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Abstract

In the last years, credit and debit cards usage has significantly increased. However
a non negligible part of the credit card transactions are fraudulent and billions of
euros are stolen every year throughout the world. In Belgium alone, the volume
of credit card transactions reached 16 billion euros in 2017 with 140 million euros
of illegitimate transactions.

Credit card fraud detection present several characteristics that makes it a
challenging task. First, the feature set describing a credit card transaction usu-
ally ignores detailed sequential information which was proven to be very relevant
for the detection of credit card fraudulent transactions. Second, purchase be-
haviours and fraudster strategies may change over time, making a learnt fraud
detection decision function irrelevant if not updated. This phenomenon named
dataset shift (change in the distribution p(x,y)) may hinder fraud detection
systems to obtain good performances. We conducted an exploratory analysis in
order to quantify the day by day dataset shift and identified calendar related time
periods that show different properties. Third, credit card transactions data suffer
from a strong imbalance regarding the class labels which needs to be considered
either from the classifier perspective or from the data perspective (less than 1%
of the transactions are fraudulent transactions).

Solutions for integrating sequential information in the feature set exist in the
literature. The predominant one consists in creating a set of features which are
descriptive statistics obtained by aggregating the sequences of transactions of the
card-holders (sum of amount, count of transactions, etc..). We used this method
as a benchmark feature engineering method for credit card fraud detection. How-
ever, this feature engineering strategies raised several research questions. First of
all, we assumed that these descriptive statistics cannot fully describe the sequen-
tial properties of fraud and genuine patterns and that modelling the sequences
of transactions could be beneficial for fraud detection. Moreover the creation
of these aggregated features is guided by expert knowledge whereas sequences
modelling could be automated thanks to the class labels available for past trans-
actions. Finally, the aggregated features are point estimates that may be comple-
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mented by a multi-perspective univariate description of the transaction context
(especially from the point of view of the seller).

We proposed a multi-perspective HMM-based automated feature engineer-
ing strategy in order to incorporate a broad spectrum of sequential information
in the transactions feature sets. In fact, we model the genuine and fraudulent
behaviours of the merchants and the card-holders according to two univariate
features: the timing and the amount of the transactions. Moreover, the HMM-
based features are created in a supervised way and therefore lower the need of
expert knowledge for the creation of the fraud detection system. In the end, our
multiple perspectives HMM-based approach offers automated feature engineering
to model temporal correlations so as to complement and possibly supplement the
use of transaction aggregation strategies in order to improve the effectiveness of
the classification task.

Experiments conducted on a large real world credit card transaction dataset
(46 million transactions from belgium card-holders between March and May 2015)
have shown that the proposed HMM-based feature engineering allows for an in-
crease in the detection of fraudulent transactions when combined with the state
of the art expert based feature engineering strategy for credit card fraud detection.

To conclude, this work leads to a better understanding of what can be con-
sidered contextual knowledge for a credit card fraud detection task and how to
include it in the classification task in order to get an increase in fraud detection.
The method proposed can be extended to any supervised task with sequential
datasets.



Résumé

Au cours des dernieres années, 1'utilisation des cartes de crédit et de débit a con-
sidérablement augmenté. toutefois une partie non négligeable des transactions
par carte de crédit sont frauduleuses et des milliards d’euros sont volés chaque
année dans le monde entier. Rien qu’en Belgique, le volume de transactions par
carte de crédit ont atteint 16 milliards d’euros en 2017, dont 140 millions d’euros.
transactions illégitimes.

La détection de fraude par carte de crédit présente plusieurs caractéristiques
qui en font une tache difficile. Tout d’abord, les attributs décrivant une trans-
action ignorent les informations séquentielles qui se sont avérées tres pertinentes
pour la détection des fraudes a la carte de crédit. Deuxiemement, les comporte-
ments d’achat et les stratégies de fraude peuvent changer au fil du temps, ren-
dant une fonction de décision apprise par un classifieur non pertinente si celui-ci
n’est pas mis a jour. Ce phénomene appelé dataset shift (changement dans la
distribution de probabilité p(x,y)) peut empécher les systémes de détection de
fraude de conserver une bonne performance. Nous avons effectué une analyse
exploratoire afin de quantifier le dataset shift jour par jour et avons identifé des
périodes calendaires qui ont des propriétés différentes au sein du jeu de données.
Troisiemement, les données sur les transactions par carte de crédit souffrent d’un
fort déséquilibre en ce qui concerne les effectifs des classes (moins de 1% des
transactions sont frauduleuses). Ce déséquilibre doit étre pris en compte, soit
par le classifieur, soit au niveau du prétraitement des données.

Des solutions pour intégrer des informations séquentielles au sein des attributs
transactionnels existent dans la littérature. La stratégie principale consiste a
créer un ensemble d’attributs qui sont des statistiques descriptives obtenues en
agrégeant les séquences de transactions des titulaires de carte (somme du mon-
tant, nombre de transactions, etc.). Nous avons utilisé cette méthode comme
méthode de référence pour la détection des fraudes a la carte de crédit. Cepen-
dant, cette stratégie de prétraitement des données a soulevé plusieurs questions
de recherche. Tout d’abord, nous avons supposé que ces statistiques descriptives
ne pouvaient pas décrire complétement les propriétés séquentielles des motifs



temporels frauduleux et non frauduleux et que la modélisation des séquences de
transactions pouvait étre bénéfique pour la détection de la fraude. De plus, la
création de ces attributs agrégés est guidée par des connaissances expertes, tan-
dis que la modélisation de séquences pourrait étre automatisée grace aux labels
de classe disponibles pour les transactions passées. Enfin, ces attributs agrégées
sont des estimations ponctuelles pouvant étre complétées par une description
multi-perspective du contexte de la transaction (en particulier du point de vue
du vendeur).

Nous avons proposé une stratégie pour la création d’attributs basés sur des
modeles de Markov cachés (HMM) caractérisant la transaction par différents
points de vue. Cette stratégie permet d’intégrer un large spectre d’informations
séquentielles dans les attributs des transactions. En fait, nous modélisons les
comportements authentiques et frauduleux des commercants et des détenteurs
de cartes selon deux caractéristiques univariées: la date et le montant des trans-
actions. De plus, les attributs basées sur les HMM sont créées de maniere su-
pervisée, réduisant ainsi le besoin de connaissances expertes pour la création du
systeme de détection de fraude. En fin de compte, notre approche a perspectives
multiples basée sur des HMM permet un prétraitement automatisé des données
pour modéliser les corrélations temporelles afin de compléter et éventuellement
remplacer les stratégies d’agrégation de transactions pour améliorer I'efficacité de
la détection.

Des expériences menées sur un vaste ensemble de données de transactions de
cartes de crédit issu du monde réel (46 millions de transactions effectuées par
des porteurs de carte belges entre mars et mai 2015) ont montré que la stratégie
proposée pour le prétraitement des données basé sur les HMM permet de détecter
davantage de transactions frauduleuses quand elle est combinée a la stratégie de
prétraitement des données de référence basées sur des connaissance expertes pour
la détection de fraude a la carte de crédit.

En conclusion, ces travaux permettent de mieux comprendre ce que ’on peut
considérer comme une connaissance contextuelle dans le cadre d’une tache de
détection de fraude a la carte de crédit et comment l'inclure dans la tache de
classification afin d’améliorer la détection de fraude. La méthode proposée peut
étre étendue a toute tache supervisée comportant des jeux de données séquen-
tiels.



Zusammenfassung

In den letzten Jahren hat die Verwendung von Kreditkarten und Debitkarten
betréchtlich zugenommen. Bei einem nicht unerheblichen Teil aller Kreditkar-
tentransaktionen handelt es sich um betriigerische Transaktionen und weltweit
werden jedes Jahr Milliardenbetrége gestohlen. Alleine in Belgien erreichte das
Gesamtvolumen der Kreditkartentransaktionen im Jahr 2017 16 Milliarden Euro;
wovon 140 Millionen auf betriigerische Transaktionen entfallen.

Die Erkennung von Betrug in Kreditkartenzahlungen weist mehrere Beson-
derheiten auf, wodurch spezielle Herausforderungen entstehen. Zum einen en-
thalt die Merkmalsmenge, die zur Beschreibung einzelner Kreditkartentransak-
tionen verwendet wird, keine detaillierte Sequenzinformation, die sich jedoch
fiir die Erkennung als hochst relevant herausgestellt hat. Zum anderen kon-
nen sich sowohl legitimes Kaufverhalten als auch Betrugsstrategien mit der Zeit
dndern wodurch eine Entscheidungsfunktion irrelevant werden kann, sofern sie
nicht aktualisiert wurde. Dieses Phdnomen, bekannt als "data set shift" (eine
Anderung der Verteilung p(x,y)), beeintrichtigt die Erkennungsleistung von Be-
trugserkennungsystemen. Wir haben eine explorative Analyse durchgefiihrt um
den téaglichen data set shift zu quantifizieren und dabei kalendarische Zeitraume
identifiziert, die unterschiedliche Besonderheiten aufweisen. Da Datensétze mit
Kreditkartentransaktionen im Hinblick auf die Klassenannotationen ein starkes
Ungleichgewicht aufweisen, muss dieses Ungleichgewicht entweder auf der Ebene
des Klassifikators oder auf der Ebene der Daten berticksichtigt werden (weniger
als 1% der Transaktionen sind von betriigerischer Natur).

Fiir die Integration von Sequenzinformation in die Merkmalsmenge existieren
in der Literatur bereits Losungen. Die vorherrschende Losung besteht darin,
durch das Aggregieren von Transaktionssequenzen von Karteninhabern, deskrip-
tive Statistiken zu erzeugen (Summe der Geldbetrdge, Anzahl an Transaktio-
nen, etc.). Diese Methode zur Merkmalserzugung bildet insofern die Grund-
lage unser Arbeit als sich daraus mehrere Forschungsfragen ergeben. Zunéchst
stellen wir fest, dass diese deskriptiven Statistiken die Sequenzeigenschaften in be-
triigerischen oder legitimen Mustern nicht vollstdndig abbilden kénnen und dass
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eine Modellierung von Transaktionssequenzen vorteilhaft fiir die Betrugserken-
nung ware. Auflerdem erfordert die Erzeugung solcher aggregierter Merkmale
Expertenwissen wohingegen Sequenzmodellierung dank der vorhandenen Klasse-
nannotationen automatisiert werden konnte. Aggregierte Merkmale sind Punk-
tschatzungen, die mit univariaten Beschreibungen des Transaktionskontextes aus
unterschiedlichen Perspektiven ergénzt werden kénnten (insbesondere aus der
Perspektive des Handlers).

Wir schlagen eine multi-perspektivische HMM-basierte und automatisierte
Strategie zur Merkmalserzeugung vor um ein breites Spektrum an Sequenzin-
formation in die Merkmalsmenge zu integrieren. Wir modellieren die legitimen
und die betriigerischen Verhaltensweisen von Héandlern und Karteninhabern auf
Grundlage zweier univariater Merkmale: Die Zeitstempel und die Geldbetrage
von Transaktionen. Die HMM-basierten Merkmale werden zudem unter dem
Paradigma des iiberwachten Lernens erzeugt wodurch der Bedarf an Experten-
wissen bei der Entwicklung eines Betrugserkennungssystems sinkt. Schlussendlich
erzeugt unser HMM-basierter Ansatz zeitliche Korrelationsmerkmale automa-
tisiert wodurch Aggregationsstrategien ergidnzt oder moglicherweise ersetzt wer-
den konnen und die Effektivitdat der Klassifikation verbessert werden kann.

Experimente auf einem groflen und realistischen Datensatz (46 Millionen
Transaktionen aufgezeichnet zwischen Méarz und May 2015 von Karteninhab-
ern aus Belgien) haben gezeigt, dass die HMM-basierte Merkmalserzeugung die
Erkennung betriigerischer Transaktionen verbessert sofern die HMM Merkmale
mit state-of-the-art Expertenmerkmalen kombiniert werden.

Diese Arbeit fiihrt zu einem besseren Verstédndnis davon was als kontextuelles
Wissen in der Erkennung von Kreditkartenbetrug betrachtet werden kann und
wie solches Wissen in die Klassifikation integriert werden kann um die Erken-
nung zu verbessern. Unsere Methode kann auf andere annotierte Sequenzdaten
ibertragen werden.
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Chapter 1

Introduction

1.1 Credit card fraud in Europe

In 2011, 700 millions payment cards have been issued in the EU. The volume of
non-cash transaction for that year exceeded 3000 billion euros. The implemen-
tation of EMVE] (chip-embedded cards) for face-to-face transactions and strong
identification of customers via 3D secured? for e-commerce transactions increased
significantly the security of european payments.

However, even after the implementation of EMV and 3D-SECURE security,
a non negligible number of credit card transactions remains illegitimate: the
amount of european credit card fraud reaches 1.5 billion euros yearly. In order
to complement the decrease in credit card fraud obtained with the inclusion of
authentication methods, experts agree that data driven fraud detection systems
are the future of credit card fraud detection [Ali et al., 2019].

According to [Europol, 2012]@ international organised crime groups domi-
nate the criminal market of credit card fraud and affect non-cash payments on a
global level. Doing fraudulent card payment is not risky and provide high profit
to these organised crime groups. These incomes are afterwards invested in order
to develop further fraudulent strategies, to finance other criminal activities or to
start legal businesses (money laundering).

Experts reported that the international and highly-organized nature of crim-
inal networks creates the need for international police cooperation. However, the

'EMV (Europay, MasterCard, Visa) : a standard for payment cards based on chip technology.

