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Abstract
Cryptography is the scientific study of techniques for securing information and

communication against adversaries. It is about designing and analyzing encryption
schemes and protocols that protect data from unauthorized reading. However, in our
modern information-driven society with highly complex and interconnected informa-
tion systems, encryption alone is no longer enough as it makes the data unintelligible,
preventing any meaningful computation without decryption. On the one hand, data
owners want to maintain control over their sensitive data. On the other hand, there
is a high business incentive for collaborating with an untrusted external party.

Modern cryptography encompasses different techniques, such as secure multiparty
computation, homomorphic encryption or order-preserving encryption, that enable
cloud users to encrypt their data before outsourcing it to the cloud while still being
able to process and search on the outsourced and encrypted data without decrypting it.
In this thesis, we rely on these cryptographic techniques for computing on encrypted
data to propose efficient multiparty protocols for order-preserving encryption, decision
tree evaluation and kth-ranked element computation.

We start with Order-preserving encryption (OPE) which allows encrypting data,
while still enabling efficient range queries on the encrypted data. However, OPE is
symmetric limiting, the use case to one client and one server. Imagine a scenario
where a Data Owner (DO) outsources encrypted data to the Cloud Service Provider
(CSP) and a Data Analyst (DA) wants to execute private range queries on this data.
Then either the DO must reveal its encryption key or the DA must reveal the private
queries. We overcome this limitation by allowing the equivalent of a public-key OPE.

Decision trees are common and very popular classifiers because they are explain-
able. The problem of evaluating a private decision tree on private data consists of a
server holding a private decision tree and a client holding a private attribute vector.
The goal is to classify the client’s input using the server’s model such that the client
learns only the result of the classification, and the server learns nothing. In a first ap-
proach, we represent the tree as an array and execute only d interactive comparisons
(instead of 2d as in existing solutions), where d denotes the depth of the tree. In a
second approach, we delegate the complete tree evaluation to the server using some-
what or fully homomorphic encryption where the ciphertexts are encrypted under the
client’s public key.

A generalization of a decision tree is a random forest that consists of many decision
trees. A classification with a random forest evaluates each decision tree in the forest
and outputs the classification label which occurs most often. Hence, the classification
labels are ranked by their number of occurrences and the final result is the best ranked
one. The best ranked element is a special case of the kth-ranked element. In this thesis,
we consider the secure computation of the kth-ranked element in a distributed setting
with applications in benchmarking and auctions. We propose different approaches for
privately computing the kth-ranked element in a star network, using either garbled
circuits or threshold homomorphic encryption.
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Kurzfassung
Kryptographie ist die wissenschaftliche Untersuchung von Techniken zum Schutz

von Daten und Kommunikation durch Verschlüsselung und Protokolle. In unserer
modernen informationsgetriebenen Gesellschaft mit hochkomplexen und miteinan-
der verbundenen Informationssystemen reicht Verschlüsselung allein nicht mehr aus,
da die Daten dadurch unverständlich werden und keine sinnvolle Berechnung ohne
Entschlüsselung mehr möglich ist. Einerseits möchten Dateneigentümer die Kontrolle
über ihre sensiblen Daten behalten. Andererseits besteht ein hoher geschäftlicher
Anreiz für die Zusammenarbeit mit einer nicht vertrauenswürdigen externen Partei.

Die moderne Kryptographie umfasst verschiedene andere Techniken, wie sichere
Mehrparteienberechnung, homomorphe Verschlüsselung oder ordnungserhaltende Ver-
schlüsselung, die es Cloud-Benutzern ermöglichen, ihre Daten vor dem Auslagern in
die Cloud zu verschlüsseln, während sie die ausgelagerten und verschlüsselten Daten
weiterhin verarbeiten und durchsuchen können, ohne sie zu entschlüsseln. In dieser
Arbeit stützen wir uns auf diese kryptografischen Techniken zur Verarbeitung ver-
schlüsselter Daten, um effiziente Mehrparteienprotokolle für ordnungserhaltende Ver-
schlüsselung, Entscheidungsbaumauswertung und die Berechnung des k-kleinsten El-
ements vorzuschlagen.

Wir starten mit der ordnungserhaltenden Verschlüsselung (Order-Preserving En-
cryption im englischen, kurz OPE), die das Verschlüsseln von Daten ermöglicht,
während weiterhin effiziente Bereichsabfragen auf den verschlüsselten Daten möglich
sind. OPE ist jedoch symmetrisch und beschränkt den Anwendungsfall auf einen
Client und einen Server. Wir betrachten ein Szenario, in dem ein Data Owner (DO)
verschlüsselte Daten an den Cloud Service Provider (CSP) auslagert und ein Data An-
alyst (DA) private Bereichsabfragen auf diese Daten ausführen möchte. Dann muss
entweder der DO seinen Verschlüsselungsschlüssel offenlegen oder der DA muss die
privaten Abfragen offenlegen. Wir überwinden diese Einschränkung, indem wir das
Äquivalent eines OPE mit öffentlichem Schlüssel konstruieren.

Entscheidungsbäume sind gängige und sehr beliebte Klassifikatoren, da sie erk-
lärbar sind. Das Problem der Auswertung eines privaten Entscheidungsbaums auf
private Daten besteht aus einem Server mit privatem Entscheidungsbaum und einem
Client mit privatem Attributvektor. Das Ziel ist es, die Eingaben des Clients mithilfe
des Servermodells so zu klassifizieren, dass der Client nur das Ergebnis lernt und der
Server nichts lernt. In einem ersten Ansatz stellen wir den Baum als Array dar und
führen nur d interaktive Vergleiche durch (anstatt 2d als in existierenden Lösungen),
wobei d die Tiefe des Baums bezeichnet. In einem zweiten Ansatz delegieren wir die
vollständige Baumbewertung unter Verwendung einer homomorphen Verschlüsselung
an den Server, wobei die Chiffretexte unter dem öffentlichen Schlüssel des Clients
verschlüsselt werden.

Eine Verallgemeinerung eines Entscheidungsbaums ist ein Random Forest, das aus
vielen Entscheidungsbäumen besteht. Eine Klassifizierung mit einem Random Forest
wertet jeden Entscheidungsbaum in dem Forest aus und gibt das am häufigsten vork-
ommende klassifizierte Label aus. Das Element mit der höchsten Häufigkeit ist ein
Spezialfall des k-kleinsten Elements. In dieser Arbeit betrachten wir die Berechnung
des k-kleinsten Elements in einer verteilten Umgebung mit Anwendungen in Bench-
marking und Auktionen. Wir schlagen verschiedene Ansätze vor, um das kth-Element
in einem Sternennetz privat zu berechnen.
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Chapter 1

Introduction

In this thesis, we propose efficient multiparty protocols for order-preserving encryp-
tion, decision tree evaluation, and kth-ranked element computation. We start with the
motivation behind our results. This chapter is structured as follows. In Section 1.1, we
describe the motivation of computing on encrypted data and survey the cryptographic
techniques relevant to our work. In Section 1.2, we describe our contributions which
have applications in database range queries, machine learning classification, bench-
marking and auction. Section 1.3 lists the papers published throughout the process of
writing this thesis. In Section 1.4, we describe the methodology followed in our main
chapters. Finally, we describe the structure of the remaining thesis in Section 1.5.

1.1 Motivation

Cryptography is the scientific study of techniques for securing information and commu-
nication against adversaries. It is about designing and analyzing encryption schemes
and protocols that protect data from unauthorized reading. However, in our mod-
ern information-driven society with highly complex and interconnected information
systems, encryption alone is no longer enough as it makes the data unintelligible,
preventing any meaningful computation without decryption. On the one hand, data
owners want to maintain control over their sensitive data. On the other hand, there
is a high business incentive for collaborating with an untrusted external party.

In cloud computing, companies use a network of remote servers hosted by a service
provider on the Internet to store, manage, and process data, rather than a local server
or a personal computer. By doing so, they delegate the maintenance of their computer
system and can focus on their core business. To protect their data, data owners can
encrypt it before outsourcing. However, this would imply that they must give up the
functionality of processing the data because encryption makes the data unintelligi-
ble, and outsourcing the encryption keys is not an option. Therefore, companies are
reluctant to migrate their sensitive data to the cloud.

The cloud provider might want to offer to its customers a cloud service which
requires computation on data belonging to the provider itself and the customers. On
the one hand, the cloud service might be based on a proprietary algorithm containing
business sensitive data, e.g., a trained neural network, or the cloud provider might be
constrained by law not to share certain information. On the other hand, the input
of customers to this cloud service and even the result of the computation might be
sensitive such that customers are not willing to use this service at all.

In other settings, different data owners might be interested in sharing the result of
a computation done on their individual data. A trivial solution would be to perform
the computation by an external trusted third party, which receives the input data,
runs the computation, outputs the result, and deletes all sensitive data. However, the
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confidentiality of the data and the lack of trust in any other party might prevent data
owners to participate in this kind of joint computation.

Modern cryptography encompasses different techniques, such as secure multiparty
computation [58, 90, 137, 140, 161, 195], homomorphic encryption [66, 84, 159, 186]
or order-preserving encryption [3, 30, 31, 123, 124, 163, 164], that enable cloud users
to encrypt their data before outsourcing it to the cloud, while still being able to pro-
cess and search on the outsourced and encrypted data without decrypting it. Secure
multiparty computation can emulate the trusted third party mentioned above, such
that the computation reveals nothing beyond the result.

Secure multiparty computation (SMC) is a cryptographic technique that allows
several parties to compute a function on their private inputs without revealing any
information other than the function’s output. The basic idea is to generically rep-
resent the function to be computed as a Boolean or arithmetic circuit and then run
an interactive protocol among the parties to privately evaluate the circuit. While
generic solutions are theoretically interesting in showing that a solution exists, they
are in general impractical for large size problems, since the number of cryptographic
operations is usually proportional to the number of gates in the circuit. Special-
ized protocols exploit the domain knowledge of the problem at hand and make use
of generic techniques only where it is necessary, reducing the number of gates that
require cryptographic operations and, therefore, resulting in more efficient solutions.

A Homomorphic Encryption (HE) scheme allows computations on ciphertexts by
generating a new ciphertext encrypting the result of a function on the plaintexts. It
can allow addition or multiplication to be performed homomorphically on plaintexts
and is, therefore, said to be additively or multiplicatively homomorphic. A somewhat
HE allows both addition and multiplication but with a limited number of operations.
The encryption adds noise to ciphertexts that grows during homomorphic operations.
If the noise in a ciphertext exceeds a given bound then correct decryption is no longer
possible. Fully homomorphic encryption can be built using somewhat HE by adding a
bootstrapping procedure that re-encrypts the ciphertext with a smaller noise without
decrypting it.

Order-preserving encryption (OPE) allows encrypting data, while still enabling
efficient range queries on the encrypted data. Moreover, it does not require any
change to the database management system, because the same comparison operator
for plaintexts is used for ciphertexts. This makes order-preserving encryption schemes
very suitable for data outsourcing in cloud computing scenarios. OPE can be stateless
or stateful. Stateless OPE fails to provide ideal security, which requires that OPE
should reveal only the order and nothing else. Stateful OPE can provide ideal security
but even an ideal secure OPE can remain vulnerable to plaintext guessing attacks.

In this thesis, we rely on the above mentioned cryptographic techniques for com-
puting on encrypted data to propose efficient SMC protocols to specific problems that
are defined in the next section.

1.2 Contributions

The contributions of this thesis have applications in databases, machine learning,
benchmarking, and auctions. This section is, therefore, structured around these ap-
plications. We then close the section with a list of publications.
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1.2.1 Databases: Order-Preserving Encryption

Databases allow storing data in a structured way such that queries can easily be
executed on the data. In this thesis, we are particularly interested in range queries
that require a comparison between values. Since we want the computation to be
done on encrypted data, we encrypt the data using order-preserving encryption before
outsourcing. OPE is necessarily symmetric limiting the use case to one client and one
server. Imagine a scenario where a Data Owner (DO) outsources encrypted data to
the Cloud Service Provider (CSP) and a Data Analyst (DA) wants to execute private
range queries on this data. Then either the DO must reveal its encryption key or
the DA must reveal the private queries. We overcome this limitation by allowing the
equivalent of a public-key OPE. We present a secure multiparty protocol that enables
secure range queries for multiple users. In this scheme, the DA cooperates with the DO
and the CSP to order-preserving encrypt the private range queries without revealing
any other information to the parties. This work has been published in [181] and is
discussed in detail in Chapter 4. The contribution is summarized as follows:

• We introduce a novel notion of oblivious order-preserving encryption (OOPE).
This scheme allows a DA to execute private range queries on an order-preserving
encrypted database.

• We propose an oblivious OPE protocol based on mutable OPE schemes by Popa
et al. [163] and Kerschbaum and Schröpfer [124].

• Since the schemes [124, 163] are deterministic, we also consider the case where
the underlying OPE scheme is probabilistic such as frequency-hiding OPE [123]
or OPE based on an efficiently searchable encrypted data structure [125].

• Finally, we implement and evaluate our scheme in LAN and WAN settings.

A concrete application of OOPE mentioned in the previous section can be found in
collaborative data analysis and machine learning. Imagine a supply chain scenario,
where a Data Analyst is a supplier (manufacturer) owning a private machine learning
model and is interested in optimizing its manufacturing process using private data
owned by its buyer (another supplier or distributor). As a machine learning model,
we are particularly interested in decision tree models. A decision tree model consists
of decision nodes, each marked with a test condition, and leaf nodes, each marked with
a classification label. As a result, if each test condition in a decision node consists of
a greater-than comparison, i.e., a range query, then each path in the decision tree is
a conjunction of range queries, which OOPE allows to execute while preserving the
privacy of both Data Owner and Data Analyst. Additional contributions related to
this work have been published in [125, 176, 182].

1.2.2 Machine Learning: Decision Tree Classification

Decision trees are common and very popular classifiers because their result is easy to
explain. In this thesis, we are interested in another scenario of decision trees, namely,
the problem of evaluating private decision trees on private data. The scenario consists
of a server holding a private decision tree and a client holding a private attribute
vector. The goal is to classify the client’s attribute vector using the server’s decision
tree model such that the result of the classification is revealed only to the client and
nothing else is revealed neither to the client nor the server. We propose in this thesis
two solution approaches to the problem.
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Previous solutions to this problem either transform the whole decision tree to an
oblivious program or perform as many comparisons as there are decision nodes. In our
first approach, the main idea of our novel solution is to represent the tree as an array.
Then we execute only d comparisons, where d denotes the depth of the tree. The
result of each comparison allows to obliviously compute the index of the next node,
which is never revealed to any party in clear. The comparison and the computation
of the next node are performed using a small garbled circuit, which is independent of
the position in the tree and its size. To actually select the next node in the tree, we
use a primitive called oblivious array indexing which, given an array and secret shares
on an index, returns secret shares of the indexed element to the parties. This work
has been published in [183] and is discussed in detail in Chapter 5. The contribution
is summarized as follows:

• We represent the tree as an array, where each element contains a node of the tree
and pointers to its child nodes. Then, while traversing the tree, we obliviously
select the next node and secret-share it to the parties. The comparison at each
node is performed using a garbled circuit, that takes secret-share of that node
and the corresponding attribute value and returns secret-shares of the index of
the next node.

• We instantiate our protocol by the different indexing procedures mentioned
above. In particular, instantiating our protocol with oblivious transfer is more
efficient for small to mid-size trees. With ORAM [189] our scheme has sublinear
communication.

• Finally, we implement and evaluate our scheme and demonstrate its practicality
regarding runtime and bandwidth. For small size trees, our scheme competes
with previous protocols but outperforms them if the size of the decision tree
becomes larger – using oblivious transfer for small to mid-size trees and ORAM
for very large trees.

Existing privacy-preserving protocols that address this problem use or combine
different generic secure multiparty computation approaches resulting in several inter-
actions between the client and the server. In the second approach, we design and
implement a novel client-server protocol that delegates the complete tree evaluation
to the server while preserving privacy and reducing the overhead. The idea is to
use fully (somewhat) homomorphic encryption and evaluate the tree on ciphertexts
encrypted under the client’s public key. However, since current somewhat homomor-
phic encryption schemes have high overhead, we combine efficient data representations
with different algorithmic optimizations to keep the computational overhead and the
communication cost low. As a result, we are able to provide the first non-interactive
protocol, that allows the client to delegate the evaluation to the server by sending an
encrypted input and receiving only the encryption of the result. This work is pub-
lished in [180] and is discussed in detail in Chapter 6. The contribution is summarized
as follows:

• We propose a non-interactive protocol for private decision tree evaluation. Our
scheme allows the client to delegate the evaluation to the server by sending an
encrypted input and receiving only the encryption of the result.

• We propose Pdt-Bin which is an instantiation of the main protocol with a bi-
nary representation of the input. Then we combine efficient data representations
with different algorithmic optimizations to keep the computational overhead and
the communication cost low.
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• We first propose a modified variant of the Lin-Tzeng comparison protocol [135].
Then, we propose Pdt-Int which is an instantiation of the main protocol using
an arithmetic circuit, where the values are compared using our modified variant
of Lin-Tzeng comparison protocol [135].

• We provide correctness and security proofs of our scheme. Finally, we implement
and benchmark both instantiations using HElib [100] and TFHE [52].

Both approaches can be extended to random forests which consist of many decision
trees, such that the final result is the classification label that occurs most often among
the individual decision tree evaluations.

1.2.3 Benchmarking and Auction: The kth-Ranked Element

As mentioned above, a generalization of a decision tree is a random forest that consists
of many decision trees. Classification with a random forest evaluates each decision
tree in the forest and outputs the classification label which occurs most often. Hence,
the classification labels are ranked by their number of occurrences and the final result
is the best ranked one. The best ranked element is a special case of the kth-ranked ele-
ment. In this part of the thesis, we consider the computation of the kth-ranked element
in a distributed setting. That is, given n parties each holding a private integer, the
problem is to securely compute the element ranked k (for a given k such that 1 ≤ k ≤ n)
among these n integers. The goal is to reveal to the parties only the kth-ranked element
(or the party holding it) and nothing else. The computation of the kth-ranked element
has applications in benchmarking, where a company is interested in knowing how well
it is doing compared to others, or in auctions where bidders are interested in knowing
the highest bid. Previous secure protocols for the kth-ranked element require a com-
munication channel between each pair of parties. A server model naturally fits with
the client-server architecture of Internet applications in which clients are connected
to the server and not to other clients. It simplifies secure computation by reducing
the number of rounds and improves its performance and scalability. We propose dif-
ferent approaches for privately computing the kth-ranked element in the server model,
using either garbled circuits or threshold homomorphic encryption. This work has
been published in [184] and is discussed in detail in Chapter 7. The contribution is
summarized as follows:

• Our first scheme Kre-Ygc uses Yao’s garbled circuits [20, 139] to compare
clients’ inputs and additively HE (AHE) to compute the rank of each input
without revealing any sensitive data.

• Our second scheme Kre-Ahe1 is based on threshold additively HE (AHE).
The server uses our modified variant of the Lin-Tzeng comparison protocol [135]
to compare inputs encrypted with AHE.

• In our third scheme Kre-Ahe2, we continue with threshold AHE, however, we
perform the comparison interactively using the DGK protocol [63].

• The fourth scheme Kre-She is based on somewhat HE and allows the server
to non-interactively compute the kth-ranked element such that the clients only
interact to jointly decrypt the result.

Our schemes have a constant number of rounds. Kre-Ygc is suitable for a setting
where the server is non-colluding and clients cannot fail. If collusion and failure are
an issue, then either Kre-Ahe2 or Kre-She is suitable. Kre-She has the best
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asymptotic complexity, however, it is practically less efficient because of the high
overhead of homomorphic encryption.

1.3 Publications

The contributions of this thesis have been published in the work listed below:

• [181]: Anselme Tueno and Florian Kerschbaum.
Efficient Secure Computation of Order-Preserving Encryption.
Proceedings of the 15th ACM ASIA Conference on Computer and Communica-
tions Security (ASIACCS), 2020

• [125]: Florian Kerschbaum and Anselme Tueno.
An efficiently searchable encrypted data structure for range queries.
Proceedings of the 24th European Symposium on Research in Computer Security
(ESORICS), 2019

• [176]: Fabian Taigel, Anselme K. Tueno, and Richard Pibernik.
Privacy-preserving condition-based forecasting using machine learning.
Journal of Business Economics, Jan 2018

• [182]: Anselme Tueno, Florian Kerschbaum, Daniel Bernau and Sara Foresti.
Selective access for supply chain management in the cloud.
Proceedings of the IEEE Conference on Communications and Network Security
(CNS), 2017

• [183]: Anselme Tueno, Florian Kerschbaum and Stefan Katzenbeisser.
Private Evaluation of Decision Trees using Sublinear Cost.
Proceedings of the 19th Privacy Enhancing Technologies Symposium (PoPETS),
2019

• [180]: Anselme Tueno, Yordan Boev and Florian Kerschbaum.
Non-Interactive Private Decision Tree Evaluation.
Proceedings of the 34th Annual IFIP WG 11.3 Working Conference on Data
and Applications Security and Privacy (DBSec), 2020

• [184]: Anselme Tueno, Florian Kerschbaum, Stefan Katzenbeisser, Yordan Boev
and Mubashir Qureshi.
Secure Computation of the kth-Ranked Element in a Star Network.
Proceedings of the 24th International Conference on Financial Cryptography
and Data Security (FC), 2020

1.4 Methodology

This section describes the methodology that we follow throughout our main chapters,
i.e., Chapters 4 to 7. Our methodology consists of five phases: problem definition,
functionality, construction, analysis, and evaluation. We start by describing the prob-
lem to solve and defining the functionality that computes the problem. Then we
construct a protocol that implements the defined functionality, and prove that it is
correct and secure. The protocol is then theoretically analyzed in computation and
communication. Finally, we implement and evaluate the protocol.
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1.4.1 Problem Definition

In the first phase, we describe in detail the problem that we want to solve and the
weaknesses in existing solutions. Then, we describe possible applications and briefly
sketch our solution approach. Finally, we conclude by briefly comparing our solution
to existing ones.

1.4.2 Functionality

Before designing our secure multiparty protocols, we start by defining the functional-
ity that is to be computed to solve the problem at hand. A multiparty functionality
is a random process that maps a given number n of inputs to n outputs [90]. The n
inputs are sensitive and belong to n different parties that want to perform the compu-
tation such that the inputs remain private and each party receives only its designated
outputs. For each functionality, we, therefore, also specify, which are the parties, what
are their inputs, and which party receives which output of the computation. In some
situations, a party might have no input to – or even no output from – the computa-
tion. Since we want to preserve the confidentiality of sensitive data, we define when
a protocol implementing a functionality can be considered secure. In this thesis, we
are particularly interested in the semi-honest security model, which requires parties
to follow the protocol specification. Although the malicious security model provides a
stronger security, it requires in general much more overhead. Additionally, we specify
additional assumptions if any, such as the existence of a public key infrastructure.

1.4.3 Construction

After defining the functionality, we provide a step by step construction of the proto-
col implementing the functionality under the defined security requirement. For some
protocols, we start by proposing a basic solution that is later optimized in possibly
different ways or extended to a larger problem. In other cases, we provide different
variants using different sub-protocols. To design our protocols, we rely on basic tech-
niques that allow computation on encrypted data, such as homomorphic encryption,
garbled circuit, and secret sharing. In some protocols, we even combine some of these
techniques to achieve our goal. We rely on special protocols such as protocols for
oblivious transfer, ORAM, or integer comparison.

1.4.4 Analysis

The analysis consists of three different aspects. First, we discuss the correctness of
the protocol showing that after the computation each party receives an output that
is correct with respect to the functionality. The second aspect is proving the security
of the protocol, where we define for each party its view of the protocol which consists
of the messages received by that party during the protocol execution. Then we define
a simulator that simulates the adversary’s view given only the inputs and outputs
of corrupted parties. This proof technique is called simulation paradigm [90] and is
briefly discussed in Section 2.1.5. The third and last aspect of the analysis is the
complexity of the protocol. The complexity consists of computing the number of
rounds, the number of cryptographic operations, and the number of bits sent during
the protocol execution. In some cases, we compare the complexity of possibly different
variants of our protocol with existing protocols.
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1.4.5 Evaluation

The evaluation consists of describing evaluation details, and the results of our eval-
uation. In the evaluation details, we mention things such as software, programming
language, API, and the hardware used for the evaluation. In the results part, we
report the results of our evaluation using graphs and tables and possibly comparing
with the related work.

1.5 Structure

After this introductory chapter, we briefly review some relevant cryptographic building
blocks in Chapter 2. Chapter 3 is dedicated to reviewing related work on secure
multiparty party computation, secure integer comparison, search over encrypted data,
private decision tree evaluation, and secure computation of the kth-ranked element.
Chapters 4 to 7 contain the main contributions of the thesis. In Chapter 4, we
describe our oblivious OPE that allows the equivalent of a public-key encryption for
range queries. Chapters 5 and 6 describe our protocols for privately evaluating a
decision tree model on private data. While the scheme in Chapter 5 is interactive and
sublinear in the tree size, the scheme in Chapter 6 is non-interactive and delegates the
complete tree evaluation to the server. In Chapter 7, we describe different approaches
to compute the kth-ranked element in a star network using either garbled circuit or
threshold homomorphic encryption. We, finally, conclude this thesis in Chapter 8.
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Chapter 2

Preliminaries

In this chapter, we briefly review relevant cryptographic definitions, primitives, and
tools in Section 2.1 and the application domains of the protocols developed in this
thesis in Section 2.2. Finally, Section 2.3 defines the notation used throughout this
thesis.

2.1 Cryptographic Backgrounds

This section sets the foundation which consists of relevant cryptographic definitions
and basic primitives such as pseudorandom generators, encryption schemes, secret
sharing, and homomorphic encryption. Then it describes the concept of multiparty
computation, presents basic protocols, such as oblivious transfer and oblivious Ran-
dom Access Machine (RAM), and the garbled circuit protocol that are used in this
thesis to design secure protocols. We follow Katz and Lindell’s [115] and Goldreich’s
[89, 90] comprehensive textbooks.

2.1.1 Definitions

Encryption schemes can be perfectly secure in the sense that even with unlimited
resources no adversary can break the security. However, any perfectly secure encryp-
tion requires a key space that is at least as large as the message space [115]. This
motivates the development of schemes that are practically unbreakable in the sense
that the security is only preserved against an efficient adversary which can carry out
computation in Probabilistic Polynomial Time (PPT).

Definition 2.1.1 (Probabilistic Polynomial Time). An algorithm A is said to be
probabilistic if it has access to a source of randomness. An algorithm A is said to
run in polynomial time if there exists a polynomial p(⋅) such that, for every input
x ∈ {0,1}∗ , the computation of A(x) terminates within at most p(∣x∣) steps, where
∣x∣ denotes the length of the string x.

Hence, an efficient adversary has limited computing resources. However, it can still
succeed to break the encryption scheme with a very small, i.e., negligible probability.

Definition 2.1.2 (Negligible). A function f is negligible if for every polynomial p(⋅)
there exists an integer N such that for all integers n > N it holds that f(n) < 1

p(n) .

Equivalently a function f is negligible if for all constants c there exists an integer
N such that for all n > N it holds that f(n) < n−c. One typically denotes an arbitrary
negligible function by negl. Examples of negligible functions are 2−n, 2−

√
n, n− logn.

The sum of two negligible functions as well as the product of a negligible function
with a positive polynomial are negligible functions.
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Two probability distributions X = {Xn}n∈N and Y = {Yn}n∈N are computation-
ally indistinguishable (denoted X

c≡ Y ) if no probabilistic polynomial time (PPT)
algorithm can distinguish them except with negligible probability.

Definition 2.1.3 (Probability Ensemble). Let I be a countable index set. A proba-
bility ensemble indexed by I is a sequence of random variables indexed by I. Namely,
any X = {Xn}n∈I , where each Xn is a random variable, is a probability ensemble
indexed by I.

Definition 2.1.4 (Computational Indistinguishability). Two probability ensembles
X = {Xn}n∈N and Y = {Yn}n∈N are computationally indistinguishable, denoted X

c≡
Y , if for every probabilistic polynomial-time distinguisher D, there exists a negligible
function negl such that:

∣Pr[D(Xn,1
n) = 1] − Pr[D(Yn,1n) = 1]∣ ≤ negl(n) .

To prove that two probability ensembles X = {Xn}n∈N and Y = {Yn}n∈N are com-
putationally indistinguishable, one uses a standard proof technique called the hybrid
argument [89, 90].

2.1.2 Basic Primitives

Cryptographic schemes depend on randomness whenever it is required to avoid the
predictability of the outcome. For example, the output of an algorithm that generates
encryption keys should not be predictable. As no deterministic process can produce
true randomness, one uses mathematical approaches to produce pseudorandomness.

Pseudorandom Generator. A Pseudorandom Generator (PRG) is a deterministic
algorithm that generates a distribution that is computationally indistinguishable from
the uniform distribution over strings of a certain length. A PRG takes a short uni-
formly distributed string, known as the seed, and outputs a longer string that cannot
be efficiently distinguished from a uniformly distributed string of the same length.

Definition 2.1.5 (Pseudorandom Ensembles). An ensemble X = {Xn}n∈N is pseu-
dorandom, if there exists a polynomial l(n) such that X is computationally indistin-
guishable from the ensemble U = {Ul(n)}n∈N, where Ul(n) is the uniform distribution
over {0,1}l(n)

Definition 2.1.6 (Pseudorandom Generator). Let l(⋅) be a polynomial and let G be
a (deterministic) polynomial-time algorithm such that upon any input s, algorithm G
outputs a string of length l(∣s∣). We say that G is a pseudorandom generator (PRG)
if the following two conditions hold:

• Expansion: For every n it holds that l(n) > n,

• Pseudorandomness: The ensemble {G(sn)}n∈N , where sn ← {0,1}n is pseudo-
random.

Pseudorandom Function. A keyed function is a function F ∶ {0,1}∗ × {0,1}∗ →
{0,1}∗ where the first input, denoted by k and called the key, is chosen and fixed
such that we have the single-input function Fk ∶ {0,1}∗ → {0,1}∗ defined by Fk(x) =
F (k, x). A keyed function Fk is length-preserving, if the key, the input, and the output
of F all have the same length.
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Definition 2.1.7. Let F ∶ {0,1}∗×{0,1}∗ → {0,1}∗ be an efficient, length-preserving,
keyed function. We say F is a Pseudorandom Function (PRF) if for all probabilistic
polynomial-time distinguisher D, there exists a negligible function negl such that:

∣Pr[DFk(⋅)(1n) = 1] − Pr[Dfn(⋅)(1n) = 1]∣ ≤ negl(n) ,

where k ← {0,1}n is chosen uniformly at random and fn is chosen uniformly at random
from the set of functions mapping n-bit strings to n-bit strings.

Encryption Scheme. Encryption schemes are used to secure communication be-
tween two parties. We distinguish between private-key schemes which use the same
key for encryption and decryption, and public-key schemes which use different keys
for encryption and decryption.

Definition 2.1.8. A private-key encryption scheme is a tuple of polynomial-time
algorithms (KGen, Enc, Dec) such that:

• sk ← KGen(λ): the probabilistic key-generation algorithm KGen takes as input
the security parameter λ and outputs a key sk.

• c ← Enc(sk,m): the encryption algorithm Enc takes as input a key sk and a
plaintext message m ∈ {0,1}∗, and outputs a ciphertext c.

• m′ ← Dec(sk, c): the decryption algorithm Dec takes as input a key sk and a
ciphertext c, and outputs a message m′.

The encryption scheme is correct iff for every λ, every key sk output by KGen(1λ),
and every message m ∈ {0,1}∗, it holds that Dec(sk,Enc(sk,m)) = m.

Definition 2.1.9. A public-key encryption scheme is a tuple of polynomial-time al-
gorithms (KGen, Enc, Dec) such that:

• (pk, sk) ← KGen(λ): the probabilistic key-generation algorithm KGen takes as
input the security parameter λ and outputs a public key pk and a private key
sk.

• c ← Enc(pk,m): the encryption algorithm Enc takes as input a public key pk
and a plaintext message m ∈ {0,1}∗, and outputs a ciphertext c.

• m′ ← Dec(sk, c): the decryption algorithm Dec takes as input a private key sk
and a ciphertext c, and outputs a message m′.

The encryption scheme is correct iff for every λ, every key sk output by KGen(1λ),
and every message m ∈ {0,1}∗, it holds that Dec(sk,Enc(pk,m)) = m.

An important security requirement for encryption schemes is semantic security.
An encryption scheme is semantically secure if it is infeasible to learn anything about
the plaintext from the ciphertext. Semantic security is equivalent to indistinguisha-
bility under chosen-plaintext attack (usually denoted by IND-CPA) and requires that
encryption schemes produce ciphertexts that are infeasible to tell apart. Loosely
speaking, the encryption algorithm Enc must be probabilistic and return different ci-
phertexts for the same plaintext. Several public-key schemes such as ElGamal [76],
Goldwasser-Micali [92], Paillier [159] have been proven to be semantically secure. For
more details, we refer to [90, 115]. Unless explicitly stated, we require the encryption
schemes used throughout this thesis to be semantically secure.
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2.1.3 Secret Sharing

A secret sharing scheme consists of two algorithms: the first algorithm specifies how
to share the secret s in shares, and the second one specifies how to reconstruct s
from the shares or a subset thereof. Assume the secret s is a bit string of length
µ. Then a simple way to share s in n secret shares ⟨s⟩1, . . . , ⟨s⟩n is to choose n − 1
random strings r1, . . . , rn−1 of length µ and set ⟨s⟩1 = r1, . . . , ⟨s⟩n−1 = rn−1 and ⟨s⟩n =
s⊕ r1⊕ . . .⊕ rn−1. It is easy to see that ⟨s⟩1⊕ . . .⊕ ⟨s⟩n = s holds. We will refer to this
sharing scheme as exclusive-or sharing. If s is an integer, then the sharing algorithm
chooses n − 1 random numbers r1, . . . , rn−1 modulo a number p with ∣p∣ ≥ ∣s∣ and sets
⟨s⟩1 = r1, . . . , ⟨s⟩n−1 = rn−1 and ⟨s⟩n = s − r1 − . . . − rn−1 mod p. Again we easily have
∑ni=1⟨s⟩i mod p = s. We will refer to this sharing scheme as additive sharing. Assume
there are n parties P1, . . . , Pn. The goal of the sharing scheme is to distribute share
⟨s⟩i to party Pi. These simple ways to share a secret will be used in Chapters 4, 5
and 7.

An important property of a secret sharing scheme is linearity which allows to share
the sum of two secrets by just adding their respective secret shares. For example, if
two secrets s1, s2 have been additively shared in ⟨s1⟩i, ⟨s2⟩i then the parties can
securely compute the shares s1 + s2 by just locally adding their shares. In a linear
scheme, a secret s is viewed as an element of a finite field, and the shares are obtained
by applying a linear mapping to the secret and several independent random field
elements [18]. An example is the so-called (t, n)−threshold scheme, which assumes
that among the parties that receive the secret shares, at most t parties can fail to
deliver a result or cooperate to defeat the protocol, where t < n. If at least t + 1 valid
shares are available, the secret can be reconstructed. Therefore, a subset of parties
with cardinality at least t + 1 is referred to as authorized.

In this thesis, we will use Shamir’s (t, n)−threshold scheme [170]. Let n, t be
integers such that t ≤ n. Shamir’s scheme shares a secret s by choosing a random
polynomial:

f(x) = s +
t−1

∑
i=1

aix
i (2.1)

and computing secret shares ⟨s⟩i = f(i),1 ≤ i ≤ n. Let Li(x) and li be defined as:

Li(x) =
t

∏
j=1,j≠i

x − j
i − j and li = Li(0) =

t

∏
j=1,j≠i

−j
i − j . (2.2)

Given t shares (1, ⟨s⟩1), . . . , (t, ⟨s⟩t), the polynomial g(x) = ∑ti=1Li(x) ⋅ ⟨s⟩i is the
same as f(x), since both have degree at most t − 1 and match at t points. Therefore
s = f(0) = g(0) = ∑ti=1⟨s⟩i ⋅li. The numbers li are called Lagrange coefficients. Shamir’s
scheme can be used in threshold decryption described in the next section.

2.1.4 Homomorphic Encryption

A Homomorphic Encryption (HE) allows computations on ciphertexts by generating
an encrypted result whose decryption matches the result of a function on the plain-
texts.

HE Algorithms. A HE scheme consists of the following algorithms:

• pk, sk, ek← KGen(λ): This probabilistic algorithm takes a security parameter λ
and outputs public, private, and evaluation keys pk, sk, and ek.
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• c← Enc(pk,m): This algorithm takes pk and a message m and outputs a cipher-
text c. We will use ⟦m⟧ as a shorthand notation for Enc(pk,m).

• c ← Eval(ek, f, c1, . . . , cn): This algorithm takes ek, an n-ary function f and n
ciphertexts c1, . . . cn and outputs a ciphertext c.

• m′ ← Dec(sk, c): This deterministic algorithm takes sk and a ciphertext c and
outputs a message m′.

We require IND-CPA security and the following correctness conditions ∀m1, . . . ,mn:

• Dec(sk,Enc(pk,mi)) = Dec(sk, ⟦mi⟧) = mi,

• Dec(sk,Eval(ek, f, ⟦m1⟧, . . . , ⟦mn⟧)) = Dec(sk, ⟦f(m1, . . . ,mn)⟧).

Additively HE. If the scheme supports only addition, then it is called additivelly
homomorphic encryption (AHE). Schemes such as [127, 159] are additively homomor-
phic and have the following properties:

• Addition: ∀m1,m2, ⟦m1⟧ ⋅ ⟦m2⟧ = ⟦m1 +m2⟧,

• Multiplication with constant: ∀m1,m2, ⟦m1⟧m2 = ⟦m1 ⋅m2⟧,

• Xor: ∀a, b ∈ {0,1},Xor(⟦a⟧, b) = ⟦a⊕ b⟧ = ⟦1⟧b ⋅ ⟦a⟧(−1)b .

The scheme of Paillier [159] has been used to evaluate protocols described in Chapters
4, 5, and 7.

Somewhat/Fully Homomorphic Encryption. Somewhat HE (SHE) and Fully
HE (FHE) allow arithmetic circuits to be evaluated directly on ciphertexts. For
SHE the depth of the circuit must be small enough to avoid decryption error. In
this thesis, we focus on lattice-based SHE/FHE schemes that allow many chained
additions and multiplications to be computed on plaintexts homomorphically. These
schemes are usually defined over a ring Z[X]/(XN +1), where N might be a power of
2. The encryption algorithm Enc adds “noise” to the ciphertext which increases during
homomorphic evaluation. While the addition of ciphertexts increases the noise slightly,
the multiplication increases it rapidly [36]. If the noise becomes too large then correct
decryption is no longer possible. To prevent this from happening, one can either keep
the circuit’s depth of the function f low enough or use the refresh algorithm. This
algorithm consists either of a bootstrapping procedure, which takes a ciphertext with
large noise and outputs a ciphertext of the same message with a fixed amount of noise;
or a key-switching procedure, which takes a ciphertext under one key and outputs a
ciphertext of the same message under a different key [4]. For performance reasons, it
is usual to keep the circuit’s depth low by designing protocols using so-called leveled
fully homomorphic encryption. A leveled homomorphic encryption is an FHE with an
extra parameter L such that the scheme can evaluate all circuits of depth at most L
without bootstrapping.

Homomorphic Operations. We assume a BGV type homomorphic encryption
scheme [36] and describe homomorphic operations as implemented in HElib [100],
which will be used to evaluate some protocols of this thesis. Plaintexts can be en-
crypted using an integer representation (an integer xi is encrypted as ⟦xi⟧) or a binary
representation (each bit of the bit representation xbi = xiµ . . . xi1 is encrypted). We



14 Chapter 2. Preliminaries

describe below homomorphic operations in the binary representation (i.e., arithmetic
operations mod 2). They work similarly in the integer representation.

The FHE scheme might support Smart and Vercauteren’s ciphertext packing
(SVCP) technique [173] to pack many plaintexts in one ciphertext. Using SVCP, a
ciphertext consists of a fixed number s of slots, each capable of holding one plaintext,
i.e. ⟦⋅∣ ⋅ ∣ . . . ∣⋅⟧. The encryption of a bit b replicates b to all slots, i.e., ⟦b⟧ = ⟦b∣b∣ . . . ∣b⟧.
However, we can also pack the bits of xbi in one ciphertext and will denote it by
⟦x⃗i⟧ = ⟦xiµ∣ . . . ∣xi1∣0∣ . . . ∣0⟧.

The computation relies on some built-in routines, that allow homomorphic op-
erations on encrypted data. The relevant routines for our scheme are: addition
(SheAdd), multiplication (SheMult) and comparison (SheCmp). These routines
are compatible with the ciphertext packing technique (i.e., operations are replicated
on all slots in a SIMD manner).
Addition: The routine SheAdd takes two or more ciphertexts and performs a
component-wise addition modulo two, i.e., we have:

SheAdd(⟦bi1∣ . . . ∣bis⟧, ⟦bj1∣ . . . ∣bjs⟧) = ⟦bi1 ⊕ bj1∣ . . . ∣bis ⊕ bjs⟧.

Multiplication: Similarly, SheMult performs component-wise multiplication mod-
ulo two, i.e., we have:

SheMult(⟦bi1∣ . . . ∣bis⟧, ⟦bj1∣ . . . ∣bjs⟧) = ⟦bi1 ⋅ bj1∣ . . . ∣bis ⋅ bjs⟧.

We will also denote addition and multiplication by ⊞ and ⊡, respectively.
Greater-Than Comparison: Let xi, xj be two integers, bij = [xi > xj] and bji =
[xj > xi], the routine SheCmp takes ⟦xbi ⟧, ⟦xbj⟧, compares xi and xj and returns ⟦bij⟧,
⟦bji⟧:

(⟦bij⟧, ⟦bji⟧)← SheCmp(⟦xbi ⟧, ⟦xbj⟧).

Note that, if the inputs to SheCmp encrypt the same value, then the routine outputs
two ciphertexts of 0. This routine implements the comparison circuit described in
[45, 46, 47].
Full Adder: Let bi1, . . . , bin be n bits such that ri = ∑nj=1 bij and let rbi = ri logn, . . . , ri1
be the bit representation of ri. The routine SheFadder implements a full adder on
⟦bi1⟧, . . . , ⟦bin⟧ and returns ⟦rbi ⟧ = (⟦ri logn⟧, . . . , ⟦ri1⟧).
Equality Testing: There is no built-in routine for an equality check in HElib
[100]. We implemented it using SheCmp and SheAdd. Let xi and xj be two
∣k∣-bit integers. We use SheEqual to denote the equality check and implement
SheEqual(⟦xbi ⟧, ⟦xbj⟧) by computing:

• (⟦b′i⟧, ⟦b′′i ⟧) = SheCmp(⟦xbi ⟧, ⟦xbj⟧) and

• ⟦βi⟧ = (⟦b′i⟧ ⊞ ⟦b′′i ⟧ ⊞ ⟦1⟧), which results in βi = 1 if xi = xj and βi = 0 otherwise.

Shift: If ciphertext packing is enabled, then we also assume that HE supports shift
operations. Given a packed ciphertext ⟦b1∣ . . . ∣bs⟧, the shift left operation shifts all
slots to the left by a given offset, using zero-fill, i.e., shifting ⟦b1∣ . . . ∣bs⟧ by i positions
returns ⟦bi∣ . . . ∣bs∣0∣ . . . ∣0⟧. The shift right operation is defined similarly for shifting to
the right.

Threshold HE. A threshold homomorphic encryption (THE) [32, 57] allows to
share the private key to the parties using a threshold secret sharing scheme such
that a subset of parties is required for decryption. Hence, instead of sk as above, the
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key generation outputs a set of shares SK = {⟨sk⟩1, . . . , ⟨sk⟩n} which are distributed
to the clients. The decryption algorithm is replaced by the following algorithms:

• m′
i ← Decp(⟨sk⟩i, c): The deterministic partial decryption algorithm takes a

ciphertext c and a share ⟨sk⟩i ∈ SK of the private key and outputs a partial
decryption result m′

i.

• m′ ← Decf(Mt): The deterministic final decryption algorithm takes a subset
Mt = {m′

j1
, . . . ,m′

jt
} ⊆ {m′

1, . . . ,m
′
n} of partial decryption shares and outputs a

message m′.

We refer to it as threshold decryption. It is correct if for all Mt = {m′
j1
, . . . ,m′

jt
} such

that ∣Mt∣ ≥ t and m′
ji
= Decp(⟨sk⟩ji , ⟦m⟧), it holds m = Decf(Mt).

When used in a protocol, we denote by combiner the party which is responsible
to execute the algorithm Decf(). Depending on the protocol, the combiner can be
any party. It receives a set Mt = {m′

j1
, . . . ,m′

jt
} of partial decryption results, runs

m ← Decf(Mt) and publishes the result or moves to the next step of the protocol
specification.

For the protocol described in Chapter 7, we have implemented a variant of ElGamal
encryption [76] on elliptic curves [127, 128] that is additively homomorphic. The
threshold decryption has been implemented using Shamir’s scheme [170] as described
in the online book of Boneh and Shoup [33].

2.1.5 Multiparty Computation

Secure multiparty computation (SMC) is a cryptographic technique that allows several
parties to compute a function on their private inputs without revealing any information
other than the function’s output. A classic example in the literature is the so-called
Yao’s Millionaire’s problem introduced in [195]. Two millionaires are interested in
knowing which of them is richer without revealing their actual wealth. Formally, let
there be a set of n parties P1, . . . , Pn.

Definition 2.1.10. An n-ary functionality, denoted F ∶ ({0,1}∗)n → ({0,1}∗)n, is a
random process mapping sequences of the form x = (x1, . . . , xn) into sequences of ran-
dom variables, F(x) = (F1(x), ...,Fn(x)). The semantics is that for every i, the party
Pi, initially holds an input xi, and wishes to obtain the i-th element in F(x1, . . . , xn),
denoted Fi(x1, . . . , xn) [90].

Functionalities considered in this thesis are search tree, decision tree and ranked-
based statistics such as minimum, median, maximum. The goal of a secure protocol
is to reveal to each party Pi the output fi(x1, . . . , xn) and nothing else. The view of
a party defines what it can learn from the protocol execution.

Definition 2.1.11. The view of the i-th party during an execution of the protocol
on input (x1, . . . , xn) is denoted by: Viewi(x1, . . . , xn) = {xi, ri,mi1,mi2, . . .}, where ri
represents the outcome of the i-th party’s internal coin tosses, and mij represents the
j-th message it has received or sent.

The security of SMC protocols is often defined by comparison to an ideal model. In
that model parties privately send their input to a trusted third party (TTP). Then the
TTP computes the outcome of the function on their behalf, sends the corresponding
result to each party, and deletes the private inputs. In the real model, parties emulate
the ideal model by executing a cryptographic protocol to perform the computation.
At the end, only the result should be revealed and nothing else. An SMC protocol is
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then said to be secure if the adversary can learn only the result of the computation
and data that can be deduced from this result and known inputs [58, 82, 90].

An important issue to consider when defining the security of SMC is the adversary’s
power. There exist many security models, but the semi-honest and the malicious
adversary model are the most popular [58, 90]. In the semi-honest (a.k.a honest-but-
curious) model parties behave passively and follow the protocol specification, but the
adversary tries to learn more than allowed by inspecting the internal state of corrupted
parties. A protocol is proven secure if the views of the adversary can be efficiently
simulated given only inputs and outputs of corrupted parties. This proof technique is
called simulation paradigm [90].

Definition 2.1.12. Let F ∶ ({0,1}∗)n → ({0,1}∗)n be a n-ary functionality, where
Fi(x1, . . . , xn) is the i-th element of F(x1, . . . , xn). For I = {i1, . . . , it} ⊆ {1, . . . , n}
(i.e., I contains indexes of corrupted parties), we let

FI(x1, . . . , xn) = (Fi1 (x1, . . . , xn), . . . ,Fit (x1, . . . , xn)).

A protocol Π t-privately computes the functionality F in the semi-honest model if
there exists a polynomial-time simulator Simf

I such that: for every I ⊆ {1, . . . , n}, ∣I ∣ =
t, it holds:

Simf
I ((xi1 , . . . , xit),FI(x1, . . . , xn))

c≡ ViewΠ
I (x1, . . . , xn),

where ViewΠ
i (x1, . . . , xn) denote the view of the i-th party in protocol Π and

ViewΠ
I (x1, . . . , xn) = (ViewΠ

i1
(x1, . . . , xn), . . . ,ViewΠ

it
(x1, . . . , xn)).

In contrast, a malicious adversary is active and instructs corrupted parties to de-
viate from the protocol specification. Besides trying to learn more information, it can
delete, add, modify messages to influence the outcome of the protocol, or prevent the
protocol to terminate correctly. Any protocol secure against a semi-honest adversary
can be transformed into a protocol secure against a malicious adversary using Goldre-
ich’s compiler [88, 90]. The compiler works by transforming semi-honest instructions
into new instructions that preserve the correctness and force each party to either be-
have in a semi-honest manner or to be detected. In case a party is detected cheating,
the protocol aborts. The malicious adversary model is preferred because it guarantees
that no adversary will successfully attack the protocol. However, maliciously secure
protocols are in general less efficient than semi-honestly secure ones.

Often a functionality f can be privately reducible to a functionality g meaning that
a protocol Πf privately implementing f uses a protocol Πg privately implementing g
as sub-protocol. The composition theorem helps to simplify the security proof of Πf

and loosely states that given a proven sub-protocol Πg, it is only necessary to prove
the security of the composed protocol Πf using Πg as a black box [90].

Theorem 2.1.13. Let f be functionality that is privately reducible to a functionality
g and let there be a protocol Πg for privately computing g. Then there exists a protocol
Πf for privately computing f .

2.1.6 Basic Protocols

Oblivious Transfer. Oblivious Transfer (OT) is a fundamental cryptographic pro-
tocol that allows a receiver to choose 1 out of n values held by a sender, without
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revealing to the sender which value was chosen, while revealing to the receiver only
the chosen value [90].

