monitor system calls as a trigger mechanism. Additionally,
we can use the parameters on the stack of an application invoking a system call as a starting point
for looking up the TLS session related data structures.

The main idea of the DroidKex architecture is to improve the key extraction process of TLSkex
by directly accessing the TLS master secret instead of using a brute-force approach. To do so, it
computes the data structure layout of data structures that store it in main memory by deriving
it from memory snapshots using a depth search approach. To get a pointer to the data structure
holding the metadata of TLS connections, we intercept the control flow of the analyzed application
while it is handling the connection. In this way, we can also ensure that the key is in memory
when we attempt to access it. DroidKex works on Android applications, even so, this approach
can be used with virtual machines. This section is based on [TAR1S].

5.3.1 System Design

This section discusses the general approach of the DroidKex architecture, the assumptions under
which it works and the components that are required for the proof-of-concept implementation and
the requirements on the target device.

Approach and Goals

The goal of the DroidKex architecture is to extract the ephemeral information required for de-
crypting a TLS connection of an Android application from its main memory, namely the MS that
is required to derive symmetric session keys. The key extraction is executed synchronously to the
control flow of the application, i.e., the MS is extracted during a TLS session. Otherwise, there is
no guarantee that the MS is still in main memory because an application might free or overwrite
it directly after the connection terminates. Thus, we intercept all network related send and receive
functions of an application. If they are handling a TLS connection (the interception framework
resolves the remote address of a file descriptor), we extract the corresponding MS by dereferencing
pointers that point to a structure holding the cryptographic key material that is passed to the
functions of the crypto library. Even though the layout of the data structures is known since the
implementation of OpenSSL and BoringSSL is open source, the exact layout of the data structures
is unknown. This is caused by the fact that it changes based on the used compiler and compiler
settings as well as the version of the library.

To address this problem, we follow a precomputed path starting with pointers on the calling stack
to a data structure holding the MS. Such a path is computed during the training phase in which we
run an application several times and let it initiate several TLS connections. For each connection
we take a snapshot of the application memory. To bootstrap this approach, we locate the MS in

100 5 Information Retrieval

Process ®/>@
| A

Application, Libraries |
Network Monitor

| Android Framework |

/I Interception meework| @ @

© Network

| Libraries/BoringSSL |

Figure 5.3: The components of DroidKex architecture and their interactions [TAR18]

a snapshot using the brute force testing method of TLSKex [Tau+16]. Afterward, we compute for
each snapshot a path from the calling stack to the master secret. The computation of a path is
discussed in more detail in Section 5.3.2. Finally, in the training phase we select the path that
works best among all snapshots.

Assumptions

The first assumption we make is that all crypto libraries directly call network related sending and
receiving functions (read, write, receive, recvmsg, sendmsg, sendto, recvfrom) and a
starting point leading to the data structure holding the cryptographic key material is still on the
stack.

The second assumption we make is that the crypto libraries do not use complex data structures
such as linked lists, trees or hashmaps to store the MS. We assume that we can find one path
from the start to the MS that always passes or visits the same data structures in the same order.
Finding approaches that regenerate the layout of complex data structures to extract information
efficiently should be addressed in the future.

Finally, we assume that each application can use different (versions of) libraries and different
cryptographic parameters (e.g., the SSL/TLS version) resulting in the fact that different paths for
the same application can be required. We try to learn these paths in the training phase. If we
cannot learn a path, e.g., because the library was not used in the training phase, we are not able
to extract the corresponding MS.

Components

The network monitor monitors all TCP connections of the application D and captures traffic for
later analysis @ (see Figure 5.3). It parses all packets to detect messages that are used to set up a
new TLS connection. During the negotiation of a TLS connection, it extracts all parameters that
are required to validate a master secret belonging to a connection by decrypting the first record.
The parameters are CR and SR, the cipher and the first data record. Additionally, it extracts the
source and destination IP address/port of a connection, which later allows the key manager to link
a network packet with an intercepted function call. Afterward, it sends this information to the key
manager 3.

The interception framework is a combination of Python and JavaScript tools that uses the Frida
toolkit [Rav]. Frida [Rav] is a dynamic instrumentation toolkit and can be used to analyze the
execution of applications running under Windows, macOS, GNU/Linux, iOS, Android, and QNX.

5.3 DroidKex: Data structure-based Key Extraction from Mobile Phones 101

It allows injecting JavaScript-based analysis code to a running process to analyze the current state
of the execution. The purpose of the interception framework is to extract the MS of each connection
by intercepting network connection related function calls of an application. Every time a function
call is intercepted, it follows the pre-computed paths with the goal to locate a MS. Whenever a
potential MS is found, it is sent to the key manager ®. Additionally, it sends for each function call
all values on the stack within a certain range above the stack pointer. During run-time, it polls the
list of connections with a valid key so that function calls of these connections are not intercepted.

The key manager validates and stores the extracted keys of TLS connections in a file that can
be used by Wireshark for analysis 7). The key manager combines the information about TLS
negotiations with the data received from the interception framework to validate keys coming from
the interception framework. To validate a key, it attempts to decrypt the first data record of the
TLS connection with the extracted MS. In addition, the key manager stores the session ID and the
corresponding master secret of the connections to improve the key extraction process in case the
session is resumed. If a succeeding connection uses the same session ID, it is more likely that the
same master key is used. Consequently, there is no need to go through the key extraction process
since the MS is already known and can be looked up.

Furthermore, the key manager takes a snapshot of an application ® in the training phase, which
is required to compute paths. To do so, it waits a defined time interval after the network monitor
reports that the application negotiated a new key @ (see Figure 5.4). If it does not receive a key
belonging to the corresponding connection, the key manager takes a snapshot?. The time difference
between receiving the information from the network monitor and the interception framework de-
pends on many factors. The first one is caused by the workload of the key manager that processes
the messages from the other components sequentially. Thus, if one message takes longer to process
(for example the validation of several extracted keys), the next message is delayed, i.e., the time
difference between receiving a key and verifying it is increasing. Additionally, the communication
overhead affects the timing. In our proof-of-concept implementation, all components send mes-
sages via TCP sockets. Due to the architecture of Frida, one part of the interception framework
is running on a separate analysis PC, which increases the latency of the communication as well.
Another reason for the late reception of keys is the fact that some applications do not directly
communicate after the key exchange and the key is not extracted when no network function call
is executed. This can be a problem when the data structures of the crypto library are not fully
initialized after the key exchange. To address this problem, the key manager waits for a particular
time until it takes a snapshot.

The exact timing for a snapshot is a trade-off between generating more overhead or losing the MS of
a connection. The snapshot can be taken either directly after the network monitor sees the second
CSP message, which indicates that both parties computed the MS, or a bit later. In the first case,
it can happen that the interception framework did not yet send the MS to the key manager, e.g.
because it is not copied to the final data structure of a TLS connection. Then, the key manager
would take a snapshot and interrupt the application even though we would receive the MS later.
However, if the snapshot would be taken too late, the MS might not be in the memory anymore.

Consequently, in the training phase, we choose a short timeout for taking a snapshot after seeing
the second CSP message since finding a MS is more important than maintaining the usability of an
application. In the normal mode, we only intercept the control flow to extract the MS and do not
take snapshots. If there has been a network connection from which we were not able to extract the
MS, we need to compute the missing path. In that case, we manually switch back the DroidKez
prototype to training phase and try to compute the missing path.

To evaluate the impact of taking snapshots in the training phase on the time of the message
processing, we measured the time difference between the key negotiation and the time when the
corresponding MS is validated for two cases. In the first case a snapshot is taken when a key is

3During a TLS connection the parties can renegotiate the parameters. Since we never saw this during our testing, we do not consider
this for our approach.

102 5 Information Retrieval

Server AV 4.
7 %
7 2

&
X e & /’Q.
Net Monitor 5/ A & 3 »
® 5 Q
Z ™ .8 O <
5 c Y & £ o &,
Interception = & & & TS N\&,
(@) @) g & %Q ©
S 2 2
g X 22 08 =
. . b R])
Application ~ S o8 A—';‘, s
L ® e
[S99
~ O N S a,
Key Manager \4 g gi g
(]
Successfull MS wait = e
Extraction
No MS Extracted timeout

Figure 5.4: The timing of messages during a TLS connection with all components in two distinct
cases. In the first case the control flow of receiving a data message is intercepted and
the key is sent to the key manager. In the second case the master secret was not
extracted successfully (the first message is not delivered) and after a timeout the key
manager takes a snapshot of the application [TAR1S]

received late (0.5 to 3.5 s after the negotiation). In the second case, we do not take a snapshot. In
both cases, we measured the time after computing the paths for each application. In average we
measured a time of 0.7 s to receive the MS in normal mode from the interception framework after
the network monitor detected the second CSP message (case 2). By taking a snapshot 0.5 to 3.5 s
after the negotiation, we measured a time of 1.11 s (case 1). Thus, the process of taking snapshots
earlier delays the validation process by about 0.41 s. The impact on the timing is bigger when
more snapshots are taken, e.g., when several snapshots are taken in the case of a missing path.

Requirements

The only requirement for deploying DroidKez on a target device is to have root permissions and to
be able to disable SELinux, which is required by Frida. No additional adjustments to the Android
runtime system are required, simplifying deployment on devices for which full device-specific source
code is not available.

5.3.2 Implementation

There are two different ways to locate the MS in main memory: scan the memory address space
sequentially or follow pointers in data structures that lead to it. The first option can be either
signature-based or by testing all byte sequences as potential keys to decrypt one TLS record [Kle06].
Unfortunately, the MS of TLS connections does not have a defined format such as PKCS12, which
is easy to identify. Thus, the signature-based approach does not work. However, the brute force
based approach works when the MS is stored as a byte sequence in the main memory of an
application. On the other hand, the derivation of session keys and the decryption of a message
is computationally intensive and slows down the whole approach, which makes it infeasible for
runtime key extraction.

The second option interprets the data structures in main memory and follows pointers to the data
structure holding the MS. It requires: (1) a start point from where on we can follow pointers (2)
knowledge about where the pointers are stored in each data structure (how to get the knowledge is
discussed in the next section). A start point can be defined in two ways. The first one is a global
symbol or variable in a binary. Such a variable (if it exists) is usually not exported in a binary
file. Especially, crypto libraries try to encapsulate and hide internal functions and data structures
to prevent data leakage. The second option for a start point are the pointers to the arguments

5.3 DroidKex: Data structure-based Key Extraction from Mobile Phones 103

Stack

L Struct ssl_st struct ssl3_state_st

version
40 int num

36 void *buf

3 32

S| SSL_read SSL* ssl A - Loy char server_random[48]

® ssl3_state_st* s3 - ;

- char client_random[48]

=

(5}

Tg 8 intcount v L

a : - . -

e 4 void *buf Sl TS session struct ssl_session_st
read |0 int fd 8

stack pointer] master_key_length

aster_key

{ "stack_offset": 32, "path": [64, 8] }

Figure 5.5: The contents on the stack when the read function is called by the SSL_read of
OpenSSL function. The path from the starting point — the SSL pointer (black dot) to
the MS (black square) — is marked bold and the corresponding. The computed path
and the offset on the stack are noted on the bottom left side [TAR18]

passed to a function. They can be extracted from the stack by intercepting the function call, which
requires that the function symbols are exported and knowledge of the utilized functions.

DroidKex implements the second approach of control flow interception since the run-time cost for
the key extraction does not depend on the size of the main memory of the application. Instead, it
depends on the amount of memory access operations for following a path and the overhead added
to intercept a function call. To do so, DroidKez intercepts all network related function calls for
sending and receiving data and checks based on the file descriptor whether they belong to a TCP
connection on port 443. We assume that an entry point leading to the MS is in a certain range
above the stack pointer of the intercepted function. We could also directly intercept crypto library
functions, but we aim at finding a generic approach that also works if the function names are not
known or not available, e.g., when the symbols are stripped from a binary.

To improve the performance, we reduce the number of considered elements on the stack by saving
the position of a good start point in relation to the stack pointer. Additionally, we minimize the
extraction attempts by intercepting only I/O calls of connections of which we do not yet have
a valid MS. In Figure 5.5, we depict the stack layout at the point in time when the SSI_read
function of OpenSSL/BoringSSL calls the read function. To extract the MS, we need to know
the position of the pointer to the SSL struct in relation to the stack pointer and the path from the
SSL struct to the MS.

Path Computation

For computing a path in the training phase, we use a data-centric approach, which means that we
only consider the contents in main memory and not the instructions of a program [Dol+11]. We
define a path as a list of integers. Each integer defines the offset in a data structure where the
pointer to the next data structure is stored. The last element in the list stores the offset to MS.
(for examples see Figures 5.5 and 5.6). The most important steps to compute a path are: taking
a snapshot of the process holding the information, identifying the position of the MS, computing
the path based on the snapshot and finally validate the data path. These steps are discussed in
more detail in this section.

104 5 Information Retrieval

PRFileDesc

Master Secret

PRFileDesc

light gray: { "path": [32, 8,48,48,16] }
dark gray: { "path": [32, 8,48,128,16] }

Figure 5.6: The path from the PRFileDesc struct to the MS in the memory of the Firefox applica-
tion that uses the libnspr library [TAR18]

Prerequisite

In order to compute a path to a MS, three components are required. The first one is a snapshot of
the application while the MS is in the memory. The second one is a starting point for a path. For
this purpose DroidKex uses the values on the stack of each send and receive functions handling
the corresponding networking connection. The third one is the location of the MS (endpoint). To
find a MS in a snapshot, we use the brute-force approach of TLSKez [Tau+16].

Data Structure Layout

DroidKexr aims at extracting the MS of applications using either the OpenSSL/BoringSSL or
libnspr crypto library. In both cases, a pointer to a data structure containing the cryptographic
key parameters of a connection must be passed by the application to the functions that handle
the encryption of payloads. For OpenSSL/BoringSSL the struct is called SSL and for libnspr
PRFileDesc (see Figure 5.5 and 5.6). The path from the SSL struct to the MS is always the
same. The path to the MS from a PRFileDesc struct (see Figure 5.6) is not the same since it
uses a global array where all the cryptographic key material is stored. Thus, one element in the
path is always different but within a defined range (the size of the array). Since these libraries are
the most common options for Android applications, we only consider these two different types of
paths for DroidKezx.

Linking Information

While an application is running, it can start several TLS connections. Consequently, we need to
link a snapshot with the stack of the corresponding function call and the information from the
network monitor. Additionally, the content on the stack of multiple function calls belonging to
the same connection must be grouped. To do so, we use the file descriptor from the argument
of the monitored network functions to resolve the corresponding TCP connection by looking up
the source and destination IP address & port. By having this information, we can combine the
information extracted by the network monitor (first data record, CR) with the information of
the function call (content on the stack) by matching source and destination IP address & port.
If we would intercept functions that do not have a file descriptor (e.g., the SSL_read function
of BoringSSL), the task of linking a function call to a network connection has to be established
differently.

5.3 DroidKex:

Data structure-based Key Extraction from Mobile Phones

105

8,256,96,16,40
8,256,96,12,40

8,256,96,48,40

,256,96,16,40]
,256,96,12,40]
,256,96,36,40]

8,-1,96,16,40
8,-1,96,12,40

8,-1,96,48,40

8,256,-1,16,40
8,256,-1,12,40

8,256,-1,48,40

8,256,96,-1,40]
8,256,96,-1,40]

8,256,96,-1,40]

8,256,96,16,-1
8,256,96,12,-1

8,256,96,48,-1

[10]
[10]
[8,-1,96,36,40] [8,256,-1,36,40]
[1]
l 10]

[
[
[8,256,96,-1,40]
[
[

[1
[1
[8,256,96,36,-1]
[]
[]

8,296,96,48,40
256,96,12,40]

,296,96,48,40]
1 96,12,40]

8,-1,96,48,40
[256,-1,12,40]

8,296,-1,48,40
[256,96,-1,40]

8,296,96,-1,40]
[256,96,12,-1]

[]
[]
[8,256,96,36,40]
[1
[] 8,296,96,48,-1
[

- [-1
- [-1
- [-1
— [-1,256,96,48,40]
- [-1
- [-1

Figure 5.7: Path expansion: the left side shows sample paths extracted from Mozilla Firefox; the
right side shows the expanded paths; the rectangle highlights the selected path [TAR18]

Path Computation

After having a snapshot together with the start and end point of a path in the memory, we can
start computing paths in it. To calculate possible paths, we perform a depth search from start
pointers (contents on the stack) to the MS. To do so, we dereference the first n bytes above the
address where the pointer pointed to and test whether each pointer points m bytes before the MS,
i.e., to a struct containing it. If it does not, we recursively continue searching by dereferencing
again the first n bytes of the next structure and test if one of them points before the master secret.
We continue that search until the path is longer than a defined value i (1) or the path reaches an
address that has been visited before (2). If we found a path that ends m bytes before the master
secret, we store that path and continue searching.

The values n, m and i have to be adapted to the assumed size of the data structures. By choosing
them too small, the correct path cannot be found. By choosing them too big, the depth search
takes longer, and many false positives are found, i.e., when we search across the borders of a
data structure and continue searching in the data structure mapped above the dereferenced one.
The value stack_size is the amount of data above the stack pointer that is assumed to contain
a pointer to the first data structure of the path. The worst case complexity of the approach is
O (stack__size*n'). However, most of the data values on the stack and in the data structures cannot
be dereferenced, which removes possible paths and lowers the search time.

To improve the speed, we store for each address in memory that we visit the computed paths.
Thus, if an address is reached again, we do not need to compute the path again and can take it
from the cache. This approach also helps to mitigate getting stuck in loops, i.e., caused by pointers
to the same data structure or lists.

Data Path Selection

The outcome of the depth search is that we usually have several paths for each snapshot and we
have to decide which of them to choose*. The selection is implemented as a heuristic based iterative
approach: first, we run the application with a set of paths (in the initial phase the set is empty,
which means that we take a snapshot for each TLS connection). If we did not extract the MS
of all TLS connections, we compute the paths out of the corresponding snapshots and select two
paths that work for most of the snapshots we took. If two paths have the same coverage, we take
the shorter path first. If both paths have the same size, we select one arbitrarily. Then, we repeat
step one to check if the selected paths are enough to decrypt all connections of an application
within a time frame or if more paths are required or if the path does not provide working MS. We
iteratively repeat the two steps in the training phase until we can decrypt all connections of an
application within a time frame. If we did not see any TLS connections during the run-time, we
start the application again.

If a path did not extract any MS within a certain amount of rounds, we remove it from the set of
paths. In each iteration, we remove paths that did not successfully extract a MS in the last four
rounds and add it to a blacklist so that it is not selected in the future. Not working path can be
caused for example when data structures are mapped closely together, which produces paths that

4We cannot take all paths and remove not working paths because too many possible paths slow down the extraction of the key and
the normal operation of an application.

