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1 Introduction

1.1 Problem Description and Main Results

Let T ∈ (0,∞), let d,m ∈ N, and consider a d-dimensional stochastic differential equa-
tion (in short: SDE)

dX(t) = µ
(
t,X(t)

)
dt+ σ

(
t,X(t)

)
dW (t), t ∈ [0, T ],

X(0) = ξ,
(1.1)

with drift coefficient µ : [0, T ] × Rd → Rd, diffusion coefficient σ : [0, T ] × Rd → Rd×m,
m-dimensional Brownian motion W , and random initial value ξ such that (1.1) has a
pathwise unique strong solution X := (X(t))t∈[0,T ]. As in most cases this solution is not
given explicitly, one is interested in approximations of this stochastic process. In this
thesis, we are concerned with strong approximation of the solution, meaning we aim at
approximating X pathwise. Moreover, we address this problem globally in time and not
only, for instance, at the final time point T .

We consider approximation methods that are based (in a measurable way) on the
evaluation of ξ and on finitely many sequential evaluations of W . For such an approxi-
mation X̂, we measure its error via

eq,∞
(
X̂
)

:=
(
E
[

sup
t∈[0,T ]

max
i∈{1,...,d}

∣∣Xi(t)− X̂i(t)
∣∣q])1/q

,

and

eq,p
(
X̂
)

:=
(
E
[( ∫ T

0

d∑
i=1

∣∣Xi(t)− X̂i(t)
∣∣p dt

)q/p])1/q

,

for p, q ∈ [1,∞). Here, the error measure eq,∞ quantifies the qth mean supremum
distance between X and X̂, and the error measure eq,p quantifies the qth mean Lp
distance between X and X̂. Depending on the regarded error criterion, the realizations
of X̂ are interpreted as elements of the space of continuous functions C([0, T ];Rd) or
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of the space of p times integrable functions Lp([0, T ];Rd), p ∈ [1,∞). In each case, we
measure the cost of X̂ by the average number of evaluations of the underlying Brownian
motion W employed in its construction.

For S = C([0, T ];Rd) and S = Lp([0, T ];Rd), p ∈ [1,∞), we study the classes of
adaptive approximations (Xad

N (S))N∈N and the classes of equidistant approximations
(Xeq

N (S))N∈N, which are given as follows. For each N ∈ N, the set Xad
N (S) denotes the

class of all approximations with realizations in S that are based only on the evaluation
of ξ and on at most N sequential evaluations of W on average, and the set Xeq

N (S)
denotes the class of all approximations with realizations in S that are based only on the
evaluation of ξ and of W (T/N), W (2T/N), . . . ,W (T ).

With respect to both error criteria eq,∞ and eq,p, our primary objective is to find ap-
proximations that are strongly asymptotically optimal in the respective classes of adap-
tive and of equidistant approximations. To clarify this, fix ∗ ∈ {ad, eq} and p ∈ [1,∞)
for the moment. For the error eq,∞, we seek approximations (X̂N )N∈N that satisfy
X̂N ∈ X∗N (C([0, T ];Rd)) for every N ∈ N and

lim
N→∞

eq,∞
(
X̂N

)
inf
{
eq,∞

(
X̂
) ∣∣∣ X̂ ∈ X∗N

(
C([0, T ];Rd)

)} = 1

for certain q ∈ [1,∞). Analogously, for the error eq,p, we seek approximations (X̂N )N∈N
that satisfy X̂N ∈ X∗N (Lp([0, T ];Rd)) for every N ∈ N and

lim
N→∞

eq,p
(
X̂N

)
inf
{
eq,p

(
X̂
) ∣∣∣ X̂ ∈ X∗N

(
Lp([0, T ];Rd)

)} = 1

for certain q ∈ [1,∞). In both limits above, we follow the convention 0/0 := 1 if
necessary.

Regarding the supremum error, strong asymptotic optimality has already been estab-
lished in the case that the coefficients of the SDE (1.1) are globally Lipschitz continuous
and of at most linear growth (each with respect to the state variable). Müller-Gronbach
(2002a) showed that specific Euler–Maruyama type schemes perform strongly asymp-
totically optimal in this situation. More precisely, the author showed strong asymptotic
optimality for, on the one hand, a sequence (Êad

N )N∈N of piecewise-linearly interpo-
lated Euler–Maruyama schemes on suitably constructed adaptive time discretizations in
the classes (Xad

N (C([0, 1];Rd)))N∈N and for, on the other hand, a sequence (Êeq
N )N∈N of

piecewise-linearly interpolated Euler–Maruyama schemes on equidistant time discretiza-
tions in the classes (Xeq

N (C([0, 1];Rd)))N∈N. In this thesis, we generalize these results
to SDEs whose coefficients may grow super-linearly. More precisely, we show under
rather mild assumptions on the SDE (1.1), notably polynomial growth conditions on
its coefficients, strong asymptotic optimality for a sequence (X̂ad

N )N∈N of piecewise-
linearly interpolated so-called tamed Euler schemes on suitably constructed adaptive
time discretizations in the classes (Xad

N (C([0, T ];Rd)))N∈N and for a sequence (X̂eq
N )N∈N

of piecewise-linearly interpolated tamed Euler schemes on equidistant time discretiza-
tions in the classes (Xeq

N (C([0, T ];Rd)))N∈N.
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Regarding the Lp error, strong asymptotic optimality has already been established
in the case that the coefficients of the SDE (1.1) as well as their partial derivatives
with respect to the state variable are globally Lipschitz continuous and of at most lin-
ear growth (each with respect to the state variable). Müller-Gronbach (2002b) showed
that specific Milstein type schemes perform strongly asymptotically optimal in this sit-
uation. More precisely, the author showed strong asymptotic optimality for, on the
one hand, a sequence (M̂ad

N )N∈N of piecewise-linearly interpolated Milstein schemes on
suitably constructed adaptive time discretizations in the classes (Xad

N (Lp([0, 1];Rd)))N∈N
and for, on the other hand, a sequence (M̂ eq

N )N∈N of piecewise-linearly interpolated Mil-
stein schemes on equidistant time discretizations in the classes (Xeq

N (Lp([0, 1];Rd)))N∈N.
In this thesis, we generalize these results to SDEs whose coefficients may grow super-
linearly. More precisely, we show under rather mild assumptions on the SDE (1.1),
notably polynomial growth conditions on its coefficients and their partial derivatives,
strong asymptotic optimality for a sequence (Ŷ ad

N )N∈N of piecewise-linearly interpolated
so-called tamed Milstein schemes on suitably constructed adaptive time discretizations
in the classes (Xad

N (Lp([0, T ];Rd)))N∈N and for a sequence (Ŷ eq
N )N∈N of piecewise-linearly

interpolated tamed Milstein schemes on equidistant time discretizations in the classes
(Xeq

N (Lp([0, T ];Rd)))N∈N.
Fix ∗ ∈ {ad, eq} and p ∈ [1,∞] for the moment, and put S = C([0, T ];Rd) if

p = ∞ and S = Lp([0, T ];Rd) otherwise. A common way of proving strong asymptotic
optimality of specific approximations (X̂N )N∈N in the classes (X∗N (S))N∈N is as follows:
In a first step, one establishes an asymptotic lower bound for the Nth minimal errors in
the given classes, i.e., one shows

lim inf
N→∞

(
γ(N)

)−1 · inf
{
eq,p

(
X̂
) ∣∣∣ X̂ ∈ X∗N (S)

}
≥ C∗q,p

for some C∗q,p ∈ (0,∞) and γ : N → (0,∞). In a second step, one aims at showing a
matching asymptotic upper bound for the errors of the given approximations, i.e., one
tries to obtain

lim sup
N→∞

(
γ(N)

)−1 · eq,p
(
X̂N

)
≤ C∗q,p.

In these notes, we maintain the strategy above and pursue this approach for both the
supremum error criterion and the Lp error criterion.

To illustrate our contribution to the field of research, we analyze the SDE relating to
the Heston–3/2–model originating from mathematical finance. A scalar version of this
SDE is given by

dX(t) = α ·X(t) ·
(
β − |X(t)|

)
dt+ |X(t)|3/2 dW (t), t ∈ [0, 1],

X(0) = ξ,
(1.2)

with parameters d = m = 1 and α, β, ξ ∈ (0,∞). We exemplarily focus on the supremum
error criterion. In Theorem 3.13, we show for certain constellations of the parameters α
and β that the asymptotic lower bound

lim inf
N→∞

(
N/ log(N)

)1/2 · inf
{
eq,∞

(
X̂
) ∣∣∣ X̂ ∈ X∗N

(
C([0, 1];Rd)

)}
≥ C∗q,∞ (1.3)
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holds for various values of q ∈ [1,∞) and for all ∗ ∈ {ad, eq} where

Cad
q,∞ := 2−1/2 ·

(
E
[( ∫ 1

0

∣∣X(t)
∣∣3 dt

)q/(q+2)])(q+2)/(2q)

,

Ceq
q,∞ := 2−1/2 ·

(
E
[

sup
t∈[0,1]

∣∣X(t)
∣∣3q/2])1/q

.

Since the coefficients of the autonomous SDE (1.2) are not of at most linear growth, we
cannot apply the main theorems in Müller-Gronbach (2002a) to infer that the particular
Euler schemes (Êad

N )N∈N and (Êeq
N )N∈N satisfy a matching asymptotic upper bound

and thus are strongly asymptotically optimal in the classes (Xad
N (C([0, 1];R)))N∈N and

(Xeq
N (C([0, 1];R)))N∈N, respectively. Even worse, Theorem 1 in Hutzenthaler et al. (2011)

implies that for each q ∈ [1,∞) the associated errors eq,∞(Êad
N ) and eq,∞(Êeq

N ) tend to
infinity as N tends to infinity. In contrast, we show in Corollary 3.15 that—in the same
setting as for (1.3)—the tamed Euler schemes (X̂ad

N )N∈N and (X̂eq
N )N∈N are strongly

asymptotically optimal in the classes (Xad
N (C([0, 1];R)))N∈N and (Xeq

N (C([0, 1];R)))N∈N,
respectively.

The remainder of this dissertation is organized as follows. In Chapter 2, we rig-
orously define the classes of adaptive and of equidistant approximations, and formally
explain strong asymptotic optimality in these classes afterwards. Chapter 3 is devoted
to strongly asymptotically optimal approximations with respect to the errors eq,∞. Af-
ter a brief literature review, including results in the classical framework of SDEs with
globally Lipschitz continuous coefficients, we give new results in the setting of SDEs
whose coefficients may grow super-linearly. In Chapter 4, we consider the error eq,p. As
before, we first give an overview of already existing results and then present our findings
for SDEs with super-linearly growing coefficients. Limitations of our work are discussed
in Chapter 5, and we moreover provide a brief outlook on open problems therein. The
Appendices A and B consist of auxiliary results which are used in the proofs of our main
theorems.

1.2 Notations

The following notations are used throughout these notes.
We denote the integer part of x ∈ R by bxc := max{n ∈ Z |n ≤ x}. For y, z ∈ R, we

put y ∧ z := min{y, z} and y ∨ z := max{y, z}. For an arbitrary set M , we define #M
to be the cardinality of M . Moreover, in the case that M ⊆ Ω for some set Ω, we define
1M : Ω→ {0, 1} to be the indicator function of M .

Let n, k ∈ N and p ∈ (0,∞). For a vector x ∈ Rn and i ∈ {1, . . . , n}, the ith entry
of x is denoted by xi, the transpose of x is written as x>, and we put

|x|p :=
( n∑
i=1
|xi|p

)1/p
, |x|∞ := max

i∈{1,...,n}
|xi|.
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For a matrix A ∈ Rn×k and (i, j) ∈ {1, . . . , n} × {1, . . . , k}, the ith row and the jth
column of A are denoted by Ai and A(j), respectively, and we put

|A|p,2 :=
(

n∑
i=1

( k∑
j=1

A2
i,j

)p/2)1/p

, |A|∞,2 := max
i∈{1,...,n}

( m∑
j=1

A2
i,j

)1/2
.

The Euclidean norms of a vector and a matrix are abbreviated by | · | := | · |2 and
| · | := | · |2,2, respectively.

Let T ∈ (0,∞), n ∈ N, and p ∈ [1,∞). We denote the Banach space of continuous
functions f : [0, T ]→ Rn equipped with the norm

‖f‖C([0,T ]) := sup
t∈[0,T ]

|f(t)|∞

by (C([0, T ];Rn), ‖·‖C([0,T ])). Moreover, we write B(C([0, T ];Rn)) for the Borel-σ-algebra
on C([0, T ];Rn) that is induced by ‖ · ‖C([0,T ]). Next, we denote the Banach space
of equivalence classes (with respect to the equivalence relation of almost everywhere
equality) of measurable functions f : [0, T ]→ Rn with

∫ T
0 |f(t)|pp dt <∞ equipped with

the norm

‖[f ]‖Lp([0,T ]) :=
(∫ T

0
|f(t)|pp dt

)1/p

by (Lp([0, T ];Rn), ‖ · ‖Lp([0,T ])). Moreover, we write B(Lp([0, T ];Rn)) for the Borel-σ-
algebra on Lp([0, T ];Rn) that is induced by ‖ · ‖Lp([0,T ]). For ease of notation, we will
write ‖f‖Lp([0,T ]) instead of ‖[f ]‖Lp([0,T ]) in the sequel. Furthermore, we also put

‖g‖Lr([0,T ]) :=
(∫ T

0
|g(t)|rr dt

)1/r

for a measurable function g : [0, T ]→ Rn and r ∈ (0, 1).
Let T ∈ (0,∞), d ∈ N, and f : [0, T ] × Rd → Rd. For each component fi,

i ∈ {1, . . . , d}, of f , we denote by

∇tfi : [0, T ]× Rd → R, (t, x) 7→ ∂

∂t
fi(t, x),

its partial derivative with respect to the time variable and by

∇fi : [0, T ]× Rd → R1×d, (t, x) 7→
(
∂

∂x1
fi(t, x), . . . , ∂

∂xd
fi(t, x)

)
,

its partial derivatives with respect to the state variable, each in case that these partial
derivatives exist. Moreover, we put

∇f : [0, T ]× Rd → Rd×d, (t, x) 7→

 ∇f1(t, x)
...

∇fd(t, x)

 ,
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in such a situation. Furthermore, we denote the Hessian of a twice partially differentiable
function g : Rd → R by

Hg : Rd → Rd×d, x 7→



∂2

∂x2
1
g(x) ∂2

∂x1∂x2
g(x) · · · ∂2

∂x1∂xd
g(x)

∂2

∂x2∂x1
g(x) ∂2

∂x2
2
g(x) · · · ∂2

∂x2∂xd
g(x)

...
... . . . ...

∂2

∂xd∂x1
g(x) ∂2

∂xd∂x2
g(x) · · · ∂2

∂x2
d
g(x)

 .

Let n ∈ N, p ∈ (0,∞), q ∈ [1,∞), and let (Ω,F ,P) be a probability space. For a
random vector Z : Ω→ Rn on (Ω,F ,P), we put∥∥Z∥∥

Lp(Ω) :=
(
E
[
|Z|p

])1/p
.

Furthermore, for a sequence Z0, Z1, Z2, . . . of real-valued random variables on (Ω,F ,P),
we define

ZN
a.s.−−−−→

N→∞
Z0 :⇔ P

({
lim
N→∞

ZN = Z0
})

= 1,

ZN
P−−−−→

N→∞
Z0 :⇔ ∀ε ∈ (0,∞) : lim

N→∞
P
({
|ZN − Z0| ≥ ε

})
= 0,

and, in the case that ‖ZN‖Lq(Ω) <∞ holds for all N ∈ N ∪ {0},

ZN
Lq−−−−→

N→∞
Z0 :⇔ lim

N→∞

∥∥ZN − Z0
∥∥
Lq(Ω) = 0.

1.3 Setting

Throughout this thesis, we require the following setting.
Let T ∈ (0,∞), let d,m ∈ N, let (Ω,F ,P) be a complete probability space with

a normal filtration (F(t))t∈[0,T ], let W : [0, T ] × Ω → Rm be a standard (F(t))t∈[0,T ]-
Brownian motion on (Ω,F ,P), let µ : [0, T ] × Rd → Rd be (B([0, T ]) ⊗ B(Rd))-B(Rd)-
measurable, let σ : [0, T ]×Rd → Rd×m be (B([0, T ])⊗B(Rd))-B(Rd×m)-measurable, and
let ξ : Ω→ Rd be F(0)-B(Rd)-measurable and satisfy E[|ξ|2] <∞.

We study the d-dimensional stochastic differential equation with drift coefficient µ,
diffusion coefficient σ, driving Brownian motion W , and initial value ξ which is written
as

dX(t) = µ
(
t,X(t)

)
dt+ σ

(
t,X(t)

)
dW (t), t ∈ [0, T ],

X(0) = ξ.
(1.4)

An (F(t))t∈[0,T ]-adapted stochastic process X : [0, T ] × Ω → Rd with continuous
trajectories is called a (pathwise or strong) solution of the SDE (1.4) if

P
({∫ T

0

∣∣µ(t,X(t)
)∣∣+ ∣∣σ(t,X(t)

)∣∣2 dt <∞
})

= 1
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and for all t ∈ [0, T ] it holds that

P
({

X(t) = ξ +
∫ t

0
µ
(
s,X(s)

)
ds+

∫ t

0
σ
(
s,X(s)

)
dW (s)

})
= 1.

Moreover, a solution (X(t))t∈[0,T ] of the SDE (1.4) is said to be (pathwise) unique if
for any other solution (X(t))t∈[0,T ] we have

P
({
∀t ∈ [0, T ] : X(t) = X(t)

})
= 1.

If the coefficients µ and σ do not depend on the time variable, i.e., if we have
µ(s, x) = µ(t, x) and σ(s, x) = σ(t, x) for all s, t ∈ [0, T ] and x ∈ Rd, then the SDE (1.4)
is said to be autonomous. For ease of notation, we will write µ(x) and σ(x) instead of
µ(t, x) and σ(t, x), respectively, in such a case.
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9

2 Strong Approximations of Sto-
chastic Differential Equations and

Strong Asymptotic Optimality

In this chapter, we introduce all the mathematical objects that are needed for the defi-
nition of strong asymptotic optimality of a given sequence of strong approximations in
a given sequence of classes of approximations with regard to a given error criterion.

In Section 2.1, we formally define what is meant by a (strong) approximation for the
pathwise approximation problem we address in this thesis. Moreover, we introduce ap-
propriate cost and error criteria for such approximations. In Section 2.2, we present the
main classes of approximations that will be considered in the further analysis, namely,
the classes of adaptive and of equidistant approximations. In Section 2.3, we first give
the notion of Nth minimal errors in specific classes. The concepts of optimality and
strong asymptotic optimality are discussed afterwards, and we illustrate these ideas by
an example. Subsequently, we show that asymptotic upper and lower error bounds pro-
vide a way of proving strong asymptotic optimality. Finally, we indicate how strongly
asymptotically optimal approximations can be used for the benchmarking of approxi-
mations.

Throughout this chapter, we require that a unique solution X := (X(t))t∈[0,T ]
of the SDE (1.4) exists. Moreover, let (S,A) be a measurable space given by
(S,A) = (C([0, T ];Rd),B(C([0, T ];Rd))) or (S,A) = (Lp([0, T ];Rd),B(Lp([0, T ];Rd)))
for some p ∈ [1,∞). We will specifically address the space C([0, T ];Rd) in Chapter 3
and the spaces Lp([0, T ];Rd), p ∈ [1,∞), in Chapter 4.

2.1 Strong Approximations

It is well-known that the solution X almost surely satisfies

X = f(ξ,W )

for some measurable function f : Rd × C([0, T ];Rm) → C([0, T ];Rd), see, for instance,
Corollary 5.3.23 in Karatzas & Shreve (1998). To exclude trivial problem cases, it is
therefore reasonable to not allow strong approximations to use entire trajectories of the
driving Brownian motion. We thus restrict ourselves to such approximations that are
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based only on partial information about the trajectories of W . In this thesis, we focus
more precisely on strong approximations that solely depend in any measurable way on
the evaluation of ξ and on finitely many sequential evaluations of W .

For the subsequent definition of strong approximations, we follow the ideas of Müller-
Gronbach (2002a) and of Hefter et al. (2019) to a great extent. A (strong) approximation
X̂ : Ω→ S for the solution of the SDE (1.4) is determined by three sequences

ψ := (ψk)k∈N, χ := (χk)k∈N, ϕ := (ϕk)k∈N,

of measurable mappings

ψk : Rd × (Rm)k−1 → (0, T ],
χk : Rd × (Rm)k → {STOP,GO},
ϕk : Rd × (Rm)k → S,

for k ∈ N. Here, the sequence ψ is used to obtain the sequential evaluation sites for W in
(0, T ], the sequence χ determines when to stop the evaluation of W , and the sequence ϕ
is used to get the outcome of X̂ once the evaluation of W has stopped. More precisely, fix
ω ∈ Ω and let x := ξ(ω) and w := W (ω) be the corresponding realizations of ξ and W ,
respectively. We start the evaluation of W at the time point ψ1(x). After k steps, we
are given the data Dk(ω) := (x, y1, . . . , yk) where

y1 := w(ψ1(x)), . . . , yk := w(ψk(x, y1, . . . , yk−1)),

and we decide whether to stop or to proceed with the evaluation of W according to the
value of χk(Dk(ω)). The total number of evaluations of W is given by

ν(ω) := min
{
k ∈ N

∣∣ χk(Dk(ω)
)

= STOP
}
. (2.1)

To exclude non-terminating evaluations of W , we require ν < ∞ almost surely. We
obtain the realization of the approximation X̂ by

X̂(ω) := ϕν(ω)
(
Dν(ω)(ω)

)
in the case that ν(ω) < ∞ and arbitrarily otherwise. For technical reasons, we assume
without loss of generality that for all k, ` ∈ N with k 6= `, for all x ∈ Rd, and for all
y ∈ (Rm)max{k,`}−1 it holds that

ψk(x, y1, . . . , yk−1) 6= ψ`(x, y1, . . . , y`−1).

Hereinafter, we denote by X(S) the set of all approximations which are of the form
as described above. Note that for an approximation X̂ ∈ X(C([0, T ];Rd)) we have
[X̂] ∈ X(Lp([0, T ];Rd)) for every p ∈ [1,∞); for ease of notation, we will drop the
distinction between [X̂] and X̂ in the sequel.
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Next, we specify and explain the cost and error criteria that are used in the further
course of these notes. To this end, fix an approximation X̂ := X̂(ψ,χ,ϕ) ∈ X(S) with
determining sequences ψ, ξ, and ϕ. We measure the cost c(X̂) of X̂ by

c(X̂) := E[ν]

where ν is as in (2.1), i.e., we are interested only in the average number of evalua-
tions of W employed in X̂. For instance, we do not take into account any expenses
for arithmetic operations or for function evaluations, such as evaluations of µ or σ.
Moreover, we measure the error eq,p(X̂) of X̂ as follows. Let q ∈ [1,∞). In the case
(S,A) = (Lp([0, T ];Rd),B(Lp([0, T ];Rd))) for some p ∈ [1,∞), we consider the Lp dis-
tance between respective realizations of X and X̂ and take the Lq average over all these
distances, i.e., we set

eq,p(X̂) :=
∥∥∥∥∥X − X̂∥∥

Lp([0,T ])

∥∥∥
Lq(Ω)

. (2.2)

Analogously, we put

eq,∞(X̂) :=
∥∥∥∥∥X − X̂∥∥

C([0,T ])

∥∥∥
Lq(Ω)

(2.3)

if (S,A) = (C([0, T ];Rd),B(C([0, T ];Rd))). Note that, in contrast to various other error
criteria considered in the literature, we measure the distance between X and X̂ globally
in time and not only at the final time point T .

Observe that the error measures introduced above satisfy the following easy-to-prove
monotonicity properties. For all q, q̃, p ∈ [1,∞) with q ≤ q̃ we have

eq,∞
(
X̂
)
≤ eq̃,∞

(
X̂
)

(2.4)

for all X̂ ∈ X
(
C([0, T ];Rd)

)
and

eq,p
(
X̂
)
≤ eq̃,p

(
X̂
)

(2.5)

for all X̂ ∈ X
(
Lp([0, T ];Rd)

)
. Moreover, for all q, p, p̃ ∈ [1,∞) with p ≤ p̃ we have

eq,p
(
X̂
)
≤ (T · d)1/p · eq,∞

(
X̂
)

(2.6)

for all X̂ ∈ X
(
C([0, T ];Rd)

)
and

eq,p
(
X̂
)
≤ (T · d)1/p−1/p̃ · eq,p̃

(
X̂
)

(2.7)

for all X̂ ∈ X
(
Lp̃([0, T ];Rd)

)
where one applies the Hölder inequality to show (2.7).
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2.2 The Classes of Adaptive and of Equidistant Approxi-
mations

In this subsection, we specify the two principal classes of approximations that are stud-
ied in this thesis, namely, the classes of adaptive approximations (Xad

N (S))N∈N and the
classes of equidistant approximations (Xeq

N (S))N∈N. To this end, fix N ∈ N for the
moment. First, the class Xad

N (S) consists of all approximations that are based on the
evaluation of ξ and on at most N sequential evaluations of W on average, i.e., we define

Xad
N (S) :=

{
X̂ ∈ X(S)

∣∣∣ c(X̂) ≤ N
}
.

Second, the class Xeq
N (S) consists of all approximations that are based on the evaluation

of ξ and on the evaluation of W at exactly the equidistant sites kT/N , k ∈ {1, . . . , N},
i.e., we define

Xeq
N (S) :=

{
X̂ ∈ X(S)

∣∣∣ χ1 = · · · = χN−1 = GO, χN = χN+1 = · · · = STOP,

ψk = kT/N for all k ∈ {1, . . . , N},

and ψk is constant for each k ∈ {N + 1, N + 2, . . .}
}
.

It is easy to see that Xeq
N (S) ⊆ Xad

N (S) and

Xeq
N (S) =

{
u
(
ξ,W (T/N),W (2T/N), . . . ,W (T )

) ∣∣∣
u : Rd × (Rm)N → S is measurable

}
.

(2.8)

Note that the classes of adaptive and of equidistant approximations incorporate
a large variety of important approximations. In particular, classical approximations
like Euler–Maruyama type schemes corresponding to suitably chosen adaptive time dis-
cretizations (e.g., appropriate versions of the schemes presented in Fang & Giles (2018),
Kelly & Lord (2018a,b), Hofmann et al. (2000a,b, 2001), and Müller-Gronbach (2002a,b))
or to equidistant time discretizations lie in the respective classes. Additionally, observe
that these classes also contain even possibly non-implementable approximations like
conditional expectations of the form E[X | (ξ,W (T/N),W (2T/N), . . . ,W (T ))], N ∈ N,
cf. the representation (2.8).

The classes (Xad
N (S))N∈N and (Xeq

N (S))N∈N are clearly not the only classes which may
be studied. For example, the authors in Hofmann et al. (2001) also consider the classes
(Xsn

N (S))N∈N and (Xss
N (S))N∈N which are defined by

Xsn
N (S) :=

{
X̂ ∈ X(S)

∣∣∣ χk is constant for each k ∈ N,

and ν = min{k ∈ N |χk = STOP} ≤ N
}



2.3. Strong Asymptotic Optimality 13

and

Xss
N (S) :=

{
X̂ ∈ X(S)

∣∣∣ ψk and χk are constant for each k ∈ N,

and ν = min{k ∈ N |χk = STOP} ≤ N
}

for N ∈ N. The class Xsn
N (S) comprises all approximations that use the same number

(at most N) of evaluations of W for each realization, and the class Xss
N comprises all ap-

proximations that not only use the same number but even exactly the same (at most N)
evaluation sites of W for each realization. Note that

Xeq
N (S) ⊆ Xss

N (S) ⊆ Xsn
N (S) ⊆ Xad

N (S)

holds for each N ∈ N. In this thesis, we (almost without exception) focus on the classes
(Xeq

N (S))N∈N and (Xad
N (S))N∈N as these constitute the edge cases in the chain of subset

relations above and cover, in our opinion, the most interesting approximations appearing
in practice.

2.3 Strong Asymptotic Optimality

Throughout this section, let ∗ ∈ {ad, sn, ss, eq}, p ∈ [1,∞], and q ∈ [1,∞). Moreover,
let

(S,A) =
{(
Lp([0, T ];Rd),B(Lp([0, T ];Rd))

)
, if p <∞,(

C([0, T ];Rd),B(C([0, T ];Rd))
)
, else.

Given the sequence (X∗N (S))N∈N, we are interested in approximations that perform
extraordinarily well in these classes with respect to the error eq,p. This leads us to the
concepts of Nth minimal errors and, building on that, the notions of optimality and
strong asymptotic optimality.

Fix N ∈ N for the moment. We call the quantity inf
{
eq,p

(
X̂
) ∣∣ X̂ ∈ X∗N (S)

}
the N th

minimal error in the classes (X∗M (S))M∈N, and an approximation X̂N ∈ X∗N (S) is said
to be optimal in X∗N (S) if it achieves the corresponding Nth minimal error, i.e., if it
satisfies

eq,p
(
X̂N

)
= inf

{
eq,p

(
X̂
) ∣∣∣ X̂ ∈ X∗N (S)

}
.

Unfortunately, optimal approximations are known only in exceptional cases. On this
account, we relax the notion of optimality and switch to asymptotic optimality in-
stead. We call approximations (X̂N )N∈N strongly asymptotically optimal in (X∗N (S))N∈N
if X̂N ∈ X∗N (S) holds for each N ∈ N and

lim
N→∞

eq,p
(
X̂N

)
inf
{
eq,p

(
X̂
) ∣∣∣ X̂ ∈ X∗N (S)

} = 1,

following the convention 0/0 := 1 if necessary.
Clearly, optimality in each class implies strong asymptotic optimality.
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To illustrate the concepts above, we study a simple SDE in the upcoming example and
thereby check whether piecewise-linear interpolations of W at equidistant time points
are (strongly asymptotically) optimal in certain classes.
Example 2.1. Let d = m = 1. We consider the SDE

dX(t) = 1 dW (t), t ∈ [0, 1],
X(0) = 0,

(2.9)

as well as the error measure e2,2. Clearly, the process (W (t))t∈[0,1] is the unique solution
of the SDE (2.9). Now let N ∈ N be fixed for the moment. We study the piecewise-linear
interpolation Ŵ eq

N : Ω→ C([0, 1];R) of W at the equidistant sites k/N , k ∈ {0, . . . , N},
which is given by

Ŵ eq
N (0) := 0,

Ŵ eq
N (t) :=

(
(k + 1)− tN

)
·W

(
k/N

)
+
(
tN − k

)
·W

(
(k + 1)/N

)
,

for all k ∈ {0, . . . , N − 1} and for all t ∈ (k/N, (k + 1)/N ]. By using the representa-
tion (2.8), we immediately find Ŵ eq

N ∈ Xeq
N (L2([0, 1];R)). Straight-forward calculations

show that
e2,2

(
Ŵ eq
N

)
= (6N)−1/2 = inf

{
e2,2

(
X̂
) ∣∣∣ X̂ ∈ Xeq

N (L2([0, 1];R))
}
.

Moreover, it holds that

inf
{
e2,2

(
X̂
) ∣∣∣ X̂ ∈ Xsn

N (L2([0, 1];R))
}

= (6N + 2)−1/2,

see, for instance, Theorem 6.3 in Lee (1986). Hence, the approximation Ŵ eq
N is opti-

mal in Xeq
N (L2([0, 1];R)) and not optimal in Xsn

N (L2([0, 1];R)); yet, the approximations
(Ŵ eq

N )N∈N are strongly asymptotically optimal in both the classes (Xeq
N (L2([0, 1];R)))N∈N

and (Xsn
N (L2([0, 1];R)))N∈N. ♦

A common way to prove strong asymptotic optimality is to establish asymptotic
lower and upper error bounds with matching asymptotic constants. More precisely,
given classes (X∗N (S))N∈N and approximations (X̂N )N∈N with X̂N ∈ X∗N (S) for each
N ∈ N, one aims at showing

lim inf
N→∞

(
γ(N)

)−1 · inf
{
eq,p

(
X̂
) ∣∣∣ X̂ ∈ X∗N (S)

}
≥ c (2.10)

and
lim sup
N→∞

(
γ(N)

)−1 · eq,p
(
X̂N

)
≤ C (2.11)

for some constants c, C ∈ (0,∞) and for some γ : N→ (0,∞). The inequality (2.10) con-
stitutes an asymptotic lower bound for the Nth minimal errors in the classes (X∗N (S))N∈N
with asymptotic constant c and (informally written) convergence rate γ(N). Analogously,
the inequality (2.11) constitutes an asymptotic upper bound for the errors of the approx-
imations (X̂N )N∈N with asymptotic constant C and (informally written) convergence
rate γ(N). If one accomplishes c = C in the situation above, then the approximations
(X̂N )N∈N are indeed strongly asymptotically optimal in the classes (X∗N (S))N∈N. In this
case, the corresponding asymptotic constant c is said to be sharp.
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Observe that combining Nth minimal errors and strong asymptotic optimality can
serve as a tool for benchmarking approximations. Fix N ∈ N and consider an approx-
imation Ŷ ∈ X∗N (S). Clearly, this approximation performs all the better compared to
other approximations from the class X∗N (S), the closer the fraction

eq,p
(
Ŷ
)

inf
{
eq,p

(
X̂
) ∣∣∣ X̂ ∈ X∗N (S)

} (2.12)

is to 1. Informally speaking, the quantity (2.12) indicates how far the approximation Ŷ
deviates from being optimal in X∗N (S). Unfortunately, the Nth minimal error occurring
in (2.12) is typically hard to determine and is hence estimated as follows. Provided
that we are given further approximations (X̂M )M∈N that are known to be strongly
asymptotically optimal in (X∗M (S))M∈N, we first deduce that

eq,p
(
X̂N

)
inf
{
eq,p

(
X̂
) ∣∣∣ X̂ ∈ X∗N (S)

}
is close to 1 for N sufficiently large. We then replace the denominator in (2.12) by
eq,p(X̂N ) and consider the fraction

eq,p
(
Ŷ
)

eq,p
(
X̂N

)
instead of (2.12). Under the premise that N is sufficiently large, this new quantity
constitutes a value that can be compared to similarly obtained values corresponding to
different approximations from the class X∗N (S).

Example 2.2. Reconsider the SDE (2.9) as well as the approximations (Ŵ eq
M )M∈N

from Example 2.1, and fix N = 210. We aim at assigning a benchmark value to
the specific approximation Ŵ eq

29 in the class Xss
210(L2([0, 1];R)). In the absence of a

concrete value of inf{e2,2(X̂) | X̂ ∈ Xss
210(L2([0, 1];R))}, we follow the approach above.

Since the approximations (Ŵ eq
M )M∈N are strongly asymptotically optimal in the classes

(Xsn
M (L2([0, 1];R)))M∈N (see Example 2.1), it is easy to conclude that these approxi-

mations are also strongly asymptotically optimal in the classes (Xss
M (L2([0, 1];R)))M∈N.