Definition 2.1.14 (OT functionality). Let n,n ≥ 2 be an integer, i ≤ n be an index
and X = (x1, . . . , xn) ∈ ({0,1}l)n be an array. An Oblivious transfer (OT) is a
functionality that takes the array X from a party called sender, the index i from a party
called receiver, and outputs xi to the receiver and nothing to the sender. Formally:

FOT((x1, . . . , xn), i)→ (ε, xi),

where ε denotes the empty string.

Definition 2.1.15 (OT Security). Let n,n ≥ 2 be an integer, i ≤ n be the input of
the receiver and X = (x1, . . . , xn) ∈ ({0,1}l)n be the input of the sender in the OT
functionality FOT. A protocol ΠOT privately computes the OT functionality FOT in
the semi-honest model if the following conditions hold:

• there exists a probabilistic polynomial time algorithm Simot
S that simulates the

sender’s view ViewΠOT
S of the protocol ΠOT given X = (x1, . . . , xn) only:

Simot
S ((x1, . . . , xn), ε)

c≡ ViewΠOT
S ((x1, . . . , xn), i).

• there exists a probabilistic polynomial time algorithm Simot
R that simulates the

receiver’s view ViewΠOT
R of the protocol ΠOT given i and xi only:

Simot
R (i, xi)

c≡ ViewΠOT
R ((x1, . . . , xn), i).

A special case of OT is 1-out-of-2 OT (OT1
2). In a 1-out-of-2 OT, the sender has

two inputs x0 and x1 and the receiver has an index i ∈ {0,1}. After the protocol
the receiver learns only xi and the sender learns nothing. In this thesis, we used the
scheme of Naor and Pinkas [153] as implemented in the frameworks SCAPI [75] and
ObliVM [144]. The scheme of Naor and Pinkas is illustrated in Protocol 2.1. It is
possible to extend a few oblivious transfers into many. The idea is to generate few
seed OTs using public key cryptography which can then be extended to any number
of OTs using only symmetric key primitives. This can be seen as the OT equivalent
of hybrid encryption and is referred to as OT extension protocol. The efficient OT
extension protocols of Ishai et al. [107] and Asharov et al. [9] have been used to
evaluate some protocols described in this thesis. The protocol described in Chapter
5 can be instantiated with 1-out-of-n OT. We focus on the 1-out-of-n OT scheme
of Naor and Pinkas [154] that uses logn OT1

2 protocols to realize OT1
n. We briefly

review Naor and Pinkas’s 1-out-of-n OT scheme and refer to [154] for details. Let
X = [x1, . . . xn] be an array (sender input), i an index (receiver input), h = log(n)
and Fk a PRF. Let ι be an index in [1, n] and ι1 . . . ιh its bit representation. The
sender generates h pairs (k0

1, k
1
1), . . . , (k0

h, k
1
h) of symmetric keys. For each xj ∈ X,

the sender uses the keys kj11 , . . . , k
jh
h to generate a symmetric ciphertext cj . Then the

sender sends all ciphertexts c1, . . . , cn to the receiver. Both parties then run h times
an OT1

2 allowing the receiver to select kiuu among (k0
u, k

1
u). Finally, the receiver uses

the keys ki11 , . . . , k
ih
h to decrypt the ciphertext ci. In this scheme, sender and receiver

perform O(n) and O(log(n)) operations respectively. It is described in Protocol 2.2.

Oblivious RAM. Oblivious RAM (ORAM) is a cryptographic primitive that allows
a client to outsource its encrypted storage to an untrusted server and to hide the data
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Sender Receiver

Input: (x0, x1) Input: b ∈ {0,1}
Output: ε Output: xb

C ←$Zp k ←$Zp

C

h← (1 − b) ⋅ gk +C ⋅ b ⋅ g−k

h

r ←${1, . . . , p}
e0 ← x0 ⊕H(hr,0)
e1 ← x1 ⊕H((C/h)r,1)

gr, e0, e1

xb ← H((gr)k, b)⊕ eb

Protocol 2.1: Naor and Pinkas 1-out-of-2 OT [153]

Sender Receiver

Input: (x1, . . . , xn) Input: i ∈ {1, . . . , n}
Output: ε Output: xi

Let h← logn

For j ∈ {1, . . . , n}, let j =
h

∑
u=1

ju2u−1

Let Fk be a PRF and

k0u, k
1
u ←${0,1}λ,1 ≤ u ≤ h

cj ← xj ⊕⊕hu=1Fkjuj (j),1 ≤ j ≤ n

c1, . . . , cn

1 ≤ u ≤ h
OT1

2

k0u, k
1
u iu

kiuu

xi ← ci ⊕
h

⊕
u=1

Fkiuu (i)

Protocol 2.2: Naor and Pinkas 1-out-of-n OT [154]
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access patterns of the client from the server. The protocol described in Chapter 5 can
be instantiated with 1-out-of-n OT as well as with ORAM. We will adopt tree-based
ORAM which has sublinear costs and has been introduced by Shi et al. [171].

Definition 2.1.16 (ORAM functionality). Let D be a set of n data blocks. For
each data block d ∈ D let u ∈ {1, . . . , n} denote the block identifier. An Oblivious
RAM functionality is a finite composition sequence of the two following functionalities
between a client and a server :

• ReadAndRemove: This functionality takes a private block identifier u from the
client and the data set D = [d1, . . . , du, . . . , dn] from the server. It retrieves the
data block du, removes it from the data set D and returns du to the client:

FRaR([d1, . . . , du, . . . , dn], u)→ ([d1, . . . , ε, . . . , dn], du).

• Add: This functionality takes a private block identifier u, a new private data
block d′u from the client and the data set D = [d1, . . . , du, . . . , dn] from the server.
It retrieves the old data block du, replaces it by the new data block d′u in the data
set D and returns the old data bock du to the client:

FAdd([d1, . . . , du, . . . , dn], (u, d′u))→ ([d1, . . . , d
′
u, . . . , dn], du).

A data request is a tuple (op, arg) where:

• the first element op denotes an operation in {ReadAndRemove,Add} and

• the second element arg is a block identifier u if op = ReadAndRemove. Otherwise,
if op = Add, then arg consists of a tuple (u, du) where u is a block identifier and
d is a data block.

A data request sequence of length m is a sequence y⃗ = ((op1, arg1), . . . , (opm, argm)) of
m data requests such that if (opi, argi) = (Add, (ui, dui)) then the i − 1-st data request
must satisfy (opi−1, argi−1) = (ReadAndRemove, ui).

Definition 2.1.17 (ORAM Security). Let the ORAM functionality be defined as
above. For a data request sequence y⃗ = ((op1, arg1), . . . , (opm, argm)), let ops denote
the sequence of operations associated with y⃗, i.e., ops(y⃗) = (op1, . . . ,opm). Moreover,
let View(y⃗) denote the access pattern that leaks during the execution of y⃗. A protocol
ΠORAM securely implements the ORAM functionality if for two data request sequences
y⃗ and z⃗ of the same length with ops(y⃗) = ops(z⃗), their access patterns ViewΠORAM(y⃗)
and ViewΠORAM(z⃗) are computationally indistinguishable by anyone but the client:

ViewΠORAM(y⃗) c≡ ViewΠORAM(z⃗).

We now briefly review tree-based ORAM and refer to the literature [171, 189] for
more details.

Data Structure. Let n be the number of data blocks. The data is stored as blocks
at the server in a complete binary tree of depth L = logn + 1. A node of the tree is
called bucket containing a fixed number Z of blocks. Each block is stored encrypted
using a semantically secure encryption scheme and consists of an index idx of the block
(its logical address), a label specifying a leaf identifier of the path on which the block
resides, and the actual data: {idx∣∣label∣∣data}. A position map is stored at the client
and maps each block idx to the corresponding leaf label. The leaf labels are chosen
randomly between 0, . . . , n − 1 such that each label is associated with a path from



20 Chapter 2. Preliminaries

u v w

0 0 0

0 1 0

1 0 0

1 1 1

u v w

k0
u k0

v k0
w

k0
u k1

v k0
w

k1
u k0

v k0
w

k1
u k1

v k1
w

Garbled Table

Enck0u,k0v(k
0
w)

Enck0u,k1v(k
0
w)

Enck1u,k0v(k
0
w)

Enck1u,k1v(k
1
w)

Table 2.1: Garbled Table Illustration

the root to the corresponding leaf. Block labels are reassigned as they are accessed.
Tree-based ORAM maintains the invariant that a block resides on the path from the
root to the corresponding leaf.

Operations. Tree-based ORAM supports three operations. Given an index idx
and the corresponding label, the read and remove operation ReadAndRemove fetches
and removes the block idx from the path. The retrieved block is eventually updated,
re-encrypted and written back using the add operation Add. The eviction operation
Evict randomly evicts blocks to child nodes of the node where they reside. Tree-based
ORAM schemes differ mostly on their eviction strategy but adopt a similar data
structure as described above.

Recursion. Instead of storing the position map at the client, it can be stored
recursively in smaller ORAMs at the server using the same data structure as above.
As a result, the client stores only a constant amount of metadata locally.

Tree-based ORAM has been improved by other works, including [189] which has
been implemented in ObliVM [144], the secure computation framework used in Chap-
ter 5 of this thesis.

2.1.7 Garbled Circuits

A Garbled Circuit (GC) can be used to execute any function privately between two
parties. In this section, we recall the idea of GC protocol and refer to [20, 75, 139,
140, 161, 195] for more details. Let f be a function over two inputs xi and xj , then a
garbling scheme consists of a five-tuple of algorithms G = (Gb,En,Ev,De, ev).

• On input f , a random seed s and a security parameter λ ∈ N, the garbling
algorithm Gb returns a triple of strings (F, e, d)← Gb(1λ, s, f).

• The string e describes an encoding function, En(e, ⋅), that maps the bit repre-
sentation xbi = xiµ . . . xi1 and xbj = xjµ . . . xj1 of the initial inputs xi, xj to garbled
inputs x̄i = En(e, xbi ), x̄j = En(e, xbj).

• The string F describes a garbled function, Ev(F, ⋅, ⋅), that maps each pair of
garbled inputs (x̄i, x̄j) to a garbled output ȳ = Ev(F, x̄i, x̄j).

• The string d describes a decoding function, De(d, ⋅), that maps a garbled output
ȳ to a final output y = De(d, ȳ).

• The original function f is encoded as a circuit that can be evaluated by the
function:

ev(f, ⋅, ⋅) ∶ {0,1}µ × {0,1}µ → {0,1}ν

The garbling scheme is correct if De(d,Ev(F,En(e, xi),En(e, xj))) = ev(f, xi, xj) [20].
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A GC protocol is a 2-party protocol consisting of a generator (Gen) and an eval-
uator (Eva) with input xi and xj respectively. It consists of the following steps:

• Garbling: On input f , s and λ, Gen runs (F, e, d)← Gb(1λ, s, f) and parses e as
(k0
u1 , k

1
u1 ,⋯, k

0
uµ , k

1
uµ , k

0
v1 , k

1
v1 ,⋯, k

0
vµ , k

1
vµ) and transforms xi into a garbled input

x̄i using xbi = xiµ . . . xi1 and En(e, ⋅), i.e., x̄i = (kxiµu1 ,⋯, kxi1un )← En(e, xbi ).

• Sending GC and garbled input: Then Gen sends F, d and x̄i to Eva.

• Oblivious Transfer: Now the parties execute an OT protocol with Eva having
selection string xbj = xjµ . . . xj1 and Gen having inputs (k0

v1 , k
1
v1 ,⋯, k

0
vn , k

1
vn). As

a result, Eva obtains x̄j = (kxjµv1 ,⋯, kxj1vn ) and Gen learns nothing.

• Evaluation: Finally, Eva evaluates and outputs y = De(d,Ev(F, x̄i, x̄j)).

To garble the function f the generator first transforms f into a Boolean circuit Cf .
Assume each gate in Cf has input wires u, v and output wire w. The generator chooses
for each wire two symmetric keys representing bits 0 or 1: (k0

u, k
1
u), (k0

v , k
1
v), (k0

w, k
1
w).

Then she uses the input wires’ keys to encrypt the output wires’ keys according to
the truth table of the gate as illustrated in Table 2.1, where Encku,kv(kw) is a double-
key deterministic symmetric encryption, e.g.: Encku,kv(kw) = H(ku∥kv) ⊕ kw, where
H is a cryptographic hash function and ku∥kv stands for the concatenation of keys
ku, kv [105, 131]. The rows are then randomly permuted resulting in a garbled gate
or garbled table. The set of all garbled tables constitutes the garbled circuit that
is sent to the evaluator. To evaluate the garbled circuit, Eva uses the keys in x̄i
and x̄j to successively decrypt the garbled tables. There exist many optimizations
that make garbled circuit protocol efficient including point-and-permute [17], row
reduction [155], FreeXOR [131], fixed-key block cipher [19], HalfGate [197]. The
garbled circuit protocol has been used in Chapters 4, 7, and 5 as implemented in the
secure computation frameworks SCAPI [75] and ObliVM [144].

2.2 Applications

The protocols described in this thesis have applications in machine learning and bench-
marking. In this section, we briefly review these application domains and refer to the
respective literature for more details.

2.2.1 Machine Learning

Our digital world overwhelms us with information. The gap between generation of
data and our understanding of it is growing rapidly. Fortunately, machine learning
(ML) techniques allow us to find patterns in data. A machine learning process consists
of two phases. In the first phase or learning phase, a model or classifier is built on a
possibly large set of training data. In the second phase, the model can then be used
to classify new data.

Due to their simplicity and ease of use, decision trees are widespread machine
learning models used for data classification with many applications in areas such as
health care, remote diagnostic, spam filtering, etc. A decision tree consists of two types
of nodes. Internal nodes are decision nodes that are used to compare an attribute to
a constant. Leaf nodes give a classification that applies to all instances that reach the
leaf. To classify an unknown instance, the tree is traversed according to the values of
the attributes tested in successive nodes, and when a leaf is reached the instance is
classified according to the class assigned to that leaf [192].
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Definition 2.2.1 (Decision Tree). An attribute vector is an array of integers each
array element measuring a specific feature or attribute. A decision tree is a binary tree
consisting of internal nodes (or decision nodes) and leaf nodes. Each decision node
consists of a threshold value that is compared with a corresponding attribute value
while traversing the decision tree. Moreover, a decision node has two child nodes
which maybe decision node as well or leaf node. Each leaf node consists of a label that
is returned as a result of the classification if the tree traversal reaches that leaf. Leaf
nodes have no child node.

Machine learning classifiers are valuable tools in many areas such as health care,
finance, spam filtering, intrusion detection, remote diagnosis, supply chain, etc. On
the one hand, the classifier requires access to user’s data, which is most of the time
sensitive information such as medical or financial data, to perform its task. On the
other hand, the model itself may contain intellectual property that needs to be pro-
tected. For example, a bank that uses a decision tree for credit assessment of its
customers may not want to reveal any internal information about the model, because
competitors may benefit from it. Moreover, the model may have been built on sensi-
tive data. It is known that white-box access and sometimes even black-box access to
a machine learning model may allow so-called model inversion attacks [81, 179, 194].
In a black-box setting, the adversary is only allowed to query the model, whereas in a
white-box setting the adversary is in possession of the model. Therefore, it is crucial
to investigate techniques that would allow benefiting from machine learning classifiers
while preserving the privacy of the data. In this thesis, we address the problem of
evaluating decision tree classifier on private data.

2.2.2 Benchmarking

Benchmarking is a management process where a company compares its key perfor-
mance indicator (KPI) to the statistics of the same KPIs of a group of competitors
from a peer group. A key performance indicator (KPI) is a statistical quantity measur-
ing the performance of a business process. Examples of KPIs from different company
operations are make cycle time (manufacturing), cash flow (financial), and employee
fluctuation rate (human resources). A peer group is a group of similar companies,
usually competitors, wanting to compare against each other. Examples formed along
different characteristics include car manufacturers (industry sector), Fortune 500 com-
panies in the United States (revenue and location).

Let assume that there are n companies C1, . . . ,Cn each with a value xi and let
x = (x1, . . . , xn) and x̃ = (x̃1, . . . , x̃n) be the sorted the vector of sorted values of x,
i.e., x̃1 < . . . < x̃n. A benchmarking platform may provide the following statistics:

• Aggregate Statistics:

– the Mean: Mean(x) = 1
n ∑

n
i=n xi,

– the Variance: Var(x) = 1
n ∑

n
i=n(xi −Mean(x))2 = 1

n ∑
n
i=n x

2
i −Mean(x)2.

• Rank-based Statistics:

– the Median: Median(x) = x̃⌈n
2
⌉,

– the Minimum: Min(x) = x̃1,

– the Maximum: Max(x) = x̃n,
– the Top Quartile: Toq(x) = x̃⌊n

4
⌋−1,
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– the Bottom Quartile: Boq(x) = x̃⌊ 3n
4
⌋+1.

In this thesis, we address the problem of computing ranked-based statistics using
a communication model called server model. In this model, there are communication
channels only between each client and the server and only clients have inputs to the
computation and get the output of the computation.

2.3 Notation

In this section, we introduce some notations that will be used in this thesis. A sum-
mary is illustrated in Table 2.2. Further notations, that are not general for the whole
thesis, may be introduced later in the respective chapter.

Parameters. A security parameter is a way of measuring how hard it is for an ad-
versary to break a cryptographic scheme. We can distinguish between computational
security parameters and statistical security parameters. On the one hand, a statis-
tical security parameter, denoted by σ, i.e., σ = 32, determines the probability with
which an adversary can break a cryptographic scheme given unlimited computing re-
sources. On the other hand, a computational security parameter, denoted by λ, i.e.,
λ = 128, determines the bitlength of cryptographic keys and random values used in
the scheme. It limits the success probability of a PPT adversary in breaking a crypto-
graphic scheme. The computational security parameter also determines the bitlength
of the associated ciphertexts. We will use κ to denote the bitlength of a ciphertext,
i.e., κ = 1024 or κ = 4096. Hence, both bitlength of keys and bitlength of ciphertext
are functions of λ. Both may equal the computational security parameter. This is
the case in symmetric encryption schemes such as AES. The bitlength of ciphertext
will help to determine the concrete communication complexity of a protocol. Another
parameter that is necessary for complexity analysis is the bitlength of integer values,
which will be denoted by µ, i.e., µ = 32 or µ = 64.

Parties. Protocols presented in this thesis involve two types of parties: the server
and the client. The server will be denoted by S and the client by C. If a protocol
consists of several clients then we will denote clients by Ci,Cj using their indexes or
by Ca,Co using their initial (i.e., Ca for data analyst or Co for data owner). When
referring to a protocol party that may be client or server, we use Pi, Pj .

Inputs/Outputs. Given some private inputs, a secure protocol performs some com-
putations and produces some outputs. Input and outputs are integer values and will
be denoted by xi, yi, zi, where i may be the index of the corresponding party or just
the i-th value of some party’s input. We will use ∣xi∣ to denote the size of xi, i.e.,
∣xi∣ = µ = 32. As a protocol may perform computations that depend on single bits of
an input we will use xbi = xiµ . . . xi1 to denote bit representation of xi, where the b in
the exponent stands for bit or binary, xiµ is the most significant bit (MSB) and xi1 is
the least significant bit (LSB).

Ciphertext. Our protocols require public key encryption schemes that have a ho-
momorphic property. We will, therefore, use pk, sk, ek to denote public, private, and
evaluation keys, respectively. If the keys belong to a party with index i, we will denote
them by pki, ski, eki. The encryption of xi under pk, respectively pki, will be denoted
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by ⟦xi⟧, respectively ⟦xi⟧i. For operations that perform computations on single en-
crypted bits, we will use ⟦xbi ⟧ = (⟦xiµ⟧, . . . , ⟦xi1⟧) to denote the bitwise encryption
of xi. Ciphertext packing allows encrypting several plaintexts in the same ciphertext
and will be denoted by ⟦α1∣ . . . ∣αs⟧, where each αi is a single plaintext and s is the
number of plaintexts that can be packed in a single ciphertext. However, we can also
pack the bits of xbi in one ciphertext and will denote it by ⟦x⃗i⟧ = ⟦xiµ∣ . . . ∣xi1∣0∣ . . . ∣0⟧.

Secret Shares. Alternatively to encrypting a value, we may use secret sharing and
represent the secret sharing of a variable v by ⟨v⟩. To indicate that a specific secret
share belongs to a party with index i, we use ⟨v⟩i. If the variable v is a vector
v = (v1, . . . , vk) consisting of several values then we will write ⟨v⟩i = ⟨v1, . . . , vk⟩i =
(⟨v1⟩i, . . . , ⟨vk⟩i).

Expressions. Let s1 and s2 be two bit strings of the same length, we use s1 ⊕ s2 to
denote the bitwise exclusive-or of s1 and s2. Let bexpr be a Boolean expression. We
will use [bexpr] (the Iverson bracket [97]) to denote the truth value (represented by
0 or 1) of the Boolean expression bexpr, i.e., [xi > xj] is 1 if xi is larger than xj and
0 otherwise. We use [bexpr]?expr1 ∶ expr0 to denote a conditional expression that
returns the result of expr1 if bexpr = true and the result of expr0 otherwise. Let S be
any set, we use a←$S to choose uniformly a random element a from S. We also use
{a1, . . . , at}←$S, to choose uniformly t random distinct elements from set S. Variable
assignment will be represented by x← expr, for assigning the result of expr to x, i.e.,
x← a+ b. We will use Pi → Pj ∶ msg to indicate that party Pi sends a message msg to
party Pj .

Miscellaneous. We let {0,1}l to denote the set of all bit strings of length l and ε to
denote the empty string. We let N,Z denote the set of natural numbers and integers
respectively. For a, b ∈ Z, we let [a, b] denote the set of all integers from a to b. For a
positive integer n, we write Zn to denote the set of integers modulo n. We write Z∗n
to denote the set of integers modulo n that are coprime with n. We let Sn denote
the set of all permutations of {1, . . . , n}. Elements of Sn will be denoted by π or
π1, π2, . . . when several permutations are required.
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Symbol Interpretation

λ Computational Security parameter

σ Statistical Security parameter

κ Bitlength of ciphertext

µ Bitlength of inputs

S Symbol for the Server

C,Ci,Cj ,Ca,Co Symbols for Clients

Pi, Pj Symbols for arbitrary parties

xi, yi, zi Inputs/Outputs

∣xi∣ Bitlength of integer xi, e.g., ∣xi∣ = µ

xbi = xiµ . . . xi1 Bit representation of xi with MSB xiµ and LSB xi1

pk, sk, ek public, private, evaluation keys

pki, ski, eki public, private, evaluation keys of party with index i

⟦xi⟧ xi’s ciphertext under public key pk

⟦xi⟧j xi’s ciphertext under public key pkj

⟦xbi⟧ Bitwise encryption (⟦xiµ⟧, . . . , ⟦xi1⟧) of xi

⟦α1∣ . . . ∣αs⟧ Packed ciphertext containing plaintexts α1, . . . , αs

⟦x⃗i⟧ Packed ciphertext ⟦xiµ∣ . . . ∣xi1∣0∣ . . . ∣0⟧ of xbi
⟨v⟩ Secret sharing of a variable v

⟨v⟩i Secret share of v that belongs to the party with index i

⟨v⟩i = ⟨v1, . . . , vk⟩i = (⟨v1⟩i, . . . , ⟨vk⟩i) Secret sharing of a variable v = (v1 . . . , vk)

s1 ⊕ s2 Bitwise exclusive-or of bit strings s1 and s2

[bexpr] Truth value of Boolean expression bexpr

[bexpr]?expr1 ∶ expr0 if (bexpr = true) return expr1 else return expr0

a ←$S Choose uniformly a random element a in set S

{a1, . . . , at} ←$S Choose uniformly t random distinct elements in S

x← expr Assign the value of expr to variable x

Pi → Pj ∶ msg Party Pi sends a message msg to parties Pj

{0,1}l Set of all bit strings of length l

ε The empty string

N,Z Set of natural numbers and integers

[a, b] Set of all integers from a ∈ Z to b ∈ Z

Zn Set of integers modulo n

Z∗n Set of integers modulo n that are coprime with n

Sn Set of all permutations of {1, . . . , n}

π,π1, π2 Permutations

Table 2.2: Notations





27

Chapter 3

Related Work

In this chapter, we review work that is related to this thesis. We start in Section 3.1 by
reviewing related work to secure multiparty computation in the standard model and
in the so-called server model. Implementing secure computation protocols is a difficult
task. We will conclude the Section 3.1 by reviewing some frameworks that have been
developed to help implementing efficient protocols. In Section 3.2, we review related
protocols to OT and ORAM for which security definition and schemes relevant for
this thesis have been presented in the preliminaries. Secure integer comparison is
an important building block for our own protocols. Therefore, we first describe in
Section 3.3 comparison protocols that are closely related to the protocols described in
this thesis. Then, we briefly review other comparison protocols found in the literature.
Searching over encrypted data is one of the topics addressed in this thesis. Related to
Chapter 4, we describe in Section 3.4 order-preserving encryption schemes and other
primitives that allow searching on encrypted data without decrypting it. Two other
topics considered in the thesis are classification with private decision trees (Chapters
5 and 6) and computation of the kth-ranked element (Chapter 7), for which related
work will be described in Section 3.5 and Section 3.6, respectively.

3.1 Secure Multiparty Computation

3.1.1 Standard Model

Secure multiparty computation (SMC) allows several parties to compute a publicly
known function on their private inputs without revealing any information other than
the function’s output. To privately compute a function, the parties run an interactive
protocol without requiring the help of any third party. We will refer to this as the
standard model of SMC. SMC has been introduced for the two-party case by Yao
in his breakthrough papers [195, 196]. It has been extended for the multiparty case
by Goldreich et al. [87], Ben-Or et al. [23], and Chaum et al. [43], where they
also showed feasibility results. Since then, a large number of works have been done
to refine the security definitions, strengthen the adversarial model, and improve the
efficiency. Therefore, SMC has evolved from a theoretical curiosity to a powerful tool
for building privacy-preserving applications. For more details, we refer to foundational
references on SMC such as [20, 58, 90, 101]. We also refer to the paper of Evans et
al. [77] which gives a state-of-the-art overview of the main constructions and the
most currently active research areas. They also provide insights into SMC problems
that are practically solvable today and how different threat models and assumptions
impact the practicality of different approaches.
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3.1.2 Server Model

In a multiparty party computation, it is sometimes convenient to rely on a server that
helps the real parties (the clients) in the computation. We will refer to this as the
server model. In this model, the server has no input to the computation and receives
no output, but makes its computational resources available to the clients [114, 121].

The server model for generic secure computation was introduced in [78]. In [120],
Kerschbaum proposed an approach allowing a service provider to offer a SMC service
by himself. The cryptographic study of the server model was initiated in [113, 114].

In [155], Naor et al. considered another setting requiring two mutually distrustful
servers and designed a specific protocol for secure auctions. Relying on multiple
non-colluding servers requires a different business model for the service provider of a
privacy-preserving service. The service provider has to share benefits with an almost
equal peer offering its computational power [42, 120].

3.1.3 Secure Computation Frameworks

Despite being a powerful tool for privacy-preserving applications, SMC incurs large
overheads and requires expert knowledge to develop efficient protocols. Therefore a
variety of frameworks (the software tools implementing the underlying – or a combi-
nation of – generic SMC protocol(s)) has been developed to address these problems.

Garbled Circuit Frameworks Some frameworks are tailored for Garbled Circuits.
They provide a GC-backend that allows the generator to transform a Boolean circuit
into a garbled circuit that can be evaluated by the evaluator. Examples are: FastGC
[105], SCAPI [75], ObliVM-GC [144], JustGarble [19], LEGO [157], WMCrypt [146].

Secret Sharing Frameworks Some frameworks are based on secret sharing. They
allow sharing the parties’ inputs among many computing parties using additive secret
sharing. Addition of secret values can be evaluated by just adding the shares locally.
Multiplication requires interactions and can be sped up using a pre-processing based
on Beaver technique [16]. So-called multiplication triples are generated in an offline
phase and later used in the online protocol to reduce the number of interactions.
Examples of such tools are: Sharemind [29], VIFF [64], SPDZ [69], SPDZ-2 [67],
TinyOT [39], MASCOT [117].

Hybrids Frameworks There are hybrid frameworks that combine garbled, addi-
tively homomorphic encryption, and secret sharing. Examples are: ABY [71], TASTY
[103], Chameleon [169], SCALE–MAMBA [5].

Compilers Some frameworks have a compiler that can transform programs written
in a high-level language, such as Java, C/C++, etc., into a secure representation. We
have for example: FairPlay [147], FairPlayMP [22], CBMC-GC [80], ObliVM-Lang
[144], SCVM [143], PCF [132], Wysteria [168], TinyGarble [174], PICCO [198].

3.2 Building Blocks Protocols

We first review the literature on OT and ORAM. Then, we review oblivious data
structures and private information retrieval that are related to ORAM and OT, re-
spectively. We conclude the section with the server model of secure computation that
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Sender Receiver

Input: (x0, x1) Input: b ∈ {0,1}
Output: ε Output: xb

α←$Zp β ←$Zp

A = gα

B ← [b = 0] ? gβ ∶ Agβ

B

k0 ← H(Bα) kR ← H(Aβ)
k1 ← H((B ⋅A−1)α)

e0 ← Enc(k0, x0)
e1 ← Enc(k1, x1)

xb ← Dec(kR, eb)

Figure 3.1: Simplest OT [54]

has an additional party to the protocol, namely the server, which however has neither
input nor output.

3.2.1 Oblivious Transfer

Oblivious Transfer (OT) has been introduced by Rabin [167] using public key cryp-
tography. There are several efficient OT protocols including Bellare and Micali [21],
Naor and Pinkas [153], Chou and Orlandi [54]. The scheme of Chou and Orlandi is
the simplest and most efficient protocol to date and is illustrated in Figure 3.1. Nev-
ertheless, all these schemes require some public key operations. In fact, Impagliazzo
and Rudich [106] showed that a black-box reduction from OT to a one-way function
(or a one-way permutation) would imply P ≠ NP. Their result strongly suggests that
we cannot base OT on one-way functions. However, Beaver [15] later showed that it
is possible to extend a few oblivious transfers into many. The idea is to generate few
seed OTs using public key cryptography which can then be extended to any number of
OTs using only symmetric key primitives. It can be seen as the OT equivalent of hy-
brid encryption. Unfortunately, Beaver’s scheme is inefficient in practice and has later
been improved in [107] which proposed OT extension protocols secure against semi-
honest and malicious parties. Recently, more efficient OT extension secure against
semi-honest [9] and malicious [10, 116, 160] adversaries have been proposed. There
are also a number of 1-out-of-n OT (OT1

n) protocols including [54, 154].

3.2.2 Oblivious RAM

Oblivious RAM (ORAM) was first introduced in the context of software protection
against piracy [86, 91]. A trivial ORAM scheme is for the client to download the
entire storage each time it wants to access one element. This results in a too large
overhead and is therefore not acceptable. Efficient schemes replace each read/write
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access to the original storage with a randomized series of read/write accesses to the
remote storage. Many schemes have improved the performance of ORAM including
tree-based ORAM schemes [171, 189] which have sublinear costs. The idea of using
ORAM in secure computation was first mentioned in [94, 95]. In [190], a heuristic
compact ORAM design has been proposed that is optimized for secure computation.
In [72] Doerner and Shelat introduced FLORAM, an ORAM scheme based on function
secret sharing, a primitive that allows sharing a function f to p ≥ 2 parties such that
on input x, each party learns a share fi(x) and ∑ fi(x) = f(x). Despite its linear
computation complexity, the access time is better than tree-based ORAM for trees up
to 230 large. The communication is O(log(n)) for a database with n elements. Most
importantly, the initialization does not require secure computation and is therefore
very fast. For instance, an ORAM with 220 4-byte elements can be initialized in
less than 200 milliseconds. However, the security model requires two non-colluding
servers.

3.2.3 Oblivious Data Structures

Related to ORAM is the concept of Oblivious Data Structures (ODS) [191]. An
ODS ensures that for any two sequences of k operations to the data structure, their
resulting access patterns are indistinguishable. They apply to data structures such as
binary trees or heaps with sparse access graphs. For such data structures, Wang et
al. [191] introduce a pointer-based technique. Thereby, the key idea is to store each
node with the indexes and labels of its child nodes. This eliminates the need to search
through the position map (and hence the recursion step for tree based ORAM) for
a child node label, achieving O(log2(n)) cost. Using similar techniques, Keller and
Scholl [118] proposed schemes for ODS based on secret sharing. Their schemes are
very efficient, translate to the multiparty setting, and provide active security as they
fit naturally with the SPDZ framework [67, 69], which uses a pre-processing phase to
generate secret random multiplication triples and random bits. The resulting online
protocol is actively secure against a dishonest majority.

3.2.4 Private Information Retrieval

Similar to OT1
n, Private Information Retrieval (PIR) allows a user to retrieve one out

of n values from a database held by a server without revealing to the server which
value was retrieved. A trivial way is to download the entire database and to dis-
miss the values the user is not interested in. Non-trivial PIR aims to provide the
same user’s privacy with efficient communication cost and was first investigated by
Chor et al. [53]. They implemented PIR through replicated databases which provides
information-theoretic security, if some database servers do not collude. In contrast
to OT, the goal of PIR is not to provide privacy for non requested values. Nev-
ertheless, some PIR schemes do ensure that the user can access only the requested
value. Moreover, Kushilevitz and Ostrovsky [133] later discovered that replication is
not needed and introduced computational PIR based on quadratic residuosity assump-
tion. Computational PIR has been further investigated and improved by others includ-
ing Lipmaa [141], which is computationally receiver-private, information-theoretically
sender-private and has log-squared communication complexity. However, all compu-
tational PIR protocols have necessarily linear computation cost at the server which
often makes them an unattractive choice for indexing [172].
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xiu xju

cu

cu+1

=

(a) 1-bit Equality Tester

c2c3 0

EQ

xi1 xj1xi2 xj2xiµ xjµ

cµ+1

= = =

(b) µ-bit Equality Tester

Figure 3.2: Equality Test Circuit

3.3 Secure Integer Comparison

In his seminal paper [195], Yao introduced the millionaires’ problem where two mil-
lionaires are interested in knowing which of them is richer without revealing their
actual wealth. The underlying functionality “greater-than” (GT) takes two integers
and returns to the parties a comparison bit:

FGT(xi, xj)→ (gij , gij),

where gij is a bit defined as gij ∶= ([xi > xj]?1 ∶ 0). A variant of the millionaires’
problem is the socialist millionaires’ problem [35, 110] whose underlying functionality
“equality test” (EQ) takes two integers and returns to the parties an equality bit:

FEQ(xi, xj)→ (eij , eij),

where eij is a bit defined as eij ∶= ([xi = xj]?1 ∶ 0). In this section, we review various
protocols for computing theses functionalities. We start with comparison protocols
that are closely related or have been used to implement protocols described in this
thesis. Then, we briefly review other comparison protocols found in the literature.

3.3.1 Using Garbled Circuit

Using the garbled circuit protocol, the functionalities FGT and FEQ are represented as
Boolean circuits that can be garbled by the generator and sent to the evaluator. The
circuits described in this section have been introduced in [130, 131]. Let Pi, Pj be two
parties having private inputs xi, xj , respectively and let xbi = xiµ . . . xi1, xbj = xjµ . . . xj1
be the corresponding bit representations.

Equality Test. The equality test is described by Equation 3.1. It consists of µ
1-bit equality testers for each bit position u from 1 to µ. The 1-bit equality tester at
position u tests if the bits xiu and xju are equal (i.e., their exclusive-or is 1). Then
it combines the exclusive-or result in an OR-gate with the result of the 1-bit equality
tester at position u − 1, which is initially set to the bit 0 [131]:

⎧⎪⎪⎨⎪⎪⎩

c1 = 0,

cu+1 = (xiu ⊕ xju) ∨ cu, u = 1, . . . , µ.
(3.1)

The output cµ+1 of the circuit is 1 if xi and xj are different and 0 otherwise (i.e.
eij = cµ+1 = ([xi ≠ xj]?1 ∶ 0)). The equality tester is illustrated in Figure 3.2.

Greater Than Comparison. The greater-than comparison is based on the fact
that [xi > xj]⇔ [xi − xj − 1 ≥ 0] and is described in Equation 3.2 [130]. Similarly to
the equality tester, the circuit for the greater-than comparison (comparator) consists
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xiu xju

c′u
c′u+1

(a) 1-bit Comparator

c′2c′3 0

GT

xi1 xj1xi2 xj2xiµ xjµ

c′µ+1

(b) µ-bit Comparator

Figure 3.3: Greater-Than Comparison Circuit [130]

of µ 1-bit comparators for each bit position u from 1 to µ. The 1-bit comparator at
position u depends on the result of the previous 1-bit comparator at position u − 1,
which is initially set to the bit 0.

⎧⎪⎪⎨⎪⎪⎩

c′1 = 0,

c′u+1 = (xiu ⊕ c′u) ∧ (xju ⊕ c′u)⊕ xiu, u = 1, . . . , µ.
(3.2)

The output c′µ+1 is 1 if xi > xj and 0 otherwise (i.e., gij = c′µ+1 = ([xi > xj]?1 ∶ 0)).
The comparator is illustrated in Figure 3.3.

While Equations 3.1 and 3.2 can be evaluated using FHE, the naive evaluation
is inefficient. Moreover, they cannot be evaluated using only additively HE as they
require homomorphic multiplications of ciphertexts.

3.3.2 Using Additive Homomorphic Encryption

Again let Pi, Pj be two parties having private inputs xi, xj . Moreover, party Pi
holds a pair (pki, ski) of public and private key and Pj knows only the public key
pki. Using AHE, party Pi encrypts its input under the public key pki and party Pj
homomorphically evaluates a circuit on the resulting ciphertexts and sends back the
result for decryption. It is well known that equality test can be implemented with
zero testing [142]. Let ⟦xi⟧i be a AHE ciphertext of xi under pki. Party Pj receives
⟦xi⟧i and sends back c = ⟦r ⋅ (xi − xj)⟧i, where r is random, to party Pi. It easily
follows that xi = xj if and only if c decrypts to zero [138, 140]. We now describe two
protocols for the GT comparison using AHE.

The Lin-Tzeng protocol. The main idea of the construction of Lin-Tzeng is to
reduce the greater-than comparison to the set intersection problem [135].

Let xi be an integer with binary representation xbi = xiµ . . . xi1. We define the
0-encoding S0

xi and 1-encoding S1
xi of xi to be the following sets:

S0
xi = {xiµxi(µ−1)⋯xi(u+1)1 ∣ xiu = 0,1 ≤ u ≤ µ}, (3.3)

S1
xi = {xiµxi(µ−1)⋯xiu ∣ xiu = 1,1 ≤ u ≤ µ}. (3.4)

Basically, S0
xi contains all prefixes of xi that end with 0, where the last 0 is replaced

by a 1, and S1
xi contains all prefixes of xi that end with a 1. Let xi and xj be two

integers, then xi > xj iff ∣S1
xi ∩ S

0
xj ∣ = 1.

For example, if µ = 3, xi = 6 = 1102 and xj = 2 = 0102 then S1
xi = {1,11}, S0

xj =
{1,011} and S1

xi ∩ S
0
xj = {1}. However, if xi = 2 = 0102 and xj = 6 = 1102 then

S1
xi = {01}, S0

xj = {111} and S1
xi ∩ S

0
xj = ∅.

Let b = 0. To homomorphically compare xi and xj , the protocol works as follows:
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• Pi computes a 2 × µ-table T [i, j], i ∈ {0,1},1 ≤ j ≤ µ defined as:

T [xj , j] = ⟦b⟧i and T [1 − xj , j] = ⟦r⟧i for some random r

and sends it to party Pj .

• After receiving the table T , Pj does the following:

– for each u,1 ≤ u ≤ µ, choose a random r and compute

cu =
⎧⎪⎪⎨⎪⎪⎩

(T [xjµ, µ] ×⋯ × T [xj(u+1), u + 1] × T [1, u])r if xjµ⋯xj(u+1)1 ∈ S0
xj

⟦r⟧i if xjµ⋯xj(u+1)1 ∉ S0
xj ,

– choose a random permutation π of {1, . . . , µ},
– send (c1, . . . , cµ)← π(c1, . . . , cµ) to Pi.

• If one cu decrypts to b then xi > xj and Pi outputs 1. Otherwise, it outputs 0.

The protocol can work with a multiplicatively homomorphic encryption such as El-
Gamal [76] by setting b = 1.

The DGK protocol. To determine whether xi < xj or xi > xj , one computes for
each 1 ≤ u ≤ µ the following numbers zu:

zu = s + xiu − xju + 3
µ

∑
v=u+1

(xiv ⊕ xjv). (3.5)

The sum of exclusive-ors ∑µv=u+1(xiv ⊕xjv) will be zero exactly when xiv = xjv for
u < v ≤ µ. The variable s can be set to either 1 (when checking xi ≤ xj) or -1 (when
checking xi > xj) and allows secret-sharing the result of the comparison between two
parties. To check whether xi ≤ xj holds the protocol works as follows:

• Party Pi sends ⟦xbi ⟧i = (⟦xiµ⟧i, . . . , ⟦xi1⟧i) to party Pj .

• Pj computes DgkEval() from Algorithm 3.4:

(δji, ⟦zµ⟧i, . . . , ⟦z1⟧i)← DgkEval(⟦xbi ⟧i, xbj),

sends back (⟦zµ⟧i, . . . , ⟦z1⟧i) to Pi and outputs δji.

• Pi computes δij ← DgkDecrypt(⟦zµ⟧i, . . . , ⟦z1⟧i) as defined in Algorithm 3.4
and outputs δij .

After the computation the parties Pi and Pj hold random bits δij and δji such that
δij ⊕ δji = (x ≤ y). In this protocol, parties Pi and Pj perform respectively O(µ) and
O(6µ) asymmetric operations. The DGK protocol has been improved in [65, 187, 188].

3.3.3 Using Fully Homomorphic Encryption

To check whether xi ≥ xj , one evaluates the following circuit:

cu =
⎧⎪⎪⎨⎪⎪⎩

(1⊕ xiu) ⋅ xju if u = 1

((1⊕ xiu) ⋅ xju)⊕ ((1⊕ xiu ⊕ xju) ⋅ cu−1) if u > 1,
(3.6)
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1: function DgkEval(⟦xbi ⟧i, xbj )
2: parse ⟦xbi ⟧i as ⟦xiµ⟧i, . . . , ⟦xi1⟧i
3: parse xbj as xjµ . . . xj1
4: for u ∶= 1 to µ do
5: if xju = 0 then
6: ⟦xiu ⊕ xju⟧i ← ⟦xiu⟧i
7: else
8: ⟦xiu ⊕ xju⟧i ← ⟦1⟧i⟦xiu⟧−1

i = ⟦1 − xiu⟧i
9: choose a random bit δji and set s = 1 − 2 ⋅ δji

10: for u ∶= 1 to µ do
11: ⟦zu⟧i ← ⟦s⟧i⟦xiu⟧i⟦xju⟧−1

i (∏µ
v=u+1⟦xiv ⊕ xjv⟧i)3

12: ⟦zu⟧i ← ⟦zu⟧rui , for a random ru

13: choose a random permutation π of {1,⋯, µ}
14: return (δji, π(⟦zµ⟧i, . . . , ⟦z1⟧i))
1: function DgkDecrypt(⟦zµ⟧i, . . . , ⟦z1⟧i)
2: for u ∶= 1 to µ do
3: if Dec(ski, ⟦zu⟧i) = 0 then
4: return 1
5: return 0

Algorithm 3.4: Algorithms of the DGK Comparison Protocol

where 1 ≤ u ≤ µ. Then, the result of the comparison is the bit cµ which is 0 if xi ≥ xj
and 1 otherwise. This can be expressed recursively as follows:

cµ = (1⊕ xiµ) ⋅ xjµ ⊕ (
µ−1

⊕
v=1

(1⊕ xiv) ⋅ xjv ⋅ bv+1 ⋅ bv+2 ⋅ ⋯ ⋅ bµ) ,

where bv = (1⊕ xiv ⊕ xjv).
(3.7)

The above comparison circuit has multiplicative depth log(µ − 1) + 1 and can
be homomorphically evaluated on two µ-bits integers in O(µ logµ) homomorphic
computations [45, 46, 47]. Given two encrypted bit representations ⟦xbi ⟧, ⟦xbj⟧, we will
use SheCompare(⟦xbi ⟧, ⟦xbj⟧) to denote a function that homomorphically evaluates
the comparison circuit defined in Equation 3.7.

3.3.4 Other Integer Comparison Protocols

There are several other protocols for privately comparing integers. In this section, we
briefly review a few of these protocols. Most of these protocols require access to the
bit representation of the integers.

Fischlin [79] uses the fact that if xi > xj then the bit representations of both
integers have a common prefix which is followed by a bit 1 for xi and a bit 0 for xj .
This is represented by the following Boolean formula:

[xi > xj]⇐⇒
µ

⋁
u=1

(xiu ∧ ¬xju ∧
µ

⋀
v=u+1

(xiu = xju))

⇐⇒
µ

⋁
u=1

(xiu ∧ ¬xju ∧
µ

⋀
v=u+1

¬(xiu ⊕ xju)).
(3.8)
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Each disjunct in Equation 3.8 can be homomorphically evaluated using Goldwasser-
Micali encryption [92] which is XOR-homomorphic (i.e., for two bits b and b′ we have
Dec(sk, ⟦b⟧ ⋅⟦b′⟧) = b⊕b′) and can be extended to an AND-homomorphism [79]. Hence,
each term xiu ⊕ xju is computed using the XOR-homomorphic property. Given the
encryption ⟦b⟧ of a bit b, ⟦¬b⟧ is computed as ⟦1⟧⋅⟦b⟧ = ⟦1⊕b⟧. Finally, the conjunctions
are computed using the AND-homomorphism.

In Blake and Kolesnikov’s scheme [25], the input bits of party Pi are sent encrypted
under its public key pki using Paillier encryption [159]. Party Pj homomorphically
computes the following values in Equation 3.9 for u from µ down to 1:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

du = xiu − xju
fu = xiu − 2xiuxju + xju
yu = 2yu+1 + fu, where yµ+1 = 0

zu = du + ru(yu − 1), where ru is random.

(3.9)

Party Pj then chooses a permutation π←$Sµ and sends back π(⟦zµ⟧i, . . . , ⟦z1⟧i) to
party Pi. If exactly one ciphertext ⟦zu⟧i decrypts to 1 (resp. −1) then we have xi > xj
(resp. xi < xj).

Garay et al. [83] use a circuit similar to Equation 3.6, however, representing it as
an arithmetic circuit. The terms (1⊕ xiu) ⋅ xju and (1⊕ xiu ⊕ xju) ⋅ cu−1 are replaced
by (1 − xiu) ⋅ xju and (1 − (xiu − xju)2) ⋅ cu−1, respectively, resulting in the following
arithmetic circuit:

cu =
⎧⎪⎪⎨⎪⎪⎩

(1 − xiu) ⋅ xju if u = 1

((1 − xiu) ⋅ xju) + ((1 − (xiu − xju)2) ⋅ cu−1) if 1 < u ≤ µ.
(3.10)

Using the circuit in Equation 3.10, they propose a protocol that runs in O(logµ)
rounds while achieving simultaneously very low communication and computational
complexities. Their schemes rely on the so-called arithmetic black-box (ABB) [57, 68].
The arithmetic black-box is an ideal functionality that performs basic arithmetic op-
erations (i.e., addition and multiplication). While any party can in private specify
input to the ABB, only a majority of parties can ask to perform any feasible com-
putation and made (only) the result public. The ABB itself can be implemented
using additive secret sharing or additively homomorphic encryption. Hence, it can
perform the addition of two variables and the multiplication with a constant by it-
self, while the multiplication of variables requires interaction with the parties. Other
protocols for computing the equality test and GT comparison using the ABB include
[41, 62, 142, 158, 178].

Gentry et al. [85] reduce the GT comparison to the zero testing. Using AHE,
party Pj gets the encrypted input bits ⟦xbi ⟧i = (⟦xiµ⟧i, . . . , ⟦xi1⟧i) and first computes
⟦xiµ ⊕ xjµ⟧i, . . . , ⟦xi1 ⊕ xj1⟧i. Then it computes ⟦zu⟧i ← ⟦∑µv=u xiv ⊕ xjv⟧i for all
u = 1, . . . , µ. Both parties run a zero testing for each ⟦zu⟧i resulting in ciphertexts
⟦yu⟧i encrypting a bit 0 if ⟦zu⟧i = ⟦0⟧i or a bit 1 otherwise. Let ⟦yµ+1⟧i = ⟦0⟧i, party Pj
computes ⟦y′u⟧i ← ⟦(yu − yu+1) ⋅ xju⟧i for all u = 1, . . . , µ. Finally, party Pj computes
the ciphertext ⟦∑µu=1 y

′
u⟧i which encrypts a bit 0 if xi ≥ xj and a bit 1 otherwise.

The zero testing reduces to itself reducing logarithmically the bitlength of the input
string. To check whether ⟦zu⟧i encrypts 0, party Pj chooses a random value aj with bit
representation ajµ . . . aj1. Then Pj encrypts the bit representation of aj under its own
public key pkj and sends ⟦zu+aj⟧i and (⟦ajµ⟧j , . . . , ⟦aj1⟧j) to party Pi. Let ai = zu+aj
with bit representation aiµ . . . ai1, party Pi computes ⟦aiµ⊕ajµ⟧j , . . . , ⟦ai1⊕aj1⟧j and
⟦z′u⟧j ← ⟦∑µv=1 aiv⊕ajv⟧j . Now the value z′u is of bitlength log zu and the protocol can
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be applied recursively on ⟦z′u⟧j with the parties switching their role in each recursive
iteration.

Based on the observation of [142, 178] that the comparison of two strings can be
reduced to comparing the first equal length sub-strings on which they differ, Couteau
[56] recently propose new protocols for equality test and GT comparison. A protocol
for obliviously finding this sub-string can, therefore, be used to reduce the comparison
of larger strings to the comparison on smaller strings. The reduction can be applied
recursively until the strings are small enough. However, while Toft and Lipmaa [142,
178] based their constructions on public-key primitive, Couteau [56] shows how to
implement the reduction using exclusively oblivious transfer on short strings [129].