106 5 Information Retrieval

20
17 16
2 15 - | 13 —|
o
2 ig B =
£ 104 = 9
: Il
<
£ s 5 - [|
2
101
o-—.J—I—I—I—I—I—I : n -
0 20 40 60 80 100 120 140 160

Snapshot Size

Figure 5.8: Number of applications with the same memory size [TAR18]

are only valid in that special case or when pointers on the stack point to ephemeral data structures
that are used only during initialization. We progress with that approach (repeat step 1 and 2)
until we can find a MS for each connection of an application and all paths were able to extract at
least one MS.

Mozilla Firefox

The approach of finding a path by counting exact occurrences only works in the case of OpenSSL
and BoringSSL paths, i.e., when the offsets in the data structures are always the same. In the case
of Mozilla Firefox, the paths are different since they contain one offset that is different for each
path (the array). Thus, this approach of finding exactly the same path does not work directly.
To use it, we need to adapt it by searching a path that is the same except for one element. For
example, the outcome of the path computation of four snapshots are the paths shown in Figure 5.7
on the left side.

To find a generic path that extracts all secrets of Firefox, we have to define a path that can handle
the array (see Figure 5.6). To achieve that, we have to solve two problems: First, we have to find
a group of paths that have only one different entry at the same position, i.e., the position of the
array. Second, we have to identify at which position in the array the key of a certain connection
is stored to extract from main memory.

To address the first problem, we expand all computed paths by inserting a variable (-1) at each
position (see Figure 5.7). Afterward, we use the approach from above and choose the path that
is the same in all four cases (here: [8,256,96,-1,40]). To address the second problem, we
implement a simplistic approach that iterates over all elements in the array until the last element
stored in the array is 0 or the index grows beyond a defined size. Then, the key manager has to
identify the correct MS out of the extracted values.

5.3.3 Evaluation and Discussion

In this section, we measure the overhead and effectiveness of the DroidKex prototype, and discuss
the limitations of our approach. To do so, we measure the time required for taking a snapshot
and extracting the MS with the approach of intercepting the control flow and follow paths to it.
In Section 5.3.3, we measure the size of common application snapshots, the time required to take
it and the time to find the MS of a TLS connection in it. In Section 5.3.3, we measure the time
required for computing the paths. In Section 5.3.3, we measure the time that is added to a network
function call that is required whenever the control is intercepted to extract the MS.

All measurements in this section are executed on a Nexus 5x with Android 6.0.1. For testing, we
chose a set of 86 applications from the top hundred free applications in the Google Play store that
initiated TLS connections after starting them without any interaction. In each round, we execute
the application for 90 s and take a snapshot 0.5 s after the key manager processes the message that
the TLS session is negotiated. We do not take a snapshot 3.5 s after the negotiation to maintain
usability of the application in the case when multiple snapshots are triggered.

5.3 DroidKex: Data structure-based Key Extraction from Mobile Phones

107

H=1350=22 °

eutammenseaifnenssonmithbnren O Ih AN

20 40 60 80 100 120 140
Size (MiB)

Figure 5.9: Time to take the snapshot of an

application in relation to its size.
Every dot represents one applica-
tion [TAR18]

300 u=15.08, 0=40.15 L)

: (X]

520 . E .
Y 200
ELS 4 E .
= P ° [

104 o L]

100 ° L]
4 L]
5 A ® ° ..

Figure 5.10:

L
L3
20 40 60 80 100

ol comoatitlhiesbalion’ ve..1° . B, °
1

20 140
Size (MiB)

Time to extract the key mate-
rial of a snapshot. Every dot
represents an application snap-
shot [TAR18]

Extraction from Snapshot

DroidKez takes a snapshot only of memory areas that are likely to contain the MS, e.g., the heap
and stack. To provide an estimation of the time for taking a snapshot and extracting the MS, we
run the steps of the training phase with 86 applications. To access the process memory, we stop
and resume the process execution using ptrace and access the memory using the mapped process
memory file in the proc file system. In Figure 5.8 we depict the histogram of the size of the snap-
shots for each application. Figure 5.9 shows the relation between the size of the snapshot and the
time required to take it; each dot represents one snapshot. Despite the outliers a linear correlation
can be asserted. The outliers can be caused by background activities or other applications that are
active while the snapshot is taken. Those activities could stall the process of taking a snapshot,
e.g., by consuming a large amount of CPU time. Additionally, it could be also possible that the
CPU is running with a low frequency to save battery.

Figure 5.10 depicts the time for finding the MS of a TLS connection in a snapshot. The time for
taking a snapshot and extracting the MS depends mainly on the size of the address space and the
position of the MS. Two facts cause the big variance in time for searching a MS: First, the MS
can be located in the beginning or at the end of a snapshot, and we stop when we have found it.
Second, the brute-force approach tests the entropy to enhance speed before actually decrypting the
first record with it since the key derivation and decryption is computational intensive [Tau+16].
Thus, the search is slower on snapshots with high entropies, e.g., when they contain compressed
images.

Based on these measurements, we can conclude that the approach of TLSKez that takes a snapshot
of the application memory and extract the MS of it is not feasible for permanently monitoring
applications that have multiple TLS connection at the same time, which is the case for most of
the modern Android applications. The time required for taking a snapshot and extracting the MS
is so high that application can not be used normally anymore if multiple connections are initiated
at the same time. Thus, an approach like the one of DroidKex with less overhead is required to
extract the MS of the main memory of applications.

Path Computation

To measure the performance of the path computation algorithm described in Section 5.3.2, we
compute the paths for the 86 applications and measure the number of iterations and the required
time until the algorithm converges. For these measurements, we use a struct size of n = 700 and
use a limit of i = 3 iterations for the depth search.

Figure 5.11 depicts the time that is required to compute the path of a snapshot compared to the
number of pointers from the stack collected from the network function calls of a connection to the
MS. The figure shows that the computation time depends on the number of possible start points
to the path computing algorithm.

108 5 Information Retrieval

100 A °
804 K=9.64, 0=14.12 bt °
e q o °
o o °
G 60 .® ?. e o
.g Co ° S0 ®e Coo
F 407 . e® | ®o o o
e o 9,0 .‘. °
20
' » LJ e z* ® $ [)
04 % o
100 200 300 400 500 600

Stack Size (amount of extracted pointers from stack)

Figure 5.11: Time to compute the data path compared to the size of distinct dereference-able
pointer on the stack collected from I/O calls [TAR18]

1000

Time(ms)
w
S
3

#Applications

6 8 10 12 14 no extraction one four forty-nine array
Iterations Testcase

Figure 5.12: Number of iterations required to Figure 5.13: Time for a single TLS https GET
compute paths [TAR18] request with a different number of
extraction paths [TAR18]

Figure 5.12 shows the number of iterations that are required to compute the path for an application.
The number of iterations defines the number of times an application was started, and during the
runtime, a connection was found where the control flow interception did not provide a valid MS.
In most of the cases, we were able to find valid offsets with one to four iterations.

During our evaluation, we extracted 12 distinct paths. Since about 95% of the applications only use
one or two paths, they can be used for most applications on the same device without recomputing
them.

Control Flow Interception

The overhead added by intercepting the control flow is caused by two components: the overhead of
the Frida interception mechanism and the time required to extract the MS. To measure the impact
of Frida, we call one native C4++ function from Java that is similar to calling BoringSSL functions.
Without Frida intercepting the control flow, the average time for doing 10,000 JNI calls 100 times
is 31.58 ms + 1.94 ms. After activating the tracing of the same function, it takes 90.56 ms + 2.04
ms, which is an overhead of 5,9 us per function call.

In order to measure the time for the interception overhead added to regular TLS connections, we
implemented a sample application that initiates 100 TLS connections to the same server with and
without intercepting the network function calls. Without extracting the MS, the average time for
an https GET request is 70.9 ms £ 17.0 ms).

To measure the impact of different paths on the extraction process, we determine the optimal path
of our sample application and modify it so that one, four and forty-nine offsets on the stack are
used as a starting point®. Additionally, we tested one path that includes an array with an assumed
size of 128 entries. For each possibility, we measure the average time for an https GET request
(see Figure 5.13).

3The path computation found forty-nine possible entries on the stack that could lead to the MS. However, only one was working for
data extraction.

5.3 DroidKex: Data structure-based Key Extraction from Mobile Phones 109

The reasons for the longer run-time of a connection are: intercepting too many function calls that
are not required, performance of the extraction routine and probing of none-required values on
the stack and in arrays. Intercepting all network function calls of an application causes a high
overhead since these functions are also used for other I/O operations such as file access. If we
would only intercept one crypto library function, the overhead would be less since we would not
need to search for an entry point on the stack and take the argument of the corresponding function,
e.g., SSL_read. However, with this approach, we would also lose the link to a certain network
connection since we could not link a function call to a network connection based on its IP address.
Additionally, this approach is less generic and requires knowing all TLS related function calls.
Nevertheless, the impact of the extraction routine decreases for long living connections, since after
successfully acquiring the MS we stop the extraction of the corresponding connection.

We also assume that it is possible to improve the overhead by optimizing the proof-of-concept
extraction routine, e.g., by implementing the extraction routine in a low-level language and not in
JavaScript, which is required by Frida.

The performance of using a path that includes an array can be improved by implementing an
approach that finds a path to the index value so that not all values of the array have to be tested.

Discussion and Limitations

By using Frida for control flow interception, we are aware that we can only analyze applications
that work when Frida is attached, e.g., applications that do not prevent the use of debuggers.
Because of that, we can only trace applications that have one process since Frida has problems
with tracing multiple processes.

The approach of DroidKex would be infeasible when the access to memory holding the key material
is not granted to the key manager such as using a secure keystore instead of the main memory.
Such a key store can be implemented for example using the TrustZone of the ARM architecture.
However, to the best of our knowledge, no TrustZone application provides such a service. Another
approach is that parts of the TLS protocol implementation are integrated into the Linux kernel
to improve the performance [Edgl5]. In that case, the kernel has more control over the keys and
could protect them from malicious user-space applications. However, then the kernel could also
easily log all SSL keys without the help of an application.

110 5 Information Retrieval

5.4 VMI-based SSH Honeypot

The approaches TLSKex and DroidKez do not require full semantic knowledge about the monitored
application. The approach of TLSKex only requires that the TLS session key is stored in a 48-
byte array while DroidKex requires that the application uses OpenSSL/BoringSSL or libnspr. Due
to this assumption, DroidKezr has less analysis overhead compared to TLSKex. However, since
DroidKez intercepts all network related system calls and attempts to extract the session keys for
each call, the overhead is still noticeable. This is especially a problem for honeypots because an
adversary may test whether he is connected to a monitored environment to evade analysis [Bal+10;
Che+08]. Hence, the research question is how to minimize the overhead of VMI-based monitoring
so that attackers do not notice that they are connected to a monitored system. To achieve that, we
discuss in this section two approaches that demonstrate how the selection of monitored functions
affects the overhead for monitoring. In this context, we compare the overhead for monitoring
system calls with the monitoring of function calls of the SSH daemon to trace the interactions of
an adversary with an SSH honeypot. The following discussion is based on [STR17] and [STR18].

A honeypot should achieve three goals. First of all, a honeypot should provide in-depth tracing
of an attack, either to get and analyze new attacks or to detect attackers in a running network
and to protect other systems by eliminating this threat [Hoo09; JS11]. Second, it should store the
activities and modified /download files of an attack for further analysis. The data should be forensic
sound, and an advisory should not be able to disable the tracing or manipulate the logs. Third, the
monitoring should be stealthy to analyze attacks that aim to evade the analysis [Bal+10]. Hence,
the tracing overhead of a honeypot should be as low as possible to be stealthy against timing
attacks.

VMI-based monitoring is particularly suited to build honeypots since it allows monitoring all
activities within in a honeypot. In addition, due to the virtualization layer, the monitoring is not
directly accessible for an attacker. Finally, VMI-based tracing is stealthier than a typical in-guest
agent, which could be detected by an adversary having full control over the system.

The primary goals of our honeypot is to log all system activities of an attacker including the
standard features of a common SSH service:

e Username and password
e Interactive session
e File transfer

e Port forwarding

5.4.1 Threat Model and Assumptions

For our honeypot implementation we make several assumptions about the behavior of an adversary.
First, we only trace the activities of an attacker when he has access to a system. We do not
cover attacks that target that SSH service, e.g., with buffer overflows. Second, we assume that
adversaries do not run timing based VMI detection. In the future we need to discuss whether the
timing behavior of intercepted functions can be used to detect VMI based monitoring especially
in cloud environments where several virtual machine coexist on the same physical server. Third,
we assume that we have full control over the executed SSH binary and know that layout of all
required data structures, which is required to extract information from main memory.

We assume that an attacker does not disable or circumvent the VMI-based tracing by exploiting
the strong semantic gap problem. For example, even by replacing the SSH daemon with a different
one, the tracing would not work anymore, when the addresses of the required functions cannot be
resolved anymore. We do not consider attacks that actively put crafted data to main memory that
subverts VMI based memory analysis.

5.4 VMlI-based SSH Honeypot 111

K Internet \ / Lab - Local \

Figure 5.14: The Sarracenia system architecture including the network connection to redirect net-
work traffic from a cloud virtual machine to get real attacks from the internet [STR18]

We also assume that an attacker does not bypass or attack the isolation provided by the virtual-
ization in order to attack monitoring.

5.4.2 System Design

For the honeypots described in [STR17] and [STR18] we use a similar overall architecture that
leverages the CloudPhylactor architecture. The design is depicted in Figure 5.14. We mainly
use two virtual machines: a sandbox and a monitoring virtual machine. For the honeypot we
use a regular Linux virtual machine where the attacker can connect to and a monitoring virtual
machine that monitors it. We have full control over this virtual machine and have the semantic
knowledge to bridge the semantic gap to interpret the required data structures in main memory of
at least the SSH daemon and the kernel. In a monitoring virtual machine, we install the tracing
tools (Libumtrace and the SSH monitoring application) required to monitor the honeypot sandbox
virtual machine. The permissions of the monitoring virtual machine on the sandbox are defined
by the Xen security modules.

Since we can not deploy the honeypot in a public cloud infrastructure, we redirect the SSH traffic
from virtual machines in publicly available cloud data centers to get real attacks.

5.4.3 Implementation

In the following sections we describe the implementation of the system call based (Sarracenia o)
and the function call based (Sarracenia) honeypot. We discuss how the selection of monitored
functions affects the overhead for monitoring. The first approach is Sarracenia a. It uses the
parameters of the read and write system call to reconstruct SSH sessions. The second approach
is Sarracenia. It uses the parameters of function calls of the SSH daemon to reconstruct SSH
sessions.

System-call based: Sarracenia o

In [STR17] we use a system call based approach to monitor the activities of an attacker in the SSH
honeypot, which leverages the fact that the SSH daemon reads and writes the unencrypted payload
of an SSH session from/to a file descriptor. We intercept the system calls read and write and
parse and save their parameters. This procedure allows us to reconstruct an SSH session, including
user credentials, transferred files, and even port forwarding data. However, the read and write
system call are also used for other activities. Thus, the challenge of this approach is to implement
filters that extract the required information from the stream of data.

To reconstruct the contents of an SSH session from other read and write system calls, we need to

112 5 Information Retrieval

Name 1 2 3 4 5 needed | intercepted
clone v 396 400
Ssys_exit_group v 1 450
System exec v 364 366
Call write v 2134 2213
seek v 0 0
close v 5644 6221
kex_derive_keys v 1 1
Function auth_password v 1 1
sshbuf_get_u8 v v 129 129
ssh_packet_send2_wrapped v v 59 59
channel_connect_to_port v 0 0

Table 5.5: Function and system calls that are traced for (1) detection of new SSH connections, (2)
extraction of user credentials, source IP address and port, session keys of an authenti-
cation process, (3) reconstruction of SSH session, i.e., entered commands, (4) data of
TCP port forwarding, and (5) modification of the file system [STR18§]

filter out the significant ones. The Sarracenia o honeypot does it based on the PID of the SSH
daemon handling the connection, the system call type (read or write) and the file descriptor. To
obtain these values for a SSH session, we leverage the fact that at the beginning of a connection
the contents of the /etc/motd file are sent to the client. Hence, we can filter the system calls by
searching for the contents of the file. By identifying a write system call that has the contents of this
file as an argument, we can retrieve the PID of the corresponding process and the file descriptor
number used for the session. Afterward, we can filter the system calls based on this PID and the
file descriptor number to reconstruct the data that is shown in the SSH terminal.

The advantage of this approach is that it is generic and does not require detailed knowledge
about the implementation, e.g., the function names. The disadvantage of this approach is that
many system calls are intercepted that are not required because they do not contain any relevant
information about the state of an SSH connection or do not even belong to an SSH daemon.
Thus, the whole approach was not very efficient because every intercepted system call degrades
the performances of the monitored system.

Function-call based: Sarracenia

To improve the ratio of intercepted functions and function calls that contain relevant informa-
tion Sarracenia [STR18] uses a different approach, which intercepts the control flow of the hon-
eypot system only at positions, where we can assure that the required data is available. For
example, it intercepts the function that is validating the user credentials to extract the username
and password used by an attacker. Additionally, it intercepts the functions that are used to de-
/encrypt the data transmitted during an SSH session. The following OpenSSH SSH functions
are intercepted: kex_derive_keys, sshbuf_get_u8, ssh_packet_send2_wrapped,
channel_connect_to_port. The parameters of these function calls are used to derive dif-
ferent information.

Tracing the functions of the SSH daemon allows reconstructing the activities of an SSH session,
but it does not provide information about the files that are changed during an interactive session
or when files are downloaded from other servers. To trace those activities, we monitor system calls
that interact on files. The intercepted function and system calls and the amount of how often they
are used during a regular login process are depicted in Table 5.5. The clone call is used to detect
new connections since each SSH session is handled by a new child process. The sys_exit_group
call is used to clean the cache of open files, which is used to derive the path from a file descriptor,
and to stop tracing a running session. From the exec call, we extract the executed commands

5.4 VMlI-based SSH Honeypot 113

during an SSH session. The write call is used to get the data that should be written to open files
of a process. Whenever a process invokes close, the file descriptor is removed from the cache.

This is just one possible configuration of functions that allows reconstructing SSH sessions and
information can be extracted from different calls. For example, the path from a file descriptor
passed to a write operation can be either extracted from a preceding open call or by deriving
the information from the kernel data structures handling file descriptors. In the first case, two
different system calls must be traced. In the second case, only one call must be traced, which
lowers the tracing overhead. However, it requires the parsing of kernel data structures and semantic
knowledge about the layout of the data structure.