Hence, the score

e2,2
(
Ŵ eq

29
)

e2,2
(
Ŵ eq

210
) = (6 · 29)−1/2

(6 · 210)−1/2 = 21/2 (= 1.4142 . . .)

can be compared to respective values of other approximations from Xss
210(L2([0, 1];R)). ♦

Note that the benchmarking idea above requires certain errors to be known, see
Example 2.2. If we do not have access to the exact values of these errors, one might try
to estimate them, e.g., via Monte Carlo simulations.
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3 Strongly Asymptotically Optimal
Approximations with respect to

the Supremum Error

In this chapter, we study the error criterion eq,∞, which is defined by (2.3), and we seek
approximations that are strongly asymptotically optimal in the corresponding classes of
adaptive and of equidistant approximations, i.e., in (Xad

N (C([0, T ];Rd)))N∈N and
(Xeq

N (C([0, T ];Rd)))N∈N. On the one hand, for SDEs with globally Lipschitz continuous
coefficients, Müller-Gronbach (2002a) showed that specific Euler–Maruyama schemes
relating to adaptive and to equidistant time discretizations are strongly asymptotically
optimal in their respective classes. On the other hand, for SDEs with super-linearly
growing coefficients, the main theorem in Hutzenthaler et al. (2011) implies that the er-
rors of these particular approximations tend to infinity as the numbers of discretization
sites tend to infinity. In the present chapter, we generalize the results of the first men-
tioned reference such that SDEs of the latter type are incorporated. More precisely, we
show under rather mild assumptions on the underlying SDE, notably polynomial growth
conditions on its coefficients, that specific tamed Euler schemes relating to adaptive and
to equidistant time discretizations are strongly asymptotically optimal in the aforemen-
tioned classes. To illustrate our findings, we numerically analyze the SDE associated
with the Heston–3/2–model originating from mathematical finance.

In Section 3.1, we introduce the assumptions that will be imposed on the under-
lying SDE in the subsequent analysis. Moreover, we show interdependencies among
these conditions as well as results on existence-and-uniqueness and moment bounds of
the solution of the SDE. In Section 3.2, we provide a brief literature review on results
regarding the error eq,∞. In particular, we state well-known results in the classical set-
ting of SDEs with globally Lipschitz continuous coefficients. In Section 3.3, we first
present a continuous-time tamed Euler scheme. Building upon this scheme, we con-
struct an equidistant and an adaptive tamed Euler scheme in full details afterwards. In
Section 3.4, we state the main results of this chapter, i.e., strong asymptotic optimality
of the previously constructed adaptive and equidistant tamed Euler schemes in their re-
spective classes. In Section 3.5, we illustrate our findings via a numerical experiment. To
this end, we revisit the introductory example from Section 1.1, namely, the SDE relating
to the Heston–3/2–model. In Section 3.6, we carry out the proofs of our main results.
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Throughout this chapter, we fix (S,A) = (C([0, T ];Rd),B(C([0, T ];Rd))) as the un-
derlying measurable space as per Chapter 2. In the case that the SDE (1.4) has a unique
solution (X(t))t∈[0,T ], we put

Cad
q,∞ := 2−1/2 ·

∥∥∥∥∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥
L2([0,T ])

∥∥∥∥
L2q/(q+2)(Ω)

∈ [0,∞],

Ceq
q,∞ := (T/2)1/2 ·

∥∥∥∥∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥
C([0,T ])

∥∥∥∥
Lq(Ω)

∈ [0,∞],
(3.1)

for q ∈ [1,∞). The quantities Cad
q,∞ and Ceq

q,∞ will turn out to be the sharp asymp-
totic constants for the Nth minimal errors in the classes (Xad

N (C([0, T ];Rd)))N∈N and
(Xeq

N (C([0, T ];Rd)))N∈N, respectively. It is easy to see that Cad
q,∞ ≤ Ceq

q,∞ holds for all
q ∈ [1,∞).

3.1 Assumptions

In the further course of this thesis, we will impose several conditions on the initial value
and on the coefficients of the SDE (1.4). For r ∈ [0,∞) and ϕ ∈ {µ, σ}, we introduce
the following assumptions:

Assumption (Ir). The initial value ξ satisfies E
[
|ξ|r

]
<∞.

Assumption (locL). The coefficients µ and σ satisfy a local Lipschitz condition with
respect to the state variable, i.e., for all M ∈ N there exists C ∈ (0,∞) such that for all
t ∈ [0, T ] and for all x, y ∈ Rd with max{|x|, |y|} ≤M it holds that

max
{∣∣µ(t, x)− µ(t, y)

∣∣, ∣∣σ(t, x)− σ(t, y)
∣∣} ≤ C · |x− y|.

Assumption (H). The coefficients µ and σ are Hölder–1/2–continuous with respect to
the time variable with a Hölder bound that is linearly growing in the state variable, i.e.,
there exists C ∈ (0,∞) such that for all s, t ∈ [0, T ] and for all x ∈ Rd it holds that

max
{∣∣µ(s, x)− µ(t, x)

∣∣, ∣∣σ(s, x)− σ(t, x)
∣∣} ≤ C · |s− t|1/2 · (1 + |x|

)
.

Assumption (Kr). The coefficients µ and σ satisfy a so-called “Khasminskii-type con-
dition”, i.e., there exists C ∈ (0,∞) such that for all t ∈ [0, T ] and for all x ∈ Rd it
holds that

2 · x> · µ(t, x) + (r − 1) ·
∣∣σ(t, x)

∣∣2 ≤ C · (1 + |x|
)2
.

Assumption (Mr). The coefficients µ and σ satisfy a so-called “monotonicity condi-
tion”, i.e., there exists C ∈ (0,∞) such that for all t ∈ [0, T ] and for all x, y ∈ Rd it
holds that

2 · (x− y)> ·
(
µ(t, x)− µ(t, y)

)
+ (r − 1) ·

∣∣σ(t, x)− σ(t, y)
∣∣2 ≤ C · |x− y|2.
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Assumption (pGϕ
r ). The coefficient ϕ grows at most polynomially in the state variable,

i.e., there exists C ∈ (0,∞) such that for all t ∈ [0, T ] and for all x ∈ Rd it holds that∣∣ϕ(t, x)
∣∣ ≤ C · (1 + |x|

)r
.

Assumption (pLϕr ). The coefficient ϕ is Lipschitz continuous with respect to the state
variable with a Lipschitz bound that is polynomially growing in the state variable, i.e.,
there exists C ∈ (0,∞) such that for all t ∈ [0, T ] and for all x, y ∈ Rd it holds that∣∣ϕ(t, x)− ϕ(t, y)

∣∣ ≤ C · |x− y| · (1 + |x|+ |y|
)r
.

During the last decades, it was common practice to essentially require the Assump-
tions (pLµ0 ) and (pLσ0 ), i.e., to assume that the drift and diffusion coefficients are globally
Lipschitz continuous (with respect to the state variable), see, e.g., Maruyama (1955),
Milstein (1995), Kloeden & Platen (1992), Mao (2007). Only recently, one has begun to
study SDEs that do not satisfy these stringent assumptions, such as SDEs with super-
linearly growing or discontinuous coefficients.

The following easy-to-prove remark comprises various relations between the assump-
tions introduced above.

Remark 3.1. (i) Let (Ir) be satisfied for some r ∈ [0,∞). Then (Is) is satisfied for
all s ∈ [0, r].

(ii) Let (Kr) be satisfied for some r ∈ [0,∞). Then (Ks) is satisfied for all s ∈ [0, r].

(iii) Let (Mr) be satisfied for some r ∈ [0,∞). Then (Ms) is satisfied for all s ∈ [0, r].

(iv) Let (pGϕ
r ) be satisfied for some ϕ ∈ {µ, σ} and r ∈ [0,∞). Then (pGϕ

s ) is satisfied
for all s ∈ [r,∞).

(v) Let (pLϕr ) be satisfied for some ϕ ∈ {µ, σ} and r ∈ [0,∞). Then (pLϕs ) is satisfied
for all s ∈ [r,∞).

(vi) Let (Kr) and (pGµ
s ) be satisfied for some r ∈ (1,∞) and s ∈ [0,∞). Then

(pGσ
max{1,(s+1)/2}) is satisfied.

(vii) Let (Mr) and (pLµs ) be satisfied for some r ∈ (1,∞) and s ∈ [0,∞). Then (pLσs/2)
is satisfied.

(viii) Let (pLµr ) and (pLσs ) be satisfied for some r, s ∈ [0,∞). Then (locL) is satisfied.

(ix) Let (pGµ
1 ) and (pGσ

1 ) be satisfied. Then (Kr) is satisfied for all r ∈ [0,∞).

(x) Let (pLµ0 ) and (pLσ0 ) be satisfied. Then (Mr) is satisfied for all r ∈ [0,∞).

(xi) Let (H) and (pLϕr ) be satisfied for some ϕ ∈ {µ, σ} and r ∈ [0,∞). Then (pGϕ
r+1)

is satisfied.

(xii) If the SDE (1.4) is autonomous, then (H) is satisfied.
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It is well-known that the Assumptions (Ia), (locL), and (Ka) for some a ∈ [2,∞)
ensure the existence of a unique solution (X(t))t∈[0,T ] of the SDE (1.4) that also satisfies

sup
t∈[0,T ]

E
[∣∣X(t)

∣∣a] <∞, (3.2)

see, for instance, Theorem 4.1 of Chapter 2 in Mao (2007). If, additionally, the Assump-
tion (pGσ

r ) is satisfied for some r ∈ [1,∞) with a ≥ 2r, then it holds that

E
[

sup
t∈[0,T ]

∣∣X(t)
∣∣a−2r+2

]
<∞,

see Proposition A.5. Furthermore, in the case that the SDE (1.4) possesses a unique
solution and the Assumptions (Ia), (pGµ

1 ), and (pGσ
1 ) are satisfied for some a ∈ [2,∞),

there exists C ∈ (0,∞) such that for all s, t ∈ [0, T ] it holds that∥∥X(s)−X(t)
∥∥
La(Ω) ≤ C · |s− t|

1/2, (3.3)

see, for instance, Theorem 4.3 of Chapter 2 in Mao (2007).

3.2 Literature Review

We now provide a concise overview of results concerning the considered pathwise approx-
imation problem, mainly with regard to the error eq,∞. This selection does not claim to
be complete or exhaustive, but should give enough background to motivate the central
objective of this chapter.

The remainder of this section is organized as follows. We start our discussion by
presenting a result on lower bounds for the Nth minimal errors in the classes of adaptive
approximations which holds under quite general assumptions. This allows us to deduce
asymptotic lower bounds for the Nth minimal errors in the classes of adaptive and of
equidistant approximations, but with unspecified asymptotic constants only. Yet, in
the special case of SDEs with globally Lipschitz continuous coefficients, one entirely
knows the asymptotics of these Nth minimal errors. As a next step, we are interested
in approximations which possess the same convergence rate as the Nth minimal errors
in the previous results or, even better, which are strongly asymptotically optimal in the
aforementioned classes. For SDEs with globally Lipschitz continuous coefficients, specific
equidistant and adaptive variants of the Euler–Maruyama scheme achieve the desired
strong asymptotic optimality. However, the errors of these particular approximations
tend to infinity once the drift or the diffusion coefficient grows super-linearly. In search
of strongly asymptotically optimal approximations for SDEs of the latter type, we come
into contact with so-called tamed Euler schemes for which we find upper error bounds
of the right convergence rate.

At first, lower error bounds for the pathwise approximation of SDEs have been exten-
sively studied for the case of coefficients that are globally Lipschitz continuous, see, e.g.,
Cambanis & Hu (1996), Hofmann et al. (2000a,b, 2001), and Müller-Gronbach (2002a,b).
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Recently, the authors in Hefter et al. (2019) established lower bounds for the Nth mini-
mal errors in the classes of adaptive approximations that hold under rather mild assump-
tions on the underlying SDE. In particular, the coefficients of the SDE (1.4) are required
to have sufficient regularity only locally, in a small neighborhood of the initial value.

Proposition 3.2. Let d = m = 1 and let the SDE (1.4) have a unique solution
(X(t))t∈[0,T ]. Moreover, let t0 ∈ [0, T ), T0 ∈ (t0, T ], and let ∅ 6= I ⊆ R be an open
interval such that for all i, j ∈ {0, 1} the partial derivatives µ(i,j) and σ(i,j) exist on
[t0, T0] × I and are continuous, for all (t, x) ∈ [t0, T0] × I it holds that σ(t, x) 6= 0, and
it holds that P({X(t0) ∈ I}) > 0. Then for all q ∈ [1,∞) there exists C ∈ (0,∞) such
that for all N ∈ N it holds that

inf
{
eq,∞

(
X̂
) ∣∣∣ X̂ ∈ Xad

N

(
C([0, T ];R)

)}
≥ C ·

(
log(N)/N

)1/2
. (3.4)

Proof. Theorem 9 in Hefter et al. (2019) shows (3.4) for the particular error e1,∞. The
general case then follows from the monotonicity property (2.4).

From the preceding proposition, we are able to immediately deduce asymptotic lower
bounds for both the Nth minimal errors in the classes of adaptive and of equidistant
approximations. Yet, the corresponding asymptotic constants are unspecified in this
situation which does not enable us to resolve whether these constants are sharp or not.

However, in the special case of an SDE with globally Lipschitz continuous coefficients,
Müller-Gronbach (2002a) determined the exact asymptotics (including sharp asymptotic
constants) of the Nth minimal errors in the classes of adaptive and of equidistant ap-
proximations.

Proposition 3.3. Let T = 1 and let the Assumptions (Ia), (H), (pLµ0 ), and (pLσ0 ) be
satisfied for some a ∈ [2,∞). Then for all q ∈ [1, a] it holds that

lim
N→∞

(
N/ log(N)

)1/2 · inf
{
eq,∞

(
X̂
) ∣∣∣ X̂ ∈ Xad

N

(
C([0, 1];Rd)

)}
= Cad

q,∞

and
lim
N→∞

(
N/ log(N)

)1/2 · inf
{
eq,∞

(
X̂
) ∣∣∣ X̂ ∈ Xeq

N

(
C([0, 1];Rd)

)}
= Ceq

q,∞.

Proof. See Theorem 3 in Müller-Gronbach (2002a) for the adaptive case. The equidistant
case is not explicitly shown in this reference, but follows from the asymptotic upper
bound given by Lemma 11 and the asymptotic lower bound given by Lemma 8 (slightly
modified towards Nth minimal errors) stated therein.

Next, we turn to upper bounds for the errors of specific adaptive and equidistant
approximations, and we seek in particular those approximations that have the same
convergence rate (log(N)/N)1/2 as the Nth minimal errors studied above. During
the last decades, upper error bounds for the pathwise approximation of SDEs have
been established mostly in the case of globally Lipschitz continuous coefficients, see,
e.g., the seminal works by Maruyama (1955) and Milstein (1995) or the book of Kloe-
den & Platen (1992), which contains upper error bounds for various strong Itô–Taylor
approximations such as the Euler–Maruyama or Milstein schemes.
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First of all, we study the Euler–Maruyama schemes, which were initially introduced
in Maruyama (1955) and can be regarded as an extension of the classical Euler schemes
for ordinary differential equations towards SDEs. We begin with the definition of the
continuous-time Euler–Maruyama schemes. To this end, let N ∈ N and consider the
equidistant time discretization

t
(N)
` := `T/N, ` ∈ {0, . . . , N}. (3.5)

The continuous-time Euler–Maruyama scheme ẼN : Ω→ C([0, T ];Rd) is given by

ẼN (0) := ξ,

ẼN (t) := ẼN (t(N)
` ) + µ

(
t
(N)
` , ẼN (t(N)

` )
)
· (t− t(N)

` )

+ σ
(
t
(N)
` , ẼN (t(N)

` )
)
·
(
W (t)−W (t(N)

` )
)
,

for all ` ∈ {0, . . . , N−1} and for all t ∈ (t(N)
` , t

(N)
`+1]. Observe that, since entire trajectories

of the driving Brownian motion are used in the construction above, this scheme is not an
approximation in the sense of Section 2.1, and we thus find ẼN 6∈ X(C([0, T ];Rd)). It is
well-known that the continuous-time Euler–Maruyama schemes converge strongly to the
solution of the SDE (1.4) with order (at least) 1/2 if the drift and diffusion coefficients
are globally Lipschitz continuous, as the following proposition clarifies.
Proposition 3.4. Let the Assumptions (Ia), (H), (pLµ0 ), and (pLσ0 ) be satisfied for some
a ∈ [2,∞). Then for all q ∈ [1, a] there exists C ∈ (0,∞) such that for all N ∈ N it
holds that ∥∥∥∥∥X − ẼN∥∥C([0,T ])

∥∥∥
Lq(Ω)

≤ C ·N−1/2.

Proof. See, for instance, Proposition 14 in Faure (1992).

Note that we do not use the term eq,∞(ẼN ) in the proposition above since the error
measure eq,∞ is only defined on X(C([0, T ];Rd)).

To obtain equidistant approximations that are based on the continuous-time
Euler–Maruyama schemes, we consider the linear interpolations of these schemes at
the equidistant sites (3.5). For N ∈ N, the equidistant Euler–Maruyama scheme
Êeq
N : Ω→ C([0, T ];Rd) is given by

Êeq
N (t(N)

` ) := ẼN (t(N)
` )

for all ` ∈ {0, . . . , N} and linearly interpolated between these time points. By suitably
choosing sequences ψ, χ, and ϕ as per Section 2.1, we obtain Êeq

N ∈ Xeq
N (C([0, T ];Rd)).

Under the same assumptions as in the preceding proposition, one also knows upper
bounds for the errors of these equidistant Euler–Maruyama schemes.
Proposition 3.5. Let the Assumptions (Ia), (H), (pLµ0 ), and (pLσ0 ) be satisfied for some
a ∈ [2,∞). Then for all q ∈ [1, a] there exists C ∈ (0,∞) such that for all N ∈ N \ {1}
it holds that

eq,∞
(
Êeq
N

)
≤ C ·

(
log(N)/N

)1/2
.

Proof. See Proposition 16 in Faure (1992).
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From the result above, we can deduce an asymptotic upper bound for the errors of
the equidistant Euler–Maruyama schemes but, again, only with unspecified asymptotic
constant. In contrast, the following proposition shows the exact asymptotics (including
sharp asymptotic constant) of the errors of these approximations in the case that the
coefficients of the SDE (1.4) are globally Lipschitz continuous.

Proposition 3.6. Let T = 1 and let the Assumptions (Ia), (H), (pLµ0 ), and (pLσ0 ) be
satisfied for some a ∈ [2,∞). Then for all q ∈ [1, a] it holds that

lim
N→∞

(
N/ log(N)

)1/2 · eq,∞(Êeq
N

)
= Ceq

q,∞.

Proof. See Theorem 2 in Müller-Gronbach (2002a).

Having considered the Euler–Maruyama schemes at equidistant sites only so far, we
next turn to variants of these schemes that are based on adaptive time discretizations.
For this purpose, we study the following adaptive Euler–Maruyama schemes, which were
introduced in Müller-Gronbach (2002a). Fix T = 1 and let (kN )N∈N be a sequence of
natural numbers satisfying

lim
N→∞

kN
N

= 0 = lim
N→∞

N

kN · log(N) . (3.6)

Fix N ∈ N for the moment and put

AkN :=
(

1
kN
·
kN−1∑
`=0

∣∣∣σ(t(kN )
` , ẼkN (t(kN )

` )
)∣∣∣2
∞,2

)1/2

.

Let q ∈ [1,∞). For each ` ∈ {0, . . . , kN − 1}, we consider the random discretization

t
(kN )
` = τ

(kN )
`,0 < τ

(kN )
`,1 < · · · < τ

(kN )
`,η`+1 = t

(kN )
`+1

of [t(kN )
` , t

(kN )
`+1 ] where

η` := 1{AkN>0} ·

N · A2q/(q+2)
kN

·

∣∣∣σ(t(kN )
` , ẼkN ,r(t

(kN )
` )

)∣∣∣2
∞,2

kN−1∑
ι=0

∣∣∣σ(t(kN )
ι , ẼkN ,r(t

(kN )
ι )

)∣∣∣2
∞,2


and

τ
(kN )
`,κ := t

(kN )
` + 1

kN
· κ

η` + 1
for all κ ∈ {0, . . . , η`+1}. The adaptive Euler–Maruyama scheme Êad

N,q : Ω→ C([0, 1];Rd)
is given by

Êad
N,q(τ

(kN )
`,κ ) := ẼkN (t(kN )

` ) + µ
(
t
(kN )
` , ẼkN (t(kN )

` )
)
· (τ (kN )

`,κ − t(kN )
` )

+ σ
(
t
(kN )
` , ẼkN (t(kN )

` )
)
·
(
W (τ (kN )

`,κ )−W (t(kN )
` )

) (3.7)
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for all ` ∈ {0, . . . , kN − 1} and for all κ ∈ {0, . . . , η` + 1} and linearly interpolated
between all these time points. By suitably choosing sequences ψ, χ, and ϕ as per
Section 2.1, we obtain Êad

N,q ∈ Xad
dc(Êad

N,q)e
(C([0, 1];Rd)) if the cost of this approximation

satisfy c(Êad
N,q) < ∞. Müller-Gronbach (2002a) established the exact asymptotics of

the errors of the adaptive Euler–Maruyama schemes defined above in the case that the
underlying SDE possesses globally Lipschitz continuous coefficients.

Proposition 3.7. Let T = 1 and let the Assumptions (Ia), (H), (pLµ0 ), and (pLσ0 ) be
satisfied for some a ∈ [2,∞). Then for all q ∈ [1, a] it holds that

lim
N→∞

(
c(Êad

N,q)/ log
(
c(Êad

N,q)
))1/2

· eq,∞
(
Êad
N,q

)
= Cad

q,∞.

Proof. See Theorem 1 in Müller-Gronbach (2002a).

Since both the convergence rates and the corresponding asymptotic constants match
in the Propositions 3.3, 3.6, and 3.7, we obtain strong asymptotic optimality of the
adaptive and of the equidistant Euler–Maruyama schemes in the classes of adaptive and
of equidistant approximations, respectively.

Corollary 3.8. Let T = 1 and let the Assumptions (Ia), (H), (pLµ0 ), and (pLσ0 ) be
satisfied for some a ∈ [2,∞). Then for all q ∈ [1, a] with Cad

q,∞ > 0 it holds that

lim
N→∞

eq,∞
(
Êad
N,q

)
inf
{
eq,∞

(
X̂
) ∣∣∣ X̂ ∈ Xad

dc(Êad
N,q)e

(
C([0, 1];Rd)

)} = 1

and

lim
N→∞

eq,∞
(
Êeq
N

)
inf
{
eq,∞

(
X̂
) ∣∣∣ X̂ ∈ Xeq

N

(
C([0, 1];Rd)

)} = 1;

i.e., the approximations (Êad
N,q)N∈N and (Êeq

N )N∈N are strongly asymptotically optimal in
the classes (Xad

dc(Êad
N,q)e

(C([0, 1];Rd)))N∈N and (Xeq
N (C([0, 1];Rd)))N∈N, respectively.

Proof. This result is an immediate consequence of the Propositions 3.3, 3.6, and 3.7.

In view of all the previous considerations, our primary goal in this chapter is as
follows:

We aim at extending the results of Müller-Gronbach (2002a)—especially
the ones given in Corollary 3.8—to SDEs whose coefficients are
allowed to grow super-linearly. In particular, we seek strongly asymp-
totically optimal approximations in the classes of adaptive and of
equidistant approximations in such a setting.
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To begin with, it is natural to ask whether the equidistant and the adaptive Euler–
Maruyama schemes introduced above preserve strong asymptotic optimality in their
respective classes even for SDEs whose coefficients grow super-linearly. We answer this
question to the negative in the following proposition.

Proposition 3.9. Let d = m = T = 1 and let the SDE (1.4) be autonomous and have
a unique solution (X(t))t∈[0,1]. Moreover, assume that P({σ(ξ) 6= 0}) > 0 and that there
exist C ∈ [1,∞), α, β ∈ (1,∞) with α < β such that for all x ∈ R with |x| ≥ C it holds
that max{|µ(x)|, |σ(x)|} ≥ C−1 · |x|β and min{|µ(x)|, |σ(x)|} ≤ C · |x|α. Then for all
q ∈ [1,∞) with ‖X(1)‖Lq(Ω) <∞ it holds that

lim
N→∞

∥∥X(1)− ẼN (1)
∥∥
Lq(Ω) =∞ (3.8)

and
lim
N→∞

eq,∞
(
Êeq
N

)
=∞ = lim

N→∞
eq,∞

(
Êad
N,q

)
.

Proof. See Theorem 2.1 in Hutzenthaler et al. (2011) for a proof of (3.8). Moreover, we
have

Êeq
N (1) = ẼN (1) = Êad

N,q(1)

for all N ∈ N. Combining this with (3.8) shows

∞ = lim
N→∞

∥∥X(1)− ẼN (1)
∥∥
Lq(Ω) ≤ lim

N→∞
eq,∞

(
Êeq
N

)
and

∞ = lim
N→∞

∥∥X(1)− ẼN (1)
∥∥
Lq(Ω) ≤ lim

N→∞
eq,∞

(
Êad
N,q

)
.

The preceding proposition emphasizes that the previously constructed equidistant
and adaptive Euler–Maruyama schemes are not suitable to globally approximate SDEs
with super-linearly growing coefficients, which constitute a special case of SDEs whose
coefficients are not globally Lipschitz continuous. In recent years, especially in the last
decade, approximations that converge strongly to the solution even if the coefficients of
the considered SDE are non-globally Lipschitz continuous have experienced increased
attention. For instance, we mention implicit schemes (see, e.g., Higham et al. (2002)),
tamed schemes (see Hutzenthaler et al. (2012), Gan & Wang (2013), Sabanis (2016), Ku-
mar & Sabanis (2019), Sabanis & Zhang (2018)), truncated schemes (see Mao (2015),
Guo et al. (2018)), projected schemes (see Beyn et al. (2016, 2017)), and balanced
schemes (see Tretyakov & Zhang (2013)). For the particular case of SDEs with dis-
continuous coefficients, Euler–Maruyama type schemes are addressed in Leobacher &
Szölgyenyi (2018), Ngo & Taguchi (2017), and Müller-Gronbach & Yaroslavtseva (2020),
where the last mentioned reference also provides upper bounds for the specific error crite-
rion eq,∞. In Hefter & Herzwurm (2017), the authors studied a particular SDE for which
the solution is the square of a one-dimensional Bessel-process, and they gave upper error
bounds for certain squared piecewise-constantly interpolated projected Euler schemes.
Moreover, Fang & Giles (2018) constructed an adaptive timestepping strategy which
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lets the related piecewise-constantly interpolated Euler–Maruyama schemes convergence
strongly with order (at least) 1/2 for SDEs with one-sided Lipschitz continuous drift co-
efficient and globally Lipschitz continuous diffusion coefficient; Kelly & Lord (2018a,b)
extended this timestepping idea towards SDEs whose diffusion coefficients may also be
non-globally Lipschitz continuous. We stress that the asymptotic constants obtained
from all the previously mentioned references are (up to exceptional cases) unspecified.

To achieve the primary goal of this chapter, we follow the approach of so-called
tamed Euler schemes as a basis for the construction of strongly asymptotically optimal
approximations in the setting of SDEs with super-linearly growing coefficients.

A first type of tamed Euler schemes was initially proposed in Hutzenthaler et al.
(2012) where the authors introduced the following continuous-time tamed Euler schemes.
For this purpose, let the SDE (1.4) be autonomous for the moment. For N ∈ N, the
continuous-time tamed Euler scheme X̃HJK

N : Ω→ C([0, T ];Rd) is given by

X̃HJK
N (0) := ξ,

X̃HJK
N (t) := X̃HJK

N (t(N)
` ) +

µ
(
X̃HJK
N (t(N)

` )
)

1 + T/N ·
∣∣µ(X̃HJK

N (t(N)
` )

)∣∣ · (t− t(N)
` )

+ σ
(
X̃HJK
N (t(N)

` )
)
·
(
W (t)−W (t(N)

` )
)
,

for all ` ∈ {0, . . . , N − 1} and for all t ∈ (t(N)
` , t

(N)
`+1], and the equidistant tamed Euler

scheme X̂HJK,eq
N : Ω→ C([0, T ];Rd) is given by

X̂HJK,eq
N (t(N)

` ) := X̃HJK
N (t(N)

` )

for all ` ∈ {0, . . . , N} and linearly interpolated between these time points. In the case
of an SDE whose diffusion coefficient is still required to be globally Lipschitz continuous
and whose drift coefficient merely has to satisfy a so-called “one-sided Lipschitz con-
dition”, the continuous-time and the equidistant tamed Euler schemes above converge
strongly to the solution. Even more, these schemes admit analogous upper error bounds
as the continuous-time and the equidistant Euler–Maruyama schemes as stated in the
Propositions 3.4 and 3.5.
Proposition 3.10. Let the SDE (1.4) be autonomous and let the Assumptions (Ia),
(M1), and (pLσ0 ) be satisfied for all a ∈ [2,∞). Moreover, let µ be continuously differ-
entiable and assume that there exists r ∈ (0,∞) such that for all x ∈ Rd it holds that
|∇µ(x)| ≤ r · (1 + |x|)r. Then for all q ∈ [1,∞) there exists C ∈ (0,∞) such that for all
N ∈ N \ {1} it holds that∥∥∥∥∥X − X̃HJK

N

∥∥
C([0,T ])

∥∥∥
Lq(Ω)

≤ C ·N−1/2 (3.9)

and
eq,∞

(
X̂HJK,eq
N

)
≤ C ·

(
log(N)/N

)1/2
. (3.10)

Proof. See Theorem 1.1 in Hutzenthaler et al. (2012) for a proof of (3.9) and see Corollary
6.1 in Hutzenthaler et al. (2013) for a proof of (3.10).
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Inspired by the work of Hutzenthaler et al. (2012), Sabanis (2016) constructed a
further type of continuous-time tamed Euler schemes. For N ∈ N and r ∈ [0,∞), the
continuous-time tamed Euler scheme X̃S

N,r : Ω→ C([0, T ];Rd) is given by

X̃S
N,r(t) := ξ +

∫ t

0

µ
(
s, X̃S

N,r(bsNc/N)
)

1 +N−1/2 ·
∣∣X̃S

N,r(bsNc/N)
∣∣r ds

+
∫ t

0

σ
(
s, X̃S

N,r(bsNc/N)
)

1 +N−1/2 ·
∣∣X̃S

N,r(bsNc/N)
∣∣r dW (s),

(3.11)

for all t ∈ [0, T ]. Again, these schemes converge strongly with order (at least) 1/2 but
now even for SDEs whose diffusion coefficients may grow super-linearly.

Proposition 3.11. Let the Assumptions (Ia), (H), (Ka), (Mb), and (pLµr ) be satisfied for
some a, b ∈ [2,∞) and r ∈ [0,∞) with a ≥ 4r+2. Then for all q ∈ [1,min{b, a/(2r+1)})
there exists C ∈ (0,∞) such that for all N ∈ N it holds that∥∥∥∥∥X − X̃S

N,r

∥∥
C([0,T ])

∥∥∥
Lq(Ω)

≤ C ·N−1/2.

Proof. See Theorem 3 in Sabanis (2016).

Our main idea is now to modify the tamed Euler schemes of Sabanis (2016) in such a
way that we can derive equidistant and adaptive variants that are strongly asymptotically
optimal in their respective classes. These new approximations will be presented in full
details in the next section.

3.3 The Equidistant and the Adaptive Tamed Euler Sche-
mes

In the following, we introduce two variants of so-called tamed Euler schemes that are
based on equidistant and on adaptive time discretizations, respectively. The crucial in-
gredient for both approximations is a continuous-time tamed Euler scheme which, on
the one hand, is suitably close to the solution of the SDE (1.4) and which, on the other
hand, possesses a simple recursive structure that will be exploited in the further anal-
ysis. These equidistant and adaptive tamed Euler schemes will turn out to be strongly
asymptotically optimal in the classes of equidistant and of adaptive approximations,
respectively.

We point out that the continuous-time tamed Euler scheme presented here is heavily
inspired by the one introduced in Sabanis (2016). The reason we do not use the latter is
that our approach is more convenient for our analysis; in particular, our scheme satisfies
the desired recursion (3.12) below. Nevertheless, observe that both schemes coincide in
the case that the SDE (1.4) is autonomous and T = 1.
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3.3.1 The Continuous-time Tamed Euler Schemes

Let N ∈ N and r ∈ [0,∞), and recall the equidistant time discretization (3.5). The
continuous-time tamed Euler scheme X̃N,r : Ω→ C([0, T ];Rd) is given by

X̃N,r(0) := ξ,

X̃N,r(t) := X̃N,r(t(N)
` ) +

µ
(
t
(N)
` , X̃N,r(t(N)

` )
)

1 + (T/N)1/2 ·
∣∣X̃N,r(t(N)

` )
∣∣r · (t− t(N)

` )

+
σ
(
t
(N)
` , X̃N,r(t(N)

` )
)

1 + (T/N)1/2 ·
∣∣X̃N,r(t(N)

` )
∣∣r · (W (t)−W (t(N)

` )
)
,

(3.12)

for all ` ∈ {0, . . . , N − 1} and for all t ∈ (t(N)
` , t

(N)
`+1].

Note that this process satisfies almost surely for all t ∈ [0, T ]

X̃N,r(t) = ξ +
∫ t

0

µ
(
bsN/T c · T/N, X̃N,r(bsN/T c · T/N)

)
1 + (T/N)1/2 ·

∣∣X̃N,r(bsN/T c · T/N)
∣∣r ds

+
∫ t

0

σ
(
bsN/T c · T/N, X̃N,r(bsN/T c · T/N)

)
1 + (T/N)1/2 ·

∣∣X̃N,r(bsN/T c · T/N)
∣∣r dW (s);

(3.13)

cf. the construction (3.11).
Since entire trajectories of the driving Brownian motion are used in the construction

of the continuous-time tamed Euler scheme, this scheme is not an approximation in the
sense of Section 2.1, and we thus find X̃N,r 6∈ X(C([0, T ];Rd)).

In Section A.3, we gather useful properties of the continuous-time tamed Euler sche-
mes, namely, moment bounds and strong convergence with order (at least) 1/2.

3.3.2 The Equidistant Tamed Euler Schemes

Next, based on the continuous-time tamed Euler scheme, we construct approximations
which use not whole paths of the driving Brownian motion but evaluate W only at
equidistant sites.

As before, let N ∈ N and r ∈ [0,∞). The equidistant tamed Euler scheme
X̂eq
N,r : Ω→ C([0, T ];Rd) is given by

X̂eq
N,r(t

(N)
` ) := X̃N,r(t(N)

` )

for all ` ∈ {0, . . . , N} and linearly interpolated between these time points.
By suitably choosing sequences ψ, χ, and ϕ as per Section 2.1, we obtain

X̂eq
N,r ∈ Xeq

N (C([0, T ];Rd)). Clearly, the total number of evaluations of W employed
in the approximation X̂eq

N,r is given by N for each realization, which immediately yields
c(X̂eq

N,r) = N .
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3.3.3 The Adaptive Tamed Euler Schemes

The following construction of the adaptive tamed Euler schemes is heavily inspired by
the corresponding construction of the adaptive Euler–Maruyama schemes Êad

N,q presented
in Section 3.2.