In summary, the schemes described above require access to the bit representation
of the integers and perform operations on private data using additively homomorphic
encryption or additive secret sharing. The scheme of Fischlin [79] and the scheme of
Blake and Kolesnikov [25] have a constant number of rounds but require a complexity
that is linear in the bitlength of the integers. The scheme of Garay et al. [83] and the
scheme of Gentry et al. [85] have a logarithmic (in the input bitlength) number of
rounds and a linear complexity, but in contrast to [25, 79], they output an encrypted
comparison bit. The scheme of Couteau [56] has a log-logarithmic (in the input
bitlength) number of rounds and a linear complexity, but outputs secret shares of the
comparison bit.

3.4 Search over encrypted data

Cloud computing allows data owners to outsource their data to a database hosted
by third party cloud server. To allow the data owners to maintain control over their
outsourced data, one can use encryption to protect it against attackers inside the
cloud. On the one hand, encryption makes the data unintelligible, such that executing
complex search queries on it is no longer possible. On the other hand, downloading
the complete data every time and search on it locally results in very high overhead.
Therefore, specific cryptographic primitives have been designed to search on data in
the encrypted form such that the data owner can delegate the search to a cloud server
while maintaining control over the data. We review some of these primitives in this
section.

3.4.1 Order-preserving Encryption

Order-preserving encryption (OPE) can be classified into stateless schemes and state-
ful schemes. The protocol in Chapter 4 is concerned with stateful schemes and hence
we introduce some of their algorithms in this section. However, we review stateless
schemes and their security definitions first in order to distinguish them from stateful
schemes.

Stateless Order-preserving Encryption

Order-preserving encryption ensures that the order relation of the ciphertexts is the
same as the order of the corresponding plaintexts. This allows to efficiently search
on the ciphertexts using binary search or perform range queries without decrypting
the ciphertexts. The concept of order-preserving encryption was introduced in the
database community by Agrawal et al. [3]. The cryptographic study of Agrawal et
al.’s scheme was first initiated by [30], which proposed an ideal security definition
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IND-OCPA1 for OPE. The authors proved that under certain implicit assumptions
IND-OCPA is infeasible to achieve. Their proposed scheme was first implemented
in the CryptDB tool of Popa et al. [164] and attacked by Naveed et al. [156]. In
[31], Boldyreva et al. further improved the security and introduced modular order-
preserving encryption (MOPE). MOPE adds a secret modular offset to each plaintext
value before it is encrypted. It improves the security of OPE, as it does not leak
any information about plaintext location, but still does not provide ideal IND-OCPA
security. Moreover, Mavroforakis et al. [148] showed that executing range queries
via MOPE in a naive way allows the adversary to learn the secret offset and so
negating any potential security gains. They address this vulnerability by introducing
query execution algorithms for MOPE. However, this algorithm assumes a uniform
distribution of data and has already been attacked in [74]. In a different strand of
work Teranishi et al. [177] improve the security of stateless order-preserving encryption
by randomly introducing larger gaps in the ciphertexts. However, they also fail at
providing ideal security.

Stateful Order-preserving Encryption

Popa et al. [163] were the first to observe that one can avoid the impossibility result
of [30] by giving up certain restrictions of OPE. As a result of their observations, they
introduced mutable OPE . Their first observation was that most OPE applications
only require a less restrictive interface than that of encryption schemes. Their encryp-
tion scheme is, therefore, implemented as an interactive protocol running between a
client that also owns the data to be encrypted and an honest-but-curious server that
stores the data. Moreover, it is acceptable that a small number of ciphertexts of
already-encrypted values change over time as new plaintexts are encrypted. With this
relaxed definition, their scheme was the first OPE scheme to achieve ideal security.

Popa et al.’s scheme (mOPE1) [163]. The basic idea of Popa et al.’s scheme is to
have the encoded values organized at the server in a binary search tree called OPE-tree.
Specifically, the server stores the state of the encryption scheme in a table (OPE-table).
The state contains ciphertexts consisting of a deterministic AES ciphertext and the
order (OPE Encoding) of the corresponding plaintext. To encrypt a new value x the
server reconstructs the OPE-tree from the OPE-table and traverses it. In each step
of the traversal, the client receives the current node v of the search tree, decrypts and
compares it with x. If x is smaller (resp. larger), then the client recursively proceeds
with the left (resp. right) child node of v. An edge to the left (resp. to the right)
is encoded as 0 (resp. 1). The OPE encoding of x is then the path from the root
of the tree to x padded with 10⋯0 to the same length l. To ensure that the length
of OPE encodings does not exceed the defined length l, the server must occasionally
perform balancing operations. This updates some order in the OPE table (i.e., the
OPE encodings of some already encrypted values mutate to another encoding).

Kerschbaum and Schröpfer’s scheme (mOPE2) [124]. The insertion cost of
Popa et al’s scheme is high, because the tree traversal must be interactive between
the client and the server. To tackle this problem Kerschbaum and Schröpfer [124]
proposed another ideal secure, but significantly more efficient, OPE scheme. Both
schemes use binary search and are mutable, but the main difference is that in the
scheme of [124] the state is not stored on the server but on the client. Moreover,

1IND-OCPA means indistinguishability under ordered chosen plaintext attacks and requires that
OPE schemes must reveal no additional information about the plaintext values besides their order.
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the client chooses a range {0, . . . ,M} for the order. For each plaintext x and the
corresponding OPE encoding y ∈ {0, . . . ,M} the client maintains a pair ⟨x, y⟩ in the
state. To insert a new plaintext the client finds two pairs ⟨xi, yi⟩, ⟨xi+1, yi+1⟩ in the
state such that xi ≤ x < xi+1 and computes the OPE encoding as follows:

• if xi = x then the OPE encoding of x is y = yi,

• else

– if yi+1 − yi = 1 then
∗ update the state (Algorithm 2 in [124])2.

– the OPE encoding of x is y = yi + ⌈yi+1−yi2 ⌉.

The encryption algorithm is keyless and the only secret information is the state which
grows with the number of encryptions of distinct plaintexts. The client uses a dictio-
nary to keep the state small and hence does not need to store a copy of the data.

Poddar et al.’s scheme (Arx) [162] Poddar et al. avoid the interactive tree
traversal by replacing each node v of the OPE-tree with a prepared garbled circuit
(GC). Let AES.ENC(k, ⋅), AES.DEC(k, ⋅) be encryption and decryption functions of
AES with corresponding circuits denoted by AES.ENCc(k, ⋅), AES.DECc(k, ⋅). Let
CMP(⋅, v) be a comparison circuit for computing [x ≤ v], for some input x. Let N
be a tree node that encodes a plaintext v. The GC for N encodes AES.DECc(k, ⋅),
CMP(⋅, v), AES.ENCc(kl, ⋅) and AES.ENCc(kr, ⋅), where k, kl, kr are respectively AES
keys for node N and its left and right child nodes. Our GC encodes only two com-
parison circuits and is relatively small. To traverse node N on input x, the GC takes
the garbled input of AES.ENC(k, x), decrypts, compares, and returns a garbled input
for either AES.ENC(kl, x) or AES.DEC(kr, x), and a bit left or right. To encode a
new plaintext x the client sends AES.ENC(kroot, x) and must replace all GCs on the
traversed path after the encryption.

Kerschbaum’s scheme (mOPE3) [123]. Deterministic OPE schemes [3, 30, 124,
163, 177] are vulnerable to many attacks like frequency analysis, sorting attacks or
cumulative attacks [98, 156]. To increase the security of OPE Kerschbaum first in-
troduced in [123] a new security definition called indistinguishability under frequency-
analyzing ordered chosen plaintext attack (IND-FAOCPA) that is strictly stronger
than IND-OCPA. Second, he proposed a novel OPE scheme mOPE3 that is secure
under this new security definition. The basic idea of this scheme is to randomize
ciphertexts such that no frequency information from repeated ciphertexts leaks. It
borrows the ideas of [124] with a modification that re-encrypts the same plaintext
with a different ciphertext. First, the client’s and server’s states are as in mOPE2.
The order ranges from 0 to M as in mOPE2 as well. The algorithm traverses the
OPE-tree by going to the left or to the right depending on the comparison between
the new plaintext and nodes of the tree. However, if the value being encrypted is
equal to some value in the tree then the algorithm traverses the tree depending on
the outcome of a random coin. Finally, if there is no more node to traverse the algo-
rithm rebalances the tree if necessary and then computes the ciphertext similarly to
y = yi + ⌈yi+1−yi2 ⌉.

In subsequent independent analysis [98], mOPE3 [123] has been shown to be sig-
nificantly more secure to the attacks against order-preserving encryption (albeit not
perfectly secure).

2This potentially updates all OPE encoding y produced so far [124].
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Kerschbaum and Tueno’s scheme (ESEDS-OPE) [125]. This work first in-
troduces a new security definition for encrypted data structure – called IND-CPA-DS
– that is stronger than IND-CPA on each record (and hence stronger than IND-
FAOCPA). IND-CPA-DS is a provable security model that encompasses plaintext
guessing attacks on OPE where the attacker is able to break into a cloud system and
steal the stored data. IND-CPA-DS ensures that such an attack and even frequency
analysis, sorting and cumulative attacks by Naveed et al. [156] and Grubbs et al. [98]
will reveal no additional information to the adversary. In [8], Amjad et al. address
a similar security model for searchable encryption. Kerschbaum and Tueno [125]
then propose an OPE scheme based on efficiently searchable encrypted data structure
(ESEDS-OPE) satisfying IND-CPA-DS-security. The construction of ESEDS-OPE
combines the benefits of three previous order-preserving encryption schemes: mOPE1

[163], mOPE3 [123] and MOPE [31]. First, ESEDS-OPE reuses the idea of managing
the order of ciphertexts in a stateful and interactive manner as in mOPE1 [163]. Sec-
ond, it assigns a distinct ciphertext for each – even repeated – plaintext as mOPE3

[123] does. But since mOPE3 partially leaks the insertion order, ESEDS-OPE encrypts
each plaintext – even repeated ones – using a probabilistic encryption algorithm before
inserting the resulting ciphertext using Kerschbaum’s random tree traversal. Third,
ESEDS-OPE applies the idea of rotating around a modulus, however not on the plain-
texts as in MOPE [31], but on the ciphertexts. This is done by updating the modulus
after each encryption. Concretely, ESEDS-OPE maintains a list of ciphertexts for
each plaintext on the server. This list is sorted by the plaintexts and rotated (on the
ciphertexts) around a random modulus. For encryption and search, the client (which
owns the decryption key) and the server run an interactive protocol to perform a
binary search on the encrypted data structure.

3.4.2 Other Searchable Primitives

There exist other primitives such as searchable encryption [59, 99] and order-revealing
encryption [44, 134] that allow searching on encrypted data. They have higher security
than OPE, but they are less efficient and require a change to existing applications.
We briefly review the two primitives below and refer to the respective literature for
more details.

A searchable encryption basically consists of four algorithms. The probabilistic
key generation algorithm takes a security parameter and outputs a master secret key.
The probabilistic encryption algorithm takes the master secret key and a plaintext and
outputs a ciphertext. The deterministic token generation algorithm takes the mas-
ter secret key and a keyword and outputs a search token. The deterministic match
algorithm takes a ciphertext and a search token and outputs 1 if the associated key-
word to the search token matches the associated plaintext to the given ciphertext. A
searchable encryption can be used for example by a data owner to outsource encrypted
documents to the cloud. Later, the data owner might want to search for documents
containing a specific keyword. Based on the keyword, it generates and sends a search
token to the cloud server which can use the match algorithm to return all encrypted
documents matching the keyword [59].

As OPE, order-revealing encryption (ORE) allows to efficiently perform range
queries, sorting and filtering on encrypted data. An order-revealing encryption basi-
cally consists of three algorithms. The probabilistic key generation algorithm takes a
security parameter and outputs a secret key. The probabilistic encryption algorithm
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takes the secret key and a plaintext and outputs a ciphertext. The deterministic com-
pare algorithm takes two ciphertexts and outputs a bit whose value reveals the order
between the associated plaintexts [44, 134].

Similar to our work in Chapter 4, Ishai et al. [108] address a 3-party functionality
consisting of a Data Owner (DO) that outsources encrypted data to the Cloud Service
Provider (CSP), and a Data Analyst (DA) that wants to execute private range queries
on this data. Ishai et al. solve this 3-party functionality by proposing an SSE-like
scheme. Like us, they split the solution in two phases. In the first phase, the three
parties jointly and privately traverse a search tree to reveal to the DA pointers to the
data that match the query. In the second phase, the DA interacts with the CSP to get
the matching data. While traversing the search tree, the parties combine SMC with
2-server private information retrieval (PIR) to compute and select the next node in
the tree, hiding DA’s access pattern to both DO and CSP. The SMC is implemented
with a small garbled circuit whose size is similar to ours. Recall that in a 2-server
PIR, both servers (CSP and DO) have shares of the complete database. In the query
phase, the DA selects each matching data individually using PIR. This, however, hides
the access pattern up to δ queries, where δ is a parameter defined by the DO and is
used to add dummy entries to the database such that the CSP cannot decide if the
DA is accessing a real data. After δ queries, the scheme must either reinitialize the
PIR state (which is linear in the size of the database) or continue with access pattern
leakage. The authors recommend the later option because keeping hiding the access
is very expensive. Inserting new data requires a re-initialization of the PIR state as
well.

3.5 Private Decision Tree Evaluation

Privacy-preserving machine learning takes advantage of SMC techniques to build clas-
sifiers on private databases [104, 136, 137, 138] or to classify private data with private
models [14, 34, 38, 55, 96, 104, 151, 193]. Since our work described in Chapters 5
and 6 falls under the second category, we concentrate in this section only on privacy-
preserving classifiers, particularly decision trees. In private decision tree evaluation,
the server holds a private decision tree model and the client wants to classify its private
attribute vector using the server’s private model.

3.5.1 Using Program Transformation

Brikell et al. [38] combine homomorphic encryption (HE) and GCs in a novel way.
In an initial phase, the server non-interactively transforms the plaintext decision tree
in a secure program, by permuting the tree and replacing each decision node by a
small GC implementing integer comparison, and each leaf node by an encryption of
the corresponding classification label. The GC at a decision node will allow the client
in the evaluation phase to learn the decryption key of one child node according to
the result of the comparison. In the second phase, the parties execute an oblivious
attribute selection protocol, where the client uses a homomorphic scheme to encrypt
each element of the attribute vector under his public key. The server receives the
encrypted vector, permutes it, homomorphically blinds each element, and sends it
back to the client. The client decrypts the vector and the two parties execute oblivious
transfers that allow the client to learn the garbling keys encoding its input. In the
last phase, the client receives the secure program and evaluates it.

Although the evaluation time of Brikell et al.’s scheme is sublinear in the tree size,
the secure program itself and hence the communication cost is linear and, therefore,
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not efficient for large trees. Barni et al. [14] improve the previous scheme by not
including the leaf node in the transformed secure program, thereby reducing the costs
by a constant factor, however maintaining linear communication cost. Although more
efficient, it is still suitable only for small trees.

3.5.2 Using Homomorphic Encryption

Using homomorphic encryption (HE) Bost et al. [34] propose a privacy-preserving
protocol for different classifiers including decision trees. They represent the decision
tree as a polynomial whose output is the result of the classification. The constant
values of the polynomial are the classification labels and the variables represent the
results of the Boolean conditions at the decision nodes. Then, the parties privately
compute the inputs to this polynomial by comparing each threshold of the tree with
the corresponding element of the attribute vector. Finally, the server privately eval-
uates the polynomial and returns the result to the client. The privacy of the tree is
guaranteed by the fact that the server evaluates the polynomial non-interactively. The
evaluation is done homomorphically on inputs encrypted under the client’s public key.
The number of invocations of the comparison protocol and the size of the polynomial
are linear in the size of the tree. Moreover, the evaluation requires FHE or at least
SHE.

Wu et al. [193] improve the protocol of [34] by using different techniques so that
the protocol requires only AHE. Using the protocol from [63], they also perform as
many comparisons as there are decision nodes. The server receives each comparison
bit, encrypted under the client’s public key pk, and uses them to evaluate the decision
tree. The evaluation returns the index of the corresponding classification label to the
client. Finally, the parties execute an Oblivious Transfer to allow the client to learn
the classification label. Their protocol is more efficient than [34], because it relies on
AHE, implemented using a variant of ElGamal based on elliptic curve cryptography.

Tai et al. [175] follow the same idea as in [193] by using the comparison protocol
of [63] and AHE. Then, they mark the left and right edge of each node with the cost
b and 1− b respectively, where b is the result of the comparison at that node. Finally,
they sum for each path of the tree the cost along it. The label of the path whose costs
sum to zero, is the classification label.

Joye et al. [112] follow as well the same idea as in [193] by using the comparison
protocol of [63], by running the protocol encrypted under the client’s public key using
AHE, and by hiding the tree’s structure using at each level of the tree a random
permutation that is secret-shared between the parties. Their protocol works only for
complete trees as in [193] and, therefore, requires adding dummy nodes if the tree
is not complete. The tree is encrypted under the public key of the client. Let d be
the depth of the tree, then the protocol runs in O(d) rounds performing one DGK
comparison per level. For the comparison at level l the server’s input is a random
value rl and the client’s value is selected via OT on the encrypted nodes at level l. In
the OT, the client uses its share of the random permutation at level l to compute an
index j to the OT and get ⟦xj −yj +rl⟧, where xj and yj are respectively the attribute
and threshold values associated to the selected node. Finally, at level d the parties
run again an OT on the classification labels where the client uses again its share of
the permutation at that level to compute an index to OT.

Kiss et al. [126] propose a modular design consisting of the sub-functionalities:
private selection of attribute values, private comparison, and private evaluation of the
path corresponding to the given attribute vector. They then analyze the state-of-
the-art of sub-protocols that make use of homomorphic encryption or garbled circuits
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to privately compute the sub-functionalities. Finally, they explore the tradeoffs and
performance of all possible combinations of the identified sub-protocols to privately
evaluate decision trees.

3.5.3 Using Secret Sharing

De Cock et al. [55] follow the same blueprint as the two previous protocols by first
comparing each threshold of the tree with the corresponding attribute. In contrast
to all other protocols (ours included), which are secure in the computational setting,
they operate in the information theoretic model using secret sharing based SMC and
utilize commodity-based cryptography [16] to reduce the number of interactions. This
results in a protocol that performs very well for small trees. However, their protocol
is less efficient for large trees, since it is also linear in the size of the tree.

3.6 Computation of the kth-Ranked Element

The secure computation of the kth-ranked element can be addressed using generic
secure multiparty computation [23, 87, 195] which guarantees that no protocol par-
ticipant will learn more than what it can infer from its input and the output of the
protocol, i.e., the other parties’ inputs remain confidential. The first specialized pro-
tocol for computing the kth-ranked element was introduced by Aggarwal et al. [1].
They presented protocols for the two-party and multiparty cases in the semi-honest
and malicious model. This section briefly surveys these protocols.

3.6.1 Two-Party Case

Let there be two parties P1 and P2 with private sets S1 and S2 of integers. Without
loss of generality, let assume that k ≤ ∣S1∣ = ∣S2∣ = 2j = n and that the elements in
S1∪S2 are all pairwise distinct. The two-party protocol of Aggarwal et al. [1] computes
the kth-ranked element by performing a binary search in S1∪S2 and works as follows:

1. Both parties sort their sets.

2. For i = j − 1 to i = 0

(a) Each party computes the (2i)th-ranked element of its set denoted by m1

and m2.

(b) Both parties engage in a generic secure computation which outputs 0 if
m1 ≥m2, and 1 if m1 <m2.

(c) If m1 < m2, then P1 removes all elements ranked 2i or less from S1, while
P2 removes all elements ranked greater than 2i from S2.

(d) If m1 ≥ m2, then P1 removes all elements ranked greater than 2i from S1,
while P2 removes all elements ranked 2i or less from S2.

3. The parties output the result of a generic secure computation of the minimum
value of their respective elements.

Larger values of k (i.e., k > ∣S1∣ or k > ∣S2∣) and cardinality of the sets being non-
power of 2 can be dealt with by padding the sets with +∞ and −∞. Duplicates can
be handled by adding ⌈logn⌉ + 1 bits to every input element, in the least significant
positions. For every element in S1, let these bits be a bit 0 followed by the rank of
the element. Apply the same procedure to the element in S2 using the bit 1 instead
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of the bit 0. The protocol as described above is secure in the semi-honest and can be
made secure in the malicious model. If µ is the bit length of each input element, then
the scheme requires O(log k) rounds and has a communication cost of O(µ ⋅ log k).

3.6.2 Multiparty Case

The multi-party protocol of Aggarwal et al. [1] computes the kth-ranked element by
binary search in the domain of the input values. They assume that the elements in
the datasets are not necessarily distinct integers of a fixed length. Let [α,β] be the
publicly known range of the input values, M = β −α+1, N be the number of elements
in all the datasets and n be the number of parties. Each party initializes two variables
a ∶= α and b ∶= β, then the scheme runs in a series of O(logM ) rounds in which it
suggests a value for the kth-ranked element, performs a generic secure computation
for computing the sum of all elements smaller (resp. greater) than the suggested kth-
ranked element, and updates the guess. Initially, the value m = ⌈a+b

2
⌉ is suggested

as the kth-ranked element. Each party Pi lets li be the number of its values strictly
smaller than m and gi be the number of its values strictly greater than m. Then the
parties engage in a generic secure computation to compute the following:

• if ∑ li ≤ k − 1 ∧∑ gi ≤ N − k then return m and stop,

• if ∑ li ≥ k then set b =m − 1,

• if ∑ gi ≥ N − k + 1 then set a =m + 1.

The scheme as described above is semi-honest secure and can be made malicious secure
by adding instructions that force the parties to behave semi-honestly. Each round
requires a generic multiparty computation for computing two summations using a
circuit of size O(n logM ) each and two comparisons using a circuit of size O(logM )
each.

3.6.3 Protocols Using Blockchain

Blass and Kerschbaum propose two protocols STRAIN [27] and SCIB [28] for comput-
ing the kth-ranked element using Blockchain. While STRAIN relies on Fischlin’s com-
parison protocol [79], SCIB relies on the DGK protocol [63]. Given n parties P1, . . . , Pn
with private inputs x1, . . . , xn, the goal is to output the index of kth-ranked element
(but not the element itself). Each party encrypts its input bitwise and publishes the
ciphertexts on the blockchain. Then each party evaluates the comparison of its input
with all other parties’ input and publishes the resulting ciphertexts on the blockchain
as well. While each party must evaluate n − 1 comparisons, they can be done in par-
allel. Finally, each party decrypts comparison ciphertexts encrypted under its public
key, and sums up the resulting comparison bits to get its rank. The party with rank
k then announces the result of the protocol. The technical difficulty relies on the fact
that parties must prove correct execution of the protocol which is done using zero-
knowledge proofs [90] resulting in maliciously secure protocols. While they leak the
order of inputs, similar to OPE, the core techniques of determining the index of the
kth-ranked element are efficient and asymptotically optimal, requiring only 3 rounds.
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Chapter 4

Secure Computation of OPE

Order-preserving encryption (OPE) allows efficient range queries on encrypted data.
Moreover, it does not require any change to the database management system and
can be retrofitted to existing applications. However, all OPE schemes are necessarily
symmetric, limiting the use case to one client and one server. This is due to the fact
that a public-key encryption would allow a binary search on the ciphertext. Imagine
a scenario where a Data Owner (DO) outsources encrypted data to the Cloud Service
Provider (CSP) and a Data Analyst (DA) wants to execute private range queries on
this data. Then either the DO must reveal its encryption key, since order-preserving
encryption is symmetric, or the DA must reveal the private queries. In this chapter, we
overcome the limitation of private range querying on order-preserving encrypted data
by allowing the equivalent of a public-key encryption. Our idea is to replace public-key
encryption with a secure, interactive protocol. Non-interactive binary search on the
ciphertext is no longer feasible, since every encryption requires the participation of the
DO who can rate limit (i.e., control the rate of query sent by) the DA. The chapter
is structured as follows. We start with a motivation in Section 4.1 and introduce
correctness and security definitions in Section 4.2. We describe our deterministic and
non-deterministic construction in Section 4.3 and Section 4.4, respectively. We analyze
correctness and security in Section 4.5 and present a complexity analysis in Section
4.6. We discuss evaluation results in Section 4.7 before summarizing the chapter in
Section 4.8.

4.1 Problem Definition

In this section, we start by describing the problem, then we present a machine learning
application and a related use case found in the literature. We conclude the section
with an overview of our solution.

4.1.1 Description

Our work is motivated by the following scenario. Assume a data owner (DO) encrypts
its data with an OPE, stores the encrypted data in a cloud database held by a cloud
service provider (CSP), and retains the encryption key. We also assume that the
underlying OPE scheme is stateful, the state of the encryption is stored in the same
database with the data, however in separated tables, and is only used while encrypting
new data. The data itself is stored in a relational database management system,
where each plaintext is replaced by its OPE ciphertext. Then range queries are run
by first computing the OPE ciphertext then running an SQL-query as usual, where
the plaintexts in the SQL-query are replaced by their corresponding OPE ciphertext.

Later, assume a data analyst (DA) wants to query the encrypted data. Since OPE
is necessarily symmetric, only the DO can encrypt and decrypt the data stored on
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Figure 4.1: Illustration of the Problem: DO sends encrypted data to
CSP and retains encryption keys. DA holds a private decision tree that
can be represented as a set of range queries. DA wants to perform data
analysis on DO’s encrypted data without revealing any information on
the queries. DO wants to maintain privacy of the data stored at CSP.

the cloud server. To query the data, the DA can send the plaintext query to the DO.
However, if the query contains sensitive information which the DA wants to remain
protected, then this free sharing of information is no longer possible. Our goal is to
allow the DA to efficiently query the encrypted data without revealing any sensitive
information on the query and without learning more than what the DO has allowed.

Since neither the DA wants to reveal his query value nor the DO his encryption
state (key), this is clearly an instance of a SMC where two or more parties compute
on their secret inputs without revealing anything but the result. In an ideal world
the DA and DO would perform a two-party secure computation for the encryption of
the query value and then the DA would send the encrypted value as part of an SQL
query to the CSP. However, this two-party secure computation is necessarily linear in
the encryption state (key) and hence the size of the database. The key insight of our
solution is that we can construct an encryption with logarithmic complexity in the size
of the database by involving the CSP in a three-party secure computation without
sacrificing any security, since the CSP will learn the encrypted query value in any
case. One may assume that in this construction the encryption key of the DO may be
outsourced to secure hardware in the CSP simplifying the protocol to two parties, but
that would prevent the DO from rate limiting the encryption and the binary search
attack would be a threat again, even if the protocol were otherwise secure.

4.1.2 Application

This distinction between DO and DA occurs in many cases of collaborative data
analysis, data mining, and machine learning. In such scenarios, multiple parties need
to jointly conduct data analysis tasks based on their private inputs. As concrete
examples from the literature consider, e.g., supply chain management, collaborative
forecasting, benchmarking, criminal investigation, smart metering, etc. [12, 13, 73,
122]. Although in these scenarios plaintext information sharing would be a viable
alternative, participants are reluctant to share their information with others. This
reluctance is quite rational and commonly observed in practice. It is due to the fact
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that the implications of the information disclosure are unknown or hard to assess.
For example, sharing the information could weaken their negotiation position, impact
customers’ market information by revealing corporate performance and strategies or
impact reputation [12, 13, 42].

As an example, we consider a private machine learning model involving compar-
isons. In a supply chain scenario, the DA could be a supplier (manufacturer) owning
a machine learning model and wanting to optimize its manufacturing process based
on data owned by its buyer (another supplier or distributor). For instance, we as-
sume the model to be a decision tree as pictured in Figure 4.1, where the xi are the
thresholds and (X1,X2,X3) is the input vector (that maps to corresponding columns
in the DO’s database) to be classified. In order to use the model for classification
the DA transforms the decision tree into range queries, e.g., for class c1 we have the
query (X1 < x1) ∧ (X2 < x2). More precisely, the DA wants to execute queries like
in Equations 4.1 and 4.2, where we assume X0 to be public and AggFunc to be an
aggregate function such as Count, Sum, Average, Median etc.:

Select AggFunc(∗) Where X1 < x1 And X2 < x2 OR X3 < x3 (4.1)
Select X0 Where X1 < x1 And X2 < x2 OR X3 < x3 (4.2)

However, as the database is encrypted (i.e. columns X1, X2 and X3 are OPE en-
crypted) the DA needs ciphertexts of the thresholds xj .

4.1.3 Use case

In [176], Taigel et al. describe a specific use case that combines decision tree classifica-
tion and OPE to enable privacy-preserving forecasting of maintenance demand based
on distributed condition data. They consider the problem of a Maintenance, Repair,
and Overhaul (MRO) provider from the aerospace industry that provides maintenance
services to their customers’ (e.g., commercial airlines or air forces) jet engines. The
customers as Data Owners consider the real condition data of their airliners as very
sensitive and therefore this data is stored encrypted in a cloud database using OPE.
The MRO provider as Data Analyst holds a decision tree that can predict the proba-
bility of maintenance, repair, and overhaul of spare parts. However, the classification
of an individual spare part is not necessary, but only aggregated numbers such as
returned by Equation 4.1. The aggregated numbers then allow the MRO to compute
the forecast without violating the privacy of the real condition data. The MRO would
send a plaintext query as in Equation 4.1 to the customer who would compute the
OPE ciphertext y1, y2 of x1, x2 and send instead the encrypted query as in Equation
4.3 to the database [176].

Select AggF(∗) Where X1 < y1 And X2 < y2 (4.3)

This, however, provides privacy only for the customer, while we want to allow
privacy for both customer and MRO provider.

4.1.4 Overview of Our Construction

In theory, generic SMC allows computing any efficiently computable function. How-
ever, any generic SMC is at least linear in the input size, which in this case is the
number of encrypted values in the database. The idea of our solution is to exploit the
inherent leakage, i.e., implied by input and output, of stateful OPE schemes making
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Figure 4.2: Illustration of Range Query Using OOPE

our oblivious OPE sublinear in the database size. Furthermore, we exploit the ad-
vantage of (homomorphic) encryption allowing a unique, persistent OPE state stored
at the CSP while being able to generate secure inputs for the SMC protocol and the
advantage of garbled circuits allowing efficient, yet provably secure comparison. Our
oblivious OPE is, therefore, a mixed-technique, SMC protocol between the DO, the
DA and the CSP in the semi-honest model.

In detail, our protocol proceeds as follows: The DO outsources its OPE state to
the CSP. The state is an ordered list of pairs and each pair consists of a ciphertext and
the order of the corresponding plaintext. However, in oblivious OPE the ciphertext
is created using an additively homomorphic public-key encryption scheme instead of
standard symmetric encryption. When the DA traverses the state in order to encrypt
a query plaintext, the CSP creates secret shares using the homomorphic property. One
secret share is sent to the DA and one to the DO. The DA and DO then engage in a
secure two-party computation using Yao’s Garbled Circuits in order to compare the
reconstruction of the secret shares (done in the garbled circuit) to the query plaintext
of the DA. The result of this comparison is again secret shared between DA and
DO, i.e., neither will know whether the query plaintext is above or below the current
node in the traversal. Both parties – DA and DO – send their secret shares of the
comparison result to the CSP which then can determine the next node in the traversal.
These steps continue until the query plaintext has been sorted into the OPE-table and
the CSP has an order-preserving encoding that can be sent to the DA. A significant
complication arises from this order-preserving encoding, since it must not reveal the
result of the comparison protocols to the DA (although it may be correlated to the
results).

We stress, that our scheme is totally transparent to the database and does not
change the way SQL-queries are executed. Figure 4.2 illustrates how OOPE is used
for private range query. The DA first computes an OPE encoding for each sensitive
query values using OOPE which preserves DA’s privacy against DO and CSP as well
as DO’s privacy against DA and CSP. Then the DA sends the query directly to the
database hosted by the CSP. Note that the execution of the query does not depend
on OOPE. The database executes the query and sends back the result to the DA.
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Number Number of Rounds Communication DO DA

of Parties OPE Encoding Query OPE Encoding Query Storage Storage

Us 3 O(d) 1 O(d ⋅ ∣C∣) O(∣Rq ∣) O(1) O(1)

[162] 2 O(1) O(1) O(1) O(d ⋅ ∣C∣ + ∣Rq ∣) O(d) n/a

[108] 3 O(d) O(∣Rq ∣) O(d ⋅ ∣C∣) O(∣Rq ∣) O(2d) O(2d)

Table 4.1: Comparison of Range Query Protocols: d is the depth of
the search tree. ∣Rq ∣ is the size of the result set Rq. ∣C ∣ is the size of

the used GC which is small for us and [108], but large for [162].

4.1.5 Comparison with Related Work

The related work to this chapter has been described in Section 3.4 and Section 3.4.2.
In Table 4.1, we summarize the comparison between range query protocols, i.e., pro-
tocols that build on basic cryptographic building blocks (such as OPE, PIR, SMC) to
solve privacy preserving range queries problems on encrypted outsourced data. Each
protocol uses an encoding phase to compute an encoding of the endpoints of a query
q and the query phase to actually run q on the database. While our query phase is
actually independent of OOPE, Poddar et al. [162] replaces all GCs used during the
query and Ishai et al. [108] selects each matching data individually using PIR. Finally,
Poddar et al. is faster, but is 2-party and requires larger garbled circuits; Ishai et al.
is more secure but requires a DO storage which depends on the database size.

In the next two sections we provide the detailed, step-by-step formalization of the
construction.

4.2 Correctness and Security Definitions

In this section, we provide correctness and security definitions. Let D = {x1, . . . , xn}
be the finite data set of the DO, and h = log2 n. Let ⟦xi⟧ denote the ciphertext of xi
under Paillier’s scheme [159] with public key pk and corresponding private key sk that
only the DO knows. Let ⪯ be the order relation on ⟦D⟧ = {⟦x1⟧, . . . , ⟦xn⟧} defined
as: ⟦xi⟧ ⪯ ⟦xj⟧ if and only if xi ≤ xj . The relations ⪰,≺,≻ are defined the same way
with ≥,<,> respectively. Let P = {0, . . . ,2µ − 1} (e.g. µ = 32) and O = {0, . . . ,M} (M
positive integer) be plaintext and order1 range resp., i.e.: D ⊆ P.

We begin by defining order-preserving encryption as used in this chapter.

Definition 4.2.1 (OPE). Let λ be the security parameter of the public-key scheme
of Paillier. An order-preserving encryption (OPE) consists of the three following
algorithms:

• (pk, sk) ← OPE.KGen(λ): the probabilistic key generation algorithm OPE.KGen
takes as input a security parameter λ and outputs a public key pk and a private
key sk.

• S′, j⟦xi⟧, yio← OPE.Enc(S,xi,pk): the encryption algorithm OPE.Enc takes the
state S, a plaintext xi ∈ P and the public key pk. It computes the ciphertext
j⟦xi⟧, yio and updates the state S to S′, where ⟦xi⟧ ← Paillier.Enc(xi,pk) is a
Paillier ciphertext and yi ← OPE.Ord(S,xi) is the order of xi with yi ∈ O, and
OPE.Ord(S,xi) is a function that computes the order of xi from the state S.

1We will use order and OPE encoding interchangeably.
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• xi ← OPE.Dec(j⟦xi⟧, yio , sk): the decryption algorithm OPE.Dec takes a cipher-
text j⟦xi⟧, yio and the private key sk. Using the Paillier decryption algorithm, it
outputs a plaintext xi ← Paillier.Dec(⟦xi⟧, sk).

The encryption scheme is correct if:

OPE.Dec(OPE.Enc(S,xi,pk), sk) = xi

for any valid state S and plaintext xi. It is order-preserving if the order is preserved,
i.e. yi < yj ⇒ xi ≤ xj for any i and j.

For a data set D the encryption scheme generates an ordered set of ciphertexts.
We formalize it with the following definition.

Definition 4.2.2 (OPE-table). Let i1, i2, . . . be the ordering of the data set D (i.e.,
xi1 ≤ xi2 ≤ . . .), then the OPE scheme generates an OPE-table which is an ordered
set T = j⟦xi1⟧, yi1o , j⟦xi2⟧, yi2o , . . ., where yik ∈ O is the order of xik . For an OPE
ciphertext j⟦xi⟧, yio ∈ T, we use the function pred(j⟦xi⟧, yio) to denote its direct pre-
decessor. Similarly, we use the function succ(j⟦xi⟧, yio) to denote its direct successor.
If the predecessor or the successor of a ciphertext are not defined, then the functions
return null.

The OPE-table is sent to the server and used to generate the following search tree
during the oblivious order-preserving encryption protocol.

Definition 4.2.3 (OPE-tree). An OPE-tree is a tree T = (r,L,R), where r = ⟦xi⟧
for some xi, L and R are OPE-trees such that: If r′ is a node in the left subtree L
then r ⪰ r′ and if r′′ is a node in the right subtree R, then r ⪯ r′′. For a node ⟦xi⟧ of
T , we use the function lnod(⟦xi⟧) to denote its left child node. Similarly, we use the
function rnod(⟦xi⟧) to denote its right child node. If the left node or the right node of
a node are not defined, then the functions return null

Definition 4.2.4 (State). For a data set D,OPE.Enc generates the Data Owner state,
the set of all jxi, yio such that xi ∈ D and yi is the order of xi. The server state is the
pair S = jT ,To consisting of the OPE-tree T and the OPE-table T.

Definition 4.2.5 (Correctness). Let D be the data set and S = jT ,To, xj ∈ P, sk be
the protocol’s inputs of the CSP, DA, and DO respectively. At the end of the protocol,
the Data Analyst obtains for its input xj the output yj such that yj is the order of xj
in D ∪ {xj}. The Cloud Provider obtains j⟦xj⟧, yjo that is added to the OPE-table.
The Data Owner obtains nothing:

• OOPE(S, xj , sk) = (j⟦xj⟧, yjo , yj ,∅)

• OPE.Dec(j⟦xj⟧, yjo , sk) = xj

• For all j⟦xi1⟧, yi1o , j⟦xi2⟧, yi2o ∈ T ∶ yi1 < yj < yi2 ⇒ ⟦xi1⟧ ⪯ ⟦xj⟧ ⪯ ⟦xi2⟧.

Remark 4.2.6. Updating the server state, i.e., allowing the server to learn ⟦xj⟧, is
only for completeness with respect to the fact that the encryption depends on the state
and the underlying OPE requires the state update after any insertion. However, as
DA’s data is only used in the queries and not inserted in the database, the update can
be omitted without affecting the correctness of the DA’s queries.
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Remark 4.2.7. Allowing or preventing the DA to learn the order information yj does
not have any impact on the efficiency. In fact, the server can store a key-value pair,
where the key is a random string and the value is yj, and reveals only the key to the
DA. The DA would still be able to submit its query to the server by replacing the
sensitive plaintexts with their corresponding key.

We refer to Chapter 2 for the definitions of computational indistinguishability (Def-
inition 2.1.4) and view (Definition 2.1.11) of a party. We now formulate our security
definition assuming a semi-honest adversary and honest majority.

Definition 4.2.8 (Semi-honest Security). Let D be the data set with cardinality n
and the inputs and outputs be as previously defined. Then a protocol ΠOOPE securely
implements the functionality OOPE in the semi-honest model with honest majority
if the following conditions hold:

• there exists a probabilistic polynomial time algorithm Simoope
DO that simulates the

DO’s view ViewΠOOPE
DO of the protocol given n and the private key sk only,

• there exists a probabilistic polynomial time algorithm Simoope
DA that simulates the

DA’s view ViewΠOOPE
DA of the protocol given n, the input xj and the output yj only,

• there exists a probabilistic polynomial time algorithm Simoope
CSP that simulates the

CSP’s view ViewΠOOPE
CSP of the protocol given access to the server state S and the

output j⟦xj⟧, yjo2 only.

Formally:

Simoope
DO (n, sk,∅) c≡ ViewΠOOPE

DO (S, xj , sk), (4.4)

Simoope
DA (n,xj , yj)

c≡ ViewΠOOPE
DA (S, xj , sk), (4.5)

Simoope
CSP (S, j⟦xj⟧, yjo)

c≡ ViewΠOOPE
CSP (S, xj , sk). (4.6)

4.3 Deterministic Construction

In this section, we present our scheme ΠOOPE that consists of an initialization step
and a computation step. The initialization step generates the server state and is run
completely by the Data Owner. The server state and the ciphertexts are sent to the
CSP afterward.

4.3.1 Overview

Our starting points are the following OPE schemes which encrypt a plaintext using a
two-party interactive protocol. These schemes have been briefly reviewed in Section
3.4 of Chapter 3.

• Popa et al. [163] introduced the idea of OPE based on a binary search tree
and uses an interactive protocol for encryption. We will refer to this scheme as
mOPE1.

• Kerschbaum and Schröpfer [124] reduced the cost of encryption by storing the
state at the client. We will refer to this scheme as mOPE2. This scheme is not
interactive and will be used by the DO to generate the initial OPE state in the
initialization step.

2Recall from Remark 4.2.6 that ⟦xj⟧ is used by the CSP to update the server state.
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Figure 4.3: Example initialization

Our scheme ΠOOPE extends these two-party protocols to three-party protocols.

Remark 4.3.1. When using mOPE1.Enc, the binary representation of the order re-
veals the corresponding path in the tree. In contrast, mOPE2 allows the secret key
owner to choose not just the length of the OPE encoding, but also the order range like
0, . . . ,M . If log2M is larger than the needed length of the OPE encoding and M is
not a power of two, then for a ciphertext j⟦xi⟧, yio, yi does not reveal the position of
⟦xi⟧ in the tree. In Figure 4.3a for instance, when applying mOPE1 with h = 3, the
order of 25 (i.e. 011 = 3) reveals the corresponding path in the tree. However, with
mOPE2 and M = 28, 25 has order 11 = 1011.

The initialization consists of generating the server state and can be done by the
DO alone. Therefore, it will rely on mOPE2 only, which is non-interactive. For the
online protocol, we will combine both mOPE1 and mOPE2, by traversing the search
tree interactively as in mOPE1, and then encoding the order as in mOPE2. This is
because of Remark 4.3.1 and the fact that the DA will receive the OPE encoding.

4.3.2 Initialization

Let D = {x1, . . . , xn} be the unordered DO’s dataset and h = log2 n. The DO chooses
a range 0, . . . ,M such that log2M > h (Remark 4.3.1), runs OPE.Enc from Definition
4.2.1 (using mOPE2) and sends the generated OPE-table to the CSP.

For example, if D = {10,20,25,32,69} is the data set, M = 28 and the insertion
order is 32,20,25,69,10. Then the ciphertexts after executing algorithm OPE.Enc
are j⟦32⟧,14o, j⟦20⟧,7o, j⟦25⟧,11o, j⟦69⟧,21o, j⟦10⟧,4o. The OPE-tree, the OPE-
table and the DO state are depicted in Figure 4.3. We have pred(j⟦32⟧,14o) =
j⟦25⟧,11o , succ(j⟦32⟧,14o) = j⟦69⟧,21o , lnod(⟦32⟧) = ⟦20⟧, rnod(⟦32⟧) = ⟦69⟧.

4.3.3 Algorithms

In the following, we present our main protocol that repeatedly makes calls to a sub-
protocol (Protocol 4.6). Both protocols run between the three parties. During the
protocol’s execution, the CSP runs Algorithm 4.7 to traverse the tree and Algorithm
4.8 to compute the order (as in mOPE2). We will deal with mOPE3 in Section 4.4.
An overview of the protocol is illustrated in Figure 4.4.
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Figure 4.4: Overview of the protocol

Our OOPE Protocol. Protocol 4.5 is executed between the three parties. First,
the CSP retrieves the root of the tree and sets it as the current node. Then the
protocol loops h (= log2 n) times. In each step of the loop, the CSP increments the
counter and the parties run an oblivious comparison protocol (Protocol 4.6) whose
result enables the CSP to traverse the tree (Algorithm 4.7). If the inputs are equal or
the next node is empty then the traversal stops. However, the CSP uses the current
node as input to the next comparison until the counter reaches the value h. After
the loop, the result is either the order of the current node in case of equality or it
is computed by the CSP using Algorithm 4.8. In the last step, the DA computes
⟦xj⟧ using DO’s public key pk and sends it to the CSP as argued in Remark 4.2.6.
Alternatively, the DA could generate a unique identifier (UID) for each element that
is being inserted and send this UID instead. So if the corresponding node is later
involved in a comparison step, the result is computed by the DA alone.

Oblivious Comparison Protocol. Protocol 4.6 runs between the three parties
as well, with input (⟦xi⟧, xj , sk) for the CSP, the DA and the DO, respectively. It
outputs two bits bg = (if x > x then 1 else 0) and be = (if x ≠ x then 1 else 0) to
the server. As the actual comparison GC is run between the DA and DO and they
are not allowed to learn the result, they use masking bits (ba, b′a), (bo, b′o) in the GC
protocol.

First, the CSP randomizes its input, with a random integer r ∈ {0, . . . ,2µ+σ}3, to
⟦xi+r⟧← ⟦xi⟧ ⋅⟦r⟧, by first computing ⟦r⟧ with DO’s public key, such that the DO will
not be able to identify the position in the tree, and it sends ⟦xi + r⟧ to the DO and r
to the DA. The next step is to compare xi + r and xj + r using a GC protocol between
the DO and the DA, whereby the comparison results should be revealed only to the

3Where σ is the security parameter that determines the statistical leakage, e.g. σ = 32 [70].
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Input (InCSP , InDA, InDO): (S, xj , sk)
Output (OutCSP ,OutDA,OutDO): (j⟦xj⟧, yjo , yj ,∅)
Functionality : OOPE(S, xj , sk)

1: CSP : retrieve root ⟦xroot⟧ of T
2: CSP : let ⟦xi⟧← ⟦xroot⟧
3: CSP : let count← 0
4: repeat
5: (jbe, bgo ,∅,∅)← Compare(⟦xi⟧, xj , sk)
6: CSP : if be ≠ 0 then ▷ meaning xj ≠ xi
7: CSP : ⟦xnext⟧← Traverse(bg, ⟦xi⟧)
8: CSP : if ⟦xnext⟧ ≠ NIL then
9: CSP : let ⟦xi⟧← ⟦xnext⟧

10: CSP : end if
11: CSP : end if
12: CSP : let count← count + 1
13: until count = h
14: CSP : if be = 0 then ▷ meaning xj = xi
15: CSP : retrieve j⟦xi⟧, yio and let yj ← yi
16: CSP : else
17: CSP : yj ← Encrypt(bg, ⟦xi⟧)
18: CSP : end if
19: CSP → DA: send yj
20: DA → CSP: send ⟦xj⟧

Protocol 4.5: Oblivious OPE Protocol ΠOOPE

CSP. Therefore, the DO and DA respectively choose masking bits bo, b′o, and ba, b′a to
blind the comparison results. Then the DO with input (bo, b′o, xi+r) and the DA with
input (ba, b′a, xj + r) engage in a garbled circuit protocol for comparison as described
in Section 4.3.5. For simplicity, the garbled circuit is implemented in Protocol 4.6
as ideal functionality. In reality, the DO generates the garbled circuit and the DA
evaluates it. The DA and the DO receive (be ⊕ ba ⊕ bo, bg ⊕ b′a ⊕ b′o) as output of this
computation and resp. send (ba, b′a, be ⊕ bo, bg ⊕ b′o) and (bo, b′o, be ⊕ ba, bg ⊕ b′a) to the
CSP. Finally, the CSP evaluates Equation 4.7 and outputs jbe, bgo. This will be used
to traverse the OPE-tree:

⎧⎪⎪⎨⎪⎪⎩

be = be ⊕ bo ⊕ bo = be ⊕ ba ⊕ ba
bg = bg ⊕ b′o ⊕ b′o = bg ⊕ b′a ⊕ b′a.

(4.7)

Tree Traversal Algorithm. The tree traversal (Algorithm 4.7) runs only at the
CSP. Depending on the output of the oblivious comparison the CSP either goes to
the left (line 2) or to the right (line 4). If the comparison step returns equality there
is no need to traverse the current node and the protocol returns the corresponding
ciphertext.

Encryption Algorithm. Algorithm 4.8 runs at the CSP as well and is called only
if the tree traversal (Algorithm 4.7) has to stop. Then the compared values are strictly
ordered and depending on that the algorithm finds the closest element to the current
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Input (InCSP , InDA, InDO): (⟦xi⟧, xj , sk)
Output (OutCSP ,OutDA,OutDO): (jbe, bgo ,∅,∅)
Functionality : Compare(⟦xi⟧, xj , sk)

1: CSP: choose (µ + σ)-bits random r and compute ⟦xi + r⟧
2: CSP → DO: send ⟦xi + r⟧
3: CSP → DA: send r
4: DO: decrypt ⟦xi + r⟧ and choose masking bits bo, b′o
5: DA: compute xj + r and choose masking bits ba, b′a
6: DO → GC: send (bo, b′o, xi + r)
7: DA → GC: send (ba, b′a, xj + r)
8: GC ↔ DA: send (be ⊕ ba ⊕ bo, bg ⊕ b′a ⊕ b′o)
9: GC ↔ DO: send (be ⊕ ba ⊕ bo, bg ⊕ b′a ⊕ b′o)

10: DA → CSP: send (ba, b′a, be ⊕ bo, bg ⊕ b′o)
11: DO → CSP: send (bo, b′o, be ⊕ ba, bg ⊕ b′a)
12: CSP: compute be = be ⊕ bo ⊕ bo = be ⊕ ba ⊕ ba
13: CSP: compute bg = bg ⊕ b′o ⊕ b′o = bg ⊕ b′a ⊕ b′a
14: CSP: output jbe, bgo

Protocol 4.6: Oblivious Comparison Protocol

function Traverse(bg, ⟦xi⟧)
2: if bg = 0 then ▷ traverse to left

⟦xnext⟧← lnod(⟦xi⟧)
4: else ▷ traverse to right

⟦xnext⟧← rnod(⟦xi⟧)
6: return ⟦xnext⟧

Algorithm 4.7: Tree Traversal at Node ⟦xi⟧

node in the OPE-table. This element is either the predecessor – pred(⋅) – if DA’s
input is smaller (line 4) or the successor – succ(⋅) – if DA’s input is larger (line 7).
Then if necessary (line 9) rebalance the tree and compute the ciphertext as in line 11.

