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Thesis Abstract

Geography, social context, time, and cultural mindset are four (out of many) corner-

stones of human interaction. When building statistical models, their consideration

is vital: They all cause dependency between individual observations, violating as-

sumptions of independence and exchangeability. While this can be problematic

and inhibit the unbiased inference of parameters, it can also be a fruitful source of

insights and enhance prediction performance.

One class of models that serves to manage or pro�t from the presence of dependence

is the class of latent variable models. This class of models assumes that the presence

of non-explicit, unobserved causes of continuous or discrete nature can explain the

observed correlations. Latent variable models explicitly take account of dependency,

for example, by modeling an unobserved local source of pollution as a continuous

spatial variable. Through their widespread use for information �ltering, link pre-

diction, and statistical inference, latent variable models have developed an essential

impact on our daily life and the way we consume information.

The four articles in this thesis shed light on assumptions, usage, and potential draw-

backs of latent variable models in various contexts that involve geographic and inter-

action data. We model unobserved sources of pollution in geophysical data, explore

individual taste and mindsets in cross-cultural contexts, and predict the evolution

of social relationships in software development projects. This combination of var-

ious perspectives contributes to the interdisciplinary exchange of methodological

knowledge on the modeling of dependent data.
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Thesis Summary and Core Literature

A Introduction

In data analytics, there are often strong hypotheses on why these correlations among

random variables arise, but the actual cause of the correlation cannot be observed.

For example, the correlation between survey questions about the church and faith is

related to the phenomenon of religious faith. Religious faith is not measurable, yet

it manifests in correlation among di�erent people's answers to a variety of survey

questions. If faith could be modeled reliably via these observed responses, this

measurement could be compared between groups, monitored over time, or analyzed

with regards to its e�ects on other areas of life and human decisions. In this and

similar contexts, it is of genuine interest to make the cause of the correlation among

the answers to survey questions observable, measurable, and comparable by using

the available data as a vehicle. In other cases, there is no interest in modeling what

exactly caused the correlation, but quantifying the strength of the association and

�nding a common source of the correlation is useful for exploration and prediction.

For example, people who watch the same kind of �lms may share a similar taste,

and information on that taste can lead to better predictions of the next �lm they

may like.

Both if the cause is of interest and if it is only a means to improve predictions, latent

variable models can help. These models encode the causes of observed correlations

in unobserved, hypothetical constructs. Latent variable models can be used to

investigate the presence of underlying phenomena of either continuous (how strong

is someone's religious faith?) or discrete (which religion does someone identify with?)

nature.

In a nutshell, when using latent variable models, we assume that the observed cor-

XV



relation pattern, e.g., similar answers in a survey, depends only on a few unobserved

(latent) causes, and the �rest� of individual variance in response behavior is random

and statistically independent. More precisely, the idea of latent variable models is

usually formulated with a conditional distribution assumption, as explained for ex-

ample by Everitt (1984): Let xT = [x1 . . . xp . . . xP ] represent P observable random

variables, for example, the answers of a person to P questions concerning religion in

a survey. Then, let yT = [y1 . . . ym . . . yM ] be the M unobserved causes of responses

behavior of that same person (again, random variables). For our example, assume

that M = 2. Let y1 represent the strength of religious faith, and let y2 represent the

religious group of the responding person. The basic assumption of a latent variable

model is that the random variables x1, . . . , xP have a joint probability distribution

conditional on the latent variables y:

φ(x|y).

So far, neither the distribution of x nor the distribution of y are speci�ed. Suppose

that the survey includes a slider bar to answer each of the questions x, and therefore

questions x are continuous random variables. Then, φ is a density function, and the

unconditional density of the joint distribution is:

f(x) =

∫
φ(x|y)h(y)dy.

If the survey instead was based on a Likert scale (e.g., �Very unlikely�, �Unlikely�,

�Likely�, �Very likely�) or other varieties of discrete values, φ would be a set of proba-

bilities, and we would replace the integral with a product. Now the primary purpose

of a latent variable model is to model the way how the observed x depends on y,

sometimes without knowing what y looks like (exploratory analysis), and sometimes

with strong hypotheses on the form of y (con�rmatory analysis). As we need to infer

both φ and h simultaneously, we need additional assumptions on the functional form

of the latent variables to reduce the parameter space. Most importantly, and the
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crucial assumption in latent variable models, we assume conditional independence:

If we know about someone's religious group and strength of religious faith, the rest

of the answering behavior in the survey is random.

φ(x|y) = φ1(x1|y), . . . , φp(xp|y), . . . , φP (xP |y).

The equation shows that given the value of the unobserved variables y, the observed

variables are stochastically independent of one another. For example, the unobserved

strength of religious faith and religious group cause observed correlations in survey

responses, and people who respond that they go to church more often than others

also pray more often than others. Once we know y, the question answers have a

speci�c expected value, and anything that di�ers from this expected value is mostly

random. Once this essential assumption is accepted, usually more assumptions

reduce the search space by restricting the functional form of φp and h (Everitt,

1984).

Exploratory models scan the correlation structure for latent variables that best

explain the observed correlations and provide a good �t for the independence as-

sumption. These models can, for example, reduce observed �lm choice to the latent

variable of consumer taste in recommender systems (compare, e.g. Koren et al.,

2009). In a con�rmatory analysis, the unobserved variables have a particular, para-

metric functional form, and additional assumptions on parameters of φp and h, and

are often part of a chain of causal e�ects in a structural equation model (Everitt,

1984; Jöreskog, 1971).

How is the class of latent variable models related to social and geographical space?

In social networks, latent variable models can be used to explore unobserved com-

mon interests among people (also called homophily) or reciprocity (people are likely

to respond to one another's behavior) (e.g., Ho�, 2009). In geographical data, latent

variable models and related algorithms �nd geophysical in�uences within a limited

geographical area and thereby account for pollution sources without explicit infor-

mation on where these pollution sources are (e.g., Pesaran and Tosetti, 2011; Dem²ar
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et al., 2013). There is a strong duality between social and geophysical nearness. So

what is state of the art in latent variable based modeling of both types of data, and

what epistemic and statistical challenges and use cases arise?

This thesis contributes to the understanding of how latent variable based models

are related to social and geophysical phenomena. It contributes to cross-disciplinary

knowledge exchange on di�erent endeavors that that pro�t from latent variable mod-

els and advances methodology with new approaches to their estimation and appli-

cation. In four articles, we discuss use cases in computational social science and

spatial prediction. The rest of this introductory chapter is structured as follows:

Section B summarizes the four articles that treat latent variable models in social

and physical space via latent variables. The articles mainly focus on the social and

physical dimensions of space but have many links to other forms of statistical depen-

dency, like temporal dependency. Together, the articles emphasize the dichotomy

of geographic and social space. The �rst article provides some extended statistical

theory on recent advances in exploratory, multidimensional latent-variable models

in data mining. The second article discusses an application to social networks with

methodological novelty in the domain of dynamic link prediction, supported by Prof.

Dr. Sven Apel and Thomas Bock, formerly from the Faculty of Computer Science

and Mathematics, Chair of Software Engineering I at the University of Passau, now

Chair of Software Engineering at the University of Saarbrücken. The third article

proposes an application with methodological novelty to the spatial prediction of air

pollution in co-authorship with Prof. Dr. Harry Haupt and Svenia Behm, University

of Passau1. The fourth article �nally considers hypothesis testing and intercultural

comparison in con�rmatory factor analysis, in coauthorship with Dr. Jörg Sche�er

from the Faculty of Arts and Humanities, University of Passau. The high degree

of interdisciplinarity raises questions to the epistemic bases of this theses, as well

as the overall contribution to the �eld of statistics, critical data studies, and com-

putational social science that goes beyond the contributions of the single articles

(Section C). Section D �nally summarizes the thesis and provides an outlook on

1The third article with Svenia Behm and Prof. Dr. Harry Haupt has been published in Spatial

Statistics (https://doi.org/10.1016/j.spasta.2018.04.004).
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follow-up projects and future work.

B Article summaries

B.1 Space and Time in Latent Variable Models

Statistical latent variable models make one fundamental assumption: There is some

hidden phenomenon like someone's taste or a trend that causes the correlations in

the data � not the other way around. However, when the model and algorithm

related to such a model starts driving human behavior, the logic of causation may

be inverted. With his book on ��lter bubbles�, Eli Pariser popularized the ques-

tion of whether recommender algorithms actively reduce the diversity of content

that people are exposed to on the Internet and thereby change our culture and hu-

man mindsets (Pariser, 2012). Some descriptive approaches have shown that this

reduction in diversity in contents indeed exists (e.g., Nguyen et al., 2014). These

descriptive approaches cannot answer the question of whether there is an adverse

e�ect or not � the reduced diversity might merely show that the �lters are work-

ing: Everyone receives the content they like. This uncertainty needs to be reduced,

considering the high potential impact of �lter algorithms on our society. Therefore,

mathematical explanations must complement descriptive approaches. Investigating

algorithms, models, and data is a vivid �eld of research: critical data studies. Typ-

ical questions in this �eld are: Are there assumptions in the models and algorithms

that actively reduce content diversity? Can these assumptions be eliminated, or can

their negative impact be mitigated?

The �rst article of this thesis discusses recent progress in latent variable based mod-

eling of phenomena in social and geographical space. We discuss latent variable

models for prediction with a particular focus on the way they incorporate similarity

among people, their geographic distance, and their relative positions in a social net-

work. Due to the physical distance of people, their in-take of polluted air correlates.

Due to social proximity and integration into a social subgroup, they may be exposed

to the same viruses. Due to similar values and convictions, they may consume the

same products. Latent variable models relate observed correlation structures in em-
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pirical data to the presence of an unobserved reason or an abstract phenomenon that

is not measured directly. In this case, we can retrieve physical or social distance via

latent variables. We show that the models are all relational in the sense that they

describe a similarity. Recent progress in latent variable modeling can handle multi-

ple dimensions of human interaction simultaneously (e.g. Cichocki et al., 2009). He

et al. (2016), for example, used both information of social embedding and geograph-

ical information to recommend appropriate locations to users. The massive amounts

and the high versatility of data generated in social networks and geo-location-based

services allow modeling human behavior in an unprecedented level of detail. All

these developments bring new challenges for the transparency and explainability of

the models. Filter bubbles arise because the output of a model and training in-

�uences the data it will be trained on in the future again. Geographic distance

is di�erent from other forms of distance as it is not subject to change due to its

analysis � the di�erence is subtle but essential for developing models that can avoid

�lter bubble e�ects. Ignoring this di�erence and prioritizing predictive performance,

there are some models for recommender systems that treat the �nearness� to other

people in the same way. This simpli�cation may be a reasonable choice for short-

term prediction optimization, but unreasonable concerning the long-term tracking

of changes in the social fabric. In the long-term, models should instead take into

consideration the changes that they introduce to the correlation structure as they

encourage people to change their behavior. Such a model would allow researchers to

test mechanisms that counteract the detrimental e�ects of the active role of �lters

that could substantially enhance search and �lter algorithms.

B.2 Spectral Stability in Open-Source Software Developer Networks

Open-source software (OSS) development projects often depend on a relatively small

group of developers, who are accountable for a large share of code contributions and

coordination e�orts. These core developers are supported by a large number of

peripheral contributors, who invest less time and e�ort individually, but together

add a substantial part of the value in open-source software creation (Setia et al.,

2012; Crowston and Shamshurin, 2017; Joblin et al., 2017). Together, the core
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and peripheral contributors form open-source communities, that create signi�cant

contributions like the Linux Kernel. Within the communities, sub-groups or sub-

communities arise that work on a topic or task for a limited time only (Bird, 2011).

Graph mining methods can identify these sub-communities with their interaction

behavior. An obvious source for data on social structures in Open-Source Software

Projects is version control data. Version control software simpli�es task sharing

and re-integration of written code. Communication systems (e.g., issue trackers)

and e-mail lists complement version control systems for coordination of the devel-

opment tasks. As both data sources are publicly accessible, it is possible to track

the dynamics of developer sub-communities and activity levels in both the context

of communication and collaboration over several decades (Bird et al., 2006; Joblin

et al., 2015).

The idea of the second article of the thesis is to develop a model to evaluate the

stability of group behavior, modular structures, and social ties in open-source com-

munities over time. For this purpose, we develop a new network-based method that

involves the estimation of dynamic latent factors. Moreover, we want to track the

congruence of both systems in time. We synthesize the Additive and Multiplicative

E�ects (AME) latent factor model suggested by Ho� (2009), and the spectral growth

model suggested by Kunegis et al. (2010).

The spectral growth model extrapolates the growth of a latent dimension to future

periods. It thereby explores and utilizes the dynamics in the activity level and

the importance of single parts of a software development project for link prediction

improvement. The spectral growth model (Kunegis et al., 2010) allows to assess

the stability of factorial patterns. It also allows exploiting this stability to enhance

prediction, when groups of developers in the network grow more important over time

or tend to lose in importance.

In the AME model, the probability of one node i to have a connection with node

j depends both on observed and unobserved characteristics of the node, and the

interplay of those characteristics between two particular nodes. If all these pieces

of information were known, then the single cooperation or communication events

between two developers would be stochastically independent of the rest of the net-
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work. As this is not the case, we use the observed network structure to infer the

unobserved information implicitly. In the context of OSS, assume that a group of

developers is very closely connected: The group's members communicate and col-

laborate regularly. Then these developers can be assumed to have �something� in

common. A multiplicative latent factor error structure can represent this �some-

thing�. If the underlying organizational structures and �reasons� to collaborate are

stable over time, then the factorial structure of the network will also be stable, and

only the relative importance of single patterns will change.

How can the two models be combined? The AME model can both �exibly infer

di�erent types of unobserved patterns and account for predictors and thereby mea-

sure congruence. The spectral growth model is more mechanistic and can only deal

with one network as an input. However, it provides a dynamic perspective and

allows for tracking the stability of unobserved patterns over time. By combining

both models, we receive a tool that can both �exibly infer modular structures and

exploit group dynamics in time. Additionally, the new tool explores the congru-

ence of structural patterns in communication and collaboration networks. Beyond

the assessment of stability and prediction, we use our approach to quantify the ex-

tent to which communication ties exceed ad hoc collaboration structures, and how

stable the structure in communication is over time. For replication of the original

method proposed by Kunegis et al. (2010), we use spectral decomposition for factor

extraction. For the more advanced settings, we use a Monte Carlo Markov Chain

(MCMC) based procedure.

We �nd, to our surprise, a relatively weak relationship between communication

and collaboration, at least when considering both forms of interaction within three-

month time windows. Moreover, we �nd weak evidence for increases in the stability

of social ties over time or with a growing number of programmers that participate in

a project. Against our expectations, short-term collaboration seems to be no good

predictor of communication, implying that coordination e�orts do not respond to

coordination needs in time.
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B.3 Spatial Detrending revisited: Model(l)ing Local Trend Patterns in

NO2-Concentration in Belgium and Germany

Tracking and predicting current levels of air pollution are essential to the prevention

of health risks and the planning of political measures. The third article of this thesis

proposes an enhanced method to make real-time predictions about local pollution,

departing form air pollution data. We combine these time series with information on

land use within the direct surroundings of the station, that is, information whether

industrial use, housing areas, streets, or other types of use dominate the direct

vicinity of a measurement station.

Two-step methods, like the one chosen in this article, seek to remove any observable

trend by modeling long-term local average pollution levels and removing them. This

procedure is the prerequisite for the application of spatial prediction methods (that

is, kriging methods) that rely on the absence of trends in the �rst and second

distribution moment (that is, the absence of heterogeneity in expected value and

variance-covariance, also known as weak stationarity). We base upon a model for

the removal of deterministic trends in the �rst and second distribution moment

suggested by Hooyberghs et al. (2006). The model or method has been denominated

�RIO model� for the speci�c context of air pollution analysis with land use data by

Janssen et al. (2008). With the help of air pollution data and land-use classes, we

estimate a local long-term trend. This long-term trend expresses whether the vicinity

of a measurement station is dominated by industrial usage, tra�c, or housing areas,

with the collateral consequences for air quality. We innovate the approach by a more

�exible approach to the choice of the form of this trend. For this purpose, we use an

encompassing nonparametric regression, following the kernel estimation approach

for mixed continuous and categorical data of Li and Racine (2004, 2007). Trends

are calculated by simultaneously smoothing over a pollution vector indicator and

additional explanatory covariates. Having identi�ed a low order polynomial with the

help of the nonparametric approximation, we succeed in substantially improving the

cross-sectional predictive performance of the model by taking into account additional

heterogeneity between urban and rural stations. Our empirical analysis reproduces

the previous results of Janssen et al. (2008) for Belgium and provides evidence for
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Belgium and Germany that the suggested modi�cations perform very well.

B.4 The Role of Blueprints in Quantitative Cultural Comparison.

The abundance of data from Social Networks, virtual communities, and digital art

creation, has led to a switch from research based on �small� to �big� data in cul-

tural analytics. The comparative sociological perspective on culture has embraced

the �big data� world and the analysis of Twitter data, Instagram data, and the

like (Manovich, 2018). Such data-driven approaches use exploratory quantitative

approaches for the measurement of culture. This approach is not new and by no

means related to the big data movement: Pierre Bourdieu with his sociology of cul-

ture was using exploratory quantitative analysis for inference of sociological patterns

back in the 70ies already. According to his model, hidden social milieus determine

observed behavior and habits like playing golf or consuming a speci�c kind of food

(Bourdieu, 1977). Like in latent variable analysis, he infers a latent group (the

milieu) from observed behavior.

Comparative cultural analytics based on this approach su�ers from a lack of objec-

tive cultural yardsticks - because the milieu is derived from observed behavior, it

can not be tested statistically with the same data. The epistemic foundation of such

an analysis is very di�erent from other theories that assume a group �rst, establish

highly reliable cultural dimensions, and then serve for group comparison. The most

prominent example for this approach is the pioneering work by Geert Hofstede (e.g.

Hofstede, 2003). Instead of observing behavior and then drawing conclusions on

the groups, Hofstede operationalizes the concept of dimensions of culture, measures

these unobserved dimensions via survey questions, and compares between groups.

These dimensions are related to particular persons and aggregated on the national

level; for example, �the French� are compared to �the Germans�. Bourdieu's ap-

proach describes groups only, not individuals, and cannot be used for comparison

as it creates the group it is describing.

While the reduction of culture to nationality may be overly �awed, the geograph-

ical reference provides an easy to understand tool for the mediation of di�erences.

What role do blueprint-based categorization play for comparative cultural analyt-
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ics nowadays? The Bourdieu-inspired approach to derive social groups from ob-

served behavior, and the Hofstede-inspired approach to �nding objective measures

and yardsticks and test hypotheses about cultural di�erences between pre-assigned

groups. Comparative Cultural Analytics is a �eld where latent factor models have

played an essential role in the past. In an exploratory way, they can identify people

of similar tastes or behaviors and choices that usually come together. The con�r-

matory way establishes �xed measurement models with clear hypotheses on what

underlying phenomena drive a particular behavior. The Hofstede-based approach

requires objective yardsticks, making sure that the compared concepts have the same

meaning in all contexts.

Group-based structural equation modeling is a modeling approach that veri�es this

presumed neutrality. The group-based model assigns a group-speci�c parameter

structure to the relationship between observable (survey) items and the underlying

psychometric concept encoded in the item correlations. The con�rmatory multiple

group factor model (Jöreskog, 1971) provides an inferential approach to determine

a degree of invariance (�comparability�) of the measurement models. Con�rmatory

models have to balance two competitive objectives: On the one hand, statistical

approaches in the context of quantitative cross-cultural research have to be impartial

and provide unbiased inferential results and the basis for hypothesis testing. On the

other hand, they should not be overly restrictive, as this would impede the discovery

of informative structures that go beyond clear-cut national collectives. The model-

based approach with a-priori group assignment is still an active �eld in science when

the aim is to establish testable hypotheses about closed groups, and the GESIS

research institute collects data about human values and convictions every few years,

o�ering them in the framework of the European Values Study for scienti�c purposes.

Article 4 focuses on the role of group-based latent factor models in cultural compar-

ison. What role can political boundaries and well-established measurement models

possibly play for the conceptualization of culture, when the exploratory mining of

geotagged data becomes ever more popular? We want to �ll a gap in the discussion

of the relationship between clear-cut political boundaries and the empirical method-

ology of cultural comparison. We empirically illustrate the con�rmatory approach
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to modeling culture and boundaries, using data from the European Values Study

(EVS). We conclude that it may be true that with globalization, traditional ex-

planatory schemes that frame culture within �xed political (national) borders lose

their adequacy for the explanation of cultural, social, and economic processes. Peo-

ple travel more and have the opportunity to share their thoughts and beliefs with

other people around the globe. However, many elements from the Hofstede-inspired

approach help to avoid understanding the risks that arise from biased data and

over-interpretation of group di�erences. By explaining the considerations that are

usually part of a �small data� approach, we seek to inspire the adoption of quality

assurance measures in �big data� methodology for comparative cultural research.

C Discussion

The four articles in this thesis are joint work with colleagues from other �elds of

empirical research, and one of the bene�ts of putting them together in this thesis is

to have a context-spanning discussion of their contribution. This section summarizes

the epistemic context (Section C.1), as well as the overarching contribution of this

thesis to the �elds of computational social science (Section C.2), critical data studies

(Section C.3), and latent variable modeling with spatial and network data (Section

C.4).

C.1 Epistemic Context

The high degree of interdisciplinarity of this thesis comes along with an evident

mixture of epistemic traditions, which started to manifest as a core question of the

thesis - were the models describing reality, trying to infer causal relationships, or

trying to optimize prediction of future events? Computational social science, as

described by Conte et al. (2012), often requires the combination and reconciliation

of multiple traditions, because it combines topics from social sciences with methods

and models developed in statistics and computer science (Masson et al., 2017).

The next paragraphs explain the epistemic context of our work concerning big data

versus small data approaches, and the objective of the models in terms of descriptive,
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explanatory, and predictive aims.

First of all, the four articles in this thesis di�er in terms of their objectives. The

articles pursue descriptive, explanatory, and predictive aims. As articles 1 and 4

elaborate on in more depth, latent variable models serve all three purposes. Many

applications of latent variable models seek to explore the latent variable structure of

observed physical and social datasets to improve predictive power of a model. Such

algorithms contribute to tasks like forecasting, link prediction, and recommendation,

by estimating an unobserved latent variable structure from observed correlation.

In a similar vein, in the third article, we use land use information for enhancing

spatial prediction. The link between this index and the expected pollution level is

established in a non-parametric way to avoid strong assumptions on the relationship

between land use classes and pollution. The choice of a speci�cation does not depend

on a causal explanation or explainability but on predictive performance only.

On the other hand, latent variable approaches are useful for customer segmentation

or the detection of local sources of pollution � that is, for descriptive or explanatory

aims. The explanation of a causal relationship requires an analysis to be able to

generalize the interplay of a target system's components to rules on how the system

behaves (Conte et al., 2012). In the second article, the article on the stability of

group patterns in Open Source Software Developer social networks is mainly descrip-

tive, even if we validate the adequacy of the model with a measurement of predictive

performance. We seek to �nd out about the stability of the group patterns to allow

project leads to compare their projects and the respective organizational structure

to other projects. We validate the �t of single assumptions with a link prediction

performance evaluation and cross-validation, yet we seek to interpret the decomposi-

tion of the matrices and the stability of group patterns via the decomposition. This

exploratory task distinguishes the second article from the fourth article, which prof-

its and relies on a well-designed sampling process of survey data that are designed

according to well-established and validated scienti�c constructs like institutional re-

ligiosity. Article four is a typical explanatory approach: We seek to investigate and

test hypotheses about cultural homogeneity and measurement model validity, ig-

noring how well the model would predict the cultural convictions of a single survey
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participant. The explanatory implications imply that samples have to be represen-

tative - which makes them inadequate in settings like the social networks built in

article 2, where the bias of the data set is unknown.

In complementation to the distinction between descriptive and predictive purposes,

latent variable models are related to inductive and deductive statistical research.

Inductive statistics seeks to infer properties of the population from a data sample,

and the inductive statistical toolset implies interval estimates, hypothesis tests, and

multivariate variance analysis. Believing in the possibility to derive population

characteristics and causal rules that also hold when applied in a deductive way

(that is, anticipating an observable behavior from the identi�ed rule) means that

data have to be representative in a global context (Halfpenny, 1987). Inductive data

analysis often serves as input for the generation of explanatory, deductive models,

and plays a crucial role (Jebb et al., 2017). Our �ndings on group stability in

the second article could fuel deductive, explanatory research based on alternative

statistical approaches, which would help to reject or support the conclusions we draw

from exploratory graph analysis. Model-driven research, as discussed in article 4,

pro�ts from the discovery of new patterns in exploratory research. Both approaches

can either contribute to the fair inference of other parameters, the visualization

and operationalization of unobservable patterns, or the enhancement of prediction

performance. An exploratory latent variable analysis depends only on very few

prior assumptions, and it reduces multiple covariates to fewer aggregate patterns

that make the correlations interpretable. In this way, exploratory latent variable

analysis is helpful when the actual driving mechanisms behind preferences, social

ties, and other latent features are unknown, or when their speci�cation is too costly.

This thesis contains examples of both inductive and deductive objectives. For the

sake of completeness, it should be mentioned that a third paradigm pro�ts from both

inductive and deductive research, and is a core paradigm in Computational Social

Science: generative approaches. To gain insights into social systems when data is

noisy or not available, researchers use simulations to anticipate the behavior of a

hypothetical system. The agent-based modeling uses simulation approaches and

projects speci�c assumptions on behavior and properties into data analysis. The
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generative approach constitutes a valuable alternative to the descriptive component

of article 2 and 4, as it has been used both in cultural analytics (e.g. Axelrod, 1997;

Flache and Macy, 2011) and social network analytics (e.g. Block et al., 2019). Agent-

based modeling is nowadays widely used, for example, in network modeling to test

assumptions about how people interact (e.g., Block et al., 2019). The agent-based

modeling uses simulation approaches and projects speci�c assumptions on behavior

and properties into data analysis (Conte et al., 2012).

Third, the articles di�er in their interpretation and importance of the assumption

that the latent factors are causal to the observed correlation patterns. Latent vari-

able models assume that we can infer the causes of correlation patterns from observed

data. In a Humean sense, causality is �constant conjunction�, that is, the two phe-

nomena are consistently observed together and can be described with covariation

patterns, and contributes to inductive reasoning with inferential statistics (that is,

statistics based on probability theory and hypothesis testing) (Halfpenny, 1987).

The discussion of causality is essential for the interpretation of the outcomes of a

latent variable analysis - often, researchers rely on their causal intuitions to give a

name to a latent variable, like �religiosity�. In con�rmatory latent variable models

like the ones discussed in article 4, the causality hypothesis, as well as strong as-

sumptions on the structure of this causality, are essential for hypothesis testing. For

example, only if it really is social solidarity and nothing else that causes di�erences

in response behavior, the measurement model is valid and suitable for hypothesis

testing. While some models assume causality, they are unable to proof it � experi-

mental research tries to do that. Other real-world phenomena may have caused the

correlations than those that we assume, two phenomena that overlay each other,

and other sources of spurious correlation may occur. In article 3, we do not care

whether a land-use class causes air pollution - we just measure whether the cor-

relation between land use class and pollution is strong enough to improve spatial

prediction.
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C.2 Contributions to Computational Social Science

Articles 1, 2, and 4 are rooted in the �eld of Computational Social Science, the

research on social phenomena with computational methods. The discussion on the

epistemic foundations of quantitative research in social sciences has gained impetus

with the progress in Big Data analysis in the last few decades. In the Manifesto of

computational social science, Conte et al. (2012) explain the many possibilities that

arise from the usage of data generated by information and communication technology

(ICT), to analyze social phenomena that were not feasible before. The authors

argue that ICT produces a ��ood of data�(Conte et al., 2012, p.327) that leaves us

with �traces of almost all kinds of activities of individuals enabling an entirely new

scienti�c approach for social analysis� (Conte et al., 2012, p.327). Together with

the progress in computational e�ciency and capacity, this allows researches to use

an unprecedented variety of models and an unprecedented depth of detail in social

diversity and complexity.

Scaling computational methods like latent variable modeling from a small data world

to a big data world exposes data analysis to the �new epistemologies of data sci-

ence�(Kitchin and P. Lauriault, 2015, p.464). For the investigation of social phe-

nomena, many risks arise if spurious correlations are over-interpreted, if researches

neglect bias in data generation, or if the output of the model has an e�ect on the

training data and therefore has a self-reinforcing automatism.

Tackling a question through big data often means repurposing data that
were not designed to reveal insights into a particular phenomenon, with
all the attendant issues of such a maneuver, for example creating ecolog-
ical fallacies (Kitchin and P. Lauriault, 2015, p.466).

Masson et al. (2017) observe that the adoption of Big Data tools in research has

pushed back interpretive and critical perspectives, and �humanistic scholarship seems

to get increasingly indebted to positivist traditions�(Masson et al., 2017, p.25). Un-

derlying phenomena can be measured and analyzed via the measurement. Article

4 and the idea of being able to infer cultural patterns from observed behavior, as

suggested by Bourdieu early had intensive debates with adherents of constructivism,
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who argue that it is impossible to collect data on culture without in�uencing the

result as the designing researcher is subject to his own cultural bias.

The sampling process for Big Data like social network data we mine in article 2

usually involves no controlled sampling processes, and therefore Big Data contain

biases, noise, and abnormality. A core challenge that this thesis reveals is how to

distinguish between small data and big data application cases of latent variable mod-

els and what this means for the generation of knowledge. Kitchin and P. Lauriault

(2015) discuss the role of small data models in a world of ever-better data avail-

ability, data pooling, sharing, and linking. Structural equation models like the one

discussed in article 4 stem from a small data world, where data was produced in a

controlled way. Sophisticated stratigies served to �ght bias, uncertainty, and errors

in data (Miller, 2010). The aim to verify that this endeavor has been successful is

one of the core topics of article 4, with hypothesis tests. These strategies do not

apply for large datasets generated by Information and Communication Technology,

as used in article 2. Neither can it be entirely guaranteed for the application case of

article 3, it is hard to validate whether measurement stations have been put at spe-

ci�c places to assess, for example, predominantly the pollution exhibition of people

in city centers. Big Data are usually a �by-product of systems rather than being de-

signed to investigate particular phenomena or processes�(Kitchin and P. Lauriault,

2015, p.463).

When neglecting the speci�c needs of big data research, empirical research is prone to

four types of �fallacies� (Kitchin, 2014, pp.133�137). First, some researchers treat big

data as if they could provide a holistic, gap-free picture of reality in full resolution,

that is, to an arbitrary degree of detail. It is unreasonable to assume that big data

can provide a more complete, higher resolved picture of religiosity of people, as often,

there are gaps in the data, and the data generating process is not well designed. In

a similar vein, the analysis of article 2 is valid only to the extent that the version

control data re�ect the actual programming process, but provide no full picture.

Second, big data analysis often pretends that there is no need for a priori theory,

models, or hypotheses. Exploratory latent variable models and descriptive methods

often depart from a descriptive approach, avoiding the disadvantages of inferential
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statistics. That makes it harder to use them to validate a theory, as shown in article

2. In article 3, the most �exible setting, the one with the non-parametric function

de�nition, is the one that produces relative much instability and is in the way of an

interpretation of the pollution index. Third, big data analytics fails if it assumes

that data �can speak for themselves free of human bias or framing�(Kitchin, 2014,

p.136). Bias is the topic of article 4 � while the con�rmatory we use there seeks

to prevent bias via inferential tests, many newer approaches ignore data bias. In

article 1, we just live with the bias in the data and try to describe the data that is

there as precisely as possible. Fourth, Kitchin (2014) asks the same questions that

researchers in culture have been asking for decades � it is a misconception according

to some epistemic traditions that meaning and interpretation can be transferred from

one domain of knowledge to another. When various epistemic traditions are mixed,

the scienti�c consequences, bene�ts, and disadvantage, merit thorough evaluation.

C.3 Contributions to Critical Data Studies

The �eld of Critical Data Studies comprises methodological work on how to avoid the

fallacies of data-driven research. Kitchin (2017) provides a structured introduction

into critical data studies, distinguishing between �thinking critically about� algo-

rithms and �researching� algorithms (Kitchin, 2017, p.16). The author underlines

the need for empirical investigations of algorithms and the long-term consequences

of their application, and emphasize the highly contextual way algorithms perform.

Barocas et al. (2013) and Kitchin (2017) suggest six di�erent perspectives for critical

data studies. Three of these perspectives apply to our research: First, algorithms

can be studied from a technical (computer science) perspective, explaining their im-

plementation, algorithmic steps, optimization steps, and interaction with hardware

components. We follow the technical perspective in articles 1, 2, and 3, with the

detailed technical description of the methods we are implementing (we emphasize,

however, more the statistical steps than the technical steps). Second, we use a philo-

sophical approach by raising the question of algorithm ethics in article 1, as well as

some epistemic questions in article 4. Third, we use the socio-technical perspective

to discuss how algorithms shape particular domains of research.
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In article 2, we seek to infer rules of developer behavior from observed interaction

patterns, in an exploratory way. Accepting that our data only cover small parts of

actual coordination behavior, we measure the �t of speci�c assumptions on human

behavior to the data and derive insights into the stability of social bonds. In article

3, we do not seek for rules, but merely for enhanced predictive performance. The air

pollution data in the third article follow a particular design with non-random sam-

pling (e.g., pollution is measured in city centers more frequently). We approached

the generation of a local pollution index from a non-parametric perspective, not

imposing a parametric frame on the relationship between the general pollution level

and the land-use class index. In article 4, �nally, we base on small data that were

speci�cally designed and sampled to overcome the suspicion of being subjective,

to �nd general measurement models that are comparable across groups, and bring

objectivity into a measurement.

One of the challenges for statistical research in this context is to �nd ways to make

bias visible and algorithms transparent, to avoid adverse long-term e�ects on society.

As Schäfer and Van Es (2017) put it, in a �data�ed society�, the main challenge of the

�eld of data-supported research in humanities regarding algorithms is to �develop an

understanding of the mathematical concepts and models driving these programmes

not in order to fully master them but rather understand them su�ciently enough

to approach new research objects from a critical perspective� (Schäfer and Van Es,

2017, p.16). Only by understanding the underlying assumptions that a statistical

method makes on human behavior, it is possible to adapt its functionality to com-

monly accepted social norms. Ramsay (2003) explains the di�erence between seeing

statistical methods as a means of supporting research in humanities for being more

objective, as advertised, for example, by Hockey (2000), and understanding the role

of the researcher in feeding assumptions, hypotheses, and opinions into a statistical

analysis.

As Kitchin (2017) summarizes, there are three main approaches to the critical dis-

cussion of algorithms: First, a detailed case study of a single algorithm, or class of

algorithms; second, a detailed examination of the use of algorithms in one domain;

or, third, a more general discussion of the nature and performance of algorithms.
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By raising the question of how the model assumptions are related to recent concerns

on the e�ect of �ltering (often based on latent variable models) a�ects society, article

1 raises an ethical discussion on the epistemic basics of big data analysis and thereby

contributes to the �eld of critical data studies. From a sociological perspective,

the algorithms have changed the way we consume information and interact with

one another, replacing the act of searching by passive recommendation. E�cient

algorithms for the factorization of sparse matrices and tensors are a prerequisite to

lifting the value of massive data that online interaction continually produces: They

�lter the information we receive and largely determine our consumption behavior and

social contacts. Hence, a proper understanding of these algorithms is fundamental

in appraising the cultural development of our society.

Whether embracing big-data analytics is bene�cial to social sciences or not is con-

troversial. Some researchers in humanities fear that �[b]y succumbing to the lure

of scientism [...] humanists run the risk of forgetting what they excel at � critical

interpretation � and by the same token, of impoverishing their practice�(Masson

et al., 2017, p.26). Over the years, however, data-driven research in the humani-

ties evolved from a supporting tool to a research area of its own, which lives from

trans-disciplinary cooperation of di�erent �elds of research (Masson et al., 2017).

The �eld of Critical Data Studies departs from the assumption that big data and

associated algorithmic processes shape the society as well as the individual. Big data

is in this context understood as a phenomenon driven by digitization and describes

the in�ow of uncontrolled data. Small data describes a controlled way of data, also

involving considerations on the data generating process (Kitchin and P. Lauriault,

2015).

The four articles in this thesis, with their four individual epistemic bases, re�ect

di�erent perceptions about the subjective nature of data, and how they are related

to human perception and behavior. Manovich (2018) traces how the mathematical

description of human behavior has undergone multiple stages of paradigms. Before

the mid-nineteenth century, deterministic models of human behavior were promi-

nent in sociology. Similar to physical laws, human behavior was believed to be

determined by mathematical rules. The probabilistic method of describing behavior
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became the dominant way of thinking about human behavior only by the end of

the nineteenth century�when social scientists started investigating correlations in

measurable behavior and started adopting concepts of dependent and independent

variables (Manovich, 2018). Con�rmatory latent variable models, as described in

article 4, describe the aim to describe �xed rules of human behavior in probabilistic

terms: the most crucial assumption of the model is that the answer to a question

in the structural equation model depends on an unobserved factor. The data that

the validation of this model depends on is highly controlled and curated, and the

model contains strong assumptions on the statistical properties of the data. These

assumptions are invalid in the big-data context, where data and sampling bias are

basically always there. Manovich (2018) suggests that big data is a new paradigm

in social sciences: Instead of relying on a limited set of variables for many people,

we now have an unlimited number of variables to analyze a particular person. There

is no need to restrict the number of categories in comparative analysis because Big

Data provide endless possibilities in describing social behavior in more dimensions

than the usual time and geographic dimension plus a few research-speci�c dimen-

sions like literature. This kind of analysis can enrich our understanding of culture

(Manovich, 2018).

At the same time, it is essential to keep the limitations of such big data studies in

mind. Following the categorization of approaches to critical data studies suggested

by Kitchin (2017), we cover several perspectives on algorithms and data: First, we

explain core assumptions on big data algorithms in article 1 (category 5), covering

the politics and power embedded in algorithms. We suggest that the �ltering used

for big relational datasets within several contexts explores correlations, and the ap-

plication of the algorithm leads to more homogeneity in recommendations. Cutting

into the ethical perspective of algorithms (category 1), we criticize the measurement

of the �success� of recommender systems, which is inseparable from the application

of the algorithm. It remains unclear whether a good �t of the clicks means that the

algorithm �ts reality well, or that the algorithm changes people's behavior. With

article 2, we contribute to the basis of perspective 2, the sociological approach. Our

approach extends the toolset for looking into the creating of software and the role
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of stable social groups in this approach. Article 3 follows perspective number 1,

improving the performance of an algorithm regarding its predictive power. Indeed,

the article shows the compromise between ad hoc assumptions such as a linear rela-

tionship between land use classes and air pollution and increased �exibility through

non-parametric speci�cation. The computational cost competes with performance,

measured by a simple output-related performance measure. We thus followed the

recommendation of Kitchin (2017) to combine more than one of the approaches.