Note that, under suitable regularity assumptions on the coefficients of the SDE (1.4),
its solution (X(t))t∈[0,T ] satisfies

E
[∣∣Xi(t+ δ)−Xi(t)

∣∣2 ∣∣∣X(t)
]

=
m∑
j=1

∣∣σi,j(t,X(t)
)∣∣2 · δ + o(δ)

for all i ∈ {1, . . . , d} and for all t ∈ [0, T ]. Hence, the paths of each component Xi of
the solution of the considered SDE are, in the root mean square sense and conditioned
on X(t), locally Hölder–1/2–continuous with Hölder constant (

∑m
j=1 |σi,j(t,X(t))|2)1/2,

and the maximum over i ∈ {1, . . . , d} of all these constants is given by |σ(t,X(t))|∞,2.
For this reason, it is more beneficial to evaluate W more often in regions where the value
of |σ(t,X(t))|∞,2 is large and vice versa.

Motivated by this idea, we construct our adaptive tamed Euler scheme in two steps.
First, we use equidistant time steps to roughly approximate the solution and thereby
obtain estimates for the conditional Hölder constants at these sites. Second, we refine
our approximation by taking into account the local smoothness of the solution. More
precisely, we distribute additional evaluation sites between those equidistant time points
for which the corresponding maximum of the estimated Hölder constant is large in
proportion to the other time points.

Let r ∈ [0,∞) and let (kN )N∈N be a sequence of natural numbers satisfying the
limits (3.6). Fix N ∈ N and put

AkN :=

 T

kN
·
kN−1∑
`=0

∣∣∣∣∣ σ
(
t
(kN )
` , X̃kN ,r(t

(kN )
` )

)
1 + (T/kN )1/2 ·

∣∣X̃kN ,r(t
(kN )
` )

∣∣r
∣∣∣∣∣
2

∞,2

1/2

. (3.14)

Let q ∈ [1,∞). For each ` ∈ {0, . . . , kN − 1}, we consider the random discretization

t
(kN )
` = τ

(kN )
`,0 < τ

(kN )
`,1 < · · · < τ

(kN )
`,η`+1 = t

(kN )
`+1 (3.15)

of [t(kN )
` , t

(kN )
`+1 ] where

η` := 1{AkN>0} ·

N · A
2q/(q+2)
kN

·

∣∣∣∣∣ σ
(
t
(kN )
` , X̃kN ,r(t

(kN )
` )

)
1 + (T/kN )1/2 ·

∣∣X̃kN ,r(t
(kN )
` )

∣∣r
∣∣∣∣∣
2

∞,2
kN−1∑
ι=0

∣∣∣∣∣ σ
(
t
(kN )
ι , X̃kN ,r(t

(kN )
ι )

)
1 + (T/kN )1/2 ·

∣∣X̃kN ,r(t
(kN )
ι )

∣∣r
∣∣∣∣∣
2

∞,2

 (3.16)

and
τ

(kN )
`,κ := t

(kN )
` + T

kN
· κ

η` + 1
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for all κ ∈ {0, . . . , η` + 1}. The adaptive tamed Euler scheme X̂ad
N,r,q : Ω→ C([0, T ];Rd)

is given by

X̂ad
N,r,q(τ

(kN )
`,κ ) := X̃kN ,r(t

(kN )
` ) +

µ
(
t
(kN )
` , X̃kN ,r(t

(kN )
` )

)
1 + (T/kN )1/2 ·

∣∣X̃kN ,r(t
(kN )
` )

∣∣r · (τ (kN )
`,κ − t(kN )

` )

+
σ
(
t
(kN )
` , X̃kN ,r(t

(kN )
` )

)
1 + (T/kN )1/2 ·

∣∣X̃kN ,r(t
(kN )
` )

∣∣r · (W (τ (kN )
`,κ )−W (t(kN )

` )
)

for all ` ∈ {0, . . . , kN − 1} and for all κ ∈ {0, . . . , η` + 1}, and linearly interpolated
between all these time points; cf. the construction (3.7).

By suitably choosing sequences ψ, χ, and ϕ as per Section 2.1, we obtain
X̂ad
N,r,q ∈ Xad

dc(X̂ad
N,r,q)e

(C([0, T ];Rd)) if the cost of this approximation satisfy

c(X̂ad
N,r,q) <∞. Define νad

N,r,q to be the (random) number of evaluations of W employed
in the approximation X̂ad

N,r,q. Observe that

νad
N,r,q = kN +

kN−1∑
`=0

η` ≤ kN +N · A2q/(q+2)
kN

(3.17)

and

νad
N,r,q ≥ max

{
kN , kN + 1{AkN>0} ·

(
N · A2q/(q+2)

kN
− kN

)}
. (3.18)

3.4 Main Results

The following theorems entirely specify the asymptotics of the Nth minimal errors in the
classes of adaptive and of equidistant approximations as well as the asymptotics of the
errors of the adaptive and of the equidistant tamed Euler schemes. As a consequence, we
will conclude strong asymptotic optimality of these approximations in their respective
classes. The proofs of all theorems are postponed to Section 3.6. Finally, we compare
our results to those given in Müller-Gronbach (2002a) at the end of this section.

Recall the definition (3.1) of the asymptotic constants from the beginning of this
chapter. The succeeding remark provides sufficient conditions for the finiteness of these
two constants.

Remark 3.12. Let the Assumptions (Ia), (locL), (Ka), and (pGσ
r ) be satisfied for some

a ∈ [2,∞) and r ∈ [1,∞) with a ≥ max{2r, 3r − 2}. Then Proposition A.5 implies
Ceq

(a−2r+2)/r,∞ <∞.
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First, we specify the asymptotics of the Nth minimal errors in the classes of adaptive
and of equidistant approximations. More precisely, we not only state the convergence
rates but also give the sharp asymptotic constants. To this end, recall the definition (3.1)
of Cad

q,∞ and Ceq
q,∞.

Theorem 3.13. Let the Assumptions (Ia), (H), (Ka), (Mb), and (pLµr ) be satisfied for
some a, b ∈ [2,∞) and r ∈ [0,∞) with a ≥ 4r+2. Then for all q ∈ [1,min{b, a/(2r+1)})
it holds that

lim
N→∞

(
N/ log(N)

)1/2 · inf
{
eq,∞

(
X̂
) ∣∣∣ X̂ ∈ Xad

N

(
C([0, T ];Rd)

)}
= Cad

q,∞ (3.19)

and

lim
N→∞

(
N/ log(N)

)1/2 · inf
{
eq,∞

(
X̂
) ∣∣∣ X̂ ∈ Xeq

N

(
C([0, T ];Rd)

)}
= Ceq

q,∞. (3.20)

Proof. This result is an immediate consequence of the Lemmas 3.22, 3.23, 3.24, and 3.25
given in Section 3.6.

Next, we specify the asymptotics of the errors of the adaptive and of the equidistant
tamed Euler schemes. Again, we not only state the convergence rates but also provide
the sharp asymptotic constants. Right before, we show that the average numbers of
observation sites of the adaptive tamed Euler schemes are finite and give their asymptotic
behavior.

Theorem 3.14. Let the Assumptions (Ia), (H), (Ka), (Mb), and (pLµr ) be satisfied for
some a, b ∈ [2,∞) and r ∈ [0,∞) with a ≥ 4r+2. Then for all q ∈ [1,min{b, a/(2r+1)})
it holds that

c
(
X̂ad
N,r,q

)
<∞

for each N ∈ N and

lim
N→∞

c
(
X̂ad
N,r,q

)
·N−1 =

(
21/2 · Cad

q,∞

)2q/(q+2)

as well as
lim
N→∞

(
c
(
X̂ad
N,r,q

)
/ log

(
c
(
X̂ad
N,r,q

)))1/2
· eq,∞

(
X̂ad
N,r,q

)
= Cad

q,∞

and
lim
N→∞

(
N/ log(N)

)1/2 · eq,∞(X̂eq
N,r

)
= Ceq

q,∞.

Proof. This result is an immediate consequence of the Lemmas 3.21, 3.22, 3.23, 3.24,
and 3.25 given in Section 3.6.

Since both the convergence rates and the corresponding asymptotic constants match
in the preceding theorems, we obtain strong asymptotic optimality of the adaptive and
of the equidistant tamed Euler schemes in their respective classes.
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Corollary 3.15. Let the Assumptions (Ia), (H), (Ka), (Mb), and (pLµr ) be satisfied for
some a, b ∈ [2,∞) and r ∈ [0,∞) with a ≥ 4r+2. Then for all q ∈ [1,min{b, a/(2r+1)})
with Cad

q,∞ > 0 it holds that

lim
N→∞

eq,∞
(
X̂ad
N,r,q

)
inf
{
eq,∞

(
X̂
) ∣∣∣ X̂ ∈ Xad

dc(X̂ad
N,r,q)e

(
C([0, T ];Rd)

)} = 1

and

lim
N→∞

eq,∞
(
X̂eq
N,r

)
inf
{
eq,∞

(
X̂
) ∣∣∣ X̂ ∈ Xeq

N

(
C([0, T ];Rd)

)} = 1;

i.e., the approximations (X̂ad
N,r,q)N∈N and (X̂eq

N,r)N∈N are strongly asymptotically optimal
in the classes (Xad

dc(X̂ad
N,r,q)e

(C([0, T ];Rd)))N∈N and (Xeq
N (C([0, T ];Rd)))N∈N, respectively.

Proof. This result is an immediate consequence of the Theorems 3.13 and 3.14.

Remark 3.16. Note that the assumptions required in the preceding results essentially
come from Proposition A.7, which states strong convergence of the continuous-time tamed
Euler schemes. In this situation, we also have moment bounds for these schemes as well
as for the solution, see the Propositions A.6 and A.5.

In the next remark, we characterize equality of the asymptotic constants Cad
q,∞ and

Ceq
q,∞, and briefly comment on the special case when these two constants both are zero.

Remark 3.17. Let the SDE (1.4) have a unique solution (X(t))t∈[0,T ] and let q ∈ [1,∞)
such that Ceq

q,∞ <∞.
Then we have Cad

q,∞ = Ceq
q,∞ if and only if almost surely |σ(t,X(t))|∞,2 =∥∥|σ(0, ξ)|∞,2

∥∥
L2(Ω) holds for all t ∈ [0, T ], cf. Remark 1 in Müller-Gronbach (2002a). In

particular, this case applies to SDEs whose diffusion coefficient is constant.
Moreover, we have Ceq

q,∞ = 0 (and hence Cad
q,∞ = 0) if and only if almost surely

σ(t,X(t)) = 0 holds for all t ∈ [0, T ]. In such a situation, Theorems 3.13 and 3.14
do not allow to conclude strong asymptotic optimality. More precisely, these results
merely show that the N th minimal errors in the classes of adaptive and of equidistant
approximations as well as the errors of the adaptive and of the equidistant tamed Euler
schemes each are in o((log(N)/N)1/2). In fact, these N th minimal errors are actually
zero as the underlying SDE almost surely represents an ordinary differential equation in
the considered case.

The preceding findings (Theorem 3.13, Theorem 3.14, and Corollary 3.15) generalize
the corresponding results presented in Müller-Gronbach (2002a). In this reference, the
coefficients of the SDE (1.4) are required to be globally Lipschitz continuous, whereas
in our setting these coefficients may even grow super-linearly.
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Remark 3.18. Let T = 1 and let the Assumptions (Ia∗),(H), (pLµ0 ), and (pLσ0 ) be
satisfied for some a∗ ∈ [2,∞). Proposition 3.3 then shows that the N th minimal errors
in the classes of adaptive and of equidistant approximations satisfy the asymptotics (3.19)
and (3.20) for all q ∈ [1, a∗].

Moreover, in the setting above, Remark 3.1 yields that the Assumption (Ka) is sat-
isfied for all a ∈ [0,∞), that the Assumption (Mb) is satisfied for all b ∈ [0,∞), and
that the Assumption (pLµr ) is satisfied for all r ∈ [0,∞). By choosing a = b = a∗ and
r = 0, Theorem 3.13 shows that the N th minimal errors in the classes of adaptive and
of equidistant approximations satisfy (3.19) and (3.20) for all q ∈ [1, a∗).

The only difference is, hence, that the choice q = a∗ is included in the results of
Müller-Gronbach (2002a) whereas this case is not incorporated in our findings.

3.5 Numerical Experiment

We illustrate the results of the preceding section by a numerical experiment. To this
end, we consider the introductory SDE (1.2) regarding the Heston–3/2–model with pa-
rameters d = 1, m = 1, T = 1, α = 5, β = 1, and ξ = 1. Thus, this SDE reads as

dX(t) = 5 ·X(t) ·
(
1− |X(t)|

)
dt+ |X(t)|3/2 dW (t), t ∈ [0, 1],

X(0) = 1.
(3.21)

It is easy to see that the SDE (3.21) satisfies all the assumptions of our main theorems.
More precisely, we have that Assumption (Ia) is satisfied for all a ∈ [0,∞), Assumption
(H) is satisfied, Assumption (Ka) is satisfied for all a ∈ [2, 11], Assumption (Mb) is
satisfied for all b ∈ [2, 6], and Assumption (pLµr ) is satisfied for all r ∈ [1,∞); cf. the
Appendix in Sabanis (2016). For the rest of this section, we fix a = 11, b = 6, r = 1,
and q = 2.

In view of Theorem 3.14, we aim at visualizing that, for large N ∈ N, the approxi-
mation errors e2,∞(X̂ad

N,1,2) and e2,∞(X̂eq
N,1) of the adaptive and of the equidistant tamed

Euler schemes are close to Cad
2,∞ · (log(c(X̂ad

N,1,2))/c(X̂ad
N,1,2))1/2 and Ceq

2,∞ · (log(N)/N)1/2,
respectively.

In doing so, we encounter three different approximation issues, namely, the approx-
imation of the asymptotic constants Cad

2,∞ and Ceq
2,∞, of the errors e2,∞(X̂ad

N,1,2) and
e2,∞(X̂eq

N,1), and of the average number of evaluations c(X̂ad
N,1,2).

Regarding the first approximation issue, we do not know numerically suitable closed-
form expressions of the constants Cad

2,∞ and Ceq
2,∞, nor of the solution, for the particular

SDE (3.21). Therefore, we estimate these constants via Monte Carlo simulations in which
we approximate the solution by an equidistant tamed Euler scheme with a sufficiently
large number of discretization points. More precisely, we estimate Cad

2,∞ and Ceq
2,∞ by

Ĉad
2,∞,M,N := 2−1/2 · 1

M
·
M∑
m=1

( 1
N
·
N−1∑
`=0

∣∣X̂eq
N,1,m(t(N)

` )
∣∣3)1/2
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and

Ĉeq
2,∞,M,N := 2−1/2 ·

( 1
M
·
M∑
m=1

max
`∈{0,...,N}

∣∣X̂eq
N,1,m(t(N)

` )
∣∣3)1/2

,

respectively, where M,N ∈ N and where the random vectors

(
X̂eq
N,1,m(t(N)

0 ), . . . , X̂eq
N,1,m(t(N)

N )
)
, m ∈ {1, . . . ,M},

are independent copies of (X̂eq
N,1(t(N)

0 ), . . . , X̂eq
N,1(t(N)

N )). Observe that for Cad
2,∞, we ap-

proximate the Lebesgue integral occurring in its definition by left Riemann sums. Propo-
sition A.7 implies that Ĉad

2,∞,M,N and Ĉeq
2,∞,M,N tend to Cad

2,∞ and Ceq
2,∞, respectively, as

M and N tend to infinity. Figure 3.1 depicts simulations of Ĉad
2,∞,M,227 and Ĉeq

2,∞,M,227

in dependence of M along with their corresponding 95% CLT-based confidence inter-
vals. Furthermore, we utilize the specific approximation values Cad

2,∞ ≈ 0.7080 and
Ceq

2,∞ ≈ 1.7749 obtained from realizations of Ĉad
2,∞,104,227 and of Ĉeq

2,∞,104,227 , respectively,
for the black lines featured in Figure 3.2.
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2,∞,M,227

95% conf. interval for Ĉeq
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Figure 3.1: Monte Carlo approximations of the asymptotic constants Cad
2,∞ and Ceq

2,∞ for
the SDE (3.21).
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The remaining two approximation issues are addressed simultaneously. Similarly to
the approximation of the asymptotic constants, we again estimate the solution by a
sufficiently accurate equidistant tamed Euler scheme, and we approximate the errors of
the equidistant tamed Euler schemes as well as the errors and the average numbers of
evaluations of the adaptive tamed Euler schemes via Monte Carlo simulations. More
precisely, for each N ∈ N we estimate e2,∞(X̂eq

N,1), e2,∞(X̂ad
N,1,2), and c(X̂ad

N,1,2) by

êeq
2,∞,M,Nmax,N

:=
( 1
M
·
M∑
m=1

max
`∈{0,...,Nmax}

∣∣X̂eq
Nmax,1,m(t(Nmax)

` )− X̂eq
N,1,m(t(Nmax)

` )
∣∣2)1/2

,

êad
2,∞,M,Nmax,N :=

( 1
M
·
M∑
m=1

max
`∈{0,...,Nmax}

∣∣X̂eq
Nmax,1,m(t(Nmax)

` )− X̂ad
N,1,2,m(t(Nmax)

` )
∣∣2)1/2

,

and

ĉM,N := 1
M
·
M∑
m=1

νad
N,1,2,m,

respectively, where M,Nmax ∈ N and where the random vectors

(
X̂eq
Nmax,1,m(t(Nmax)

0 ), . . . , X̂eq
Nmax,1,m(t(Nmax)

Nmax
)
)
, m ∈ {1, . . . ,M},

are independent copies of (X̂eq
Nmax,1(t(Nmax)

0 ), . . . , X̂eq
Nmax,1(t(Nmax)

Nmax
)), the random vectors

(
X̂eq
N,1,m(t(Nmax)

0 ), . . . , X̂eq
N,1,m(t(Nmax)

Nmax
)
)
, m ∈ {1, . . . ,M},

are independent copies of (X̂eq
N,1(t(Nmax)

0 ), . . . , X̂eq
N,1(t(Nmax)

Nmax
)), the random vectors

(
X̂ad
N,1,2,m(t(Nmax)

0 ), . . . , X̂ad
N,1,2,m(t(Nmax)

Nmax
)
)
, m ∈ {1, . . . ,M},

are independent copies of (X̂ad
N,1,2(t(Nmax)

0 ), . . . , X̂ad
N,1,2(t(Nmax)

Nmax
)), and the random variables

νad
N,1,2,m, m ∈ {1, . . . ,M},

are independent copies of νad
N,1,2. For the adaptive tamed Euler schemes, we thereby

used kN := dN · (log(N + 1))−1/2e for all N ∈ N on every computation. Numerical
estimates (N, êeq

2,∞,104,227,N ), N ∈ {26, 28, . . . , 220}, and (ĉ103,N , ê
ad
2,∞,103,227,N ),

N ∈ {27, 29, . . . , 221}, are visualized in Figure 3.2.
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Figure 3.2: Monte Carlo approximations of the errors e2,∞(X̂eq
N,1) and e2,∞(X̂ad

N,1,2) ver-
sus N and Monte Carlo approximations of the average number of evaluations
c(X̂ad

N,1,2) for the SDE (3.21).

3.6 Proofs

In this section, we prove our main theorems from Section 3.4 by establishing asymp-
totic lower and upper error bounds as indicated in Section 2.3. The structure of the
corresponding proofs is to a large extent based on techniques developed in Müller-
Gronbach (2002a).

Throughout this section, let the Assumptions (Ia), (H), (Ka), (Mb), and (pLµr ) be
satisfied for some a, b ∈ [2,∞) and r ∈ [0,∞) with a ≥ 4r + 2. Observe that, in this
setting, the Assumptions (locL), (pGµ

r+1), (pLσr/2), and (pGσ
(r+2)/2) are also satisfied; see

Remark 3.1. In addition, let (kN )N∈N be a sequence of natural numbers such that the
limits (3.6) hold, and let c denote unspecified positive constants that may vary at every
occurrence and that may only depend on T , d, m, and the parameters and constants
from the preceding assumptions.

3.6.1 Preliminaries

As a first step, we show that the supremum distance between, on the one hand, the
solution inserted in the diffusion coefficient and, on the other hand, the continuous-time
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tamed Euler scheme inserted in the tamed diffusion coefficient converges in probability
to zero.

Lemma 3.19. It holds that

sup
t∈[0,T ]

∣∣∣∣∣σ(t,X(t)
)
−

σ
(
t, X̃N,r(t)

)
1 + (T/N)1/2 ·

∣∣X̃N,r(t)
∣∣r
∣∣∣∣∣ P−−−−→

N→∞
0.

Proof. Due to the triangle inequality, it suffices to show that

sup
t∈[0,T ]

∣∣∣σ(t,X(t)
)
− σ

(
t, X̃N,r(t)

)∣∣∣ P−−−−→
N→∞

0 (3.22)

and

sup
t∈[0,T ]

∣∣∣∣∣σ(t, X̃N,r(t)
)
−

σ
(
t, X̃N,r(t)

)
1 + (T/N)1/2 ·

∣∣X̃N,r(t)
∣∣r
∣∣∣∣∣ P−−−−→

N→∞
0. (3.23)

To this end, we show Lθ convergence of the respective random variables to zero
for appropriate values of θ ∈ (0,∞). First, combining the Assumption (pLσr/2), the
Cauchy–Schwarz inequality, the Hölder inequality, and the Propositions A.7, A.5, and
A.6 yields

∥∥∥∥ sup
t∈[0,T ]

∣∣∣σ(t,X(t)
)
− σ

(
t, X̃N,r(t)

)∣∣∣ ∥∥∥∥
Lθ(Ω)

≤ c ·
∥∥∥∥ sup
t∈[0,T ]

∣∣X(t)− X̃N,r(t)
∣∣ · (1 +

∣∣X(t)
∣∣+ ∣∣X̃N,r(t)

∣∣)r/2 ∥∥∥∥
Lθ(Ω)

≤ c ·
∥∥∥∥ sup
t∈[0,T ]

∣∣X(t)− X̃N,r(t)
∣∣∥∥∥∥
L2θ(Ω)

·
∥∥∥∥ sup
t∈[0,T ]

(
1 +

∣∣X(t)
∣∣+ ∣∣X̃N,r(t)

∣∣)r/2 ∥∥∥∥
L2θ(Ω)

≤ c ·
∥∥∥∥ sup
t∈[0,T ]

∣∣X(t)− X̃N,r(t)
∣∣∥∥∥∥
L2θ(Ω)

·
(

1 +
∥∥∥∥ sup
t∈[0,T ]

∣∣X(t)
∣∣r/2∥∥∥∥

L2θ(Ω)
+
∥∥∥∥ sup
t∈[0,T ]

∣∣X̃N,r(t)
∣∣r/2∥∥∥∥

L2θ(Ω)

)
≤ c ·N−1/2

for all N ∈ N where θ := min{b, a/(2r+ 1)}/3 ∈ [2/3,∞). By letting N tend to infinity,
we eventually obtain (3.22). Second, combining the Assumption (pGσ

(r+2)/2), the triangle
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inequality, and the Proposition A.6 yields

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣∣∣σ(t, X̃N,r(t)
)
−

σ
(
t, X̃N,r(t)

)
1 + (T/N)1/2 ·

∣∣X̃N,r(t)
∣∣r
∣∣∣∣∣
∥∥∥∥∥
Lθ(Ω)

= (T/N)1/2 ·
∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣∣∣ σ
(
t, X̃N,r(t)

)
·
∣∣X̃N,r(t)

∣∣r
1 + (T/N)1/2 ·

∣∣X̃N,r(t)
∣∣r
∣∣∣∣∣
∥∥∥∥∥
Lθ(Ω)

≤ (T/N)1/2 ·
∥∥∥∥ sup
t∈[0,T ]

∣∣σ(t, X̃N,r(t)
)∣∣ · ∣∣X̃N,r(t)

∣∣r∥∥∥∥
Lθ(Ω)

≤ c ·N−1/2 ·
∥∥∥∥ sup
t∈[0,T ]

(
1 +

∣∣X̃N,r(t)
∣∣)(r+2)/2

·
∣∣X̃N,r(t)

∣∣r∥∥∥∥
Lθ(Ω)

≤ c ·N−1/2 ·
∥∥∥∥ sup
t∈[0,T ]

(
1 +

∣∣X̃N,r(t)
∣∣)(3r+2)/2

∥∥∥∥
Lθ(Ω)

≤ c ·N−1/2 ·
(

1 +
∥∥∥∥ sup
t∈[0,T ]

∣∣X̃N,r(t)
∣∣∥∥∥∥
La−r(Ω)

)(3r+2)/2

≤ c ·N−1/2

for all N ∈ N where θ := 2 · (a− r)/(3r + 2) ∈ [2,∞). By letting N tend to infinity, we
eventually obtain (3.23).

The previous result will turn out to be a crucial tool for the proofs of both the
asymptotic lower and upper error bounds. More precisely, we will combine convergence in
probability with uniform integrability to establish convergence in Lq for
q ∈ (0,min{b, a/(2r + 1)}) at certain places within our proofs, such as in the upcoming
Lemma 3.21. In contrast, directly applying the Assumption (pLσr/2) and the Hölder in-
equality as in the calculations above leads also to Lq convergence, but only up to smaller
values of q.

Note that the preceding lemma yields the following useful result.

Corollary 3.20. It holds that

AkN
P−−−−→

N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥
L2([0,T ])

and

max
`∈{0,...,N−1}

∣∣∣∣∣ σ
(
t
(N)
` , X̃N,r(t(N)

` )
)

1 + (T/N)1/2 ·
∣∣X̃N,r(t(N)

` )
∣∣r
∣∣∣∣∣
∞,2

P−−−−→
N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥
C([0,T ])

.
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Proof. It suffices to show

AkN −
(
T

kN
·
kN−1∑
`=0

∣∣σ(t(kN )
` , X(t(kN )

` )
)∣∣2
∞,2

)1/2
P−−−−→

N→∞
0 (3.24)

and

(
T

kN
·
kN−1∑
`=0

∣∣σ(t(kN )
` , X(t(kN )

` )
)∣∣2
∞,2

)1/2
P−−−−→

N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥
L2([0,T ])

(3.25)

as well as

max
`∈{0,...,N−1}

∣∣∣∣∣ σ
(
t
(N)
` , X̃N,r(t(N)

` )
)

1 + (T/N)1/2 ·
∣∣X̃N,r(t(N)

` )
∣∣r
∣∣∣∣∣
∞,2

− max
`∈{0,...,N−1}

∣∣σ(t(N)
` , X(t(N)

` )
)∣∣
∞,2

P−−−−→
N→∞

0
(3.26)

and

max
`∈{0,...,N−1}

∣∣σ(t(N)
` , X(t(N)

` )
)∣∣
∞,2

P−−−−→
N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥
C([0,T ])

. (3.27)

First, the convergences (3.24) and (3.26) follow from Lemma 3.19 by using the inverse
triangle inequality.

For the other two issues, observe that the function

[0, T ]→ R, t 7→ |σ(t,X(t, ω))|∞,2,

is continuous for every ω ∈ Ω due to the Assumptions (locL) and (H). We thus obtain

(
T

kN
·
kN−1∑
`=0

∣∣σ(t(kN )
` , X(t(kN )

` )
)∣∣2
∞,2

)1/2
a.s.−−−−→

N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥
L2([0,T ])

and
max

`∈{0,...,N−1}

∣∣σ(t(N)
` , X(t(N)

` )
)∣∣
∞,2

a.s.−−−−→
N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥
C([0,T ])

,

which prove (3.25) and (3.27).

Next, we show that the average numbers of evaluations of the driving Brownian
motion employed in the adaptive tamed Euler schemes are finite and asymptotically
equivalent to a constant times N . We obtain, in particular, that each such approximation
does indeed lie in one of the classes of adaptive schemes.
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Lemma 3.21. For all q ∈ [1,min{b, a/(2r + 1)}) we have

c
(
X̂ad
N,r,q

)
<∞ (3.28)

for each N ∈ N and

lim
N→∞

c
(
X̂ad
N,r,q

)
·N−1 =

(
21/2 · Cad

q,∞

)2q/(q+2)
. (3.29)

Proof. For each N ∈ N, the estimates (3.17) and (3.18) on the total number of evalua-
tions of W employed in the respective adaptive tamed Euler scheme yield

c
(
X̂ad
N,r,q

)
≤ kN +N · E

[
A2q/(q+2)
kN

]
(3.30)

and

c
(
X̂ad
N,r,q

)
≥ kN + E

[
1{AkN>0} ·

(
N · A2q/(q+2)

kN
− kN

)]
= N · E

[
A2q/(q+2)
kN

]
+ kN · P

({
AkN = 0

})
≥ N · E

[
A2q/(q+2)
kN

]
.

(3.31)

Combining (3.30), Assumption (pGσ
(r+2)/2), and Proposition A.6 shows (3.28).

Next, note first that we have

AkN
P−−−−→

N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥
L2([0,T ])

due to Corollary 3.20 and that the sequence (A2q/(q+2)
kN

)N∈N is uniformly integrable due
to Assumption (pGσ

(r+2)/2) and Proposition A.6. Hence, we obtain

A2q/(q+2)
kN

L1−−−−→
N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥2q/(q+2)

L2([0,T ])
. (3.32)

By using (3.30), (3.31), (3.32), and the first limit in (3.6), we then conclude (3.29).

3.6.2 Asymptotic Lower Bounds

We start by introducing some notation that will be used in this subsection. For all
N ∈ N, for all α1, . . . , αN ∈ [0,∞), for all q ∈ [1,∞), and for independent Brownian
bridges B1, . . . , BN on [0, 1] we put

Mq(α1, . . . , αN ) := E
[

max
`∈{1,...,N}

(
α` · sup

t∈[0,1]
|B`(t)|

)q]
∈ [0,∞)

and
Mq(N) :=Mq(1, . . . , 1︸ ︷︷ ︸

N times

).
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First, we prove an asymptotic lower bound for the Nth minimal errors in the classes
of adaptive approximations.

Lemma 3.22. For all q ∈ [1,min{b, a/(2r + 1)}) it holds that

lim inf
N→∞

(
N/ log(N)

)1/2 · inf
{
eq,∞

(
X̂
) ∣∣∣ X̂ ∈ Xad

N

(
C([0, T ];Rd)

)}
≥ Cad

q,∞. (3.33)

Proof. Fix N ∈ N with N > exp(2) and X̂N ∈ Xad
N (C([0, T ];Rd)) for the moment. Due

to the inverse triangle inequality and Proposition A.7, it holds that

eq,∞
(
X̂N

)
=
∥∥∥∥∥X − X̂N

∥∥
C([0,T ])

∥∥∥
Lq(Ω)

≥
∥∥∥∥∥X̃kN ,r − X̂N

∥∥
C([0,T ])

∥∥∥
Lq(Ω)

− c · k−1/2
N .

(3.34)

Let DN denote the entire data used by the approximation X̂N in the sense of Section 2.1,
define ΨN to be the set of observation sites of the driving Brownian motion employed
in X̂N , and put νN := #ΨN .

As a first step, we show that the distance between X̃kN ,r and X̂N as above is
greater or equal than the respective distance between X̃kN ,r and E[X̂kN ,r |DN ]. Be-
cause of the first limit in (3.6), we may actually assume that {t(kN )

1 , . . . , t
(kN )
kN
} ⊆ ΨN .

Hence, each X̃kN ,r(t
(kN )
` ), ` ∈ {0, . . . , kN}, is measurable with respect to the σ-algebra

generated by DN and we thereby obtain

X̃kN ,r(t)− E
[
X̃kN ,r(t)

∣∣DN

]
=

σ
(
t
(kN )
` , X̃kN ,r(t

(kN )
` )

)
1 + (T/kN )1/2 ·

∣∣X̃kN ,r(t
(kN )
` )

∣∣r ·
(
W (t)− E

[
W (t)

∣∣DN

]) (3.35)

for all ` ∈ {0, . . . , kN − 1} and for all t ∈ (t(kN )
` , t

(kN )
`+1 ]. Similarly to the derivations

of the Lemmas 1 and 2 in Yaroslavtseva (2017), one shows that for PDN -almost all
(x, y) ∈ Rd ×

⋃
n∈N(Rm)n it holds that

PW |DN=(x,y) = P−W |DN=(x,y),

which along with (3.35) yields

PX̃kN ,r−E[X̃kN ,r|DN ] |DN=(x,y) = P−X̃kN ,r+E[X̃kN ,r|DN ] |DN=(x,y).

We thus conclude that (X̃kN ,r −E[X̃kN ,r |DN ], DN ) and (−X̃kN ,r +E[X̃kN ,r |DN ], DN )
are identically distributed. Since, additionally, both X̂N and E[X̃kN ,r |DN ] are
measurable functions of DN , we consequently find that X̃kN ,r − X̂N and
2E[X̃kN ,r |DN ]− X̃kN ,r − X̂N are also identically distributed.
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Therefore, we obtain∥∥∥∥∥X̃kN ,r − X̂N

∥∥
C([0,T ])

∥∥∥
Lq(Ω)

= 1/2 ·
(∥∥∥∥∥X̃kN ,r − X̂N

∥∥
C([0,T ])

∥∥∥
Lq(Ω)

+
∥∥∥∥∥− 2E[X̃kN ,r |DN ] + X̃kN ,r + X̂N

∥∥
C([0,T ])

∥∥∥
Lq(Ω)

)
≥ 1/2 ·

∥∥∥∥∥X̃kN ,r − X̂N − 2E[X̃kN ,r |DN ] + X̃kN ,r + X̂N

∥∥
C([0,T ])

∥∥∥
Lq(Ω)

=
∥∥∥∥∥X̃kN ,r − E

[
X̃kN ,r

∣∣DN

]∥∥
C([0,T ])

∥∥∥
Lq(Ω)

.

(3.36)

Now let

i∗ : [0, T ]× Rd → {1, . . . , d}, (t, x) 7→ min
{
i ∈ {1, . . . , d}

∣∣∣ ∣∣σ(t, x)
∣∣
∞,2 =

∣∣σi(t, x)
∣∣
2

}
.