23D secure: double identification of the card-holder via a PIN sent by SMS

3SEUROPOL: European agency for criminality repression and collaboration between police
forces
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Figure 1.1: Repartition of different countries among the belgian face-to-face transactions
between march and may 2015 ((Blue bars refers to the repartition of the different countries
among fraudulent transactions (scale on the left side). USA is by far the most represented
country among fraudulent countries)

legal constraints and limitations for law enforcement authorities in order to fight
credit card fraud makes it a very attractive business for organized crime groups.
EUROPOL [Europol, 2012] indicated that the same criminals are still active af-
ter many years and return after a few months to the business. Despite this, if a
global operation involving the cooperation of the police forces of several states is
conducted, it has a big impact on the security of credit card transactions in the
EU. For example, in June 2011, a operation named ’Night Clone 11’ led to the
arrestation of 70 suspects in EU and overseas. This operation initiated by the
Italian Police with the cooperation of Bulgaria, US Secret Services and other EU
Member States and coordinated in the operational center of EUROPOL caused
a break in illegal activities for many other organized crime groups for several
months.

Figure shows the repartition of the feature TERM-COUNTRY (refering
to the country of origin of the merchant) for belgian face-to-face transactions in
2015. The blue bars refer to the repartition of this feature categories among the
fraudulent transactions only whereas the black bars refer to the repartition of
this feature categories among all transactions. Their scale is on the left. We can
observe on figure that surprisingly, the majority (60%) of fraudulent face-to-
face transactions affecting the European Union cardholders takes place overseas.
This is mostly due to the fact that EMV standards are not adopted worldwide
as a global solution against the counterfeiting of payment cards. Indeed, since
the introduction of the EMV technology in 2008, the losses caused by domestic
fraudulent transactions drastically decreased in the EU. However at the same time



the level of illegal transactions overseas has seen a big increase. Consequently,
since 2011, almost all fraudulent transactions happen overseas. The countries
that are the most important in terms of the number of fraudulent transactions
are:

e United States,

e Dominican Republic,

Colombia,

Russian Federation,
e Brazil,
e Mexico.

In the end, data-driven methods may find and leverage patterns in credit card
fraudster behaviours like the aforementioned merchant country pattern. These
data-driven methods would complement existing authentication solutions like
EMV authentication for face-to-face transactions or 3D-SECURE authentication
for e-commerce transactions.

1.2 Credit card fraud types

Credit card frauds are categorized in various ways in the literature. |[Delamaire
et al., 2009] proposes to differenciate the fraud with respect to the fraudsters
strategies. They split them into application frauds and behavioral frauds. In
application frauds the fraudsters apply for a credit card with a false ID whereas
in behavioral frauds the fraudsters find a way to obtain the cardholder’s creden-
tial in order to use a pre-existing credit card. |[Ghosh and Reilly, 1994] split the
fraudulent transactions into six categories with respect to the fraudulent process:
frauds from lost or stolen cards, frauds from counterfeit cards, online frauds,
bankruptcy frauds, merchant frauds and frauds from cards that got stolen during
the expedition process. [Patidar et al., 2011] split the fraudulent transactions
in three categories: card related frauds, merchant related frauds and Internet
frauds. [Laleh and Azgomi, 2009] go further in this direction and propose to
only split fraud into face-to-face (card present) fraud and e-commerce (card not
present) fraud. Their argument for this strict and simple classification is that the
overlap between categories may weakens fraud detection approaches.

As described by credit card fraud detection experts, in the industry the fraud-
ulent scenarios are split in 5 different types:



Lost/stolen cards (=1% of fraudulent transactions): Mostly against elderly
cardholders, the fraudster get the PIN code by shoulder reading and steal
the card afterwards. In this case the fraudster is the thief, the credit card

doesn’t pass through a reselling network from organized crime.

e Non received cards (<1% of fraudulent transactions): Credit card stolen
during production or postal delivery. In order to avoid these type of fraud,
the banks can ask the customer to retrieve his card at the bank agency, or
to call them in order to activate the card.

ID Theft (marginal): Card obtained using false or stolen ID documents.

Counterfeint cards (<10% of fraudulent transactions): The card is copied
during a genuine card usage or during database hacking and reproduced
afterwards on fake plastic by international organized crime groups. The
fraudster get and reproduce the data of the magnetic stripe of the cards.
This type of fraud was predominant in the past but partly solved by the
EMV technology: magnetic stripe only terminals aren’t used anymore in
EU but remain in Asia and America. It is worth noting that contactless
payment isn’t very interesting for fraudster since only low amount payments
are allowed.

e Card not present frauds (>90% of the fraudulent transactions): Most of
the credit card frauds happen on e-commerce transactions. The creden-
tials (card number, expiry date and CVC) are usually retrieved during a
database hacking organized by international crime groups and are after-
wards sold on the dark web. British airways, Mariot Hotels and Ticket
Master were for example victims of data breaches in 2018. The price of the
credentials depends on the facility of doing fraud with them (the first digits
of the card numbers identify the bank and therefore the blocking policy).
Most merchants (90%) use the 3D SECURE technology which protect the
cardholder with a double identification however some major merchant web-
site such as Ebay or Amazon don’t protect their users with 3D SECURE.
An other problem that hinder fighting against card not present fraud is that
companies don’t report that there was an attack that caused data breaches
because of the bad advertising it would cause.

The means for the fraudster to acquire card data are various. Firstly, for
card non present fraud, illegal intrusion in the credit card database are a way
to gain card data as stated above. Phising can also be used in order to get
data for e-commerce payment. It consists in tricking the card-holder with an
email for example in order to redirect him to a false bank website and get his
identifiers. Furthermore, there are tools that have been developed in order to



generate card numbers (see figure for an example of these tools). These
numbers are then used for "credit master attack", which consists in brute force
attacking the merchant website with lots of possible cards (the expiry date and
CVC can not be inferred and need to be brute forced too).
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Figure 1.2: Card number generator

For card present frauds, fraudsters may use a sleight of hand in order to swap
credit cards or a device to block the credit card in the ATM after having read the
PIN by "shoulder surfing". An other way can be skimming or shimming credit
card by recording magnetic stripe data for later reproduction or more recently
attach a false card reader device on top of the terminal (see figure [L.3)).

Figure 1.3: Cardblocker PIN reader terminal topper

The different fraudulent transactions types aforementioned could hinder the
ability of a data driven system to model the various behaviours leading to a fraud.



In order to partially solve this issue, e-commerce and face-to-face transactions are
split in this work as adviced by [Laleh and Azgomi, 2009| since the genuine and
fraudulent behaviours show very different properties for e-commerce and face-to-
face.

1.3 Fraud detection in practice

This PhD work was done in collaboration with Worldline, a french multinational
information technology service and consulting company specialized in high-tech
transactional services, cloud, big data and cybersecurity services. In this section
we will describe how credit card fraud detection is done in practice as it was
described to us during an interview with an expert.

1.3.1 Real time and near real time fraud detection systems

In practice, credit card fraud detection is a process that happens in two steps:
the blocking time that aims to detect fraudulent transactions and the checking
time that aims to detect fraudulent cards (see figure [1.4). These two steps are
very different in term of time constraint: the blocking time must be short since
the card-holder is waiting for his transaction to be accepted whereas the checking
time can length more.

The blocking time corresponds to the real time fraud detection. It aims to
authorize or not the transactions. This process must be fast and very precise.
Indeed, it must block only transactions that are very likely to be fraudulent, oth-
erwise it would hinder the cardholder buying routine. Most of the transactions
blocked by the real time fraud detection systems are fraudulent transactions, on
the other hand, a lot of fraudulent transactions are not detected. The priority
of the real time fraud detection system is precision, not recall (see section m
for metrics description). For rapidity purposes, it is made of expert rules based
on simple and short term aggregations of the past transactions of the card holder.

The checking time corresponds to the near real time fraud detection. In the
hours following the authorized transaction, the near real time fraud detection sys-
tem combines expert rules based on long term aggregations and machine learning
algorithms to fire alerts on credit cards that present suspicious transactions. Af-
terwards, alerts are usually checked by expert investigators, or automatic SMS
are sent to the cardholder to invite them to verify their recent transactions and
block the card if needed. The cardholder is sometimes called in order to label all
the recent transactions in order to know when the fraud started.

Since it is impossible to block every credit card with a suspicion of fraud and
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Figure 1.4: Real time and near real time fraud detection systems |Pozzolo, 2015|

very costly for experts to investigate every alert raised by fraud detection system.
[Baesens et al., 2015] highlighted the fact that investigating alerts raised by fraud
detection systems is costly. They showed that a tradeoff strategy can be used
between the probability of the alert to be a fraud (How sure the classifier is that
the alert is a fraud) and the amount of money that can be saved by preventing
this fraud (see figure ) Depending on the uncertainty of the fraud detection
system that a transaction is fraudulent and the amount of the transaction, the
experts can automatically decide to investigate or not.

1.3.2 Rules based detection and rules management

After alerts are processed by the fraud case management team, the feedback of
the investigators is used in order to update the rules and the systems.
There are two different types of rules:

o filter rules: Automatically decline transactions based on the transaction
characteristics. This helps to raise alerts for known fraudulent patterns. For
example: reject transactions with amount superior to 300€ in the country
code 392 (japan) with merchant name containing "AEON", with mercant
category different from 6011 and with card number different from XXX and
YYY (2 cards excluded from the rule).

e history based rules: An aggregation function is calculated and the rule
decision is based on a threshold on the value of the aggregation.
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Figure 1.5: Tradeoff between fraud probability and transaction amount (from |[Baesens et al.,
2015))

At the end of the month, several reports of the efficiency of the rules are
produced. The main report aims to tell, for each rule: the number of false pos-
itives, true positives and the monetary savings from the rule. Among the rules
contained in the fraud detection systems, some may become out of date and up
to date again afterwards. New expert rules are created by fraud investigators and
calling agents: They monitor a lot of different fraudulent transactions each days
and recognize common patterns between fraud scenarios. These similarities are
included in the expert rules in order to raise alerts.

When a fraudulent transaction is detected and investigated, the previous
transactions of the cardholder are carefully labelled with respect to the time
elapsed between until the detected fraudulent transaction. But there is a grey
zone with potentially a mix of genuine and fraudulent transactions.:

Conclusion In the end, double identification through 3D-SECURE for e-commerce
transactions or EMV PIN technology for face-to-face transactions strongly in-
creased the security of credit card transactions. Moreover, the combination of
real time expert rules (automatic transactions blocks), near real time expert rules
(manual cards blocks) and data driven alerts allow for an appreciated prevention
and detection of fraudulent transactions.

However, fraudulent transactions still represent a significant loss for customers
and bank companies that have to refund them. Moreover, fraudulent strategies
are constantly changing in order to get around fraud detection systems. Be-
sides, the double authentication processes aforementioned are not implemented
in several major countries and web vendors, creating the need for improved fraud
detection systems.



According to industrial partners, advanced data analytics and data driven
methods are very promising for fraud detection and would lead to savings from
the company along with a more trustful experience for their customers.

1.4 Publications and outline

1.4.1 Publications

Data driven credit card fraud detection presents several characteristics that makes
it a difficult task. They will be described more in depth in section Briefly:

e Fraud detection’s main characteristic is that there is a strong imbalance
between the classes: the fraudulent events are less represented than the
genuine ones.

e Fraudsters may adapt their strategies over time. Besides buying behaviour
may change seasonally. Therefore, a credit card fraud detection system may
become out of date if no action is taken.

e Even if credit card transactions may present some conditional dependences,
credit card transactions usually ignore detailed sequential information. Fea-
ture engineering is a crucial issue for increasing fraud detection system’s
performances.

Throughout this thesis, we attempt to answer these research questions. The
answers we proposed were opportunities for scientific publications.

The main contribution of the thesis, the multiple perspective HMM-based fea-
ture engineering framework, introduced in section and described in chapters
and [6] was published in:

e Multiple perspectives HMM-based feature engineering for credit card fraud
detection, 34th ACM/SIGAPP Symposium on Applied Computing (SAC2019).
[Lucas et al., 2019a]

e Towards automated feature engineering for credit card fraud detection using
multi-perspective HMMs, Future Generations Computer Systems Special
Issue on: Data Ezploration in the Web 3.0 Age.[Lucas et al., 2019b|

e Additionaly, the source code of the proposed framework can be found at
https://gitlab.com/Yvan_Lucas/hmm-ccfd .

Additionally, a study of the calendar based covariate shift observed in the
credit card transaction dataset was performed. It is described in the section
of this work and has been presented in:


https://gitlab.com/Yvan_Lucas/hmm-ccfd

e Dataset shift quantification for credit card fraud detection, IEEE Artificial
intelligence and knowledge engineering (AIKE 2019). |Lucas et al., 2019¢]

1.4.2 Outline

This work is articulated as following: after having introduced the stakes of credit
card fraud detection and the properties of this task in chapter [T} we will describe
more formally the problem of credit card fraud detection and highlight the re-
search questions it raises in chapter [2l Afterwards, we will present in chapter
the state of the art approaches for handling the special difficulties of credit card
fraud detection (namely: dataset shift, sequence modelling, class imbalance and
feature engineering). In chapter 4} we will highlight the particularities of the
credit card transactions dataset used throughout this work and conduct an ex-
ploratory analysis in order to quantify the dataset shift in it. In chapter [5| we will
present the multiple perspective HMM-based feature engineering strategy which
is the backbone of this work. The increase in fraud detection obtained with the
proposed HMM-based features will be shown in chapter [6]






Chapter 2

Problem statement & research
questions

We introduced in the previous chapter the real world stakes that motivated credit
card fraud detection. Moreover, some informations about fraud taxonomy and
how it is leveraged in practice have been presented. More precisely, the credit
card fraud detection happens in two times: at the time of the transaction there
is a real-time fraud detection system that detects obvious frauds, and afterwards,
histories of transactions are evaluated in order to raise alerts on suspicious credit
card centered buying behaviours.

In this chapter, we start with a formalization of the problem of credit card
fraud detection as a machine learning task along with an introduction of the en-
semble models used throughout this thesis: the random forest classifier and the
boosting trees classifier. We also briefly illustrate the strengths of ensemble-based
methods.

Then we introduce two ways of evaluating machine learning classifiers: the
confusion-matrix based evaluation and the parametric evaluation, and argue the

choice of parametric evaluation for credit card fraud detection.

We finish this chapter by describing the questions that make credit card fraud
detection a challenging research task.