C.4 Contributions to Statistics and Latent Variable Modeling

From a statistical, methodological perspective, this thesis contributes to the �eld of

latent variable modeling with social and geographical data. Articles 2, 3, and 4 are

all applied research and shed light on di�erent aspects of latent variable modeling.

In article 2, we develop a new way to extrapolate factorial structures in social net-

works. Social networks consist of people that interact � nodes and edges. When

using statistical models on network ties, we need to account for human behavior

that creates dependency among the network ties. For example, homophily means

that people that are �similar� are more likely to interact. This similarity can be a

shared hobby, a shared home town, or equal gender. It is not always possible to

observe the source of similarity that leads to this behavior, or at least it becomes

very tedious to model every mechanism separately. Latent variable models can be

used in this context to prevent problems with breaches of independence assumptions

and to improve prediction. By applying a network decomposition with a dynamic

extrapolation of weights, we provide an innovative way to deal with dependency in

network data pragmatically, in between the descriptive and predictive paradigms.

In article 3, we propose a non-parametric speci�cation search for mapping spatial

covariates to predict a a spatial output. While we do not explicitly work with

factors here, our prediction utilizes a land-use indicator that linearly combines land-

use class-speci�c pollution to a single pollution indicator. It thereby reduces land

use classes to an unobserved local pollution level (similar to latent variables). It

also demonstrates the di�erence between geographic space and network space. All

positions, as well as distances, are assumed to be exogenous and do not change. The
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innovation of our approach consists in the combination of the speci�cation search

and spatial extrapolation, which improves spatial air pollution prediction.

All models discussed above are exploratory, using very few prior assumptions on

the latent variable's structures. Alternatively, in some contexts, there are strong

theories on how to measure an unobserved phenomenon, such as a cultural value.

In this context, assumptions on the correlation structure and its homogeneity are

essential when reliable estimates are needed. Article 4, joint work with the �eld of

anthropological geography, we question the practice of �xing cultural in- and out-

groups for cultural comparison. We show how explanatory, deductive research with

strong assumptions on the statistical properties of a model relates to the practice of

modern quantitative cultural research, and what kinds of problems can arise in this

context.

D Conclusion and Outlook

This thesis provides four di�erent perspectives on the use of latent variable mod-

els, which encode the presence of some unobservable phenomenon. The overarching

contribution of the articles comprises the �elds of Computational Social Sciences,

Critical Data Studies, as well as methodological research in Latent Variable Model-

ing.

In follow-up studies with colleagues from the �eld of Empirical Software Engineering,

we seek to apply multivariate network analysis to a similar kind of question: How

do technical and social systems in�uence each other? And how can the insights on

this interaction of technical and social systems used to optimize collaboration prac-

tice among developers? In the context of agile software development, the interplay

of communication and collaboration is (compared to traditional working environ-

ments) of increased importance (compare Dybå and Dingsøyr, 2008). In Empirical

Software Engineering, the �mirroring hypothesis� describes the phenomenon there

is a close interconnection between an organization's structure and the structure

of the resulting software products, such that the resulting products �mirror� the

organization's communication and collaboration structures (compare MacCormack

XXXVII



et al., 2012). The de�nition of communication structure can impede more informal

communication ways. The technical structure constrains the choice of developers

� just like the pre-selection of �lter algorithms constrain the choice of users. By

combining qualitative with quantitative perspectives on the software development

process, we model the interplay of di�erent roles in a developer team, with di�erent

modes of interaction. Especially multi-modal network modeling will be useful for

predicting and understanding developer behavior and group dynamics in real-world

organizations.

Such studies of complex social phenomena can pro�t from interdisciplinary exchange,

as potential drawbacks in methods manifest in interdisciplinary discussions mainly.

Questioning model assumptions, potential bias in parameter inference, and the epis-

temic basis of such analysis can lead to more valuable insights into social processes.
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Technical Implementation in R

All statistical computation in this thesis has been carried out in the open-source

software R (R Core Team, 2013), and I would like to thank all voluntary maintainers

of the packages that I used. Some important general R packages for my work are

ggplot2 (Wickham, 2009), knitr (Xie, 2017), rmarkdown (Allaire et al., 2017) and

xtable (Dahl, 2016). More details can be found in articles/chapters 2,3, and 4.

Central R packages for article 2 are igraph (Csardi and Nepusz, 2006) for network

objects, and eigenmodel (Ho�, 2012) and amen (Ho� et al., 2015) for MCMC-based

estimation of the Multiplicative and Additive E�ects model, and RSpectra (Qiu

et al., 2016) and irlba (Baglama and Reichel, 2015) for the decomposition of large

matrices. The analysis is embedded in work of Prof. Dr. Sven Apel (University of

Saarbrücken) and his team, published as R-package CoRoNet. The R packages we use

for the analysis in article 3 comprise broom (Robinson, 2017), GISTools (Brunsdon

and Chen, 2014), gstat (Pebesma, 2004; Gräler et al., 2016), np (Hay�eld and

Racine, 2008), optimx (Nash and Varadhan, 2011; Nash, 2014), raster (Hijmans,

2016), rgdal (Bivand et al., 2017), spatstat (Baddeley et al., 2015), and timeDate

(Rmetrics Core Team et al., 2015). The most important packages used for article

4 are lavaan (Rosseel, 2012), psych (Revelle, 2014), semPlot (Epskamp, 2014),

semTools (semTools Contributors, 2016) and sp (Bivand et al., 2013).
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Chapter 1

Space and Time in Latent Variable Models

Chapter Abstract

With an automated judgment on preferences, �lter algorithms provide people with

an individual choice of content and contacts. Thereby, they facilitate navigation

within virtual social communities, search engines, and even physical surroundings.

This service is, however, suspect to reduce the diversity of contents and information

that people have access to, leading to adverse social e�ects. While this e�ect has

been described empirically by checking the diversity of contents, a description does

not provide insights on the underlying reasons for identi�ed changes.

One way to get these insights is to mathematically explore the related models: La-

tent variable models as a speci�c class of recommender algorithms that should be

investigated more closely in this regard. Technological progress allows latent variable

algorithms to take ever more dimensions into account simultaneously. We show that

many recommender methods that involve latent variable models are explicitly spec-

i�ed in a way that pretends to merely describe unobserved patterns. However, there

are related inferential models that provide a good starting point for a quantitative

assessment of the strength of the in�uence of recommender algorithms. The article

thereby opens new perspectives for the integration of ethical aspects in information

�ltering.
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1.1 Introduction

Recent progress in computational capacity has opened many new possibilities for

processing multi-dimensional data. Multi-dimensionality means that data involve

multiple di�erent types of attributes, like a time dimension, a geophysical position,

and individual characteristics like age. Another dimension on this list is a social,

relational dimension. The processing of masses of relational data that result from the

mass adoption of social networks as a core means of exchange adds a fundamentally

di�erent aspect to data than individual attributes than can be retrieved in traditional

market research surveys. Together with the widely adopted usage of GPS trackers

and recommendation algorithms for shopping, multi-dimensional data describe a

person in an unprecedented depth of detail.

Algorithms that process these data are designed to optimize the predictions they

make � who is someone likely to befriend, where is someone likely to go, and what

is someone likely going to buy. The algorithms process information on what, whom,

and which places someone likes without in�uencing what some likes � preferences

are supposed to be exogenous or independent in a model or method. Many recom-

mendation and prediction algorithms either assume this exogeneity of data or do

not involve any considerations about it. However, what if this assumption is wrong,

and the algorithms in�uence our preferences instead of just detecting them? The

��lter bubble� hypothesis, popularized in 2012 by Eli Pariser, says that people can

get �trapped� in the pre-selected content that the Internet o�ers to them. This trap

can have negative consequences for the cohesion of society because �lter algorithms

have a self-reinforcing e�ect. While human brains have been �ltering information

ever since they existed, Pariser argued that the situation is di�erent now because

the creators of the algorithms actively want people to get trapped in �lter bub-

bles (Pariser, 2012). Nguyen et al. (2014) conducted a longitudinal study on the

e�ect of collaborative �ltering on the diversity of contents that people had access

to in their virtual environment. The authors found that, indeed people's informa-

tion consumption is in�uenced by such algorithms. Recent research con�rms that

exposure to ideologically versatile content on social media can be restricted if no
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counter-measures are in place (compare Bakshy et al., 2015).

There is an ethical imperative to investigate the relationship between statistical

models and social phenomena more closely. Pariser diagnosed the transition from

human gatekeepers like the editors of newspapers, geographic scope, and physical

boundaries of knowledge exchange, to digital, algorithmic gatekeepers to content

and information. Therefore, the author argues, algorithms need to be provided

with a �a sense of civic responsibility� (Pariser, 2012). This imperative becomes

even more pressing when considering that �big data� related methods and models

are increasingly also entering the �eld of descriptive and explanatory research in

computational social sciences (Manovich, 2018). There are many advantages of

doing so: big data provide endless possibilities in describing social behavior in more

dimensions than the usual time and geographic dimension plus a few research-speci�c

dimensions like literature. This kind of analysis can enrich our understanding of

culture (Manovich, 2018).

Time, geographical position, and social network are the three dimensions that most

directly a�ect people in their preferences. Physical proximity has lost in importance

for social interaction in a digitized society: �glocalization� describes the phenomenon

that nowadays, individuals engage in multiple interest-based virtual communities

that have both a local embedding and a global extent (Johnston and Pattie, 2011).

Onnela et al. (2011) investigated the interplay of physical proximity and connectivity

in social networks and social exchange. With the help of a community detection al-

gorithm, the authors clustered people in virtual communication networks and found

the e�ect of geographic proximity on the intensity of social exchange to decline with

peer group size. In other words: The most intimate groups of people are still mainly

local, while the radius of exchange grows with the number of nearest persons one

considers. Strong social ties are closely related to local proximity.

This article discusses the underlying assumptions on people's behavior of some re-

cently developed models and methods for prediction and recommendation. We put

particular emphasis on three dominant dimensions of interpreting human behav-

ior: time and geographical position, as well as social network. With this article,

we contribute to the interdisciplinary exchange between social science, predictive
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Figure 1.1: Four dimensions of human preferences.

analytics, and statistical inference. We discuss the representation of social and geo-

physical change in recommender systems. For our mathematical consideration, we

chose a class of models that enjoys widespread acceptance in both geographical as

well as network-based analysis, and which contains an active modeling perspective

and di�erentiation between spatial modes � latent variable models. For compu-

tational reasons, factorial models used to be applied to two dimensions at a time

only. However, recent methodological and technical progress made it possible to

explore geographical embedding and social embedding simultaneously, through the

use of higher-order factor models for the analysis of data from Location Based Social

Networks (LBSNs).

Our results suggest that while some algorithms actively �claim� to be descriptive

only (by implying certain independence conditions), they cannot assess their e�ect

on the training data basis due to the way they are speci�ed. There are, however,

inferential approaches in the �eld of higher-order factorial models that can infer

change. More research is needed to come up with models that can do both at

the same time. The remainder of the article is organized as follows. Section 1.2

de�nes fundamental statistical concepts in the context of latent factor models, like

space, mode, and dimension. We outline a basic two-dimensional factor model and

explain the way such models treat di�erent notions of space. In 1.3, the discussion

of two-dimensional (i.e. matrix-based) data structures is extended to higher-order

(i.e. tensor-based) data structures. Finally section 1.5 summarizes the �ndings of

the review and concludes.
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1.2 Latent Variables in Two-Dimensional Spatial Models

In section 1.2, we introduce the class of latent variable based models and factorization-

based recommender algorithms. This class of model/method is widely spread for

recommendation ever since the Net�ix competition for recommending �lms to plat-

form users (compare Koren et al., 2009). We start with an explanation of the statis-

tical background of the models and emphasize the di�erence between the treatment

of geographical space and social space.

1.2.1 Factor Models and Factorization

Suppose a researcher is confronted with a survey dataset, including a hundred per-

son's answers to the questions �How often do you go to church?�, �How often do you

pray to God?� and �How often do you consult the Bible?�. Intuition would say that

those questions re�ect how religious a person is. It is possible to relate the three

questions to a joint underlying concept � religiosity, the unobserved �driver� of the

answers. This reduction of three observed variables to a single joint variable is also

called dimensionality reduction: Instead of considering all three items simultane-

ously, it is possible to reduce them to a single score on an arti�cial �religiosity�-scale.

If �How often� can be answered on a continuous scale, the latent construct is usually

assumed to be normally distributed.

The 100 people's answers to the three questions mentioned above will likely corre-

late: People that often go to church may also be more likely to consult the Bible

often. Both questions are dependent, and their answers are not independent of

one another. However, two equally religious people may have the same expected

response to both questions - any deviations from those expected values are, how-

ever, random. In statistical terms, this means that the answers to both questions

are conditionally independent - once the underlying factor is known (that is, if the

actual religiousness of two people is observable), the answers are identically and

independently distributed. The strong correlations are the result of the presence of

an underlying pattern or construct, and therefore, vice versa, the correlations can

be used to infer those unobserved constructs.
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To formalize this insight, suppose there is a set of observable random variables

(i.e. questions asked or items) xp (p ∈ 1, . . . , P ) with means µp. Moreover, let

Fk (k ∈ 1, . . . , K) denote a set of unobserved random variables or factors. These

factors represent the underlying lower-level concepts that determine the responses,

like the underlying reasons for the response behavior of a survey participant. There

are fewer factors than original variables, i.e., K < P . Item-speci�c factor loadings

lpk are used to describe the importance of factor Fk for item xp. The model bases on

the assumption that the unobserved underlying factors reveal themselves partially

in the observed variables. The larger the absolute value of lpk, the stronger the

relationship between a factor and a variable. Formally, we get

xp − µp = lp1F1 + . . .+ lpKFK + εp, (1.1)

where εp denotes an independently distributed error term with zero mean and �nite

variance-covariance structure. The distribution of εp may vary across p. Figure

1.2 visualizes this idea: common underlying factors cause the observed correlation

structures. A cross-sectional set of the responses of N survey participants to a

survey involving P items, the answers to which are driven by K unobserved factors

(usually K < P ) can be expressed in matrix notation:

X− µ = FLT + E, (1.2)

where X, µ and E are of order N × P , F of order N ×K, and L of order P ×K.

Each column of F contains one unobservable factor fk (e.g. the N persons' religios-

ity, honesty, or whatever unobserved concept may in�uence the person's answering

behavior), and a single row in F contains person n's factor values within the K

unobserved dimensions. L is called the matrix of factor loadings. Any model that

ful�lls the structure above is a latent factor model. A general introduction to latent

factor models can be found, for example, in the work of Loehlin (2004).

Given the factor values, the observable data is independently and identically dis-
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Figure 1.2: Representation of the basic latent factor model: observed correlations
results from the presence of unobserved factors.

tributed:

X|F ∼ i.i.d. (1.3)

It depends on whether L is assumed to be deterministic or random whether it is

necessary to condition on L. As Jolli�e (1986) explained, it is usual to assume

that the factors are random variables, and the loadings are �xed. The factors (the

columns of F) are restricted to be orthonormal (mutually orthogonal and normalized

to a length of 1), formally FFT = IN . Consequently, the variance-covariance matrix

of the observable items X can be expressed as

V Cov(X) =E((X− E(X))2) = LLT + Ψ (1.4)

The two components that add up to the variance-covariance matrix, LLT and Ψ, are

called communalities and speci�cities, respectively (Loehlin, 2004; Jolli�e, 1986).

Generally, the formation of factors from highly correlated items via linear combi-

nation, without prior hypotheses on the structure of such factors, is referred to as

exploratory factor analysis. There are di�erent ways to specify the model (for ex-

ample, the orthogonality restriction can be suspended). In our discussion, we focus

on the interplay of di�erent dimensions in the exploratory analysis of correlation

structures. Survey data describes features and individuals.
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The correlation matrix can either re�ect attributes that show high correlation (sev-

eral items represent the concept of religiosity) or re�ect clusters of people that show

similar response behavior (a group of people tends to give the same answers). On

the one hand, it is possible to use a survey among individuals to calculate the cor-

relations of single items and determine which items can be combined linearly to a

lower-dimensional information sub-space. The factors are then linear combinations

of items, which express underlying �reasons� for correlation between the items. On

the other hand, X can be transposed to XT , to calculate the correlations between

people to determine how similar answers are among people. Latent factors are then

linear combinations of individuals, forming groups. Items of features with strong

correlations can be clustered into highly correlated groups of features, as they ex-

press the same unobservable factors, and thereby the factors become measurable.

In order to group people, their similarity or distance in feature space has to be es-

timated. Distance can be measured by Euclidean distance in an unlimited number

of attributes (Dem²ar et al., 2013).

As shown above, factorization applies to correlation structures and �nds patterns

without a proper model. The results of a factor model estimation or a factorization

identi�es similar individuals. Similar individuals are in this case either regions with

similar pollution patterns or people with similar religiosity. Factorization is usually

model-free and applied �mechanically�, whereas the factor model requires assump-

tions on distributions and properties of the data, and allows for inference of param-

eters. Before starting to explain the di�erences between the settings, we would like

to underline the value of using a model and having inferential ambitions, instead of

mechanically applying factorization. One of the risks in the factor-based analysis of

spatial structures is the overinterpretation of point estimates. Dommenget and Latif

(2002) discussed the risk of mistaking principal components and orthogonal factors

for meaningful patterns. The authors named several examples from highly renowned

journals that identify physically important patterns in climatology from the second

principal component. However, as the authors showed, the interplay of several pat-

terns or modes in climate lead to a superposition of all patterns in the �rst principal

component, and an arti�cial antagonism in the second principal component. Similar
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problems have been described by von Storch (1999a), who concentrated on �misuse�

of supposedly sophisticated methods of analysis for �nding spectacular results. The

model forces factorial structures to be orthogonal, while there is no reason to be-

lieve that real-world processes follow this rule. Rather than interpretation, PCA

concentrates on the e�cient representation of variance. In order to discriminate be-

tween spurious and true patterns, Zwiers and von Storch (2004) suggested to trace

the identi�ed patterns in time and check their dynamic behavior for plausibility

and reproducibility. A possible remedy against overcon�dence in estimates is taking

account of the di�erences in stochastic and deterministic factors formulation, and

respecting the fact that several factorial structures can lead to the same observed

patterns. For a probabilistic formulation of models with accurate factor inference,

Bayesian methods are the tool of choice. Probabilistic frameworks include possi-

bilities of penalized estimation in sparse data environments (see Salakhutdinov and

Mnih, 2007), and Bayesian analysis in combination with a Monte Carlo Markov

Chain (MCMC) �nally allows for the inclusion of prior information through the

choice of an adequate prior distribution (Hogan and Tchernis, 2004; Salakhutdinov

and Mnih, 2008; Zhu et al., 2016). The probabilistic formulation of blockmodels for

network analysis (Airoldi et al., 2008) and for the unobserved latent social space

(Ho� et al., 2002; Handcock et al., 2007) can help to avoid erroneous conclusions

from clustering in the context of latent factor analysis in a network context.

1.2.2 Factorization of Geographical Space for Pattern Recognition

Matrices re�ect two dimensions at a time, one along the rows, and one in columns.

When the answers of N persons to one single question are tracked over T periods,

the matrix is of dimension N × T and re�ects the two modes: individuals and time.

Time, or �dynamic space� is one possible mode of factor analysis. Time-related

factors describe common trends that a�ect all individuals in di�erent intensities,

where intensity manifests in factor loadings. Geographical space is a fourth possi-

ble mode of analysis. Referring to the three subspaces geographic space, temporal

space, and attribute space, Richman (1986) and Jolli�e (1987) de�ned six modes of

factor analysis via Principal Component Analysis (PCA), which are summarized, for
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example, in Dem²ar et al. (2013)1. The model seeks to measure either an underlying

pattern in one or the other dimension, depending on which dimension relates to the

factors and which to the loadings. In the O-mode the relationship between features

(attributes/items/characteristics) and time is modeled. In this mode of factor anal-

ysis, phenomena developing in time, like an economic downturn, can be modeled and

used for prediction. When the order is inverted, the P-mode expresses the need to

cluster features, whose development in time is similar. The Q-mode clusters similar

locations regarding attributes, and the R-mode clusters attributes that are similar at

the same locations. The S-mode identi�es latent patterns in locations where events

take place at the same time, and the T-mode identi�es patterns in time where events

happen at the same locations. Table 1.2.2 provides an overview of the purpose of

the single modes in direct juxtaposition.

Matrix factorization is not only an exploratory tool for the discovery of patterns in

observations that violate the independence assumption. It is also used to estimate

the error structure in other models, which would usually depend on an independent

error structure. As Pesaran and Tosetti (2011) pointed out, the multifactor ap-

proach is, besides the explicit inclusion of neighborhood structures as suggested for

example in Wang and Wall (2003), one of the two dominant approaches for dealing

with error cross-section dependence in panel data where N is large relative to T

(that is, when there are more individuals than time stamps). While the usage of

neighborhood matrices requires hypotheses on which individuals interact with one

another, the factor-based approach is exploratory, and �discovers� spatial dependen-

cies by itself. The multifactor approach assumes that a �nite number of unobserved

common factors can describe the cross-sectional dependency structure in the data.

Anything beyond the observed e�ects (that is, the error term) can be decomposed

into an idiosyncratic error and the combination of a few common e�ects (Pesaran

and Tosetti, 2011). For spatiotemporal data, assume yit is an observed outcome for

individual i at time t. Then the interplay of dynamic factors and individual factor

loadings determines yit. As the distribution of the factor loadings is unrestricted,

1PCA is one basic method for factor extraction. In contrast, factor models generally use as-
sumptions that go beyond the dimensionality reduction in PCA.

10



Table 1.1: Modes of multivariate analysis are de�ned by the combination of feature
space, geographic space, and time (e.g., Dem²ar et al., 2013). The horizontal line
delineates an extension of the overview by a social network perspective.

Mode Loadings (l) vs.
Factors (F)

Description

O-mode Attributes vs.
Time

Attributes are considered data elements and
sampling times variables; changes in features are
due to phenomena developing in time, such as
trends and seasons.

P-mode Time vs. At-
tributes

Sampling times are data elements and at-
tributes are variables; similar changes in time
are due to common underlying characteristics of
individuals.

Q-mode Attributes vs.
Locations

Attributes are considered data elements, and lo-
cations are variables; measurements are similar
because a set of locations has similar character-
istics.

R-mode Locations vs.
Attributes

Locations are data elements and attributes are
variables; similar attributes are clustered. Also
called spatial objects PCA or raster PCA.

S-mode Time vs. Loca-
tions

Sampling times are considered data elements
and locations are variables; nearby phenomena
develop similarly over time. Also called atmo-

spheric science PCA.

T-mode Locations vs.
Time

Locations are data elements and sampling times
are variables; time e�ects drive changes in the
location of objects (concerns phenomena that
can change location).

the factors loadings can show spatial clusters, for example, when nearby regions are

similar. While the common factors model temporal variation, the factor loadings

take account of the spatial variation and dependency (Abadie et al., 2010; Lopes

et al., 2011; Pesaran and Tosetti, 2011). To stay in the context of human interac-

tion, consider the following example: The political climate in a country can change

over time, where yit describes the dominance of pro-European voices. Every country

has a (1×K) vector of factor loadings, which describes the reaction to K di�erent

temporal in�uences, which can be general developments or time shocks that a�ect

all countries equally. In every single period t, K such factors in�uence yit. These
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in�uences are encoded in the time-dependent factors. The European sovereign debt

crisis and its side-e�ects, for example, represent a dynamic factor that a�ected all

European countries. However, the pro-European opinion changed di�erently due

to various degree of economic impact in the single countries and di�erent cultural

backgrounds. For example, when economic resilience is distributed unequally from

North to South across Europe, then the output yit is also going to show di�erences

in the impact of an economic crisis from North to South. The strength of the impact

is in this case encoded in the factor loadings.

Spatial factors describe regionally limited phenomena that cause spatial heterogene-

ity in the output. Therefore, a core purpose of spatial factor models is to decompose

the analyzed area into regions that represent a spatial signal, that is, a phenomenon

that is characterized by a spatial covariance structure that acts predominantly over

a particular spatial scale, indicating a spatial factor (Bailey and Krzanowski, 2000).

Geographical factor analysis seeks to identify regions where similarity is high, and

thereby intends to �nd informative signals in the data. The unobserved drivers

for local heterogeneity reveal themselves in variance-covariance structures that are

homogeneous over a limited area of a network or space, that is, the area which is

a�ected by the spatial signal. Correlations that go beyond a certain radius are asso-

ciated with noise and considered to be spurious. The separation of signals from noise

can be helpful, for example, to clean satellite imagery data (Bailey and Krzanowski,

2000).

One of the �rst formal factor-based models in the geospatial context has been pro-

posed by Switzer and Green (1984). The model utilizes a continuous spatial index

s. Switching to a continuous index is useful because spatial data is not ordered

in space, and describing a circular region around a spot s of radius δ is easier in

continuous indexing than in discrete indexes. The following explanations are based

on the work by Bailey and Krzanowski (2000). The model emphasizes that it is not

the dyadic relationship between two individuals that creates dependencies, but their

geographic proximity. Let
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y(s) = (y1(s), . . . , yp(s))T , s ∈ R (1.5)

be a collection of p spatial processes, with second-order stationarity, i.e. the p pro-

cesses emanate from a random process with constant mean, and spatial covariance

depends only on distance and direction separating any two locations. s is a contin-

uous set of point locations in spatial domain or region R. According to Switzer and

Green (1984), the process is driven by K latent factors uk(s), k = 1, . . . , K. The

authors de�ned the process structure in terms of covariance and correlation:

uk(s) = aTk y(s), k = 1, . . . , K, such that (1.6)

Cov(uk(s), uj(s)) = Cov(uk(s), uj(s + δ)) = 0, k 6= j and (1.7)

Cor(uk(s), uk(s + δ)) ≤ Cor(uj(s), uj(s + δ)), k < j. (1.8)

δ is some suitably chosen predetermined, �xed spatial separation, or lag. Next let

Σ = var(y(s)) be the overall dispersion matrix of these processes. The spatial

factor coe�cients ak are the normalized eigenvectors of Σ−1C(δ), where C(δ) =

Cov(y(s),y(s + δ)). The eigenvectors, representing spatial factors, are mutually

orthogonal and therefore uncorrelated. The more eigenvector/eigenvalue pairs one

assigns to the factorial structure, the more autocorrelation within the area de�ned

by the lag δ is covered by the factor structure. The patterns that represent a

smaller share of the total variance-(auto-)covariance structure, i.e. the factors with

the smallest eigenvalues, can be assumed to represent noise only. The idea behind

this argument is that y(s) can be composed of y(1)(s) and y(2)(s), which might

represent signal and noise. Therefore, the Variance-Covariance-Structure can also

be decomposed into a signal and a noise component, Σ = Σ(1) + Σ(2), where Σ(k) =

var(y(k)(s)) (Switzer and Green, 1984; Bailey and Krzanowski, 2000).

Orthogonal spatial factors resulting from spectral decomposition are commonly re-

ferred to as Empirical Orthogonal Functions (EOFs). In a discrete formulation, these
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represent the spatial equivalent of a Principal Component Analysis, while it can also

be combined with a spatially continuous formulation via the spatial indicator s as

shown above (Cressie and Wikle, 2011). Additional material on EOF analysis and

its relationship to principal components can be found in Jolli�e (1986), von Storch

(1999b), and Cressie and Wikle (2011).

A core �eld of research relying on EOFs and spatial factor models is the �eld of Fac-

torial Ecology (Dem²ar et al., 2013). In an early de�nition of the �eld, Berry (1971)

de�nes three main characteristics of factorial ecology: the use of factorial methods

in an ecologic context with comparative aspirations. PCA can be one method of

factor extraction. Dem²ar et al. (2013) showed that nonspatial PCA, which is bases

on the assumption of independent data, is in regular use in di�erent �elds of spatial

data analysis. The authors provide an overview of use cases for di�erent kinds of

spatial data and explain nonspatial, kernel-based techniques to correct for spatial

analysis in PCA. The geographically weighted PCA technique assumes that there

are regions of geographical space with distinct variance-covariance structures, which

should be modeled separately. Observations are weighted inversely proportional to

geographical (usually Euclidean) distances between a particular point and its neigh-

boring data points. The resulting PCA structures vary continuously over the entire

geographic space.

A less mechanical, more model-based approach to spatial factor analysis has been

provided �rst by Christensen and Amemiya (2001, 2002, 2003). The authors de-

veloped a semiparametric latent variable model for rectangular grids, formalize as-

sumptions of the factorial model, and provide guidance for inference. Model-based

approaches to spatial factors were the basis for the development of Bayesian meth-

ods that specify parametric distributions for the single parameters (e.g., Wang and

Wall, 2003), hierarchical spatial factor models (e.g., Hogan and Tchernis, 2004) and

Bayesian spatiotemporal models (e.g., Lopes et al., 2011).

1.2.3 Factorization of Social Space for Link Prediction

Factor analysis in social networks seeks to identify a subspace (that is, a region or

cluster) where people share a common variance-(auto-)covariance structure due to
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some unobserved signal. In the same way, we can factorize social space to identify

structures like groups and communities. Virtual space in terms of a network-based

space of human interaction describes relationships � how close two persons are to

one another can be determined, for example, by the number of people a message

would have to cross to get to the other person. The current distance between two

persons is determined by the path between two nodes in a network at time t.

In the spatial analysis of network structures, the spatial structure is considered to

be known, as in the case of a pre-de�ned, invariant neighborhood matrix. Instead,

we consider the spatial distance between two nodes to be the path length between

two nodes and use it for link prediction. Consider a network of senders and receivers

of messages, as suggested by Ho� (2009). Then the respective graph G exhibits a

directed adjacency matrix Y(G). This implies that it is possible that yij 6= yji. yij

indicates whether there is a connection between the nodes i and j. If a network

describes people that talk to one another, Y(G) is of dimension N ×N , and yit = 1

if one person i talks to another person j, and yij = 0 if not. In the unipartite

setting, all nodes can be connected, and the adjacency matrix is squared. In a

bipartite setting,there are two separate sets of nodes and no connections between

nodes belonging to the same set. Consequently, the adjacency matrix is rectangular.

For example, a movie platform connectsN users with F �lms, where yij = 1 if person

i has seen the �lm j. In bipartite networks, there are two separate sets of nodes,

which can not be connected to another member of the same group. Figure 1.3

illustrates the di�erence.

Nodes are also called vertices, and ties are called edges or links (and, when they

have a direction, arcs). It might seem to be an obvious choice to model the binary

question whether there is a relation or not via generalized linear models like Logit

models. However, such models assume nodes to be independent given the observable

predictors of tie formation. There are several obvious examples that point to a

regular violation of this assumption. For example, the propensity of two vertices

to connect depends both on the activity level of one as well as on the activity

level of the other node: Two very active nodes are more likely to connect than

two nodes that hardly have any connections at all. Moreover, common interests
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Figure 1.3: Graphical representation of unipartite and bipartite network structures.

and the exposure to common in�uences foster violations of independence. Only

conditioning on both the observed and unobserved characteristics of the two nodes

leads to conditional independence. Consider the probability of observing a speci�c

network, P (yij, yik, . . . , ylk|θij, θij, . . . , θlk), where the binary variable yij indicates

the presence (yij = 1) or absence (yij = 0) of a connection between nodes i and

j. θij contains all the relevant observable and unobservable information on this

connection. Thus, the single edges yij are conditionally independent of one another,

given θij (Ho�, 2009; Minhas et al., 2016a):

P (yij, yik, . . . , ylk|θij, θik, . . . , θlk) = P (yij|θij)× P (yik|θik)× . . .× P (ylk|θlk) (1.9)

P (Y|θ) =

n×(n−1)∏
α=1

P (yα|θα) (1.10)

The underlying assumption is that a small number K (i.e., K << N) of factors can

explain the relationship between any two nodes. If the nodes describe users and

�lms, then the factors correspond to �lm characteristics that determine if a user
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likes the �lms. Usually, nobody seeks to interpret the factors explicitly. Neverthe-

less, they represent �obvious dimensions such as comedy versus drama, amount of

action, or orientation to children [or] less well-de�ned dimensions such as depth of

character development or quirkiness� (Koren et al., 2009, p.43) or completely un-

interpretable patterns. Every user has a vector of factor values ui that determines

how well she suits a movie j with latent characteristics vj (Koren et al., 2009). a

possible representation of θij contains observable dyadic and monadic information

xij (such as gender if available), unobserved monadic information concerning only

one of the nodes independently of the other, ai and aj, and a set of unobservable

dyadic characteristics that interact with the characteristics of the �partner� node

with corresponding weights that measure importance, uTi Dvj. Formally, this in-

volves

θij = βTxij + ai + aj + uTi Dvj + εij (1.11)

where xij denotes exogenous covariates, ai and aj describe random e�ects and ui and

uj are vectors of node speci�c characteristics. Both represent rows in the matrices U

and V, i.e. ui = U(i·) and vj = V(j·). The diagonal matrix D contains the weights.

Let zij be the factorial structure of the equation:

zij = uTi Dvj + εij, (1.12)

or, in matrix notation,

Z = M + E = UDVT + E. (1.13)

Figure 1.4 shows an example. There is a network with one observable characteristic

x, which indicates two types of nodes A and B (represented by circles and rectangles).

Node m is of type B, node n is of type A, i.e. xm = B and xn = A. The information
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Figure 1.4: General idea of network analysis with a single binary observable variable
x. Circles represent one category, rectangles another category.

that the nodes show stronger or more connections within a single node type is

valuable information for the estimation of P (yjl = 1). Other clustering e�ects

result from unobserved heterogeneity, which the latent factorial structure accounts

for as well. Di�erent extraction methods such as spectral decomposition, maximum

likelihood, or Monte Carlo Markov Chain (MCMC) based methods generate matrices

U, V such that their columns, i.e., the factors, are orthonormal. The diagonal matrix

D determines the importance of a factor in the tie formation process of the network

(Koren et al., 2009; Ho�, 2009).

As Sidiropoulos et al. (2017) showed, discipline-speci�c labeling of the model ex-

presses the various application contexts of the model. The authors distinguished

research in machine learning from research in signal processing. In the latter, re-

searchers typically focus on the columns of U and V, i.e., the associated rank-1

factors U(·i)V(·j), and the outer product of the two assigns a score for the compat-

ibility of the two factors to every pair. This score is represented by θij. In signal

processing, research focuses on the separation of dynamic signals, which correspond

to a column as they are related to time. In the former case, i.e. machine learning,

researchers focus on the rows of U and V, i.e. U(i·) and V(j·). These vectors are a
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parsimonious representation of the position of an individual observation in a latent

lower-dimensional space, like coordinates (Sidiropoulos et al., 2017). In machine

learning, the interpretation of the factors is seldom of interest. Most approaches

identify common factors without actually labeling them. Filter methods that ex-

plore all ratings of all users to predict a single user's rating are called collaborative

�ltering approaches (Koren et al., 2009).

Collaborative �ltering with matrix factorization has become computationally very

e�cient around the years 2007-2010 due to the mining of sparse data structures

and usage of penalty terms to reduce over�tting (e.g., Koren et al., 2009). It can

now deal with very large problems that other algorithms cannot deal with anymore

in a reasonable time. Matrix factorization based prediction algorithms combine

�good scalability with predictive accuracy� (Koren et al., 2009, p.44). The high

e�ciency is also due to the split of computation and prediction in two phases - a

computation and a prediction phase, which makes the prediction step independent

of later updates. For fast updates of recommendations, the dimensionality reduction

and clustering in the lower-dimensional subspace can be conducted in an o�ine and

an online phase (Goldberg et al., 2001). In the o�ine phase, the time-consuming

inference of factor structures is conducted. The �online� phase of projecting new

participants into the clusters reduces to looking up values in a table, thanks to the

separation of estimation and prediction. While more information on the new user

is being collected, there is no need to update the entire model. Ratings adapt to

the ratings of users that have rated similar �lms before. Instead, updates of the

factorization are conducted in regular time intervals, adapting to computational

capacity and size of the problem. There is no need to have all the data on a single

node included in the estimation process (Goldberg et al., 2001). In contrast to other

recommendation algorithms, matrix decomposition is also highly �exible about the

inclusion of additional, observable information (Koren et al., 2009).
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1.3 Extensions to Higher-Order Factorial Models

All the concepts discussed so far relate to two-dimensional data structures. During

the last ten years, higher-dimensional approaches, based on tensor data structures,

have come to maturity (compare Cichocki et al., 2009). These higher-dimensional

approaches allow considering several spatial dimensions simultaneously, allowing

the application of similar concepts like matrix factorization and factor-based mod-

eling in the context of multi-modal, higher-order recommendation. For higher-

dimensional analysis, data has to be organized in tensors, i.e. multi-way arrays or

multi-dimensional matrices. For example, if there are �ve yearly survey waves with

the same respondents, then the survey data can be organized in a 100 × 3 × 5 =

N × P × T tensor. xnpt is then the answer of person n to question p at time t.

Dimensions are also known as ways or modes of a tensor. If I1, I2, . . . , IN ∈ N de-

note index upper bounds, i.e. the maximum numbers a variable can take, the tensor

of order N is represented by Y ∈ RI1×I2×...×IN . Scalars, vectors and matrices are

zero-order, �rst-order and second-order tensors, respectively, and tensors of order

three and higher are called higher-order tensors (Cichocki et al., 2009).

In the next section, we discuss multi-dimensional factorial models and factorization.

We start with latent blockmodels, which are directly related to the model explained

in Eqs. (1.12) and (1.13). Subsequently, we discuss higher-order factorial models

and then discuss models that directly refer to LBSNs. The latter type of model

has a special role because it directly links social structures to the assessment of

geographical positions via GPS coordinates.