Conditioned on DN , the observation sites ΨN are fixed and for every j ∈ {1, . . . ,m} the
Gaussian process (Wj(t) − E[Wj(t) |DN ])t∈[0,T ] consists of νN independent Brownian
bridges between the discretization points. Hence, we obtain with Lemma A.1

E
[∥∥X̃kN ,r − E

[
X̃kN ,r

∣∣DN

]∥∥q
C([0,T ])

∣∣∣ DN

]
= E

[
max

i∈{1,...,d}
max

`∈{0,...,kN−1}
sup

t∈[t(kN )
`

,t
(kN )
`+1 ]

∣∣∣∣ m∑
j=1

σi,j
(
t
(kN )
` , X̃kN ,r(t

(kN )
` )

)
1 + (T/kN )1/2 ·

∣∣X̃kN ,r(t
(kN )
` )

∣∣r
·
(
Wj(t)− E

[
Wj(t)

∣∣DN

])∣∣∣∣q
∣∣∣∣∣ DN

]

≥ E
[

max
`∈{0,...,kN−1}

sup
t∈[t(kN )

`
,t

(kN )
`+1 ]

∣∣∣∣ m∑
j=1

σ
i∗(t(kN )

`
,X̃kN ,r(t

(kN )
`

)),j

(
t
(kN )
` , X̃kN ,r(t

(kN )
` )

)
1 + (T/kN )1/2 ·

∣∣X̃kN ,r(t
(kN )
` )

∣∣r
·
(
Wj(t)− E

[
Wj(t)

∣∣DN

])∣∣∣∣q
∣∣∣∣∣ DN

]

= E
[

max
`∈{0,...,kN−1}

∣∣∣∣ σ
(
t
(kN )
` , X̃kN ,r(t

(kN )
` )

)
1 + (T/kN )1/2 ·

∣∣X̃kN ,r(t
(kN )
` )

∣∣r
∣∣∣∣q
∞,2

· sup
t∈[t(kN )

`
,t

(kN )
`+1 ]

∣∣∣W1(t)− E
[
W1(t)

∣∣DN

]∣∣∣q ∣∣∣∣∣ DN

]

≥
( 1
νN
·
kN−1∑
`=0

∣∣∣∣ σ
(
t
(kN )
` , X̃kN ,r(t

(kN )
` )

)
1 + (T/kN )1/2 ·

∣∣X̃kN ,r(t
(kN )
` )

∣∣r
∣∣∣∣2
∞,2
· T
kN

)q/2
· Mq(νN )

= ν
−q/2
N · AqkN · Mq(νN )

(3.37)
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almost surely where AkN is defined as in (3.14). Put

δN := max
{

1,
∑

`∈{0,...,kN−1}
σ
(
t
(kN )
`

,X̃kN ,r(t
(kN )
`

)
)
6=0

(
#
(
ΨN ∩ (t(kN )

` , t
(kN )
`+1 )

)
+ 1

)}
. (3.38)

Cleary, we have δN ≤ νN and consequently∥∥∥ν−1/2
N · AkN ·

(
Mq(νN )

)1/q∥∥∥
Lq(Ω)

≥
∥∥∥δ−1/2
N · AkN ·

(
Mq(δN )

)∥∥∥
Lq(Ω)

. (3.39)

Now consider the monotonically increasing and concave function

λ : [0,∞)→ [0,∞), x 7→
{
x/ log(x), if x > exp(2),
x/2, else.

The monotonicity of this function along with the inequality E[νN ] ≤ N and the Jensen
inequality gives

N/ log(N) = λ(N) ≥ λ
(
E[νN ]

)
≥ E

[
λ(νN )

]
≥ E

[
λ(δN )

]
≥ E

[
1{δN>exp(2)} · δN/ log(δN )

]
.

By using this result and applying the Hölder inequality, we arrive at(
N/ log(N)

)1/2 · ∥∥∥δ−1/2
N · AkN ·

(
Mq(δN )

)1/q∥∥∥
Lq(Ω)

≥
∥∥∥(1{δN>exp(2)} · δN/ log(δN )

)1/2∥∥∥
L2(Ω)

·
∥∥∥δ−1/2
N · AkN ·

(
Mq(δN )

)1/q∥∥∥
Lq(Ω)

≥
∥∥∥(1{δN>exp(2)} · δN/ log(δN )

)1/2
· δ−1/2
N · AkN ·

(
Mq(δN )

)1/q∥∥∥
L2q/(q+2)(Ω)

≥
∥∥∥( log(δN )

)−1/2 · AkN ·
(
Mq(δN )

)1/q
· 1{δN>exp(2)}∩{‖|σ(·,X(·))|∞,2‖C([0,T ])>0}

∥∥∥
L2q/(q+2)(Ω)

.

(3.40)

Combining (3.34), (3.36), (3.37), (3.39), (3.40), and the second limit in (3.6) yields

lim inf
N→∞

(
N/ log(N)

)1/2 · inf
{
eq,∞

(
X̂
) ∣∣∣ X̂ ∈ Xad

N

(
C([0, T ];Rd)

)}
≥ lim inf

N→∞

∥∥α(N)∥∥
L2q/(q+2)(Ω)

(3.41)

where

α(N) :=
(

log(δN )
)−1/2 · AkN ·

(
Mq(δN )

)1/q · 1{δN>exp(2)}∩{‖|σ(·,X(·))|∞,2‖C([0,T ])>0}.

Next, we use the subsequence argument that is provided by Lemma B.1 to infer
(3.33) from (3.41). First of all, Corollary 3.20 and Lemma 3.19 yield

AkN
P−−−−→

N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥
L2([0,T ])

(3.42)
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and

sup
t∈[0,T ]

∣∣∣∣∣∣∣∣σ(t,X(t)
)∣∣
∞,2 −

∣∣∣∣∣ σ
(
t, X̃kN ,r(t)

)
1 + (T/kN )1/2 ·

∣∣X̃kN ,r(t)
∣∣r
∣∣∣∣∣
∞,2

∣∣∣∣∣∣ P−−−−→
N→∞

0. (3.43)

Now let (α(Nκ))κ∈N be a subsequence of (α(N))N∈N. In view of (3.42) and (3.43), there
exists a subsequence (AkNκn )n∈N of (AkNκ )κ∈N such that

AkNκn
a.s.−−−→
n→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥
L2([0,T ])

(3.44)

and

sup
t∈[0,T ]

∣∣∣∣∣∣∣∣σ(t,X(t)
)∣∣
∞,2 −

∣∣∣∣∣ σ
(
t, X̃kNκn ,r

(t)
)

1 + (T/kNκn )1/2 ·
∣∣X̃kNκn ,r

(t)
∣∣r
∣∣∣∣∣
∞,2

∣∣∣∣∣∣ a.s.−−−→
n→∞

0. (3.45)

Recall the definition (3.38) of δN and observe that the function

[0, T ]→ R, t 7→ |σ(t,X(t, ω))|∞,2,

is continuous for every ω ∈ Ω due to the Assumptions (locL) and (H). By (3.45) and the
just mentioned continuity, it holds that

P
({

lim
n→∞

δNκn =∞
}
∩
{∥∥∥∣∣σ(·, X(·)

)∣∣
∞,2

∥∥∥
C([0,T ])

> 0
})

= P
({∥∥∥∣∣σ(·, X(·)

)∣∣
∞,2

∥∥∥
C([0,T ])

> 0
})
.

(3.46)

Clearly, we have

P
({

lim inf
n→∞

α(Nκn ) ≥ 2−1/2 ·
∥∥∥∣∣σ(·, X(·)

)∣∣
∞,2

∥∥∥
L2([0,T ])

}
∩
{∥∥∥∣∣σ(·, X(·)

)∣∣
∞,2

∥∥∥
C([0,T ])

= 0
})

= P
({∥∥∥∣∣σ(·, X(·)

)∣∣
∞,2

∥∥∥
C([0,T ])

= 0
})
.

(3.47)
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Moreover, the limit (3.44), Lemma A.2(iii), and the equation (3.46) yield

P
({

lim inf
n→∞

α(Nκn ) ≥ 2−1/2 ·
∥∥∥∣∣σ(·, X(·)

)∣∣
∞,2

∥∥∥
L2([0,T ])

}
∩
{∥∥∥∣∣σ(·, X(·)

)∣∣
∞,2

∥∥∥
C([0,T ])

> 0
})

= P
({

lim inf
n→∞

α(Nκn ) ≥ 2−1/2 ·
∥∥∥∣∣σ(·, X(·)

)∣∣
∞,2

∥∥∥
L2([0,T ])

}
∩
{∥∥∥∣∣σ(·, X(·)

)∣∣
∞,2

∥∥∥
C([0,T ])

> 0
}

∩
{

lim
n→∞

AkNκn =
∥∥∥∣∣σ(·, X(·)

)∣∣
∞,2

∥∥∥
L2([0,T ])

})
≥ P

({
lim
n→∞

δNkn =∞
}
∩
{∥∥∥∣∣σ(·, X(·)

)∣∣
∞,2

∥∥∥
C([0,T ])

> 0
}

∩
{

lim
n→∞

AkNκn =
∥∥∥∣∣σ(·, X(·)

)∣∣
∞,2

∥∥∥
L2([0,T ])

})
= P

({∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥
C([0,T ])

> 0
})

(3.48)

Combining (3.47) and (3.48), we conclude that

lim inf
n→∞

α(Nκn ) ≥ 2−1/2 ·
∥∥∥∣∣σ(·, X(·)

)∣∣
∞,2

∥∥∥
L2([0,T ])

holds almost surely. Consequently, Fatou’s lemma gives

lim inf
n→∞

∥∥α(Nκn )∥∥
L2q/(q+2)(Ω) ≥ C

ad
q,∞.

Finally, employing Lemma B.1 finishes the proof of this lemma.

Next, we prove an asymptotic lower bound for the Nth minimal errors in the classes
of equidistant approximations.

Lemma 3.23. For all q ∈ [1,min{b, a/(2r + 1)}) it holds that

lim inf
N→∞

(
N/ log(N)

)1/2 · inf
{
eq,∞

(
X̂
) ∣∣∣ X̂ ∈ Xeq

N

(
C([0, T ];Rd)

)}
≥ Ceq

q,∞. (3.49)

Proof. Fix N ∈ N and X̂N ∈ Xeq
N (C([0, T ];Rd)) for the moment, and consider the data

DN := (ξ,W (t(N)
1 ), . . . ,W (t(N)

N )).
Similarly to the estimates (3.34), (3.36), and (3.37) in the proof of Lemma 3.22, one

successively shows that

eq,∞
(
X̂N

)
≥
∥∥∥∥∥X̃N,r − X̂N

∥∥
C([0,T ])

∥∥∥
Lq(Ω)

− c ·N−1/2, (3.50)
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∥∥∥∥∥X̃N,r − X̂N

∥∥
C([0,T ])

∥∥∥
Lq(Ω)

≥
∥∥∥∥∥X̃N,r − E

[
X̃N,r

∣∣DN

]∥∥
C([0,T ])

∥∥∥
Lq(Ω)

, (3.51)

and that

E
[∥∥X̃N,r − E

[
X̃N,r

∣∣DN

]∥∥q
C([0,T ])

∣∣∣ DN

]
≥ E

[
max

`∈{0,...,N−1}

∣∣∣∣ σ
(
t
(N)
` , X̃N,r(t(N)

` )
)

1 + (T/N)1/2 ·
∣∣X̃N,r(t(N)

` )
∣∣r
∣∣∣∣q
∞,2

· sup
t∈[t(N)

`
,t

(N)
`+1]

∣∣∣W1(t)− E
[
W1(t)

∣∣DN

]∣∣∣q ∣∣∣∣∣ DN

]

= (T/N)q/2 · Mq
(
α

(N)
0 , . . . , α

(N)
N−1

)
(3.52)

holds almost surely where for the last equality we scaled each interval [t(N)
` , t

(N)
`+1],

` ∈ {0, . . . , N − 1}, to [0, 1] and where

α
(N)
` :=

∣∣∣∣∣ σ
(
t
(N)
` , X̃N,r(t(N)

` )
)

1 + (T/N)1/2 ·
∣∣X̃N,r(t(N)

` )
∣∣r
∣∣∣∣∣
∞,2

for all ` ∈ {0, . . . , N − 1}.
Combining (3.50), (3.51), and (3.52) yields

lim inf
N→∞

(
N/ log(N)

)1/2 · inf
{
eq,∞

(
X̂
) ∣∣∣ X̂ ∈ Xeq

N

(
C([0, T ];Rd)

)}
≥ T 1/2 · lim inf

N→∞

∥∥∥( log(N)
)−1/2 · M1/q

q

(
α

(N)
0 , . . . , α

(N)
N−1

)∥∥∥
Lq(Ω)

.
(3.53)

Next, we again use the subsequence argument that is provided by Lemma B.1 to
infer (3.49) from (3.53). First of all, Corollary 3.20 gives

α(N) := max
`∈{0,...,N−1}

α
(N)
`

P−−−−→
N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥
C([0,T ])

. (3.54)

Now let (α(Nκ))κ∈N be a subsequence of (α(N))N∈N. In view of (3.54), there exists a
subsequence (α(Nκn ))n∈N of (α(Nκ))κ∈N such that

α(Nκn ) a.s.−−−→
n→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥
C([0,T ])

.

Hence, Lemma A.2(iii) yields(
log(Nκn)

)−1/2 · M1/q
q

(
α

(Nκn )
0 , . . . , α

(Nκn )
Nκn−1

) a.s.−−−→
n→∞

2−1/2 ·
∥∥∥∣∣σ(·, X(·)

)∣∣
∞,2

∥∥∥
C([0,T ])

.

Consequently, Fatou’s lemma gives

lim inf
n→∞

∥∥∥( log(Nκn)
)−1/2 ·

(
Mq

(
α

(Nκn )
0 , . . . , α

(Nκn )
Nκn−1

))1/q∥∥∥
Lq(Ω)

≥ 2−1/2 ·
∥∥∥∥∥∥∥∣∣σ(·, X(·)

)∣∣
∞,2

∥∥∥
C([0,T ])

∥∥∥∥
Lq(Ω)

.

Finally, employing Lemma B.1 finishes the proof of this lemma.



3.6. Proofs 47

3.6.3 Asymptotic Upper Bounds

We start by introducing some notation that will be used in this subsection. For all
N ∈ N, for all α1, . . . , αN ∈ [0,∞), for all q ∈ [1,∞), and for independent Brownian
bridges B1, . . . , BN on [0, 1] we put

Gq(· ;α1, . . . , αN ) : [0,∞)→ [0, 1], u 7→ P
({

max
`∈{1,...,N}

(
α` · sup

t∈[0,1]
|B`(t)|

)q
> u

})
,

and
Gq(· ;N) := Gq(· ; 1, . . . , 1︸ ︷︷ ︸

N times

).

First, we prove an asymptotic upper bound for the errors of the adaptive tamed
Euler schemes.

Lemma 3.24. For all q ∈ [1,min{b, a/(2r + 1)}) it holds that

lim sup
N→∞

(
c(X̂ad

N,r,q)/ log
(
c(X̂ad

N,r,q)
))1/2

· eq,∞
(
X̂ad
N,r,q

)
≤ Cad

q,∞.

Proof. Fix N ∈ N with 1 < kN ≤ N for the moment. Due to the triangle inequality and
Proposition A.7, it holds that

eq,∞
(
X̂ad
N,r,q

)
=
∥∥∥∥∥X − X̂ad

N,r,q

∥∥
C([0,T ])

∥∥∥
Lq(Ω)

≤
∥∥∥∥∥X̃kN ,r − X̂

ad
N,r,q

∥∥
C([0,T ])

∥∥∥
Lq(Ω)

+ c · k−1/2
N .

(3.55)

Note that for all ` ∈ {0, . . . , kN − 1} and for all t ∈ (t(kN )
` , t

(kN )
`+1 ] we have

X̃kN ,r(t)− X̂
ad
N,r,q(t) =

σ
(
t
(kN )
` , X̃kN ,r(t

(kN )
` )

)
1 + (T/kN )1/2 ·

∣∣X̃kN ,r(t
(kN )
` )

∣∣r ·
(
W (t)− Ŵ ad

N (t)
)

where Ŵ ad
N : Ω → C([0, T ];Rm) denotes the piecewise-linear interpolation of W at the

adaptive time points (3.15). Recall the definitions (3.14) and (3.16) of AkN and η`,
respectively. Observe that for all ` ∈ {0, . . . , kN − 1} it holds that

η` + 1 ≥ 1{AkN=0} + 1{AkN>0} ·
N · T
kN

· A−4/(q+2)
kN

·
∣∣∣∣ σ

(
t
(kN )
` , X̃kN ,r(t

(kN )
` )

)
1 + (T/kN )1/2 ·

∣∣X̃kN ,r(t
(kN )
` )

∣∣r
∣∣∣∣2
∞,2

,

which for all i ∈ {1, . . . , d}, for all ` ∈ {0, . . . , kN − 1}, and for all κ ∈ {0, . . . , η`} implies

((
τ

(kN )
`,κ+1 − τ

(kN )
`,κ

)
·
m∑
j=1

(
σi,j

(
t
(kN )
` , X̃kN ,r(t

(kN )
` )

)
1 + (T/kN )1/2 ·

∣∣X̃kN ,r(t
(kN )
` )

∣∣r
)2)1/2

≤ A2/(q+2)
kN

·N−1/2.

(3.56)
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Put DkN := (ξ,W (t(kN )
1 ), . . . ,W (t(kN )

kN
)). Conditioned on DkN , the observation

sites (3.15) are fixed and for every j ∈ {1, . . . ,m} the Gaussian process
(Wj(t) − Ŵ ad

N,j(t))t∈[0,T ] consists of νad
N,r,q independent Brownian bridges between the

discretization points. Hence, Lemma A.3 applied with

β := A2/(q+2)
kN

·N−1/2

(where we keep (3.56) in mind) and

z :=
(
β2 · log(νN,r,q)/2

)q/2
gives

E
[∥∥X̃kN ,r − X̂

ad
N,r,q

∥∥q
C([0,T ])

∣∣∣ DkN

]
= E

[
max

i∈{1,...,d}
max

`∈{0,...,kN−1}
κ∈{0,...,η`}

sup
t∈[τ (kN )

`,κ
,τ

(kN )
`,κ+1]

∣∣∣∣ m∑
j=1

σi,j
(
t
(kN )
` , X̃kN ,r(t

(kN )
` )

)
1 + (T/kN )1/2 ·

∣∣X̃kN ,r(t
(kN )
` )

∣∣r
·
(
Wj(t)− Ŵ ad

N,j(t)
)∣∣∣∣q

∣∣∣∣∣ DkN

]

≤
(
β2 · log(νad

N,r,q)/2
)q/2 + d ·

∫ ∞
(β2·log(νad

N,r,q)/2)q/2
Gq
(
u; β, . . . , β︸ ︷︷ ︸

νad
N,r,q times

)
du

(3.57)

almost surely. By using integration by substitution in the case β 6= 0, we further obtain(
β2 · log(νad

N,r,q)/2
)q/2 + d ·

∫ ∞
(β2·log(νad

N,r,q)/2)q/2
Gq
(
u; β, . . . , β︸ ︷︷ ︸

νad
N,r,q times

)
du

=
(
β2 · log(νad

N,r,q)/2
)q/2

·
(

1 + d · 2q/2 ·
∫ ∞

2−q/2
Gq
(
u ·
(

log(νad
N,r,q)

)−q/2; νad
N,r,q

)
du
)

= A2q/(q+2)
kN

·N−q/2 ·
(

log(νad
N,r,q)/2

)q/2 · Iνad
N,r,q

(3.58)

almost surely where

Iνad
N,r,q

:=
(

1 + d · 2q/2 ·
∫ ∞

2−q/2
Gq
(
u ·
(

log(νad
N,r,q)

)q/2; νad
N,r,q

)
du
)
.

Clearly, equation (3.58) holds also true in the case β = 0. We then deduce from (3.57)
and (3.58) that(

c
(
X̂ad
N,r,q

)
/ log

(
c
(
X̂ad
N,r,q

)))1/2
·
∥∥∥∥∥X̃kN ,r − X̂

ad
N,r,q

∥∥
C([0,T ])

∥∥∥
Lq(Ω)

≤
(

c
(
X̂ad
N,r,q

)
log

(
c
(
X̂ad
N,r,q

)) · log(N)
2N

)1/2

·
∥∥∥∥∥
( log(νad

N,r,q)
log(N)

)1/2
· A2/(q+2)

kN
· I1/q
νad
N,r,q

∥∥∥∥∥
Lq(Ω)

.

(3.59)
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Our main task will now be to show that the limit of the right hand side of (3.59) is
bounded above by Cad

q,∞ as N tends to infinity. To this end, note first that

AkN
P−−−−→

N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥
L2([0,T ])

(3.60)

due to Corollary 3.20 and that the sequence (A2q/(q+2)
kN

)N∈N is uniformly integrable due
to Assumption (pGσ

(r+2)/2) and Proposition A.6. Hence, we obtain

A2q/(q+2)
kN

L1−−−−→
N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥2q/(q+2)

L2([0,T ])
. (3.61)

Now we separately analyze the asymptotics of the two relevant terms appearing in the
right hand side of (3.59). Similarly to the proof of (3.29), one shows

lim
N→∞

c
(
X̂ad
N,r,q

)
log

(
c
(
X̂ad
N,r,q

)) · log(N)
N

=
∥∥∥∥∥∥∥∣∣σ(·, X(·)

)∣∣
∞,2

∥∥∥
L2([0,T ])

∥∥∥∥2q/(q+2)

L2q/(q+2)(Ω)
(3.62)

by using (3.17), (3.18), (3.6), and (3.61). Second, observe that the estimate (3.17) and
the inequality log(1 + x) ≤ x for all x ∈ (−1,∞) yield∥∥∥∥∥

( log(νad
N,r,q)

log(N)

)1/2
· A2/(q+2)

kN
· I1/q
νad
N,r,q

∥∥∥∥∥
Lq(Ω)

≤
∥∥∥∥∥
(

1 +
A2q/(q+2)
kN

log(N)

)1/2

· A2/(q+2)
kN

· I1/q
νad
N,r,q

∥∥∥∥∥
Lq(Ω)

(3.63)

for all N ∈ N such that 1 < kN ≤ N . Furthermore, note that νad
N,r,q tends to infinity as

N tends to infinity due to (3.18). Hence, Lemma A.2(ii) immediately yields

Iνad
N,r,q

a.s.−−−−→
N→∞

1. (3.64)

Combining (3.60) and (3.64) gives(
1 +
A2q/(q+2)
kN

log(N)

)1/2

· A2/(q+2)
kN

· I1/q
νad
N,r,q

P−−−−→
N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥2/(q+2)

L2([0,T ])
.

Moreover, the sequence(1 +
A2q/(q+2)
kN

log(N)

)q/2
· A2q/(q+2)

kN
· Iνad

N,r,q


N∈N

is uniformly integrable due to Assumption (pGσ
(r+2)/2), Proposition A.6, and Lemma

A.2(i). Hence, we obtain(
1 +
A2q/(q+2)
kN

log(N)

)1/2

· A2/(q+2)
kN

· I1/q
νad
N,r,q

Lq−−−−→
N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥2/(q+2)

L2([0,T ])
. (3.65)
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Finally, combining (3.55), (3.59), (3.62), (3.63), (3.65), and the second limit in (3.6)
finishes the proof of this lemma.

Next, we prove an asymptotic upper bound for the errors of the equidistant tamed
Euler schemes.

Lemma 3.25. For all q ∈ [1,min{b, a/(2r + 1)}) it holds that

lim sup
N→∞

(
N/ log(N)

)1/2 · eq,∞(X̂eq
N,r

)
≤ Ceq

q,∞.

Proof. Fix N ∈ N \ {1} for the moment and put DN := (ξ,W (t(N)
1 ), . . . ,W (t(N)

N )).
Analogously to the respective parts in the proof of Lemma 3.24, one shows that

eq,∞
(
X̂eq
N,r

)
≤
∥∥∥∥∥X̃N,r − X̂eq

N,r

∥∥
C([0,T ])

∥∥∥
Lq(Ω)

+ c ·N−1/2 (3.66)

and that

E
[∥∥X̃N,r − X̂eq

N,r

∥∥q
C([0,T ])

∣∣∣ DN

]
= E

[
max

i∈{1,...,d}
max

`∈{0,...,N−1}
sup

t∈[t(N)
`

,t
(N)
`+1]

∣∣∣∣ m∑
j=1

σi,j
(
t
(N)
` , X̃N,r(t(N)

` )
)

1 + (T/N)1/2 ·
∣∣X̃N,r(t(N)

` )
∣∣r

·
(
Wj(t)− Ŵ eq

N,j(t)
)∣∣∣∣q

∣∣∣∣∣ DN

] (3.67)

holds almost surely where Ŵ eq
N : Ω→ C([0, T ];Rm) denotes the piecewise-linear interpo-

lation of W at the equidistant time points (3.5). Observe that for all ` ∈ {0, . . . , N − 1}
and for all i ∈ {1, . . . , d} it holds that

(
(t(N)
`+1 − t

(N)
` ) ·

m∑
j=1

(
σi,j

(
t
(N)
` , X̃N,r(t(N)

` )
)

1 + (T/N)1/2 ·
∣∣X̃N,r(t(N)

` )
∣∣r
)2)1/2

≤ (T/N)1/2 ·
∣∣∣∣ σ

(
t
(N)
` , X̃N,r(t(N)

` )
)

1 + (T/N)1/2 ·
∣∣X̃N,r(t(N)

` )
∣∣r
∣∣∣∣
∞,2

.

(3.68)

Similarly to the proofs of (3.57) and (3.58), Lemma A.3 applied with

β := (T/N)1/2 · max
`∈{0,...,N−1}

∣∣∣∣ σ
(
t
(N)
` , X̃N,r(t(N)

` )
)

1 + (T/N)1/2 ·
∣∣X̃N,r(t(N)

` )
∣∣r
∣∣∣∣
∞,2

(where we keep (3.68) in mind) and

z :=
(
β2 · log(N)/2

)q/2
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gives

E
[

max
i∈{1,...,d}

max
`∈{0,...,N−1}

sup
t∈[t(N)

`
,t

(N)
`+1]

∣∣∣∣ m∑
j=1

σi,j
(
t
(N)
` , X̃N,r(t(N)

` )
)

1 + (T/N)1/2 ·
∣∣X̃N,r(t(N)

` )
∣∣r

·
(
Wj(t)− Ŵ eq

N,j(t)
)∣∣∣∣q

∣∣∣∣∣ DN

]

≤
(
β2 · log(N)/2

)q/2 + d ·
∫ ∞

(β2·log(N)/2)q/2
Gq
(
u;β, . . . , β︸ ︷︷ ︸

N times

)
du

=
(
β2 · log(N)/2

)q/2 · (1 + d · 2q/2 ·
∫ ∞

2−q/2
Gq
(
u ·
(

log(N)
)−q/2;N

)
du
)

= (T/N)q/2 · max
`∈{0,...,N−1}

∣∣∣∣ σ
(
t
(N)
` , X̃N,r(t(N)

` )
)

1 + (T/N)1/2 ·
∣∣X̃N,r(t(N)

` )
∣∣r
∣∣∣∣q
∞,2
·
(

log(N)/2
)q/2 · IN

(3.69)

almost surely where

IN :=
(

1 + d · 2q/2 ·
∫ ∞

2−q/2
Gq
(
u ·
(

log(N)
)q/2;N

)
du
)
.

Thus, we conclude from (3.67) and (3.69) that(
N/ log(N)

)1/2 · ∥∥∥∥∥X̃N,r − X̂eq
N,r

∥∥
C([0,T ])

∥∥∥
Lq(Ω)

≤ (T/2)1/2 ·

∥∥∥∥∥∥ max
`∈{0,...,N−1}

∣∣∣∣∣ σ
(
t
(N)
` , X̃N,r(t(N)

` )
)

1 + (T/N)1/2 ·
∣∣X̃N,r(t(N)

` )
∣∣r
∣∣∣∣∣
∞,2

∥∥∥∥∥∥
Lq(Ω)

· I1/q
N .

(3.70)

As a final step, we show that the right hand side of (3.70) tends to Ceq
q,∞ as N tends

to infinity. To this end, note first that

max
`∈{0,...,N−1}

∣∣∣∣∣ σ
(
t
(N)
` , X̃N,r(t(N)

` )
)

1 + (T/N)1/2 ·
∣∣X̃N,r(t(N)

` )
∣∣r
∣∣∣∣∣
∞,2

P−−−−→
N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥
C([0,T ])

due to Corollary 3.20 and that the sequence max
`∈{0,...,N−1}

∣∣∣∣∣ σ
(
t
(N)
` , X̃N,r(t(N)

` )
)

1 + (T/N)1/2 ·
∣∣X̃N,r(t(N)

` )
∣∣r
∣∣∣∣∣
q

∞,2


N∈N

is uniformly integrable due to Assumption (pGσ
(r+2)/2) and Proposition A.6. Hence, we

obtain

max
`∈{0,...,N−1}

∣∣∣∣∣ σ
(
t
(N)
` , X̃N,r(t(N)

` )
)

1 + (T/N)1/2 ·
∣∣X̃N,r(t(N)

` )
∣∣r
∣∣∣∣∣
∞,2

Lq−−−−→
N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
∞,2

∥∥∥
C([0,T ])

. (3.71)
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Moreover, Lemma A.2(ii) immediately yields

lim
N→∞

IN = 1. (3.72)

Finally, combining (3.66), (3.70), (3.71), and (3.72) finishes the proof of this lemma.
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4 Strongly Asymptotically Optimal
Approximations with respect to

the Lp Error

In this chapter, we study the error criterion eq,p, which is defined by (2.2), and we seek
approximations that are strongly asymptotically optimal in the corresponding classes
of adaptive and of equidistant approximations, i.e., in (Xad

N (Lp([0, T ];Rd)))N∈N and
(Xeq

N (Lp([0, T ];Rd)))N∈N. Almost without exception, we focus on the special case p = q
as otherwise the analysis becomes significantly more difficult. We briefly comment on
the general case in a stand-alone section. On the one hand, for SDEs whose coefficients
as well as their partial derivatives with respect to the state variable are globally Lipschitz
continuous, Müller-Gronbach (2002b) showed that specific Milstein schemes relating to
adaptive and to equidistant time discretizations are strongly asymptotically optimal in
their respective classes. On the other hand, for SDEs with super-linearly growing co-
efficients, the errors of these particular approximations tend to infinity as the numbers
of discretization sites tend to infinity. In the present chapter, we generalize the results
of the mentioned reference such that SDEs of the latter type are incorporated. More
precisely, we show under rather mild assumptions on the underlying SDE, notably poly-
nomial growth conditions on its coefficients and their partial derivatives, that specific
tamed Milstein schemes relating to adaptive and to equidistant time discretizations are
strongly asymptotically optimal in the aforementioned classes. To illustrate our findings,
we numerically analyze an exemplary SDE.

In Section 4.1, we introduce several assumptions that are required in addition to the
ones given in Section 3.1. Moreover, we show interdependencies among the new as well
as among the new and the old conditions. In Section 4.2, we provide a concise literature
review on results regarding the error eq,q. In particular, we state well-known results in
the classical setting of SDEs for which both the coefficients and their partial derivatives
with respect to the state variable are globally Lipschitz continuous. In Section 4.3, we
first present a continuous-time tamed Milstein scheme. Building upon this scheme, we
construct an equidistant and an adaptive tamed Milstein scheme in full details after-
wards. In Section 4.4, we state the main results of this chapter, i.e., strong asymptotic
optimality of the previously constructed adaptive and equidistant tamed Milstein sche-
mes in their respective classes. In Section 4.5, we discuss the case eq,p for p 6= q which
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turns out to be considerably harder to analyze than the special case eq,q. In Section 4.6,
we illustrate our findings via a numerical experiment. To this end, we study an SDE
whose diffusion coefficient grows quadratically in the state variable. In Section 4.7, we
carry out the proofs of our main theorems.

Throughout this chapter, we consider

(S,A) ∈
{(
Lp([0, T ];Rd),B(Lp([0, T ];Rd))

) ∣∣∣ p ∈ [1,∞)
}

as the underlying measurable space as per Chapter 2. In the case that the SDE (1.4)
has a unique solution (X(t))t∈[0,T ], we put

Cad
q,q := mq · gq ·

∥∥∥∥∥∥∥∣∣σ(·, X(·)
)∣∣
q,2

∥∥∥
L2q/(q+2)([0,T ])

∥∥∥∥
L2q/(q+2)(Ω)

∈ [0,∞],

Ceq
q,q := mq · gq · T 1/2 ·

∥∥∥∥∥∥∥∣∣σ(·, X(·)
)∣∣
q,2

∥∥∥
Lq([0,T ])

∥∥∥∥
Lq(Ω)

∈ [0,∞],
(4.1)

for q ∈ [1,∞) where

mq :=
(∫

R
|x|q/(2π)1/2 · exp(−x2/2) dx

)1/q
(4.2)

and

gq :=
(∫ 1

0
xq/2 · (1− x)q/2 dx

)1/q
. (4.3)

The quantities Cad
q,q and Ceq

q,q will turn out to be the sharp asymptotic constants for the
Nth minimal errors in the classes (Xad

N (Lq([0, T ];Rd)))N∈N and (Xeq
N (Lq([0, T ];Rd)))N∈N,

respectively. It is easy to see that Cad
q,q ≤ Ceq

q,q holds for all q ∈ [1,∞).

4.1 Assumptions

In addition to the assumptions introduced in Section 3.1, we present further conditions
on the coefficients of the SDE (1.4) here. For r ∈ [−1/2,∞) and ϕ ∈ {µ, σ}, we introduce
the following assumptions:

Assumption (C). The diffusion coefficient σ satisfies the so-called “commutativity con-
dition”, i.e., σ has partial derivatives with respect to the state variable and for all
j1, j2 ∈ {1, . . . ,m}, for all t ∈ [0, T ], and for all x ∈ Rd it holds that

∇σ(j1)(t, x) · σ(j2)(t, x) = ∇σ(j2)(t, x) · σ(j1)(t, x).

Assumption (LLGϕ). The coefficient ϕ is globally Lipschitz continuous with respect to
the time variable with a Lipschitz bound that grows at most linearly in the state variable,
i.e., there exists C ∈ (0,∞) such that for all s, t ∈ [0, T ] and for all x ∈ Rd it holds that∣∣ϕ(s, x)− ϕ(t, x)

∣∣ ≤ C · |s− t| · (1 + |x|
)
.
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Assumption (pG∇µr ). Each component of the drift coefficient µ has partial derivatives
with respect to the state variable that grow at most polynomially in the state variable,
i.e., there exists C ∈ (0,∞) such that for all i ∈ {1, . . . , d}, for all t ∈ [0, T ], and for all
x ∈ Rd it holds that ∣∣∇µi(t, x)

∣∣ ≤ C · (1 + |x|
)r
.

Assumption (pG∇σr ). Each component of the diffusion coefficient σ has partial deriva-
tives with respect to the state variable that grow at most polynomially in the state variable,
i.e., there exists C ∈ (0,∞) such that for all i ∈ {1, . . . , d}, for all j ∈ {1, . . . ,m}, for
all t ∈ [0, T ], and for all x ∈ Rd it holds that∣∣∇σi,j(t, x)

∣∣ ≤ C · (1 + |x|
)r
.

Assumption (pL∇µr ). Each component of the drift coefficient µ has partial derivatives
with respect to the state variable that are Lipschitz continuous with respect to the state
variable with a Lipschitz bound that grows at most polynomially in the state variable,
i.e., there exists C ∈ (0,∞) such that for all i ∈ {1, . . . , d}, for all t ∈ [0, T ], and for all
x, y ∈ Rd it holds that∣∣∇µi(t, x)−∇µi(t, y)

∣∣ ≤ C · |x− y| · (1 + |x|+ |y|
)r
.

Assumption (pL∇σr ). Each component of the diffusion coefficient σ has partial deriva-
tives with respect to the state variable that are Lipschitz continuous with respect to the
state variable with a Lipschitz bound that grows at most polynomially in the state vari-
able, i.e., there exists C ∈ (0,∞) such that for all i ∈ {1, . . . , d}, for all j ∈ {1, . . . ,m},
for all t ∈ [0, T ], and for all x, y ∈ Rd it holds that∣∣∇σi,j(t, x)−∇σi,j(t, y)

∣∣ ≤ C · |x− y| · (1 + |x|+ |y|
)r
.

Assumption (B∇tµ). Each component of the drift coefficient µ is continuously differen-
tiable with a partial derivative with respect to the time variable that is uniformly bounded
in the time variable and that grows at most linearly in the state variable, i.e., there exists
C ∈ (0,∞) such that for all i ∈ {1, . . . , d}, for all t ∈ [0, T ], and for all x ∈ Rd it holds
that ∣∣∇tµi(t, x)

∣∣ ≤ C · (1 + |x|
)
.