Sarracenia uses the two modes of operation of Libvmtrace for the tracing:

e Process-bound: Breakpoints on system calls are attached and detached dynamically based
on the process that is running. To do this, we monitor write access to the CR3 register that
holds the addresses of the DTB. Whenever a new process is dispatched, the content of this
register is updated with the DTB of the next process. Thus, we can control that a specific
process is monitored. This requires a VM context switch at every process change in order
to check whether breakpoints should be set or not. Additionally, the breakpoints must be
written to memory or removed with the original instruction if the new process should be
monitored or not.

o System-wide: All breakpoints are set from the beginning when the monitoring is started
which means that all processes are traced. This does not require a context switch for every
process change. However, it results in more context switches for system calls at run-time.

5.4.4 Evaluation

In [STR18] we measured the performance of the function-call based approach. The implementation
is optimized for performance and thus can be used as a general example for the impact of VMI-
based tracing on the analyzed system.

Performance

We measured the performance impact on the analyzed system, i.e., the honeypot, with different
tracing mechanisms in three use cases [STR18]:

A. Simple command: Execute 1s -alh.
B. I/O intensive test: Download a file with 2MB size using wget.
C. I/0O and CPU intensive test: Compile the Jansson library®.

We used four different tracing mechanisms that extract a different amount of information and thus
have different effects on performance:

1 Without tracing: The baseline to measure the execution without tracing

2 System-wide tracing - SSH functionalities: sys_clone, sys_exit_group, and all
OpenSSH functions are monitored. This does not monitor any change to the file system.

3 Process-bound tracing (whitelist) - with file change detection: all system calls
of OpenSSH functions are monitored. Only the file-system related system calls of wget,
curl, sftp and scp.

4 System-wide tracing - with file change detection: all system calls and OpenSSH
functions (see Table 5.5) are monitored.

Shttps://github.com/akheron/jansson, Accessed 2019-05-13

https://github.com/akheron/jansson

114 5 Information Retrieval

IO Without Tracing - Baseline (1) [Z A Process-bound Tracing (Whitelist) - With File Change Detection (3)
System-wide Tracing - SSH Functionalities (2) E=— System-wide Tracing - With File Change Detection (4)

1 1 !
0.14 12
%, 0.6 / 0
012
10
0.5
0.10
0.4 8
’E 0.08 'G ?
= = =
0.3 6 '
0.06 L)
0.04 0.2 4 l\
0.02 % 0.1 == 2
[1
HE ' '
0.00 A 1 L 1
0.01 0.01 0.14 0. 0.0 X 0.02 0.63 0.1 0 227 3.36 12. 5.
(+0.0s) (+0.0s) (+0.13s) (+0.01s) (+0.0s) (+0.01s) (+0.62s) (+0.09s) (+0.0s) (+1.09s) (+9.93s) (+3.16s)
(+0.0%) (+0.0%) (+1300.0%) (+100.0%) (+0.0%) (+100.0%) (+6200.0%) (+900.0%) (+0.0%) (+48.02%) (+437.44%)(+139.21%)
Simple Command (A) 1/0 Intensive test (B) 1/0 and CPU Intensive Test (C)
0.12 10
%, = /.
0.10 0'4
8
0.08 0.3
6
= = 0.2 =
’ 4
0.0 1
0.1 ¥ " \
002 \ ! \ 2
000 ﬂsﬁﬁ 0.0 Lo 0

0.01 0.02 0.11 0.02 : 0.01 0.09 0.43 0.09 2.27 3.3 9.4 4.8
(+0.0s) (+0.01s) (+0.1s) (+0.01s) (+0.0s) (+0.08s) (+0.42s) (+0.08s) (+0.0s) (+1.03s) (+7.13s) (+2.53s)
(+0.0%) (+100.0%) (+1000.0%) (+100.0%) (+0.0%) (+800.0%) (+4200.0%) (+800.0%) (+0.0%) (+45.37%) (+314.1%) (+111.45%)

Simple Command (A) 1/0 Intensive test (B) 1/0 and CPU Intensive Test (C)

Figure 5.15: Overhead of client’s execution time based on different scenario and configuration where
(1) is without monitoring as the baseline and (2) to (4) are monitored by Sarracenia
using pure INT 3 (first row) and altp2m (second row) [STR18]

Additionally, we measured the impact of the breakpoint implementation (pure INT 3 and altp2m)
on the performance. Figure 5.15 depicts the results of the measurements. Based on the timings it
can be said that the tracing system calls has a more significant impact on the system performance
compared to tracing function calls, which is mainly because the traced functions of the SSH are
called less frequent than the system calls.

Efficiency

To measure the effectiveness of the system call based approach, we counted all intercepted calls
during a login process and calculated the ratio of system calls that are required to extract the
user credentials. In [STR17] we computed that 1.95% and 8.99% of the intercepted read and
write system calls are required. Thus, the effectiveness of this approach is low and has a high
performance impact.

By intercepting only the userspace ssh function auth_password, we achieve higher effectiveness
since we make sure that this function is only intercepted when a new password is validated. Thus,
the overhead of the function based approach is lower. In Table 5.5 the effectiveness of this approach
is measured in the use case C and tracing in configuration 4. The SSH session of the measurement
took 10.377 s. Based on these values it can be concluded that function based tracing is more
effective since only required functions are traced. However, in some cases when it is necessary,

5.4 VMlI-based SSH Honeypot 115

system calls must be traced even, so the effectiveness is lower since many processes of the system
use them. The process bound tracing did not improve the performance (see Figure 5.15).

A detailed discussion about the attacks we got from the internet is done in [STR18].

Stealthiness

There are at least three approaches to detect whether a system is a honeypot or being monitored:
operational analysis (execute arbitrary commands), system level fingerprinting (timing bench-
mark), detecting monitoring agent. We tested these approaches against Sarracenia and Cowrie.
Since Sarracenia provides a fully fledged Linux system an attacker can execute and install any
required tools. Thus, he can not see any difference to a nor- mal system in contrast to Cowrie
which only provides some limited amount of commands. As discussed in Section 3.6.2 the overhead
added to a single monitored function is about 0.27 ms, which can be used to detect the presence
of the introspection. This becomes noticeable when the same (monitored) system call is invoked
multiple times and the timing of an untraced system is known. Reducing the impact of VMI-based
tracing mechanisms is an ongoing research topic and reducing it to improve the stealthiness must
be addressed in future work. Nevertheless, to the best of our knowledge when virtualization, e.g.,
in cloud computing, is used it is common that functions are delayed since several virtual machines
share the same resources. Sarracenia does not require any agent inside the honeypot. Thus, an
adversary is not able to directly detect any monitoring component. Hence, we can consider our
approach as more stealthy than other SSH honeypot approaches that use an in-guest agent in the
honeypot to record the traces of an attacker.

Limitations

One limitation of both approaches is that attackers can perform many operations and flood the
tracing. For example, creating a file with random content and deleting it afterward multiple times
creates a considerable amount of overhead and requires much storage.

116 5 Information Retrieval

5.5 Summary

A B
control 3 Sarracenia
flow [STR18] [STR17] 2
trigger /J | [DroidKex] |
mechanism
TLSkex
network | 1

content based format based

V
extraction method

Figure 5.16: Information Extraction Approaches

In this chapter, we discussed the challenges of data extraction from volatile main memory, namely
the performance, the semantic gap problem and the timing that triggers the information retrieval
based on the example of extracting TLS session keys from the main memory of applications and
the SSH honeypot. Figure 5.16 classifies the methods presented in this chapter based on their
information retrieval method and the trigger mechanism that is used to start the extraction.

TLSKex extracts the master secret of TLS connections from applications in a virtual machine.
The first contribution of TLSKex is to trigger the key extraction routine, TLSKex monitors the
network traffic of a virtual machine and takes a snapshot of the corresponding application when
it initiates a new TLS connection. The second contribution of TLSKez is to use a content-based
approach to identify the TLS master secret in memory. To do so, it decrypts an encrypted TLS
message with every byte sequence in the snapshot of an application and checks whether it was
successful. Hence, this approach does not need to know the data structure format that holds the
session key. Even so, we optimized the brute-force approach by minimizing the search space we
could not apply it to applications that initiate many new connections at the same time and have a
large address space because of the low performance. The low performance is mainly caused by the
large amount of memory access operations and the high run-time of the decryption routine that
tests whether a byte sequence is a valid key.

The main contribution of DroidKex is to increase the performance of the extraction routine by
deriving and using the format of the data structures holding the key. This approach is required
when the exact data structure layout is not given. To trigger the key extraction it monitors the
control flow of the application. Whenever an application is calling a network related send or receive
function, DroidKex follows a pre-computed path of pointers from the stack of the corresponding
function call to the master secret. The second contribution of DroidKex is the way how such a path
is obtained in the training phase using several snapshots of the same application. This approach
minimizes the amount of necessary memory access operations and calls of the decryption routine.
In contrast to TLSKex, we were able to run DroidKex with Android applications that have large
address space. Hence, the performance overhead of DroidKex reached a level where it is feasible
to monitor regular Android applications.

The main contribution of the SSH honeypot Sarracenia is the discussion on how to minimize the
performance overhead required for monitoring SSH sessions using VMI. To achieve that, Sarrace-
nia uses the semantic knowledge of the data structures of the OpenSSH daemon derived from
the debugging information to extract and rebuild SSH sessions by placing breakpoints on function
calls. Hence, the information extraction routine of Sarracenia is format based. In the early version
Sarracenia o we use the data of the read and write system call, to achieve the same function-
ality. It reconstructs SSH sessions based on the strings passed to the system calls. Afterward,

5.5 Summary 117

the parameters are filtered and parsed to reconstruct the session information. With these two
approaches, we compared the overhead for monitoring system calls and function calls to retrieve
information. It turned out that in this case monitoring function calls is more efficient and less
resource intensive. Additionally, we measured the difference in overhead for process-bound tracing
compared to system-wide tracing of function calls. We also conclude, that VMI-based tracing is
suited for honeypots and can provide better stealthiness than traditional in-guest agents. However,
the performance overhead of the monitoring is still noticeable by attackers, and thus the VMI-based
monitoring is not entirely stealthy. So in the future, the performance aspects of VMI-based tracing
needs to be discussed to conceal the monitoring overhead from adversaries.

VIRTUAL MACHINE INTROSPECTION
IN SIEM SYSTEMS

In the previous chapter we have discussed two applications areas where virtual machine introspec-
tion can be used in practice. The TLSKex and DroidKex architecture can be used for example to
analyze the encrypted communication of malware. The main application area of the Sarracenia
honeypot is to record the activities of attackers. The focus of the discussion was on how to improve
the performance of the information extraction routine.

However, in certain systems the overhead generated by VMI-based mechanisms might still be
too high, or detailed tracing of user interaction might not be permitted due to data protection
regulations, e.g., in SIEM systems. Thus, such detailed tracing should be only used if necessary,
e.g., in case of suspicious behavior. In contrast to common intrusion detection systems that often
monitor only a single system, SIEM systems aim to protect large scale production environments
of companies including desktop computers, servers, and virtual machines [KS06]. The primary
goal of SIEM systems is to increase the overall security level of an infrastructure. To achieve that,
SIEM systems collect different kind of log data of an infrastructure in a central storage. This data
is then used to detect attacks or anomalies that could be a potential security incident [BMZ14;
Mil+11]. Additionally, that data can be used to analyze past incidents.

A SIEM system can benefit from VMI and memory analysis because of the higher level of forensic
soundness and the isolation introduced by virtualization, which makes the data acquisition process
less vulnerable to attacks. Additionally, VMI can be used as an additional source of information to
detect inconsistencies between different sources that could be caused by malicious software. Thus,
VMI can be used for both use cases of SIEM systems: incident detection and forensic analysis.
The contribution of this chapter is a discussion on how to solve these the two research questions:
how can SIEM systems benefit from VMI-based tracing mechanisms even so some operations have
significant performance overhead? And how can the challenge of performance impacts be tackled
in SIEM systems?

First, in Section 6.1, we discuss related state-of-the-art approaches of security relevant VMI-based
applications. In Section 6.2, we describe the design of an architecture that uses VMI-based tracing
techniques in combination with other log files to detect security incidents in virtualized infrastruc-
tures. Section 6.4 shows how parts of the architecture can be implemented. Section 6.5 evaluates
the approach. Finally, Section 6.6 summarizes this chapter.

119

120 6 VMI in SIEM Systems

6.1 State of the Art

Various publications address applications of digital forensics and virtual machine introspection. In
the following section, we want to discuss the publications that are most related to our approaches.

One of the first VMI related publications by Garfinkel et al. [GR03], which was published in 2003,
already proposed to use VMI for intrusion detection systems. To detect incidents, they present
four different policy modules: a lie detector that compares the system state acquired by an in-guest
agent and by VMI, a integrity checker that compares the memory of a binary in memory with the
data stored in the ELF binary, a signature detector that scans the memory for known malware
signatures and finally a detector that checks the userspace process for the use of raw sockets.
Their approach checks periodically the state of the system but does not analyze the execution.
Additionally, the authors monitor the access to the memory location where the system call table
is stored. This allows them to be immediately informed when a rootkit attempts to modify this
section in memory. However, the authors to not monitor the execution of the analyzed system,
e.g., to trace system calls.

CRIMES [Raj+18] is a security framework for cloud infrastructures that aims to detect new attacks
and to minimize their harm. To lower the performance overhead caused by tracing, they execute a
virtual machine normally and buffer all in- and outputs such as disk writes and network packets.
After a certain time interval (epoch), they check the integrity of the system. If a potential incident
was detected forensic tools can be used to find the reason for it. In case of an incident the checkpoint
created before the last epoch can be replayed.

Cohen et al. [CBC11] introduce the GRR Rapid Response framework that supports monitoring
and live-forensics in enterprise networks. They use in-guest agents for the data acquisitions, which
must be installed on all clients. A central scalable entity collects, combines and processes the log
files. Bushouse et al. [BR18b] extend GRR by implementing agents for the forensics framework
GRR [GRR] that use VMI.

Agarwal et al. [Aga+18] proposes to compare network traces gained from a sensor on a host that
could be infected by malware and a dedicated trustworthy host that is only connected to the
network via the port mirroring interface. This approach is similar to the lie detector proposed
by Garfinkel et al. [GR03] and can be used to detect malware that actively hides communication.
Instead of VMI, he uses network traffic. Hence, they can not monitor the control flow within a
system, which is required to analyze incidents.

Borisaniya et al. [BP19] present an intrusion detection system for cloud environments using VMI-
based system call tracing with Nitro [PSE11]. However, they do not measure the overhead caused
by the monitoring and do not explain how to efficiently select system calls that reduce the tracing
overhead.

6.2 Threat Model and Assumptions 121

Intrusion Detection

Data Acquisition :

| Signature based |

| VMI |

}

Y

Storage

Y

A ly based
System and Ap- | R |

plication Logs

| Visual Analysis |

Re-configuration/

Commands Intrusion Analysis

| Memory Forensics |

| File System Analysis |

Response

| Visual Analysis |

Figure 6.1: The data flow and interactions in a SIEM system using VMI as an additional data
source

6.2 Threat Model and Assumptions

In this chapter we make the following assumptions. We assume that an adversary can compromise
a virtual machine and all components running in it. This is the most relevant attack vector
since virtual machines have often an exposed interface to the outside that could be exploited.
However, we do not cover attacks that target the hypervisor [PSL13; Rak+17], the CPU [Com18d;
Com18e; Van+18; Wei+18] or other parts of the infrastructure such as hardware components (e.g.,
switches) or software parts outside the monitored virtual machine (e.g., the cloud management
software) [Som+11]. Additionally, we do not address attacks that target the VMI interpretation
routine.

6.3 System Design

In this section, we describe a generic architecture of a STEM system (based on two architectures
CloudIDEA [Fis+15] and DINGfest [Men+18]), which uses VMI-based tracing to augment the
standard log files.

The following components are required for accomplishing the goals of a SIEM system that uses VMI
for the data acquisition: data acquisition, intrusion detection, incident analysis, visual analysis,
reconfiguration, and a central data storage.

Data Acquisition

The data acquisition is responsible for collecting and sending system logging information of different
systems in a central data storage. Multiple data sources can be used for detecting and analyzing
incidents. Each of them has different properties that qualify it for specific use cases, and the data
sources can be combined to achieve better detection results. The most common data sources can
be classified into three categories based on their origin: in-guest agents, infrastructure-based logs,
VMI/Hypervisor-based. To compare them, we use the following criteria

e Level of detail o Costs

e Forensic soundness e Stealthiness

122 6 VMI in SIEM Systems

The following properties describe the costs:

e Monitoring cost (CPU, Memory) e Overhead to network communication
e Overhead to production system perfor- * Storage/Amount of logs
mance e Implementation cost

The first category are logs acquired by in-guest agents, e.g., logs from applications or the operating
system. The forensic soundness of these traces can be considered low as they can be compromised
by an attacker who has full control over the system. In order to improve the reliability of these
logs, they should be sent to an external entity so that an attacker cannot modify past traces
after the system is subverted. The implementation and performance cost of this approach are low
because it can be usually easily implemented since many security-relevant applications already
provide a logging mechanism. The cost of storing the data can be high because a lot of data can be
generated. The stealthiness of this approach is low since an attacker with full control can identify
logging mechanisms.

Logs generated by the network infrastructure, e.g., from switches and firewalls, can provide detailed
information, depending on the capabilities of the device. Powerful network devices can be used,
for example, to capture the network traffic or to provide meta-data concerning connections. Those
logs can be considered as trustworthy as long as an attacker does not have control over it. The
cost of storing the information can be high, depending on which data should be stored. The cost
for implementation and overhead depends on the devices that are used. The stealthiness of this
approach is high since an attacker can hardly find out what data the infrastructure is logging.

The third category covers traces that are generated by leveraging the wvirtualization layer. The
traces can be divided in meta-information from virtual machines (CPU, network and I/O load)
and VMI-based tracing and memory analysis. The forensic soundness of this data depends on
the security of the separation between a guest virtual machine and the hypervisor, which can be
compromised either by hardware or software flaw. The stealthiness of these tracing mechanisms
varies and depends on the implementation and the required data. By just extracting meta in-
formation, the stealthiness is high. VMI-based methods can be considered as medium or highly
stealthy because they usually affect the performance of the monitored system [Tuz+18].

Besides the measurements in Section 3.6, Rakotondravony et al. [RKR17] analyzed the costs of
Libuvmtrace-based tracing. They showed that the overhead for tracing system calls depends on two
factors: the frequency, i.e., the number of system calls in a specific time and the time it takes
to intercept one system call. The frequency of each system call depends on the application that
invokes them. The time for intercepting a system call depends on the complexity of the extraction
routine of the passed arguments. The tracing affects the performance of the monitored system since
for each intercepted system call it must be paused and the computation time increases. However,
VMI-based monitoring is not always expensive. The extraction of the process list can be considered
as light-weight analysis and does not cause a large performance overhead.

