

Neural Network Supervision:

Notes on Loss Functions, Labels and Confidence Estimation

Gil Keren

Dissertation eingereicht an der Fakultät für Informatik und Mathematik der Universität

Passau zur Erlangung des Grades eines Doktors der Naturwissenschaften

A dissertation submitted to the faculty of computer science and mathematics in partial

fulfillment of the requirements for the degree of doctor of natural sciences

Advisor: Prof. Dr. habil. Björn Schuller

Passau, May 2019

Acknowledgements

For supporting my research process and providing valuable advice, I would like to thank
my doctoral advisor Prof. Dr. habil. Björn Schuller, as well as my other colleagues and
collaborators who took part in the work leading to this dissertation: Sivan Sabato, Thomas
Kehrenberg, Maximilian Schmitt and Nicholas Cummins.

Abstract
We consider a number of enhancements to the standard neural network training paradigm.
First, we show that carefully designed parameter update rules may replace the need for a loss
function and its gradient. We introduce a parameter update rule that generalises the standard
cross-entropy gradient, and allows directly controlling the relative effect of easy and hard
examples on the training process. We show that the proposed update rule cannot be derived
by using a loss function and yields better classification accuracy compared to training with
the standard cross-entropy loss.

In addition, we study the effect of the loss function choice on the learnt representations.
We introduce the Single Logit Classification (SLC) task: classifying whether a given class
is the correct class for a given example, in a computationally efficient manner, based on
the appropriate class logit alone. A natural principle is proposed, the Principle of Logit
Separation (PoLS), as a guideline for choosing and designing loss functions suitable for
the SLC task. We mathematically analyse the alignment of eleven existing and novel loss
functions with this principle. Experiment results show that using loss functions that are
aligned with this principle results in a representation in the logits layer in which each logit is
more informative of its class correctness, leading to a considerably better SLC accuracy.

Further, we attempt to alleviate the dependency of standard neural network models
on large amounts of quality labels. The task of weakly supervised one-shot detection is
considered, in which at training time the model is trained without any localisation labels,
and at test time it needs to identify and localise instances of unseen classes. We propose
the attention similarity networks (ASN) for this task. ASN use a Siamese neural network to
compute a similarity score between an exemplar and different locations in a target example.
Then, an attention mechanism performs localisation by learning to attend to the correct
locations. The ASN model outperforms the relevant baselines for weakly supervised one-shot
detection tasks in the audio and computer vision domains.

Finally, we consider the problem of quantifying prediction confidence in the regression
setting. We propose two novel algorithms for emitting calibrated prediction intervals for
neural network regressors, at any given confidence level. The two algorithms require binning
of the output space and training the neural network regressor as a classifier. Then, the
calibration algorithms choose the intervals in the output space, making sure they contain the
amount of posterior probability mass that results in the desired confidence level.

Table of contents

Nomenclature ix

1 Introduction 1
1.1 Training without a loss function . 1
1.2 Differences between loss functions . 3
1.3 Low-quality supervision . 4
1.4 Calibrated prediction intervals . 6

2 Tunable Sensitivity for Large Errors 9
2.1 Motivation . 9
2.2 Related work . 10
2.3 Linear dependence on classification error 11
2.4 Generalising the gradient . 12
2.5 Constraints on the pseudo-gradient . 13
2.6 Polynomial dependence on the classification error 15
2.7 Non-existence of a loss function . 15
2.8 A toy example . 18
2.9 Experiments . 21

3 The Principle of Logit Separation 27
3.1 Motivation . 27
3.2 Related work . 30
3.3 The Principle of Logit Separation . 31
3.4 Existing objectives that do not satisfy the PoLS 32

3.4.1 The cross-entropy loss . 32
3.4.2 The max-margin loss . 33
3.4.3 Softmax Cauchy-Schwarz divergence 33
3.4.4 Sigmoid Cauchy-Schwarz divergence 35

viii Table of contents

3.4.5 Softmax Tanimoto loss . 35
3.5 Existing objectives that satisfy the PoLS 36

3.5.1 Self-normalisation . 36
3.5.2 Noise Contrastive Estimation . 38
3.5.3 Binary cross-entropy . 39
3.5.4 Sigmoid Tanimoto loss . 39

3.6 Novel objectives that satisfy the PoLS . 40
3.6.1 Batch cross-entropy . 40
3.6.2 Batch max-margin . 42

3.7 Experiments . 43
3.7.1 PoLS and SLC accuracy . 43
3.7.2 SLC vs computing all logits . 46
3.7.3 SLC speedups . 47

4 Weakly Supervised One-Shot Detection 51
4.1 Motivation . 51
4.2 Related work . 53
4.3 Method . 54

4.3.1 Similarity scores . 55
4.3.2 Weakly supervised detection . 56
4.3.3 One-shot learning . 58
4.3.4 Detection . 59

4.4 Experiments . 59
4.5 Audio data . 59

4.5.1 Computer vision data . 61
4.5.2 Network specifications . 62
4.5.3 Evaluation . 63

5 Calibrated Prediction Intervals 67
5.1 Motivation . 67
5.2 Related work . 69
5.3 Posterior prediction intervals . 70
5.4 Calibrated prediction intervals . 71

5.4.1 Empirical calibration . 73
5.4.2 Temperature scaling . 74

5.5 Experiments . 75
5.5.1 Age prediction (audio) . 75

Table of contents ix

5.5.2 SNR prediction . 76
5.5.3 Age prediction (images) . 76
5.5.4 ISO speed prediction . 77
5.5.5 Neural networks . 77
5.5.6 Calibration results . 78
5.5.7 Regression results . 80

6 Conclusion 83
6.1 Training without a loss function . 83
6.2 Differences between loss functions . 84
6.3 Low-quality supervision . 86
6.4 Calibrated prediction intervals . 87

References 89

Chapter 1

Introduction

In recent years, neural network models have demonstrated large empirical success across
multiple domains such as object recognition [42, 65], object detection and segmentation
[41, 95, 96], image captioning [128], machine translation [5, 117] and speech recognition
[13]. This cross-domain empirical success has established neural networks as the model of
choice for many large-scale industrial applications.

Success in the above listed applications is obtained using methods that have much in
common. In all cases, a model is designed to emit the appropriate predictions for the task
at hand. These predictions are then compared to ground truth labels using a loss function.
Learning is done by minimising the value of the loss function on a large labelled training
sample. This standard supervised learning method is the dominant approach for training
neural network models, and indeed yields high task accuracy across a variety of domains.
However, the standard supervised learning paradigm has a number of potential limitations.
In this work we discuss four of those potential limitations, and propose remedies for some
cases, as discussed in detail below.

1.1 Training without a loss function

A loss function L(p,y) generally compares the network predictions p with the labels y, to
create a scalar value that indicates some measure of distance between them. During learning,
learnable model parameters θ are changed such that the value of L is minimised over a
labelled training sample. To minimise the value of L, the most common learning algorithms
for neural networks are gradient-based learning algorithms, such as Stochastic Gradient
Descent (SGD), Momentum Polyak [93], RMSProp Tieleman and Hinton [114], AdaGrad
Duchi et al. [27], AdaDelta Zeiler [132] and Adam Kingma and Ba [62].

2 Introduction

Gradient-based learning algorithms use a simple optimisation principle: changing the
parameters by a small step in direction of the negative gradient −∇θ L(p,y) will lead to a
reduction in the value of the loss function L. In SGD, the gradient is scaled and directly used
as the parameter update, while in other algorithms, such as Momentum, RMSProp, AdaGrad,
AdaDelta and Adam, the gradient is processed through some transformation, normally a
form of averaging and scaling, to produce the parameter updates. In all cases, the parameter
updates in gradient-based algorithms originate in the gradient of some loss function. While
this approach can only guarantee the convergence of the loss function to a local minimum
under some conditions, with no guarantees regarding a global minimum, these algorithms
generally work well in practice and are used for obtaining state-of-the-art results in all of the
application domains mentioned above.

While this approach of guiding the learning process using the gradient of a loss function
is natural and sensible, it limits the set of possible parameter update rules to those that
originate in the gradient of some loss function. Alternatively, one could replace the gradient
in the standard training procedure by any function g(p,y,θ), that denotes the parameter
updates given the model predictions, labels and the current values of the learnable parameters.
Using g(p,y,θ) = −∇θ L(p,y) is a special case that amounts to standard gradient-based
learning. The function g could be referred to as a pseudo-gradient. All the above mentioned
gradient-based learning algorithms could be used with the pseudo-gradient in place of the
gradient, without any additional changes necessary. Any such pseudo-gradient g will result
in a different update rule for the parameters. There could be many sensible and useful update
rules, each originating from a different choice of the function g. As many functions cannot
be written as a gradient of some function, a priori it is natural to assume that there may exist
some sensible and useful update rules that do not originate from the gradient of any loss
function. Therefore, the first research question of this work is formulated as follows:

Question 1: Are there cases in which update rules that do not originate
from a gradient of any loss function are preferable over standard gradient-
based update rules?

We address this question in Chapter 2, covering the work published in Keren et al. [56].
In the setting considered in this chapter, we attempt to tune the relative importance of easy
and hard training examples on the training procedure. We present an update rule for the
parameters that is a generalisation of the cross-entropy gradient, and directly controls the
relative effect of easy and hard examples on the parameter updates. The new update rule
allows tuning for the optimal sensitivity for hard examples. A proof is given, that the proposed
update rule does not originate from the gradient of any loss function. Experiments with
both a toy example and common benchmark datasets show the effectiveness of our proposed

1.2 Differences between loss functions 3

update rule, obtaining classification accuracy gains by tuning for the optimal sensitivity for
hard training examples. In addition, we find that the level of optimal sensitivity depends on
the depth of the neural network used.

1.2 Differences between loss functions

The previous section and the research question it poses consider the option of learning
neural network parameters without using a loss function and its gradient. In the chapter that
considers this research question, we show that this is a viable alternative to the standard
training paradigm in the setting we identify and potentially many other settings. However,
the use of loss functions and their gradient is still the most common approach, and may be
preferable in many learning settings.

As discussed above, a loss function normally compares the model predictions with the
known labels, to create some measure of dissimilarity between them. For a given task,
there is usually a variety of possible loss functions, all computing sensible dissimilarity
measures between the model predictions and the labels. In the presence of an abundance of
loss functions, all designed to suit the task at hand, it may be unclear to a machine learning
researcher or practitioner what the subtle differences between the possible loss functions are,
and which loss function is the most suitable for their needs.

Consider the task of multiclass classification. An abundance of loss functions were
proposed for this task, including the most common cross-entropy loss [44], the Mean
Squared Error (MSE) loss, the binary cross-entropy loss and the max-margin loss [18].
Glorot and Bengio [32] study the loss surfaces of the cross-entropy and the MSE losses, and
find that the plateaus in the loss surface are less present with the cross-entropy loss, making
it more suitable for gradient-based optimisation. Other works have found that minimising
the cross-entropy loss results in faster convergence, compared to the max-margin loss and
the MSE losses [47, 106]. In addition, Janocha and Czarnecki [47] found that in the context
of image classification, the cross-entropy loss is more robust to training with noisy examples,
compared to the max-margin and the MSE losses.

While most existing works have focused on the difference between classification losses
in terms of noise robustness and optimisation properties, such as convergence speed and the
loss surface topology, other differences between classification loss functions may exist. In
this work, we are interested in the differences in the learnt representations that result from
using each loss function. A better understanding of the representations resulting from each
loss function may be useful, as those representations are often used in downstream tasks.
For example, in transfer learning it is a common practice to use a pretrained network on

4 Introduction

a set of source classes to extract a representation of the input in some intermediate layer,
and use this representation to classify the example to a set of target classes [25, 130]. Other
works use the representation at the topmost layer of the neural network as inputs to a Support
Vector Machine (SVM) classifier [94, 112]. The above discussion leads to the next research
question that is considered in this work:

Question 2: How does the loss function used affect the learnt representa-
tions in a neural network, and could those differences assist with the choice
of a loss function to use?

In chapter 3 of this work we attempt to investigate the above research question. The
chapter covers the work published in Keren et al. [57] and Keren et al. [58] (the latter
was announced accepted, subject to a minor revision, in May 2019). We study the learnt
representations in the top layer of a neural network classifier, that are called the class logits,
that result from using a variety of loss functions. We do this in the context of the Single
Logit Classification (SLC) task, that is the binary classification of a single logit to determine
whether it corresponds to the correct class for the given example. We first show that applying
SLC instead of computing all class logits may be useful in settings of classification over
a large number of classes, as in these cases computing all classes’ logits results in high
computational burden at test time. We hypothesise that the loss function used shapes the
representation in the logits layer in a manner that affects performance in the SLC task. We
propose a simple principle named the Principle of Logit Separation, as a possible guideline
for choosing the right loss function for success in SLC. We analyse the alignment of eleven
different classification loss functions with our proposed principle. In experiments, we show
that the Principle of Logit Separation is indeed a main ingredient for high SLC accuracy, as
loss functions that are aligned with this principle produce representations in the logits layer
that are much more informative for class correctness, and result in a considerable increase in
SLC accuracy.

1.3 Low-quality supervision

The above discussion points out the considerations need to be made for choosing an appro-
priate loss function, and an alternative training mechanism that does not use a loss function.
In both cases, the underlying assumption is that there exists a large enough labelled training
set, allowing some training mechanisms to compare the model predictions with the labels,
in order to emit the parameter updates. However, this assumption does not hold in many
applications, in which available labels are not sufficient, or their quality does not allow
directly comparing them to model predictions.

1.3 Low-quality supervision 5

For example, existing labels could be noisy, i.e., for some portion of the examples, the
available labels are wrong and do not represent the correct target values. In some other
situations, for a classification task, labels may exists for some set of classes, but for other
classes that appear at test time, there are no labels available. Another example is when the
detail level of the existing labels is not sufficient, and they contain only partial information,
which is less detailed than the prediction the model needs to emit. We refer to such settings as
low-quality supervision settings. In those settings, existing labels lack some of their required
properties, therefore are partial and of a low quality in some sense. We distinguish this setting
from the unsupervised or semi-supervised learning settings, that normally refer to settings in
which labels do not exists, or exist with a sufficient quality but in a low quantity.

Low-quality supervision settings naturally appear, as the process of collection high-
quality labels is often time-consuming and expensive. Indeed, automatic or semi-automatic
label collection procedures [2] may be fast and cheap, but the resulting labels may contain a
certain level of noise. In other settings, as label collection procedures that involve human
effort are in general expensive, collected datasets may include labels for a limited set of
classes, or with a limited detail level. For example, the Open Images V4 dataset [67] contains
about 79M machine generated training labels for approximately 8K classes for image-level
object classification, but less than 15M human created bounding box training labels for 600
classes for an object detection task. While 15M is still considered a large number of available
labels, it is more than five times smaller than the number of available image-level labels.
Similarly, while 600 classes is considered a large number of classes for an object detection
task, the number of classes for the lower-quality labels is much larger.

We consider the detection task. In the computer vision domain this is normally the task of
object detection [75, 96], in which the model needs to emit the class that appears in a given
image and the location in which it appears. In the speech domain, the query-by-example
spoken term detection [14, 40, 89, 126, 127] is a detection task, in which the model has to
determine whether a given word appears in a given sentence recording, and to localise this
appearance in time. In this task, the different words are treated as the different classes. For
a detection task, a high-quality labelled dataset would need to contain both instance-level
labels that indicate which class appears in training instances, and bounding box localisation
labels that indicate the location in the instance of the appearing class. As discussed above,
existing datasets that contain only instance-level labels may be considerably larger than
datasets that contain both instance-level and localisation labels, both in number of classes
and existing labels count. This motivates the attempt to perform the detection task in the
low-quality supervision setting, by only utilising the larger datasets that do not contain any
localisation labels. This leads to the next research question we consider:

6 Introduction

Question 3: Can neural network models utilise large datasets of instance-
level labels, to perform a detection task for a large number of classes?

We attempt to answer the above question by proposing an appropriate candidate model
in Chapter 4. The chapter covers the work appearing in the preprint Keren et al. [59]. The
proposed model is designed for the weakly supervised one-shot detection, for both the
computer vision and the audio domains. In this task, a model emits a detection output by
utilising only instance-level labels at training time. In addition, at test time the instances for
detection belong to classes that were not present at training time. The model is designed as
follows. As inputs, both an exemplar of some class and a larger example are given. The larger
example may or may not contain an instance of the same class as the exemplar. The model
embeds the exemplar and every region of the larger examples, and computes the similarity
score between the exemplar and the regions’ representations. A novel attention mechanism is
used to weight all the regions’ similarity scores and combine them into a single instance-level
prediction, whether the larger example contains an instance of the same class as the exemplar.
For emitting localisation information, the attention weights are used.

This model performs the detection task in the context of low-quality supervision, utilising
large datasets that contain partial information. The challenge of not having localisation
information at training time is avoided by using an attention mechanism. Moreover, we go
beyond the classes appearing at training time and perform one-shot detection. by designing
the model to not be conditioned on class identities, the model can indeed successfully operate
on instances of unseen classes. Experiments with data from both the computer vision and
the audio domains show that the proposed model manages to simultaneously identify and
localise instances of classes unseen at training time, and outperform the baseline models for
this task.

1.4 Calibrated prediction intervals

Most focus in the research community and specifically in this work is given to improving
model accuracy for a variety of tasks. However, another important success measure for
machine learning models is their ability to produce reliable prediction confidence estimates.
Consider for example medical applications, in which the meaning of a wrong decision
can be disastrous. In such applications, one would want to distinguish between confident
and unconfident positive decisions made by a machine learning model. Moreover, reliable
prediction confidence estimates may facilitate human trust in machine learning models,
aiding in deploying them as decision support systems.

1.4 Calibrated prediction intervals 7

One of the main challenges in emitting reliable confidence estimates for machine learning
models is that this feature cannot simply be learnt using the same training set that was used
for training the model to emit accurate predictions. The problem is that neural networks are
in general powerful function approximators [19], therefore in many cases they manage to
predict the correct label on the entire training set. In that case, when using the same training
set to learn to emit prediction confidence, the model will learn to always predict perfect
confidence. To illustrate this difficulty, assume a binary classification model that emits a
prediction 0 ≤ p ≤ 1 and a prediction confidence estimate c. The classification labels are
denoted as y ∈ {0,1}, and f (p,y) is the correctness label, i.e., whether the model predicted
correctly: f (p,y) = 1 if y = 1 and p ≥ 0.5 or if y = 0 and p < 0.5, and f (p,y) = 0 otherwise.
To train such model to emit correct predictions and correct prediction confidence estimates, a
loss function of the following form may be used: L(p,c,y) = L1(p,y)+L2(c, f (p,y)), where
L1 increases classification accuracy by minimising difference between predictions and labels,
and L2 increases prediction confidence accuracy by minimising the difference between the
prediction confidence estimate and the correctness labels. As neural networks are powerful
function approximators, it is often the case that after training the neural network emits
practically perfect predictions on the training set. In that case, L1 is minimised, meaning
that for all training examples L1(p,y)∼ 0 and therefore f (p,y) = 1. To minimise L2, all the
network has to do is to always predict c = 1. In conclusion, minimising L to 0 implies that the
neural network will ignore the input example and will emit a perfect prediction confidence
c ∼ 1, making its prediction confidence estimates obsolete.

One way of circumventing the above mentioned issue is to use a large enough training
set or a small enough neural network, such that the network does not manage to yield perfect
predictions on the training set. However, very large training sets are not always available,
and limiting the network size normally reduces task accuracy. Another possible way of
avoiding this issue is by first using the training set to learn to produce good accuracy in the
task at hand. Then, use the trained model to emit predictions on a validation set, and learn
an additional model to emit prediction confidence estimates, by training it on the validation
set task predictions and their correctness labels. The problem with this approach is that it
requires an additional amount of data, in order for the validation set to be sufficiently large
for training the second model.

The approach used in practice for classification models is to train a softmax classifier
normally for high classification accuracy, then observe the posterior probabilities emitted
by the model on unseen examples [36]. For a vector of class probabilities p = (p1, ..., pk)

emitted by the model, the value c = max1≤i≤k pi has a reasonably high correlation with
classification correctness, and is used as the prediction confidence estimate. However, as

8 Introduction

pointed by [36], c is normally an uncalibrated confidence estimate: c is given as a probability,
but is not equal to the real probability of its corresponding prediction being correct. For
example, a value of c = 0.8 for a given example does not necessarily correspond to a 0.8
probability of this example being classified correctly. It is possible, that examples with
c ∼ 0.8 are classified correctly 90% of the times, or perhaps in another model only 50% of
the times. Guo et al. [36] propose several methods for calibrating the prediction confidence
estimate using the validation set, to match between values of c and actual probabilities of the
examples being correctly classified.

For a regression task, prediction confidence estimates may be given in the form of
prediction intervals. A prediction interval with a confidence level α is an interval, in which
the label is expected to fall with a probability of α . Standard neural network regressors
are designed to emit a point prediction [42, 115, 129], by having a single unit in their top
layer that contains the prediction of the label. Therefore, it is unclear how to design neural
network regressors that will be able to produce prediction intervals for a given confidence
level. Aiming at the goal of producing reliable prediction confidence estimates for neural
network regressors, our next research question is stated as follows:

Question 4: How can we design neural network regressors that are able to
produce prediction intervals for any given confidence level?

This research question is addressed in Chapter 5, covering the work published in Keren
et al. [53]. The problem is addressed in two stages. First, neural network regressors are
designed as classifiers. This is done by binning the output space into a finite set of bins,
and learning the regression task using a multiclass neural network softmax classifier. Since
the softmax classifier emits a probability distribution over classes, this approach yields a
probability distribution of the label over the output space. In this stage, we produce prediction
intervals with a confidence level α by including a sufficient amount of bins in the output
space, such that their total assigned probability is close to α . Since we are using a neural
network softmax classifier, following the above discussion, the assigned probability to a
given bin may not be calibrated with the actual probability of the label falling in this bin.
Therefore, the resulting prediction intervals in this stage are referred to as uncalibrated
prediction intervals. At the second stage, we propose two calibration algorithms to transform
uncalibrated prediction intervals into calibrated ones. The proposed algorithms use the
validation set to adjust the boundaries of the prediction intervals, such that a prediction
interval with a confidence level of α will indeed correspond to a probability of α that the
label lies within the boundaries of this interval.

Chapter 2

Tunable Sensitivity for Large Errors

2.1 Motivation

In recent years, neural network models trained using supervised learning algorithms demon-
strated state-of-the-art results across a variety of domains such as computer vision [65, 110],
speech recognition [13, 43], natural language processing [109] and computational paralin-
guistics [54, 60]. Standard implementations of those models include the application of a
stochastic gradient-based algorithm, normally minimising the cross-entropy loss [44].

However, the cross-entropy loss is just a surrogate for the true task performance measure,
such as classification accuracy in the case of a classification task, word-error-rates for
speech recognition or the BLEU score for machine translation. When using the cross-entropy
classification loss, it is shown below that the effect of a given training example on the gradient
is linear in its prediction bias, which is the difference between the network-predicted class
probabilities and the target class probabilities. In particular, a wrong confident prediction
results in a larger effect on the gradient, compared to another wrong prediction that is less
confident.

In contrast, humans sometimes employ a different strategy for learning. When learning a
new concept, humans may ignore at first those examples that are too hard to learn, and focus
on examples that are easier to understand. On the other hand, when improving proficiency
regarding a familiar concept, humans may focus on those examples that are still harder to
comprehend, as the latter convey more information for the advanced learner. Motivated by
the above, Keren et al. [56] propose a learning algorithm that allows tuning its sensitivity
to easy and hard training examples. Intuition from human cognition was previously used to
inspire the design guidelines of artificial learning systems [6, 16, 69].

Keren et al. [56] show that it is possible to tune the relative effect of easy and hard
examples on the training procedure by directly controlling the parameter updates during

10 Tunable Sensitivity for Large Errors

learning. The parameter updates are computed directly from the network predictions and the
labels, not mediated by the usage of a loss function and its gradient, relating to the research
question posed in Section 1.1. Specifically, the proposed learning algorithm generalises the
cross-entropy gradient, where the new pseudo-gradient can be used instead of the standard
gradient in every gradient-based learning algorithm such as Momentum [93], RMSProp
[114], and Adam [62]. The pseudo-gradient is parameterised by a hyperparameter k > 0 that
controls the sensitivity of the training process to easy and hard examples, replacing the fixed
linear dependence on the prediction bias of the cross-entropy loss. Using k = 1 results in an
update rule that is identical to using the cross-entropy loss gradient.

Intuitively, the optimal sensitivity level to hard examples should be correlated with
network depth. When the network is relatively shallow, its modeling capacity is limited.
Therefore, it may be beneficial to ignore those hard examples that the network fails to fit, as
adjusting the model based on those examples may lead to a decrease in overall prediction
accuracy. On the other hand, deeper networks have relatively high modeling capacity. In this
case, it may be beneficial to allow the training process higher sensitivity to hard examples,
thereby possibly improving the accuracy of the final learnt model.

