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For a large class of dyadic homogeneous Cantor distributions in R, which are not necessarily self-similar,
we determine the optimal quantizers, give a characterization for the existence of the quantization dimension,
and show the non-existence of the quantization coefficient. The class contains all self-similar dyadic Cantor
distributions, with contraction factor less than or equal to 1

3
. For these distributions we calculate the quantization

errors explicitly.
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1 Introduction

The problem of quantization originally arose in electrical engineering in the context of signal processing and
data compression (cf. [5]). Mathematically the problem can be stated as follows. Given a Borel probability
distribution ν on Rd, n ∈ N = {1, 2, ..} and r ≥ 1, determine the set

Cn,r(ν) = {β ⊂ Rd : card(β) ≤ n and Ψβ,r(ν) = Vn,r(ν)}

of all n−optimal sets (quantizers) of order r, with

Ψβ,r(ν) =
∫

min
b∈β

| x− b |r dν(x)

and

Vn,r(ν) = inf
β⊂Rd, card(β)≤n

Ψβ,r(ν)

the optimal quantization error. This problem of optimal quantization was systematically studied by Graf and
Luschgy [3]. Under very general assumptions they have shown, that Cn,r(ν) is always non-empty (cf. [3],
Theorem 4.12) and that every β ∈ Cn,r(ν) has exactly n elements (cf. [3], Theorem 4.1).

The idea of defining a dimension Dr by means of quantization goes back to Zador. In [11] he defined the
quantization dimension

Dr = lim
n→∞

r log(n)
− log(Vn,r(ν))

,

if the limit exists. Later on this concept was investigated by several authors (see, for instance, [3], [8], [9]). If
the quantization dimension Dr exists, it can be asked whether the sequence (n

r
Dr Vn,r(ν))n∈N converges, i.e.

whether the quantization coefficient exists.
In the present paper we consider dyadic homogeneous Cantor distributions. To this end we first have to de-

fine dyadic homogeneous Cantor sets depending on a sequence (ck)k∈N ∈ ]0, 1
2 ]N of contraction factors. The
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4 W. Kreitmeier: Quantization for Cantor Distributions

corresponding dyadic homogeneous Cantor measure is induced by the natural mass distribution on the dyadic ho-
mogeneous Cantor set and completely characterized through the sequence (ck)k∈N. Recently, Kesseböhmer and
Zhu [6] determined the optimal quantizers for these distributions, provided supk∈N ck ≤ 1

4 (cf. [6], Proposition
3.7). Lindsay [7] was the first who used a special example of this type to show that the quantization dimension of
order 1 need not to exist (cf. [7], Example 5.5). Later Kesseböhmer and Zhu [6] also gave such an example (cf.
[6], Theorem 1.5 (1)).

If ck = c for every k ∈ N then the dyadic homogeneous Cantor distribution becomes self-similar. The spe-
cial case c = 1

3 yields the classical Cantor distribution. Under the additional assumption that r = 2, Graf and
Luschgy solved the quantization problem for this last distribution completely, i.e. they determined the optimal
quantizers and the optimal quantization errors (cf. [2], Theorem 5.2). They proved the existence of the quan-
tization dimension (cf. [2], Theorem 6.6) and that the quantization coefficient does not exist (cf. [2], Theorem
6.3).

As mentioned above, Lindsay was the first to study quantization for special non-self-similar Cantor measures.
A general theory for the quantization of these measures was developed by Kesseböhmer and Zhu [6]. Many of
their results are applicable to the classical Cantor Distribution ( cf. [6], Theorem 1.4, Theorem 1.6 (1) and (2)
and Proposition 3.1). But their analysis of the n−optimal quantizers of order r for dyadic homogeneous Cantor
distributions is limited to supk∈N ck ≤ 1

4 and, therefore, does not include the classical case.
We will generalize some of the results of Kesseböhmer and Zhu to the case that supk∈N ck ≤ 1

3 (Theorem
4.4) and apply them to the classical Cantor distribution. Here we get new results in the case r 6= 2. Moreover,
we will characterize those dyadic homogeneous Cantor distributions for which the quantization dimension exists
(Remark 5.2). If the quantization dimension of the dyadic homogeneous Cantor distribution exists, we give nec-
essary and sufficient conditions for the sequence (n

r
Dr Vn,r(ν))n∈N to be bounded and bounded away from zero.

In this situation the quantization coefficient does not exist (Proposition 5.3).
For the self similar case µ = µc with c ∈ ]0, 1

3 ] we will derive a functional representation for limn→∞n
r

Dr Vn,r(µc)
resp. limn→∞n

r
Dr Vn,r(µc). Such a characterization is not known for c strictly between 1

3 and 1
2 .

2 Notation and basic facts

First note that dyadic homogeneous Cantor sets are a special case of homogeneous Moran sets as proposed by
Wen et.al. ( cf. [1], [10] ). Moreover, dyadic homogeneous Cantor sets and the related dyadic homogeneous
Cantor distributions werde defined by Kesseböhmer and Zhu [6]. We follow the notation in [6] and will verify in
this section some simple properties of these distributions.
Let (ck)k∈N ∈ ]0, 1

2 ]N be given. The dyadic homogeneous Cantor set C((ck)) is constructed inductively. Start
with E0 = [0, 1] and let D0 = {E0} be the collection of the so-called basic intervals of order 0. Now remove an
open interval of length 1− 2c1 in the middle of E0, so that [0, c1] and [1− c1, 1] remain. We call the remaining
sets, basic intervals of order 1. The union of all basic intervals of order 1 is denoted by E1, the collection of all
these intervals by D1. Let k ∈ N and let Ek be the union of all basic intervals of order k and Dk the collection
of all basic intervals of order k. Let πk =

∏k
i=1 ci. By removing an open interval of length (1− 2ck+1)πk in the

middle of each basic interval of order k we obtain the collection Dk+1 of basic intervals of order k + 1, having
all the length πk+1. Set C((ck)) =

⋂
k∈N Ek.

The corresponding homogeneous Cantor measure µ is the unique Borel probability measure on R, with

µ(F ) = 2−k for every F ∈ Dk (1)

and

µ(A) = inf{
∑

i

µ(Ui) : A ∩ C((ck)) ⊂
⋃
i

Ui, Ui ∈
⋃
k≥1

Dk} (2)

for every Borel subset A ⊂ R. It has support C((ck)). For the rest of this paper the distribution µ is always the
dyadic homogeneous Cantor distribution defined by the sequence (ck)k∈N with 0 < ck ≤ 1

3 for every k ∈ N.
Let N0 = {0, 1, 2, ..}. For every k ∈ N0 and F ∈ Dk we denote by F1 the left and by F2 the right basic

interval of order k + 1, contained in F. Moreover the midpoints of F, F1, F2 are denoted by a, a1, a2 resp. We
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make canonical use of this notation, for example a121 denotes the midpoint of the basic interval F121 ⊂ F of
order k + 3. For t ∈ R define

R 3 x
Θt→ Θt(x) = x + t

as the translation by t. Moreover, let

R 3 x
Φt→ Φt(x) = t + (t− x)

be the reflection relative to t. For an arbitrary Borel probability distribution ν on R and Borel measurable set
A ⊂ R with ν(A) > 0, let ν(· | A) = ν(A∩·)

ν(A) be the conditional distribution of ν w.r.t. A. Now we can state two
simple but useful properties of µ.

Lemma 2.1 Let k ∈ N0. Let G, H ∈ Dk+2 with min(G) ≤ min(H).
Let t = 1

2 (min(G) + max(H)) and s = min(H)−min(G). Then

µ(· | H) = µ(· | G) ◦ Φ−1
t

and

µ(· | H) = µ(· | G) ◦Θ−1
s .

P r o o f. Since diam(H) = diam(G) we get from the definition of t and s that Φt(G) = H and Θs(G) = H.
Hence, the assertion follows from the construction of µ.