4.3.4 Optimization

One can reduce the number h of homomorphic decryptions by using plaintexts packing
[166]. Let ⟦xi⟧ be a node at the level 2l,0 ≤ l ≤ h

2 , of the tree, and let

⟦x(0)i ⟧← lnod(⟦xi⟧) and ⟦x(1)i ⟧← rnod(⟦xi⟧)

be the left and right child nodes of ⟦xi⟧. Then we modify Step 2 of Algorithm 4.6
as follows. The CSP chooses a random permutation π ∶ {0,1} → {0,1} and random
numbers r, r0, r1 and sends the ciphertext described in Equation 4.8 instead:

c = ⟦22(µ+σ)(xi + r)⟧ ⋅ ⟦2µ+σ(x(π
−1(0))

i + rπ−1(0))⟧ ⋅ ⟦x
(π−1(1))
i + rπ−1(1)⟧

= ⟦xi + r∥x(π
−1(0))

i + rπ−1(0)∥x
(π−1(1))
i + rπ−1(1)⟧. (4.8)
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function Encrypt(bg, ⟦xi⟧)
2: retrieve j⟦xi⟧, yio from the OPE-table

if bg = 0 then ▷ xj < xi
4: j⟦x′⟧, y′o← pred(j⟦xi⟧, yio)

let yl ← y′ and yr ← y
6: else ▷ xi < xj

j⟦x′′⟧, y′′o← succ(j⟦xi⟧, yio)
8: let yl ← yi and yr ← y′′

if yr − yl = 1 then
10: rebalance the OPE-tree

yj ← yl + ⌈yr−yl
2

⌉
12: return yj

Algorithm 4.8: Computing the order of xj (by inserting at ⟦xi⟧)

The DO decrypts c and uses xi + r in the comparison at level 2l. In the next protocol
iteration, the CSP sends π(bg) to the DO and rπ(bg) to the DA. The DO does not

need to decrypt this time (i.e., at level 2l+1) and just uses x(π(bg))i +rπ(bg) in the next
GC comparison. This results in h

2 homomorphic decryptions and can be extended to
multiple levels (as proved in the following lemma). It can also be precomputed by the
CSP.

Lemma 4.3.2. Let s = log(pk) be the bitlength of the public key pk. Then the plaintext
packing of Equation 4.8 can be extended to up to log(⌊ s

µ+σ ⌋ + 1) levels of a complete
OPE-tree.

Proof. A complete tree with d levels has 2d−1 nodes (i.e., a tree with only 1 node has
1 level). If s = log(pk), then we can pack up to ⌊s/(µ+σ)⌋ plaintexts in one ciphertext.
Finally, solving the following equation:

2d − 1 = ⌊s/(µ + σ)⌋

in d returns d = log(⌊s/(µ + σ)⌋ + 1).

Moreover, one can use JustGarble [19] for highly efficient circuit garbling. Just-
Garble is an optimized garbling scheme based on fix-key block cipher like AES instead
of cryptographic hash function. It benefits from various implementation optimizations
like AES-NI to speed up the garbling process and the evaluation of garbled circuits.

4.3.5 Oblivious Integer Comparison

In this section, we describe how the parties compare the inputs such that the result
is revealed only to the server.

Using Garbled Circuit. To implement oblivious comparison, we adapted the GCs
of [130, 131] to fit in our OOPE scheme. Firstly, instead of implementing one garbled
circuit for comparison and another one for equality test, we combined both in the same
circuit. This allows using the advantage that almost the entire cost of garbled circuit
protocols can be shifted into the setup phase. In Yao’s protocol, the setup phase
contains all expensive operations (i.e., computationally expensive OT and creation
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Figure 4.9: Overview of GC=,> for GT and EQ test: Each box for
u = 1, . . . , µ is a 1-bit circuit for EQ and GT test and outputs cu+1 =
(xiu ⊕xju)∨ cu (Equation 4.9) and c′u+1 = (xiu ⊕ c′u)∧ (xju ⊕ c′u)⊕xiu
(Equation 4.10) resp.. The last circuit implements the exclusive-or
operation and outputs the bits ce = cµ+1⊕bo⊕ba and cg = c′µ+1⊕b′o⊕b′a.

of GC, as well as the transfer of GC that dominates the communication complexity)
[130]. Hence, by implementing both circuits in only one we reduce the two costly
setup phases to one. Secondly, in our oblivious OPE protocol, integer comparison is
an intermediate step, hence the output should not be revealed neither to the DA nor
to the DO, since this will leak information. Thus the input of the circuit contains a
masking bit for each party that is used to mask the actual output. Only the party
that receives the masked output and both masking bits can recover the actual output.

Let GC=,> denote this circuit. Let xbi = xiµ, . . . , xi1, xbj = xjµ, . . . , xj1 be the i-
th and j-th inputs of the DO and the DA in binary representation. The parties
choose masking bits bo, b′o, ba, b′a and extend their input to (bo, b′o, xiµ, . . . , xi1), (ba,
b′a, xjµ, . . . , xj1).

For the equality test, we extend Equation 3.1 to Equation 4.9:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c1 = 0

cu+1 = (xiu ⊕ xju) ∨ cu, u = 1, . . . , µ

ce = cµ+1 ⊕ bo ⊕ ba.
(4.9)

The actual output cµ+1 of the circuit is blinded by applying exclusive-or operations
with the masking bits bo and ba resulting in the bit ce, where e stands for equality
test.

For the greater-than comparison, we extend Equation 3.2 to Equation 4.10.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c′1 = 0

c′u+1 = (xiu ⊕ c′u) ∧ (xju ⊕ c′u)⊕ xiu, u = 1, . . . , µ

cg = c′µ+1 ⊕ b′o ⊕ b′a.
(4.10)

Again the actual output c′µ+1 is blinded by applying exclusive-or operations with the
masking bits b′o and b′a resulting in the bit cg, where g stands for greater-than. An
overview of the comparison circuit is illustrated in Figure 4.9.

The performance metric for a garbled circuit is the number of non XOR-gates
[130, 131]. Hence, assuming the inputs are µ-bit long, both circuits for equality test
and greater-than comparison contain each µ AND-gates. Each AND-gate is garbled
with 4µ ciphertexts. However, the halfGate optimization [197] reduces the number of
ciphertexts per AND-gate by a factor of 2 at the cost of the evaluator to perform two
cheap symmetric operations, rather than one. As a result, the garbled circuit GC=,>
contains 4µ symmetric ciphertexts.
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Using Other Comparison Protocols. Our scheme works with any 2-PC for com-
parison. We describe how oblivious comparison can be implemented using DGK com-
parison protocol [63].

The DGK comparison protocol can be used for oblivious comparison as follows. For
each node xi in the OPE-tree, the DO stores both ⟦xi⟧, ⟦xbi ⟧ during the initialization.
During the oblivious comparison step, the CSP sends ⟦xi⟧, ⟦xbi ⟧ to the DA and nothing
to the DO.

For equality testing, the DA uses ⟦xi⟧ to evaluate a zero testing by computing
⟦(xi − xj) ⋅ r1 + r2⟧ where r1, r2 are two numbers chosen randomly in the plaintext
space.

For the greater-than comparison, the DA evaluates

(ba, (⟦z′µ⟧, . . . , ⟦z′1⟧))← DgkEval(⟦xbi ⟧, xbj).

Then the DA sends ⟦(xi − xj) ⋅ r1 + r2⟧ and (⟦z′µ⟧, . . . , ⟦z′1⟧) to the DO. The DA also
sends r2 and ba to the CSP. The DO evaluates bo ← DgkDecrypt(⟦z′µ⟧i, . . . , ⟦z′1⟧i)
and sends (xi − xj) ⋅ r1 + r2 and bo to the CSP. Finally, the CSP sets be ← 1 if
(xi − xj) ⋅ r1 + r2 ≠ r2 and be ← 0 otherwise, and bg = ba ⊕ bo.

4.4 Non-deterministic Construction

In this section, we consider the case where the underlying OPE is non-deterministic as
in [123, 125]. Our starting point is the scheme of Kerschbaum [123] that strengthens
the security of OPE by allowing the same plaintext to be encrypted with different
ciphertexts. We will refer to this scheme as mOPE3. As above, the first step is the
initialization procedure (Section 4.3.2). It remains the same with the difference that
the tree traversal and the encryption algorithms work as in mOPE3 [123]. In the
online protocol, we will traverse the tree interactively as in mOPE1 but randomly as
in mOPE3. Hence, if the equality test returns true (line 14 of Protocol 4.5), then the
CSP traverses the tree to the left or to the right depending on the outcome of a random
coin. The order yj of xj is computed as yj = yi−1 + ⌈yi−yi−12 ⌉ resp. yj = yi + ⌈yi+1−yi2 ⌉
if the algorithm is inserting xj left resp. right to a node ⟦xi⟧ with corresponding
order yi. However, the result of the equality test leaks the frequency of plaintexts, as
it allows the CSP to deduce from the OPE-table that certain nodes have the same
plaintext. Therefore it would be preferable to implement the random coin in the
secure computation.

4.4.1 Implementing the Random Coin Securely

In the following, xj and xi represent as before the inputs of the DA and the DO in the
oblivious comparison respectively, and GCu=,> represents the unmasked comparison
circuit4 that outputs the bits be = cµ+1 as result of the equality test and bg = c′µ+1

as result of the greater-than comparison. The idea is to adapt the garbled circuit
for integer comparison (Section 4.3.5) such that its output allows traversing the tree
randomly as in [123], but without revealing the result of the equality test to the CSP.

Lemma 4.4.1. Let rj and ri be any DA’s and DO’s random bits and br = rj ⊕ ri.
Then extending the circuit GCu=,> to the circuit GCub with additional input bits rj, ri
and with output b = (be ∧ bg) ∨ (¬be ∧ br) traverses the tree as required.

4This is the sub-circuit that operates on the real input bits (from 1 to µ) without the masking
bits.
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Figure 4.10: Overview of the comparison circuit from Lemma 4.4.1

Proof. If xj ≠ xi then be = 1 and b = bg, hence the algorithm traverses the tree
depending on the greater-than comparison. Otherwise ¬be = 1, hence b is the random
bit br and the tree traversal depends on a random coin. In each case the circuit returns
either 0 or 1, and does not reveal if the inputs are equal.

Now the circuit GCub , which is illustrated in Figure 4.10, can also be extended to
the circuit GCb by using the masking bits ba and bo for the DA and the DO respectively
as described in Section 4.3.5. The output is then ((bg ∧ be) ∨ (¬be ∧ br))⊕ ba ⊕ bo.

However, care has to be taken when returning the random bit to the CSP. Recall
that the protocol loops h times to prevent the DA and DO from learning the right
number of comparisons. This means, if after l iterations we have reached a node ⟦xi⟧
and l < h (i.e., node ⟦xi⟧ is a leaf node), then we perform a “real” comparison xj ≥ xi
(i.e., node ⟦xi⟧ exists in the tree) in that iteration and “dummy” comparisons in the
remaining iterations l′ > l. The “dummy” comparisons consist of comparing xj ≥ xi
again. Therefore, if xj = xi and the garbled circuit returns a random bit b in the “real”
comparison, then the same random bit b must be returned to the CSP in the garbled
circuits of the “dummy” comparison to prevent leaking to the CSP that xj and xi are
equal. To solve this, the DA and DO must keep track on shares of be and br which
must be extra inputs to the circuit. Let b̂e, b̂r be the previous equality bit (initially
1, e.g. 0 for DO and 1 for DA) and random bit (initially 0), then the garbled circuit
must execute the following procedure: If be = 0 then check if b̂e = 0 and return b̂r
otherwise return br. If be ≠ 0 then return bg.

function Mux(sk, ⟦d⟧, ⟦c1⟧a, ⟦c2⟧)
2: b← [Paillier.Dec(⟦d⟧, sk) ?= 0]

if b = True then
4: ⟦c⟧a ← ⟦c1⟧a

else
6: c2 ← Paillier.Dec(⟦c2⟧, sk)

⟦c⟧a ← Paillier.Enc(c2,pka)
8: return ⟦c⟧a

Algorithm 4.11: Homomorphic Multiplexer (run by DO)
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Input (CSP, DA, DO): (jS, j⟦xj⟧, yjoo,∅, sk)
Output (CSP, DA, DO): (∅, jcmin(xj), cmax(xj)o ,∅)
Functionality : MinMaxOrder(S, j⟦xj⟧, yjo, sk)

1: CSP: retrieve j⟦xi⟧, yio, j⟦xi+1⟧, yi+1o
with yi < yj < yi+1

2: CSP: choose random integers s1, s2, r1, r2

3: CSP: compute
⟦d1⟧← ⟦(xi − xj) ⋅ s1⟧
⟦d2⟧← ⟦(xi+1 − xj) ⋅ s2⟧

4: CSP → DO:
j⟦d1⟧, ⟦yj ⋅ r1⟧a, ⟦cmin(xi) ⋅ r1⟧o
j⟦d2⟧, ⟦yj ⋅ r2⟧a, ⟦cmax(xi+1) ⋅ r2⟧o

5: CSP → DA: r1 and r2

6: DO:
Let ⟦c11⟧a ← ⟦yj ⋅ r1⟧a, ⟦c12⟧← ⟦cmin(xi) ⋅ r1⟧
Let ⟦c21⟧a ← ⟦yj ⋅ r2⟧a, ⟦c22⟧← ⟦cmax(xi+1) ⋅ r2⟧
⟦cmin(xj)⟧a ←Mux(sk, ⟦d1⟧, ⟦c11⟧a, ⟦c12⟧)
⟦cmax(xj)⟧a ←Mux(sk, ⟦d2⟧, ⟦c21⟧a, ⟦c22⟧)

7: DO → DA: ⟦cmin(xj)⟧a, ⟦cmax(xj)⟧a
8: DA: decrypt and output
cmin(xj)← Paillier.Dec(⟦cmin(xj)⟧a, ska)
cmax(xj)← Paillier.Dec(⟦cmax(xj)⟧a, ska)

Protocol 4.12: Computing cmin(xj) and cmax(xj) securely

4.4.2 Dealing with Queries

So far we have computed the ciphertext in the non-deterministic case. However, as
Kerschbaum pointed out [123] this ciphertext cannot be directly used to query the
database. As in the deterministic case let xi and yi be symbols for plaintext and order
respectively. Since a plaintext xi might have many ciphertexts let cmin and cmax be
respectively the minimum and maximum order of xi, hence:

⎧⎪⎪⎨⎪⎪⎩

cmin(xi) =min({yi ∶ OPE.Dec(j⟦xi⟧, yio, sk) = xi})
cmax(xi) =max({yi ∶ OPE.Dec(j⟦xi⟧, yio, sk) = xi}).

(4.11)

Thus, a query [a, b] must be rewritten in [cmin(a), cmax(b)]. Unfortunately, in
Kerschbaum’s scheme the cmin(xi), cmax(xi) are only known to the DO, because they
reveal to the server the frequency of plaintexts. Recall that the goal of [123] was
precisely to hide this frequency from the CSP.

Instead of returning yj to the DA, which is useless for queries, our goal is to
allow the DA to learn cmin(xj) and cmax(xj) and nothing else. The CSP learns only
j⟦xj⟧, yjo as before and the DO learns nothing besides the intermediate messages of
the protocol. We begin by proving the following lemma.

Lemma 4.4.2. Let j⟦xi⟧, yio, j⟦xi+1⟧, yi+1o ∈ T be elements of the OPE-table such
that xi ≤ xi+1 and yi < yi+1. Let xj be a new inserted plaintext with corresponding
order yj such that xi ≤ xj ≤ xi+1. Then it holds: cmin(xj) ∈ {cmin(xi), yj} and
cmax(xj) ∈ {cmax(xi+1), yj}.
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Proof. If xi = xj then by definition of cmin, we have cmin(xj) = cmin(xi). If xi < xj
and xj < xi+1 then xj occurs only once in the OPE-table T and it holds cmin(xj) =
cmax(xj) = yj . Otherwise xj is equal to xi+1, but since xj is new and by assumption
xj ≤ xi+1 the algorithm is inserting xj right to xi and left to xi+1 hence yi < yj < yi+1

must hold. Then by definition again cmin(xj) = yj . For the case of max the proof is
similar.

Corollary 4.4.3. Let xj , xi, xi+1, yj , yi, yi+1 be as above and let bi = [xi = xj]?1 ∶ 0
resp. bi+1 = [xj = xi+1]?1 ∶ 0 then it holds: cmin(xj) = bi ⋅ cmin(xi) + (1 − bi) ⋅ yj, resp.
cmax(xj) = bi+1 ⋅ cmax(xi+1) + (1 − bi+1) ⋅ yj.

Now we are ready to describe the solution. The first step is to store besides each
ciphertext j⟦xi⟧, yio two ciphertexts ⟦cmin(xi)⟧ and ⟦cmax(xi)⟧ in the OPE-table. This
is done by the DO during the initialization. Recall that during insertion of a plaintext,
rebalancing the tree might become necessary and this affects the cmin and cmax values.
The CSP cannot update cmin and cmax without knowing the frequency. Hence, if
rebalancing happens, the DO must interactively update the ciphertexts ⟦cmin(xi)⟧
and ⟦cmax(xi)⟧ with the CSP without leaking the frequency. This is done by just
scanning the sorted OPE-table. According to [123] the probability of rebalancing is
negligible in n for uniform inputs if the maximum order M is larger than 26.4⋅log2 n.
For non-uniform input, smaller values of M are likely.

Let (pka, ska) be a Paillier public/private key pair such that ska is known only
to the DA and let ⟦xj⟧a ← Paillier.Enc(xj ,pka) be a ciphertext of xj encrypted with
Paillier’s encryption under the public key pka. After the computation of yj using
Protocol 4.5 with the random traversal as discussed in Section 4.4.1, the CSP learns
j⟦xj⟧, yjo. Then the parties execute Protocol 4.12 with jS, j⟦xj⟧, yjoo and sk as input
for the CSP and the DO respectively. The DA does not have any input, but is the only
one to receive the output of Protocol 4.12 which works as follows. The CSP retrieve
the two closest elements j⟦xi⟧, yio, j⟦xi+1⟧, yi+1o such that yi < yj < yi+1 (Step 1). Then
it homomorphically computes the differences xi−xj and xi+1−xj and randomizes them
resulting in the ciphertexts ⟦d1⟧, ⟦d2⟧ (Step 3). Recall that the ciphertext ⟦cmin(xi)⟧
and ⟦cmax(xi+1)⟧ are already in the OPE-table and the CSP knows yj . The CSP then
sends the ciphertexts

j⟦d1⟧, ⟦yj ⋅ r1⟧a, ⟦cmin(xi) ⋅ r1⟧o and j⟦d2⟧, ⟦yj ⋅ r2⟧a, ⟦cmax(xi+1) ⋅ r2⟧o

to the DO (Step 4) and the random numbers r1 and r2 to the DA (Step 5). The DO
uses Algorithm 4.11 to compute (Step 6) and send the following ciphertexts

[d1 = 0]?⟦yj ⋅ r1⟧a ∶ ⟦cmin(xi) ⋅ r1⟧a and [d2 = 0]?⟦yj ⋅ r2⟧a ∶ ⟦cmax(xi) ⋅ r2⟧a

to the DA (Step 7). The DA finally decrypts and outputs the values cmin(xj) and
cmax(xj) (Step 8), which can then be used to query the encrypted database.

Notice that for an input xj of the DA the ciphertext j⟦xj⟧, yjo is not inserted in
the database, but only in the OPE-table, because it cannot be included in the result
of a query. Particularly, if j⟦xj⟧, yjo is no longer needed (e.g., after the data analysis)
it must be removed from the OPE-table. As stated in Lemma 4.4.2, if it happens
that the new xj with corresponding order yj is inserted between xi and xi+1 such
that xi < xj = xi+1 then cmin(xj) = yj implies that the previous cmin(xi+1) should be
updated to yj . However, as explained before this update is not necessary.

In Protocol 4.12, the DO sees two semantically secure ciphertexts ⟦yj ⋅ r1⟧a and
⟦yj ⋅ r2⟧a, which it cannot decrypt, and four randomized plaintexts d1, cmin(xi) ⋅
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r1, d2, cmax(xi+1) ⋅ r2. The DA sees two random integers r1, r2 and the output of
the protocol. The CSP receives no new message. Hence, the simulation is straight-
forward. Finally, correctness and security proof of the overall protocol when OOPE
is instantiated with mOPE3 is similar to the case of mOPE2.

4.4.3 Extending to Data Structures based OPE

We now briefly describe how OOPE can be realized with ESEDS-OPE [125] that
is IND-CPA-DS-secure. As explained before, ESEDS-OPE combines the benefits of
three previous order-preserving encryption schemes: mOPE1 [163], mOPE3 [123] and
MOPE [31]. ESEDS-OPE consists of four algorithms: key generation, encryption,
decryption and search. The key generation algorithm takes a security parameter and
outputs a secret key. The decryption algorithm takes the secret key and a ciphertext
and outputs the corresponding plaintext. Key generation and decryption algorithms
are run as before by the data owner alone.

The encryption algorithm takes the secret key, a plaintext and the state of the
encryption stored on the server. Then it requires the data owner and the server to
interactively perform a binary search using Kerschbaum’s random tree traversal as
in mOPE3. Finally, the server inserts the new plaintext and rotates the resulting
data structure around a new random modulus. The extension to OOPE will however
concern only the tree traversal. In the OOPE protocol, the three parties just have to
traverse the tree with the extension discussed in Section 4.4.1 by implementing the
comparison and the random coin in a garbled circuit.

The search algorithm takes the secret key, the state of the encryption and a range
[a, b]. Let cα (resp. cβ) be the ciphertext with the smallest (resp. largest) order such
that for the associated plaintext α (resp. β) it holds α ≥ a (resp. β ≤ b). Then the
search algorithm requires the data owner and the server to interactively perform two
binary searches (using a non random tree traversal) to get cα and cβ and then returns
all ciphertexts between cα and cβ . Here as well, the extension to OOPE only concerns
the tree traversal. The parties will just have to traverse the tree as in the original
OOPE protocol as described in Section 4.3.3 with the only difference that they will
not have to check for equality as the traversal here is no longer random.

4.5 Correctness and Security Analysis

In this section, we provide correctness and security analysis for the deterministic
protocol described in Section 4.3. The non-deterministic case is similar. The proofs
rely on the correctness and security of the Paillier scheme and Yao’s protocol. The
correctness and semantic security proofs of Paillier’s scheme are provided in [159]. The
proofs for Yao’s protocol are provided in [139]. We will use the resulting simulators
for Yao’s protocol to construct simulators for DO and DA in the GC evaluation.

Theorem 4.5.1 (Correctness). The protocol ΠOOPE correctly implements the OOPE
functionality FOOPE.

Proof. The correctness depends on the oblivious comparison (Protocol 4.6). Since
Paillier is correct, the DO can correctly get x + r from ⟦x + r⟧. Let bg = (if xj >
xi then 1 else 0) and be = (if xj ≠ xi then 1 else 0). From inputs (ba, b′a, xj + r) of
the DA and (bo, b′o, xi + r) of the DO the garbled circuit GC=,> (Figure 4.9) correctly
returns (be ⊕ ba ⊕ bo, bg ⊕ b′a ⊕ b′o) to the DA and (be ⊕ ba ⊕ bo, bg ⊕ b′a ⊕ b′o) to the DO.
Then the DA resp. the DO sends (ba, b′a, be⊕bo, bg⊕b′o) resp. (bo, b′o, be⊕ba, bg⊕b′a) to
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⟦x(l)i + r(l)⟧, x(l)i + r(l), b(l)o , b
′(l)
o ,

ViewΠGC
DO (jb(l)o , b

′(l)
o , x

(l)
i + r(l)o, jb(l)a , b

′(l)
a , x

(l)
j + r(l)o),

jb(l)e ⊕ b(l)a ⊕ b(l)o , b(l)g ⊕ b′(l)a ⊕ b′(l)o o,
jb(l)e ⊕ b(l)a , b(l)g ⊕ b′(l)a o

(a) DO View: for l = 0,⋯, d − 1

⟦x′(l)⟧, x′(l), b(l), b′(l),
Simgc

DO(jb
(l), b

′(l), x
′(l)o, jb(l)1 ⊕ b(l), b(l)2 ⊕ b′(l)o),

jb(l)1 ⊕ b(l), b(l)2 ⊕ b′(l)o,
jb(l)1 , b

(l)
2 o

(b) DO Simulator: for l = 0,⋯, d − 1

Figure 4.13: DO Simulation

the CSP. With Equation 4.7 the CSP can correctly deduce be and bg. The correctness
of binary search concludes the proof.

Theorem 4.5.2 (Security). The protocol ΠOOPE securely implements the OOPE func-
tionality FOOPE in the semi-honest model with honest majority.

Proof. Since the protocol makes a call to the comparison functionality involving the
DO and the DA, the proof will use the simulators provided by [139] to generate their
views. Let Simgc

DO and Simgc
DA (resp. ViewΠGC

DO and ViewΠGC
DA ) be the simulators (resp.

the views) of the DO and the DA in the comparison protocol. We follow the idea of
[139] by proving the cases separately, when the DO is corrupted, the DA is corrupted
and the CSP is corrupted.

Case 1 - DO is corrupted. The view of the DO consists of randomized inputs
and its view in the comparison steps. Let d be the number of comparisons required
to encrypt xj , then ViewΠOOPE

DO (S, xj , sk) is illustrated in Figure 4.13a.
Upon input (n, sk,∅), Simoope

DO generates the output as illustrated in Figure 4.13b,
where x

′(l) is a random integer and b(l), b
′(l), b

(l)
1 , b

(l)
2 are random bits.

Clearly, the outputs of Figures 4.13a and 4.13b are indistinguishable from each
other (Equation 4.4). This is because x

(l)
i + r(l), b(l)o , b

′(l)
o are just as random as

x
′(l), b(l), b

′(l) respectively. Furthermore, since b(l)a and b
′(l)
a are randomly chosen by

the DA, b(l)e ⊕ b(l)a , b
(l)
g ⊕ b

′(l)
a are also just as random as b(l)1 , b

(l)
2 respectively. The

security of Yao’s protocol [139] finishes the proof.

Case 2 - DA is corrupted. This case is similar to the DO’s case with the only
difference that the DA knows xj which is the same in each protocol round. The view
ViewΠOOPE

DA (S, x, sk) is illustrated in Figure 4.14a.
Notice that also the DA is unaware of the result of the comparison, because the

output is randomized by a bit of the DO. The simulator for the DA works in the same
way as Simoope

DO . On input (n,xj , yj) Simoope
DA generates the output illustrated in Figure

4.14b, where b(l), b
′(l), b

(l)
1 , b

(l)
2 are random bits.
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r(l), xj + r(l), b(l)a , b
′(l)
a ,

ViewΠGC
DA (jb(l)o , b

′(l)
o , x

(l)
i + r(l)o, jb(l)a , b

′(l)
a , xj + r(l)o),

jb(l)e ⊕ b(l)a ⊕ b(l)o , b(l)g ⊕ b′(l)a ⊕ b′(l)o o,
jb(l)e ⊕ b(l)o , b(l)g ⊕ b′(l)o o

(a) DA View: for l = 0,⋯, d − 1
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′(l), b(l), b
′(l),

Simoope
DA (jb(l), b′(l), xj + r

′(l)o, jb(l)1 ⊕ b(l), b(l)2 ⊕ b′(l)o),
jb(l)1 ⊕ b(l), b(l)2 ⊕ b′(l)o,
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(l)
2 o

(b) DA Simulator: for l = 0,⋯, d − 1

Figure 4.14: DA Simulation

Case 3 - CSP is corrupted. The CSP’s view ViewΠOOPE
CSP (S, x, sk) consists of random

integers and GC’s outputs from the DA and the DO. It is illustrated in Figure 4.15a.
Simoope

CSP is given the server state S and a valid ciphertext j⟦xj⟧, yjo. Then it chooses
two elements j⟦xi⟧, yio, j⟦xi+1⟧, yi+1o from the OPE-table, such that yi ≤ yj < yi+1.
Finally, it inserts ⟦xj⟧ in the tree and simulates the path P from the root to ⟦xj⟧.
Let depth(⟦xi⟧) denotes the number of edges from the root to ⟦xi⟧. There are three
possible cases:

• if yi = yj then ⟦xi⟧ and ⟦xj⟧ encrypt the same plaintext (i.e., xi = xj),

• else if depth(⟦yi⟧) > depth(⟦yi+1⟧) then insert ⟦xj⟧ right to ⟦xi⟧,

• else depth(⟦xi+1⟧) > depth(⟦xi⟧), insert ⟦xj⟧ left to ⟦xi+1⟧.

For all ancestors of ⟦xj⟧, b(l)g is 0 (resp. 1) if the path P goes to the left (resp. to the
right). The value of b(l)e is 1 for all ancestors of ⟦x⟧ (the equality test from Equation
3.1 returns 1 if the inputs are different and 0 otherwise). For the node ⟦xj⟧ itself,
there are two possible cases:

• ⟦xj⟧ is not a leaf: this occurs if one is trying to insert a value, that was already
in the tree. It holds b(l)g = b(l)e = 0 because yi is equal to yj .

• ⟦xj⟧ is a leaf: this occurs either because yi = yj holds as above or ⟦xj⟧ is inserted
at a leaf node. If yi = yj holds, then b(l)e = 0 which also implies b(l)g = 0. If ⟦xj⟧ is
inserted at a leaf node, then b(l)g and b(l)e are undefined because no comparison
was done. Hence the simulator chooses b(l)g = b

(l)
e randomly between 0 and

undefined.

To simulate the CSP’s view, Simoope
CSP chooses a random integer r

′(l) and random bits
b
(l)
α , b

′(l)
α and b(l)ω , b

′(l)
ω and generates the output illustrated in Figure 4.15b.

Since ⟦x(l)⟧, b(l)e , b
(l)
g depend on the path, they are the same in Figures 4.15a and

4.15b, and r(l), b
(l)
a , b

′(l)
a , b

(l)
o , b

′(l)
o are indistinguishable from r

′(l), b
(l)
α , b

′(l)
α , b

(l)
ω , b

′(l)
ω .
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(b) CSP Simulator: for l = 0,⋯, d − 1

Figure 4.15: CSP Simulation

4.6 Complexity Analysis

This section presents the complexity analysis of our OOPE scheme. We focus on the
main scheme as described in Section 4.3.3. The analysis for the extensions of Sections
4.4 and 4.4.3 is similar. Let λ be the security parameter, κ be the bitlength of an
asymmetric ciphertext, µ be the bitlength of each plaintext and d be the depth of the
OPE-tree.

4.6.1 Computation Complexity

The CSP performs one asymmetric operation per comparison resulting in a total O(d)
asymmetric operations.

The DO performs one asymmetric operation and O(µ) symmetric operations per
comparison resulting in a total O(d) asymmetric operations and O(dµ) symmetric
operations.

The DA performs O(µ) symmetric operations per comparison resulting in a total
of O(dµ) symmetric operations.

4.6.2 Communication Complexity

For each comparison, the CSP sends one asymmetric ciphertext to the DO and one
random µ-bit integer to the DA resulting in κ+µ bits. In total, the CSP sends (κ+µ)d
bits.

In a GC protocol, the communication cost of the generator consists of:

• its cost in the OT extension protocol which is µλ [9] for the OT sender, where
µ is the bitlength of the evaluator’s input,

• the cost of sending the garbled circuit which is the number of ciphertexts per
AND-gate multiplied by the security parameter and

• the cost of sending the garbled input of the generator which is the bitlength
multiplied by the security parameter.

As GC generator, the DO’s communication cost in each comparison consists of (µ+2)λ
bits (our GC for comparison has additionally two blinding bits per party) for OT, 4µλ
for the GC itself and (µ + 2)λ for the garbled input. After the GC protocol with the
DA, the DO sends 2 bits to the CSP. In total, the DO sends

((µ + 2)λ + 4µλ + (µ + 2)λ + 2)d = ((6µ + 4)λ + 2)d bits.
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Figure 4.16: Encryption time: The time for WAN is divided by 10.

Loopback LAN WAN

Time (ms) 15 63 755

Table 4.2: Execution Time of the Oblivious Comparison Protocol

The communication cost of the GC evaluator consists only of its cost of the OT
extension protocol which is µλ [9] for the OT receiver, where µ is the bitlength of the
evaluator’s input. Hence, in the OOPE protocol the DA sends ((µ + 2)λ + 2)d bits.

At security level λ = 128 bits, κ is at least 4096 bits. Assuming µ = 32 bits
and d = 20 (i.e., the OPE-tree contains about one million entries), this results in
communication costs of 10.07 kB, 61.25 kB, and 10.62 kB for the CSP, the DO and
the DA, respectively.

4.7 Evaluation

We have implemented our scheme using SCAPI (Secure Computation API) [75].
SCAPI is an open-source Java library for implementing secure two-party and mul-
tiparty computation protocols. It provides a reliable, efficient, and highly flexible
cryptographic infrastructure. It also provides many optimizations of GC such as OT
extensions, free-XOR, garbled row reduction [75]. Furthermore, there is a built-in
communication layer that provides communication services for any interactive cryp-
tographic protocol.

4.7.1 Parameters

The first parameter is the security parameter (i.e., the bit length of the public key)
of Paillier’s scheme (e.g. 2048 or 4096). Paillier’s scheme requires to choose two large
prime numbers P and Q of equal length and to compute a modulus N = PQ and the
private key φ = lcm(P − 1,Q − 1). Then select a random g ∈ Z∗N2 such that if e is the
smallest integer with ge = 1 mod N2, then N divides e. The public key is (g,N). To
encrypt a plaintext m select a random r ∈ Z∗N and compute c ← gmrN mod N2. To
decrypt a ciphertext c compute m← L(cφ mod N2) ⋅ψ mod N , where L(u) = u−1

N and
ψ = (L(gφ mod N2))−1 mod N . Thus,

c ← gmrN mod N2, (4.12)
m ← L(cφ mod N2) ⋅ ψ mod N. (4.13)
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We applied optimizations as recommended in [159]. We implemented our scheme with
g = 1+N . This transforms the modular exponentiation gm mod N2 to a multiplication,
since (1+N)m mod N2 = 1+mN mod N2. Moreover, we precomputed ψ in Equation
4.13, used Chinese remaindering for decryption and pre-generated randomness for
encryption and homomorphic plaintext randomization (Protocol of Figure 4.6). As a
result, using the experimental setup described in Section 4.7.3, encryption, decryption,
and homomorphic addition take respectively 52 µs, 12 ms, and 67 µs when the key
length is 2048 bits.

The other parameters of the OOPE protocol are the length of the inputs (e.g. 32,
64, 128, 256 bits integer), the length of the order log2M – with M the maximal order
– (e.g., 32, 64, 128 bits), and the size of the OPE tree (e.g. 103, 104, 105, 106 entries).

4.7.2 Evaluation Goals

To evaluate the performance of our scheme, we answer the following questions:

• What time does the scheme take to encrypt an input of the DA?

• How does the network communication influence the protocol?

• What are the average generation time and the storage cost of the OPE-tree?

4.7.3 Experimental Setup

We chose 2048 bits as the bitlength of the public key for Paillier’s scheme and ran
experiments via loopback address, LAN, and WAN. For LAN, we used 3 machines
with Intel(R) Xeon(R) CPU E7-4880 v2 at 2.50GHz: 4 CPUs and 8 GB RAM, 4
CPUs and 4 GB RAM, 2 CPUs and 2 GB RAM. For the loopback, we used the
first LAN machine with 4 CPUs and 8 GB RAM. For WAN, we used three machines
on amazon web services (Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz 2.30GHz -
244 GB RAM - 64-bit Windows) distributed in three regions (Northern California,
Frankfurt, Tokyo).

We generated the OPE-tree with random inputs, balanced it, and encrypted the
plaintexts with Paillier encryption. For the DA, we generated 100 random inputs.
Then we executed the OOPE protocol 100 times and computed the average time spent
in Protocols 4.5 and 4.6, in the GC step, in Paillier’s decryption. The optimization
introduced in Section 4.3.4 is not part of the following evaluation.

4.7.4 Encryption Costs

Figure 4.16 shows the average cost (y-axis) needed to encrypt a value with the OOPE
protocol for OPE-tree with size (x-axis) between 100 and 1,000,000. Overall, the cost
of OOPE goes up as the size of the OPE-tree increases. This is because the depth
of the tree increases with its size. Hence, this implies a larger number of oblivious
comparisons for larger trees. The average encryption time of OOPE for a database
with one million entries is about 0.3 s via loopback (1.3 s via LAN, 15.6 s via WAN).
This cost corresponds to the cost of comparison multiply by the number of comparisons
(e.g. 20 for 1000000 entries) which can be reduced by the optimization of Section 4.3.4.

The inherent sub-protocol for oblivious comparison does not depend on the OPE-
tree size but on the input length and the security parameter log2N . The time for
comparison is illustrated in Table 4.2. Via loopback, the comparison costs about 15 ms
which is dominated by the time (about 12 ms to the DO) to decrypt ⟦x+ r⟧ in Step 4
of Protocol 4.6. The remaining 3 ms are due to the garbled circuit execution, since the
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(a) Average generation time (b) Storage cost for log2N = 2048

Figure 4.17: OPE-tree costs

overhead due to network communication is negligible. Via LAN, the comparison costs
about 63 ms where the computation is still dominated by the 12 ms for decryption.
However, the network traffic causes an overhead of about 49 ms. Via WAN, the time
is dominated by the network round-trip time which is about 190 ms resulting in 755
ms for the oblivious comparison.

4.7.5 State’s Generation and Storage Costs

The time to generate the OPE-tree also increases with the number of entries in the
database and it is dominated by the time needed to encrypt the input data with
Paillier’s scheme. However, the above optimizations (i.e., choice of g = 1 + N and
pre-generated randomness) enable a fast generation of the OPE-tree. Figure 4.17a
illustrates the generation time on the y-axis for OPE-tree with size between 100 and
1,000,000 on the x-axis. For 1 million entries, the generation costs on average only
about 4.5 seconds.

The storage cost of the tree depends on log2N , the bit length of the order, and the
tree size. Since Paillier ciphertexts are twice longer than log2N , each OPE ciphertext
j⟦x⟧, yo needs 2 ⋅ log2N + log2M bits storage. This is illustrated in Figure 4.17b, with
the x-axis representing the tree size. The scheme needs 492.1 MB to store 1 million
OPE ciphertexts, when the security parameter is 2048 and the order is 32-bit long.

4.7.6 Performance Comparison

Ishai et al. [108] evaluated their scheme on a machine with 8GB of RAM and 4 cores
of an Intel i7-2600K 3.4GHz CPU. Our loopback experiment was done on a machine
with 8 GB of RAM and 4 cores of an Intel(R) Xeon(R) CPU E7-4880 v2 at 2.50GHz.
In their experiment, Ishai et al. [108] used a database with 10 million entries and
performed ranges queries with result set size of 1000, 10000, 50000, 100000, 250000,
500000, 750000, and 1 million records. Then they performed the same experiment
on plaintext data using MySQL and computed the overhead of their scheme. For
result sets of 1000 and 1 million, their overhead against plaintext MySQL is ≈100
and ≈10 seconds, respectively. They attribute the reduced overhead to the fact their
construction has additional fixed cost time that dominates small queries. As illustrated
in Figure 4.2, our scheme adds to MySQL only the overhead for computing the OPE
encodings of the query endpoints, which does not depend on the size of the result set.
For a database with 107 entries, our overhead is only about 360 milliseconds, i.e., the
time for one oblivious comparison (15 ms) multiplies by the depth of the OPE-tree
(log2(107) = 24).
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4.8 Summary

Since OPE schemes are limited to the use case to one server and one client, we
introduced a novel notion of oblivious OPE (OOPE) as an equivalent of a public-
key OPE. Then we presented a protocol for OOPE that combines deterministic OPE
schemes based on binary tree search with Paillier’s HE scheme and GC. We also
applied our technique to the case where the underlying OPE scheme is probabilistic.
Finally, we implemented our scheme with SCAPI and an optimized Paillier’s scheme
and showed that it achieves acceptable performance for interactive use.
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Chapter 5

Classification with Sublinear Costs

Decision trees are common and very popular classifiers because they are explainable.
A decision tree consists of two types of nodes. Internal nodes are decision nodes that
are used to compare an attribute to a constant. Leaf nodes give a classification that
applies to all instances that reach the leaf. To classify an unknown instance, the tree
is traversed according to the values of the attributes tested in successive nodes, and
when a leaf is reached the instance is classified according to the class assigned to that
leaf [192]. In this chapter, we address the problem of evaluating a private decision
tree on private data. The chapter is structured as follows. We start by defining the
problem in Section 5.1 and then we introduce correctness and security definitions in
Section 5.2. We describe the modular design of our main construction in Section
5.3. We discuss implementation of array indexing in Section 5.4 and optimizations
in Section 5.5. We analyse correctness and security in Section 5.6 and present a
complexity analysis in Section 5.7. We discuss evaluation results in Section 5.8 before
summarizing the chapter in Section 5.9.

5.1 Problem Definition

We start in this section by describing the problem and the applications. Then we
describe the generic solution, our own solution approach before concluding the section
with a brief comparison to the related work.

5.1.1 Description

The problem consists of a server holding a private decision tree and a client holding
a private attribute vector. The client wants to classify its private attribute vector
using a server’s private decision tree model. The goal is to obtain the classification,
while preserving privacy of both the decision tree and the client input. After the
computation, the result of the classification is revealed only to the client and noth-
ing else is revealed, neither to the client nor the server. This problem is related to
privacy-preserving machine learning which uses cryptographic primitives to build ei-
ther classifiers on private data [104, 136, 137, 138] or to classify private data with
a private model [14, 34, 38, 55, 96, 104, 151, 193]. Our work falls under the second
category, namely privacy-preserving classification using decision trees.

5.1.2 Use Cases

Decision tree classifiers are a special type of machine learning classifier. Machine
learning classifiers are valuable tools with applications in many areas. We surveyed
machine learning in Section 2.2.1. We focus in this section on describing use cases.
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As concrete motivation for the usefulness of privately evaluating a decision tree
on private data, consider remote diagnostic services [38] or healthcare [14]. Many
cloud providers are already proposing platforms that allow users to build machine
learning applications [7, 24, 93, 150, 165]. A hospital may want to use such a platform
to offer a medical expert system as an ML-as-a-service application to other doctors
or even its patients. A software provider may leverage ML-as-a-service to allow its
customers to detect the cause of a software error. Software systems use log files to
collect information about the system behavior. In case of an error, these log files can
be used to find the cause of the crash. Both examples (medical data and log files)
contain sensitive information that must be protected.

5.1.3 Generic Solution

While generic secure multiparty computation [57, 90, 195] can implement a decision
tree classifier, they are not efficient, in particular when the size of the tree is large. For
example, frameworks such as ObliVM [144] or CBMC-GC [80] are able to transform
plaintext programs into oblivious programs suitable for secure computation. Their
straightforward application to decision tree programs does certainly improve perfor-
mance over a hand-crafted construction. However, the size of the resulting oblivious
program is proportional to the size of the tree. Decision programs can be seen as
nested if-instructions; the ObliVM compiler transforms the exemplary program

If (s) Then x = 1; Else x = 2;

where the Boolean expression s involves secret variables, into

x1 = 1; x2 = 2; x = Mux(s, x1, x2),

where Mux is a multiplexer that returns either x1 or x2, depending on s being true or
false. Any framework implementing the whole program will generate for each condition
a corresponding oblivious computation. This results in an oblivious program whose
size is linear in the number of decision nodes, which might be too large to be practical
for some applications (e.g., Spam filtering). Therefore, optimized protocols, which
exploit domain knowledge of the problem at hand and make use of generic techniques
only where it is necessary, yield more efficient solutions [6, 14, 26, 34, 38]. Many
proposed protocols for privately evaluating decision trees have a constant number of
rounds at the cost of performing as many comparisons as there are decision nodes or
transforming the whole plaintext decision tree into an oblivious program.

5.1.4 Our Solution Approach

The main idea of our novel solution is to represent the tree as an array. Then we
execute only d comparisons, where d denotes the depth of the tree. The result of
each comparison allows to obliviously select the index of the next node which is never
revealed to any party in clear. This selection of the next node is computed using a
small garbled circuit (GC), which is independent of the position in the tree and its
size. This GC is handcrafted and executed using the ObliVM GC runtime. However,
it is also possible to use other GCs runtime environments like SCAPI [75]. The
framework ObliVM was chosen because of its implementation of the state-of-the-art
ORAM [189]. We get the inputs to the comparison by obliviously indexing the tree
and the attribute vector. We construct oblivious array indexing using either garbled
circuits (GC), Oblivious Transfer (OT), or Oblivious RAM (ORAM).
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Scheme Rounds Tools Communication Comparisons

[38] ≈5 HE+GC O(M ) d

[14] ≈4 HE+GC O(m) d

[34] ≥6 FHE/SHE O(m) m

[193] 6 HE+OT O(m) m

[175] 4 HE O(m) m

[55] ≈9 SS O(M ) m

Ours 4d GC,OT O(M ) d

d2 + 3d ORAM [189] O(d4)

4d ODS [191] O(d3)

4d FLORAM [72] O(d2)

Table 5.1: Summary of private decision tree evaluation protocols.

Using ORAM our protocol is the first that achieves sub-linear communication and
computation cost in the size of the tree, and hence likely the first able to evaluate
very large trees with thousands to millions of nodes, which will happen with the fu-
ture growth of big data [40]. Currently, communication cost is an important asset in
mobile settings. Remote clients using smartphones often do not have the bandwidth
to run heavy protocols. However, ORAM has large constants hidden in its asymp-
totic complexity and a significant setup cost that needs to be amortized over many
invocations of the protocol. Hence, we aim not only at improving asymptotic commu-
nication cost, but also at the practical cost on real-world data sets. Other alternative
indexing protocols, particularly OT, have much smaller constants and help improve
the practical communication cost for smaller trees. By using OT instead of ORAM,
we reduce the cost for the large real-world data set “Spambase” in the UCI repository
from 18 MB to 1.2 MB and the computation time from 17 seconds to less than 1
second in a LAN setting, compared to the best related work.

5.1.5 Comparison with Related Work

The related work to this chapter has been described in Section 3.5. We summarize the
properties of private decision trees protocols in Table 5.1. Already from the table, we
can conclude that our protocol has the best asymptotic communication complexity.
Since the size of the tree is in the worst case exponential in the depth of the tree d,
M = O(2d), and m = O(2d), we can expect our protocol to outperform previous work
for large trees. However, we also aim to improve practical communication cost and
computation time. Hence, we compare our implementation to the protocol of Wu et
al. [193] on relevant, real-world data sets from the UCI repository. We chose Wu et
al. because they perform an extensive comparison to the other protocols and have
the best performance in the computational, two-party setting. The results will be
discussed in the evaluation section.
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5.2 Correctness and Security Definitions

In this section, we introduce relevant definitions and notations for our scheme. We use
n to denote the number of attributes, m to denote the number of decision nodes, M
to denote the number of nodes and d to denote the depth of the tree. Let c0, . . . , ck−1

be the classification labels, k ∈ N>0.

5.2.1 The Model

Definition 5.2.1 (Decision Tree). A decision tree (DT) is a function

T ∶ Zn → {c0, . . . , ck−1}

that maps an n-dimensional attribute vector x = (x0, . . . , xn−1) to a finite set of
classification labels. The tree consists of:

• internal nodes (decision nodes) containing a test condition and

• leaf nodes containing a classification label.

A decision tree model consists of a decision tree and the following functions:

• a function thr that assigns to each decision node a threshold value,

thr ∶ [0,m − 1]↦ Z,

• a function att that assigns to each decision node an attribute index,

att ∶ [0,m − 1]↦ [0, n − 1], and

• a labeling function lab that assigns to each leaf node a label,

lab ∶ [m,M − 1]↦ {c0, . . . , ck−1}.

The decision at each decision node is a “greater-than” comparison between the assigned
threshold and attribute values, i.e., the decision at node v is [xatt(v) ≥ thr(v)].

Definition 5.2.2 (Node Indices). Given a decision tree, the index of a node is its
order as computed by breadth-first search (BFS) traversal, starting at the root with
index 0. If the tree is complete, then a node with index v has left child 2v+1 and right
child 2v + 2.

We will also refer to the node with index v as the node v. W.l.o.g, we will use
[0, k − 1] as classification labels (i.e., cj = j for 0 ≤ j ≤ k − 1) and we will label
the first (second, third, . . .) leaf in BFS traversal with classification label 0 (1, 2,
. . .). For a complete decision tree with depth d, the leaves have indices ranging from
2d,2d + 1, . . .2d+1 − 2 and classification labels ranging from 0, . . . ,2d − 1 respectively.
Since the classification labeling is now independent of the tree, we useM = (T , thr, att)
to denote a decision tree model consisting of a tree T and the labeling functions thr, att
as defined above. We also assume that the tree parameters d,m,M can be derived
from T .

Definition 5.2.3 (Decision Tree Evaluation). Given x = (x0, . . . , xn−1) and M =
(T , thr, att), then starting at the root, the Decision Tree Evaluation (DTE) evaluates
at each reached node v the decision b ← [xatt(v) ≥ thr(v)] and moves either to the left
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(if b = 0) or right (if b = 1) subsequent node. The evaluation returns the label of the
reached leaf as result of the computation. We denote this by T (x).

Definition 5.2.4 (Private DTE). Given a client with a private x = (x0, . . . , xn−1)
and a server with a private M = (T , thr, att), a private DTE (PDTE) functionality
evaluates the model M on input x, then reveals to the client the classification label
T (x) and nothing else, while the server learns nothing, i.e.,

FPDTE(M, x)→ (ε,T (x)).