This chapter describes the derivation of the training algorithm for neural networks that is
described in Keren et al. [56]. In addition, experiment results on several benchmark datasets
from Keren et al. [56] are reported. Aligned with the motivation described above, it was found
that using high sensitivity for harder examples is beneficial for relatively deep networks, and
in almost all cases resulted in better classification accuracy. Similarly, using low sensitivity
was found to improve classification accuracy for shallower networks. In conclusion, it is
shown that tuning for the optimal sensitivity for hard examples leads in many cases to better
overall performance for the classification task at hand. Furthermore, a proof given in Keren
et al. [56] is included, that shows that the proposed update rule is not equivalent to using
the gradient of any loss function. This points out that at least in some situations, directly
controlling the parameter updates without using a loss function is beneficial, a step towards
answering the first guiding research question of this work.

2.2 Related work

Choosing the best optimisation objective for neural classifiers is not a new challenge. In the
past, the MSE loss was typically used with gradient-based learning in neural networks [98].
However, a line of studies found this loss function both empirically and theoretically inferior
to the cross-entropy loss. These works include demonstrating that the cross-entropy loss has
better learning speed [73], better performance [33] and a more suitable shape of the error

2.3 Linear dependence on classification error 11

surface [32]. Other cost functions were considered as well, such as the one proposed in Silva
et al. [102], but it is not clearly advantageous to to cross-entropy.

The method described in this chapter allows controlling the sensitivity of the training
procedure to easy and hard examples. When using low sensitivity, this can be seen as
a form of outlier detection or noise reduction. Some previous works have attempted to
remove training examples that are identified as outliers or noise. Smith and Martinez [104]
preprocessed data to detect label noise induced from overlapping classes, and in another
work [48] the authors use an auxiliary neural network to detect noisy examples. In contrast,
the approach described below requires no preprocessing and only a minimal modification to
existing gradient-based algorithms, and allows emphasising examples with a large prediction
bias instead of ignoring them.

The emphasis on “easy” and “hard” examples during neural network training has been
addressed in the framework of Curriculum Learning [6]. In this framework, it is proposed to
first present easy examples to the network, then to gradually add harder and harder examples
as training continuous. In Kumar et al. [66], easy and hard examples are defined based on
their fit to current model parameters. A curriculum learning algorithm is proposed, where
a hyperparameter controls the ratio of easy and hard examples that are presented to the
learner at any given time. The method proposed in this chapter is simpler than the curriculum
learning approaches, as the examples can be presented to the network in random order.

2.3 Linear dependence on classification error

Consider a standard neural network softmax classifier. This neural network processes an
input x and outputs a discrete posterior probability distribution (p1, ..., pn) over the n possible
classes. For obtaining the posterior probability distribution, the network feeds the input x
through a series of layers (such as, but not limited to, fully-connected layers, convolutional
layers or recurrent layers) to emit a vector of logits (z1, ...,zn) that are the unnormalised
class scores. Then, a softmax normalisation function is applied to normalise the logits into
posterior probabilities:

pi =
ezi

n
∑
j=1

ez j

. (2.1)

At training time, an additional class label y ∈ {1, ...,n} is given to the model, and the
cross-entropy loss function is computed:

ℓ(x,y) =− log(py). (2.2)

12 Tunable Sensitivity for Large Errors

When standard learning with SGD is performed, the network parameter updates are pro-
portional to the gradient of the loss function with respect to the network parameters θ :

∂ℓ

∂θ
=

n

∑
j=1

∂ℓ

∂ z j

∂ z j

∂θ
, (2.3)

As ℓ is the cross-entropy loss, we have that ∂ℓ
∂ z j

= ∂ℓ
∂ py

∂ py
∂ z j

. Plugging in the derivatives of the
cross-entropy loss and the softmax function:

∂ℓ

∂ py
=− 1

py
,

∂ py

∂ z j
=

py(1− py) j = y,

−py p j j ̸= y,

we get that

∂ℓ

∂ z j
=

p j −1 y = j

p j otherwise.
(2.4)

We define the prediction bias ε j for class j and example (x,y) as the (signed) difference
between p j, the probability assigned by the model to class j, and the target probability for
this class, i.e., 1 if j = y or 0 otherwise. We get that ε j = p j −1 if j = y or ε j = p j otherwise.
Plugging this back in 2.3 we get

∂ℓ

∂θ
=

n

∑
j=1

∂ z j

∂θ
ε j. (2.5)

As stated in Keren et al. [56] and derived from Eq. 2.5, the first conclusion for this chapter
is that when using the cross entropy loss, the effect of any single training example on
the gradient is linear in the prediction bias of the current network for this example. As
discussed in Section 2.1, the model’s classification performance may improve if a non-linear
dependence of the prediction bias on the gradient / parameter updates is considered.

2.4 Generalising the gradient

Keren et al. [56] propose a generalisation of the gradient, that allows non-linear dependence
of the gradient on ε . Consider a function f : [−1,1]→Rn and let ε = (ε1, . . . ,εn), and define

2.5 Constraints on the pseudo-gradient 13

g(θ) :=
n

∑
j=1

∂ z j

∂θ
f j(ε), (2.6)

where f j is the j’th component of f . When f j = ε j, we get g(θ) = ∂ℓ
∂θ

, with the standard
linear dependence of the parameter updates on the prediction error. However, we are now at
liberty to study other assignments for f . Keren et al. [56] denote g as the pseudo-gradient,
that can be used in place of the standard gradient in any gradient-based algorithm. Note
that, as we discuss in Section 2.7 below, the pseudo-gradient g is not a gradient of any loss
function.

2.5 Constraints on the pseudo-gradient

The authors of Keren et al. [56] consider what types of functions f are suitable for replacing
the gradient and facilitate learning. First, f is expected be monotonic non-decreasing, to
reflect a larger parameter update for larger classification errors. Further, f is expected to
be positive when j ̸= y and negative otherwise. In addition to these natural properties,
Keren et al. [56] introduce an additional non-trivial constraint on f . The motivation for this
constraint in the following example. Consider a standard softmax classifier MLP with a
single-hidden layer (see Figure 2.1). The inputs to the softmax layer are z j = ⟨w j,h⟩+b j

and the outputs of the hidden layer are h(i) = ⟨w′
i,x⟩+b′i, where x is the input vector, and

b′i,w
′
i are the scalar bias and weight vector between the input layer and the hidden layer.

Suppose that at some point during training, hidden unit i is connected to all units j in
the softmax layer with the same positive weight a, i.e., for all 1 ≤ j ≤ n, w j(i) = a. Now,
assume training example (x,y) is presented to the model and let l be some coordinate in the
input layer.

How should this training example change the weight w′
i(l)? If x(l) = 0, it does not need

to make any change in the weight, therefore we consider the case where x(l) ̸= 0. Unit
i in the hidden layer is the only one affected by the change of w′

i(l). From the definition
of p j, it is easy to see that the model output probabilities are fully determined by the
ratios ez j/ez j′ , or equivalently, by the differences z j − z j′ , for all j, j′. Now, z j − z j′ =

⟨w j,h⟩+b j −⟨w j′,h⟩+b j′ . Therefore,
∂ (z j−z j′)

∂h(i) = w j(i)−w j′(i) = a−a = 0, and therefore

∂ (z j − z j′)

∂w′
i(l)

=
∂ (z j − z j′)

∂h(i)
∂h(i)
∂w′

i(l)
= 0. (2.7)

14 Tunable Sensitivity for Large Errors

.

.

a a a a a

w ' i(l)

linput

hidden

softmax

i

Fig. 2.1 Illustrating the motivating example for constraints on the pseudo-gradient. Reprinted
with permission from Keren et al. [56].

This shows that when all weights from unit i to the output units are equal, the weight w′
i(l)

should not be changed for any l. In addition, Keren et al. [56] report that in their preliminary
experiments, it was beneficial to indeed keep those weights fixed in those situations, as
otherwise explosion of the weights may cause numerical instability.

We would like this behaviour to persist also for pseudo-gradients, i.e., to make sure that
in this case g(w′

i(l)) = 0. Keren et al. [56] derive that

0 = g(w′
i(l)) =

n

∑
j=1

∂ z j

∂w′
i(l)

f (ε j)

=
n

∑
j=1

∂ z j

∂h(i)
∂h(i)
∂w′

i(l)
f (ε j) =

n

∑
j=1

a · x(l) · f (ε j).

And after dividing by a · x(l), they derive the desired property for the function f , for any
vector ε of prediction biases:

fy(ε) =− ∑
j ̸=y

f j(ε). (2.8)

2.6 Polynomial dependence on the classification error 15

Note that, since ∑
n
j=1 ε j = 0, this property holds for the cross-entropy loss, where f j(ε) = ε j.

2.6 Polynomial dependence on the classification error

In the case of the cross-entropy loss, f was the identity function that led to a linear dependence
of the gradient on the prediction error. Keren et al. [56] consider the natural generalisation of
the linear dependence to a polynomial dependence. Combined with the constraint from Eq.
2.8, they propose the following assignment of the function f :

f j(ε) =

−|εy|k j = y,
|εy|k

∑
i̸=y

εk
i
· εk

j otherwise. (2.9)

where k > 0 is a hyperparameter. To make sure the constraint from Eq. 2.8 is satisfied, the
normalisation term |εy|k

∑
i̸=y

εk
i

is used. The case of k = 1 is equivalent to the standard gradient, and

each choice of k leads to a different pseudo-gradient.

To illustrate the relationship between the value of k and the effect of prediction biases
with different sizes on the pseudo-gradient, we plot fy(ε) as a function of εy for several
values of k (see Figure 2.2). It is important to note that absolute values of the pseudo-gradient
are not important, since the pseudo-gradient is normally multiplied by the learning rate and
the choice of the latter can effectively determine the pseudo-gradient’s magnitude.

As shown in the figure, when k is large, the pseudo-gradient (and the weight updates)
is more strongly affected by examples with a large prediction bias. In other words, the
learning process is much more affected by those examples that the network has a large error
on, compared to examples the network classifies relatively well. This follows since |ε|k

|ε ′|k is
monotonic increasing in k for ε > ε ′. On the other hand, when using a small positive k we
get that |ε|k

|ε ′|k approaches to 1, and in this case the pseudo-gradient tends to be affected by all
examples in an equal matter, regardless of each example’s prediction bias. In conclusion, the
choice of f , parameterised by k, allows tuning the sensitivity of the training process to large
errors.

2.7 Non-existence of a loss function

The above sections demonstrate how to design a pseudo-gradient in order to directly control
the relative effect of hard and easy examples on the parameter updates. A natural question

16 Tunable Sensitivity for Large Errors

0.0 0.2 0.4 0.6 0.8 1.0
εy

0.0

0.2

0.4

0.6

0.8

1.0
|f
y
(ε

)|
k=0.25

k=0.5

k=1

k=2

k=4

Fig. 2.2 Size of fy(ε) for different choices of k. Lines are in the same order as in the legend.
Reprinted with permission from Keren et al. [56].

that arises is whether this pseudo-gradient is the gradient of some loss function. Keren et al.
[56] show that the answer is in general negative.

Lemma 1. Assume f as in Eq. 2.9 with k ̸= 1, and g(θ) the resulting pseudo-gradient. There
exists a neural network with parameters Θ for which {g(θ)}θ∈Θ is not a gradient of any cost
function.

We bring the proof of this lemma as it appears in Keren et al. [56].

Proof. Consider a neural network with three units in the output layer, and at least one hidden
layer. Let (x,y) be a labelled example, and suppose that there exists some cost function
ℓ̄((x,y);Θ), differentiable in Θ, such that for g as defined in Eq. 2.6 and f defined in Eq. 2.9
for some k > 0, we have g(θ) = ∂ ℓ̄

∂θ
for each parameter θ in Θ. We now show that this is

only possible if k = 1.

2.7 Non-existence of a loss function 17

Under the assumption on ℓ̄, for any two parameters θ1,θ2,

∂

∂θ2

(
∂ ℓ̄

∂θ1

)
=

∂ 2ℓ̄

∂θ1θ2
=

∂

∂θ1

(
∂ ℓ̄

∂θ2

)
,

hence
∂g(θ1)

∂θ2
=

∂g(θ2)

∂θ1
. (2.10)

Recall our notations: h(i) is the output of unit i in the last hidden layer before the softmax
layer, w j(i) is the weight between the hidden unit i in the last hidden layer, and unit j in the
softmax layer, z j is the input to unit j in the softmax layer, and b j is the bias of unit j in the
softmax layer.

Let (x,y) such that y = 1. From Eq. 2.10 and Eq. 2.6, we have

∂

∂w2(1)

n

∑
j=1

∂ z j

∂w1(1)
f j(ε) =

∂

∂w1(1)

n

∑
j=1

∂ z j

∂w2(1)
f j(ε).

Plugging in f as defined in Eq. 2.9, and using the fact that ∂ z j
∂wi(1)

= 0 for i ̸= j, we get:

− ∂

∂w2(1)

(
∂ z1

∂w1(1)
· |ε1|k

)
=

∂

∂w1(1)

(
∂ z2

∂w2(1)
·

εk
2

εk
2 + εk

3
· |ε1|k

)
.

Since y = 1, we have ε = (p1 − 1, p2, p3). In addition, ∂ z j
∂w j(1)

= h(1) and ∂h(1)
∂w j(1)

= 0 for
j ∈ [2]. Therefore

− ∂

∂w2(1)

(
(1− p1)

k
)
= (2.11)

∂

∂w1(1)

(
pk

2

pk
2 + pk

3
(1− p1)

k

)
.

Next, we evaluate each side of the equation separately, using the following:

∂ p j

∂w j(1)
=

∂ p j

∂ z j

∂ z j

∂w j(1)
= h(1)p j(1− p j),

∀ j ̸= i,
∂ p j

∂wi(1)
=

∂ p j

∂ zi

∂ zi

∂wi(1)
=−h(1)pi p j.

18 Tunable Sensitivity for Large Errors

For the LHS of Eq. 2.11, we have

− ∂

∂w2(1)
(1− p1)

k =−k(1− p1)
k−1h(1)p1 p2.

For the RHS,

∂

∂w1(1)
pk

2

pk
2 + pk

3
(1− p1)

k =−
kh(1)p1 pk

2(1− p1)
k

pk
2 + pk

3
.

Hence Eq. 2.11 holds if and only if:

1 =
pk−1

2 (1− p1)

pk
2 + pk

3
.

For k = 1, this equality holds since p1 + p2 + p3 = 1. However, for any k ̸= 1, there are
values of p1, p2, p3 such that this does not hold. We conclude that our choice of f does not
lead to a pseudo-gradient g which is the gradient of any cost function.

2.8 A toy example

To further motivate the choice of f given in Eq. 2.9, Keren et al. [56] illustrate the benefits
of this choice using a toy example with simple data distribution and neural network. They
consider a neural network with no hidden layers, and a single input unit that is connected to
an output layer with two units and softmax activation. The input to the network is denoted
as x, and the output unit i before softmax activation is given by zi = xwi +bi, where wi and
bi are the network’s learnable weights and biases respectively for i ∈ {0,1}. The network’s
prediction function maps a given input to a class label and is denoted as ŷ(x) 7→ {−1,1}.

It is not hard to see that the set of prediction functions that this simple network can
represent is exactly the set of threshold functions, namely functions of the form ŷ(x) =
signx− t or ŷ(x) =−signx− t for t ∈ R, where t is referred to as the decision threshold. Let
α ∈ (1

2 ,1), and suppose that labelled examples are drawn independently at random from the
following distribution D over R×{−1,+1}: uniformly sampling x from [−1,1], and the
label is set to 1 for x ∈ [0,α] and −1 otherwise. For this distribution, the prediction function
that yields the best accuracy is ŷ(x) = sign(x), i.e., the decision threshold is 0. Keren et al.
[56] show that when using the cross-entropy loss for this learning problem, the resulting
prediction function is not optimal. Specifically, they formulate and prove the following
lemma:

2.8 A toy example 19

Lemma 2. Assume the cross-entropy loss is used for learning the classification problem with
network and data structure described above. Given a large enough training set, the value of
the cross-entropy loss is not minimal when the decision threshold is 0.

We give the proof of this lemma as appeared in Keren et al. [56].

Proof. Suppose that there is an assignment of network parameters that minimises the cross-
entropy which induces a threshold at 0. The output of the softmax layer is determined
uniquely by ez0

ez1 , or equivalently by z0−z1 = x(w0−w1)+b0−b1. Therefore, we can assume
without loss of generality that w1 = b1 = 0. Denote w := w0,b := b0. If w = 0 in the
minimising assignment, then all examples are classified as members of the same class and
in particular, the classification threshold is not zero. Therefore we may assume w ̸= 0. In
this case, the classification threshold is −b

w . Since we assume a minimal solution at zero, the
minimising assignment must have b = 0.

When the training set size approaches infinity, the cross-entropy on the sample approaches
the expected cross-entropy on D . Let CE(w,b) be the expected cross-entropy on D for
network parameter values w,b. Then

CE(w,b) =−1
2
(∫ 0

−1
log(p0(x))dx+

∫
α

0
log(p1(x))dx

+
∫ 1

α

log(p0(x))dx
)
.

And we have:

log(p0(x)) = log
ewx+b

ewx+b +1
= wx+b− log(ewx+b +1),

log(p1(x)) = log
1

ewx+b +1
=− log(ewx+b +1).

Therefore

∂CE(w,b)
∂b

=

− 1
2

∂

∂b

(∫ 0

−1
(wx+b)dx−

∫ 0

−1
log(ewx+b +1)dx

−
∫

α

0
log(ewx+b +1)dx

+
∫ 1

α

(wx+b)dx−
∫ 1

α

log(ewx+b +1)dx
)

20 Tunable Sensitivity for Large Errors

=−1
2
(1− ∂

∂b

(∫ 1

−1
log(ewx+b +1)dx

)
+1−α).

Differentiating under the integral sign, we get

∂CE(w,b)
∂b

=−1
2

(
2−α −

∫ 1

−1

ewx+b

ewx+b +1

)
Since we assume the cross-entropy has a minimal solution with b = 0, we have

0 =−2
∂CE(w,b = 0)

∂b

= 2−α − 1
w
(log(ew +1)− log(e−w +1)).

Therefore
w(2−α) = log

ew +1
e−w +1

= log(ew) = w.

Since α ̸= 1, it must be that w = 0. This contradicts our assumption, hence the cross-entropy
does not have a minimal solution with a threshold at 0.

The intuition of the above proof can be traced to the fact that inputs to the network in
the range (α,1] cannot be classified correctly when the decision threshold is close to 0,
therefore they result in large loss and shift the optimal decision threshold to be larger than 0.
Thus, for this simple setting, there is motivation to move away from the cross-entropy loss
to an alternative training mechanism, that is less affected by the large errors. This can be
achieved using the update rule proposed in Keren et al. [56], with k < 1. Using k < 1, the
pseudo-gradient is less sensitive to large errors, and this should allow shifting the decision
threshold closer to the optimal threshold of 0. On the other hand, using k > 1 will cause the
opposite and undesirable effect, and the decision threshold would move further away from 0
towards a larger value, to better accommodate the inputs in (α,1]. Thus, it is expected that
using the above described update rule will yield a monotonically increasing classification
error in k, i.e., the smaller the values of k will be, the better the classification accuracy should
be.

Keren et al. [56] conduct experiments using their proposed update rule and the network
and data structure described above, with α = 0.95, to validate this hypothesis. They generated
30,000 examples for each of the training, validation and test sets. Weights were initialised
by uniformly sampling from the interval (−0.1,0.1) and biases were initialised to 0. Batch
gradient descent with a learning rate of 0.01 was used, i.e., the pseudo-gradient is calculated
using all training examples for every update of the four network parameters. The pseudo-
gradient was calculated according to Eq. 2.6 with f defined in Eq. 2.9. A variety of k values

2.9 Experiments 21

Table 2.1 Toy example experiment results as presented in Keren et al. [56]

k Test error Threshold CE Loss

4 8.36% 0.116 0.489
2 6.73% 0.085 0.361
1 4.90% 0.049 0.288

0.5 4.27% 0.037 0.299
0.25 4.04% 0.030 0.405
0.125 3.94% 0.028 0.625

0.0625 3.61% 0.022 1.190

were used, ranging from 0.0625 to 4. After each training iteration the misclassification rate
on the validation set was computed, and training was stopped after 3000 iterations with no
improvement larger than 0.001%. At the end of training the misclassification rate on the test
set was computed.

Table 2.1 reports the results of the experiments performed by Keren et al. [56]. For each
value of k, the table reports the misclassification rate on the test set, the resulting decision
threshold and the cross-entropy loss on the test set, all averaged across 10 runs for each value
of k. The results confirm the hypothesis regarding the behaviour of this network with the
different values of k, and further motivate the benefits of using k ̸= 1. The misclassification
rate on the test set is monotonic in k, demonstrating that indeed the smallest value of k was
optimal for this problem. In particular, the optimal value of k yielded better performance
compared to k = 1, which is equivalent to training with the cross-entropy loss. Moreover,
the value of the cross-entropy loss (that was computed, even though this loss was not used
for training) is not aligned with the misclassification rate, further supporting the claim that
training using the cross-entropy loss may be suboptimal in some cases, and the update rule
proposed in Keren et al. [56] is preferable.

2.9 Experiments

[56] conduct experiments using four benchmark image classification datasets: the MNIST
dataset [72], consisting of grayscale 28x28 pixel images of handwritten digits, with 10
classes, 60,000 training examples and 10,000 test examples, the Street View House Numbers
dataset (SVHN) [85], consisting of RGB 32x32 pixel images of digits cropped from house
numbers, with 10 classes 73,257 training examples and 26,032 test examples and the CIFAR-
10 and CIFAR-100 datasets [64], consisting of RGB 32x32 pixel images of 10/100 object

22 Tunable Sensitivity for Large Errors

classes, with 50,000 training examples and 10,000 test examples. All datasets were linearly
transformed such that all features are in the interval [−1,1].

The neural networks that were used for these experiments contain either one, three or
five hidden layers with different number of hidden units. SGD with momentum [108] is used
for optimisation with batch size of 128 examples and different values for the learning rate
and momentum hyperparameters. For each value of k, the pseudo-gradient is used according
to Eq. 2.6 with the choice of f from Eq. 2.9. Gradient-Clipping [91] with a threshold of 100
is used for the network with more than one hidden layer. Weights of the hidden layers were
initialised using the initialisation scheme from Glorot and Bengio [32], weights of the output
layer and all biases were initialised with 0.

In each experiment, cross-validation was used to select the best value of k. For networks
with one hidden layer, k was selected out of the values {4,2,1,0.5,0.25,0.125,0.0625}. For
networks with 3 or 5 hidden layers, k was selected out of the values {4,2,1,0.5,0.25}, where
the smaller values were removed due to their performance in preliminary experiments with
deeper networks. The learning rate was optimised using cross-validation for each value of k
separately, since the size of the pseudo-gradient vector can differ by orders of magnitude for
different values of k, as is evident from Eq. 2.9.

For each experiment configuration, defined by a dataset, network architecture and momen-
tum, Keren et al. [56] selected an initial learning rate η , based on preliminary experiments
on the training set. The following procedure was then carried out for η/2,η ,2η , for every
tested value of k:

1. Randomly split the training set into 5 equal parts, S1, . . . ,S5.

2. Run the iterative training procedure on S1 ∪S2 ∪S3, until there is no improvement in
test prediction error for 15 epochs on the early stopping set, S4.

3. Select the network model that did the best on S4.

4. Calculate the validation error of the selected model on the validation set, S5.

5. Repeat the process for t times after permuting the roles of S1, . . . ,S5. We set t = 10 for
MNIST, and t = 7 for CIFAR-10/100 and SVHN.

6. Let errk,η be the average of the t validation errors.

Finally, argminη errk,η is computed. If the minimum was found with the minimal or the
maximal η that was tried, the above process was also performed using half the η or double the
η , respectively. This continued iteratively until there was no need to add learning rates. At the
end of this process (k∗,η∗) = argmink,η errk,η is selected, and the network is retrained with

2.9 Experiments 23

parameters k∗,η∗ on the training sample, using one fifth of the sample as an early stopping
set. Test error of the resulting model is compared to the test error of a model retrained in
the same way, except that we set k = 1 (leading to standard cross-entropy training), and the
learning rate to η∗

1 = argminη err1,η . The final learning rates in the selected models were in
the range [10−1,10] for MNIST, and [10−4,1] for the other datasets.

The results from Keren et al. [56] are reported in Tables 2.2, 2.3, 2.4 for experiments
using networks with one, three and five layers respectively. The best performing value of
k is reported, in addition to the test misclassification rate and cross-entropy loss on the test
set using k = 1 and the selected k. The first observation from the results in the tables is that
k < 1 was performing best for shallow networks, k > 1 for deeper networks, and k values of
around 1 for networks with intermediate depth. This finding is aligned with the hypothesis
from Section 2.1, and indeed points out that the optimal sensitively level to hard examples is
correlated with network capacity.