1.3.1 Mixed Membership Latent Blockmodels

The models described above infer K unobserved patterns in geographic or network

data. In the context of social interaction, a natural extension for latent variable

modeling is to ask about group membership. Moreover, group models are among the

�rst �elds that applied tensor factorization. Hence, we start the multi-dimensional

section of this article with blockmodels. As pointed out in the introduction, many

people are nowadays part of several communities at a time. Latent blockmodels are
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di�erent from latent factor models as they assume the latent variables to be nominal

� an individual can either be part of a community or not. It is the membership in one

block of locations or in one block of nodes that determines the variance-covariance

structure of an individual node or observation. The hypothesis that individuals are

nowadays simultaneously member in multiple inter-driven virtual communities has

a direct equivalent in Mixed Membership Blockmodels (MMB). Moreover, spatial

clustering often uses the assumption that a location or a node is part of a group,

and group membership is the only dependency structure that individuals engage

in. For these reasons, we start the multi-dimensional considerations with Mixed

Membership Blockmodels (MMB).

In general, blockmodels that there are unobserved groups among nodes, where the

members of a group share a joint dependency structure. If the groups were known, it

would be possible to include the dependencies in explicit form. For every group, one

explicit variance-covariance structure applies. It is possible to use group structures

in geographical applications of principal components (Dem²ar et al., 2013), or to

include them explicitly in mathematical descriptions of a network (e.g., Wang et al.,

2013). However, group memberships can also be unobserved. Latent blockmodels

are similar to latent variable models and seek to infer the group structure in an

exploratory way from data. Deterministic latent group models assume the groups

to be exogenous to the system. Stochastic latent group blockmodels (Wang and

Wong, 1987; Snijders and Nowicki, 1997) assume these groups to be stochastic, i.e.,

they assign a probability distribution to the membership of nodes in a group. Nodes

within the class are assumed to have a homogeneous probability of connecting, and

a homogeneous dependency structure and variance (Kolaczyk and Csárdi, 2014;

Ferligoj et al., 2011). An overview of deterministic and stochastic blockmodels can

be found in the contribution of Ferligoj et al. (2011).

The latent blockmodel makes some fundamental assumptions about space. Every

node is allowed to belong to one cluster at a time only, and nodes within a cluster

are stochastically equivalent, i.e., two nodes have the same probability distribution

of their ties to other units (Ferligoj et al., 2011). A core di�erence between physical

networks and virtual networks is that humans usually interact within several par-
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allel network spaces at a time, by contributing to several social network platforms

(Johnston and Pattie, 2011). Blockmodels can be directly related to the latent

variable models discussed above when individuals are allowed to belong to several

groups simultaneously. While stochastic blockmodels assign each individual to ex-

actly one group, the Mixed Membership stochastic Blockmodel (MMB) suspends

this requirement (Airoldi et al., 2008). Every individual is subject to a set of �latent

roles which govern the objects' relationships with each other� (Airoldi et al., 2008,

p.1982). In the MMB, each individual is assigned a vector of posterior probabilities

πi = (π1i, . . . πKi) to belong to any of the K available groups. The estimation of

these probabilities utilizes a Bayesian model that involves iterative drawings from a

Dirichlet distribution for the mixed membership vector. The MMB assumes that,

within a group, nodes or individuals are exchangeable. It can thus be interpreted

as an application of the so-called latent Dirichlet allocation proposed by Blei et al.

(2003). The latent Dirichlet allocation is a generative approach for the modeling of

latent classes and other discrete relationships. Initially, it has been used for com-

plexity reduction in text analysis, in particular for the modeling of �bag-of-words�,

representing the hypothesis that the order of words in a document can be neglected.

Airoldi et al. (2008) emphasized the close relationship between latent space mod-

els Ho� et al. (2002); Handcock et al. (2007) and the MMB. Within the MMB, it

is assumed that community memberships are drawn from a Dirichlet distribution,

whereas the distribution governing the interaction weights can be chosen freely. In

latent space models, both latent vectors and interaction weights are drawn from

Gaussian distributions.

In 2011 still, Ferligoj et al. (2011) listed the extension of latent blockmodels to

dynamic models among the �open general problems for blockmodeling� (Ferligoj

et al., 2011, p.443). The authors emphasized that the structural description of a

network is useful as long as the structure is also indicative over time, i.e., if it

remains the same over the observation period. To understand structural changes, it

is necessary to include them in the model:

If a social structure as a network really is changing then it is the fun-
damental structure that is changing, with the observed changes being
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indicators of the underlying fundamental change. [...] Mere descriptions
of the changes involved, even if couched in terms of blockmodels, seem
insu�cient. We need to understand the processes generating structural
change and this implies understanding how blockmodels, as representa-
tions of positions and role systems, evolve (Ferligoj et al., 2011, p.445).

A �mere description of the changes involved� alludes to the possibility to analyze

single time-slices separately, as used to be state of the art until the development

of dynamic models. With autoregressive elements, it became possible to relate one

time-slice to the other, but until ten years ago, no integrated model existed (Kunegis

et al., 2010). Fu et al. (2009) propose a dynamic state-space approach as a wrapper

for the MMB proposed by Airoldi et al. (2008): the Dynamic Mixed Membership

Blockmodel (DMMB). In the context of evolving networks, the approach serves

to �dissect the evolving functional composition of the actors�, using data on the

interaction of an email network. Fu et al. (2009) suggested to �superimpose a state

space model on top of the [MMB], and connect the two via a logistic normal prior,

such that temporal dynamics of the networks are captured� (Fu et al., 2009, p.330).

This general approach to modeling time dependency in an autoregressive state-space

approach is still in regular use today (e.g., Minhas et al., 2016b).

Anandkumar et al. (2014) were among the �rst to use tensor structures for dynamic

overlapping cluster detection. They propose a learning method using spectral tensor

decomposition, that is adequate for probabilistic network models with overlapping

communities or Mixed Membership Dirichlet models. The model can learn higher-

dimensional factor structures in the lower-order moments of a random variable. It

directly bases on the usage of the Mixed Membership Dirichlet model introduced by

Airoldi et al. (2008). Anandkumar et al. (2014) provided a direct link to factorization

via spectral decomposition.

The Higher Order Singular Value Decomposition (HOSVD) produces orthogonal

factors that order the latent dimensions by their overall contribution to variance,

equivalently to the spectral decomposition of a matrix. We base our illustration on

the article by Karatzoglou et al. (2010), which applies HOSVD in the context of

collaborative �ltering. Following the empirical example of the authors, let Y denote

a tensor of order (N×M×C) that contains observed ratings of users on �lms. Here
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Figure 1.5: Three-dimensional tensor factorization by Higher Order Singular Value
Decomposition for the example of user movie databases within multiple contexts
(compare Karatzoglou et al., 2010, p.81).

N stands for the number of users, M denotes the number of �lms or items users

have access to, and C describes the number of values associated with a contextual

variable (like time or movie genre). The aim is to approximate the original tensor

of observations Y with a parsimonious factorial structure F, formally:

Fnmc = S×1 U×2 M×3 C (1.14)

that minimizes the loss between observed an approximated structure. Here, xn (n =

1, . . . , 3) denotes the so-called tensor (or Tucker) product (Cichocki et al., 2009,

p.36). The factors are, like in two-dimensional models, encoded in the columns of

the matrices UN×dU , MM×dM and CC×dC , and un = U(n·) is a row of the user factors,

i.e. the score of observation n along all available factors (Karatzoglou et al., 2010).

The central tensor S is of order (dU ×dM ×dC), dimensions can be adjusted �exibly.

Figure 1.5 illustrates the HOSVD graphically.

1.3.2 Higher Order Factorial Models

In structural prediction, the input to a prediction algorithm is a partially observed

graph, while for temporal prediction, the input consists of a sequence of graphs

observed at multiple time instances or within multiple time windows. The latter

requires a temporal perspective, for example, via polynomial kernel based curve
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�tting modeling a speci�c growth mechanism (Mangal et al., 2013) or via tensors

(e.g., Spiegel et al., 2012). Besides temporal prediction, methodological progress in

higher-order factorization had another core driver: applications in data mining on

sparse network structures. In order to alleviate the sparsity of one matrix, informa-

tion from a di�erent context involving the same nodes can be helpful for prediction

and pattern inference. On the other hand, treating the alternative contexts as if they

represented the same form of relationship can be misguiding and not very helpful,

as books and �lms, for example, are two contexts where use preferences exert their

in�uence, but pooling books and �lms in a single set of ratings can lead to a loss

of information. Therefore, recommendation models that pool together rating from

several contexts without actually pooling the data has been on many research agen-

das in the last ten years (e.g., Kolda and Bader, 2009; Mørup, 2011; Spiegel et al.,

2012; Ho�, 2015; Battiston et al., 2016).

The idea of solving the problem using tensor data structures itself is not new, while

it has only recently become feasible for the context of large datasets. Borgatti and

Everett (1992) provided seminal work on the application of blockmodeling to multi-

modal data such as �lm-actor networks with two types of nodes and multi-network

data such as actor-by-actor-by-time arrays or tensors. Sidiropoulos et al. (2017)

provided an overview of methodological progress in the �eld of tensor decomposi-

tion and its application in knowledge engineering. The authors covered a broad

range of topics, including tensor factorization models, identi�ability, algorithms for

decomposition and use cases, �ranging from source separation to collaborative �lter-

ing, mixture and topic modeling, classi�cation, and multilinear subspace learning�

(Sidiropoulos et al., 2017, p.3551). While a comprehensive methodological overview

is beyond the scope of this article, we will brie�y illustrate the principle of tensor

decomposition for factorization. Karatzoglou et al. (2010) emphasized the advan-

tages of tensor factorization for recommendation tasks, as being a �generic model

framework� (Karatzoglou et al., 2010, p.81) that, similarly to matrix factorization,

o�ers fast computation and e�cient optimization.

The basic idea of factorizing higher-order data structures is that multiple contexts

of behavior share similar rating patterns. If there are two separate sets on book
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ratings and �lm ratings, there are two options. On the one hand, one can pool

both sets of ratings and factorize a matrix. On the other hand, it is possible to

organize both matrices in the form of a tensor and use a tensor-based factorization.

Cichocki et al. (2009) listed among the modes of analysis besides space, time and

frequency also �trials, task conditions, subjects, and groups� (Cichocki et al., 2009,

pp.43-44). Other examples can be di�erent pollutants that share common factorial

structures because they all depend on the distribution of industrial areas, or sepa-

rate measurement facilities distributed over the country. Even if measurements are

not directly comparable, information on covariance structure regarding one can be

informative about the other. Information on another air pollutant can, for example,

help to estimate the local factors that determine general pollution levels, when the

same factors play a role in di�erent pollutant contexts. The separate factorization of

every estimated covariance matrix leads to the loss of information on the covariance

structure among contexts. Multi-dimensional data structures help in retaining the

cross-contextual information (Cichocki et al., 2009).

Zhang et al. (2009) partitioned the earth's surface into coherent areas with homo-

geneous temporal and spatial autocorrelation patterns. In their implementation,

monthly variation patterns end up in the second factor, whereas a third factor rep-

resent yearly variation patterns. The corresponding global maps are recognizable

in the �rst factor (Zhang et al., 2009). Fan et al. (2014) used tensor decomposition

for analyzing people �ow, assuming that spatial dynamic �ows are the result of the

interaction of spatial factors, for example, driven by business districts that are the

target of many commuters for work, with temporal factors, when commuters arrive

in the morning and leave in the evening. The authors used nonnegative tensor fac-

torization to identify these patterns. Their analysis employs on city-wide GPS log

data created by the use of smartphones. A single observation or record in the original

data contains a unique ID for each check-in of a mobile phone, latitude, longitude,

and time. The data are binned to the number of log-ins in a region r, day d, and

time of the day t. Y ∈ RNr×Nt×Nd is the tensor which describes people �ows, where

Nr, Nt, Nd are the numbers of regions, time-slices and sample days, respectively.

The authors discussed how the spectral decomposition in time can detect abnormal
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population behavior after a catastrophe and analyze the �ow of people that �ed the

Fukushima area after the nuclear catastrophe of 2011. In time factors, the out�ow

of people from the direct perimeter of the destroyed nuclear power plant is visible

in the matrices generated by tensor decomposition.

A recent application of longitudinal network structure basing on tensor structures

has been provided by Minhas et al. (2016b). The authors integrated the coevolving

networks of international verbal and material interaction in a single framework.

They aimed to trace two networks of N × N adjacency matrices (where N is the

number of countries considered) over T periods in V = 2 separate contexts (i.e.,

verbal and material interaction). Minhas et al. (2016b) intended to understand how

and why networks change over time, without declaring one of the two modes of

interaction to be exogenous. Their data is stored as a N ×N × V × T fourth-order

tensor. Similar to a vector autoregressive model (VAR), the authors introduced

a lagged predictor Yt−1, and consider the V contexts to be endogenous. That is,

countries that have frequent verbal cooperation (con�icts) are also more likely to

have material cooperation (con�icts) and vice versa. Instead of looking at a series

of two-dimensional matrices, data is organized in a series of third order tensors,

where one dimension of the tensor represents context. Let Yt be a N × N × V

three-dimensional tensor, describing the network at time t. Then Yt−1 is Xt lagged

by one period. Yt−1 is used as a predictor to Yt in the regression model to trace

the changes in the underlying factorial structure of the model. Using the multilinear

formulation introduced in Ho� (2015), the authors obtained:

Yt = Yt−1 ×1 B1 ×2 B2 ×3 B3 + Et. (1.15)

B1 and B2 represent N × N matrices of regression parameters, estimated under

simultaneous consideration of the V contexts that human interaction develops in.

Therefore, both matrices represent the consequences of past behavior for present

behavior.

B(1ij), i.e., the i-th row in the j-th column of the matrix B1, represents the causal
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e�ect of a tie from actor i to actor j along any of the V contextual modes for the

likelihood that an interaction arises from actor i to actor k, one time period after.

The dynamic e�ects of the lagged dyadic relational parameters on one another are

encoded in the V × V -dimensional matrix B3. This means that B3,uw represent the

e�ect of a parameter u in one network in t−1 on the value of a parameter w in that

dyad during t. The matrix Et contains random e�ects (Minhas et al., 2016b).

Minhas et al. (2016b) referred to Ho� (2015) for details on the inferential implemen-

tation. While the method decomposes a three-dimensional tensor to model countries

and contexts, the approach uses VAR for the integration of a fourth mode, the dy-

namic mode. The usage of VAR for the speci�cation of dynamics shows a perspective

on graphs that expresses stability over time. The higher the absolute values of the

elements in the loading matrices, the stronger the time dependency. The relational

space in the analysis is treated as endogenous, as it is the changes in the tensor

structure that are of interest. Time, however, is not factorized but modeled in an

autoregressive way. Time is di�erent from other dimensions, as it has a clear causal

structure: it is always the past that in�uences the future, not the other way around.

Therefore, many models use this autoregressive formulation, which automatically

implies a Markov property: Once the state of the tensor at time t− 1 is known, the

tensor state at time t is independent of the realized states in t = 1, . . . , t− 2. This

Markov property substantially reduces the number of parameters that have to be

estimated.

Next, consider geophysical applications of tensor structures, where space is consid-

ered exogenous. Henretty et al. (2017) illustrated the usage of tensor decompositions

for geographic analysis with two example datasets of georeferenced multidimensional

event data. The �rst use case seeks patterns in taxi trip data from the Taxicab &

Livery Passenger Enhancement Programs. This dataset stems from the New York

City Taxi and Limousine Commission and contains (among other features) the time

of pickup, and the geographic coordinates of taxi pickup and drop-o� (longitude and

latitude). Henretty et al. (2017) use one week of pickup and drop-o� data, contain-

ing approximately 2.5 million entries. The authors visualized a�uent hours of taxi

drop-o�s, as well as times of high tra�c and typical event locations in maps. The
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Figure 1.6: Representation of the CANDECOMP-PARAFAC decomposition. Every
resulting combination represents one pattern of tra�c a�uence by time and location.

second dataset that the authors used contains demographic, time, and georeferenced

data on tra�c violations for 815.000 incidents. The dataset contains (among others)

the date of the record, time of the day of the violation, the sub-agency that recorded

the violation, latitude and longitude of the event, a description of the violation, and

race and gender of the tra�c o�ender. The authors applied the decomposition to a

7th order tensor to analyze a dataset. Henretty et al. (2017) use a CANDECOMP-

PARAFAC (CP) tensor decomposition, which is similar to HOSVD and produces

orthogonal components. Like eigenvectors or singular vectors, the columns contain

a score for each index of the mode. Figure 1.6 visualizes the algorithm for the �rst

example .

The computational costs of tensor factorization were longtime prohibitive. It is not

only the storage of C-modal tensor structures, which grow at order O(nC), that

is, when doubling the number of observations for every dimension, the number of

entries in the extended tensor equals 2C times the number of the entries in the

original tensor. As Henretty et al. (2017) explained in more detail, the precision in

the reconstruction of the tensor via the outer product of the factors also decreases,

and the ability of a decomposition result to accurately represent the original data

decreases with the number of dimensions. Hence, the ideal rank of the decomposition

of a tensor is therefore usually a lot higher than for matrix decomposition (Henretty

et al., 2017). Therefore, Higher-order tensors also require more complex factor

structures to represent the same relative amount of information than matrices.
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1.3.3 Point-Of-Interest Recommendation

The simultaneous consideration of three and more dimensions of space at a time

has opened the door for many use cases that integrate social and geographic space.

At the same time that higher-dimensional factorization has become feasible, the

usage of LBSNs has started producing a lot of geotagged, commercially valuable

data. Recommendations with LBSN data can process both the social network of a

user, as well as her physical surroundingsi. For example, the physical distance to

a possible Point Of Interest (POI)2 can be as important as the question whether

many friends of a user have visited the POI.

Cheng et al. (2012) argued that t four general in�uence factors drive the choice

of the next POI of individual i. First, data on check-ins only contains positive

entries. That is, the absence of a tie between a user and a POI does not mean

that the user would not visit the place. Usually, LBSN data is very sparse. Second,

POIs are usually clustered around some centers, which might be the workplace and

private home, as well as the nearby city center. Usually, the probability of visiting

a POI follows a Gaussian distribution around these centers. Third, the probability

of visiting a POI declines concentrically with distance to the nearest center, leveling

out to a probability of zero when the POI is too far away from the centers a person

i usually frequents. The fourth characteristic consists in friendship in�uence. For

the dataset that Cheng et al. (2012) used, the mean overlap of visited POIs by a

user and the POIs visited by his/her friends is about 9.6%, a ratio that is approved

by other authors (e.g., Cho et al., 2011). The social embedding's in�uence seems

limited but might help to reduce cold start problems3, as shown by Gao et al. (2012).

He et al. (2016) categorized POI recommendation into four branches, and name

examples for every category: Time-aware, geographical in�uence enhanced, content-

aware and social in�uence enhanced POI recommendation. To predict which loca-

tion people might be interested in going to next, models choose from the available

dimensions of dependency. A time-aware analysis seeks to model periodic patterns

2POIs are potentially interesting locations like bars, monuments, or restaurants that a person
might �check-in� to.

3Cold start problems arise when only very little information on a person is given, which sub-
stantially reduces the performance of collaborative �ltering algorithms.
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like the time of the day of user habits. Geographic analysis recognizes the restric-

tions imposed on a person by being somewhere and not elsewhere and, therefore,

in the reach of some POI. Content-aware recommendation uses textual context like

Twitter messages to issue recommendations. Social in�uence models assume that

people like doing what their peers like doing and leverage the social embedding of a

person.

Authors such as Yuan et al. (2013) and Yao et al. (2015) pointed out a �fth mode,

emphasizing the fact that check-in data is highly periodical, and di�erent types

of POI show high dependence on di�erent temporal factors. For example, factorial

methods can identify lunch-time or nightclub-time from the data without the need to

explicitly specify predictors for this behavior. Zhao et al. (2016) circumscribed user

mobility in LBSNs as showing �distinct temporal features, summarized as period-

icity, consecutiveness, and non-uniformness� (Zhao et al., 2016, p.450). Periodicity

describes phenomena like the daily visit to a café before going to work. In order to

analyze the three patterns together, the authors suggested an Aggregated Temporal

Tensor Factorization model for POI recommendation. The analysis concentrates on

the transition probability to go from one category of location to another category.

So what techniques are best suited for this context? As early pioneers of the topic,

Ye et al. (2010) relied on matrix-based collaborative recommendation for POI rec-

ommendation. The authors used heuristics for measuring the strength of social and

geospatial ties among users and their visited locations. Little later, Cheng et al.

(2012) used matrix factorization in combination with geographical and social in�u-

ence for POI recommendation in LBSNs. The authors included the role of geographic

proximity by modeling a user's probability to next check-in a speci�c POI with a

multi-center Gaussian model. Social information is then fused into a generalized

matrix factorization framework. Zhang and Chow (2013) chose a similar approach,

developing a recommendation model by fusing Kernel density estimation into the

matrix factorization framework.

A joint shortcoming of these approaches is that matrices can only represent two

dimensions at a time. Additional information have to be included in additional

model terms or heuristics (like cut-o� rules). Yao et al. (2015) were among the �rst
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to use a tensor-based approach to combine geographical and social information for

POI recommendation. The authors proposed a collaborative �ltering approach to

POI recommendation, which uses a tensor factorization on a high-order tensor.

He et al. (2016) used a dynamic algorithm to predict Points Of Interest (POI) based

on geographic proximity, individual characteristics/interest pro�les, and dynamic

information concerning previous choices. Central to their model is the observation

that, under di�erent contextual scenarios, humans exhibit distinct mobility patterns.

For example, people �regularly stop by co�ee stalls [. . . ] to grab a cup of co�ee on

their way to work in the morning, which can be explained as a periodic transition

pattern from co�ee shop to workplace on weekday morning� (He et al., 2016, p.137).

Hence, assuming that some latent behavior patterns govern individual mobility,

the authors jointly inferred the pattern distribution and pattern-level transition

probabilities that indicate the likeliness to go from one to another place.

Adapting He et al. (2016), let yu,i,l denote historical transitions between locations i

and l for a particular user u, where i, l ∈ {1, . . . , L} and u ∈ {1, . . . U}. yu,i,l = 1 if a

transition can be observed and yu,i,l = 04 otherwise. The data can be organized as a

tensor Y of order (U × L× L). Now, the aim is to estimate transition probabilities

xu,i,l = P (yu,i,l = 1) (1.16)

that best explain historical transitions and can be used for POI recommendation in

the next time step. For that purpose, the authors resorted to a vector of contextual

features c = (c1, . . . , cF ) which include previous location, time of day, weekday, pre-

vious location's category, and so on. Then, if s, s ∈ {1, . . . , S} describes a context-

dependent latent behavior pattern, the transition probabilities to be estimated can

be expressed as

P (yu,i,l = 1) =
S∑
s=1

P (yu,i,l = 1|s, c) · P (s|c), (1.17)

4Note that He et al. (2016) did not explicitly state the alternative value.
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that is, the sum of the joint probabilities concerning transitions and pattern-level,

conditioned on the context. Thus, the overall goal of estimating (unconditional)

transition probabilities is to be replaced by the joint estimation of pattern distribu-

tion and pattern-sensitive transition probabilities.

As the elements x̂u,i,l = P (yu,i,l|s, c) can, once again, be organized as a tensor X̂
s
of

order (U × L× L), it is possible to apply the so-called Pairwise Interaction Tensor

Factorization (PITF):

x̂u,i,l = (usu,l)
T ll,u + (lsl,i)

T ii,l + (usu,i)
T ii,u + ρd−1i,l . (1.18)

The single vectors in equation (1.18) describe the latent factors of User u in inter-

action with current location l and next location i (uu,l and ui,u, respectively), of

present location l in interaction with user u and next location i (ll,u and ll,i, re-

spectively), and of next location i with present location l and user u (ii,l and ii,u,

respectively). The interpretation of this equation is quite similar to the interpreta-

tion of equation (1.12). With reference to Rendle et al. (2009), the authors argued

that (uu,i)
T ii,u can be removed from the model since it doesn't a�ect the ranking.

ρd−1i,l expresses spatial preference meaning that the probability to visit a POI that is

di,l kilometers away from the current position of user u declines exponentially with

distance. Since the locations previously visited a relegated to the context and the

current position of the user is treated as exogenous, the transition probabilities to

be calculated in He et al. (2016) exhibit the Markov property.

1.4 Discussion

1.4.1 Geographical and Social Network Space

From a mathematical perspective, geographical space and social network space have

many things in common. Spatial dependency in geographic data is often encoded

in neighborhood matrices (e.g., Wang and Wall, 2003). The neighborhood matrix

is very similar to the adjacency matrix of a graph, which is also often binary and
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indicates whether there is a connection between two nodes or not (e.g., Ho�, 2009).

In geographical information science, it is sometimes even better to de�ne physical

distance in terms of networks. Road networks may provide a more realistic oper-

ationalization of neighborhood than geophysical distance: Road networks link one

house or town to another and determine how easy it is to get to a di�erent place.

Therefore, using such measures of distance can sometimes explain human interaction

better than physical distance (Borruso, 2008). Network neighbors tend to show sim-

ilar or opposite characteristics, depending on whether there is a positive or negative

dependency between them. For example, cooperating companies in a collaboration

network tend to positively in�uence one another, while competitors at times show

di�erent performance development and negative dependency.

Latent variable models focus on modeling dependencies that arise in spatial data.

A latent variable is an unobserved construct causing dependency, which can, for

example, be a local geographic phenomenon that causes heterogeneity in the con-

centration of air pollutants. For example, a polluting production site may be missing

in the available data, which causes temporal dependency in air pollution by emitting

pollutants at a speci�c time of the day, and geographical dependency by omitting

pollutants only at its geophysical location. In dynamic space, latent variables can

describe a general downturn in the economy that a�ects single countries in varying

intensity. In social space, latent variables can describe a common unobserved hobby,

which raises the propensity that two people show interest in one another. In graph-

ical data or network data, they propose possible �friends�, or products that might

match people's interests, basing on information about the network embedding. In

the analysis of geophysical data, factorial models identify local �interesting patterns�

with a limited variance-covariance structure.

In this article, we ask whether the class of latent factor models contains any pos-

sibility to assess such a perspective, that is, to what extent algorithms explicitly

involve their own in�uence on homogeneity. We show in the discussion that often,

geographical space is exogenous to the analysis when referring to geospatial anal-

ysis. Exogenous space means that the position of an individual is �xed and does

not change depending on in�uence factors. Endogenous means that the relative
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position of a person changes due to some exogenous or endogenous in�uence fac-

tors. For example, when a person changes her position in a city to a borrow where

she �nds more recommended restaurants, her geospatial position is endogenous to

the analysis. When algorithms start in�uencing the structures they try to describe,

then model elements that are assumed to be exogenous become endogenous. If, over

time, people start befriending only people from their recommendation lists, then the

�reason� of proximity lies in the algorithm itself. A particular focus of our investi-

gation is on the di�erentiation of virtual and geographical space. Both dimensions

of space are essential for understanding �lter bubbles, as the defendants of the �lter

bubble hypothesis emphasize that the algorithms do not only describe social space,

as they might seem to at �rst sight. The analysis shows that many models treat

social and physical space similarly as exogenous in the aim to optimize a short-term

predictive performance. Indeed, it may also be the case that physical proximity is

the result of a similarity in the �rst place � people may, for example, decide to move

to a neighborhood of culturally similar people.

1.4.2 Big Data and Bias

Many applications involving latent variable models are related to the aim to gener-

ate value from the high-dimensional and complex data structure that evolves from

modern communication systems. The high frequency, precise geospatial localization,

and feature dimensionality of the data invite to use concepts that were historically

used in well-curated small datasets in these contexts. The �lter bubble discussion is

related to the negative consequences that may arise from such pragmatism. When

the risks related to the algorithms are not properly accounted for, adverse e�ects

such as discrimination can arise.

If human mindsets were independent of changes in geography and networks, then

�lters would merely describe. For statistical analysis and descriptive analytics, as-

sumptions are needed that restrict the many interactions between the dimensions,

to keep computation feasible and models identi�ed. For a short-term investigation,

it might, for example, be reasonable to assume that �rms cannot change their ge-

ographic situation. In the long term, however, they can found new dependencies
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and optimize their geographic situation. A changed geographic situation may then

again in�uence the social embedding of the �rm among strategic partners. While ex-

ploratory factorization methods often approach data analytics as though they were

on the quest for exogenous, deterministic underlying patterns, they risk becom-

ing the drivers of self-ful�lling prophecies, obeying to the aim of providing correct

propositions.

In statistical language, unobserved patterns that cause clustering and observed het-

erogeneity translate into models involving latent variables and factors. Social struc-

tures and geographical phenomena naturally P dependency between people that

interact or live nearby. Therefore, cross-sectional dependency is an ever-present

phenomenon in data on human behavior or spatially referenced data. Any form of

dependency between individual observations, either in time or in space, represents

a violation of classical assumptions of independence and exchangeability (Hoover,

1982; Aldous, 1985), which are necessary for the application of many models. Typical

phenomena that lead to spatial dependency are common environmental in�uences

(like the presence of a polluting fabrication hall), talking to one's neighbors, reci-

procity (people are more likely to consider people friends that would themselves

consider the other person as a friend), or heterogeneity in combination with ho-

mophily (people like having contact with similar people) (Ho� et al., 2002; Ho�,

2008, 2009; Pesaran and Tosetti, 2011).

Statistical model treat this unobserved dependency, which manifests in observed

correlation, in two di�erent ways. On the one hand, the dependency can be a

problem that impedes the unbiased inference of parameters in models. In this case,

dependency must be �dealt with�. For example, an interactive factorial structure can

be included in the error term of a model (e.g., Bai, 2009; Pesaran and Tosetti, 2011).

On the other hand, spatial dependency can also be seen a source of information worth

mining for recommendation or prediction: Patterns of correlation provide valuable

information on unobserved spatial signals, interaction patterns, and preferences (e.g.,

Ho�, 2009; Dem²ar et al., 2013). Exploratory latent variable approaches assess

dependency and similarity structures in a scalable and e�cient way, as some methods

for factor extraction are of low computational cost. Therefore, they also allow
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exploring the massive datasets that virtual interaction creates every day and to use

them for pattern identi�cation and link prediction (Ho� et al., 2002; Koren et al.,

2009; Dem²ar et al., 2013; Minhas et al., 2016a). Moreover, factorization methods

allow combining implicit with explicit spatial information and observable covariates

(Menon and Elkan, 2011). Exploratory latent variable approaches moreover bear the

advantage of being independent of explicitly denominated hypotheses on structures

and relationships within the data. In other contexts, when statistical inference is in

the center of attention, complex Bayesian model speci�cations have been proposed.

These probabilistic models, based on the principles of prior belief and posterior

likelihood, provide more precise estimations of spatial e�ects.

1.5 Conclusions

This article provided an overview of latent variable models and the role that physical

and virtual space play therein. The discussed models seek to either compensate for or

mine the presence of dependency structures via the inclusion of latent variables of ei-

ther categorical (group) or numeric (factor) nature. Recent methodological progress

within the �eld concentrates on three- and higher-dimensional models. These mod-

els explore the simultaneous interplay of several modes in data. While this used to

be computationally infeasible in the past, modern computers and algorithms can

resolve complex tensor factorization.

This article describes the way that social and geographical space are modeled in

latent variable models and related recommender and prediction algorithms. Our

�rst focus was on a description of the interplay of di�erent dimensions of space

in factor-based models. In factor models, mindsets, convictions, taste, or local air

pollution conditions are assessed via feature space, while we denoted social ties as

social network space. Both dimensions can be combined with geographical space and

time. Moreover, in higher-order factorial models, cross-contextual factorization can

be used to �nd similar patterns across di�erent settings. To illustrate the concepts

of exogenous and endogenous space, we chose to discuss geographical space under

the aspect of being �xed, and network space under the aspect of being in constant
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change and being endogenous to a recommender model. While it is possible to model

both structures also in the both ways, we illustrated the di�erence between �nding

signals in �xed space and identifying patterns in the spatial structure itself.

The discussion also showed that while two-dimensional methods were limited to the

factorization of two dimensions at a time, more recent tensor-based approaches can

model a complex dynamic interplay of several perspectives on space. However, tensor

decomposition is computationally more demanding. Despite the fact that higher-

order tensor factorization is possible (remember the seven-dimensional example of

Henretty et al., 2017), most approaches that go beyond the usage of three dimensions

at a time use a three-dimensional tensor combined with a vector autoregressive

element to trace changes along time and to make a speci�c time-related prediction

(e.g., Minhas et al., 2016b; He et al., 2016). Modeling time in an autoregressive

element is an obvious choice because time is unidirectional, whereas geographical

space is at least two-directional and network space can be multidirectional.

The focus of higher-dimensional factor models has so far been mostly on predictive

performance. As long as the patterns and their interpretation are not part of the

model objectives and do not have any direct policy implications, a possible mis-

understanding of the nature of the estimated factors has no direct consequences.

However, once it comes to the interpretation of such results, the same risks arise as

in the two-dimensional context. In virtual networks, distance is subject to constant

change, as the distance of two people changes whenever a proposition of adding

someone as a contact is accepted. This phenomenon is more accentuated than in

�traditional� social environments, which were dominated by physical proximity.

To avoid adverse e�ects of algorithms on society, explainability in algorithms is

very important. Zhang and Chen (2018) discuss recent progress in creating explain-

able recommender systems, where the analysis of in- and output can provide crucial

insights into model bias. The unre�ected use of latent-variable models and factoriza-

tion can lead to a self-ful�lling prophecy - people consume what they are confronted

with, and believe what their virtual community believes. The more physical ex-

change of opinions is replaced by virtual exchange with groups of people tailored to

one's preferences, the more readily people feel con�rmed in their own convictions.
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While many aspects of statistical models regarding the self-re�ection have been dis-

cussed, the question of strategy behind the algorithms is still open. If the aim is

to �be right� with one's recommendations, then a tendency towards homogenization

is warranted to make behavior more predictable. Such objectives might, however,

also be warranted by the users of an algorithm. Even if factorial structures be-

come more clear-cut over time, it can be argued that preferences had been clear-cut

and clustered before and that the recommender algorithms only better succeed in

describing those preferences.

The enhanced understanding of assumptions and consequences of every single model

is essential for the discussion of changes in society that come along with the massive

commercial exporation of correlations in a data-driven industry. Descriptive ap-

proaches like the ones in the work of Nguyen et al. (2014) and Bakshy et al. (2015)

can describe the diversity people are exposed to. Our approach has shown that

many recommendation algorithms ignore their own role in changes of the patterns

they seek to describe. A complementary step would be to conduct experiments that

show that people do indeed change when they use recommender algorithms.

39



1.6 References

Abadie, A., Diamond, A., Hainmueller, J., 2010. Synthetic control methods for

comparative case studies: Estimating the e�ect of California's tobacco control

program. Journal of the American Statistical Association 105, 493�505. doi:10.

1198/jasa.2009.ap08746.

Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P., 2008. Mixed membership

stochastic blockmodels. Journal of Machine Learning Research 9, 1981�2014.

Aldous, D.J., 1985. Exchangeability and related topics, in: École d'Été de Proba-

bilités de Saint-Flour XIII �1983. Springer, Berlin, Heidelberg, GER, 1�198.

Anandkumar, A., Ge, R., Hsu, D.J., Kakade, S.M., 2014. A tensor approach to

learning mixed membership community models. Journal of Machine Learning

Research 15, 2239�2312.

Bai, J., 2009. Panel data models with interactive �xed e�ects. Econometrica 77,

1229�1279. doi:10.3982/ECTA6135.

Bailey, T.C., Krzanowski, W.J., 2000. Extensions to spatial factor methods with an

illustration in geochemistry. Mathematical Geology 32, 657�682. doi:10.1023/A:

1007589505425.

Bakshy, E., Messing, S., Adamic, L.A., 2015. Exposure to ideologically diverse

news and opinion on Facebook. Science 348, 1130�1132. doi:10.1126/science.

aaa1160.

Battiston, F., Iacovacci, J., Nicosia, V., Bianconi, G., Latora, V., 2016. Emergence

of multiplex communities in collaboration networks. PLOS ONE 11, 1�15. doi:10.

1371/journal.pone.0147451.

Berry, B.J.L., 1971. Introduction: The logic and limitations of comparative factorial

ecology. Economic Geography 47, 209�219. doi:10.2307/143204.

Blei, D.M., Ng, A.Y., Jordan, M.I., 2003. Latent dirichlet allocation. Journal of

Machine Learning Research 3, 993�1022.

40

http://dx.doi.org/10.1198/jasa.2009.ap08746
http://dx.doi.org/10.1198/jasa.2009.ap08746
http://dx.doi.org/10.3982/ECTA6135
http://dx.doi.org/10.1023/A:1007589505425
http://dx.doi.org/10.1023/A:1007589505425
http://dx.doi.org/10.1126/science.aaa1160
http://dx.doi.org/10.1126/science.aaa1160
http://dx.doi.org/10.1371/journal.pone.0147451
http://dx.doi.org/10.1371/journal.pone.0147451
http://dx.doi.org/10.2307/143204


Borgatti, S.P., Everett, M.G., 1992. Regular blockmodels of multiway, multimode

matrices. Social Networks 14, 91�120. doi:10.1016/0378-8733(92)90015-y.

Borruso, G., 2008. Network density estimation: A GIS approach for analysing point

patterns in a network space. Transactions in GIS 12, 377�402. doi:10.1111/j.

1467-9671.2008.01107.x.

Cheng, C., Yang, H., King, I., Lyu, M.R., 2012. Fused matrix factorization with ge-

ographical and social in�uence in location-based social networks, in: Proceedings

of the Twenty-Sixth AAAI Conference on Arti�cial Intelligence, 17�23.

Cho, E., Myers, S.A., Leskovec, J., 2011. Friendship and mobility: User movement

in location-based social networks, in: Proceedings of the 17th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, ACM. 1082�

1090. doi:10.1145/2020408.2020579.

Christensen, W.F., Amemiya, Y., 2001. Generalized shifted-factor analysis method

for multivariate geo-referenced data. Mathematical Geology 33, 801�824. doi:10.

1023/A:1010998730645.

Christensen, W.F., Amemiya, Y., 2002. Latent variable analysis of multivariate

spatial data. Journal of the American Statistical Association 97, 302�317. doi:10.

1198/016214502753479437.

Christensen, W.F., Amemiya, Y., 2003. Modeling and prediction for multivariate

spatial factor analysis. Journal of Statistical Planning and Inference 115, 543�564.

doi:10.1016/s0378-3758(02)00173-8.

Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.i., 2009. Nonnegative matrix and

tensor factorizations: Applications to exploratory multi-way data analysis and

blind source separation. John Wiley & Sons, Chichester, UK.

Cressie, N., Wikle, C.K., 2011. Statistics for Spatio-Temporal Data. Wiley Series

in Probability and Statistics, John Wiley & Sons, New Jersey, USA.