3 Elementary properties of optimal quantizers

For the rest of this paper let r ≥ 1 and let all distributions be defined on the Borel subsets of R. Moreover a
probability distribution ν is called symmetric with respect to t ∈ R, if ν = ν ◦ Φ−1

t .
We begin this section with a result about the 1-optimal quantizers of general symmetric distributions on R.

Then we use these statements to show elementary properties of the optimal quantizers of dyadic homogeneous
Cantor measures.

Proposition 3.1 Let ν be a probability distribution which is symmetric w.r.t. t ∈ R. Then for r > 1 and
b ∈ R\{t}, ∫

| x− b |r dν(x) >

∫
| x− t |r dν(x).

P r o o f. Let b ∈ R\{t}. From the proof of Theorem 2.4 in [3] we know that the mapping

R 3 z → Ψr(z) =
∫
| x− z |r dν(x)

is strictly convex. Hence we have∫
| x− t |r dν(x) = Ψr(t) <

Ψr(t + (b− t)) + Ψr(t− (b− t))
2

.

Using the symmetry of ν w.r.t. t, we get Ψr(t + (b− t)) = Ψr(t− (b− t)), which yields

Ψr(t + (b− t)) + Ψr(t− (b− t))
2

= Ψr(b) =
∫
| x− b |r dν(x)

and completes the proof.
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6 W. Kreitmeier: Quantization for Cantor Distributions

Remark 3.2 If, in addition, ν has a compact support, then for r = 1 the weaker inequality∫
| x− b |r dν(x) ≥

∫
| x− t |r dν(x)

still holds for all b ∈ R.

Now fix k ∈ N0 and F ∈ Dk for the rest of this section.
Corollary 3.3 Let a be the midpoint of F . Then for b ∈ R\{a},∫

F

| x− b |r dµ(x) ≥
∫

F

| x− a |r dµ(x). (3)

If r > 1, then (3) is strict.

P r o o f. Since µ(F ) > 0 it suffices to prove (3) for µ(· | F ) instead of µ. Note, that µ(· | F ) is symmetric
w.r.t. a and has a compact support. Hence, the assertion follows directly from Proposition 3.1 and Remark 3.2.

Remark 3.4 Note, that the part for r > 1 of Corollary 3.3 has already been proved in [6], Lemma 3.2.

For the rest of this section let n ≥ 2 and β ∈ Cn,r(µ(· | F )). By [3], Theorem 4.1 we have card(β) = n.
Denote β = {b1, .., bn} with b1 < .. < bn. Let b0 = Φmin(F )(b1) and bn+1 = Φmax(F )(bn). By [3], Remark
4.6 (a) we know, that β ⊂ F. Next we will prove some essential properties of β, in particular we will show, that
β ⊂ F1 ∪ F2.

Lemma 3.5 Let i ∈ {1, .., n}. If µ([ bi−1+bi

2 , bi+bi+1
2 ] ∩ F1) = 0, then bi ∈ F2.

If µ([ bi−1+bi

2 , bi+bi+1
2 ] ∩ F2) = 0, then bi ∈ F1.

P r o o f. Since µ(R\[0, 1]) = 0, we get from [3], Theorem 4.1, that [ bi−1+bi

2 , bi+bi+1
2 ] has strictly positive

µ−measure and {bi} ∈ C1,r(µ(· | [ bi−1+bi

2 , bi+bi+1
2 ])).

1. Let µ([ bi−1+bi

2 , bi+bi+1
2 ]∩F1) = 0. Hence, µ(· | [ bi−1+bi

2 , bi+bi+1
2 ]) is concentrated on F2∩[ bi−1+bi

2 , bi+bi+1
2 ].

Thus, Lemma 2.6 (a) in [3] yields bi ∈ F2.

2. As in 1. we obtain bi ∈ F1, if µ([ bi−1+bi

2 , bi+bi+1
2 ] ∩ F2) = 0.

Lemma 3.6 (a) b1 belongs to F1 and bn to F2.
(b) If n ≥ 3, then

1 < j := min{i ∈ {1, .., n} : bi > max(F1)} ≤ n (4)

and
(i) bj−1 ≤ max(F1),
(ii) bj+1 ≥ min(F2),
(iii) if bj ∈ F\(F1 ∪ F2), then j < n and bj−1+bj

2 < max(F1) and bj+bj+1
2 > min(F2).

P r o o f. By the construction of µ we can assume w.l.o.g. that k = 0. Then we have F = E0 = [0, 1] and
µ(· | F ) = µ. We proceed in several steps.

1. We will prove that V2,r(µ) ≤ 4
∫

F11
( c1

2 − x)rdµ(x).
By the symmetry of µ (Lemma 2.1) it is easy to see that

V2,r(µ) ≤ Ψ{a1,a2},r(µ) = 4
∫

F11

(
c1

2
− x)rdµ(x).

2. We will show, that b1 < 3
2c1.

Assume the contrary, i.e. b1 ≥ 3
2c1. This yields

V2,r(µ) ≥ Vn,r(µ) = Ψβ,r(µ) ≥
∫

F1

(b1 − x)rdµ(x) ≥
∫

F1

(
3
2
c1 − x)rdµ(x)

=
∫

F11

(
3
2
c1 − x)rdµ(x) +

∫
F12

(
3
2
c1 − x)rdµ(x).
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Note, that 3
2c1 − x ≥ c1

2 for every x ∈ F12 and c1
2 − x ≤ c1

2 for every x ∈ F11, and, therefore,∫
F12

(
3
2
c1 − x)rdµ(x) ≥ (

c1

2
)rµ(F12) = (

c1

2
)rµ(F11) ≥

∫
F11

(
c1

2
− x)rdµ(x).

Thus we get

V2,r(µ) ≥
∫

F11

(
3
2
c1 − x)rdµ(x) +

∫
F11

(
c1

2
− x)rdµ(x).

Since r ≥ 1 it follows that for every x ∈ F11,

(
3
2
c1 − x)r = 3r(

c1

2
− 1

3
x)r ≥ 3(

c1

2
− x)r.

Because the last inequality is strict for every x ∈ F11\{0} we obtain

V2,r(µ) > 4
∫

F11

(
c1

2
− x)rdµ(x),

a contradiction to 1.

3. We will show, that b1 ≤ c1.
Assume the contrary. By 2. we have

c1 < b1 <
3
2
c1. (5)

If b1+b2
2 < 1− c1, then Lemma 3.5 would imply b1 ≤ c1. Hence we have

1− c1 ≤
b1 + b2

2
. (6)

Combining (5) and (6) we get

b2 ≥ 2− 2c1 − b1 > 2− 7
2
c1

= 1− c1

2
+ 1− 3c1 ≥ 1− c1

2
.

We conclude that

V2,r(µ) ≥ Ψβ,r(µ) ≥
∫

F11

(b1 − x)rdµ(x) +
∫

F12

(b1 − x)rdµ(x)

+
∫

F21∩[0,
b1+b2

2 ]

(x− b1)rdµ(x) +
∫

F21∩]
b1+b2

2 ,1]

(b2 − x)rdµ(x) (7)

Lemma 2.1 yields µ(· | F21) = µ(· | F11) ◦ Θ−1
1−c1

resp. µ(· | F12) = µ(· | F11) ◦ Θ−1
c1(1−c2)

. Thus, inequality
(7) turns into

V2,r(µ) ≥
∫

F11

(b1 − x)rdµ(x) +
∫

F11

(b1 − c1(1− c2)− x)rdµ(x)

+
∫

F11∩[0,
b1+b2

2 −(1−c1)]

(x− (b1 − (1− c1)))rdµ(x)

+
∫

F11∩]
b1+b2

2 −(1−c1),c1]

(b2 − (1− c1)− x)rdµ(x). (8)
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8 W. Kreitmeier: Quantization for Cantor Distributions

Let x ∈ F11. Since r ≥ 1 we have

1
2
[(b1 − c1(1− c2)− x)r + (x− (b1 − (1− c1)))r]

≥ [
1
2
(b1 − c1 + c1c2 − x + x− b1 + 1− c1)]r

> (
1
2
− c1)r ≥ (

c1

2
− x)r. (9)

Using (6), we get similarly

1
2
[(b1 − c1(1− c2)− x)r + (b2 − (1− c1)− x)r]

≥ [
1
2
(b1 − c1 + c1c2 − x + b2 − 1 + c1 − x)]r

≥ (
b1 + b2

2
− 1

2
− x)r ≥ (1− c1 −

1
2
− x)r

Since c1 ≤ 1
3 we obtain

(1− c1 −
1
2
− x)r

= (
1
2
− c1 − x)r ≥ (

3
2
c1 − c1 − x)r = (

c1

2
− x)r. (10)

Using the combination of (9) and (10), inequality (8) turns into

V2,r(µ) ≥
∫

F11

(b1 − x)rdµ(x) + 2
∫

F11

(
c1

2
− x)rdµ(x).