Further, for the shallow networks the test cross-entropy loss is almost always larger with
the selected k than with k = 1. This finding shows that the optimisation process proposed in
Keren et al. [56] does not necessarily minimises the cross-entropy loss, but yet optimises for
the true task performance measure, that is the misclassification rate. On the contrary, in the
experiments with three and five layers, the cross-entropy is improved when using the best
performing k value. This may be explained by the fact that examples with a large prediction
bias have a high cross-entropy loss, and so focusing training on these examples reduces the
empirical cross-entropy loss, and therefore also the true cross-entropy loss. Overall, the
results demonstrate that, as expected, in many cases the optimal value of k differ from the
default k = 1, and is correlated with network capacity, and that the learning process can
benefit from using a learning algorithm that is free of loss functions.

24 Tunable Sensitivity for Large Errors

Table 2.2 Experiment results for single-layer networks, as appear in Keren et al. [56]. Mom’
stands for the momentum value.

TEST ERROR [%] TEST CE LOSS

DATASET UNITS MOM’ SELECTED k k = 1 SELECTED k k = 1 SELECTED k
MNIST 400 0 0.5 1.71 1.70 0.0757 0.148
MNIST 800 0 0.5 1.66 1.67 0.070 0.137
MNIST 1100 0 0.5 1.64 1.62 0.068 0.131
MNIST 400 0.5 0.5 1.76 1.74 0.078 0.167
MNIST 800 0.5 0.5 1.67 1.65 0.072 0.150
MNIST 1100 0.5 0.5 1.67 1.65 0.071 0.145
MNIST 400 0.9 0.5 1.75 1.75 0.073 0.140
MNIST 800 0.9 2 1.71 1.63 0.070 0.054
MNIST 1100 0.9 0.5 1.74 1.69 0.069 0.127
SVHN 400 0 0.25 16.84 16.09 0.658 1.575
SVHN 800 0 0.25 16.19 15.71 0.641 1.534
SVHN 1100 0 0.25 15.97 15.68 0.636 1.493
SVHN 400 0.5 0.25 16.88 16.16 0.661 1.576
SVHN 800 0.5 0.125 16.09 15.64 0.648 3.108
SVHN 1100 0.5 0.25 16.04 15.53 0.626 1.525
SVHN 400 0.9 0.125 16.65 16.30 0.679 2.861
SVHN 800 0.9 0.25 16.15 15.68 0.675 1.632
SVHN 1100 0.9 0.25 15.85 15.47 0.640 1.657

CIFAR-10 400 0 0.125 48.15 46.91 1.435 5.609
CIFAR-10 800 0 0.125 46.92 46.14 1.390 5.390
CIFAR-10 1100 0 0.125 46.63 46.00 1.356 5.290
CIFAR-10 400 0.5 0.25 48.32 47.06 1.430 3.034
CIFAR-10 800 0.5 0.125 46.91 46.01 1.388 5.645
CIFAR-10 1100 0.5 0.25 46.43 45.84 1.410 2.820
CIFAR-10 400 0.9 0.0625 48.19 46.71 1.518 11.049
CIFAR-10 800 0.9 0.125 47.09 46.16 1.616 5.294
CIFAR-10 1100 0.9 0.125 46.71 45.77 1.850 5.904

CIFAR-100 400 0.5 0.25 75.18 74.41 3.302 6.931
CIFAR-100 800 0.5 0.25 74.04 73.78 3.260 7.449
CIFAR-100 1100 0.5 0.125 73.69 73.11 3.239 13.557
CIFAR-100 400 0.9 0.25 74.96 74.28 3.306 7.348
CIFAR-100 800 0.9 0.125 74.12 73.47 3.327 13.267
CIFAR-100 1100 0.9 0.25 73.47 73.19 3.235 7.489

2.9 Experiments 25

Table 2.3 Experiment results for 3-layer networks, as appear in Keren et al. [56]. Mom’
stands for the momentum value.

TEST ERROR [%] TEST CE LOSS

DATASET UNITS MOM’ SELECTED k k = 1 SELECTED k k = 1 SELECTED k
MNIST 400 0 1 — — — —
MNIST 800 0 1 — — — —
MNIST 400 0.5 1 — — — —
MNIST 800 0.5 1 — — — —
MNIST 400 0.9 1 — — — —
MNIST 800 0.9 0.5 1.60 1.53 0.091 0.189
SVHN 400 0.5 2 16.52 16.52 1.604 0.968
SVHN 800 0.5 1 — — — —
SVHN 400 0.9 1 — — — —
SVHN 800 0.9 2 16.14 15.96 1.651 1.062

CIFAR-10 400 0.5 2 46.81 46.63 3.023 2.121
CIFAR-10 800 0.5 1 — — — —
CIFAR-10 400 0.9 2 47.52 46.92 2.226 2.010
CIFAR-10 800 0.9 2 45.27 44.26 2.855 2.341

CIFAR-100 400 0.5 0.5 75.20 74.95 3.378 4.511
CIFAR-100 800 0.5 1 — — — —
CIFAR-100 400 0.9 0.25 74.97 74.52 3.356 8.520
CIFAR-100 800 0.9 0.5 74.48 73.17 4.133 8.642

26 Tunable Sensitivity for Large Errors

Table 2.4 Experiment results for 5-layer networks, as appear in Keren et al. [56]. Mom’
stands for the momentum value.

TEST ERROR [%] TEST CE LOSS

DATASET UNITS MOM’ SELECTED k k = 1 SELECTED k k = 1 SELECTED k
MNIST 400 0.5 0.5 1.71 1.69 0.113 0.224
MNIST 800 0.5 0.25 1.61 1.60 0.118 0.390
MNIST 400 0.9 1 — — — —
MNIST 800 0.9 4 1.58 1.60 0.098 0.060
SVHN 400 0.5 4 17.41 16.49 1.436 0.708
SVHN 800 0.5 0.5 17.07 16.61 1.343 2.604
SVHN 400 0.9 4 17.89 16.54 1.284 0.718
SVHN 800 0.9 2 16.24 15.73 1.647 0.998

CIFAR-10 400 0.5 2 48.05 47.85 2.017 1.962
CIFAR-10 800 0.5 4 44.21 44.24 4.610 1.677
CIFAR-10 400 0.9 4 47.91 47.57 2.202 1.648
CIFAR-10 800 0.9 2 45.69 44.11 3.316 2.171

CIFAR-100 400 0.5 2 75.69 75.48 3.611 3.228
CIFAR-100 800 0.5 2 74.10 73.57 4.650 4.439
CIFAR-100 400 0.9 1 — — — —
CIFAR-100 800 0.9 4 74.32 74.62 3.872 3.432

Chapter 3

The Principle of Logit Separation

3.1 Motivation

With the increase in available computational resources and data collection rate, machine
learning models are often required to perform fine-grained classification over a very large
number of classes. These classification problems naturally appear in computer vision,
language modeling and machine translation, and were studied in several works [37, 124].
Datasets with up to hundreds of thousands of classes are already used in industry [22, 90].

For neural network classifiers, the large number of classes can imply a high computational
burden at test time. Indeed, when using a standard neural network classifier with a softmax
layer, computing the class logits, that are the unnormalised class scores, is linear in the
number of classes [35]. This can be prohibitively slow for high-load systems, such as search
engines or real-time machine translation systems.

However, in many applications the task at test time is not a full classification of a given
example. Instead, every time the classifier is used, the task is to detect whether a given
example belongs to a small subset of classes, possibly containing a single class. The small
subset of possible classes to test for can change every time the classifier is used. Consider
the case of real-time image search [78, 95] from a live of feed of multiple cameras. When
the user queries for images that contain an instance of class A, the classifier needs to process
a large number of images and decide whether each image contains an instance of class A.
Using the system for the seconds time, the user now queries for images containing instances
of class B. New images are now processed through the classifier, to determine which of them
contain an instance of class B. This setting can apply to cameras installed on autonomous
vehicles, security cameras for detecting objects of interest, or live face recognition, where
the person to be identified changes based on a user query.

28 The Principle of Logit Separation

In the setting we consider, the classifier will have to support a single class (or a small set
of classes) for every use, but as this class may change each time the classifier is used, in total
this classifier will need to support a large number of possible classes across all the different
times it is used. As the number of classes is large, it is reasonable to train a single classifier
that can handle queries of all possible classes, instead of training a separate classifier for each
class.

For this type of applications, one would ideally want a test time computation that does
not depend on the total number of possible classes. A natural approach is to compute a single
logit that corresponds to the class of interest, and decide whether the input instance belongs
to this class based on this logit alone. However, the value of this logits alone may not be
enough to indicate whether its corresponding class is correct, as it may be meaningful only
in comparison to the values of other classes’ logits. In such case, the value of this single
logit alone cannot be used to determine class correctness. Keren et al. [57] name this binary
classification task of inferring class correctness from its corresponding logit alone Single
Logit Classification (SLC). Figure 3.1 demonstrates the speedups yielded by SLC, i.e., by
computing only a single logit instead of logits of all possible classes, as the number of classes
increase. For instance, computing only a single logit yields a 10x speedup at test time, when
the number of possible classes is approximately 400,000. The speedup increases with the
number of possible classes. See Section 3.7.3 for more details about the obtained speedups.

Motivated by the research question posed in Section 1.2, Keren et al. [57] find that the
loss function used affects the nature of the representation in the logits layer in a manner that
is strongly connected to accuracy in the SLC task. As a first result, Keren et al. [57] show
that when using the cross-entropy loss for training a neural network classifier, a single logit
at test time is not informative enough to classify whether it belongs to the correct class of
the example. This means, that the cross-entropy loss yields poor performance in the SLC
task. Further, Keren et al. [57] identify a simple principle they name the Principle of Logit
Separation (PoLS), that is an essential characteristic a loss function must have in order to
yield good performance in SLC. The principle states that a loss function should optimise for
the following property regarding the representation in the logits layer:

The value of any logit that belongs to the correct class of any training example
should be larger than the value of any logit that belongs to a wrong class of any
(same or other) training example.

A formal definition of the Principle of Logit Separation is given in Section 3.3. See
Figure 3.2 for an illustration. Keren et al. [57] and Keren et al. [58] study the alignment
of nine existing loss functions with the PoLS, and find that the PoLS is satisfied by the
self-normalisation [24] and Noise-Contrastive Estimation [81] training objectives, proposed

3.1 Motivation 29

8 10 12 14 16 18
log2(#classes)

0.007

0.020

0.030

0.040

0.050

0.060

0.070

0.080
se

co
nd

s /
 e

xa
m

pl
e

Computing all logits
Applying an SLC method

Fig. 3.1 Computation time of the logits from network inputs, using an inception-V3 image
classification architecture [111], where the topmost layer is replaced with the appropriate
number of classes. When applying SLC, computation cost is fixed regardless of the number
of classes, which can lead to considerable speedups when the number of classes is large.
Reprinted with permission from Keren et al. [57].

for calculating posterior distributions in the context of natural language processing, as well
as by the binary cross-entropy loss used in multilabel settings [45, 121] and the sigmoid
Tanimoto loss [47] that is inspired by a distance measure for binary vectors. In contrast,
the principle is not satisfied by the standard cross-entropy loss, the max-margin loss, the
softmax Tanimoto loss [47], the sigmoid Cauchy-Schwartz divergence and the softmax
Cauchy-Schwarz divergence [20, 47]. In addition, two novel loss functions are proposed
by Keren et al. [57], namely the batch cross-entropy and the batch max-margin losses, that
are extensions of the cross-entropy and max-margin losses, that are designed to operate on
batches of examples and to satisfy the PoLS. In total, eleven different loss functions are
studied. Tensorflow code for optimising the new batch losses is publicly available at
https://github.com/EIHW/Logit_Separation.

Experiments performed in Keren et al. [57] show that SLC accuracy of loss functions
that satisfy the PoLS is considerably higher compared to loss functions that are not aligned

https://github.com/EIHW/Logit_Separation

30 The Principle of Logit Separation

with the PoLS. This verifies that the Principle of Logit Separation is indeed a crucial
ingredient in shaping the network representations in the logits layer in a manner that yields
good SLC accuracy, thus partially answering the research question posed in Section 1.2.
Specifically, objectives that satisfy the Principle of Logit Separation produce logits that
are more informative as a standalone value, and in almost all cases yielded a 20% relative
accuracy improvement over loss functions that are not aligned with the PoLS, such as the
standard cross-entropy loss, and in many cases a much larger improvement. In another set of
experiments, Keren et al. [57] show that when using loss functions that are aligned with the
PoLS, SLC does not cause any decrease in binary classification accuracy for a given class,
compared to the case where all logits are computed, while keeping the computation cost
independent of the total number of classes. Finally, Keren et al. [57] compute the speedup
factor one may gain by applying SLC instead of computing all classes’ logits, and show
considerable speedup gains for a large number of classes.

Training time,
cross entropy

Evaluation time,
cross entropy

Dog

Example A
Decision: Dog

Decision: ?

Dog ?

Cat ?

15

Cat

10

Logit

Class Dog

Example B
Decision: Cat

Cat

5 10

Cat

10

Training time,
PoLS-aligned loss

Evaluation time,
PoLS-aligned loss

Dog

Example A
Decision: Dog

Decision: Cat

Dog ✕

Cat ✓

10

Cat

Logit

Class Dog

Example B
Decision: Cat

Cat

5 10

Cat

105

Fig. 3.2 The Principle of Logit Separation. Left: When training with the cross-entropy loss,
there is no constraint on the relationship between true and false logits in different examples.
Therefore, the logit for the class ‘Cat’ can have the same value in two training examples, once
as a true logit (blue) and once as a false logit (red). At test time, there is no way to decide
whether this value (yellow) indicate that the logit is true or false. Right: When training with
a loss function that is aligned with the PoLS, true logits are larger than false logits across the
training set. Therefore, logit values at test time better indicate whether this is a true or false
logit. Reprinted with permission from Keren et al. [57].

3.2 Related work

This section reviews existing methods that are relevant for faster test-time classification. The
hierarchical softmax layer [82] replaces the flat softmax layer with a binary tree with classes

3.3 The Principle of Logit Separation 31

as leaves, making the computational complexity of calculating the posterior probability of
each class logarithmic in the number of classes. A drawback of this method is the additional
construction of the binary tree of classes, which requires expert knowledge or data-driven
methods. Inspired by the hierarchical softmax approach, Grave et al. [35] exploit unbalanced
word distributions to form clusters that explicitly minimise the average time for computing
the posterior probabilities over the classes. The authors report an impressive speedup factor
of between 2 and 10 for posterior probability computation, but their computation time still
depends on the total number of classes. Differentiated softmax was introduced in Chen et al.
[15] as a less computationally expensive alternative to the standard softmax mechanism, in
the context of neural language models. With differentiated softmax, each class (word) is
represented in the last hidden layer using a different dimensionality, with higher dimensions
for more frequent classes. This allows a faster computation for less frequent classes. However,
this method is applicable only for highly unbalanced class distributions. Several sampling-
based approaches were developed in the context of language modeling, with the goal of
approximating the softmax function at training time. Notable examples are importance
sampling [7], negative sampling [80], and Noise Contrastive Estimation (NCE) [38, 81].
These methods do not necessarily improve the test time computational burden, however it is
shown below that the NCE loss can be used for the SLC task.

3.3 The Principle of Logit Separation

When attempting to perform the SLC task, an example is represented only by the single logit
that corresponds to the class of interest. Since this is a binary classification task, a natural
approach is to set a classification threshold, such that if the logit is above the threshold then
the example is classified as belonging to the class of interest. We refer to logits that should be
classified as positive, i.e., logits that belong to the true class of their examples, as true logits,
and refer to other logits as false logits. In order for the threshold approach to work well, we
would want all true logits to have larger values than all false logits, across the entire training
sample (in fact, it is sufficient to require this for every class separately, but for simplicity we
stick to the stronger requirement). The Principle of Logit Separation (PoLS) captures this
desired property, as illustrated in Figure 3.2.

Keren et al. [57] formally define the Principle of Logit Separation: Let [k] := {1, . . . ,k}
be the possible class labels. Assume that the training sample is S = ((x1,y1), . . . ,(xn,yn)),
where xi ∈ Rd are the training examples, and yi ∈ [k] are the labels of these examples. For a
neural network model parameterised by θ , denote by zθ

y (x) the value of the logit assigned by

32 The Principle of Logit Separation

the model to example x for class y. The Principle of Logit Separation (PoLS) can be formally
stated as follows:

Definition 1 (The Principle of Logit Separation). The Principle of Logit Separation holds for
a labelled set S and a model θ , if for any (x,y),(x′,y′) ∈ S (including the case x = x′,y = y′)
and any y′′ ̸= y′, we have zθ

y (x)> zθ

y′′(x
′).

The above definition assures that every true logit zθ
y (x) is larger than any false logit

zθ

y′′(x
′), across the entire labelled set S. When this property holds across the entire train

and test examples, it guarantees a perfect accuracy in the SLC task, since true logits can
be separated from false logits using a simple classification threshold. Therefore, a natural
approach is to use a training objective that optimises for this property on the training set.
For a loss ℓ, denote ℓ(S,θ) as the value of this loss function on a sample S with a model θ .
A loss ℓ is said to be aligned with the PoLS if a small enough value of ℓ(S,θ) assures that
the requirement from Definition 1 holds for the model θ . The following sections study the
alignment with the PoLS of several loss functions.

3.4 Existing objectives that do not satisfy the PoLS

In this section we discuss a number of loss functions previously proposed in the literature,
and show, as was shown in Keren et al. [57] and Keren et al. [58], that these classification
loss functions are not aligned with the PoLS.

3.4.1 The cross-entropy loss

As discussed in the introduction to this work, the cross-entropy loss is the standard loss
function for neural network classifiers. On a single example, it is defined as follows:

ℓ(z,y) =− log(py), (3.1)

where

py :=
ezy

∑
k
j=1 ez j

=
(k

∑
j=1

ez j−zy
)−1

.

Note that py is the probability assigned by the softmax layer. It is not hard to see that the cross-
entropy loss is not aligned with the PoLS. As the loss depends only on the difference between
the different logits, minimising it would lead to a large difference between true and false logits
for every example separately. However, it does not guarantee that true logits in one training
example are larger than false logits in another training example. Formally, Keren et al. [57]

3.4 Existing objectives that do not satisfy the PoLS 33

provide the following counter-example that shows that this loss function is not aligned with
the PoLS. Let S = ((x1,1),(x2,2)) be the training sample, and let θα , for α > 0, be a model
such that zθα (x1) = (2α,α), and zθα (x2) = (−2α,−α). Then, ℓ(Sθα

) = 2log(1+ e−α).
Therefore, for any ε > 0, there is some α > 0 such that ℓ(Sθα

)≤ ε , but zθα

2 (x1)> zθα

2 (x2),
contradicting an alignment with PoLS.

3.4.2 The max-margin loss

The max-margin training objectives are mostly known for their role in Support Vector
Machines. These training objectives were also used for neural network models [47, 105].
In this chapter we consider the multiclass classification version proposed in Crammer and
Singer [18], that is defined for a single example as follows:

ℓ(z,y) = max(0,γ − zy +max
j ̸=y

z j), (3.2)

where γ > 0 is a hyperparameter, denoting the minimal desired separation margin between
true and false logits of a given example. One can see that this loss function is not aligned
with the PoLS. Similarly to the cross-entropy loss, the max-margin loss optimises for a γ

difference between the true and false logits of a given examples. However, this does not
guarantee that true logits in one example are larger than false logits in another example.
Keren et al. [57] give a precise counter example proving that this loss function is not aligned
with the PoLS: consider the same training sample S as defined in the counter-example for the
cross-entropy loss above, and the model θα defined there. Setting α = γ , we have ℓ(Sθγ

) = 0.

Thus for any ε > 0, ℓ(Sθγ
)< ε , but zθγ

2 (x1)> zθγ

2 (x2), contradicting an alignment with PoLS.

3.4.3 Softmax Cauchy-Schwarz divergence

The Cauchy-Schwarz divergence is based on the Cauchy-Schwarz inequality for inner
products, and was defined in Kampa et al. [51] for two non-negative real vectors:

DCS(f ,g) =− log
f ·g

|| f || ||g||
, (3.3)

where · denotes an inner product and || · || is an L2 norm. The Cauchy-Schwarz divergence
can be viewed as first computing the cosine similarity between the vectors f and g, which
results in a value 0 ≤ cosα ≤ 1 where α is the angle between f and g. For two parallel
vectors cosα = 1, while cosα = 0 for two perpendicular vectors. Then, a negative logarithm
is applied, similarly to the cross-entropy loss, to transform the result to range from 0 for

34 The Principle of Logit Separation

parallel vectors to ∞ for perpendicular vectors, which makes it a suitable training objective
for matching the vectors f and g.

The Cauchy-Schwarz divergence was used as a classification loss function in Czarnecki
et al. [20], Janocha and Czarnecki [47]. For neural network multiclass classifiers, Janocha and
Czarnecki [47] view f and g as vectors of class probabilities, where f is the target probability
vector that assigns a probability of 1 to the correct class and 0 to other classes, and g is
the model output. As mentioned in Janocha and Czarnecki [47], the model output class
probability vector g can be obtained by applying the sigmoid function σ(z) = (1+ e−z)−1 to
every logit, or by applying the softmax normalisation function on the logits vector.

This gives rise to two separate loss functions, the softmax Cauchy-Schwarz divergence
and the sigmoid Cauchy-Schwarz divergence. We analyse the alignment with the PoLS for
each loss separately. The softmax Cauchy-Schwarz divergence is given by

ℓ(z,y) =− log
p · t

||p|| ||t||
,

where ty = 1 and t j = 0 for j ̸= y, and p is the model output distribution given by the softmax
function

pi =
ezi

∑
k
j=1 ez j

=
(k

∑
j=1

ez j−zi
)−1

.

Since t is centred in the coordinate y, the loss term can be simplified to

ℓ(z,y) =− log
py

||p||
, (3.4)

that is defined for every output probability distribution p, since the softmax function never
assigns a probability of 0 to any class.

The softmax Cauchy-Schwarz divergence is not aligned with the PoLS. This can be
seen using a counter-example similar to the one used for the cross-entropy loss. Let S =

((x1,1),(x2,2)) be the training sample, and let θα , for α > 0, be a model such that zθα (x1) =

(2α,α), and zθα (x2) = (−2α,−α). Further, from the definition of the softmax function,
pθα (x1) = pθα (x2) therefore also ℓ(zθα (x1),1) = ℓ(zθα (x2),2). Since ℓ(Sθα

) converges to
0 when α converges to ∞, for every ε > 0 there exists α > 0 such that ℓ(Sθα

) ≤ ε , but
zθα

2 (x1)> zθα

2 (x2), contradicting an alignment with PoLS.

3.4 Existing objectives that do not satisfy the PoLS 35

3.4.4 Sigmoid Cauchy-Schwarz divergence

When the model output class probability vector g is obtained by applying the sigmoid
function σ(z) = (1+e−z)−1 to the output logits, it gives rise to the sigmoid Cauchy-Schwarz
divergence loss function.

The sigmoid Cauchy-Schwarz divergence is given by

ℓ(z,y) =− log
σ(z) · t

||σ(z)|| ||t||
,

where · denotes an inner product, t is the same as for the softmax Cauchy-Schwarz divergence,
and σ is applied coordinate-wise. Since t is centred in the coordinate y, the loss term can be
simplified to

ℓ(z,y) =− log
σ(zy)

||σ(z)||
, (3.5)

that is defined for every output logit vector z, single the sigmoid function does not assign a
probability of 0 to any class.

The sigmoid Cauchy-Schwarz divergence is not aligned with the PoLS, since it de-
pends only on the ratio between σ(zy) and σ of other coordinates in the logit vector. For-
mally, the following counter-example shows that this loss is not aligned with the PoLS.
Let S = ((x1,1),(x2,1)) be the training sample, and let θα , for α > 0, be a model such
that σ(zθα (x1)) = (0.5,0.5/α), and zθα (x2) = (0.5/α,0.5/α2). It is easy to derive that
ℓ(zθα (x1),1) = ℓ(zθα (x2),1) =− log α√

α2+1
. As the last expression converges to 0 when α

converges to ∞, for every ε > 0 there exists α > 0 such that ℓ(Sθα
)≤ ε , but zθα

2 (x1)≮ zθα

1 (x2),
contradicting an alignment with PoLS.

3.4.5 Softmax Tanimoto loss

The Tanimoto loss was proposed in Janocha and Czarnecki [47], based on the Tanimoto
distance that is a distance measure for binary vectors [34]. The Tanimoto loss is defined as

DTan(f ,g) =− f ·g
|| f ||+ ||g||− f ·g

, (3.6)

where · is an inner product and || · || is an L2 norm. Similarly to the Cauchy-Schwarz
divergence, f and g are viewed as vectors of class probabilities, where f is the target
probability vector that assigns a probability of 1 to the correct class and 0 to other classes,
and g is the model output. Also for this loss, Janocha and Czarnecki [47] mention that the

36 The Principle of Logit Separation

model output class probability vector g can be obtained by using the softmax or the sigmoid
functions, that gives rise to two different loss functions.

When using the softmax function to obtain class probabilities, since fy = 1 and f j = 0
otherwise, the Tanimoto loss amounts to

ℓ(z,y) =−
py

1+ ||p||− py
=− 1

1+||p||
py

−1
, (3.7)

where p and py are as defined in Section 3.4.3. Since ||p|| ≥ py, it follows that 1+||p||
py

≥ 2

and 1+||p||
py

= 2 if and only if py = 1. Therefore, the minimal value of ℓ is −1, which is
non-standard for loss functions that are normally defined as non-negative function. However,
for gradient computation purposes it does not matter, and this loss can be used without any
changes for training neural network classifiers.