41

http://dx.doi.org/10.1016/0378-8733(92)90015-y
http://dx.doi.org/10.1111/j.1467-9671.2008.01107.x
http://dx.doi.org/10.1111/j.1467-9671.2008.01107.x
http://dx.doi.org/10.1145/2020408.2020579
http://dx.doi.org/10.1023/A:1010998730645
http://dx.doi.org/10.1023/A:1010998730645
http://dx.doi.org/10.1198/016214502753479437
http://dx.doi.org/10.1198/016214502753479437
http://dx.doi.org/10.1016/s0378-3758(02)00173-8


Dem²ar, U., Harris, P., Brunsdon, C., Fotheringham, A.S., McLoone, S., 2013. Prin-

cipal component analysis on spatial data: an overview. Annals of the Association

of American Geographers 103, 106�128. doi:10.1080/00045608.2012.689236.

Dommenget, D., Latif, M., 2002. A cautionary note on the interpretation of

EOFs. Journal of Climate 15, 216�225. doi:10.1175/1520-0442(2002)015<0216:

acnoti>2.0.co;2.

Fan, Z., Song, X., Shibasaki, R., 2014. CitySpectrum: A non-negative ten-

sor factorization approach, in: Proceedings of the 2014 ACM International

Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), 213�223.

doi:10.1145/2632048.2636073.

Ferligoj, A., Doreian, P., Batagelj, V., 2011. Positions and roles, in: Scott and

Carrington (2011). Chapter 29. 434�446. doi:10.4135/9781446294413.n21.

Fu, W., Song, L., Xing, E.P., 2009. Dynamic mixed membership blockmodel for

evolving networks, in: Proceedings of the 26th Annual International Conference

on Machine Learning (ICML), 329�336. doi:10.1145/1553374.1553416.

Gao, H., Tang, J., Liu, H., 2012. gSCorr: modeling geo-social correlations for new

check-ins on location-based social networks, in: Proceedings of the 21st ACM

International Conference on Information and Knowledge Management (CIKM),

1582�1586. doi:10.1145/2396761.2398477.

Goldberg, K., Roeder, T., Gupta, D., Perkins, C., 2001. Eigentaste: A constant

time collaborative �ltering algorithm. Information Retrieval 4, 133�151. doi:10.

1023/A:1011419012209.

Handcock, M.S., Raftery, A.E., Tantrum, J.M., 2007. Model-based clustering for

social networks. Journal of the Royal Statistical Society: Series A (Statistics in

Society) 170, 301�354. doi:10.1111/j.1467-985x.2007.00471.x.

He, J., Li, X., Liao, L., Song, D., Cheung, W.K., 2016. Inferring a personalized

next point-of-interest recommendation model with latent behavior patterns, in:

Proceedings of the Thirtieth AAAI Conference on Arti�cial Intelligence, 137�143.

42

http://dx.doi.org/10.1080/00045608.2012.689236
http://dx.doi.org/10.1175/1520-0442(2002)015<0216:acnoti>2.0.co;2
http://dx.doi.org/10.1175/1520-0442(2002)015<0216:acnoti>2.0.co;2
http://dx.doi.org/10.1145/2632048.2636073
http://dx.doi.org/10.4135/9781446294413.n21
http://dx.doi.org/10.1145/1553374.1553416
http://dx.doi.org/10.1145/2396761.2398477
http://dx.doi.org/10.1023/A:1011419012209
http://dx.doi.org/10.1023/A:1011419012209
http://dx.doi.org/10.1111/j.1467-985x.2007.00471.x


Henretty, T., Baskaran, M., Ezick, J., Bruns-Smith, D., Simon, T.A., 2017. A

quantitative and qualitative analysis of tensor decompositions on spatiotemporal

data, in: 2017 IEEE High Performance Extreme Computing Conference (HPEC),

1�7. doi:10.1109/HPEC.2017.8091028.

Ho�, P.D., 2008. Modeling homophily and stochastic equivalence in symmetric rela-

tional data, in: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T. (Eds.), Advances

in Neural Information Processing Systems. Volume 20, 657�664.

Ho�, P.D., 2009. Multiplicative latent factor models for description and prediction

of social networks. Computational and Mathematical Organization Theory 15,

261�272. doi:10.1007/s10588-008-9040-4.

Ho�, P.D., 2015. Multilinear tensor regression for longitudinal relational data. The

Annals of Applied Statistics 9, 1169�1193. doi:10.1214/15-AOAS839.

Ho�, P.D., Raftery, A.E., Handcock, M.S., 2002. Latent space approaches to social

network analysis. Journal of the American Statistical Association 97, 1090�1098.

doi:10.1198/016214502388618906.

Hogan, J., Tchernis, R., 2004. Bayesian factor analysis for spatially correlated

data, with application to summarizing area-level material deprivation from census

data. Journal of the American Statistical Association 99, 314�324. doi:10.1198/

016214504000000296.

Hoover, D.N., 1982. Row-column exchangeability and a generalized model for prob-

ability, in: Proceedings of the International Conference on Exchangeability in

Probability and Statistics, North-Holland. 281�291.

Johnston, R., Pattie, C., 2011. Social networks, geography and neighbourhood

e�ects, in: Scott and Carrington (2011). Chapter 21. 301�311. doi:10.4135/

9781446294413.n21.

Jolli�e, I.T., 1986. Principal component analysis and factor analysis, in: Principal

Component Analysis. Springer, New York, NY, USA, 115�128. doi:10.1007/

978-1-4757-1904-8_7.

43

http://dx.doi.org/10.1109/HPEC.2017.8091028
http://dx.doi.org/10.1007/s10588-008-9040-4
http://dx.doi.org/10.1214/15-AOAS839
http://dx.doi.org/10.1198/016214502388618906
http://dx.doi.org/10.1198/016214504000000296
http://dx.doi.org/10.1198/016214504000000296
http://dx.doi.org/10.4135/9781446294413.n21
http://dx.doi.org/10.4135/9781446294413.n21
http://dx.doi.org/10.1007/978-1-4757-1904-8_7
http://dx.doi.org/10.1007/978-1-4757-1904-8_7


Jolli�e, I.T., 1987. Rotation of principal components: some comments. Journal of

Climatology 7, 507�510.

Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N., 2010. Multiverse rec-

ommendation: n-dimensional tensor factorization for context-aware collaborative

�ltering, in: Proceedings of the fourth ACM Conference on Recommender Systems

(RecSys), 79�86. doi:10.1145/1864708.1864727.

Kolaczyk, E.D., Csárdi, G., 2014. Statistical Analysis of Network Data with R.

Volume 65. Springer, New York, NY, USA.

Kolda, T.G., Bader, B.W., 2009. Tensor decompositions and applications. SIAM

review 51, 455�500. doi:10.1137/07070111x.

Koren, Y., Bell, R., Volinsky, C., 2009. Matrix factorization techniques for recom-

mender systems. Computer 42, 30�37. doi:10.1109/MC.2009.263.

Kunegis, J., Fay, D., Bauckhage, C., 2010. Network growth and the spectral evolu-

tion model, in: Proceedings of the 19th ACM International Conference on Infor-

mation and Knowledge Management (CIKM), 739�748. doi:10.1145/1871437.

1871533.

Loehlin, J.C., 2004. Latent Variable Models: An Introduction to Factor, Path, and

Structural Equation Analysis. Taylor & Francis, New York, USA.

Lopes, H.F., Gamerman, D., Salazar, E., 2011. Generalized spatial dynamic factor

models. Computational Statistics & Data Analysis 55, 1319�1330. doi:10.1016/

j.csda.2010.09.020.

Mangal, D., Sett, N., Singh, S.R., Nandi, S., 2013. Link prediction on evolving social

network using spectral analysis, in: IEEE International Conference on Advanced

Networks and Telecommuncations Systems, 2013, 1�6. doi:10.1109/ants.2013.

6802867.

Manovich, L., 2018. The science of culture? social computing, digital hu-

manities and cultural analytics. URL: osf.io/preprints/socarxiv/b2y79,

doi:10.22148/16.004.

44

http://dx.doi.org/10.1145/1864708.1864727
http://dx.doi.org/10.1137/07070111x
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1145/1871437.1871533
http://dx.doi.org/10.1145/1871437.1871533
http://dx.doi.org/10.1016/j.csda.2010.09.020
http://dx.doi.org/10.1016/j.csda.2010.09.020
http://dx.doi.org/10.1109/ants.2013.6802867
http://dx.doi.org/10.1109/ants.2013.6802867
osf.io/preprints/socarxiv/b2y79
http://dx.doi.org/10.22148/16.004


Menon, A.K., Elkan, C., 2011. Link prediction via matrix factorization, in: Joint Eu-

ropean Conference on Machine Learning and Knowledge Discovery in Databases,

437�452. doi:10.1007/978-3-642-23783-6_28.

Minhas, S., Ho�, P.D., Ward, M.D., 2016a. Inferential Approaches for Network

Analyses: AMEN for Latent Factor Models. Technical Report. Cornell University.

ArXiv preprint arXiv:1611.00460.

Minhas, S., Ho�, P.D., Ward, M.D., 2016b. A new approach to analyzing coevolving

longitudinal networks in international relations. Journal of Peace Research 53,

491�505. doi:10.1177/0022343316630783.

Mørup, M., 2011. Applications of tensor (multiway array) factorizations and de-

compositions in data mining. Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery 1, 24�40. doi:10.1002/widm.1.

Nguyen, T.T., Hui, P.M., Harper, F.M., Terveen, L., Konstan, J.A., 2014. Exploring

the �lter bubble: The e�ect of using recommender systems on content diversity, in:

Proceedings of the 23rd International Conference on World Wide Web (WWW),

ACM. 677�686. doi:10.1145/2566486.2568012.

Onnela, J.P., Arbesman, S., González, M.C., Barabási, A.L., Christakis, N.A., 2011.

Geographic constraints on social network groups. PLOS ONE 6, 1�7. doi:10.

1371/journal.pone.0016939.

Pariser, E., 2012. The �lter bubble: How the new personalized web is changing what

we read and how we think. Penguin Books, London, UK.

Pesaran, M.H., Tosetti, E., 2011. Large panels with common factors and spatial

correlation. Journal of Econometrics 161, 182�202. doi:10.1016/j.jeconom.

2010.12.003.

Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L., 2009. BPR: Bayesian

personalized ranking from implicit feedback, in: Proceedings of the Twenty-Fifth

Conference on Uncertainty in Arti�cial Intelligence (UAI), 452�461. URL: http:

//dl.acm.org/citation.cfm?id=1795114.1795167.

45

http://dx.doi.org/10.1007/978-3-642-23783-6_28
http://dx.doi.org/10.1177/0022343316630783
http://dx.doi.org/10.1002/widm.1
http://dx.doi.org/10.1145/2566486.2568012
http://dx.doi.org/10.1371/journal.pone.0016939
http://dx.doi.org/10.1371/journal.pone.0016939
http://dx.doi.org/10.1016/j.jeconom.2010.12.003
http://dx.doi.org/10.1016/j.jeconom.2010.12.003
http://dl.acm.org/citation.cfm?id=1795114.1795167
http://dl.acm.org/citation.cfm?id=1795114.1795167


Richman, M.B., 1986. Rotation of principal components. Journal of Climatology 6,

293�335. doi:10.1002/joc.3370060305.

Salakhutdinov, R., Mnih, A., 2007. Probabilistic matrix factorization, in: Pro-

ceedings of the 20th International Conference on Neural Information Processing

Systems (NIPS). NIPS'07, 1257�1264.

Salakhutdinov, R., Mnih, A., 2008. Bayesian probabilistic matrix factorization using

markov chain monte carlo, in: Proceedings of the 25th International Conference

on Machine Learning (ICML), ACM. 880�887. doi:10.1145/1390156.1390267.

Scott, J., Carrington, P. (Eds.), 2011. The SAGE Handbook of Social Network

Analysis. SAGE Publications, London, UK.

Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E.E., Falout-

sos, C., 2017. Tensor decomposition for signal processing and machine learning.

IEEE Transactions on Signal Processing 65, 3551�3582. doi:10.1109/tsp.2017.

2690524.

Snijders, T.A., Nowicki, K., 1997. Estimation and prediction for stochastic block-

models for graphs with latent block structure. Journal of Classi�cation 14, 75�100.

doi:10.1007/s003579900004.

Spiegel, S., Clausen, J., Albayrak, S., Kunegis, J., 2012. Link prediction on evolv-

ing data using tensor factorization, in: New Frontiers in Applied Data Min-

ing: PAKDD 2011 International Workshops, Springer. 100�110. doi:10.1007/

978-3-642-28320-8_9.

Switzer, P., Green, A.A., 1984. Min/max autocorrelation factors for multivariate

spatial imagery. Technical Report 6. Stanford University. URL: https://ci.

nii.ac.jp/naid/10017502204/en/.

von Storch, H., 1999a. Misuses of statistical analysis in climate research, in: Analysis

of Climate Variability. Springer, Berlin, Heidelberg, GER, 11�26. doi:10.1007/

978-3-662-03744-7_2.

46

http://dx.doi.org/10.1002/joc.3370060305
http://dx.doi.org/10.1145/1390156.1390267
http://dx.doi.org/10.1109/tsp.2017.2690524
http://dx.doi.org/10.1109/tsp.2017.2690524
http://dx.doi.org/10.1007/s003579900004
http://dx.doi.org/10.1007/978-3-642-28320-8_9
http://dx.doi.org/10.1007/978-3-642-28320-8_9
https://ci.nii.ac.jp/naid/10017502204/en/
https://ci.nii.ac.jp/naid/10017502204/en/
http://dx.doi.org/10.1007/978-3-662-03744-7_2
http://dx.doi.org/10.1007/978-3-662-03744-7_2


von Storch, H., 1999b. Spatial patterns: EOFs and CCA, in: Analysis of Cli-

mate Variability. Springer, Berlin, Heidelberg, GER, 231�263. doi:10.1007/

978-3-662-03744-7_13.

Wang, F., Wall, M.M., 2003. Generalized common spatial factor model. Biostatistics

4, 569�582. doi:10.1093/biostatistics/4.4.569.

Wang, P., Robins, G., Pattison, P., Lazega, E., 2013. Exponential random graph

models for multilevel networks. Social Networks 35, 96�115. doi:10.1016/j.

socnet.2013.01.004.

Wang, Y.J., Wong, G.Y., 1987. Stochastic blockmodels for directed graphs. Journal

of the American Statistical Association 82, 8�19. doi:10.1080/01621459.1987.

10478385.

Yao, L., Sheng, Q.Z., Qin, Y., Wang, X., Shemshadi, A., He, Q., 2015. Context-

aware point-of-interest recommendation using tensor factorization with social

regularization, in: Proceedings of the 38th International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, 1007�1010.

doi:10.1145/2766462.2767794.

Ye, M., Yin, P., Lee, W.C., 2010. Location recommendation for location-based

social networks, in: Proceedings of the 18th ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems, 458�461. doi:10.

1145/1869790.1869861.

Yuan, Q., Cong, G., Ma, Z., Sun, A., Thalmann, N.M., 2013. Time-aware point-

of-interest recommendation, in: Proceedings of the 36th International ACM SI-

GIR Conference on Research and Development in Information Retrieval, 363�372.

doi:10.1145/2484028.2484030.

Zhang, J.D., Chow, C.Y., 2013. iGSLR: personalized geo-social location recommen-

dation: a kernel density estimation approach, in: Proceedings of the 21st ACM

SIGSPATIAL International Conference on Advances in Geographic Information

Systems, 334�343. doi:10.1145/2525314.2525339.

47

http://dx.doi.org/10.1007/978-3-662-03744-7_13
http://dx.doi.org/10.1007/978-3-662-03744-7_13
http://dx.doi.org/10.1093/biostatistics/4.4.569
http://dx.doi.org/10.1016/j.socnet.2013.01.004
http://dx.doi.org/10.1016/j.socnet.2013.01.004
http://dx.doi.org/10.1080/01621459.1987.10478385
http://dx.doi.org/10.1080/01621459.1987.10478385
http://dx.doi.org/10.1145/2766462.2767794
http://dx.doi.org/10.1145/1869790.1869861
http://dx.doi.org/10.1145/1869790.1869861
http://dx.doi.org/10.1145/2484028.2484030
http://dx.doi.org/10.1145/2525314.2525339


Zhang, Q., Berry, M.W., Lamb, B.T., Samuel, T., 2009. A parallel nonnegative

tensor factorization algorithm for mining global climate data, in: Proceedings of

the 9th International Conference on Computational Science (CORES), Springer.

405�415. doi:10.1007/978-3-642-01973-9_45.

Zhang, Y., Chen, X., 2018. Explainable recommendation: A survey and new per-

spectives. CoRR abs/1804.11192.

Zhao, S., Lyu, M.R., King, I., 2016. Aggregated temporal tensor factorization model

for point-of-interest recommendation, in: Proceedings of the 23rd International

Conference on Neural Information Processing (ICONIP), Part III, Springer. 450�

458. doi:10.1007/978-3-319-46675-0_49.

Zhu, F., Chen, G., Heng, P.A., 2016. A Bayesian nonparametric approach to dy-

namic dyadic data prediction, in: 16th International Conference on Data Mining

(ICDM), IEEE. 729�738. doi:10.1109/icdm.2016.0084.

Zwiers, F.W., von Storch, H., 2004. On the role of statistics in climate research.

International Journal of Climatology 24, 665�680. doi:10.1002/joc.1027.

48

http://dx.doi.org/10.1007/978-3-642-01973-9_45
http://dx.doi.org/10.1007/978-3-319-46675-0_49
http://dx.doi.org/10.1109/icdm.2016.0084
http://dx.doi.org/10.1002/joc.1027


Chapter 2

Spectral Stability in Open-Source Software

Developer Networks

With special thanks to Prof. Dr. Sven Apel and Thomas Bock, Faculty of Computer

Science and Mathematics, Chair of Software Engineering I, University of Passau

Chapter Abstract

Open-source software development projects have a reputation for being anarchic

compared to commercial projects. Previous research has found coordination e�orts

to arise ad hoc around programming tasks, which implies that only seldom long-

term stable structures arise. However, the methodology to describe and quantify

organizational stability and congruence of coordination and cooperation in software

development lacks intuitive tools for description and visualization, such that it is

hard to reject or approve this opinion. We complement existing approaches with a

new model to investigate the stability of unobserved group structures in collabora-

tion networks. To this aim, we combine a static, inferential network model (called

AMEN) with a dynamic, predictive network model (called spectral growth model).

The resulting model can both track the dynamics of organizational structures and

check the congruence of coordination e�orts and needs. We apply our model to the

communication and cooperation among developers in three substantial and popular

open-source projects, QEMU, OpenSSL, and BusyBox. We �nd that the congruence of

email communication and collaboration on source code is relatively weak and that

there is only minor evidence for growing stability, be it over time or with increasing

size of the network.
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2.1 Introduction

Open-source software (OSS) development projects often depend on a relatively small

group of developers, who are accountable for a large share of code contributions and

coordination e�orts. These core developers are supported by a large number of

peripheral contributors, who invest less time and e�ort individually, but together

add a substantial part of the value in open-source software creation (Setia et al.,

2012; Crowston and Shamshurin, 2017; Joblin et al., 2017). Together, the core

and peripheral contributors form open-source communities, that create signi�cant

contributions like the Linux Kernel. Within the communities, sub-groups or sub-

communities arise that work on a topic or task for a limited time only (Bird, 2011).

Decades of version control and email list data provide detailed insights into the

dynamics of social bonds and operational structures in this highly volatile work-

ing environment. OSS projects follow organizational rules that di�er from those of

conventional non-disclosed software with regard to many di�erent aspects, such as

contributor motivation (Shah, 2006), communication (Guzzi et al., 2013), and profes-

sionalization of programmers (Homscheid et al., 2015). It is, as one of many aspects,

highly relevant to understand the operational structure of open-source projects in

terms of collaboration and communication to diagnose sources of problems and

threats to long-term stability and success.

The stability of the organizational structure of a project can be assessed via latent-

factor-based models, as stability of social relations gives rise to observable corre-

lations across network ties. Methodology to assess stability in multi-modal social

networks, however, is not well established. For example, many macroscopic mea-

sures rely on a single descriptive measure of the network, which is inadequate for

predicting the future development of the network. Other methods aggregate too

heavily and do not show the dynamics of a changing network. Therefore, this article

has both an empirical and a methodological aim. On the one hand, we analyze the

degree of stability that arises in collaboration and communication habits of OSS

projects, and whether this stability depends on project scale. We seek to �nd out

whether there are stable relationships in open-source communication networks that
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go beyond the day-to-day ad hoc collaboration. On the other hand, we contribute

to methodological progress by developing a combination of two models from facto-

rial network analysis, the spectral growth model, proposed by Kunegis et al. (2010),

and the Additive and Multiplicative E�ects model, proposed by Ho� (2009). This

combination of a �exible cross-sectional framework based on Monte Carlo Estima-

tion strategies, with the dynamic perspective of the spectral growth model, provides

insights into the dynamics of OSS developer cooperation and the stability of the

organizational structure and social bonds. For example, our measures re�ect how

stable modular structures are. By validating the predictive performance of our new

approach, we seek to assess the strength of short-term relationships between commu-

nication and collaboration. For this purpose, we use communication as a predictor

of collaboration. For our empirical investigation, we use version control data on

programming tasks and email communication meta-data.

The rest of the article is structured as follows: In Section 2.2, we line out the method-

ological scope of our research context, and we motivate an integrated perspective on

network topology and dynamics in OSS networks. Having de�ned core objectives of

the model development and general research questions, we detail the additive and

multiplicative e�ects model by Ho� (2009) and the spectral growth model by Kunegis

et al. (2010) (Section 2.3). Both propose partial but complementary solutions to

the investigation of developer cooperation behavior and the investigation of our re-

search questions. Adaptations of the models allow us to infer a project's cooperation

structure, and to track the stability of this structure over time. For this purpose, we

use measures of similarity of matrices and predictive performance of stability-based

network prediction methods. Moreover, our adaptations model the interplay of de-

veloper communication and collaboration. Subsequently (Section 2.4), we introduce

our empirical data and data operationalization. We use communication and collabo-

ration data on three OSS projects, QEMU, OpenSSL and BusyBox, retrieved from email

lists and the GitHub version control system. We provide empirical results at the end

of Section 2.4. Our results speak in favor of a weak relationship between commu-

nication and collaboration on a three-month time window basis. Moreover, we �nd

weak evidence for increases in pattern stability over time or with a growing number
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of programmers that participate in a project. Against our expectations, short-term

collaboration seems to be no good predictor of communication, implying that coor-

dination e�orts do not respond to coordination needs in time. Section 2.6 evaluates

the empirical results concerning our research questions and provides an outlook on

the future scope of research and possible extensions; Section 2.7 concludes.

2.2 Dependency in Open-Source Programmer Networks

2.2.1 Organizational Structure and Collaboration

Open-source software (OSS) development is an early pioneer market concerning

modern working structures: it is digital, distributed around the globe, and charac-

terized by a high in- and out�ow of workforce. These phenomena nowadays describe

the working conditions of an ever-growing number of people. Interestingly, it is also

highly transparent and very well documented. Therefore, it can provide informative

insights into the organizational structure of such working environments, which have

a somewhat anarchic reputation (e.g., Bird et al., 2008). Version control systems

support detailed documentation on programming progress, and version control data

are usually publicly available for open-source projects. As Draheim and Pekacki

(2003) and Fischer et al. (2003) argued, the importance of version control data for

the optimization of software development processes was recognized in the early days

of the development of version control systems. Therefore, the usability of the data

for process-based analysis always in�uenced the the design of version control sys-

tems, and version control data provide an excellent source of information on the

projects' dynamics.

In 2008, Bird et al. (2008) pointed out that OSS developer networks show a high

degree of volatility, and cooperation structures tend to form ad hoc around current

tasks in programming. Since then, many developments have emerged in the realm

of open-source projects. For example, �rms invest in external open-source com-

munities, such as the Linux project or the GitHub platform, and private-collective

innovation structures nowadays play an essential role in the open-source landscape

(Homscheid et al., 2015; Liu et al., 2017). These developments may bring more
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stability by strengthening the position of core programmers that are ready to invest

considerable e�ort and can then make a living on open-source projects. Such devel-

opments may, however, also disturb established collaboration and communication

structures when manipulating the focus of a project or sending new contributors.

Whatever e�ect these developments may have on project success, they change at

least the social and collaborative structures of a project (Homscheid et al., 2015).

Against the �ndings of Bird et al. (2008) one decade ago, recent studies showed

that there are stable structures in the collaboration and communication habits of

OSS projects. Joblin et al. (2017) investigated the dynamics of 18 large open-source

projects and found that with time �the organizational structure of large projects

is constrained to evolve towards a state that balances the costs and bene�ts of

developer coordination� (Joblin et al., 2017, p.2050). The authors underlined the

importance of three core principles of open-source software development that gain

importance with the growing scales of a project: scale freeness, modularity, and

hierarchy. Scale-free networks dispose of hub nodes with an extraordinarily large

number of connections. This circumstance leads to the concentration of a large

share of total coordination requirements to a small number of developers. This

results in several bene�cial characteristics including robustness and scalability (see

also Dorogovtsev and Mendes, 2013). The local arrangement of nodes into groups

that are internally well connected gives rise to a modular structure. Like scale-

freeness, modularity helps to keep coordination needs among developers reasonable,

and often arises naturally due to shared capabilities and interest in the same problem

or challenge. The global arrangement of nodes into a layered structure, where small

cohesive groups are embedded within larger and less cohesive groups, �nally leads

to the formation of hierarchical structures among core developers, while peripheral

developers do not show such structures (Joblin et al., 2017).

So what are the in�uence factors that drive the formation of stable cooperation struc-

tures in open-source software projects? Eisenberger et al. (2001) found that one of

the primary drivers of stable relationships between an individual and an organiza-

tion is reciprocity, which is mainly driven by perceived organizational support (POS).

There is a positive correlation between POS and an employee's loyalty, where loy-
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alty is the felt obligation to support an organization's objectives and welfare. Shah

(2006) found the responsiveness of an open-source project to be among the main

motivation drivers in OSS projects � that is, the probability of keeping working

augments with increased responsiveness. Observed and unobserved homophily leads

to the formation of clusters, where homophily describes the phenomenon that two

similar programmers are more likely to collaborate. The characteristics that de-

termine similarity are either observed (a platform might decide to track whether

programmers are male or female, or which infrastructure they use) or unobserved,

like shared or complementary technical skills, and the interest in similar algorithms

and problems. Stable modules and structures do not only arise due to shared in-

terests: with time, strong social bonds within a limited group of developers arise,

especially when the primary determinant of motivation is not material compensation

(Shah, 2006).

Recent evidence on stability and social coherence in open-source projects has been

provided, for example, by Ho and Rai (2017). The authors investigated the e�ect

of monitoring measures on programmer participation and showed that quality as-

surance measures such as code acceptance and accreditation have a positive e�ect

on a volunteer's continued participation intentions. The motivating e�ect of system

feedback is crucial for both developers with short and long tenure, but feedback is

fundamental for developers that only recently joined a program. There is a moderat-

ing e�ect of tenure on this phenomenon. The decision to continue contributing to an

OSS project depends less on signals associated with the monitoring of contribution

quality. In contrast, new members of the community are profoundly in�uenced in

their decision by feedback mechanisms (e.g., comments on their role in the project).

In this article, we seek to develop an adequate statistical model that can evaluate

the four following central research questions:

RQ1: Are there organizational structures in OSS projects that help to

predict future development of social stability in developer networks?

The developer network contains both information on the current activity level of

programmers and collaboration habits. We seek to �nd out whether the modeling of
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those dependency structures helps predict relationships between developers, relative

to a setting where changes are assumed to be random.

RQ2: Do social ties and community structures in OSS projects become

more stable over time or with the growing scope of a project?

As Joblin et al. (2017) argued, organizational principles and collaboration structures

show predictable dynamic evolution, where di�erences arise across projects. This

development assures a constant coordination overhead for single programmers and

assures long-term viability. We validate whether there is evidence for the consoli-

dation of the projects' organizational structure. We expect that relative predictive

performance of methods that pro�t from a high degree of structural stability is

higher compared to the performance of methods that imply little structural stabil-

ity in later phases of the project.

2.2.2 Collaboration and Communication

Social bonds and clusters are likely to manifest not only in cooperation behavior

but also in communication. Communication within open-source settings is �typi-

cally conducted in an open public manner and [...] stored for later reference� (Guzzi

et al., 2013, p.277), hence easily accessible for research purposes. Our research com-

plements previous work on how to improve development practices with regard to

communication (e.g., Seaman, 1999). Bird et al. (2006, 2008) and Shihab et al.

(2010) used metadata on e-mail communication (elements such as sender and re-

ceiver name, date, and time of communication) for the detection of social interac-

tion structures in software development. They found that mailing list activity is

related to coding activity. Consequently, there is a direct link between communica-

tion and collaboration tasks. Ogawa et al. (2007) used mailing list data to visualize

the dynamic development of collaboration and communication structure of large,

complex software projects. Guzzi et al. (2013) conducted a textual analysis of email

list communication to analyze the interplay of collaboration and communication in

OSS at a content level. The authors found that email lists are an essential, though

not the only medium of programmer communication. They categorized the topics
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of communication and found that only 16% of all threads were treating technical

infrastructure. Social interaction (that is, threads about topics like social norms,

contributors, acknowledgment, and coordination) is accountable for about 6% of

all threads. Together with communication about project status (e.g., planning and

communication about releases and due dates), the mentioned topics are accountable

for around 13% of all email list communication. A signi�cant share of communica-

tion does not directly imply implementation issues. This share can be assumed to

re�ect social relationships that go beyond the urgent technical needs of collaboration

and programming (Guzzi et al., 2013).

Considering the importance of coordination in a virtual, distributed working envi-

ronment, we seek to investigate the relationship between collaboration and commu-

nication, and ask two more research questions:

RQ3: Does the stability of social ties di�er between collaboration and

communication?

In both communication and coding, teams usually develop routines. An essential

share of communication involves users of a software product, and in a considerable

share of communication, no core developers are involved (Guzzi et al., 2013). We

seek to compare the degree of stability in the communication domain to the degree

of stability in the collaboration domain.

RQ4: Are there stable social bonds in communication behavior that go

beyond ad hoc programming behavior?

Core developers are likely to build up an organizational �overhead�, that re�ects

stable social ties that do not imply programming tasks (Guzzi et al., 2013; Joblin

et al., 2017). Collaboration and communication are likely to be driven by similar

social dynamics, and therefore to show a strong correlation. By accounting for

one of the two as a predictor, we isolate structures in the data that go beyond

the shared in�uences. For example, if the collaboration of programmers requires

direct communication via email, then collaboration should be a good predictor of

communication. By canceling out communication events that refer to collaboration,
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and looking at the structures that persist, we isolate stable interaction habits in

communication events that are not due to collaboration.

2.3 Statistical Modeling

To show whether there are organizational principles in the networks that in�uence

the way people communicate and collaborate, we need to quantify the strength of

social cohesion, as well as its stability over time. As the reasons or the nature of

the modules are only implicitly observable in the network structure, we need an

exploratory approach that does not require a priori parametric speci�cation of the

modular structures. Consequently, we quantify the modular structures in developer

networks. We will next present an approach that explores social stability in an

exploratory, �exible way. This approach, which allows for �exible parameter infer-

ence based on a Bayesian Monte Carlo method, is presented in Section 2.3.1. We

then continue with an alternative dynamic model, which is less �exible and more

mechanistic than the AME but allows for temporal extrapolation, prediction, and

stability tracking. This approach is the spectral growth model (Section 2.3.2). As

both models are inadequate to answer our research questions, we �nally combine

the two into a new model (Section 2.3.3).

2.3.1 Additive and Multiplicative Latent Factors

Social network analysis quickly became popular for investigating the organizational

structures of software projects, for example, to �nd out about the determinants of

software quality (Meneely and Williams, 2011). This is due to the fact that phenom-

ena such as scale-freeness and modularity are linked to relationships, not individual

characteristics of nodes, and therefore require techniques that can describe dyadic1

data. Clusters, scale-freeness, modularity, and reciprocity describe relationships

and cause cross-sectional dependency among developers. Statistical modeling has

to take this dependency into account. For example, the activity level of a program-

mer i is informative about the probability that i will get into contact with another

1A pair of nodes is also called dyad, whereas monadic data describes individuals only.
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programmer j � especially if i and j are part of the same highly connected cluster of

programmers working on similar problems. This correlation between events violates

the independence assumption for the single developers (Ho� et al., 2002).

In statistical terms, the phenomena described above (like modularity and reci-

procity) are violations of independence between particular relationships and de-

velopers. Reciprocity, for example, means that the probability of observing two

reciprocal ties is higher than the sum of the probability to observe a single tie: A

person receiving an email is likely to respond to the person and message. Beyond

the dependency between developers, there is also temporal dependency: Developers

who have collaborated before are likely to collaborate again. Cross-sectional and

temporal dependency violate assumptions of independence and exchangeability in

relational data, which are the basis for the application of many statistical models

(Hoover, 1982; Aldous, 1985). Statistical models such as Probit regression with a

standard error structure assume independence, whereas network-related models take

the dependency that arises between nodes explicitly into account (Ho�, 2009).

The Additive and Multiplicative E�ects (AME) latent factor model (Ho�, 2008;

Minhas et al., 2016a) accounts for cross-sectional dependency in dyadic data via

integration of latent factor structures. Such exploratory interactive latent factor

models have the core advantage of being able to handle dyadic cross-sectional de-

pendency without explicitly modeling all tie formation mechanisms (Ho�, 2008). If

these assumptions are correct, it is not necessary to explicitly �nd a measure for the

reciprocal behavior of two nodes, but the estimation process will automatically infer

the strength of this behavior from the observed data. This class of models is also

handy when inference on the strength of the e�ect of a speci�c in�uence factor is of

interest. Exploratory factorial models secure unbiased inference when parameters

for observable covariates need to be estimated with dependent data. Accounting for

unobserved latent factors prevents a bias in the estimation of slope parameters, even

when the independence assumption is violated (Ho�, 2009).

The AME model describes tie formation processes in a network as being driven by

observed and unobserved covariates and factors. Let Y = Y(G) of dimension N×N

be the unweighted adjacency matrix of a static graph or network G. That is, yij, the
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relation between node i and j, can take on the values 1 or 0 depending on whether

there is an edge (other notions for edge are tie, arc, or link) between two nodes (or

vertices, in our case programmers) i and j, or not. yii is not de�ned, as the node

cannot have a relationship with itself, and therefore �lled with 0. Now let P (Y)

be the probability of observing a speci�c network's adjacency matrix Y. Then,

following Ho� (2009) and Fosdick and Ho� (2015), the probability distributions of

the individual edges yij are conditionally independent of one another, given θij,

where θij contains all observed and unobserved information about nodes i and j and

their compatibility.

P (yij, yik, . . . , ylk|θij, θik, . . . , θlk) = P (yij|θij)× P (yik|θik)× . . .× P (ylk|θlk) (2.1)

P (Y|θ) =

n·(n−1)∏
α=1

P (yα|θα) (2.2)

Depending on how much information is available, di�erent assumptions on the form

of θij can be made. First, we assume that θij depends on some exogenous predictors

x1,ij, x2,ij, . . . , xp,ij = xij. But even if we account for these exogenous predictors,

there may be some dependency left in the network, because not all information can

be accounted for explicitly. Factor models can be used to mine the latent depen-

dency structures for prediction and structural analysis purposes in an exploratory

way, without the need to specify prior hypotheses on the reasons that drive cluster

formation among developers (Ho�, 2009; Koren et al., 2009). θij can be expressed

as the sum of several e�ects driven by observed predictors and unobserved or latent

factors:

θij = log
(P (yij = 1)

P (yij = 0)

)
(2.3)

θij = βTxij + ai + aj + UT
(i·)DV(j·) + εij (2.4)

where xij are exogenous covariates, and can be speci�ed to describe dyadic edge

attributes, such as �both developers i and j have been on the project for more than
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three years�, as well as monadic covariates like �developer i has been contributing

to the project for more than three years�. If there are p observable covariates, xij

is a vector of length p, just like β. ai and aj denote additional random monadic

e�ects, like the genuine interest of i and j in the project. Assume that both rows

and columns of Y describe people, and yij describes a directed event such as �devel-

oper i sends an email to developer j�. Then G is directed, yij 6= yji, and the random

additive e�ect ai and aj are often interpreted as a measure of node i's �outgoingness�

and node j's �popularity�, respectively (Fosdick and Ho�, 2015). U(i·) denotes the

i-th row of some matrix U, and V(j·) denotes the j-th row of a matrix V. The

term UT
(i·)DV(j·) describes an unobserved multiplicative factor structure. U(i·) and

V(j·) are rows of U and V, respectively. As sender nodes are organized in rows, and

receivers in the columns, we also speak of U(i·) and V(j·) as row- and column-speci�c

latent nodal attributes. While a column in U and V describes an unobserved factor

or reason for tie formation, a row contains the scores of an individual node with

regard to these factors. The diagonal matrix D contains the weights of the charac-

teristics U(i·) and V(j·) in the complete network, that is it describes the importance

of the particular patterns for the entire network (Ho�, 2009; Fosdick and Ho�, 2015;

Minhas et al., 2016a).

The k-th factor is denoted by U(·k)D(kk)V
T
(·k) and therefore spans an N ×N matrix,

in which every pair of nodes has a value. As D is a diagonal matrix, the product

of two non-assorted vectors U(·l)D(lm)V(·m) = 0. If two nodes i and j have a high

correspondence in their factor structure, then θij is large and the nodes i and j have

a high probability to connect (Ho�, 2009; Koren et al., 2009; Minhas et al., 2016a).

With the AME framework, Ho� (2009) provided a �exible approach to exploring the

cross-sectional dependency structure in a network for static (that is structural) link

prediction. They assume reasons for tie formation that cannot be accounted for via

observable edge attributes βTxij to reveal themselves in interactive factor structures

UT
(i·)DV(j·). The di�erence to other approaches that base on factorization for link

prediction (often used for recommender systems, see Koren et al., 2009), is that

the approach's bene�t is to provide fair inference for slope parameters β. Both the

inferential approach suggested by Ho� (2009) and more mechanistic, but also more
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e�cient factorization methods for prediction (compare Koren et al., 2009), account

for unobserved patterns via the factor structure.