Intrusion Detection

Since attacks can occur at various locations, all logs of a system should be considered to detect
incidents. The detection can be done in several ways. However, due to the high amount of
different log files it is not possible for a human operator to read all of them. Thus, the detection
must be either automatic or visually prepared so that a human analyst can spot anomalies such
as high network load. One way to aggregate log files for human operators is to search for known
patterns/fingerprints of events that represent high-level interaction with a system, for example,
the login attempt of a user, which can be derived from hundreds of system calls executed during
the login process. Some automatic detection mechanisms are described in the next section. In any
case, a large amount of data must be processed to detect attacks or anomalies and the processing
needs to be fast enough to process all incoming events.

6.3 System Design 123

Incident Analysis

After a possible incident has been reported, a human analyst needs to analyze it and decide how
to proceed. In some situations, he needs to request more information, e.g., by taking a memory
snapshot of the affected system. Thus, there needs to be a way to send commands from the forensic
workstation to the VMI data acquisition. The process of investigating an incident can be supported
with forensic tools and visual analysis, but in any case, a human analyst needs to use them and
interpret the results. Thus, an analysis can be time intensive and is not always in real-time even
so it should be as fast as possible to prevent further damage.

Visual Analysis

The visual analysis in SIEM has two main tasks: detect anomalies and investigate potential attacks.
Since not all attacks can be detected by memory signatures or a set of pre-defined actions such as
system calls, it is essential that a human analyst can monitor a system with visual means to detect
anomalies that are not (yet) defined in rules. VMI-based tracing and system and applications
logs, in general, contain a high amount of information and most of it is usually not necessary to
the forensic analysis. Thus, the task of visual analysis is to provide all log entries in a way that
they can be linked together, filtered so that the required information, e.g., the executed commands
during an attack can be extracted.

Reconfiguration

As discussed earlier, it is often not possible, not required or allowed to activate all tracing com-
ponents. Hence, administrators, who use SIEM systems, need to configure which data acquisition
mechanisms are effective at run-time. In most of the cases, this is triggered by the intrusion
analysis. However, a human analyst might also want to enable more detailed tracing to analyze
suspicious behavior.

Central Data Storage

All gathered data should be collected at central storage so that events can be easily accessed and
processed. Since there is a high amount of different log entries, the storage service needs to be fast
and scalable. Additionally, it needs to have a strategy for deleting old logs regularly to free space
for more recent entries. Thus, a stream processing architecture such as Apache Kafka is feasible for
storing data and processing them for incident detection. However, the data needs to be formatted
in a way that supports automatic processing to detect incidents.

An essential aspect of the visualization and analysis is the ability to link events from different
sources and to search for specific patterns. Thus, the data store needs to provide these func-
tionalities. Apache Kafka cannot provide this since it only allows to query data from a specified
offset, but it does not allow filtering or query for specific strings. In this case, a database that
is optimized on indexing and querying data such as ElasticSearch is more appropriate. However,
such databases are slow at inserting data since they also index them to improve the speed for later
search operations.

124 6 VMI in SIEM Systems

6.4 Implementation

This section discusses aspects of the implementation of the system design of a STEM system that
uses VMI.

Data Acquisition

The access to virtual machines used by VMI can be granted by using the CloudPhylactor architec-
ture (see Section 4.4). For the VMI-based monitoring tools such as Libvmtrace, Drakvuf or others
can be used. For the use in a STEM system, those tools should provide an interface to reconfigure
the tracing mechanisms dynamically or to execute specific forensic operations, e.g., take a memory
snapshot.

System and application logs can be acquired and collected from different systems, for example, by
using traditional solutions such as syslog or with the ELK-stack!.

Reconfiguration Approaches

For the reconfiguration of VMI-based tracing mechanisms the CloudIDEA and DINGfest architec-
ture discuss two different approaches. The main idea of the CloudIDEA architecture is to have
a dedicated analysis environment where in case of incidents affected virtual machines can be mi-
grated. It is isolated from the production environment and has more CPU performance to run
in-depth analysis so that service level agreements with tenants can be met.

The focus of the DINGfest architecture is the interaction between the different components of a
SIEM system. It uses Kafka [KNR+11] as central storage for the logs and for sending commands
between the entities. In contrast to the CloudIDEA architecture, it does not have an isolated
analysis environment. However, it can dynamically re-configure the tracing in case of an incident
so that it provides in-depth traces that can be used for forensic reports by sending commands to
the acquisition if suspicious behavior is detected.

VMI-based Detection Mechanisms

Since VMI has performance drawbacks, it should only be used when it provides additional benefits
compared to traditional in-guest agents, which is the case when

e The operating system is compromised, e.g., by a rootkit that hides itself from in-guest agents.
e The malware can disable/compromise the in-guest agent or virus scanner.

e To preserve data/traces of attacks or malware that help to reconstruct the operations, e.g.,
by extracting the key from memory that was used to encrypt files on the hard disk.

In the following paragraphs, detection mechanisms are discussed that benefit most from VMI-based
tracing.

Signature Based

Signature-based approaches scan the contents in main memory for known malware signatures.
It can be implemented very efficiently since the virtual machine does not need to be paused for
accessing the contents in memory. Additionally, the VMI-based analysis can access the whole
memory of a virtual machine and malware is not able to hide at protected areas. For example, the
yarascan plug-in of volatility uses Yara signatures to search for malware signature in memory?.

]https ://www.elastic.co/elk-stack, Accessed 2019-06-19
2https://github.com/volatilityfoundation/volatility/wiki/Command-Reference-Mal#yarascan,
Accessed 2019-06-19

https://www.elastic.co/elk-stack
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference-Mal#yarascan

6.4 Implementation 125

Integrity Measurement

Bridging the semantic guest is a complex and costly task and requires knowledge about the mon-
itored applications. However, in-guest agents can be compromised by attackers that take over a
system. By combining both approaches, security can be improved, e.g., by doing security analysis
with an in-guest agent and check its integrity with VMI to make sure that it is still working as
intended and that an attacker did not turn off or manipulate the monitoring of the in-guest agent.

One way to check it is to read and compute a hash over the memory of the process that is
mapped read-only and executable, e.g., the text segment that contains all the CPU instructions
of a program. That is a very basic approach. However, it can detect changes to instructions that
differ from the known (valid) state. It does not work on self-modifying binaries or buffer-overflow
based attacks. Knowing the source code of the in-guest agent helps to define the valid state and
helps to implement more sophisticated tools that check the control flow of the application.

Another challenge of this approach is the access of swapped pages. They can be either ignored
under the assumption that when they are not loaded to memory they are also not used, or they
somehow need to be loaded to memory. We already presented a solution that injects page faults
to processes in Section 3.5.1. However, this approach introduces an additional overhead to the
monitored system.

Lie Detector

Garfinkel [GRO3] introduced the concept of a VMI-based lie detector. The idea of it is to compare
the system state, e.g., the process list or open network connections, from in-guest agents and
compare it with the results gained with VMI. If malware hides itself or a malicious process by
removing entries in the proc file system the in-guest agent does not see it [HW12]. However,
the VMI-based process list extraction that parses the data structures of the kernel can detect the
hidden process. By comparing the two process lists, the hidden process should be the difference.
One problem of this approach is that it is necessary to do the two measurements at the same time
so that always the same system state is measured to avoid false positives. Another approach to
circumvent that problem is to do more measurements and only generate an alert if the difference
is visible in a set of measurements.

This approach does not work with kernel module-based rootkits, which hide themselves by removing
their entry from the kernel data structure that stores the list of kernel modules. In that case, both,
the in-guest agent and the VMI-based approach would not work if they are only considering the
kernel data structure. One way to detect this rootkit is by dynamically reconstructing the system
state by monitoring system calls that modify it and compare it with the system state gathered via
VMI or the in-guest agent. In that case, if a kernel module is inserted but cannot be detected later
because it was removed from the list, the discrepancy can be used to detect malicious behavior.

This approach of cross-checking logs and events from different data sources can be extended for
various other use cases.

TLS and SSH Sessions Monitoring

As described in Chapter 5, it is possible to use VMI to monitor SSH sessions and to decrypt TLS
communication channels, e.g., to analyze decrypted malware communication or to monitor the
activities of an attacker in an SSH session. Both approaches can be very useful in SIEM systems
and implemented in such a way that the monitoring costs can be reduced to a level where it is
possible to use them production environments.

System Call Monitoring

System call tracing is an often discussed mechanism to detect malicious software [Din+08; PSE11].
The drawback of this approach, especially by using VMI-based tracing mechanisms, is that the
monitoring overhead is too high for SIEM systems. One way to reduce the overhead is to trace

126 6 VMI in SIEM Systems

Sy
Controler » | Executor » | Malware
DB < libvmtrace Linux Kernel
Samples System call
Firewall NetAnalyzer v, Network)
| |/
— —__ —__
OpenNebula Cloud Infrastructure

Figure 6.2: Architecture for running and analyzing malware samples in a cloud environment [TK17]

only a subset of all system calls. The selection of system calls should consider their tracing cost,
i.e., how often they are called, and how well they can be used to detect malicious behavior. For
example, a good system call to trace could be init_module, which is used to load kernel modules.
This system call is not used very often (low tracing cost) and might be used to load by malware
to load rootkit kernel modules.

In [TK17] and [TR16] we propose a system design for dynamic malware analysis. It leverages
the CloudPhylactor to start a virtual machine for a malware sample and monitors it executing
using VMI-based system call tracing (see Figure 6.2). After running the malware samples in this
architecture, we train a machine learning-based classifier that aims to detect malicious behavior
based on systems calls. For the feature selection of this classifier, we discuss how to find a trade-off
between detection accuracy and tracing overhead.

6.5 Evaluation 127

6.5 Evaluation

The evaluation of a fully fledged SIEM system is complicated and out of the scope of this thesis.
Thus, we only want to evaluate how VMI can contribute to a SIEM system.

Attack Surface

One important aspect of introducing a new component to a SIEM system is that it does not
introduce a new attack surface. By using VMI to monitor the execution of a VM, the only
interaction an attacker has with the analysis systems is the contents in memory. By placing
crafted data in memory, an attacker could subvert the interpretation routine to inject instructions
to the monitoring machine. If the permissions are configured in such a way that each MVM has
only access to one other PVM, an attacker can not cause harm to other virtual machines running
on the same node. This attack scenario assumes that the attacker has permissions to the memory
regions that are analyzed by VMI, which is often only parts of the kernel space. Thus, we can
consider that the attacker already entirely took over the system.

Lie Detector

We have tested the lie detector implementation with an adapted version of the Linux kernel module
rootkit available at [HW12]. It hooks the file system operations of the proc file system to remove
the process data structures of dynamically configured processes. Additionally, it removes itself
from the list of kernel modules.

By using VMI, it is possible to detect hidden processes, since the Linux Kernel still maintains the
data structures. In-guest agents that use the proc file system to build the process list cannot
detect the hidden process anymore. Thus, the discrepancy between the results of the in-guest
agent and the VMI-based analysis can be used to raise an alarm for a potential incident.

The second method of removing the module from the module list makes the rootkit also invisible
for VMI-based approach that parse the kernel data structures. However, the volatility plug-in that
searches hidden kernel modules can spot it. It uses a heuristic based approach and searches for the
signatures of kernel modules in memory instead of traversing the list of kernel modules. Thus, this
approach is slower, but it can detect the rootkit. By using this approach of searching for hidden
kernel modules, the lie detector approach can be used to detect the discrepancy between the view
of the in-guest agent and the output of volatility.

128 6 VMI in SIEM Systems

6.6 Summary

In this chapter, we discussed how virtual machine introspection can be used in STEM systems. The
main problem of using VMI-based tracing mechanisms in STEM systems, is the performance. To
tackle this problem we present two solutions. The CloudIDEA architecture distinguishes between
light-weight and heavy-weight tracing. In normal mode, the virtual machines are monitored using
a light-weight mechanism to detect incidents. Only in case of a potential incident, heavy-weight
tracing is activated, and the potentially affected virtual machine is migrated to an isolated analysis
environment with more resources. The DINGfest architecture uses a similar approach and provides
analysts means to activate and configure on demand the appropriate tracing mechanism.

Besides, we discussed VMI-based monitoring techniques that are particularly suitable for intrusion
detection. The key aspect here is to leverage the untampered view on the system state. It can be
used to build signature-based malware scanning in main memory and to measure the code integrity,
for example, to monitor in-guest agents. Lie detectors are another approach, which compares the
in-guest view on the system with the system view obtained with VMI.

CONCLUSIONS

This thesis tackles problems of digital forensics on main memory in production environments: the
lack of tools for VMI analysis; technical problems of the data acquisition process; fast informa-
tion extraction; and the adaption of VMI-based methods to different application areas of digital
forensics.

For addressing the problem of missing tool support, this thesis summarizes the requirements of
virtual machine introspection and presents the Libumitrace framework that can be used for multi-
ple main memory forensics related purposes and supports dynamic re-configuration at run-time.
Additionally, we present the implementation and evaluate its performance.

For data acquisition, this thesis shows how the main memory of mobile devices and virtual machines
in cloud environments can be accessed. For mobile devices, we improve the practicability of
cold boot attacks and show how to perform memory acquisition from the secure world of the
TrustZone. For cloud environments, we present an architecture that enables cloud customers
to perform virtual machine introspection on their production virtual machines and allows live
migration of the monitored system in addition.

For fast information extraction, this thesis evaluates different strategies for efficiently extracting
TLS sessions keys from the address space of applications. To improve the performance, we propose
a mechanism that derives a path that follows the pointers in data structures from the stack of an
application to the master secret of TLS connection. With that approach we achieve a monitoring
overhead that is feasible for extracting TLS session keys from common Android applications at
run-time.

For SIEM systems, we show that VMI-based tracing can be used to augment the common data
acquisition process with additional information. One important aspect of using VMI-based tracing
in SIEM systems of production environments is to maintain low performance overhead. To achieve
that, we propose to use light-weight monitoring mechanisms to detect incidents and heavy-weight
monitoring mechanisms to analyze incidents.

7.1 Contributions

VMI Architecture There are only a few VMI-based tools that can be used to trace virtual ma-
chines. However, those tools are often complicated to use or outdated and cannot be used with
currently available virtualization solutions. Our contribution concerning this problem is that we
discuss the design and implementation of our Libvmirace framework, which is the basis for TLSKez,

129

130 7 Conclusions

DroidKez, Sarracenia and the DING/fest architecture in this thesis. By using Libuvmtrace for these
applications, we show that our framework is feasible for different use cases and platforms.

Data Acquisition In this thesis, we analyze how cold boot attacks and the ARM TrustZone can
be used for data acquisition. Previous cold boot attacks typically use a fully-fledged Linux kernel
to access the remaining contents in memory after a restart. However, this approach overwrites
the data structures of the prior running system. To tackle this problem, we present the design
and implementation of a minimal operating system for accessing the data that minimizes the
modifications in the memory of the analyzed system. The retrieved data is transferred via the
serial interface to a forensic workstation where it gets analyzed. With that approach, we ensure
that only very little data is overwritten by the minimal operating system and that we can retain
more data for the analysis.

Cold boot attacks cannot be used for live analysis of a running system because they require to
restart the system. For that purpose, we port the interface of LibVMI to the secure world of the
ARM TrustZone. With that approach, we can analyze the system state of the normal world from
the secure world at run-time. By providing the same interface as LibVMI, developers can port
already available VMI-applications to mobile devices.

The contribution of the CloudPhylactor architecture is the concept of using dedicated virtual ma-
chines for running VMI-based analysis on production virtual machines. The separation into these
two categories has the advantage of minimizing the attack vector against VMI-based applications
and makes it feasible for cloud environments where regular users do not have access to the most
privileged domain. Hence, the CloudPhylactor architecture enables cloud tenants to perform VMI-
based analysis on their own virtual machines.

The TwinPorter architecture extends the CloudPhylactor architecture to monitor virtual machines
that are live migrated during their run-time. It ensures that both the monitoring and the monitored
virtual machine are migrated in parallel to the same cloud node. To keep the downtime of the
monitored virtual machine low and to ensure that the monitored system is never running without
monitoring, we extend the pre-copy migration mechanism of Xen.

Information Retrieval To tackle the problem of efficient information retrieval, we discuss two
real-world use cases. The first one is the extraction of the cryptographic key material from the
address space of applications to decrypt their TLS communication. We point out that the ex-
traction mechanism must be fast so that the normal behavior of an application is not disturbed
and executed at the right time when the required information is in memory. The contribution of
the TLSKex architecture is to use a brute-force based approach to extract the cryptographic key
material. To speed up the process TLSKex minimizes the search space in advance by applying
multiple heuristics that do not require any semantic knowledge about the application.

The contribution of the DroidKex architecture is to optimize the approach of TLSKex by directly
accessing the master secret in memory using semantic knowledge about the data structures obtained
from snapshots in advance. To obtain the semantic knowledge, it presents an approach for deriving
the data structure layout from several snapshots in a training phase. To trigger the extraction
process, TLSKex monitors the network traffic and starts the extraction process when a TLS session
is established. DroidKex intercepts the control flow of applications and extracts the key when
network related send and receive functions are invoked.

The second example is the reconstruction of SSH sessions obtained by monitoring the SSH daemon
in a virtual machine using VMI. To minimize the overhead caused by the monitoring, we intercept
function calls and extract the session information using the semantic knowledge obtained from
the debugging information. The contribution of the Sarracenia honeypot is the implementation
of VMI-based honeypot that reconstructs the activities of a user in an SSH session. In order to
be stealthy to the attackers, we show how to optimize the performance of the tracing methods by
selecting the function calls where the information can be extracted with minimal overhead.

7.2 Future Work 131

VMI in SIEM Systems 1In this thesis, we discuss how VMI-based tracing mechanisms can be
used to improve the data acquisition in SIEM systems. The contribution of the SIEM system use
case is the discussion on how VMI-based tracing mechanisms can be used efficiently for the data
acquisition. We propose two approaches that tackle the problem of the overhead caused by the
tracing to use VMI for data acquisition. The contribution of the CloudIDEA architecture is to
address the performance problem by only using light-weight detection mechanisms in production
systems to detect anomalies. In the case of an incident, the corresponding virtual machine is
migrated to an isolated analysis environment with more resources. There, heavy-weight monitoring
can be used to gain more insights about an incident. The contribution of the DINGfest architecture
is that a forensic investigator can dynamically interact with VMI-based tracing and select tracing
methods that are appropriate for the current situation.

7.2 Future Work

The approaches presented in this thesis improve the security of systems. However, they can be also
misused to compromise the privacy and confidentially of user-related data in cloud environments
without the user’s knowledge. In particular, the stealthiness of the information extraction leaves
cloud tenants unaware of the ex-filtration of data. This raises two questions: Do cloud customers
have any means to detect VMI-based tracing on their machines and can VMI-based tracing tech-
niques be so stealthy that they can not be detected by malware or legitimate cloud users? Both
questions have to be addressed in the future.