The softmax Tanimoto loss is not aligned with the PoLS, again because the softmax
function depends only on different between logits. Formally, consider a counter-example
similar to the one used for the cross-entropy loss. Let S = ((x1,1),(x2,2)) be the training
sample, and let θα , for α > 0, be a model such that zθα (x1) = (2α,α), and zθα (x2) =

(−2α,−α). Further, from the definition of the softmax function, pθα (x1)= pθα (x2) therefore
also ℓ(zθα (x1),1) = ℓ(zθα (x2),2). Since ℓ(Sθα

) converges to −1 when α converges to ∞, for
every ε >−1 there exists α > 0 such that ℓ(Sθα

)≤ ε , but zθα

2 (x1)> zθα

1 (x2), contradicting
an alignment with PoLS. We find that the sigmoid Tanimoto loss is aligned with the PoLS,
and we discuss this loss function in Section 3.5.4

3.5 Existing objectives that satisfy the PoLS

A few loss functions that were previously proposed in the literature are aligned with the
PoLS. These loss functions are often used to solve problems that are somewhat related to
the PoLS. This section explores these loss functions, contains proves that they are indeed
aligned with the PoLS.

3.5.1 Self-normalisation

The self-normalisation loss [24] was introduced in the context of machine translation models.
In many variations of these models a posterior probability over the entire vocabulary is
calculated. As the vocabulary often contains hundreds of thousands of words, the self-
normalisation loss was introduced in order to avoid this costly computation. The self-
normalisation loss is composed of the standard cross-entropy loss and an additional term.

3.5 Existing objectives that satisfy the PoLS 37

Let α > 0 be a hyperparameter, and py as defined in Eq. 3.1. The self-normalisation loss is
defined by

ℓ(z,y) =− log(py)+α · log2(
k

∑
j=1

ez j). (3.8)

The motivation for this loss is as follows: when the loss is minimised, the term (
k
∑
j=1

ez j equals

1, therefore the exponentiated logit ez j can be interpreted as class probabilities for class j.
Devlin et al. [24] use this property to compute the posterior probability for only a subset of
all possible classes, and report a speedup by a factor of 15.

Intuitively, this loss should be useful for the SLC task as well: if the softmax normalisation
term is always close to 1 then there is no need to compute it, therefore it is enough to compute
the (exponentiated) logit for the class of interest alone to determine the class’s posterior
probability, and infer whether this is the correct class. Indeed, Keren et al. [57] show that
this loss is aligned with the PoLS. Minimising the first term in the loss requires the true logit
to be as far as possible from false logits for a given example. Minimising the second term
requires all exponentiated logits to sum to one. Therefore, when both terms are minimised,
the true logit converges 0, while all false logits converge negative infinity. Doing this for
all training examples results in all true logits being larger than all false logits in the entire
training set.

Keren et al. [57] provide a formal proof that the self-normalisation loss is aligned with
the PoLS. Let a training sample S and a neural network model θ , and consider an example
(x,y) ∈ S. We consider the two terms of the loss in order. First, consider − log(py). From
the definition of py (Eq. 3.1) we have that

− log(py) = log(
k

∑
j=1

ez j−zy) = log(1+ ∑
j ̸=y

ez j−zy).

Set ε0 := log(1+ e−2). Then, if − log(py)< ε0, we have ∑ j ̸=y ez j−zy ≤ e−2, which implies
that (a) ∀ j ̸= y,z j ≤ zy−2 and (b) ezy ≥∑

k
j=1 ez j/(1+e−2)≥ 1

2 ∑
k
j=1 ez j . Second, consider the

second term. There is an ε1 > 0 such that if log2(∑k
j=1 ez j)< ε1 then (c) 2e−1 < ∑

k
j=1 ez j < e,

which implies ezy < e and hence (d) zy < 1. Now, let θ such that ℓ(Sθ)≤ ε := min(ε0,ε1).
Then ∀(x,y) ∈ S, ℓ(zθ (x),y)≤ ε . From (b) and (c), e−1 < 1

2 ∑
k
j=1 ez j < ezy

, hence zy >−1.
Combining with (d), we get −1 < zy < 1. Combined with (a), we get that for j ̸= y, z j <−1.
To summarise, ∀(x,y),(x′,y′) ∈ S and ∀y′′ ̸= y′, we have that zθ

y (x)>−1 > zθ

y′′(x
′), implying

PoLS-alignment.

38 The Principle of Logit Separation

3.5.2 Noise Contrastive Estimation

Noise Contrastive Estimation (NCE) [38, 81] was proposed, similarly to self-normalisation,
in the context of natural language processing. This mechanism was proposed in order
to speed up training of neural language models over large vocabularies. In NCE, the
multiclass problem is viewed as a collection of binary classification problems, each for a
single class. Each binary classification problem classifies whether a given word is from
the data distribution or a noise distribution. At training time, only t words from the noise
distribution are used, instead of the entire vocabulary, which leads to a significant speedup.
Similarly to self-normalisation, NCE, is known to produce a self-normalised logit vector [3].
This property makes the NCE loss a good fit for the SLC task, as a single logit is may be
meaningful as a standalone value and not only in comparison to other logits from the same
example.

In the version given by Mnih and Teh [81], the NCE loss is defined based on a distribution
over the possible classes, denoted by q = (q(1), . . . ,q(k)), where ∑

k
i=1 q(i) = 1. The NCE

loss, in an equivalent notation given by Keren et al. [57], is

ℓ(z,y) =− loggy − t ·E j∼q
[
log(1−g j)

]
, (3.9)

where
g j := (1+ t ·q(j) · e−z j)−1.

During training, the second term in the loss is usually approximated by a Monte-Carlo
approximation, using t random samples of j ∼ q, to speed up training time [81].

Keren et al. [57] observe that the NCE loss is aligned with the PoLS. They first observe
that g j is of a similar form to σ(z j) where σ(z) = (1+ e−z)−1 is the sigmoid function.
Therefore, when the above term is minimised for a single example, the true logit converges
to infinity while all false logits converge to negative infinity. When this term is minimised
for the entire training set, all true logits are larger than all false logits across the training set.
The formal proof from Keren et al. [57] is given below.

We prove that the NCE loss satisfies the PoLS: g j is monotonic increasing in z j. Hence,
if the loss is small, gy is large and g j for j ̸= y, is small. Formally, fix t, and let a training
sample S. There is an ε0 > 0 such that if − logg j ≤ ε0, then z j > 0. Also, there is an ε1 > 0
(which depends on q) such that if −E j∼q

[
log(1−g j)

]
≤ ε1 then ∀ j ̸= y, log(1−g j) must

be small enough so that z j < 0. Now, consider θ such that ℓ(Sθ)≤ ε := min(ε0,ε1). Then
for every (x,y) ∈ S, ℓ(zθ (x),y)≤ ε . This implies that for every (x,y),(x′,y′) ∈ S and y′′ ̸= y′,
we have that zθ

y (x)> 0 > zθ

y′′(x
′), thus this loss is aligned with the PoLS.

3.5 Existing objectives that satisfy the PoLS 39

3.5.3 Binary cross-entropy

The binary cross-entropy loss is often used in multilabel classification setting. In this setting,
each example can belong to multiple classes, and the goal of learning is to classify a given
example into all classes it belongs to. The common approach for this task [45, 121] is solving
a set of binary classification problems, each determines whether the given example belongs
to a specific class, using a single neural network model. This is done by minimising the
sum of cross-entropy losses that correspond to the binary problems. In this setting, the label
of each example is a binary vector (r1, . . . ,rk), where r j = 1 if x belongs to class j and 0
otherwise. The loss for a single training example with logits z and label-vector r is

ℓ(z,(r1, . . . ,rk)) =−
n

∑
j=1

r j log(σ(z j))+(1− r j) log(1−σ(z j)),

where σ(z) = (1+ e−z)−1 is the sigmoid function. This loss can also be used for our setting
of multiclass problems, by defining r j := 1 j=y for an example (x,y). This gives the multiclass
loss

ℓ(z,y) =− log(σ(zy))+ ∑
j ̸=y

log(1−σ(z j)). (3.10)

As pointed by Keren et al. [57], the binary cross-entropy, when applied to the multiclass
setting, is also aligned with the PoLS. Indeed, similarly to the NCE loss, when the binary
cross-entropy is minimised for a single example, the true logit zy converges to infinity, while
all false logits converge to negative infinity. Minimising this loss across the entire trainings
set results in all true logits having larger values than all false logits across the training set.

Keren et al. [57] also provide a formal proof for this: for g j as in Eq. 3.9, g j = σ(z j −
ln(t ·q(j))). Since σ(z j) is monotonic, the proof method for NCE carries over and thus the
binary cross-entropy loss satisfies the PoLS as well.

3.5.4 Sigmoid Tanimoto loss

When using the sigmoid function to obtain class probabilities, the Tanimoto loss from Eq.
3.6 amounts to

ℓ(z,y) =−
σ(zy)

1+ ||σ(z)||−σ(zy)
=− 1

1+||σ(z)||
σ(zy)

−1
, (3.11)

since fy = 1 and f j = 0 for j ̸= y. Since ||σ(z)|| ≥ σ(zy), it follows that 1+||σ(z)||
σ(zy)

≥ 2 and
1+||σ(z)||

σ(zy)
= 2 if and only if σ(zy) = 1 and σ(z j) = 0 for j ̸= y. Therefore, similarly to the

40 The Principle of Logit Separation

softmax Tanimoto loss, the minimal value of ℓ is −1, which is non-standard but has no
practical implications for neural network training.

This loss function is aligned with the PoLS. From the above discussion, if ℓ converges
to its minimal value of −1 then σ(zy) converges to 1 and σ(z j) converges to 0 for j ̸= y.
This implies that when ℓ converges to its minimum, zy converges to ∞ while z j converges to
−∞ for j ̸= y. Now consider a training sample S and a model θ . It follows that there exists
ε > 0 such that if ℓ(Sθ)<−1+ ε then for every (x,y),(x′,y′) ∈ S and y′′ ̸= y′, we have that
zθ

y (x)> 0 > zθ

y′′(x
′), thus this loss is aligned with the PoLS.

3.6 Novel objectives that satisfy the PoLS

In this section we describe the two novel loss functions proposed by Keren et al. [57]. The
two novel training objectives are aligned with the PoLS, therefore are suitable for the SLC
task. These loss functions are extensions of the cross-entropy and the max-margin losses that
were studied in Section 3.4, adapted to operate on a batch of training examples, instead of
a single example. In addition, the new loss functions do not add any new hyperparameter
to be tuned, as the batch size is already a hyperparameter of gradient-based optimisation
algorithms such as SGD.

When the cross-entropy and the max-margin losses are minimised, they guarantee a large
difference between the true and false logits for every example separately. The generalisations
proposed in Keren et al. [57] transform this property to apply on a batch of examples, which
guarantees the difference between true and false logits across a batch. Finally, shuffling the
training batches during the training process enforces a difference between true and false
logits across the entire training set, which is equivalent to alignment with the PoLS.

3.6.1 Batch cross-entropy

The first novel loss proposed in Keren et al. [57] generalises the cross-entropy loss. The
cross-entropy loss can be written as the Kullback-Leibler (KL) divergence between a target
and a model output distributions, as described below. The KL divergence between two
discrete probability distributions P and Q over [k] is defined as

KL(P||Q) :=
k

∑
i= j

P(j) log(P(j)/Q(j)).

For an example (x,y), let P(x,y) be the distribution over [k] which deterministically outputs y,
and let Qx be the distribution defined by the softmax normalised logits, Qx(j) = ez j/∑

k
i=1 ezi .

3.6 Novel objectives that satisfy the PoLS 41

Then, it is easy to see that for py as defined in Eq. 3.1, KL(P(x,y)||Qx) =− log py, is exactly
the cross-entropy loss as given in Eq. 3.1.

The batch version of the cross-entropy loss was defined in Keren et al. [57] using the
KL divergence between distributions over batches of examples as follows. Denote the i-th
example in a batch by (xi,yi), and define PB to be the target distribution over [m]× [k]:

PB(i, j) :=

 1
m j = yi,

0 otherwise.

Let QB be the distribution defined by the softmax normalised logits over the entire batch B.

Formally, denote Z(B) :=
m
∑

i=1

k
∑
j=1

ez j(xi). Then QB(i, j) := ez j(xi)/Z(B). We then define the

batch cross-entropy loss as follows.

Definition 2 (The batch cross-entropy loss). Let m > 1 be an integer, and let B be a uniformly
random batch of size m from S. The batch cross-entropy loss of a training sample S is

ℓ(S) := EB[Lc(B)], where Lc(B) := KL(PB||QB).

The batch cross-entropy loss is aligned with the PoLS. When the loss is minimised, each
exponentiated true logit converges to 1

m , therefore each true logit converges to log 1
m . On the

other hand, each exponentiated false logit converges to 0, therefore each false logit converges
to negative infinity. When this loss is minimised over the training set, all true logits are larger
than all false logits in the training set, therefore the loss is aligned with the PoLS. Keren et al.
[57] give a formal proof for this, using an additional lemma, as given below.

If true logits are greater than false logits in every batch separately when using, then the
PoLS is satisfied on the whole sample, since every pair of examples appears together in some
batch. The following lemma formalises this:

Lemma 3. If L is aligned with the PoLS, and ℓ is defined by ℓ(Sθ) := EB[L(Bθ)], then ℓ is
also aligned with the PoLS.

Proof. Assume a training sample S and a neural network model θ . Since L is aligned with
the PoLS, there is some ε ′ > 0 such if L(Bθ) < ε ′, then for each (x,y),(x′,y′) ∈ B and
y′′ ̸= y′ we have that zθ

y (x) > zθ

y′′(x
′). Let ε = ε ′/

(n
m

)
, and assume ℓ(Sθ) < ε . Since there

are
(n

m

)
batches of size m in S, this implies that for every batch B of size m, L(Bθ) ≤ ε ′.

For any (x,y),(x′,y′) ∈ S, there is a batch B that includes both examples. Thus, for y′′ ̸= y′,
zθ

y (x)> zθ

y′′(x
′). Since this holds for any two examples in S, ℓ is also PoLS-aligned.

42 The Principle of Logit Separation

To show that the batch cross-entropy satisfies the PoLS, it is needed to show that Lc does,
which by Lemma 3 implies this for ℓ. By the continuity of KL, and since for discrete distribu-
tions, KL(P||Q) = 0 ⇐⇒ P ≡ Q, there is an ε > 0 such that if L(Bθ)≡ KL(PB||Qθ

B)]< ε ,
then for all i, j, |PB(i, j)−Qθ

B(i, j)| ≤ 1
2m . Therefore, for each example (x,y) ∈ B,

ezθ
y (x)

Z(B)
>

1
2m

, and ∀ j ̸= y,
ezθ

j (x)

Z(B)
<

1
2m

.

It follows that for any two examples (x,y),(x′,y′) ∈ B, if y ̸= y′, then zθ
y (x)>

1
2m > zθ

y′(x
′).

Therefore L satisfies the PoLS, which completes the proof.

3.6.2 Batch max-margin

A second novel loss function that was proposed in Keren et al. [57] is the batch version of
the max-margin loss that was defined in Eq. 3.2. For a batch B, the minimal true logit and
maximal false logit in B are defined:

zB
+ := min

(x,y)∈B
zy(x), and zB

− := max
(x,y)∈B, j ̸=y

z j(x).

The batch max-margin loss was defined in Keren et al. [57] as follows:

Definition 3 (The batch max-margin loss). Let m > 1 be an integer, and let B be a uniformly
random batch of size m from S. Let ℓ be the single-example max-margin loss defined in Eq.
3.2, let γ > 0 be the max-margin hyper-parameter. The batch max-margin is defined by

ℓ(S) := EB[Lm(B)],

where
Lm(B) :=

1
m

max(0,γ − zB
++ zB

−)+
1
m ∑

(x,y)∈B
ℓ(z(x),y).

The batch max-margin loss is aligned with the PoLS. Minimising the first term in Lm(B)
makes sure that the smallest true logit in a given batch is greater than the largest false logit
in this batch. Shuffling the batches during training makes this property hold for the entire
training set, which conforms with the definition of the PoLS. The second term of Lm(B) is
not necessary for alignment with the PoLS, but was rather added to increase convergence
speed. Indeed, without this term at every training iteration only two logits are affected: the
smallest true logit and the largest false logit, which has the potential to slow down training
by requiring many training iterations. This intuition was confirmed in initial experiments as
reported by Keren et al. [57].

3.7 Experiments 43

We include the formal proof of the alignment of this loss function with the PoLS, as was
given in Keren et al. [57]: to show that the batch max-margin loss satisfies the PoLS, we show
this for Lm and invoke Lemma 3. Set ε = γ/m. If L(Bθ)< ε , then γ − zB

++ zB
− < γ , implying

zB
+ > zB

−. Hence, any (x,y),(x′,y′) ∈ B such that y ̸= y′ satisfy zθ
y (x) ≥ zB

+ > zB
− ≥ zθ

y (x
′).

Thus L is aligned with the PoLS, implying the same for ℓ.

3.7 Experiments

The first results in this section show that PoLS plays a dominant role in obtaining high
accuracy in the SLC task. Specifically, it is shown that all loss functions that are aligned with
the PoLS yield better accuracy in the SLC task than all losses that are not aligned with the
PoLS. Then, SLC accuracy is compared to the computationally expensive case, in which all
logits are computed and used for determining a given class’s correctness. Keren et al. [57]
find that when using a PoLS-aligned loss, a single logit used in the SLC task is predictive of
class correctness at a level comparable to this of a normalised logit that is obtained using a
softmax normalisation that requires computing all logits. Lastly, the speedups obtained by
computing a single logit only are reported, for different neural network architectures. For
instance, a speedup of x8-x21 is obtained when the number of classes is as high as 400,000.

3.7.1 PoLS and SLC accuracy

Keren et al. [57] experimented with the SLC task with neural networks that were trained
using seven of the considered training objectives. Since the Cauchy-Schwarz divergence
and the Tanimoto losses are practically never used in practice for training neural network
classifiers, we do not include those objectives in our experiments and only include the
analysis of their PoLS alignment. To evaluate the success of a learnt model in the SLC task,
Keren et al. [57] measured, for each class j and each threshold T , the precision and recall
in identifying examples from class j using the test z j > T , and calculated the Area Under
the Precision-Recall curve (AUPRC) defined by the entire range of possible thresholds. In
addition, Keren et al. [57] also measured the precision at fixed recall values (with dictate the
threshold T to use) 0.9 (Precision@0.9) and 0.99 (Precision@0.99). The averages of those
values across all classes in a given dataset are reported.

Five computer vision datasets are used for those evaluations, using their built-in train/test
splits: MNIST [72], SVHN [85] CIFAR-10 and CIFAR-100 [64]. The fifth dataset is the
Imagenet dataset [99], which has 1000 classes, demonstrating the scalability of the PoLS
approach to many classes. The Imagenet dataset is highly computationally intensive due

44 The Principle of Logit Separation

Table 3.1 Results on Single Logit classification (SLC), using the different loss functions,
as was reported in Keren et al. [57]. ‘Prec’@x’ is the precision at a given recall value.
‘Improvement’ denotes the relative improvement of the mean score for PoLS methods, over
the mean score for other methods. Lower values are better. In almost all cases, loss functions
that are aligned with the PoLS (under the dashed line) yield a mean relative improvement of
at least 20% in SLC accuracy measures, and sometimes considerably more.

Dataset Method 1-AUPRC 1-Prec’@0.9 1-Prec’@0.99

MNIST

CE 0.008 0.005 0.203
max-margin 0.012 0.018 0.262

self-norm 0.002 0.001 0.021
NCE 0.002 0.002 0.021
binary CE 0.002 0.000 0.037
batch CE 0.001 0.001 0.022
batch max-margin 0.002 0.001 0.034

Improvement 82.0% 91.3% 88.4%

SVHN

CE 0.023 0.028 0.545
max-margin 0.021 0.025 0.532

self-norm 0.015 0.014 0.298
NCE 0.021 0.017 0.320
binary CE 0.015 0.016 0.312
batch CE 0.015 0.013 0.280
batch max-margin 0.018 0.020 0.384

Improvement 23.4% 39.6% 40.8%

CIFAR-10

CE 0.109 0.326 0.703
max-margin 0.094 0.285 0.705

self-norm 0.073 0.204 0.599
NCE 0.081 0.214 0.594
binary CE 0.070 0.210 0.607
batch CE 0.072 0.202 0.602
batch max-margin 0.075 0.226 0.636

Improvement 26.9% 30.9% 13.6%

CIFAR-100

CE 0.484 0.866 0.974
max-margin 0.490 0.893 0.977

self-norm 0.378 0.807 0.970
NCE 0.383 0.795 0.964
binary CE 0.426 0.870 0.978
batch CE 0.371 0.795 0.961
batch max-margin 0.468 0.903 0.983

Improvement 16.8% 5.2% 0.5%

Imagenet
(1000 classes)

(6 ·106 iterations)

CE 0.366 0.739 0.932

batch CE 0.245 0.563 0.865

Improvement 33.1% 23.8% 7.2%

3.7 Experiments 45

to its large size, therefore Keren et al. [57] experiment with only two representative loss
functions with this dataset, one that is aligned with the PoLS and one that is not aligned
with it. For every dataset, a fixed network architecture is used for experiments with all loss
functions.

Standard network architectures were used, that were fixed before conducting the exper-
iments. For the MNIST dataset, an MLP network is used, comprised of two layers with
500 units each, and an output layer with 10 units, one for each class, whose outputs are the
logits. For the SVHN, CIFAR-10 and CIFAR-100 datasets, a convolutional neural network
[71] is used, with 6 convolutional layers and one dense layer with 1024 units. The first,
third and fifth convolutional layers used a 5× 5 kernel, where other convolutional layers
used a 1×1 kernel. The first two convolutional layers were comprised of 128 feature maps,
where convolutional layers three and four had 256 feature maps, and convolutional layers five
and six had 512 feature maps. Max-pooling layers with 3×3 kernel size and a 2×2 stride
were applied after the second, fourth and sixth convolutional layers. In all networks, batch
normalisation [46] was applied to the output of every fully-connected or convolutional layer,
followed by a rectified-linear non-linearity. For every combination of a training objective and
a dataset (with its fixed network architecture), the best learning rate among 1,0.1,0.01,0.001
was optimised for by using the classification accuracy on the validation set. For the Imagenet
experiments, an Inception-V3 network [111] was used, as it appears in the tensorflow
[1] repository, using all default hyperparameters from this implementation, only changing
the loss function used. The Inception model was trained for 106 iterations for each of the
loss functions used.

The experiment results from Keren et al. [57] are reported in Table 3.1. As many of the
reported metrics are close to their maximal value of 1, the values of one minus each metric
are reported to better visualise the relative improvement, making lower values better. The
results above the dashed line for each dataset correspond to loss functions that are not aligned
with the PoLS, where the results below the dashed line correspond to loss function that are
aligned with PoLS. Best results for each combination of metric and dataset are indicated in
boldface. The bottom row for each dataset indicate the mean relative improvement, i.e., the
relative improvement of the mean of each metric across all PoLS-aligned loss functions, over
the mean of each metric across all loss functions that are not aligned with the PoLS.

The results in Table 3.1 indicate that for all evaluation metrics, the mean relative im-
provement for PoLS-aligned losses is usually at least 20%, and in many cases considerably
more. This concludes that, aligned with the hypothesis of Keren et al. [57], alignment with
the PoLS is a crucial ingredient for success in SLC task.

46 The Principle of Logit Separation

3.7.2 SLC vs computing all logits

This section investigates whether SLC causes performance degradation in binary classifica-
tion. Specifically, accuracy in SLC is compared to the computationally expensive case in
which a model is trained using the cross-entropy loss, then all logits are computed and used
for softmax normalisation. The normalised logit is used for binary classification. Experiment
setting and reported metrics are identical to those used in Section 3.7.1.

Table 3.2 Comparing binary classification with a single logit (SLC) vs. all logits as was
reported in Keren et al. [57]. Lower values are better. ‘Prec’@x’ is the precision at a given
recall value. PoLS-aligned SLC methods are above the dashed line. Results are comparable,
thus SLC does not cause any degradation in binary classification accuracy, compared to the
case where all logits are computed.