12



2.1 Machine learning formalization for credit card fraud
detection

2.1.1 Machine learning notations & Fraud detection particular-
ities
Fraud detection formalization

Throughout this work, we will refer to x as the set of features describing an ex-
ample (the set of attributes describing a transaction for our particular problem).
Each feature xj of the feature set can be categorical, ordinal or numerical.

A categorical feature takes values in a discrete non-ordered ensemble of cat-
egories {cy,..,cp}. For the credit card fraud detection application, a categorical
feature can be for example: the country of the merchant involved in the transac-
tion.

An ordinal feature takes values in a discrete ordered ensemble of categories
{1, yen} with ¢; < ¢j if i < j (4,5 € {1,...,n}?). For the credit card fraud
detection application, an ordinal feature can be for example: the credit limit of
the card-holder that made the transaction: it has a fixed number of categories
corresponding to the usual values of credit limit but these categories can be or-
dered.

A numerical feature takes continuous values. The application domain of a
numerical feature can be bordered or non bordered: its values can be limited to
an interval or not. For the credit card fraud detection application, a numerical
feature can be for example: the amount of the considered transaction.

y will refer to the target variable: a feature for which we aim to know the
value conditioned on the set of features x. y can be categorical or continuous. For
our particular problem the target variable will most often be the ground truth
for the fraudulent nature of the transaction: Is it a fraudulent transaction or not?

Machine learning algorithms aim to model the dependencies between the fea-
ture set x and the target variable y. More precisely, discriminant algorithms
aim to model the conditional distribution of probability p(y|z) whereas genera-
tive algorithms aim to model the joint distribution of probability p(x,y). In the
case of a categorical target variable, the discriminant model is called a classifier,
whereas in the case of a continuous target variable, the discriminant model is
called a regressor.

Machine learning consists in two main phases:



e During the training phase, the model is trained in order to be able to
make a prediction for a particular task. The particular task is defined
by a set of training examples representing the function that the model
aims to approximate. These training examples are usually preprocessed
before being given to the model in order to make sure that the model
fits his decision function using appropriate information from the data. At
the end of the training phase, the model parameters are adjusted in order
to reflect the most the relationship between the set of features z and the
target variable y observed in the training set of examples. An additional
step called validation step can be performed in order to adjust the model
hyperparametersﬂ

e The testing phase aims to leverage the knowledge acquired by the model
during the training phase. The trained model is evaluated on a set of
examples distinct from the set of examples used for training.

Dataset

Throughout this work, we study a confidential dataset containing all the credit
card transactions issued by belgian credit cards between 01.03.2015 and 31.05.2015.

As mentioned before, credit card transactions can be separated in two very
different clusters:

face-to-face The face-to-face transactions are transactions for which the card-
holder is located at the shop. Thanks to the EMV technology aforemen-
tioned, we observe in the dataset that the authentication of the card-holder
is made with a PIN code 92% of the time. However in 7% of the face-to-face
transactions, the authentication is made with a signature. The proportion
of fraudulent transactions is 20 times higher with signature authentica-
tion than with PIN authentication. Besides, we observe that 82% of the
fraudulent face-to-face transactions are comprised within the 8% non EMV
transactions. Furthermore, face-to-face transactions are restricted in time:
very few face-to-face transactions are issued between 12 p.m. and 7 a.m.

e-commerce The e-commerce transactions are remote transactions for which
the card-holder is not necessarily located at the shop. We observe that 22%
of the belgian e-commerce transactions during spring 2015 have triggered
a 3D-SECURE authentication. 3D-SECURE authentication consists in as-
serting the identity of the card-holder by double checking it, usually via a
code sent by SMS. There are 32 times more e-commerce fraudulent trans-
actions without 3D-SECURE authentication than with 3D-SECURE au-

1Hypelrpaurameters are fixed parameters usually ruling model architecture. Contrary to the
parameters, the hyperparameters are not modified during the training of the model.



Table 2.1: Class representations in the data-set

Fraud Non-Fraud Total
Face-to-Face 10.815 25.824.400 25.835.215
E-commerce 73.687 21.524.624 21.598.311
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Figure 2.1: Bipartite graph of the transactions.

thentication. Furthermore, a significantly bigger proportion of e-commerce
transactions is issued at night compared to face-to-face transactions: around
10% of the e-commerce transactions are issued between 12 p.m. and 7 a.m.
whereas only 3% of face-to-face transactions are done within the same pe-
riod of time. The buying schedule is more spread for e-commerce transac-
tions

There is a significant difference in fraud ratio between e-commerce and face-
to-face transactions. We observe in the Belgian credit card transactions dataset
that there are 4 fraudulent transactions for 10.000 face-to-face transactions and
3 fraudulent transactions for 1000 e-commerce transactions (see table 2.1)). The
class imbalance is 17 times stronger for the face-to-face transactions than for the
e-commerce transactions

E-commerce and face-to-face transactions are very different paradigms and
therefore are studied separately in this work, moreover classifier efficiencies are
measured on the two types of transactions.

Terminal/Card-holder sequence

Credit card transactions are an interaction between two nodes of different types:
a card-holder node and a merchant node. Transactions can be seen as edges
linking merchant and card-holder in a bipartite graph (see figure .
Moreover, the time of the transaction is recorded. The transactions can be
ordered with respect to the time scale. Therefore, transactions of a given card-
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holder or merchant can be gathered and assembled together in sequences.

Since we stated earlier that e-commerce and face-to-face transactions are very
different paradigms, we made the hypothesis that e-commerce and face-to-face
transactions are not related within a sequence: each card-holder have a face-to-
face sequence of transactions and an e-commerce sequence of transactions.

In this work, we name card-holder (resp. merchant) history the sequence
containing all the previous transactions of a card-holder (resp. merchant). The
card-holder history H,p, (t) comprises all the transactions of the card-holder hap-
pening before the current transaction (e.g. the transaction currently waiting for
decision in the fraud detection system).

Furthermore, we name card-holder (resp. merchant) subsequence a sequence
containing a subset of transactions happening before the actual transaction (see
figure The transactions in the subset of transactions are happening just
before the current transaction. The number of transaction in the subsequence
is either chosen arbitrarly or depends on the number of transactions that have
happened in a given amount of time.

The sequential view can be leveraged for a better knowledge of the context
of a transaction: the properties of this transaction can be related to the previous
transactions of the sequence.

2.1.2 Bias-Variance tradeoff and ensemble based methods

It is mentioned in the previous sections that the credit card fraud detection clas-
sifier aims to estimate the posterior probability p(y|z) (with y the target variable
and x the attributes of the transaction).

Since the posterior probability is continuous, this probability estimation prob-
lem can be seen as a regression problem that aims to find a function f that ap-
proximates the underlying function f such as y = f(z) + ¢ (with € a centered



gaussian noise of variance o). This formulation will ease the demonstration. For
evaluation purpose, we want this function f to minimize the mean squared error
among the test examples:

MSE = E[(y - f(x))?
= (E[f(z)] - f(2))* + B[f(2)*] - E[f(2)]
= (Bias[f(x)])* + Var[f(z)] + o2

e The bias is the difference between the model prediction f (z) and the correct
output of the underlying function f(z) which we are trying to predict.
Simple models usually have high bias since they don’t fit a lot to the training
data due to less parameters. They usually have similarly high error on
training and test data.

e The variance is the variability of the model prediction f(zx) for different
training sets. A model with high variance pays a lot of attention to the
training data and will change a lot his prediction when trained on a different
training set. Therefore, models with high variance usually perform well on
training data but have high error rates on testing data.

e The term o2 is the irreducible error coming from the gaussian noise of the
world e.

Typically, complex models have high variance and a low bias while simple
models have low variance and a high bias. This is because complex models can
approximate more the target function (low bias), but are highly affected by the
variability of the training set (leading to high variance). The opposite occurs
with simple models.

The bias variance tradeoff is a key machine learning problem. Users want their
models to be able to identify particular patterns in their data without learning
unnecessary and irrelevant relationship between the attributes  and the labels
y of the training data. A model that doesn’t identify particular patterns in the
training data is said to be underfitting. On the other hand, a model that learns
unnecessary and irrelevant patterns of the training data is said to be overfitting
(see figure [2.3)).

[Bauer and Kohavi, 1999] have found that ensembles of model perform of-
ten better than a single model. They stated that combining models (and their
variances) can lead to a smaller variance overall than single models. Bagging
[Breiman, 1996] is the most famous ensemble based methods.
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Figure 2.3: overfitting vs underfitting.

Bagging consists in building several estimators f on different boostrap samples
of the training data. These estimators predictions are then combined. [Breiman,
1996] showed that combining unbiased classifiers with bagging can lead to a nearly
optimal one thanks to the reduced variance term.

2.1.3 Random forest and boosting trees

Random forest and boosting trees are two ensemble based approaches that are
based on decision tree classifiers. They showed good results for credit card fraud
detection and are used at several occasions throughout this work.

Decision tree classifier

Decision trees are a flowchart structure that consists in a succession of internal
nodes each containing a rule and branches representing the outcome of the rule
(see figure [2.4)).

As shown in figure 2.4] one of the asset of decision trees is that it is a model
that is very easy to interpret: it is possible to have an understanding of the clas-
sifier decision by observing the splitting decisions and their outcomes.

The main metric used in order to find the best rule at a given node is Gini
impurity. Gini impurity for a set of element with N classes is calculated as follow
(with p; the ratio of element of class ¢ in the set of elements):

Gini =Y i=1"p;x (1 —p;)

It measures how often a random element would be incorrectly labeled if it was
randomly labeled according to the distribution of labels in the set of element. The
best split at a given node is obtained by finding the rule that gives the highest
Gini impurity decrease through this node.

There existed several iterations of trees implementations:



Figure 2.4: Toy example of decision tree |Hoare, 2019

ID3 ID3 (Iterative Dichotomiser 3) creates a tree by finding for each node the
categorical feature that will provide the largest information gain for the
categorical target variable. Trees are grown to their maximum size and
then a pruning step is usually applied to improve the ability of the tree to
generalise to unseen data.

C4.5 C4.5 is the successor to ID3. The categorical feature restriction of ID3
is solved by dynamically defining a discrete variable based on numerical
variables that partitions the continuous attribute value into a discrete set
of intervals. C4.5 converts the trees with the ID3 algorithm into sets of
rules. The accuracy of each rule is then evaluated to determine the order
in which they should be applied: the more accurate rules are applied first
(at the beginning of the tree). Pruning is done by removing a rule if the
accuracy of the parent rule is higher without the child rule.

CART CART (Classification and Regression Trees) is very similar to C4.5, the
main difference with C4.5 is that it supports numerical target variables
(regression).

Decision trees main issue is that they are very subject to overfitting [Kingsford
and Salzberg, 2008]. This is due to the data being repeatedly split into smaller
subsets. Overfitting may be mitigated by pruning and early-stopping.




Random forest classifier

Random forest [Breiman, 2001] is a well established algorithm based on bagging.
It consists in an ensemble of CART decision trees trained on different views of
the training data.

The particularity of random forest is that each tree is trained using a ran-
dom subset of features. Therefore, each tree reflects a particular decision process
based on a subsample of the available information. Moreover, the trees are trained
by default on different slices of the dataset thanks to bootstrap samplingﬂ In
the end, the trees are very different and the ensemble based model doesn’t overfit.

The main parameters of the random forest classifier are:

e The number of features randomly chosen in order to build each tree. An
often recommended default value is the square-root of the total number of
features.

e The depth of the trees. Contrary to a decision tree classifier, a tree of
maximum depth doesn’t lead to overfitting since the predictions of very
different trees are aggregated together thanks to the ensemble based archi-
tecture. However, tree pruning diminish the computation time needed for
training and testing.

e The number of trees built. Usually, an higher number of trees leads to a
better prediction by the random forest model.

The prediction of a random forest classifier is obtained by averaging all the
individual trees predictions for regression tasks or by majority voting for classi-
fication tasks.

Random forest classifiers present an interesting property named ’feature im-
portance’ that enables users to understand qualitatively the decision of the clas-
sifier. This property is leveraged in section

The robustness to variance along with the simplicity of interpretation of ran-
dom forest decision makes it a model of predilection for various applications
including credit card fraud detection. Moreover, the fact that the trees are built
independently from each other allows parallelization of random forest training
and testing steps.

2Bootstlrapping is a type of resampling where large numbers of smaller samples of the same
size are repeatedly drawn, with replacement, from a single original sample.



Adaboost and Gradient boosting methods

Boosting is an other ensemble based method that consists in iteratively com-
pensate the misclassification of the ensemble classifier by adding new classifiers
(decision tree throughout this work) to it.

There are two approaches for compensating the misclassification of the algo-
rithm: Adaboost and gradient boosting.

e Adaboost changes the samples distribution at each iteration. It increases
the weights of the misclassified examples and decreases the weights of the
correctly predicted examples. Therefore, the weak learner trained at a given
iteration focuses especially on the difficult examples at this iteration. After
being trained, the weak learner is added to the ensemble classifier according
to his performance: its weight in the decision process depends on how good
it is by itself.

e Gradient boosting doesn’t change the samples distribution. Instead, each
new weak learner aims to learn the remaining error of the ensemble classifier.
At each iteration 4, the target variable of the weak learner yx is equal to
y — pred;_1 with y the ground truth label of each example and pred;_; the
value of y guessed by the ensemble classifier at the iteration i — 1. Each
weak learner aims to compensate the gap between the prediction of the
ensemble classifier and the ground truth y.

Boosting approaches are prone to overfitting since they aim to iteratively
reduce the error of the model on the training set to 0|Quinlan, 1996]. Therefore,
tree pruning and early stopping criterion are needed for preventing overfitting.

2.2 Evaluation of the performance of machine learn-
ing classifiers

2.2.1 Confusion matrix based evaluation

Traditional ways of evaluating machine learning classifiers use the confusion ma-
trix describing the difference between the ground truth of the dataset and the
model prediction (see table . A perfect model would have all the positive
example predicted positive and all the negative example predicted negative: FN
and FP would be equal to 0.