Since b1 > c1 and c1 − x > c1 − 2x for every x ∈ F11\{0} we deduce

V2,r(µ) ≥
∫

F11

(c1 − x)rdµ(x) + 2
∫

F11

(
c1

2
− x)rdµ(x)

> 2r

∫
F11

(
c1

2
− x)rdµ(x) + 2

∫
F11

(
c1

2
− x)rdµ(x) ≥ 4

∫
F11

(
c1

2
− x)rdµ(x),

a contradiction to 1.

4. We will proof that bn ≥ 1− c1.
This follows from 3. by symmetry of µ (see Lemma 2.1).

5. We will finish the proof.
From 3. and 4. we get b1 ∈ F1, bn ∈ F2 and 1 < j ≤ n. If n = 2, then β ∩ (F\(F1 ∪ F2)) = ∅.
Let n ≥ 3. Clearly, j < n. From the definition of j one gets bj−1 ≤ max(F1). If we assume bj+1 < min(F2),
Lemma 3.5 would imply bj ∈ F1, a contradiction to bj > max(F1). Hence, bj+1 ≥ min(F2). Finally let
bj ∈ F\(F1 ∪ F2). Due to bn ∈ F2 we have j < n.

Again, Lemma 3.5 yields bj−1+bj

2 < max(F1) and bj+bj+1
2 > min(F2).

Before we can continue to investigate the properties of β we need a result for symmetric probability distribu-
tions, which is also interesting in itself.

Lemma 3.7 Let r > 1, t ∈ R and let ν be a non-atomic probability distribution which is symmetric w.r.t.
t ∈ R. Let {a, b, c} ⊂ R with a < b = Φt(c) < t < c. If [a, c] has positive ν−measure, then every element of an
1−optimal quantizer of ν(· | [a, c]) is smaller or equal to t. Equality only holds, if ν([a, b]) = 0.

Copyright line will be provided by the publisher



mn header will be provided by the publisher 9

P r o o f. W.l.o.g. we may assume t = 0. Let r > 1 and {t′} ∈ C1,r(ν(· | [a, c])).
1. We will show, that t′ = 0, if and only if ν([a, b]) = 0.
Let t′ = 0. Since r > 1, one gets from [3], Lemma 2.5, that

0 = −
∫

[a,0[

| x |r−1 dν(x) +
∫

]0,c]

| x |r−1 dν(x).

Due to ν({z}) = 0 for every z ∈ R and the symmetry of ν w.r.t. 0 we derive

0 =
∫

[a,b]

| x |r−1 dν(x) +
∫

[Φ0(c),0]

| x |r−1 dν(x)−
∫

[0,c]

| x |r−1 dν(x)

=
∫

[a,b]

| x |r−1 dν(x) ≥ ν([a, b])· | b |r−1,

which yields ν([a, b]) = 0. On the other hand, if ν([a, b]) = 0,
we get ν([a, c]) = ν([b, c]). By Proposition 3.1 we derive t′ = 0.
2. We will show, that t′ ≤ 0.
Assume the contrary. From the symmetry of ν and Proposition 3.1 we get∫

[a,c]

| x− t′ |r dν(x) =
∫

[a,b]

| x− t′ |r dν(x) +
∫

[b,c]

| x− t′ |r dν(x)

>

∫
[a,b]

| x− t′ |r dν(x) +
∫

[b,c]

| x |r dν(x).

Due to t′ > 0 and b < 0 we have for every x ∈ [a, b] that | x− t′ |>| x | . This yields∫
[a,c]

| x− t′ |r dν(x) >

∫
[a,c]

| x |r dν(x),

a contradiction to the optimality of t′.

Remark 3.8 By the same arguments as in the proof of Lemma 3.7 one can show for b = Φt(c) < a < t < c,
that every element of an 1−optimal set of ν(· | [a, c]) is greater or equal to t, provided ν([a, c]) > 0. Moreover,
equality holds in this case if and only if ν([b, a]) = 0.

Now we continue with a result for the 3−optimal quantizers of µ(· | F ). We denote the midpoint of F by a.
Lemma 3.9 Let r > 1 and n = 3. If b2 ∈ [a,max(F )− πk+1[ then

max(F1)−
b1 + b2

2
≤ b2 + b3

2
−min(F2).

P r o o f. By the construction of µ we can assume w.l.o.g. that F = [0, 1]. Thus we have max(F1) = c1 and
min(F2) = 1− c1. Assume that

c1 −
b1 + b2

2
>

b2 + b3

2
− (1− c1). (11)

We will show, that b2 < 1
2 = a. From (11) we obtain b1+b2

2 < 1 − b2+b3
2 = Φ 1

2
( b2+b3

2 ). From the construction
of µ we know, that µ is non-atomic. By Lemma 3.6 (b) (iii) we obtain b2+b3

2 > 1 − c1 > 1
2 , which yields

Φ 1
2
( b2+b3

2 ) < 1
2 . Since

µ = µ(· | F ) =
1
4
[µ(· | F11) + µ(· | F12) + µ(· | F21) + µ(· | F22)],

Lemma 2.1 yields µ ◦ Φ−1
1
2

= µ i.e. µ is symmetric w.r.t. 1
2 . By [3], Theorem 4.1 we know, that

µ([ b1+b2
2 , b2+b3

2 ]) > 0 and {b2} is an 1-optimal quantizer of order r for µ(· | [ b1+b2
2 , b2+b3

2 ]). By Lemma 3.7,

Copyright line will be provided by the publisher



10 W. Kreitmeier: Quantization for Cantor Distributions

we have b2 ≤ 1
2 . It remains to show, that the assumption b2 = 1

2 leads to a contradiction. Assume b2 = 1
2 .

Since r > 1, we know from [3], Theorem 2.4 and Theorem 4.1, that {b1} is the unique 1−optimal quantizer
of µ(· | [0, b1+b2

2 ]) resp. {b3} is the unique 1−optimal quantizer of µ(· | [ b2+b3
2 , 1]). By Lemma 3.7 we have

µ(· | [ b1+b2
2 ,Φ 1

2
( b2+b3

2 )]) = 0,

which yields µ(· | [0, b1+b2
2 ]) = µ(· | [0,Φ 1

2
( b2+b3

2 )]). Using the symmetry of µ we get from [3], Lemma 2.1 (a),
that Φ 1

2
(b1) = b3. Hence, b2 − b1 = b3 − b2, which yields c1 − b1+b2

2 = b2+b3
2 − (1 − c1), a contradiction to

inequality (11).

Before we can state the main result of this section, we need the following inequality.
Lemma 3.10 Let A,B, C and D be non-negative real numbers.

If A + B > C + D and max(A,B) > max(C,D), then

Ar + Br > Cr + Dr.

P r o o f. Immediate consequence of the convexity of s 7→ sr.

Proposition 3.11 For r > 1 the set β is contained in F1 ∪ F2 and, moreover, β ∩ F1 6= ∅ and β ∩ F2 6= ∅.

P r o o f. Again, we can assume w.l.o.g. that k = 0 and, therefore, F = [0, 1]. Recall, that β = {b1, .., bn}
with b1 < .. < bn. Lemma 3.6 (b) yields β ∩ F1 6= ∅, β ∩ F2 6= ∅ and card(β ∩ (F\(F1 ∪ F2))) ≤ 1. It remains
to show, that β ∩ (F\(F1 ∪ F2)) = ∅.