Dataset Method 1-AUPRC 1-Prec’@0.9 1-Prec’@0.99

MNIST
Mean PoLS methods 0.002 0.001 0.027
batch CE 0.001 0.001 0.022

CE with all logits 0.001 0.000 0.020

SVHN
Mean PoLS methods 0.017 0.016 0.319
batch CE 0.015 0.013 0.280

CE with all logits 0.015 0.016 0.313

CIFAR-10
Mean PoLS methods 0.074 0.211 0.608
batch CE 0.072 0.202 0.602

CE with all logits 0.074 0.214 0.648

CIFAR-100
Mean PoLS methods 0.405 0.834 0.971
batch CE 0.371 0.795 0.961

CE with all logits 0.380 0.801 0.973

Imagenet batch CE 0.245 0.563 0.865

CE with all logits 0.223 0.566 0.872

Results from Keren et al. [57] are presented in Table 3.2. The two rows above the dashed
line contain the results for the SLC task, for the mean of all losses that are aligned with the
PoLS, and for the batch CE loss, that performed best of the experiments in Section 3.7.1.
The row below the dashed line contains the results for the computationally expensive case, in
which all cross-entropy logits are computed and used for softmax normalisation. The results

3.7 Experiments 47

show that the cross-entropy with all logits case are comparable to those using a single logit
alone, and specifically to the case where the batch CE loss is used. This shows that even
though computing all logits and using them for normalisation is computationally expensive, it
still does not yield any considerable benefit in determining whether a given class is the correct
one for a given example. Therefore, we conclude that in our setting of binary classification
with multiple classes at test time, SLC, and specifically batch cross-entropy, is an attractive
alternative to standard cross-entropy with all logits.

3.7.3 SLC speedups

This section evaluates the speedups gained by performing SLC instead of computing all
class logits. Keren et al. [57] used five prominent image classification architectures (Alexnet
[65], VGG-16 [103], Inception-V3 [111], Resnet-50 and Resnet-101 [42]). As the goal is
comparing test time computation speed, only the forward-pass time is measured for each
given network. To measure SLC computation time, the top layer is replaced by a layer with
single unit, and the time to compute the single logit given an input to the network is measured.
To measure the computation time when computing the logits of k classes, the top layer is
replaced with a layer containing k units, and the time it takes to compute all logits is again
measured, given an input to the network.

The computation time of a given network generally does not depend on the network’s
input or task accuracy. Specifically, the measured forward-pass time is approximately
identical for inputs that originates from natural images datasets and random inputs of the
same dimensionality. Therefore, in the experiments presented below Keren et al. [57] use
randomly initialised networks without training and random noise as input to those networks.
Computation is done using Tensorflow and a single NVIDIA Maxwell Titan-X GPU,
and forward-pass computation time per example is averaged across 100 minibatches of
32 examples. The public implementation of all architectures is used, as appears in the
tensorflow repository.

The timing results appear in Table 3.3. For each network architecture, the first row
reports the forward-pass time for computing a single logit, while the other rows report the
forward-pass time for computing all logits for different number of classes. The raw timings
are reported, as well as the speedup factor that is obtained by computing a single logit alone,
that is the ratio between the raw timing results. Naturally, the speedup increases with the
number of classes.

For networks with up to 214 = 16384 classes, the speedup is relatively small, since
computation of the network layers dominates the overall forward-pass computation time. In
contrast, when there are many classes, the computation of logits dominates the forward-pass

48 The Principle of Logit Separation

Table 3.3 Speedup experiment results as appear in Keren et al. [57]. When the number of
examples is large, SLC results in a considerable speedup.

Architecture Classes Inference Time [s] SLC Speedup

Alexnet

1 (SLC) 3.6 ·10−3 —
210 3.7 ·10−3 x1.04
214 4.0 ·10−3 x1.14
216 5.7 ·10−3 x1.59
218 20.2 ·10−3 x5.68
218.5 76.0 ·10−3 x21.38

VGG-16

1 (SLC) 9.4 ·10−3 —
210 9.6 ·10−3 x1.02
214 9.9 ·10−3 x1.05
216 11.4 ·10−3 x1.20
218 26.4 ·10−3 x2.79
218.5 80.5 ·10−3 x8.52

Inception-
V3

1 (SLC) 6.0 ·10−3 —
210 6.2 ·10−3 x1.03
214 6.5 ·10−3 x1.09
216 7.3 ·10−3 x1.22
218 18.7 ·10−3 x3.11
218.5 76.6 ·10−3 x12.75

Resnet-50

1 (SLC) 6.1 ·10−3 —
210 6.4 ·10−3 x1.04
214 6.6 ·10−3 x1.08
216 7.4 ·10−3 x1.20
218 19.1 ·10−3 x3.11
218.5 78.0 ·10−3 x12.69

Resnet-101

1 (SLC) 8.0 ·10−3 —
210 8.2 ·10−3 x1.03
214 8.3 ·10−3 x1.04
216 9.4 ·10−3 x1.19
218 23.5 ·10−3 x2.95
218.5 80.4 ·10−3 x10.10

3.7 Experiments 49

computation time. Hence, SLC obtains a x2.8-x.5.7 speedup for 218 = 262144 classes, and
x8.5-x21.3 speedup for 218.5 = 370727 classes.

The experiments in Sections 3.7.1 and 3.7.2, show that the findings scale well from 10 to
100 and 1000 classes, and are expected to scale further to models with a larger number of
classes. Ideally, one would have directly tested datasets with hundreds of thousands of classes,
to show that those results scale well to datasets with many more classes, where the speedup
gains are large. However, since such datasets are very large (for instance, the Imagenet-21K
dataset has 21,000 classes and more than 14 million examples), these experiments were
infeasible with our computational resources. In comparison, a single Inception-V3 model
for the significantly smaller Imagenet dataset (∼ 1 million examples), took Keren et al. [57]
approximately three weeks to train on a single GPU.

Chapter 4

Weakly Supervised One-Shot Detection

4.1 Motivation

State-of-the-art performance of object detection models has rapidly improved over the past
few years. Among other factors, recent improvements are due to the rapidly growing sizes of
available datasets for those tasks, normally containing a large number of labelled examples
from a limited number of classes [22, 75]. In contrast to the limited number of classes
normally available in existing detection datasets, humans are required in daily life to correctly
identify and localise a much larger number of classes.

In attempt to overcome the dependency on large amount of data for a large number of
classes, one-shot learning models attempt to generalise from a single labelled example to
other members of this example’s class. Recently, some works have demonstrated empirical
success in one-shot classification, using models that are not conditioned on class identities
[63, 119]. Such a model is given at every training iteration a target example and a small
number of exemplars from N random classes. These models are then trained to identify
which of the N exemplars is of the same class as the target example. Class identities are not
used in this process, but rather only labels indicating which of the N exemplars correspond
to the same class of the target example. At evaluation time, both the exemplars and target
example belong to classes unseen at training time. Since these models learn to identify class
similarity between the exemplars and the target example, classification output can be emitted
for unseen classes without any additional training with those classes.

The above described training process facilitates generalisation in class space, from
classes seen at training time to unseen classes. Furthermore, a design that is independent
of class identities may also improve performance in the traditional classification setting, as
transfer between classes may be facilitated. This chapter further explores and establishes the

52 Weakly Supervised One-Shot Detection

paradigm of models that are not conditioned on class identities, with the aim of simultaneously
classifying and localising classes that were not seen at training time.

Normally, for neural network models, generalisation to unseen examples of a given class
may require a large number of labelled examples from this class to appear at training time.
Training a model with no conditioning on class identities may induce generalisation in class
space to unseen classes, but equivalently, may require a large number of classes to be present
at training time. Indeed, previous works reporting empirical success with this paradigm also
used a large number of classes at training time [55, 63, 119]. Hence, applying this approach
for a one-shot localisation task may require a large dataset with localisation labels for a very
large number of classes.

In most cases, corpora that contain a bounding box information are smaller than ones
containing only instance-level labels, as the former are in general harder or more expensive to
collect. Even in domains where corpora with bounding box information may be considered
large, such as computer vision, equivalent corpora containing only instance-level labels
are larger, and one may aspire to use those larger corpora to improve task performance.
Therefore, instead of relying on a large enough corpus containing bounding box information,
this chapter considers the detection problem in the low-quality supervision setting, that is
discussed in Section 1.3. In this setting, the problem becomes a weakly supervised one-shot
detection problem, where one-shot detection is learnt using corpora containing only weaker,
instance-level labels. For the same reasons, previous work attempted to perform weakly
supervised object detection (non-one-shot) using image-level labels [9, 113].

To overcome the lack of localisation labels, one may need to introduce additional structure
to the model. For this purpose, context-based attention models have previously demonstrated
the ability to learn to focus on relevant parts of a given input. This ability was learnt in a
weakly supervised manner without using any labels indicating the part of the input the model
should focus on [5, 17, 128].

This chapter presents the work of Keren et al. [59] on the weakly supervised one-shot
detection task, as motivated by the research question posed in Section 1.3, by further exploring
and establishing models with no conditioning on class identities. The weakly supervised
one-shot detection task was considerably less explored compared to its fully-supervised
counterparts. The model presented by Keren et al. [59] takes a single example of a given
class, which is named the exemplar, and a larger target example which may or may not
contain an instance of the same class as the exemplar. Keren et al. [59] use the framework of
Siamese neural networks [10, 63] and apply it in a convolutional manner to identify regions
in the target example that are similar to the exemplar in a higher-level representation space.
Motivated by the above, the use of localisation labels, e.g., bounding boxes was replaced

4.2 Related work 53

by a novel attention mechanism, and only binary labels are used, that indicate whether the
target example contains an instance of the same class as the exemplar. To the best of our
knowledge, the work in Keren et al. [59] is the first time a Siamese network is used in tandem
with an attention mechanism to learn similarity between different object parts in a weakly
supervised manner.

In experiments, the model proposed by Keren et al. [59] was used for detection tasks
in the audio and computer vision domains. In the audio domain, the detection task is the
query-by-example spoken term detection task [14, 40, 89], where the model needs to identify
whether a given spoken word appears in a given utterance, and localise this appearance in
time. In the computer vision domain, Keren et al. [59] experiment with a character detection
task using the Omniglot dataset [68]. In both domains, experiment result show that the
proposed model was able to identify and localise instances of classes unseen at training time,
and to outperform the appropriate baseline models.

4.2 Related work

Related work that is not otherwise mentioned is discussed below. Other approaches for
one-shot learning appear in the literature, including the work presented in Hariharan and
Girshick [39]. In this work, a few-shot recognition task is performed by a learner that tunes
its feature representation on a set of base classes that have many training instances, to better
perform on classes with a small number of examples. For the one-shot object detection
task, a model for (fully-supervised) few-shot object detection was presented in Dong et al.
[26]. This model is comprised of a pipeline that utilises a large unlabelled dataset for finding
additional training examples.

Previous work also considers models for weakly supervised object detection. In Wang
et al. [120], a pretrained convolutional neural network (CNN) was used to describe image
regions and then learn object categories as corresponding visual topics. In Teh et al. [113], a
model was introduced that computes an attention score for every location in an image. Then,
one feature vector describing an image is constructed by combining the location scores, and
is used for classifying the image. Localisation is done using the attention weights. Similarly,
Bilen and Vedaldi [9] start from a pretrained CNN for image classification on a large dataset,
then computes scores for each class at each location. These scores are combined into a single
image level score, and the network is optimised for the classification task. Detection is again
performed according to the class location scores. However, all of the above approaches
depend on a predefined set of of classes, and are not suited for one-shot detection. In the
audio domain, a related model for query-by-example spoken term detection was proposed

54 Weakly Supervised One-Shot Detection

Siamese Neural Network

Cosine Similarity

Keyword Utterance

Fig. 4.1 The computation of a similarity score between an exemplar and a target location,
for the case of detecting audio keywords in longer utterances. Both the exemplar (keyword)
and the target location (part of the utterance) are mapped into a representation space using a
Siamese neural network, and a cosine similarity between the representations is calculated.
Reprinted with permission from Keren et al. [59].

[4]. This model uses an long short-term memory (LSTM) network for scoring the existence
of a keyword in different utterance locations. These scores are combined for a single score
for the utterance, that is used for training on a binary classification task.

4.3 Method

This section describes the weakly supervised one-shot detection model presented in Keren
et al. [59], that is named Attention Similarity Networks (ASN). The model takes an exemplar
x, that is a single instance of a class of interest, and a target example B, which may or may
not contain an instance of the same class as the exemplar. Normally, the target example is
spatially larger than the exemplar, and contains different locations, each could contain an
instance of the same class as the exemplar. The different locations in the target example are
called target locations by Keren et al. [59]. The model outputs a similarity map s(x,B), such

4.3 Method 55

loc
ati

on
 1

loc
ati

on
 2

loc
ati

on
 3

loc
ati

on
 4

loc
ati

on
 5

loc
ati

on
 6

loc
ati

on
 7

loc
ati

on
 8

loc
ati

on
 9

loc
ati

on
 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Similarity Score
Negative gradient

Fig. 4.2 The reason for the self-reinforcing loop: example relation between similarity scores
sl and the negative gradients − ∂ℓ

∂ sl
, in a positive exemplar-target pair with ten different

locations, computed according to Eq. 4.4 for an example vector of similarity scores. The
negative gradient is increasing with the similarity scores. As a result, locations with high
similarity scores will get even higher similarity scores during training, compared to other
locations. Reprinted with permission from Keren et al. [59].

that sl(x,B) is a quantitative measure of the similarity between the exemplar and location
l in the target example. More specifically, sl(x,B) is an estimation of the degree to which
location l contains an instance of the same class as the exemplar. For simplicity of notation,
sl is written instead of sl(x,B) when the context is clear.

4.3.1 Similarity scores

As mentioned above, the similarity score sl should contain the degree to which location l in
the target example contains an instance of the same class as the exemplar. As class similarity
is a higher-level measure of similarity, Keren et al. [59] do not use distance in raw pixel
space to compute sl , but rather the distance between higher-level representations of both
the exemplar and the location l in the target example. To this end, both the exemplar and

56 Weakly Supervised One-Shot Detection

location l are mapped using a neural network to a latent representation space, and similarity
or dissimilarity in this space are optimised for.

sl is modelled using the cosine similarity between outputs of a Siamese neural network
[10, 63]:

sl =
fθ (x) · fθ (Bl)

∥ fθ (x)∥∥ fθ (Bl)∥
, (4.1)

where Bl is location l in the target example B, and fθ is a neural network parameterised
by θ , that is embedding both the exemplar and target locations into the latent embedded
space. From the properties of the cosine similarity, sl is in the unit interval. Figure 4.1
contains a visualisation of the above computation. Since sl is computed for all locations l, the
above computation was implemented by Keren et al. [59] as a convolutional application of a
Siamese neural network [8] across all possible locations l in the target example, followed by
an application of the cosine similarity to the resulting map. When fθ is chosen to be a CNN,
computation may be considerably reduced by applying fθ to the entire target example, and
then extracting the parts of the resulting map that correspond to the appropriate locations
[31].

4.3.2 Weakly supervised detection

A Siamese pair (x,Bl) is considered positive if the target location Bl contains an instance
of the same class as the exemplar x. Otherwise, the Siamese pair is considered negative.
Similarly, an exemplar-target pair (x,B) is considered positive if the target example B
contains an instance of the same class as the exemplar x, or negative, otherwise. During
training, the goal is to increase the similarity score of positive Siamese pairs, while decreasing
similarity scores for negative ones. Recall, that at training time the model has no access to
labels indicating whether a given Siamese pair is positive or negative. Instead, the model is
only using binary labels yx,B ∈ {0,1}, indicating whether an exemplar-target pair is a positive
or a negative one.

For negative exemplar-target pairs (x,B), the model should assign a similarity score sl = 0
to all Siamese pairs, as all Siamese pairs are negative. For positive exemplar-target pairs, in
the absence of labels that contain localisation information, an additional credit assignment
arises, namely, which Siamese pairs should be assigned a high similarity score, and which
ones should assigned a low similarity score. In other words, the model needs to identify
which Siamese pairs are positive and which are negative.

Keren et al. [59] attempt to overcome this issue by introducing a novel attention mecha-
nism, that makes the different location compete for a high similarity score. Related models
for one-shot learning were introduced in Bilen and Vedaldi [9], Teh et al. [113], but these are

4.3 Method 57

not suited for the one-shot learning setting. The attention mechanism from Keren et al. [59]
operates as follows. Attention weights are computed by applying a softmax normalisation
across the similarity map

wl =
exp(sl/T)

∑
l′

exp(sl′/T)
, (4.2)

where T is the softmax temperature. Then, a single similarity score is computed for the
exemplar-target pair (x,B) using the locations’ attention weights

ŷx,B = ∑
l

wlsl, (4.3)

which is again in the unit interval. This instance-level prediction can now be compared with
the exisitng instance-level labels. The loss for the exemplar-target pair is a simple MSE loss

ℓ(x,B) = (ŷx,B − yx,B)
2.

Using the gradient of the softmax function, we can compute

∂ ŷ
∂ sl

= wl +
slwl(1−wl)

T
− ∑

l′ ̸=l

sl′wlwl′

T

= wl(1+
sl

T
− 1

T ∑
l′

wlsl) = wl(1+
sl − ŷx,B

T
),

therefore the gradient of the above loss function with respect to similarity scores is

∂ℓ

∂ sl
(x,B) = 2(ŷx,B − yx,B)wl(1+

sl − ŷx,B

T
). (4.4)

The gradient in Eq. 4.4 is monotonic decreasing in sl and wl for positive exemplar-
target pairs (yx,B = 1). Therefore, all similarity scores for all Siamese pairs in positive
exemplar-target pairs will increase when propagating this gradient to the network, but score
of Siamese pairs with an already large similarity score will be increased more, compared
to scores of Siamese pairs with a low similarity score. This is a self-reinforcing loop: in
positive exemplar-target pairs, Siamese pairs with high similarity scores will get even higher
similarity scores during training, therefore also higher attention weights and again a more
negative gradient that will increase similarity scores for these locations even more. Similarly,
similarity scores of Siamese pairs with a low similarity score will be increased less and will
remain low. Figure 4.2 contains a visualisation of the connection between the similarity
scores and the gradient propagated to them.

58 Weakly Supervised One-Shot Detection

The conclusion from above discussion about the gradient is that it should be enough
to make positive Siamese pairs have a slightly larger similarity scores compared to nega-
tive Siamese pairs, and the self-reinforcing loop will increase this difference. This slight
advantage for positive Siamese pairs should naturally occur, as explained below. Positive
Siamese pairs have in general more in common with each other than negative pairs have
in common with each other. Therefore, gradient updates based on negative Siamese pairs
can be seen as noise and are likely to cancel one another, while gradient updates based on
positive Siamese pairs are likely to statistically be in the same direction and aggregate. The
resulting difference in similarity scores between positive and negative Siamese pairs should
be enough for the self-reinforcing loop to begin and eventually assign considerably larger
similarity scores to positive Siamese pairs compared to negative ones.

4.3.3 One-shot learning

The model presented by Keren et al. [59] is using an exemplar, a target example, and a binary
label indicating the existence of the exemplar’s class in the target example. Not conditioning
the model on class identities may allow the model to better generalise to unseen classes, as
exemplars and target examples from unseen classes may share some characteristics with
those from classes seen at training time. This can be seen as the model implicitly learning to
represent a class by its examples, then being able to generalise to similar classes in this class
representation space.

Keren et al. [59] define T as the distribution of available classes at training and evaluation
time. XL is denoted to be the distribution of exemplar-target pairs (x,B) such that x belongs
to class L, and B contains an instance of class L with a probability of 0.5. At training time,
classes are sampled from a uniform distribution T ′, with a support set that is a subset of
the support set of T . During training, the loss over exemplar-target pairs sampled from XL

that correspond to classes from the support set of T ′. Formally, the goal of training is then
choosing model parameters Θ such that

Θ = argmin
θ

EL∼T ′[E(x,B)∼XLℓ(x,B)]]. (4.5)

Training the model according to Eq. 4.5 is hypothesised by Keren et al. [59] to yield a model
that generalises to good performance with classes L ∼ T that were not seen at training time,
without any need for additional training with those classes.

4.4 Experiments 59

4.3.4 Detection

In the detection setting, given a target example, the model needs to predict which of the N
possible classes appears in the target example, and localise those appearances. To do so,
the model is run N times, each time using an exemplar from a different class. This is done
by Keren et al. [59] in a computationally efficient manner, as fθ (Bl) from Eq. 4.1 is only
computed once for each target location.

For emitting detections, a candidate detection is emitted for an exemplar-target pair (x,B)
at location l such that sl = maxl′ sl′ . Note that a simplifying assumption is made here, that
the target example may contain no more than one instance of the same class of the exemplar.
One may omit this assumption by emitting multiple candidate detections for an exemplar
target pair, but for simplicity we follow this assumption in this chapter.

4.4 Experiments

4.5 Audio data

For evaluating the weakly supervised one-shot detection model in the audio domain, Keren
et al. [59] tackle the query-by-example spoken term detection task [14, 40, 89, 126, 127].
In this task, the different classes are the different words. A recording of a word uttered by
a speaker is an exemplar of some class, referred to below as a keyword. A recording of a
longer audio utterance is a target example. The goal in this task is to determine whether the
same word as the keyword appears in the utterance, and emit a bounding box location in time
for the appearance.

Keren et al. [59] construct a large-scale dataset for the query-by-example spoken term
detection task, using two separate existing corpora: a speech recognition corpus and an audio
keywords corpus. The audio keywords were downloaded from the Shtooka project website
(http://www.shtooka.net). All keywords are in English, and are less than one second long.
Every audio keyword appears in exactly one recording, meaning that every class has only
a single exemplar. Each keyword was allocated to either the training, validation or test set.
This split strategy was done to ensure that model evaluation is done on classes that were not
seen at training time, resulting in a one-shot learning setting.

The textual form of words can appear as a part of other, longer words (for example, ‘the’
is a part of ‘their’ and ‘further’), which results in an undefined desired behaviour for the
model. For this reason, Keren et al. [59] did not use short words, that are more prone to
this issue. Therefore, only words that consist of four letters or more were used. In total, the

http://www.shtooka.net

60 Weakly Supervised One-Shot Detection

training set for this task contains 5442 keywords (classes), and the validation and the test set
contain 908 keywords each.

All audio utterances that were used are from the Librispeech corpus [88]. The Librispeech
corpus contains 1000 hours of annotated English speech, from 2484 speakers. Each utterance
in the Librispeech corpus was allocated to one of the training, validation or test sets, according
to the official split of this corpus, which is gender balanced. Each utterance was cut to be
exactly five seconds long.

The training set is comprised of keyword-utterance pairs, which are the exemplar-target
pairs, and the corresponding binary labels indicating the existence of the keyword in the
utterance. The keyword-utterance pairs are referred to as either positive or negative pairs,
as explained in Section 4.3.2. It is important to note that the keyword and the utterance are
always from different recordings, made by different speakers. All positive keyword-utterance
pairs where both the keyword and utterance were allocated to the training set are contained
in the training set. In order to balance the positive and negative classes in the training set,
Keren et al. [59] randomly sample a number of training utterances that do not contain the
keyword and add the resulting negative pairs to the training set. In total, the training set
contains 330,018 keyword-utterance pairs.

For constructing the validation and test sets, Keren et al. [59] first add all positive
keyword-utterance pairs that belong to the appropriate evaluation set (validation or test). For
evaluating the model on detection over a number of unseen possible classes (different unseen
classes every time though), for every positive keyword-utterance pair in the evaluation set
another N negative keyword-utterance pairs were added, that comprise of the same utterance
as in the positive pair. Note that the more negative keyword-utterance pairs that are added to
the model, the more false positives the model is likely to emit, which will impair the overall
performance of the detection model. Keren et al. [59] create the validation and test set as
described above with N ∈ {10,20,50}, and name the resulting test sets test10, test20 and
test50 respectively. See Section 4.5.3 for details about the detection task evaluation method.

Labels regarding the temporal location of a keyword in an utterance were extracted using
forced alignment. Specifically, the Montreal Forced Aligner [79] was used with default
parameters. These labels were used for creating ground truth bounding boxes, that are used
when evaluating the detection model on the validation and test sets. However, these labels
were not used at training time, as this work considers a weakly supervised model.

As some words are more common than others, every keyword has a different number of
keyword-utterance pairs that it is a part of, which can result in a small number of keywords
dominate the training or evaluation procedure. To counter this effect, in each of the training,
validation and test sets, Keren et al. [59] count the number of keyword-utterance pairs

4.5 Audio data 61

(a) n = 2
(b) n = 3

(c) n = 4

Fig. 4.3 Sample tiled Omniglot images, used for the weakly supervised one-shot detection
task. Reprinted with permission from Keren et al. [59].

that each keyword appears in, and use only keywords that are below the 85th percentile in
this count. Overall, the training, validation and test sets contain 3592, 259 and 285 audio
keywords respectively.

4.5.1 Computer vision data

The Omniglot dataset [68] contains images of 1623 different characters from 50 different
alphabets. As discussed above, using models that are not conditioned on class identities may
facilitate generalisation to classes unseen at training time, but this may require a large number
of classes to appear at training time. In this setting, the different classes are the different
characters the dataset contains. The Omniglot dataset contains a large number of characters,
therefore it may be suitable for the one-shot learning task, and was used in previous works
for similar tasks [63, 119].

The dataset contains images of single characters. To adjust this dataset for a detection
task, Keren et al. [59] tile n2 single character images in a square grid and create a large square
image with n×n images of different single characters. Those images are non-overlapping
and are arranged in a random order. Figure 4.3 contains examples of such images. All
images of single characters are downsampled to 32×32 pixels to reduce the computational

62 Weakly Supervised One-Shot Detection

requirements of the model. Given an image of a single character (an exemplar), the detection
task is to determine whether a given large image (the target example) contains an instance of
the same character as the exemplar, and determine the location of this instance in the large
image. It is important to note, that the target image may contain the same character as in the
exemplar, but a different image thereof.