Using the confusion matrix, one can compute a variety of metrics in order to
compare classifiers performances:



Table 2.2: Confusion matrix

predicted positive predicted negative
actual positive | True Positive (TP) False Negative (FN)
actual negative | False Positive (FP) True Negative (TN)

Precision Proportion of well classified examples among examples of the positive

class:
TP

TP+ FP

prec =

Recall Also called true negative rate, proportion of examples of the positive
class well-classified among all positive examples:

B TP
T TP+FN
False Positive Rate Quantity used for computing the ROC curve (see section
2.2.2)):
for = FP
Pr=TFp+TN
True Positive Rate Quantity used for computing the ROC curve:
tor — TP
Pr=TP+FN

Accuracy Proportion of well classified examples among all the testing examples
(similar to precision but for every class):

_ TP +TN
 TP+TN+FP+FN

acc

F1 score Precision and recall have opposite behavior: forcing a good precision is
detrimental for the recall and vice versa. F1 score is the harmonic mean be-
tween precision and recall and therefore gives equal importance to precision
and recall. For this reason, this metric which takes values between 0 and
1 is often considered a good by default metric for unbalanced classification

tasks:
Precision * Recall 2T P

* Precision + Recall ¥ 2TP+FP+ FN

F1=2

MCC Matthews correlation coefficient is another score that is robust to imbal-
ance [Power, 2011]. It is related to the chi-square statistic and takes values
between -1 and 1. For binary classification:

TP x TN — FP x FN
\/(TP+ FP)(TP + FN)(TN + FP)(IN + FN)

MCC =




Confusion matrix based metrics are a good starting point for evaluating clas-
sifiers performances. However these metrics are point estimators and some users
may want to have a fine grained knowledge of how the classifiers are perform-
ing over all the domains of the testing set. Parametric evaluation of classifier
performance allows for that more fine grained look at the classifiers behaviours.

2.2.2 Parametric evaluation

Some machine learning classifiers like random forest, neural networks, SVM, lo-
gistic regression classifier, etc output a set of n predictions for each example
corresponding to their confidence that each example belongs to each of the n
classes. Once normalized, these scores are often used as probability values of
belonging to each of the n classes of a certain classification task.

By changing the value of a treshold parameter through all the possible values
of probabilities obtainable with the machine learning classifier, one can moni-
tor the efficiency of the prediction for each examples: from the most obvious to
classify to the least obvious. In fine, parametric evaluation can be seen as an
evaluation of all the possible confusion matrices obtainable given a prediction
vector.

This parametric evaluation allows for a fine grained study of the classifier
prediction. For example: two classifiers that have the same value of Fl-score (see
section [2.2.T] on a given testing set can have very different detection behaviours:
One can be good at detecting obvious fraud but decreases in efficiency very fast,
whereas the other can be not that good at detecting obvious fraud but more sta-
ble in its detection. The priorities are afterwards to be set for the best classifier
with respect to the production needs.

When doing a parametric evaluation, two curves are mostly plotted: a ROC
(Receiving Operating Characteristic) curve, or a precision-recall curve (see figure

23).

e The ROC curve axis are: true positive rate for the y-axis and false positive
rate for the x-axis. Both axis are proportion of the class they are represent-
ing: positive for the true positive rate and negative for the false positive
rate. Therefore, the ROC curve is unsensitive to unbalanced datasets: dif-
ferences in class effectives won’t affect the overall shape of the curve.

e The Precision-Recall curve axis are the precision for the y-axis and the recall
for the x-axis. As for the axis of the ROC curve, the recall is a ratio of the
positive class: it represents the proportion of example of the positive class.
However, the precision is based on both positive class (TP) and negative
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Figure 2.5: ROC curve (left) and precision-recall (right) curve evaluations for e-commerce
fraud detection

class (FP) effectives. Therefore, a strong class imbalance (such as credit
card fraud detection imbalance) would affect the precision values since the
classification is harder. The precision recall curve is more punitive than
ROC curve and consequently more challenging to improve: in a context of
class imbalance, the pecision value is closer to 0 and therefore the precision
recall curve decreases. Besides, we experienced that the precision recall
curve is easier to read for industrial partners.

The parametric curves are not scores by themselves. In order to extract a
metric from this type of curve for predictions comparison, the area under the
curve is calculated:

tmaz
/ f(z)dx
treshold=t,in

According to domain application needs, the area under a portion of the curve
can also be calculated. For example, for credit card fraud detection evaluation,
the need to calculate the AUC for values of recall below 0.2 was discussed since
the experts can only investigate a limited number of alerts.

2.3 Fraud detection research questions and contribu-
tions

2.3.1 Fraud detection research questions

Credit card fraud detection is a crucial asset for ensuring customer trust and
saving money by preventing fraudulent loss. Moreover, credit card fraud detection
presents several characteristics that make it a challenging task and an interesting
research question.



Skewed class distributions Most transactions are legitimate and only a very
small fraction of the transaction has been issued by fraudster. In spring 2015 in
Belgium, the observed fraction of fraudulent transaction is 0.04% for the face-to-
face (card present) transactions and 0.34% for the e-commerce (card not present)
transactions (see paragraph . Some algorithms such as Support Vector
Machines for example suffer a lot from class imbalance and can be completely
unable to learn the minoity class specific patterns ([Wu and Chang, 2003], [Yan
et al., 2003]). Solutions have been presented in the literature in order to either
adapt the algorithms (cost based methods for example) to imbalancy or solve the
imbalancy in the data (sampling based methods).

Dataset shift Fraudsters tactics evolve over time. Some fraud strategies be-
come out of date because of the constant cat and mouse play between fraudsters
and experts, and new technologies show weaknesses that can be exploited by
fraudster. Moreover, cardholders behaviours change over seasons. A given con-
sumer may use his credit card at different merchants in winter than in summer,
or buy different things to these merchants. Also, the purchasing behaviour has
changed over years due to inflation and economic fluctuations and what fraud
expert knew about the cardholders habits may not hold anymore. The combi-
nation of the three aforementioned factors: respectively the concept drift (when
p(y|z) changes), the seasonal covariate shift (when p(z) changes) and the abso-
lute covariate shift (when p(z) changes) makes typical algorithms become out
of date or irrelevant. The dataset on which these algorithms are tested doesn’t
correspond to the dataset they were trained on. These weaknesses create the
need for algorithms that are designed in order to be updated regularly or ways
to detect when an algorithm shows decreasing efficiency for the task it has been
trained for and needs to be updated. Online learning schemes are very useful in
order to prevent concept drift and covariate shift to affect the fraud detection
systems.

Feature engineering Credit card transactions are represented as vectors of
continuous, categorical and binary features that characterize the card-holder, the
transaction and the terminal. The card-holder is characterized by a unique card-
holder ID, its age, its gender, etc. The transaction is characterized by variables
like the date-time, the amount and other confidential features. The terminal
is characterized by a unique terminal-ID, a merchant category code, a country.
However, most learning algorithms can’t handle categorical feature without a pre-
processing step in order to transform them into numerical features ([Kotsiantis,
2007]). Additionnaly, specific feature engineering strategies for credit card detec-
tion exist. These strategies either aim to make the features more significant for
the classifier or to create additional features in order to enrich transaction data.



Sequence modeling A major issue of typical credit card transaction dataset
is that the feature set describing a credit card transaction usually ignores detailed
sequential information. Therefore, the predictive models only use raw transac-
tional features, such as time, amount, merchant category, etc. [Bolton and Hand,
2001] showed the necessity to use features describing the history of the trans-
action. Indeed, credit card transactions of the same cardholder (or the same
terminal) can be grouped together and compared to each other as highlighted in

section 2111

Interpretability Aside from the aforementioned research questions, interpretabil-
ity of the machine learning algorithms decision is a crucial concern for industrials
who are the targeted users of applied data science research work such as credit
card fraud detection. Research has been done in order to understand better on
which heuristics model decisions are based (|[Pastor and Baralis, 2019] for exam-
ple). However some models remain black boxes.

2.3.2 Contributions

Solutions for integrating sequential information in the feature set exist in the
literature. The predominant one consists in creating a set of features which
are descriptive statistics obtained by aggregating the sequences of transactions
of the card-holders (sum of amount, count of transactions, etc..) (see section[5.1)).

We used this method as a benchmark feature engineering method for credit
card fraud detection. However, this feature engineering strategy raised several
research questions. First of all, we assumed that these descriptive statistics can’t
fully describe the sequential properties of fraud and genuine patterns and that
modelling the sequences of transactions could be beneficial for fraud detection.
Moreover the creation of these aggregated features is guided by expert knowledge
whereas sequences modelling could be automated thanks to the class labels avail-
able for past transactions. Finally, the aggregated features are point estimates
that may be complemented by a multi-perspective description of the transaction
context (especially from the point of view of the seller).

The main focus of this work was to propose a multi-perspective HMM-based
automated feature engineering strategy in order to incorporate a broad spectrum
of sequential information in the transaction feature set. In fact, we model the
genuine and fraudulent behaviours of the merchants and the card-holders accord-
ing to two univariate features: the timing and the amount of the transactions.
Moreover, the HMM-based features are created in a supervised way and therefore
lower the need of expert knowledge for the creation of the fraud detection system.



Our multi perspectives HMM-based approach partially answers some of the
aforementioned research questions. First, we studied how to model sequences in
order to create new features. We compared solutions and chose the hidden markov
model (HMM) described in section Furthermore, we chose to use machine
learning algorithms whose decisions is reachable and partly interpretable: ran-
dom forests allow the user to know on which features the prediction relies the
most. Hidden Markov models also contains very few parameters. It enables a
compression of the behaviours observed along with an easier understanding of
which behaviours are modelled.

Experiments conducted on a large real world credit card transaction dataset
(46 million transactions from belgium card-holders between March and May 2015)
have shown that the proposed HMM-based feature engineering allows for an in-
crease in the detection of fraudulent transactions when combined with the state
of the art expert based feature engineering strategy for credit card fraud detec-
tion. The proposed HMM-based feature engineering strategy shouldn’t replace
the transaction aggregation strategy since the best detection is achieved when
combining these feature engineering strategies.






Chapter 3

Related Work

In this chapter we will detail the state of the art in the fields of credit card
fraud detection and sequential anomaly detection. We will also describe the
solutions proposed to several problems inherent to credit card fraud detection.
More precisely we will show how the research questions introduced in chapter
are answered in the litterature.

e The approaches to answer skewed class distribution are split between data
based strategies which aim to reduce class imbalance and model based
strategies that aim to make the machine learning algorithm robust to class
imbalance. They are presented in section

e Different feature engineering, feature selection and feature creation not nec-
essarily specific to credit card fraud detection are presented in section

e Solutions for sequence modelling in the context of anomaly detection are
presented in section However hidden Markov model aren’t described
thoroughly in this section since they are detailed in depth in chapter

e The related work chapter ends with a description of dataset shift along
with the approaches that exist in order to characterize it. Afterwards,
several strategies to increase the robustness of machine learning classifiers
to dataset shift are presented.

3.1 Learning to classify unbalanced datasets

Typical fraud detection tasks present a strong imbalance in the representations of
the classes: there is usually a majority genuine class that outweighs the minority
fraudulent class [Ali et al., 2019).
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Most learning algorithms are not adapted to a strong imbalance in the repre-
sentations of classes in the dataset. Therefore, learning from unbalanced dataset
is a challenging research question that needs to be considered(|Batista et al.,
2000]). [Weiss and Provost, 2001] and [Estabrooks et al., 2004] observed that an
unbalanced dataset leads to a decrease in the performance of standard learning al-
gorithms such as SVM or random forest. In fact, class imbalance have been shown
to produce a negative effect on the performance of a wide variety of classifiers
([Chawla, 2005]). [Japkowicz and Stephen, 2002] have shown that skewed class
distributions affects negatively the performance of decision trees and neural net-
works. [Visa and Ralescu, 2005] drew the same conclusion for neural networks.
[Kubat and Matwin, 1997], [Mani and Zhang, 2003] and |Batista et al., 2004]
showed the weakness of k Nearest Neighbors algorithms to imbalanced datasets.
[Yan et al., 2003] and [Wu and Chang, 2003] showed that SVM were also weak
to skewed class distributions. Overall, most of the classifiers suffer from class
imbalance, some more than others.

The strategies used to tackle this issue operate at two different levels: some
ailm to solve the imbalance of the dataset beforehand whereas others want to
adapt the learning algorithm to make it robust to an unbalanced classification
task ([Chawla et al., 2004], |Pozzolo, 2015]).

The data level strategies are called like that since they happen during the
preprocessing time, before any learning algorithm is applied. They consist in
rebalancing the dataset in order to compensate the structural imbalance. The
algorithmic level strategies involve methods where the algorithms are designed
especially to deal with an unbalanced task and methods where the classification
costs of the algorithm are adapted in order to reflect the priorities of the unbal-
anced classification task. The latter are called cost sensitive classifiers ([Elkan,
2001]).

The sampling based solutions to handle imbalance will be described in section
The model based methods will be briefly highlighted in section [3.1.3

3.1.1 Sampling methods

Sampling methods consist in reducing the class imbalance by changing the class
effectives in the dataset. In this section we will first present two naive methods
that reduce class imbalance in the dataset by adjusting class ratios: undersam-
pling and oversampling. Afterwards we will introduce the Synthetic Minority
Oversampling Technique strategy (SMOTE) that aims to create new examples of
the minority class [Chawla et al., 2002]. The different strategies are illustrated
in figure 3.1



Undersampling consists in rebalancing dataset by taking less examples from
the majority class in order to match the effectives of the minority class ([Drum-
mond and Holte, 2003]). The assumption made with undersampling is that the
majority class contains redundant information that can be removed. The main
issue with undersampling is that, when the imbalance is too pronounced, too
many examples from the majority class need to be taken away. This may cause
a decrease in the performance of the algorithm due to a lack of data. It is worth
mentioning that undersampling speeds up the learning phase, which makes it an
interesting choice when in presence of an unbalanced dataset.