Case 1. n = 2
In this case the assertion follows from Lemma 3.6 (a).

Case 2. n = 3
We will prove the assertion by contradiction. Assume, that β ∩ (F\(F1 ∪ F2)) 6= ∅. By Lemma 3.5, b2 is the
only element of β ∩ (F\(F1 ∪ F2)).
Since µ is symmetric w.r.t. 1

2 we can assume that w.l.o.g. b2 ≥ 1
2 .

First, we will prove that for every x ∈ F11 we have

min
i=1,2

| c1 − x− bi |r + min
i=2,3

| 1− c1 + x− bi |r≥ 2(
c1

2
− x)r (12)

By Lemma 3.6 (b) (iii) and Lemma 3.9 we obtain

0 < c1 −
b1 + b2

2
≤ b2 + b3

2
− (1− c1). (13)

Let x ∈ F11 with 0 ≤ x ≤ c1 − b1+b2
2 . Since c1 − x ≥ b1+b2

2 we get

min
i=1,2

| c1 − x− bi |= b2 − c1 + x. (14)

Using (13) we have 1− c1 + x ≤ 1− c1 + b2+b3
2 − (1− c1) = b2+b3

2 , which yields

min
i=2,3

| 1− c1 + x− bi |= 1− c1 + x− b2. (15)

Since r ≥ 1 the equalities (14) and (15) together with x ≤ c1
2 imply that

min
i=1,2

| c1 − x− bi |r + min
i=2,3

| 1− c1 + x− bi |r

= (b2 − c1 + x)r + (1− c1 + x− b2)r

≥ 2(
1
2
(b2 − c1 + x + 1− c1 + x− b2))r

= 2(
1
2
(1− 2c1 + 2x))r

≥ 2(
c1

2
+ x)r ≥ 2(

c1

2
− x)r.
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Now let x ∈ F11 with c1 − b1+b2
2 ≤ x ≤ b2+b3

2 − (1− c1). We have c1 − x ≤ b1+b2
2 . By Lemma 3.6 (b) (iii) we

get b1+b2
2 < c1, which yields

b1 < 2c1 − b2 ≤ 2c1 −
1
2
≤ c1

2
, (16)

and, therefore

b1 <
c1

2
<

2
3
c1 ≤ c1(1− c2) ≤ c1 − x.

Hence we obtain

min
i=1,2

| c1 − x− bi |= c1 − x− b1. (17)

On the other hand, 1− c1 +x ≤ b2+b3
2 . Hence, equation (15) holds in this case as well. Combining (15) and (17)

we obtain

min
i=1,2

| c1 − x− bi |r + min
i=2,3

| 1− c1 + x− bi |r

≥ 2(
1
2
(1− b1 − b2))r = 2(

1
2
− b1 + b2

2
))r.

Recall, that x ≤ max(F11) < c1
2 . Together with b1+b2

2 < c1 and 3
2c1 ≤ 1

2 we get

min
i=1,2

| c1 − x− bi |r + min
i=2,3

| 1− c1 + x− bi |r

> 2(
3
2
c1 − c1))r = 2(

c1

2
))r ≥ 2(

c1

2
− x))r (18)

Finally let x ∈ F11 and b2+b3
2 − (1 − c1) < x. Obviously, equation (17) also holds in this case. Since r > 1,

we know from [3], Theorem 2.4 and Theorem 4.1, that µ([ b2+b3
2 , 1]) > 0 and {b3} is the unique 1−optimal

quantizer of µ(· | [ b2+b3
2 , 1]). Since µ(· | [1 − c1, 1]) = 1

2 [µ(· | F21) + µ(· | F22)] we obtain from Lemma
2.1 that µ(· | [1 − c1, 1]) is symmetric w.r.t. 1 − c1

2 . Note, that µ(· | [1 − c1, 1]) is non-atomic. Moreover,
µ([1− c1,

b2+b3
2 ]) > 0, because otherwise Lemma 3.5 would imply b2 ∈ F1, a contradiction. By Remark 3.8 we

get b3 > 1− c1
2 . Therefore,

b3 > 1− c1

2
> 1− 2

3
c1 ≥ 1− c1 + c1c2 = 1− c1 + max(F11) ≥ 1− c1 + x. (19)

Hence it follows from (17) that

min
i=2,3

| 1− c1 + x− bi |= b3 − (1− c1 + x). (20)

Using (17) and (20) we derive

min
i=1,2

| c1 − x− bi |r + min
i=2,3

| 1− c1 + x− bi |r

≥ 2(
1
2
(c1 − b1 − (1− b3) + c1 − 2x))r.

Using (16) we get c1 − b1 > c1
2 . By (19) we have 1− b3 < c1

2 . We obtain for every x ∈ F11

min
i=1,2

| c1 − x− bi |r + min
i=2,3

| 1− c1 + x− bi |r> 2(
c1

2
− x))r (21)

and (12) is proved. Since max(F11) = c1c2 < 1
4 ≤

b1+b2
2 < min(F2)

and min(F2) < b2+b3
2 < (1−c1)+1

2 < 1− c1c2 = min(F22) we deduce

V3,r(µ) =
∫

F11

| x− b1 |r dµ(x) +
∫

F12

min
i=1,2

| x− bi |r dµ(x)

+
∫

F21

min
i=2,3

| x− bi |r dµ(x) +
∫

F22

| x− b3 |r dµ(x)
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Applying Lemma 2.1, we get

V3,r(µ) =
∫

F11

| x− b1 |r dµ(x) +
∫

Φ−1
c1
2

(F12)

min
i=1,2

| Φ c1
2

(x)− bi |r dµ(x)

+
∫

Φ−1
c1
2
◦Φ−1

1
2

(F21)

min
i=2,3

| Φ 1
2
◦ Φ c1

2
(x)− bi |r dµ(x) +

∫
F22

| x− b3 |r dµ(x)

=
∫

F11

| x− b1 |r dµ(x) +
∫

F22

| x− b3 |r dµ(x)

+
∫

F11

min
i=1,2

| c1 − x− bi |r dµ(x) +
∫

F11

min
i=2,3

| 1− c1 + x− bi |r dµ(x).

Corollary 3.3 yields

V3,r(µ) ≥
∫

F11

| x− a11 |r dµ(x) +
∫

F22

| x− a22 |r dµ(x)

+
∫

F11

min
i=1,2

| c1 − x− bi |r dµ(x) +
∫

F11

min
i=2,3

| 1− c1 + x− bi |r dµ(x).

We know, that inequality (12) is strict on a subset of F11 with positive µ measure. Hence we obtain

V3,r(µ) >

∫
F11

| x− a11 |r dµ(x) +
∫

F22

| x− a22 |r dµ(x) + 2
∫

F11

(
c1

2
− x)rdµ(x).

From Lemma 2.1 we get
∫

F11
| x− a11 |r dµ(x) =

∫
F21

| x− a21 |r dµ(x) resp.∫
F11

( c1
2 − x)rdµ(x) =

∫
F12

(x− c1
2 )rdµ(x). Thus we conclude

V3,r(µ) >

∫
F21

| x− a21 |r dµ(x) +
∫

F22

| x− a22 |r dµ(x)

+
∫

F11

(
c1

2
− x)rdµ(x) +

∫
F12

(x− c1

2
)rdµ(x).

By a1 = c1
2 we have

∫
F11

( c1
2 − x)rdµ(x) +

∫
F12

(x− c1
2 )rdµ(x) =

∫
F1
| x− a1 |r dµ(x). Hence we deduce

V3,r(µ) >

∫
F21

| x− a21 |r dµ(x) +
∫

F22

| x− a22 |r dµ(x) +
∫

F1

| x− a1 |r dµ(x)

= Ψ{a1,a21,a22}(µ) ≥ V3,r(µ),

a contradiction.