Currently, there is no VMI-based tracing method that is completely stealthy, especially due to
the overhead that can be measured by attackers. Thus, future work should analyze how the
performance of VMI-based tracing can be further improved. One way to do that is to minimize the
performance impact caused by handling VMI events. This can for example achieved by integrating
the VMI-based analysis directly into the hypervisor so that no additional switches to the analyzing
VM (Dom0 or MVM) are required to handle VMI events at run-time.

Additionally, the ITZ library that ports the LibVMI interface to the secure world of the Trust-
Zone should be extended in the future. Omne step in this direction is to use the approach of
SPROBES [GVJ14] to support dynamic tracing of the normal world from the secure world to-
gether with the ITZ library.

Furthermore, the concept of monitoring a system from outside should be extended to other types of
virtualization. For example, Linux containers are a light-weight virtualization approach for devices
with limited resources or for cloud computing. Hence, this technique could be used to build new
honeypot systems that run in cloud or internet-of-things environments.

List of Abbreviations

AEAD Authenticated Encryption with Associated Data
BMA Bare Metal Application

CCS .. Change Cipher Spec

CH Client Hello

CR i Client Random

DAC Discretionary Access Control
DH Diffie-Hellman

DomO Domain 0

DITB Directory Table Base

ECDH Elliptic-curve Diffie-Hellman
ELF Executable and Linking Format
Flask Flux Advanced Security Kernel
TaaS Infrastructure-as-a-Service
MAC Mandatory Access Control
MCS Multi-category Security

MLS Multi-level Security

MVMo Monitoring Virtual Machine
PES Perfect Forward Secrecy

PREF Pseudo Random Function
PVM Production Virtual Machine
SH Server Hello

SIEM Security Information and Event Management
SR .. Server Random

TCI ... TwinCommunicationInterface
TLS Transport Layer Security

TR ... o TwinReceiver

TS . TwinSender

133

134 List of Abbreviations

VM . Virtual Machine
VMI Virtual Machine Introspection
VMM Virtual Machine Monitor

XSM ..o Xen Security Modules

List of Figures

1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10

Contributions of the thesis 3
LibVMI architecture with Xen, 18
TLS handshake 22
Generic design of a forensic framework oo o o L 34
Libvmtrace: design e e e e e e e e 36
Libuvmtrace: timing of breakpoint handling mechanism 38
Libumtrace: steps required for the injection of the read access 39
Libumtrace: steps required for injecting code into the context of a running process 40
Libumtrace: network connection monitoring overhead 48
Architecture for cold boot via serial interface 55
ARM secure boot procedure 56
ITZ-library design e e e 62
CloudPhylactor: design e 66
CloudPhylactor: VMI performance evaluation when PVM isidle 70
CloudPhylactor: evaluation of read-page operation 70
CloudPhylactor: VMI performance evaluation when PVM is under load 71
CloudPhylactor: VMI read-page performance evaluation when PVM is under load . 71
CloudPhylactor: VMI performance evaluation policy size 10,000 73
CloudPhylactor: VMI performance evaluation policy size 50,000 73
CloudPhylactor: VMI read-page performance evaluation policy size 10,000 73
CloudPhylactor: VMI read-page performance evaluation policy size 50,000 73
TwinPorter: migration approach 76
TwinPorter: migration steps o e e 78
TwinPorter: communication channels, 79
TLSKez: interaction of the components 93
TLSKez: monitoring actions during TLS session negotiation 94
DroidKez: interaction of the components 100
DroidKez: monitoring actions during TLS session negotiation 102
DroidKez: OpenSSL data structures 103
DroidKez: Firefox data structures. 104
DroidKex: path expansion 105
DroidKex: memory size of applications 106
DroidKex: snapshot time 107
DroidKez: extraction time L e 107

135

136 List of Figures
5.11 DroidKez: path computation time, 108
5.12 DroidKez: path computation iterations. 108
5.13 DroidKex: overhead per connection 108
5.14 Sarracenia: architecture 111
5.15 Sarracenia: overhead evaluation, 114
5.16 Comparison of information extraction approaches. 116
6.1 Data flow and interactions in SIEM systems 121
6.2 Cloud-based architecture for malware analysis. 126

List of Tables

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
9.5

Comparison of different virtual machine introspection frameworks 26
Libvmtrace: evaluation of system call tracing overhead in different use cases 45
Libumtrace: evaluation of CR3 monitoring overhead 46
Coldboot evaluation of remanence effect 59
Coldboot evaluation of volatility plug-ins 60
ITZ-library: code base size e 63
CloudPhylactor: evaluation policy compile time 72
TwinPorter: evaluation time required for the migration steps 81
TwinPorter: total time required for the migration and the corresponding downtime 82
Comparison of different TLS decryption solutions 86
Comparison of SSH honeypots 88
TLSKez: modified memory pages during negotiation 96
TLSKez: evaluation of key identification heuristics 97
Sarracenia: intercepted function calls of the SSH daemon 112

137

List of Listings

2.1 LibVMI functions 20
3.1 Libvmtrace: instructions used to trigger a page-fault 39
3.2 Libumtrace: implanted instructions required to inject a command 41

139

BIBLIOGRAPHY

[AAOG]

[AL13]

[Aga+18]

[ARMOY]

[Aza+14]

[BSM14]

[Bah+10]

[Bal+10]

Keith Adams and Ole Agesen. “A Comparison of Software and Hardware Techniques
for x86 Virtualization.” In: SIGARCH Comput. Archit. News 34.5 (Oct. 2006), pp. 2—
13. 18SN: 0163-5964. DOI: 10.1145/1168919.1168860. URL: http://doi.acm.
org/10.1145/1168919.1168860.

Ferrol Aderholdt and Stephen L. Scott. “The Secure Migration of a Virtual Machine
Introspection Intrusion Detection System.” In: IJASTED Multiconferences, (793) Ar-
tificial Intelligence and Applications / 794: Modelling, Identification and Control /
795: Parallel and Distributed Computing and Networks / 796: Software Engineering
/ 792: Web-based Fducation. Mar. 2013. DO1: 10.2316/P.2013.795-046.

Mayank Agarwal, Rami Puzis, Jawad Haj-Yahya, Polina Zilberman, and Yuval Elovici.
“Anti-forensic = Suspicious: Detection of Stealthy Malware that Hides Its Network
Traffic” In: IFIP International Conference on ICT Systems Security and Privacy
Protection. Springer. 2018, pp. 216-230.

ARM Limited. ARM Security Technology — Building a Secure System Using TrustZone
Technology. 2009. URL: http://infocenter.arm.com/help/topic/com.arm.
doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_
whitepaper.pdf.

Ahmed M. Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. “Hypervision Across Worlds: Real-time Kernel Pro-
tection from the ARM TrustZone Secure World.” In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. CCS '14. Scotts-
dale, Arizona, USA: ACM, 2014, pp. 90-102. 1SBN: 978-1-4503-2957-6. pDOIL: 10 .
1145/2660267.2660350. URL: http://doi.acm.org/10.1145/2660267.
2660350.

Hyun wook Baek, Abhinav Srivastava, and Jacobus Van der Merwe. “CloudVMI: Vir-
tual Machine Introspection as a Cloud Service.” In: 2014 IEEFE International Confer-
ence on Cloud Engineering. Mar. 2014, pp. 153-158. DO1: 10.1109/IC2E.2014.82.

Sina Bahram, Xuxian Jiang, Zhi Wang, Mike Grace, Jinku Li, Deepa Srinivasan,
Junghwan Rhee, and Dongyan Xu. “DKSM: Subverting Virtual Machine Introspection
for Fun and Profit.” In: 2010 29th IEEE Symposium on Reliable Distributed Systems.
Oct. 2010, pp. 82-91. DOI: 10.1109/SRDS.2010. 39.

Davide Balzarotti, Marco Cova, Christoph Karlberger, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. “Efficient Detection of Split Personalities in Malware.”
In: Proceedings of the Symposium on Networked Systems Design € Implementation.
2010.

141

https://doi.org/10.1145/1168919.1168860
http://doi.acm.org/10.1145/1168919.1168860
http://doi.acm.org/10.1145/1168919.1168860
https://doi.org/10.2316/P.2013.795-046
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://doi.org/10.1145/2660267.2660350
https://doi.org/10.1145/2660267.2660350
http://doi.acm.org/10.1145/2660267.2660350
http://doi.acm.org/10.1145/2660267.2660350
https://doi.org/10.1109/IC2E.2014.82
https://doi.org/10.1109/SRDS.2010.39

142

Bibliography

[Bar00]

[Bar+03]

[BVR13]

[BL73]

[Ben+13]

[Beulg]

[BMZ14]

[BP19)

[BY17]

[BR18a]

[BR18b)

[CJ06]

[Carl6)

Moshe Bar. The Linuz Signals Handling Model. https://www.linuxjournal .
com/article/3985, Accessed: 2019-07-03. 2000.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. “Xen and the Art of Virtualization.”
In: SIGOPS Oper. Syst. Rev. 37.5 (Oct. 2003), pp. 164-177. 1sSN: 0163-5980. DOL:
10.1145/1165389.945462. URL: http://doi.acm.org/10.1145/1165389.
945462.

Michael Beham, Marius Vlad, and Hans P. Reiser. “Intrusion detection and honey-
pots in nested virtualization environments.” In: 4/3rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). June 2013, pp. 1-6. DOI:
10.1109/DSN.2013.65753209.

D. Elliott Bell and Leonard J. LaPadula. Secure Computer Systems: Mathematical
Foundations. Tech. rep. MTR-2547, Vol. 1. Bedford, MA: MITRE Corp., 1973.

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
“SNARKs for C: Verifying Program Executions Succinctly and in Zero Knowledge.” In:
Advances in Cryptology — CRYPTO 2013. 2013, pp. 90-108. 1SBN: 978-3-642-40084-1.

Patrick Beuth. Wie Apple und Google der Polizei das Leben erschweren. http://
www . spiegel . de/netzwelt /gadgets/android-9-und-ios-12-wie-
apple-und-google-der-polizei-die—arbeit-erschweren-a-1233738.
html. Accessed: 2018-10-23. 2018.

Sandeep Bhatt, Pratyusa K. Manadhata, and Pratyusa K. Zomlot. “The Operational
Role of Security Information and Event Management Systems.” In: IEEE Security and
Privacy 12.5 (Sept. 2014), pp. 35-41. 1SsN: 1540-7993. por: 10.1109/MSP.2014.
103. URL: doi.ieeecomputersociety.org/10.1109/MSP.2014.103.

Bhavesh Borisaniya and Dhiren Patel. “Towards virtual machine introspection based
security framework for cloud.” In: Sadhana 44.2 (Jan. 2019), p. 34. 1sSN: 0973-7677.
DOI: 10.1007/s12046-018-1016~-6. URL: https://doi.org/10.1007/
s12046-018-1016-6.

Alexei Bulazel and Biilent Yener. “A Survey On Automated Dynamic Malware Analy-
sis Evasion and Counter-Evasion: PC, Mobile, and Web.” In: Proceedings of the 1st Re-
versing and Offensive-oriented Trends Symposium. ROOTS. Vienna, Austria: ACM,
2017, 2:1-2:21. 1SBN: 978-1-4503-5321-2. pOI: 10.1145/3150376.3150378. URL:
http://doi.acm.org/10.1145/3150376.3150378.

Micah Bushouse and Douglas Reeves. “Furnace: Self-service Tenant VMI for the
Cloud.” In: Research in Attacks, Intrusions, and Defenses. Springer International Pub-
lishing, 2018, pp. 647-669. 1SBN: 978-3-030-00470-5.

Micah Bushouse and Douglas Reeves. “Hyperagents: Migrating Host Agents to the
Hypervisor.” In: Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy. CODASPY ’18. Tempe, AZ, USA: ACM, 2018, pp. 212-223.
ISBN: 978-1-4503-5632-9. pOI: 10.1145/3176258.3176317. URL: http://doi.
acm.org/10.1145/3176258.3176317

Sean Campbell and Michael Jeronimo. “An introduction to virtualization.” In: Pub-
lished in “Applied Virtualization”, Intel (2006).

Radu Caragea. “TeLeScope - real-time peering into the depths of TLS traffic from
the hypervisor.” In: HITBSECCONF. 2016. URL: http://conference . hitb.
org/hitbsecconf20l6ams/wp-content /uploads/2015/11/D1T1-Radu-
Caragea-Peering-into-the-Depths-o0f-TLS-Traffic-in-Real-Time.
pdf.

https://www.linuxjournal.com/article/3985
https://www.linuxjournal.com/article/3985
https://doi.org/10.1145/1165389.945462
http://doi.acm.org/10.1145/1165389.945462
http://doi.acm.org/10.1145/1165389.945462
https://doi.org/10.1109/DSN.2013.6575329
http://www.spiegel.de/netzwelt/gadgets/android-9-und-ios-12-wie-apple-und-google-der-polizei-die-arbeit-erschweren-a-1233738.html
http://www.spiegel.de/netzwelt/gadgets/android-9-und-ios-12-wie-apple-und-google-der-polizei-die-arbeit-erschweren-a-1233738.html
http://www.spiegel.de/netzwelt/gadgets/android-9-und-ios-12-wie-apple-und-google-der-polizei-die-arbeit-erschweren-a-1233738.html
http://www.spiegel.de/netzwelt/gadgets/android-9-und-ios-12-wie-apple-und-google-der-polizei-die-arbeit-erschweren-a-1233738.html
https://doi.org/10.1109/MSP.2014.103
https://doi.org/10.1109/MSP.2014.103
doi.ieeecomputersociety.org/10.1109/MSP.2014.103
https://doi.org/10.1007/s12046-018-1016-6
https://doi.org/10.1007/s12046-018-1016-6
https://doi.org/10.1007/s12046-018-1016-6
https://doi.org/10.1145/3150376.3150378
http://doi.acm.org/10.1145/3150376.3150378
https://doi.org/10.1145/3176258.3176317
http://doi.acm.org/10.1145/3176258.3176317
http://doi.acm.org/10.1145/3176258.3176317
http://conference.hitb.org/hitbsecconf2016ams/wp-content/uploads/2015/11/D1T1-Radu-Caragea-Peering-into-the-Depths-of-TLS-Traffic-in-Real-Time.pdf
http://conference.hitb.org/hitbsecconf2016ams/wp-content/uploads/2015/11/D1T1-Radu-Caragea-Peering-into-the-Depths-of-TLS-Traffic-in-Real-Time.pdf
http://conference.hitb.org/hitbsecconf2016ams/wp-content/uploads/2015/11/D1T1-Radu-Caragea-Peering-into-the-Depths-of-TLS-Traffic-in-Real-Time.pdf
http://conference.hitb.org/hitbsecconf2016ams/wp-content/uploads/2015/11/D1T1-Radu-Caragea-Peering-into-the-Depths-of-TLS-Traffic-in-Real-Time.pdf

143

[CG04]

[Casl1]
[CER03]

[Cerl7]

[CXZ08]

[Che—+08]

[Cla+05]

[CNB17]

[Coh14]

[CBC11]

[Coj15)

[Cok08]

[Com+10]

[Com04]

[Com15a]

[Com15b]

Brian D. Carrier and Joe Grand. “A hardware-based memory acquisition procedure
for digital investigations.” In: Digital Investigation 1.1 (2004), pp. 50-60. ISSN: 1742-
2876. DOI: 10.1016/73.d1in.2003.12.001.

Eoghan Casey. Digital evidence and computer crime. Academic Press, 2011.

CERT. Multiple vulnerabilities in snort preprocessors. https://www.cert .org/
historical/advisories/CA-2003-13.cfm, Accessed: 2019-01-31. Apr. 2003.

US Cert. Alert (TA17-075A) HTTPS Interception Weakens TLS Security. https :
//www.us—cert.gov/ncas/alerts/TA17-075A, Accessed: 2019-01-31. 2017.

Kang Chen, Jun Xin, and Weimin Zheng. “Empirical Performance Evaluation of Mes-
sage Passing Programs Running in Virtual Machines.” In: Grid and Cooperative Com-
puting, 2008. GCC '08. Seventh International Conference on. Oct. 2008, pp. 620—627.
DOI: 10.1109/GCC.2008.98.

Xu Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario. “Towards an under-
standing of anti-virtualization and anti-debugging behavior in modern malware.” In:
IEEE International Conference on Dependable Systems and Networks With FTCS
and DCC (DSN). June 2008, pp. 177-186. DOI: 10.1109/DSN.2008.4630086.

Christopher Clark, Keir Fraser, Steven Hand, Jacob Hansen, Gorm Jacob, Eric Jul,
Christian Limpach, Tan Pratt, and Andrew Warfield. “Live migration of virtual ma-
chines.” In: Proceedings of the 2nd Symposium on Networked Systems Design & Im-
plementation. USENIX Association. 2005, pp. 273-286.

CNBC. Senator reveals that the FBI paid $900,000 to hack into San Bernardino
killer’s iPhone. https://www.cnbc.com/2017/05/05/dianne-feinstein-
reveals—fbi-paid-900000-to-hack-into-killers—iphone.html, Ac-
cessed: 2019-01-31. 2017.

Michael Cohen. “Rekall memory forensics framework.” In: Sans DFIR Summit Prague
(2014). URL: https://digital-forensics.sans.org/summit-archives/
dfirpragueld4/Rekall_Memory_Forensics_Michael_ Cohen.pdf.

Michael I. Cohen, D. Bilby, and Germano Caronni. “Distributed forensics and incident
response in the enterprise.” In: Digital Investigation 8 (2011). The Proceedings of the
Eleventh Annual DFRWS Conference, S101-S110. 18SN: 1742-2876. DOI1: 10.1016/
3.diin.2011.05.012. URL: http://www.sciencedirect.com/science/
article/pii/S1742287611000363.

Razvan Cojocaru. The Bitdefender virtual machine introspection library is now on
GitHub. https://blog.xenproject.org/2015/08/04/the-bitdefender—
virtual -machine-introspection-1library—-is-now-on-github/, Ac-
cessed: 2019-01-31. 2015.

George Coker. Xen Security Modules (XSM). http : / / pdub . net / proj /

usenix08boston/ xen_ drive/ resources/ xensummit / slides / coker —
xsm—summit-090706.pdf, Accessed: 2019-01-31. 2008.

DWARF Debugging Information Format Committee et al. “DWARF debugging in-
formation format, version 4.” In: Free Standards Group (2010).

Common Vulnerabilities and Exposures. CVE-2004-0536. Available from MITRE,
CVE-ID CVE-2004-0536. http://cve.mitre.org/cgi—-bin/cvename.cgi?
name=CVE-2004-0536, Accessed: 2019-01-31. 2004.