Oversampling consists in rebalancing the dataset by repeating random ex-
amples of the minority class ([Drummond and Holte, 2003]). The main issue of
oversampling is that repeating some examples doesn’t add information and may
lead to an overfitting of the learning algorithms. Besides, oversampling increases
the learning time since it makes the train-set artificially bigger.

In 2002, [Chawla et al., 2002] introduce SMOTE, a strategy to reduce class
imbalance by creating new examples in the neighbourhood of the minority class.
The creation of new minority class example is done by averaging neighboring
examples of the minority class. For categorical features, the averaging consists
in a majority voting for the category: the category mostly represented in the
neighbourhood becomes the category of the corresponding categorical feature of
the newly created example. They show an increase in the performance of classifier
when using this rebalancing strategy. However SMOTE does not consider the
label of neighboring examples when creating examples from the minority class.
This can lead to an overlap between minority and majority classes. ADASYN
[He et al., 2008] and Borderline-SMOTE [Han et al., 2005] tackle this issue by
taking into account only neighboring examples from the minority class.

3.1.2 Cost based method

The metrics obtained using the confusion matrix (see section usually gives
the same weights to the true positive, false positive, true negative and false nega-
tive. However, in presence of class imbalance, this can cause issue. For example,
in the case where the negative class is representing 10% of the dataset and the
positive class 90% of the dataset, the confusion matrix of a very bad classifier
which says that every example is positive without having any insight on the pat-
terns representing the positive and negative classes would be the one shown in
table The corresponding accuracy would be: ACC = % = 0.9. Be-
cause of the class imbalance, this very bad classifier is measured to predict the
good class 90% of the times even if it doesn’t contain valuable information.
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Figure 3.1: Sampling strategy for unbalanced classification. (The + symbols refer to the
magjority class whereas the — symbols refer to the minority class. The symbols colored in red are

newly created symbols by the oversampling strategy or by the SMOTE strategy([Chawla et al.,

[03))

Table 3.1: 90/10 imbalance confusion matrix

predicted positive predicted negative

actual positive 90 0
actual negative 10 0

In order to solve this issue, the misclassification costs of the false positives
(FP) and false negatives (FN) can be used in order to replace the value of the
false negatives and false positives in the confusion matrix with respect to the

ideal ratio of majority /minority examples. The 2% 1atio would be equal to

minority
% [IZadrozny et al., 2003“. The adjusted confusion matrices obtained

when testing models will therefore reflect correctly the importance of misclassi-

fying a positive and a negative example.

3.1.3 Model based methods

We introduced in section [2.1.2] ensemble based methods since they are common
methods for the credit card fraud detection application domain. Some solutions
were published in order to strenghten ensemble based methods when in presence
class imbalance. EasyEnsemble ([Liu et al., 2009]), UnderBagging ([Wang et al.,
2009]) and SMOTEboost ([Chawla et al., 2003]) are ensemble based method that
are adapted by design to skewed class distributions. SMOTEboost ([Chawla
et al., 2003]) combines boosting with SMOTE in order to provide balanced
datasets to each boosting weak learner. Similarly, EasyEnsemble ([Liu et al.,




2009]) use undersampling in order to create different balanced datasets for the
boosting learners. In UnderBagging ([Wang et al., 2009]) undersampled datasets
are used to train several learners whose predictions are aggretated with bagging.

An other leverage for dealing with class imbalance is to adapt the metrics
used to evaluate the models and the costs used to train some of them in order to
counterbalance class imbalance. Indeed, some real world imbalanced classifica-
tion tasks such as credit card fraud detection give more importance to correctly
identify the element of the minority class than those of the majority class. In the
case of cost sensitive learners, the misclassification cost can be adapted in order to
reflect this priority. [Shirazi and Vasconcelos, 2010] present cost sensitive SVMs.
[Kukar and Kononenko, 1998] introduced earlier the possibility of cost adaptation
for neural networks. Adapting the misclassification cost for imbalanced problem
has also been studied for boosting methods (|Sun et al., 2007], [Fan et al., 1999]).

In the end, there is a variety of methods to deal with class imbalance. In
section [4], different sampling methods are compared in order to find which one is
the more appropriate for our unbalanced credit card fraud detection problem.

3.2 Feature engineering for credit card fraud detec-
tion

As stated in chapter [2] transactions are represented by vectors of continuous,
categorical and binary features that characterize the card-holder, the transaction
and the terminal. The card-holder is characterized by a unique card-holder ID,
its age, its gender, etc. The transaction is characterized by variables like the
date-time, the amount and other confidential features. The terminal is charac-
terized by a unique terminal-ID, a merchant category code, a country.

However, most learning algorithms can’t handle categorical features without
a preprocessing step in order to transform them into numerical features ([Kot-
siantis, 2007]). In section we will discuss the different solutions that were
considered in order to encode the categorical features. We will also present some
papers that describe feature selection methods and explain which features we
chose to use for our credit card fraud detection task.

Also, credit card fraud detection can be improved by providing additional
information to the classifier. For example, the information usually contained
in the features of the credit card transactions doesn’t reflect the history of the
transactions. In section [3.2.2] we will describe some state of the art solutions
in order to enhance the information contained in the credit card transaction by



creating new features.

3.2.1 Feature encoding and feature selection
Feature encoding

Several options are presented for encoding categorical features in the literature.
The two most common options are label encoding and one-hot encoding ([Kot-
siantis, 2007].

Label encoding is an encoding strategy where the categorical feature with n
categories is transformed into a numerical feature taking n different numerical
values. The asset of label encoding is that it is light memory wise since you
don’t increase the shape of the dataset matrices. However, with label encoding
the categories become ordered after their transformation into numbers. This can
cause issues for some classifiers like SVMs, neural networks or logistic regression
classifiers that aim to calculate a distance between examples. On the other hand
tree based classifiers aren’t affected by the order of the categories due to label
encoding since their classification process consists in splitting the dataset (see

section [2.1.3)).

One hot encoding is an encoding strategy where the categorical feature with
n categories is transformed into n — 1 binary features describing the values of
the categorical feature. This method is appropriate for distance based classifiers
since it doesn’t order the categories: all of them are equidistant whereas with
label encoding there are some categories that would be falsely considered closer
than others.

An other elegant solution that maintains an appropriate distance measure
between categories of a categorical features is class embeddings. Moreover, it is
significantly less memory intensive than one-hot encoding. It consists in mapping
the different categories of a feature to a k dimensional space (with k < neategories)
and to adjust the mapping with a gradient descent process. [Guo and Berkhahn,
2016] used embeddings as a way to encode categorical features in a supervised
way. The embeddings maps are equivalent to an extra layer of neurons on top of
the pre one-hot encoded feature set. They are adapted to the classification task
thanks to a gradient descent process. Recently [Russac et al., 2018] (in collabo-
ration with the chair of data science of the university of Passau) used Word2Vec
embeddings in order to replace one-hot encoding for a distance based classifier
(logistic regression) in a credit card fraud detection task.

[Carcillo et al., 2018] and [Pozzolo, 2015] showed that frequency encoding can



be useful in the case of an imbalanced classification task like credit card fraud

detection. With frequency encoding, the value of the category is replaced by the
MinorityClass

ratio MagorityClass

(the percentage of fraud in this category for our application).

Feature selection

Typical credit card transactions have a big number of attributes Some of the at-
tributes like the city of the card-holder may be not meaningful for the classifiers
or lead to overfitting issues because they present too many categories or are too
sparse. Also, some features may contain the same information twice (for example
the ZIP code contains the value of the county) or can be highly correlated like
the age of the card-holder and the mean amount of its transactions for example.

In this context, feature selection can be useful in order to purify the feature
set, decrease the duplicates in informations and keep only relevant information
for the machine learning task. Moreover, having a smaller number of features
and less correlated features containing duplicate information thanks to feature
selection would lead to a better understanding of the classifiers decision. Besides,
feature selection may increase the speed of classifiers (smaller feature set and
datasets) and their performances (less overfitting) (|[Bhattacharyya et al., 2011]).

[Noghani and Moattar, 2015] proposed an iterative approach for feature se-
lection in a credit card fraud detection application. They add one by one the
features that improve the most the performance of a random forest classifier.

Leopold Fossi and Gabriele Gianini used the Shapley value [Shapley, 1953] in
order to do feature selection for credit card fraud detection [Fossi and Gianini,
2019]. Shapley value reflects the contribution of a player to the team: a good
player may not add too much for a team because his strengths are already brought
by an other player whereas a not so good player may fulfill the needs of a team
and benefit more to it.

Feature selection may become mandatory when the data is enriched with a
lot of new informative features. [Fawcett and Provost, 1997] proposed to describe
the evolution of relevant credit card fraud detection features for different hours of
the day. They stated afterwards the need of a feature selection process in order
to decrease the total number of features.

Missing values strategies

Missing values is an oftentimes met issue in machine learning task [Kotsiantis,
2007]. Some datasets may contain missing values, either because some informa-



tion wasn’t provided or because the values are structurally missing: for example
informations about internet browser used for the purchase may be available in
e-commerce credit card transactions dataset but are missing for face-to-face trans-
actions.

As stated by [Acuna and Rodriguez, 2004] there are 3 main approaches to
solve missing value issue:

e The most straightforward way to handle missing values is to delete them.
One can choose to delete the rows containing the missing values if these
aren’t a too large part of the dataset. Besides, it is also possible to choose
to delete the features concerned if they are too sparse. It becomes a feature

selection problem (see paragraph [3.2.1)).

e One can also keep the rows containing missing values and fill the missing
values with replacement values like the mean, the median, or a default
categorie (-9999 for a card-holder age for example). [Troyanskaya et al.,
2001] compared these approaches in the context of DNA microarrays.

e Finally, a more costly and elegant solution can be to infer the missing value
of the using a model. [Hyunsoo et al., 2005] used k-nearest neighbors for
missing value imputation for a genomics application. |Oba et al., 2003]
chose to use bayesian principal component analysis for missing value im-
putation also in a DNA microarrays dataset. [Stekhoven and Buhlmann,
2011] proposed MissForest: a random forest approach for missing value
imputation that leverages the random feature choice for trees in order to
estimate out-of-bag errors tree wise. Imputations methods are relative to
the particular problem: in presence of a highly categorical dataset, the user
may want to use tree based classifiers for missing value imputation, whereas
principal component analysis is less computationally expensive and totally
reasonable for a numerical dataset.

In the end missing values is a very current issue in machine learning and the
solutions proposed to handle them are simple and efficient.

3.2.2 Feature creation for credit card fraud detection

[Bolton and Hand, 2002] highlighted the fact that even if the transactions contain
a lot of attributes, there is a need for creating new attributes in order to describe
better the transactions. They showed for example that a first time credit card
user may not have the same buying behaviour as a long time credit card user and
adviced to create features to bring historical knowledge to the classifiers.



History based features

Several strategies have been explored in order to introduce history based infor-
mation to the feature set.

Traditionally, the feature engineering for credit card fraud detection uses the
fundamentals of RFM (Recency - Frequency - Monetary). Recency can be char-
acterized by the time-delta feature reflecting the time elapsed between two con-
secutive transactions, the Frequency can be characterized by the number of trans-
actions in a period of time, and the Monetary aspect describes the amount spent
by the card-holder. This RFM fundamentals are described in [Blattberg et al.,
2008] and used as state of the art by |Vlasselaer et al., 2015], [de Fortuny et al.,
2014].

[Fu et al., 2016] introduced a new feature called trading entropy that aims
to quantify: "How surprising is the recent amount of money spent for this card-
holder with this type of merchant'. The proportion of the i-th merchant type in
the last k transactions is pi:

_ Total Amount For M erchantType;
-~ Total AmountO f Last K Transactions

pi (3.1)

The feature proposed by [Fu et al., 2016] is the variation of entropy with the
addition of the incoming transactions to the amount history of the considered
card-holder:

K-1 K
TradingEntropyT = Z pi *log(pi) — Zpi xlog(pi) (3.2)
i=0 i=1

Earlier, [Bolton and Hand, 2001 adviced similarly to refer to the past trans-
actions of the card-holder for outlier detection. Indeed, break point analysis aims
to quantify how much a global outlier raised is a real outlier for the considered
card-holder.

[Whitrow et al., 2008] proposed a transaction aggregation strategy to cre-
ate descriptive features containing information about the past behaviour of the
card-holder over a certain period of time. They showed a 28% increase in the
detection of fraudulent transactions by using these aggregated features with a
random forest as the learning algorithm.

The aggregations are calculated for a transaction based on the card-holder
preceding transactions. Given the incoming transaction x;, the previous transac-
tions of the card-holder are selected with respect to particular features. The set
of transactions S; selected is for example the transactions done with merchants



from the same country or with merchants of the same type. The value of the new
features are calculated from .5; via aggregation functions:

sum; = Z Tamit (3.3)

Tamt€S;

count; = |S;| (3.4)

[Jha et al., 2012] applied Whitrow’s transaction aggregation strategy to lo-
gistic regression in a real world credit card transactions dataset. [Bahnsen et al.,
2016] also used Whitrow’s transaction aggregation strategy as the state of the
art for their work (described in the next section) with random forest, Logistic
Regression and Bayes minimum Risk model. Wihtrow’s transaction aggregation
strategy reflects an information similar to the RFM strategy except that for RFM
the history isn’t selected with respect to some categorical features such as mer-
chant type or merchant country.

We have shown in section[5]that the features based on transaction aggregation
strategy are very informative features for credit card fraud detection. Therefore,
the main work of this PhD was to propose a feature engineering strategy that
overcomes the limits of the transactions aggregation strategy of [Whitrow et al.,
2008].

Other feature creation approaches

In order to enrich the transaction information, [Vlasselaer et al., 2015] propose
APATE, a framework that aims to create network based features. The network
based features are constructed by propagating the label of the edges (i.e. trans-
actions) in order to infer a time dependent suspiciousness score for each node
(card-holder and merchants) of the bipartite graph of the transactions already
introduced in section 2.1.11

[Bahnsen et al., 2015, [Bahnsen et al., 2016] highlighted that the time fea-
tures have a periodic behavior that needs to be taken into account during the
preprocessing phase. The time features are not usual numerical features as shown
in ﬁgure (for example the arithmetic mean doesn’t apply well to time features).