Assumption (B∇tσ). Each component of the diffusion coefficient σ is continuously dif-
ferentiable with a partial derivative with respect to the time variable that is uniformly
bounded in time, i.e., there exists C ∈ (0,∞) such that for all i ∈ {1, . . . , d}, for all
j ∈ {1, . . . ,m}, for all t ∈ [0, T ], and for all x ∈ Rd it holds that∣∣∇tσi,j(t, x)

∣∣ ≤ C · (1 + |x|
)
.
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The following easy-to-prove remark comprises various relations between the assump-
tions above and the ones given in Section 3.1.

Remark 4.1. (i) If d = m = 1, then (C) is satisfied.

(ii) If the SDE (1.4) is autonomous, then (LLGµ) and (LLGσ) are satisfied.

(iii) Let the SDE (1.4) be autonomous and let (pL∇ϕr ) be satisfied for some ϕ ∈ {µ, σ}
and r ∈ [−1/2,∞). Then (B∇tϕ) is satisfied.

(iv) Let (B∇tϕ) be satisfied for some ϕ ∈ {µ, σ}. Then (LLGϕ) is satisfied.

(v) Let (pL∇ϕr ) and (B∇tϕ) be satisfied for some ϕ ∈ {µ, σ} and r ∈ [−1/2,∞). Then
(pG∇ϕr+1) is satisfied.

(vi) Let (pG∇ϕr ) be satisfied for some ϕ ∈ {µ, σ} and r ∈ [0,∞). Then (pLϕr ) is satisfied.

(vii) Let (pLϕr ) and (LLGϕ) be satisfied for some ϕ ∈ {µ, σ} and r ∈ [0,∞). Then
(pGϕ

r+1) is satisfied.

For useful properties of the solution of the SDE (1.4), such as existence-and-uniqueness
or moment bounds, we refer the reader to the end of Section 3.1.

4.2 Literature Review

We now provide a concise overview of results concerning the considered pathwise approx-
imation problem, mainly with regard to the error eq,q. This selection does not claim to
be complete or exhaustive, but should give enough background to motivate the central
objective of this chapter.

The remainder of this section is organized as follows. We start our discussion by
presenting a result on lower bounds for the Nth minimal errors in the classes of adaptive
approximations which holds under quite general assumptions. This allows us to deduce
asymptotic lower bounds for the Nth minimal errors in the classes of adaptive and of
equidistant approximations, but with unspecified asymptotic constants only. Yet, in the
special case of SDEs whose coefficients as well as their (partial) derivatives (with respect
to the state variable) are globally Lipschitz continuous, one entirely knows the asymp-
totics of these Nth minimal errors. As a next step, we are interested in approximations
which possess the same convergence rate as the Nth minimal errors in the previous re-
sults or, even better, which are strongly asymptotically optimal in the aforementioned
classes. For SDEs whose coefficients as well as their derivatives are globally Lipschitz
continuous, specific equidistant and adaptive variants of the Milstein scheme achieve the
desired strong asymptotic optimality. However, the errors of these particular approxi-
mations tend to infinity once the drift or the diffusion coefficient grows super-linearly.
In search of strongly asymptotically optimal approximations for SDEs of the latter type,
we come into contact with so-called tamed Milstein schemes for which we find upper
error bounds of the right convergence rate.
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At first, lower error bounds for the pathwise approximation of SDEs have been exten-
sively studied for the case of coefficients that are globally Lipschitz continuous, see, e.g.,
Cambanis & Hu (1996), Hofmann et al. (2000a,b, 2001), and Müller-Gronbach (2002a,b).
Recently, the authors in Hefter et al. (2019) established lower bounds for the Nth min-
imal errors in the classes of adaptive approximations that hold under rather mild as-
sumptions on the underlying SDE. In particular, the coefficients of the SDE (1.4) are
required to have sufficient regularity only locally, in a small neighborhood of the initial
value.

Proposition 4.2. Let d = m = 1 and let the SDE (1.4) have a unique solution
(X(t))t∈[0,T ]. Moreover, let t0 ∈ [0, T ), T0 ∈ (t0, T ], and let ∅ 6= I ⊆ R be an open
interval such that for all i ∈ {0, 1} and j ∈ {0, 1, 2} the partial derivatives µ(i,j) and
σ(i,j) exist on [t0, T0] × I and are continuous, for all (t, x) ∈ [t0, T0] × I it holds that
σ(t, x) 6= 0, and it holds that P({X(t0) ∈ I}) > 0. Then for all p, q ∈ [1,∞) there exists
C ∈ (0,∞) such that for all N ∈ N it holds that

inf
{
eq,p

(
X̂
) ∣∣∣ X̂ ∈ Xad

N

(
Lp([0, T ];R)

)}
≥ C ·N−1/2. (4.4)

Proof. Theorem 12 in Hefter et al. (2019) shows (4.4) for the particular error e1,p. The
general case then follows from the monotonicity property (2.5).

From the preceding proposition, we are able to immediately deduce asymptotic lower
bounds for both the Nth minimal errors in the classes of adaptive and of equidistant
approximations. Yet, the corresponding asymptotic constants are unspecified in this
situation which does not enable us to resolve whether these constants are sharp or not.

However, in the special case of an SDE for which the coefficients and their deriva-
tives are globally Lipschitz continuous, Müller-Gronbach (2002b) determined the exact
asymptotics (including sharp asymptotic constants) of the Nth minimal errors in the
classes of adaptive and of equidistant approximations.

Proposition 4.3. Let T = 1 and let the Assumptions (C), (Ia), (pLµ0 ), (pLσ0 ), (pL∇µ0 ),
(pL∇σ0 ), (LLGµ), and (LLGσ) be satisfied for some a ∈ [4,∞). Then for all q ∈ [1, a/2]
it holds that

lim
N→∞

N1/2 · inf
{
eq,q

(
X̂
) ∣∣∣ X̂ ∈ Xad

N

(
Lq([0, 1];Rd)

)}
= Cad

q,q

and
lim
N→∞

N1/2 · inf
{
eq,q

(
X̂
) ∣∣∣ X̂ ∈ Xeq

N

(
Lq([0, 1];Rd)

)}
= Ceq

q,q.

Proof. See Theorem 5(i) and (iv) of Chapter III in Müller-Gronbach (2002b).

Next, we turn to upper bounds for the errors of specific adaptive and equidistant
approximations, and we seek in particular those approximations that have the same
convergence rate N−1/2 as the Nth minimal errors studied above. For the equidistant
and adaptive variants of the Euler–Maruyama scheme (as well as for the respective
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tamed Euler schemes) from Chapter 3, we can, in general, only guarantee the conver-
gence rate (log(N)/N)1/2. We thus switch from the Euler–Maruyama scheme to another
classical Itô–Tayler approximation, namely, the Milstein scheme.

For the rest of this section, we require all components of σ to have partial derivatives
with respect to the state variable.

We begin with the definition of the continuous-time Milstein schemes. To this end,
let N ∈ N and recall the equidistant time discretization (3.5). The continuous-time
Milstein scheme M̃N : Ω→ C([0, T ];Rd) is given by

M̃N,i(0) := ξi,

M̃N,i(t) := M̃N,i(t(N)
` ) + µi

(
t
(N)
` , M̃N (t(N)

` )
)
· (t− t(N)

` )

+
m∑
j=1

σi,j
(
t
(N)
` , M̃N (t(N)

` )
)
·
(
Wj(t)−Wj(t(N)

` )
)

+
m∑

j1,j2=1
(∇σi,j2 · σ(j1))

(
t
(N)
` , M̃N (t(N)

` )
)
· J (`,N)

j1,j2
(t),

for all i ∈ {1, . . . , d}, for all ` ∈ {0, . . . , N − 1}, and for all t ∈ (t(N)
` , t

(N)
`+1] where

J
(`,N)
j1,j2

(t) :=
∫ t

t
(N)
`

Wj1(s)−Wj1(t(N)
` ) dWj2(s). (4.5)

Note that M̃N is well-defined in the sense that its realizations are in fact continuous; for
this, we use that the Itô integral appearing in the construction above is continuous. If
the Assumption (C) is satisfied, then this scheme reduces to the more common form

M̃N,i(0) = ξi,

M̃N,i(t) = M̃N,i(t(N)
` ) + µi

(
t
(N)
` , M̃N (t(N)

` )
)
· (t− t(N)

` )

+
m∑
j=1

σi,j
(
t
(N)
` , M̃N (t(N)

` )
)
·
(
Wj(t)−Wj(t(N)

` )
)

+ 1
2 ·

m∑
j1,j2=1

(∇σi,j2 · σ(j1))
(
t
(N)
` , M̃N (t(N)

` )
)
· I(`,N)
j1,j2

(t),

for all i ∈ {1, . . . , d}, for all ` ∈ {0, . . . , N − 1}, and for all t ∈ (t(N)
` , t

(N)
`+1] where

I
(`,N)
j1,j2

(t) :=


(
Wj1(t)−Wj1(t(N)

` )
)
·
(
Wj2(t)−Wj2(t(N)

` )
)
, if j1 6= j2,(

Wj1(t)−Wj1(t(N)
` )

)2 − (t− t(N)
` ), else.

(4.6)

Observe that, since entire trajectories of the driving Brownian motion and iterated Itô
integrals are used in the construction above, this scheme is not an approximation in
the sense of Section 2.1, and we thus find M̃N 6∈ X(Lp([0, T ];Rd)) for every p ∈ [1,∞).
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It is well-known that the continuous-time Milstein schemes converge strongly to the
solution of the SDE (1.4) with order (at least) 1 if the drift and diffusion coefficients as
well as their partial derivatives with respect to the state variable are globally Lipschitz
continuous, as the following proposition clarifies.

Proposition 4.4. Let the Assumptions (Ia), (pLµ0 ), (pLσ0 ), (pL∇µ0 ), (pL∇σ0 ), (LLGµ),
and (LLGσ) be satisfied for some a ∈ [4,∞). Then for all q ∈ [1, a/2] there exists
C ∈ (0,∞) such that for all N ∈ N it holds that∥∥∥∥∥X − M̃N

∥∥
Lq([0,T ])

∥∥∥
Lq(Ω)

≤ C ·N−1. (4.7)

Proof. Let q ∈ [1, a/2]. As a first step, one shows the existence of some C ∈ (0,∞) such
that for all N ∈ N it holds that

sup
t∈[0,T ]

∥∥X(t)− M̃N (t)
∥∥
Lq(Ω) ≤ C ·N

−1. (4.8)

A proof for (4.8) is given by Proposition 1 of Chapter V in Müller-Gronbach (2002b)
for the special case T = 1; for general T ∈ (0,∞), one adopts the idea of proof therein
accordingly. Finally, we derive (4.7) from the estimate (4.8) by means of Fubini’s theo-
rem.

Note that we do not use the term eq,q(M̃N ) in the proposition above since the error
measure eq,q is only defined on X(Lq([0, T ];Rd)).

To obtain equidistant approximations that are based on the continuous-time Mil-
stein schemes, we consider the linear interpolation of these schemes at the equidistant
sites (3.5). For N ∈ N, the equidistant Milstein scheme M̂ eq

N : Ω→ C([0, T ];Rd) is given
by

M̂ eq
N (t(N)

` ) := M̃N (t(N)
` )

for all ` ∈ {0, . . . , N} and linearly interpolated between these time points. If the As-
sumption (C) is satisfied, then we obtain M̂ eq

N ∈ Xeq
N (Lp([0, T ];Rd)) for all p ∈ [1,∞) by

suitably choosing sequences ψ, χ, and ϕ as per Section 2.1 due to (4.6). Under the same
assumptions as in the preceding proposition and additionally extended by the commuta-
tivity condition, one also knows upper bounds for the errors of these equidistant Milstein
schemes.

Proposition 4.5. Let the Assumptions (Ia), (pLµ0 ), (pLσ0 ), (pL∇µ0 ), (pL∇σ0 ), (LLGµ),
and (LLGσ) be satisfied for some a ∈ [4,∞). Then for all q ∈ [1, a/2] there exists
C ∈ (0,∞) such that for all N ∈ N it holds that∥∥∥∥∥X − M̂ eq

N

∥∥
Lq([0,T ])

∥∥∥
Lq(Ω)

≤ C ·N−1/2.

Proof. This result seems to be well-known, but unfortunately we did not find a reference
that suits our setting perfectly. For the convenience of the reader, we therefore provide
a proof of this proposition here.
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Let q ∈ [1, a/2]. Observe that, in the setting of this proposition, the Assump-
tions (pGµ

1 ) and (pGσ
1 ) are also satisfied, see Remark 4.1(vii). Hence, we are able to

utilize in particular the estimate (3.3) given in Section 3.1. Combining the triangle in-
equality and the inequalities (3.3) and (4.8) yields the existence of some C ∈ (0,∞) such
that for all N ∈ N, for all ` ∈ {0, . . . , N − 1}, and for all t ∈ (t(N)

` , t
(N)
`+1] it holds that

∥∥X(t)− M̂ eq
N (t)

∥∥
Lq(Ω)

=
∥∥∥∥∥X(t)−

[
t
(N)
`+1 − t

t
(N)
`+1 − t

(N)
`

· M̃N (t(N)
` ) + t− t(N)

`

t
(N)
`+1 − t

(N)
`

· M̃N (t(N)
`+1)

]∥∥∥∥∥
Lq(Ω)

≤
∥∥X(t)− M̃N (t(N)

` )
∥∥
Lq(Ω) +

∥∥X(t)− M̃N (t(N)
`+1)

∥∥
Lq(Ω)

≤
∥∥X(t)−X(t(N)

` )
∥∥
Lq(Ω) +

∥∥X(t(N)
` )− M̃N (t(N)

` )
∥∥
Lq(Ω)

+
∥∥X(t)−X(t(N)

`+1)
∥∥
Lq(Ω) +

∥∥X(t(N)
`+1)− M̃N (t(N)

`+1)
∥∥
Lq(Ω)

≤ C ·N−1/2.

By using Fubini’s theorem along with this estimate, we then obtain

∥∥∥∥∥X − M̂ eq
N

∥∥
Lq([0,T ])

∥∥∥
Lq(Ω)

=
(N−1∑

`=0

∫ t
(N)
`+1

t
(N)
`

∥∥X(t)− M̂ eq
N (t)

∥∥q
Lq(Ω) dt

)1/q

≤ T 1/q · C ·N−1/2

for all N ∈ N, which finishes the proof of this proposition.

From the result above, we can deduce an asymptotic upper bound for the errors of the
equidistant Milstein schemes but, again, only with unspecified asymptotic constant. In
contrast, the following proposition shows the exact asymptotics (including sharp asymp-
totic constant) of the errors of these approximations in the case that the coefficients of
the SDE (1.4) as well as their derivatives are globally Lipschitz continuous.

Proposition 4.6. Let T = 1 and let the Assumptions (C), (Ia), (pLµ0 ), (pLσ0 ), (pL∇µ0 ),
(pL∇σ0 ), (LLGµ), and (LLGσ) be satisfied for some a ∈ [4,∞). Then for all q ∈ [1, a/2]
it holds that

lim
N→∞

N1/2 · eq,q
(
M̂ eq
N

)
= Ceq

q,q.

Proof. See Theorem 4(iv) of Chapter III in Müller-Gronbach (2002b).
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Having considered the Milstein schemes at equidistant sites only so far, we next turn
to variants of these schemes that are based on adaptive time discretizations. For this
purpose, we study the following adaptive Milstein schemes, which were introduced in
Müller-Gronbach (2002b). Fix T = 1 and let (kN )N∈N be a sequence of natural numbers
satisfying

lim
N→∞

kN
N

= 0 = lim
N→∞

N1/2

kN
. (4.9)

Fix N ∈ N for the moment and let q ∈ [1,∞). For each ` ∈ {0, . . . , kN − 1}, we consider
the random discretization

t
(kN )
` = τ

(kN )
`,0 < τ

(kN )
`,1 < · · · < τ

(kN )
`,η`+1 = t

(kN )
`+1 (4.10)

of [t(kN )
` , t

(kN )
`+1 ] where

η` :=
⌊
N · 1/kN ·

∣∣∣σ(t(kN )
` , M̃kN (t(kN )

` )
)∣∣∣2q/(q+2)

q,2

⌋
and

τ
(kN )
`,κ := t

(kN )
` + 1

kN
· κ

η` + 1

for all κ ∈ {0, . . . , η` + 1}. Let Ŵ ad
N denote the linear interpolation of W at the adaptive

time points (4.10), i.e., let

Ŵ ad
N (0) := 0,

Ŵ ad
N (t) :=

τ
(kN )
`,κ+1 − t

τ
(kN )
`,κ+1 − τ

(kN )
`,κ

·W (τ (kN )
`,κ ) +

t− τ (kN )
`,κ

τ
(kN )
`,κ+1 − τ

(kN )
`,κ

·W (τ (kN )
`,κ+1),

for all ` ∈ {0, . . . , kN − 1}, for all κ ∈ {0, . . . , η`}, and for all t ∈ (τ (kN )
`,κ , τ

(kN )
`,κ+1]. The

adaptive Milstein scheme M̂ad
N,q : [0, 1]× Ω→ Rd is given by

M̂ad
N,q(t) := M̃kN (t(kN )

` ) + µ
(
t
(kN )
` , M̃kN (t(kN )

` )
)
· (t− t(kN )

` )

+ σ
(
t
(kN )
` , M̃kN (t(kN )

` )
)
·
(
Ŵ ad
N (t)−W (t(kN )

` )
)
,

M̂ad
N,q(1) := M̃kN (1)

(4.11)

for all ` ∈ {0, . . . , kN} and for all t ∈ [t(kN )
` , t

(kN )
`+1 ). If the Assumption (C) is satisfied,

then we obtain M̂ad
N,q ∈ Xad

dc(M̂ad
N,q)e

(Lq([0, 1];Rd)) by suitably choosing sequences ψ, χ,

and ϕ as per Section 2.1 in case the cost of this approximation satisfy c(M̂ad
N,q) < ∞.

Müller-Gronbach (2002b) established the exact asymptotics of the errors of the adaptive
Milstein schemes defined above for SDEs whose coefficients as well as their derivatives
are globally Lipschitz continuous.
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Proposition 4.7. Let T = 1 and let the Assumptions (C), (Ia), (pLµ0 ), (pLσ0 ), (pL∇µ0 ),
(pL∇σ0 ), (LLGµ), and (LLGσ) be satisfied for some a ∈ [4,∞). Then for all q ∈ [1, a/2]
it holds that

lim
N→∞

(
c(M̂ad

N,q)
)1/2 · eq,q(M̂ad

N,q

)
= Cad

q,q.

Proof. See Theorem 4(i) of Chapter III in Müller-Gronbach (2002b).

Since both the convergence rates and the corresponding asymptotic constants match
in the Propositions 4.3, 4.6, and 4.7, we obtain strong asymptotic optimality of the adap-
tive and of the equidistant Milstein schemes in the classes of adaptive and of equidistant
approximations, respectively.

Corollary 4.8. Let T = 1 and let the Assumptions (C), (Ia), (pLµ0 ), (pLσ0 ), (pL∇µ0 ),
(pL∇σ0 ), (LLGµ), and (LLGσ) be satisfied for some a ∈ [4,∞). Then for all q ∈ [1, a/2]
with Cad

q,q > 0 it holds that

lim
N→∞

eq,q
(
M̂ad
N,q

)
inf
{
eq,q

(
X̂
) ∣∣∣ X̂ ∈ Xad

dc(M̂ad
N,q)e

(
Lq([0, 1];Rd)

)} = 1

and

lim
N→∞

eq,q
(
M̂ eq
N

)
inf
{
eq,q

(
X̂
) ∣∣∣ X̂ ∈ Xeq

N

(
Lq([0, 1];Rd)

)} = 1;

i.e., the approximations (M̂ad
N,q)N∈N and (M̂ eq

N )N∈N are strongly asymptotically optimal
in the classes (Xad

dc(M̂ad
N,q)e

(Lq([0, 1];Rd)))N∈N and (Xeq
N (Lq([0, 1];Rd)))N∈N, respectively.

Proof. This result is an immediate consequence of the Propositions 4.3, 4.6, and 4.7.

In view of all the previous considerations, our primary goal in this chapter is as
follows:

We aim at extending the results of Müller-Gronbach (2002b)—especially
the ones given in Corollary 4.8—to SDEs whose coefficients as well as
their partial derivatives with respect to the state variable are allowed
to grow super-linearly. In particular, we seek strongly asymptotically
optimal approximations in the classes of adaptive and of equidistant
approximations in such a setting.

To begin with, it is natural to ask whether the equidistant and the adaptive Mil-
stein schemes introduced above preserve strong asymptotic optimality in their respective
classes even for SDEs whose coefficients grow super-linearly. We answer this question
(at least for the equidistant case) to the negative in the following proposition.
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Proposition 4.9. Let d = m = 1 and let the SDE (1.4) be autonomous and have a
unique solution (X(t))t∈[0,T ]. Moreover, assume that P({σ(ξ) 6= 0} ∩ {∇σ(ξ) 6= 0}) > 0
and assume that there exist C ∈ [1,∞), α, β ∈ (1,∞) with α < β such that for all x ∈ R
with |x| ≥ C it holds that |µ(x)| ≥ C−1 ·|x|β, |σ(x)| ≤ C ·|x|α, and |(σ ·∇σ)(x)| ≤ C ·|x|α.
Then for all q ∈ [1,∞) with

∥∥‖X‖Lq([0,T ])
∥∥
Lq(Ω) <∞ it holds that

lim
N→∞

eq,q
(
M̂ eq
N

)
=∞. (4.12)

Proof. Under the given assumptions, the Lemmas 4.13 and 4.14 in Hatzesberger (2014)
yield the existence of some c ∈ (1,∞) such that for all N ∈ N with N > 4T there exists
ΩN ∈ F with

P(ΩN ) ≥ c(−Nc) (4.13)
such that for all ω ∈ ΩN it holds that

min
{∣∣M̃N (t(N)

N−1, ω)
∣∣, ∣∣M̃N (t(N)

N , ω)
∣∣} ≥ 2(αN−2). (4.14)

Now let q ∈ [1,∞) such that
∥∥‖X‖Lq([0,T ])

∥∥
Lq(Ω) <∞. Observe that the inverse triangle

inequality gives

eq,q
(
M̂ eq
N

)
=
∥∥∥∥∥X − M̂ eq

N

∥∥
Lq([0,T ])

∥∥∥
Lq(Ω)

≥
∥∥∥∥∥M̂ eq

N

∥∥
Lq([0,T ])

∥∥∥
Lq(Ω)

−
∥∥∥∥∥X∥∥

Lq([0,T ])

∥∥∥
Lq(Ω)

≥
∥∥∥∥∥M̂ eq

N

∥∥
Lq([0,T ])

∥∥∥
L1(Ω)

−
∥∥∥∥∥X∥∥

Lq([0,T ])

∥∥∥
Lq(Ω)

(4.15)

for all N ∈ N. Moreover, by the construction of the equidistant Milstein schemes, we
have ∥∥∥∥∥M̂ eq

N

∥∥
Lq([0,T ])

∥∥∥
L1(Ω)

= E
[( ∫ T

0

∣∣M̂ eq
N (t)

∣∣q dt
)1/q]

≥ E
[( ∫ t

(N)
N

t
(N)
N−1

∣∣M̂ eq
N (t)

∣∣q dt
)1/q]

≥ (T/N)1/q · E
[

inf
t∈[t(N)

N−1,t
(N)
N ]

∣∣M̂ eq
N (t)

∣∣]
= (T/N)1/q · E

[
min

{∣∣M̃N (t(N)
N−1)

∣∣, ∣∣M̃N (t(N)
N )

∣∣}]
(4.16)

for all N ∈ N. Next, employing the estimates (4.13) and (4.14) shows that

E
[

min
{∣∣M̃N (t(N)

N−1)
∣∣, ∣∣M̃N (t(N)

N )
∣∣}] ≥ E

[
1ΩN ·min

{∣∣M̃N (t(N)
N−1)

∣∣, ∣∣M̃N (t(N)
N )

∣∣}]
≥ E

[
1ΩN · 2

(αN−2)
]

= P(ΩN ) · 2(αN−2)

≥ c(−Nc) · 2(αN−2)

(4.17)
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holds for all N ∈ N with N > 4T . Combining the inequalities (4.15), (4.16), and (4.17)
then yields

eq,q
(
M̂ eq
N

)
≥ (T/N)1/q · c(−Nc) · 2(αN−2) −

∥∥∥∥∥X∥∥
Lq([0,T ])

∥∥∥
Lq(Ω)

for all N ∈ N with N > 4T . By letting N tend to infity, we eventually obtain (4.12).

We conjecture that a divergence result analogous to the one given by (4.12) also
holds true for the adaptive Milstein schemes.

The preceding observations emphasize that the previously constructed equidistant
and adaptive Milstein schemes are not suitable to globally approximate SDEs with super-
linearly growing coefficients. Due to the monotonicity property (2.6), we immediately
obtain upper error bounds for various approximations, in particular tamed schemes,
mentioned at the corresponding position in Section 3.2.

To achieve the primary goal of this chapter, we follow the approach of so-called
tamed Milstein schemes as a basis for the construction of strongly asymptotically optimal
approximations in the setting of SDEs with super-linearly growing coefficients.

Inspired by the tamed Euler scheme introduced in Hutzenthaler et al. (2012), the
authors in Gan & Wang (2013) constructed a tamed Milstein scheme in a very similar
way. For this purpose, let the SDE (1.4) be autonomous for the moment. For N ∈ N,
the continuous-time tamed Milstein scheme Ỹ GW

N : Ω→ C([0, T ];Rd) is given by

Ỹ GW
N,i (0) := ξi,

Ỹ GW
N,i (t) := Ỹ GW

N,i (t(N)
` ) +

µi
(
Ỹ GW
N (t(N)

` )
)

1 + T/N ·
∣∣µ(Ỹ GW

N (t(N)
` )

)∣∣ · (t− t(N)
` )

+
m∑
j=1

σi,j
(
Ỹ GW
N (t(N)

` )
)
·
(
Wj(t)−Wj(t(N)

` )
)

+
m∑

j1,j2=1
(∇σi,j2 · σ(j1))

(
Ỹ GW
N (t(N)

` )
)
· J (`,N)

j1,j2
(t),

for all i ∈ {1, . . . , d}, for all ` ∈ {0, . . . , N−1}, and for all t ∈ (t(N)
` , t

(N)
`+1] where J (`,N)

j1,j2
(·) is

defined as in (4.5). In the case of an SDE whose diffusion coefficient is still required to be
globally Lipschitz continuous and whose drift coefficient has to satisfy a so-called “one-
sided Lipschitz condition”, the continuous-time tamed Milstein schemes above converge
strongly to the solution. Even more, these schemes admit analogous upper error bounds
as the continuous-time Milstein schemes as stated in Proposition 4.4.
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Proposition 4.10. Let the SDE (1.4) be autonomous, let µ, σ(1), . . . , σ(m) be twice con-
tinuously differentiable, and let the Assumptions (C), (Ia), (M1), (pLσ0 ), and (pG∇µr )
be satisfied for all a ∈ [2,∞) and for some r ∈ [1,∞). Moreover, assume that there
exists C ∈ (0,∞) such that |(∇σ(j2) · σ(j1))(x) − (∇σ(j2) · σ(j1))(y)| ≤ C · |x − y| holds
for all j1, j2 ∈ {1, . . . ,m} and for all x, y ∈ Rd, that there exist C, s ∈ [1,∞) such
that |Hµi(x)| ≤ C · (1 + |x|)s holds for all i ∈ {1, . . . , d} and for all x ∈ Rd, and that
there exists C ∈ [1,∞) such that |Hσi,j(x)| ≤ C holds for all i ∈ {1, . . . , d}, for all
j ∈ {1, . . . ,m}, and for all x ∈ Rd. Then for all p, q ∈ [1,∞) there exists C ∈ (0,∞)
such that for all N ∈ N it holds that∥∥∥∥∥X − Ỹ GW

N

∥∥
Lp([0,T ])

∥∥∥
Lq(Ω)

≤ C ·N−1.

Proof. This result is an direct consequence of Theorem 3.2 in Gan & Wang (2013).

Another tamed Milstein scheme, this time based on the corresponding tamed Eu-
ler scheme given in Sabanis (2016), is analyzed in Kumar & Sabanis (2019). Let the
SDE (1.4) be autonomous for the moment. For N ∈ N and r ∈ [0,∞), the continuous-
time tamed Milstein scheme Ỹ KS

N,r : Ω→ C([0, T ];Rd) is given by

Ỹ KS
N,r,i(t) = ξi +

∫ t

0

µi
(
Ỹ KS
N,r(bsNc/N)

)
1 +N−1 ·

∣∣Ỹ KS
N,r(bsNc/N)

∣∣2r ds

+
m∑
j2=1

∫ t

0

σi,j2
(
Ỹ KS
N,r(bsNc/N)

)
1 +N−1 ·

∣∣Ỹ KS
N,r(bsNc/N)

∣∣2r
+

m∑
j1=1

(∇σi,j2 · σ(j1))
(
Ỹ KS
N,r(bsNc/N)

)
1 +N−1 ·

∣∣Ỹ KS
N,r(bsNc/N)

∣∣2r
·
(
Wj1(s)−Wj1(bsNc/N)

)
dWj2(s)

(4.18)

for all i ∈ {1, . . . , d} and for all t ∈ [0, T ]. Again, these schemes converge strongly
with order (at least) 1 but now even for SDEs whose diffusion coefficients may grow
super-linearly.
Proposition 4.11. Let the SDE (1.4) be autonomous and let the Assumptions (Ia),
(Ka), (Mb), (pL∇µr−1), and (pL∇σ(r−2)/2) be satisfied for some a ∈ [2,∞), b ∈ (2,∞), and
r ∈ [1,∞) with a ≥ 12r+4. Then for all q ∈ [1, b)∩ [1, a/(3r+1)] there exists C ∈ (0,∞)
such that for all N ∈ N it holds that∥∥∥∥∥X − Ỹ KS

N,r

∥∥
Lq([0,T ])

∥∥∥
Lq(Ω)

≤ C ·N−1.

Proof. By using Theorem 2.1 in Kumar & Sabanis (2019), this proposition can be shown
in a similar manner to Proposition 4.4.

Our main idea is now to modify the tamed Milstein schemes of Kumar & Sabanis
(2019) in such a way that we can derive equidistant and adaptive variants that are
strongly asymptotically optimal in their respective classes. These new approximations
will be presented in full details in the next section.
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4.3 The Equidistant and the Adaptive Tamed Milstein
Schemes

In the following, we introduce two variants of so-called tamed Milstein schemes that
are based on equidistant and on adaptive time discretizations, respectively. The crucial
ingredient for both approximations is a continuous-time tamed Milstein scheme which,
on the one hand, is suitably close to the solution of the SDE (1.4) and which, on the
other hand, possesses a simple recursive structure that will be exploited in the further
analysis. These equidistant and adaptive tamed Milstein schemes will turn out to be
strongly asymptotically optimal in the classes of equidistant and of adaptive schemes,
respectively.

We point out that the continuous-time tamed Milstein scheme presented here is
heavily inspired by the one introduced in Kumar & Sabanis (2019). The reason we do
not use the latter is that our approach is more convenient for our analysis; in particular,
our scheme satisfies the desired recursion (4.19) below. Nevertheless, observe that both
schemes coincide in the case that the SDE (1.4) is autonomous and T = 1.

Throughout this section, we require all components of σ to have partial derivatives
with respect to the state variable.

4.3.1 The Continuous-time Tamed Milstein Schemes

Let N ∈ N and r ∈ [0,∞), and recall the equidistant time discretization (3.5). The
continuous-time tamed Milstein scheme ỸN,r : Ω→ C([0, T ];Rd) is given by

ỸN,r,i(0) := ξi,

ỸN,r,i(t) := ỸN,r,i(t(N)
` ) +

µi
(
t
(N)
` , ỸN,r(t(N)

` )
)

1 + T/N ·
∣∣ỸN,r(t(N)

` )
∣∣2r · (t− t(N)

` )

+
m∑
j=1

σi,j
(
t
(N)
` , ỸN,r(t(N)

` )
)

1 + T/N ·
∣∣ỸN,r(t(N)

` )
∣∣2r · (Wj(t)−Wj(t(N)

` )
)

+
m∑

j1,j2=1

(∇σi,j2 · σ(j1))
(
t
(N)
` , ỸN,r(t(N)

` )
)

1 + T/N ·
∣∣ỸN,r(t(N)

` )
∣∣2r · J (`,N)

j1,j2
(t),

(4.19)

for all i ∈ {1, . . . , d}, for all ` ∈ {0, . . . , N − 1}, and for all t ∈ (t(N)
` , t

(N)
`+1] where J (`,N)

j1,j2
(·)

is defined as in (4.5).
Note that ỸN,r is well-defined in the sense that its realizations are in fact continuous;

for this, we use that the Itô integral appearing in the construction above is continuous.
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Moreover, this process satisfies almost surely for all t ∈ [0, T ] and for all i ∈ {1, . . . , d}

ỸN,r,i(t) = ξi +
∫ t

0

µi
(
bsN/T c · T/N, ỸN,r(bsN/T c · T/N)

)
1 + T/N ·

∣∣ỸN,r(bsN/T c · T/N)
∣∣2r ds

+
m∑
j2=1

∫ t

0

σi,j2
(
bsN/T c · T/N, ỸN,r(bsN/T c · T/N)

)
1 + T/N ·

∣∣ỸN,r(bsN/T c · T/N)
∣∣2r

+
m∑
j1=1

(∇σi,j2 · σ(j1))
(
bsN/T c · T/N, ỸN,r(bsN/T c · T/N)

)
1 + T/N ·

∣∣ỸN,r(bsN/T c · T/N)
∣∣2r

·
(
Wj1(s)−Wj1(bsN/T c · T/N)

)
dWj2(s);

cf. the construction (4.18). If the Assumption (C) is satisfied, then the continuous-time
tamed Milstein scheme reduces to the form

ỸN,r,i(0) = ξi,

ỸN,r,i(t) = ỸN,r,i(t(N)
` ) +

µi
(
t
(N)
` , ỸN,r(t(N)

` )
)

1 + T/N ·
∣∣ỸN,r(t(N)

` )
∣∣2r · (t− t(N)

` )

+
m∑
j=1

σi,j
(
t
(N)
` , ỸN,r(t(N)

` )
)

1 + T/N ·
∣∣ỸN,r(t(N)

` )
∣∣2r · (Wj(t)−Wj(t(N)

` )
)

+ 1
2 ·

m∑
j1,j2=1

(∇σi,j2 · σ(j1))
(
t
(N)
` , ỸN,r(t(N)

` )
)

1 + T/N ·
∣∣ỸN,r(t(N)

` )
∣∣2r · I(`,N)

j1,j2
(t),

for all i ∈ {1, . . . , d}, for all ` ∈ {0, . . . , N − 1}, and for all t ∈ (t(N)
` , t

(N)
`+1] where I(`,N)

j1,j2
(·)

is defined as in (4.6).
Since entire trajectories of the driving Brownian motion and iterated Itô integrals are

used in the construction of the continuous-time tamed Milstein scheme, this scheme is not
an approximation in the sense of Section 2.1, and we thus find ỸN,r 6∈ X(Lp([0, T ];Rd))
for every p ∈ [1,∞).

In Section A.4, we gather useful properties of the continuous-time tamed Milstein
schemes, namely, moment bounds and strong convergence with order (at least) 1.