The different alphabets of the Omniglot dataset were allocated into non-overlapping
training, validation and test sets. For the test set, the alphabets from the official dataset
split were used. Training, validation and test sets contain exemplar-target pairs where all
characters in both the exemplar and the target example are from the appropriate training,
validation or test sets. For the evaluation sets (validation and test) for a detection task over N
classes, for every image of a character, we create a single target example, than one positive
exemplar-target pair and N −1 negative ones.

4.5.2 Network specifications

The model used in Keren et al. [59] represents the exemplar and the locations in the target
example using a neural network fθ , as appears in Eq. 4.1. In experiments with both the audio
and computer vision domains, fθ is modelled as CNN, with one-dimensional convolutions
for the audio data and two-dimensional convolutions for the image data. A similar network
was used in Keren et al. [56] and in Keren et al. [57]. The network specifications were
described in Keren et al. [59] as follows. The network is comprised of eight convolutional
layers, each using a kernel size of five (5×5 for the image data), with a stride of one (1×1
for the image data). The first four convolutional layers are comprised of 256 feature maps,
while the last four convolutional layers are comprised of 512 feature maps. max-pooling
with a kernel size and stride of 2 is applied after every second convolutional layer, to reduce
representation size. Every convolutional layer is followed by a batch normalisation operation
[46] and a rectified-linear activation function. Both the exemplars and target example were
processed through this network, to obtain their representations.

For computing the cosine similarity from Eq. 4.1 for the different locations, the exemplar
representation was convolved with the representation of the target example, after normalising
the L2 norm of the exemplar representation and each location in the target example’s repre-
sentation. A softmax temperature of T = 1

3 was used for computing the attention weights
according to Eq. 4.2. Training is done with SGD according to Eq. 4.5, using a minibatch size
of 64 exemplar-target pairs and a learning rate of 0.1. Hyperparameters were tuned using
the validation set. In the computer vision experiments, the model was first trained on the
training set for determining the optimal number of training iterations, then retrained using
the training and validation sets for that number of iterations.

4.5 Audio data 63

4.5.3 Evaluation

The proposed ASN model for weakly supervised one-shot detection is evaluated in experi-
ments with both the audio and computer vision domains in Keren et al. [59]. As discussed
above, bounding box information is not used for training, bur rather only for model evaluation
on the test set.

For the audio experiments, dynamic time warping (DTW) was used as a baseline. When
using DTW, sequences of different lengths are matched with each other [125]. The duration
of articulation of a word normally differs between different utterances and speakers, therefore
DTW is a suitable approach for query-by-example spoken term detection [50]. DTW does not
require any training phase, therefore suitable for the one-shot query-by-example paradigm.
Mel-frequency cepstral coefficients (MFCCs) were used as acoustic features, as was done
in Joder et al. [50]. MFCC coefficients 1−12 were used, extracted from frames of 20 ms
shifted by 10 ms using the OPENSMILE toolkit [29].

The DTW algorithm finds the shortest path between the MFCC representation over time
of each keyword and a given segment from an utterance. Then, a cost value C is returned,
describing the sum of the Euclidean distances of the shortest path between the sequences.
Keren et al. [59] convert this cost value to a similarity measure between the keyword and a
location in the utterance:

sl = exp
−C
σ

, (4.6)

where the hyperparameter σ = 50 yielded best result on the validation set. For emitting
detections, for an exemplar-target pair (x,B) Keren et al. [59] define ŷx,B = max

l
sl(x,B),

and consider this a possible detection at location l where the maximum was acquired with
confidence ŷx,B.

As a baseline for the computer vision experiments, Exemplar Support Vector Machine
(Exemplar-SVM) based on Histogram of Oriented Gradients (HOG)-features was used. The
Exemplar-SVM approach for the purpose of object recognition in images has been proposed
in Malisiewicz et al. [76]. In Malisiewicz et al. [76], the authors use the HOG-representation
of objects in images and trained several SVM classifiers, with only a single positive instance
(object is present in a bounding box) and a large number of negative ones (object is not
present) for each SVM, and combined the outputs of the models within an ensemble. HOG
features were also used for the recognition of handwritten characters in Surinta et al. [107].

As opposed to the task from Malisiewicz et al. [76], the authors of Keren et al. [59]
use only a single positive exemplar. Complexity hyperparameters for the exemplar and the
negative sample were tuned on the validation set. For each image of a single character from
the test set characters, Keren et al. [59] train an SVM classifier to separate this image from

64 Weakly Supervised One-Shot Detection

all character images in the training set. HOG features were used for training the SVM, as
those were found to yield better results compared to raw pixels. For every exemplar-target
pair (x,B), the trained SVM for a single character image x is convolved with the larger image
B, to get the similarity scores sl(x,B) for the different locations. For emitting detections,
for an exemplar-target pair (x,B) Keren et al. [59] define ŷx,B = max

l
sl(x,B), and consider a

possible detection at location l where the maximum was acquired with confidence ŷx,B.

All the considered methods process an exemplar-target pair (x,B) and output a possible
detection with confidence ŷx,B at a location l. A detection is emitted if the confidence is
larger than a threshold t, that is chosen using the validation set for each method separately.
In the audio experiments, start and end points of emitted detections are shifted by constants a
and b respectively, that are again chosen using the validation set for each method separately.
This shift was not considered for the image experiments, as in those experiments there was
only a small number of possible locations for the detection.

For each method, an average precision is computed from the emitted detections and the
ground truth bounding boxes, using an intersection over union (IoU) value of 0.5 [28]. In
contrast to Everingham et al. [28], average precision in Keren et al. [59] is computed for
all classes together, instead of computing the mean of the average precision of the different
classes. The reason for this deviation from the well-established evaluation protocol is the
small number of ground truth boxes per class in the one-shot learning setting.

Every method is originally trained for binary classification, to determine whether an
instance of the same class as the exemplar appears in the target example. Therefore, Keren
et al. [59] also evaluate every method’s accuracy in this binary classification task. This
evaluation is done by computing the precision at given recall levels of 0.5, 0.9 and 0.99,
using the confidence score ŷx,B for each keyword-utterance pair.

For the audio experiments, three different test sets were created, for 10-way, 20-way and
50-way weakly supervised one-shot detection, as described in Section 4.5. For the computer
vision experiments, test sets for 5-way, 10-way and 20-way weakly supervised one-shot
detection were created for n∈ {2,3,4}, as described in Section 4.5.1. Results for experiments
performed by Keren et al. [59] in both domains are found in Table 4.1. The results in the table
show that the proposed attention similarity networks considerably outperformed the baseline
methods for both the audio and computer vision domains, for all test sets. Specifically,
in the audio domain the proposed model yielded AP scores of 42.6%, 38.3% and 23.6%
for the detection task over 10, 20 and 50 unseen classes, compared to AP scores of 8.9%,
6.0% and 3.7% with DTW. In the computer vision domain, using n = 3 for example, the
proposed method yielded AP scores of 58.0%, 49.3% and 37.2% for the detection task over

4.5 Audio data 65

Table 4.1 Results for experiments in the audio and computer vision domains, as appear in
Keren et al. [59]. Average precision (AP[%]) and precision at given recall levels (Pr’@x[%])
are reported on the different N-way test sets for the weakly supervised one-shot detection
task, for the proposed attention similarity networks (ASN) and the dynamic time warping
and Exemplar-SVM baselines. Higher scores are better. For both domains, the proposed
attention similarity networks outperforms the baseline in all performance measures.

MODEL SET AP PR’@0.5 PR’@0.9 PR’@0.99

AUDIO - ASN
10-WAY 42.6 73.1 25.9 12.7
20-WAY 38.3 50.9 16.0 6.5
50-WAY 23.6 29.9 5.8 2.6

AUDIO - DYNAMIC TIME WARPING

10-WAY 8.9 14.6 11.1 10.4
20-WAY 6.0 7.8 5.8 5.5
50-WAY 3.7 3.3 2.4 2.3

IMAGE - ASN (n = 2)
5-WAY 75.4 89.3 52.3 27.0
10-WAY 67.1 79.2 36.3 14.9
20-WAY 54.4 61.8 18.1 7.4

IMAGE - EXEMPLAR-SVM
5-WAY 42.6 50.8 25.0 20.7
10-WAY 33.8 31.2 12.9 10.4
20-WAY 26.6 17.7 6.6 5.2

IMAGE - ASN (n = 3)
5-WAY 58.0 73.1 39.4 24.5
10-WAY 49.3 63.1 22.0 12.0
20-WAY 37.2 41.5 11.9 6.2

IMAGE - EXEMPLAR-SVM
5-WAY 31.1 40.3 23.4 20.5
10-WAY 24.8 23.0 12.0 10.3
20-WAY 19.6 12.4 6.1 5.2

IMAGE - ASN (n = 4)
5-WAY 43.2 56.7 27.6 22.3
10-WAY 32.1 34.4 13.7 10.9
20-WAY 23.8 19.8 7.2 5.2

IMAGE - EXEMPLAR-SVM
5-WAY 26.3 34.8 22.6 20.4
10-WAY 20.8 19.1 11.5 10.2
20-WAY 16.4 10.0 5.8 5.1

5, 10 and 20 unseen classes, compared to AP scores of 31.1%, 24.8% and 19.6% with the
Exemplar-SVM.

The attention similarity networks proposed by Keren et al. [59] managed to simultane-
ously identify and localise instances of classes unseen at training time. Experiments results
show that it is indeed feasible to generalise to unseen classes when using a model that is not

66 Weakly Supervised One-Shot Detection

conditioned on class identities, and that localisation information can be learnt in a weakly
supervised manner, when pairing a Siamese similarity network with an attention mechanism.

In further experiments conducted by Keren et al. [59], the trained attention similarity
networks were used to compute AP using different IoU values. Results are depicted in Figure
4.4. The results show that further reducing the IoU requirement considerably improves the
AP results. For example, for the audio data and 10-way one-shot detection, reducing the IoU
threshold from 0.5 to 0.4 improved the AP from 42.6 to 47.3. Further reducing the IoU to 0.3
and 0.2 resulted in AP values of 50.5 and 54.7 respectively. These finding indicate that in
many cases the correct class was detected, but the emitted detection location was inaccurate,
thus further motivating future work for refining those detection locations.

0.2 0.3 0.4 0.5
Intersection over Union

25

30

35

40

45

50

55

Av
er

ag
e

Pr
ec

isi
on

 [%
]

54.7

46.0

27.3

50.5

45.4

26.8

47.3

44.5

26.2

42.6

38.3

23.6

10 unseen classes 20 unseen classes 50 unseen classes

Fig. 4.4 Average precision (AP) of the attention similarity networks for the audio keywords
detection task for the 10-way, 20-way and 50-way weakly supervised one-shot detection with
different intersection over union (IoU) thresholds. Reprinted with permission from Keren
et al. [59].

Chapter 5

Calibrated Prediction Intervals

5.1 Motivation

Over the past few years, deep learning systems have improved overall task accuracy for a
wide range of machine learning applications. In addition, there is an increasing research
interest in the estimation of prediction uncertainty, i.e., estimating the chance that a model
prediction may be wrong and the deviation of the prediction from the ground truth value. In
a wide range of application, this estimation of prediction uncertainty may be crucial. For
example, in the healthcare industry, the implications of a wrong machine learning prediction
may be life-threatening. Another example is autonomous driving, where a wrong confident
decision regarding the existence of a pedestrian on the road may have critical implications.

For a regression problem, the estimation of prediction uncertainty can be given in the
form of a prediction interval, an interval in which the ground truth label is expected to
fall with a prescribed probability. Neural network regressors are often designed with a
single unit in their top layer that contains the predicted label [42, 115, 129]. Using these
models, producing prediction intervals cannot be done in a straight forward manner. Other
neural network regressors are designed to function as softmax classifiers, but binning the
real numbers into a finite number of bins and learning the task as a standard classification
task [87, 116]. The latter models allow emitting a posterior probability distribution over
the output space. Using this method, one can produce prediction intervals for any given
confidence level α in the following manner: compute the expected value of the posterior
probability distribution over the output space, and take a number of bins around this expected
value that together contain α of the probability mass. This procedure is illustrated in Figure
5.1.

However, producing prediction intervals with a confidence level α in the manner described
above does not guarantee that these intervals contain their respective labels with a probability

68 Calibrated Prediction Intervals

Posterior
Probability

M bins

Neural Network

Fig. 5.1 A neural network regressor designed as a softmax classifier. By binning the output
space into M bins, one can design a neural network regressor as a softmax classifier over M
classes, and derive a posterior distribution over the output space instead of a single point
estimate. This allows emitting prediction intervals that contain a prescribed amount of the
posterior probability mass. However, we show that the resulting prediction intervals will
normally be miscalibrated, i.e., will not correspond to the desired confidence level. Reprinted
with permission from Keren et al. [53].

of α . For example, a neural network producing overconfident predictions may allocate almost
all posterior probability mass in one output bin, but in reality the label may be in that selected
bin only in a small percent of the cases. In that case, we say that the prediction intervals
are miscalibrated. Recent work has shown that modern neural network classifiers indeed
tend to produce overconfident predictions and therefore their output is miscalibrated, in the
sense that a posterior probability mass assigned to a given class does not reflect the actual
probability of the true label being that class [36]. Therefore, when designing neural network
regressors as classifiers, we expect the resulting prediction intervals to be miscalibrated as
well.

Neural network were not always considered to produce miscalibrated confidence pre-
dictions. For example, Guo et al. [36], Niculescu-Mizil and Caruana [86] show that neural
network models that were commonly used a decade and more ago produce well calibrated
probability estimations for a classification task. It was additionally shown that modern neural
networks tend to produce miscalibrated probability estimations as a result of changes to the

5.2 Related work 69

models and the training procedure [36], such as the increase in model capacity, the use of
batch normalisation [46] and not using weight decay.

Motivated by the above, Keren et al. [53] present two novel methods for producing
calibrated prediction intervals for neural network regressors, for any given confidence level,
thus answering the research question posed in Section 1.4. Both methods operate as post-
processing methods, using the predictions of a pretrained model. In addition, both methods
are based on designing the neural network regressor as a classifier, do not require retraining
the model and are very fast to compute. The first proposed method, empirical calibration,
maps the amount of posterior probability mass allocated to the different bins to the probability
of labels falling in those bins. By doing so, this method finds the amount of posterior
probability mass that yields prediction intervals in the desired level of confidence. The
second proposed method, temperature scaling, is an adaptation of a related method proposed
in Guo et al. [36] for the classification setting, to the setting of emitting prediction intervals
for regression. By adjusting the softmax temperature, one could smooth or sharpen the
posterior probability distribution. Thus, the temperature scaling method finds the softmax
temperature that aligns the posterior probability mass of the different bins with the probability
of the label falling in those bins, allowing to produce calibrated prediction intervals.

Keren et al. [53] conduct experiments with their two proposed calibration methods, using
four benchmark datasets from the audio and the computer vision domains. They find that as
expected, using a neural network classifier for the regression task and producing prediction
intervals using the posterior probability mass results in prediction intervals that are poorly
calibrated. On the contrary, Keren et al. [53] find that applying their proposed calibration
methods results in prediction intervals that are considerably better calibrated, a finding that
was consistent across all datasets, neural network architectures and confidence levels.

In addition, Keren et al. [53] find that splitting the output space into a larger number of
bins results in tighter prediction intervals, i.e., those intervals are of a shorter length for the
same level of confidence, therefore better indicating the location of the label. Finally, Keren
et al. [53] show that using neural network classifiers for a regression task does not cause
any degradation in regression accuracy, as measured by the mean squared error (MSE). The
source code for using the two proposed calibration method is made publicly available in
https://github.com/cruvadom/Prediction_Intervals.

5.2 Related work

Despite network calibration being a more recent problem for neural networks, calibration
and confidence estimation themselves are not new problems, e.g., Brummer and Leeuwen

https://github.com/cruvadom/Prediction_Intervals

70 Calibrated Prediction Intervals

[11], Dawid [21], Deng and Schuller [23], Jiang [49], Platt et al. [92], Weintraub et al.
[122], Wessel et al. [123], Yu et al. [131]. More recently, a plethora of calibration and
uncertainty quantification approaches have been proposed and developed for contemporary
neural networks in the wider machine learning community. Bayesian neural networks produce
a probabilistic relationship between the network input and output [52, 84], but often suffer
from tractability issues. Ensemble based approaches, bootstrapping, and Monte Carlo based
approaches have also been proposed, for example Gal and Ghahramani [30], Khosravi et al.
[61], Lakshminarayanan et al. [70], Naumov et al. [83]. While such approaches can produce
calibrated prediction intervals, they often require training and testing a multitude of different
individual networks which considerably increases the associated time and computational
costs [74]. Closely related to the current work, a range of post-processing calibration methods
for neural network classifiers were evaluated with a range of different networks topologies
[36]. The authors found some of the evaluated methods to successfully calibrate the outputs
of the classification models, but counterpart methods for producing calibrated prediction
intervals for neural network regressors are still absent.

5.3 Posterior prediction intervals

Consider neural network regressors that process an input x ∈ R with an associated label at
training time y ∈ R. The standard neural network regressor is normally designed to have a
single unit in its top layer, containing the network’s prediction [42, 115, 129]. At training
time, the network’s prediction is then compared to the labels using the MSE loss, which
is the training objective. Using this design, the network outputs a single point estimate,
and does not allow emitting prediction interval in a straight forward manner. In contrast,
a natural approach for producing prediction intervals is to construct a model that emits a
probability distribution px over the real numbers, and construct prediction intervals that
contain a prescribed amount of probability mass. Denote by Ŷx the random variable that is
distributed according to px. Keren et al. [53] define

Definition 4. The interval (ux,vx) is called a posterior α-prediction interval if

P[ux < Ŷx < vx] = α and ux < E[Ŷx]< vx.

The posterior α prediction interval is simply an interval around the expected prediction
of the network E[Ŷx], that contains α of the posterior probability distribution px. α is referred
to as the confidence level of the posterior α-prediction interval.

5.4 Calibrated prediction intervals 71

For emitting a probability distribution over the real numbers, neural network regressors
can be designed to operate as neural network classifiers, as was done in Oord et al. [87],
van den Oord et al. [116]. The real numbers are split into a M bins with edges

−∞ = a0 < a1 < ... < aM = ∞,

and for training purposes the continuous label y is replaced with a class label t ∈{0, ...,M−1}
such that

at ≤ y < at+1.

The top layer of the neural network is replaced and contains M units to accommodate M
classes. Softmax normalisation is applied on the outputs of this top layer to produce a vector
of class probabilities

(pr0, ..., prM−1).

At training time, the task is learnt as a classification task using the cross-entropy loss. The
process above results in a categorical probability distribution, that covers the real numbers
by splitting them into M bins. Though not required in the setting of this work, one may
transform this distribution into a continuous distribution over the real numbers by using a
uniform distribution over values inside each bin, and a suitable alternative for the bins with
edges in ±∞.

Designing a neural network regressor as a classifier allows replacing the single point
prediction with a distribution over the real numbers, which in turn allows computing posterior
α-prediction intervals.

5.4 Calibrated prediction intervals

Section 5.3 describes how neural network regressors can emit posterior α-prediction intervals,
instead of a single point estimate. However, a confidence level of α is not guaranteed to
correspond to a probability of α that the label falls within the interval boundaries. Indeed,
consider for example the case of neural networks that produce overly confident predictions.
These networks will tend to allocate almost all posterior probability mass in small regions
of the output space, resulting is very narrow posterior α-prediction intervals. Despite
the confident predictions, the resulting posterior α-prediction intervals may contain their
respective labels with probability α0, with α0 < α . Similarly, neural networks that produce
predictions that are not confident enough, may lead to posterior α-prediction intervals that are

72 Calibrated Prediction Intervals

too wide, again not reflecting the actual probability of the label falling within the boundaries
of those intervals.

Ideally, prediction intervals with a confidence level of α should correspond to a probability
of al pha of the label falling withing their boundaries. Keren et al. [53] define the notion of
calibrated α-prediction intervals:

Definition 5. A set of intervals {(ux,vx)}x∈X is said to be a set of calibrated α-prediction
intervals if

Px,y∼X ,Y [ux < y < vx] = α,

where X ,Y corresponds to the joint distribution of inputs and labels of the given regression
task.

Keren et al. [53] refer to α as the confidence level of the calibrated α-prediction intervals.
In regression analysis, a calibrated α-prediction interval is an estimate of an interval in which
the label will lie, with a certain probability α . Calibrated α-prediction intervals capture
information about the uncertainty of the predicted value across the output space, and convey
information that is absent from a single point estimate of the label, that might be critical for a
wide range of practical applications.

Recent work shows that modern neural network classifiers often produce non-calibrated
outputs, i.e., the posterior probability assigned to a given class is not equal to the probability
of this class being the correct class for the relevant example [36]. Therefore, using neural
network regressors as modern neural network classifiers, and constructing posterior α-
prediction intervals using the posterior probability distribution of the classifiers, is most likely
to produce posterior α-prediction intervals that are not calibrated α-prediction intervals.

In the light of the above, Keren et al. [53] present two novel methods for emitting
calibrated α-prediction intervals for neural network regressors, that are presented below.
Recall the setting from Section 5.3, in which neural network regressors are designed as
classifiers over M bins, and produce a categorical probability distribution over the different
bins: (pr0, ..., prM−1).

The network’s real-valued prediction (point estimate) is computed as the expectation of
the posterior probability distribution

ŷ =
M−1

∑
i=0

pri ∗ ci, (5.1)

5.4 Calibrated prediction intervals 73

where ci is the mean of real-valued training labels that correspond to class label i. The class
(bin) that contains ŷ is denoted as t̂:

t̂ = r s.t. ar ≤ ŷ ≤ ar+1. (5.2)

As a first stage for applying each of the proposed calibration methods by Keren et al. [53],
posterior α-prediction intervals are computed. These are set to be the smallest symmetric
interval around t̂ that contains α of the neural network’s posterior probability mass. Formally,
the posterior α-prediction intervals are computed by Keren et al. [53] as

(uα
x ,v

α
x) = (at̂−i,at̂+1+i), (5.3)

such that i is the minimal non-negative integer (possibly zero) for which

prt̂−i + ...+ prt̂+i ≥ α. (5.4)

It is important to note that the edges of the posterior α-prediction intervals are restricted to
be the edges of the bins, therefore the condition from Definition 4 is only met approximately.

Both calibration methods proposed by Keren et al. [53] apply post-processing to the
outputs of a pretrained model processing unseen examples, and therefore do not require any
retraining of the neural network model. Hyperparameters for the methods are chosen using
a validation set, and the chosen values are used when applying the methods on the test set
predictions.

5.4.1 Empirical calibration

Observe that a set of posterior α0-prediction intervals (uα0
x ,vα0

x) as defined according to
Equation 5.3 is always also a set of calibrated α1-prediction intervals for

α1 = Px,y∼X ,Y [uα0
x < y < vα0

x]. (5.5)

The last statement is true, since for any given set of posterior α0-prediction intervals, there
exist some probability α1 of the labels falling withing the boundaries of those intervals. For
this probability, this set of intervals is also a set of calibrated α1-prediction intervals by
definition.

When applying the empirical calibration method, the goal is to find α0 such that the
posterior α0-prediction intervals are calibrated α-prediction intervals, for a desired confidence
level α . Note that Px,y∼X ,Y [u

α0
x < y < vα0

x] is increasing in α0 with fixed points in 0 and 1,

74 Calibrated Prediction Intervals

since the size of an interval is increasing with the amount of posterior probability mass it
contains, therefore the label is more likely to fall within this interval’s boundaries.

Thus, the empirical calibration method proposed by Keren et al. [53] is comprised of a
binary search along different values of α0 ∈ [0,1] to find α0 such that |Px,y∼X ,Y [u

α0
x < y <

vα0
x]−α|< ε on the validation set, for a given error tolerance ε . A value of ε = 0.001 is used

for the experiments performed by Keren et al. [53]. Having a small level of error tolerance is
mandatory, since it may be impossible to find calibrated prediction interval with a confidence
level of exactly α on a finite validation set. The value of α0 that is found in the binary search
is the one that should be used for performing empirical calibration on the test set.

5.4.2 Temperature scaling

Neural network classifiers emit a vector of class probabilities (pr0, ..., prM−1) that is com-
puted from the logits (the outputs of the top layer) (z0, ...,zM−1) using a softmax function:

pri =
exp(zi/T)

M−1
∑
j=0

exp(z j/T)
, (5.6)

where T is called the softmax temperature. A default temperature of T = 1 is used during
training. Equation 5.6 can be written as

pri =
1

M−1
∑
j=0

exp((z j − zi)/T)
, (5.7)

showing that the softmax output depends only on the differences between the logits’ values
and the temperature used. As a result, scaling the logits by a scalar value before applying the
softmax normalisation will result in changing the smoothness of the posterior probability
distribution. Specifically, a low temperature 0 < T < 1 will result in a “sharper” distribution,
i.e., probability mass will concentrate more in classes with large logit values. On the other
hand, using a temperature 1 < T < ∞ results in “smoothing” of the posterior probability
distribution, i.e., probability mass is distributed more equally between all classes.