They proposed to use the Von Mises distribution ([Best and Fisher, 1979]) in
order to reflect better the periodicity of the time features when calculating time
deviation values (see figure [3.2)).
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Figure 3.2: Time of the transaction on a 24h clock modeled with the uniform distribution
(left) or the Von-Mises distribution (right). (from [Bahnsen et al., 2016|)

3.3 Sequence modeling for anomaly detection

Sequence modelling is a major machine learning research question. In this sec-
tion we will split the field with respect to two main approaches: the generative
approach that aims to learn the joint distribution of the events in a sequences
and the discriminative approach that aims to find the labels of the events in a
sequence.

Afterwards, we will highlight how these approaches are integrated in anomaly
detection tasks.

3.3.1 Sequence modelling
Graphical models

Hidden Markov models are generative models especially built for sequence mod-
elling. They are briefly introduced here and described more in depth in section
0.2.2

They comprise two matrices (see figure [3.3):

e The transition matriz describes the succession of the hidden states. It
reflects a multinomial distribution from all hidden states at time ¢ to all
hidden states at time ¢ + 1. The hidden states obey to the Markov property.
Indeed, the hidden state at the time ¢ + 1 only depends on the hidden state
at the time t: There is no memory in the distribution of successive hidden
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Figure 3.3: Hidden Markov model architecture. (from |Lucas et al., 2019a])

states, only conditional probability given the immediate previous hidden
state. Formally, it means that conditional distributions between hidden
states ¢t in a sequence of size n can be simplified as following;:

P(telth—1,th—2, .., t1, We—1, Wg—2,w1) = p(tglts—1) k € {1,..,n}

e The emission matriz describes the conditional distribution of the observed
variable w; given the hidden states t;. The probability distribution changes
with respect to the observed variable properties. For example it can be
considered multinomial for categorical observed variables or gaussian for
continuous observed variables.

The transition and emission conditional probability matrices of the hidden
Markov models are usually initialized with a random value and optimized by an
iterative Expectation-Maximisation algorithm known as the Baum-Welch algo-
rithm (|[Baum, 1972] [Rabiner and Juang, 1991]). Similarly to a training process,
this optimisation process will adapt the transition and emission matrices in order
to reflect the distribution of a set of observed (training) sequences. EM optimiza-
tion of a model with latent (hidden) parameters consists in:

expectation Finding the latent states distributions that correspond the most
to the sequences of observed data. This is usually done with the help of the
Viterbi algorithm which recursively leverages the Markov property in order
to simplify the calculations of the conditional probabilities (also referred to
as forward-backward algorithm [Viterbi, 1967]).

maximisation Maximising the correspondence between the latent distribution
inferred during the expectation step and the parameters of the transition
and emission matrices by adjusting the parameters.

The expectation and maximisation steps are repeated until convergence of the
graphical model to the observed data. The convergence can be monitored via the
evolution of the likelihood that the set of observed sequences have been generated



by the model. This likelihood increases over the iterations until it reaches a ceil-
ing when the hyper parameters ruling the architecture of the generative model
don’t allow it to fit more to the set of observed sequences.

Even if HMMs are an elegant graph-based model, they present one drawback:
their structure often doesn’t reflect the true process producing the observed data.
This problem comes mostly from the Markov property: any relationship between
two non consecutive hidden states (yl and y4 in figure for example) must
be communicated through the intermediate hidden states. A first-order Markov
model like HMM (where p(y;) only depends on y;_1) is less able to capture these
longer term relationships.

Several architectures have been tried in order to overcome the modelling weak-
nesses of HMMs: maximum entropy markov models ([McCallum et al., 2000]),
input-output HMMs ([Bengio and Frasconi, 1995]), and conditional random fields
([Lafferty et al., 2001]) (see figure[3.4). However, as represented by the directions
of the arrows in figure all of these architectures are discriminant models that
represent the conditional distribution p(y|z) rather than p(x,y). Discriminant
models are usually more efficient than generative model since the conditional
distribution p(y|z) is simpler than the joint distribution p(z,y): the joint dis-
tribution p(x,y) contains the conditional distribution H On the other hand, the
joint distribution also contains the information of the data distribution x. One
may want to choose HMM especially for their ability to model all the data dis-
tribution p(z,y) and not only the conditional distribution of the target variable

p(yle).

Recurrent neural network approaches

Recurrent neural networks (RNNs) are a class of artificial neural networks where
connections between nodes form a directed graph along a temporal sequence.
These connections allow to model temporal dynamic behaviors.

Recurrent neural networks can be considered as an hidden state based model
where the inner layers reproduce the hidden state based architectures. Further-
more, the connectivity between consecutive hidden states (or nodes) also follows
the Markov property (p(y;) only depends on y;—1). RNNs are discriminant mod-
els that aims to predict the label of an event given a past sequence of events.
They are detailed extensively in [Graves, 2012].

According to [Bengio et al., 1994] Recurrent network is a powerful model

Lsince p(z,y) = p(y|z) * p(z)
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Figure 3.4: Graphical model architectures. ((a) HMM, (b) mazimum entropy markov model,

(c) input-output HMM, (d) conditional random field) (from [Dietterich, 2002])
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Figure 3.5: Stacking networks time-wise for backpropagation through time

that presents difficulties for training. In order to train a RNN, Backpropagation
through time is often used (BPTT), however it causes vanishing and exploding
gradient problem because BPTT consists in representing the network as a deep
multi layer network that stacks the initial RNN as many time as there are time
steps (see figure . The virtual network on which backpropagation is applied
([Rumelhart et al., 1986]) becomes very deep.

[Mikolov et al., 2011] showed that one solution to exploding gradient can be
to clip the elements of the gradient that exceed a fixed threshold.

[Hochreiter and Schmidhuber, 1997] highlighted that it is possible to overcome
the vanishing and exploding gradient problem with the introduction of memory
cells. The network structure that includes memory cells is called Long Short-
Term Memory Network . The LSTM were shown to be able to learn
long term dependencies in sequences with good success for sequential tasks such
as speech recognition (|Graves and Jaitly, 2014]




[Jurgovsky et al., 2018] compared LSTMs to tree based classifiers for a credit
card fraud detection task. They showed an increase in the detection of fraudulent
transactions by using sequential classifiers (even over the feature aggregation
strategy proposed by [Whitrow et al., 2008] for face-to-face transactions).

3.3.2 Sequence modelling for sequential anomaly detection

Sequential anomaly detection aims to raise an anomaly score for events, subse-
quence of events or whole sequence with respect to a genuine distribution.

For sequential tasks, multiple definitions of anomalies exist that need to be
handled differently ([Chandola et al., 2012)):

e An event of a sequence may be anomalous. For example, when a transaction
is fraudulent within the sequence of transactions of a given card-holder.

e A subsequence may be anomalous. For example, if there is a delay between
the credit card theft and its reporting, the transactions issued with the
credit card are not made by the card-holder but by the fraudster and must
be identified as anomalous.

e A sequence may be anomalous with respect to a set of non anomalous
sequences. For example, a sentence in french will be anomalous in a set of
english sentences. Or given a database of protein sequences, some sequences
may be anomalous.

One simple way to raise an anomaly score is counting the likelihood of the
event or fixed length window of events in the genuine set of events.

_ #subsequence(i)

L;

= 3.5
#subsequences (3:5)
[Forrest et al., 1999] proposed the t-STIDE technique (treshold based sequence

time delay embedding) in order to raise anomaly scores for sequences. It consists

in computing the ratio of sliding windows that have a likelihood (see equation (3.5

below a certain treshold A. The anomaly score of the test sequence is proportional

to the number of anomalous windows in the test sequence. The corresponding

formula is: I 1

1 L(w;) < \1<i<t
ASq — ‘ ( Z) : — " = ‘ (36)
This kind of window based counting can also be used as anomaly signal to

calculate a 2nd order anomaly score. For example, [Hofmeyr et al., 1998|] proposed
to compute the average of the strength of the anomaly signal over a set of windows



that cover the considered event or subsequence.

N
ASe) = 1 Y Afw) (3.7)

In addition to counting methods for calculating anomaly scores, machine
learning based models can also be used in order to raise these anomaly scores.

Hidden Markov models (HMMs) are the most used model in the field of
anomaly detection for discrete sequences according to |Chandola et al., 2012].
[Gornitz et al., 2015] used HMMs in order to raise anomaly score for finding
genes in the genome of prokaryotes. |Rashid et al., 2016] used HMMs in order
to model genuine behaviour for the task of detecting malicious insiders in the
sequence of logs.

[Srivastava et al., 2008] used multinomial HMMs in the context of credit card
fraud detection. They modelled the sequence of amount of users as a categorical
feature with 3 values: "low amount" for the transactions with amounts less than
50 €, "mid amount" for transactions with amounts between 50 and 200 € and
"big amount" for transactions with amounts bigger than 200 €. The anomaly
score raised is the inverse of the likelihood of the recent amounts to have been
generated by an HMM trained on a set of genuine sequences. They generated a
credit card transactions dataset in order to assess the qualities of their strategies.
[Dhok, 2012| used a similar approach for a real world credit card transaction
dataset, and [Robinson and Aria, 2018] extended that with success for a prepaid
credit card fraud detection task.

[Dorj et al., 2013| also used HMMs in an anomaly detection task in electronic
systems, but they modelled an abnormal sequence in addition to a genuine se-
quence. This is interesting since assessing the abnormality of outliers detected
decreases the number of false positive. You not only raise outliers, but you also
confirm that these outliers belong to the abnormal class.

HMMs for sequential anomaly detection have mostly been used in order to
raise an anomaly score using the likelihood of the sequence to have been generated
by the HMM. However, recurrent neural network (RNN) approaches and more
precisely long short term memory networks were more varied. Similarly to the
precited HMM approaches, LSTM were used in order to raise anomaly scores by
[Bontemps et al., 2016| for an intrusion detection task. The anomaly scores of a
window of events is the distance between this window of events and the window
of events that would have been generated by the LSTM for the corresponding
user. Since LSTM are discriminative models, a custom distance has been created



by the authors for this generative task. [Malhotra et al., 2015] modelled the
genuine distribution of sequence based dataset with LSTM in order to afterwards
raise an anomaly score for electrocardiograms, space shuttle valve time series and
power demand datasets. Alternatively, [Ergen et al., 2017] used LSTM to extend
various length sequences in order to obtain sequences of equal length for raising
an anomaly score afterwards with the help of One Class SVM.

3.4 Dataset shift detection and adaptation

Many machine learning tasks make the assumpion that the random variables in
the data are i.i.d. (independent and identically distributed) among the train and
the test sets. That property ensures that the decision function learned by the
classifier on the train set is valid on the testing set. However in some case the
i.i.d. hypothesis isn’t valid: there are changes in the data distribution between
the training and testing set. These changes of the data distribution can decrease
drastically the performances of the classifiers ([Pozzolo et al., 2014], [Abdallah
et al., 2016], [Alaiz-Rodriguez and Japkowicz, 2008]) and need to be taken into
account.

The term "dataset shift" is used in order to include the phenomenons where
the i.i.d. hypothesis isn’t valid. It is defined by [Moreno-Torres et al., 2012] as
"cases where the joint distribution of inputs and outputs differs between training
and test stage"

The two most frequent causes of dataset shift are non stationary environ-
ments and sample selection bias. Sample selection bias refers to the fact that
the training data is gathered differently from the data of the testing set. For
example, data for a driving behaviour modelling task can be collected with the
help of students that play a driving simulator game. This can cause a sample
selection bias because the context of acquisition of the training set (artificial driv-
ing simulator) is different from the real life application (real life road safety task).

Non stationary environments can make the distribution of the data change.
For example in the case of the bird sound recognition challenge of LIFECLEF
[LifeCLEF, 2018], the dataset spans from January to June 2017: seasons may
affect the patterns observed and the class distribution (i.e. bird species observed).
Similarly, spatial changes may affect learning task.



3.4.1 Different types of dataset shift

Dataset shift is a broad word that refers to a change in the joint distribution of
the target variable and the input features p(z,y). However, since p(z,y) =
p(y|z) * p(z), the causes of the change in the joint distribution can be differ-
ent. Several shifting phenomenon can be identified ([Moreno-Torres et al., 2012],
[Storkey, 2009], [Gao et al., 2007], [Shimodaira, 2000]):

e (Covariate shift is the type of shift that appears most often in the litera-
ture. It was formerly called population drift. It refers to the phenomenon
when the conditional distribution of the classes with respect to the training
data doesn’t change from the train set to the test set, but the distribution
of the data do. For example in the credit card fraud detection settings,
the phenomenon where the buying behaviors change over seasons but the
fraudulent strategies don’t can be seen as covariate shift. It is formally
defined as:

ptrain(y‘x) = ptest(y|x) and ptrain(x) 7& ptest(x) (38)

e Prior probability shift is an other subtype of dataset shift. It is also some-
times called shifting priors. Prior probability shift refers to a change in the
class distributions: for example when the proportion of fraudulent transac-
tions in the training set is way smaller than for the testing set. It may cause
a surrepresentation or an underrepresentation of one class in the prediction
of machine learning classifiers. It is formally defined as:

ptrain(y‘m) = ptest(y|m) and ptrain(y) 7& ptest(y) (39)

o (Concept shift or more often concept drift refers to the phenomenon where
the conditional distribution of the target classes with respect to the input
variables changes. For example when fraudster adapt their strategies and
the classifier is not able to detect fraud efficiently anymore. It is formally
defined as:

ptrain(y‘x) 7é ptest(y‘x) and ptTain(x) = ptest(x) (310>

3.4.2 Detecting dataset shift

Most of the studies passively detect dataset shift when a decrease in classifiers
performance on the test set is witnessed([Pozzolo, 2015], [Gomes et al., 2017],...).
In order to prevent the decrease of classifier performance, some teams aimed to
estimate more realistically the expected performance of classifiers in presence of
dataset shift. For example, [Webb and Ting, 2005] pointed out the weaknesses
of the ROC evaluation in presence of prior probability shift. Earlier, [Kelly et al.,



1999| stated that the weaknesses of classifiers in presence of covariate shift and
prior probability shift can be highlighted with the decrease of classifiers perfor-
mance for their loan risk prediction task. Additionaly, [Sugiyama et al., 2007]
discussed the issues appearing when classifer performance expectation is set us-
ing a cross validation hyperparameter optimization: cross validation expectations
can’t be trusted if the distribution changes between train and test set. They pro-
posed a cost based approach by comparing the data distribution p(z) in the train
and test set and weighting more the data points of the train set that are similar
to those of the test set for the cross validation optimization. If the data point is
typical of the train and test distribution, then it is weighted more for the evalu-
ation of the model.