The unobservable part of the information on nodes i and j, U(i·)DV(j·), can be in-

ferred from the observed topological structure of the network: if a group of nodes

is highly interconnected, we can infer that they have something in common with-

out actually knowing what this �something� is. This information is then helpful for

prediction. Therefore, research in Empirical Software Engineering can pro�t from

the model for �nding patterns in the relationship between developers, without the

need to explicitly specify all mechanisms and reasons that lead to the formation

of modules, or hierarchy. In the AME model, the modeling of dependency in the

factor structure allows for unbiased estimation of βTx under the assumption that

some sources of dependency cannot be modeled explicitly via an observed covariate

x. Moreover, despite its static nature, McGraw and Menzinger (2008) and Mitrovi¢

and Tadi¢ (2009) pointed out that spectral analysis bridges the gap between topo-

logical and dynamic analysis of networks, as the topological state of a network is

usually the result of a dynamic process. While describing the topology of a net-

work, factorization provides insights into the generation process, by carving out

the underlying patterns that have led to the observed structure. Latent factors,

extracted for example via spectral decomposition, inherently represent clustering,

local heterogeneity, and other characteristics such as maximum distance across the

network, bottlenecks, and degree of randomness (Seary and Richards, 2003; Ho�,

2009). Factorization is also a central methodology for dimensionality reduction.

Dimensionality reduction reduces noise in the data by mapping a N -dimensional

network structure to a K-dimensional subspace (where K < N and N is the num-

ber of nodes or programmers) (Kunegis et al., 2010). As it computes the similarity of

nodes, it is also useful for graph visualization (Seary and Richards, 2003). However,

the model discussed above does not re�ect changes in the structure of networks, only

the results of a presumably still present, unobserved, stable growth mechanism. As

we want to quantify the changes in the dependency structure, as well as compare

the changes in the importance of the patterns in time, we will next combine the

model with a dynamic perspective.
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2.3.2 The Spectral Growth Model

Static models like the one above cannot track changes in the groups and patterns that

are represented by the factors. When clusters of developers dissolve, or new groups

form that involve some developers that are already active in a di�erent cluster, the

AME model is unable to track this change in the underlying factorial structures.

As it uses a single snapshot of the network structure, the factorization of the aggre-

gated network structure results in a mixed-up combination of patterns within the

same factor that does not re�ect the actual mechanisms of tie formation. Temporal

aggregation retains topological patterns while losing activity patterns and temporal

correlations (Gauvin et al., 2014). The assumption of constant factorial structures

�can bene�t the convenience of model inference, but is irrational empirically� (Zhu

et al., 2016, p.729).

Kunegis et al. (2010) departed from the example of graph kernels that describe

simple growth mechanisms like �a friend of a friend (of a friend) is a friend� to

explain the relationship between stable spectral growth and mathematical growth

models. Graph kernels are functions that are directly applied to the adjacency

matrix Y. The functions are usually functions that easily pro�t from the algebraic

characteristics of a spectral decomposition of Y. The spectral theorem assures

that it is possible to decompose any matrix via eigen- (for symmetric matrices) or

singular-value decomposition (SVD). Then, when the graph kernel function p(·) is

applied to the decomposed matrix, it simpli�es to a linear function �tting problem.

Assume for a moment that the chosen factor extraction method for the model above

is a spectral decomposition of Y, and there is no error structure in the data. Then,

it is true that Y = UDVT . Graph kernels pro�t from the mathematical rule that

p(Y) = Up(D)VT , due to the orthonormality of U and V2.

When applied to a temporal prediction, the parameters of the graph kernel p(·)

are optimized such that Yt−1 is mapped to Yt, where t is a time indicator with

t ∈ 1, . . . T . Now under the assumption of constant latent patterns in U and V, this

mapping reduces to the mapping of Dt−1 to Dt. Assuming that the triangle closing

2Note that while Kunegis et al. (2010) used symmetric matrices for their argumentation, where
U = V, they point out that their model also applies to directed and bipartite matrices.
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is the dominant pattern in tie formation in both t − 1 and t, then Ut = Ut−1 and

Vt = Vt−1. This simpli�cation also holds for other graph kernels or the combination

of kernels: As long as the same functions drive growth in the same way, the factorial

structures can be assumed to be constant. As the matrices Dt−1 and Dt are diagonal

matrices, �nding a function p(Dt−1) that maps Dt−1 on Dt reduces to a simple linear

function �tting problem, which scales very easily to large networks (Kunegis et al.,

2010).

This way, Kunegis et al. (2010, 2013) combined methods based on matrix factor-

ization (where they use a spectral decomposition of Y as factor extraction method)

in a dynamic perspective by pointing out that, no matter which patterns drive tie

formation, as long as these patterns are constant, the factorization of the respective

adjacency matrix should result in the same latent factor values of nodes i and j,

U(i·) and V(j·). Instead of merely relying on the assumption of spectral stability, the

authors proposed a series of tools to check the stability of factorial structures over

time. Suggesting that if the latent dimensions represent underlying patterns and

clusters, the authors deduced that these patterns and clusters might gain or lose

in importance independently from one another. Therefore, Kunegis et al. (2010)

suggested using a simple extrapolation of factor growth for link prediction, allowing

single latent dimensions of the network to grow at their own speed.

To answer our research questions, we pro�t from the method in two regards. First,

the tools suggested by Kunegis et al. (2010) allow us to track the stability of the

factorial structure (which tells us about changes over time in the dominant organi-

zational structures). Second, we use the link prediction performance to judge the

degree of stability. Therefore, we next explain the tools that track stability.

The inner product of U(i·) and V(j·) together with the respective weights of the K

factor scores, d1, . . . , dK , result in a score that is directly related (though, in the

model of Ho� (2009) not linearly) to the likelihood of i and j to have a common

node, that is P (yij = 1). The outer product of U(·k) and V(·k) represents the kth

orthogonal dimension of Θ, where Θ is the N × N matrix containing all values

θij. The growth of the importance of the pattern or dimension k results in higher

weights of that pattern. It can therefore be translated into growth in D(kk) = dk.
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When growth from time t− 1 to t is considered, this means that dk,t−1 < dk,t: Over

time, more ties appear in the network, that is its intensity grows, and with it the

weights.

Suppose that (i) the random term εij can be ignored and (ii) that M = UDVT is

the only source of growth in the network. Moreover, assume that (iii) the structures

themselves are stable, that is U = Ut−1 = Ut = Ut+1 and V = Vt−1 = Vt = Vt+1.

Then, growth in latent factors can be translated into growth in Dt, formally:

Mt −Mt−1 = UD∗tV
T where (2.5)

D∗t = Dt −Dt−1. (2.6)

Any graph kernel is based on this assumption, as any graph kernel assumes a con-

stant growth pattern. Graph kernels impose a parametric function on the growth of

the values d1,t−1, . . . , dK,t−1 to d1,t, . . . , dK,t to predict d1,t+1, . . . , dK,t+1. This implies

that the kth eigenvector at time t−1 is always mapped to the kth eigenvector at time

t. Kunegis et al. (2010) showed that instead of this restrictive assumption, a �exible

extrapolation of the values to t+ 1 results in gains in predictive performance when

growth is spectral but irregular. Irregular growth describes a situation when the un-

derlying factorial structures (that is, the underlying alliances among programmers,

growth drivers like topics and tasks, and other social constellations) in a network are

stable, but individual structures grow or shrink independently. Kunegis et al. (2010)

provide more examples beyond the �a friend of a friend is a friend� hypothesis, and

further explanation of graph kernels.

The performance of the spectral growth model is a good indicator of the plausibility

of the assumption of spectral growth, that is, the varying importance of single

modules in a software product. The better the predictions work in comparison to

approaches that do not rely on factorial stability, the more we are con�dent that

structures are stable. Therefore, we next explain the implementation of predictions

based on the model. Kunegis et al. (2010) always picked three consecutive adjacency

matrices at a time, Yt−1 = Y(Gt−1),Yt = Y(Gt), and Yt+1 = Y(Gt+1).
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First, we decompose Yt. The resulting factorial structure provides the basis for

calculating the �stable� eigenvalues of Yt−1 with the cosine similarity of the kth

vector in time T and in time T −1. In general, the cosine similarity of two vectors is

a measure of similarity of two vectors that describes the cosine of the angle between

two vectors:

U(·k),t−1 ·U(·k),t

‖U(·k),t−1‖2‖U(·k),t‖2
=

∑N
i=1 U(ik),t−1 ·U(ik),t√∑N

i=1 (U(ik),t−1)2 ·
√∑N

i=1 (U(ik),t)2
(2.7)

The orthonormality of the matrices Ut−1, Ut (and Vt−1 and Vt accordingly) means

that ‖U(·k),t−1‖2 = 1 and ‖U(·k),t‖2 = 1, and therefore the formula for the computa-

tion of cosine similarity simpli�es to the following form:

UT
(·k),t−1U(·k),t. (2.8)

.

The �arti�cial� diagonalization of the matrices results in nondiagonal D̃ matrices.

The closer D̃ is to a diagonal matrix, the better the assumption of regular spectral

growth is ful�lled.

D̃t−1 = UT
t Mt−1Vt = UT

t Ut−1Dt−1V
T
t−1Vt (2.9)

If d(j)t is the jth eigenvalue at time t, its estimated previous value at t− 1 is

d̂(j)t−1 =

(∑
i

UT
(·i)t−1U(·j)t

)−1∑
i

UT
(·i)t−1U(·j)td(i)t−1 (2.10)

If growth was perfectly spectral (that is if the factors were constant over time), then

D̃t = Dt, as then the multiplication of Ut−1 with the transpose of the Ut or vice

versa results in a unit matrix I. Therefore, in the case of spectral growth, D̃t−1
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should ideally be close to a diagonal matrix, and its estimated value can be used to

judge the plausibility of the spectral growth assumption.

For prediction of Yt+1, the growth or shrinkage of the weights D̃t−1 to D̃t is ex-

trapolated. As the technique does not impose a parametric function to this step, it

gives every dimension the freedom to grow or shrink at its own speed. Yt+1 is �-

nally needed to validate the predictive performance of the algorithm. Kunegis et al.

(2010) linearly extrapolated the growth of the eigenvalues to predict the successive

eigenvalue d̂(k)t+1. That allows every subcommunity, encoded by an eigenvector, to

grow at their own speed.

d̂k,t+1 = dk,t + (dk,t − d̃k,t−1), (2.11)

where D̂t+1 is the diagonal matrix of all predicted eigenvalues d̂(k)t+1.

The implementation by Kunegis et al. (2010) only accounts for factorial structures

without additional explanatory covariates. The spectral growth model is limited in

�exibility by the usage of spectral decompositions for factor inference, a method that

does not allow to di�erentiate between observable and unobservable tie formation

drivers. When the entire matrix is to be decomposed without consideration of

random e�ects or further exogenous covariates, like in Kunegis et al. (2010), spectral

decompositions provide a solution that scales very well to large datasets (Koren et al.,

2009).

Kunegis et al. (2010) covered a wide spectrum of use cases, explicitly including col-

laboration networks and communication networks. Moreover, the authors claimed

their method is appropriate for social networks, authorship networks, rating net-

works, citation networks and folksonomies, with varying success regarding prediction

enhancement. They also cover not only symmetric networks. The authors use net-

works with unweighted and weighted edges, negative edges (when the setting allows

for enmity relationships), and both unipartite and bipartite networks. Depending

on the �eld of application, the latent factors driving tie formation represent �com-

munities�, �patterns�, �topics�, �modes� or �preferences�. All these interpretations
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can be subsumed as unobserved �reasons� and �structures� of why and how nodes

are linked to one another (Kunegis et al., 2010). High stability of U and V means

high stability in all unobserved elements of OSS development structures.

2.3.3 Synthesis of Models

The spectral growth model proposed by Kunegis et al. (2010) assesses the stability of

tie formation drivers over time. It predicts single latent factor dimensions to grow at

their own speed, and to change in relative importance over time. In our study, this

means that single modules of a software product involve a speci�c group of develop-

ers. The intensity in which people work on a single module increases and decreases

eventually. It optimizes predictive performance (in comparison to more restrictive

graph kernels) only when the driving mechanisms of tie formation themselves are

very stable, and only when the relative importance of single latent dimensions varies

over time (Kunegis et al., 2010). As we have shown above, the model does not take

additional covariates into account and is in�exible in the application to alternative

data operationalization, for example, if growth is not a realistic setting.

The method proposed by Kunegis et al. (2010) technically allows us to answer RQ1,

RQ2, and RQ3, as we do not need to include covariates to answer those questions.

However, for interpretation, we bene�t from a separation of node characteristics

and interactive e�ects, because the model suggested by Kunegis et al. (2010) does

not allow us to separate a general activity level of a programmer from a stronger

involvement in a cluster. In order to answer RQ4, we need to simultaneously model

communication and collaboration, which requires the adoption of the inferential

strategy suggested by Ho� (2009). The AME model allows us to include a predictor

in the model � the model proposed by Kunegis et al. (2010) factorizes Y via spectral

decomposition, and is thereby unable to account for the various kinds of dependency

that the AME can di�erentiate, or to establish a connection between communication

and collaboration. Therefore, we combine the spectral growth and the AME model,

using the strategy of factor inference suggested in Ho� (2009) in combination with

the dynamic tracing of factorial stability suggested in Kunegis et al. (2010). The

hybrid model will be able to account for the structures in collaboration networks
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as a predictor. Doing this leaves us only with the structures not explained by

collaboration in communication. A comparison of the importance of those patterns

for �t and predictive performance then allows us to judge their prevalence in the

software developer networks.

Figure 2.1 summarizes our research framework, including references to the most

central research on the topic of communication and collaboration among developers

that we build upon. Let Gt and Ht represent the graphs of the email communi-

cation network and the collaboration network for time slice t, respectively, where

t ∈ 1, . . . , T . Y(G)→ {Y(G1), . . . ,Y(GT )} and X(H)→ {X(H1), . . . ,X(HT )} de-

note the adjacency matrices of the graph series. For the sake of simplicity, we denote

Y(Gt) = Yt (communication) and X(Ht) = Xt (collaboration). Ties in Xt result

from the contribution of two developers to the same code feature. We track which

programmer worked on which feature at what time. This way, we also track which

programmers worked on the same feature and �collaborated�. Network ties in Yt

represent responses of one programmer to an email thread that another programmer

has either initiated or also responded to within time slice t. Both networks contain

the full set of nodes or programmers; that is, there might be programmers that did

not communicate in Gt or people that only communicated and did not collaborate

with anyone in Ht. Section 2.4 provides more details.

We measure how similar the Ut and Vt are over time. To do so, we choose a model

that estimates only one U and V, and compare these factors to the time-dependent

matrices. The step of estimating a shared factor structure, independently of whether

there are exogenous predictors or not, therefore bases on the following basic model3:

θijt = ait + ajt + βxijt + UT
(i·)DtV(j·) + εijt (2.12)

Table 2.1 provides an overview of our four core research questions and validation

strategies. Concerning RQ1, we compare the performance of a predictive method

that takes dependency structures into account with one that assumes that all changes

3Note that there is only one predictor xijt at a time (that is, communication or collaboration),
and therefore βTxijt reduces to the product of two scalars, βxijt.
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Figure 2.1: Representation of methodological context for case studies on factorial
stability in OSS developer networks.

Table 2.1: Summary of research questions and validation strategies, based on the
measurement of predictive performance and cosine similarity of core patterns.

Benchmark Model Evaluation strategy

RQ1 ŷij,t+1 = yijt θijt = ait + ajt +
UT

(i·)DtV(j·) + εijt

Check performance with
and without latent struc-
tures

RQ2 Performance at
previous period

θijt = ait + ajt +
UT

(i·)DtV(j·) + εijt

Evaluate performance over
time and with growing
scope

RQ3 diag(Ik) = 1 diag(UT
t U) Compare cosine similarity

of latent patterns between
communication and collab-
oration

RQ4 θijt = ai + aj +
UT

(i·)DV(j·) + εijt

θijt = βxijt + ai + aj +
UT

(i·)DV(j·) + εijt

Use collaboration as ex-
ogenous predictor, and
compare weights D in la-
tent factorial structure.
Compare predictive perfor-
mance when communica-
tion in t + 1 is assumed to
be known
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are random, a naïve approach. This alternative approach assumes that the same

events that occurred in time t will occur in time t+1 again, which essentially means

that there is perfect stability, but no dynamic changes (growth or shrinkage). With

regard to RQ2, we assess the stability of latent patterns with reference to project

scale. We do that by judging the predictive performance of di�erent approaches that

imply di�erent degrees of stability in growth. We further track the development of

predictive performance with changes with growing scale of a project. We approx-

imate project scale by the number of commits per three-month time window. Via

the Bayesian implementation implied in the AME, we �rst estimate a shared U and

V that spans the entire time line of the communication or collaboration networks:

θijt = ait + ajt + UT
(i·)DtV(j·) + εijt (2.13)

θ̂ij,t+1 = âi,t+1 + âj,t+1 + UT
(i·)D̂t+1V(j·). (2.14)

To prove that the model has value over a naïve approach, we compare the model's

predictions to the simple heuristic ŷij,t+1 = yijt (communication network) and x̂ij,t+1 =

xijt (collaboration network). Then, the method for stability tracing described above

is applied: We judge the stability of the patterns by applying di�erent forecast

methods whose success depends on the stability of the latent patterns. Predictions

are calculated accordingly following the scheme:

D̃t−1 = UT
t Mt−1Vt = UT

t Ut−1Dt−1V
T
t−1Vt (2.15)

d̂k,t+1 = dkt + (dkt − d̃k,t−1) (2.16)

âi,t+1 = ait + (ait − ai,t−1) (2.17)

âi,t+1 = ajt + (ajt − aj,t−1) (2.18)

Concerning RQ3, we seek to answer our question using tools for stability visualiza-

tion suggested by Kunegis et al. (2010), a graphical representation of the matrices

D̃1, . . . , D̃T−1. The implementation described in Kunegis et al. (2010) departs from
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a decomposition of the last matrix, which contains all the edges and nodes in the

network, and then traces stability backward. Single patterns are more likely to be

overlaid in this way. When using spectral decomposition, this means that we would

have to add up all the time slices to receive an adjacency matrix that represents

all nodes and edges. For the sake of comparison with the original method, we will

also implement the spectral decomposition of a �nal, cumulated matrix, which corre-

sponds more to the model suggested by Kunegis et al. (2010). However, as developer

networks are highly dynamic, we do not wish to overlay the single matrices. With

the inferential strategy proposed in Ho� (2009), it is possible to use the uncumulated

matrices and estimate a shared factorial structure that bridges the single time slices

without actually aggregating them to a single one. We compare the decomposition

that results from this setting to one that uses the �nal, cumulated matrices that

contain all the edges up to time T . To evaluate our setting, we base upon the fol-

lowing model, which estimates a single UDVT despite a dynamic structure in the

exogenous predictors (compare Ho�, 2017):

θijt = βxijt + ai + aj + UT
(i·)DV(j·) + εijt. (2.19)

Note the missing time index in D. The advantage of using this setting is that it

considers the time slices separately but estimates a single static interactive latent

factor structure. UT
(i·)DV(j·) is static in this setting, any changes in the latent

factor structure are re�ected in the idiosyncratic error εijt. The procedure counts

repeated interaction events in every time slice separately, and results in an UDVT

that represents patterns that are present in all slices. We decompose the matrix

according to equation (2.19) UDVT , which is then traced back even before t − 1

over the entire time horizon of available data:

D̃t = UTMtV = UTUtDtV
T
t V (2.20)

The matrix UTUt of dimension K ×K contains on its main diagonal the simpli�ed

cosine similarity values as mentioned in equation (2.8). It is an indicator of how
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similar the patterns in time t and over the entire series of networks are.

Concerning RQ4, we assess the gains in predictive performance that arise from

using collaboration as a predictor for communication. Whether there are stable

factor structures in communication behavior that go beyond joint programming

means that there must be stable structures left in communication networks after

accounting for joint programming. Consequently, we have to �get rid of� the factorial

structures that are shared among collaboration and communication networks. To

do this, we use xijt as predictor 4.

θijt = βxijt + ai + aj + UT
(i·)DV(j·) + εijt (2.21)

where xijt and β are now scalars because there is only one predictor. Here, Xt plays

the role of an independent predictor for Yt, in order to eliminate the shared factors

from the data. To test the value of collaboration for prediction, we assume xij,t+1

to be unknown, and replace xij,t+1 in the prediction step by xij,t. To judge on how

informative the current information and the usage of the factor structure are, we

use a second setting, where we assume the exogenous predictor to be known for the

forecast period t+1. WithRQ4, we seek to make one part of the structure visible, by

accounting for co-editing behavior in communication networks and approximating

the �ad hoc technical need� patterns by co-editing behavior. When we use Xt as

an explanatory variable, shared factorial structures cancel out, and only structures

that are speci�c to Yt remain.

Based on the latter approach, we will answer RQ2 to RQ4. We structure the

discussion in the following way:

· Original algorithm: Kunegis et al. (2010) discussed their prediction algorithm

based on growing networks, where edges do not (usually) disappear again (that

is, developers may join OSS projects, but may not leave). To demonstrate that

we have implemented the algorithm by Kunegis et al. (2010), we will shortly

discuss the results of an application of the matrix factorization on strictly

4Please note that we do not assume that the relationship between communication and collab-
oration is causal in any direction, but use the regression approach to cancel out the shared factor
structures and the share of communication that is driven by collaboration needs.
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growing networks, as originally suggested in Kunegis et al. (2010). There is no

evaluation and comparison to other methods, as the implementation is only for

demonstration of correct implementation, and better ease of understanding.

· To answer RQ1, we compare the prediction performance of an algorithm con-

taining latent factorial structures to an algorithm not containing any interac-

tive factorial structure. If the extrapolation of latent structures is bene�cial

for predictive performance, then we deduce that there are dyadic structures

that are helpful for prediction.

· To answer RQ2, we track the predictive performance of a latent-factor-based

prediction model over time and with a growing scope of a network. We ap-

proximate scope with the number of developers that are active within a time

window t.

· To answer RQ3, we measure the cosine similarity of the latent factors. If

there was more stability in collaboration than in communication, the stability

of the factorial structures should be higher in the �st type of network.

· To answer RQ4, it is necessary to take on a multivariate perspective. Up to

this point, we relied on the latent factorial structure to cover all the patterns

that cause dependency in the networks. If both communication and collabo-

ration are driven by certain technical needs, like the same programming tasks,

then accounting for communication as a predictor should remove these struc-

tures. Therefore, we use communication between developer i and j at time

t, xijt as a predictor, and evaluate the importance of the remaining factorial

structure.

2.4 Empirical Study

To answerRQ1 toRQ4, we will now present three empirical case studies concerning

well-established open-source projects. Further details on data operationalization

(Section 2.4.1) and model estimation and parameter inference (Section 2.4.2) are

provided. Details on the validation of predictive performance (Section 2.4.3) provide

the necessary insights into our evaluation criteria.
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2.4.1 Subject Projects and Data Operationalization

We will now evaluate the proposed model of Section 2.3.3 in an empirical case

study. We use version control system data on code contribution and email list

communication of three open-source projects, namely QEMU5, OpenSSL6 and BusyBox7

to empirically test our model. QEMU is particularly interesting, as it has imposed a

special policy to their contributors according to which every patch must be sent

to a mailing list �rst8, which attributes a special role to the relationship between

development and email list communication.

We use Codeface9 (Joblin et al., 2015) to extract commit data from GitHub10 reposi-

tories, and email data from the mailing list archive Gmane11. We denote the networks

resulting from co-editing of source code as cochange networks, and email list net-

works as mail networks. Email communication is analyzed only among developers

that have contributed to source code, that is, we neglect communication among users

or between users and developers. Repeated collaboration or email contact within a

three-month time window counts as a single collaboration, and we have a binary ad-

jacency matrix for every time window. We use windows of three months length, and

periods with fewer than ten communication events were excluded. When a period

with more than ten events was followed by a period with less than ten events, the

interim period was treated like a �normal� period to make sure that only consecutive

time slices were compared. Table 2.2 provides an overview of the total number of

active developers, co-edits on source code, email contacts, and �rst and last date

analyzed. The limiting complexity factor was the number of mails, as there are rel-

atively long periods at the beginning where no email communication was available.

The minimum amount of communication rul a�ects a relatively long period, as can

be seen in �gure 2.A.1 in the Appendix.We implement our model and statistical rea-

soning in R (R Core Team, 2013), the Bayesian speci�cation for AME is implemented

5www.qemu.org. QEMU is a virtual machine emulator.
6www.openssl.org. OpenSSL is an encryption library to secure connections on the Internet.
7www.busybox.net. BusyBox is a UNIX command-line tool suite.
8https://wiki.qemu.org/Contribute/SubmitAPatch, last access 11 December 2017
9https://siemens.github.io/codeface/
10https://github.com/, a project management platform basing on version control with Git
11http://gmane.org/, a mailing list archive
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Table 2.2: Overview on the number of co-edits and email-based ties in the three
subject projects, with start of the �rst and and end of the last three-month time
slice.
Case study Dev Files Co-edits Mails Start End

BusyBox 221 1 138 12 945 3 353 2003-01-14 2016-01-14

QEMU 951 2 378 258 327 39 608 2003-04-29 2016-04-29

OpenSSL 164 1 161 8 330 980 2003-01-14 2015-10-14

in the amen package (Ho� et al., 2015).

Like Kunegis et al. (2010) and Joblin et al. (2017), we use a discretized time window

approach, working on a stream of evolving developer networks derived from discrete

software changes and mailing list communication. There are two series of networks

for every case study, one for communication and one for collaboration. We use time

slices of three months, indicating in a binary decision whether there has been email

list communication or not between nodes i and j, and whether there was a collab-

oration between nodes i and j. The programmers (nodes) are related if they have

edited a �le together or responded to each other via email list. Figure 2.A.1 in the

Appendix provides a �rst impression on the ratio of committing and communication

within time slices of three months for the three case studies.

Within the empirical part of this article, we use only symmetric adjacency matrices

(that is, yij = yji and xij = xji). For symmetric Y and X, the model reduces to a

symmetric factorial structure UT
(i·)DV(j·) = UT

(i·)DU(j·) (that is, U = V and θij =

θji). This means that when relationships are modeled symmetrically (programmers

can only collaborate, there is no sender and receiver of help in programming or

messages), the factorial structure simpli�es. The simpli�cation is straightforward,

and for the sake of generality, as for future work, we want to consider asymmetric

relationships, we keep using the asymmetric notation. First of all, we replicate

the original algorithm proposed by Kunegis et al. (2010), which describes network

growth in terms of the rising intensity of present nodes. Their model performs well

in a setting where the intensity of network connections grows, and we would have

to sum up the edges over time to create �arti�cial growth�.
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2.4.2 Parameter Inference

Ho� (2009) used spectral decomposition to illustrate the intuition of the multi-

plicative factor structure in the model while conducting the actual factor inference

with an iterative Monte Carlo Markov Chain (MCMC) algorithm. There are two

central reasons why Bayesian speci�cation is better suited to our research context

than spectral decomposition. First, there is no closed-form solution for the unbi-

ased simultaneous estimation of a factor structure and the other parameters (like

slope parameters for observed covariates) requiring an iterative algorithm for esti-

mation (Bai, 2009), especially in the case when yijt is binary, and a generalized linear

model is required. Second, spectral decompositions provide only point estimates,

not providing any insights into the uncertainty structure of slope parameters and

latent factors. Using an iterative Bayesian approach to factor inference allows us to

make use of prior beliefs on parameter distributions, and to obtain estimators for

uncertainty and con�dence intervals.

Minhas et al. (2016a) provided a contextualization of package, model and method

among other models for social network analysis. For Bayesian inference, the number

of latent factors has to be �xed prior to the analysis, as the algorithms produce

di�erent estimates of U and V for di�erent numbers of latent patterns (which is not

the case for eigenvalue decomposition, where small eigenvalues can be sorted out

later without changing the larger values). We checked the decrease of the absolute

height of the eigenvalues, which usually resulted in four to �ve signi�cant dominant

latent components. The estimation of the unknown parameters Θ,β,U,V and D

bases on the speci�cation of an adequate prior. Posterior distributions are obtained

via Bayes rule,

P (Θt,β,U,Dt,V|Yt) ∝ P (Yt|Θt,β,U,Dt,V)× P (Θt,β,U,Dt,V). (2.22)

Like spectral decomposition, the MCMC algorithm produces orthonormal columns

in U and V, that is, we scale the factors to a length of 1 and Dt keeps its interpreta-

tion as weights of the dimension spanned by pairs of columns across U and V (Ho�,
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2009). An explicit treatment of Bayesian matrix factorization in a more general con-

text is provided in Salakhutdinov and Mnih (2008). The iterative estimation for the

given model starts with the speci�cation of starting values ψ0 = {Θt,β,U,Dt,V}.

Then, ψ is updated in several iterations to ψ1,ψ2 etc. via MCMC. Therefore, β

needs to be sampled from its conditional distribution P (β|Θt,U,Dt,V). Next,

the k-th factors uk,vk and their weights dk are resampled from the respective con-

ditional distribution (conditioning on everything but the k-th column or weight).

Finally, Θ∗t is resampled, by using a random draw from a normal distribution for

Et: Θ∗t = Xβ + UDtV
T + E∗t . Before starting a new iteration, θijt is replaced by

θ∗ijt, with probability

P (yijt|θ∗ijt)
P (yijt|θijt)

∧ 1, (2.23)

where ∧ denotes the upper ceiling of the probability value, that is, the probabil-

ity cannot exceed 1 (100%). The generated samples of ψi converge with iterations

to the posterior distribution for the observed information. Ho� (2009) provide an

algorithmic representation of this procedure with some further methodological ex-

planations. Bayesian inference bears the advantage that the posterior mean of the

procedure is an average of all the parameters that are compatible with the observed

data (Salakhutdinov and Mnih, 2008), thereby producing more general factor solu-

tions than a spectral decomposition.

2.4.3 Cross Validation

A core challenge to our model setup is the fact that both matrix kernels and the

original methodology used in Kunegis et al. (2010) base on growing networks for

measuring predictive performance. Their implementation relies on a setting where

networks are bound to grow in intensity, and edges �stay� once they have appeared.

As the drop-out of programmers is a central element of stability in our networks,

we do not wish to model data in this way. To be able to validate the correctness

of our reproduction of the algorithm suggested by Kunegis et al. (2010), we split

up our setting, and apply every prediction algorithm to the cumulated matrices as
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well as to the original time slices. We will denote by yijt the ties in the original

adjacency matrices, and by y′ijt the ties in the cumulated settings (that is, y′ijT = 1

if any yijt = 1, t = 1, . . . , T ). Accordingly, θijt is the log odds of yijt = 1, and θ′ijt is

the log odds of y′ijt = 1.

The baseline benchmark for predictive performance will be a naïve forecast. That

is, we let the spectral growth model compete against a simple algorithm that simply

predicts the same contacts that were there in the last period to also happen in the

forecasting period. Table 2.A.1 provides an overview of all the models that will be

estimated for validation of our research questions.

Ŷt+1,naive = Yt (2.24)

Ŷ′t+1,naive = Y′t (2.25)

We denote the two algorithms naive.sim and naive.cum and compute them both

for the communication and collaboration networks. Should this setting turn out to

be a good predictor, then the information from t − 1 is worthless, and there is no

change in the latent patterns that is helpful for prediction. The hybrid model takes

changes from t− 1 to t into consideration. The growth of latent dimensions in that

time is taken into account. The naïve model, however, only uses information from

time t.

Our dataset is highly sparse and unbalanced, that is, there are many more ties �ab-

sent� than �present�. Therefore, we use a measure of predictive accuracy that takes

this fact into account. The Receiver Operating Characteristic (ROC) curve visually

balances speci�city (penalizes false predicted positives) and sensitivity (penalizes

�missed� positives, that is, false negatives) of a prediction algorithm. An adequate

single number summary of the shape of the ROC is the Area Under Curve (AUC),

which can only take values between zero and one (Zhu, 2004). The AUC depends

on both the True Positive Rate (TPR) and the False Positive Rate (FPR), basing

on the predicted θ̂ij,t+1. Many real-world network datasets are highly sparse, a fact

that �has motivated the use of area under the ROC curve (AUC) as the de facto
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performance measure for link prediction tasks� (Menon and Elkan, 2011, p.438),

even though the AUC has also been criticized for ignoring the predicted probability

values and the goodness-of-�t of the model (e.g., Lobo et al., 2008).

2.5 Results

Next, we will discuss the results of the algorithms proposed by Kunegis et al. (2010),

to then present the results of our adaptations (that is, the adapted algorithm on

time-window based networks with a Bayesian parameter inference). The evaluation

of RQ1 toRQ4 with regard to predictive performance is summarized in table 2.A.2.

Replication of the Original Algorithm: The algorithm suggested by Kunegis

et al. (2010) uses a spectral decomposition for factor inference. The original algo-

rithm does not di�erentiate between the factorial structure, individual e�ects, and

explicit in�uences and covariates. It moreover cannot deal with the drop-out of

developers. Figure 2.2 shows the predicted behavior of the algorithm, similar to the

results found by Kunegis et al. (2010): the weights of the single patterns/dimensions

grow at individual speed, partially overtaking one another in importance over time.

The black lines represent the d̃t1, . . . , d̃t5, that is, the weights of the �ve most im-

portant latent dimensions at time t. Complementing �gure 2.2, �gures 2.A.5 and

2.A.4 show both settings mail and cochange for QEMU and BusyBox, respectively.

The di�erent shades of red in the second plot represent the order of the equivalent

dk,T . That is, the lines' colors encode the eigenvalue of the initial decomposition of

YT . The height of the red lines represents the cosine similarity of the eigenvectors.

Especially the sudden surge in similarity at time t = 16 makes sense because, at the

same time, the latent factors change in the order of importance (�rst panel of �gure

2.2). The similarity of the eigenvector converges to one 1, which is a by-product of

the computational method. As ever more edges are added to the network, and the

importance of the single dimensions (represented in black) grows over time, overtak-

ing one another occasionally. Figures 2.3 and 2.4 show the AUC performance of all

models that were used to predict the cumulated mail networks. The plots show that

the performance of the spectral growth model algorithm, as proposed by Kunegis
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Figure 2.2: Growth of weights of the latent dimensions as resulting from spectral
decomposition of cumulated matrices (panel 1), and cosine similarity of the �rst �ve
dominant eigenvectors (panel 2) over time, for case study OpenSSL and the mail

network.

et al. (2010) is pretty consistent across projects, and shows important di�erences

across the mail and cochange networks. There is no signi�cant improvement to

the naïve forecast in the cochange networks, but important performance gains in

the mail networks. The naïve prediction does not account for any form of growth.

As the naïve model performs just as well as the model accounting for growth, the

conclusion from our results is that there is no spectral growth (at least none that can

be assessed via the growth of latent factors) in the cochange network. Additionally,

the AUC is very close to 1, that is, the predictions from the naïve approach are quite

hard to beat. In mail networks, there is growth that the latent factors account for.

Figures 2.3 and 2.4 show that there are noteworthy trends in the growth of spectral

structures in the mail network: The spectral growth model consistently outperforms

the naïve model (the model that does not imply growth). For the collaboration-based

network, the network shows a generally high level of predictability. The sudden drops

in predictive performance in the middle of the project for the spectral decomposition-

based approach suggest that the spectral prediction approach is less stable than the
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Figure 2.3: Predictive performance for analysis of cumulated mail networks, for the
prediction of the cumulated adjacency matrices with information from the time t
and t− 1. Panel 1 refers to BusyBox, panel 2 to QEMU and panel 3 to OpenSSL.
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Figure 2.4: Predictive performance for analysis of cumulated cochange networks,
for the prediction of the cumulated adjacency matrices with information from the
time t and t−1. Panel 1 refers to BusyBox, panel 2 to QEMU and panel 3 to OpenSSL.
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naïve approach. Table 2.A.2 summarizes the performance of the single approaches,

indicating that with very high levels of AUC (0.9838 and 0.9765), both approaches

describe the cochange network well (the naive approach outperforms the spectral

approach and shows less variance, however). The mail network is badly described

by the naive approach - with an AUC of 0.6040 for case study BusyBox) and a good

AUC (0.9697 for case study BusyBox) for the spectral approach.

The Replication establishes a baseline for comparison, via application of the orig-

inal method proposed by Kunegis et al. (2010). The setting where developers are

not allowed to drop out from the project is highly predictable, and pro�ts from the

spectral growth assumption in that the performance of the prediction algorithm is

much higher than the prediction performance of a naïve approach, which assumes

Yt+1 = Yt.

RQ1 - Presence of stable spectral structures Our �rst research question

seeks to assess the importance of organizational structure in open-source developer

networks. The higher the importance, the more engaging dyadic dependency struc-

tures via interactive latent factors should help predict the future state of a network

in t+ 1.

The three plots in �gure 2.7 illustrate the predictive performance of the single mod-

els for predicting the non-cumulated adjacency matrices of the email networks. In

the non-cumulated setting, the factorial models consistently outperform the naïve

approach. The setting Kunegis.MCMC.mail represents the model suggested by

Kunegis et al. (2010), enhanced by a Bayesian estimation strategy and additive

e�ects ai and aj. Interestingly, the AUC measurements show that model also shows

that using an MCMC-based inference with row e�ects and column e�ects does not

help predict the models: The light blue dotted line performs worse than the spectral

decomposition, which includes only the interactive factor structure, and no addi-

tional row e�ects. For the cochange, that is, the collaboration networks, the naïve

method outperforms the model with row e�ects in some cases. However, the naïve

method also shows the highest volatility. These results are con�rmed in table 2.A.2.

83



10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
re

d.
 P

er
fo

rm
an

ce
 p

er
 m

et
ho

d 
(A

U
C

) 
bu

sy
bo

x

naive.sim.mail
Kunegis.MCMC.mail
MCMC.roweff.mail
MCMC.coll
MCMC.coll.known

10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
re

d.
 P

er
fo

rm
an

ce
 p

er
 m

et
ho

d 
(A

U
C

) 
qe

m
u

naive.sim.mail
Kunegis.MCMC.mail
MCMC.roweff.mail
MCMC.coll
MCMC.coll.known

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
re

d.
 P

er
fo

rm
an

ce
 p

er
 m

et
ho

d 
(A

U
C

) 
op

en
ss

l

naive.sim.mail
Kunegis.MCMC.mail
MCMC.roweff.mail
MCMC.coll
MCMC.coll.known

Figure 2.5: Predictive performance for analysis of uncumulated mail networks, for
the prediction of the uncumulated adjacency matrices with information from the
time t and t−1. Panel 1 refers to BusyBox, panel 2 to QEMU and panel 3 to OpenSSL.
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Figure 2.6: Predictive performance for analysis of uncumulated cochange networks,
for the prediction of the uncumulated adjacency matrices with information from the
time t and t−1. Panel 1 refers to BusyBox, panel 2 to QEMU and panel 3 to OpenSSL.