Guided by the property discussed above, the temperature scaling method proposed
in Keren et al. [53] tunes the softmax temperature at evaluation time for computing class
probabilities. Temperature scaling was used in Guo et al. [36] for calibrating the output proba-
bilities of neural network classifiers, and Keren et al. [53] extend this method to the regression
and prediction intervals setting. A network that produces overly confident predictions will
result in posterior α-prediction intervals that are too narrow, i.e., Px,y∼X ,Y [uα

x < y < vα
x]< α .

5.5 Experiments 75

For this case, a softmax temperature T > 1 may be used at evaluation time to reduce the
network’s confidence by smoothing the posterior probability distribution, thus increasing the
size of posterior α-prediction intervals. Equivalently, a low temperature 0 < T < 1 should
be used to increase the network’s confidence and decrease the width of posterior prediction
intervals.

Keren et al. [53] define

Fα(T) = Px,y∼X ,Y [uα
x < y < vα

x] (5.8)

where uα
x and vα

x are the posterior α-prediction intervals that now depend also on T . As an
increase in T increases the width of the posterior prediction intervals, the function Fα(T) is
continuous and monotonic increasing in T , with limT→0 Fα(T) = 0 and limT→∞ Fα(T) = 1.
As a result, there exist a temperature T ∗ such that Fα(T ∗) = α .

Motivated by the above, the temperature scaling method performs a binary search along
different values of T to find a temperature value T ∗ such that

|Fα(T ∗)−α|< ε (5.9)

on the validation set, for the desired confidence level α and a given error tolerance of ε .
An error tolerance of ε = 0.001 is used in the experiments performed by Keren et al. [53].
The small error tolerance is mandatory, as the validation set is finite, therefore it may be
impossible to find a set of calibrated prediction intervals with a confidence level of exactly α .

5.5 Experiments

Keren et al. [53] experimented with their two proposed calibration methods on four bench-
mark datasets from the audio and computer vision domains. The description of the tasks and
the neural network used is given below.

5.5.1 Age prediction (audio)

The first task that was considered is the prediction of speakers’ age based on a recording
of their speech, using the aGender corpus [12, 100]. The aGender corpus contains audio
recordings of predefined utterances and natural speech, annotated for the speakers’ age and
gender. Keren et al. [53] split into speaker independent training, validation and test sets,
according to the split used in Keren and Schuller [60]. In total, the three sets contain more
than 38 hours of audio, in more than 53,000 utterances. The total number of speakers is 611,

76 Calibrated Prediction Intervals

such that 331 speakers were assigned to the training set, 140 to the validation set, and 299 to
the test set. Mel-Frequency Cepstrum Coefficients (MFCC) features were extracted from
each recordings, using frames of 25 ms shifted by 10 ms. From every frame 13 features were
extracted. Mean and standard deviation normalisation were applied across features and time,
for every recording separately.

5.5.2 SNR prediction

The second regression task from the audio domain that was used in the experiments is
prediction of Signal-to-Noise Ratio (SNR) of speech audio utterances with background noise.
For constructing this task’s corpus, Keren et al. [53] used clean speech utterances from the
degree of nativeness corpus from the INTERSPEECH 2016 computational paralinguistics
challenge [54, 101] and background noise recordings from the CHiME-4 challenge [118].
The native language corpus contains more than 64 hours of clean speech utterances from 5,132
speakers of 11 different native languages, split into speaker independent training, validation,
and test sets. The background noises are recordings of four different environments: bus,
café, pedestrian area, street junction, and are 14 hours in total. For creating the training
set, training speech utterances were mixed with random segments of the background noises
according to a random SNR in the range [0,25]. The SNR was then used as the real-valued
label for the regression task. The validation and test sets were created in a similar manner,
using the corresponding clean utterances from the native language corpus and dedicated
portions of the noise recordings. A short-time Fourier transform (STFT) is applied on every
recording to extract 201 magnitude spectrogram features from every 25 ms frame, where
frames are shifted by 10 ms. The magnitude spectrogram features were then normalised
across features and time, for every utterance separately, to have a mean of 0 and a standard
deviation of 1.

5.5.3 Age prediction (images)

The first dataset Keren et al. [53] experimented with in the computer vision domain is the
Wikipedia faces dataset [97]. The dataset contains 62,359 images of people (one image per
person) crawled from Wikipedia, labelled with the age of each person at the time the picture
was taken. Since the dataset has no official training, validation, and test splits, 60% of the
examples were randomly allocated to the training set, 20% to the validation set and 20%
to the test set. As the dimensions of the different images vary, every image was resized
to 224×224 pixels before feeding it to the neural network. In addition, pixel values were
normalised for every image separately, to have a mean of 0 and a standard deviation of 1.

5.5 Experiments 77

5.5.4 ISO speed prediction

The second images dataset Keren et al. [53] experimented with is the MIRFLICKR-25000
dataset. The MIRFLICKR-25000 dataset consists of 25,000 images downloaded from the
social photography site Flickr through its public API [77]. In addition to images, the dataset
contains additional metadata on every image, such as the ISO speed, that measures the
sensitivity of the camera’s film or sensor to light. The ISO speed affects the brightness of
photos, therefore a regression task for predicting the ISO speed of given images is sensible.
Keren et al. [53] split the dataset and extracted features in the same way as described in
Section 5.5.3.

5.5.5 Neural networks

As described in Section 5.3, Keren et al. [53] learn the regression tasks using a classification
neural network, where the real numbers are split into M bins. For the audio experiments, the
network used is comprised of two long short-term memory (LSTM) layers, each with 512
units. The output of the last time step in the top layer is fed into the fully-connected output
layer, with the number of units equal to the number of bins used. Softmax normalisation is
applied to the output layer’s units.

For the computer vision experiments, a convolutional neural net (CNN) is used, that
is comprised of 8 residual blocks [42]. Each residual block first applies a convolutional
layer on the input, followed by batch normalisation [46] and a rectified linear activation
function. A second convolutional layer is then applied on the output of the rectified linear
activation, and the output is added to the block’s input. Batch normalisation and another
rectified linear activation are then applied, to emit the output of the residual block. Before
applying the residual blocks, a convolutional layer with a 7× 7 kernel is applied on the
network’s input, with a 2×2 stride and 64 feature maps. The output of this convolutional
layer is fed to a sequence of 8 residual blocks, all using convolutional kernel size of 3×3
and 64,64,128,128,256,256,512,512 feature maps (one value for each residual block). A
2×2 stride is applied for residual blocks number 3, 5 and 7. A global average pooling is
applied on the output of the last residual block, to average each of the 512 feature maps
across all spatial locations. Similarly to the audio experiments, a fully-connected layer is
then applied to project the 512 dimensional vector to the relevant number of bins, and a
softmax normalisation is applied.

In all experiments, the training objective is the standard cross-entropy, and model param-
eters are learnt using the Adam optimiser [62] with default β1,β2 values and a learning rate
of 0.001. Keren et al. [53] experimented with binning the real numbers into M = 10,30,60

78 Calibrated Prediction Intervals

bins to demonstrate that our method can operate successfully regardless of the number of
bins, and to study the differences between the resulting prediction intervals with different
number of bins. For a given number of classes M, class boundaries were set to a0, ...,aM

to be equally spaced between the minimum and maximum real-valued label values in the
training set, and then a0 =−∞ and aM = ∞ were set.

5.5.6 Calibration results

Each of the two calibration methods from Section 5.4 were evaluated on the four regression
tasks, with different number of bins. For each task, three neural networks are trained using
10, 30 and 60 bins respectively. The two calibration methods are then applied to the outputs
of the trained neural networks, to emit prediction intervals with confidence level of 66%,
80% and 90%. Hyperparameters for each calibration method were chosen on the validation
set, and were then used when applying the relevant calibration method on the test set. All
results are reported on the test set.

Each calibration method aims at producing calibrated α-prediction intervals. For assess-
ing whether this goal was achieved, Keren et al. [53] measure the calibration error, which
is the absolute difference between the desired confidence level α and the probability of the
emitted prediction intervals to contain their respective labels. Keren et al. [53] define the
calibration error as follows:

|Px,y∼X ,Y [ux < y < vx]−α|, (5.10)

where (ux,vx) is the prediction interval emitted by the calibration method for example x, and
X ,Y are distributed uniformly over the test set examples.

The calibration error for the posterior α-prediction intervals and the prediction intervals
emitted by each of the calibration methods are reported in Table 5.1. The first observation
from the table is that the posterior α-prediction intervals result in a large calibration error, and
can be considered indeed as miscalibrated in general. This finding is consistent with findings
from Guo et al. [36] regarding the miscalibration of modern neural network classifiers.
Second, both the empirical calibration and the temperature scaling methods manage to
considerably reduce the calibration error in all cases, normally down to small level of 0%-2%.
These results show that both calibration methods proposed by Keren et al. [53] are suitable
for emitting calibrated prediction intervals for neural network regressors. These findings
are consistent across all datasets, confidence levels and number of bins used for training the
networks.

5.5 Experiments 79

Table 5.1 A comparison of test set calibration error ([%]) before (‘Posterior’ column) and after
applying each of the the two proposed calibration methods for the different regression tasks,
as appears in Keren et al. [53]. ‘Empirical’, ‘Temp’ and ‘Confidence’ columns represent
empirical calibration, temperature scaling and the prediction intervals’ confidence level
respectively. In all cases, both of the proposed methods manage to considerably reduce
the calibration error of prediction intervals, compared to prediction intervals based on the
networks’ posterior distribution (smaller numbers on the right side of the dashed line). Both
of the proposed methods yield comparable performance. This result holds when training the
network with either 10, 30 or 60 bins, with no clear advantage for a specific number of bins.

Dataset Confidence Bins Posterior Empirical Temp’

Age
(Audio)

66%
10 7.63 0.60 0.09
30 12.40 2.25 1.80
60 11.95 0.82 0.35

80%
10 10.78 0.64 1.16
30 15.37 2.63 3.13
60 13.74 1.45 2.69

90%
10 9.64 1.81 2.44
30 11.83 2.53 3.13
60 10.97 1.95 2.16

SNR

66%
10 22.11 6.44 7.22
30 19.67 1.78 1.78
60 12.22 0.11 0.78

80%
10 14.56 1.67 0.56
30 12.67 2.89 1.78
60 9.22 1.44 1.78

90%
10 7.56 0.89 0.44
30 6.11 2.78 2.78
60 4.78 0.00 0.11

Age
(Images)

66%
10 0.29 0.01 0.14
30 4.50 0.14 0.26
60 13.43 0.22 0.29

80%
10 3.90 0.15 0.05
30 2.71 0.26 0.14
60 14.98 0.22 0.63

90%
10 4.46 0.11 0.08
30 0.73 0.08 0.05
60 14.34 0.25 0.02

Iso
Speed

66%
10 17.39 0.76 0.82
30 6.06 0.06 0.70
60 7.21 0.21 0.58

80%
10 6.58 0.15 0.67
30 6.58 0.15 0.67
60 4.45 0.03 0.06

90%
10 3.55 0.21 0.24
30 4.06 0.73 0.27
60 3.70 0.24 0.91

80 Calibrated Prediction Intervals

It is important to note, that the calibration error does not vanish completely, even when
using the two calibration methods. This is because the hyperparameters for the methods are
chosen to perform best on the validation set, and do not perfectly generalise to the test set.
Nevertheless, for most practical applications a calibration error of 1%-2% is sufficiently low
(e.g., a confidence level of 81% instead of a desired 80% will not make a large difference in
most applications). Calibration error for both methods is comparable. Keren et al. [53] report
that both methods are fast to execute, typically taking 1-3 seconds for a test set of 10000
examples, depending on the number of bins used.

Furthermore, Keren et al. [53] compare the width of the resulting prediction intervals
by using the empirical calibration and temperature scaling. Table 5.2 contains the average
width of the prediction intervals for the test sets of the different regression tasks. As
posterior α-prediction intervals were shown to yield a large calibration error, their width
is not comparable with the width of calibrated α-prediction intervals and they are left out
from this evaluation. First, the results in the table show that, naturally, the width of the
resulting prediction intervals increases with the confidence level used. Second, the interesting
observation from the table is that training the neural networks using a larger number of bins
generally results in prediction intervals that are smaller, therefore better. Specifically, for all
tasks except age prediction from audio signal, the width of the resulting calibrated prediction
intervals is generally smaller when using 30 or 60 bins, compared to 10 bins. This finding
can be attributed to the fact that binning the output space into a larger number of bins allows
the network a more precise allocation of posterior probability mass.

Both calibration methods result in prediction intervals with comparable width, therefore
the two methods can be used interchangeably for emitting calibrated prediction intervals
for neural network regressors. Another important note is that the width of the prediction
intervals that result from a certain network, closely depends on the regression task accuracy
of this network. Better regression networks will allocate more of the posterior probability
mass around true label, that will result in tighter prediction intervals.

5.5.7 Regression results

Lastly, Keren et al. [53] conduct an additional experiment to determine whether using a
neural network classifier for the regression task reduces the accuracy in the regression task
itself, as measured by the root MSE. To this end, a standard neural neural network regressor
is trained. For each task the standard neural network regressor is trained with an identical
architecture to the corresponding neural network classifier for this task, except the topmost
layer that contains only a single unit, as described in Section 5.3. The regressor is trained
with the same optimiser as the classifiers to minimise the mean squared error (MSE) between

5.5 Experiments 81

Table 5.2 A comparison of the test set average width of prediction intervals using the two
proposed calibration methods, empirical calibration and temperature scaling, as reported in
Keren et al. [53]. ‘Empirical’, ‘Temperature’ and ‘Confidence’ columns represent empirical
calibration, temperature scaling and the prediction intervals’ confidence level respectively.
For all datasets except ‘Age (Audio)’, training the network with more bins generally results
in tighter prediction intervals, since the network can learn a more precise distribution of
posterior probability (numbers in the 30 and 60 bins rows are generally smaller than in the
10 bins rows). The width of the intervals is comparable between the two calibration methods
and naturally grows with the confidence level. Finally, the width of the intervals naturally
depends on the performance of the neural network in the regression task.

Dataset Confidence Bins Empirical Temperature

Age
(Audio)

66%
10 34.84 35.70
30 34.05 36.35
60 36.16 38.59

80%
10 44.55 44.79
30 43.84 44.13
60 45.23 45.41

90%
10 52.77 52.68
30 52.69 52.30
60 53.84 54.32

SNR

66%
10 2.60 2.60
30 1.97 1.91
60 1.64 1.58

80%
10 3.49 3.31
30 2.50 2.47
60 2.22 2.15

90%
10 4.74 4.63
30 3.11 3.04
60 2.96 2.94

Age
(Images)

66%
10 20.99 20.92
30 19.66 19.11
60 18.71 19.80

80%
10 27.48 27.65
30 28.83 25.53
60 25.71 25.81

90%
10 35.60 35.43
30 33.51 33.58
60 34.63 33.72

Iso
Speed

66%
10 2.23 2.20
30 1.94 1.80
60 2.21 2.08

80%
10 3.22 3.23
30 2.94 3.02
60 2.90 2.91

90%
10 4.35 4.44
30 4.09 4.05
60 3.83 3.79

82 Calibrated Prediction Intervals

the network’s predictions and the labels. For the classification models, MSE is computed
using the prediction ŷ defined in Eq. 5.1.

Table 5.3 contains the root MSE for the standard neural network regressors, and the
neural network regressors designed as classifiers with different number of bins. The table
shows that in all tasks, regression accuracy for all networks is comparable. This concludes
that designing neural networks regressors as classifiers allows producing calibrated prediction
intervals, and does not cause any degradation in regression accuracy.

Table 5.3 Performance in the different regression tasks as measured by the root MSE, for
a standard neural network regressor and a neural network classifier with different number
of classes, as reported by Keren et al. [53]. The performance of the standard regressors is
comparable to the performance of the models performing regression using a classification
models. This indicates that using neural network classifiers to perform a regression task
allows emitting calibrated prediction intervals, and does not cause any degradation in the
regression performance.

Dataset Standard 10 classes 30 classes 60 classes
Age (Audio) 20.07 19.73 19.95 20.04
SNR 1.32 1.21 1.41 1.30
Age (Images) 11.48 11.55 11.36 11.47
ISO Speed 1.29 1.28 1.28 1.29

Chapter 6

Conclusion

This work covers a number of possible limitations in the standard supervised learning
paradigm for neural networks and proposes remedies for some cases. We summarise the major
findings of this work, their limitations, and give an outlook on future research opportunities
to extend this work and broaden its scope.

6.1 Training without a loss function

Chapter 2 considers the case of parameter update rules that do not originate from the gradient
of any loss function. Following the first research question we pose in Section 1.1, in Chapter
2 we were interested in answering whether there are settings in which such update rules are
preferable over the standard gradient-based update rules. The chapter describes the work
done by Keren et al. [56], where a non-gradient-based training method is proposed, allowing
tuning the network’s sensitivity to easy and hard training examples. In that work, it is shown
that in order to directly control the relative effect of easy and hard examples on the training
process, one needs to use a generalisation of the cross-entropy gradient. This generalisation
is derived, and incorporates a tunable parameter that controls the sensitivity of the training
process to hard examples. In experiments with both a toy example and four benchmark
datasets, it is shown that using the proposed parameter update rule that is not gradient-based,
and selecting the value of the sensitivity parameter using cross validation, leads to improved
classification accuracy compared to using the standard cross-entropy loss, thus giving a
positive answer to the research question from Section 1.1. Moreover, the experiments show
that the optimal level of sensitivity to hard examples is positively correlated with the depth
of the network.

We discuss some limitations to the work presented in Chapter 2 and directions for future
work on this topic. First, as the presented work is an initial exploratory work on this subject,

84 Conclusion

it experiments with the proposed update rule in the context of neural networks that are
composed of fully-connected layers only. In most state-of-the-art industrial and academic
applications, more complex neural networks are used, that often incorporate building blocks
such as convolutional or recurrent layers, residual blocks and attention mechanisms. In future
work, the proposed method should be further explored in and adapted to these settings.

Further, training with a loss function has some benefits, that one may forfeit when using
a training mechanism that is free of a loss function. Loss functions are in many cases easier
to design, as one only needs to come up with the error term to minimise, and automatic
differentiation tools such as tensorflow may take care of gradient computation and
parameter updates. In addition, the value of the loss function is often used as a marker for
training progression. Future research may explore alternative markers for training progression
for the case where no loss function is used, such as the size of the gradients. In all cases
however, it is recommended for a neural network practitioner or researcher to consider the
characteristics of the resulting gradient of the loss function used, as those may reveal effects
such as vanishing or exploding gradients, that may largely affect the training process.

As explained in Section 1.1, there is a large variety of potential update rules that do not
originate from any loss function. This work shows that at least in one setting, achieving a
specific manner of control over the training procedure is possible by using an update rule that
does not originate from a loss function, and it is unclear whether a similar effect could be
achieved using a loss function. Future research should further identify and explore additional
settings in which updates rules that do not originate from a loss function may offer additional
control over specific attributes of the training procedure.

6.2 Differences between loss functions

We attempted to study the effect of the choice of a loss function on the learnt representations,
and the possibility of using these differences to assist with the choice of loss function to
use, as posed in the research question in Section 1.2. Chapter 3 aims at answering this
research question in the context of the Single Logit Classification task (SLC), covering the
work done in Keren et al. [57] and Keren et al. [58]. In the SLC task, the model classifies
whether a certain class is the correct class for a given example, based on the logit value for
this class alone. Chapter 3 motivates this setting by showing that for a classification task over
a very large number of classes, the computation of all logits may be prohibitively slow at test
time. In applications where a full classification of the example is not needed at test time, but
rather only probing for the correctness of a small number of classes, SLC may be a viable
alternative to standard classification.

6.2 Differences between loss functions 85

Keren et al. [57] find that the loss function used is a critical ingredient in shaping the
neural network representation in the logits layer in a manner that facilitates good accuracy in
the SLC task. For example, it is shown that the standard cross-entropy loss results in logits
that are only informative of class correctness in comparison with other logits. In other words,
the cross-entropy loss results in poor performance in the SLC task. More generally, the
Principle of Logit Separation (PoLS) is formulated, stating a property of the representation in
the logits layer, that a given loss function should optimise for in order to obtain good accuracy
in the SLC task. Eleven different loss functions are mathematically analysed with respect to
the PoLS. In experiments, it is shown that PoLS-aligned loss functions yield considerably
better accuracy in the SLC task. Further, it is demonstrated that training with a PoLS-aligned
loss function and applying SLC leads to considerable speedups when there are many classes,
with no degradation in accuracy. This largely answers the posed research question for the
SLC setting.

There are a few possible limitations to the work presented in Chapter 3. First, the chapter
considers a setting in which a model is trained using a multiclass classification dataset, but
at test time the task changes: every time the model is used only a small number of classes
are probed for. A large dataset for multiclass classification may be used at training time
as these datasets are often large and publicly available [22], making this setting realistic in
applications such as autonomous driving or security cameras. However, one may note that
this setting is rather specific, and does not include the standard classification problems.

The considered work yields large speedups at test time, when using SLC instead of
full classification with a very large number of classes. Specifically, results in Table 3.3
show that for the common image classification networks, speedups become meaningful
when using at least 216 −218 classes. The experiments presented in Chapter 3 show that the
superiority of PoLS aligned loss functions in the SLC task scale with the number of classes,
but experiments were done with datasets that only contain up to 1000 classes. The reason
for not experimenting with a number of classes that results in the considerable speedups is
that available datasets containing this number of classes are very large, and were beyond
the computational resources limitations of the authors of Keren et al. [57]. Therefore, while
Chapter 3 asserts that it is plausible that the results scale further to a very large number of
classes, further work should establish this empirically with the appropriate experiments.

Finally, future work may extend the scope the PoLS by applying it to other training
mechanisms that do not involve loss functions, such as the training mechanism described in
Chapter 2.

86 Conclusion

6.3 Low-quality supervision

Another aim of this work, as posed in the research question in Section 1.3, is to utilise the
abundance of low-quality labels in neural network training. Specifically, we were interested
in using large datasets of instance-level labels, to perform a detection task over a large number
of classes. In chapter 4, the work that appears in the preprint Keren et al. [59] is described,
addressing the above mentioned research goal. To avoid the dependency of the model on
localisation labels such as bounding boxes, the detection task is considered in a weakly
supervised setting, using instance-level labels alone. Further, to avoid the requirement of
having a large amount of labels from a very large number of classes, the detection task is
considered in the one-shot learning setting. Thus, the task of weakly supervised one-shot
detection is considered, in both the audio and the computer vision domains.

The novel model presented for the weakly supervised one-shot detection task is condi-
tioned on an exemplar of a given class and a larger target example, that may or may not
contain an instance of the same class as the exemplar. The model consists of a Siamese neural
network, extracting a representation from the exemplar and every location in the target image.
A similarity score between the representations of the exemplar and the different locations
is computed. Then, an attention mechanism attends to locations of interest and combines
the locations’ similarity scores into one instance-level score. Attention weights are used at
test time to emit the localisation predictions, thereby circumventing the dependency on the
existence of localisation labels. Further, the model only performs binary classification to
determine whether a given target example contains an instance of the same class as a given
exemplar. By not conditioning the model on class identities, the model is able to generalise
across class boundaries and operate in a one-shot learning setting on classes unseen at training
time. Experiments with character detection in images and query-by-example spoken term
detection show that the proposed model manages to identify and localise instances of unseen
classes and to outperform the baseline models.

However, the model has some limitations that should be addressed in future work on this
topic. First, the image data that was used by Keren et al. [59] in the detection task consisted
of square grids of character images. In this task, the exemplar was always of the same size as
each location in the grid, and the number of possible locations for detection was limited. In
the audio setting, even though the number of possible detection locations was not limited,
the implicit assumption was that the exemplars (keywords) are of the same duration as their
appearances in the target examples (utterances). Future work should address the weakly
supervised one-shot detection task using additional datasets, where the exemplar and its
appearances in the target example may be of different sizes, and the number of possible
detection locations is not limited, such as object detection datasets of natural images. The

6.4 Calibrated prediction intervals 87

issue of detection across varying sizes may be addressed by expanding the set of possible
locations with locations of different sizes, while still extracting a fixed length representation
from all locations, as was done in Ren et al. [96].

Further, in the current work detection locations are emitted using the attention weights.
Specifically, the detection location is set to be the location with the highest score of similarity
to the exemplar. While this is a viable method for the task used in this work, this approach is
not suitable for detection tasks where the target image may contain multiple instances of a
given class. Further work may avoid this issue by allowing the model to emit a detection in
all non-overlapping locations that have a similarity score that is above a certain threshold.
Finally, experiments in Chapter 4 show that in many cases the proposed model correctly
identifies whether an instance of the same class as the exemplar appears in the target image,
but emits a detection location that is inaccurate. Future work should strive to further tune the
detection locations, thus largely improving the total accuracy of the model.