Common Vulnerabilities and Exposures. CVE-2015-2752. Available from MITRE,
CVE-ID CVE-2015-2752. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2015-2752, Accessed: 2019-01-31. 2015.

Common Vulnerabilities and Exposures. CVE-2015-4163. Available from MITRE,
CVE-ID CVE-2015-4163. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2015-4163, Accessed: 2019-01-31. 2015.

https://doi.org/10.1016/j.diin.2003.12.001
https://www.cert.org/historical/advisories/CA-2003-13.cfm
https://www.cert.org/historical/advisories/CA-2003-13.cfm
https://www.us-cert.gov/ncas/alerts/TA17-075A
https://www.us-cert.gov/ncas/alerts/TA17-075A
https://doi.org/10.1109/GCC.2008.98
https://doi.org/10.1109/DSN.2008.4630086
https://www.cnbc.com/2017/05/05/dianne-feinstein-reveals-fbi-paid-900000-to-hack-into-killers-iphone.html
https://www.cnbc.com/2017/05/05/dianne-feinstein-reveals-fbi-paid-900000-to-hack-into-killers-iphone.html
https://digital-forensics.sans.org/summit-archives/dfirprague14/Rekall_Memory_Forensics_Michael_Cohen.pdf
https://digital-forensics.sans.org/summit-archives/dfirprague14/Rekall_Memory_Forensics_Michael_Cohen.pdf
https://doi.org/10.1016/j.diin.2011.05.012
https://doi.org/10.1016/j.diin.2011.05.012
http://www.sciencedirect.com/science/article/pii/S1742287611000363
http://www.sciencedirect.com/science/article/pii/S1742287611000363
https://blog.xenproject.org/2015/08/04/the-bitdefender-virtual-machine-introspection-library-is-now-on-github/
https://blog.xenproject.org/2015/08/04/the-bitdefender-virtual-machine-introspection-library-is-now-on-github/
http://pdub.net/proj/usenix08boston/xen_drive/resources/xensummit/slides/coker-xsm-summit-090706.pdf
http://pdub.net/proj/usenix08boston/xen_drive/resources/xensummit/slides/coker-xsm-summit-090706.pdf
http://pdub.net/proj/usenix08boston/xen_drive/resources/xensummit/slides/coker-xsm-summit-090706.pdf
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0536
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0536
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4163
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4163

144

Bibliography

[Com15c]

[Com15d]

[Com18a]

[Com18b]

[Com18c]

[Com18d]

[Com18e]

[Com19]

[Com85]

[Cor06]

[Cox18]

[DA99)]

[Din+08]

[Dol+11]

[Dua+18]

Common Vulnerabilities and Exposures. CVE-2015-4163. Available from MITRE,
CVE-ID CVE-2015-4164. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2015-4164, Accessed: 2019-01-31. 2015.

Common Vulnerabilities and Exposures. CVE-2015-7812. Available from MITRE,
CVE-ID CVE-2004-0536. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2015-7812, Accessed: 2019-01-31. 2015.

Common Vulnerabilities and Exposures. CVE-2018-12126. Available from MITRE,
CVE-ID CVE-2018-12126. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=2018-12126, Accessed: 2019-01-31. 2018.

Common Vulnerabilities and Exposures. CVE-2018-12127. Available from MITRE,
CVE-ID CVE-2018-12127. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=2018-12127, Accessed: 2019-01-31. 2018.

Common Vulnerabilities and Exposures. CVE-2018-12130. Available from MITRE,
CVE-ID CVE-2018-12130. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2018-12130, Accessed: 2019-01-31. 2018.

Common Vulnerabilities and Exposures. CVE-2018-3665. Available from MITRE,
CVE-ID CVE-2018-3665. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2018-3665, Accessed: 2019-01-31. 2018.

Common Vulnerabilities and Exposures. CVE-2018-3690. Available from MITRE,
CVE-ID CVE-2018-3690. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2018-3690, Accessed: 2019-01-31. 2018.

Common Vulnerabilities and Exposures. CVE-2019-11091. Available from MITRE,
CVE-ID CVE-2019-11091. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=2019-11091, Accessed: 2019-01-31. 2019.

Computer Security Center (U.S.) Computer Security Requirements: Guidance for
Applying the Department of Defense Trusted Computer System FEvaluation Criteria
in Specific Environments. CSC-STD. DOD Computer Security Center, 1985. URL:
https://web.archive.org/web/20070715134110/http://csrc.nist.
gov:80/secpubs/rainbow/std004.txt.

Jose Antonio Coret. Kojoney - A Honeypot For The SSH Service. http://kojoney.
sourceforge.net/, Accessed: 2019-01-31. 2006.

Joseph Cox. Cops Told ‘Don’t Look’ at New iPhones to Avoid Face ID Lock-Out.
https://motherboard.vice.com/en_us/article/5984jqg/cops—-dont—
look-iphonex—face-id-unlock—-elcomsoft, Accessed: 2019-01-31. 2018.

Tim Dierks and Christopher Allen. The TLS Protocol Version 1.0. https://tools.
ietf.org/html/rfc2246. 1999.

Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. “Ether: Malware Analy-
sis via Hardware Virtualization Extensions.” In: Proceedings of the 15th ACM Confer-
ence on Computer and Communications Security (CCS). Alexandria, Virginia, USA:
ACM, 2008, pp. 51-62. 1SBN: 978-1-59593-810-7. DO1: 10.1145/1455770.1455779.

Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke Lee.
“Virtuoso: Narrowing the semantic gap in virtual machine introspection.” In: IFEE
Symposium on Security and Privacy (SP). 2011, pp. 297-312. 1SBN: 978-0-7695-4402-1.

Nuno O. Duarte, Sileshi Demesie Yalew, Nuno Santos, and Miguel Correia. “Lever-
aging ARM TrustZone and Verifiable Computing to Provide Auditable Mobile Func-
tions.” In: Proceedings of the 15th EAI International Conference on Mobile and Ubiqui-
tous Systems: Computing, Networking and Services. MobiQuitous '18. New York, NY,
USA: ACM, 2018, pp. 302-311. 1SBN: 978-1-4503-6093-7. DOI: 10.1145/3286978.
3287015. URL: http://doi.acm.org/10.1145/3286978.3287015.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4164
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4164
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7812
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7812
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2018-12126
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2018-12126
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2018-12127
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2018-12127
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-12130
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-12130
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3665
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3665
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3690
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3690
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2019-11091
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2019-11091
https://web.archive.org/web/20070715134110/http://csrc.nist.gov:80/secpubs/rainbow/std004.txt
https://web.archive.org/web/20070715134110/http://csrc.nist.gov:80/secpubs/rainbow/std004.txt
http://kojoney.sourceforge.net/
http://kojoney.sourceforge.net/
https://motherboard.vice.com/en_us/article/5984jq/cops-dont-look-iphonex-face-id-unlock-elcomsoft
https://motherboard.vice.com/en_us/article/5984jq/cops-dont-look-iphonex-face-id-unlock-elcomsoft
https://tools.ietf.org/html/rfc2246
https://tools.ietf.org/html/rfc2246
https://doi.org/10.1145/1455770.1455779
https://doi.org/10.1145/3286978.3287015
https://doi.org/10.1145/3286978.3287015
http://doi.acm.org/10.1145/3286978.3287015

145

[Dur+17]

[DS13)]

[Edgl5)

[Ett17]

[Eurl6)

[Fis+15]

[Fou]

[Frel2]

[FL13]

[FLH13]

[FZL14]

[Garl0]

[GRO3]

Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick Sullivan, Elie
Bursztein, Michael Bailey, J Alex Halderman, and Vern Paxson. “The Security Impact
of HTTPS Interception.” In: Network and Distributed Systems Symposium (NDSS).
2017.

Josiah Dykstra and Alan T Sherman. “Design and implementation of FROST: Digital
forensic tools for the OpenStack cloud computing platform.” In: Digital Investigation
10 (2013), S87-S95.

Jake Edge. TLS in the kernel. https://lwn.net/Articles/666509/, Accessed:
2019-01-31. 2015.

Wolfgang Ettlinger. Chainsaw of Custody: Manipulating forensic evidence the easy
way. https://www.sec—-consult.com/en/blog/2017/05/chainsaw—of—-
custody-manipulating/. 2017.

European Union Agency for Network and Information Security (ENISA). Ezplor-
ing Cloud Incidents. https : //www . enisa . europa . eu/publications/
exploring—-cloud-incidents/at_download/fullReport, Accessed: 2019-
01-31. 2016.

Andreas Fischer, Thomas Kittel, Bojan Kolosnjaji, Tamas K Lengyel, Waseem Man-
darawi, Hans P. Reiser, Benjamin Taubmann, Eva Weishdupl, Hermann de Meer,
Tilo Miller, and Mykola Protsenko. “CloudIDEA: A Malware Defense Architecture
for Cloud Data Centers.” In: Cloud and Trusted Computing. 2015. 1SBN: 978-3-319-
26148-5. DO1: 10.1007/978-3-319-26148-5_40.

The Volatility Foundation. Volatility framework. https : / / github . com /
volatilityfoundation, Accessed: 2019-01-31.

Freescale Semiconductor, Inc. . MX53 Multimedia Applications Processor Reference
Manual. https://cache.freescale.com/files/32bit/doc/ref_manual/
iMX53RM.pdf, Accessed: 2019-06-13. 2012.

Yangchun Fu and Zhigiang Lin. “EXTERIOR: Using a dual-VM Based External Shell
for guest-OS Introspection, Configuration, and Recovery.” In: SIGPLAN Not. 48.7
(Mar. 2013), pp. 97-110. 1sSN: 0362-1340. pDOI: 10.1145/2517326.2451534. URL:
http://doi.acm.org/10.1145/2517326.2451534.

Yangchun Fu, Zhigiang Lin, and Kevin W Hamlen. “Subverting system authentication
with context-aware, reactive virtual machine introspection.” In: Proceedings of the 29th
Annual Computer Security Applications Conference. ACM. 2013, pp. 229-238.

Yangchun Fu, Junyuan Zeng, and Zhigiang Lin. “HYPERSHELL: A Practical Hyper-
visor Layer Guest OS Shell for Automated In-VM Management.” In: USENIX Annual
Technical Conference. 2014, pp. 85-96.

Simson L. Garfinkel. “Digital forensics research: The next 10 years.” In: Digital Inves-
tigation 7 (2010), S64-S73. por: 10.1016/3.diin.2010.05.0009.

Tal Garfinkel and Mendel Rosenblum. “A Virtual Machine Introspection Based Ar-
chitecture for Intrusion Detection.” In: Proc. of the Network and Distributed Systems
Security Symposium (NDSS). 2003, pp. 191-206.

Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. “SPROBES: Enforcing Ker-
nel Code Integrity on the TrustZone Architecture.” In: CoRR abs/1410.7747 (2014).
arXiv: 1410.7747. URL: http://arxiv.org/abs/1410.7747.

Genode Labs. An Exploration of ARM TrustZone Technology. https://genode.
org/documentation/articles/trustzone, Accessed: 2019-01-31.

Robert P Goldberg. Architectural principles for virtual computer systems. Tech. rep.
Harvard Univ Cambridge MA Div of Engeneering and Applied Physics, 1973.

https://lwn.net/Articles/666509/
https://www.sec-consult.com/en/blog/2017/05/chainsaw-of-custody-manipulating/
https://www.sec-consult.com/en/blog/2017/05/chainsaw-of-custody-manipulating/
https://www.enisa.europa.eu/publications/exploring-cloud-incidents/at_download/fullReport
https://www.enisa.europa.eu/publications/exploring-cloud-incidents/at_download/fullReport
https://doi.org/10.1007/978-3-319-26148-5_40
https://github.com/volatilityfoundation
https://github.com/volatilityfoundation
https://cache.freescale.com/files/32bit/doc/ref_manual/iMX53RM.pdf
https://cache.freescale.com/files/32bit/doc/ref_manual/iMX53RM.pdf
https://doi.org/10.1145/2517326.2451534
http://doi.acm.org/10.1145/2517326.2451534
https://doi.org/10.1016/j.diin.2010.05.009
https://arxiv.org/abs/1410.7747
http://arxiv.org/abs/1410.7747
https://genode.org/documentation/articles/trustzone
https://genode.org/documentation/articles/trustzone

146

Bibliography

[GRR]

[GL16]

[Gue+17]

[Gue+18]

[Gur+15]

[Hal4-09]

[Han06]

[HLM15]

[Hen+14]

[HW12]

[HRO5)]

[Hom13]

[Hoo09]

[Hub+16]

GRR Project. GRR Rapid Response is an incident response framework focused on
remote live forensics. https://github.com/google/grr, Accessed: 2019-03-26.

Yufei Gu and Zhiqgiang Lin. “Derandomizing Kernel Address Space Layout for Memory
Introspection and Forensics.” In: Proceedings of the Sixth ACM Conference on Data
and Application Security and Privacy. CODASPY ’16. New Orleans, Louisiana, USA:
ACM, 2016, pp. 62—72. 1SBN: 978-1-4503-3935-3. DOI: 10.1145/2857705.2857707.
URL: http://doi.acm.org/10.1145/2857705.2857707.

Miguel Guerra, Miguel Correia, Benjamin Taubmann, and Hans P. Reiser. “ITZ: An
Introspection Library for ARM TrustZone.” In: Proceedings of INFORUM. 2017.

Miguel Guerra, Benjamin Taubmann, Hans P. Reiser, Sileshi Yalew, and Miguel Cor-
reia. “Introspection for ARM TrustZone with the ITZ Library.” In: IEEFE International
Conference on Software Quality, Reliability and Security (QRS). July 2018, pp. 123—
134. por: 10.1109/QRS.2018.00026.

Mordechai Guri, Yuri Poliak, Bracha Shapira, and Yuval Elovici. “JoKER: Trusted
Detection of Kernel Rootkits in Android Devices via JTAG Interface.” In: IEEE Trust-
com/BigDataSE/ISPA. Vol. 1. Aug. 2015, pp. 65-73. DOI: 10.1109/Trustcom.
2015.358.

J. Alex Halderman, Seth D Schoen, Nadia Heninger, William Clarkson, William Paul,
Joseph A Calandrino, Ariel J Feldman, Jacob Appelbaum, and Edward W Felten.
“Lest we remember: cold-boot attacks on encryption keys.” In: Communications of
the ACM 52.5 (2009), pp. 91-98.

Chad Hanson. “SELinux and MLS: Putting the pieces together.” In: Proceedings of
the 2nd Annual SELinux Symposium. 2006.

Yacine Hebbal, Sylvie Laniepce, and Jean-Marc Menaud. “Virtual Machine Introspec-
tion: Techniques and Applications.” In: 10th International Conference on Availability,
Reliability and Security. Aug. 2015, pp. 676-685. DOI: 10.1109/ARES.2015.43.

Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xunchao Hu, Xujiewen Wang,
Rundong Zhou, and Heng Yin. “Make It Work, Make It Right, Make It Fast: Building
a Platform-neutral Whole-system Dynamic Binary Analysis Platform.” In: Proceedings
of the 2014 International Symposium on Software Testing and Analysis. ISSTA 2014.
San Jose, CA, USA: ACM, 2014, pp. 248-258. 1SBN: 978-1-4503-2645-2. DOT: 10 .
1145/2610384.2610407. URL: http://doi.acm.org/10.1145/2610384.
2610407.

Arkadiusz Hiler and Michal Winiarski. Sample Rootkit for Linuz. https://github.
com/ivyl/rootkit, Accessed: 2019-01-31. 2012.

Thorsten Holz and Frederic Raynal. “Detecting honeypots and other suspicious envi-
ronments.” In: Information Assurance Workshop, 2005. IAW’05. Proceedings from the
Sixth Annual IEEE SMC. TEEE. 2005, pp. 29-36.

Josh Homan. How to Decrypt OpenSSL Sessions using Wireshark and SSL Session
Identifiers. http://www.cloudshield.com/blog/advanced-malware/how-
to-decrypt-openssl-sessions-using-wireshark—-and-ssl-session-
identifiers/, Accessed: 2015-10-02. 2013.

John Hoopes. Virtualization for security: including sandboxing, disaster recovery, high
availability, forensic analysis, and honeypotting. Syngress, 2009.

Manuel Huber, Benjamin Taubmann, Sascha Wessel, Hans P. Reiser, and Georg Sigl.
“A flexible framework for mobile device forensics based on cold boot attacks.” In:
EURASIP Journal on Information Security 1 (2016), p. 17. DOI: 10.1186/s13635—
016-0041-4.

https://github.com/google/grr
https://doi.org/10.1145/2857705.2857707
http://doi.acm.org/10.1145/2857705.2857707
https://doi.org/10.1109/QRS.2018.00026
https://doi.org/10.1109/Trustcom.2015.358
https://doi.org/10.1109/Trustcom.2015.358
https://doi.org/10.1109/ARES.2015.43
https://doi.org/10.1145/2610384.2610407
https://doi.org/10.1145/2610384.2610407
http://doi.acm.org/10.1145/2610384.2610407
http://doi.acm.org/10.1145/2610384.2610407
https://github.com/ivyl/rootkit
https://github.com/ivyl/rootkit
http://www.cloudshield.com/blog/advanced-malware/how-to-decrypt-openssl-sessions-using-wireshark-and-ssl-session-identifiers/
http://www.cloudshield.com/blog/advanced-malware/how-to-decrypt-openssl-sessions-using-wireshark-and-ssl-session-identifiers/
http://www.cloudshield.com/blog/advanced-malware/how-to-decrypt-openssl-sessions-using-wireshark-and-ssl-session-identifiers/
https://doi.org/10.1186/s13635-016-0041-4
https://doi.org/10.1186/s13635-016-0041-4

147

[Int17]

[Int]

[Ivel4]

[Jai+14]

[JHE14]

[JAA06]

[JS11]

[Jurl5]

[KI110]

[Ken18]

[KS06]

[KVK14]

[K1e06]

[KBC97]
[KNR+11]
[Law96]

[LW18]

Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual.
https://software.intel.com/sites/default/files/managed/39/c5/
325462-sdm-vol-1-2abcd-3abcd.pdf. 2017.

International Secure Systems Lab (iSecLab). Anubis. http://anubis.iseclab.
org/. The webservice is not available anymore.

Steven Iveson. Using ssldump to Decode/Decrypt SSL/TLS Packets. http : / /
packetpushers . net /using - ssldump — decode — ssltls — packets/, Ac-
cessed: 2019-01-31. 2014.

Bhushan Jain, Mirza Basim Baig, Dongli Zhang, Donald E Porter, and Radu Sion.
“Sok: Introspections on trust and the semantic gap.” In: Security and Privacy (SP),
2014 IEEE Symposium on. IEEE. 2014, pp. 605-620.