Definition 5.2.5 (Correctness). Given a client with a private x = (x0, . . . , xn−1) and
a server with a privateM = (T , thr, att), a protocol Π correctly implements a PDTE
functionality if after the computation it holds for the result c obtained by the client
that c = T (x).

Recall that, two distributions D1 and D2 are computationally indistinguishable
(denotedD1

c≡ D1) if no probabilistic polynomial time (PPT) algorithm can distinguish
them except with negligible probability.

In SMC protocols the view of a party consists of its input and the sequence of
messages that it has received during the protocol execution [90]. The protocol is
said to be secure if, for each party, one can construct a simulator that, given only the
input of that party and the output, can generate a distribution that is computationally
indistinguishable to the party’s view.

Definition 5.2.6 (PDTE Semi-Honest Security). Given a client with a private x =
(x0, . . . , xn−1) and a server with a private M = (T , thr, att), a protocol ΠPDTE se-
curely implements the PDTE functionality in the semi-honest model if the following
conditions hold:

• there exists a PPT algorithm Simpdte
S that simulates the server’s view ViewΠPDTE

S
given only the private decision tree model (T , thr, att) such that:

Simpdte
S (M, ε) c≡ ViewΠPDTE

S (M, x), (5.1)

• there exists a PPT algorithm Simpdte
C that simulates the client’s view ViewΠPDTE

C
given only the depth d of the tree, x = (x0, . . . , xn−1) and a classification label
T (x) ∈ {0, . . . , k − 1} such that:

Simpdte
C ((d, x),T (x)) c≡ ViewΠPDTE

C (M, x). (5.2)

5.2.2 Oblivious Array Indexing

Before moving to our main construction, we describe a primitive called oblivious array
indexing (OAI), which will serve as a sub-protocol. As illustrated in Figure 5.1, secret
array indexing (SAI) allows a receiver C holding a secret index i to privately access
the i-th element of an array held by a sender S. We will use array indexing as an
intermediate step, and therefore execute it obliviously such that the index and the
indexed element are secret-shared to the parties. We will refer to it as oblivious array
indexing. This is illustrated in Figure 5.2.

Definition 5.2.7 (Oblivious Array Indexing). Let A = [a0, . . . , an−1] be an array and
i ∈ [0, n − 1] be an index. An Oblivious Array Indexing (OAI) functionality consists
of:



76 Chapter 5. Classification with Sublinear Costs

Figure 5.1: Secret Array Indexing

Figure 5.2: Oblivious Array Indexing

• a party S holding privately A,

• a party C.

The functionality receives the array A and some (secret) program state containing
shares of an index i. Then it computes the secret index i, selects the i-th element
ai, computes two shares ⟨ai⟩S and ⟨ai⟩C of Ai, and two shares ⟨i⟩S and ⟨i⟩C of i. It
finally returns ⟨ai, i⟩S = (⟨ai⟩S , ⟨i⟩S) to party S and ⟨ai, i⟩C) = (⟨ai⟩C , ⟨i⟩C) to party
C, i.e,

FOAI(A, ε)→ (⟨ai, i⟩S , ⟨ai, i⟩C),

such that if i = ⟨i⟩S ⊙ ⟨i⟩C then ai = ⟨ai⟩S ⊙ ⟨ai⟩C , where ⊙ ∈ {⊕,+}.

Definition 5.2.8 (OAI Semi-Honest Security). Given a party S with input A =
[a0, . . . , an−1] and a party C, a protocol ΠOAI securely implements the OAI function-
ality in the semi-honest model if the following conditions hold:

• there exists a PPT algorithm Simoai
S that simulates party S’s view ViewΠOAI

S given
only the array A = [a0, . . . , an−1] such that:

Simoai
S (A, ⟨ai, i⟩S)

c≡ ViewΠOAI
S (A, ε), (5.3)

• there exists a PPT algorithm Simoai
C that simulates party C’s view ViewΠOAI

C given
only the index share ⟨i⟩C such that:

Simoai
C (ε, ⟨ai, i⟩C)

c≡ ViewΠOAI
C (A, ε). (5.4)

5.3 Main Construction

In this section, we describe the modular design of our scheme which consists of four
sub-protocols. We first describe the relevant data structure and an overview of the
main construction. Then we present each sub-protocol.

5.3.1 Intuition

At first, the server transforms the decision tree into an array which is formalized in
the following definition.
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Figure 5.3: Illustration of the Protocol: The attribute vector x is
indexed with i (i.e., y = xi). The array of tree nodes N is indexed with
v (i.e., N = Nv,N0 is the root node).

Definition 5.3.1 (Data Structure). Let M = (T , thr, att) with M and m as above.
A node data structure (DS) of a decision node v ∈ [0,m − 1] consists of the tuple
(thr(v), lnod(v), rnod(v), att(v)), where lnod(v) and rnod(v) are functions that return
the indices of the left and right child node of v in BFS traversal. A node DS of a
leaf node v ∈ [m,M − 1] consists of the tuple (lab(v),Null,Null,Null). A tree DS
consists of the array N = N0, . . . ,NM such that Nv is the node DS of v ∈ [0,M − 1].

Hence, besides a threshold and an index to x, each node stores the index to its two
child nodes, similar to the pointer-based technique of [191]. The tree DS N0, . . . ,NM

is equivalent toM = (T , thr, att) and will be used instead.
The server secret-shares the root node with the client and the protocol loops d

times. In each iteration, the parties select the attribute value that corresponds to
the current node (initially the root). Then, they execute a GC to compute an index
which they use to obliviously select one child node of the current node. Finally, they
execute another GC to check if the selected child node is a leaf. Otherwise, this node
is evaluated in the next iteration. The protocol is illustrated in Figure 5.3, where each
OAI block can be instantiated with any protocol that allows secret indexing, such as
GC, OT, ORAM. Each GC block can be implemented with any generic secure 2-party
computation approach.
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5.3.2 Algorithms

Notations. In our algorithms, we use v to denote the index of a node, i.e., Tv.
Moreover, we use N = (w, vl, vr, i) to denote the content of nodes. If it is a decision
node then w = thr(v), vl = lnod(v), vr = rnod(i) and i = att(v). Otherwise w = lab(v)
and vl = vr = i = Null. For a variable V that is secret-shared between server and
client, let ⟨V ⟩S and ⟨V ⟩C denote the respective shares, i.e., ⟨N ⟩S = ⟨w, vl, vr, i⟩S
denotes the server’s share of N . In our GCs, we use the following basic operations:

• And(b1, b2) = (b1 ∧ b2),

• Eq(a1, a2) = (If a1 = a2 Then 1 Else 0),

• Geq(a1, a2) = (If a1 ≥ a2 Then 1 Else 0),

• Mux(b, a1, a2) = (If b Then a2 Else a1),

• Not(b) = (¬b), and

• Xor(a1, a2) = (a1 ⊕ a2).

Additionally, our algorithms use a combination of GC and simple secret sharing.
We use the following operations to denote re-sharing of a value in a GC:

• Reshare(r, a) = (r, a⊙ r), where ⊙ ∈ {⊕,+}, and

• Reshare(r⃗, a⃗) = (r⃗, a⃗⊙ r⃗), where a⃗, r⃗ are vectors and ⊙ is applied component-
wise.

The value to be re-shared (a or a⃗) is an intermediate result (e.g., the index of the
subsequent node), which should not be revealed in clear to the parties. The value r or
r⃗ is randomly chosen by the GC generator and used to blind an intermediate result.

The Evaluation Algorithm. Protocol 5.4 shows our PDTE scheme. It always
starts at the root, i.e., the first element of the tree DS. Let the initial current node
N = (w, vl, vr, i) be the node DS of the root. With the procedure ShareRoot, the
server first shares the root node by choosing a random numbers rw, rvl, rvr, ri, setting
⟨N ⟩S = ⟨w, vl, vr, i⟩S = (rw, rvl, rvr, ri) and sending ⟨N ⟩C = N ⊕ ⟨N ⟩S = (w ⊕ rw, vl ⊕
rvl, vr ⊕ rvr, i ⊕ ri) to the client. The values ⟨N ⟩S , ⟨N ⟩C are used as shares of the
current node in the first iteration of the following loop. In each iteration the parties
successively perform the following operation:

• Select the corresponding attribute value (Step 5): Using the procedure In-
dexVector, the parties then execute an oblivious array indexing (see Section
5.4) to select and secret-share an array element. The server’s input is its share
of i and the client’s input consists of its share of i and the attribute vector x.
The result of Step 5 consists of two shares of the attribute value corresponding
to the current decision node.

• Compute the index of the next node (Step 6): The parties execute a GC which
evaluates the current node (i.e., compares the current attribute value with the
current node’s threshold) and uses the comparison result to select the index of
the next node in the tree. The resulted index is secret-shared to the parties.
This step is fully specified in Algorithm 5.5.
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Input : (N , x)
Output : (ε, c)
1: (⟨N ⟩S , ⟨N ⟩C)← ShareRoot(root, ε)
2: j ← 1
3: while j ≤ d do
4: parse ⟨N ⟩p to ⟨w, vl, vr, i⟩p ▷ p = S,C
5: (⟨xi⟩S , ⟨xi⟩C)← IndexVector(⟨i⟩S , (x, ⟨i⟩C))
6: (⟨v⟩S , ⟨v⟩C)← Traverse((⟨w, vl, vr, xi⟩S , rS), ⟨w, vl, vr, xi⟩C)
7: (⟨N ⟩S , ⟨N ⟩C)← IndexTree((N , ⟨v⟩S), ⟨v⟩C)
8: parse ⟨N ⟩p to ⟨w, vl, vr, i⟩p) ▷ p = S,C
9: ((0, ⟨i⟩S), (c, ⟨i⟩C))←Move(⟨w, i⟩S , (⟨w, i⟩C , rC)))

10: j ← j + 1

11: return (ε, c)

Protocol 5.4: Our Private Decision Tree Evaluation Protocol

• Select the next node in the tree (Step 7): The parties use their secret shares from
the previous step as input to the procedure IndexTree to select and secret-
share the next node in the tree. The additional input to the array indexing
operation is the array. The result is used to update the current node.

• Move (Step 9): Finally, another GC, which is fully specified in Algorithm 5.6,
checks if the current node N is a leaf and computes the classification label and
re-shares the index i. Note that, as we assumed a complete tree, it is enough to
perform this check only for the last iteration. In this case, the Move algorithm
only needs to re-share the index i for all iterations but the last one.

The algorithm loops d times and N is evaluated in the next iteration. Steps 4, 8, and
10 are local steps and do not require any secure computation.

We now turn to the description of the algorithms Traverse and Move, which
are implemented using Yao’s garbled circuits approach.

The Traverse Algorithm. Algorithm 5.5 describes the GC that is used in Proto-
col 5.4 (Step 6) to compute the index of the next node. The GC is generated by the
server and evaluated by the client. Each party inputs its share of (w, vl, vr, y) which is
then recovered (Step 1) in the execution of the GC. Then the result of the comparison
y ≥ w (Step 2) is used to select (Step 3) the index of the next node between vl and
vr. The selection is implemented using an l−bit multiplexer Mux(b, a1, a2). Finally,
this index is secret-shared (Step 4) and returned to the parties. Note that, the output
⟨v⟩S is identical to the random string rS that is also part of the server’s input, such
that in Step 4, ⟨v⟩C ← v ⊙ rS is computed and returned only to the client.

The Move Algorithm. At the end of each iteration in Protocol 5.4, the GC of
Algorithm 5.6 receives shares of (w, i) and recombines them (Step 1) in the secure
computation. Then it checks (Step 2) if i equals Null and returns either 0 or w.
Again, as we assumed a complete tree, it is enough to perform this check only for the
last iteration. The selection (Step 3) is also implemented as an l−bit multiplexer. The
final step re-shares the index i to both parties. For this GC as well, the server and
the client act as generator and evaluator respectively.
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Input : ((⟨w, vl, vr, xi⟩S , rS), ⟨w, vl, vr, xi⟩C)
Output : (⟨v⟩S , ⟨v⟩C)
1: (w, vl, vr, xi)← Xor(⟨w, vl, vr, xi⟩S , ⟨w, vl, vr, xi⟩C)
2: b←Geq(xi,w)
3: v ←Mux(b, vl, vr)
4: (⟨v⟩S , ⟨v⟩C)←Reshare(rS , v)

Algorithm 5.5: Traverse Algorithm

Input : ((⟨w, i⟩S), (⟨w, i⟩C , rC))
Output : ((Null, ⟨i⟩S), (R, ⟨i⟩C))
1: (w, i)← Xor(⟨w, i⟩S , ⟨w, i⟩C)
2: b←Eq(i,Null)
3: R ←Mux(b,0,w)
4: (⟨i⟩C , ⟨i⟩S)←Reshare(rC , i)

Protocol 5.6: Move Algorithm

Brief Analysis. We stress that Algorithms 5.5 and 5.6 represent the full specifica-
tion of the underlying GCs that are neither dependent on the position in the tree nor
on its size. It is straightforward to see that the resulting GCs are indeed small. Their
cost depends on the operations Eq, Geq, Mux, and Reshare, as the performance
metric for GC is the number of AND-gates (XOR being free). Assuming inputs are µ-
bit integers, operations Eq, Geq, Mux contain each exactly µ AND-gates [130, 131],
which results in 4µ ciphertexts each. The Reshare operation contains AND-gates
only when the sharing is additive. In this case, re-sharing is implemented as full-
adder with µ AND-gates [130]. The halfGate optimization [197] reduces the number
of ciphertexts per AND-gate by a factor of 2 at the cost for the evaluator to per-
form two cheap symmetric operations, rather than one. Also, notice that the size
of Eq and Geq depends on the size of the attribute vector n and the tree M re-
spectively, whose bit-length can be much more smaller than the input’s bit-length in
practice (i.e., log(n) and log(M) are smaller than µ). In the worst case, the com-
munication cost of our scheme (Protocol 5.4) is dominated by the cost of the array
indexing on the tree (in general the tree is larger than the attribute vector) which is
O(M ) ,O(M ) ,O(d3) ,O(d2) ,O(d) for GC, OT, Circuit ORAM, ODS and FLO-
RAM respectively.

5.4 Implementing Oblivious Array Indexing (OAI)

OAI can be instantiated with any protocol that allows secret indexing, such as GC,
OT, ORAM. Notice that, OAI only makes sense when used as a sub-protocol. In the
overall protocol the array indexing is always preceded by a GC step that computes and
returns the shares ⟨i⟩S and ⟨i⟩C to server and client (i.e., in Step 4 of Traverse and
in Step 4 of Move). To initially index the attribute vector the shares are computed by
the server in Step 1 of Protocol 5.4. This is not a security problem as the classification
always starts at the root.
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Input : ((a0, . . . , an−1, ⟨i⟩S , rS), ⟨i⟩C)
Output : (⟨ai⟩S , ⟨ai⟩C) s.t. if i = ⟨i⟩S ⊕ ⟨i⟩C then ai = ⟨ai⟩S ⊕ ⟨ai⟩C
1: i←Xor(⟨i⟩S , ⟨i⟩C)
2: ai ← 0
3: for j = 0 to n − 1 do
4: b←Eq(i, j)
5: ai ←Mux(b, ai, aj)
6: (⟨ai⟩S , ⟨ai⟩C)←Reshare(rS , ai)

Algorithm 5.7: OAI with Garbled Circuit

Input : ((A = [a0, . . . , an−1], r, s), k = i + r mod n)
Output : (⟨ai⟩S , ⟨ai⟩C) s.t. ai = ⟨ai⟩S ⊕ ⟨ai⟩C
1: For all 0 ≤ j < n, S sets a′j+r mod n ← aj ⊕ s
2: S and C execute (ε, a′k)← OT1

n(A′ = [a′0, . . . , a′n−1], k)
3: ⟨ai⟩S ← s and ⟨ai⟩C ← a′k = a′i+r mod n = ai ⊕ s

Protocol 5.8: OAI with Oblivious Transfer

As already mentioned, we assume the array elements and the indices to be µ-bit
integers. In this section, we refer to party S and party C as Sender and Receiver
respectively.

5.4.1 OAI with Garbled Circuits

The algorithm for OAI using GC is described in Algorithm 5.7. The circuit uses three
sub-circuits: Xor, Eq, Mux. The input of the sender also contains a random string
rS that is used in line 6 to randomize the output. The algorithm scans the array and
uses Mux to select the indexed element. Since the sender is also the generator of the
GC, the evaluator does not have to send back the result of the evaluation. Using the
same metric explained in Section 5.3.2, the GC of Algorithm 5.7 contains µ(n + 1)
AND-gates. The communication cost is clearly linear in the array size, i.e., O(n).

Alternatively, we can also represent the index i as a vector of bits with 0 everywhere
except at position i. This results in a more efficient GC by getting rid of the equality
check in line 4, which requires µ And-gates. However, since we use µ bits to represent
the index, we run this more efficient alternative only when the size of the array is
smaller or equal to µ.

5.4.2 OAI with Oblivious Transfer

For the oblivious indexing with OT, we use the OT1
n protocol by Naor and Pinkas

[154], which is described in Protocol 2.2. The idea of OAI with OT is to share the
array index i with additive sharing by choosing a random r as sender’s share and i+r
as receiver’s share. Then the sender rotates the array by r and the parties execute
OT1

n on the new array and i + r. Hence, let r ∈ {0,1}l be a random l−bit integer and
⟨i⟩S = r and ⟨i⟩C = i + r. The protocol is described in Protocol 5.8.

In [111], Jarrous and Pinkas used a similar idea in a protocol called HDOT (Ham-
ming Distance based OT) in which parties C and S have private binary strings
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α = α0 . . . αt and β = β0 . . . βt of length t = log(n). The sender S additionally has
a private dataset A = [a0, . . . , an−1]. The parties then run a protocol that privately
computes the Hamming distance i = dH and uses it to reveal ai to C using OT1

n. To
select ai without revealing dH to the parties, C first computes ⟦α⟧ = (⟦α0⟧, . . . , ⟦αt⟧)
under its public key using an additively HE. Then S receives ⟦α⟧ and computes
⟦i⟧ =∏⟦αj ⊕ βj⟧ = ⟦∑αj ⊕ βj⟧. Finally, S chooses a random r and sends ⟦i+ r⟧ to C.

Alternatively, we can use the following proposition to share the index with XOR
(exclusive-OR) sharing instead. The benefit is that the re-sharing of the index in the
GC (e.g., in Step 4 of Algorithm 5.5) is more efficient as it requires only exclusive-OR
operations. In our implementation, we use this alternative, whenever it is possible.

Proposition 5.4.1. Let B = {0,1}l and x ∈ B then we have x⊕B = B.

Proof. ∀y ∈ B,x ⊕ y is clearly in B, since B contains alls l−bit strings. Moreover,
∀y1, y2 ∈ B with y1 ≠ y2 it holds x ⊕ y1 ≠ x ⊕ y2, because otherwise x ⊕ y1 = x ⊕ y2

implies y1 = y2.

From the above proposition, it follows that if the length n of the array is a power
of 2 with log(n) = h, then [0, n − 1] is isomorphic to {0,1}h. As a result, we can
modify the algorithm in Protocol 5.8 as follows: we set ⟨i⟩S = r and ⟨i⟩C = i⊕ r, and
replace Step 1 by a′j⊕r ← aj ⊕ s, 0 ≤ i < n. If n is not a power of 2, one may consider
padding the array with 0s to an array of length n′ = 2h+1. However, since the OTn1
requires sending n ciphertexts (resulting in O(n) communication cost) we will use
the alternative protocol only if n is a power of 2.

Indexing can be done with PIR as well, similar to the OT case as described in
Protocol 5.8, where the OTn1 is replaced by a receiver-private and sender-private PIR
scheme. Using Lipmaa’s PIR scheme [141] that has log-squared communication com-
plexity results in a sublinear communication complexity. However, it relies on public
key primitive and requires high computational cost.

5.4.3 OAI with Oblivious RAM

For an array of size N , tree-based ORAM organizes the data into blocks stored in a the
ORAM state State, which is a binary tree of height log(N), at the server. Each node
of the tree is a bucket of log(N) blocks. Each block has the form {idx∥label∥data}, with
idx a block index, label a leaf identifier specifying the path on which the block resides
and data the actual data. The client stores a stash Stash for buffering overflowing
blocks and a position map PosMap mapping idx to label. The position map can be
reduced to O(1) by recursively storing it in smaller ORAMs at the server. There
are two basic operations. The first one, ReadAndRemove, reads and removes a block
from its current position and the second one, Evict, randomly pushes blocks down to
their path. They are used to implement the access operation (Algorithm 5.9) which
allows two functionalities [171, 189]:

• Oram.Read(idx) ∶= Oram.Access(idx, ε): read block idx from the State

• Oram.Write(idx,data) ∶= Oram.Access(idx,data): write block idx with data.

Similarly to ObliVM [144], the GC framework used in our evaluation, we use read
and write interface for convenience. OAI with ORAM requires only Read(). In an
initial step, the server places the array in the ORAM state State, and secret-shares the
resulting State with the client. OAI with ORAM (Algorithm 5.10) is similar to the
case of GC, with the only difference that the array is stored in the shared ORAM state
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Input: (idx,data)
Output: out
1: {idx∥lbl∥out}← ReadAndRemove(idx,PosMap[idx])
2: PosMap[idx]←${0, . . . ,N − 1} ▷ Uniformly random choice
3: if data = ε then
4: data← out
5: Stash.Add({idx∥PosMap[idx]∥data})
6: Evict()
7: return out

Algorithm 5.9: Algorithm Oram.Access [189]

Input: ((⟨State, i⟩S , rS), ⟨State, i⟩C)
Output: (⟨ai⟩S , ⟨ai⟩C) s.t. if i = ⟨i⟩S ⊕ ⟨i⟩C then ai = ⟨ai⟩S ⊕ ⟨ai⟩C
1: i←Xor(⟨i⟩S , ⟨i⟩C)
2: ai ← Oram.Read(i)
3: ⟨ai⟩C ←Xor(ai, rS)
4: ⟨a⟩S ← rS

Algorithm 5.10: OAI with ORAM

and the computation of the indexed element is replaced by Oram.Read(idx). In fact,
the read and write operations are implemented using GCs. In our implementation, we
used the recursive circuit ORAM [189]. However, OAI with ORAM can be optimized
by using oblivious data structures [118, 191] or FLORAM [72] instead. Using ODS
is straightforward since ODS schemes are basically optimized tree-based ORAM like
circuit ORAM. OAI with FLORAM requires to implement the PDTE as a 3-party
protocol (one client and two servers). Because of our 2-party security model, we see
the integration of FLORAM to our scheme as a future work.

5.5 Optimizations

We now discuss three optimizations of our scheme. The first one consists of indexing
the tree by level. The second optimization performs a pre-processing which allows
avoiding the indexing of the attribute vector in the online computation. Finally, we
show how to handle sparse trees efficiently.

5.5.1 Level Indexing

In each iteration, our protocol executes array indexing on the tree to select the index
of the next node. Since this node is always a child node of the current node, we do not
have to use the whole tree during array indexing. It is sufficient to use only the nodes
of the next level. Therefore, before invoking IndexTree (Step 7 of Protocol 5.4) at
level d′, we construct an array containing only the nodes of level d′+1, where for each
node vl and vr are recomputed according to the number of nodes at level d′ + 2. For
ORAM, each level of the tree is stored in its own ORAM during initialization. Of
course, this reveals the number of nodes per level to the client. However, if we assume
that the tree is complete, then it is not a new leakage. Otherwise, we can still extend
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all levels to the size of the longest level, which is smaller than 2d, leaking only this
longest size. To be secure for sparse trees, this optimization has to be combined with
the Handling Sparse Trees optimization below. We note that for efficiency reasons,
previous schemes also leak either the number of decision nodes, the number of nodes,
the number of paths, or the depth of the tree to the client.

5.5.2 Pre-processing the Vector Indexing

One can also avoid indexing the attribute vector x in each step. Let x = (x0, . . . , xn−1),
then in an initial step, the client computes ⟦x⟧ = (⟦x0⟧, . . . , ⟦xn−1⟧) under its public key
using additively HE. The server receives ⟦x⟧, chooses n random numbers r0, . . . , rn−1 ∈
{0, . . . ,2µ+σ} (σ is a security parameter that determines the statistical leakage [70],
e.g., σ = 32) and computes (⟦x0 + r0⟧, . . . , ⟦xn−1 + rn−1⟧). Then the server chooses a
random permutation π and sends back π(⟦x0 + r0⟧, . . . , ⟦xn−1 + rn−1⟧) to the client.
Finally, the server replaces each decision node N = (w, vl, vr, i) of the tree by N =
(w + rπ(i), vl, vr, π(i)). Note that, we can reduce the number of ciphertexts sent, by
packing many plaintexts in one ciphertext [166]. During the evaluation, the client
learns π(i) in each iteration, selects the attribute value xπ(i) + rπ(i) locally and uses
it in the Traverse algorithm which evaluates Geq(xπ(i) + rπ(i),w + rπ(i)) instead of
Geq(xi,w). Hence, with this optimization the server’s share ⟨xi⟩S in the Traverse
algorithm is empty, while ⟨xi⟩C = xπ(i)+rπ(i). To preserve privacy, this pre-processing
step must be recomputed for each tree evaluation. We have not yet implemented and
evaluated this optimization and intend to do it in future work.

5.5.3 Handling Sparse Trees

We assumed in our protocol that the tree is complete. However, this is inefficient for
sparse trees. We, therefore, optimize our protocol to handle sparse trees efficiently.
This optimization requires only small changes to Algorithm 5.5 and 5.6.

LetMj denotes the number of nodes at level j. Then, for a sparse treeMj is much
more smaller than 2j . However, a path may end at a level j < d. The idea is to store
each level j in an array of size at least Mj , instead of 2j . When we are traversing
a path that ends at level j < d, we secret-share the corresponding classification label
to the parties in iteration j − 1. Then we simulate the remaining d − j iterations and
refresh the shares of the classification label each time.

We, therefore, use two additional variables u and e to assign the classification label
and a bit respectively. During the tree evaluation, if we reached a leaf at level j < d,
we assign the corresponding classification label to u and set e to 1. Then, we re-share
both variables to the parties in each iteration.

For Algorithm 5.5, parties additionally receive shares of variables u and e. Then,
after the comparison (Step 2), we check if e = 1 (i.e., a leaf node was reached at level
j < d) and choose v′ randomly. This check is however only necessary for levels j ≥ 1
(i.e., not at the root).

The modification for Algorithm 5.6 is described in Algorithm 5.11, where fstCall
is used only for the first iteration (i.e., at the root node) and ithCall for all other
iterations. The inputs are shares of w (either a threshold or a classification label), i, u,
and e for each party. The server has a random vector r⃗S = (ru, re) as additional input,
that is used to re-share the values u, e. The client has a random rC as additional
input, that is used to re-share the index i. For the first iteration, fstCall checks if
the next node is a leaf (Step 3), sets u and e appropriately (Step 4), and re-shares
i, u, e (Step 5 and 6). After the first iteration, ithCall checks if e is still 0 and if the
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Input : ((⟨w, i, u, e⟩S , r⃗S), (⟨w, i, u, e⟩C , rC))
Output : (⟨i, u, e⟩S , ⟨i, u, e⟩C)) ▷ fresh shares
1: function fstCall
2: (w, i)← Xor(⟨w, i⟩S , ⟨w, i⟩C)
3: b← Eq(i,Null)
4: (u, e)← Mux(b, (Null,0), (w,1))
5: (⟨i⟩C , ⟨i⟩S)← Reshare(rC , i)
6: (⟨u, e⟩S , ⟨u, e⟩C)← Reshare(r⃗S , (u, e))
7: function ithCall
8: (w, i, u, e)← Xor(⟨w, i, u, e⟩S , ⟨w, i, u, e⟩C)
9: b1 ← Eq(e,1), b2 ← Eq(i,Null)

10: b← And(Not(b1), b2)
11: (u, e)← Mux(b, (u, e), (w,1))
12: (⟨i⟩C , ⟨i⟩S)← Reshare(rC , i)
13: (⟨u, e⟩S , ⟨u, e⟩C)← Reshare(r⃗S , (u, e))

Algorithm 5.11: Garbled Circuit Move for Sparse Trees

next node is a leaf (Step 9 and 10). If this is true, then we set u, e to w,1. Otherwise,
we maintain their previous values (Step 11). Finally, we re-share i, u, e (Step 12 and
13).

5.6 Correctness and Security Analysis

This section discusses the correctness and security of our scheme. Our security proofs
follow the idea of [139]. We construct simulators as in [101, 139] and refer to the same
references for the indistinguishability part.

5.6.1 Sub-protocols

Lemma 5.6.1. The GC protocol in Algorithm 5.5 is correct and secure in the semi-
honest model.

Proof. Depending on the comparison result between the attribute value xi and the
threshold, Algorithm 5.5 returns the correct index of the next node. Security follows
from Yao’s garbled circuit protocol.

Lemma 5.6.2. The GC protocol in Algorithm 5.6 is correct and secure in the semi-
honest model.

Proof. If the execution of the protocol reaches a leaf, then i must be Null which is
correctly checked in Step 2. As a result, the correct classification label is computed
in Step 3. Security follows from Yao’s garbled circuit protocol.

Lemma 5.6.3. The OAI using the GC in Algorithm 5.7 is correct and secure in the
semi-honest model.

Proof. The equality check in step 4 returns 1 for exactly one index between 0, . . . , n−1.
The selection step 5 returns 0 for all j < i and ai for all j ≥ i. The output ai is secret-
shared in step 6. Security follows from Yao’s garbled circuit protocol.
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Lemma 5.6.4. The OAI as described in Algorithm 5.8 is correct and secure in the
semi-honest model.

Proof. Let A = [a0, . . . , an−1] be the array of the sender, ⟨i⟩S = r and ⟨i⟩C = k =
i + r mod n. Moreover, let A′ = [a′0, . . . , a′n−1] where a′j+r mod n = aj ⊕ s for a random
s. From the correctness of OT1

n protocol with input (A′, k), C receives the keys
corresponding to k = i + r mod n and can decrypt a′i+r mod n = ai ⊕ s. Security also
follows from the security of OT1

n(A′, k), which guarantees that C can decrypt only
one message. Finally, this message is blinded by a random value s known only to the
server.

Let ViewΠOT
S ,ViewΠOT

C be the view of the sender and the receiver in the OT1
n

protocol. Then the respective views of sender and receiver in the OT indexing
are ViewΠOTI

S (A, ε) = (A′,ViewΠOT
S (A′, k), ⟨ai⟩S) and ViewΠOTI

C (A, ε) = ViewΠOT
C (A′, k).

Moreover, let Simot
S ,Sim

ot
C be the simulators of sender and receiver the OT1

n protocol.
We construct the simulators of the OT indexing as follows:

• Sender: the simulator Simoti
S (A, ⟨ai, i⟩S) receives as input the array A, a share

⟨i⟩S of the index and a share ⟨ai⟩S of the indexed element. The simulator
computes A′ = [a′0, . . . , a′n−1] where a′j+r mod n ← aj ⊕ ⟨ai⟩S , j = 0,⋯, n − 1 and
outputs (A′,Simot

S (A′, ε), ⟨ai⟩S).

• Receiver: the simulator Simoti
C (ε, ⟨ai, i⟩C) receives as input a share ⟨i⟩C of the in-

dex and a share ⟨ai⟩C of the indexed element. It just outputs Simot
C (⟨i⟩C , ⟨ai⟩C).

The output of both simulators Simoti
S and Simoti

C are clearly indistinguishable from the
corresponding party’s view in the real protocol.

5.6.2 Main Protocol

Theorem 5.6.5 (Correctness). The protocol described in Protocol 5.4 is correct.

Proof. We prove by induction on the level of the tree that the protocol correctly
traverses the tree. At level 0 there is only the root node. At level d′ < d the
correctness of the sub-protocols guarantees the computation of the correct attribute
value xi at Step 5, the correct node index v′ at Step 6 and the correct node N ′ at
Step 7. Finally, at level d Algorithm 5.6 returns the correct classification label.

Theorem 5.6.6 (Security). The protocol described in Protocol 5.4 is secure in the
semi-honest model.

Proof. Given a DT model M, the simulator Simpdte
S generates random elements to

simulate the sharing of the root (Step 1). Then it generates a random attribute vector
x̃ and invokes d times the simulators of the sub-protocols for the server. Analogously,
given d and x the simulator Simpdte

C generates a random model M′, simulates the
sharing of the root as above and invokes d times the simulators of the sub-protocols
for the client.

Let the input of the client be the attribute vector x = [x0, . . . , xn−1] and the input
of the server be the node data structure N = [N0, . . . ,NM ] as defined in Definition
5.3.1.

The view ViewΠPDTE
S (M, x) of the server consists of its views in the sub-protocols

which are denoted as follows:

• ViewΠIV
S (ε, x) for the sub-protocol IndexVector,
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• ViewΠTR
S (⟨w, vl, vr, xi⟩S , ⟨w, vl, vr, xi⟩C) for the sub-protocol Traverse,

• ViewΠIT
S (N, ε) for the sub-protocol IndexTree,

• ViewΠMV
S ((⟨w, i⟩S , inS), (⟨w, i⟩C , inC)) for the sub-protocol Move.

Moreover, let the simulators of the server in the sub-protocols be denoted as fol-
lows:

• Simiv
S (ε, ⟨xi, i⟩S) for the sub-protocol IndexVector,

• Simtr
S (⟨w, vl, vr, xi⟩S , ⟨v⟩S) for the sub-protocol Traverse,

• Simit
S(N, ⟨w, vl, vr, i⟩S) for the sub-protocol IndexTree,

• Simmv
S ((⟨w, i⟩S , inS), (⟨i⟩S ,outS)) for the sub-protocol Move.

The variables inS , inC and outS ,outC denote respectively additional inputs and
outputs as described in Algorithms 5.6 and 5.11. Then the view ViewΠPDTE

S of the
server in Protocol 5.4 is:

⟨N ⟩S ,ViewΠIV
S (⋅),ViewΠTR

S (⋅),ViewΠIT
S (⋅),ViewΠMV

S (⋅),⋯
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d times

.

The simulator for the server Simpdte
S (M, ε) receives as input the decision tree,

generates a random ⟨̃N ⟩S , invokes d times the simulators of the sub-protocols and
outputs:

⟨̃N ⟩S ,Simiv
S (⋅),Simtr

S (⋅),Simit
S(⋅),Simmv

S (⋅),⋯
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d times

.

The simulation for the client is similar.

5.6.3 One-Sided Simulatability

Since their original schemes are secure against passive adversaries, [175, 193] also
consider the one-sided simulatability. When in a 2-party protocol between parties
P1 and P2, only P2 receives an output, the one-sided simulatability requires that the
protocol is private against a corrupt P1 and fully simulatable against P2 [101]. For
the private decision tree functionality, P1 is the server, while P2 is the client. We
now discuss how our scheme can be made one-side simulatable when the indexing
is performed with OT. First note that, if OT extension is actively secure and the
GC output is not revealed to the GC generator, then the GC protocol is one-sided
simulatable. In the GC Traverse (Algorithm 5.5), the client does not reveal the final
output to the server. We apply a small change to the GC Move (Algorithm 5.6) such
that it reveals i+rS to the client, where rS is randomly chosen by the server. After the
GC execution the client chooses ⟨i⟩C ← rC and sends i+rS +rC to the server. Finally,
the server computes ⟨i⟩S ← i + rC . We, therefore, expect that, by using the actively
secure OT extension of [116] which adds a negligible overhead on top of the passive
one, our scheme can be made one-sided simulatable with negligible extra costs. On
the other hand, to have one-sided simulatability [175, 193] use zero-knowledge proof
and have at least double costs.
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5.7 Complexity Analysis

This section presents the complexity analysis of our scheme and compares it to pre-
vious work [175, 193]. We focus on the level indexing and sparse trees optimizations
of Sections 5.5.1 and 5.5.3.

5.7.1 Asymptotic Analysis

Asymptotic Analysis of [175, 193]. We begin by recalling the cost provided by
[175, 193]. In [193] the client performs O((n +m)µ) asymmetric and O(d) symmet-
ric operations, while the server performs O(mµ) asymmetric and O(2d) symmetric
operations. In [175] the client performs O((n +m)µ) asymmetric operations, and the
server O(mµ) asymmetric operations.

Asymptotic Analysis of our Scheme. Our cost consists of the cost for GCs
Traverse and Move (CGC), the cost for IndexVector (CIV ) and the cost for
IndexTree (CIT ). If C

(j)
IT denotes the cost for IndexTree at level j (Section 5.5.1),

then the total cost is d ⋅ CGC + d ⋅ CIV + ∑dj=1C
(j)
IT . All computations require only

symmetric operations. Each GC consists of 6µ ciphertexts resulting in a total of
O(6µd) = O(µd) operations for each party. For IndexVector, we consider the
cases, where it is implemented either with OT or ORAM:

• OAI With OT. In this case, the cost of IndexVector is O(dn) for the client,
and O(d log(n)) for the server. Each level j of the tree has 2j elements, resulting
in O(d2) and O(2d) operations in IndexTree for the client and the server
respectively. Overall, the client and server perform O(µd + dn + d2) = O(d2)
and O(µd + d log(n) + 2d) = O(2d) symmetric operations.

• OAI With ORAM. The asymptotic cost of recursive circuit ORAM for an
array of size O(2d) is O(d3). Hence with ORAM, the costs of the client and
server are respectively O(µd + dn + d4) and O(µd + d log(n) + d4). For ODS
and FLORAM, it suffices to replace O(d3) by O(d2) and O(d) respectively.
Assuming constant µ and n, the complexity is indeed sublinear in the size O(2d)
of the tree.

Asymptotic Analysis Summary. The above cryptographic operations are in fact
encryption/decryption operations such that we can assimilate their number to the
number of ciphertexts sent. In the worst case (complete tree), m ≈ 2d is the dominant
factor. This results in an overall asymptotic cost of O(m) as claimed in Table 5.1 for
[175, 193] and our scheme.

5.7.2 Precise Analysis

We now compute the estimated actual communication cost depending on the protocols
parameters.

Precise Analysis of [175, 193]. We first provide our own analysis of the commu-
nication of previous work. Let κ denote the bit length of the asymmetric ciphertext.
For ElGamal using 256-bit elliptic curve, κ = 1024 (a ciphertext consists of two group
elements, which on the elliptic curve are encoded as points with coordinates 256-bit
long). We use λ to denote the symmetric security parameter, hence λ = 128. Wu et
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al.’s scheme uses the OT extension protocol of [9] in which for sending k strings of
length λ in parallel, the receiver sends kλ and the sender 2kλ bits.

In [193] each party sends two messages before engaging in a 1-out-of-2d-OT (with
the server as sender) which is implemented using Naor and Pinkas OT [154] by running
d times the OT extensions of [9] and transferring 2d symmetric ciphertexts of length
2λ each. This results in the client sending κµn + κm + 2dλ and the server sending
κµm + κ2d + 4dλ + 2d2λ bits.

The analysis of [175] is much simpler. Also in this case, each party sends two
messages, which results in the client sending κµn+κm and the server sending κµm+
2κ(m + 1) bits.

Precise Analysis of our Scheme. We implemented our scheme with the OT
extensions of [107] which has a communication cost of 2λ(λ + k) bits for both sender
and receiver to transfer k strings of length λ. In each GC the cost of the client (as
evaluator) consists of its cost in OT, while the cost of the server (as generator) consists
of the ciphertexts of the garbled tables (GT), the garbled input (GI) of the server and
the OT cost. For each node DS (w, vr, vl, i), the threshold w has the same bit length
µ as the attribute values, while the length of vl, vr, i might be much smaller and will
be denoted by l. The length of i depends on the size of the attribute vector, while
vl, vr depend on the number of nodes at the corresponding level in the tree (Section
5.5.1). In our evaluation for UCI Datasets, l = 20 for Spambase and l = 16 for the
other datasets.

The input length of the client in GC Traverse is 2(µ + l) hence the client sends
2λ(λ+2µ+2l) bits. Similarly, in GC Move the client sends 2λ(λ+µ+2l) bits resulting
in a total of 2λd(2λ + 3µ + 4l). In GC Traverse, the server sends 2λ(µ + 2l) bits as
GT cost, λ(2µ+ 3l) bits as GI cost and 2λ(λ+ 2µ+ 2l) bits in OT. In GC Move, the
server sends 2λ(µ+2l) bits as GT cost, λ(µ+ l) bits as GI cost and 2λ(λ+µ+2l) bits
in OT. Overall the server sends λd(4λ + 13µ + 20λl) bits as GC cost.

Recall that the array indexing with OT is implemented with Naor and Pinkas OT1
n

that requires running log(n) times OT1
2 and transferring n symmetric ciphertexts. In

IndexVector, the client as sender sends λd(2λ + 2 log(n) + n) and the server sends
2λd(λ + log(n)) bits.

In IndexTree, the parties run OT1
2j

at each level j in [1, d], where the client and
the server send 2λ(λ + j) and 2λ(λ + j) + κ2i bits respectively. As a result, the client
sends 2λ(λd+ (1+d)d

2 ) and the server 2λ(λd+ (1+d)d
2 )+ 2λ(2m+ 1) bits (a tree with m

decision nodes, has 2m + 1 nodes in total).
In summary, the client sends

2λd(2λ + 3µ + 4l) + λd(4λ + 2 logn + n + d + 1)

bits and the server sends

λd(4λ + 13µ + 20l) + λd(4λ + 2 log(n) + d + 1) + 2λ(2m + 1)

bits in our protocol.

Precise Analysis Summary. To summarize this section (see Table 5.5), the pro-
tocols in [175, 193] perform m comparisons using asymmetric operations, while we
perform only d = log(m) comparisons using symmetric operations. Using GC or
OT, we still have linear cost as previous work, while requiring only symmetric oper-
ations with small constants. Using ORAM (or ODS, FLORAM), CIT is computed
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accordingly and OAI is sublinear while requiring only symmetric operations. Our
implementation uses a concurrent queue implementation offered by ObliVM, which
uses only 2 threads to manage network input/output. While running the protocol, the
main thread inserts new messages in the queue (it waits until there is enough place).
The second thread is only responsible for sending the content of the queue over the
network. Previous work can also use multithreading to improve the execution time,
but not the communication. Their major advantage is the use of ECC which allows
smaller ciphertexts than when using a group Zp with prime p. Our scheme, however,
can still be optimized by using more efficient garbling [19], OT extensions [9, 11, 116]
and ORAM (ODS [118, 191], FLORAM [72]). Using more efficient OT extensions
[9, 11] that reduces the runtime and bandwidth to 41% and 50% respectively, will
significantly improve the performance of our scheme.

5.7.3 Round Complexity

The main cryptographic primitives used in our scheme are OT extension, OT1
N and

GC, which are all one round protocol. The scheme itself consists of d iterations. Each
iteration consists of an OAI on x, a GC Traverse, an OAI on the decision tree and
a GC Move. When instantiated with OT or GC, OAI has one round. Hence, our
scheme has 4d rounds. Recursive Circuit ORAM with size N has log(N) rounds,
resulting in (d + 3)d = d2 + 3d rounds for our scheme, when instantiated with ORAM.
ODS and FLORAM have one round, resulting in 4d rounds for our scheme.

5.8 Evaluation

We have implemented our scheme with the level indexing optimization and performed
some experiments which will be discussed in this section.

5.8.1 Experimental Setup

We evaluated our scheme with the ObliVM [144] which is a Java framework for secure
computation. It offers a compiler for a domain-specific language ObliVM-lang and a
GC backend ObliVM-GC, which primarily supports semi-honest GC-based protocols.
We implemented our scheme in Java (1.8) using only the GC backend.

ObliVM-GC supports a standard garbling scheme with garbled row reduction,
FreeXOR and HalfGate. It also implements the OT extension protocol proposed
by [107] and a basic OT protocol by [153] based on the decisional Diffie-Hellman
assumption in Zp. In our experiments, we use a 2048-bit key length for Zp and
SHA-256 as random oracle for the OT extension. For our OT1

n implementation, we
instantiated the PRF with AES-128. Finally, ObliVM-GC provides a large set of built-
in Boolean circuits and a GC implementation of Circuit ORAM [189]. The ORAM is
secret-shared between the two parties and for each read and write operation the client
and the server execute a GC protocol to scan the corresponding path of the ORAM,
then they execute another GC protocol to perform the eviction operation.

We stress that we did not use the ObliVM compiler. Using the compiler to trans-
form the plaintext tree evaluation program in a secure one results in a program whose
size is proportional to the tree size. A similar idea was already considered in the related
work [14, 38] and was outperformed by Wu et al.’s paper [193]. Our memory accesses
are not only to variable locations but they also depend on conditions involving secret
variables. The ObliVM Compiler or any framework implementing the whole program
will generate for each condition a corresponding oblivious computation whose number
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DSet n d m Time (s) Bandwidth (KB)

[193] F M S Upload Download Total

ECG 6 4 6 0.344 0.154 0.236 0.497 - (116.4) - (164.7) 101.9 (281.0)

NUS 8 4 4 0.269 0.127 0.273 0.479 - (116.4) - (162.6) 101.7 (279.0)

BCA 9 8 12 0.545 0.256 0.376 0.927 73.7 (233) 132.0 (325.5) 205.7 (558.5)

HDI 13 3 5 0.370 0.118 0.137 0.471 73.3 (87.4) 43.9 (124.5) 117.2 (211.8)

HOU 13 13 92 4.081 0.445 0.548 1.480 115.7 (378.7) 1795.2 (531.8) 1910.9 (910.5)

CSC 15 4 5 0.551 0.164 0.306 0.474 49.9 (116.5) 45.0 (164.6) 94.9 (281.1)

SPA 57 17 58 16.595 0.562 0.767 1.969 463.4 (490.5) 17363.3 (684.5) 17826.7 (1174.9)

Table 5.2: Performance on UCI datasets: The numbers on the left are
taken from [193]. The numbers on the right and bold are our costs
using OT/OT. The columns F (LAN 10Gbps for Server and Client), M
(LAN 1Gbps for Server and Wifi 72Mbps for Client), S (Wifi 144Mbps
for Server and Wifi 72Mbps for Client) represent the type of network
which has no impact on the bandwidth.

is proportional to the number of decision nodes. We then use only ObliVM-GC to
run our manually created GCs which are independent of the branching result.

As mentioned above, we compare our protocol to the scheme of Wu et al. [193]
in the semi-honest model at the same security level 128, because they perform an
extensive comparison to the other protocols and have the best performance in the
computational two-party setting. Hence, we choose a similar test environment. We
run both parties on two machines with Intel(R) Xeon(R) CPU E7-4880 v2 at 2.50GHz
connected via a shared LAN and runningWindows 10. The server machine has 4 CPUs
and 4GB of RAM. The client machine has 4 CPUs and 8GB RAM. However, Wu et al.
implemented their protocol in C++. As HE they implemented exponential ElGamal
using the 256-bit elliptic curve numsp256d1, which is one of the main source of their
performance improvement comparing to previous protocols. Our implementation uses
Oracle’s Java 1.8 and all experiments were run on the Java SE 64-Bit Server virtual
machine. We also compare our scheme to the scheme of Tai et al. [175]. They
implemented their protocol using ElGamal over elliptic curve secp256k1. However,
we notice that, in their experiments [175], both the client and the server are run on
one desktop computer equipped with Intel Core i7-6700 CPU (3.40 GHz).

Our scheme uses the OT extension protocol of [107] and requires therefore a setup
phase which consists of an initialization of the OT extension protocol by running the
basic OT ([153] in our implementation). The setup phase is executed only once to
exchange symmetric keys which will be used in the OT extension [9]. It takes about
1 second and consumes about 20.31 KB (from sender to receiver) and 3.96 KB (from
receiver to sender) communication. We note that [193] uses the very efficient OT
extension of [9], which is not implemented in ObliVM yet. Additionally, if we want
to index the tree with ORAM, we populate it in this setup phase. However, this is
executed only once for each client. In the experiments below, we evaluate and report
the costs for the online tree evaluation. In the following figures, we use Server (Client)
Time to denotes the running time of the server (client) and Server (Client) upload to
denote the number of bits sent by the server (client).

5.8.2 Performance on Real Datasets

As Wu et al., we evaluate our protocol on the following seven real datasets from
the UCI repository [185] in the semi-honest model and at the security level 128:
ECG (ECG), Nursery (NUS), Breast-Cancer (BCA), Heart-Disease (HDI), Housing
(HOU), Credit-Screening (CSC), and Spambase (SPA). We first transform each tree in
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DSet Bandwidth (KB) IndexVector Bandwidth (KB) IndexTree Bandwidth (KB) GC

↑ ↓ Total ↑ ↓ Total ↑ ↓ Total

ECG 35.80 22.83 61.63 14.76 30.94 45.7 65.68 110.76 176.44

NUS 36.00 22.18 58.18 13.84 31.68 45.52 66.47 108.63 175.10

BCA 71.76 45.05 116.81 33.17 64.19 95.36 127.90 216.15 344.05

HDI 26.88 16.57 43.45 11.74 23.48 35.22 48.65 84.31 132.96

HOU 116.57 72.53 189.10 54.51 108.80 163.31 207.50 350.33 557.83

CSC 36.14 26.74 62.88 11.49 24.65 36.14 68.67 113.13 181.80

SPA 152.53 92.32 244.83 71.04 144.56 215.60 266.78 447.48 714.26

Table 5.3: Detailed Bandwidth Costs on UCI datasets using OT/OT.
The symbols ↑ and ↓ stand for upload and download.

DSet Time (ms)

IndexVector IndexTree GC

F M S F M S F M S

ECG 16.52 56.95 139.15 11.92 34.36 59.11 108.76 136.35 314.99

NUS 15.31 67.12 126.31 12.05 39.12 46.70 85.40 160.51 323.17

BCA 33.51 104.31 211.95 21.25 54.10 108.11 179.10 210.65 626.59

HDI 9.95 37.25 128.21 7.84 18.13 69.12 73.52 75.83 291.33

HOU 50.92 156.0 265.88 37.56 76.86 165.04 334.80 310.52 1067.25

CSC 17.53 65.87 127.53 10.14 46.24 44.90 127.88 187.80 321.87

SPA 71.83 213.33 501.18 44.64 104.61 220.44 427.85 443.98 1266.41

Table 5.4: Detailed Time Costs on UCI datasets using OT/OT. The
columns F, M, S have the same meaning as in Table 5.2.