6.4 Calibrated prediction intervals

The final research question of this work, presented in Section 1.4, is concerned with quan-
tifying the prediction confidence in the regression setting, and specifically with emitting
calibrated prediction intervals for neural network regressors. Chapter 5 presents the work
of Keren et al. [53] following the above research question. The chapter describes how one
may obtain calibrated prediction intervals in two stages. First, it is suggested to design
the neural network regressor as a classifier over the binned output space. By doing so, we
obtain a posterior probability distribution over the output space, instead of a single point
prediction. Given the distribution over the output space, one may emit intervals in the output
space that contain a given amount of probability mass. However, it is shown that the amount
of probability mass that an interval contains does not correspond to the probability that
this interval contains the true label. At the second stage, two novel calibration algorithms
are presented. Both algorithms operate as post-processing of the model outputs, and allow
emitting prediction intervals that correspond to any prescribed confidence level.

It is important to note, that while the algorithms presented in Chapter 5 allow emitting
calibrated prediction intervals for a given confidence level, the chapter does not describe
how an important complementary operation may be performed. In many applications, one
may want to emit prediction intervals with a fixed length, and have an algorithm that emits
the varying confidence level to these fixed prediction intervals. Future work may present
algorithms for this complementary operation, based on the algorithms presented in Chapter
5, as we explain below. The empirical calibration algorithm presented in Chapter 5 finds the

88 Conclusion

amount of posterior probability mass that is equivalent to the prescribed confidence level.
One may extend this to a complete mapping between the different amounts of probability
mass to the confidence level of their resulting prediction intervals. One may use this mapping
to emit the confidence level for any given interval.

In addition, future work should further develop and improve upon the proposed calibration
algorithms. For example, the proposed algorithms always use symmetric prediction intervals
around the expected real-valued prediction of the model. When the posterior probability
distribution over the output space is not symmetric around this value, one may emit prediction
intervals that contain the same amount of probability mass, but are a of a shorter length,
therefore better. Moreover, different strategies for binning the output space should be
considered. In this work, the output space was always binned into bins of equal length. When
the labels distribution is not uniform, future work may want to explore binning the output
space according to the percentiles of the label distribution.

Finally, the proposed algorithms rely on post-processing of the model outputs, when
the model was only trained for best classification accuracy. In contrast, one may strive
to have a model that learns to quantify prediction confidence, and is trained to emit the
correct confidence level. In future work, one may attempt to overcome the challenges of this
approach, that were described in Section 1.4.

References

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden,
P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale
machine learning on heterogeneous systems. Software available from tensorflow.org.

[2] Amiriparian, S., Pugachevskiy, S., Cummins, N., Hantke, S., Pohjalainen, J., Keren,
G., and Schuller, B. W. (2017). CAST a database: Rapid targeted large-scale big data
acquisition via small-world modelling of social media platforms. In Proceedings of the
International Conference on Affective Computing and Intelligent Interaction (ACII), pages
340–345, San Antonio, TX.

[3] Andreas, J. and Klein, D. (2015). When and why are log-linear models self-normalizing?
In Proceddings of NAACL HLT, pages 244–249, Denver, CO.

[4] Ao, C. and Lee, H. (2018). Query-by-example spoken term detection using attention-
based multi-hop networks. In Proceedings of the International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6264–6268, Calgary, Canada.

[5] Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly
learning to align and translate. In Proceedings of ICLR, San Diago, CA.

[6] Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In
Proceedings of ICML, pages 41–48, Montreal, Canada.

[7] Bengio, Y. and Senecal, J. (2008). Adaptive importance sampling to accelerate training of
a neural probabilistic language model. IEEE Transactions on Neural Networks, 19(4):713–
722.

[8] Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., and Torr, P. H. S. (2016).
Fully-convolutional Siamese networks for object tracking. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 850–865, Amsterdam, Netherlands.

[9] Bilen, H. and Vedaldi, A. (2016). Weakly supervised deep detection networks. In
Proceedings of CVPR, pages 2846–2854, Las Vegas, NV.

[10] Bromley, J., Bentz, J. W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Säckinger, E.,
and Shah, R. (1993). Signature verification using a "Siamese" time delay neural network.
IJPRAI, 7(4):669–688.

90 References

[11] Brummer, N. and Leeuwen, D. A. V. (2006). On calibration of language recogni-
tion scores. In Proceedings of IEEE Odyssey - the Speaker and Language Recognition
Workshop, pages 1–8, San Juan, Puerto Rico.

[12] Burkhardt, F., Eckert, M., Johannsen, W., and Stegmann, J. (2010). A database of age
and gender annotated telephone speech. In Proceedings of the International Conference
on Language Resources and Evaluation, LREC, Valletta, Malta.

[13] Chan, W., Jaitly, N., Le, Q. V., and Vinyals, O. (2016). Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition. In Proceedings
of the International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 4960–4964, Shanghai, China.

[14] Chen, G., Parada, C., and Sainath, T. N. (2015). Query-by-example keyword spotting
using long short-term memory networks. In Proceedings of the International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 5236–5240, South Brisbane,
Australia.

[15] Chen, W., Grangier, D., and Auli, M. (2016). Strategies for training large vocabulary
neural language models. In Proceedings of the 54nd Annual Meeting of the Association
for Computational Linguistics (ACL), pages 1975–1985, Berlin, Germany.

[16] Cho, K., Courville, A., and Bengio, Y. (2015). Describing multimedia content
using attention-based encoder-decoder networks. IEEE Transactions on Multimedia,
17(11):1875–1886.

[17] Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., and Bengio, Y. (2015). Attention-
based models for speech recognition. In Proceedings of NIPS, pages 577–585, Montreal,
Canada.

[18] Crammer, K. and Singer, Y. (2001). On the algorithmic implementation of multiclass
kernel-based vector machines. Journal of Machine Learning Research, 2(Dec):265–292.

[19] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. MCSS,
2(4):303–314.

[20] Czarnecki, W. M., Jozefowicz, R., and Tabor, J. (2015). Maximum entropy linear
manifold for learning discriminative low-dimensional representation. In Proceedings of
ECML PKDD, pages 52–67.

[21] Dawid, A. P. (1982). The well-calibrated bayesian. Journal of the American Statistical
Association, 77(379):605–610.

[22] Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Li, F. (2009). Imagenet: A large-scale
hierarchical image database. In Proceedings of CVPR, pages 248–255, Miami, FL.

[23] Deng, J. and Schuller, B. (2012). Confidence Measures in Speech Emotion Recognition
Based on Semi-supervised Learning. In Proceedings of INTERSPEECH, pages 2226–
2229, Portland, OR.

References 91

[24] Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R. M., and Makhoul, J. (2014). Fast
and robust neural network joint models for statistical machine translation. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL),
pages 1370–1380, Baltimore, MD.

[25] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T.
(2014). DeCAF: A deep convolutional activation feature for generic visual recognition. In
Proceedings of ICML, pages 647–655, Beijing, China.

[26] Dong, X., Zheng, L., Ma, F., Yang, Y., and Meng, D. (2017). Few-shot object detection.
arXiv preprint arXiv:1706.08249.

[27] Duchi, J. C., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learning Research,
12:2121–2159.

[28] Everingham, M., Gool, L. J. V., Williams, C. K. I., Winn, J. M., and Zisserman, A.
(2010). The Pascal visual object classes (VOC) challenge. International Journal of
Computer Vision, 88(2):303–338.

[29] Eyben, F., Weninger, F., Gross, F., and Schuller, B. (2013). Recent developments in
opensmile, the munich open-source multimedia feature extractor. In Proceedings of the
21st ACM International Conference on Multimedia, pages 835–838, Barcelona, Spain.

[30] Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In Proceedings of ICML, pages 1050–1059, New
York, NY.

[31] Girshick, R. B. (2015). Fast R-CNN. In Proceedings of ICCV, pages 1440–1448,
Santiago, Chile.

[32] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 249–256, Sardinia, Italy.

[33] Golik, P., Doetsch, P., and Ney, H. (2013). Cross-entropy vs. squared error training:
A theoretical and experimental comparison. In Proceedings of INTERSPEECH, pages
1756–1760, Lyon, France.

[34] Gower, J. C. (1985). Measures of similarity, dissimilarity and distance. Encyclopedia
of Statistical Sciences, 5:397–405.

[35] Grave, E., Joulin, A., Cissé, M., Grangier, D., and Jégou, H. (2017). Efficient softmax
approximation for GPUs. In Proceedings of ICML, pages 1302–1310, Sydney, Australia.

[36] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On calibration of modern
neural networks. In Proceedings of ICML, pages 1321–1330, Sydney, Australia.

[37] Gupta, M. R., Bengio, S., and Weston, J. (2014). Training highly multiclass classifiers.
Journal of Machine Learning Research, 15(1):1461–1492.

92 References

[38] Gutmann, M. and Hyvärinen, A. (2010). Noise-contrastive estimation: A new estima-
tion principle for unnormalized statistical models. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS), pages 297–304, Chia
Laguna Resort, Sardinia, Italy.

[39] Hariharan, B. and Girshick, R. B. (2017). Low-shot visual recognition by shrinking
and hallucinating features. In Proceedings of ICCV, pages 3037–3046, Venice, Italy.

[40] Hazen, T. J., Shen, W., and White, C. M. (2009). Query-by-example spoken term
detection using phonetic posteriorgram templates. In Proceedings of the Workshop on
Automatic Speech Recognition & Understanding (ASRU), pages 421–426, Merano/Meran,
Italy.

[41] He, K., Gkioxari, G., Dollár, P., and Girshick, R. B. (2017). Mask R-CNN. In
Proceedings of ICCV, pages 2980–2988, Venice, Italy.

[42] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of CVPR, pages 770–778, Las Vegas, NV.

[43] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012). Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. IEEE Signal
Processing Magazine, 29(6):82–97.

[44] Hinton, G. E. (1989). Connectionist learning procedures. Artificial Intelligence,
40(1):185–234.

[45] Huang, Y., Wang, W., Wang, L., and Tan, T. (2013). Multi-task deep neural network for
multi-label learning. In Proceedings of the International Conference on Image Processing,
ICIP, pages 2897–2900, Melbourne, Australia.

[46] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of ICML, pages 448–456,
Lille, France.

[47] Janocha, K. and Czarnecki, W. M. (2017). On loss functions for deep neural networks
in classification. arXiv preprint arXiv:1702.05659.

[48] Jeatrakul, P., Wong, K. W., and Fung, C. C. (2010). Data cleaning for classification
using misclassification analysis. Journal of Advanced Computational Intelligence and
Intelligent Informatics, 14(3):297–302.

[49] Jiang, H. (2005). Confidence measures for speech recognition: a survey. Speech
Communication, 45(4):455 – 470.

[50] Joder, C., Weninger, F., Wöllmer, M., and Schuller, B. (2012). The TUM cumulative
DTW approach for the MediaEval 2012 spoken web search task. In Proceedings of the
MediaEval 2012 Workshop.

[51] Kampa, K., Hasanbelliu, E., and Príncipe, J. C. (2011). Closed-form Cauchy-Schwarz
PDF divergence for mixture of gaussians. In Proceedings of the International Joint
Conference on Neural Networks (IJCNN), pages 2578–2585, San Jose, CA.

References 93

[52] Kendall, A. and Gal, Y. (2017). What uncertainties do we need in bayesian deep
learning for computer vision? In Proceedings of NIPS, pages 5574–5584, Long Beach,
CA.

[53] Keren, G., Cummins, N., and Schuller, B. W. (2018a). Calibrated prediction intervals
for neural network regressors. IEEE Access, 6:54033–54041.

[54] Keren, G., Deng, J., Pohjalainen, J., and Schuller, B. (2016). Convolutional neural
networks with data augmentation for classifying speakers’ native language. In Proceedings
of INTERSPEECH, pages 2393–2397, San Francisco, CA.

[55] Keren, G., Han, J., and Schuller, B. (2018b). Scaling speech enhancement in unseen
environments with noise embeddings. In In Proceedings of the CHiME Workshop on
Speech Processing in Everyday Environments, pages 25–29, Hyderabad, India.

[56] Keren, G., Sabato, S., and Schuller, B. (2017). Tunable sensitivity to large errors in
neural network training. In Proceedings of AAAI, pages 2087–2093, San Francisco, CA.

[57] Keren, G., Sabato, S., and Schuller, B. (2018c). Fast single-class classification and the
principle of logit separation. In Proceedings of the International Conference on Data
Mining (ICDM), pages 227–236, Singapore.

[58] Keren, G., Sabato, S., and Schuller, B. (2019). Analysis of loss functions for fast
single-class classification. Knowledge and Information Systems (KAIS). to appear.

[59] Keren, G., Schmitt, M., Kehrenberg, T., and Schuller, B. (2018d). Weakly supervised
one-shot detection with attention Siamese networks. arXiv preprint arXiv:1801.03329.

[60] Keren, G. and Schuller, B. (2016). Convolutional RNN: An enhanced model for extract-
ing features from sequential data. In Proceedings of the International Joint Conference on
Neural Networks (IJCNN), pages 3412–3419, Vancouver, Canada.

[61] Khosravi, A., Nahavandi, S., Srinivasan, D., and Khosravi, R. (2015). Constructing
optimal prediction intervals by using neural networks and bootstrap method. IEEE
Transactions on Neural Networks and Learning Systems, 26(8):1810–1815.

[62] Kingma, D. and Ba, J. (2015). Adam: A method for stochastic optimization. In
Proceedings of ICLR, San Diago, CA.

[63] Koch, G., Zemel, R., and Salakhutdinov, R. (2015). Siamese neural networks for
one-shot image recognition. In Proceedings of the ICML Deep Learning Workshop, Lille,
France.

[64] Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny
images.

[65] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Proceedings of NIPS, pages 1097–1105, Lake
Tahoe, NV.

[66] Kumar, M. P., Packer, B., and Koller, D. (2010). Self-paced learning for latent variable
models. In Proceedings of NIPS, pages 1189–1197, Vancouver, Canada.

94 References

[67] Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J. R. R., Krasin, I., Pont-Tuset, J.,
Kamali, S., Popov, S., Malloci, M., Duerig, T., and Ferrari, V. (2018). The open images
dataset V4: unified image classification, object detection, and visual relationship detection
at scale. arXiv preprint arXiv:1811.00982.

[68] Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338.

[69] Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2016). Building
machines that learn and think like people. arXiv preprint arXiv:1604.00289.

[70] Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Proceedings of
NIPS, pages 6402–6413, Long Beach, CA.

[71] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and
Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1(4):541–551.

[72] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[73] Levin, E. and Fleisher, M. (1988). Accelerated learning in layered neural networks.
Complex Systems, 2:625–640.

[74] Li, H., Wang, X., and Ding, S. (2018). Research and development of neural network
ensembles: a survey. Artificial Intelligence Review, 49(4):455–479.

[75] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and
Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 740–755, Zurich, Switzerland.

[76] Malisiewicz, T., Gupta, A., and Efros, A. A. (2011). Ensemble of exemplar-SVMs for
object detection and beyond. In Proceedings of ICCV, pages 89–96, Barcelona, Spain.

[77] Mark J. Huiskes, B. T. and Lew, M. S. (2010). New trends and ideas in visual concept
detection: The MIR flickr retrieval evaluation initiative. In Proceedings of the ACM
International Conference on Multimedia Information Retrieval (MIR), pages 527–536,
New York, NY.

[78] Maturana, D. and Scherer, S. (2015). VoxNet: A 3D convolutional neural network for
real-time object recognition. In Proceedings of IROS, pages 922–928, Hamburg, Germany.

[79] McAuliffe, M., Socolof, M., Mihuc, S., Wagner, M., and Sonderegger, M. (2017).
Montreal forced aligner: trainable text-speech alignment using Kaldi. In Proceedings of
INTERSPEECH, pages 498–502, Stockholm, Sweden.

[80] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In Proceedings of NIPS,
pages 3111–3119, Lake Tahoe, NV.

References 95

[81] Mnih, A. and Teh, Y. W. (2012). A fast and simple algorithm for training neural
probabilistic language models. In Proceedings ICML, pages 1751–1758, Edinburgh, UK.

[82] Morin, F. and Bengio, Y. (2005). Hierarchical probabilistic neural network language
model. In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS), Bridgetown, Barbados.

[83] Naumov, A., Spokoiny, V., and Ulyanov, V. (2017). Bootstrap confidence sets for
spectral projectors of sample covariance. arXiv preprint arXiv:1703.00871.

[84] Neal, R. M. (2012). Bayesian learning for neural networks, volume 118. Springer
Science & Business Media.

[85] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading
digits in natural images with unsupervised feature learning. In Proceedings of the NIPS
Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain.

[86] Niculescu-Mizil, A. and Caruana, R. (2005). Predicting good probabilities with super-
vised learning. In Proceedings of ICML, pages 625–632, Bonn, Germany.

[87] Oord, A. V., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel recurrent neural
networks. In Proceedings of ICML, pages 1747–1756, New York, NY.

[88] Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. (2015). Librispeech: An
ASR corpus based on public domain audio books. In Proceedings of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210,
South Brisbane, Australia.

[89] Parada, C., Sethy, A., and Ramabhadran, B. (2009). Query-by-example spoken term de-
tection for OOV terms. In Proceedings of the Workshop on Automatic Speech Recognition
& Understanding (ASRU), pages 404–409, Merano/Meran, Italy.

[90] Partalas, I., Kosmopoulos, A., Baskiotis, N., Artières, T., Paliouras, G., Gaussier, É.,
Androutsopoulos, I., Amini, M., and Gallinari, P. (2015). LSHTC: a benchmark for
large-scale text classification. arXiv preprint arXiv:1503.08581.

[91] Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent
neural networks. In Proceedings of ICML, pages 1310–1318, Atlanta, GA.

[92] Platt, J. et al. (1999). Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. Advances in Large Margin Classifiers, 10(3):61–74.

[93] Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration
methods. USSR Computational Mathematics and Mathematical Physics, 4(5):1–17.

[94] Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson, S. (2014). CNN features
off-the-shelf: An astounding baseline for recognition. In Proceedings of CVPR, pages
512–519, Columbus, OH.

[95] Redmon, J., Divvala, S. K., Girshick, R. B., and Farhadi, A. (2016). You only look
once: Unified, real-time object detection. In Proceedings of CVPR, pages 779–788, Las
Vegas, NV.

96 References

[96] Ren, S., He, K., Girshick, R. B., and Sun, J. (2015). Faster R-CNN: towards real-time
object detection with region proposal networks. In Proceedings of NIPS, pages 91–99,
Montreal, Canada.

[97] Rothe, R., Timofte, R., and Gool, L. V. (2015). DEX: Deep EXpectation of apparent
age from a single image. In Proceedings of the International Conference on Computer
Vision Workshops (ICCVW), Santiago, Chile.

[98] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Learning representations
by back-propagating errors. Cognitive Modeling, 5:3.

[99] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M. S., Berg, A. C., and Li, F. (2015). Imagenet large scale
visual recognition challenge. International Journal of Computer Vision, 115(3):211–252.

[100] Schuller, B., Steidl, S., Batliner, A., Burkhardt, F., Devillers, L., Müller, C. A.,
and Narayanan, S. S. (2010). The INTERSPEECH 2010 paralinguistic challenge. In
Proceedings of INTERSPEECH, pages 2794–2797, Makuhari, Japan.

[101] Schuller, B., Steidl, S., Batliner, A., Hirschberg, J., Burgoon, J. K., Baird, A., Elkins,
A., Zhang, Y., Coutinho, E., and Evanini, K. (2016). The INTERSPEECH 2016 Com-
putational Paralinguistics Challenge: Deception & Sincerity. In Proceedings of INTER-
SPEECH, pages 2001–2005, San Francsico, CA.

[102] Silva, L. M., De Sa, J. M., Alexandre, L., et al. (2006). New developments of the
Z-EDM algorithm. In Proceedings of the Sixth International Conference on Intelligent
Systems Design and Applications (ISDA), pages 1067–1072, Jinan, China.

[103] Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for
large-scale image recognition. In Proceedings of ICLR, San Diago, CA.

[104] Smith, M. R. and Martinez, T. (2011). Improving classification accuracy by identifying
and removing instances that should be misclassified. In Proceedings of the International
Joint Conference on Neural Networks (IJCNN), pages 2690–2697, San Jose, CA.

[105] Socher, R., Lin, C. C., Ng, A. Y., and Manning, C. D. (2011). Parsing natural scenes
and natural language with recursive neural networks. In Proceedings of ICML, pages
129–136, Bellevue, WA.

[106] Solla, S. A., Levin, E., and Fleisher, M. (1988). Accelerated learning in layered neural
networks. Complex Systems, 2(6).

[107] Surinta, O., Karaaba, M. F., Mishra, T. K., Schomaker, L., and Wiering, M. A. (2015).
Recognizing handwritten characters with local descriptors and bags of visual words.
In Proceedings of the International Conference on Engineering Applications of Neural
Networks (EANN), pages 255–264.

[108] Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of
initialization and momentum in deep learning. In Proceedings of ICML, pages 1139–1147,
Atlanta, GA.

References 97

[109] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with
neural networks. In Proceedings of NIPS, pages 3104–3112, Montreal, Canada.

[110] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings
of CVPR, pages 1–9, Boston, MA.

[111] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the
inception architecture for computer vision. In Proceddings of CVPR, pages 2818–2826,
Las Vegas, NV.

[112] Tang, Y. (2013). Deep learning using linear support vector machines. arXiv preprint
arXiv:1306.0239.

[113] Teh, E. W., Rochan, M., and Wang, Y. (2016). Attention networks for weakly
supervised object localization. In Proceedings of the British Machine Vision Conference
2016 (BMVC), York, UK.

[114] Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for Machine
Learning.

[115] Toshev, A. and Szegedy, C. (2014). DeepPose: Human pose estimation via deep
neural networks. In Proceedings of CVPR, pages 1653–1660, Columbus, OH.

[116] van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A. W., and Kavukcuoglu, K. (2016). Wavenet: A generative
model for raw audio. In Proceedings of the 9th ISCA Speech Synthesis Workshop, page
125, Sunnyvale, CA.

[117] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., and Polosukhin, I. (2017). Attention is all you need. In Proceedings of NIPS, pages
6000–6010, Long Beach, CA.

[118] Vincent, E., Watanabe, S., Nugraha, A. A., Barker, J., and Marxer, R. (2017). An
analysis of environment, microphone and data simulation mismatches in robust speech
recognition. Computer Speech & Language, 46:535–557.

[119] Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., and Wierstra, D. (2016).
Matching networks for one shot learning. In Proceedings of NIPS, pages 3630–3638,
Barcelona, Spain.

[120] Wang, C., Ren, W., Huang, K., and Tan, T. (2014). Weakly supervised object local-
ization with latent category learning. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 431–445, Zurich, Switzerland.

[121] Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., and Xu, W. (2016). CNN-RNN: a
unified framework for multi-label image classification. In Proceedings of CVPR, pages
2285–2294, Las Vegas, NV.

98 References

[122] Weintraub, M., Beaufays, F., Rivlin, Z., Konig, Y., and Stolcke, A. (1997). Neural-
network based measures of confidence for word recognition. In Proceedings of the
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
887–890, Munich, Germany.

[123] Wessel, F., Schluter, R., Macherey, K., and Ney, H. (2001). Confidence measures for
large vocabulary continuous speech recognition. IEEE Transactions on Speech and Audio
Processing, 9(3):288–298.

[124] Weston, J., Makadia, A., and Yee, H. (2013). Label partitioning for sublinear ranking.
In Proceedings of ICML, pages 181–189, Atlanta, GA.

[125] Wöllmer, M., Al-Hames, M., Eyben, F., Schuller, B., and Rigoll, G. (2009a). A
multidimensional dynamic time warping algorithm for efficient multimodal fusion of
asynchronous data streams. Neurocomputing, 73(1):366–380.

[126] Wöllmer, M., Eyben, F., Keshet, J., Graves, A., Schuller, B., and Rigoll, G. (2009b).
Robust Discriminative Keyword Spotting for Emotionally Colored Spontaneous Speech
Using Bidirectional LSTM Networks. In Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 3949–3952, Taipei, Taiwan.

[127] Wöllmer, M., Eyben, F., Schuller, B., and Rigoll, G. (2010). Spoken Term Detection
with Connectionist Temporal Classification: A Novel Hybrid CTC-DBN Decoder. In
Proceedings of the International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5274–5277, Dallas, TX.

[128] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C., Salakhutdinov, R., Zemel, R. S.,
and Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with visual
attention. In Proceedings of ICML, pages 2048–2057, Lille, France.

[129] Yao, S., Zhao, Y., Shao, H., Zhang, A., Zhang, C., Li, S., and Abdelzaher, T. (2018).
RDeepSense: Reliable deep mobile computing models with uncertainty estimations. ACM
Interactive Mobile Wearable Ubiquitous Technology, 1(4):173:1–173:26.

[130] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are
features in deep neural networks? In Proceedings of NIPS, pages 3320–3328, Montreal,
Canada.

[131] Yu, D., Li, J., and Deng, L. (2011). Calibration of confidence measures in speech
recognition. IEEE Transactions on Audio, Speech, and Language Processing, 19(8):2461–
2473.

[132] Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