85



The naïve approach has an AUC of between 0.8763 and 0.9001 for the collaboration

network, and 0.6336 to 0.7319 for the email network. Both for email and collabo-

ration networks, the AUC values for the model involving interactive latent factor

structures are consistently higher than the AUC values for the alternative methods.

Our results concerning RQ1 suggest that interactive factorial structures, which rep-

resent the organizational structure, play an important role in link prediction. Their

role is stronger for email than for collaboration networks. As the factorial approach

is supposed to outperform the naïve approach only when there are dynamics in the

growth of latent dimensions, our results suggest that the temporal dynamics from

t− 1 to t are more indicative about the network in t+ 1 in communication than in

collaboration.

RQ2 � Growing stability over time or with growing scope With RQ2, we

seek to �gure out whether organizational structures in OSS projects become more

stable � either over time or with the growing scope of a project. The answer is

contained in a combination of �gures 2.5, 2.6, �gure 2.A.1 and table 2.A.2. The

performance does not change signi�cantly over time for case studies BusyBox and

OpenSSL. For QEMU, there is a signi�cant improvement in predictability over time,

both for the naïve and for the alternative approaches. Figure 2.A.1 shows that for

the periods where performance increases, the number of edges is also a lot higher.

For higher number of edges, the factorial structures are more reliable to infer. It is

therefore probably not the time, but the scope, that improves predictability.

There is growing predictability. However, this is likely to be related to the growing

scope of the projects rather than to time itself. While only more case studies can help

to di�erentiate both answers, we conclude concerning RQ2 that spectral stability

increases with time or with a growing number of developers.

To answer RQ3, that is, whether the stability of patterns di�ers between collabo-

ration and communication, we check the cosine similarity of the dominant patterns.

We cannot merely rely on predictive performance, as the predictability of both
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Figure 2.7: Comparison of cosine similarity of �ve core patterns, cochange (�rst
panel) network versus mail network (second panel), for OpenSSL.

networks can be di�erent. Moreover, the number of developers involved in both

networks can in�uence the results. We consider the cosine similarity of the �ve

most central patterns identi�ed via the model with constant UDVT according to

equation (2.21), as represented in table 2.1.

If organizational structures were more stable in collaboration than in communica-

tion, then cosine similarity of factorial structures should be stronger in collaboration

networks than in communication networks. Figure 2.7 shows a comparison of cosine

similarity of the �rst �ve dominant patterns in the cochange networks (upper panel)

and mail networks (lower panel) for case study OpenSSL. The same graphs for case

studies QEMU and BusyBox can be found in �gure 2.A.2 and �gure 2.A.3, respectively.

There are no signi�cant di�erences in the stability of the core patterns between mail

and cochange. There is one dominant pattern that is approximately stable from t−1

to t. As most of the variation in the adjacency is usually caused by the di�erent out-

and in-degrees, this result can be taken as a sign that the dynamics that showed to

be bene�cial for predictions because they re�ect dynamics in the activity levels of

the developers. It is interesting to see that the extrapolation of the growth of the
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latent factors is helpful for prediction, but at the same time that the only stable

dimension is the �rst one, which represents to a large extent the activity degree

of the developers (which is usually the primary source of variance in a network).

There is no di�erence in performance between the settings where the row e�ects

are accounted for separately from the interactive factor structure, as can be seen in

table 2.A.2.

Both the email and the collaboration networks show only one largely stable latent

dimension. There are no signi�cant di�erences in stability between the stability of

communication and collaboration networks. The answer to RQ3 is, therefore: No,

there are no signi�cant di�erences in stability between the two contexts.

RQ4 - Structures that go beyond ad hoc collaboration Finally, we want

to verify whether there are social bonds in communication networks that go beyond

ad hoc programming behavior (RQ4). For this purpose, we use a proxy for a part

of the unobserved latent factor structure, which represents the ad hoc technical

needs that drive communication. By accounting for this predictor, we eliminate

the shared factor structure from the communication network: We do not assume

that one is causal for the other. As table 2.A.2 and �gure 2.5 show, knowing about

the collaborative activities has little value for link prediction in the communication-

based mail network. The AUC is augmented by as little as approximately 0.01

when the information is added to the model. More interestingly, it does not make a

di�erence whether we use the information on collaboration in t (setting MCMC.coll)

or in t+1 (setting MCMC.coll.known). Collaborative activity does not seem to have

anything to do with who writes emails to whom, at least not when aggregated on a

three-month window basis.
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Adopting collaboration as an additional predictor for communication does not in-

crease predictive performance, not even when we assume that collaboration in t+1 is

known. The inclusion of contemporaneous information on communication does not

improve the predictions of collaboration events. The answer to RQ4 is negative; we

do not �nd evidence for long-term stable social bonds in communication behavior

that goes beyond collaboration.

2.6 Discussion and Outlook

To investigate the stability of the organizational structure of communication and

collaboration networks in open-source software development, we have combined the

static AME model (Ho�, 2009), and the dynamic spectral growth model (Kunegis

et al., 2010). While the �rst provides maximum �exibility in estimation due to

the Bayesian factorization, the second allows tracking the stability of the latent

factorial structure. Static latent factor approaches like the one suggested by Ho�

(2009) �automatically� model dependencies in networks. Often used as a black-box

algorithm, their focus is on the optimization of structural, not dynamic, predic-

tion. Kunegis et al. (2010) suggested combining a static matrix factorization with

a �exible temporal extrapolation. This �exible growth of single �dimensions� of a

network provides a new perspective on the possibility that the spectral description

of network topology o�ers for the assessment of the dynamics of a network. How-

ever, the approach su�ers from the impossibility of including other predictors in

the decomposition: There is also a lack of �real-world� meaning of the latent di-

mensions. These drawbacks were partially compensated by our combination of the

approach with a Bayesian estimation strategy and the inclusion of row e�ects and

exogenous predictors. The next step to extend the model dynamically would be

to determine the optimum time horizon over which stable structures are useful in

predicting collaboration or communication behavior.

The fact that the spectral approaches outperform the naïve approach only in the

mail networks and not in cochange networks, raises questions concerning the dif-
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ference of the stability in both settings. The growth or shrinkage of particular

dimensions is more indicative in mail settings, suggesting that the stability of la-

tent patterns and their growth is more pronounced in this setting. While the naïve

approach can take account of constant patterns, the spectral approach can mine the

growth or shrinkage of latent patterns.

Our empirical results have shown that the added value for the prediction of new

links in collaboration that can be gained from communication data is limited �

suggesting that the purposes of email list communication are not directly linked

to collaboration and programming tasks. To verify the general validity of these

results, more case studies have to be considered, and other forms of communication,

like communication via chat or GitHub issues, have to be analyzed as well. The

primary goal of this research consisted in the modeling of stability of social ties

in collaboration networks. Concerning the empirical case studies, a glaring �aw

in our setting is the weak email activity in the �rst few years. We primarily use

implementation-centered email lists, and most projects have several email lists for

discussion of di�erent topics. An extension of the data basis to other mailing lists

would be reasonable for the discussion of social e�ects and reciprocity. The external

validity of our �ndings can only be improved with more case studies and extension

of the email list activity to �elds where a social exchange is more likely. Most

surprisingly, the results are remarkably consistent across case studies, indicating very

similar levels of performance and variance in performance for all chosen approaches

across case studies. The number of case studies should be extended to include some

with fundamentally di�erent behavior, to check the reaction of the method.

From a methodological perspective, there are three main potential �elds of exten-

sion to our analyses. First, we can use directed networks for email communication.

Second, an obvious choice for a model extension would be to include the lagged

adjacency matrix (that is, Yt−1) as a predictor for contemporary communication,

and to factorize the matrices under simultaneous consideration of both communi-

cation and collaboration, as suggested in Minhas et al. (2016b). Third, recently

developed tensor-based methods have become feasible for ever-larger data settings.

Communication and collaboration can,in such a context, be analyzed without as-

90



suming that one is the determinant of the other. This way, it is possible to assess

how similar social structures are in both contexts (e.g., Anandkumar et al., 2014;

Gauvin et al., 2014; Yuan et al., 2014; Ho�, 2015; Minhas et al., 2016b). The tensor-

based perspective allows us to discard the one-directional in�uence of collaboration

on communication and allows us to use information from several contexts (like col-

laboration and communication) simultaneously for parameter inference. Behavior in

multiple domains can now be integrated (e.g., Fu et al., 2009; Boccaletti et al., 2014;

Battiston et al., 2016). It seems, for example, promising to di�erentiate email lists

regarding content and organize data as tensors. Such an approach would use a ten-

sor decomposition for sparse data to distinguish several contexts of communication

and analyze patterns for di�erences.

On a more abstract level, the analysis of collaboration and communication can be

embedded in a more normative view on what structure should look like to achieve

speci�c goals and to determine success factors for achieving such structures. The

detection of structure bene�ts from the recent progress that allows analyzing several

endogenous contexts of collaboration or communication at a time. Re�ning the

temporal horizon of insight is then very important to di�erentiate di�erent phases

in projects, such as sprints and releases, and optimizing the phases in a project

when high activity levels threaten code quality and coordination. To achieve this,

approaches that do less rely on �black box� factorial inference are necessary, and

that allow more normative, comparative perspectives on network structure.

2.7 Conclusions

The combination of a detailed static setting and a dynamic perspective on collab-

oration and communication networks allowed us to gain detailed insights into the

stability of organizational structures of virtual OSS development working environ-

ments. Basing on the idea that stable structures manifest in constant latent factor

structures, we combined the AME model suggested by Ho� (2009) with the spectral

growth model proposed by Kunegis et al. (2010). We have validated the perfor-

mance of prediction strategies that bene�t from stable structures, as well as the
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cosine similarity of underlying patterns over the single time slices. We validated

our approach also by comparing it to the original algorithm for tracking spectral

stability suggested by Kunegis et al. (2010).

Our results suggest that there are important dyadic structures in OSS project or-

ganization. The fact that algorithms that use information on current dynamics in

latent dependency structures consistently outperform naïve approaches, which as-

sume no growth in latent structures, shows that there is potential for knowing about

group dynamics in programmer behavior. Moreover, row and column e�ects do not

help predict collaboration and communication, meaning that it is not the current

activity level of a programmer that determines his/her role in the network, but that

it is the direct interplay of latent developer characteristics. Knowing about collab-

oration does not improve forecasts on communication, even when we assume that

collaboration within the same time window is known � which might mean that there

is more to communication than immediate coordination needs.

There is much need and potential for further investigation of the social and technical

structures in OSS projects. Virtual communication and new forms of collaboration

become ever more critical for contemporaneous work conditions. The exemplary

character of OSS working conditions for other industries allows us to predict the

probable development of the stability of social ties in similar organizational contexts.

With many decades of data that OSS projects o�er, and the public information pol-

icy, version control data hide actionable conclusions for the future development of

our work structures. Who collaborated with whom, and to what extent collaboration

is accompanied by stable communication patterns, helps in enhancing productivity

and the mental sanity of digital workers. Research in this direction will help to

improve communication and collaboration tools, providing, for example, good pre-

dictions on possible synergies via collaboration or recognizing stable relationships

and knowledge synergies.
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Figure 2.A.1: Comparison of email and source code editing activity, counted as
total edges per time slice. Panel 1 refers to OpenSSL, panel 2 to QEMU and panel 3
to BusyBox.
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Figure 2.A.2: Comparison of cosine similarity of �ve core patterns, cochange net-
work (�rst panel) versus mail network (second panel), for case study QEMU.
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Figure 2.A.3: Comparison of cosine similarity of �ve core patterns, cochange net-
work (�rst panel) versus mail network (second panel), for case study BusyBox.
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Figure 2.A.4: Growth of latent dimensions as resulting from spectral decomposition
of cumulated matrices (panel 1 and 3), and cosine similarity of the �rst �ve dominant
eigenvectors (panel 2 and 4) over time, for case study QEMU. The upper two panels
represent the mail network, the lower two panels represent the cochange network.
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Figure 2.A.5: Growth of latent dimensions as resulting from spectral decomposition
of cumulated matrices (panel 1 and 3), and cosine similarity of the �rst �ve dominant
eigenvectors (panel 2 and 4) over time, for case study BusyBox. The upper two panels
represent the mail network, the lower two panels represent the cochange network.
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Table 2.A.1: List of the settings used for hypothesis validation. MCMC refers to a
Monte Carlo Markov Chain based Bayesian implementation, Xt+1 is an exogenous
binary matrix referring to the collaboration matrix.

Setting name Independent
variable

Description/Estimation

naive.cum Y′t and X′t Benchmark for prediction of cumulated ma-
trices. Extensions .mail and .cochange in-
dicate context.

Kunegis.spec Y′t and X′t Prediction with the original method pro-
posed by Kunegis et al. (2010), based on
spectral decomposition. Extensions .mail

and .cochange indicate context

naive.sim Yt and Xt Benchmark for prediction of simple matri-
ces. Extensions .mail and .cochange indi-
cate context.

Kunegis.MCMC Yt and Xt Parameter inference basing on eq. (2.21)
without row e�ects, no exogenous predic-
tors, based on MCMC. Extensions .mail

and .cochange indicate context

MCMC.roweff Yt and Xt Parameter inference basing on eq. (2.21)
with row e�ects, no exogenous predictors,
based on MCMC. Extensions .mail and
.cochange indicate context

MCMC.coll Yt Parameter inference basing on eq. (2.21)
with row e�ects, Xt as predictor, based on
MCMC.

MCMC.coll.known Yt Parameter inference basing on eq. (2.21)
with row e�ects, Xt as predictor, assuming
Xt+1 to be known, based on MCMC.
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Table 2.A.2: Results of a Cross-Validation on three month time windows of prediction of developer communication by case study,
performance is indicated by mean and variance of Area Under Curve (AUC)

Mean
AUC
busybox

Var. AUC
busybox

Mean
AUC
qemu

Var. AUC
qemu

Mean
AUC
openssl

Var. AUC
openssl

naive.cum.cochange 0.9838 0.0006 0.9553 0.0028 0.9736 0.0006

Kunegis.spec.cochange 0.9765 0.0004 0.9238 0.0132 0.9550 0.0117

naive.cum.mail 0.6040 0.0045 0.6300 0.0027 0.5886 0.0023

Kunegis.spec.mail 0.9697 0.0005 0.9523 0.0008 0.9535 0.0013

naive.sim.cochange 0.8991 0.0048 0.8763 0.0046 0.8881 0.0062

Kunegis.MCMC.cochange 0.9562 0.0004 0.9576 0.0004 0.9519 0.0010

MCMC.roweff.cochange 0.8782 0.0086 0.9221 0.0013 0.9023 0.0024

naive.sim.mail 0.7319 0.0044 0.7270 0.0015 0.6336 0.0040

Kunegis.MCMC.mail 0.9017 0.0049 0.9085 0.0030 0.8523 0.0154

MCMC.roweff.mail 0.8481 0.0072 0.8868 0.0017 0.7168 0.0153

MCMC.coll 0.8581 0.0048 0.8993 0.0007 0.7910 0.0165

MCMC.coll.known 0.8584 0.0048 0.8992 0.0007 0.7909 0.0165
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Figure 2.A.6: Predictive performance for analysis of uncumulated cochange net-
works, for the prediction of the uncumulated adjacency matrices with information
from the time t and t − 1. Panel 1 refers to BusyBox, panel 2 to QEMU and panel 3
to OpenSSL.
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Figure 2.A.7: Predictive performance for analysis of cumulated cochange networks,
for the prediction of the uncumulated adjacency matrices with information from the
time t and t−1. Panel 1 refers to BusyBox, panel 2 to QEMU and panel 3 to OpenSSL.
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Chapter 3

Spatial Detrending revisited: Modelling Local

Trend Patterns in NO2-Concentration in Belgium

and Germany

In coauthorship with Prof. Dr. Harry Haupt and Svenia Behm, Faculty of Business

Administration and Economics, Chair of Statistics, University of Passau

Chapter Abstract

Short-term predictions of air pollution require spatial modelling of trends, hetero-

geneities, and dependencies. Two-step methods allow real-time computations by

separating spatial detrending and spatial extrapolation into two steps. Existing

methods discuss trend models for speci�c environments and require speci�cation

search. Given more complex environments, speci�cation search gets complicated by

potential nonlinearities and heterogeneities. This research embeds a nonparametric

trend modelling approach in real-time two-step methods. Form and complexity of

trends are allowed to vary across heterogeneous environments. The proposed method

avoids ad hoc speci�cations and potential generated predictor problems in previous

contributions. Examining Belgian and German air quality and land use data, local

trend patterns are investigated in a data driven way and are compared to results

computed with existing methods and variations thereof. An important aspect of our

empirical illustration is the heterogeneity and superior performance of local trend

patterns for both research regions. The �ndings suggest that a nonparametric spatial

trend modelling approach is a valuable tool for real-time predictions of pollution

variables: it avoids speci�cation search, provides useful exploratory insights and

reduces computational costs.
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3.1 Introduction

Industrial parks, roads and other sources of fossil fuel combustion processes are

responsible for a large share of nitrogen oxides and particulate matters that pollute

the air and create severe health risks (Wolf et al., 2017). Information on the location

of pollution sources can enhance the identi�cation of local pollution hotspots and

trend patterns, even at points where no direct observations are available. Detailed

spatial pollution maps have a considerable impact on health policy. An example is

the German legislation on banning pollution-intensive cars from cities and its major

impact on air pollution (Fensterer et al., 2014).

A well-established source of information for air quality assessment are land use

classes. Land use data such as the CORINE land cover inventory encode the usage

of a particular territory in land use classes (e.g., Feranec et al., 2016). Frequently,

these classes are combined with complementary information on tra�c density, de-

mography, topography, and other geographic variables (e.g., Gilliland et al., 2005;

Hooyberghs et al., 2006; Sahsuvaroglu et al., 2006; Janssen et al., 2008; Wang et al.,

2013; Hennig et al., 2016). A key advantage of land use data is that information

on single land use classes can be scaled down when granular data are available,

for example on individual exposure to air pollution within a single urban residence

(Hennig et al., 2016).

The crucial role of land use information in regression-based models has lead to the

notion Land Use Regression (LUR). The di�erence between using land use indica-

tors in regression and LUR is that the latter usually relies on the assumption of

independence and stationarity of the regression errors (e.g., Gilliland et al., 2005;

Ryan and LeMasters, 2007; Hoek et al., 2008). Neglecting such assumptions car-

ries severe potential for ignoring bias and ine�ciencies (Montero et al., 2015). Air

pollution data are likely to exhibit spatial dependence, because the closer two mon-

itoring sites are located, the more likely they share a common source of pollution or

dominant wind direction. There are two main alternatives to combining a regression

framework with the modelling of spatial dependencies among individual sites.

(a) In two-step or residual kriging methods, a �rst spatial detrending step allows
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to �lter nonstationarities driven by phenomena such as titration (e.g., Hooyberghs

et al., 2006). This is followed by a second (ordinary) kriging step to include the de-

pendence structure in the spatial prediction. Hooyberghs et al. (2006) and Janssen

et al. (2008) suggest to use historical data to produce real-time spatial predictions

within a two-step residual interpolation optimised (RIO) modelling framework. To

account for nonstationarities in O3-concentration across Belgium, Hooyberghs et al.

(2006) compute a local spatial trend based on historical measurements using popu-

lation density as auxiliary data. Janssen et al. (2008) use CORINE land use data

instead of population density data in the detrending step and analyse the three

pollutants NO2, O3, and PM10. The RIO residual kriging procedure has two advan-

tages: First, trend and semivariogram estimation can be done in two separated steps.

Second, as long as the crucial assumption of stable spatial trend and semivariogram

over time holds, it allows real-time predictions at basically zero computational cost.

(b) Alternatively, universal kriging is a one-step method, where the spatial depen-

dence structure and the impacts of the predictors are estimated simultaneously.

However, the di�erence between two-step methods and universal kriging is not al-

ways clear-cut (e.g., Mercer et al., 2011), and the latter can also be applied to �ltered

data. As Montero et al. (2015) point out, splitting up detrending and kriging in two

steps is a recommended alternative to avoid ambiguities in universal kriging with

regard to the interplay of trend speci�cation and semivariogram estimation. While

a correct trend speci�cation is important in both methods to ful�ll the requirements

for kriging, it remains unclear how to specify the relationship between predictors

and pollution with regard to optimising predictive performance.

Two-step methods provide a simple and useful tool for real-time predictions. Their

key assumption seems to hold, as average pollution levels are quite stable over time

and independent of short term in�uences, for example over di�erent seasons (e.g.,

Sahsuvaroglu et al., 2006), or over the span of several years (e.g., Wang et al.,

2013). Our work aims at providing further insights into two-step methods such as

the RIO residual kriging method, and generalises the method of Janssen et al. (2008)

theoretically and empirically. The quality of the trend �lter in the �rst step is crucial

for any inferences drawn from the second step. Hence we suggest nonparametric
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generalisations to adapt the trend modelling step to general environments, exhibiting

di�erent degrees of complexity and heterogeneity in spatial patterns. In particular

we suggest to simplify the inclusion of land use classes in the trend estimation step.

In Janssen et al. (2008), every monitoring site is assigned a pollutant-speci�c land

use indicator that describes average pollution based on the relative share of every

land use class within the sites' vicinity. This indicator summarises the interplay

of constant local characteristics contained in the predictors and is interpreted as

a proxy for the long-term total pollution load a single location has to carry. The

authors assume that mean and standard deviation of the pollutant can be described

by polynomials in the indicator. They do not consider additional predictors con-

trolling for further sources of heterogeneity in spatial trend patterns. To avoid the

consequences of misspecifying the trends, we propose to use nonparametric trend

regressions. Nonparametrics allow for a data-driven exploration of trend patterns

while avoiding speci�cation search based on ad hoc polynomials (and interactions if

further predictors are used). We show that multivariate generalisations of the trend

functions can be easily accomplished by allowing for di�erent trends for background,

industrial and tra�c environments.

The simultaneous estimation of a trend function and a pollutant-speci�c land use

indicator (weighting single land use classes) in prediction employed by Janssen et al.

(2008) leads to a generated predictor problem. Hence we propose direct inclusion

of the information on land use classes as predictors in our trend function. We

thoroughly discuss estimation, prediction and comprehensive empirical evidence for

Belgian and German air quality and land use data. Our empirical analysis repro-

duces existing results of Janssen et al. (2008) for Belgium and provides evidence for

Belgium and Germany that the suggested modi�cations perform very well.

The remainder of this article is organised as follows: Section 2 discusses the database

used for our empirical investigation. Section 3 explains the statistical theory, in-

cluding an overview on Janssen et al. (2008) and indicator-based two-step spatial

prediction methods. Section 4 provides detailed insights into our results and section

5 concludes.

109



3.2 Data

In the application to German air pollution, we investigate daily maxima of the

recorded hourly NO2-concentration over the time period 1st Jan 2007 to 31st Dec

2012. The data have been obtained from the European Environment Agency (EEA),

who maintains AirBase, the European air quality database (EEA, European En-

vironment Agency, 2016). The database consists of monitoring data from �xed

monitoring sites, measured at regular intervals, as well as meta-information on the

monitoring sites involved. One meta-information is the sites' type that can ei-

ther be �Background�, �Industrial�, or �Tra�c�. For a complete description of the

meta-data on monitoring site characteristics, we refer to 3.A.2. Further, we use the

CORINE Land Cover 2006 (CLC2006) data layer in a 100 × 100 meter resolution

(EEA, European Environment Agency, 2010b). For detailed information on CLC

data including changes between the four di�erent data layers CLC1990, CLC2000,

CLC2006, CLC2012, see Feranec et al. (2016).

In order to make our empirical �ndings comparable to those of Janssen et al. (2008),

we also analyse Belgian hourly NO2-concentration from AirBase over the time period

1st Jan 2001 to 31st Dec 2006, and the CLC2000 layer, i.e. land use classi�cation

in the year 2000 version (EEA, European Environment Agency, 2010a). Table 3.1

shows that German data contain a considerably higher number of monitoring sites

and exhibit a quite di�erent distribution over measuring sites' types in comparison

to Belgium. While both countries have an equivalent share of background sites, the

relative shares of industrial and tra�c sites are inverted.

Table 3.1: Numbers of monitoring sites in Belgium (Germany) that were active
within the period 1st Jan 2001 to 31st Dec 2006 (1st Jan 2007 to 31st Dec 2012).

Background Industrial Tra�c Total

Belgium 37 (52.85%) 23 (32.86%) 10 (14.29%) 70

Germany 276 (51.49%) 38 (7.09%) 222 (41.42%) 536

In our analysis we omit daily maximum NO2 values above 500 µg/m3 as well as

negative values. Based on the remaining daily maximum values the mean and stan-

dard deviation of each monitoring site is calculated, separately for weekdays and
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weekends. For supplementary information about the data quality of the German

and Belgian air pollution data and the data preprocessing we refer to 3.A.2. Fig. 3.1

displays the respective boxplots for Belgium and Germany. While the four statistics
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Figure 3.1: Top: Boxplots of the mean and standard deviation over the daily max-
imum NO2 values of each Belgian monitoring site, separately for weekdays and
weekends. Bottom: Analogous boxplots for German data.

(mean weekday, mean weekend, st.dev. weekday, st.dev. weekend) for Belgium and

Germany di�er only slightly with respect to their medians, the interquartile ranges

and the ranges between the whiskers are remarkably higher for the German data

compared to Belgian data. For both research regions we observe di�erences between

the mean of daily maximum NO2 concentrations on weekdays and weekends. For

the standard deviation of daily maximum NO2 concentrations only a small di�er-

ence between weekdays and weekends occurs. In Figs. 3.A.1-3.A.3 we explore the

distribution of the means and standard deviations di�erentiating by the sites' type.

We �nd that observed di�erences between Belgium and German data can be traced

111



back to measurements at tra�c sites.

Considering the usage of the CLC data in air pollution studies, it is common practice

to reclassify the 44 land use classes in the CLC inventory (e.g. Beelen et al., 2009,

2013; Wolf et al., 2017). Following the suggestion of Janssen et al. (2008), we group

the 44 classes into eleven more general land use classes. The European Monitoring

and Evaluation Programme (EMEP) provides emission data concerning national

total, sector and gridded emissions for Europe (see EMEP and CEIP, 2014, for

detailed information). Those data are classi�ed with regard to their relationship to

air pollution, and the classi�cation results in so-called sectors, referred to as SNAP

(Selected Nomenclature for reporting of Air Pollutants). Table 3.2 summarises the

resulting classi�cations and descriptions.

Table 3.2: Relationship between grouped CLC classes and the equivalent groups in
the SNAP sector classi�cation (according to Janssen et al., 2008).
grouped class description CLC classes SNAP sectors

class 1 Continuous urban fabric 1 S2

class 2 Discontinuous urban fabric,
green and sport

2,10,11 S2

class 3 Industrial or commercial units 3 S3+S4

class 4 Road and rail networks and
associated land

4 S7

class 5 Port areas 5 S8

class 6 Airports 6 S8

class 7 Mine, dump and construction
sites

7-9 S1+S4+S5+S9

class 8 Arable land 12-14 S10

class 9 Agricultural areas 15-22 S10

class 10 Forest and semi natural areas 23-34 S11

class 11 Wetlands and water bodies 35-44 S11

The empirical analysis is conducted with the statistical software R (R Core Team,

2013) using the packages broom (Robinson, 2017), GISTools (Brunsdon and Chen,

2014), gstat (Pebesma, 2004; Gräler et al., 2016), np (Hay�eld and Racine, 2008),

optimx (Nash and Varadhan, 2011; Nash, 2014), raster (Hijmans, 2016), rgdal (Bivand

et al., 2017), spatstat (Baddeley et al., 2015), and timeDate (Rmetrics Core Team

et al., 2015).
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3.3 Statistical modelling

Assume air pollution at time t ∈ Dt to be a latent geostatistical random process

Yt(·) = {Yt(s) : s ∈ Ds ⊂ R2},

where Ds refers to the study area. Within the study region Ds de�ne the locations

s1, . . . , sn, n ∈ N. Let Zt(s), where

Zt(·) = {Z(s, t) : s ∈ Ds},

denote the data process at time t ∈ Dt. In our computations below let zi,t denote a

realisation of Zt(si) at location si at time t ∈ Dt. The vector zi = (zi,1, . . . , zi,T ), i ∈

1, . . . , N, de�nes the time series at monitoring site i, the vector zt = (z1,t, . . . , zn,t), t ∈

1, . . . , T , de�nes measurements for all cross-sectional units or monitoring sites recorded

at time t.

Following Cressie (1993) and Diggle and Ribeiro Jr (2007), the relationship between

the unobserved geostatistical process and the data process is given by

Zt(s) = Yt(s) + εt(s) (3.1)

with εt(s)
iid∼ N (0, σ2

ε ). If the unobserved geostatistical process Yt(·) at time t ∈ Dt

is assumed to be a stationary and isotropic Gaussian process, it holds ∀s, s′ ∈ Ds,

s 6= s′,

E[Yt(s)] = µ, (3.2a)

V ar[Yt(s)] = σ2, (3.2b)

C(h) = Cov[Yt(s), Yt(s
′)] = σ2ρ(h), (3.2c)

where the autocorrelation function ρ(h) = Corr[Yt(s), Yt(s
′)] depends on the dis-

tance h = ||s−s′||, E[·] denotes the expected value, V ar[·] the variance, and C(·) the

autocovariance function. Under the assumptions stated above, analogous station-

arity conditions hold for the data process Zt(·), and the ordinary kriging predictor
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Ŷt(s0) can be calculated for any s0 ∈ Ds, t ∈ Dt.

3.3.1 Spatial Trend Modelling: Parametric Polynomials

The RIO technique proposed by Hooyberghs et al. (2006) and Janssen et al. (2008)

starts with a detrending step in order to �lter the data process Zt(·) such that

stationarity conditions analogous to (3.2a)-(3.2c) hold. The grouped land use classes

(see Table 3.2) enter the equation for the pollutant speci�c β-index according to

β(s, r) = log

[
1 +

11∑
k=1

ak · shk(s, r)

]
, (3.3)

where shk(s, r) describes the share of the k-th class within a circular bu�er zone with

radius r around location s. For the sake of simplicity we omit r and s and write βi

for β(si, r), β for β(s, r) and shk for shk(s, r). The class weights ak, k = 1, . . . , 11,

de�ne the relative impact of the respective class on the concentration of the air

pollutant under investigation. Eq. (3.3) shows how the relative contribution of every

land use class is summed up to an overall indicator. This means that a certain share

of roads can be equivalent to a certain share of industrialised area, or a larger share

of residential area (as the latter are usually relatively small sources of air pollution).

Further details on the class weights are given in Table 3.A.1 in the Appendix.

Janssen et al. (2008) assume that spatial trends of mean and standard deviation are

functions of the pollutant speci�c β-index. For the sake of a more general exposi-

tion covering the extensions in Section 3.2, we consider trend functions including

potential further predictors X,

µ ≈ mµ(β,X), (3.4a)

σ ≈ mσ(β,X). (3.4b)

In their application to Belgian data, Janssen et al. (2008) assume that mean and

standard deviation in Eqs. (3.4a) and (3.4b) can be described by a second and �rst

order polynomial of β, respectively, and do not consider additional predictors X.

The functions mµ and mσ are estimated in regressions using estimates z̄ and s of µ
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and σ, respectively, based on the time series observed for each measuring site where

a distinction is made between weekdays and weekends. For the sake of simplicity

we omit further notation.

For both statistics, β is calculated via Eq. (3.3) and therefore depends on s and

a1, . . . , a11. Under assumption (3.4a) the coe�cients a1, . . . , a11 in Eq. (3.3) are

optimised through the following numerical optimisation procedure, after de�ning

suitable termination criteria

1. Specify a starting set a(1)1 , . . . , a
(1)
11 of a1, . . . , a11 (see Janssen et al., 2008).

2. Regress z̄i on mµ(β
(1)
i , Xi) where β(1) is computed using the set a(1)1 , . . . , a

(1)
11 ,

and obtain the predictor m̂µ
(1)(β

(1)
i , Xi).

3. Calculate the value of the RMSE =
√

1
n

∑n
i=1(m̂µ

(1)(β
(1)
i , Xi)− z̄i)2.

4. If none of the termination criteria is ful�lled, restart the procedure with a

di�erent set a(2)1 , . . . , a
(2)
11 , otherwise the optimal set is found.

Denoting the optimised class weights by ã1, . . . , ã11 and the corresponding β-index

by β̃1, . . . , β̃n, the trend functions for mean and standard deviation can be computed,

for every i, as µ̂i = m̂µ(β̃i, Xi) and σ̂i = m̂σ(β̃i, Xi), respectively.

According to Janssen et al. (2008), using the �tted values µ̂i and σ̂i, and given pre-

de�ned reference levels µref and σref , detrending of the measurement values zi,t can

be achieved according to

z∗i,t = zi,t + (µref − µ̂i), , (3.5a)

z∗∗i,t = (z∗i,t − z̄∗i )
σref

σ̂i
+ z̄∗i . (3.5b)

After �ltering the monitored data zi,t according to Eqs. (3.5a) and (3.5b), we obtain

the transformed data z∗∗i,t , which we interpret as realisations of Z∗∗t (si), the �ltered

data process at time t ∈ Dt. Hence, for each s ∈ Ds,

E[Z∗∗t (s)] = µ(s) + (µref − µ̂(s)) ≈ µref , (3.6)
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relying on assumption (3.4a) in the last transformation, and

V ar[Z∗∗t (s)] =
(
σref

)2
V ar

[
Z∗t (s)− Z̄∗(s)

σ̂(s)

]
≈
(
σref

)2
, (3.7)

since the middle term describes the standardisation of Z∗t (s). Eqs. (3.6) and (3.7)

show that the �ltered data process approximately satis�es the (weak) stationarity

properties (3.2a)-(3.2c) and can be used in the kriging procedure.

Based on all historical detrended measurements z∗∗i,t , the semivariogram required for

ordinary kriging is estimated. For any s0 ∈ Ds at time t ∈ Dt an interpolated value

Ŷ ∗∗t (s0) can be calculated and retrended with regard to the local mean and local

standard deviation of the originally monitored process. The retrending formulas can

be written as

Ŷ ∗t (s0) = (Ŷ ∗∗t (s0)− ¯̂
Y ∗∗(s0))

σ̂(s0)

σref
+

¯̂
Y ∗∗(s0), (3.8a)

Ŷt(s0) = Ŷ ∗t (s0)− (µref − µ̂(s0)). (3.8b)

The RIO technique rests on the crucial assumption that both spatial trends and

the semivariogram are stable over time, enabling real-time predictions at basically

zero computational cost. Real-time predictions are produced in the following way:

detrend a new set of observations (at monitoring sites) using the �tted trend func-

tions, interpolate the detrended values using the �tted semivariogram and retrend

the interpolated values using the �tted trend functions.

3.3.2 Spatial Trend Modelling: a General Nonparametric Approach

There are several options to include further predictors in Eqs. (3.4a) and (3.4b). In

general, the functions mµ and mσ can be approximated by higher-order parametric

expansions using polynomials of β interacting with (the levels of) X. Such a strat-

egy, however, requires assumptions on the degree of the approximation and a high

number of parameters. In order to avoid ad hoc assumptions, potential underspec-

i�cation, or potentially extensive speci�cation search, a straightforward alternative

is to estimate mµ and mσ using a nonparametric trend model. Such a model should
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deliver a more accurate representation of the trend patterns than a speci�cation

based on a parametric expansion if the latter is underspeci�ed and the data are suf-

�ciently informative for nonparametric regression (e.g., Haupt et al., 2010). More

important and evident from our empirical illustration, nonparametric methods pro-

vide explorative insights about the trend patterns driven by β and potential further

predictors such as the type of monitoring sites X.

Hence, as nonparametric methods can help to identify the best parametric approxi-

mation and to avoid problems of misspecifying the trend functions, we employ a local

linear kernel smoothing estimator of E(Z̄|β,X) = m(β,X) in the trend regression

model

Z̄ = m(β,X) + U with E(U |β,X) = 0, (3.9)

based on Eq. (3.4a). A generalised least squares estimator is denoted as m̂LL, where

(m̂LL, γ̂) minimises

n∑
i=1

[Z̄i −m− γ(βi − β)]2K(W,Wi,h),

where W = (β,X) denotes the vector of regressors, K = kβ · kX is a product

kernel, and h = (hβ, hX)′ is a vector of bandwidths which we estimate using least

squares cross validation (see Li and Racine, 2004). The use of mixed continuous (i.e.

pollutant speci�c β-index) and categorical (i.e. type of monitoring siteX) predictors

in nonparametric regressions has been discussed extensively in the various works of

Li and Racine (e.g., Li and Racine, 2007).

The β-index in Eq. (3.9) is unknown and has to be computed according to the

procedure described in section 3.1. Hence the estimated β-index β̃ is a generated

predictor. The potential consequences for estimation and inference in parametric

models have been discussed in an abundant literature following the seminal paper of

Pagan (1984). In a nonparametric context Sperlich (2009) and Mammen et al. (2012)

provide authoritative treatments (see Haupt et al., 2018, for a discussion in the mixed

predictor context). Depending on the problem at hand, researchers may prefer to

use an aggregated index, but should be aware that generated regressor problems may

invalidate the interpretation of the β-index. In the current context the problems can
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be avoided from the outset if the β-index is not considered. We propose to directly

include the information on land use classes and de�ne the categorical predictors

X1 = argmax
k∈{1,...,11}

shk, (3.10)

X2 = argmax
k∈{1,...,11}\X1

shk, (3.11)

determining which classes have the largest and second largest share (within the

circular bu�er zone around a certain location), respectively. Note that including

the third largest class has no remarkable e�ect. In our application for 534 of 536

German sites and for 69 of 70 Belgian sites, the sum of the shares of the �rst and

second largest class is larger than 50%. The continuous predictor

S = shX1 + shX2 . (3.12)

is de�ned as the sum of the shares of the �rst and second largest class. Then, instead

of the predictors used in Eq. (3.9), we consider the categorical predictors X1, X2,

and the sites' type, and the continuous predictor S.

3.4 Results

For the sake of exposition, we introduce the following abbreviations: �QL� (�LL�)

refers to a quadratic (linear) trend for the mean and a linear trend for the standard

deviation; �TypeQL� (�TypeLL�) allows local trend di�ering with respect to the type

of a monitoring site (�Background�, �Industrial�, or �Tra�c�); �NP� refers to the

nonparametric approach with β−index together with the sites' type; �NPnoBeta�

refers to the nonparamatric approach without β−index but with the predictors

de�ned in Eqs. (3.10)-(3.12) together with the sites' type.