4.3.2 The Equidistant Tamed Milstein Schemes

Next, based on the continuous-time tamed Milstein scheme, we construct approximations
which use not whole paths of the driving Brownian motion but evaluate W only at
equidistant sites.

As before, let N ∈ N and r ∈ [0,∞). The equidistant tamed Milstein scheme
Ŷ eq
N,r : Ω→ C([0, T ];Rd) is given by

Ŷ eq
N,r(t

(N)
` ) := ỸN,r(t(N)

` )

for all ` ∈ {0, . . . , N} and linearly interpolated between these time points.
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If the Assumption (C) is satisfied, then we obtain Ŷ eq
N,r ∈ Xeq

N (Lp([0, T ];Rd)) for all
p ∈ [1,∞) by suitably choosing sequences ψ, χ, and ϕ as per Section 2.1. Clearly, the
total number of evaluations of W employed in the approximation Ŷ eq

N,r is given by N for
each realization in this situation, which immediately yields c(Ŷ eq

N,r) = N .

4.3.3 The Adaptive Tamed Milstein Schemes

The following construction of the adaptive tamed Milstein schemes is heavily inspired
by the corresponding construction of the adaptive Milstein schemes M̂ad

N,q presented in
Section 4.2.

Note that, under suitable regularity assumptions on the coefficients of the SDE (1.4)
and under the commutativity condition (C), its solution (X(t))t∈[0,T ] satisfies

E
[∣∣X(t+ δ)−X(t)

∣∣q
q

∣∣∣X(t)
]

= mq
q ·
∣∣σ(t,X(t)

)∣∣q
q,2 · δ

q/2 + o(δq/2)

for all q ∈ [1,∞) and for all t ∈ [0, T ]. Hence, the paths of the solution of the considered
SDE are, in the Lq mean sense and conditioned on X(t), locally Hölder–1/2–continuous
with Hölder constant |σ(t,X(t))|q,2. For this reason, it is more beneficial to evaluate W
more often in regions where the value of |σ(t,X(t))|q,2 is large and vice versa.

Motivated by this idea, we construct our adaptive tamed Milstein scheme in two
steps. First, we use equidistant time steps to roughly approximate the solution and
thereby obtain estimates for the conditional Hölder constants at these sites. Second,
we refine our approximation by taking into account the local smoothness of the solu-
tion. More precisely, we distribute the more additional evaluation sites between those
equidistant time points the larger the corresponding estimated Hölder constant is.

Let r ∈ [0,∞) and let (kN )N∈N be a sequence of natural numbers satisfying the
limits (4.9). Fix N ∈ N for the moment and let q ∈ [1,∞). For each ` ∈ {0, . . . , kN −1},
we consider the random discretization

t
(kN )
` = τ

(kN )
`,0 < τ

(kN )
`,1 < · · · < τ

(kN )
`,η`+1 = t

(kN )
`+1 (4.20)

of [t(kN )
` , t

(kN )
`+1 ] where

η` :=

N · T/kN ·
∣∣∣∣∣ σ

(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r
∣∣∣∣∣
2q/(q+2)

q,2


and

τ
(kN )
`,κ := t

(kN )
` + T

kN
· κ

η` + 1
for all κ ∈ {0, . . . , η` + 1}. Let Ŵ ad

N denote the linear interpolation of W at the adaptive
time points (4.20), i.e., let

Ŵ ad
N (0) := 0,

Ŵ ad
N (t) :=

τ
(kN )
`,κ+1 − t

τ
(kN )
`,κ+1 − τ

(kN )
`,κ

·W (τ (kN )
`,κ ) +

t− τ (kN )
`,κ

τ
(kN )
`,κ+1 − τ

(kN )
`,κ

·W (τ (kN )
`,κ+1),

(4.21)
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for all ` ∈ {0, . . . , kN − 1}, for all κ ∈ {0, . . . , η`}, and for all t ∈ (τ (kN )
`,κ , τ

(kN )
`,κ+1].

The adaptive tamed Milstein scheme Ŷ ad
N,r,q : [0, T ]× Ω→ Rd is given by

Ŷ ad
N,r,q(t) := ỸkN ,r(t

(kN )
` ) +

µ
(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r · (t− t(kN )
` )

+
σ
(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r ·
(
Ŵ ad
N (t)−W (t(kN )

` )
)
,

Ŷ ad
N,r,q(T ) := ỸkN ,r(T )

for all ` ∈ {0, . . . , kN} and for all t ∈ [t(kN )
` , t

(kN )
`+1 ); cf. the construction (4.11).

If the Assumption (C) is satisfied, then we obtain Ŷ ad
N,r,q ∈ Xad

dc(Ŷ ad
N,r,q)e

(Lq([0, T ];Rd))
by suitably choosing sequences ψ, χ, and ϕ as per Section 2.1 in case the cost of this
approximation satisfy c(Ŷ ad

N,r,q) <∞. Define νad
N,r,q to be the (random) number of evalu-

ations of W employed in the approximation Ŷ ad
N,r,q. Observe that

νad
N,r,q = kN +

kN−1∑
`=0

η` ≤ kN +N ·T/kN ·
kN−1∑
`=0

∣∣∣∣∣ σ
(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r
∣∣∣∣∣
2q/(q+2)

q,2

(4.22)

and

νad
N,r,q ≥ max

{
kN , N · T/kN ·

kN−1∑
`=0

∣∣∣∣∣ σ
(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r
∣∣∣∣∣
2q/(q+2)

q,2

}
. (4.23)

4.4 Main Results

The following theorems entirely specify the asymptotics of the Nth minimal errors in the
classes of adaptive and of equidistant approximations as well as the asymptotics of the
errors of the adaptive and of the equidistant tamed Milstein schemes. As a consequence,
we will conclude strong asymptotic optimality of these schemes in their respective classes.
The proofs of all theorems are postponed to Section 4.7. Finally, we compare our results
to those given in Müller-Gronbach (2002b) at the end of this section.

Recall the definition (4.1) of the asymptotic constants from the beginning of this
chapter. The succeeding remark provides sufficient conditions for the finiteness of these
two constants.

Remark 4.12. Let the Assumptions (Ia), (locL), (Ka), and (pGσ
r ) be satisfied for some

a ∈ [2,∞) and r ∈ [1,∞) with a ≥ r. Then Fubini’s theorem and the moment esti-
mate (3.2) imply Ceq

a/r,a/r <∞.
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First, we specify the asymptotics of the Nth minimal errors in the classes of adaptive
and of equidistant approximations. More precisely, we not only state the convergence
rates but also give the sharp asymptotic constants. To this end, recall the definition (4.1)
of Cad

q,q and Ceq
q,q.

Theorem 4.13. Let the Assumptions (C), (Ia), (Ka), (Mb), (pL∇µr−1), (pL∇σ(r−2)/2),
(B∇tµ), and (B∇tσ) be satisfied for some a ∈ [2,∞), b ∈ (2,∞), and r ∈ [1,∞) with
a ≥ 12r + 4. Then for all q ∈ [1, b) ∩ [1, a/(3r + 1)] it holds that

lim
N→∞

N1/2 · inf
{
eq,q

(
X̂
) ∣∣∣ X̂ ∈ Xad

N

(
Lq([0, T ];Rd)

)}
= Cad

q,q (4.24)

and
lim
N→∞

N1/2 · inf
{
eq,q

(
X̂
) ∣∣∣ X̂ ∈ Xeq

N

(
Lq([0, T ];Rd)

)}
= Ceq

q,q. (4.25)

Proof. This result is an immediate consequence of the Lemmas 4.24, 4.25, 4.26, and 4.27
given in Section 4.7.

Next, we specify the asymptotics of the errors of the adaptive and of the equidistant
tamed Milstein schemes. Again, we not only state the convergence rates but also pro-
vide the sharp asymptotic constants. Right before, we show that the average numbers
of observation sites of the adaptive tamed Milstein schemes are finite and give their
asymptotic behavior.

Theorem 4.14. Let the Assumptions (C), (Ia), (Ka), (Mb), (pL∇µr−1), (pL∇σ(r−2)/2),
(B∇tµ), and (B∇tσ) be satisfied for some a ∈ [2,∞), b ∈ (2,∞), and r ∈ [1,∞) with
a ≥ 12r + 4. Then for all q ∈ [1, b) ∩ [1, a/(3r + 1)] it holds that

c
(
Ŷ ad
N,r,q

)
<∞

for each N ∈ N and

lim
N→∞

c
(
Ŷ ad
N,r,q

)
·N−1 =

(
m−1
q · g−1

q · Cad
q,q

)2q/(q+2)

as well as
lim
N→∞

(
c
(
Ŷ ad
N,r,q

))1/2
· eq,q

(
Ŷ ad
N,r,q

)
= Cad

q,q

and
lim
N→∞

N1/2 · eq,q
(
Ŷ eq
N,r

)
= Ceq

q,q.

Proof. This result is an immediate consequence of the Lemmas 4.23, 4.24, 4.25, 4.26,
and 4.27 given in Section 4.7.

Since both the convergence rates and the corresponding asymptotic constants match
in the preceding theorems, we obtain strong asymptotic optimality of the adaptive and
of the equidistant tamed Milstein schemes in their respective classes.
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Corollary 4.15. Let the Assumptions (C), (Ia), (Ka), (Mb), (pL∇µr−1), (pL∇σ(r−2)/2),
(B∇tµ), and (B∇tσ) be satisfied for some a ∈ [2,∞), b ∈ (2,∞), and r ∈ [1,∞) with
a ≥ 12r + 4. Then for all q ∈ [1, b) ∩ [1, a/(3r + 1)] with Cad

q,q > 0 it holds that

lim
N→∞

eq,q
(
Ŷ ad
N,r,q

)
inf
{
eq,q

(
X̂
) ∣∣∣ X̂ ∈ Xad

dc(Ŷ ad
N,r,q)e

(
Lq([0, T ];Rd)

)} = 1

and

lim
N→∞

eq,q
(
Ŷ eq
N,r

)
inf
{
eq,q

(
X̂
) ∣∣∣ X̂ ∈ Xeq

N

(
Lq([0, T ];Rd)

)} = 1;

i.e., the approximations (Ŷ ad
N,r,q)N∈N and (Ŷ eq

N,r)N∈N are strongly asymptotically optimal
in the classes (Xad

dc(Ŷ ad
N,r,q)e

(Lq([0, T ];Rd)))N∈N and (Xeq
N (Lq([0, T ];Rd)))N∈N, respectively.

Proof. This result is an immediate consequence of the Theorems 4.13 and 4.14.

Remark 4.16. Note that the assumptions required in the preceding results essentially
come from Proposition A.9, which states strong convergence of the continuous-time tamed
Milstein schemes. In this situation, we also have moment bounds for these schemes as
well as for the solution, see Proposition A.8 and (3.2).

In the next remark, we characterize equality of the asymptotic constants Cad
q,q and

Ceq
q,q, and briefly comment on the special case when these two constants both are zero.

Remark 4.17. Let the SDE (1.4) have a unique solution (X(t))t∈[0,T ] and let q ∈ [1,∞)
such that Ceq

q,q <∞.
Then we have Cad

q,q = Ceq
q,q if and only if almost surely |σ(t,X(t))|q,2 =∥∥|σ(0, ξ)|q,2

∥∥
Lq(Ω) holds for all t ∈ [0, T ], cf. Remark 6 in Müller-Gronbach (2002b).

In particular, this case applies to SDEs whose diffusion coefficient is constant.
Moreover, we have Ceq

q,q = 0 (and hence Cad
q,q = 0) if and only if almost surely

σ(t,X(t)) = 0 holds for almost all t ∈ [0, T ]. In such a situation, Theorems 4.13 and
4.14 do not allow to conclude strong asymptotic optimality. More precisely, these results
merely show that the N th minimal errors in the classes of adaptive and of equidistant
approximations as well as the errors of the adaptive and of the equidistant tamed Mil-
stein schemes each are in o(N−1/2). In fact, these N th minimal errors are actually zero
as the underlying SDE almost surely represents an ordinary differential equation in the
considered case.

To some extent, the preceding findings generalize (at least for autonomous SDEs)
the corresponding results presented in Müller-Gronbach (2002b). In this reference, the
coefficients of the SDE (1.4) as well as their partial derivatives with respect to the state
variable are required to be globally Lipschitz continuous, whereas in our setting these
functions may even grow super-linearly.
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Remark 4.18. Let the SDE (1.4) be autonomous, let T = 1, and let the Assump-
tions (C), (Ia∗), (pLµ0 ), (pLσ0 ), (pL∇µ0 ), and (pL∇σ0 ) be satisfied for some a∗ ∈ [28,∞).
Proposition 4.3 then shows that the N th minimal errors in the classes of adaptive and of
equidistant approximations satisfy the asymptotics (4.24) and (4.25) for all q ∈ [1, a∗/2].

Moreover, in the setting above, Remarks 3.1 and 4.1 yield that the Assumption (Ka)
is satisfied for all a ∈ [2,∞), that the Assumption (Mb) is satisfied for all b ∈ (2,∞), that
the Assumption (pL∇µr−1) is satisfied for all r ∈ [1,∞), that the Assumption (pL∇σ(r−2)/2)
is satisfied for all r ∈ [2,∞), and that the Assumptions (B∇tµ) and (B∇tσ) are satisfied.
By choosing a = b = a∗ and r = 2, Theorem 4.13 shows that the N th minimal errors in
the classes of adaptive and of equidistant approximations satisfy (4.24) and (4.25) for
all q ∈ [1, a∗/7].

In summary, we indeed impose weaker conditions on the underlying SDE (except for
the moment condition on the initial value); the asymptotics (4.24) and (4.25), though,
are obtained only up to smaller values of q. However, if additionally the initial value ξ
is deterministic, then we obtain (4.24) and (4.25) in both scenarios for every q ∈ [1,∞).

4.5 Problems and Solution Approaches in the Case p 6= q

One substantial benefit of taking p equal to q in the definition of eq,p is the possibility
to apply Fubini’s theorem, which allows to interchange the order of expectation and
integration. Therefore, the calculation of an error eq,q reduces to the following tasks:
first, determining the qth absolute moments of a certain process at all time points and
second, integrating over these expectations afterwards. The following example illustrates
a simple application of this idea.

Example 4.19. Reconsider the SDE (2.9) from Section 2.3, which is given by

dX(t) = 1 dW (t), t ∈ [0, 1],
X(0) = 0,

with d = m = 1 and which possesses the unique solution (W (t))t∈[0,1]. Fix q ∈ [1,∞)
and N ∈ N. By using Fubini’s theorem, we see that the piecewise-linear interpolation
Ŵ eq
N ∈ Xeq

N (Lq([0, 1];R)) of W at the equidistant sites `/N , ` ∈ {0, . . . , N}, satisfies

eq,q
(
Ŵ eq
N

)
=
(
E
[ ∫ 1

0

∣∣W (t)− Ŵ eq
N (t)

∣∣q dt
])1/q

=
(∫ 1

0
E
[∣∣W (t)− Ŵ eq

N (t)
∣∣q] dt

)1/q

=
(N−1∑

`=0

∫ (`+1)/N

`/N
E
[∣∣W (t)− Ŵ eq

N (t)
∣∣q] dt

)1/q
.

Recall the definitions of mq and gq from the beginning of this chapter, and note that the
process (W (t) − Ŵ eq

N (t))t∈[0,1] consists of N independent Brownian bridges between the
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discretization points. Lemma A.4 gives that∫ (`+1)/N

`/N
E
[∣∣W (t)− Ŵ eq

N (t)
∣∣q]dt = mq

q · gqq ·N−(q+2)/2

holds for each ` ∈ {0, . . . , N − 1}. Hence, we immediately obtain

eq,q
(
Ŵ eq
N

)
= mq · gq ·N−1/2.

♦

In the case p 6= q, the analysis of an error eq,p proves to be significantly harder
than before. Unlike for the special case, we here need to first integrate whole paths
of a certain process and then determine absolute moments of these integrals. Already
for trivial examples, such as the one above, corresponding calculations become highly
challenging to carry out.

Example 4.20. We assume the setting of Example 4.19. Fix p, q ∈ [1,∞), p 6= q, and
N ∈ N. Without the possibility of applying Fubini’s theorem, we merely arrive at

eq,p
(
Ŵ eq
N

)
=
(
E
[( ∫ 1

0

∣∣W (t)− Ŵ eq
N (t)

∣∣p dt
)q/p])1/q

=
(
E
[(N−1∑

`=0

∫ (`+1)/N

`/N

∣∣W (t)− Ŵ eq
N (t)

∣∣p dt
)q/p])1/q

.

Up to scaling factors, our task therefore reduces to determining moments of
N−1∑
`=0

∫ 1

0

∣∣B`(t)∣∣p dt (4.26)

where B0, . . . , BN−1 are independent Brownian bridges on [0, 1]. The mathematical object
of an integrated Brownian bridge, which occurs above, is of interest by itself, as the
following results demonstrate.

For p = 1, Shepp (1982) calculated integer moments of
∫ 1

0 |B0(t)|dt, and Johnson &
Killeen (1983) derived its cumulative distribution function. Unfortunately, these objects
are fairly cumbersome as they involve (infinite series of) Airy functions, which complicate
their analyses considerably.

For p = 2, Tolmatz (2002) obtained a density and integer moments of
∫ 1

0 |B0(t)|2 dt.
By N times convoluting this density with itself, one in principle obtains a density of
(4.26). But as before, the moments mentioned above are only given in an awkward form.
More precisely, these values are only given recursively, thereby also containing Bernoulli
numbers. ♦

On the one hand, we have just seen that errors eq,p are hard to analyze in the case
p 6= q. On the other hand, we are able to determine asymptotic lower and upper error
bounds at least in certain situations.
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First, in the setting of Proposition 4.2, we can immediately deduce asymptotic lower
bounds for both the Nth minimal errors in the classes (Xad

N (Lp([0, T ];R)))N∈N and
(Xeq

N (Lp([0, T ];R)))N∈N each with convergence rate N−1/2 and unspecified asymptotic
constant.

Second, an asymptotic lower bound for the Nth minimal errors in specific classes with
respect to the error eq,q implies an asymptotic lower bound for the Nth minimal errors
in the respective classes with respect to the error eq,p. More precisely, let ∗ ∈ {eq, ad}
and p, q ∈ [1,∞), and assume that there exist C ∈ (0,∞) and γ : N→ (0,∞) such that

lim inf
N→∞

(
γ(N)

)−1 · inf
{
eq∧p, q∧p

(
X̂
) ∣∣∣ X̂ ∈ X∗N

(
Lq∧p([0, T ];Rd)

)}
≥ C.

Now observe that the monotonicity properties (2.5) and (2.7) yield

eq,p
(
X̂
)
≥ (T · d)1/p−1/(q∧p) · eq∧p, q∧p

(
X̂
)

for all X̂ ∈ X(Lp([0, T ];Rd)). Combining the last two inequalities, we conclude that

lim inf
N→∞

(
γ(N)

)−1 · inf
{
eq,p

(
X̂
) ∣∣∣ X̂ ∈ X∗N

(
Lp([0, T ];Rd)

)}
≥ (T · d)1/p−1/(q∧p) · C.

Third, an asymptotic upper bound for the errors of specific approximations with
respect to the error eq,q implies an asymptotic upper bound for the errors of these
approximations with respect to the error eq,p. More precisely, let ∗ ∈ {eq, ad} and
p, q ∈ [1,∞), consider approximations (X̂N )N∈N with X̂N ∈ X∗N (Lq∨p([0, T ];Rd)) for
each N ∈ N, and assume that there exist C ∈ (0,∞) and γ : N→ (0,∞) such that

lim sup
N→∞

(
γ(N)

)−1 · eq∨p, q∨p
(
X̂N

)
≤ C.

Now observe that the monotonicity properties (2.5) and (2.7) yield

eq,p
(
X̂
)
≤ (T · d)1/p−1/(q∨p) · eq∨p, q∨p

(
X̂
)

holds for all X̂ ∈ X(Lq∨p([0, T ];Rd)). Combining the last two inequalities, we conclude
that

lim sup
N→∞

(
γ(N)

)−1 · eq,p
(
X̂N

)
≤ (T · d)1/p−1/(q∨p) · C.

4.6 Numerical Experiment

We illustrate the results of Section 4.4 by a numerical experiment. To this end, we
consider the SDE

dX(t) = 13.5 ·X(t) ·
(
1−

(
X(t)

)2) dt+
(
X(t)

)2 dW (t), t ∈ [0, 1],

X(0) = 5,
(4.27)

with d = 1 and m = 1.
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It is easy to see that the SDE (4.27) satisfies all the assumptions of our main theorems.
More precisely, we have that Assumption (C) is satisfied, Assumption (Ia) is satisfied
for all a ∈ [0,∞), Assumption (Ka) is satisfied for all a ∈ [2, 28], Assumption (Mb)
is satisfied for all b ∈ [2, 14.5], Assumption (pL∇µr−1) is satisfied for all r ∈ [2,∞), As-
sumption (pL∇σ(r−2)/2) is satisfied for all r ∈ [2,∞), Assumption (B∇tµ) is satisfied for all
r ∈ [0,∞), and Assumption (B∇tσ) is satisfied for all r ∈ [0,∞); cf. the corresponding
part in Section 3.5. For the rest of this section, we fix a = 28, b = 14.5, r = 2, and q = 2.

In view of Theorem 4.14, we aim at visualizing that, for large N ∈ N, the approx-
imation errors e2,2(Ŷ ad

N,2,2) and e2,2(Ŷ eq
N,2) of the adaptive and of the equidistant tamed

Milstein schemes are close to Cad
2,2 · (c(Ŷ ad

N,2,2))−1/2 and Ceq
2,2 ·N−1/2, respectively.

In doing so, we encounter three different approximation issues, namely, the approxi-
mation of the asymptotic constants Cad

2,2 and Ceq
2,2, of the errors e2,2(Ŷ ad

N,2,2) and e2,2(Ŷ eq
N,2),

and of the average number of evaluations c(Ŷ ad
N,2,2).

Regarding the first approximation issue, we do not know numerically suitable closed-
form expressions of the constants Ceq

2,2 and Cad
2,2, nor of the solution, for the particular

SDE (4.27). Therefore, we estimate these constants via Monte Carlo simulations in which
we approximate the solution by an equidistant tamed Milstein scheme with a sufficiently
large number of discretization points. More precisely, we estimate Cad

2,2 and Ceq
2,2 by

Ĉad
2,2,M,N := 6−1/2 · 1

M
· 1
N
·
M∑
m=1

N−1∑
`=0

∣∣Ŷ eq
N,2,m(t(N)

` )
∣∣2

and

Ĉeq
2,2,M,N := 6−1/2 ·

( 1
M
· 1
N
·
M∑
m=1

N−1∑
`=0

∣∣Ŷ eq
N,2,m(t(N)

` )
∣∣4)1/2

,

respectively, where M,N ∈ N, where the random vectors

(
Ŷ eq
N,2,m(t(N)

0 ), . . . , Ŷ eq
N,2,m(t(N)

N )
)
, m ∈ {1, . . . ,M},

are independent copies of (Ŷ eq
N,2(t(N)

0 ), . . . , Ŷ eq
N,2(t(N)

N )), and where we employ m2 = 1
and g2 = 6−1/2. Observe that for both Cad

2,2 and Ceq
2,2, we approximate the Lebesgue

integral occurring in their definitions by left Riemann sums. Proposition A.9 implies
that Ĉad

2,2,M,N and Ĉeq
2,2,M,N tend to Cad

2,2 and Ceq
2,2, respectively, as M and N tend to

infinity. Figure 4.1 depicts simulations of Ĉad
2,2,M,227 and Ĉeq

2,2,M,227 in dependence of M
along with their corresponding 95% CLT-based confidence intervals. Furthermore, we
utilize the specific approximation values Cad

2,2 ≈ 0.4419 and Ceq
2,2 ≈ 0.5844 obtained from

realizations of Ĉad
2,2,104,227 and of Ĉeq

2,2,104,227 , respectively, for the black lines featured in
Figure 4.2.
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Figure 4.1: Monte Carlo approximations of the asymptotic constants Cad
2,2 and Ceq

2,2 for
the SDE (4.27).

The remaining two approximation issues are addressed simultaneously. Similarly to
the approximation of the asymptotic constants, we again estimate the solution by a
sufficiently accurate equidistant tamed Milstein scheme, and we approximate the errors
of the equidistant tamed Milstein schemes as well as the errors and the average numbers
of evaluations of the adaptive tamed Milstein schemes via Monte Carlo simulations.
More precisely, for each N ∈ N we estimate e2,2(Ŷ eq

N,2), e2,2(Ŷ ad
N,2,2), and c(Ŷ ad

N,2,2) by

êeq
2,2,M,Nmax,N

:=
( 1
M
· 1
Nmax

·
M∑
m=1

Nmax−1∑
`=0

∣∣Ŷ eq
Nmax,2,m(t(Nmax)

` )− Ŷ eq
N,2,m(t(Nmax)

` )
∣∣2)1/2

,

êad
2,2,M,Nmax,N :=

( 1
M
· 1
Nmax

·
M∑
m=1

Nmax−1∑
`=0

∣∣Ŷ eq
Nmax,2,m(t(Nmax)

` )− Ŷ ad
N,2,2,m(t(Nmax)

` )
∣∣2)1/2

,

and

ĉM,N := 1
M
·
M∑
m=1

νad
N,2,2,m,

respectively, where M,Nmax ∈ N and where the random vectors(
Ŷ eq
Nmax,2,m(t(Nmax)

0 ), . . . , Ŷ eq
Nmax,2,m(t(Nmax)

Nmax
)
)
, m ∈ {1, . . . ,M},

are independent copies of (Ŷ eq
Nmax,2(t(Nmax)

0 ), . . . , Ŷ eq
Nmax,2(t(Nmax)

Nmax
)), the random vectors(

Ŷ eq
N,2,m(t(Nmax)

0 ), . . . , Ŷ eq
N,2,m(t(Nmax)

Nmax
)
)
, m ∈ {1, . . . ,M},
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are independent copies of (Ŷ eq
N,2(t(Nmax)

0 ), . . . , Ŷ eq
N,2(t(Nmax)

Nmax
)), the random vectors

(
Ŷ ad
N,2,2,m(t(Nmax)

0 ), . . . , Ŷ ad
N,2,2,m(t(Nmax)

Nmax
)
)
, m ∈ {1, . . . ,M},

are independent copies of (Ŷ ad
N,2,2(t(Nmax)

0 ), . . . , Ŷ ad
N,2,2(t(Nmax)

Nmax
)), and the random variables

νad
N,2,2,m, m ∈ {1, . . . ,M},

are independent copies of νad
N,2,2. For the adaptive tamed Milstein schemes, we thereby

used kN := dN9/10e for all N ∈ N on every computation. Numerical estimates
(N, êeq

2,2,104,227,N ), N ∈ {26, 28, . . . , 218}, and (ĉ103,N , ê
ad
2,2,103,227,N ), N ∈ {26, 28, . . . , 218},

are visualized in Figure 4.2.

N and simulations of ĉ103,N
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Figure 4.2: Monte Carlo approximations of the errors e2,2(Ŷ eq
N,2) and e2,2(Ŷ ad

N,2,2) versus
N and Monte Carlo approximations of the average number of evaluations
c(Ŷ ad

N,2,2) for the SDE (4.27).

4.7 Proofs

In this section, we prove our main theorems from Section 4.4 by establishing asymp-
totic lower and upper error bounds as indicated in Section 2.3. The structure of the
corresponding proofs is to a large extent based on techniques developed in Müller-
Gronbach (2002b).
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Throughout this section, let the Assumptions (C), (Ia), (Ka), (Mb), (pL∇µr−1),
(pL∇σ(r−2)/2), (B∇tµ), and (B∇tσ) be satisfied for some a ∈ [2,∞), b ∈ (2,∞), and
r ∈ [1,∞) with a ≥ 12r + 4. Observe that, in this setting, the Assumptions (locL),
(LLGµ), (pG∇µr ), (pLµr ), (pGµ

r+1), (LLGσ), (pG∇σr/2), (pLσr/2), and (pGσ
(r+2)/2) are also sat-

isfied; see Remark 4.1. Moreover, there exists C ∈ (0,∞) such that for all i ∈ {1, . . . , d},
for all j1, j2 ∈ {1, . . . ,m}, for all t ∈ [0, T ], and for all x ∈ Rd it holds that∣∣(∇σi,j2 · σ(j1))(t, x)

∣∣ ≤ C · (1 + |x|
)r+1

. (4.28)

In addition, let (kN )N∈N be a sequence of natural numbers such that the limits (4.9)
hold, and let c denote unspecified positive constants that may vary at every occurrence
and that may only depend on T , d, m, and the parameters and constants from the
preceding assumptions.

4.7.1 Preliminaries

As a first step, we show that the continuous-time tamed Milstein schemes inserted in
the respective tamed diffusion coefficient tend in a certain Lq type sense towards the
solution inserted in the diffusion coefficient. This result will turn out to be a crucial tool
for the proofs of both the asymptotic lower and upper error bounds.

Lemma 4.21. For all q ∈ [1, 2a/(r + 2)) and for all q ∈ [2/3, q] it holds that

lim
N→∞

∥∥∥∥∥∥
∣∣∣∣∣
(
T

N

)1/q
·
∣∣∣∣ σ

(
t
(N)
· , ỸN,r(t(N)

· )
)

1 + T/N ·
∣∣ỸN,r(t(N)

· )
∣∣2r
∣∣∣∣
q,2

∣∣∣∣∣
q

∥∥∥∥∥∥
Lq(Ω)

=
∥∥∥∥∥∥∥∣∣σ(·, X(·)

)∣∣
q,2

∥∥∥
Lq([0,T ])

∥∥∥∥
Lq(Ω)

.

Proof. We divide the proof into the two parts q ∈ [1, q] and q ∈ [2/3, 1).
First, we consider the case q ∈ [1, q]. Here, it suffices to show∣∣∣∣∣

(
T

N

)1/q
·
∣∣∣σ(t(N)

· , X(t(N)
· )

)∣∣∣
q,2

∣∣∣∣∣
q

P−−−−→
N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
q,2

∥∥∥
Lq([0,T ])

, (4.29)

∣∣∣∣∣
(
T

N

)1/q
·
(∣∣∣σ(t(N)

· , X(t(N)
· )

)∣∣∣
q,2
−
∣∣∣σ(t(N)

· , ỸN,r(t(N)
· )

)∣∣∣
q,2

)∣∣∣∣∣
q

P−−−−→
N→∞

0, (4.30)

∣∣∣∣∣
(
T

N

)1/q
·
(∣∣∣σ(t(N)

· , ỸN,r(t(N)
· )

)∣∣∣
q,2
−
∣∣∣∣ σ

(
t
(N)
· , ỸN,r(t(N)

· )
)

1 + T/N ·
∣∣ỸN,r(t(N)

· )
∣∣2r
∣∣∣∣
q,2

)∣∣∣∣∣
q

P−−−−→
N→∞

0,

(4.31)

and that∣∣∣∣∣
(
T

N

)1/q
·
∣∣∣∣ σ

(
t
(N)
· , ỸN,r(t(N)

· )
)

1 + T/N ·
∣∣ỸN,r(t(N)

· )
∣∣2r
∣∣∣∣
q,2

∣∣∣∣∣
q

q


N∈N

is uniformly integrable, (4.32)
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as we obtain

∣∣∣∣∣
(
T

N

)1/q
·
∣∣∣∣ σ

(
t
(N)
· , ỸN,r(t(N)

· )
)

1 + T/N ·
∣∣ỸN,r(t(N)

· )
∣∣2r
∣∣∣∣
q,2

∣∣∣∣∣
q

Lq−−−−→
N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
q,2

∥∥∥
Lq([0,T ])

in this case.
With regard to (4.29), observe that the function

[0, T ]→ R, t 7→
∣∣σ(t,X(t, ω)

)∣∣
q,2,

is continuous for every ω ∈ Ω due to the Assumptions (LLGσ) and (pLσr/2). Hence, we
obtain

∣∣∣∣∣
(
T

N

)1/q
·
∣∣∣σ(t(N)

· , X(t(N)
· )

)∣∣∣
q,2

∣∣∣∣∣
q

a.s.−−−−→
N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
q,2

∥∥∥
Lq([0,T ])

, (4.33)

which immediately shows (4.29).
With regard to (4.30) and (4.31), we show Lθ convergence of the respective

random variables to zero for appropriate values of θ ∈ (0,∞) in both cases. First, fix
θ := min{b/2, 2a/(9r + 3)} ∈ [1,∞). Combining the monotonicity property | · |q ≤ | · |1,
the inverse triangle inequality, and the triangle inequality give

∥∥∥∥∥∥
∣∣∣∣∣
(
T

N

)1/q
·
(∣∣∣σ(t(N)

· , X(t(N)
· )

)∣∣∣
q,2
−
∣∣∣σ(t(N)

· , ỸN,r(t(N)
· )

)∣∣∣
q,2

)∣∣∣∣∣
q

∥∥∥∥∥∥
Lθ(Ω)

≤

∥∥∥∥∥∥
∣∣∣∣∣
(
T

N

)1/q
·
(∣∣∣σ(t(N)

· , X(t(N)
· )

)∣∣∣
q,2
−
∣∣∣σ(t(N)

· , ỸN,r(t(N)
· )

)∣∣∣
q,2

)∣∣∣∣∣
1

∥∥∥∥∥∥
Lθ(Ω)

≤
(
T

N

)1/q
·
∥∥∥∥∥
N−1∑
`=0

∣∣∣∣∣∣∣σ(t(N)
` , X(t(N)

` )
)∣∣∣
q,2
−
∣∣∣σ(t(N)

` , ỸN,r(t(N)
` )

)∣∣∣
q,2

∣∣∣∣
∥∥∥∥∥
Lθ(Ω)

≤
(
T

N

)1/q
·
N−1∑
`=0

∥∥∥∥∥∣∣∣σ(t(N)
` , X(t(N)

` )
)
− σ

(
t
(N)
` , ỸN,r(t(N)

` )
)∣∣∣
q,2

∥∥∥∥∥
Lθ(Ω)

.

(4.34)

Moreover, Assumption (pLσr/2), the Hölder inequality, Proposition A.9, the triangle in-
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equality, the moment estimate (3.2), and Proposition A.8 yield∥∥∥∥∥∣∣∣σ(t(N)
` , X(t(N)

` )
)
− σ

(
t
(N)
` , ỸN,r(t(N)

` )
)∣∣∣
q,2

∥∥∥∥∥
Lθ(Ω)

≤ c ·
∥∥∥∥∣∣∣X(t(N)

` )− ỸN,r(t(N)
` )

∣∣∣ · (1 +
∣∣X(t(N)

` )
∣∣+ ∣∣ỸN,r(t(N)

` )
∣∣)r/2∥∥∥∥

Lθ(Ω)

≤ c ·
∥∥∥X(t(N)

` )− ỸN,r(t(N)
` )

∥∥∥
L3θ/2(Ω)

·
∥∥∥1 +

∣∣X(t(N)
` )

∣∣+ ∣∣ỸN,r(t(N)
` )

∣∣∥∥∥r/2
L3rθ/2(Ω)

≤ c ·N−1 ·
(

1 +
∥∥∥X(t(N)

` )
∥∥∥
L3rθ/2(Ω)

+
∥∥∥ỸN,r(t(N)

` )
∥∥∥
L3rθ/2(Ω)

)r/2
≤ c ·N−1

(4.35)

for all ` ∈ {0, . . . , N − 1}. Combining (4.34) and (4.35), we eventually obtain (4.30) as
N tends to infinity. Next, fix θ := 2a/(5r + 2) ∈ [4,∞). Similarly to the derivation
of (4.34), one shows∥∥∥∥∥∥

∣∣∣∣∣
(
T

N

)1/q
·
(∣∣∣σ(t(N)

· , ỸN,r(t(N)
· )

)∣∣∣
q,2
−
∣∣∣∣ σ

(
t
(N)
· , ỸN,r(t(N)

· )
)

1 + T/N ·
∣∣ỸN,r(t(N)

· )
∣∣2r
∣∣∣∣
q,2

)∣∣∣∣∣
q

∥∥∥∥∥∥
Lθ(Ω)

≤
(
T

N

)1/q
·
N−1∑
`=0

∥∥∥∥∥
∣∣∣∣σ(t(N)

` , ỸN,r(t(N)
` )

)
−

σ
(
t
(N)
` , ỸN,r(t(N)

` )
)

1 + T/N ·
∣∣ỸN,r(t(N)

` )
∣∣2r
∣∣∣∣
q,2

∥∥∥∥∥
Lθ(Ω)

.