Case 3. n ≥ 4
We will prove the assertion by contradiction.
Assume that β ∩ (F\(F1 ∪ F2)) 6= ∅. By Lemma 3.6 we have {bj} = β ∩ (F\(F1 ∪ F2)) with j defined in (4)
and bj−1+bj

2 < c1. Let α = {a11, a12, a21, a22} be the set of midpoints of the sets F11, F12, F21 and F22 resp.
By the symmetry of µ (Lemma 2.1) we get∫

F

min
a∈α

| x− a |r dµ(x)

=
∫

F11∪F12∪F21∪F22

min
a∈α

| x− a |r dµ(x)

= 4
∫

F11

| x− a11 |r dµ(x)

= 4
∫

F1111∪F1112∪F1121∪F1122

| x− a11 |r dµ(x). (22)
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Since a11 = π2
2 we obtain

max
x∈F1111

| x− a11 |=
π2

2
= max

x∈F1122
| x− a11 | (23)

and

max
x∈F1112

| x− a11 |=
π2

2
− π3 + π4 = max

x∈F1121
| x− a11 | . (24)

Combining (22), (23) and (24) we get∫
F

min
a∈α

| x− a |r dµ(x)

≤ 4 · 2µ(F1111)
(
(
π2

2
)r + (

π2

2
− π3 + π4)r

)
=

cr
1

2

(
(
c2

2
)r + (

c2

2
− c2c3 + c2c3c4)r

)
≤ cr

1

4
(cr

2 + (c2 − 2c2c3 + 2c2c3c4)r) . (25)

Let x ∈ F122. If bj−1+bj

2 /∈ F122 we have

min
b∈β

| x− b |= bj − x ≥ bj − c1 ≥ max(0, bj − c1 − π3).

If bj−1+bj

2 ∈ F122 and bj − c1 > π3, then, bj−1 < minF122 and

min
b∈β

| x− b |≥ min(bj − x, x− bj−1) ≥ min(bj − c1, c1 − π3 − bj−1)

Since c1 ≥ 1
2 (bj−1 + bj) and therefore c1 − bj−1 ≥ bj − c1, we obtain

min(bj − c1, c1 − π3 − bj−1) ≥ max(0, bj − c1 − π3).

If bj − c1 ≤ π3, then

min
b∈β

| x− b |≥ 0 = max(0, bj − c1 − π3).

Combining these inequalities we obtain

min
x∈F122

min
b∈β

| x− b |≥ max(0, bj − c1 − π3). (26)

Similarly one derives

min
x∈F211

min
b∈β

| x− b |≥ max(0, 1− c1 − bj − π3), (27)

min
x∈F121

min
b∈β

| x− b |≥ max(0, bj − c1 − π2), (28)

and

min
x∈F212

min
b∈β

| x− b |≥ max(0, 1− c1 − bj − π2). (29)

Combining (26), (27), (28), and (29) we calculate

Vn,r(µ) =
∫

F

min
b∈β

| x− b |r dµ(x)

>

∫
F121∪F122∪F211∪F212

min
b∈β

| x− b |r dµ(x)

≥ 1
8

((max(0, bj − c1 − π3))r + (max(0, 1− c1 − bj − π3))r)

+
1
8

((max(0, bj − c1 − π2))r + (max(0, 1− c1 − bj − π2))r) .
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14 W. Kreitmeier: Quantization for Cantor Distributions

Due to supj∈N cj ≤ 1
3 we get

Vn,r(µ) >
1
8

(
2(

1− 2c1 − 2π3

2
)r + 2(

1− 2c1 − 2π2

2
)r

)

≥ cr
1

4

(
(
1
2
− c2c3)r + (

1
2
− c2)r

)
. (30)

Now let A = 1
2 − c2c3 and B = 1

2 − c2, resp. C = c2 and D = c2 − 2c2c3 + 2c2c3c4. Note, that A,B, C and D
are non-negative real numbers. Moreover,

A + B − (C + D)

= (
1
2
− c2c3) + (

1
2
− c2)− (c2 + (c2 − 2c2c3 + 2c2c3c4))

= 1− c2(3 + c3(2c4 − 1)) > 1− 3c2 ≥ 0,

and max(A,B) = A > C = max(C,D). By Lemma 3.10 we get

(
1
2
− c2c3)r + (

1
2
− c2)r > c2

r + (c2 − 2c2c3 + 2c2c3c4)r.

Combining the last inequality with (30) and (25) we obtain∫
F

min
a∈α

| x− a |r dµ(x) <

∫
F

min
b∈β

| x− b |r dµ(x),

which contradicts the optimality of β.
Hence in all cases we have β ∩ (F\(F1 ∪ F2)) = ∅ and the proof of Proposition 3.11 is complete.

Remark 3.12 By checking all possibilities, it is easy to see, that

min
i=1,2

| c1 − x− bi | + min
i=2,3

| 1− c1 + x− bi |≥ c1 − 2x

holds for every x ∈ F11. Moreover, all other arguments in the proof of Proposition 3.11 (especially the application
of Corollary 3.3) also work for r = 1. Hence, Proposition 3.11 is also valid for r = 1.

4 Determination of the optimal quantizers and the optimal quantization error

In this section we will determine the n−optimal quantizers for µ and derive a formula for the quantization error.
To this end, we parallel the approach in the proofs of Lemma 3.3 - 3.6 and Proposition 3.7 in [6], making
amendments to the case supj∈N cj ≤ 1

3 where necessary.
For a finite non-empty set α ⊂ R and a ∈ α let

W (a | α) = {x ∈ R :| x− a |= min
b∈α

| x− b |} (31)

be the Voronoi cell generated by a ∈ α. In this section β denotes an arbitrary finite non-empty subset of R.

Lemma 4.1 Let k ∈ N and β ⊂ Ek−1. Let F ∈ Dk−1 with β ∩ F 6= ∅. Then

min
b∈β∩F

| x− b |= min
b∈β

| x− b | (32)

holds for every x ∈ F. If, in addition, β ∩H 6= ∅ for every H ∈ Dk−1, then
µ(· |

⋃
b∈β∩F W (b | β)) = µ(· | F ).
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P r o o f. Equation (32) holds since supj∈N cj ≤ 1
3 implies minx∈F,y∈H | x − y | ≥ diam(F ) for every

F,H ∈ Dk−1 with F 6= H .
Now assume β ∩ H 6= ∅ for every H ∈ Dk−1. Combining (31) with (32) we know, that F is a subset of⋃

b∈β∩F W (b | β). Since supj∈N cj ≤ 1
3 and µ is non-atomic, we get µ(H ∩

⋃
b∈β∩F W (b | β)) = 0 for every

H ∈ Dk−1\{F}. Together with µ(Ek−1) = 1 one derives µ(· |
⋃

b∈β∩F W (b | β)) = µ(· | F ).

For n ∈ N we call a set n-optimal, if it is an n-optimal set of order r for µ.

Lemma 4.2 For k, n ∈ N let β ⊂ Ek−1 have exactly n elements. Then the following implications hold.
(i) If there exist G, H ∈ Dk−1 with card(β ∩G) = 0 and card(β ∩H) > 2, then β is not n−optimal.
(ii) If β∩F 6= ∅ for every F ∈ Dk−1 and if there are G, H ∈ Dk−1 with card(β∩G) = 1 and card(β∩H) > 2,
then β is not n−optimal.

P r o o f. (i) For k = 1 there is nothing to prove. Now let k > 1 and let G, H ∈ Dk−1 be as in (i). Set
b1 = min(β ∩H), b3 = max(β ∩H) and choose b2 ∈ β ∩H with b1 < b2 < b3. For the midpoint a of G define

γ = (β\{b2}) ∪ {a}.