The estimated QL trend functions for Belgian data are displayed in Fig. 3.2 and

replicate results of Janssen et al. (2008, right plot of Fig. 5 and middle plot of

Fig. 8), while Fig. 3.3 shows the corresponding QL estimates using German data.

A global second order polynomial �ts the Belgian data quite well, while we ob-
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serve considerably more heterogeneity in the German data. The curvature is less

pronounced in the plots of Fig. 3.3 and bear no visible di�erence to the LL trend

functions displayed for Germany in Fig. 3.A.8 in 3.A.1.

Comparing the trend functions for weekdays and weekends for Belgian as well as for

German data, we observe a shift along the y-axis (for both speci�cations LL and

QL). This is in accordance with the boxplots displayed in Fig. 3.1 and indicates

that, on average, the concentration level of NO2 drops from weekdays to weekends.
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Figure 3.2: Belgian data (β̃i, µ̂i) and (β̃i, σ̂i) scatterplots for weekdays and weekends
(top left to bottom right); β̃i and the �tted trend functions correspond to a quadratic
trend for the mean and a linear trend for the standard deviation (speci�cation QL).

The replication of the results of Janssen et al. (2008) in a narrow sense for Belgian

data and in a wider sense for German data suggests that the assumption of global

trend forms is too restrictive. Determining a global trend form requires an ad hoc

speci�cation of polynomial degree and speci�cation search. Previous contributions

such as Janssen et al. (2008) do not explicitly discuss this issue. The optimisation
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of the class weights ak a�ects the values of β̃, the position of the points along the

x-axis and thus the �tted trend function (e.g., compare the range of β̃ in Fig. 3.3

and Fig. 3.A.8). To avoid ad hoc speci�cation search and to widen the scope of

applicability to heterogeneous environments, we discuss a more general approach to

spatial trend �tting and illustrate it with German data. Note that further results

for Belgium, completing our empirical analysis, are provided in 3.A.1.
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Figure 3.3: German data (β̃i, µ̂i) and (β̃i, σ̂i) scatterplots for weekdays and weekends
(top left to bottom right); β̃i and the �tted trend functions correspond to a quadratic
trend for the mean and a linear trend for the standard deviation (speci�cation QL).

An encompassing approach to trend analysis is the nonparametric regression, follow-

ing the mixed kernel estimation approach for continuous and categorical predictors

of Li and Racine (2004, 2007), compare Eq. (3.9). Fig. 3.4 shows estimated NP

trend functions for German data based on local linear kernel regressions, where

bandwidths are estimated by least squares cross-validation using the default kernel

functions proposed by Hay�eld and Racine (2008). Trends are calculated by simul-
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taneously smoothing over β̃ and the three categories of the sites' type contained

in X. We observe substantial di�erences in local levels and slopes between tra�c
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Figure 3.4: German data (β̃i, µ̂i) and (β̃i, σ̂i) scatterplots for weekdays and week-
ends (top left to bottom right); β̃i and the �tted trend functions correspond to the
nonparametric approach (speci�cation NP).

sites and all other sites indicating that the NO2 concentration at tra�c sites is on

average larger than at background or industrial sites. Apart from minor boundary

e�ects visible in the plots for weekend data, the estimates suggest that a piece-

wise quadratic trend may be su�ciently �exible. The �nding of heterogeneity in

local trend patterns in Germany based on our visual analysis is con�rmed by the

quantitative results from the nonparametric approach including the sites' type. The

corresponding results on predictive performance are discussed in detail below.

Based on the exploratory insights obtained from the nonparametric regressions,

we add dummy variables and interactions as indicators for the monitoring sites'
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type to the speci�cation QL. The resulting TypeQL trend estimates are shown in

Fig. 3.5. Visual inspection of the results and comparison to Fig. 3.3 suggest that the
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Figure 3.5: German data (β̃i, µ̂i) and (β̃i, σ̂i) scatterplots for weekdays and weekends
(top left to bottom right); β̃i and the �tted trend functions correspond to a quadratic
trend for the mean and a linear trend for the standard deviation; both are allowed
to di�er with an indicator for the sites' type (speci�cation TypeQL).

speci�cation TypeQL allowing local quadratic trend patterns provides a superior �t

to the German data. Again, this �nding is supported by an analysis of predictive

performance. Equivalent plots for speci�cations LL and TypeLL for Germany are

provided in Figs. 3.A.8 and 3.A.9 in 3.A.1.

The trend functions corresponding to the speci�cations TypeQL and TypeLL reveal

substantial di�erences in local levels and slopes between tra�c sites and all other

sites in Germany. For Belgian data such clear di�erences cannot be observed (see

Figs. 3.A.6 and 3.A.7 in 3.A.1).
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For speci�cation NPnoBeta trends are calculated by simultaneously smoothing over

S and the categories X1, X2, and the sites' type. This speci�cation entails consid-

erably lower computational costs compared to those of NP, as the optimisation of

group weights is not required. For German (Belgian) data computation time equals

3.45 hours (7 minutes) to derive the trend functions using NP, compared to 16 sec-

onds (4.3 seconds) for NPnoBeta. For NPnoBeta it is not possible to display the

estimated trend functions in two-dimensional space, as they depend on one con-

tinuous and three unordered categorical predictor variables. In order to evaluate

the predictive performance of NPnoBeta compared to the approaches including the

β-index, we carry out a leave-one-out cross-validation (LOOCV). In each loop of

LOOCV one monitoring site is omitted and the entire RIO technique � consisting

of the four steps of optimising group weights, detrending, kriging and retrending

(as described in Section 3 above) � is applied to the remaining sites. For NPno-

Beta the optimisation of group weights is no longer necessary and therefore each

loop of LOOCV consists of the steps detrending, kriging and retrending. Table 3.3

summarises the results of LOOCV. As suggested by our visual inspection of the

nonparametric trend estimates, allowing the trend functions to di�er with the sites'

type enhances the predictive performance. Adding an indicator for the sites' type to

speci�cations QL (LL) leads to a performance gain of 13.7% (12.5%) with regard to

RMSE for Germany. For Belgium, it lowers the RMSE by 2.0% when the indicator

is added to LL, and increases the RMSE by 14.0% when the indicator is added to

QL. The latter deterioration of predictive performance in Belgium is due to a sin-

gle outlier produced in the optimisation process. Avoiding the generated predictor

problem by including the information on land use classes directly in NPnoBeta im-

proves (reduces) the predictive performance by 3.4% (1.6%) for German (Belgian)

data compared to NP. Table 3.A.2 in 3.A.1 provides further and more detailed re-

sults on our LOOCV analysis, revealing that the inclusion of the third largest LUC

class has no remarkable e�ect on the predictive performance with regard to RMSE.

Overall we observe that NPnoBeta has a superior (equal) LOOCV performance for

Germany (Belgium) while it does not require speci�cation search, avoids generated

predictor problems and causes almost zero computational costs.
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Table 3.3: Results of LOOCV for di�erent speci�cations and their predictive per-
formance.

RMSE QL LL TypeQL TypeLL NP NPnoBeta

Germany 20.84 20.82 17.99 18.21 19.07 18.43

Belgium 13.76 13.79 15.69 13.51 13.66 13.88

3.5 Discussion and Conclusions

Approaches for spatial interpolation of air pollutant data require assumptions on

stationarity or on trend patterns of the underlying geostatistical random processes.

Step-wise procedures based on �ltering known or estimated spatial trends bear the

advantage of real-time applicability due to their computational and interpretational

simplicity. The RIO framework of Hooyberghs et al. (2006) and Janssen et al.

(2008) enhances spatial interpolation and predictive performance by exploiting pol-

lution relevant information from local land use patterns. The general applicability

of the method hinges on assumptions about ad hoc global trend patterns de�ned

by land use related pollution indicators. Existing methods discuss trend models

for speci�c environments and require speci�cation search. In practice, however, re-

search environments of di�erent size and level of aggregation may exhibit complex

nonlinear local trend patterns, driven by spatial heterogeneities and dependencies.

Speci�cation search then becomes a troublesome endeavour.

Based on the spatial detrending employed by Janssen et al. (2008), we propose the

use of a simple �exible framework for data driven trend modelling and subsequent

�ltering of the data. A crucial assumption is the selection of further predictors

driving the spatial complexity of trend patterns. The various types of monitor-

ing sites are an obvious initial choice for such a predictor. This approach has the

advantage of preserving the intuition of larger values of the land use indicator β

representing higher local � that is type-speci�c � levels of pollution, while allowing

for type-speci�c trend levels and slopes.

We propose a nonparametric spatial trend modelling approach using all available

predictors. The approach is computationally feasible and does not require ad hoc

assumptions on the functional form. It can be used in an exploratory way to identify
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potential parametric approximations of trend generating mechanisms. In addition,

we propose to avoid potential generated predictor problems. This can be done

by directly including the information on land use classes, instead of computing

a pollution-speci�c indicator. The performance of the proposed method, existing

methods, and variants thereof can be studied by using leave-one-out cross-validation

analysis of the predictive performance.

We �nd that a simple generalisation of the existing methods by using multiple non-

parametric regression methods leads to considerable gains in predictive performance

while computational costs remain low. Furthermore, the proposed method bears

a large potential for exploratory analysis of trending mechanisms while avoiding

lengthy trend speci�cation search.

In an empirical study, we �rst successfully replicate existing results of Janssen et al.

(2008) for Belgium using similar but not the same data, and then apply the proposed

method to German data. We investigate the assumption of global trend patterns

and �nd strong (weak) evidence against such an assumption for German (Belgian)

data. The nonparametric approach can be used to identify local parametric ap-

proximations of trend patterns. The overall performance of the proposed method

suggests that the nonparametric method is a very good choice for research environ-

ments with considerably di�erent complexity. Obvious advantages are that it does

not require speci�cation search, avoids generated predictor problems and has almost

zero computational costs.

Potential extensions can be considered in several directions. First, it should be

kept in mind that the β-values change simultaneously with the functional form,

and hence a monotonicity restriction is necessary to preserve the intuition of β as

an index representing mean pollution. A non-monotonic functional form resulting

from polynomial or nonparametric trend �ts stresses plausibility of this theoretical

rationale. The question of imposing monotonicity constraints or not depends on the

problem at hand; i.e. whether predictive performance or interpretability is the main

objective. Second, statistical tools could be used to provide live monitoring of the

crucial assumption of stable trend functions for mean and standard deviation over

time. Third, the robustness of the results could be assessed with regard to the choice
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and aggregation of land use categories as well as the choice of variables determining

the trend forms. Fourth, further diagnostics could refer to the uncertainty arising

from the stepwise nature of the analysis. There is no clear indication in the original

application on how to calculate the uncertainty arising from errors due to trend

elimination and kriging, as well as their potential dependence structure.

A �exible two-step procedure reduces the computational demand for spatial now-

and forecasts and allows researchers to explore and test suitable trend speci�cations.

The approach is transparent in its single steps and su�ciently general for a wide

range of applications.
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3.A Appendix

3.A.1 Tables and Figures

Table 3.A.1: Optimised class weights. Following Janssen et al. (2008), class weights
a2, a10 and a11 are set to 1, 0 and 0, respectively. Therefore the optimisation
procedure returns optimal values for the other eight class weights.

Germany a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

QL 2.77 1.00 0.92 0.73 0.71 0.09 0.34 0.10 0.36 0.00 0.00

LL 2.96 1.00 0.92 0.80 0.67 0.08 0.31 0.10 0.35 0.00 0.00

TypeQL 1.76 1.00 1.39 2.09 1.52 1.47 0.91 0.12 0.13 0.00 0.00

TypeLL 3.53 1.00 1.77 3.65 2.21 2.31 1.25 0.33 0.47 0.00 0.00

NP 0.05 1.00 2.07 5.07 1.16 1.17 4.25 2.21 0.81 0.00 0.00

Belgium

QL 3.49 1.00 1.49 6.00 2.75 1.38 1.73 0.35 0.00 0.00 0.00

LL 1.62 1.00 1.63 3.65 2.10 1.30 1.80 0.40 0.00 0.00 0.00

TypeQL 0.83 1.00 0.96 2.42 1.65 0.95 1.11 0.27 0.00 0.00 0.00

TypeLL 0.89 1.00 1.09 3.16 1.91 0.91 0.13 0.36 0.00 0.00 0.00

NP 0.98 1.00 2.61 6.02 1.10 1.12 3.78 0.75 0.63 0.00 0.00

∗ with �rst and second largest LUC ∗∗ with �rst, second and third largest LUC
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Table 3.A.2: Results of LOOCV for di�erent speci�cations and their predictive
performance with regard to RMSE.

Germany QL LL TypeQL TypeLL NP NPnoBeta∗ NPnoBeta∗∗

Background 16.70 16.70 12.79 12.93 14.18 13.16 13.18

Industrial 14.52 14.46 13.10 13.25 14.25 15.29 15.45

Tra�c 27.06 27.02 25.30 25.63 25.98 25.52 25.16

Overall 20.84 20.82 17.99 18.21 19.07 18.43 18.31

Belgium

Background 13.16 13.02 12.88 12.80 13.40 13.33 13.57

Industrial 14.63 14.92 14.33 14.09 13.99 14.86 15.10

Tra�c 14.02 14.04 29.19 14.81 13.84 13.69 14.35

Overall 13.76 13.79 15.69 13.51 13.66 13.88 14.19
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Figure 3.A.1: Top: Boxplots of the mean and standard deviation over the daily
maximum NO2 values of each Belgian background site, separately for weekdays and
weekends. Bottom: Analogous boxplots for German data.
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Figure 3.A.2: Top: Boxplots of the mean and standard deviation over the daily
maximum NO2 values of each Belgian industrial site, separately for weekdays and
weekends. Bottom: Analogous boxplots for German data.
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linear trend for the mean and a linear trend for the standard deviation (speci�cation
LL).
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Figure 3.A.6: Belgian data (β̃i, µ̂i) and (β̃i, σ̂i) scatterplots for weekdays and week-
ends (top left to bottom right); β̃i and the �tted trend functions correspond to a
quadratic trend for the mean and a linear trend for the standard deviation; both
are allowed to di�er with an indicator for the sites' type (speci�cation TypeQL).
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Figure 3.A.7: Belgian data (β̃i, µ̂i) and (β̃i, σ̂i) scatterplots for weekdays and week-
ends (top left to bottom right); β̃i and the �tted trend functions correspond to a
linear trend for the mean and a linear trend for the standard deviation; both are
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weekends (top left to bottom right); β̃i and the �tted trend functions correspond to a
linear trend for the mean and a linear trend for the standard deviation (speci�cation
LL).

141



●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

0

50

100

150

200
m

ea
n 

[in
 µg

/m
3 ]

weekday

●

●

●● ●●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●●
●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

● ●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

● ●

weekend

● ●

●
● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●●

● ●

●

●
●● ●

●

●

●

●

●
●
● ●●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●
● ●

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

10

20

30

40

50

st
.d

ev
. [

in
 µg

/m
3 ]

β~

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●
●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●
●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

0.0 0.2 0.4 0.6 0.8 1.0 1.2
β~

●

●

●

mµ(β~, Type=Background)
mµ(β~, Type=Industrial)
mµ(β~, Type=Traffic)

mσ(β~, Type=Background)
mσ(β~, Type=Industrial)
mσ(β~, Type=Traffic)

Background
Industrial
Traffic

Figure 3.A.9: German data (β̃i, µ̂i) and (β̃i, σ̂i) scatterplots for weekdays and
weekends (top left to bottom right); β̃i and the �tted trend functions correspond to
a linear trend for the mean and a linear trend for the standard deviation; both are
allowed to di�er with an indicator for the sites' type (speci�cation TypeLL).

3.A.2 Data related descriptions

Metadata in AirBase

AirBase consists of monitoring data from �xed monitoring sites as well as meta-

information on the monitoring sites involved. The following meta-information is

provided by AirBase: station european code, station local code, country iso code,

country name, station name, station start date, station end date, type of station,

station ozone classi�cation, station type of area, station subcat rural back, street

type, station longitude deg, station latitude deg, station altitude, station city, lau

level1 code, lau level2 code, lau level2 name, EMEP station.
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With regard to air pollution analysis the following variables might be of interest:

· type of station - Background, Industrial, Tra�c

· station ozone classi�cation - rural, rural background, suburban, urban (the pol-

lutants NO2 and O3 are strongly correlated, see Janssen et al., 2008, p. 4889)

· station type of area - rural, suburban, urban

· station subcat rural back - near city, regional, remote

· street type - Canyon street (L/H < 1.5), Highway (average speed vehicles >

80km/h), Unknown, Wide street (L/H > 1.5); length (L) of the canyon usually

expresses the road distance between two major intersections; height (H) of the

canyon

· station longitude deg

· station latitude deg

· station altitude

In our work we consider station longitude deg, station latitude deg and type of

station.

Data processing and data quality AirBase

In the following we describe how we have processed the hourly recorded NO2 values

and provide information about the data quality. Quality �ags in the raw data of

the AirBase statistics indicate the quality of each measurement value. A quality

�ag > 0 indicates valid measurement data. A quality �ag <= 0 indicates invalid or

missing data (EEA, European Environment Agency, 2016).

Belgian AirBase data: The time period 1st Jan 2001 to 31st Dec 2006 has

24 ∗ (365 ∗ 6 + 1) = 52 584 hours. A full sample with recorded hourly values for

each of the 70 monitoring sites would therefore consist of 52 584 ∗ 70 = 3 680 880

observations. There is no entry in the source data for 815 064 site-date-hour com-

binations, which corresponds to about 22.14%. This is partly due to the fact that

some sites have not recorded the NO2 concentrations over the whole period, ei-

ther they have been built up after 1st Jan 2001 or switched o� before 31st Dec
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2006 or for some time between the 1st Jan 2001 and the 31st Dec 2006. The per-

centage of either missing or not validated entries in the source data is equal to

371 497/(3 680 880−815 064) =̂ 13.43%. We have omitted missing and non validated

values from further analysis and have extracted from the daily maximum NO2 con-

centration for each site-day combination the remaining data which results in 112 340

maximum values, compared to 70∗(365∗6+1) = 153 370 maximum values if data for

each site-date combination existed. The Belgian data do not contain any extremely

high values (above 500 µg/m3) nor any negative daily maximum values.

German AirBase data: The time period 1st Jan 2007 to 31st Dec 2012 has

24 ∗ (365 ∗ 6 + 2) = 52 608 hours. A full sample with recorded hourly values for

each of the 537 monitoring sites would therefore consist of 52 608 ∗ 537 = 28 250 496

observations. There is no entry in the source data for 5 391 528 site-date-hour com-

binations, which corresponds to about 19.08%. This is partly due to the fact that

some sites have not recorded the NO2 concentrations over the complete time, ei-

ther they have been built up after 1st Jan 2001 or switched o� before 31st Dec

2006 or for some time between the 1st Jan 2001 and the 31st Dec 2006. The per-

centage of either missing or not validated entries in the source data is equal to

1 547 472/(28 250 496 − 5 391 528) =̂ 6.77%. We have omitted missing and non val-

idated values from further analysis and have extracted from the daily maximum

NO2 concentration for each site-day combination the remaining data which results

in 920 343 maximum values, compared to 537 ∗ (365 ∗ 6 + 2) = 1 177 104 maximum

values if data for each site-date combination existed. Omitting missing and non

validated values reduces the number of sites from 537 to 536. Further investigation

has shown that the source data do not contain any validated data for site DETH082.

Three daily maximum values have been removed as they are extremely high (above

500 µg/m3) and 58 as they are negative such that �nally 920 282 maximum values

and 536 sites remain for further analysis.
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Chapter 4

The Role of Blueprints in Quantitative Cultural

Comparison

In coauthorship with Dr. Jörg Sche�er, Faculty of Arts and Humanity, Geography

Section, University of Passau

Chapter Abstract

Researchers in the �eld of Comparative Cultural Analysis have adopted tools for

exploring the ever-growing data sets from social networks and other sources into

their common set of methods � a development often called the �computational turn�

in social sciences. More traditional approaches to comparative analysis are based

on thorough sampling, model development, and extensive testing. Strong statisti-

cal assumptions on model homogeneity for the measurement of beliefs, attitudes,

and other cultural phenomena are needed for these models, in order to achieve a

maximum degree of objectivity. Especially the sociological perspective on culture

relies heavily on ready-made blueprints for the identi�cation of culturally homoge-

neous groups. We ask what lessons can still be learned from these �old� models and

vertices when using modern techniques in comparative social studies. We discuss

the advantages and drawbacks of strong model assumptions and blueprint-like rep-

etition of cultural association. While a �big data� perspective usually uses simple

comparison, a �small data� perspective can direct researchers' attention to potential

problems with sampling and validity of results. We illustrate our thoughts with cal-

culations based on data from the European Values Study. Thereby, we contribute to

the critical discussion of data analysis methods in the context of cultural analysis.

145



4.1 Introduction

Despite the ever-growing connectivity of the world, cultural di�erences between

people are far from vanishing. Practitioners keep underlining the importance of

developing a sensibility for subtle cultural di�erences in di�erent parts of the world,

and international business literature warns about potential pitfalls in cross-cultural

exchange (e.g. Moran et al., 2014). Within the last years, the availability of ever more

and qualitatively new data sources have given fresh impetus to research on cultural

di�erences in many scienti�c disciplines. Video, image, and text data provide new

evidence and material for investigation. While theoretically, there is no need to

group people when there is so much granularity and detail available, methodological

practice shows that despite globalization, cultural blueprints that set culture equal

to nationality have lost nothing of their appeal for comparative cultural analysis

(Manovich, 2018).

The turn to computational methods for cultural analysis, however, puts the di�er-

entiated, critical perspective of cultural researchers on quantitative analysis in peril.

As Masson et al. (2017, p.26) point out, some researchers in humanities fear that

�[b]y succumbing to the lure of scientism [...] humanists run the risk of forgetting

what they excel at � critical interpretation � and by the same token, of impoverishing

their practice�. Consequently, the question of whether embracing big data analytics

is bene�cial to social sciences or not is controversial. It is a fact, however, that over

the years, data-centric research in the humanities evolved from a supporting tool to

a research area of its own � Digital Humanities (Masson et al., 2017).

With this article, we investigate the role of small-data models based on strict mea-

surement models and sociological, group-based blueprints for the mediation of cul-

tural di�erences. We depart from the idea that it is possible to apply a context-

speci�c perspective to cultural di�erentiation and provide an introduction to the

underlying intuition to comparative, quantitative cultural research. Abstract con-

ceptualizations of speci�c cultural elements like convictions must, on the one hand,

be very concise and distinguishable from other, related concepts. Measurement

scales need to be objective and non-ambivalent when comparing cultures (Poortinga,
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1989). On the other hand, they have to be complex enough to evoke real interest and

allow for an actual gain of knowledge. Structural equation models allow for verify-

ing the applicability and comparability of fairly complex concepts between di�erent

groups, as well as a modeling of their interplay and statistical inference (compare

Kirby and Bollen, 2009).

The main goal of this article is to clarify the role of group-based boundaries in

quantitative analysis of unobserved cultural patterns. We seek to answer the ques-

tion of whether it is possible to combine an objective perspective on measurement

models with a di�erentiated concept of cultural identity and group membership.

We use data from the European Values Study (EVS) (GESIS Data Archive for the

Social Sciences, 2018) to empirically illustrate what a regionally and contextually

di�erentiated comprehension of culture can look like. The basic idea behind our

approach is that there is no need for a globally unique system of classi�cation when

the goal of analysis lies in the description of contextually relevant di�erences. The

conceptualization of space should much more take into consideration the identi�ca-

tion of characteristics that dominate a speci�c situation of interaction in a particular

setting.

We provide a general introduction to the methodology of comparative cultural re-

search, explain the challenges associated with standard concepts, and discuss how

cultural and physical space can be reconciled (Section 4.2). Building upon this

framework, we discuss to what degree quantitative methodology can meet the re-

quirements of a di�erentiated but manageable operationalization of culture and

space (Section 4.3). Our methodological explanations cover structural equation

modeling, group-based measurement model validation, and hierarchical models. Two

case studies for measurement of culture rooted in the �elds of institutional religiosity

and solidarity accompany our considerations for empirical illustration. We discuss

the main insights of our study in Section 4.4. Section 4.5 concludes.

Our contribution is as follows. We provide an intuitive introduction of social sci-

entists to the concepts of comparative cultural research with a focus on the role

of �groups� in statistical models. The article concentrates on the question to what

extent it is possible to quantitatively assess cultural di�erences and, at the same
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time, avoid the traps of stereotype boxing of culture. We show that the close as-

sociation of cultural space with political borders is necessary to provide explicit

references for comparison, but that instead of the ever-repeated national blueprints,

more di�erentiated, context-speci�c conceptions of cultural regions are needed.

4.2 Are Cultural Blueprints Necessary?

Before going into the details of small-world models for cultural comparison, we will

outline the Computational Turn in social sciences and motivate our research by

pointing out the risks that arise with the usage of large, non-curated data sets for

cultural research. Also, we will specify the Research Questions we aim to answer

with the ensuing analysis and review.

4.2.1 The Computational Turn in Social Sciences

Over the last decades, digital technology and progress in methodology for the anal-

ysis of large data sets has fundamentally changed the research in social sciences.

Digital technology has become a mediator of research. The �eld of digital human-

ities puts the digital creation of culture into the center of its interest � to analyze

how technological mediation a�ects the discipline of humanities itself (Berry, 2011).

Ontologies and epistemic foundations change, also within data-enhanced compara-

tive cultural research. New data sources are available in new magnitudes of size.

Models for highly controlled and curated datasets are now applied to more massive,

uncontrolled data sets (Miller, 2010). However, this carries risks.

[S]caling small data exposes them to the new epistemologies of data sci-
ence and to incorporation within new multi-billion data markets being
developed by data brokers, thus potentially enrolling them in pernicious
practices such as dataveillance, social sorting, control creep, and antic-
ipatory governance, for which they were never intended (Kitchin and
P. Lauriault, 2015, p.464).

Consequently, the risks of concluding from large datasets from social media or other

sources require some attention. Models for the analysis of curated, high-quality
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survey data rely on the high degree of scarcity, stability, and cleanliness in such con-

texts. They depend on statistical assumptions such as independence, stationarity,

and normality. Moreover, ideally, the theory that should be validated with the data

set precedented the analysis (Miller, 2010).

Old habits are still in place. It is, for example, a common practice to use these data

sets to compare di�erent nationalities:

Given that certain demographic categories have become taken for granted
in our thinking about society, it appears natural today to group people
into these categories and compare them in relation to social, economic,
or cultural indicators (Manovich, 2018, p.8).

When using traditional models and algorithms in a new di�erent context, the un-

derlying epistemic and statistical assumptions have to be thoroughly understood.

The �eld of critical data studies put the �thinking critically about and research algo-

rithms�(Kitchin, 2017, p.16) at the heart of its practice. Algorithms can produce evi-

dence that leads to contingent knowledge � contingent on its current socio-technical

context. In a similar vein, we investigate the power and politics of con�rmatory

multi-group factor analysis for cultural comparison and what kind of conclusions

can be drawn from such analysis, considering its framing within a broader socio-

technical context of comparative cultural analytics. With this approach, we follow

the recommendation for critical data studies by Barocas et al. (2013) and Kitchin

(2017).

With our perspective on comparative cultural analytics, we engage in a sociological

perspective on culture, where common characteristics, attitudes, or behaviors are

attributed to pre-de�ned groups. The tradition of positivist social science, looking

for patterns in social behavior, heavily relies on the statistical study of the correlation

between measurable characteristics of humans, distinguishing between dependent

and independent variables (compare Manovich, 2018). The mapping of culture to

social groups is a simpli�cation and prerequisite for comparison. It will be part of our

consideration of how this simpli�cation can be mitigated in analysis when societies

imply �several levels of complexity� (Conte et al., 2012, p.334), and culture does

neither describe an overly detailed individual, nor an overly generalized national
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lever, but also an intermediate levels of communities.

4.2.2 The Persistence of Political Blueprints for Cultural Comparison

Globalization has not wiped out deep-level cultural di�erences between societies.

Rather, the increase in the number of intercultural interactions augments the impor-

tance of knowledge about di�erences to avoid misunderstandings, tensions, and con-

�icts Ang and Van Dyne (2015); Poortinga (1989); Delanty (2003); Everitt (2006).

Inter-cultural con�icts comprise debates on the integration of refugees (Thran and

Boehnke, 2015), and contemporary surges of nationalism(compare Anderson and

Keil, 2016) speak in favor of a growing emphasis on the national character of cul-

ture.

Sighting practitioners' literature reveals that the national reference has found its

way into both quantitative and qualitative research. Guidelines on intercultural

communications and training programs regularly fall back on the well-known pio-

neering work by Geert Hofstede (Hofstede, 2003). Hofstede provided a system of

indexes on the so-called dimensions of cultures. These indexes boil practically rel-

evant parameters of behavior down to a dichotomous scale, on which every single

nation can be positioned from �low� to �high�. Examples include the handling of

uncertainty, the perception of the role of the individual, and the centrality of power.

The scales provide a simple frame of reference in daily contact with �foreigners�,

leading to direct and easily understandable consequences in practical interaction

(Hofstede, 2001, 2003).

Quantitative comparison of nations has repeatedly proved to be useful for the expla-

nation of misunderstandings in a bi- or trilateral context. Cross-cultural analysis in

the �spirit of Hofstede� does not claim to be valid for every individual, but generally

describes dominant tendencies within a nation. It aims to provide a framework of

orientation and insights into the dimensions where problems might show up. Hofst-

ede (2002) underlines that his method concentrates on single aspects (dimensions)

of culture, and shows no ambition to paint the complete and detailed picture of

every possible cultural constellation. However, the comparative yardstick is still

in�exibly linked to a national assignment, and bases on a highly schematized gen-
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Figure 4.1: Di�erent concepts of cultural comparison. The dotted line represents
a political (national) border. The left panel represents nationality-based cultural
comparison, while the right panel shows a selective perspective on single cultural
layers.

eralization of space and measurement models (McSweeney, 2002). As dimensions

can only exist within the static boxes of pre-fabricated concepts, every comparison

automatically leads to the reproduction of the units. This way, over time, cultural

contrasts become an artifact of the method instead of a good approximation to re-

ality. Even though di�erent boxing of physical space might lead to more relevant

or more adequate �ndings, the concept of the congruence of political and cultural

borders perpetuates.

To avoid this deterministic perspective on culture, and in order to more �exibly

account for the needs of speci�c research interest, models need to take both geo-

physical embedding and distance of survey participants into account. An alternative

to national grouping requires �nding a di�erent way to link people to cultural com-

munities, a way that allows for �exible adaptations to regionally dominant concepts.

There is scope for a new conceptualization of comparative methodology. The spatial

embedding of a population and its cultural beliefs and attitudes allows uncoupling

cultural attribution from national identity. Every cultural concept can have a dis-

tinctive form of representation. Such a categorization of culture is validated only

within a speci�c research question and represents one of many possible perspectives

on culture. The left panel of �gure 4.1 represents group-based cultural comparison.

As comparison is based on always the same political blueprints, whatever the cul-
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tural construct of interest, the analysis ignores any cross-border cultural similarity.

Vice versa, always using the same spatial blueprint leads to the sorting out of par-

tially interesting aspects that do not show signi�cant di�erences between the groups

compared. The right panel represents the concept of selective cultural comparison,

which does not compare di�erent cultures, but collectives with di�erent cultural char-

acteristics, represented by the single layers. These can be independently described

in individual spatial shapes, allowing for the adaptation of the analytic framework

to a speci�c interest. It is thus possible to reveal both cross-border similarities and

di�erences.

In the discussion of the adequate form to frame cultural di�erences, there are wide

disparities regarding the need for pre-de�ned groups, i.e., blueprints. Some re-

searchers emphasize the risk of inappropriate homogenization within spatial borders

(e.g. McSweeney, 2002). As Rippl and Seipel (2008, p. 18) point out, most studies

that claim to compare cultural collectivity could more adequately be labeled cross-

country comparative studies. The undi�erentiated usage of the notions �country�,

�society� and �culture� has been criticized repeatedly, and many authors have de-

manded a joint e�ort for the deconstruction of such thinking patterns (Hermans and

Kempen, 1998; Straub, 2003). Nevertheless, the pragmatic ease of clear-cut spatial

delineation still dominates the discussion of intercultural di�erences (see also Trian-

dis, 1994, pp. 8-9).

This pragmatic choice is not without reason. Any mediation of cultural di�erences

is preceded by the conceptualization of culture itself, and by the question of how

cultural groups can be di�erentiated. While nationality is not the only source of

cultural identity, �the other� is rhetorically still closely associated with nationality.

Cultural collectivity arises in the interplay of di�erent sources of enculturation: local

and global sources of culture and identity comprise but are not limited to nationality.

However, trying to assess every aspect of culture inhibits the denomination of a

concrete object for comparison. The evaluation of cultural collectivity requires a

well-de�ned, tangible object and a comparative standard or �yardstick�. Both must

be valid within every group that is to be compared to each other, to avoid comparing

apples with oranges. Objective criteria of equivalence need to be veri�ed for any
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measurement models and for the test procedure itself (compare, e.g. Van Deth,

1998). The total abstention from spatial boundaries and classi�cation of territories

inhibitis the description of collectivity, and questions the existence of �a culture� in

the sense of a characterization of a group of people, which can be compared to other

cultures. Grouping is needed to give a body to the collective one is describing; and

as nationality is an easily digestible concept for grouping, many accept the national

labels as a pragmatic approach that serves for the transmission of the message of

cultural di�erences to an easily digestible level (e.g. Antonczyk and Salzmann, 2014;

Ahern et al., 2015).

It is unsure whether the required objectivity is realistic after all. The defendants of

a culturally intrinsic (i.e. emic, culturally immanent) conceptualization of culture

depart from the idea that schemes of thinking and acting can only be understood

within their original systemic context. Consequently, there are only few particular

similarities with any other cultures. A common way to circumvent the total denial of

comparison and to �nd comparable concepts in a qualitative approach is to analyze

situations of con�ict between members of two di�erent cultures. In the collabora-

tive analysis of the situation, so-called cultural standards manifest themselves and

can be described qualitatively as contrasting pairs (Tomas, 1996). Nationality then

serves to label the total of di�erences between two persons, which assumes exter-

nal validity of the �ndings for peer groups. Quantitative comparison results from a

cross-culturally overarching, etic perspective, i.e., it assumes that it is possible to

have a neutral measurement instrument that provides accurate measures. An etic

perspective assumes that it is possible for the researcher be neutral: she can anlyzes

culture without being in�uenced by his or her own culture. The concepts which are

to be compared are gained from an outside perspective. The operationalization of

measurement models via standardized surveys creates the basis for a massive collec-

tion of data to measure the concepts (Helfrich, 2003). Collective patterns summarize

statistically equivalent answers. Again, political pre-de�ned borders are helpful for

the process of comparison - the clear-cut grouping is the basis for veri�cation of the

validity of constructs across groups.

National blueprints risk to reduce �the Italian� and �the German� to their in-group
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similarity and between-group di�erences. They inhibit a di�erentiated consideration

of local speci�city and cross-border similarity. Despite its aim to make cultural dif-

ferences comprehensible, cross-cultural comparison practice may have contributed

to this situation. Some researchers underline that the pragmatic, in�nite reproduc-

tion of readily available national classi�cations can lead to the transformation of

political boundaries into cultural clichés (e.g. McSweeney, 2002). Nevertheless, the

equalization of culture and nation is present in many studies with an inter-cultural

disclaimer. National blueprints provide clear-cut references and obvious cultural

group reference. Therefore, they are in regular use in inter-cultural research in all

kinds of scienti�c �elds, like labor economics (Tubadji et al., 2014), mergers and

acquisition (Ahern et al., 2015), �nancing (Antonczyk and Salzmann, 2014), mar-

keting, and inter-�rm cooperation (Gesteland, 2002), and many more. The simple

categorization as nations that incorporate one speci�c culture allows for structuring

collectivity and to keep it concise and empirically comparable. At the same time,

there are several layers of culture, which leads to social complexity. Societies do

not consist of individuals embedded in a homogeneous nationality - instead, groups,

tribes, networks, communities, and other peer groups put several layers between the

micro and macro level.

Moreover, these layers interact. How they interact so is the object of vivid research

(Conte et al., 2012). Within Europe, there are not only groups within groups, but

there is also important between-group exchange, caused, for example, by �ows of

migration (compare Tomas, 1996). This does not only lead to the mixing of distinct

cultures, but also the emergence of new hybrid or transcultural imprints on an

individual level (Featherstone, 1995; Kraidy, 2005; Martin and Nakayama, 2010).

It is not trivial to �nd a proper equilibrium between an overly simplifying national

categorization of people and an overly complicated deconstruction of homogeneous

cultural collectives.

4.2.3 Research Questions

In light of the need for methodological guidelines in quantitative cultural research,

we can formulate the following research questions.
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Research question 1 (RQ1): How can cultural collectivity be quantita-

tively assessed and compared across di�erent regions?

We will outline the role of �xed political or spatial units for the discussion of cultural

di�erences, translating short-term cultural phenomena like attitudes and opinions

and long-term cultural patterns like ethics and values into statistical models. Fo-

cusing on cultural values, we explain two measurement models concerning church

adequacy, a part of the concept of institutional church religiosity and social solidarity

as a more speci�c concept underlying general concepts of solidarity. We will discuss

to what extent the a priori de�nition of clear-cut cultural regions is necessary for

cross-cultural research. An empirical discussion with a concrete example accom-

pany our discussion, where we assess the in-group and between-group homogeneity

of concepts that express culture by mapping them on di�erent local scales.

Research question 2 (RQ2): Which statistical methods and models can

ensure comparability of di�erent measurements?

This research question addresses the question of whether it is possible to forgo spa-

tial blueprints and grouping when seeking to model culture. Answering research

question 1 requires the application of a measurement model across several countries.

For answering question 2, it is necessary to dive into the methodology of valida-

tion of measurement models. We provide an introduction to group-based structural

equation modeling and show that the formation of some prior groups is necessary to

obtain objective, comparable yardsticks for cross-cultural comparison. Nevertheless,

hierarchical model speci�cation overlays regional and supra-regional e�ects and ac-

counts for the close relationship between �neighboring� regions. Finally, we provide

an outlook to the exploratory methods that investigate geotagged social network

data for their ability to assess �local culture�.

Research question 3 (RQ3): How can the consequences of an endless

repeating of national blueprints be translated into statistical terms?