DSet [193] [175] Ours Ours

↑ ↓ Total ↑ ↓ Total ↑ ↓ Total With [9]

ECG 48.88 50.75 99.63 48.75 49.75 98.5 97.06 137.09 234.16 105.78

NUS 64.62 34.75 99.37 64.5 33.25 97.75 97.31 137.09 234.40 105.90

BCA 73.75 136.5 210.25 73.5 99.25 172.75 195.25 274.90 470.15 213.15

HDI 104.71 41.43 146.15 104.62 41.5 146.12 73.17 102.90 176.07 79.70

HOU 115.90 2016.81 2132.71 115.5 759.25 874.75 319.10 452.25 771.35 353.73

CSC 120.75 42.75 163.5 120.62 41.5 162.12 97.75 137.15 234.90 106.40

SPA 463.78 20945.06 21408.84 463.25 478.75 942.0 439.60 610.87 1050.48 494.79

Table 5.5: Comparison of estimated bandwidth costs (in KB) on UCI
datasets. The symbols ↑ and ↓ stand for upload to server and download
to client. Columns Total are the total costs. The last column is our
estimated total cost when using OT extension of [9].
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an array as explained above. Then, we perform 100 tree evaluations, measure runtime
and bandwidth costs and compute the mean.

Our results are summarized in Table 5.2, where n denotes the number of attributes,
m denotes the number of decision nodes, d denotes the depth of the tree and µ denotes
the bitlength of attribute and threshold values (µ = 64 as in [193]). Moreover, Tables
5.3 and 5.4 show how each sub-protocol contributes to the costs of Table 5.2. Recall
that we can instantiate our scheme with three different array indexing methods. The
results in Tables 5.2, 5.3, and 5.4 were achieved using OT indexing on both sides.

For small size trees, [193] has better bandwidth costs compared to the current im-
plementation of our scheme. However, for applications that are willing to compromise
on bandwidth, our scheme is more suitable as it is faster. Moreover, it has other ad-
vantages. First, it can be further optimized, e.g., by using the efficient OT extension
[9, 11, 129] and fast garbling (e.g., JustGarble [19]), which are not yet implemented
in ObliVM. In [144], it is estimated that combining ObliVM with JustGarble may
reduce the time to compare 16384 bit Integers from 26 ms (using the original ObliVM
as in our experiments) to 1.96 ms. The scheme of [9, 11] significantly reduces the
runtime and bandwidth costs of the OT extension protocol to 41% and 50% respec-
tively. An estimate of the communication cost using [9] is depicted in Table 5.5. OAI
with OT can be implemented with the OT1

n of [129] which improves upon [154] by a
factor ≈ 5.39. It is therefore clear that these optimizations will significantly improve
the performance of our scheme in both runtime and bandwidth. Additionally, while
[193] is based on public-key primitives (i.e., discrete logarithm on elliptic curve), our
scheme relies only on symmetric cryptography. We require public-key primitives only
for a one time initialization of the OT extension protocol. Since our scheme is based
on secret array indexing, it naturally benefits from optimizations on oblivious data
structures [118, 191]. Finally, the optimization described in Section 5.5.2 reduces the
bandwidth costs of IndexVector to a few kilobytes.

For mid-size to large trees (e.g., “housing” and “Spambase” datasets) our protocol
outperforms previous protocols. Our protocol reduces the runtime of the “housing”
dataset from 4 seconds (by Wu et al.) to 0.5 second, while the communication cost
is reduced from 2 MB to 1 MB. For the “Spambase” dataset our protocol is even 17
times better. Theirs takes 17 seconds consuming 18 MB bandwidth, while we run
within less than 1 second and require only 1.2 MB communication.

Tai et al. [175] also compare their work to [193], however, running both the client
and the server on one desktop computer equipped with Intel Core i7-6700 CPU (3.40
GHz). Their reported time consists therefore only of the local computation time
without network traffic. For small trees, they reported similar performances to [193]
in both bandwidth and runtime. For large trees such as “housing” and “Spambase”,
their protocols run in about 2s (1.984 and 1.804 resp.) on one machine consuming
slightly less than 1MB (0.854 and 0.920 resp.). As a result, our scheme is already
faster and can be further optimized as explained above. This shows that flattening
the tree increases performance.

5.8.3 Scalability

We also evaluate the scalability of our scheme by experimenting with synthetic trees
of different depths and densities and using similar parameters as previous work. We
vary the depth of the tree between 4 and 26 and use 64-bit precision and n = 16. We
also ran both experiments of this section on a LAN, while Wu et al. reported costs
excluding network traffic.
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(a) Complete Trees

(b) Sparse Trees

Figure 5.12: Scalability experiment with OT/OT indexing
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(a) Indexing with GC/OT

(b) Indexing with OT/OT

(c) Indexing with ORAM/OT

Figure 5.13: Costs for very large trees: For readability only the depth
(i.e., log(M) − 1) is displayed on the x-axis, which ends at 18 for GC
and 23 for OT and ORAM because we ran out of memory.
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First, we consider complete decision trees, which are the worst-case. We evalu-
ate the scheme with OT indexing for the tree and the attribute vector and measure
computation and communication costs of both parties. The result is depicted in Fig-
ure 5.12a. Our results show that even for deeper trees with a depth around 20, the
scheme takes less than 3 minutes and less than 70 MB bandwidth. For complete trees
of depth 14, the maximal depth reported by [193], their protocol runs in about 5
minutes, excluding network communication, and requires about 120 MB bandwidth.
Our protocol evaluates a complete tree of depth 14 in less than 3 seconds via LAN,
while consuming only about 2 MB of the bandwidth, which is 60 times better.

Using a complete tree even in the case where the decision tree has only a few
nodes is totally inefficient, because for deeper trees the difference between 2d+1 − 1
and the real size of the tree can be very huge. For their experiments on sparse
trees, Wu et al. assume that the number of decision nodes is linear in the depth
of the tree, e.g., m = 25d. We experiment with sparse trees using the optimization
mentioned in Section 5.5.3. We vary the depth of the tree between 10 and 26 and
set the number of decision nodes to m = 25d. Then we generate random trees with
defined parameters d and m = 25d, run our protocol, and measure the results. Figure
5.12b shows that our costs grow linearly, rather than exponentially in the depth of the
tree as in [193]. For sparse trees of depth up to 26, our protocol takes less than 1.5
seconds and less than 1.5 MB bandwidth. For sparse trees of depth 20, the maximal
depth reported by [193], their protocol runs in about 2 minutes (excluding network
communication) and requires about 140 MB bandwidth. The scheme of [175] runs
in about 10 seconds (excluding network communication) and requires about 4.1 MB
bandwidth. Our protocol evaluates a sparse tree of depth 20 with 500 decision nodes
in less than 1 second via LAN, while consuming only about 1.5 MB bandwidth.

5.8.4 Very Large Trees

In our last experiment, we consider very large complete trees with a depth larger
than 20, containing millions of decision nodes. In this setting, we expect the ORAM
solution to outperform the other approaches, since it yields to a sub-linear complexity.
We ran this experiment on a single machine (via a loopback interface) with Intel(R)
Core(TM) i7-4770 CPU at 3.40GHz, 16GB of RAM, and Windows 10. We then run
three experiments using either GC, OT, or ORAM to index the decision tree and OT
indexing for the attribute vector. For each experiment, we set n = 64 and vary the
depth from 10 to 24. As mentioned above, indexing with ORAM requires populating
the ORAM in the setup phase, which is very tedious for large trees and may take up to
20 days to compute [94]. However, notice that the costs for an ORAM access depend
on the capacity of the ORAM, but not on the actual number of elements stored in
it. For this reason, we avoid a long ORAM initialization by populating the ORAM
for larger trees with just enough elements to evaluate the decision tree. The results
of the experiment are summarized in Figure 5.13. For small trees with depth smaller
than 12, GC and OT indexing are better than ORAM. The computation cost for OT
remains better than ORAM up to depth 16. However, the costs for GC and OT double
with the depth and are linear in the size of the tree, while the costs for ORAM are
sublinear in the size of the tree as shown in Figure 5.13. For trees of depth larger than
21, ORAM outperforms both GC and OT in computation and communication costs.
For example, for depth 22, ORAM takes about 13 seconds and 175 MB of Bandwidth,
while OT takes 287 seconds and 266 MB.
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5.9 Summary

In this chapter, we presented a protocol for evaluating private decision trees using
sublinear communication. The idea of our novel solution is to represent the tree as an
array. Then we execute a number of comparisons that is equal to the depth of the tree.
We get the inputs to the comparison by obliviously indexing the tree and the attribute
vector. Each comparison outputs secret shares of the index of the next node to be
evaluated. We implement oblivious array indexing using either GC, OT, or ORAM.
Using ORAM this results in the first protocol with sub-linear communication cost in
the size of the tree. We implemented and evaluated our scheme on real datasets and
synthetic decision trees. Our results show that, we are not only able to provide the
first sublinear communication cost for large trees, but also reduce the computation
and communication costs for mid-size to large real-world data set compared to the
best related work.
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Chapter 6

Non-Interactive Classification

In the previous chapter, we propose a protocol for private decision tree evaluation
(PDTE) with sublinear cost. Almost all existing PDTE protocols (including those
of the previous chapter) have several rounds requiring several interactions between
the client and the server. Moreover, the communication cost depends on the size of
the decision tree, while only a single classification is required by the client. Finally,
they also require a computation complexity from the client that depends on the size
of the tree. The goal of this chapter is to design and implement a novel client-server
protocol that delegates the complete tree evaluation to the server while preserving
privacy and keeping the overhead low. The chapter is structured as follows. We start
by describing the problem with interactive solutions in Section 6.1 and subsequently
give an overview of our non-interactive PDTE, a comparison with related work, and
the main building block. Correctness and security definitions are similar to Section
5.2 of the previous chapter. We describe the data structure and the algorithms of our
basic construction in Section 6.2. We discuss a binary implementation in Section 6.3
and an integer implementation in Section 6.4. We analyze correctness and security in
Section 6.5 and present a complexity analysis in Section 6.6. We discuss evaluation
results in Section 6.7 before summarizing the chapter in Section 6.9.

6.1 Problem Definition

In this section, we briefly review the problem of private decision tree evaluation
(PDTE). We refer to Section 5.1 for more details and focus on describing the weak-
nesses of interactive solutions that we want to address in the current chapter.

6.1.1 Description

Recall that the PDTE problem consists of a server holding a private decision tree
model and a client interested in classifying its private attribute vector using the server’s
private model. The goal of the computation is to obtain the classification while
preserving the privacy of both – the decision tree and the client input. After the
computation, the classification result is revealed only to the client, and nothing else is
revealed neither to the client nor to the server. For applications and use cases, we refer
to Section 5.1. Existing privacy-preserving protocols that address this problem use
or combine different generic secure multiparty computation approaches, resulting in
several interactions between the client and the server. Moreover, the communication
cost depends on the size of the decision tree, while only a single classification is
required by the client. Finally, they also require a computational power from the
client that depends on the size of the tree. As a result, interactive protocols might be
problematic in settings where the client has poor network communication and limited
computation capability.
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6.1.2 Solution Approach

While the bottleneck of interactive solutions is the network communication, in this
chapter, we shift the bottleneck to the computation power as it is easier to manage
by using parallelization. Our goal is to design and implement a novel client-server
protocol that delegates the complete tree evaluation to the server while preserving
privacy and keeping the performance acceptable. The idea is to use fully or somewhat
homomorphic encryption (FHE/SHE) and evaluate the tree on ciphertexts encrypted
under the client’s public key. As a result, no intermediate or final computational result
is revealed to the evaluating server. However, since current somewhat homomorphic
encryption schemes have high overhead, we combine efficient data representations
with different algorithmic optimizations to keep the computational overhead and the
communication cost low. At the end, the computational overhead might still be
higher than in existing protocols, however, the computation task can be parallelized
resulting in a reduced computation time. As a result, we are able to provide the
first non-interactive protocol, that allows the client to delegate the evaluation to the
server by sending an encrypted input and receiving only the encryption of the result.
Finally, existing approaches are secure in the semi-honest model and can be made
one-sided simulatable1 using techniques that may double the computation and com-
munication costs. Our approach is one-sided simulatable by default, as the client does
no more than encrypting its input and decrypting the final result of the computation
(simulating the client is straightforward), while the server performs computation on
ciphertexts encrypted with a semantically secure encryption under the client’s public
key.

In summary, we propose a non-interactive protocol for PDTE. Our scheme allows
the client to delegate the evaluation to the server by sending an encrypted input
and receiving only the encryption of the result. We propose Pdt-Bin which is an
instantiation of the main protocol with the binary representation of the input. Then
we combine efficient data representations with different algorithmic optimizations to
keep the computational overhead and the communication cost low. We also propose
Pdt-Int which is an instantiation of the main protocol using an arithmetic circuit,
where the values are compared using a modified variant of the Lin-Tzeng comparison
protocol [135]. Finally, we provide correctness and security proofs of our scheme, and
implement and benchmark both instantiations using HElib [100] and TFHE [52].

6.1.3 Comparison with Related Work

The related work to interactive PDTE protocols has been described in Section 3.5.
We briefly describe another related work by Lu et al. [145] that is non-interactive,
then we compare our non-interactive PDTE to existing protocols, focusing on Lu et
al. [145]. Using a polynomial encoding of the inputs and BGV homomorphic scheme
[36], Lu et al. [145] propose a non-interactive comparison protocol called XCMP which
is output expressive (i.e., it preserves additive homomorphism). They then implement
the private decision tree protocol of Tai et al. [175] using XCMP. The resulting de-
cision tree protocol is non-interactive and efficient because of the small multiplicative
depth. However, it is not generic, that is, it primarily works for small inputs and
depends explicitly on BGV-type HE scheme. Moreover, it does not support SIMD
operations and is no longer output expressive as XCMP. Hence, it cannot be extended

1A 2-party protocol between parties P1 and P2 in which only P2 receives an output, is one-sided
simulatable if it is private (via indistinguishability) against a corrupt P1 and fully simulatable against
a corrupt P2 [101].
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Scheme Rounds Tools Commu- Compa- Leakage

nication risons

[38] ≈5 HE+GC O(2d) d m,d

[14] ≈4 HE+GC O(2d) d m,d

[34] ≥6 FHE/SHE O(2d) m m

[193] 6 HE+OT O(2d) m m

[175] 4 HE O(2d) m m

[55] ≈9 SS O(2d) m m,d

[183] O(d) GC,OT O(2d) d m,d

ORAM O(d2)

[145] 1 FHE/SHE O(2d) m m

Pdt-Bin 1 FHE/SHE O(1) or O(d) m -

Pdt-Int 1 O(2d/s) m

Table 6.1: Comparison of PDTE protocols.

Scheme SIMD Generic Output- Multiplicative Output

expressive Depth Length

[145] no no no 3 2d+1

Pdt-Bin yes yes yes ∣µ∣ + ∣d∣ + 2 1 or d

Pdt-Int yes yes no ∣µ∣ + 1 ⌈2d/s⌉

Table 6.2: Comparison of 1-round PDTE protocols.

to a larger protocol (e.g., random forests [37]) while preserving the non-interactive
property. Finally, its output length (i.e., the number of resulted ciphertexts from
server computation) is exponential in the depth of the tree, while the output length
of our binary instantiation is at most linear in the depth of the tree and the integer
instantiation can use SIMD to considerably reduce it. A comparison of decision tree
protocols is summarized in Tables 6.1 and 6.2. A more detailed complexity analysis
is described in Section 6.6.

6.2 The Basic Construction

The security definition is similar to the previous chapter, so we refer to Section 5.2.
In this section, we present a modular description of our basic protocol. We start by
describing the data structure.
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6.2.1 Data Structure

We follow the idea of some previous protocols [34, 55, 175] of marking edges of the
tree with comparison results. So if the comparison at node v is the bit b then we mark
the right edge outgoing from v with b and the left edge with 1 − b. For convenience,
we will instead store this information at the child nodes of v and refer to it as cmp.
We extend the data structure of Definition 5.3.1 by adding to each node a pointer to
its parent node and a field for storing cmp.

Definition 6.2.1 (Data Structure). For a decision tree model M = (T , thr, att), we
let Node be a data structure that for each node v defines the following fields:

• v.threshold stores the threshold thr(v) of the node v

• v.aIndex stores the associated index att(v)

• v.parent stores the pointer to the parent node which is null for the root node

• v.left stores the pointer to the left child node which is null for each leaf node

• v.right stores the pointer to the right child node which is null for each leaf node

• v.cmp is computed during the tree evaluation and stores the comparison bit

b← [xatt(v.parent) ≥ thr(v.parent)]

if v is a right node. Otherwise it stores 1 − b.

• v.cLabel stores the classification label if v is a leaf node and the empty string
otherwise.

We use D to denote the set of all decision nodes and L the set of all leaf nodes ofM.
As a result, we use the equivalent notationM = (T , thr, att) = (D,L).

With the data structure defined above, we now define the classification function
as follows.

Definition 6.2.2 (Classification Function). Let x = (x0, . . . , xn−1) be the attribute
vector andM = (D,L) be the decision tree model. We define the classification function
to be

fc(x,M) = tr(x, root),

where root is the root node and tr is the traverse function define as:

tr(x, v) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

tr(x, v.left) if v ∈ D and xv.aIndex < v.threshold
tr(x, v.right) if v ∈ D and xv.aIndex ≥ v.threshold
v if v ∈ L

Lemma 6.2.3. Let x = (x0, . . . , xn−1) be an attribute vector and M = (T , thr, att) =
(D,L) a decision model. We have

T (x) = b ⋅ tr(x, root.right) + (1 − b) ⋅ tr(x, root.left),

where b = [xatt(root) ≥ thr(root)] is the comparison at the root node.

Proof. The proof follows by induction on the depth of the tree. In the base case, we
have a tree of depth one (i.e., the root and two leaves). In the induction step, we have
two trees of depth d and we join them by adding a new root.
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1: function EvalDnode(D, ⟦x⟧)
2: for each v ∈ D do
3: ⟦b⟧← ⟦[xv.aIndex ≥ v.threshold]⟧
4: ⟦v.right.cmp⟧← ⟦b⟧
5: ⟦v.left.cmp⟧← ⟦1 − b⟧

Algorithm 6.1: Computing a Decision Bit

1: function EvalPaths(D,L)
2: let Q be a queue
3: Q.enqueue(root)
4: while Q.empty() = false do
5: v ← Q.dequeue()
6: ⟦v.left.cmp⟧← ⟦v.left.cmp⟧ ⊡ ⟦v.cmp⟧,
7: ⟦v.right.cmp⟧← ⟦v.right.cmp⟧ ⊡ ⟦v.cmp⟧
8: if v.left ∈ D then
9: Q.enqueue(v.left)

10: if v.right ∈ D then
11: Q.enqueue(v.right)

Algorithm 6.2: Aggregating Decision Bits

6.2.2 Algorithms

Initialization. The Initialization consists of a one-time key generation. The client
generates appropriate triple (pk, sk, ek) of public, private and evaluation keys for a
homomorphic encryption scheme. Then the client sends (pk, ek) to the server. For
each input classification, the client just encrypts its input and sends it to the server.
To reduce the communication cost of sending client’s input, one can use a trusted
randomizer that does not take part in the real protocol and is not allowed to collabo-
rate with the server. The trusted randomizer generates a list of random strings r and
sends the encrypted strings ⟦r⟧ to the server and the list of r’s to the client. For an
input x, the client then sends x+r to the server in the real protocol. This technique is
similar to the commodity based cryptography [16] with the difference that the client
can play the role of the randomizer itself and sends the list of ⟦r⟧’s (when the network
is not too busy) before the protocol’s start.

Computing Decision Bits. The server starts by computing for each node v ∈ D the
comparison bit b← [xatt(v) ≥ thr(v)] and stores b at the right child node (v.right.cmp =
b) and 1−b at the left child node (v.left.cmp = 1−b). It is illustrated in Algorithm 6.1.

Aggregating Decision Bits. Then for each leaf node v, the server aggregates the
comparison bits along the path from the root to v. We implement it using a queue
and traversing the tree in BFS as illustrated in Algorithm 6.2.

Finalizing. After Aggregating the decision bits along the path to the leaf nodes,
each leaf node v stores either v.cmp = 0 or v.cmp = 1. Then, the server aggregates the
decision bits at the leaves by computing for each leaf v the value ⟦v.cmp⟧⊙ ⟦v.cLabel⟧
and summing all the results. This is illustrated in Algorithm 6.3.
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1: function Finalize(L)
2: ⟦result⟧← ⟦0⟧
3: for each v ∈ L do
4: ⟦result⟧← ⟦result⟧ ⊞ (⟦v.cmp⟧ ⊡ ⟦v.cLabel⟧)
5: return ⟦result⟧

Algorithm 6.3: Finalizing

Client Server

Input: x Input:M = (D,L)
Output: T (x) Output: ε

⟦x⟧

EvalDnode(D, ⟦x⟧)
EvalPaths(D,L)
⟦T (x)⟧← Finalize(L)

⟦T (x)⟧

Protocol 6.4: The Basic Protocol

Putting It All Together. As illustrated in Protocol 6.4, the whole computation
is performed by the server. It sequentially computes the algorithms described above
and sends the resulting ciphertext to the client. The client decrypts and outputs
the resulting classification label. The correctness is straightforward and follows from
Lemma 6.2.3. The algorithms are straightforward and easy to understand. However,
their naive application is inefficient.

6.3 Binary Implementation

In this section, we describe Pdt-Bin, an instantiation of the basic scheme that requires
encoding the plaintexts using their bit representation. Hence, ciphertexts encrypt bits
and arithmetic operations are done mod 2.

6.3.1 Input Encoding

In this implementation, we encrypt plaintext bitwise. For each plaintext xi with bit
representation xbi = xiµ . . . xi1, we use ⟦xbi ⟧ to denote the vector (⟦xiµ⟧, . . . , ⟦xi1⟧),
consisting of encryptions of the bits of xi. As a result, the client needs to send nµ
ciphertexts for the n attribute values. Unfortunately, homomorphic ciphertexts might
be quite large. We can already use the trusted randomizer as explained before to
send blinded inputs instead of ciphertexts in this phase. This, however, improves
only the online communication. We additionally leverage the SVCP SIMD technique
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that allows to pack many plaintexts into the same ciphertext and manipulate them
together during homomorphic operations.

6.3.2 Ciphertext Packing

In the binary encoding, ciphertext packing means that each ciphertext encrypts s bits,
where s is the number of slots in the ciphertext. Then we can use this property in
three different ways. First, one could pack the bit representation of each classification
label in a single ciphertext and allow the server to send back a single ciphertext to
the client. Second, one could encrypt several attributes together and classify them
with a single protocol evaluation. Finally, one could encrypt multiple decision node
thresholds that must be compared to the same attribute in the decision tree model.

Packing Classification Label’s Bits. Aggregating the decision bits using Algo-
rithm 6.2 produces for each leaf v ∈ L a decision bit ⟦bv⟧ which encrypts 1 for the
classification leaf and 0 otherwise. Moreover, because of SVCP, the bit bv is replicated
to all slots. Now, let k be the number of classification labels (i.e., ∣L∣ = k) and its
bitlength be ∣k∣. For each v ∈ L, we let cv denote the classification label v.cLabel which
is ∣k∣-bit long and has bit representation cbv = cv∣k∣ . . . cv1 with corresponding packed
encryption ⟦c⃗v⟧ = ⟦cv∣k∣∣ . . . ∣cv1∣0∣ . . . ∣0⟧. As a result, computing ⟦bv⟧ ⊙ ⟦c⃗v⟧ for each
leaf v ∈ L and summing over all leaves results in the correct classification label. Note
that, this assumes that one is classifying only one vector and not many as in the next
case.

Packing Attribute Values. Let x(1), . . . , x(s) be s possible attribute vectors with
x(l) = [x(l)1 , . . . , x

(l)
n ], 1 ≤ l ≤ s. For each x(l)i , let x(l)

b

i = x(l)iµ , . . . , x
(l)
i1 be the bit repre-

sentation. The client generates for each xi the ciphertexts ⟦cxiµ⟧, . . . , ⟦cxi2⟧, ⟦cxi1⟧ as
illustrated in Equation 6.1.

⟦cxi1⟧ = ⟦x(1)i1 ∣x(2)i1 ∣ . . . ∣x(s)i1 ⟧
⟦cxi2⟧ = ⟦x(1)i2 ∣x(2)i2 ∣ . . . ∣x(s)i2 ⟧

. . .

⟦cxiµ⟧ = ⟦x(1)iµ ∣x(2)iµ ∣ . . . ∣x(s)iµ ⟧

Packing many attribute values (6.1)

To shorten the notation, let yj denote the threshold of the j-th decision node (i.e.,
yj = vj .threshold) and assume vj .aIndex = i. The server just encrypts each thresh-
old bitwise which automatically replicates the bit to all slots. This is illustrated in
Equation 6.2.

⟦cyj1⟧ = ⟦yj1∣yj1∣ . . . ∣yj1⟧
⟦cyj2⟧ = ⟦yj2∣yj2∣ . . . ∣yj2⟧

. . .

⟦cyjµ⟧ = ⟦yjµ∣yjµ∣ . . . ∣yjµ⟧

Packing a single threshold value (6.2)

Note that (⟦cyjµ⟧, . . . , ⟦cyj1⟧) = ⟦ybj ⟧ holds because of SVCP. The above described
encoding allows comparing s attribute values together with one threshold. This is
possible because the routine SheCmp is compatible with SVCP such that we have:

SheCmp((⟦cxiµ⟧, . . . , ⟦cxi1⟧), (⟦cyjµ⟧, . . . , ⟦cyj1⟧)) =
(⟦b(1)ij ∣b(2)ij ∣ . . . ∣b(s)ij ⟧, ⟦b(1)ji ∣b(2)ji ∣ . . . ∣b(s)ji ⟧),

(6.3)
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where b(l)ij = [x(l)i > yj] and b(l)ji = [yj > x(l)i ]. This results in a single ciphertext such

that the l-th slot contains the comparison result between x(l)i and yj .
Aggregating decision bits remains unchanged as described in Algorithm 6.2. This

results in a packed ciphertext ⟦bv⟧ = ⟦b(1)v ∣ . . . ∣b(s)v ⟧ for each leaf v ∈ L, where b(l)v = 1 if
x(l) classifies to leaf v and b(l)u = 0 for any other leaf u ∈ L − {v}.

For the classification label cv of a leaf v ∈ L, let ⟦cbv⟧ = (⟦cv∣k∣⟧, . . . , ⟦cv1⟧) denote the
encryption of the bit representation cbv = cv∣k∣ . . . cv1. To select the correct classification
label Algorithm 6.3 is updated as follows. We compute ⟦cv∣k∣⟧⊙ ⟦bv⟧, . . . , ⟦cv1⟧⊙ ⟦bv⟧
for each leaf v ∈ L and sum them component-wise over all leaves. This results in the
encrypted bit representation of the correct classification labels.

Packing Threshold Values. In this case, the client encrypts a single attribute
in one ciphertext, while the server encrypts multiple threshold values in a single ci-
phertext. Hence, for an attribute value xi, the client generates the ciphertexts as in
Equation 6.4. Let mi be the number of decision nodes that compare to the attribute
xi (i.e., mi = ∣{vj ∈ D ∶ vj .aIndex = i}∣). The server packs all corresponding threshold
values in ⌈mi

s
⌉ ciphertext(s) as illustrated in Equation 6.5.

⟦cxi1⟧ = ⟦xi1∣xi1∣ . . . ∣xi1⟧
⟦cxi2⟧ = ⟦xi2∣xi2∣ . . . ∣xi2⟧

. . .

⟦cxiµ⟧ = ⟦xiµ∣xiµ∣ . . . ∣xiµ⟧

Packing a single attribute value (6.4)

⟦cyj1⟧ = ⟦yj11∣ . . . ∣yjmi1∣ . . .⟧
⟦cyj2⟧ = ⟦yj12∣ . . . ∣yjmi2∣ . . .⟧

. . .

⟦cyjµ⟧ = ⟦yj1µ∣ . . . ∣yjmiµ∣ . . .⟧

Packing many threshold values (6.5)

The packing of threshold values allows comparing one attribute value against multiple
threshold values together. Unfortunately, we do not have access to the slots while
performing homomorphic operations. Hence, to aggregate the decision bits, we make
mi copies of the resulting packed decision bits and shift left each decision bit to the
first slot. Then the aggregation of the decision bits and the finalizing algorithm work
as in the previous case with the only difference that only the result in the first slot
matters and the remaining can be set to 0.

6.3.3 Efficient Path Evaluation

As explained above, the encryption algorithm Enc adds noise to the ciphertext which
increases during homomorphic evaluation. While addition of ciphertexts increases the
noise slightly, the multiplication increases it significantly [36]. The noise must be kept
low enough to prevent incorrect decryption. To keep the noise low, one can either
keep the circuit’s depth low enough or use the refresh algorithm. In this section, we
will focus on keeping the circuit depth low.

Definition 6.3.1 (Multiplicative Depth). Let f be a function and Cf be a Boolean
circuit that computes f and consists of AND-gates or multiplication (modulo 2) gates
and XOR-gates or addition (modulo 2) gates. The circuit depth of Cf is the maximal
length of a path from an input gate to an output gate. The multiplicative depth of Cf is
the path from an input gate to an output gate with the largest number of multiplication
gates.
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For example, consider the function f([a1, . . . , an]) = Πn
i=1ai. A circuit that suc-

cessively multiplies the ai has multiplicative depth n. However, a circuit that divides
the array in two halves, multiplies the elements in each half and finally multiplies
the result, has multiplicative depth ⌈n

2
⌉ + 1. This gives the intuition for the following

lemma.

Lemma 6.3.2 (Logarithmic Multiplicative Depth Circuit). Let [a1, . . . , an] be an
array of n integers and f be the function defined as follows:

f([a1, . . . , an]) = [a′1, . . . a′⌈n
2
⌉],

where

a′i =
⎧⎪⎪⎨⎪⎪⎩

a2i−1 ⋅ a2i if (n mod 2 = 0) ∨ (i < ⌈n
2
⌉),

an if (n mod 2 = 1) ∧ (i = ⌈n
2
⌉).

Moreover, let f be the iterated function where f i is the i-th iterate of f defined as
follows:

f i([a1, . . . , an]) =
⎧⎪⎪⎨⎪⎪⎩

[a1, . . . , an] if i = 0,

f(f i−1([a1, . . . , an])) if i ≥ 1.

The ∣n∣-th iterate f ∣n∣ of f computes Πn
i=1ai and has multiplicative depth ∣n∣ − 1 if n is

a power of two and ∣n∣ otherwise, where ∣n∣ = logn is the bitlength of n:

f ∣n∣([a1, . . . , an]) = [Πn
i=1ai]

Proof. For the proof we consider two cases: n is a power of two (i.e., n = 2l for some
l), and n is not a power of two.

The Power of Two Case. The proof is inductive. Assume n = 2l, we show by
induction on l. The base case trivially holds. For the inductive step, we assume
the statement holds for n = 2l and show it holds for n′ = 2l+1. By dividing the
array [a1, . . . , an′] in exactly two halves, the inductive assumption holds for each half.
Multiplying the results of both halves concludes the proof.

The Other Case. The proof is constructive. Assume n is not a power of two and
let n′′ be the largest power of two such that n′′ < n, hence ∣n′′∣ = ∣n∣. We divide
[a1, . . . , an] in two halves A1 = [a1, . . . , an′′] and A′ = [an′′+1, . . . , an]. We do this
recursively for A′ and get a set of subsets of [a1, . . . , an] which all have a power of
two number of elements. The claim then holds for each subset (from the power of two
case above) and A1 has the largest multiplicative depth which is ∣n′′∣ − 1. By joining
the result from A1 and A′, we get the product Πn

i=1ai with one more multiplication
resulting in a multiplicative depth of ∣n′′∣ = ∣n∣.

Now, we know that sequentially multiplying comparison results on the path to
a leaf results in a multiplicative depth which is linear in the depth of the tree, and
increases the noise significantly. Instead of doing the multiplication sequentially, we
will therefore do it in such a way as to preserve a logarithmic multiplicative depth.
This is described in Algorithm 6.5. Algorithm 6.5 consists of a main function and
a sub-function. The main function EvalPathsE collects for each leaf v encrypted
comparison results on the path from the root to v and passes it as an array to the
sub-function EvalMul which is a divide and conquer type. The sub-function follows
the construction described in the proof of Lemma 6.3.2. It divides the array in two
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Require: leaves set L, decision nodes set D
Ensure: Updated v.cmp for each v ∈ L
1: function EvalPathsE(L, D)
2: for each v ∈ L do
3: let d = number of nodes on the path (root→ v)
4: let path be an empty array of length d
5: l ← d
6: w ← v
7: while w ≠ root do ▷ construct path to root
8: path[l]← ⟦w.cmp⟧
9: l ← l − 1

10: w ← w.parent

11: ⟦v.cmp⟧← EvalMul(1, d,path)

Require: integers from and to, array of nodes path
Ensure: Product of elements in path
1: function EvalMul(from, to,path)
2: if from ≥ to then
3: return path[from]
4: n← to − from + 1
5: mid← 2∣n−1∣−1 + from − 1 ▷ ∣n∣ bitlength of n
6: ⟦left⟧← EvalMul(from,mid,path)
7: ⟦right⟧← EvalMul(mid + 1, to,path)
8: return ⟦left⟧ ⊡ ⟦right⟧

Algorithm 6.5: Paths Evaluation with log Multiplicative Depth
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parts (left and right) such that the left part has a power of two number of elements.
Then it calls the recursion on the two parts and returns the product of their results.

The two functions in Algorithm 6.5 correctly compute the multiplication of decision
bits for each path. While highly parallelizable, it is still not optimal, as each path is
considered individually. Since multiple paths in a binary tree share a common prefix
(from the root), one would ideally want to handle common prefixes one time and not
many times for each leaf. This can be solved using a memoization technique which
is an optimization that stores results of expensive function calls such that they can
be used later if needed. Unfortunately, naive memoization would require a complex
synchronization in a multi-threaded environment and linear multiplicative depth. In
the next paragraph, we propose a pre-computation on the tree, that would allow us to
have the best of both worlds – multiplication with logarithmic depth along the paths,
while reusing the result of common prefixes, thus, avoiding unnecessary work.

6.3.4 Improving Path Evaluation with Pre-Computation

The idea behind this optimization is to use a directed acyclic graph which we want to
define first.

Definition 6.3.3 (DAG). A directed acyclic graph (DAG) is a graph with directed
edges in which there are no cycles. A vertex v of a DAG is said to be reachable from
another vertex u if there exists a path that starts at u and ends at v. The reachability
relationship is a partial order ≤ and we say that two vertices u and v are ordered as
u ≤ v if there exists a directed path from u to v.

We require our DAGs to have a unique maximum element. The edges in the DAG
define dependency relation between vertices.

Definition 6.3.4 (Dependency Graph). Let h be the function that takes two DAGs
G1,G2 and returns a new DAG G3 that connects the maxima of G1 and G2. We define
the function g([a1, . . . , an]) that takes an array of integers and returns:

• a graph with a single vertex labeled with a1 if n = 1,

• h(g([a1, . . . , an′]), g([an′+1, . . . , an])) if n > 1 holds, where n′ = 2∣n∣−1 and ∣n∣
denotes the bitlength of n.

We call the DAG G generated by G = g([a1, . . . , an]) a dependency graph. For each
edge (ai, aj) in G such that i < j, we say that aj depends on ai and denote this by
adding ai in the dependency list of aj. We require that if L(j) = [ai1 , . . . , ai∣L(j)∣] is
the dependency list of aj then it holds i1 > i2 > . . . i∣L(j)∣.

An example of dependency graph generated by the function g([a1, . . . , an]) is
illustrated in Figure 6.6 for n = 4 and n = 5.

Lemma 6.3.5. Let [a1, . . . , an] be an array of n integers. Then g([a1, . . . , an]) as
defined above generates a DAG whose maximum element is marked with an.

Lemma 6.3.6. Let [a1, . . . , an] be an array of n integers, G = g([a1, . . . , an]) be a
DAG as defined above and L(j) = [ai1 , . . . , ai∣L(j)∣] be the dependency list of aj. Then
Algorithm 6.7 computes Πn

i=1ai and has a multiplicative depth of log(n).

The proofs of Lemmas 6.3.5 and 6.3.6 follow by induction similar to Lemma 6.3.2.
Before describing the improved path evaluation algorithm, we first extend our Node
data structure by adding to it a new field representing a stack denoted dag, that stores
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a1 a2 a3 a4

[] [a1] [] [a3, a2]

a1 a2 a3 a4 a5

[] [a1] [] [a3, a2] [a4]

Figure 6.6: Dependency Graph for n = 4 and n = 5

1: for j = 1 to j = n do
2: for l = 1 to l = ∣L(j)∣ do
3: aj ← aj ⋅ ail

Algorithm 6.7: Multiplication using Dependency Lists

the dependency list. Moreover, we group the nodes of the decision tree by level and
use an array denoted level[], such that level[0] stores a pointer to the root and level[i]
stores pointers to the child nodes of level[i−1] for i ≥ 1. Now, we are ready to describe
the improved path evaluation algorithm which consists of a pre-computation step and
an online step.

The pre-computation is a one-time computation that depends only on the structure
of the decision tree and requires no encryption. As described in Algorithm 6.8, its
main function ComputeDag uses the leveled structure of the tree and the dependency
graph defined above to compute the dependency list of each node in the tree (i.e., the
DAG defined above). The sub-function AddEdge is used to actually add nodes to
the dependency list of another node (i.e., by adding edges between these nodes in the
DAG).

The online step is described in Algorithm 6.9. It follows the idea of Algorithm
6.7 by multiplying decision bit level-wise depending on the dependency lists. The
correctness follows from Lemma 6.3.6.

6.4 Arithmetic Implementation

In this section, we describe Pdt-Int, an instantiation of the basic scheme that encodes
the plaintexts such that the computation is done using an arithmetic circuit. This
means that a ciphertext now encrypts an integer and that arithmetic operations are
no longer mod 2, but mod 2l for some l > 2.

6.4.1 Modified Lin-Tzeng Comparison Protocol

We first describe our modified version of the Lin-Tzeng comparison protocol [135].
The main idea of their construction is to reduce the greater-than comparison to the
set intersection problem of prefixes. Let xi and yj be inputs of client and server,
respectively, with the goal to compute [xi > yj].
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Require: integers up and low
Ensure: Computed v.dag for each v ∈ D ∪L
1: function ComputeDag(up, low)
2: if up ≥ low then
3: return ▷ end the recursion
4: η ← low − up + 1
5: mid← 2∣η−1∣−1 − 1 + up ▷ ∣η∣ bitlength of η
6: for each v ∈ level[low] do
7: AddEdge(v, low,mid)
8: for i = mid + 1 to low − 1 do ▷ non-deepest leaves
9: for each v ∈ level[i] ∩L do

10: AddEdge(v, i,mid)
11: ComputeDag(up,mid)
12: ComputeDag(mid + 1, low)
Require: Node v, integers currLvl and destLvl
Ensure: Updated v.dag
1: function AddEdge(v, currLvl, destLvl)
2: w ← v
3: while currLvl > destLvl do
4: w ← w.parent
5: currLvl← currLvl − 1
6: v.dag.push(w) ▷ dag is a stack

Algorithm 6.8: Pre-computation of Multiplication DAG

Require: set of nodes stored by level in array level
Ensure: Updated v.cmp for each v ∈ L
1: function EvalPathsP
2: for i = 1 to d do ▷ from top to bottom level
3: for each v ∈ level[i] do
4: while v.dag.empty() = false do ▷ dag is a stack
5: w ← v.dag.pop()
6: ⟦v.cmp⟧← ⟦v.cmp⟧ ⊡ ⟦w.cmp⟧

Algorithm 6.9: Aggregate Decision Bits with precomputed DAG
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Input Encoding. Let Int(zη⋯z1) = z be a function that takes a bit string of length
η and parses it into the η−bit integer z = ∑ηl=1 zl ⋅ 2

l−1. The 0-encoding V 0
xi and 1-

encoding V 1
xi of an integer input xi are the following vectors: V 0

xi = (viµ,⋯, vi1), V 1
xi =

(uiµ,⋯, ui1), such that ∀l ∈ {1 . . . µ}

vil =
⎧⎪⎪⎨⎪⎪⎩

Int(xiµxiµ−1⋯xil′1) if xil = 0

r
(0)
il if xil = 1

uil =
⎧⎪⎪⎨⎪⎪⎩

Int(xiµxiµ−1⋯xil) if xil = 1

r
(1)
il if xil = 0,

where l′ = l + 1, and r
(0)
il , r(1)il are random numbers of a fixed bitlength ν > µ (e.g.

2µ ≤ r
(0)
il , r

(1)
il < 2µ+1) with LSB(r(0)il ) = 0 and LSB(r(1)il ) = 1 (LSB is the least

significant bit). If the Int function is used the compute the element at position l,
then we call it a proper encoded element otherwise we call it a random encoded element.
Note that a random encoded element r(1)il at position l in the 1-encoding of xi is chosen
such that it is guaranteed to be different to a proper or random encoded element at
position l in the 0-encoding of yj , and vice versa. Hence, it enough if r(1)il and r(0)il are
one or two bits longer than any possible proper encoding element at position l. Also
note that the bit string xiµxiµ−1⋯xil is interpreted by the function Int as a bit string
zµ−l+1⋯z1 with length µ − l + 1 where z1 = xil, z2 = xi(l+1), . . . , zµ−l+1 = xiµ. If we see
V 0
xi , V

1
yj as sets, then xi > yj if and only if they have exactly one common element.

For example, if µ = 3, xi = 6 = 1102 and yj = 2 = 0102 then

V 1
xi = (Int(1), Int(11), r(1)i1 ) = (1,3, r(1)i1 ),

V 0
yj = (Int(1), r(0)j2 , Int(011)) = (1, r(0)j2 ,3),

and V 1
xi − V

0
yj = (0, r2, r1), where r2 = 3 − r(0)j2 and r1 = r(1)i1 − 3 are random numbers.

On the other hand, if xi = 2 = 0102 and yj = 6 = 1102 then V 1
xi = (r(1)i3 ,1, r

(1)
i1 ),

V 0
yj = (r(0)j3 , r

(0)
j2 ,7) and V 1

xi − V
0
yj = (r3, r2, r1) where r3 = r(1)i3 − r(0)j3 , r2 = 1 − r(0)j2 and

r1 = r(1)i1 − 7 are all random numbers.

Lemma 6.4.1. Let xi and yj be two integers, then xi > yj iff V = V 1
xi − V

0
yj has a

unique position with 0.

Proof. If V = V 1
xi − V

0
yj has a unique 0 at a position l, (1 ≤ l ≤ µ) then uil and vil have

bit representation zµ−l+1⋯z1, where for each h,µ − l + 1 ≥ h ≥ 2, zh = xig = xjg with
g = l + h − 1, and z1 = xil = 1 and xjl = 0. It follows that xi > yj .
If xi > yj then there exists a position l such that for each h,µ ≥ h ≥ l+1, xih = xjh and
xil = 1 and xjl = 0. This implies uil = vil.

For h,µ ≥ h ≥ l + 1, either uih bit string is a prefix of xi while vjh is random, or
uih is random while vjh bit string is a prefix of yj . From the choice of r(0)ih , r(1)ih , we
have uih ≠ vih.

For h, l−1 ≥ h ≥ 1 there are three cases: uih and vih (as bit string) are both prefixes
of xi and yj , only one of them is a prefix, both are random. For the first case the
difference of the bits at position l and for the other cases the choice of r(0)ih imply that
uih ≠ vih.
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1: function LinCompare(⟦V 1
xi⟧, ⟦V

0
yj⟧)

2: parse ⟦V 1
xi⟧ as ⟦uiµ⟧, . . . , ⟦ui1⟧

3: parse ⟦V 0
yj⟧ as ⟦viµ⟧, . . . , ⟦vi1⟧

4: for l ∶= 1 to µ do
5: choose a random rl from the plaintext space
6: cl = ⟦(uil − vjl) ⋅ rl⟧
7: choose a random permutation π
8: return π(cµ,⋯, c1)

Algorithm 6.10: Modified Lin-Tzeng Protocol Using AHE

The Protocol. Let ⟦V 0
xi⟧ = ⟦viµ⟧, . . . , ⟦vi1⟧ (respectively ⟦V 1

xi⟧ = ⟦uiµ⟧, . . . , ⟦ui1⟧)
denote the componentwise encryption of V 0

xi (resp. V
1
xi). The client sends ⟦V 0

xi⟧, ⟦V
1
xi⟧

to the server. To determine the comparison result for xi > yj , the server evaluates
the function LinCompare(⟦V 1

xi⟧, ⟦V
0
yj⟧) (Algorithm 6.10) which returns µ ciphertexts

among which exactly one encrypts zero if an only if xi > yj .
Algorithm LinCompare (Algorithm 6.10) requires only AHE and would be inter-

active. For the decision tree evaluation, the server omits the randomization in Step
6 and the random permutation in Step 7, since this is not the final result. Moreover,
the server collects the difference ciphertexts cl in an array and uses the multipli-
cation algorithm with logarithmic multiplicative depth. Hence, we will instead use
LinCompareDT as described in Algorithm 6.11.

Difference to the original protocol. In contrast to the original protocol of Lin
and Tzeng [135], we note the following differences:

• Additively HE instead of multiplicative: As explained above multiplication in-
creases the noise significantly while addition increases it slightly.

• The Int function: Instead of relying on a collision-free hash function as Lin and
Tzeng [135], we use the Int function which is simpler to implement and more
efficient as it produces smaller values.

• The choice of random encoded elements r(0)il , r(1)il : We choose the random en-
coded elements as explained above and encrypt them, while the original protocol
uses ciphertexts chosen randomly in the ciphertext space.

• Encrypting the encodings on both sides: In the original protocol, the evaluator
has access to yj in plaintext and does not need to choose randomly encoded
elements. By encoding as explained in our modified version, we can encrypt
both encodings and delegate the evaluation to a third party which is not allowed
to have access to the inputs in plaintext.

• Aggregation: The multiplication of the ciphertexts returned by Algorithm 6.10
returns a ciphertext encrypting either 0 or a random number.

The modified comparison algorithm as used for PDTE is illustrated in Algorithm
6.11. Note that, this can be computed using binary gates as well, by encrypting the
0/1-encodings binary-wise resulting in µ blocks of ciphertexts, computing XOR-gates
in parallel for each block, then computing OR-gates in parallel for each block and
finally summarizing the results using AND-gates. The multiplicative depth will be
2µ.
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1: function LinCompareDT(⟦V 1
xi⟧, ⟦V

0
yj⟧)

2: parse ⟦V 1
xi⟧ as ⟦uiµ⟧, . . . , ⟦ui1⟧

3: parse ⟦V 0
yj⟧ as ⟦viµ⟧, . . . , ⟦vi1⟧

4: let arr be an empty array of size µ
5: for l ∶= 1 to µ do
6: arr[l]← ⟦uil − vjl⟧
7: return EvalMul(1, µ, arr)

Algorithm 6.11: Modified Lin-Tzeng Protocol for PDTE Using FHE

6.4.2 Arithmetic Decision Tree Evaluation

In this section, we use the modified Lin-Tzeng comparison explained above for the
decision tree evaluation. We follow the structure of the basic protocol as described in
Protocol 6.4.

Encoding and Encrypting Input. The protocol starts with the client encoding,
encrypting and sending its input to the server. For each attribute value xi the client
sends the encryptions ⟦V 0

xi⟧ = (⟦viµ⟧, . . . , ⟦vi1⟧) and ⟦V 1
xi⟧ = (⟦uiµ⟧, . . . , ⟦ui1⟧) of the

0-encoding V 0
xi and 1-encoding V 1

xi of xi. We let

⟦Vx⟧ = [(⟦V 0
x1⟧, ⟦V

1
x1⟧), . . . (⟦V

0
xn⟧, ⟦V

1
xn⟧)]

denote the encoding and encryption of all attribute values in x.
The server does the same with the threshold values. For each threshold value yj the

server computes the encryptions ⟦V 0
yj⟧ = ⟦vjµ⟧, . . . , ⟦vj1⟧ and ⟦V 1

yj⟧ = ⟦ujµ⟧, . . . , ⟦uj1⟧)
of the 0-encoding V 0

yj and 1-encoding V 1
yj of yj . We let

⟦VD⟧ = {(⟦V 0
yj⟧, ⟦V

1
yj⟧)∣v ∈ D ∧ v.threshold = yj}.

denote the encoding and encryption of all threshold values in D. This computation
is illustrated by Encode(x) and Encode(D) in Protocol 6.15. Note that, this is
still compatible with the trusted randomizer technique, where we will use sequences
of random integers.

Evaluating Decision Node. The server evaluates the comparison at each deci-
sion node. For each decision node v ∈ D, let v.threshold = yj and i = v.aIndex. We
assume that xi ≠ yj for all i, j. The parties can ensure this by having the client
adding a bit 0 to the bit representation of each xi, and the server adding a bit
1 to the bit representation of each yj before encoding the values. Then from the
definition of the tree evaluation, we move to the right if [xi ≥ yj] or the left other-
wise. This is equivalent of testing [xi > yj] or [yj > xi], since we assume xi ≠ yj .
Therefore, for each decision node yj with corresponding attribute xi, the server uses
LinCompareDT(⟦V 1

xi⟧, ⟦V
0
yj⟧) to mark the edge right to yj (i.e., store it at the right

child node of v) and LinCompareDT(⟦V 1
yj⟧, ⟦V

0
xi⟧) to mark the edge left to yj (i.e.,

store it at the left child node of v). It is illustrated in Algorithm 6.12.