David Johnson, Mike Hibler, and Eric Eide. “Composable Multi-Level Debugging
with Stackdb.” In: Proceedings of the 10th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments. VEE ’14. Mar. 2014, pp. 213-225.

Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. “Ant-
farm: Tracking Processes in a Virtual Machine Environment.” In: Proceedings of the
Annual Conference on USENIX 06 Annual Technical Conference. ATEC ’06. Boston,
MA: USENIX Association, 2006, pp. 1-1. URL: http://dl.acm.org/citation.
cfm?id=1267359.1267360.

R.C. Joshi and Anjali Sardana. Honeypots: a new paradigm to information security.
CRC Press, 2011.

Jurriaan Bremer. Transparent MITM with Cuckoo Sandboxr. http : / / jbremer .
org/mitm/, Accessed: 2019-01-31. 2015.

Y. Kawakoya, M. Iwamura, and M. Itoh. “Memory behavior-based automatic malware
unpacking in stealth debugging environment.” In: 5th International Conference on
Malicious and Unwanted Software. Oct. 2010, pp. 39-46. DOI: 10.1109/MALWARE.
2010.5665794.

Troy Kensinger. Google and Android have your back by protecting your backups.
https://security.googleblog.com/2018/10/google—and-android—
have-your-back-by.html, Accessed: 2019-01-31. 2018.

Karen Kent and Murugiah Souppaya. Guide to Computer Security Log Management.
https://csrc.nist .gov/publications/detail/sp/800-92/final,
Accessed: 2019-07-03. National Institute of Standards and Technology (NIST), 2006.

Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. “Barecloud: Bare-metal
Analysis-based Evasive Malware Detection.” In: Proc. of the 23rd USENIX Conference
on Security Symposium. SEC’14. Berkeley, CA, USA: USENIX Association, 2014,
pp- 287-301. 1SBN: 978-1-931971-15-7.

Tobias Klein. All your private keys are belong to us — extracting RSA private keys
and certificates from process memory. http: / /www . trapkit . de / papers/
keyfinder_v1.0_20060205.pdf, Accessed: 2019-01-31. 2006.

Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing for Message
Authentication. https://tools.ietf.org/html/rfc2104. 1997.

Jay Kreps, Neha Narkhede, Jun Rao, et al. “Kafka: A distributed messaging system
for log processing.” In: Proceedings of the NetDB. 2011, pp. 1-7.

Kevin P. Lawton. “Bochs: A portable PC emulator for unix.” In: Linuz Journal 1996.29
(1996), p. 7.

Jaeho Lee and Dan S Wallach. “Removing Secrets from Android’s TLS.” In: Network
and Distributed Systems Security (NDSS). 2018.

https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
http://anubis.iseclab.org/
http://anubis.iseclab.org/
http://packetpushers.net/using-ssldump-decode-ssltls-packets/
http://packetpushers.net/using-ssldump-decode-ssltls-packets/
http://dl.acm.org/citation.cfm?id=1267359.1267360
http://dl.acm.org/citation.cfm?id=1267359.1267360
http://jbremer.org/mitm/
http://jbremer.org/mitm/
https://doi.org/10.1109/MALWARE.2010.5665794
https://doi.org/10.1109/MALWARE.2010.5665794
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html
https://csrc.nist.gov/publications/detail/sp/800-92/final
http://www.trapkit.de/papers/keyfinder_v1.0_20060205.pdf
http://www.trapkit.de/papers/keyfinder_v1.0_20060205.pdf
https://tools.ietf.org/html/rfc2104

148

Bibliography

[Leill]

[Lenl6]

[Len+14]

[Len+12]

[LL09]

[LK17]

[LRX09]

[Lin]

[LS01]

[Malg]
[Mar07]
[MC12]
[MJ93]
[McM16]

[Men+18]

[Mic]

[Mil411]

John Leitch. Process Hollowing. https://github.com/mOnOphl /Process—
Hollowing/raw/master/pdf/process—-hollowing.pdf, Accessed: 2019-03-
26. 2011.

Tamas K. Lengyel. Stealthy monitoring with Xen altp2m. https : / / blog .
xenproject . org /2016 /04 /13 / stealthy —monitoring - with - xen -
altp2m/, Accessed: 2019-01-31. 2016.

Tamas K. Lengyel, Steve Maresca, Bryan D. Payne, George D. Webster, Sebastian
Vogl, and Aggelos Kiayias. “Scalability, Fidelity and Stealth in the DRAKVUF Dy-
namic Malware Analysis System.” In: Proceedings of the 30th Annual Computer Se-
curity Applications Conference. 2014.

Tamas K. Lengyel, Justin Neumann, Steve Maresca, Bryan D Payne, and Aggelos
Kiayias. “Virtual Machine Introspection in a Hybrid Honeypot Architecture.” In:
CSET. 2012.

Nan Li and Yiming Li. “A study of Inter-Domain communication mechanisms on
Xen-Based hosting platforms.” In: Advanced Topics in Operating Systems (2009).

Tal Liberman and FEugene Kogan. Lost in Transaction: Process Doppelginging.
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman—
Lost—-In-Transaction—-Process—Doppelganging.pdf, Accessed: 2019-03-26.
2017.

Zhiqiang Lin, Ryan D. Riley, and Dongyan Xu. “Polymorphing Software by Random-
izing Data Structure Layout.” In: Detection of Intrusions and Malware, and Vulnera-
bility Assessment. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 107-126.
ISBN: 978-3-642-02918-9.

Linaro Limited. Open Portable Trusted Execution Environment. https://www.op—
tee.org/, Accessed: 2019-01-31.

Peter Loscocco and Stephen Smalley. “Integrating Flexible Support for Security Poli-
cies into the Linux Operating System.” In: Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference. Berkeley, CA, USA: USENIX Association,
2001, pp. 29-42. 1sBN: 1-880446-10-3. URL: http://dl.acm.org/citation.
cfm?id=647054.715771.

Lele Ma. TinyVMI In Progress. https://tinyvmi.github.io/gsoc-blog/
about/, Accessed: 2019-01-31. 2018.

Antonio Martin. “FireWire memory dump of a windows XP computer: a forensic
approach.” In: Black Hat DC (2007), pp. 1-13.

Ben Martini and Kim-Kwang Raymond Choo. “An integrated conceptual digital foren-
sic framework for cloud computing.” In: Digital Investigation 9.2 (2012), pp. 71-80.
Steven McCanne and Van Jacobson. “The BSD Packet Filter: A New Architecture
for User-level Packet Capture.” In: USENIX winter. Vol. 46. 1993.

Stuart McMurray. High-interaction MitM SSH honeypot. https://github.com/
magisterquis/sshhipot, Accessed: 2019-01-31. 2016.

Florian Menges, Fabian Béhm, Manfred Vielberth, Alexander Puchta, Benjamin
Taubmann, Noélle Rakotondravony, and Tobias Latzo. “Introducing DINGfest: An
architecture for next generation SIEM systems.” In: Short Paper, GI Sicherheit. 2018,
pp- 257-260. 1SBN: 978-3-88579-675-6. DOI: 10.18420/sicherheit2018_21.
Michael Schierl. jSSLKeyLog - Java Agent Library to log SSL session keys to a file for
Wireshark. http://jsslkeylog.sourceforge.net/, Accessed: 2019-01-31.
David Miller, Shon Harris, Allen Harper, Stephen VanDyke, and Chris Blask. Security

information and event management (SIEM) implementation. Network pro library.
New York, NY: McGraw-Hill, 2011. 1sBN: 9780071701099.

https://github.com/m0n0ph1/Process-Hollowing/raw/master/pdf/process-hollowing.pdf
https://github.com/m0n0ph1/Process-Hollowing/raw/master/pdf/process-hollowing.pdf
https://blog.xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m/
https://blog.xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m/
https://blog.xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m/
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.op-tee.org/
https://www.op-tee.org/
http://dl.acm.org/citation.cfm?id=647054.715771
http://dl.acm.org/citation.cfm?id=647054.715771
https://tinyvmi.github.io/gsoc-blog/about/
https://tinyvmi.github.io/gsoc-blog/about/
https://github.com/magisterquis/sshhipot
https://github.com/magisterquis/sshhipot
https://doi.org/10.18420/sicherheit2018_21
http://jsslkeylog.sourceforge.net/

149

[Mir+17]

[Mit]
[MT14]

[MFD11]
[MS13]

[MTF12]

[OM13]
[Oos14]

[Osb13]

[Pal+01]

[Pay12]

[PALO7]

[Pay+08]

[Pen+13]

[PSL13]

[PSE11]

Najmeh Miramirkhani, Mahathi Priya Appini, Nick Nikiforakis, and Michalis Poly-
chronakis. “Spotless Sandboxes: Evading Malware Analysis Systems Using Wear-
and-Tear Artifacts” In: IEEE Symposium on Security and Privacy (SP). May 2017,
pp. 1009-1024. pOI: 10.1109/SP.2017.42.

Mitmproxy Project. mitmproxzy. https://mitmproxy.org/, Accessed: 2019-01-31.

Asit More and Shashikala Tapaswi. “Virtual machine introspection: towards bridging
the semantic gap.” In: Journal of Cloud Computing 3.1 (Oct. 2014), p. 16. 1SSN: 2192-
113X. por: 10.1186/s13677-014-0016-2. URL: https://doi.org/10.
1186/s13677-014-0016-2.

Tilo Miiller, Felix C. Freiling, and Andreas Dewald. “TRESOR Runs Encryption
Securely Outside RAM.” In: USENIX Security Symposium. Vol. 17. 2011.

Tilo Miiller and Michael Spreitzenbarth. “Frost.” In: International Conference on Ap-
plied Cryptography and Network Security. Springer. 2013, pp. 373-388.

Tilo Miiller, Benjamin Taubmann, and Felix C. Freiling. “TreVisor.” In: Applied Cryp-
tography and Network Security. Ed. by Feng Bao, Pierangela Samarati, and Jianying
Zhou. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 66-83. 1SBN: 978-3-
642-31284-7.

Digit Oktavianto and Igbal Muhardianto. Cuckoo Malware Analysis. Packt Publishing,
2013. 1SBN: 1782169237, 9781782169239.

Michel Oosterhof. Cowrie SSH/Telnet Honeypot. https : / / github . com /
micheloosterhof/cowrie, Accessed: 2019-01-31. 2014.

Grant Osbourne. Memory Forensics: Review of Acquisition and Analysis Techniques.
Tech. rep. Defence science, technology organisation Edinburgh (Australia) Cyber, and
electronic warfare div, 2013.

Gary Palmer et al. “A road map for digital forensic research.” In: First Digital Forensic
Research Workshop, Utica, New York. 2001, pp. 27-30.

Bryan D. Payne. Simplifying virtual machine introspection using libvmi. Sandia report,
https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/
2012/127818.pdf, Accessed: 2019-05-14. 2012.

Bryan D. Payne, Martim D. P. de A. Carbone, and Wenke Lee. “Secure and Flexible
Monitoring of Virtual Machines.” In: Twenty-Third Annual Computer Security Appli-
cations Conference (ACSAC 2007). Dec. 2007, pp. 385-397. DOI1: 10.1109/ACSAC.
2007.10.

Bryan D. Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. “Lares: An ar-
chitecture for secure active monitoring using virtualization.” In: IEEE Symposium on
Security and Privacy. IEEE. 2008, pp. 233-247. DOI: 10.1109/SP.2008.24.

Niels Penneman, Danielius Kudinskas, Alasdair Rawsthorne, Bjorn De Sutter, and
Koen De Bosschere. “Formal Virtualization Requirements for the ARM Architecture.”
In: J. Syst. Archit. 59.3 (Mar. 2013), pp. 144-154. 1SsN: 1383-7621. po1: 10.1016/
j.sysarc.2013.02.003. URL: http://dx.doi.org/10.1016/7j.sysarc.
2013.02.003.

Diego Perez-Botero, Jakub Szefer, and Ruby B. Lee. “Characterizing Hypervisor Vul-
nerabilities in Cloud Computing Servers.” In: Proc. of the 2018 Int. Workshop on
Security in Cloud Computing. Cloud Computing ’'13. Hangzhou, China: ACM, 2013,
pp. 3-10. ISBN: 978-1-4503-2067-2. DOI: 10.1145/2484402.2484406.

Jonas Pfoh, Christian Schneider, and Claudia Eckert. “Nitro: Hardware-based system
call tracing for virtual machines.” In: International Workshop on Security. Springer.
2011, pp. 96-112.

https://doi.org/10.1109/SP.2017.42
https://mitmproxy.org/
https://doi.org/10.1186/s13677-014-0016-2
https://doi.org/10.1186/s13677-014-0016-2
https://doi.org/10.1186/s13677-014-0016-2
https://github.com/micheloosterhof/cowrie
https://github.com/micheloosterhof/cowrie
https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2012/127818.pdf
https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2012/127818.pdf
https://doi.org/10.1109/ACSAC.2007.10
https://doi.org/10.1109/ACSAC.2007.10
https://doi.org/10.1109/SP.2008.24
https://doi.org/10.1016/j.sysarc.2013.02.003
https://doi.org/10.1016/j.sysarc.2013.02.003
http://dx.doi.org/10.1016/j.sysarc.2013.02.003
http://dx.doi.org/10.1016/j.sysarc.2013.02.003
https://doi.org/10.1145/2484402.2484406

150

Bibliography

[PV17]

[Piel7]

[PS19]

[PMT13]

[PG74]

[RKKO07]

[Raj+18]

[RKR17]

[Rak+17]

[Rav]

[Raz+16]

[RRK17]

[RI00]

Jonas Pfoh and Sebastian Vogl. rVMI. https://github.com/fireeye/rvmi,
Accessed: 2019-01-31. 2017.

Piergiovanni Cipolloni. Universal Android SSL Pinning bypass with Frida. https :
/ /techblog.mediaservice.net/2017/07/universal —android-ssl-
pinning-bypass-with—-frida/, Accessed: 2019-01-31. 2017.

Sandro Pinto and Nuno Santos. “Demystifying Arm TrustZone: A Comprehensive
Survey.” In: ACM Computing Surveys (CSUR) 51.6 (2019), p. 130.

Rainer Poisel, Erich Malzer, and Simon Tjoa. “Evidence and Cloud Computing: The
Virtual Machine Introspection Approach.” In: Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications (JoWUA) 4.1 (Mar. 2013),
pp. 135-152.

Gerald J. Popek and Robert P. Goldberg. “Formal Requirements for Virtualizable
Third Generation Architectures.” In: Communications of the ACM 17.7 (July 1974),
pp. 412-421. 18sN: 0001-0782. pO1: 10.1145/361011.361073. URL: http://doi.
acm.org/10.1145/361011.361073

Thomas Raffetseder, Christopher Kruegel, and Engin Kirda. “Detecting System Emu-
lators.” English. In: Information Security. Vol. 4779. LNCS. Springer, 2007, pp. 1-18.
ISBN: 978-3-540-75495-4.

Sundaresan Rajasekaran, Harpreet Singh Chawla, Zhen Ni, Neel Shah, Fmery Berger,
and Timothy Wood. “CRIMES: Using Evidence to Secure the Cloud.” In: Proceedings
of the 19th International Middleware Conference. Middleware '18. Rennes, France:
ACM, 2018, pp. 40-52. 1SBN: 978-1-4503-5702-9. DOI: 10.1145/3274808.3274812.
URL: http://doi.acm.org/10.1145/3274808.3274812.

Noélle Rakotondravony, Johannes Kostler, and Hans P. Reiser. “Towards a Generic Ar-
chitecture for Interactive Cost-Aware Visualization of Monitoring Data in Distributed
Systems.” In: Proceedings of the Jth Workshop on Security in Highly Connected IT
Systems. SHCIS ’17. Neuchéatel, Switzerland: ACM, 2017, pp. 25-30. ISBN: 978-1-
4503-5271-0. po1: 10.1145/3099012.3099017. URL: http://doi.acm.org/
10.1145/3099012.3099017.

Noélle Rakotondravony, Benjamin Taubmann, Waseem Mandarawi, Eva Weishéupl,
Peng Xu, Bojan Kolosnjaji, Mykolai Protsenko, Hermann de Meer, and Hans P. Reiser.
“Classifying malware attacks in IaaS cloud environments.” In: Journal of Cloud Com-
puting 6.1 (Dec. 2017), p. 26. DOI: 10.1186/s13677-017-0098-8.

Ole Ravnas. Frida - A world-class dynamic instrumentation framework. https://
www.frida.re/, Accessed: 2019-01-31.

Abbas Razaghpanah, Narseo Vallina-Rodriguez, Srikanth Sundaresan, Christian
Kreibich, Phillipa Gill, Mark Allman, and Vern Paxson. “Haystack: A Multi-Purpose
Mobile Vantage Point in User Space.” In: (2016). URL: http://arxiv.org/abs/
1510.01419v3.

Hans P. Reiser, Noélle Rakotondravony, and Johannes Késtler. Mikromodul 8003:
Grundlagen von Cloud-Forensik. https : / / www . £im . uni — passau . de /
fileadmin/files/lehrstuhl/reiser/openc3s/CloudSecFor-MM-8003.
pdf, Accessed: 2019-01-31. 2017.

John Scott Robin and Cynthia E. Irvine. “Analysis of the Intel Pentium’s ability to
support a secure virtual machine monitor.” In: Proceedings of the 9th USENIX Security
Symposium. 2000.

https://github.com/fireeye/rvmi
https://techblog.mediaservice.net/2017/07/universal-android-ssl-pinning-bypass-with-frida/
https://techblog.mediaservice.net/2017/07/universal-android-ssl-pinning-bypass-with-frida/
https://techblog.mediaservice.net/2017/07/universal-android-ssl-pinning-bypass-with-frida/
https://doi.org/10.1145/361011.361073
http://doi.acm.org/10.1145/361011.361073
http://doi.acm.org/10.1145/361011.361073
https://doi.org/10.1145/3274808.3274812
http://doi.acm.org/10.1145/3274808.3274812
https://doi.org/10.1145/3099012.3099017
http://doi.acm.org/10.1145/3099012.3099017
http://doi.acm.org/10.1145/3099012.3099017
https://doi.org/10.1186/s13677-017-0098-8
https://www.frida.re/
https://www.frida.re/
http://arxiv.org/abs/1510.01419v3
http://arxiv.org/abs/1510.01419v3
https://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/reiser/openc3s/CloudSecFor-MM-8003.pdf
https://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/reiser/openc3s/CloudSecFor-MM-8003.pdf
https://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/reiser/openc3s/CloudSecFor-MM-8003.pdf

151

[RVJO09]

[Sal+08]

[SBH15]

[STR1S]

[STR17]

[SS99]

[Sha-+09)]

[Sha+14]

[Shi+07]

[Sic11]

[Som+11]

[Sun+14]

[Suol9]

Sandra Rueda, Hayawardh Vijayakumar, and Trent Jaeger. “Analysis of Virtual Ma-
chine System Policies.” In: Proceedings of the 14th ACM Symposium on Access Control
Models and Technologies. SACMAT ’09. Stresa, Italy: ACM, 2009, pp. 227-236. ISBN:
978-1-60558-537-6. DOI: 10.1145/1542207.1542243. URL: http://doi.acm.
org/10.1145/1542207.1542243.