The ever-repeated usage of political borders leads to the preselection of measurement

models that have shown signi�cant political patterns before, and to the negligence

of models that did not do so. When subsequent studies, like ours, base upon these
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models, they use implicit knowledge on likely results of the analysis. We will show

that this thought is implicitly closely connected to the Bayesian school of statistical

thinking and leads to problems with standard statistical tests on parameter values.

Research question 4 (RQ4): How can the model be speci�ed with more

�exibility concerning grouping, and allow for cultural �neighborhood�?

While we do assume that physical space plays a vital role in the assessment of culture,

we do not believe that this role is bound to the national blueprints. Assuming that

cultural grouping in nationality is losing in importance, how can this be integrated

into a model? How can spatial cultural �neighborhood� in a measurement model be

taken into account? This research question sheds some light on spatial dependency

and exchange processes.

4.3 Statistical Modeling of Cultural Collectivity

In the upcoming sections, we discuss the empirical implementation of di�erent sta-

tistical models for cultural comparison, which we accompany by an implementation

in R (R Core Team, 2013). The most important packages used for our empirical

application are lavaan (Rosseel, 2012), psych (Revelle, 2014), semPlot (Epskamp,

2014), semTools (semTools Contributors, 2016) and sp (Bivand et al., 2013). More-

over, we use classInt (Bivand, 2017), ggmap (Kahle andWickham, 2013), GISTools

(Brunsdon and Chen, 2014), GPArotation (Bernaards and Jennrich, 2005), gstat

(Benedikt Gräler and Heuvelink, 2016), Hmisc (Harrell Jr, 2017), latticeExtra

(Sarkar and Andrews, 2016), RColorBrewer (Neuwirth, 2014), and rgdal (Bivand

et al., 2017).

4.3.1 RQ1: Structural Equation Modeling and Group Means

In recent years, extensive data that implicitly re�ect cultural opinions, attitudes,

and patterns became available through the usage of social networks (for the analysis

of social networks, compare Snijders, 2001; Faust, 2007). Before, surveys were the

undisputed primary source of information on culture. The European Values Study
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(EVS) consists of regular survey studies that trace the changes in cultural convic-

tions of a large panel of participants in �extended� Europe. It has been conducted

in four waves, every nine years: 1981, 1990, 1999, and 2008. The last study included

47 countries. The study comprises many covariates for the assessment of socio-

ethnical background. The �eldwork for the most recent wave of the EVS started

in September 2017. As soon as results are published, they will provide valuable

insights into how the many �crises� of the past ten years a�ected the Europeans'

values regarding religion, solidarity, and many more. Survey data and structural

equation modeling aim at being as objective as possible, in a perpetual quest to

�nd comparable yardsticks instead of subjective snapshots in space. The EVS sur-

vey implies approximately one hour of interview per person. The translation of the

surveys was decentralized and harmonized between countries with the same lan-

guage. Items rely on well-established scienti�c measurement scales. Sample sizes

are counted per country, requiring 1000 participants for smaller and 1200 for larger

countries. Samples are randomized to cover the social stratum of society. Informa-

tion on the hierarchical structure of sample design is provided, as well as population

distributions. Sta� conducting interviews is thoroughly trained, and quality checks

on respondents, refusals, and non-contacts are documented1.

As Rokeach (1968) showed in the 1960's, change di�ers in speed for values, attitudes

and beliefs. Values are a very long-term concept of culture, and its measurement

and comparison therefore must be based on methods that show consistent results

for people with similar long-lasting values across time and space. Surveys contain a

meticulously chosen set of questions that have proven useful for consistent measure-

ment of long-term stable and comparable elements of culture. Long-term oriented

con�rmatory approaches, based on survey data, are usually looking for objective

measurement scales and therefore describe very stable, basic patterns of culture.

Facebook data and search engine data are freely available and allow to compare the

unobservable mindsets of people that register their nationality in the data. Who is

in contact with whom can be tracked as well as short-term changes in interests and

preferences. Recently, Location Based Social Networks have even made it possible

1http://www.europeanvaluesstudy.eu/page/methodology-1.html
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to track the current position of people, and observe people's behavior in di�erent

contexts, for example when they are on holiday. Twitter data provides exact time

stamps and geo-coordinates based on GPS, as well as information on direct interac-

tion among people (e.g. via mutual following and re-tweets).

The translation of values into statistical terms is di�erent from the translation of

short-term opinions and attitudes. Wei et al. (2016) use Twitter data to assess

the cultural pulse of a region, pro�ting from the geotagging of Twitter messages.

Location Based Social Network data is highly dynamic, and thus can be used for

identifying what the population is concerned with and what kind of help is needed

in a crisis. The possibility of analyzing culture with such highly dynamic data raises

new questions about the local embedding of culture. In virtual space, people cluster

often because they are similar � not the other way around. This way, space becomes

endogenous to its modeling, questioning the causal relationship between the two.

More recent observations on human interaction in a digitized world lead to the

conclusion that both the global network and the small-scale regional environment

gain in importance, while national cultural imprints are becoming less important

cultural exchange processes (Chua et al., 2011).

To measure long-term concepts of culture, di�erent methods are needed, that are

based on highly reliable models. For illustration, we chose two topics from the �eld

of cultural values with high importance in the contemporaneous European context.

The important increase of refugees seeking for shelter leads to a strengthening of

nationalist opinions, resulting in surges in the voting outcomes of nationalist parties

in France, Germany, and the Netherlands. With the recent immigration of many

refugees with Muslim background, religious institutions have re-entered the focus

of public discussions. An international comparison, which land's genuine popula-

tion deals with religious institutions in what way can be helpful for integration of

immigrants. Both the European integration as well as the integration of refugees

require a high degree of solidarity. We therefore chose solidarity and institutional

religiousness as the general frameworks we want to work in. Our estimations are

based on the 2008 wave of the survey.

As it makes relatively complex and abstract concepts such as religiosity quanti�able,
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literature often resorts to so-called structural equation models or con�rmatory factor

analysis (CFA). General scales of culture or measurement models need to be de�ned

in a way that they are invariant, i.e. such that they cannot be misunderstood or

measure di�erent things across cultures. A model is said to exhibit invariance

if it expresses the same attribute across cultures � an attribute that many emic

researchers consider as non-existent. In statistical terms, invariance is present when

all the parameters that are necessary to measure the construct are the same across

cultures, or rather when the hypothesis that they are the same cannot be rejected.

The operationalization of a single value is based on a detailed assessment of the

items that this concept implies. Consider the aim of measuring �solidarity� among

di�erent cultures. Solidarity is a complex construct in itself, and surveys try to cover

the visible indicators of solidarity instead of asking directly. It is possible to analyze

culture in a more simple way, for example �80% of all Germans think, that. . . � (e.g.

Halman et al., 2011; Pettersson and Esmer, 2008), but such univariate analyses are

prone to misunderstandings. When using only one question at a time, there is no

way to check whether all the participants of a study have understood the question

in the same way, or whether one culture has a tendency to say �yes� no matter what

their real conviction is. More complex constructs have the advantage that they can

take account of such misunderstandings. Structural equation models take account

of complex unobserved constructs via concrete survey items.

Schwartz and Huismans (1995) coin a measurement model that deals with di�er-

ent aspects of religiosity and the relationship of individuals towards church as an

institution. This measurement model has been used, among others, by Inglehart

and Baker (2000) and Halman and Riis (2003). Institutional church religiosity is a

concept that describes the relationship between people and church as an institution

rather than actual belief in god. Church adequacy is a sub-construct of institutional

church religiosity, and bases on the following questions or items :

Generally speaking, do you think that your church is giving in your
country adequate answers to:

1. . . . the moral problems and needs of the individual;

2. . . . the problems of family life;
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3. . . . people's spiritual needs;

4. . . . the social problems facing your country today?

(Halman and Riis, 2003, p.8)

Con�rmatory latent factor models are used to describe causal relationships between

unobservable, latent values or attributes (such as church adequacy) and observable

indicators (such as answers in a questionnaire). More precisely, survey items are

understood as driven by the underlying concepts of interest, formally

X = M + FΛ + E. (4.1)

Here, X denotes a N × P matrix of responses of person n ∈ 1, . . . , N to question

p ∈ 1, . . . , P , whereas the N ×P matrix M contains the respective mean responses.

Furthermore, F describes a N × K matrix of unobservable factors or constructs

representing a cultural concept, and Λ stands for a K ×P matrix of factor loadings

that express the relationship between question p ∈ 1, . . . , P and factor k ∈ 1, . . . , K.

Error terms are included in the N × P matrix E.

Vice versa, the observed items provide information on the latent factors. Inverting

equation (4.1), unobservable constructs (such as church adequacy) can be expressed

as linear combinations of the survey participants' answers to the related questions.

Consequently, general concepts are measurable through a set of judiciously chosen

queries. Moreover, every participant can be assigned a numeric value on a new, arti-

�cial scale, that assesses the individual perception of the cultural concept. Note that

the con�rmatory factor model requires clear hypotheses concerning which factors are

represented by which items.

Subject-based literature provides numerous examples on how to embed latent factors

in comprehensive causal relationships. Norris and Inglehart (2011, p.15) investigate

the interplay of religious beliefs, religious values, religious participation and religious

political activism, each measured by several items, in their in�uence on economic and

social development indicators. Abela (2004) investigates the relationship of religion

and spirituality with socio-economic solidarity in three di�erent spatial scales. Bas-

ing on EVS data from the 1999 survey wave, the author combines eleven measurable
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items to three indicators local, social and global solidarity. The eleven items follow

the pattern �Are you concerned with...�. Local solidarity concerns members of the

immediate family, people in the neighborhood and in the community. Social solidar-

ity describes solidarity with elderly, sick, disabled and unemployed people, whereas

global solidarity treats the topic of solidarity with immigrants, humankind and Eu-

ropeans (Abela, 2004).

Abela (2004) distinguishes in an empirical study using the EVS between Northern,

Southern, Eastern and Western Europe. Basing on a comparison of the average score

of people from these regions on the three new, arti�cial scales, the author concludes

that people from the Mediterranean show a higher degree of social solidarity than

the rest of Europe. We aggregate the data to NUTS02, NUTS1 and NUTS2 to illus-

trate the e�ect of regional clustering on insights. We analyze a sample of Austrian,

Belgian, Czech, French, German, and Italian inhabitants that have the respective

nationality and were born within the country. The results of an estimation of the

level of social solidarity, based on local means on di�erent aggregation scales, are

illustrated in �gure 4.2. Figure 4.3 shows the distribution of mean values of church

adequacy.

Figures 4.3 and 4.2 suggest that for the 2008/2010 wave of the survey, Austria and

the Czech Republic show a lower level of Social Solidarity than Belgium, Germany,

and France. This is in contrast to the �ndings of Abela (2004), who found di�er-

ences in the data from 1999/2000 in favor of a higher level of Social Solidarity in

the Mediterranean region. Figure 4.3 shows, in harmony with general institution

concerning religiosity, a high level of Church Adequacy in southern Germany, and

Italy. There is a contrast between Bavaria and Upper Austria, which is also generally

considered a country with high emphasis on institutional (catholic) church.

However, the �gures also show that when the aggregation is on NUTS2 level only, the

variation within Bavaria is just as strong as across the whole study area - showing a

2NUTS is French for nomenclature des unités territoriales statistiques, and designates a hi-
erarchical systematization of territorial units within the European Union for standardization of
statistics. NUTS0 usually designates nations, and the smaller units seek to homogeneously include
the same number of individuals. A NUTS1 territory is contained in one NUTS0 territory, whereas
one NUTS0 can but doesn't need to contain several NUTS1 territories. The same relationship is
true accordingly for NUTS1 and NUTS2, as well as for NUTS2 and NUTS3.
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Figure 4.2: Social solidarity based on the 2008/2010 wave of the European Values
Study, aggregated to NUTS0, NUTS1 and NUTS2

Figure 4.3: Church adequacy based on the 2008/2010 wave of the European Values
Study, aggregated to NUTS0, NUTS1 and NUTS2.
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high variance of local means within a single federal state. France, however, is very

homogeneous no matter which aggregation level the means are calculated for. This

might speak in favor of a long historic persistence of tradition and culture, resulting

from the lack of a long common history for the single districts within Bavaria, and a

long history of centralism in France. Whatever the interpretation of the values - it

relies on the soundness of the measurement construct. It shows, however, that any

conclusions on a national level for Germany would be dubious.

4.3.2 RQ2: Group-Based Validity Checks

In the sociological perspective on culture, the assignment of participants to groups

is a central prerequisite to comparison of societies. Only if the constructs can be

measured reliably across groups, and when mean values can be trusted to measure

a �mean� attitude or belief, comparison is actually possible. For example, if one

group has consistently higher values on the new, arti�cial scale of �church adequacy�,

members of that group can be assumed to be consistently more convinced that the

church provides adequate answers to the topics mentioned in the four items. The

more often a measurement scale is used, the more reliable it becomes, as usually, its

adequacy is re-evaluated for every new sample.

Adopting concepts from literature without questioning their appropriateness in the

research area is rightfully claimed invalid by skeptics of intercultural comparison.

Poortinga (1989) early argued that scales must be validated across the populations

included in a study. One of the advantages of using more than one question to mea-

sure a single concept is that it is possible to validate whether the interplay of the

single questions is homogeneous across groups. The appropriate methods are imple-

mented in any advanced statistical software. Jedidi et al. (1997) proposes a series

of tests to determine the degree of homogeneity or invariance of the measurement

models across groups. Therefore, all participants are grouped, and group-speci�c

values for the parameters are estimated:

X|g = Mg + FgΛg + Eg (4.2)
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The more similar the estimated loadings, group-speci�c variances, and the group-

speci�c intercepts are, the more valid is the measurement model. The determination

of the degree of invariance is based on a χ2 hypothesis testing. If the tests come

to the conclusion that every group involved in the study has the same interplay

of factors, factor loadings, intercept, and error structure, it can be assumed that

two members from two di�erent groups have the same perception of items and the

same measurement models apply (Jedidi et al., 1997). A recent overview on testing

for measurement invariance in a cross-cultural setting is provided by Milfont and

Fischer (2015).

There are di�erent forms or levels of invariance. A CFA with implicit group struc-

tures can measure whether the interplay between two variables that belong to the

same construct is equal across two cultures (Jöreskog, 1971). This model is referred

to as the multiple group con�rmatory factor analysis (MGCFA). The degree of in-

variance of a measurement scale can vary - some concepts might have approximately

the same meaning across cultures, but di�er in some details. One of the core ad-

vantages of assessing a cultural concept not via a single question, but with several

questions as given in the examples described above, is that the interplay of the single

items can be checked for consistency across groups.

The step-wise validation of measurement invariance proposed by Jedidi et al. (1997)

detects problems in the measurement construct. These �problems� can be of di�er-

ent nature. Concept-related problems can appear if, for example, the understanding

of a concept is di�erent among groups. Depending on the part of the model that

is a�ected by a lack of invariance, the tests can come to the conclusion that a

model's parameters show construct, structural (or functional), metric (or measure-

ment unit), and scalar (or full score) equivalence (Van de Vijver, 2011, pp.6-9). For

example, going to church is in some countries closely related to being religious, and

in others not. A graphical illustration for the situation of scalar, metric and struc-

tural invariance can be found in �gure 4.4, which illustrates the situation that group

membership a�ects the parameters in the model. In the middle panel for example,

group membership a�ects the items. This is the case for example for an acquiescence

bias, where people from a single culture have a tendency to answer questions with
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Figure 4.4: Visualization of the group-based structural equation model. F1 and F2

a�ect three observable items, respectively. The degree of invariance decreases from
left to right, and correspond to scalar, metric and structural invariance.

�yes� rather than �no� because they don't like to say �no�, irrespective of their factor

values. The third graphic in �gure 4.4 means that the factorial structure is di�erent,

i.e. the item loadings di�er from group to group, additional to the e�ect on the item

itself.

Following a slightly di�erent categorization system, Kankara² (2010) subsume this

kind of problem under the label �construct bias�. A �method bias� reveals itself not

within the content of a concept, but in its measurement. An �acquiescence bias� as

a special case of the �method bias� describes the situation when members of a group

tend to prefer answering �yes� to a question rather than �no�. More examples can

be found in Kankara² (2010) and Van de Vijver (2011). The information on which

part of the model diverges most between two groups can be analyzed via so-called

modi�cation indexes. These provide information on which group behaves di�erent

in what aspects, and where the largest potential for wrong conclusions lies (see Wu

et al., 2007). Such �ndings can be interesting also from an emic perspective as

modi�cation indexes can provide guidance to detect di�ering behavior.

Ignoring the potential lack of invariance between groups can lead to substantially
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wrong conclusions. According to Dülmer (2011), there is a lack of invariance in

the measurement models of Inglehart and Baker (2000) and Norris and Inglehart

(2011), which leads to invalid conclusions on the relationship between economic

development and social values and norms. Scheepers et al. (2002), not validating

measurement invariance, �nd a positive relationship between religiosity and ethnic

prejudices. Cambré et al. (2002) come to the opposite conclusion after correcting

for a measurement bias, due to the positive formulation of some items in the survey

the study bases on. This means that in some languages, items were translated

such that they allowed people to answer with �yes� to express the same opinion,

a case of the mentioned acquiescence bias (see also Moors, 2004; Savalei and Falk,

2014). Beuckelaer and Swinnen (2012) conduct a simulation study, that illustrates

the consequences of a deviance in single parameters between groups. The problem

of lack of invariance is also relevant for the example we use: Kankara² and Moors

(2008) replicate the study conducted by Abela (2004) and verify invariance of the

model between countries. The authors come to the conclusion that the concept social

solidarity is not invariant, and that the lack of invariance in�uences the results of

Abela (2004).

Fit-indicators such as the comparative �t index (CFI), the Tucker Lewis index (TLI)

and the root mean squared error of approximation (RMSEA) correct for sample size

and should therefore be used instead of χ2 hypothesis tests (for a discussion see

also Meuleman and Billiet, 2012; Hirschfeld and von Brachel, 2014). Cut-o� limits

for very good, good and mediocre �t for the RMSEA are, according to MacCallum

et al. (1996) 0.01, 0.05 and 0.1, respectively. Moreover, CFI ≥ 0.90 or 0.95 and

RMSEA ≤ 0.06 or 0.08 were proposed (Wu et al., 2007). As Wu et al. (2007)

point out, the decision rules for such criteria are still sensitive with regard to model

complexity. As our models are fairly simple, involving no relationships between

constructs and basing on a limited number of items, the rules we apply should

be rather strict. Decision criteria have to be adapted to sample size and model

complexity � for example when the constructs interact with one another, or are part

of a causal model chain. For implementation, we use the package lavaan (Rosseel,

2012), which provides an interface for group-based structural equation modeling.
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Table 4.1: Fit indexes and χ2 tests for measurement invariance for mixed data,
for the four-factor model comprising three kinds of solidarity measures and church

adequacy.

Inv. CFI TLI RM-
SEA

Df χ2 ∆ Df
Pr(>χ2)

con�g. 0.985 0.107 0.107 426 6 257

weak 0.975 0.973 0.127 496 10 091 8.945 < 10−15

strong 0.971 0.975 0.123 626 12 009 13.903 < 10−15

When confronted with binary or ordinal data, as in our case, the function switches

from maximum likelihood estimation to diagonally weighted least squares (DWLS)

(Muthén, 1993). This approach uses the weighted least squares estimator and a

polychoric correlation matrix as input.

Using the 2008 data, we tested for invariance on NUTS0, i.e. the national level. In

general, the models provide a reasonable �t, as the χ2-based tests show. Table 4.1

shows our results, indicating that both �t-based and χ2-based tests reject strong

invariance. Testing for invariance on a national, i.e. NUTS0 level, reveals that

the largest di�erence in the model parameters manifest for the Czech Republic.

The direct comparison of the estimated parameters shows that answer behavior

di�ers from the other countries for the questions of adequate answers to family life

problems and spiritual needs. Modi�cation indexes also indicate that there is a lack

of invariance with regard to the question �Are you concerned about your immediate

family?�. The results indicate that group membership has a strong relationship with

this covariate, which is not entirely mediated through di�erences in local solidarity.

As shown above, the group-based con�rmatory factor analysis seeks for a maximum

of objectivity by prescribing concrete validation steps. Participants are embedded

in groups before the models are estimated, and invariance can only be tested across

those groups. The spatial scale can be adapted to the solicited degree of detail �

still, only the a priori assignment to groups allows to separately estimate parameters

and check for invariance.

Many examples of empirical research accept nationality without further discussion as

a proxy for cultural collectivity. Moreover, most empirical research chooses the group
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assignment very pragmatically, often with direct reference to nationality (Beuckelaer

and Swinnen, 2012). Moors (2004) admit the pragmatic decision path in their

investigation of invariance:

Of course any covariate can be used as a group variable, but since con-
struct equivalence is analyzed within the context of cross-cultural com-
parison, the covariates should at least make partial reference to the iden-
ti�cation of cultural groups (Moors, 2004, p. 307).

The author chooses ethnicity as a grouping variable and, with reference to possible

mistakes in survey translation, the language in which the survey was conducted with

the participant. Measurement models that allow for heterogeneous parameter values

among groups seek to o�er a tool to check the comparability of two mean values

across regions. When hypothesis tests on the invariance of models do not reject the

homogeneity of parameters, it can be considered safe to use a measurement model

for cross-cultural comparison. If it is rejected, then there is a strategy to check

the single parameters and identify sources of mis�t (compare Steiger, 1990). The

structural equation approach to the modeling of culture is etic in nature (i.e. it

applies a meta-perspective on culture), and constructs that are used within such a

procedure must be well-established to ensure they are objective. It is necessary to

group individuals into their cultural a�liation before applying the method.

4.3.3 RQ3: The Consequences of Repeating National Blueprints

The ever repeated usage of the same measurement models, basing on years of valida-

tion, is disputed by emic researchers, who doubt that the establishment of objective

measurement scales is feasible and useful. Moverover, the large discretionary scope

for decisions on group a�liation has incited some defenders of quantitative research

to dispute the importance of invariance tests. Beuckelaer and Swinnen (2012) argue

that most measurement models can almost never be classi�ed as invariant across

groups, and therefore invariance tests should not be applied in an overly rigid way.

However, as the discussion of the consequences of group-based comparison without

invariance validation has shown, neglecting the tests is very risky. The MGCFA
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impedes the erroneous application of non-invariant models. Via modi�cation in-

dexes, which show which items cause the highest inconsistencies between groups,

the MGCFA also provides important clues of where the problem might lie.

There are many approaches in the literature that try to infer the homogeneity of

groups without �xing groups prior to model building. Jedidi et al. (1997) investigate

consequences of separating individuals into groups only after parameter estimation

via cluster methods. First, the model parameters are inferred without grouping

the sample, and every participant is assigned a factor score. Second, people are

clustered into variable regions, with relatively homogeneous factor values. Third,

the clustered regions are tested for measurement invariance in the same procedure

as described above. Jedidi et al. (1997) show via simulation that this procedure

leads to biased results. The problem consists in the fact that the model that the

grouping bases upon is already misspeci�ed, and parameter estimates are already

biased in the �rst step. When the assignment of people to regions is already based

on a misspeci�ed model, then subsequent tests can be meaningless, especially as

group assignment is endogenous to the same sample of values that the invariance

tests base upon.

Furthermore, statistical methodology for parameter inference is an issue. As Hjort

and Claeskens (2003) explain, the usage of frequentist models results from the high

computational costs that Bayesian analysis brought along and that used to be pro-

hibitive. The frequentist school of thought, which is denoted �traditional� by Hjort

and Claeskens (2003), ignores the fact that model speci�cation has been proceeded

by many rounds of model speci�cation and validation. Surveys are conducted in a

way that reproduces invariant models across cultural groups and nations, and the

ever-repeated focus on nationality has led to a selection of models that reproduce

national di�erences.

Probabilistic Bayesian approaches allow to include uncertainty measures and sub-

jective beliefs in a model, that can then compete against other beliefs. In empirical

research, model selection strategies are commonplace. However, when the most

�tting, or best performing model has been identi�ed, model speci�cation and esti-

mation proceeds as if the model had been known in advance. Often, this leads to too
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optimistic con�dence intervals and the underreporting of uncertainty. In frequentist

terms, parameters have no distributions, but only a true value, which is estimated

via a supposedly random sample. Therefore, the approach does not distinguish

between prior and posterior information. Point estimates are used and inference

is conducted under the assumption that the model used for estimation is the true

model. This means that the complexity of reality is accounted for by inference that

is only valid within the given data set under a very ambitious assumption. Bayesian

approaches quantify their prior beliefs in the form of prior distributions of param-

eters. In Bayesian models, prior beliefs and the likelihood of observing the given

data merge in a posterior distribution. The underlying assumptions are ambitious

in a di�erent way, as prior distributions have to be formalized such that they can be

assumed to be true or at least not detrimental if there is only few prior knowledge.

To reconcile both perspectives and to assess the consequences of model selection

prior to computation, Hjort and Claeskens (2003) base upon a concept that both

schools of thought are familiar with: likelihood. The authors propose a competing

model average approach, where several competing models enter together.

4.3.4 RQ4: How to Model Cultural Exchange Processes

The MGCFA assumes that within a pre-de�ned group, variance-covariance struc-

tures between factors and items are homogeneous, i.e. that the same relationships

exist between factors and items. The model assigns each observation to exactly one

group, and for the estimation of group-speci�c parameters, only the samples as-

signed to this group are available. If the number of survey participants is small, this

will lead to issues with sample size, and a lack of power of statistical tests (i.e. the

probability that a false hypothesis is rejected is small). Invariance tests can only be

conducted as long as the group sizes are large enough. It is possible to conduct the

invariance tests on larger regional levels, and then aggregate the values for smaller

regions � leading to the more �ne-grained coloring of the countries. Nevertheless,

each group is treated as independent from one another.

So what about approaches that specify a spatial exchange of culture? Can this cul-

tural exchange be taken into account? There are approaches that specify dependen-
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cies and interaction on di�erent levels of a model, allowing to consider small regions

and their national embedding at the same time. Variability in survey responses

can be represented as factors that exert in�uence on a local, regional, national, or

even supra-national level. Methodological bases for this kind of analysis in space

have been developed by Wang and Wall (2001, 2003). Hogan and Tchernis (2004)

describe a Bayesian hierarchical model for factor analysis of data with a spatial

dependency structure. The authors analyze spatially correlated multivariate data

re�ecting the distribution of material deprivation across the U.S., more speci�cally

for a cross section of census tracts in Rhode Island. People's unobserved material

deprivation manifests in several observed categories of non-monetary poverty. It is

assumed that there is one common latent variable that describes a local unobserv-

able factor. This means that the factor scores re�ect a snapshot of the actual state

of poverty disparities, with regard to di�erent dimensions of deprivation.

The situation that the authors depart from is fundamentally di�erent from the aims

we are following above. The data, like in our case, consists of four indicators of

a latent construct � i.e. material deprivation. However, the aim is not to compare

regions and �nd statistically signi�cant di�erences - as for every region, there will be

only one factor value, and neither would a statistical test make sense on the basis of

four highly correlated values. The authors rather seek to �nd a good linear combi-

nation of deprivation indicators, that describes the situation well. For this purpose,

the authors suggest to specify a spatial dependency between the indicators. There

are several levels in the model, which is the reason for it being called hierarchical. In

the �rst level of the model, there is a single factor of deprivation, and every region

has its own factor value, i.e. a certain level of deprivation. On the second level of the

model, the area-speci�c factors have a joint distribution, respecting prior hypothe-

ses on the pair-wise relationship (neighborhood) of particular regions. Therefore, a

central step in hierarchical modeling is the de�nition of neighbors - which regions

are neighbors to one another? Neighborhood can be de�ned ad hoc, for example as

all regions that have a common border with the region of interest. However, neigh-

borhood can also be de�ned basing on a prior hypothesis, such as the hypothesis

that former Soviet states can be neighbors to one another, but the late consequences
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of the iron curtain nowadays still culturally separates the East from the West. A

model can be speci�ed such that no neighborhood beyond a national border is pos-

sible. The core advantage of the described procedure is that it does not necessarily

require an ad hoc speci�cation of neighbors, rather, the model can be used to decide

which setting best describes the observed data structure. By measuring the �t of a

model, it is possible to decide on a likely neighborhood structure.

To operationalize the model, a hypothesis has to be found on what spatial correla-

tion depends on. Wang and Wall (2003) for example assume the spatial covariance

matrix to depend on a measure of neighborhood of areas, more precisely on whether

two areas share a common boundary, and specify the assorted conditional autoregres-

sive model. This again involves a prior hypothesis on neighborhood, and therefore

doesn't resolve the need for prior assumptions on cultural exchange processes and

collectivity. However, it resolves the problem of sample size by including informa-

tion from neighboring areas into the estimation of factor structures. With regard to

testing the invariance of measurement models, to the best of our knowledge there

is no application that uses �xed spatial correlation structures in model parameter

invariance testing.

The core di�erence to the models discussed above is that under consideration of

a spatial dependency structure, the estimation of the latent factors that represent

material deprivation or church adequacy does not rely on the improbable assumption

that the two groups are independent. At the same time, it also changes the logic

of quantitative cultural research: If the two countries are not assumed independent,

it makes less sense to compare them via statistical tests like testing the equality of

means. Moreover, in the case discussed by Hogan and Tchernis (2004), there are very

few observations, and the speci�cation of a spatial dependency structure stabilizes

the variance of the results by using some neighboring information in the estimation

of the factor values. In our case, we have many observations. For the case of 1000

participants in a survey, a neighborhood matrix would contain 106 elements � which

makes the estimation of the latent factorial structure pretty tedious.
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4.4 Discussion

4.4.1 Sociological Group-based Mapping of Culture

We proposed four research questions with regard to the statistical modeling of cul-

ture and applied various models to an example data set from the European Values

Study. All four research questions depart from the presumption that culture is ho-

mogeneous within groups, and hypothesize that researchers want to �nd out about

the spatial distribution of cultural beliefs and values. In the following, we discuss

the main insights from the models presented above.

Cultural concepts like values or attitudes cannot be observed directly. Therefore,

measurement models that assume that these underlying concepts manifest in mul-

tidimensional survey answers are needed to provide reliable evidence on culture. To

answer RQ1 (How can cultural collectivity be quantitatively assessed and compared

across di�erent regions?), we have introduced structural equation models, that solve

the problem by applying measurement models which have proven to be reliable in

previous exploratory and con�rmatory studies. Fit measures assure that the model

su�ciently well describes the correlation structure of the data. These measurement

models can be used to make unobservable concepts observable.

With regard to intercultural comparison, the way the results are used is misguid-

ing. Often, the discussion of a cross-cultural comparison study is limited to the

calculation of a regional mean and the coloring of maps representing political units.

This creates an impression of homogeneity where it is unlikely to exist. It is, how-

ever, the only assumption that allows the veri�cation of models. Despite the many

di�culties arising in cross-cultural comparison, a di�erentiated and context-speci�c

cross-cultural analysis can be a powerful tool to gain insights into the thinking

schemes, convictions, and temporary attitudes of people from di�erent regions. The

general insight that can be gained from the approaches above is that in order to

conduct a cross-group comparison, groups must be assigned a priori, and therefore

in order to use the model, researchers must accept that group structures precede

culture.

In order to ensure that a comparison is valid, it has to be investigated whether
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the measurement models are describing the same underlying unobserved cultural

concepts across groups. Based on the a priori assignment of groups, it is possible

to verify the quality of models. In MGCFA, the analysis of the objectivity of a

measurement model lies at the center of interest. It thus provides an answer to our

RQ2 (Which statistical methods and models can ensure comparability of di�erent

measurements?). In matters of content, but also with regard to unbiased parameter

inference, it is important to accept group assignments as given. Problems concerning

the automatic rejection of measurement invariance for large samples have created

skepticism among empirical researchers about the relevance of tests. However, sim-

ply ignoring invariance tests has been shown to bear important risks of erroneous

conclusions.

This problem regarding test reliability, as well as the possible consequences of the

ever-repeated application of the same models, which have �proven� to be reliable,

have given rise to RQ3 (How can the consequences of an endless repeating of national

blueprints be translated into statistical terms?). The discussion shows that when

always relying on the same blueprints for grouping people into cultural groups can

lead to problems with model validation, as researcher may single out speci�c models

that meet their expectation with regard to outcomes over time.

Our discussion of RQ4 (How can the model be speci�ed with more �exibility with

regard to grouping?) emphasizes the inclusion of parts of information from other

areas, thus allowing to be more �ne-grained with regard to areas de�ning cultures.

The methods discussed in RQ1 to RQ3 all accept the assignment of all individuals to

exclusive groups. Especially in federal systems, it is however likely that individuals

belong to more than one group, or that their group is part of a larger group (e.g.,

Franconia is part of Bavaria, which is part of Germany). Giving up the notion of

groups would impede the discussion of cultural comparison � when a comparison is

of interest, criteria that determine whether someone is part of a culture are needed.

If more �exibility is warranted without giving up the notion of cultural collectivity,

models that specify hierarchical levels of spatial relationships can be a good solution.

Hierarchical models assume a speci�c correlation structure for the latent factors

associated with the lower-level regions. That means, there is spatial correlation that

174



relates neighboring areas. One consequence is that the group size problem which

occurs in the models described for RQ2 is alleviated by using information from

neighboring areas for estimating the parameters of one subgroup. In the meantime,

this approach has also been extended to spatio-temporal settings, where changes in

the observed data over time are explained by an interplay of spatial and temporal

factors (compare Bruno et al., 2013).

Latent factors can be integrated into a larger model, allowing the analysis of the

interplay of di�erent factors, and the inclusion of exogenous predictors, that seek

to explain the observed structure (compare Liu et al., 2005). This means that

it is possible to thoroughly account for spatial processes, and include covariates

like nationality in the model, in order to conduct thorough inference for whether

nationality really makes a di�erence for unobserved cultural values (e.g. solidarity).

Then, spillover e�ects across a border do not in�uence the results. There is, however,

a core di�erence to the model discussed above: While it involves a speci�cation of

spatial proximity and neighborhood, it does not involve parameter testing, and there

is no explicit structural equation modeling. This makes the testing of parameter

equality redundant.

The relevance of clear-cut borders for the assessment of culture across Europe has

been shown both from a content and from a methodological perspective. A spatial

understanding of long-term cultural concepts like values accepts that geography pre-

cedes culture. For more short-term concepts, data-driven approaches are more likely

to provide interesting insights into cultural dynamics. Values, being more funda-

mental, require objective measurement scales and clear-cut a priori assignment to

groups. The denomination of �xed borders that delineate homogeneous groups from

one another is necessary for checking the validity of a measurement model. There is,

however, no statistical reason to stick to national borders for this purpose. Rather,

any quantitative analysis should be preceded by an analysis of probable group struc-

tures.
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4.4.2 Learnings for Alternative Paradigms in Cultural Research

The curated dataset that the EVS provides is limited in its ability to represent

changes in the data due to the high costs of data production. More versatile data

sources have been used for cultural comparison in the last years - such as social

media datasets. Even though the models and approaches used in that context make

extensive use of statistics and probabilities, involving mathematical equations and

explicit de�nition of relationships between individuals, as well as machine learning

for optimizing prediction accuracy and parameter inference.

The hypothesis-based, statistical approach that we discussed in the previous sections

has been shown to depend on blueprints and clearly formulated, statistically veri�-

able hypotheses. While recently developed approaches also make use of statistical

models, the nature of their uncurated and unstructured data may make the clear

distinction of �big data� from small data necessary. Manovich (2018) even suggests

that the di�erence may be as large as the di�erence between statistical models and

deterministic laws on human behavior and simulation-based research. Because of

the unlimited number of features that can be measured for every single human, the

level of detail of analysis is unbounded, and o�ers new perspectives on what culture

is and how a society can be described, digging much deeper into cultural details that

the model-based approaches described above.

In many applications, approaches based on new data sources can enhance our un-

derstanding of culture. For example, social network data can be used to measure

cultural di�usion processes. In a combination of big data, simulation methods, and

statistical tests, Axelrod (1997) showed how cultural segregation can persist in a

globalized society, with a model-based simulation on attracting and detracting forces

among culturally more and less similar people, putting a hypothesis of homophily �

that is, the tendency of humans to engage with similar rather than di�erent humans

� into the model. This has important implications for the co-existence of cultural

majorities and minorities and political decisions that in�uence this co-existence (see

also Flache and Macy, 2011). Computational social science, when taking advan-

tage of the large datasets that are available today, must keep the advantages and

implications of single approaches in mind. Multiple research paradigms can be com-
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bined to gain insights into society and to inform decision makers about the potential

consequences of decisions (Conte et al., 2012).

4.5 Conclusions

We have shown that inter-cultural comparison is related to the de�nition of clear-

cut cultural boundaries, both from socio-theoretical and a statistical perspective.

Recurring to the rhetoric of clear-cut cultural boundaries is more than ever popular

for the simpli�ed mediation of cultural di�erences, but at the same time ever further

from the reality of globalizing cultural exchange processes. We are in between the

two extremes of the range of opinions. We showed that the separability of collectives

can be done in a context-speci�c way, avoiding the dominance of national blueprints

for cultural analysis. We modeled di�erent forms of solidarity and church adequacy

and showed that national patterns were to measurable, but that within-country

variance dominated the across-country variance. This local variance holds especially

in countries with relatively short history as a nation. On the one hand, these patterns

show that there is no empirical basis for the belief that cultural clusters are inevitably

congruent with political borders or with one another across di�erent contexts.

Questioning the meaningfulness of political borders does not necessarily lead to the

denial of regional grouping as a tool for mediation of cross-cultural di�erences, as

long as the grouping is understood as a �exible categorization, tailored to the spe-

ci�c interest regarding a single cultural concept. The European context, rich in

cross-border history, o�ers many reference points for the reformulation of borders.

Consequently, every single research project requires an elaborate empirical valida-

tion. However, only this costly procedure allows us to discuss similarity as well as

di�erence across countries.

Accepting the sociological mapping of culture to pre-de�ned groups, we aimed to

model coherent regions of homogeneous convictions. Tests for structural equivalence

showed that while there are relatively strong national di�erences for the solidarity

concept, there are few in the religiosity example. This can provide some guidelines

for future research. Taking into consideration the risk of incurring sample bias
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and abandoning objectivity in data driven approaches, we advocate the usage of

structural equation based, con�rmatory methods as an important tool for spatial

culture investigation. The adequacy of the blueprint that is currently used should

always be questioned, as grouping by nationality is only one of many possibilities.

When applying models to uncurated, large datasets, the drawbacks of these data

sets with their undisclosed biases and many errors should be investigated and made

transparent.
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