Like in the proof of [6], Lemma 3.4 we get∫
Ek−1\(G∪H)

min
b∈β

| x− b |r dµ(x) ≥
∫

Ek−1\(G∪H)

min
c∈γ

| x− c |r dµ(x) (33)

Since β ∩G = ∅, β ⊂ Ek−1 and supj∈N cj ≤ 1
3 we have∫

G

min
b∈β

| x− b |r dµ(x) ≥ µ(G)(diam(G))r = µ(H)(diam(H))r. (34)

From the definition of γ we obtain∫
G

min
c∈γ

| x− c |r dµ(x) ≤
∫

G

| x− a |r dµ(x) < (
1
2

diam(G))rµ(G). (35)

Moreover, we derive∫
H

min
c∈γ

| x− c |r dµ(x)−
∫

H

min
b∈β

| x− b |r dµ(x)

≤
∫

[b1,b3]

(min(| x− b1 |, | x− b3 |))rdµ(x)

≤ µ(H)(
1
2

diam(H))r. (36)

Combining inequalities (34), (35) and (36) yields

∫
G

min
b∈β

| x− b |r dµ(x) ≥ µ(H)(diam(H))r

≥ µ(G)(
1
2

diam(G))r + µ(H)(
1
2

diam(H))r

>

∫
G

min
c∈γ

| x− c |r dµ(x) +
∫

H

min
c∈γ

| x− c |r dµ(x)−
∫

H

min
b∈β

| x− b |r dµ(x). (37)

The combination of (33) and (37) shows, that β is not n−optimal.

(ii) Again, if k = 1 there is nothing to prove. So let k > 1 and G, H ∈ Dk−1 be as in (ii). Set {b0} = G∩ β. Let
b1, b2, b3 ∈ β ∩H with b1 < b2 < b3. Let a1 and a2 be the midpoints of G1 and G2 and a′1 and a′2 the midpoints
of H1 and H2 respectively. Set

γ = (β\{b0, b1, b2, b3}) ∪ {a1, a2, a
′
1, a

′
2}.
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16 W. Kreitmeier: Quantization for Cantor Distributions

Like in the proof of [6], Lemma 3.5 we get∫
Ek−1\(G∪H)

min
b∈β

| x− b |r dµ(x) =
∫

Ek−1\(G∪H)

min
c∈γ

| x− c |r dµ(x) (38)

By Lemma 4.1 we have∫
G

min
b∈β

| x− b |r dµ(x) =
∫

G

| x− b0 |r dµ(x). (39)

By Corollary 3.3 we know that∫
G

| x− b0 |r dµ(x) ≥
∫

G

| x− a |r dµ(x), (40)

where a is the midpoint of G. It is easy to show that∫
G

| x− a |r dµ(x) ≥ 1
2
µ(G)(diam(G))r((

1
2
− ck)r + (

1
2
− ckck+1)r). (41)

Combining (39) and (40) with (41) we derive∫
G

min
b∈β

| x− b |r dµ(x) ≥ 1
2
µ(G)(diam(G))r((

1
2
− ck)r + (

1
2
− ckck+1)r). (42)

Due to a1, a2 ∈ γ we obtain∫
G

min
c∈γ

| x− c |r dµ(x) ≤
∫

G1

| x− a1 |r dµ(x) +
∫

G2

| x− a2 |r dµ(x)

≤ 1
2
µ(G)(diam(G))r((

ck

2
− ckck+1 + ckck+1ck+2)r + (

ck

2
)r). (43)

In the same way we derive∫
H

min
c∈γ

| x− c |r dµ(x) ≤ 1
2
µ(H)(diam(H))r((

ck

2
− ckck+1 + ckck+1ck+2)r + (

ck

2
)r). (44)

Combining (42), (43) and (44) we get∫
G∪H

min
b∈β

| x− b |r dµ(x)−
∫

G∪H

min
c∈γ

| x− c |r dµ(x). (45)

≥ 1
2
µ(G)(diam(G))r[(

1
2
− ck)r + (

1
2
− ckck+1)r

−2(
ck

2
− ckck+1 + ckck+1ck+2)r − 2(

ck

2
)r]

≥ 1
2
µ(G)(diam(G))r[(

1
2
− ck)r + (

1
2
− ckck+1)r

−(ck − 2ckck+1 + 2ckck+1ck+2)r − cr
k]. (46)

Now let A = 1
2 − ck and B = 1

2 − ckck+1 resp. C = ck and D = ck − 2ckck+1 + 2ckck+1ck+2. Obviously
A,B,C and D are non-negative real numbers and we have

A > B > C > D.

Moreover

A + B − (C + D) =
1
2
− ck +

1
2
− ckck+1 − (ck − 2ckck+1 + 2ckck+1ck+2)− ck

= 1− 3ck + ckck+1(1− 2ck+2) > 1− 3ck ≥ 0.
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Since r ≥ 1 we get by Lemma 3.10 that

(
1
2
− ck)r + (

1
2
− ckck+1)r − (ck − 2ckck+1 + 2ckck+1ck+2)r − cr

k > 0. (47)

Combining inequality (47), (46) and (45) we get together with (38)∫
min
b∈β

| x− b |r dµ(x) >

∫
min
c∈γ

| x− c |r dµ(x).

Hence β is not n− optimal.

Lemma 4.3 Let k ∈ N0, n ∈ N and 2k ≤ n. Let β be n−optimal. Then β ⊂ Ek and F ∩ β 6= ∅ for every
F ∈ Dk.

P r o o f. 1. Let k = 0. By [3], Remark 4.6 (a) we know, that β ⊂ E0. Since D0 = {E0} we have F ∩ β 6= ∅
for every F ∈ D0.

2. Let k = 1. Proposition 3.11 yields β ⊂ E1 and (β ∩ F ) 6= ∅ for every F ∈ D1.
3. Let k ≥ 2 and assume, that for a j < k we have β ⊂ Ej . We will show, that β ⊂ Ej+1 and for every

F ∈ Dj+1 we have card(β ∩ F ) ≥ 1. Assume, that there is a G ∈ Dj with G ∩ β = ∅. Then we have a H ∈ Dj

with card(H ∩ β) > 2, because otherwise we would get

n =
∑

F∈Dj

card(β ∩ F ) ≤ 2(2j − 1) < 2j+1 ≤ n, (48)

a contradiction. By Lemma 4.2 (i) this contradicts the optimality of β. Thus we have card(β ∩ F ) ≥ 1 for all
F ∈ Dj . Suppose, that a G ∈ Dj contains only one point. Like in (48) we get a H ∈ Dj with card(H ∩ β) ≥ 3.
By Lemma 4.2 (ii) this contradicts the optimality of β. Therefore, card(β ∩ F ) ≥ 2 for all F ∈ Dj . By [3],
Theorem 4.1 we know that for every F ∈ Dj the set β ∩ F is an card(β ∩ F )− optimal quantizer for
µ(· |

⋃
b∈β∩F W (b | β)). By Lemma 4.1 we obtain µ(· |

⋃
b∈β∩F W (b | β)) = µ(· | F ). Hence, Proposition

3.11 and Remark 3.12 yield β ⊂ Ej+1 and for every F ∈ Dj+1 we have card(β ∩ F ) ≥ 1.
4. If one repeats the procedure in 3. till j = k − 1, the assertion is proved.