[Karax et al., 2019] provided interesting results where they showed how to de-
scribe in advance the concept shift in two dataset (Airlines and Seaﬂ) by looking
directly at the changes in the decision function through the changes of feature
importance in an adaptive random forest classifier (described in next paragraph)
[Gomes et al., 2017]. They could therefore predict the direction of the dataset
shift and the resulting change in the conditional distribution p(y|z). Earlier,
[Lane and Brodley, 1998| tried to quantify the direction of drift on a continuous
one dimensional axis by looking at which examples get misclassified when con-
cept drift happens. An optimisation of the treshold value of their classifier was
managed in the decision process of their user identification for computer secu-
rity task. Similarly, [Wang et al., 2003] wanted to precisely characterize concept
shift by comparing the class prediction between two classifiers trained before and
after a concept shift (old training data vs recent training data). The examples
that present a conflict for class prediction can then be studied in order to under-
stand which changes happen between the conditional distributions pyq(y|z) and

Prew (y]2)

3.4.3 Strategies in presence of dataset shift

Data based methods Dataset shift of various types may affect classifiers per-
formance. |Alaiz-Rodriguez and Japkowicz, 2008] made the hypothesis that sim-
ple classifiers are more robust to population drift (covariate shift) than complex
classifiers. They conclude the opposite: neural networks with 10 neurons in one
hidden layer and C4.5 decision tree are more robust than linear regression and
neural networks with 1 hidden neuron as hidden layer on an artificial medical
dataset stating the prognosis of patients infected with the flu.

Others authors preferred kernel approaches in order to handle dataset shift.

2https ://moa.cms.waikato.ac.nz/datasets/


https://moa.cms.waikato.ac.nz/datasets/

[Gretton et al., 2009] used reproducing kernel hilbert spaces (RKHS) in order
to weight instances in the training set so that the averages of the training set
features correspond to those of the test set features. This kernel mean matching
approach is mostly used in the context of covariate shift since it allows to make
the distribution of the data in the train and test set more similar. [Bickel et al.,
2007| leveraged this kernel mean matching approach for data streams. They de-
rived the kernel mean matching approach in order to integrate it in the logistic
regression classifier used and to update it over time. They highlighted the diffi-
culties of this integration for more complex classifiers. In addition to kernel mean
matching, [Klinkenberg, 2003| propose to train SVMs with an adaptive time win-
dow in order to prevent covariate shift.

Similarly to the kernel mean matching approach, [Moreno-Torres et al., 2013|
proposed a method in order to achieve transfer learning between different cancer
diagnosis datasets. They used genetic programming in order to create a regressor
that transforms the features of one dataset to the features of an other dataset in
order to be able to apply a pretrained classifier without adapting it.

Classifier based methods An other way to prevent concept drift is to update
regularly the models in order to adapt them to the dataset shift.

At first, sliding windows based approaches have been explored. The idea is
that by retraining them regularly using fresh data, the classifiers will stay up to
date with dataset shift events. [Widmer and Kubat, 1996] used a sliding window
strategy for their FLORA4 framework: they trained regularly new classifiers on
recent and trusted data but stored the bad performing ones for hypothetical
later usage. |Lichtenwalter and Chawla, 2009] also leveraged the sliding window
strategy for imbalanced data streams with concept drift: they re-trained regularly
C4,5 decision trees classifiers in order to prevent covariate shift. Moreover, they
adapted the information gain calculation used when building the C4,5 trees (see
section by incorporating the Hellinger distance in order to increase the
robustness of the C4,5 trees to class imbalance and to prior probability shift. The
Hellinger distance is a symmetric and non-negative measure of similarity between
two probability distributions. The equation [3.6| corresponds to the Hellinger
distance between two discrete probability distributions with equal effectives P =
(p1, -, pk) and Q = (q1, -, Gk)-

[Pozzolo, 2015] proposed a sliding window method for data streams with de-
layed information on the same credit card transactions dataset used in this thesis
(see figure . Since the ground truth for the class of credit card transactions
is delayed by a week in average, the label of the most recent transaction isn’t
known. They proposed to aggregate the predictions of a classifier on the old
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Figure 3.6: Hellinger distance: mesure of distributional divergence between two probability
distributions P and Q
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Figure 3.7: Aggregating ground truth examples with investigators feedbacks (|Pozzolo, 2015|)
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ground truth example with the predictions of a classifier trained on the feedbacks
of the investigators on alerts raised previously by the fraud detection system.
They showed that aggregating predictions provided better fraud detection than
pooling all the examples of the ground truth and investigators feedback together.

Instead of preventing dataset shift by constantly re-training the classifiers,
one may want to retrain them only if they prove to be lackluster. [Kolter and
Maloof, 2003] proposed to train again the classifiers when their performance drop.
In order to prevent missclassification for data streams, [Hoens et al., 2011] used
Hellinger distance on all the features of the dataset in order to detect early a co-
variate shift and which features are affected by it. They would therefore be able
to know which trees of a random forest classifier will be affected by the dataset
shift and need to be re-trained.

More recently, authors in [Gomes et al., 2017], [Barddal and Enembreck, 2019
proposed an autonomous architecture for random forest classifier introducing a
variant to Hoeffding Adaptive Tree in order to include a drift detector inside
decision nodes to monitor the internal error rates of the tree, thus, continuously
selecting features and building its predictive model over time. The Hoeffding
Adaptive Trees (also called Very Fast Decision Trees) leverage the observation
that using only a subset of examples in order to build a decision tree is sufficient to
obtain good prediction [Bifet and Gavalda, 2009]. This computationally efficient
and memory efficient tree architecture is therefore an asset in dataset shift context
where models or parts of the models have to be retrained regularly.






Chapter 4

Dataset exploration

This work has been the opportunity to study a real world credit card transac-
tions dataset containing all the transactions issued by belgian credit cards be-
tween March and May 2015. Having access to this proprietary dataset is an asset
in several ways: the evaluations done mirror the difficulties of credit card fraud
detection observed by experts, the fraudulent patterns of the dataset reflect the
fraudsters strategies identified, etc.

We introduced the challenges of credit card fraud detection, from both prac-
tice and research point of views, and the solutions of the litterature to tackle
these challenges in respectively chapters and [3] The following chapter will
be the occasion to describe this belgian credit card transaction dataset:

e First, we study features correlations and features importances in the context
of a credit card fraud detection task for a feature selection process. The
goal of this feature selection process is to have faster computations without
losing too much performances.

e Second, we introduce a method in order to quantify the temporal covariate
shift in the dataset. Using this method, we show that the covariate shift
within the face-to-face transactions strictly follows calendar-based patterns.
We tried to incorporate this contextual knowledge within a credit card
fraud detection task in a genuine way. This incorporation haven’t lead to
a significant increase of credit card fraud detection. This work has been
published in |[Lucas et al., 2019c¢].
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4.1 Important features and correlated features

4.1.1 Transactional features
Features description

Throughout this work, we explore a dataset containing all the transactions is-
sued by belgian credit card during between March and May 2015. The credit
card transactions contain 29 features. These features describe the card-holder,
the merchant and the transaction that connects them in the bipartite graph of
transactions. For confidentiality reasons, we can not list all the transactions at-
tributes of the proprietary dataset, but we list the most important ones for this
thesis.

The card-holder attributes are describing the card-holder or the card:

newPanID: A categorical ID identifying the card-holder. There are 3.5 millions
different card-holder IDs.

AGE: This numerical feature refers to the age of the card-holder.
GENDER: This categorical feature refers to the gender of the card-holder.

CARD-EXPIRY: This ordinal feature is refering to the month of expiration
of the credit card.

PROVINCE-CODE, DISTRICT-CODE, INS-CODE, ZIP, CITY: These
categorical features refer to the residence of the card-holder with various
degree of precision.

CITY Cc ZIP C INSCODE C DISTRICTCODE Cc PROVINCECODE

COUNTRY: This categorical feature refers to the country of the card-holder.
Unsurprisingly, more than 95% of the transactions are made by card-holders
who claim to be belgian.

The merchant attributes are:

TERM-MIDUID: A categorical ID identifying the merchant. There are 300
000 merchants ID in the dataset.

TERM-MCC: This categorical feature refers to the merchant category code.

TERM-COUNTRY: This categorical feature refers to the country of the mer-
chant. We observe that 60% of the fraudulent transactions are done with
terminals from USA or great britain.



Finally, the transactions attributes are:

TX-AMOUNT: This numerical feature refers to the amount of the transac-
tion. We observed that fraudulent transactions amounts have higher stan-
dard deviation than genuine transactions amounts. However genuine and
fraudulent transactions have a similar average amount (around 40€)

TX-DATETIME: This feature refers to the time of the transaction. Additional
feature can be extracted from the time of the transaction like the hour of
the day, the day of the week or the time elapsed between two consecutive
transactions (referred as 'time-delta’ in this work)

TX-ECOM: This binary feature tells if the transaction is a face-to-face or e-
commerce transaction.

TX-3D-SECURE: This binary feature tells if the e-commerce transaction trig-
gered a 3D-SECURE authentication process. It is equal to FALSE for all
face-to-face transactions

TX-EMYV: This binary feature tells if the face-to-face transaction triggered a
PIN authentication. It is equal to FALSE for all e-commerce transactions.

CARD-AUTHENTICATION: This categorical feature refers to the authen-
tication process triggered for the transaction.

TX-CARD-ENTRY-MODE: This categorical feature describes the interac-
tion between the credit card and the terminal in a face-to-face transaction.

TX-FRAUD: This binary feature tells if the transaction is a fraudulent trans-
action. There are 4 fraudulent transactions for 10.000 face-to-face transac-
tions and 3 fraudulent transactions for 1000 e-commerce transactions (see

table .

Features correlation

Among the 29 features of the dataset, we can imagine that some features may
contain the dupicate informations. For example, the 5 features describing the
residence of the card-holder should be highly correlated.

We plotted the Pearson’s correlation for each pair of features (see figures
and [4.2). The Pearson’s correlation between two features x and y is equal to:



with o, and o, the standard deviations of z and y and cov(z,y) the covariance
of z and off] Tt takes values between -1 and 1 where 1 is total positive linear
correlation, -1 is total negative linear correlation and 0 is no linear correlation.
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Figure 4.1: Correlation matrix for the e-commerce transactions
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Figure 4.2: Correlation matrix for the face-to-face transactions

Leov(z,y) = E[(z —E(z)) * (y — E(y))]



We can observe in the correlation matrices (see figures and [4.2) that:

e Indeed, features related to the residence of the card-holder are correlated
with each other.

e CARD-ENTRY-MODE and TX-ECOM-IND are highly correlated with
each other. Indeed, these features describe respectively the face-to-face
and the e-commerce transactions and contain a default value for respec-
tively e-commerce and face-to-face transactions.

e TERM-COUNTRY and TX-INTL are unsurprisingly correlated: since most
of the card-holders live in belgium, when TERM-COUNTRY isn’t belgium,
then TX-INTL has good chance to be equal to TRUE.

e CARD-AUTHENTICATION, CARD-ENTRY-MODE, TX-ECOM-IND, TX-
EMYV and TX-3D-SECURE all describe the authentication process used by
the card-holder either in e-commerce or face-to-face context and are there-
fore correlated with each other.

We observed in this correlation study that some group of features contain
similar informations. These correlations may be leveraged in a feature selection
process.

4.1.2 Feature importances and classifiers comparison
Feature importances for tree based classifiers

Information about the importance of each features for the classification can be
obtained from classifiers. These feature importances can be calculated in several
ways:

Mean decrease in accuracy: Also called permutation importance, this mea-
sure is classifier agnostic. It consists in randomly permutting the values of
a feature and measuring the decrease in accuracy before and after random
permutation of the feature values.

Mean decrease in impurity: Also called Gini importance, this measure is spe-
cific to tree-based classifiers. For a given node, it is defined as the total de-
crease in Gini impurity weighted by the probability of reaching that node,
which is approximated by the proportion of samples reaching that node
averaged over all trees of the ensemble. At each split in each tree, the im-
provement in the split-criterion is attributed to the splitting variable and is
accumulated over all the split of all the trees in the forest. The Gini impu-
rity is the probability of incorrectly classifying an element of the dataset if



it were randomly labeled according to the class distribution in the dataset.
It is calculated as:

n

Gini = Z classp(i) * (1 —p(i))

=1

In this work we used the Gini importance as it is the one calculated in the
scikit-learn library. We calculated the feature importance of a random forest
classifier for the task of detecting fraudulent e-commerce and face-to-face trans-
actions (see figures and . The hyperparameters of the random forests are
the default ones: 5 features per tree, 100 trees and no tree pruning.
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Figure 4.3: Feature importance of a random forest classifier for face-to-face transactions

e The first observation to make is that the amount of the transaction is a
key feature for fraud detection. It is the most important feature for both
face-to-face and e-commerce fraud detection.

e The second most important group of features is the card-holder identifiers
such as newPanlD, AGE, residence based features (CITY, INSCODE,...)
and CARD-EXPIRY. This observation is valid for e-commerce and face-to-
face transactions.

e The features describing the transaction properties (TX-LOCAL-CURRENCY,
TX-EMV, CARD-TRAVEL-KEY,..) are shown to have smaller impor-
tance.
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Figure 4.4: Feature importance of a random forest classifier for e-commerce transactions

Overall, there is a big discrepancy in feature importance among the features
of the belgian credit card transactions dataset. In the next section, we will try
to leverage this discrepancy for feature selection.