Aggregating Decision Results. Then for each leaf node v ∈ L, the server ag-
gregates the comparison results along the path from the root to v. As a result of
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1: function EvalDnode(D, ⟦VD⟧, ⟦Vx⟧)
2: for each v ∈ D do
3: let yj ← v.threshold and i← v.aIndex
4: ⟦v.right.cmp⟧← LinCompareDT(⟦V 1

xi⟧, ⟦V
0
yj⟧)

5: ⟦v.left.cmp⟧← LinCompareDT(⟦V 1
yj⟧, ⟦V

0
xi⟧)

Algorithm 6.12: Computing Decision Bits

1: function EvalPaths(D,L)
2: for each v ∈ L do
3: let Pv be the array of nodes on the path (root→ v)
4: ⟦costv⟧← ⟦0⟧
5: for each u ∈ Pv do
6: ⟦costv⟧← ⟦costv⟧ ⊞ ⟦u.cmp⟧

Algorithm 6.13: Aggregating Decision Bits

Algorithm 6.12, one edge of each decision node is marked with a ciphertext of 0, while
the other will be marked with a ciphertext of a random plaintext. It follows that
the sum of marks along each path of the tree, will result to an encryption of 0 for
the classification path and an encryption of a random plaintext for other paths. This
computation is illustrated in Algorithm 6.13.

Finalizing. To reveal the final result to the client, we do the following. For each ci-
phertext ⟦costv⟧ of Algorithm 6.13, the server chooses a random number rv, computes
⟦resultv⟧← ⟦costv ⋅rv +v.cLabel⟧ and sends the resulting ciphertexts to the client in a
random order. This is illustrated in Algorithm 6.14. As a result, the server sends back
O(2d) ciphertexts (in the worse case ∣L∣ = 2d). Alternatively, the server can make a
trade-off between communication and computation by using the shift operation to
pack many resultv in a single ciphertext. This would require additionally O(2d)
cryptographic operations, but reduce the communication cost to O(⌈2d

s ⌉), where s is
the number of slots.

Putting It All Together. The whole protocol is illustrated in Protocol 6.15. The
client encrypts 0-encodings and 1-encodings of its input and sends the ciphertexts
to the Server. The whole computation is performed by the server. It sequentially
computes the algorithms described above and sends the resulting ciphertexts to the

1: function Finalize(L)
2: for each v ∈ L do
3: choose a random number rv
4: ⟦resultv⟧← ⟦costv ⋅ rv + v.cLabel⟧

Algorithm 6.14: Finalizing
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Client Server

Input: x Input:M = (D,L)
Output: T (x) Output: ε

⟦Vx⟧← Encode(x) ⟦VD⟧← Encode(D)

⟦Vx⟧

EvalDnode(D, ⟦VD⟧, ⟦Vx⟧)
EvalPaths(D,L)
⟦T (x)⟧← Finalize(L)

⟦T (x)⟧

Decode(T (x))

Protocol 6.15: Overview of Protocol Pdt-Int

client. The client then decrypts and decodes the outputs resulting in the classifica-
tion label. The algorithms are straightforward and easy to understand. However,
ciphertext packing and parallelization can improve the performance of the protocol.

6.4.3 Optimization

We describe in the following how ciphertext packing can be used to improve compu-
tation and communication. Ciphertext packing means that each ciphertext encrypts
s bits, where s is the number of slots in the ciphertext. Then we can use this property
in three different ways. First, one could pack each encoding (0 or 1) of each value
(attribute or threshold) in a single ciphertext allowing the server to compute the dif-
ference in Step 6 of Algorithm 6.11 with one homomorphic operation (instead of µ).
Second, one could encrypt several attributes together and classify them with a single
protocol evaluation. Finally, one could encrypt multiple decision node thresholds that
must be compared to the same attribute in the decision tree model.

Packing 0-Encodings and 1-Encodings. Recall that our modified Lin-Tzeng
comparison requires only component-wise subtraction and a multiplication of all com-
ponents. Therefore, the client can pack the 0-encoding of each xi in one ciphertext
and sends ⟦viµ∣ . . . ∣vi1∣0∣ . . . ∣0⟧ instead of ⟦V 0

xi⟧ (and similar for the 1-encoding). Then
the server does the same for each threshold value and evaluates the decision node by
computing the differences ⟦dij⟧ ← ⟦uiµ − vjµ∣ . . . ∣ui1 − vj1∣0∣ . . . ∣0⟧ with one homomor-
phic subtraction. To multiply the µ relevant components in ⟦dij⟧, we use ∣µ∣ (bitlength
of µ) left shifts and ∣µ∣ multiplications to shift Πµ

l=1(uil − vjl) to the first slot. The
path evaluation and the computation of the result’s ciphertext remain as explained
above.

Packing Attribute Values. Let x(1), . . . , x(s) be s possible attribute vectors with
x(l) = [x(l)1 , . . . , x

(l)
n ], 1 ≤ l ≤ s. For each x(l)i , let V 0(l)

xi = v(l)iµ , . . . , v
(l)
i1 be the 0-encoding.
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The client generates for each attribute xi the ciphertexts ⟦cx0
iµ⟧, . . . , ⟦cx0

i2⟧, ⟦cx0
i1⟧ as

illustrated in Equation 6.6. The client does similarly for the 1-encodings.

⟦cx0
i1⟧ = ⟦v(1)i1 ∣v(2)i1 ∣ . . . ∣v(s)i1 ⟧

⟦cx0
i2⟧ = ⟦v(1)i2 ∣v(2)i2 ∣ . . . ∣v(s)i2 ⟧
. . .

⟦cx0
iµ⟧ = ⟦v(1)iµ ∣v(2)iµ ∣ . . . ∣v(s)iµ ⟧

Packing of multiple V 0
xi (6.6)

To shorten the notation, let yj denote the threshold of j-th decision node (i.e., yj =
vj .threshold) and let V 0

yj = vjµ, . . . , vj1 be the corresponding 0-encoding. The server
encrypts V 0

yj as illustrated in Equation 6.7. The 1-encoding is encrypted similarly.

⟦cy0
j1⟧ = ⟦vj1∣vj1∣ . . . ∣vj1⟧

⟦cy0
j2⟧ = ⟦vj2∣vj2∣ . . . ∣vj2⟧

. . .

⟦cy0
jµ⟧ = ⟦vjµ∣vjµ∣ . . . ∣vjµ⟧

Packing of a single V 0
yj (6.7)

The above described encoding allows comparing s attribute values together with one
threshold. This is possible because the routine LinCompareDT() is compatible with
SVCP such that we have:

LinCompareDT((⟦cx1
iµ⟧, . . . , ⟦cx1

i1⟧), (⟦cy0
jµ⟧, . . . , ⟦cy0

j1⟧)) =

⟦b(1)ij ∣b(2)ij ∣ . . . ∣b(s)ij ⟧,
(6.8)

where b(l)ij = 0 if x(l)i > yj and b
(l)
ij is a random number otherwise. This results in a

single ciphertext such that the l-th slot contains the comparison result between x(l)i
and yj .

Aggregating decision bits remains unchanged as described in Algorithm 6.13. This
results in a packed ciphertext ⟦bv⟧ = ⟦b(1)v ∣ . . . ∣b(s)v ⟧ for each leaf v ∈ L, where b(l)v = 0

if x(l) classifies to leaf v and b(l)u is a random number for any other leaf u ∈ L − {v}.
Algorithm 6.14 remains unchanged as well.

Packing Threshold Values. In this case, the client encrypts a single attribute
in one ciphertext, while the server encrypts multiple threshold values in a single ci-
phertext. Hence, for an attribute value xi, the client generates the ciphertexts as in
Equation 6.9 for the 0-encoding and handles the 1-encoding similarly.

⟦cx0
i1⟧ = ⟦vi1∣vi1∣ . . . ∣vi1⟧

⟦cx0
i2⟧ = ⟦vi2∣vi2∣ . . . ∣vi2⟧
. . .

⟦cx0
iµ⟧ = ⟦viµ∣viµ∣ . . . ∣viµ⟧

Packing of a single V 0
xi (6.9)

Let mi be the number of decision nodes that compare to the attribute xi (i.e.,
mi = ∣{vj ∈ D ∶ vj .aIndex = i}∣). The server packs all corresponding threshold values in
⌈mi
s
⌉ ciphertext(s) as illustrated in Equation 6.10 for the 0-encoding and handles the

1-encoding similarly.
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⟦cy0
j1⟧ = ⟦vj11∣ . . . ∣vjmi1∣ . . .⟧

⟦cy0
j2⟧ = ⟦vj12∣ . . . ∣vjmi2∣ . . .⟧

. . .

⟦cy0
jµ⟧ = ⟦vj1µ∣ . . . ∣vjmiµ∣ . . .⟧

Packing of multiple V 0
yj (6.10)

The packing of threshold values allows comparing one attribute value against multiple
threshold values together. Unfortunately, we do not have access to the slot while
performing homomorphic operations. Hence, to aggregate the decision bits, we make
mi copies of the resulting packed decision results and shift left each decision result to
the first slot. Then the aggregation of the decision results and the finalizing algorithm
work as in the previous case with the only difference that only the result in the first
slot matters and the remaining slots can be set to 0.

6.5 Security Analysis

We briefly discuss the correctness and the security of our construction.

Correctness. The correctness for the basic scheme follows directly from Lemma
6.2.3. For the binary implementation, we proved with Lemmas 6.3.2, 6.3.5, 6.3.6 that
aggregating the paths using Algorithms 6.5 and 6.9 is correct. For the integer imple-
mentation, Lemma 6.4.1 ensures the correctness of the comparison. The classification
path is marked with 0 on all edges while the other paths are marked with at least one
random number. As a result, summing up the marks along the paths returns 0 for
the classification path and a random number for all other paths.

Security. It is straightforward to see that our protocols are secure. There is no
interaction with the client during the computation and a semi-honest server sees only
IND-CPA ciphertexts. A semi-honest client only learns the encryption of the result
(and additional encryptions of random elements for Pdt-Int). A malicious server can
only return a false classification result. This is inherent to private function evaluation
where the function (the decision tree in our case) is an input to the computation. A
malicious client can send a too “noisy” ciphertext, such that after the computation
at the server a correct decryption is not possible, leaking some information. This
attack works only with level FHE and is easy to deal with, namely the computation
of a ciphertext capacity is a public function which the server can use to check the
ciphertexts before starting the computation. Therefore, we state the following:

Theorem 6.5.1. Our protocols correctly and securely implement the PDTE function-
ality FPDTE.

As Pdt-Bin returns the bit representation of the resulted classification label whose
bitlength is public (i.e., the set of possible classification labels is known to the client),
there is no leakage beyond the final output. Pdt-Int returns as many ciphertexts as
there are leaves and, therefore, leaks the number of decision nodes.

6.6 Complexity Analysis

We now analyze the complexity of our scheme, distinguishing between the binary
and the integer implementations. In the following, we assume that the decision tree
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is a complete tree with depth d. The case for sparse trees is similar by using the
corresponding number of decision nodes in the tree.

6.6.1 Complexity of the Binary Implementation

The SHE comparison circuit has multiplicative depth ∣µ−1∣+1 and requires O(µ ⋅ ∣µ∣)
multiplications [45, 46, 47]. That is, the evaluation of all decision nodes requires
O(2dµ ⋅ ∣µ∣) multiplications. The path evaluation has a multiplicative depth of ∣d− 1∣
and requires for all 2d paths O(d2d) multiplications. The evaluation of the leaves
has a multiplicative depth of 1 and requires in total 2d multiplications. The total
multiplicative depth for Pdt-Bin is, therefore, ∣µ − 1∣ + ∣d − 1∣ + 2 ≈ ∣µ∣ + ∣d∣ + 2 while
the total number of multiplications is O(2dµ ⋅ ∣µ∣ + d2d + 2d) ≈ O(d2d).

For the label packing, the bit representation of each classification label is packed in
one ciphertext. This holds for the final result as well. As a result, if the tree is complete
and all classification labels are distinct, then the server sends ⌈d

s
⌉ ciphertext(s) to the

client. In practice, however, ⌈ds ⌉ = 1 holds as d is smaller than the number s of slots.
For threshold packing, the decision bit at node v will be encrypted as ⟦bv ∣0∣...∣0⟧.

Then if we encrypt the classification label ci = ci∣k∣...ci1 as ⟦ci∣k∣∣0∣...∣0⟧, ..., ⟦ci1∣0∣...∣0⟧,
the final result cl will be encrypted similarly such that with extra shifts, we can build
the ciphertext ⟦cl∣k∣∣...∣cl1∣0∣...∣0⟧. As a result, the server sends only 1 ciphertext back
to the client.

For other cases (e.g., attribute packing, or no packing at all as in the current
implementation of TFHE), the bits of a classification label are encrypted separately
which holds for the final result as well. As a result, the server sends back d ciphertexts
to the client.

6.6.2 Complexity of the Integer Implementation

The modified Lin-Tzeng comparison circuit has multiplicative depth ∣µ − 1∣ and re-
quires O(µ − 1) multiplications. As a result, the evaluation of all decision nodes
requires O((µ − 1)2d) multiplications. In Pdt-Int, the path evaluation does not re-
quires any multiplication. However, the leave evaluation has a multiplicative depth
of 1 and requires in total 2d multiplications. The total multiplicative depth for
Pdt-Int is, therefore, ∣µ − 1∣ + 1 ≈ ∣µ∣ + 1 while the total number of multiplications is
O((µ − 1)2d + 2d) ≈ O(2d).

For Pdt-Int, it is not possible to aggregate the leaves as in Pdt-Bin. If the client
is classifying many inputs, the server must send 2d ciphertexts back. If the client is
classifying only one input, then the server can use shifts to pack the result in ⌈2d

s ⌉
ciphertext(s).

6.7 Evaluation

In this section, we discuss some implementation details and evaluate our schemes.

6.7.1 Implementation Details

We implemented our algorithms using HElib [100] and TFHE [51, 52]. HElib is a
C++ library that implements FHE. The current version includes an implementation
of the leveled FHE BGV scheme [36]. HElib also includes various optimizations that
make FHE runs faster, including the Smart-Vercauteren ciphertext packing (SVCP)
techniques [173].
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TFHE is a C/C++ library that implements FHE proposed by Chillotti et al. [48,
49]. It allows evaluating any Boolean circuit on encrypted data. The current version
implements a very fast gate-by-gate bootstrapping, i.e., bootstrapping is performed
after each gate evaluation. Future versions will include leveled FHE and ciphertext
packing as described by Chillotti et al. [50]. Dai and Sunar [60, 61] propose an
implementation of TFHE on CUDA-enabled GPUs that is 26 times faster.

We evaluated our implementation on an AWS instance with Intel(R) Xeon(R)
Platinum 8124M CPU @ 3.00GHz running Ubuntu 18.04.2 LTS. The Instance has
36 CPUs, 144 GB Memory, and 8 GB SSD. As the bottleneck of our scheme is the
overhead of the homomorphic computation, we focus on the computation done by the
server. We start by generating appropriate encryption parameters and evaluating the
performance of basic operations.

6.7.2 Basic Operations

Recall that FHE schemes – as considered in this thesis – are usually defined over a
ring Z[X]/(XN + 1) and that the encryption scheme might be a leveled FHE with
parameter L. For HElib, the parameters N and L determines how to generate en-
cryption keys for a security level λ which is at least 128 in all our experiments. The
degree of the ring polynomial in HElib is not necessarily a power of 2. The ring
polynomial is chosen among the cyclotomic polynomials. For HElib, we abuse the
notation and use N to denote the N -th cyclotomic polynomial. Given the value of
L and other parameters, the HElib function FindM(⋅) computes the N -th cyclotomic
polynomial, that guarantees a security level at least equal to a given security pa-
rameter λ. Table 6.3 summarizes the parameters we used for key generation and the
resulting sizes for encryption keys and ciphertexts. We will refer to it as homomorphic
context or just context. For HElib, one needs to choose L large enough than the depth
of the circuit to be evaluated and then computes an appropriate value for N that
ensures a security level at least 128. We experimented with three different contexts
(HElibsmall,HElibmed,HElibbig) for the binary representation used in Pdt-Bin and
the context HElibint for the integer representation used in Pdt-Int. For TFHE, the
default value of N is 1024 and the security level can be chosen up to 128 while L is
infinite because of the gate-by-gate bootstrapping. We used the context TFHE128 to
evaluate Pdt-Bin with TFHE. Table 6.4 reports the average runtime for encryption
and decryption over 100 runs. The columns “Enc Vector” and “Dec Vector” stand for
encryption and decryption using SIMD encoding and decoding, which is not supported
by TFHE yet.

6.7.3 Homomorphic Operations in HElib

The opposite of the notion of ciphertext noise is the notion of ciphertext capacity or just
capacity which is also determined by L and estimates the capacity of a ciphertext to be
used in homomorphic operations. In Figure 6.16 and 6.17, we reported the remaining
capacity of a ciphertext after a number of consecutive additions or multiplications
starting from the values of L in Table 6.3. They show that the capacity is reduced only
slightly after addition, but significantly after multiplication. Note that the encryption
operation already has an impact on L. Figure 6.18 shows that doing the multiplication
with logarithmic depth (Lemma 6.3.2) reduced the capacity sublinearly instead of
linearly as in Figure 6.17. The sublinear complexity is also illustrated in Figure 6.19 for
the comparison circuit which also has a logarithmic multiplicative depth [45, 46, 47].
Figure 6.20 illustrates runtimes (best and average) for addition and multiplication
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Name L N λ Slots sk pk Ctxt

(bits) (MB) (MB) (MB)

HElibsmall 200 13981 151 600 52.2 51.6 1.7

HElibmed 300 18631 153 720 135.4 134.1 3.7

HElibbig 500 32109 132 1800 370.1 367.1 8.8

HElibint 450 24793 138.161 6198 370.1 367.1 8.8

TFHE128 ∞ 1024 128 1 82.1 82.1 0.002

Table 6.3: Key Generation’s Parameters and Results: For HElib, the
value in the column N is not the degree of the ring polynomial, but the
N -th cyclotomic polynomial. It is computed in HElib using a function

called FindM(⋅).

HElib Enc Single Enc Vector Dec Single Dec Vector

Context (ms) (ms) (ms) (ms)

HElibsmall 59.21 59.41 26.08 26.38

HElibmed 124.39 124.93 54.31 54.92

HElibbig 283.49 284.31 127.11 128.32

HElibint 323.41 488.77 88.63 93.50

TFHE128 0.04842 n/a 0.00129 n/a

Table 6.4: Encryption/Decryption Runtime
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Figure 6.16: Capacity after consecutive additions

in HElib over 100 runs showing that homomorphic addition is really fast compared
to multiplication. We report the runtime for the comparison circuit in Figure 6.21
comparing runtime for HElib and TFHE. While both are linear in the bitlength, the
runtime for HElib increases very quickly.

6.7.4 Homomorphic Operations in TFHE

As already mentioned earlier, the current version of TFHE only supports binary gates.
According to Chillotti et al. [49, 51], gate bootstrapping and gate evaluation cost about
13 ms for all binary gates except for the MUX gate, which costs 26 ms on a modern
processor. For a full list of available gates, we refer to Chillotti et al. [52]. In Table
6.5, we illustrate the runtime of TFHE’s gate evaluation with our testbed. The figures
are given as average over 1000 runs.

6.7.5 Performance of the Binary Implementation

In this section, we report on our experiment with Pdt-Bin on complete trees. Re-
call that for FHE supporting SIMD, we can use attribute values packing that allows
evaluating many attribute vectors together. We, therefore, focus on attribute pack-
ing to show the advantage of SIMD. Figure 6.22 illustrates the amortized runtime
of Pdt-Bin with HElib. That is, the time of one PDTE evaluation divided by the
number of slots provided by the used homomorphic context. As one can expect, the
runtime clearly depends on the bitlength of the attribute values and the depth of the
tree. The results show a clear advantage of HElib when classifying large data sets.
For paths aggregation, we proposed EvalPathsE (Algorithm 6.5) and EvalPathsP
(Algorithm 6.9). Figure 6.23 illustrates Pdt-Bin runtime using these algorithms in
a multi-threaded environment and shows a clear advantage of EvalPathsP which
will be used in the remaining experiments with Pdt-Bin. Figure 6.24 illustrates the
runtime of Pdt-Bin with HElibmed showing that the computation cost is dominated
by the computation of decision bits which involves homomorphic evaluation of com-
parison circuits. In Figure 6.25, we report the evaluation of Pdt-Bin using TFHE,
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Figure 6.20: Runtime for Addition and Multiplication in HElib
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Figure 6.21: Comparison Run-time Cost

Gate Name Gate Functionality Run-time (ms)

128-bit security

CONSTANT result = encode(int) 0.00052

NOT result = ¬a 0.00051

COPY result = a 0.00035

NAND result = ¬(a ∧ b) 11.32751

OR result = a ∨ b 11.40669

AND result = a ∧ b 11.38739

XOR result = a + b mod 2 11.39326

XNOR result = (a = b) 11.39418

NOR result = ¬(a ∨ b) 11.39813

ANDNY result = ¬a ∧ b 11.39255

ANDYN result = a ∧ ¬b 11.39737

ORNY result = ¬a ∨ b 11.40777

ORYN result = a ∨ ¬b 11.39940

MUX result = a?b ∶ c 21.29517

Table 6.5: TFHE Binary Bootstrapping Gates
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Figure 6.22: Amortized Pdt-Bin Runtime with HElib

which shows a clear advantage compare to HElib. For the same experiment with 72
threads, TFHE evaluates a complete tree of depth 10 and 64-bit input in less than 80
seconds, while HElib takes about 400 seconds for 16-bit input. Recall that, a CUDA
implementation [60, 61] of TFHE can further improve the time of Pdt-Bin using
TFHE.

6.7.6 Performance of our Schemes on Real Datasets

We also performed experiments on real datasets from the UCI repository [185]. We
performed experiments for both Pdt-Bin and Pdt-Int for the datasets illustrated in
Table 6.6 (parameters n, d,m are defined in Table 2.2). For Pdt-Bin, we reported the
costs for HElib (single and amortized) and the costs for TFHE. Since TFHE evaluates
only Boolean circuits, we only have implementation and evaluation of Pdt-Int with
HElib. We also illustrate in Table 6.7 the costs of two best previous works that rely
only on homomorphic encryption, whereby the figures are taken from the respective
papers [145, 175]. For one protocol run, Pdt-Bin with TFHE is much faster than
Pdt-Bin with HElib which is also faster than Pdt-Int with HElib. However, because
of the large number of slots, the amortized cost of Pdt-Bin with HElib is better. For
16-bit inputs, our amortized time with HElib and our time with TFHE outperform
XCMP [145] which used 12-bit inputs. For the same input bitlength, XCMP is still
much better than our one run using HElib, since the multiplicative depth is just
3. However, our schemes still have a better communication and Pdt-Bin has no
leakage. While the scheme of Tai et al. [175] in the semi-honest model has a better
time for 64-bit inputs than our schemes for 16-bit inputs, it requires a fast network
communication and at least double cost in the malicious model. The efficiency of Tai
et al. is in part due to their ECC implementation of the lifted ElGamal [76], which
allows a fast runtime and smaller ciphertexts, but is not secure against a quantum
attacker, unlike lattice-based FHE as used in our schemes.
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Figure 6.24: Pdt-Bin Runtime with HElibmed for 16-bit inputs

Heart-disease Housing Spambase Artificial

(HDI) (HOU) (SPA) (ART)

n 13 13 57 16

d 3 13 17 10

m 5 92 58 500

Table 6.6: Real Datasets and Model Parameters
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Figure 6.25: Pdt-Bin Runtime with TFHE

Pdt-Bin Pdt-Bin Pdt-Int [145] [175]

(TFHE) (HElib) (HElib) (HElib) (mcl)

λ 128 150 135 128 128

µ 16 16 16 12 64

#thd 16 16 16 16 -

one am. one am. one one one

HDI 0.94 0.05 40.61 0.0073 45.59 0.59 0.25

HOU 6.30 0.35 252.38 0.90 428.23 10.27 1.98

SPA 3.66 0.24 174.46 0.72 339.60 6.88 1.80

ART 22.39 1.81 1303.55 0.75 2207.13 56.37 10.42

Table 6.7: Runtime (in seconds) of PDTE on Real Datasets: λ is the
security level. µ is the input bit length. #thd is the number of threads. mcl[149]
is a pairing-based cryptography library. Column “one” reports the time for one
protocol run while “am.” reports the amortized time (e.g., the time for one run

divided by s).
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1: for j = 1 to N do
2: ⟦Rb

j ⟧← Pdt-BinS(Tj , x)
3: for i = 1 to k do
4: ⟦bij⟧← SheEqual(⟦Rb

j ⟧, ⟦cbi ⟧)
5: ⟦result⟧← ⟦0⟧
6: for i = 1 to k do
7: ⟦fbi ⟧← SheFadder(⟦bi1⟧, . . . , ⟦biN⟧)
8: ⟦ei⟧← SheCmp(⟦fbi ⟧, ⟦tb⟧)
9: ⟦result⟧← ⟦result⟧ ⊞ (⟦ei⟧ ⊡ ⟦c⃗i⟧)

10: return ⟦result⟧

Algorithm 6.26: Private Random Forest With Majority Voting

1: Compute ⟦fbi ⟧ as in Algorithm 6.26 Lines 1 to 7
2: for i ∶= 1 to k do
3: ⟦βii⟧← ⟦1⟧
4: for j ∶= i + 1 to k do
5: (⟦βij⟧, ⟦βji⟧)← SheCmp(⟦fbi ⟧, ⟦fbj ⟧)
6: for i ∶= 1 to k do
7: ⟦rbi ⟧← SheFadder(⟦βi1⟧, . . . , ⟦βik⟧)
8: for i ∶= 1 to k do
9: ⟦ei⟧← SheEqual(⟦rbi ⟧, ⟦kb⟧)

10: for i ∶= 1 to k do
11: ⟦result⟧← ⟦result⟧ ⊞ (⟦ei⟧ ⊡ ⟦c⃗i⟧)
12: return ⟦result⟧

Algorithm 6.27: Private Random Forest with Maximum Voting

6.8 Extension To Random Forests

In this section, we briefly describe how the binary implementation Pdt-Bin can be
extended to evaluate a random forest non-interactively. A random forest is a general-
ization of decision trees which consists of many trees. A classification with a random
forest then evaluates each tree in the forest and outputs the classification label which
occurs most often. Hence, the classification labels are ranked by their number of
occurrences and the final result is the best ranked one.

Let the random forest consists of trees T1, . . . ,TN and let Pdt-BinS(Tj , x) denote
the evaluation of the decision tree Tj on input vector x resulting in Tj(x) = Rj ,
which is encrypted as ⟦Rb

j ⟧ = (⟦Rj∣k∣⟧, . . . , ⟦Rj1⟧), where Rb
j = Rj∣k∣ . . .Rj1. Let’s

assume, there are k classification labels c1, . . . , ck with cbi = ci∣k∣ . . . ci1 and each ci
has encryptions ⟦cbi ⟧ = (⟦ci∣k∣⟧, . . . , ⟦ci1⟧) and ⟦c⃗i⟧ = ⟦ci∣k∣∣ . . . ∣ci1⟧. Let fi denote the
number of occurrences of ci after evaluating the N trees, with encryption ⟦fbi ⟧ =
(⟦fi∣N ∣⟧, . . . , ⟦fi1⟧), where fbi = fi∣N ∣ . . . fi1.

The computation requires the routines SheCmp, SheFadder, and SheEqual
for greater-than comparison, full adder, and equality testing. To select the best label,
the random forest algorithm either uses majority voting or argmax. For majority
voting, ci is the final result if an only if fi ≥ t, where t = ⌈N

2
⌉ with bit representation
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tb = t∣N ∣ . . . t1 and encryption ⟦tb⟧ = (⟦t∣N ∣⟧, . . . , ⟦t1⟧). The computation is described
in Algorithm 6.26. For argmax, ci is the final result if an only if fi is larger than all
other fj , j ≠ i. The computation is described in Algorithm 6.27.

6.9 Summary

While almost all existing PDTE protocols require many interactions between the client
and the server, we designed and implemented novel client-server protocols that dele-
gate the complete evaluation to the server while preserving privacy and keeping the
overhead low. Our solutions rely on SHE/FHE and evaluate the tree on ciphertexts
encrypted under the client’s public key. Since current SHE/FHE schemes have high
overhead, we combine efficient data representations with different algorithmic opti-
mizations to keep the computational overhead and the communication cost low. As
a result, we provided the first non-interactive protocol, that allows the client to del-
egate the evaluation to the server by sending an encrypted input and receiving only
the encryption of the result.
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Chapter 7

Secure kth-Ranked Element

In previous chapters, we looked at private classification using decision trees. A gen-
eralization of a decision tree is a random forest that consists of many decision trees.
A classification with a random forest then evaluates each decision tree in the forest
and outputs the classification label which occurs most often. Hence, the classification
labels are ranked by their number of occurrences and the final result is the best ranked
one. This is related to the problem of computing the kth-ranked element which is the
topic of this chapter. However, in this chapter, we consider the computation of the
kth-ranked element in a distributed and privacy-preserving setting. That is, given n
parties each holding a private integer, the problem is to securely compute the element
ranked k (for a given k such that 1 ≤ k ≤ n) among these n integers. The goal is to
reveal to the parties only the kth-ranked element (or the party holding it) and noth-
ing else. The chapter is structured as follows. We start by describing the problem,
the applications, and the solution approaches in Section 7.1 and then we introduce
correctness and security definitions in Section 7.2. We describe different approaches
to compute the kth-ranked element in Sections 7.3, 7.4, 7.5, and 7.6. We analyze
correctness and security in Section 7.7 and present a complexity analysis in Section
7.8. We discuss the evaluation results in Section 7.9 before summarizing the chapter
in Section 7.10.

7.1 Problem Definition

We start with the description of the problem and present the applications. Then we
discuss solutions in the so-called standard model, our own approach and conclude the
section with our design goals.

7.1.1 Description

Assume there are n clients C1, . . . ,Cn holding each a private integer x1, . . . , xn and that
the integers are all pairwise distinct. We consider the problem of securely computing
the kth-ranked element (KRE) of these n integers. That is, the goal is to reveal
to the clients the integer xi with rank k and nothing else. Specific examples are
computation of the minimum (smallest ranked), the maximum (largest ranked), or the
median (middle ranked) element among the integers. Another ranked-based statistic
is the best-in-class which is the mean of the top 25% best ranked elements. Hence,
best-in-class computation has elements from the mean and median computation.

7.1.2 Application

The computation of the kth-ranked element is of particular interest in settings such
as collaborative benchmarking and auctions, where the individual inputs are sensitive
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data, yet the kth-ranked element (or the party holding it) is of mutual interest to all
parties [2, 27, 63, 119, 155]. Benchmarking is a management process where a company
compares its key performance indicator (KPI) to the statistics of the same KPIs of a
group of competitors from a peer group. In secure auctions, bids are concealed and
only the winner is revealed to the bidders. A big challenge for these applications is that
KPIs and bids are sensitive and confidential, even within a single company [119, 155].
Confidentiality is of the utmost importance in benchmarking, since KPIs allow the
inference of sensitive information. Companies are, therefore, hesitant to share their
business performance data due to the risk of losing a competitive advantage [119].
The confidentiality issue can be addressed using SMC [23, 87, 195], which guarantees
that no party will learn more than the output of the protocol, i.e., the other parties’
inputs remain confidential.

7.1.3 Standard Model Solutions

There exist several secure protocols that can be used for keeping KPIs or bids confi-
dential while comparing them [2, 23, 87, 195]. They require a communication channel
between each pair of input parties. We will refer to this approach as the standard
model. Protocols for securely computing the kth-ranked element in the standard model
do not scale easily to a large number of parties as they require a communication chan-
nel between any pair of parties and are highly interactive, resulting in high latency.
Moreover, they are difficult to deploy as special arrangements are required between
each pair of parties to establish a secure connection [42].

7.1.4 Our Solution Approach

A promising approach for overcoming the limitations of the standard model is to
use the server model described in Section 3.1.2. In this model, the servers make
their computational resources available for the computation, but have no input to
the computation and receive no output [114, 119]. For example, Jakobsen et al. [109]
propose a framework in which the input parties (the clients) delegate the computation
to a set of untrusted workers. Relying on multiple non-colluding servers requires
a different business model for the service provider of a privacy-preserving service.
The service provider has to share benefits with an almost equal peer offering its
computational power [120]. We, therefore, use a communication model consisting of
clients (with private inputs) and a server. In this model, the server provides no input to
the computation and does not learn the output, but makes its computational resources
available to the clients [114, 119]. Moreover, there are communication channels only
between each client and the server. Hence, it is a centralized communication pattern,
i.e., a star network. As a result, the clients will only communicate with the server,
but never directly amongst each other. This model naturally fits with the client-
server architecture of Internet applications and allows a service provider to play the
server’s role. It can simplify the secure protocol, and improve its performance and
scalability [42, 113, 114].

7.1.5 Design Goals

We propose different approaches for securely computing the kth-ranked element (KRE)
in a star network using either garbled circuits (GC) or additive homomorphic encryp-
tion (AHE) or somewhat homomorphic encryption (SHE):
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• Our first scheme Kre-Ygc uses Yao’s GC [20, 139] to compare clients’ inputs
at the server without revealing to any party (including the server) the actual
comparison result.

• Our second scheme Kre-Ahe1 is based on threshold AHE. We first propose a
modified variant of the Lin-Tzeng comparison protocol [135]. The server then
uses it to homomorphically compare inputs encrypted with AHE. Using the
threshold decryption property the parties jointly decrypt the comparison results.

• In our third scheme Kre-Ahe2, we continue with threshold AHE, however,
we perform the comparison using the DGK protocol [63]. In contrast to the
previous scheme, the inputs are compared interactively.

• The fourth scheme Kre-She is based on threshold SHE and allows the server to
non-interactively compute the KRE such that the clients only interact to jointly
decrypt the result.

We design the above schemes with the following goals:

• Number of rounds: In contrast to [1], all our protocols have a constant number
of rounds.

• Collusion-resistance: This is a protocol property that is measured by the number
of parties that can collude without violating the privacy of the non-colluding
ones. In Kre-Ygc, a collusion with the server completely breaks the security,
while Kre-Ahe1 and Kre-Ahe2 can tolerate the collusion of several clients
with the server as long as the number of colluding clients is smaller than a
threshold t. If the server does not collude, then Kre-Ygc can tolerate up
to n − 1 colluding clients. Aggarwal et al.’s scheme [1] is collusion-resistant if
implemented with a threshold scheme.

• Fault-tolerance: It is a protocol property that is measured by the number of
parties that can fail without preventing the protocol to properly compute the
intended functionality. Our server model can only tolerate clients’ failure. Kre-
Ygc is not fault-tolerant while Kre-Ahe1 and Kre-Ahe2 can tolerate the
failure of up to n − t clients. Aggarwal et al.’s scheme [1] is fault-tolerant if
implemented with a threshold scheme.

• Complexity: This refers to the asymptotic computation complexity as well as
the communication complexity. Our goal is to keep the complexity as low as
possible. A summary is illustrated in Table 7.2. We provide a detailed analysis
in Section 7.8.

How our schemes achieve these properties is summarized in Tables 7.1 and 7.2. We also
illustrate in these tables the scheme of Aggarwal et al. [1] which has been described
with other related work in Section 3.6.

7.2 Security Model and Techniques

This section provides definitions related to our model and security requirements. We
start by defining the kth-ranked element of a sequence of integers.
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Kre-Ygc Kre-Ahe1 Kre-She [1]

Kre-Ahe2

# Rounds 4 4 2 O(µ)

Collusion-resis. n − 1 ∣ 0 t − 1 ∣ t t − 1 ∣ t t − 1 ∣ n/a

Fault-tolerance 0 n − t n − t n − t

Table 7.1: Schemes’ properties: The collusion row refers to the number
of parties that can collude - server excluded | server included - without
breaking the privacy of non-colluding clients. The fault-tolerance row
refers to the number of parties that can fail without preventing the

protocol to properly compute the intended functionality.

Kre-Ygc Kre-Ahe1 Kre-She [1]

sym. asym. Kre-Ahe2

CC-C O(nµ) O(n) O(nµ) O(µ) O(nµ2)

CC-S O(n2µ) O(n logn) O(n2µ) O(n2µ logµ) n/a

BC-C O(nµλ) O(nκ) O(nµκ) O((µ + n)κ) O(nµ2λ)

BC-S 0 O(n2κ) O(n2µκ) O(nκ) n/a

Table 7.2: Schemes’ Complexity: Rows CC-C/S and BC-C/S denote
the computation and communication (bit) complexity for each client
and the server, respectively. The columns “sym.” and “asym.” denote

symmetric and asymmetric operations in Kre-Ygc.

7.2.1 The Model

Definition 7.2.1. Let X = {x1, ..., xn} be a set of n distinct integers and let x̃1, . . . , x̃n
be the corresponding sorted set, i.e., x̃1 ≤ . . . ≤ x̃n, and X = {x̃1, . . . , x̃n}. The rank
of an element xi ∈ X is j, such that xi = x̃j. The kth-ranked element (KRE) is the
element x̃k with rank k.

If the rank is k = ⌈n
2
⌉ then the element is called median. If k = 1 (resp. k = n) then

the element is called minimum (resp. maximum).

Definition 7.2.2. Let C1, . . . ,Cn be n clients each holding a private µ-bit integer
x1, . . . , xn and S be a server which has no input. Our ideal functionality FKRE receives
x1, . . . , xn from the clients, computes the KRE x̃k and outputs x̃k to each client Ci.
Moreover, FKRE outputs a leakage Li to each Ci and LS to S.

The leakage is specific to each protocol and contains information such as n, t, λ,
κ, µ (see Table 2.2). It can be inferred from the party’s view which is all that the
party is allowed to learn from the protocol execution. In case of limited collusion
(i.e., the number of colluding parties is smaller than a given threshold as given in
Table 7.1) additional leakage might include comparison results between some pairs
of inputs or the rank of some inputs. Recall that the view of the i-th party during
an execution of the protocol on input x⃗ = (x1, . . . , xn) is denoted by: ViewΠKRE

i (x⃗) =
{xi, ri,mi1,mi2, . . .}, where ri represents the outcome of the i-th party’s internal coin
tosses, and mij represents the j-th message it has received. Since the server is a party
without input, xi in its view will be replaced by the empty string.
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We assume that parties follow the protocol specification, but the adversary keeps
a record of all messages received by corrupted parties and tries to infer as much
information as possible. Our schemes are, therefore, secure in the semi-honest model.

Definition 7.2.3. Let FKRE ∶ ({0,1}µ)n ↦ {0,1}µ be the functionality that takes n
µ-bit inputs x1, . . . , xn and returns their KRE. Let I = {i1, . . . , it} ⊂ {1, . . . , n+ 1} be a
subset of indexes of corrupted parties (Server’s input xn+1 is empty), x⃗ = (x1, . . . , xn)
and

ViewΠKRE

I (x⃗) = (I,ViewΠKRE
i1

(x⃗), . . . ,ViewΠKRE
it

(x⃗)).

A protocol t-privately computes FKRE in the semi-honest model if there exists a
polynomial-time simulator Simkre

I such that: ∀I, ∣I ∣ = t and LI = ⋃i∈I Li, it holds:

Simkre
I (I, (xi1 , . . . , xit),FKRE(x1, . . . , xn),LI)

c≡ ViewΠKRE

I (x1, . . . , xn).

7.2.2 Technical Overview

Each scheme consists of two phases. In an initialization phase, clients generate and
exchange necessary cryptographic keys through the server. We stress that the initial-
ization phase is run once and its complexity does not depend on the functionality that
we want to compute. In the following, we, therefore, focus on the actual computations.

We determine the KRE in the main protocol by computing the rank of each xi and
selecting the right one. To achieve that, we compare pairs of inputs (xi, xj),1 ≤ i, j,≤ n
and denote the result by a comparison bit bij .

Definition 7.2.4. Let xi, xj ,1 ≤ i, j,≤ n, be integer inputs of Ci,Cj. Then the com-
parison bit bij of the pair (xi, xj) is defined as 1 if xi ≥ xj and 0 otherwise. The
computation of xi ≥ xj is distributed and involves Ci,Cj, where they play different
roles, e.g., generator and evaluator. Similar to the functional programming notation
of an ordered pair, we use head and tail to denote Ci and Cj.

For each input xi, we then add all bits bij ,1 ≤ j ≤ n to get its rank ri.

Lemma 7.2.5. Let x1, . . . , xn be n distinct integers, and let r1, . . . , rn ∈ {1, . . . , n} be
their corresponding ranks and bij the comparison bit for (xi, xj). It holds ri = ∑nj=1 bij .

Proof. Since ri is the rank of xi, xi is by definition larger or equal to ri elements in
{x1, . . . , xn}. This means that ri values among bi1, . . . , bin are 1 and the remaining
n − ri values are 0. It follows that ∑nj=1 bij = ri.

The above lemma requires distinct inputs. To make sure that clients’ inputs are
indeed distinct before the protocol execution, we borrow the idea of [2] and use the
index of parties as differentiator. Each party Ci represents its index i as a logn-bit
string and appends it at the end (i.e., in the least significant positions) of the binary
string of xi, resulting in a new input of length µ + logn. For simplicity, we assume in
the remainder of the chapter, that the xi’s are all distinct µ-bit integers. Therefore,
it is not necessary to compare all pairs (xi, xj),1 ≤ i, j ≤ n, since we can deduce bji
from bij .

As explained in Definition 7.2.4, Ci,Cj play different roles in the comparison for
(xi, xj). Therefore, we would like to equally distribute the roles among the clients.
As example for n = 3, we need to compute only three (instead of nine) comparisons
resulting in three head roles and three tail roles. Then we would like each of the three
clients to play the role head as well as tail exactly one time. We will use Definition
7.2.6 and Lemma 7.2.7 to equally distribute the roles head and tail between clients.
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Definition 7.2.6. Let X = {x1, . . . , xn} be a set of n integers. We define the predicate
Paired as follows:

Paired(i, j) ∶= (i ≡ 1 (mod 2) ∧ i > j ∧ j ≡ 1 (mod 2)) ∨ (7.1a)
(i ≡ 1 (mod 2) ∧ i < j ∧ j ≡ 0 (mod 2)) ∨ (7.1b)
(i ≡ 0 (mod 2) ∧ i > j ∧ j ≡ 0 (mod 2)) ∨ (7.1c)
(i ≡ 0 (mod 2) ∧ i < j ∧ j ≡ 1 (mod 2)). (7.1d)

Lemma 7.2.7. Let X = {x1, . . . , xn} be a set of n integers and the predicate Paired be
as above. Then comparing only pairs (xi, xj) such that Paired(i, j) = true is enough
to compute the rank of all elements in X.

Proof. Let P = {(xi, xj) ∶ xi, xj ∈ X ∧ i ≠ j}, P1 = {(xi, xj) ∶ xi, xj ∈ X ∧Paired(i, j) =
true}, P2 = {(xi, xj) ∶ xi, xj ∈ X ∧Q(i, j) = true}, where Q(i, j) is defined as follows:

Q(i, j) ∶= (i ≡ 1 (mod 2) ∧ i < j ∧ j ≡ 1 (mod 2)) ∨ (7.2a)
(i ≡ 0 (mod 2) ∧ i > j ∧ j ≡ 1 (mod 2)) ∨ (7.2b)
(i ≡ 0 (mod 2) ∧ i < j ∧ j ≡ 0 (mod 2)) ∨ (7.2c)
(i ≡ 1 (mod 2) ∧ i > j ∧ j ≡ 0 (mod 2)). (7.2d)

Clearly, P contains the maximum number of comparisons required to compute the
rank of every xi ∈ X. Now it suffices to show that:

1. P1 and P2 form a partition of P

2. ∀ (xi, xj) ∈ P ∶ (xi, xj) ∈ P1 ⇔ (xj , xi) ∈ P2

P1 and P2 are clearly subsets of P. For each (xi, xj) ∈ P, (i, j) satisfies exactly one
of the conditions (7.1a), . . . , (7.1d), (7.2a), . . . , (7.2d), hence P ⊆ P1 ∪ P2. Moreover,
for each (xi, xj) ∈ P, either Paired(i, j) = true or Q(i, j) = true. It follows that
P1 ∩ P2 = ∅ which concludes the proof of claim 1. To prove claim 2, it suffices to see
that, (i, j) satisfies condition (7.1a) if and only if (j, i) satisfies condition (7.2a). The
same holds for (7.1b) and (7.2b), (7.1c) and (7.2c), (7.1d) and (7.2d).

For example, if n = 3, we compute comparison bits only for (x1, x2), (x2, x3),
(x3, x1) and deduce the remaining comparison bits from the computed ones. If n = 4,
we compare only (x1, x2), (x1, x4), (x2, x3), (x3, x1), (x3, x4), (x4, x2).

The predicate Paired (Equation 7.1) is used in our schemes to reduce the num-
ber of comparisons and to equally distribute the computation task of the compar-
isons among the clients. Let #headi (resp. #taili) denote the number of times
Paired(i, j) = true (resp. Paired(j, i) = true) holds. For example, if n = 3, we have
#headi = #taili = 1 for all clients. However, for n = 4, we have #head1 = #head3 = 2,
#tail1 = #tail3 = 1, #head2 = #head4 = 1 and #tail2 = #tail4 = 2.

Lemma 7.2.8. Let X = {x1, . . . , xn} be a set of integers and assume the predicate
Paired is used to sort X. If n is odd then: #headi = #taili = n−1

2 . If n is even then:

#headi =
⎧⎪⎪⎨⎪⎪⎩

n
2 if i odd
n
2 − 1 if i even

#taili =
⎧⎪⎪⎨⎪⎪⎩

n
2 − 1 if i odd
n
2 if i even.
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Proof. This is actually a corollary of the proof of Lemma 7.2.7. It follows from the
fact that (xi, xj) ∈ P1 ⇔ (xj , xi) ∈ P2 and any xi is involved in n − 1 comparisons
(since we need bi1, . . . , bin to compute ri = ∑nj=1 bij , where we trivially have bii = 1
without comparison). This proves the case when n is odd. If n is even then the odd
case applies for n′ = n − 1. Then for each i ∈ {1, . . . , n′}, we have Paired(i, n) = true
if i is odd (condition 7.1b) and Paired(n, i) = true if i is even (condition 7.1c).

7.3 A GC-Based Construction

This section describes Kre-Ygc (Protocol 7.1) based on GC which consists of an ini-
tialization and a main protocol. During initialization, parties generate and distribute
cryptographic keys. The online protocol uses GC to compare the inputs and AHE to
compute the rank of each xi from the comparison bits. We denote an AHE ciphertext
with ⟦⋅⟧ (see Table 2.2).

7.3.1 Initialization

The initialization consists of public key distribution and Diffie-Hellman (DH) key
agreement. Each client Ci sends its public key pki (e.g., using a pseudonym certificate)
of an AHE to the server. The server then distributes the public keys to the clients.
In our implementation, we use the Paillier [159] scheme, but any AHE scheme such
as [127] will work as well. Then each pair (Ci,Cj) of clients runs DH key exchange
through the server to generate a common secret key ckij = ckji. The common key
ckij is used by Ci and Cj to seed the pseudorandom number generator (PRNG) of
the garbling scheme that is used to generate a comparison GC for xi and xj , i.e.
Gb(1λ, ckij , f>), where f> is a Boolean comparison circuit.

7.3.2 GC-Based Main Protocol

Protocol 7.1 is a four-round protocol in which we use GC to compare pairs of inputs
and to reveal a blinded comparison bit to the server. Then we use AHE to unblind the
comparison bits, compute the ranks and the KRE without revealing anything to the
parties. Let f> be defined as: f>((ai, xi), (aj , xj)) = ai ⊕ aj ⊕ bij , where ai, aj ∈ {0,1},
i.e., f> compares xi, xj and blinds the comparison bits bij with ai, aj .

Comparing Inputs. For each pair (xi, xj), if Paired(i, j) = true the parties do
the following:

• Client Ci chooses a masking bit aiji
$← {0,1} and extends its input xi to (aiji , xi).

Then using the common key ckij , it computes (F ij> , e) ← Gb(1λ, ckij , f>) and
(āiji , x̄

ij
i )← En(e, (aiji , xi)), and sends F ij> , (āiji , x̄

ij
i ) to the server S.

• Client Cj chooses a masking bit aijj
$← {0,1} and extends its input xj to (aijj , xj).

Then using the common key ckji = ckij , it computes (F ij> , e) ← Gb(1λ, ckji, f>)
and (āijj , x̄

ij
j )← En(e, (aijj , xj)), and sends only (āijj , x̄

ij
j ) to the server S.

• We have b′ij ← F ij> ((āiji , x̄
ij
i ), (āijj , x̄

ij
j )) = aiji ⊕ a

ij
j ⊕ bij (i.e. bij is hidden to S).

The server then evaluates all GCs (Steps 1 to 5).
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Unblinding Comparison Bits. Using AHE, the parties unblind each GC result
b′ij = a

ij
i ⊕ a

ij
j ⊕ bij , where a

ij
i is known to Ci and a

ij
j is known to Cj , without learning

anything. As a result, ⟦bij⟧i and ⟦bij⟧j are revealed to S encrypted under pki and pkj .
This is illustrated in Steps 6 to 16 and works as follows:

• S sends b′ij to Ci and Cj . They reply with ⟦aijj ⊕ bij⟧i and ⟦aiji ⊕ bij⟧j .

• S forwards ⟦aiji ⊕ bij⟧j , ⟦a
ij
j ⊕ bij⟧i to Ci, Cj . They reply with ⟦bij⟧j , ⟦bij⟧i.

• S sets ⟦bji⟧j = ⟦1 − bij⟧j .

Computing the Rank. The computation of the rank is done at the server by
homomorphically adding comparison bits. Hence for each i, the server computes the
ciphertext ⟦ri⟧i = ⟦∑nj=1 bij⟧i. Then, it chooses a random number αi and computes
⟦βi⟧i = ⟦(ri − k) ⋅ αi⟧i (Steps 17 to 19). The ciphertext ⟦βi⟧i encrypts 0 if ri = k (i.e.,
xi is the kth-ranked element) otherwise it encrypts a random plaintext.

Computing the KRE’s Ciphertext. Each client Ci receives ⟦βi⟧i encrypted under
its public key pki and decrypts it. Then if βi = 0, Ci sets mi = xi otherwise mi = 0.
Finally, Ci encrypts mi under each client’s public key and sends ⟦mi⟧1, . . . , ⟦mi⟧n to
the server (Steps 20 to 22).