The distribution µ is defined by the sequence (cl)∞l=1. For k ∈ N let µ(k) be the dyadic homogeneous Cantor
measure defined by the sequence (cl+k−1)∞l=1. Clearly, µ(1) = µ. Recall πk =

∏k
i=1 ci. Now we can state the

main result of this paper.
Theorem 4.4 Let r > 1 and n ≥ 2. Let k ∈ N and j ∈ N0 such that n = 2k + j, 0 ≤ j < 2k. Let β be

n−optimal. Then β consists of the midpoints of some 2k − j basic intervals of order k and the midpoints of the
2j basic intervals of order (k + 1) contained in the other j basic intervals of order k. Moreover,

Vn,r(µ) =
πr

k

2k
[(2k − j)V1,r(µ(k+1)) + j · cr

k+1V1,r(µ(k+2))]. (49)

P r o o f. By Lemma 4.3 we have β ⊂ Ek and card(F ∩ β) ≥ 1 for every F ∈ Dk. Assume, that a G ∈ Dk

exists, with card(β ∩G) > 2. Due to n < 2k+1 a H ∈ Dk exists, with card(H ∩ β) = 1. By Lemma 4.2 (ii) this
contradicts the optimality of β. Hence, for all F ∈ Dk we get 1 ≤ card(β ∩ F ) ≤ 2. Let F ∈ Dk be arbitrary.
Applying [3], Theorem 4.1 in combination with Lemma 4.1, we obtain, that β ∩ F is an card(β ∩ F )−optimal
quantizer of order r for µ(· | F ). If card(β ∩ F ) = 1, then we get from Corollary 3.3, that β ∩ F consists of the
midpoint of F. If card(β ∩ F ) = 2, then Lemma 3.6 yields card(β ∩ F1) = 1 and card(β ∩ F2) = 1. Like in the
proof of Lemma 4.1, one gets in this case that µ(· | Fi) = µ(· |

⋃
b∈β∩Fi

W (b | β))
for every i ∈ {1, 2}. Applying [3], Theorem 4.1, we obtain that for every i ∈ {1, 2} the set β ∩ Fi is an
card(β∩Fi)− optimal quantizer for µ(· | Fi). By Corollary 3.3 we get, that β∩F1 consists of the midpoint of F1

and β ∩ F2 consists of the midpoint of F2. This yields the first part of the assertion. For the optimal quantization
error we deduce from the first part that

Vn,r(µ) =
∑

F∈Dk; card(β∩F )=1

µ(F )V1,r(µ(· | F )) +
∑

F∈Dk; card(β∩F )=2

µ(F )V2,r(µ(· | F )). (50)
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18 W. Kreitmeier: Quantization for Cantor Distributions

For l ∈ N let

R 3 x
Hl→ x · πl ∈ R.

From the construction of µ we get µ(· | Hk([0, 1])) = µ(k+1) ◦H−1
k . By Lemma 2.1 we have

µ(· | F ) = µ(· | Hk([0, 1])) ◦Θ−1
min(F )

for every F ∈ Dk. By [3], Lemma 3.2 (a) we obtain

V1,r(µ(· | F )) = V1,r(µ(k+1) ◦H−1
k ) = πr

kV1,r(µ(k+1)) (51)

for every F ∈ Dk. Further note, that

V2,r(µ(· | F )) =
1
2
V1,r(µ(· | F1)) +

1
2
V1,r(µ(· | F2))

= V1,r(µ(· | F1)) = V1,r(µ(k+2) ◦H−1
k+1) = πr

k+1V1,r(µ(k+2)) (52)

for every F ∈ Dk. Using (51) and (52) we derive from equation (50), that

Vn,r(µ) =
1
2k

[(2k − j)πr
kV1,r(µ(k+1)) + jπr

k+1V1,r(µ(k+2))]

=
πr

k

2k
[(2k − j)V1,r(µ(k+1)) + j · cr

k+1V1,r(µ(k+2))]

and Theorem 4.4 is proved.

Remark 4.5 For supk∈N ck ≤ 1
4 , the first part of Theorem 4.4 was proved by Kesseböhmer and Zhu in [6],

Proposition 3.6.
Remark 4.6 For supk∈N ck ≤ 1

4 and r > 1, Kesseböhmer and Zhu (cf. [6], Remark 3.8 (1)) mentioned, that
Cn,r(µ) ⊂ Cn,1(µ), but Cn,1(µ)\Cn,r(µ) 6= ∅. By checking the proof of Theorem 4.4 it is easy to see, that this
fact also holds under the weaker assumption supk∈N ck ≤ 1

3 .

Although it seems, that no explicit reference exists for the next result, Kesseböhmer and Zhu derived similar
inequalities for supj∈N cj ≤ 1

4 (cf. Proof of Theorem 1.6 (3) in [6]).

Corollary 4.7 Let k, n ∈ N with 2k ≤ n < 2k+1. Then

2−k[2k+1 − n + (n− 2k)cr
k+1](

1
6
)rπr

k < Vn,r(µ) < (
1
2
)rπr

k. (53)

P r o o f. Since supj∈N cj ≤ 1
3 , we obtain for every l ∈ N that ( 1

6 )r < V1,r(µ(l)) < ( 1
2 )r. Then, inequality

(53) is an easy consequence of equation (49).

5 Quantization dimension and quantization coefficient

In this section we will prove a characterization for the existence of the quantization dimension. Moreover, if the
quantization dimension exists, we will prove under weak assumptions, that the quantization coefficient does not
exist.

The lower resp. upper quantization dimension of µ of order r is defined as

Dr(µ) := lim infn→∞
r log(n)

− log(Vn,r(µ))

resp.

Dr(µ) := lim supn→∞
r log(n)

− log(Vn,r(µ))
.

Copyright line will be provided by the publisher



mn header will be provided by the publisher 19

If the two numbers agree, Dr(µ) = Dr(µ) = Dr(µ) is called the quantization dimension of µ of order r. From
[3], Theorem 12.18 one gets, that the quantization dimension always exist for so-called regular probabilities of
dimension D, where D = Dr. For example the classical Cantor distribution is regular of dimension Dr = log(2)

log(3)

(cf. [3], Example 12.10).
For general dyadic homogeneous Cantor measures, the quantization dimension need not exist. This was

first shown by Lindsay [7], Example 5.5 (see also [6], Theorem 1.5 (1)). Under the condition supj∈N cj ≤ 1
4

Kesseböhmer and Zhu (cf. [6], Theorem 1.6 (3)) proved a characterization for the existence of the quantization
dimension. Moreover they showed for supj∈N cj ≤ 1

2 , that

Dr(µ) = lim supk→∞
log(2)

− 1
k

∑k
i=1 log(ci)

(54)

(cf. [6], Theorem 1.6 (1)), resp.

Dr(µ) ≤ lim infk→∞
log(2)

− 1
k

∑k
i=1 log(ci)

(55)

(cf. [6], Proposition 3.1).
In the following proposition we will sharpen their results under the condition supj∈N cj ≤ 1

3 .

Proposition 5.1

Dr(µ) = lim infk→∞
log(2)

− 1
k

∑k
i=1 log(ci)

≤ lim supk→∞
log(2)

− 1
k

∑k
i=1 log(ci)

= Dr(µ)

P r o o f. Due to (54) and (55) it remains to show, that

Dr(µ) ≥ lim infk→∞
log(2)

− 1
k

∑k
i=1 log(ci)

. (56)

For n ∈ N let k(n) ∈ N0, j(n) ∈ [0, 2k(n)[ with n = 2k(n) + j(n). Since (Vn,r(µ))n∈N is decreasing, we
obtain

Dr(µ) = lim infn→∞
log(2k(n) + j(n))

− 1
r log(V2k(n)+j(n),r(µ))

≥ lim infk→∞
log(2k)

− 1
r log(V2k+1,r(µ))

= lim infk→∞

(
log(2k+1)

− 1
r log(V2k+1,r(µ))

+
log( 1

2 )
− 1

r log(V2k+1,r(µ))

)
.

Note, that limn→∞ Vn,r(µ) = 0 (cf. [3], Lemma 6.1). This yields

Dr(µ) ≥ lim infk→∞
log(2k)

− 1
r log(V2k,r(µ))

. (57)

Using Corollary 4.7, it is straightforward to check, that

lim infk→∞
log(2k)

− 1
r log(V2k,r(µ))

= lim infk→∞
log(2)

− 1
k

∑k
i=1 log(ci)

. (58)

The combination of (57) and (58) proves inequality (56).

Remark 5.2 As an immediate consequence of Proposition 5.1 one gets, that the quantization dimension
Dr(µ) exists, if and only if ( 1

k

∑k
i=1 log(ci))k∈N converges in R. If one of these equivalent conditions is sat-

isfied, then

Dr(µ) = lim
k→∞

log(2)

− 1
k

∑k
i=1 log(ci)

.
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If Dr = Dr(µ) exists and (n
r

Dr Vn,r(µ))n∈N converges towards a value in ]0,∞[, we call limn→∞ n
r

Dr Vn,r(µ)
the r−th quantization coefficient of the distribution µ. Next we will show, that under weak assumptions this se-
quence does not converge, i.e. the quantization coefficient does not exist.