Joseph Salowey, Hao Zhou, Pasi Eronen, and Hannes Tschofenig. Transport Layer
Security (TLS) Session Resumption without Server-Side State. https://tools.
ietf.org/html/rfc5077. 2008.

John T. Saxon, Behzad Bordbar, and Keith Harrison. “Efficient Retrieval of Key
Material for Inspecting Potentially Malicious Traffic in the Cloud.” In: 2015 IEEE
International Conference on Cloud Engineering. Mar. 2015, pp. 155-164. por: 10 .
1109/IC2E.2015.26.

Stewart Sentanoe, Benjamin Taubmann, and Hans P. Reiser. “Sarracenia: Enhancing
the Performance and Stealthiness of SSH Honeypots Using Virtual Machine Intro-
spection.” In: Nordic Conference on Secure IT Systems. Springer. 2018, pp. 255-271.
ISBN: 978-3-030-03638-6. por: 10.1007/978-3-030-03638-6_16.

Stewart Sentanoe, Benjamin Taubmann, and Hans P. Reiser. “Virtual Machine In-
trospection Based SSH Honeypot.” In: Proceedings of the Workshop on Security in
Highly Connected IT Systems. Neuchatel, Switzerland, 2017, pp. 13-18. 1SBN: 978-1-
4503-5271-0. por: 10.1145/3099012.3099016.

Adi Shamir and Nicko van Someren. “Playing “Hide and Seek” with Stored Keys.”
In: Proc. of the 3rd Int. Conf. on Financial Cryptography. FC ’99. London, UK, UK:
Springer-Verlag, 1999, pp. 118-124. 1SBN: 3-540-66362-2. URL: http://dl . acm.
org/citation.cfm?id=647503.728464.

Monirul T Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. “Secure In-VM Mon-
itoring Using Hardware Virtualization.” In: Proceedings of the 16th ACM conference
on Computer and communications security. ACM. 2009, pp. 477-487.

Adrian L. Shaw, Behzad Bordbar, John Saxon, Keith Harrison, and Chris I. Dalton.
“Forensic Virtual Machines: Dynamic Defence in the Cloud via Introspection.” In:
Proceedings of the 2014 IEEFE International Conference on Cloud Engineering. IEEE
Computer Society, 2014, pp. 303-310. 1SBN: 978-1-4799-3766-0. DOI1: 10.1109/IC2E.
2014.59. URL: http://dx.doi.org/10.1109/IC2E.2014.59.

Hyun-Sup Shin, Kang-Ho Kim, Chei-Yol Kim, and Sung-In Jung. “The new approach
for inter-communication between guest domains on Virtual Machine Monitor.” In:
International Symposium on Computer and information sciences (ISCIS), 2007. Nov.
2007, pp. 1-6. DOI: 10.1109/ISCIS.2007.4456875.

Bundesamt fir Sicherheit in der Informationstechnik. Leitfaden ,IT-Forensik®, Ver-
sion 1.0.1 (Mdrz 2011). https : / / www . bsi . bund . de / SharedDocs /
Downloads / DE / BSI / Cyber — Sicherheit / Themen / Leitfaden _ IT -
Forensik.pdf?_ _blob=publicationFile&v=2, Accessed: 2019-01-31. 2011.

Juraj Somorovsky, Mario Heiderich, Meiko Jensen, Jorg Schwenk, Nils Gruschka, and
Luigi Lo Tacono. “All Your Clouds Are Belong to Us: Security Analysis of Cloud
Management Interfaces.” In: ACM Workshop on Cloud Computing Security. ACM,
2011, pp. 3—14. 1SBN: 978-1-4503-1004-8. DOI1: 10.1145/2046660.2046664.

He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Sushil Jajodia. “TrustDump: Reli-
able Memory Acquisition on Smartphones.” In: Computer Security - ESORICS 2014.
Cham: Springer International Publishing, 2014, pp. 202—218. 1SBN: 978-3-319-11203-9.

NetBSD/xen Kernel Interfaces Manual (Kimmo Suominen). Xenbus — Xen bus ab-
straction for paravirtualized drivers. http://netbsd.gw.com/cgi-bin/man-
cgi?xenbus+4.1386+NetBSD-8.0, Accessed: 2019-04-30. 2019.

https://doi.org/10.1145/1542207.1542243
http://doi.acm.org/10.1145/1542207.1542243
http://doi.acm.org/10.1145/1542207.1542243
https://tools.ietf.org/html/rfc5077
https://tools.ietf.org/html/rfc5077
https://doi.org/10.1109/IC2E.2015.26
https://doi.org/10.1109/IC2E.2015.26
https://doi.org/10.1007/978-3-030-03638-6_16
https://doi.org/10.1145/3099012.3099016
http://dl.acm.org/citation.cfm?id=647503.728464
http://dl.acm.org/citation.cfm?id=647503.728464
https://doi.org/10.1109/IC2E.2014.59
https://doi.org/10.1109/IC2E.2014.59
http://dx.doi.org/10.1109/IC2E.2014.59
https://doi.org/10.1109/ISCIS.2007.4456875
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-Sicherheit/Themen/Leitfaden_IT-Forensik.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-Sicherheit/Themen/Leitfaden_IT-Forensik.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-Sicherheit/Themen/Leitfaden_IT-Forensik.pdf?__blob=publicationFile&v=2
https://doi.org/10.1145/2046660.2046664
http://netbsd.gw.com/cgi-bin/man-cgi?xenbus+4.i386+NetBSD-8.0
http://netbsd.gw.com/cgi-bin/man-cgi?xenbus+4.i386+NetBSD-8.0

152

Bibliography

[Syl12]

[Syl+12]

[TAR18]

[TBR19]

[Tau+15a]

[Tau+16]

[Tau+15b]

[TK17]

[TRR16]

[TR16]

[Tau+15c¢]

[TCP)

[Tes17]

[Tuz+18]

[Uh1+-05]

Joe Sylve. “Lime-linux memory extractor.” In: Proceedings of the 7th ShmooCon con-
ference. 2012.

Joe Sylve, Andrew Case, Lodovico Marziale, and Golden G. Richard. “Acquisition and
analysis of volatile memory from android devices.” In: Digital Investigation 8.3 (2012),
pp. 175-184. 1SSN: 1742-2876. DOI: 10.1016/3.diin.2011.10.003. URL: http:
//www.sciencedirect.com/science/article/pii/S1742287611000879.

Benjamin Taubmann, Omar Alabduljaleel, and Hans P. Reiser. “DroidKex: Fast ex-
traction of ephemeral TLS keys from the memory of Android apps.” In: Digital Inves-
tigation 26 (2018), S67-S76. DOL: 10.1016/5.diin.2018.04.013.

Benjamin Taubmann, Alexander Bohm, and Hans P. Reiser. “TwinPorter — An Archi-
tecture For Enabling the Live Migration of VMI-based Monitored Virtual Machines.”
In: Accepted for publication at TrustCom’19. 2019.

Benjamin Taubmann, Dominik Dusold, Christoph Fradrich, and Hans P. Reiser.
“Analysing malware attacks in the cloud: A use case for the TLSInspector toolkit.”
In: Proceedings of the Workshop on Security in Highly Connected IT Systems. Sept.
2015.

Benjamin Taubmann, Christoph Fradrich, Dominik Dusold, and Hans P. Reiser.
“TLSkex: Harnessing virtual machine introspection for decrypting TLS communi-
cation.” In: Digital Investigation 16 (2016), pp. 114-123. por: 10.1016/j.diin.
2016.01.014.

Benjamin Taubmann, Manuel Huber, Sascha Wessel, Lukas Heim, Hans P. Reiser, and
Georg Sigl. “A lightweight framework for cold boot based forensics on mobile devices.”
In: International Conference on Availability, Reliability and Security (ARES). Aug.
2015, pp. 120-128. po1: 10.1109/ARES.2015.47.

Benjamin Taubmann and Bojan Kolosnjaji. “Architecture for Resource-Aware VMI-
based Cloud Malware Analysis.” In: Proceedings of the Workshop on Security in Highly
Connected IT Systems. Neuchatel, Switzerland, 2017, pp. 43—48. ISBN: 978-1-4503-
5271-0. por: 10.1145/3099012.3099015.

Benjamin Taubmann, Noélle Rakotondravony, and Hans P. Reiser. “CloudPhylactor:
Harnessing Mandatory Access Control for Virtual Machine Introspection in Cloud
Data Centers.” In: IEEE Trustcom/BigDataSE/ISPA. Aug. 2016, pp. 957-964. DOL:
10.1109/TrustCom.2016.0162.

Benjamin Taubmann and Hans P. Reiser. “Secure Architecture for VMI-based Dy-
namic Malware Analysis in the Cloud.” In: DSN fast abstract. 2016. URL: https :
//hal.archives-ouvertes.fr/hal-01316519.

Benjamin Taubmann, Hans P. Reiser, Thomas Kittel, Andreas Fischer, Waseem
Mandarawi, and Hermann de Meer. “CloudIDEA: Cloud Intrusion Detection, Ev-
idence preservation and Analysis.” In: FuroSys poster. Apr. 2015. URL: http: //
eurosys2015.labri.fr/posters/p37.pdf.

TCPDUMP. TCPDUMP/LIBPCAP public repository. http : //www . tcpdump .
org/, Accessed: 2019-01-31.

Joe Testa. SSH man-in-the-middle tool. https://github.com/ jtesta/ssh-
mitm, Accessed: 2019-01-31. 2017.

Tomasz Tuzel, Mark Bridgman, Joshua Zepf, Tamas K. Lengyel, and KJ Temkin.
“Who watches the watcher? Detecting hypervisor introspection from unprivileged
guests.” In: Digital Investigation 26 (2018), S98-S106.

Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C.M. Martins, An-
drew V. Anderson, Steven M. Bennett, Alain Kagi, Felix H. Leung, and Larry Smith.
“Intel virtualization technology.” In: Computer 38.5 (May 2005), pp. 48-56. ISSN:
0018-9162. po1: 10.1109/MC.2005.163.

https://doi.org/10.1016/j.diin.2011.10.003
http://www.sciencedirect.com/science/article/pii/S1742287611000879
http://www.sciencedirect.com/science/article/pii/S1742287611000879
https://doi.org/10.1016/j.diin.2018.04.013
https://doi.org/10.1016/j.diin.2016.01.014
https://doi.org/10.1016/j.diin.2016.01.014
https://doi.org/10.1109/ARES.2015.47
https://doi.org/10.1145/3099012.3099015
https://doi.org/10.1109/TrustCom.2016.0162
https://hal.archives-ouvertes.fr/hal-01316519
https://hal.archives-ouvertes.fr/hal-01316519
http://eurosys2015.labri.fr/posters/p37.pdf
http://eurosys2015.labri.fr/posters/p37.pdf
http://www.tcpdump.org/
http://www.tcpdump.org/
https://github.com/jtesta/ssh-mitm
https://github.com/jtesta/ssh-mitm
https://doi.org/10.1109/MC.2005.163

153

[Urb+14]

[Van+18]

[VMw10]

[WG15]

[Wei+18]

[Win0g]

[Wirl5]
[Wul6]

[Xav16]

[Xu+17]

[Yal+17]

[YC14]

[ZR15]

David Urbina, Yufei Gu, Juan Caballero, and Zhigiang Lin. “SigPath: A Memory
Graph Based Approach for Program Data Introspection and Modification.” In: Com-
puter Security - ESORICS 2014: 19th European Symposium on Research in Com-
puter Security, Wroclaw, Poland, September 7-11, 201/. Proceedings, Part II. Cham:
Springer International Publishing, 2014, pp. 237-256. 1SBN: 978-3-319-11212-1. DOI:
10.1007/978-3-319-11212-1_14.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
“Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution.” In: Proceedings of the 27th USENIX Security Symposium. USENIX
Association, Aug. 2018.

Inc. VMware. VProbes Programming Reference. https://labs . vmware .com/
vmt j/vprobes—-deep—-observability—-into-the-esxi—-hypervisor, Ac-

cessed: 2019-03-26. 2010.

P. Wéchter and M. Gruhn. “Practicability study of android volatile memory foren-
sic research.” In: 2015 IEEFE International Workshop on Information Forensics and
Security (WIFS). Nov. 2015, pp. 1-6. por: 10.1109/WIFS.2015.7368601.

Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom.
“Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient Out-of-
Order Execution.” In: Technical report (2018).

Johannes Winter. “Trusted Computing Building Blocks for Embedded Linux-based
ARM Trustzone Platforms.” In: Proceedings of the 3rd ACM Workshop on Scalable
Trusted Computing. STC ’08. Alexandria, Virginia, USA: ACM, 2008, pp. 21-30.
ISBN: 978-1-60558-295-5. DOI: 10.1145/1456455.1456460. URL: http://doi.
acm.org/10.1145/1456455.1456460.

Wireshark contributors. Wireshark Wiki about Secure Socket Layer (SSL). https:
//wiki.wireshark.org/SSL, Accessed: 2019-01-31. 2015.

Peter Wu. sslkeylog. https ://git . lekensteyn .nl /peter /wireshark -
notes/tree/src/, Accessed: 2019-01-31. 2016.

Xavier de Carné de Carnavalet, Mohammad Mannan. “Killed by Proxy: Analyzing
Client-end TLS Interception Software.” In: Network and Distributed Systems Sympo-
sium (NDSS’16). 2016.

Xiaoyan Xu, Bo Zhao, Xiaorui Wang, and Rongcai Zhao. “Research on Semantic
Gap Problem of Virtual Machine.” In: Wireless Personal Communications 97.4 (Dec.
2017), pp. 5983-6004. 1SSN: 1572-834X. DOI: 10.1007/511277-017-4823—-x. URL:
https://doi.org/10.1007/s11277-017-4823~-x.

S. D. Yalew, G. Q. Maguire, S. Haridi, and M. Correia. “T2Droid: A TrustZone-
Based Dynamic Analyser for Android Applications.” In: 2017 IEEE Trustcom/Big-
DataSE/ICESS. Aug. 2017, pp. 240-247. DO1: 10.1109/Trustcom/BigDataSE/
ICESS.2017.243.

Fangzhou Yao and Roy H. Campbell. “CryptVMI: Encrypted Virtual Machine Intro-
spection in the Cloud.” In: IEEFE 7th International Conference on Cloud Computing.
June 2014, pp. 977-978. DOI: 10.1109/cloud.2014.1409.

Julian Zach and Hans P. Reiser. “LiveCloudInspector: Towards Integrated IaaS Foren-
sics in the Cloud.” In: Proceedings of Distributed Applications and Interoperable Sys-
tems: 15th IFIP WG 6.1 International Conference, DAIS 2015. Cham: Springer In-
ternational Publishing, 2015, pp. 207-220. 1SBN: 978-3-319-19129-4. po1: 10.1007/
978-3-319-19129-4_17. URL: http://dx.doi.org/10.1007/978-3-319~
19129-4_17.

https://doi.org/10.1007/978-3-319-11212-1_14
https://labs.vmware.com/vmtj/vprobes-deep-observability-into-the-esxi-hypervisor
https://labs.vmware.com/vmtj/vprobes-deep-observability-into-the-esxi-hypervisor
https://doi.org/10.1109/WIFS.2015.7368601
https://doi.org/10.1145/1456455.1456460
http://doi.acm.org/10.1145/1456455.1456460
http://doi.acm.org/10.1145/1456455.1456460
https://wiki.wireshark.org/SSL
https://wiki.wireshark.org/SSL
https://git.lekensteyn.nl/peter/wireshark-notes/tree/src/
https://git.lekensteyn.nl/peter/wireshark-notes/tree/src/
https://doi.org/10.1007/s11277-017-4823-x
https://doi.org/10.1007/s11277-017-4823-x
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.243
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.243
https://doi.org/10.1109/cloud.2014.149
https://doi.org/10.1007/978-3-319-19129-4_17
https://doi.org/10.1007/978-3-319-19129-4_17
http://dx.doi.org/10.1007/978-3-319-19129-4_17
http://dx.doi.org/10.1007/978-3-319-19129-4_17

	Contents
	Introduction
	Problem Statement
	Main Contributions
	Publications
	Structure of this Thesis

	Background
	Virtualization
	The Xen Hypervisor
	Digital Forensics
	Memory Forensics
	Virtual Machine Introspection
	LibVMI
	TLS Internals
	Summary

	An Extensible Architecture For Memory Analysis
	State of the Art
	Requirements of VMI-based Applications
	Design Goals
	Static Analysis
	Dynamic Analysis
	Network Traffic

	System Design
	Libvmtrace
	System Monitor
	Network Monitor
	Operating System Monitor
	Library and Process Monitor
	Plug-ins and Dynamic Reconfiguration
	Logging

	Evaluation
	Process List Extraction
	Breakpoint Performance
	Return Value
	System Call Tracing
	Process Monitor
	Accessing Virtual Addresses that are not Present in Physical Memory
	Stealthiness
	Network Tracing
	Compliance with Principals of Digital Forensics

	Summary

	Data Acquisition
	State of the Art
	Main Memory Access on Mobile Devices
	VMI in Cloud Computing Environments

	Improving Cold-boot Based Data Acquisition
	System Design
	Implementation
	Evaluation

	Towards ARM TrustZone Based Monitoring
	Threat Model and Assumptions
	System Design
	Implementation
	Evaluation

	Bringing VMI to Cloud Environments
	Threat Model and Assumptions
	System Design
	Implementation
	Evaluation and Discussion

	VMI and Live Migration
	System Design
	Implementation
	Evaluation

	Summary

	Information Retrieval
	State of the Art
	Decryption of TLS Communication
	SSH Honeypots
	Stealthiness of VMI
	Information Retrieval from Memory

	TLSKex: Content-based TLS Session Key Extraction from Virtual Machines
	System Design
	Implementation
	Evaluation

	DroidKex: Data structure-based Key Extraction from Mobile Phones
	System Design
	Implementation
	Evaluation and Discussion

	VMI-based SSH Honeypot
	Threat Model and Assumptions
	System Design
	Implementation
	Evaluation

	Summary

	VMI in SIEM Systems
	State of the Art
	Threat Model and Assumptions
	System Design
	Implementation
	Evaluation
	Summary

	Conclusions
	Contributions
	Future Work

	List of Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Bibliography