Revealing the KRE’s Ciphertext. In the final steps (Steps 23 to 24), the server
adds all ⟦mj⟧i encrypted under pki and reveals ⟦∑nj=1mj⟧i to Ci.

Brief Summary. Kre-Ygc protocol correctly computes the KRE. The proof triv-
ially follows from the correctness of the GC protocol, Lemmas 7.2.5 and 7.2.7, and
the correctness of the AHE scheme. Kre-Ygc is not fault-tolerant and a collusion
with the server reveals all inputs to the adversary.

7.4 An AHE-Based Construction

This section describes Kre-Ahe1 (Protocol 7.3) based on threshold AHE. Kre-
Ahe1 compares all inputs (using our modified variant of the Lin-Tzeng protocol as
described in Algorithm 6.10) at the server which then randomly distributes encrypted
comparison bits to the clients for threshold decryption.

7.4.1 Threshold Initialization

We assume threshold key generation. Hence, there is a public/private key pair (pk, sk)
for an AHE, where the private key sk is split in n shares ⟨sk⟩1, . . . , ⟨sk⟩n such that client
Ci gets share ⟨sk⟩i and at least t shares are required to reconstruct sk. Additionally,
each client Ci has its own AHE key pair (pki, ski) and publishes pki to all clients. We
denote by ⟦xi⟧, ⟦xi⟧j encryptions of xi under pk,pkj respectively (Table 2.2).

7.4.2 Main Protocol

Protocol 7.3 is a four-round protocol in which the clients send their inputs encrypted
using AHE under the common public key pk to the server. The server homomorphi-
cally evaluates comparison circuits on the encrypted inputs using our modified variant
of the Lin-Tzeng protocol [135]. Then the clients jointly decrypt the comparison re-
sults and compute the rank of each xi.
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1: for i ∶= 1, j ∶= i + 1 to n do
2: if Paired(i, j) then
3: Ci → S: F ij> , (āiji , x̄

ij
i )

4: Cj → S: (āijj , x̄
ij
j )

5: S: let b′ij ← F ij> (x̄iji , x̄
ij
j )

6: for i ∶= 1, j ∶= i + 1 to n do
7: if Paired(i, j) then
8: S → Ci: b′ij = a

ij
i ⊕ a

ij
j ⊕ bij

9: S → Cj : b′ij = a
ij
i ⊕ a

ij
j ⊕ bij

10: Ci → S: ⟦aijj ⊕ bij⟧i
11: Cj → S: ⟦aiji ⊕ bij⟧j
12: S → Ci: ⟦aiji ⊕ bij⟧j
13: S → Cj : ⟦aijj ⊕ bij⟧i
14: Ci → S: ⟦bij⟧j
15: Cj → S: ⟦bij⟧i
16: S: let ⟦bji⟧j ← ⟦1 − bij⟧j
17: for i ∶= 1 to n do
18: S ∶ ⟦ri⟧i ← ⟦∑nj=1 bij⟧i ▷ bii = 1
19: S → Ci: ⟦βi⟧i ← ⟦(ri − k) ⋅ αi⟧i, for a random αi

20: for i ∶= 1 to n do

21: Ci: mi ∶=
⎧⎪⎪⎨⎪⎪⎩

xi if βi = 0

0 if βi ≠ 0

22: Ci → S: ⟦mi⟧1, . . . , ⟦mi⟧n
23: for i ∶= 1 to n do
24: S → Ci: ⟦∑nj=1mj⟧i

Protocol 7.1: Kre-Ygc Protocol

Uploading Ciphertexts. Using the common public key pk, each client Ci sends
⟦xi⟧, ⟦V 0

xi⟧, ⟦V
1
xi⟧ to the server as illustrated in Step 2 of Protocol 7.3.

Comparing Inputs. The server compares the inputs by computing

gij ← LinCompare(⟦V 1
xi⟧, ⟦V

0
xj⟧)

for each 1 ≤ i, j,≤ n. Let G be the n × n matrix [g11, . . . , g1n, . . . , gn1, . . . , gnn]. The

server chooses n+1 permutations π,π1, . . . , πn
$←Sn that hide the indexes of gij to the

clients during threshold decryption: π permutes the rows of G and each πi,1 ≤ i ≤ n
permutes the columns of row i. Let G′

1, . . . ,G
′
n be the rows of the resulting matrix

G′ (after application of the permutations to G). Using Algorithm 7.2, the server
computes for each Ci a t × n matrix G(i) consisting of the rows:

G′
i−t+1 mod n, . . . ,G

′
i−1 mod n,G

′
i.

The matrix G(i) and the list of combiners for rows in G(i) are sent to Ci in Step 11.
An example is illustrated in Table 7.3.
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G G′ Decp Decf

g11, g12, g13 g32, g33, g31 C1, C2 C1

g21, g22, g23 g11, g13, g12 C2, C3 C2

g31, g32, g33 g23, g21, g22 C1, C3 C3

Table 7.3: Threshold Decryption Example (n = 3, t = 2): The elements
of G are permuted resulting in G′. Clients in columns “Decp” run
Decp() on the corresponding row and send the result to the client in

column “Decf ” for the final decryption.

Lemma 7.4.1 shows that the ciphertexts generated from Algorithm 7.2 allow to
correctly decrypt the matrix G = [g11, . . . , gnn], i.e., each gij is distributed to exactly
t different clients. By applying the lemma to the set of rows of G, the first part shows
that each client receives exactly a subset of t different rows of G. The second part
shows that each row of G is distributed to exactly t different clients, which allows a
correct threshold decryption of each row.

Lemma 7.4.1. Let X = {x1, . . . , xn} be a set of n elements, Xi = {xi−t+1, . . . , xi},
1 ≤ i ≤ n, where the indexes in Xi are computed modulo n, and t ≤ n. Then:

• Each subset Xi contains exactly t elements of X and

• each x ∈ X is in exactly t subsets Xi.

Proof. It is clear from the definition that Xi ⊆ X for all i and since i− (i− t+1)+1 = t,
Xi has exactly t elements. Let xi be in X, then from the definition, xi is an element
of only the subsets Xi,Xi+1, . . . ,Xi+t−1, where indexes of the Xi are computed mod n.
Again, it holds (i + t − 1) − i + 1 = t.

After receiving G(i), each client Ci performs its partial decryption for each ci-
phertext, re-encrypts each line l (l ∈ I(i)) with the public key pkl of client Cl.
This prevents the server to learn comparison bits. Then Ci sends the result h(i)

l,j =
⟦Decp(⟨sk⟩i, glj)⟧l, (1 ≤ j ≤ n) to the server (Step 17). Client Cl will be the combiner
of the ciphertexts in line l. In Step 19, the server forwards the encrypted partial
decryption results h(i1)

lj , . . . , h
(it)
lj of line l and the corresponding cl = ⟦xπ−1(l)⟧ to Cl.

Client Cl decrypts and reconstructs each comparison result resulting in the comparison
bits bl1, . . . , bln as illustrated in Steps 24 and 25.

Computing the KRE’s Ciphertext. Each combiner Cl computes the rank rl =
∑nj=1 blj (Step 27) and ciphertext c̃l that is either a re-encryption of cl if rl = k or
an encryption of 0 otherwise (Step 28). The ciphertext c̃l is sent back to the server.
The server multiplies all c̃l (Step 29) resulting in a ciphertext c̃ of the KRE which is
sent to a subset It of t clients for threshold decryption (Step 32). Each client in It
performs a partial decryption (Step 34), encrypts the result for all clients, and sends
the ciphertexts to the server (Step 35). Finally, the server forwards the encrypted
partial decryption to the clients (Step 37) that they use to learn the KRE (Step 38).

Brief Summary. Kre-Ahe1 protocol correctly computes the KRE. The proof triv-
ially follows from the correctness of the Lin-Tzeng comparison protocol [135], Lemmas
7.2.5 and 7.4.1 and the correctness of AHE. Kre-Ahe1 executes all O(n2) compar-
isons non-interactively at the server, but requires threshold decryption for O(n2)
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1: function DecReq(G, i, t, π)
2: parse G as [g11, . . . , g1n, . . . , gn1, . . . , gnn]
3: let G(i) = [q(i)11 , . . . , q

(i)
1n , . . . , q

(i)
t1 , . . . , q

(i)
tn ]

4: for u ∶= 1 to t do
5: j ← i − t + u mod n
6: if j ≤ 0 then
7: j ← j + n ▷ 1 ≤ j ≤ n
8: I(i) ← I(i) ∪ {j}
9: w ← π(j)

10: for v ∶= 1 to n do
11: q

(i)
uv ← g′wv

12: return (G(i), I(i))

Algorithm 7.2: Decryption Request in Kre-Ahe1 and Kre-Ahe2

elements. The next protocol runs the O(n2) comparisons in parallel with the help of
the clients while requiring threshold decryption of only O(n) elements.

7.5 Improving the AHE-Based Construction

In this section, we describe Kre-Ahe2 (Protocol 7.6) which instantiates the compar-
ison with the DGK protocol [63]. The initialization is similar to the previous case.
We start by briefly describing the DGK protocol [63] using the server.

7.5.1 DGK Comparison Protocol With the Server

The comparison with the server is illustrated in Protocol 7.4. For each pair Ci,Cj
such that Paired(i, j) holds, the clients Ci and Cj run the DGK protocol with the
server. The server forwards ⟦xbi ⟧i = ⟦xiµ⟧i, . . . , ⟦xi1⟧i (encrypted under pki) to Cj .
Client Cj runs DgkEval(⟦xbi ⟧i, xbj) and obtains δji, (⟦ziµ⟧i, . . . , ⟦zi1⟧i) as result. It
then encrypts δji under the common public key and sends back ⟦ziµ⟧i, . . . , ⟦zi1⟧i, ⟦δji⟧
to client Ci via the server. Client Ci runs DgkDecrypt(⟦ziµ⟧i, . . . , ⟦zi1⟧i), obtains
a shared bit δij and sends back ⟦δij ⊕ δji⟧ to the server. After the computation, the
clients Ci and Cj hold random shared bits δij and δji such that bij = [xi ≤ xj] = δij⊕δji
holds. The server learns the encryption ⟦bij⟧ of the comparison bit bij .

7.5.2 Main Protocol

Kre-Ahe2 is a 4-round protocol in which inputs are compared interactively using the
DGK protocol. The resulting comparison bit is encrypted under pk and revealed to the
server which then computes the ranks of the xi’s and triggers a threshold decryption.

Uploading Ciphertext. Each party Ci sends ⟦xi⟧ (encrypted under the common
public key pk) and ⟦xbi ⟧i = (⟦xiµ⟧i, . . . , ⟦xi1⟧i) (encrypted under its own public key pki)
to the server. This is illustrated in Step 2 of Protocol 7.6. The server then initializes
a matrix G = [g11, . . . , gnn], where gii = ⟦1⟧ and gij(i ≠ j) will be computed in the
DGK protocol as gij = ⟦bij⟧ if Paired(i, j) is true, and an array X = [⟦x1⟧, . . . , ⟦xn⟧]
(Step 3).
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1: for i ∶= 1 to n do
2: Ci → S: ⟦xi⟧, ⟦V 0

xi⟧, ⟦V
1
xi⟧

3: for i, j ∶= 1 to n (i ≠ j) do
4: S: gij ← LinCompare(⟦V 1

xi⟧, ⟦V
0
xj⟧)

5: S ∶ choose permutations π0, . . . , πt
$←Sn

6: S ∶ let G = [g11, . . . , gnn]
7: S ∶ let (c1 . . . , cn)← π0(⟦x1⟧, . . . , ⟦xn⟧)
8: for u, v ∶= 1 to n do
9: S ∶ guv ← gπ0(u)πu(v)

10: for i ∶= 1 to n do
11: S → Ci: (G(i), I(i))← DecReq(G, i, t, π0)
12: Ci: parse G(i) as [q(i)u11, . . . , q

(i)
u1n, . . . , q

(i)
ut1
, . . . , q

(i)
utn]

parse I(i) as [I(i)1 , . . . , I
(i)
t ]

13: for i ∶= 1 to n do
14: for u ∶= 1 to t do
15: for v ∶= 1 to n do
16: for each l ∈ I(i)u do
17: Ci → S: h(i)

uv ← ⟦Decp(⟨sk⟩i, q(i)uv )⟧l
18: let {l1, . . . , lt} be the indexes of partial decryptors of the l-th row of G
19: for l ∶= 1 to n do
20: S → Cl: cl
21: for j ∶= 1 to n do
22: S → Cl: h

(l1)
lj , . . . , h

(lt)
lj

23: for l, j ∶= 1 to n do
24: Cl: d1 =Dec(skl, h

(l1)
lj ), . . . , dt =Dec(skl, h

(lt)
lj )

25: Cl: blj ← Decf(d1, . . . , dt)
26: for l ∶= 1 to n do
27: Cl: rl ← ∑nj=1 blj

28: Cl → S: c̃l ∶=
⎧⎪⎪⎨⎪⎪⎩

cl ⋅ ⟦0⟧ if rl = k
⟦0⟧ if rl ≠ k

29: S: let c̃←∏n
l=1 c̃l

30: S: let It = {i1, . . . , it}
$← {1, . . . , n}

31: for all i ∈ It do
32: S → Ci: c̃
33: for all i ∈ It do
34: Ci: m(i) = Decp(⟨sk⟩i, c̃)
35: Ci → S: ⟦m(i)⟧1, . . . , ⟦m(i)⟧n
36: for i ∶= 1 to n do
37: S → Ci: ⟦m(i1)⟧i, . . . , ⟦m(it)⟧i
38: Ci: Decf(m(i1), . . . ,m(it))

Protocol 7.3: Kre-Ahe1 Protocol

Comparing Inputs. In this step, pairs of clients run DgkCompare with the server
as illustrated in Algorithm 7.4. If (i, j) satisfies the predicate Paired, then Ci runs



7.5. Improving the AHE-Based Construction 143

1: function DgkCompare(i, j)
2: if Paired(i, j) then
3: S → Cj : ⟦xbi ⟧i = ⟦xiµ⟧i, . . . , ⟦xi1⟧i
4: Cj : (δji, Z)← DgkEval(⟦xbi ⟧i, xbj)
5: Cj : parse Z as (⟦ziµ⟧i, . . . , ⟦zi1⟧i)
6: Cj → S: ⟦ziµ⟧i, . . . , ⟦zi1⟧i, ⟦δji⟧
7: S → Ci: ⟦ziµ⟧i, . . . , ⟦zi1⟧i, ⟦δji⟧
8: Ci: δij ← DgkDecrypt(⟦ziµ⟧i, . . . , ⟦zi1⟧i)
9: Ci → S: ⟦δij ⊕ δji⟧

10: S ∶ return ⟦bij⟧ = ⟦δij ⊕ δji⟧

Protocol 7.4: DGK Comparison Protocol With the Server

1: function ComputeKreAhe(G,X,k)
2: parse G as [g11, . . . , gnn] and X as [⟦x1⟧, . . . , ⟦xn⟧]
3: for i ∶= 1 to n do
4: ⟦ri⟧← gii
5: for j ∶= 1 to n (j ≠ i) do
6: if Paired(i, j) then
7: ⟦ri⟧← ⟦ri⟧ ⋅ gij
8: else
9: ⟦ri⟧← ⟦ri⟧ ⋅ ⟦1⟧ ⋅ g−1

ji

10: for i ∶= 1 to n do
11: yi ← (⟦ri⟧ ⋅ ⟦k⟧−1)αi ⋅ ⟦xi⟧
12: return [y1, . . . , yn]

Algorithm 7.5: Computing the KRE’s ciphertext in Kre-Ahe2

the DGK protocol as generator, and Cj is the evaluator. After the computation, Ci
and Cj get shares δij and δji of the comparison bit which is encrypted under pk as
⟦bij⟧ = ⟦δij ⊕ δji⟧ and revealed to the server.

Computing the KRE’s Ciphertext. After all admissible comparisons have been
computed (and the result stored in the matrix G), the server uses Algorithm 7.5 to
compute the rank of each input xi by homomorphically adding the comparison bits
involving xi. Let ⟦ri⟧ be a ciphertext initially encrypting 0 and let bij = δij ⊕ δji.
For each j, if Paired(i, j) is true (i.e., ⟦bij⟧ has been computed) then we compute
⟦ri⟧ ← ⟦ri + bij⟧. Otherwise (i.e., ⟦bij⟧ has not been computed but we can deduce it
from ⟦bji⟧) we compute ⟦ri⟧ ← ⟦ri + 1 − bij⟧. Now, the server has the encrypted rank
⟦r1⟧, . . . , ⟦rn⟧, where exactly one ⟦ri⟧ encrypts k. Since we are looking for the element
whose rank is k, the server then computes yi = (⟦ri⟧ ⋅ ⟦k⟧−1)αi ⋅ ⟦xi⟧ = ⟦(ri − k)αi + xi⟧
for all i, where αi is a number chosen randomly in the plaintext space.

Therefore, for the ciphertext ⟦ri⟧ encrypting k, yi is equal to ⟦xi⟧. Otherwise yi
encrypts a random plaintext.

Decrypting the KRE’s Ciphertext. In Step 12, the server distributes the result
Y = [y1, . . . , yn] of Algorithm 7.5 to the clients for threshold decryption. For that,
the array Y is passed as n × 1 matrix to Algorithm 7.2. In Step 16, the server
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receives partial decryption results from the clients, forwards them to the corresponding
combiner (Step 18). Each combiner Cj performs a final decryption (Step 21) resulting
in a message x̃j whose bitlength is less or equal to µ if it is the KRE. Combiner Cj
then sets m(j) = x̃j if ∣x̃j ∣ ≤ µ, otherwise m(j) = 0 (Step 22). Then m(j) is encrypted
with the public key of all clients and send to the server (Step 23). Finally, the server
reveals the KRE to all clients (Step 25).

1: for i ∶= 1 to n do
2: Ci → S: ⟦xi⟧, ⟦xbi ⟧i
3: S ∶ let G = [g11, . . . , gnn] and X = [⟦x1⟧, . . . , ⟦xn⟧]
4: for i ∶= 1, j ∶= i + 1 to n do
5: Ci,Cj , S: gij ← DgkCompare(i, j)
6: S: Y ← ComputeKreAhe(G,X,k)
7: S: let π $←Sn be a permutation
8: S: parse Y as [y1, . . . , yn]
9: for i ∶= 1 to n do

10: S: yi ← yπ(i)

11: for i ∶= 1 to n do
12: S → Ci: (Z(i), I(i))← DecReq(Y, i, t, π)
13: Ci: parse Z(i) as [z(i)j1 , . . . , z

(i)
jt

]
14: for i ∶= 1 to n do
15: for each j in I(i) do
16: Ci → S: h(i)

j ← ⟦Decp(⟨sk⟩i, z(i)j )⟧j
17: for j ∶= 1 to n do
18: S → Cj : (h(i1)

j , . . . , h
(it)
j )

19: for j ∶= 1 to n do
20: Cj : d1 =Dec(skj , h

(i1)
j ), . . . , dt =Dec(skj , h

(it)
j )

21: Cj : x̃j ← Decf(d1, . . . , dt)

22: Cj : m(j) ∶=
⎧⎪⎪⎨⎪⎪⎩

x̃j if ∣x̃j ∣ ≤ µ
0 if ∣x̃j ∣ > µ

23: Cj → S: ⟦m(j)⟧1, . . . , ⟦m(j)⟧n
24: for i ∶= 1 to n do
25: S → Ci: ⟦∑nj=1m

(j)⟧i
26: Ci: Dec(ski, ⟦∑nj=1m

(j)⟧i)

Protocol 7.6: Kre-Ahe2 Protocol

Brief Summary. Kre-Ahe2 protocol correctly computes the KRE. This trivially
follows from the correctness of DGK protocol [63], Lemmas 7.2.5 and 7.4.1, and
the correctness of AHE. Kre-Ahe2 evaluates comparisons interactively but requires
threshold decryption for O(n) elements. Notice that Kre-Ahe2 can be instanti-
ated with the Lin-Tzeng protocol [135] as well. To compare xi, xj , Cj will receive
both ⟦V 0

xi⟧, ⟦V
1
xi⟧ and randomly choose between evaluating LinCompare either with

⟦V 1
xi⟧, ⟦V

0
xj⟧ or with ⟦V 1

xj⟧, ⟦V
0
xi⟧. It will then set δji ← 0 or δji ← 1 accordingly. This

improves the running time (LinCompare is more efficient than DgkEval) while
increasing the communication (µ more ciphertexts are sent to Cj).
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1: function ComputeKreShe(X,Z, ⟦kb⟧)
2: parse X as [⟦xb1⟧, . . . , ⟦xbn⟧] and Z as [⟦x⃗1⟧, . . . , ⟦x⃗n⟧]
3: for i ∶= 1 to n do
4: ⟦bii⟧← ⟦1⟧
5: for j ∶= i + 1 to n do
6: (⟦bij⟧, ⟦bji⟧)← SheCmp(⟦xbi ⟧, ⟦xbj⟧)
7: for i ∶= 1 to n do
8: ⟦rbi ⟧← SheFadder(⟦bi1⟧, . . . , ⟦bin⟧)
9: for i ∶= 1 to n do

10: ⟦βi⟧← SheEqual(⟦rbi ⟧, ⟦kb⟧)
11: for i ∶= 1 to n do
12: ⟦y⃗i⟧← SheMult(⟦x⃗i⟧, ⟦βi⟧)
13: return SheAdd(⟦y⃗1⟧, . . . , ⟦y⃗n⟧)

Algorithm 7.7: Computing the KRE’s Ciphertext in Kre-She

In Kre-Ahe1 and Kre-Ahe2, we evaluated either the comparison (Kre-Ahe1)
or the rank (Kre-Ahe2) completely at the server. In the next scheme, we compute
the KRE’s ciphertext non-interactively at the server such that clients are only required
for the threshold decryption of one ciphertext.

7.6 A SHE-Based Construction

This section describes Kre-She based on SHE. Hence, ⟦x⟧ now represents a SHE
ciphertext of the plaintext x. The initialization and threshold decryption are similar to
Kre-Ahe1. We will use homomorphic routines for addition, multiplication, greater-
than comparison, full adder, equality test, and shift as described in Section 2.1.4.

7.6.1 Main Protocol

In Protocol 7.8 the server S receives encrypted inputs from clients. For each client’s
integer xi, the encrypted input consists of:

• an encryption of the bit representation: ⟦xbi ⟧ = (⟦xiµ⟧, . . . , ⟦xi1⟧) and

• an encryption of the packed bit representation: ⟦x⃗i⟧ = ⟦xiµ∣ . . . ∣xi1∣0∣ . . . ∣0⟧.

Then the server runs Algorithm 7.7 which uses SheCmp to pairwise compare the
inputs resulting in encrypted comparison bits ⟦bij⟧. Then SheFadder is used to
compute the rank of each input by adding comparison bits. The result is an encrypted
bit representation ⟦rbi ⟧ of the ranks. Using the encrypted bit representations ⟦kb⟧, ⟦rbi ⟧
of k and each rank, SheEqual checks the equality and returns an encrypted bit ⟦βi⟧.
Recall that because of SVCP the encryption of a bit βi is automatically replicated in
all slots, i.e., ⟦βi⟧ = ⟦βi∣βi∣ . . . ∣βi⟧, such that evaluating ⟦y⃗i⟧ ← SheMult(⟦x⃗i⟧, ⟦βi⟧),
1 ≤ i ≤ n, and SheAdd(⟦y⃗1⟧, . . . , ⟦y⃗n⟧) returns the KRE’s ciphertext.

Correctness and security follow trivially from Lemma 7.2.5, correctness and secu-
rity of SHE. The leakage is LS = Li = {n, t, κ, λ, µ}.
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1: for i ∶= 1 to n do
2: Ci → S: ⟦xbi ⟧, ⟦x⃗i⟧
3: S ∶ let X = [⟦xb1⟧, . . . , ⟦xbn⟧] and Z = [⟦x⃗1⟧, . . . , ⟦x⃗n⟧]
4: S ∶ ⟦xi∗⟧← ComputeKreShe(X,Z, ⟦kb⟧)
5: S: let It = {i1, . . . , it}

$← {1, . . . , n}
6: for all i ∈ It do
7: S → Ci: ⟦xi∗⟧
8: for all i ∈ It do
9: Ci: m(i) ← Decp(⟨sk⟩i, ⟦xi∗⟧)

10: Ci → S: ⟦m(i)⟧1, . . . , ⟦m(i)⟧n
11: for i ∶= 1 to n do
12: S → Ci: ⟦m(i1)⟧i, . . . , ⟦m(it)⟧i
13: Ci: Decf(m(i1), . . . ,m(it))

Protocol 7.8: Kre-She Protocol

7.7 Security Analysis

Let the inherent leakage be L = {k,n, t, κ, λ, µ}, i.e., the parameters of the protocol.

Theorem 7.7.1. If the server S is non-colluding and the AHE scheme is IND-CPA
secure, then Kre-Ygc 1-privately computes FKRE in the semi-honest model with leak-
age LS = Li = L. Hence, let the view of a party P in the protocol Kre-Ygc be denoted
by ViewΠKRE

P (x1, . . . , xn). Then there are simulators Simkre
Ci

for each Ci and Simkre
S

for S such that:
Simkre

S (∅,LS)
c≡ ViewΠKRE

S (x1, . . . , xn) and

Simkre
Ci

(xi,FKRE(x1, . . . , xn),Li)
c≡ ViewKre-Ygc

Ci
(x1, . . . , xn).

Proof. The view ViewΠKRE

Ci
consists of:

(F ij> , (āiji , x̄
ij
i ), b′ij , ⟦a

ij
j ⊕ bij⟧i, ⟦a

ij
i ⊕ bij⟧j , ⟦bij⟧j)1≤j≤n(i≠j),

⟦βi⟧i, βi.

The garbled circuit F ij> and garbled input (āiji , x̄
ij
i ) are generated by client Ci itself.

The remaining elements of the view are either an IND-CPA ciphertext ⟦⋅⟧j or a ran-
dom bit b′ij , a

ij
j ⊕ bij (aijj is a random bit chosen by Cj) or random integer βi (βi is

a random integer or 0. It is 0 if and only if xi is the kth-ranked element, which is
revealed anyway at the end of the protocol). For each m ∈ ViewΠKRE

Ci
, Simkre

Ci
only

needs the bit length ∣m∣ of m and simulates it by choosing a random bit strings of
length ∣m∣. As a result, the leakage to the adversary is L.

The view of the server consists of:

⟨F ij> , (āiji , x̄
ij
i ), (āijj , x̄

ij
j ), b′ij ,

⟦aijj ⊕ bij⟧i, ⟦a
ij
i ⊕ bij⟧j , ⟦a

ij
i ⊕ bij⟧j , ⟦a

ij
j ⊕ bij⟧i,

⟦aij⟧j , ⟦bij⟧i⟩Paired(i,j)=true, ⟨⟦ri⟧i, ⟦βi⟧i⟩1≤i≤n, ⟨⟦mi⟧j⟩1≤i,j≤n.
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The simulation is similar to the case of the client. For each m ∈ ViewΠKRE

S , Simkre
S

chooses random bit strings of length ∣m∣.

Theorem 7.7.2. Let t ∈ N and τ < t. If the server S is non-colluding and the AHE
scheme is IND-CPA secure, then Kre-Ahe1 and Kre-Ahe2 τ -privately compute
FKRE in the semi-honest model with leakage LS = Li = L. Hence, let I = {i1, . . . , iτ}
denote the indexes of corrupt clients, LI = ⋃i∈I Li denote their joint leakages and
ViewΠKRE

I (x1, . . . , xn) denote their joint views, there exists a simulator Simkre
I such

that:

Simkre
I ((xi1 , . . . , xiτ ),FKRE(x1, . . . , xn),LI)

c≡ ViewΠKRE

I (x1, . . . , xn).

Proof. If the server S is non-colluding and the number of colluding clients is smaller
than t, then parties see in Kre-Ahe1 only random strings (IND-CPA ciphertexts,
random shares, or random bits). Hence, all messages can be simulated by choosing
random bit strings of the corresponding length. However, the simulation of Step 19
must be coherent with Step 25. Each client receives random shares in Step 19, runs
the final decryption Decf(.) in Step 25 and learns a random bit. Let Cl be a client
with l ∈ I. To simulate Steps 19 and 25, the simulator chooses t random values for
Step 19 such that running Decf(.) returns the random bit simulated in Step 25.

For example, if the underlying AHE is ECC ElGamal (ECE), then a ciphertext
has the form c = (α1, α2) = (r ⋅P,m ⋅P +r ⋅pk). For each ECE ciphertext c = (α1, α2) =
(r⋅P,m⋅P+r⋅pk) that must be decrypted in Step 25, Cl gets α2 and t partial decryption
results α11, . . . , α1t of α1 in Step 19. To simulate this, the simulator chooses a random
bit b and a random α̃2. Then it computes α̃1 = α̃2 − b ⋅ P and generates random
α̃11, . . . , α̃1t such that ∑ti=1 α̃1i = α̃1 in G. An adversary controlling a number of
clients smaller than t can only deduce the length of random strings, the number of
ciphertexts, the number of iterations. As a result, the leakage to that adversary is L.

The proof for Kre-Ahe2 is similar. Ciphertexts and random shares are simulated
with equally long random strings and Steps 18 and 22 in Kre-Ahe2 are simulated as
above for Steps 19 and 25 in Kre-Ahe1.

Theorem 7.7.3. Let t ∈ N and τ < t. If the server S is non-colluding and the SHE
scheme is IND-CPA secure, then Kre-She τ -privately computes FKRE in the semi-
honest model with leakage LS = Li = L. Hence, let I = {i1, . . . , iτ} denote the indexes
of corrupt clients, LI = ⋃i∈I Li denote their joint leakages and ViewΠKRE

I (x1, . . . , xn)
denote their joint views, there exists a simulator Simkre

I such that:

Simkre
I ((xi1 , . . . , xiτ ),FKRE(x1, . . . , xn),LI)

c≡ ViewΠKRE

I (x1, . . . , xn).

Proof. If the server S is non-colluding and the number of colluding clients is smaller
than t, then parties see in Kre-She only random strings (IND-CPA ciphertexts or
partial decryption results). The security is also straightforward as the computation
is almost completely done by the server alone and encrypted under an IND-CPA
encryption. Moreover, the partial decryption reveals only a partial result to each
decryptor.

Recall that our adversary is semi-honest. In Kre-Ygc, a server collusion reveals
all inputs to the adversary. In Kre-Ahe1 and Kre-Ahe2, a server collusion only
increases the leakage as long as the number of corrupted clients is smaller than t.
For example in Kre-Ahe1, the adversary can learn the order of the inputs whose
comparison bits are final-decrypted by a corrupted client in Step 25. In Kre-She,
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the KRE is homomorphically computed by the server such that the clients are only
required for the decryption of one ciphertext encrypting the KRE. Moreover, the
ciphertexts are encrypted using the threshold public key. As a result, assuming a semi-
honest adversary and a collusion set containing less than t clients, a server collusion
leaks no more information than k,n, t, κ, λ, µ.

7.8 Complexity Analysis

In this section, we discuss the complexity of our schemes. We will use κ and λ as
length of asymmetric ciphertext and symmetric security parameter.

7.8.1 Complexity of the GC-Based Protocol

A GC for the comparison of two µ-bit integers consists of µ AND-gates resulting in 4µ
symmetric ciphertexts [130, 131]. It can be reduced by a factor of 2 using the halfGate
optimization [197] at the cost of performing two cheap symmetric operations (instead
of one) during GC evaluation.

We do the analysis for the case where n is odd (the even case is similar). From
Lemma 7.2.8, each client generates (n − 1)/2 GCs resulting in (n − 1)µ symmetric
operations. The computation of encrypted comparison bits (Steps 6 to 16) and the
computation of the KRE’s ciphertext require O(n) asymmetric operations to each
client. Finally, each client has to decrypt one ciphertext in Step 23. As a result,
the computation complexity of each client is, therefore, O((n − 1)µ) symmetric and
O(2n + 1) asymmetric operations. In communication, this results in nκ bits for the
asymmetric ciphertexts, 2µλ(n−1)/2 bits for the GCs and µλ(n−1)/2 for the garbled
inputs and nκ bits for handling the server’s leakage. In total each client sends 2nκ +
3µλ(n−1)

2 .
The server evaluates n(n− 1)/2 GCs each consisting of 2µ symmetric ciphertexts.

Computing the rank (Steps 17 to 19) requires O(n logn+n) operations to the server.
Finally, the server evaluates logn + n asymmetric operations to compute the KRE
ciphertext for each client (Steps 23 to 24). The total computation complexity of the
server is O(n(n − 1)µ) symmetric and O((n + 1) logn + 2n). In communication, the
server sends n(n−1) asymmetric ciphertexts in Steps 6 to 16, n asymmetric ciphertexts
in Steps 17 to 19 and n asymmetric ciphertexts in Steps 23 to 24. This results in a
total of (n2 + n)κ bits.

7.8.2 Complexity of the AHE-Based Protocol

Each client performs O(µ) operations in Step 2, O(nµt) operations in Step 17, O(nµt)
operations in Step 24, O(log t) operations in Step 25, O(1) operations in Step 28,
eventually O(1) and O(n) operations in Steps 34 and 35, and O(log t) operations in
Step 38. This results in a total of O(µ+ 2nµt+ 2 log t+n+ 1) asymmetric operations.

Each client sends (2µ+ 1)κ bits in Step 2, nµtκ bits in Step 17, κ bits in Step 28,
eventually nκ bits in Step 35. This results in a total of (2µ + nµt + n + 2)κ bits for
each client.

The main cryptographic operations of the server happen in the evaluation of the
Lin-Tzeng protocol in Step 4. The comparison of two values takes 2µ asymmetric
operations. As a result, the server performs O(2µn2) asymmetric operations for all
comparisons.
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The server sends n2µtκ bits in Step 11 and (n2t + 1)κ bits in Step 19, tκ bits in
Step 32 and ntκ bits in Step 37. This results in a total of (n2µt + n2t + nt + t + 1)κ
bits for the server.

7.8.3 Complexity of the Improved AHE-Based Protocol

Since Kre-Ahe2 also requires the predicate Paired as Kre-Ygc, we do the analysis
for the case where n is odd (the even case is similar).

Each client performs O(µ+1) operations in Step 2, O(7µ(n−1)
2 ) operations in Step

5, O(t) operations in Step 16 and O(log t) in Step 21, O(n) operations in Step 23 and
O(1) operations in Step 26. This results in a total of O(µ + 7µ(n−1)

2 + t + log t + n + 1)
asymmetric operations.

Each client sends (µ+1)κ bits in Step 2, κ(n−1)
2 bits (when the client is head) and

(µ+1)κ(n−1)
2 (when the client is tail) in Step 5, tκ bits in Step 16 and nκ bits in Step

23. This results in a total of (µ (n+1)
2 + 2n + t)κ bits for each client.

The cryptographic operations of the server happen in ComputeKreAhe (Algo-
rithm 7.5) that is called in Step 6 of Protocol 7.6. The server performs O(n2 + n)
asymmetric operations.

The server sends (µκ+(µ+1)κ)n(n−1)
2 bits in Step 5, ntκ bits in Steps 12 and 18, nκ

bits in Step 25. This results in a total of ( (2µ+1)n(n−1)
2 + 2nt + n)κ bits for the server.

7.8.4 Complexity of the SHE-Based Protocol

Each client has O(µ) computation cost (µ + 1 encryptions in Step 2 and eventually
one partial decryption in Step 10) and a communication cost of (µ + n + 1)κ bits.

The cryptographic operations of the server happen in ComputeKreShe (Algo-
rithm 7.7) that is called in Step 4 of Protocol 7.8. The SHE comparison circuit has
depth log(µ−1)+1 and requires O(µ logµ) homomorphic multiplications [46, 47]. For
all comparisons, the server, therefore, performs O(n2µ logµ) multiplications. In Step
10 of Algorithm 7.7, the computation of ⟦∏n

j=1,j≠k(ri−j)⟧ has depth logn and requires
O(n logn) homomorphic multiplications. Step 12 of Algorithm 7.7 adds an additional
circuit depth and requires O(n) homomorphic multiplications. As a result, Algorithm
7.7 has a total depth of log(µ − 1) + logn + 2 and requires O(n2µ logµ + n logn + n)
homomorphic multiplications.

The server sends tκ bits in Step 7 and ntκ bits in Step 12 resulting in a total of
(t + nt)κ bits.

7.9 Evaluation

In this section, we describe implementation details and report on the experimental
results of our implementations.

7.9.1 Implementation Details

We implemented Kre-Ygc, Kre-Ahe1, Kre-Ahe2 as client-server Java applications
while using SCAPI [75]. As Kre-She mostly consists of the homomorphic evaluation
by the server, we implemented Algorithm 7.7 using HElib [100].

The threshold decryption in Kre-Ahe1, Kre-Ahe2 has been implemented us-
ing elliptic curve ElGamal (ECE) [127]. We briefly present ECE and its threshold
decryption [33]. Let G be an elliptic curve group generated by a point P of prime
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order p. The key generation chooses s $← Zp and outputs sk = s and pk = s ⋅ P as

private and public key. To encrypt an integer m, one chooses r $← Zp and outputs the
ciphertext c = (r ⋅P,m ⋅P + r ⋅pk). To decrypt a ciphertext c = (α1, α2), one computes
Q = α2 − α1 ⋅ sk and solves the discrete logarithm on G.
Let n, t be integers such that t ≤ n. To support t-out-of-n threshold decryption
the secret key sk = s is secret-shared using Shamir secret sharing scheme [170] as
described in Section 2.1.3. The threshold key generation outputs secret key shares
⟨sk⟩i = (⟨s⟩i, li),1 ≤ i ≤ n, where ⟨s⟩i = f(i), and f and li are defined in Equations
2.1 and 2.2, respectively. Let It ⊆ {1, . . . , n} be a subset of t clients and assume for
simplicity It = {1, . . . , t}. To decrypt a ciphertext c = (α1, α2) each client Ci, i ∈ It
computes mi = α1 ⋅ si ⋅ li. Then the combiner receives all mi, computes α2 −∑ti=1mi =
α2−α1 ⋅∑ti=1 si ⋅ li = α2−α1 ⋅s = Q and solve the discrete logarithm on G. This requires
O(1) to each client Ci, i ∈ It and O(log t) asymmetric operations to the combiner.

7.9.2 Experimental Setup

For Kre-Ygc, Kre-Ahe1, Kre-Ahe2, we conducted experiments using for the
server a machine with a 6-core Intel(R) Xeon(R) E-2176M CPU @ 2.70GHz and
32GB of RAM, and for the clients two machines with each two Intel(R) Xeon(R)
CPU E7-4880 v2 @ 2.50GHz. The client machines were equipped with 8GB and 4
GB of RAM, and were connected to the server via WAN. Windows 10 Enterprise was
installed on all three machines. For each experiment, about 3/5 of the clients were
run on the machine with 8 GB RAM while about 2/5 were run on the machine with
4 GB RAM. We ran all experiments using JRE version 8.

Since the main computation of Kre-She is done on the server, we focus on the
evaluation Algorithm 7.7 on a Laptop with Intel(R) Core(TM) i5-7300U CPU @
2.60GHz running 16.04.1-Ubuntu with 4.10.0-14-lowlatency Kernel version.

7.9.3 Results

(a) Computation Cost Kre-Ygc (b) Computation Cost Kre-Ahe1

(c) Computation Cost Kre-Ahe2 (d) Communication Cost in MB

Figure 7.9: Performance Results for Kre-Ygc, Kre-Ahe1, Kre-
Ahe2
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Kre-Ygc Kre-Ahe2 Kre-Ahe1

t n/a 1 2 100 1 2

Time (s) 197.00 353.00 336.00 441.00 1024.00 1749.00

C-Bits (MB) 0.31 0.30 0.30 0.32 0.56 1.11

S-Bits (MB) 5.42 56.07 56.12 60.56 111.37 222.67

Table 7.4: Performance Comparison for 100 clients: C-Bits (resp. S-
Bits) denotes the number of bits sent by each client (resp. the server).
t is the secret sharing threshold, i.e., the number of clients that must

contribute to the threshold decryption.

(a) Server Computation Cost (b) Threshold Decryption Cost

Figure 7.10: Performance Results Kre-She

We evaluated the schemes Kre-Ygc, Kre-Ahe1, Kre-Ahe2 at security level
λ = 128, bitlength µ = 32, and (minimal) threshold t = 2 for threshold decryption. We
instantiated Kre-Ahe1 and Kre-Ahe2 with Elliptic Curve ElGamal using elliptic
curve secp256r1. Figure 7.9 shows our performance results which are summarized in
Table 7.4 for n = 100 clients. In Table 7.4, we also illustrate the costs when t = 1 (i.e.,
each Ci knows sk) for both Kre-Ahe2 and Kre-Ahe1 and when t = n (i.e. all Ci
must participate in the threshold decryption) for Kre-Ahe2.

Kre-Ygc is the most efficient in both computation and communication and takes
203 seconds to each client to compute the KRE of 100 clients in a WAN setting.
The communication is 0.31 MB for each client and 5.42 MB for the server. However,
Kre-Ygc is neither collusion-resistant nor fault-tolerant.

Kre-Ahe2 is the second most efficient and is collusion-resistant and fault-tolerant.
Although it requires more interactions to compute comparisons, we batched many
comparisons together and were able to run threshold decryption for O(n) elements,
instead of O(n2) as in Kre-Ahe1. The computation of the KRE of 100 values takes
to each client 353 seconds (for t = 1), 336 seconds (for t = 2) and 441 seconds (for
t = 100). The communication is 0.3 MB, 0.3 MB, 0.32 MB for each client and 56.07
MB, 56.12 MB, 60.56 MB for the server when t = 1,2,100, respectively.

While being collusion-resistant and fault-tolerant as well, Kre-Ahe1 is less effi-
cient than Kre-Ygc and Kre-Ahe2. The computation of the KRE of 100 values
takes to each client 1024 seconds (for t = 1), 1749 seconds (for t = 2). The communi-
cation is 0.56 MB, 1.11 MB for each client, and 111.37 MB, 222.67 MB for the server
when t = 1,2, respectively. For t = 100, our testbed ran out of memory.

We evaluated Algorithm 7.7 of Kre-She at security level at least 110. The result
is illustrated in Figure 7.10a for inputs with bitlength µ = 16. The computation is
dominated by the inputs’ comparison and takes less than one hour for 25 clients. We
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also evaluated in Figure 7.10b the performance of the threshold decryption with an
n-out-of-n secret sharing. For up to 40 clients threshold decryption costs less than
0.15 second. Kre-She is practically less efficient than all other schemes, but has the
best asymptotic complexity.

As a result, Kre-Ygc is suitable for a setting where the server is non-colluding and
clients cannot fail. If collusion and failure are an issue, then either Kre-Ahe1 or Kre-
Ahe2 or even Kre-She is suitable. Kre-Ahe1 can be more time efficient than Kre-
Ahe2 for up to 30 clients and a highly parallelizable server. Kre-She has the best
asymptotic complexity, however, it requires more efficient somewhat homomorphic
encryption schemes.

7.10 Summary

In this chapter, we considered the problem of computing the KRE (with applications
to benchmarking) of n clients’ private inputs using a server. The general idea of our
solution is to sort the inputs, compute the rank of each input, use it to compute the
KRE. The computation is supported by the server which coordinates the protocol and
undertakes as much computations as possible. We proposed and compared different
approaches based on garbled circuits or threshold HE. The server is oblivious, and does
not learn the input of the clients. We also implemented and evaluated our schemes.
As a result, Kre-Ygc is suitable for a setting where the server is non-colluding and
clients cannot fail. If collusion and failure are an issue, then either Kre-Ahe2 or Kre-
She is suitable. Kre-She has the best asymptotic complexity, however, it requires
more efficient somewhat homomorphic encryption schemes.
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Chapter 8

Conclusion

This chapter concludes the thesis. In Section 8.1, we summarize the results of our
work on order-preserving encryption, decision tree classification, and the kth-ranked el-
ement. Section 8.2 describes an outlook of this thesis with respect to further research
directions.

8.1 Summary

Order-preserving encryption (OPE) schemes are efficient and easy to deploy encryp-
tion schemes that allow encrypting data, while still enabling efficient range queries on
the encrypted data. OPE is, therefore, suitable for encrypted cloud databases. How-
ever, OPE is symmetric, limiting the use case to one client and a server. In Chapter
4, we overcame this limitation by introducing the concept of oblivious OPE which is
basically the equivalent of a public-key OPE. OOPE is based on stateful OPE where
the order of plaintexts is encoded on a remote server using a search tree with seman-
tically secure encrypted nodes. In OOPE, we replaced the encoding protocol by a
mix-technique secure multiparty computation combining garbled circuit, homomor-
phic encryption, and secret sharing. Our evaluation showed acceptable performance
which however depends on the network performance between the parties.

As a concrete application of OOPE, we mentioned a supply chain scenario, where
a Data Analyst is a supplier (manufacturer) owning a private decision tree model and
is interested in optimizing its manufacturing process using private data owned by its
buyer (another supplier or distributor). Each path in the decision tree is basically a
conjunction of range queries, which OOPE can handle while preserving the privacy of
both Data Owner and Data Analyst.

We also addressed the scenario of evaluating private decision trees on private data
which consists of a server holding a private decision tree and a client holding a private
attribute vector. The goal is to classify the client’s attribute vector using the server’s
decision tree model such that the result of the classification is revealed only to the
client and nothing else is revealed neither to the client nor the server. We proposed
two solutions to the problem.

In our first solution presented in Chapter 5, we represented the tree as an array
and executed only d interactive comparisons (instead of 2d as in existing solutions),
where d denotes the depth of the tree. We used a small garbled circuit to perform
each comparison and compute the index of the next node which we secret-shared
between the parties. To actually select the next node in the tree, we used a primitive
called oblivious array indexing (OAI) which, given an array and secret shares on an
index, returns secret shares of the indexed element to the parties. We showed how
to efficiently implement OAI using a garbled circuit, oblivious transfer, ORAM, and
PIR.
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In Chapter 6, we delegated the complete tree evaluation to the server using fully
or somewhat homomorphic encryption where the ciphertexts are encrypted under the
client’s public key. As current homomorphic encryption schemes have high overhead,
we combined efficient data representations with different algorithmic optimizations to
keep the computational overhead and the communication cost low. While the first
approach is suitable for settings with fast network communication, the second one is
suitable for settings with a weak client and a powerful server.

Our schemes for privately evaluating decision trees extend to random forests which
are a generalization of decision trees. A random forest consists of many decision
trees such that the classification outputs the classification label which occurs most
often among the trees in the forest. This is related to the problem of computing the
kth-ranked element which, we considered in Chapter 7 for a distributed and privacy-
preserving setting with application in benchmarking and auction. We proposed dif-
ferent approaches for privately computing the kth-ranked element in the server model,
using either garbled circuits or threshold homomorphic encryption. Using garbled cir-
cuits is very efficient, but suitable for a setting where the server is non-colluding and
clients cannot fail. Threshold additively homomorphic encryption allows dealing with
collusion and failure, but is less efficient. Threshold fully homomorphic encryption
additionally has the best asymptotic complexity, as it allows delegating almost all the
computation to the server such that the clients are only required for decryption.

8.2 Outlook

This work proposed an efficient protocol for OPE and showed how to extend it to
ESEDS-OPE [125] which addresses recent plaintext guessing attacks on OPE, while
not ruling out more sophisticated longitudinal attacks. As a result, the security of
OPE is still not fully understood and required further research effort. It might also
be interesting to build real-word applications based on ESEDS-OPE and OOPE.

The private decision protocol can be extended in several directions. If the at-
tributes are categorical, then the tree is no longer binary and an equality test decides
which branch should be followed.

A linear branching program (LBP) [14] is a decision tree in which each decision
node contains, besides the threshold value, a vector that will be linearly combined with
the attribute vector of the client before comparison. While a decision tree divides the
space into axis-parallel regions, a linear branching program produces oblique regions
resulting in smaller and more accurate trees [102, 152]. However, the evaluation
of each decision node in an LBP computes an inner product followed by a greater-
than comparison. This requires combining both an integer representation (for the
inner product) and a binary representation (for the comparison). An idea toward the
solution could be to generalize oblivious transfer by a new primitive that takes a pair
of vectors (u0, u1) from the sender P0, a bit b and a vector v from the receiver P1,
and outputs the inner product ⟨ub, v⟩ to P1. This primitive can then be generalized
again to 1-out-of-n OT.

While a single classification reveals nothing to the client (leakage of tree parameters
can be handled by adding dummy nodes to the tree), many classifications might allow
the client to learn more about the model. It might be interesting to investigate
differential privacy to deal with this problem.

In our scheme, both the model owner and the client must be online during the
classification. In future work, one might consider outsourcing the computation to an
untrusted third party while preserving the privacy of both input parties. The model
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owner would outsource an encrypted version of the model to the third party which
then runs a secure computation with the client. In contrast to the previous scenario,
where the adversary can control either the model owner or the client (but not both),
the adversary, in this case, can control either the server or a collection of clients
or a collection of clients and the server. Zheng et al. [199] consider an outsourcing
scenario, however, relying on two servers and evaluating every decision nodes using
a comparison based on secret sharing. Another interesting direction could be to put
both the model and the client input on a blockchain.

The computation of kth-ranked element can be improved in different ways. Firstly,
one can combine AHE with SHE by evaluating the comparison interactively using
DGK or Lin-Tzeng (as in Kre-Ahe2), then encrypt the comparison bits using SHE
and evaluate the selection of the kth-ranked element as in Kre-She. Secondly, SCIB
[28] leaks comparison bits to the parties but is secure in the malicious model. Our
schemes do not leak comparison bits but are secure in the semi-honest model. Ex-
tending our schemes to support malicious adversaries can be investigated. Finally, our
schemes support only one input per client and can be extended to several inputs per
client. With one input per client and n clients, we have an n×n matrix of comparison
bits. With m inputs per client and n clients, we will have to deal with an n×n block
matrix where each block is an m ×m matrix.
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