Proposition 5.3 Suppose ( 1
k

∑k
i=1 log(ci))k∈N converges in R. Then Dr exists and

(i) lim supn→∞n
r

Dr Vn,r(µ) < ∞, if and only if lim supk→∞2
k

Dr πk < ∞
(ii) lim infn→∞n

r
Dr Vn,r(µ) > 0, if and only if lim infk→∞2

k
Dr πk > 0

(iii) if 0 < lim infk→∞2
k

Dr πk and lim supk→∞2
k

Dr πk < ∞, then

0 < lim infn→∞n
r

Dr Vn,r(µ) < lim supn→∞n
r

Dr Vn,r(µ) < ∞. (59)

P r o o f. By Remark 5.2 we know that Dr exists. (i) and (ii) follow immediately from Corollary 4.7.
(iii) Let k ≥ 2 and nk = 2k resp. mk = (5

4 )2k. Applying (49) we get

n
r

Dr

k Vnk,r(µ) = (2k)
r

Dr πr
kV1,r(µ(k+1)) (60)

resp.

m
r

Dr

k Vmk,r(µ) ≥ ((
5
4
)2k)

r
Dr

1
2k

[(2k+1 − (
5
4
)2k)πr

kV1,r(µ(k+1))]

=
3
4
(
5
4
)

r
Dr (2k)

r
Dr πr

kV1,r(µ(k+1)). (61)

Note, that

r

Dr
=

r limk→∞(− 1
k

∑k
i=1 log(ci))

log(2)
≥ log(3)

log(2)
.

Combining this with (60) and (61) we deduce

m
r

Dr

k Vmk,r(µ)

n
r

Dr

k Vnk,r(µ)
≥ 3

4
(
5
4
)

r
Dr ≥ 3

4
(
5
4
)

log(3)
log(2) > 1. (62)

Due to the assumptions in (iii) the combination of (62) with (i) and (ii) yields

0 < lim infn→∞n
r

Dr Vn,r(µ) ≤ lim infk→∞n
r

Dr

k Vnk,r(µ)

< lim supk→∞m
r

Dr

k Vmk,r(µ) ≤ lim supn→∞n
r

Dr Vn,r(µ) < ∞.

Thus (iii) is proved.

Remark 5.4 Clearly (59) holds, if ci = c ∈ ]0, 1
3 ] for every i ∈ N. It remains an open question, if

lim infn→∞n
r

Dr Vn,r(µ) < lim supn→∞n
r

Dr Vn,r(µ) still holds, if we drop some of the assumptions in Proposi-
tion 5.3 (iii).

6 The self-similar case

If ck = c ∈ ]0, 1
2 ] for every k ∈ N, the dyadic homogeneous Cantor distribution µ becomes self-similiar with

contracting parameter c. Graf and Luschgy have shown for this type of measure, that the quantization dimension
Dr(µ) equals D = D(c) = log(2)

−log(c) for every r > 0 (cf. [4], Remark 5.13(a)).
In this section we obtain for c ∈ ]0, 1

3 ] an explicit formula for the quantization error and can characterize the
set of all accumulation points of the sequence (n

r
D Vn,r(µ))n∈N.
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Remark 6.1 If µ denotes a self-similar Cantor distribution with contracting parameter c ∈ ]0, 1
3 ], then we

have µ(k) = µ for all k and, therefore, we obtain

Vn,r(µ) = (
cr

2
)kV1,r(µ)(cr(n− 2k) + 2k+1 − n) (63)

as an immediate consequence of Theorem 4.4. With the mapping fc : [1, 2] → R defined by

fc(x) = V1,r(µ)x
r
D ((2− cr)− x(1− cr))

one gets as in the proof of [2], Theorem 6.3, that fc([1, 2]) equals the set of all accumulation points of the
sequence (n

r
D Vn,r(µ))n∈N. It is easy to see, that fc(1) = V1,r(µ) = fc(2) and that f ′c has one critical point

x0 := x0(c) :=
2− cr

(1− cr)(1 + D
r )

∈ ]1, 2[. (64)

Moreover f ′c(1) > 0 resp. f ′c(2) < 0. Hence fc attains its maximum at x0 and we have
fc([1, 2]) = [fc(1), fc(x0)] = [V1,r(µ), fc(x0)]. Clearly, the quantization coefficient limn→∞ n

r
D Vn,r(µ) does

not exist.

Remark 6.2 As a special case, Remark 6.1 yields the optimal quantization for the classical Cantor Distribu-
tion (ck = 1

3 for all k). For this distribution and r = 2, the results outlined in Remark 6.1 were first proved in [2]
(Theorem 5.2. and Theorem 6.3). Theorem 5.2. in [2] also describes the n−optimal sets of order 2, and, in this
respect, is a special case of Theorem 4.4.

Example 6.3 If we drop the assumption c ≤ 1
3 , Remark 6.1 resp. Theorem 4.4 becomes wrong. For example,

let µ be self-similar with a contracting parameter c ∈ ] 5−
√

17
2 , 1

2 [ and r = 2. Let F = [0, 1] and α = {a1, a21, a22}
with a1 the midpoint of F1 and a21, a22 the midpoints of F21, F22. Assume, that α ∈ C3,2(µ). Since c > 5−

√
17

2
one can prove that

µ(W (a21 | α) ∩ F1) > 0. (65)

By [3], Theorem 4.1 we obtain {a21} ∈ C1,2(µ(· | W (a21 | α))) and hence

a21 = E(µ(· | W (a21 | α))). (66)

By easy computations one can show, that the expected value of µ(· | F2 ∩W (a21 | α)) equals a21, which differs
from E(µ(· | W (a21 | α))), due to equation (65). This contradicts equation (66). Hence we have α /∈ C3,2(µ)
and Theorem 4.4 is not true.

Remark 6.4 Let µ = µc be self-similar with contracting parameter c ∈ ]0, 1
2 ] and x0(c) as defined in (64). If

c ∈ ]0, 1
3 ] we know from Remark 6.1, that

lim infn→∞n
r
D Vn,r(µc) = V1,r(µc) (67)

and

lim supn→∞n
r
D Vn,r(µc) = fc(x0(c)). (68)

Using the representations (67) and (68), one can show that the mappings
c → lim infn→∞n

r
D Vn,r(µc) and c → lim supn→∞n

r
D Vn,r(µc) are continuous on ]0, 1

3 ]. It is easy to prove,
that

lim
c→0

fc(x0(c)) = lim
c→0

lim supn→∞n
r
D Vn,r(µc) = ∞.
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The mapping c → fc(x0(c)) is also defined for c ∈ ] 13 , 1
2 ]. Moreover, one can show, that

lim
c→ 1

2−0
[fc(x0(c))− V1,r(µc)] > 0.

If c = 1
2 we have D = 1 and µ 1

2
equals the uniform distribution on [0, 1]. The sequence (nrVn,r(µ 1

2
))n∈N

converges in this case (see [3], Theorem 6.2 resp. Example 5.5). Hence we know that

lim
c→ 1

2−0
[fc(x0(c))− V1,r(µc)] > lim supn→∞nrVn,r(µ 1

2
)− lim infn→∞nrVn,r(µ 1

2
) = 0,

showing that the set of all accumulation points of the sequence (n
r
D Vn,r(µ))n∈N at c = 1

2 does not equal the
interval [V1,r(µ), fc(x0)] any more. The following questions remain open:

(i) For which values of c ∈ ] 13 , 1
2 ], does equation (67) resp. (68) hold, if any ?

(ii) Is c → lim infn→∞n
r
D Vn,r(µc) resp. c → lim supn→∞n

r
D Vn,r(µc) continuous on [ 13 , 1

2 ] ?

(iii) If c → lim supn→∞n
r
D Vn,r(µc)− lim infn→∞n

r
D Vn,r(µc) is not continuous at c = 1

2 what is

lim
c→ 1

2−0
[lim supn→∞n

r
D Vn,r(µc)− lim infn→∞n

r
D Vn,r(µc)],

provided it exists ?
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