(4.36)

Moreover, Assumption (pGσ
(r+2)/2), the triangle inequality, and Proposition A.8 yield∥∥∥∥∥

∣∣∣∣σ(t(N)
` , ỸN,r(t(N)

` )
)
−

σ
(
t
(N)
` , ỸN,r(t(N)

` )
)

1 + T/N ·
∣∣ỸN,r(t(N)

` )
∣∣2r
∣∣∣∣
q,2

∥∥∥∥∥
Lθ(Ω)

= T/N ·
∥∥∥∥∥
∣∣ỸN,r(t(N)

` )
∣∣2r · ∣∣σ(t(N)

` , ỸN,r(t(N)
` )

)∣∣
q,2

1 + T/N ·
∣∣ỸN,r(t(N)

` )
∣∣2r

∥∥∥∥∥
Lθ(Ω)

≤ T/N ·
∥∥∥∣∣ỸN,r(t(N)

` )
∣∣2r · ∣∣σ(t(N)

` , ỸN,r(t(N)
` )

)∣∣
q,2

∥∥∥
Lθ(Ω)

≤ c ·N−1 ·
∥∥∥∣∣ỸN,r(t(N)

` )
∣∣2r · (1 +

∣∣ỸN,r(t(N)
` )

∣∣)(r+2)/2∥∥∥
Lθ(Ω)

≤ c ·N−1 ·
∥∥∥1 +

∣∣ỸN,r(t(N)
` )

∣∣∥∥∥(5r+2)/2

L(5r+2)θ/2(Ω)

≤ c ·N−1 ·
(

1 +
∥∥∥ỸN,r(t(N)

` )
∥∥∥
L(5r+2)θ/2(Ω)

)(5r+2)/2

≤ c ·N−1

(4.37)

for all ` ∈ {0, . . . , N − 1}. Combining (4.36) and (4.37), we eventually obtain (4.31) as
N tends to infinity.
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With regard to (4.32), we fix q̆ := 2a/(r + 2) ∈ (q,∞) first. Combining Lemma B.2,
Assumption (pGσ

(r+2)/2), and Proposition A.8 yields

sup
N∈N

E
[∣∣∣∣∣
(
T

N

)1/q
·
∣∣∣∣ σ

(
t
(N)
· , ỸN,r(t(N)

· )
)

1 + T/N ·
∣∣ỸN,r(t(N)

· )
∣∣2r
∣∣∣∣
q,2

∣∣∣∣∣
q̆

q

]

= T q̆/q · sup
N∈N

E
[(

1
N
·
N−1∑
`=0

∣∣∣∣ σ
(
t
(N)
` , ỸN,r(t(N)

` )
)

1 + T/N ·
∣∣ỸN,r(t(N)

` )
∣∣2r
∣∣∣∣q
q,2

)q̆/q]

≤ T q̆/q · sup
N∈N

E
[

1
N
·
N−1∑
`=0

∣∣∣∣ σ
(
t
(N)
` , ỸN,r(t(N)

` )
)

1 + T/N ·
∣∣ỸN,r(t(N)

` )
∣∣2r
∣∣∣∣q̆
q,2

]

≤ T q̆/q · sup
N∈N

sup
t∈[0,T ]

E
[∣∣∣∣ σ

(
t, ỸN,r(t)

)
1 + T/N ·

∣∣ỸN,r(t)∣∣2r
∣∣∣∣q̆
q,2

]

≤ T q̆/q · sup
N∈N

sup
t∈[0,T ]

E
[∣∣∣σ(t, ỸN,r(t))∣∣∣q̆

q,2

]

≤ c ·
(

1 + sup
N∈N

sup
t∈[0,T ]

E
[∣∣ỸN,r(t)∣∣q̆·(r+2)/2])

<∞.

Thus, we obtain (4.32).
Second, we consider the case q ∈ [2/3, 1). Here, it suffices to show

T

N
·
∣∣∣∣∣σ(t(N)

· , X(t(N)
· )

)∣∣
q,2

∣∣∣q
q

L1−−−−→
N→∞

∥∥∥∣∣σ(·, X(·)
)∣∣
q,2

∥∥∥q
Lq([0,T ])

, (4.38)

T

N
·
(∣∣∣∣∣σ(t(N)

· , X(t(N)
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)∣∣
q,2

∣∣∣q
q
−
∣∣∣∣∣σ(t(N)

· , ỸN,r(t(N)
· )

)∣∣
q,2
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q

)
L1−−−−→

N→∞
0, (4.39)

and

T

N
·
(∣∣∣∣∣σ(t(N)

· , ỸN,r(t(N)
· )

)∣∣
q,2

∣∣∣q
q
−
∣∣∣∣∣
∣∣∣∣ σ

(
t
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· , ỸN,r(t(N)
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1 + T/N ·
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q,2
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q
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L1−−−−→

N→∞
0, (4.40)

due to the triangle inequality for ‖ · ‖L1(Ω).
With regard to (4.38), observe first that the almost sure convergence (4.33) directly

implies
T

N
·
∣∣∣∣∣σ(t(N)

· , X(t(N)
· )

)∣∣
q,2

∣∣∣q
q

a.s.−−−−→
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∥∥∥∣∣σ(·, X(·)
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q,2

∥∥∥q
Lq([0,T ])

. (4.41)

Moreover, the sequence(
T

N
·
∣∣∣∣∣σ(t(N)

· , X(t(N)
· )

)∣∣
q,2

∣∣∣q
q

)
N∈N

is uniformly integrable, (4.42)
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since Lemma B.2, Assumption (pGσ
(r+2)/2), and the moment estimate (3.2) yield

sup
N∈N

E
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·
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[∣∣X(t)

∣∣(r+2)/2])
<∞.

Combining (4.41) and (4.42), we thus obtain (4.38).

With regard to (4.39), observe that the triangle inequality, the inequality
|xα − yα| ≤ |x − y|α for all x, y ∈ [0,∞) and α ∈ (0, 1], and the inverse triangle in-
equality give
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∣∣σ(t(N)
` , ỸN,r(t(N)

` )
)∣∣q
q,2

∣∣∣∣
]

≤ T

N
·
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`=0

E
[∣∣∣∣∣∣∣σ(t(N)

` , X(t(N)
` )

)∣∣∣q
q,2
−
∣∣∣σ(t(N)

` , ỸN,r(t(N)
` )

)∣∣∣q
q,2

∣∣∣∣
]
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N
·
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E
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)∣∣∣
q,2
−
∣∣∣σ(t(N)

` , ỸN,r(t(N)
` )

)∣∣∣
q,2

∣∣∣∣q
]

≤ T

N
·
N−1∑
`=0

E
[∣∣∣σ(t(N)

` , X(t(N)
` )

)
− σ

(
t
(N)
` , ỸN,r(t(N)

` )
)∣∣∣q
q,2

]
.

(4.43)

Moreover, Assumption (pLσr/2), the Hölder inequality, Proposition A.9, the moment
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estimate (3.2), and Proposition A.8 yield

E
[∣∣∣σ(t(N)

` , X(t(N)
` )

)
− σ

(
t
(N)
` , ỸN,r(t(N)

` )
)∣∣∣q
q,2

]
≤ c · E

[∣∣X(t(N)
` )− ỸN,r(t(N)

` )
∣∣q · (1 +

∣∣X(t(N)
` )

∣∣+ ∣∣ỸN,r(t(N)
` )

∣∣)rq/2]
≤ c ·

∥∥∥X(t(N)
` )− ỸN,r(t(N)

` )
∥∥∥q
L3q/2(Ω)

·
∥∥∥1 +

∣∣X(t(N)
` )

∣∣+ ∣∣ỸN,r(t(N)
` )

∣∣∥∥∥rq/2
L3rq/2(Ω)

≤ c ·N−q ·
(

1 +
∥∥∥X(t(N)

` )
∥∥∥
L3rq/2(Ω)

+
∥∥∥ỸN,r(t(N)

` )
∥∥∥
L3rq/2(Ω)

)rq/2
≤ c ·N−q

(4.44)

for all ` ∈ {0, . . . , N − 1}. Combining (4.43) and (4.44), we eventually obtain (4.39) as
N tends to infinity.

With regard to (4.40), one first shows

E
[∣∣∣∣∣ TN ·

(∣∣∣∣∣σ(t(N)
· , ỸN,r(t(N)

· )
)∣∣
q,2

∣∣∣q
q
−
∣∣∣∣∣
∣∣∣∣ σ

(
t
(N)
· , ỸN,r(t(N)

· )
)

1 + T/N ·
∣∣ỸN,r(t(N)

· )
∣∣2r
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q,2

∣∣∣∣∣
q

q

)∣∣∣∣∣
]

≤ T

N
·
N−1∑
`=0

E
[∣∣∣∣σ(t(N)

` , ỸN,r(t(N)
` )

)
−

σ
(
t
(N)
` , ỸN,r(t(N)

` )
)

1 + T/N ·
∣∣ỸN,r(t(N)

` )
∣∣2r
∣∣∣∣q
q,2

]

= T

N
·
N−1∑
`=0

E
[∣∣∣∣T/N ·

∣∣ỸN,r(t(N)
` )

∣∣2r · σ(t(N)
` , ỸN,r(t(N)

` )
)

1 + T/N ·
∣∣ỸN,r(t(N)

` )
∣∣2r

∣∣∣∣q
q,2

]
(4.45)

in a similar manner to (4.43). Moreover, Assumption (pGσ
(r+2)/2), the triangle inequality,

and Proposition A.8 yield

E
[∣∣∣∣T/N ·

∣∣ỸN,r(t(N)
` )

∣∣2r · σ(t(N)
` , ỸN,r(t(N)

` )
)

1 + T/N ·
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` )
∣∣2r
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q,2

]

≤ (T/N)q · E
[∣∣∣∣∣∣ỸN,r(t(N)

` )
∣∣2rq · ∣∣∣σ(t(N)

` , ỸN,r(t(N)
` )

)∣∣∣q
q,2

]

≤ c ·N−q · E
[∣∣ỸN,r(t(N)

` )
∣∣2rq · (1 +

∣∣ỸN,r(t(N)
` )

∣∣)q·(r+2)/2]
≤ c ·N−q ·

∥∥∥1 +
∣∣ỸN,r(t(N)

` )
∣∣∥∥∥2/(5rq+2q)

L(5rq+2q)/2(Ω)

≤ c ·N−q ·
(

1 +
∥∥∥ỸN,r(t(N)

` )
∥∥∥
L(5rq+2q)/2(Ω)

)2/(5rq+2q)

(4.46)

for all ` ∈ {0, . . . , N − 1}. Combining (4.45) and (4.46), we eventually obtain (4.40) as
N tends to infinity.
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In the following lemma, we provide an estimate for the absolute moments of the iter-
ated Itô integrals that are employed in the construction of the continuous-time (tamed)
Milstein schemes in the case that the commutativity condition is satisfied. For this
purpose, recall their definition (4.6).
Lemma 4.22. Let j1, j2 ∈ {1, . . . ,m}. Then for all q ∈ [1,∞) there exists C ∈ (0,∞)
such that for all N ∈ N, for all ` ∈ {0, . . . , N − 1}, and for all t ∈ (t(N)

` , t
(N)
`+1] it holds

that ∥∥∥I(`,N)
j1,j2

(t)
∥∥∥
Lq(Ω)

≤ C ·N−1.

Proof. Let N ∈ N, ` ∈ {0, . . . , N − 1}, and t ∈ (t(N)
` , t

(N)
`+1]. For j1 6= j2 the Cauchy–

Schwarz inequality gives∥∥∥I(`,N)
j1,j2

(t)
∥∥∥
Lq(Ω)

≤
∥∥∥Wj1(t)−Wj1(t(N)

` )
∥∥∥
L2q(Ω)

·
∥∥∥Wj2(t)−Wj2(t(N)

` )
∥∥∥
L2q(Ω)

,

and for j1 = j2 the triangle inequality gives∥∥∥I(`,N)
j1,j2

(t)
∥∥∥
Lq(Ω)

≤
∥∥∥(Wj1(t)−Wj1(t(N)

` )
)2∥∥∥

Lq(Ω)
+ (t− t(N)

` ).

In both cases, the desired estimate immediately follows from estimates on the absolute
moments of centered normally distributed random variables.

Next, we show that the average numbers of evaluations of the driving Brownian
motion employed in the adaptive tamed Milstein schemes are finite and asymptotically
equivalent to a constant times N . We obtain, in particular, that each such approximation
does indeed lie in one of the classes of adaptive schemes.
Lemma 4.23. For all q ∈ [1, b) ∩ [1, a/(3r + 1)] we have

c
(
Ŷ ad
N,r,q

)
<∞ (4.47)

for each N ∈ N and

lim
N→∞

c
(
Ŷ ad
N,r,q

)
·N−1 =

(
m−1
q · g−1

q · Cad
q,q

)2q/(q+2)
. (4.48)

Proof. For each N ∈ N, the estimates (4.22) and (4.23) on the total number of evalua-
tions of W employed in the respective adaptive tamed Milstein scheme yield

c
(
Ŷ ad
N,r,q

)
≤ kN +N · E

[
T

kN
·
kN−1∑
`=0

∣∣∣∣∣ σ
(
t
(kN )
` , ỸkN ,r(t

(kN )
`

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r
∣∣∣∣∣
2q/(q+2)

q,2

]
(4.49)

and

c
(
Ŷ ad
N,r,q

)
≥ N · E

[
T

kN
·
kN−1∑
`=0

∣∣∣∣∣ σ
(
t
(kN )
` , ỸkN ,r(t

(kN )
`

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r
∣∣∣∣∣
2q/(q+2)

q,2

]
. (4.50)

Combining (4.49), Assumption (pGσ
(r+2)/2), and Proposition A.8 shows (4.47).

By using (4.49), (4.50), Lemma 4.21, and the first limit in (4.9), we then con-
clude (4.48).
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4.7.2 Asymptotic Lower Bounds

First, we prove an asymptotic lower bound for the Nth minimal errors in the classes of
adaptive approximations.

Lemma 4.24. For all q ∈ [1, b) ∩ [1, a/(3r + 1)] it holds that

lim inf
N→∞

N1/2 · inf
{
eq,q

(
X̂
) ∣∣∣ X̂ ∈ Xad

N

(
Lq([0, T ];Rd)

)}
≥ Cad

q,q. (4.51)

Proof. Fix N ∈ N and X̂N ∈ Xad
N (Lq([0, T ];Rd)) for the moment. Let DN denote the

entire data used by the approximation X̂N in the sense of Section 2.1, define ΨN to
be the set of observation sites of the driving Brownian motion employed in X̂N , and
put νN := #ΨN . Because of the first limit in (4.9), we may actually assume that
{t(kN )

1 , . . . , t
(kN )
kN
} ⊆ ΨN . Hence, each ỸkN ,r(t

(kN )
` ), ` ∈ {0, . . . , kN}, is measurable with

respect to the σ-algebra generated by DN .
Let the process ZkN : [0, T ]× Rd → Rd be defined by

ZkN ,i(t) :=
kN−1∑
`=0

1
(t(kN )
`

,t
(kN )
`+1 ]

(t) · 1
2 ·

m∑
j1,j2=1
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(
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` , ỸkN ,r(t

(kN )
` )
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` )
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·
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(`,kN )
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(t)− E
[
I

(`,kN )
j1,j2

(t)
∣∣DN

])

for all i ∈ {1, . . . , d} and for all t ∈ [0, T ].
Due to the inverse triangle inequality and Proposition A.9, it holds that

eq,q
(
X̂N

)
=
∥∥∥∥∥X − X̂N

∥∥
Lq([0,T ])

∥∥∥
Lq(Ω)
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Lq(Ω)

−
∥∥∥∥∥ZkN∥∥Lq([0,T ])

∥∥∥
Lq(Ω)

− c · k−1
N .

(4.52)

As a next step, we show that the norm of ZkN as above is asymptotically negligible.
Combining the triangle inequality, the contraction property of conditional expectations,
the triangle inequality again, the independence of I(`,kN )

j1,j2
(t) and F(t(kN )

` ), the growth
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condition (4.28), Lemma 4.22, and Proposition A.8 yields
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` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·
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for all i ∈ {1, . . . , d}, for all ` ∈ {0, . . . , kN − 1}, and for all t ∈ (t(kN )
` , t

(kN )
`+1 ]. Conse-

quently, we obtain by Fubini’s theorem that∥∥∥∥∥ZkN∥∥Lq([0,T ])
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(4.53)

Next, we show that the distance between ỸkN ,r −ZkN and X̂N as in (4.52) is greater
or equal than the respective distance between ỸkN ,r−ZkN and E[ỸkN ,r |DN ]. Note that,
due to the measurability property of ỸkN ,r(t

(kN )
` ) mentioned before, we have

ỸkN ,r,i(t)− ZkN ,i(t)− E
[
ỸkN ,r,i(t)
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]
=
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∣∣DN

]) (4.54)
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for all i ∈ {1, . . . , d}, for all ` ∈ {0, . . . , kN − 1}, and for all t ∈ (t(kN )
` , t

(kN )
`+1 ]. Similarly

to the derivations of the Lemmas 1 and 2 in Yaroslavtseva (2017), one shows that for
PDN -almost all (x, y) ∈ Rd ×

⋃
n∈N(Rm)n it holds that

PW |DN=(x,y) = P−W |DN=(x,y),

which along with (4.54) yields

PỸkN ,r−ZkN−E[ỸkN ,r|DN ] |DN=(x,y) = P−ỸkN ,r+ZkN+E[ỸkN ,r|DN ] |DN=(x,y).

We thus conclude that (ỸkN ,r − ZkN − E[ỸkN ,r |DN ], DN ) and
(−ỸkN ,r + ZkN + E[ỸkN ,r |DN ], DN ) are identically distributed. Since, additionally,
both X̂N and E[ỸkN ,r |DN ] are measurable functions of DN , we consequently find that
ỸkN ,r−ZkN −X̂N and 2E[ỸkN ,r |DN ]− ỸkN ,r+ZkN −X̂N are also identically distributed.
Therefore, we obtain
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(4.55)

Now let

d`,kN := #
(
ΨN ∩ (t(kN )

` , t
(kN )
`+1 )

)
+ 1

for each ` ∈ {0, . . . , kN −1}. Conditioned on DN , the observation sites ΨN are fixed and
for every j ∈ {1, . . . ,m} the Gaussian process (Wj(t) − E[Wj(t) |DN ])t∈[0,T ] consists of
νN independent Brownian bridges between the discretization points. Hence, we obtain
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with Fubini’s theorem for conditional expectations and Lemma A.4(ii)

E
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∣∣ỸkN ,r(t(kN )
` )

∣∣2r
∣∣∣∣q
q,2
·mq

q · gqq · (T/kN )(q+2)/2 · d−q/2`,kN

(4.56)

almost surely where mq and gq are as defined in (4.2) and (4.3), respectively. Next,
observe that applying the inequality
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])q/q+2

≥
kN−1∑
`=0

E
[∣∣∣∣ σ

(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r
∣∣∣∣2q/(q+2)

q,2

]
.

(4.57)
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By combining (4.52), (4.53), (4.55), (4.56), and (4.57), we arrive at

N1/2 · eq,q
(
X̂N

)
≥ mq · gq ·

(
E
[
T

kN
·
kN−1∑
`=0

∣∣∣∣ σ
(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r
∣∣∣∣2q/(q+2)

q,2

])(q+2)/2q

− c ·N1/2 · k−1
N .

(4.58)

Finally, we obtain (4.51) from (4.58) by employing Lemma 4.21 and the second limit
in (4.9).

Next, we prove an asymptotic lower bound for the Nth minimal errors in the classes
of equidistant approximations.

Lemma 4.25. For all q ∈ [1, b) ∩ [1, a/(3r + 1)] it holds that

lim inf
N→∞

N1/2 · inf
{
eq,q

(
X̂
) ∣∣∣ X̂ ∈ Xeq

N

(
Lq([0, T ];Rd)

)}
≥ Ceq

q,q. (4.59)

Proof. Fix N ∈ N and X̂N ∈ Xeq
N (Lq([0, T ];Rd)) for the moment, and consider the data

DN := (ξ,W (t(N)
1 ), . . . ,W (t(N)

N )).
Let the process ZN : [0, T ]× Rd → Rd be defined by

ZN,i(t) :=
N−1∑
`=0

1(t(N)
`

,t
(N)
`+1](t) ·

1
2 ·

m∑
j1,j2=1

(∇σi,j2 · σ(j1))
(
t
(N)
` , ỸN,r(t(N)

` )
)

1 + T/N ·
∣∣ỸN,r(t(N)

` )
∣∣2r

·
(
I

(`,N)
j1,j2

(t)− E
[
I

(`,N)
j1,j2

(t)
∣∣DN

])
for all i ∈ {1, . . . , d} and for all t ∈ [0, T ].

Similarly to the estimates (4.52), (4.53), (4.55), and (4.56) in the proof of Lemma 4.24,
one successively shows that

eq,q
(
X̂N

)
≥
∥∥∥∥∥ỸN,r − ZN − X̂N

∥∥
Lq([0,T ])

∥∥∥
Lq(Ω)

−
∥∥∥∥∥ZN∥∥Lq([0,T ])

∥∥∥
Lq(Ω)

− c ·N−1, (4.60)

that ∥∥∥∥∥ZN∥∥Lq([0,T ])

∥∥∥
Lq(Ω)

≤ c ·N−1, (4.61)

that∥∥∥∥∥ỸN,r − ZN − X̂N

∥∥
Lq([0,T ])

∥∥∥
Lq(Ω)

≥
∥∥∥∥∥ỸN,r − ZN − E

[
ỸN,r

∣∣DN

]∥∥
Lq([0,T ])

∥∥∥
Lq(Ω)

, (4.62)

and that

E
[∥∥ỸN,r − ZN − E

[
ỸN,r

∣∣DN

]∥∥q
Lq([0,T ])

∣∣∣DN

]
≥

N−1∑
`=0

∣∣∣∣ σ
(
t
(N)
` , ỸN,r(t(N)

` )
)

1 + T/N ·
∣∣ỸN,r(t(N)

` )
∣∣2r
∣∣∣∣q
q,2
·mq

q · gqq · (T/N)(q+2)/2
(4.63)
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holds almost surely.
By combining (4.60), (4.61), (4.62), and (4.63), we arrive at

N1/2 · eq,q
(
X̂N

)
≥ mq · gq · T 1/2 ·

(
E
[
T

N
·
N−1∑
`=0

∣∣∣∣ σ
(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r
∣∣∣∣q
q,2

])1/q

− c ·N−1/2.
(4.64)

Finally, we obtain (4.59) from (4.64) by employing Lemma 4.21.

4.7.3 Asymptotic Upper Bounds

First, we prove an asymptotic upper bound for the errors of the adaptive tamed Milstein
schemes.

Lemma 4.26. For all q ∈ [1, b) ∩ [1, a/(3r + 1)] it holds that

lim sup
N→∞

(
c
(
Ŷ ad
N,r,q

))1/2
· eq,q

(
Ŷ ad
N,r,q

)
≤ Cad

q,q. (4.65)

Proof. We prove (4.65) by showing

lim sup
N→∞

(
c
(
Ŷ ad
N,r,q

))1/2
·N−1/2 ≤

∥∥∥∥∥∥∥∣∣σ(·, X(·)
)∣∣
q,2

∥∥∥
L2q/(q+2)([0,T ])

∥∥∥∥q/(q+2)

L2q/(q+2)(Ω)
(4.66)

and

lim sup
N→∞

N1/2 · eq,q
(
Ŷ ad
N,r,q

)
≤ mq · gq ·

∥∥∥∥∥∥∥∣∣σ(·, X(·)
)∣∣
q,2

∥∥∥
L2q/(q+2)([0,T ])

∥∥∥∥2/(q+2)

L2q/(q+2)(Ω)
. (4.67)

First, note that (4.66) is an immediate consequence of (4.48).
Now fix N ∈ N for the moment. Let the process ZkN : [0, T ] × Rd → Rd be defined

by

ZkN ,i(t) :=
kN−1∑
`=0

1
[t(kN )
`

,t
(kN )
`+1 )

(t) · 1
2 ·

m∑
j1,j2=1

(∇σi,j2 · σ(j1))
(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r · I(`,kN )
j1,j2

(t)

for all i ∈ {1, . . . , d} and for all t ∈ [0, T ].
Due to the triangle inequality and Proposition A.9, it holds that

eq,q
(
Ŷ ad
N,r,q

)
=
∥∥∥∥∥X − Ŷ ad

N,r,q

∥∥
Lq([0,T ])

∥∥∥
Lq(Ω)

≤
∥∥∥∥∥ỸkN ,r − ZkN − Ŷ ad

N,r,q

∥∥
Lq([0,T ])

∥∥∥
Lq(Ω)

+
∥∥∥∥∥ZkN∥∥Lq([0,T ])

∥∥∥
Lq(Ω)

+ c · k−1
N .

(4.68)
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As a next step, we show that the norm of ZkN as above is asymptotically negligi-
ble. Combining the triangle inequality, the independence of I(`,kN )

j1,j2
(t) and F(t(kN )

` ), the
growth condition (4.28), Lemma 4.22, and Proposition A.8 yields

∥∥∥∥∥
m∑

j1,j2=1

(∇σi,j2 · σ(j1))
(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r · I(`,kN )
j1,j2

(t)
∥∥∥∥∥
Lq(Ω)

≤
m∑

j1,j2=1

∥∥∥∥(∇σi,j2 · σ(j1))
(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r · I(`,kN )
j1,j2

(t)
∥∥∥∥
Lq(Ω)

=
m∑

j1,j2=1

∥∥∥∥(∇σi,j2 · σ(j1))
(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r
∥∥∥∥
Lq(Ω)

·
∥∥∥I(`,kN )
j1,j2

(t)
∥∥∥
Lq(Ω)

≤ c ·
m∑

j1,j2=1

(
1 +

∥∥∥ỸkN ,r(t(kN )
` )

∥∥∥r+1

Lq(r+1)(Ω)

)
· k−1

N

≤ c · k−1
N

for all i ∈ {1, . . . , d}, for all ` ∈ {0, . . . , kN − 1}, and for all t ∈ (t(kN )
` , t

(kN )
`+1 ]. Similarly

to the derivation of (4.53), we thus obtain

∥∥∥∥∥ZkN∥∥Lq([0,T ])

∥∥∥
Lq(Ω)

≤ c · k−1
N . (4.69)

Next, we show that the norm of ỸkN ,r−ZkN−Ŷ ad
N,r,q as in (4.68) determines the asymp-

totic constant eventually. Note that for all i ∈ {1, . . . , d}, for all ` ∈ {0, . . . , kN − 1},
and for all t ∈ [t(kN )

` , t
(kN )
`+1 )

ỸkN ,r,i(t)− ZkN ,i(t)− Ŷ
ad
N,r,q,i(t) =

m∑
j=1

σi,j
(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r ·
(
Wj(t)− Ŵ ad

N,j(t)
)

where Ŵ ad
N is defined as in (4.21). Put DkN :=

(
ξ,W (t(kN )

1 ), . . . ,W (t(kN )
kN

)
)
. Conditioned

on DkN , the observation sites (4.20) are fixed and for every j ∈ {1, . . . ,m} the Gaussian
process (Wj(t) − Ŵ ad

N,j)t∈[0,T ] consists of νad
N,r,q independent Brownian bridges between
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the discretization points. Hence, we obtain with Lemma A.4(i)

E
[∥∥ỸkN ,r − ZkN − Ŷ ad

N,r,q

∥∥q
Lq([0,T ])

∣∣∣DkN

]
=

kN−1∑
`=0

d∑
i=1

∫ t
(kN )
`+1

t
(kN )
`

E
[∣∣∣∣ m∑
j=1

σi,j
(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r
·
(
Wj(t)− Ŵ ad

N,j

)∣∣∣∣q
∣∣∣∣∣DkN

]
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=
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`=0

∣∣∣∣ σ
(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r
∣∣∣∣q
q,2
·
∫ t

(kN )
`+1

t
(kN )
`

E
[∣∣∣W1(t)− Ŵ ad

N,1

∣∣∣q ∣∣∣∣DkN

]
dt

=
kN−1∑
`=0

∣∣∣∣ σ
(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r
∣∣∣∣q
q,2
·mq

q · gqq ·
(
T/kN
η` + 1

)q/2
· T
kN

(4.70)

almost surely where mq and gq are as defined in (4.2) and (4.3), respectively. For each
` ∈ {0, . . . , kN − 1}, we furthermore have

η` + 1 ≥ N · T/kN ·
∣∣∣∣ σ

(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r
∣∣∣∣2q/(q+2)

q,2

due to the construction of η` and consequently∣∣∣∣ σ
(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r
∣∣∣∣q
q,2
·
(
T/kN
η` + 1

)q/2

≤ N−q/2 ·
∣∣∣∣ σ

(
t
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(kN )
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)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r
∣∣∣∣2q/(q+2)

q,2
.

(4.71)

By combining (4.68), (4.69), (4.70), and (4.71), we arrive at

N1/2 · eq,q
(
Ŷ ad
N,r,q

)
≤ mq · gq ·

(
E
[
T

kN
·
kN−1∑
`=0

∣∣∣∣ σ
(
t
(kN )
` , ỸkN ,r(t

(kN )
` )

)
1 + T/kN ·

∣∣ỸkN ,r(t(kN )
` )

∣∣2r
∣∣∣∣2q/(q+2)

q,2

])1/q

+ c ·N1/2 · k−1
N .

(4.72)

Finally, we obtain (4.67) from (4.72) by employing Lemma 4.21 and the second limit
in (4.9).

Next, we prove an asymptotic upper bound for the errors of the equidistant tamed
Milstein schemes.

Lemma 4.27. For all q ∈ [1, b) ∩ [1, a/(3r + 1)] it holds that

lim sup
N→∞

N1/2 · eq,q
(
Ŷ eq
N,r

)
≤ Ceq

q,q. (4.73)
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Proof. Fix N ∈ N for the moment and put DN :=
(
ξ,W (t(N)

1 ), . . . ,W (t(N)
N )

)
.

Let the process ZN : [0, T ]× Rd → Rd be defined by

ZN,i(t) :=
N−1∑
`=0

1(t(N)
`

,t
(N)
`+1](t) ·

1
2 ·

m∑
j1,j2=1

(∇σi,j2 · σ(j1))
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` )
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·
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`+1 − t
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`

· I(`,N)
j1,j2

(t(N)
`+1)

)

for all i ∈ {1, . . . , d} and for all t ∈ [0, T ].
Due to the triangle inequality and Proposition A.9, it holds that

eq,q
(
Ŷ eq
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)
=
∥∥∥∥∥X − Ŷ eq
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∥∥∥
Lq(Ω)

+ c ·N−1.

(4.74)

As a next step, we show that the norm of ZN as above is asymptotically negligi-
ble. Combining the triangle inequality (applied twice), the independence of I(`,N)

j1,j2
(t)

and F(t(N)
` ) as well as the independence of I(`,N)

j1,j2
(t(N)
`+1) and F(t(N)
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` , ỸN,r(t(N)

` )
)

1 + T/N ·
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for all i ∈ {1, . . . , d}, for all ` ∈ {0, . . . , N − 1}, and for all t ∈ (t(N)
` , t

(N)
`+1]. Similarly to

the derivation of (4.53), we thus obtain∥∥∥∥∥ZN∥∥Lq([0,T ])

∥∥∥
Lq(Ω)

≤ c ·N−1. (4.75)

Next, we show that the norm of ỸN,r−ZN − Ŷ eq
N,r as in (4.74) determines the asymp-

totic constant eventually. Similarly to the estimate (4.70), one shows that

E
[∥∥ỸN,r − ZN − Ŷ eq

N,r

∥∥q
Lq([0,T ])

∣∣∣DN

]
=

N−1∑
`=0

∣∣∣∣ σ
(
t
(N)
` , ỸN,r(t(N)

` )
)

1 + T/N ·
∣∣ỸN,r(t(N)

` )
∣∣2r
∣∣∣∣q
q,2
·mq

q · gqq · (T/N)(q+2)/2
(4.76)

holds almost surely.
By combining (4.74), (4.75), and (4.76), we arrive at

N1/2 · eq,q
(
Ŷ eq
N,r

)
≤ mq · gq · T 1/2 ·

(
E
[
T

N
·
N−1∑
`=0

∣∣∣∣ σ
(
t
(N)
` , ỸN,r(t(N)

` )
)

1 + T/N ·
∣∣ỸN,r(t(N)

` )
∣∣2r
∣∣∣∣q
q,2

)1/q

+ c ·N−1/2.
(4.77)

Finally, we obtain (4.73) from (4.77) by employing Lemma 4.21.
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5 Final Remarks and Outlook

In this chapter, we outline some limitations of this thesis and thereby provide ideas on
future research directions. Moreover, we state two conjectures that are situated in the
field of tamed schemes.

First, recall that in the construction of strong approximations, the partial information
we use about the driving Brownian motion is given by evaluating W at finitely many
time points. In the literature, various other types of such partial information are studied.
We mention, for instance, evaluations of partial paths of W (e.g., (W (t))t∈(δ,T ] for some
δ ∈ (0, T )), evaluations of linear continuous functionals of W (e.g.,

∫ T
0 W (t) dt), or

evaluations of iterated Itô integrals (e.g.,
∫ T

0 W1(t) dW2(t)). Clearly, the definition of
strong approximations and the error analyses change according to which type of partial
information about W is presumed.

Next, note that we assumed the commutativity condition in our main results on the
pathwise Lp error. When this condition is not satisfied, the analysis becomes significantly
more cumbersome, resulting in modified asymptotic constants and, partly, even different
convergence rates for specific approximations. We refer the reader to Section III.3 in
Müller-Gronbach (2002b) for a detailed discussion on the particular error e2,2 in such a
situation.

In this thesis, we focused on strongly asymptotically optimal approximations in the
classes of adaptive and of equidistant approximations, i.e., the classes (Xad

N (S))N∈N and
(Xeq

N (S))N∈N for S = C([0, T ];Rd) and S = Lp([0, T ];Rd) with p ∈ [1,∞). As already
mentioned at the end of Section 2.2, one might also consider other classes, such as the
classes (Xsn

N (S))N∈N and (Xss
N (S))N∈N defined therein. In the classical framework of

SDEs with globally Lipschitz continuous coefficients, Müller-Gronbach (2002a) obtained
the exact asymptotics for the Nth minimal errors in the classes (Xsn

N (C([0, 1];Rd)))N∈N,
and Müller-Gronbach (2002b) obtained the exact asymptotics for the Nth minimal errors
in both the classes (Xsn

N (Lq([0, 1];Rd)))N∈N and (Xss
N (Lq([0, 1];Rd)))N∈N. It remains an

open problem to analyze these particular classes for SDEs with super-linearly growing
coefficients and to close the gap regarding the classes (Xss

N (C([0, 1];Rd)))N∈N. From
our results, nonetheless, we can immediately deduce asymptotic lower and upper error
bounds for which the corresponding convergence rates match and the corresponding
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asymptotic constants are bounded. More precisely, we can directly infer, for instance,

Cad
q,∞ ≤ lim inf

N→∞

(
N/ log(N)

)1/2 · inf
{
eq,∞

(
X̂
) ∣∣∣ X̂ ∈ Xss

N

(
C([0, T ];Rd)

)}
≤ lim sup

N→∞

(
N/ log(N)

)1/2 · eq,∞(X̂eq
N

)
≤ Ceq

q,∞

in the setting of Theorem 3.13.
Finally, we conclude this chapter by presenting two conjectures that arose during the

work on the tamed Euler and the tamed Milstein schemes.
First, we have noticed that for our results on strong asymptotic optimality to hold

true, the concrete form of such a tamed scheme seems to be irrelevant as long as it satisfies
certain properties. We exemplarily discuss the tamed Euler scheme. The essential parts
needed in the proof of the Theorems 3.13 and 3.14 are the following: first, the recursive
structure (3.12), second, the strong convergence given by Proposition A.7, and third, the
moment bounds given by Proposition A.6. We conjecture that for an abstract scheme
satisfying the properties above, strong asymptotic optimality does indeed hold true. In
this case, the Euler scheme and the tamed Euler scheme are nice examples that fit in
such a setting. We intend to further elaborate on this approach in an upcoming paper.

Second, note that we measure the pathwise error of an approximation globally in
time throughout this thesis. Another error criterion commonly studied in the literature
is the Lq error at the final time point, i.e., the error given by

eq
(
X̂
)

:=
∥∥X(T )− X̂(T )

∥∥
Lq(Ω)

for an approximation X̂ and q ∈ [1,∞). On the one hand, Müller-Gronbach (2002b)
showed that suitable variants of the Wagner–Platen scheme are strongly asymptotically
optimal in the case of SDEs whose coefficients, among other assumptions, are required
to be globally Lipschitz continuous. On the other hand, for SDEs with super-linearly
growing coefficients, Sabanis & Zhang (2018) proposed a tamed Wagner–Platen scheme
which, as the continuous-time Wagner–Platen scheme, converges strongly to the solution
with order (at least) 3/2. The question arises, if combining these two ideas leads to
strongly asymptotically approximations with regard to the error eq for SDEs with super-
linearly growing coefficients. This approach appears very promising and may constitute
the object of future studies.
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A On some Properties of Specific
Stochastic Processes

In this chapter, we provide useful properties of various stochastic processes occurring
throughout these notes.

In Section A.1, we give several results on Brownian bridges that will be used in the
respective proofs sections of the Chapters 3 and 4. In Section A.2, we prove boundedness
for specific moments of the supremum of the solution of the SDE (1.4). In Section A.3, we
consider the continuous-time tamed Euler schemes introduced in Section 3.3. For these
processes, moment bounds and strong convergence of order (at least) 1/2 are shown.
In Section A.4, we consider the continuous-time tamed Milstein schemes introduced in
Section 4.3. For these processes, moment bounds and strong convergence of order (at
least) 1 are shown.

Throughout this chapter, except for Section A.1, we require the setting given in
Section 1.3.

A.1 Brownian Bridges

In this section, let B1, B2, . . . be a sequence of independent Brownian bridges on [0, 1]
defined on a common probability space (Ω,F ,P).

In the first part of this section, we gather auxiliary results that are employed in the
proofs given in Chapter 3. Right before, we introduce some notation that will be used
for this purpose. For all q ∈ [1,∞), for all N ∈ N, and for all α1, . . . , αN ∈ [0,∞) we
put

Gq(· ;α1, . . . , αN ) : [0,∞)→ [0, 1], u 7→ P
({

max
`∈{1,...,N}

(
α` · sup

t∈[0,1]
|B`(t)|

)q
> u

})
,

and

Mq(α1, . . . , αN ) := E
[

max
`∈{1,...,N}

(
α` · sup

t∈[0,1]
|B`(t)|

)q]
∈ [0,∞).
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Moreover, we abbreviate

Gq(· ;N) := Gq(· ; 1, . . . , 1︸ ︷︷ ︸
N times

), Mq(N) :=Mq(1, . . . , 1︸ ︷︷ ︸
N times

).

Lemma A.1. Let N ∈ N and let α1, . . . , αN ∈ [0,∞). Then for all q ∈ [1,∞) it holds
that

E
[

max
`∈{1,...,N}

(
α` · sup

t∈[0,1]

∣∣B`(t)∣∣)q] ≥ ( 1
N
·
N∑
`=1

α2
`

)q/2
· Mq(N).

Proof. This lemma is an easy generalization of Lemma 1 in Müller-Gronbach (2002a)
regarding non-negative instead of strictly positive scalars. The extension to the general
case using the special case is straight-forward and therefore omitted.

Lemma A.2. Let α ∈ [0,∞) and for each N ∈ N let α1,N , . . . , αN,N ∈ [0,∞) such that

lim
N→∞

max
i∈{1,...,N}

αi,N = α

and
∀ε ∈ (0,∞) : lim inf

N→∞
N−1 ·#

{
i ∈ {1, . . . , N}

∣∣αi,N ≥ α− ε} > 0.

Then the following hold true:

(i) For each q ∈ [1,∞) there exists a constant Cq ∈ (0,∞) such that

sup
N∈N

∫ ∞
0
Gq
(
u ·
(

log(N)
)q/2;α1,N , . . . , αN,N

)
du ≤ Cq. (A.1)

(ii) For all q ∈ [1,∞) it holds that

lim
N→∞

∫ ∞
(α2/2)q/2

Gq
(
u ·
(

log(N)
)q/2;α1,N , . . . , αN,N

)
du = 0. (A.2)

(iii) For all q ∈ [1,∞) it holds that

lim
N→∞

(
log(N)

)−1/2 ·
(
Mq(α1,N , . . . , αN,N )

)1/q = 2−1/2 · α. (A.3)

Proof. This lemma is a generalization of Lemma 2 and Corollary 2 in Müller-Gronbach
(2002a) regarding non-negative instead of strictly positive scalars.

Let δ ∈ (0,∞) be fixed for the moment, and put α̃ := α + δ > 0 as well as
α̃i,N := αi,N + δ > 0 for all N ∈ N and i ∈ {1, . . . , N}. In the given setting, we
then have

lim
N→∞

max
i∈{1,...,N}

α̃i,N = α̃

and
∀ε ∈ (0,∞) : lim inf

N→∞
N−1 ·#

{
i ∈ {1, . . . , N}

∣∣ α̃i,N ≥ α̃− ε} > 0.
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Now let q ∈ [1,∞). Then Lemma 2 in Müller-Gronbach (2002a) yields the existence of
a constant Cq ∈ (0,∞) such that

sup
N∈N

∫ ∞
0
Gq
(
u ·
(

log(N)
)q/2; α̃1,N , . . . , α̃N,N

)
du ≤ Cq (A.4)

and
lim
N→∞

∫ ∞
(α̃2/2)q/2

Gq
(
u ·
(

log(N)
)q/2; α̃1,N , . . . , α̃N,N

)
du = 0, (A.5)

and Corollary 2 in the same reference gives

lim
N→∞

(
log(N)

)−1/2 ·
(
Mq(α̃1,N , . . . , α̃N,N )

)1/q = 2−1/2 · α̃. (A.6)

Observe that the monotonicity property

Gq
(
u ·
(

log(N)
)q/2;α1,N , . . . , αN,N

)
du ≤ Gq

(
u ·
(

log(N)
)q/2; α̃1,N , . . . , α̃N,N

)
du

holds true for each N ∈ N. From this, we can immediately conclude (A.1) from (A.4) as
well as∫ ∞

(α2/2)q/2
Gq
(
u ·
(

log(N)
)q/2;α1,N , . . . , αN,N

)
du

≤
∫ ∞

(α2/2)q/2
Gq
(
u ·
(

log(N)
)q/2; α̃1,N , . . . , α̃N,N

)
du

=
∫ ∞

(α̃2/2)q/2
Gq
(
u ·
(

log(N)
)q/2; α̃1,N , . . . , α̃N,N

)
du

+
∫ (α̃2/2)q/2

(α2/2)q/2
Gq
(
u ·
(

log(N)
)q/2; α̃1,N , . . . , α̃N,N

)
du

≤
∫ ∞

(α̃2/2)q/2
Gq
(
u ·
(

log(N)
)q/2; α̃1,N , . . . , α̃N,N

)
du+ (α̃2/2)q/2 − (α2/2)q/2

for all N ∈ N. Utilizing (A.5) hence gives

0 ≤ lim sup
N→∞

∫ ∞
(α2/2)q/2

Gq
(
u ·
(

log(N)
)q/2;α1,N , . . . , αN,N

)
du ≤ α̃q − αq

2q/2
,

which proves (A.2) by letting δ tend to 0. At last, we aim to show (A.3). It is easy to
see that the monotonicity property(

Mq(α1,N , . . . , αN,N )
)1/q ≤ (Mq(α̃1,N , . . . , α̃N,N )

)1/q
holds true for each N ∈ N, which along with (A.6) immediately yields

lim sup
N→∞

(
log(N)

)−1/2 ·
(
Mq(α1,N , . . . , αN,N )

)1/q
≤ lim sup

N→∞

(
log(N)

)−1/2 ·
(
Mq(α̃1,N , . . . , α̃N,N )

)1/q
= 2−1/2 · α̃.

(A.7)
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Next, the inverse triangle inequality gives that the monotonicity property(
Mq(α1,N , . . . , αN,N )

)1/q ≥ (Mq(α̃1,N , . . . , α̃N,N )
)1/q − (Mq(δ, . . . , δ)

)1/q
holds true for each N ∈ N, which along with two times (A.6) immediately yields

lim inf
N→∞

(
log(N)

)−1/2 ·
(
Mq(α1,N , . . . , αN,N )

)1/q
≥ lim inf

N→∞

(
log(N)

)−1/2 ·
(
Mq(α̃1,N , . . . , α̃N,N )

)1/q
− lim sup

N→∞

(
log(N)

)−1/2 ·
(
Mq(δ, . . . , δ)

)1/q
= 2−1/2 · α̃− 2−1/2 · δ
= 2−1/2 · α.

(A.8)

We finally obtain (A.3) from combining (A.7) and (A.8) and letting δ tend to 0.

Lemma A.3. Let q ∈ [1,∞), let N ∈ N, let 0 =: t0 < t1 < . . . < tN := T , let βi,j,` ∈ R
for all (i, j, `) ∈ {1, . . . , d}×{1, . . . ,m}×{0, . . . , N−1}, and for each (`, j) ∈ {0, . . . , N−
1}×{1, . . . ,m} let Bj,` be a Brownian bridge on [t`, t`+1] such that B0,1, . . . , BN−1,m are
independent. Then for all β ∈ [0,∞) with

β ≥ max
i∈{1,...,d}

max
`∈{0,...,N−1}

(
(t`+1 − t`) ·

m∑
j=1

β2
i,j,`

)1/2
,

and for all z ∈ [0,∞) it holds that

E
[

max
i∈{1,...,d}

max
`∈{0,...,N−1}

sup
t∈[t`,t`+1]

∣∣∣∣ m∑
j=1

βi,j,` ·Bj,`(t)
∣∣∣∣q
]
≤ z + d ·

∫ ∞
z
Gq
(
u;β, . . . , β︸ ︷︷ ︸

N times

)
du.

Proof. See Lemma 3 in Müller-Gronbach (2002a).

In a second step, we provide results on integrated moments of Brownian bridges,
which are used in the proofs of Chapter 4. To this end, recall the definitions (4.2) and
(4.3) of mq and gq, respectively.
Lemma A.4. (i) Let T ∈ (0,∞), let a, b ∈ [0, T ] with a < b, and let B be a Brownian

bridge on [a, b]. Then for all q ∈ [1,∞) it holds that∫ b

a
E
[∣∣B(t)

∣∣q]dt = mq
q · gqq · (b− a)(q+2)/2.

(ii) Let T ∈ (0,∞), let a, b ∈ [0, T ] with a < b, let N ∈ N, let a =: τ0 < τ1 < · · · <
τN =: b, and for each ` ∈ {0, . . . , N − 1} let B` be a Brownian bridge on [τ`, τ`+1].
Then for all q ∈ [1,∞) it holds that

N−1∑
`=0

∫ τ`+1

τ`

E
[∣∣B`(t)∣∣q] dt ≥ mq

q · gqq · (b− a)(q+2)/2 ·N−q/2.

Proof. This lemma is an easy generalization of the equations (20) and (21) in Chapter III
of Müller-Gronbach (2002b).
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A.2 The Solution Process

In the following, we consider the supremum of the solution of the SDE (1.4) and prove
finiteness of specific moments of this random variable under quite weak assumptions.

We thereby use c to denote unspecified positive constants that may vary at every
occurrence and that may only depend on T , d, m, and the parameters and constants
from the assumptions used in the subsequent proposition.

Proposition A.5. Let the Assumptions (Ia), (locL), (Ka), and (pGσ
r ) be satisfied for

some a ∈ [2,∞) and r ∈ [1,∞) with a ≥ 2r. Then it holds that

E
[

sup
t∈[0,T ]

∣∣X(t)
∣∣a−2r+2

]
<∞.

Proof. Put a := a− 2r + 2 ∈ [2, a]. For each n ∈ N, observe that the mapping

τn : Ω→ [0, T ], ω 7→ T ∧ inf
{
t ∈ [0, T ]

∣∣∣ n ≤ |X(t, ω)|
}
,

is a stopping time that satisfies

sup
t∈[0,T ]

∣∣X(t ∧ τn)
∣∣ ≤ max

{
n, |ξ|

}
(A.9)

almost surely.
Fix n ∈ N for the moment and note that the Assumption (Ka) implies that (Ka) is

also satisfied. Employing Itô’s formula, the Cauchy–Schwarz inequality, and (Ka) yields
that almost surely we have

(
1 +

∣∣X(t)
∣∣2)a/2

=
(
1 +

∣∣ξ∣∣2)a/2 + a

2 ·
∫ t

0
2 ·
(
1 +

∣∣X(s)
∣∣2)(a−2)/2

·X(s)> · µ
(
s,X(s)

)
+ (a− 2) ·

(
1 +

∣∣X(s)
∣∣2)(a−4)/2

·
∣∣∣X(s)> · σ

(
s,X(s)

)∣∣∣2
+
(
1 +

∣∣X(s)
∣∣2)(a−2)/2

·
∣∣∣σ(s,X(s)

)∣∣∣2 ds

+ a ·
∫ t

0

(
1 +

∣∣X(s)
∣∣2)(a−2)/2

·X(s)> · σ
(
s,X(s)

)
dW (s)

≤
(
1 +

∣∣ξ∣∣2)a/2 + c ·
∫ t

0

(
1 +

∣∣X(s)
∣∣2)a/2 ds

+ a ·
∫ t

0

(
1 +

∣∣X(s)
∣∣2)(a−2)/2

·X(s)> · σ
(
s,X(s)

)
dW (s)

for all t ∈ [0, T ]. Assumption (Ia), Fubini’s theorem, and the moments estimate (3.2)
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consequently give

E
[

sup
t∈[0,T ]

(
1 +

∣∣X(t ∧ τn)
∣∣2)a/2 ]

≤ c+ a · E
[

sup
t∈[0,T ]

∫ t

0
1{s≤τn} ·

(
1 +

∣∣X(s ∧ τn)
∣∣2)(a−2)/2

·X(s ∧ τn)> · σ
(
s ∧ τn, X(s ∧ τn)

)
dW (s)

]
.

(A.10)

Next, observe that the Burkholder–Davis–Gundy inequality and the Cauchy–Schwarz
inequality imply

E
[

sup
t∈[0,T ]

∫ t

0
1{s≤τn} ·

(
1 +

∣∣X(s ∧ τn)
∣∣2)(a−2)/2

·X(s ∧ τn)> · σ
(
s ∧ τn, X(s ∧ τn)

)
dW (s)

]
≤
√

32 · E
[( ∫ T

0
1{s≤τn} ·

(
1 +

∣∣X(s ∧ τn)
∣∣2)a−1

·
∣∣σ(s ∧ τn, X(s ∧ τn)

)∣∣2 ds
)1/2]

.

(A.11)

Moreover, Assumption (pGσ
r ) and the inequality √x · y ≤ x/(2ρ) + yρ/2 for all

x, y ∈ [0,∞) and ρ ∈ (0,∞) yield

E
[( ∫ T

0
1{s≤τn} ·

(
1 +

∣∣X(s ∧ τn)
∣∣2)a−1

·
∣∣σ(s ∧ τn, X(s ∧ τn)

)∣∣2 ds
)1/2]

≤ c · E
[(

sup
t∈[0,T ]

(
1 +

∣∣X(t ∧ τn)
∣∣2)a/2

·
∫ T

0
1{s≤τn} ·

(
1 +

∣∣X(s ∧ τn)
∣∣2)a/2−1

·
(
1 +

∣∣X(s ∧ τn)
∣∣2r) ds

)1/2]
≤ c · E

[(
sup
t∈[0,T ]

(
1 +

∣∣X(t ∧ τn)
∣∣2)a/2

·
∫ T

0
1{s≤τn} ·

(
1 +

∣∣X(s ∧ τn)
∣∣2)a/2 ds

)1/2]
≤ 1

2 ·
√

32 · a
· E
[

sup
t∈[0,T ]

(
1 +

∣∣X(t ∧ τn)
∣∣2)a/2 ]

+ c2 ·
√

32 · a/2 · E
[ ∫ T

0
1{s≤τn} ·

(
1 +

∣∣X(s ∧ τn)
∣∣2)a/2 ds

]
.

(A.12)

Note that

E
[ ∫ T

0
1{s≤τn} ·

(
1 +

∣∣X(s ∧ τn)
∣∣2)a/2 ds

]
≤ E

[ ∫ T

0

(
1 +

∣∣X(s)
∣∣2)a/2 ds

]
≤ c (A.13)



A.3. The Continuous-time Tamed Euler Schemes 103

holds, again, due to Fubini’s theorem and (3.2). Combining the inequalities (A.10),
(A.11), (A.12), and (A.13) shows

E
[

sup
t∈[0,T ]

(
1 +

∣∣X(t ∧ τn)
∣∣2)a/2 ] ≤ 1

2 · E
[

sup
t∈[0,T ]

(
1 +

∣∣X(t ∧ τn)
∣∣2)a/2 ]+ c.

To subtract the first summand of the right hand side from the left hand side, we need to
ensure that these quantities are actually not infinite. For this purpose, we employ the
inequality (A.9) and Assumption (Ia) to conclude that

E
[

sup
t∈[0,T ]

(
1 +

∣∣X(t ∧ τn)
∣∣2)a/2 ] ≤ E

[ (
1 + max

{
n, |ξ|

}2)a/2 ]
<∞.

Hence, we obtain

E
[

sup
t∈[0,T ]

∣∣X(t ∧ τn)
∣∣a] ≤ E

[
sup
t∈[0,T ]

(
1 +

∣∣X(t ∧ τn)
∣∣2)a/2 ] ≤ c. (A.14)

Using Fatou’s lemma, we derive from (A.14) that

E
[

sup
t∈[0,T ]

∣∣X(t)
∣∣a] = E

[
lim
n→∞

sup
t∈[0,T ]

∣∣X(t ∧ τn)
∣∣a] ≤ lim inf

n→∞
E
[

sup
t∈[0,T ]

∣∣X(t ∧ τn)
∣∣a] ≤ c,

which finishes the proof of this proposition.

A.3 The Continuous-time Tamed Euler Schemes

As before, we use c to denote unspecified positive constants that may vary at every
occurrence and that may only depend on T , d, m, and the parameters and constants
from the assumptions used in the respective propositions.

First, we show finiteness of specific moments of the continuous-time tamed Euler
schemes.

Proposition A.6. Let the Assumptions (Ia), (locL), (Ka), and (pGµ
r+1) be satisfied for

some a ∈ [2,∞) and r ∈ [0,∞) with a ≥ r + 2. Then it holds that

sup
N∈N

E
[

sup
t∈[0,T ]

∣∣X̃N,r(t)
∣∣a−r] <∞. (A.15)

Proof. First of all, note that in the given setting the growth condition (pGσ
(r+2)/2) also

holds true. Our main idea of proof is to show (A.15) by means of Gronwall’s lemma.
As a first step, observe that for each N ∈ N the continuous-time tamed Euler scheme

X̃N,r satisfies

E
[

sup
t∈[0,T ]

∣∣X̃N,r(t)
∣∣a] <∞ (A.16)
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due to the taming of the drift and the diffusion coefficent in its construction, see Remark 3
in Sabanis (2016). Note, however, that one can not guarantee at the moment that this
bound holds uniformly in N .

Next, one establishes the moment bound

sup
N∈N

sup
t∈[0,T ]

E
[∣∣X̃N,r(t)

∣∣a] ≤ c. (A.17)

This is shown in a completely analogous manner to Lemma 2 in Sabanis (2016), and we
therefore omit a proof.

We now turn to estimates which allow to apply Gronwall’s lemma in a final step.
Put a := a − r ∈ [2, a] as well as tN := btN/T c · T/N for t ∈ [0, T ] and N ∈ N. Fix
N ∈ N. First, applying Itô’s formula to the Itô process (3.13) yields that almost surely
we have(

1 +
∣∣X̃N,r(t)

∣∣2)a/2
=
(
1 + |ξ|2

)a/2
+ a

2 ·
∫ t

0
2 ·
(
1 +

∣∣X̃N,r(s)
∣∣2)(a−2)/2

· X̃N,r(s)> ·
µ
(
sN , X̃N,r(sN )

)
1 + (T/N)1/2 ·

∣∣X̃N,r(sN )
∣∣r

+ (a− 2) ·
(
1 +

∣∣X̃N,r(s)
∣∣2)(a−4)/2

·
∣∣∣∣∣X̃N,r(s)> ·

σ
(
sN , X̃N,r(sN )

)
1 + (T/N)1/2 ·

∣∣X̃N,r(sN )
∣∣r
∣∣∣∣∣
2

+
(
1 +

∣∣X̃N,r(s)
∣∣2)(a−2)/2

·
∣∣∣∣∣ σ

(
sN , X̃N,r(sN )

)
1 + (T/N)1/2 ·

∣∣X̃N,r(sN )
∣∣r
∣∣∣∣∣
2

ds

+ a ·
∫ t

0

(
1 +

∣∣X̃N,r(s)
∣∣2)(a−2)/2

· X̃N,r(s)> ·
σ
(
sN , X̃N,r(sN )

)
1 + (T/N)1/2 ·

∣∣X̃N,r(sN )
∣∣r dW (s)

for all t ∈ [0, T ]. Note that the Assumption (Ka) implies that (Ka) is also satisfied.
By employing the Cauchy–Schwarz inequality and (Ka), we obtain that almost surely it
holds(

1 +
∣∣X̃N,r(t)

∣∣2)a/2
≤
(
1 + |ξ|2

)a/2 + c ·
∫ t

0

(
1 +

∣∣X̃N,r(s)
∣∣2)(a−2)/2

·
(
1 +

∣∣X̃N,r(sN )
∣∣2) ds

+ a ·
∫ t

0

(
1 +

∣∣X̃N,r(s)
∣∣2)(a−2)/2

·
(
X̃N,r(s)− X̃N,r(sN )

)> · µ
(
sN , X̃N,r(sN )

)
1 + (T/N)1/2 ·

∣∣X̃N,r(sN )
∣∣r ds

+ a ·
∫ t

0

(
1 +

∣∣X̃N,r(s)
∣∣2)(a−2)/2

· X̃N,r(s)> ·
σ
(
sN , X̃N,r(sN )

)
1 + (T/N)1/2 ·

∣∣X̃N,r(sN )
∣∣r dW (s)
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for all t ∈ [0, T ]. Now fix t ∈ [0, T ]. It follows from the considerations above that

E
[

sup
u∈[0,t]

(
1 +

∣∣X̃N,r(u)
∣∣2)a/2 ]

≤ E
[(

1 + |ξ|2
)a/2]+ c · E

[ ∫ t

0

(
1 +

∣∣X̃N,r(s)
∣∣2)(a−2)/2

·
(
1 +

∣∣X̃N,r(sN )
∣∣2) ]ds

+ a · E
[ ∫ t

0

(
1 +

∣∣X̃N,r(s)
∣∣2)(a−2)/2

·
∣∣∣∣(X̃N,r(s)− X̃N,r(sN )

)> · µ
(
sN , X̃N,r(sN )

)
1 + (T/N)1/2 ·

∣∣X̃N,r(sN )
∣∣r
∣∣∣∣ ds

]

+ a · E
[

sup
u∈[0,t]

∫ u

0

(
1 +

∣∣X̃N,r(s)
∣∣2)(a−2)/2

· X̃N,r(s)> ·
σ
(
sN , X̃N,r(sN )

)
1 + (T/N)1/2 ·

∣∣X̃N,r(sN )
∣∣r dW (s)

]
.

(A.18)

By Young’s inequality, we obtain

E
[ ∫ t

0

(
1 +

∣∣X̃N,r(s)
∣∣2)(a−2)/2

·
(
1 +

∣∣X̃N,r(sN )
∣∣2) ds

]
≤
∫ t

0
E
[

sup
u∈[0,s]

(
1 +

∣∣X̃N,r(u)
∣∣2)a/2] ds.

(A.19)

Moreover, the Cauchy–Schwarz inequality, the triangle inequality, Assumption (pGµ
r+1),

Young’s inequality, and (A.17) prove

E
[ ∫ t

0

(
1 +

∣∣X̃N,r(s)
∣∣2)(a−2)/2

·
∣∣∣∣(X̃N,r(s)− X̃N,r(sN )

)> · µ
(
sN , X̃N,r(sN )

)
1 + (T/N)1/2 ·

∣∣X̃N,r(sN )
∣∣r
∣∣∣∣ ds

]

≤ c · sup
u∈[0,T ]

E
[(

1 +
∣∣X̃N,r(u)

∣∣2)a/2]
≤ c.

(A.20)

Next, one utilizes the Burkholder–Davis–Gundy inequality and the Cauchy–Schwarz
inequality to show

E
[

sup
u∈[0,t]

∫ u

0

(
1 +

∣∣X̃N,r(s)
∣∣2)(a−2)/2

· X̃N,r(s)> ·
σ
(
sN , X̃N,r(sN )

)
1 + (T/N)1/2 ·

∣∣X̃N,r(sN )
∣∣r dW (s)

]

≤
√

32 · E
[( ∫ t

0

(
1 +

∣∣X̃N,r(s)
∣∣2)a−1

·
∣∣∣∣ σ

(
sN , X̃N,r(sN )

)
1 + (T/N)1/2 ·

∣∣X̃N,r(sN )
∣∣r
∣∣∣∣2 ds

)1/2]
.

(A.21)
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The growth condition (pGσ
(r+2)/2), the inequality √x · y ≤ x/(2ρ) + yρ/2 for all

x, y ∈ [0,∞) and ρ ∈ (0,∞), Young’s inequality, and (A.17) furthermore give

E
[( ∫ t

0

(
1 +

∣∣X̃N,r(s)
∣∣2)a−1

·
∣∣∣∣ σ

(
sN , X̃N,r(sN )

)
1 + (T/N)1/2 ·

∣∣X̃N,r(sN )
∣∣r
∣∣∣∣2 ds

)1/2]

≤ c · E
[(∫ t

0

(
1 +

∣∣X̃N,r(s)
∣∣2)a−1

·
(
1 +

∣∣X̃N,r(sN )
∣∣2)(r+2)/2

ds
)1/2]

≤ c · E
[(

sup
u∈[0,t]

(
1 +

∣∣X̃N,r(u)
∣∣2)a/2

·
∫ t

0

(
1 +

∣∣X̃N,r(s)
∣∣2)(a−2)/2

·
(
1 +

∣∣X̃N,r(sN )
∣∣2)(r+2)/2

ds
)1/2]

≤ 1
2 ·
√

32 · a
· E
[

sup
u∈[0,t]

(
1 +

∣∣X̃N,r(u)
∣∣2)a/2]

+ c · sup
u∈[0,T ]

E
[(

1 +
∣∣X̃N,r(u)

∣∣2)a/2]

≤ 1
2 ·
√

32 · a
· E
[

sup
u∈[0,t]

(
1 +

∣∣X̃N,r(u)
∣∣2)a/2]+ c.

(A.22)

Combining (A.16), Assumption (Ia), (A.18), (A.19), (A.20), (A.21), and (A.22) yields

E
[

sup
u∈[0,t]

(
1 +

∣∣X̃N,r(u)
∣∣2)a/2] ≤ c+ c ·

∫ t

0
E
[

sup
u∈[0,s]

(
1 +

∣∣X̃N,r(u)
∣∣2)a/2]ds.

Applying Gronwall’s lemma finally finishes the proof of this proposition.

The next proposition states that the continuous-time tamed Euler schemes converge
strongly with order (at least) 1/2.

Proposition A.7. Let the Assumptions (Ia), (H), (Ka), (Mb), and (pLµr ) be satisfied for
some a, b ∈ [2,∞) and r ∈ [0,∞) with a ≥ 4r+2. Then for all q ∈ [1,min{b, a/(2r+1)})
there exists C ∈ (0,∞) such that for all N ∈ N it holds that

∥∥∥∥∥X − X̃N,r

∥∥
C([0,T ])

∥∥∥
Lq(Ω)

≤ C ·N−1/2.

Proof. Essentially, the proof of Theorem 3 in Sabanis (2016) carries over here and is
therefore omitted.
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A.4 The Continuous-time Tamed Milstein Schemes

As before, we use c to denote unspecified positive constants that may vary at every
occurrence and that may only depend on T , d, m, and the parameters and constants
from the assumptions used in the respective propositions.

First, we show finiteness of specific moments of the continuous-time tamed Milstein
schemes.

Proposition A.8. Let the Assumptions (Ia), (Ka), (Mb), (pL∇µr−1), (pL∇σ(r−2)/2), (B∇tµ),
and (B∇tσ) be satisfied for some a, b ∈ [2,∞) and r ∈ [1,∞). Then it holds that

sup
N∈N

sup
t∈[0,T ]

E
[∣∣ỸN,r(t)∣∣a] <∞.

Proof. Observe that, in this setting, the Assumptions (locL), (LLGµ), (pG∇µr ), (pLµr ),
(pGµ

r+1), (LLGσ), (pG∇σr/2), (pLσr/2), and (pGσ
(r+2)/2) introduced in the Sections 3.1 and

4.1 are also satisfied; see Remark 4.1. Moreover, there exists C ∈ (0,∞) such that for
all i ∈ {1, . . . , d}, for all j1, j2 ∈ {1, . . . ,m}, for all t ∈ [0, T ], and for all x ∈ Rd it holds
that ∣∣(∇σi,j2 · σ(j1))(t, x)

∣∣ ≤ C · (1 + |x|
)r+1

.

Lemma 3.3 in Kumar & Sabanis (2019) proves Proposition A.8 in the case that the
SDE (1.4) is autonomous and T = 1. The key ingredients for the proof of the referenced
lemma are exactly the conditions given above. With some minor, obvious modifications,
one proves the desired result in the non-autonomous case in an analogous manner to the
autonomous case with general T ∈ (0,∞). Therefore, the proof is omitted.

The next proposition states that the continuous-time tamed Milstein schemes con-
verge strongly with order (at least) 1.

Proposition A.9. Let the Assumptions (Ia), (Ka), (Mb), (pL∇µr−1), (pL∇σ(r−2)/2), (B∇tµ),
and (B∇tσ) be satisfied for some a ∈ [2,∞), b ∈ (2,∞), and r ∈ [1,∞) with a ≥ 12r+ 4.
Then for all q ∈ [1, b)∩ [1, a/(3r+ 1)] there exists C ∈ (0,∞) such that for all N ∈ N it
holds that

sup
t∈[0,T ]

∥∥∥X(t)− ỸN,r(t)
∥∥∥
Lq(Ω)

≤ C ·N−1.

Proof. With some minor, obvious modifications towards the non-autonomous case, the
proof of Theorem 2.1 in Kumar & Sabanis (2019) carries over here and is therefore
omitted.
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B Auxiliary Results

In this chapter, we provide two results from calculus, which are used at several places
in the proofs given in the Sections 3.6 and 4.7.

First, we present a lemma containing a simple subsequence argument that is employed
in the proofs of the asymptotic lower bounds in Chapter 3.

Lemma B.1. Let (aN )N∈N be a sequence of real numbers and let C ∈ R. Then the
following are equivalent:

(i) It holds that lim infN→∞ aN ≥ C.

(ii) For every subsequence (aNκ)κ∈N of (aN )N∈N there exists a subsequence (aNκn )n∈N
of (aNκ)κ∈N such that lim infn→∞ aNκn ≥ C.

Proof. First, assume that lim infN→∞ aN ≥ C. Let (aNκ)κ∈N be a subsequence of
(aN )N∈N. For all κ ∈ N, we have

inf
{
am

∣∣ m ≥ Nκ
}
≥ inf

{
am

∣∣ m ≥ κ},
which immediately yields

lim inf
κ→∞

aNκ ≥ lim inf
κ→∞

aκ ≥ C.

Now assume that α := lim infN→∞ aN < C. Then for each κ ∈ N it holds that

inf
{
am

∣∣ m ≥ κ} ≤ α < (α+ C)/2.

Thus, for every κ ∈ N there exists Nκ ∈ N, Nκ ≥ κ, such that aNκ < (α+C)/2. Consider
the resulting subsequence (aNκ)κ∈N of (aN )N∈N. Let (aNκn )n∈N be any subsequence of
(aNκ)κ∈N. For all n ∈ N, we have

inf
{
aNκm

∣∣ m ≥ n} ≤ aNκn < (α+ C)/2

and consequently obtain

lim inf
n→∞

aNκn ≤ (α+ C)/2 < C.
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Next, we state a monotonicity property for power means, which is used in the proof
of Lemma 4.21.

Lemma B.2. Let N ∈ N and let x1, . . . , xN ∈ R. Then for all α, β ∈ (0,∞) with α ≤ β
it holds that (

1
N
·
N∑
`=1
|x`|α

)1/α

≤
(

1
N
·
N∑
`=1
|x`|β

)1/β

.

Proof. Without loss of generality, we may assume that the numbers x1, . . . , xN are
pairwise distinct. Consider a random variable X that is uniformly distributed on
{x1, . . . , xN}. Then we have

(
1
N
·
N∑
`=1
|x`|α

)1/α

=
(
E
[
|X|α

])1/α
≤
(
E
[
|X|β

])1/β
≤
(

1
N
·
N∑
`=1
|x`|β

)1/β

.
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