Classifiers & feature sets comparison

The transactions of the belgian credit card transactions dataset contain a variety
of attributes. A big number of features slows down classifiers: The complexity of
random forest or gradient boosting training for example is linear with the number
of features.

Moreover, we observed in the previous sections that some features are corre-
lated with each other: the information of these features is partly reproduced and
contained in several features.

We assumed that a smaller feature set would increase the training speed
without hindering too much the classifiation efficiency. In order to test that, we
constructed a smaller feature set without weaker features or features containing
duplicate information.

The feature set containing all the feature is referred to as the "raw" feature set.
Additionnaly, we created a "refined" smaller feature set. The features contained
in the "refined" feature set are presented in table

We compared the computation times and the detection efficiencies with the



Card holder Transaction Terminal

age, gender, broker, | authentication, card en- | merchant country, mer-
card-expiry, city try mode, time, amount, | chant category
e-commerce type, PIN
check

Table 4.1: Refined feature set

"raw" feature set and with the "refined" feature set for e-commerce and face-to-
face fraud detection using two classifiers: Adaboost and random forest. The
experiments were done using the aforementioned Spring 2015 belgian credit card
transactions dataset.

The hyperparameters ranges for Adaboost and random forest grid searches
are presented in table [£.2] and

n-trees n-features min-samples-leaf max depth
{300}  {1,7,13} {1,20,40} {4, None}

Table 4.2: Random forest grid search

tree numbers learning rate tolerance for stopping max tree depth

{100,400}  {0.1,1,100} {10,100} {1,4}

Table 4.3: Adaboost grid search

The training, testing and evaluation set were split temporally as shown in
table [4.4] The reasoning behind the gap of one week was that in the real world
fraud detection systems, human investigators have to manually verify the alerts
generated by the classifiers. Since this process takes time, the ground truth is
delayed by about one week.

Start Date | End Date
Training Set 01.03.2015 | 26.04.2015
Validation Set | 27.04.2015 | 30.04.2015
Week gap 01.05.2015 | 07.05.2015
Testing Set 08.05.2015 | 31.05.2015

Table 4.4: Dataset splitting

We observe on table[4.5]that refining the feature set allows for a faster training
time at the cost of prediction efficiency. More precisely, the classifier efficiency
measured with the ROC-AUC decreases to a maximum of 9% but this diminution
of detection is accompanied by a diminution of computation time of up to 55%.



e-comimerce face-to-face
ROC-AUC computation| ROC-AUC computation
time time
random forest raw 0.79 2367s 0.85 2530s
refined 0.72 1739s 0.79 1811s
Adaboost raw 0.80 11660s 0.88 13228s
refined 0.74 5178s 0.84 6027s

Table 4.5: Comparison of prediction efficiency for 'raw’ and ’'refined’ feature sets

Throughout this work, for faster computation time, we used the refined feature
set as base feature set.

4.1.3 Comparison of sampling strategy to reduce class imbalance
Evaluation of sampling methods for our application

We tried differents sampling methods and parameters in order to determine which
was most adapted for our credit card fraud detection task. For practical reasons
since it increases the learning time and the risk of overfitting, we chose to not try
oversampling.

We compared the value of pk100 for different strategies or parameters for
the detection of fraudulent transactions in 15 consecutive testing days using a
random forest algorithm. Pk100 (precision at 100) is a business metric used in
production that counts the number of fraud in the first 100 alerts raised by the
learning algorithm.

We started by trying different minority/majority class ratios for undersam-
pling. The reasoning was that with the particularly big class imbalance present
in our application, rebalancing the classes to 50/50 with undersampling would
delete too much examples from the majority class and therefore decrease signifi-
cantly the amount of information in the remaining majority class examples.

Throughout this section, the classifiers used in order to evaluate the reper-
cussions of the sampling methods are random forest classifiers with the following
parameters:

e n-trees=300
e n-features per tree=7

e depth = maximum depth



We observed in figure [4.5 that when we decreased too much the class imbal-
ance the average performance over days of the classifier decreased: We assumed
that the number of majority class examples became too small to provide enough
information for the learning algorithm to generalize the majority class distribu-

tion.
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Figure 4.5: Fraud detection performance over days for different degree of undersampling. (The
numbers 80/20, 75/25, 66/33 and 50/50 refers to the class ratio after undersampling.)

Afterwards, we tried the SMOTE strategy ([Chawla et al., 2002], highlighted
in figure and observed in figure that the predictions with the SMOTE
strategy (in blue) were comparable, if not below, the predictions with a basic
80/20 undersampling strategy (in red). SMOTE is an elegant strategy in order
to deal with an unbalanced dataset, although for our application it seemed to not
be the best solution and to not be worth the effort.

Finally, in most of the experiments presented in this PhD thesis, the rebal-
ancing technique chosen is undersampling with a final ratio of 90/10 for the
majority /minority effectives. We wanted to decrease the class imbalance in the
dataset without taking away too many majority class examples.
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Figure 4.6: Fraud detection performance over days for SMOTE (in blue) and undersampling
80/20 (in red).

4.1.4 Sequential dataset
Transaction sequences

Credit card transactions datasets are sequentials datasets. The credit card trans-
actions can be grouped by the card used for the transaction or by the seller of a
particular transaction. Therefore the sequence of transactions from card-holders
or terminals can be studied with the hope to find patterns characterizing a gen-
uine or a fraudulent behaviour.

We could observe on the feature importance graph (see figures and
that the features identifying the seller (TERM-MIDUID) are very relevant for
credit card fraud detection. Modelling the sequences of transactions from the
buyer and the seller is an asset for credit card fraud detection.

Moreover, the timing of the transactions is very important for detecting fraud-
ulent transactions. Unsurprisingly, we observe on figure E| that the face-to-face
transactions occuring between 11 p.m. and 6 a.m. account for around 5% of the
transactions (the shop are supposed to be closed) and for more than 40% of the
fraudulent transactions.

black bars on the figure (scale on the left) refer to the percentage of transactions in this
category, blue bars on the figures (scale on the left too) refer to the percentage of fraudulent
transactions in this category, red bars on the figures (scale on the right) refers to the ratio of
fraudulent transactions for each category, each hour in this figure.
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Figure 4.7: Categorical correlation between the time feature and the class of face-to-face
transactions

Sequential patterns

By studying the lengths of the sequences in the dataset we could show that the 3.5
millions card-holder sequences average 13.5 transactions per sequence with sig-
nificant variations: the longest sequences almost reach 10* transactions. Among
these card holder sequences, 12853 contains the 84502 fraudulent transactions of
the dataset.

Figure [4.8 shows an histogram of the time elapsed between the first and the
last fraudulent transactions of the card holder sequences that contain at least a
fraud. We observe on the most left bar that around 3200 card holders have a
fraudulent sequence duration of Os: these are card holder with only 1 fraudulent
transaction in their sequences of transactions, the first fraudulent transaction is
also the last. By cumulating bar effectives, we also observe that more than 90%
of the fraudulent sequences last 28 hours or less (100 000s). The majority of the
fraudulent sequences contain fraudulent transactions appearing within one day.



Total Time between First and Last Fraud

Number of fraudulent Accounts

10

100 1000 10000 100000 1000000 3000000
(=~0.03h) (=0.28h) (=~2.78h) (=~27.78h) (=~11.57d) (~34.72d)

Time Span [s]

Figure 4.8: Time elapsed between first and last fraudulent transaction for each fraudulent
accounts

The sequential aspect of credit card transactions dataset is crucial from both
buyers and sellers perspectives for efficient credit card fraud detection. Seeing the
credit card transaction dataset as a sequential dataset and identifiying previously
observed patterns is a strong asset for credit card fraud detection.

4.2 Covariate shift quantification for credit card fraud
detection

We proposed a covariate shift (change in p(x,y)) detection protocol that we used
in order to characterize the covariate shift in our credit card transactions dataset.

Briefly we aim to build a distance matrix between subparts of the dataset
(days in our case) by trying to predict them against each other. For example, in
order to raise a similarity value for a pair of days of our dataset, we evaluate the
performance (with Matthews correlation coefficient) of a random forest classifier
for detecting from which of the days the testing transaction comes from. If the
performance of the random forest classifier is good that means that the transac-
tions from the two days are easy to differenciate, these two days present different
buying behaviours. One the other hand if the classifier is bad, that means that
the two days present similar transactions. The distance matrix obtain after hav-
ing compared each pair of day can then be used for clustering the part of the
dataset that present a similar buying behaviour.

In this section, we present a method to quantify the day-by-day covariate
shift within the face-to-face credit card transactions dataset. In practice, we aim



to differenciate the days of the dataset by trying to guess the origin day of each
transaction and measuring the efficiency of the classification. The more efficient
the classification, the more different the buying behaviour between two days, and
vice versa. Therefore, we obtained a distance matrix characterizing the covariate
shift.

4.2.1 Building a distance matrix between days

We aimed to use a distance matrix in order to quantify the possible covariate
shift happening over the 92 days of the dataset.

For this purpose we built and evaluated learners that try to tell from which
day of the considered pair of days each transaction belongs. If the learner achieved
to detect the day of the testing set transactions, it means that the transactions
from each of the two days considered were easy to differentiate. We assumed that
these two days are following two different probability distributions: there was a
covariate shift between these two days. On the other hand, if the two days were
hard to differenciate, this means that their transactions are similar: there was no
covariate shift between these days.

For each pair of days, a random forest classifier was trained using 20000 trans-
actions from each day (40000 in total) in order to detect the day of each trans-
action. Afterwards, this random forest classifier was asked to classify a test set
containing 5000 transactions from each day (10000 in total). We chose to import
the same number of transactions from each days even if some days contain more
transactions than others (approximately between 300 000 and 800 000 per day in
total) instead of importing a number of transactions proportional to the number
of transactions within the considered day. Therefore the model prediction isn’t
affected by the class effectives but only by the buying behaviours within each day.

The classification was evaluated using the Matthews correlation coefficient
(MCC). As mentioned in section the Matthews correlation coefficient is a
confusion matrix based metric that can take values between -1 and 1. A value
of MCC close to 1 means that the classifier is good at differenciating the pair of
days considered, the days are easy to differenciate since there is a covariate shift
between them. A value of MCC close to 0 means that the classifier isn’t able to
differenciate the transactions of the pair of days considered. In this particular
classification task, it would not make sense that the classifier have a value of
MCC close to -1. It would mean that the classifier is predicting the opposite
between training and testing set.



TPxTN —-FPxFN

MCC =
\/(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)

In the end, this MCC value was used in order to train and evaluate 92 % 91/2
classifiers in order to build a 92x92 distance matrix characterizing the covariate
shift between the 92 days of the dataset. Figure shows a zoomed view of the
distance matrix centered on the covariate shift within the days from 01.03.2015 to
03.04.2015. The full view of the distance matrix on the whole dataset timespan
is included on the next page.

01.03.2015 time (day) 03.04.2015

01.03.2015

time (day)

03.04.2015

Figure 4.9: Zoomed distance matrix (covariate shift) for the face-to-face transactions. (centile
based coloration: green < similar days (MCC=0), red < dataset shift (MCCx~1)).
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4.2.2 Agglomerative clustering using the distance matrix be-
tween days

Regularities can be observed in the covariate shift (see figure in appendix).
With genuine visual identification, 4 clusters of days that are similar to each other
and dissimilar to other days can be spotted. We could correlate these clusters
with calendar event (Dataset of belgian transactions):

e Working days: During these days, people are working and merchants are
mostly open.

e Saturdays: During these days, people are not working and merchants are
mostly open.

e Sundays: During these days, people are not working and merchants are
mostly closed. We observe that some religious holidays (catholic) seem to
share the same dataset shift (1st may: labor Day, 14th may: Ascent and
25th may: Pentecost).

e School holidays: During these days, people are working and the mer-
chants are mostly open but the children are not at school. Some parents
take holidays to look after their children or travel with them.

This clustering is based on a qualitative observation of the distance matrix
between days (figure in appendix) and may be biased: the patterns visually
identified may have been inferred because we had preconceptions about the type
of days in the dataset. Therefore, we performed a hierarchical clustering on the
distance matrix.

The dendrogram created with agglomerative clustering can be cut at different
levels. These levels correspond to different number of clusters. In figure we
observe that the drop of the average intercluster distance sharply decreases after
5 clusters. This information would guide the decision towards a 5 clusters day
modeling. However, since 4 cluster isn’t completely irrelevant (big intercluster
distance decrease between 3 and 4 cluster), and since we observed with the previ-
ous qualitative clustering that 4 clusters match well the calendar particularities,
we chose to differentiate the days in 4 clusters using hierarchical clustering (see

figure [4.6)).
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Figure 4.10: Diminution of the average inter-cluster distance with the increase of the number
of clusters

The output of the hierarchical clustering is shown in table The 4 clusters
matched almost perfectly the calendar-based clusters previously identified.

0: Week days (working days)

1: Sundays and work holidays (Ascent, monday Pentecost and Labor day): shops
are closed

: Saturdays and most of the Fridays : days of the end of the week where shops
are open

: Week days of eastern school holidays

e Surprisingly, 9 Fridays out of the 12 non holiday Fridays are clustered with
Saturdays (cluster 2). We expected initially the Fridays to be clustered
with the rest of the working days (cluster 0)

e Among the 42 days identified as working days of the middle of the week
(cluster 0), 95% follow the pre-identified pattern: 2 of them are Fridays
which are supposed to be in the cluster 2. Moreover, 2 working days adja-
cent to holidays where shops are closed (cluster 1) are clustered with Fridays
and Saturdays (2) instead of working days ( 0)

31st may: Labor day
414th may: Ascent
5925th may: Pentecost



Week | MON TUE WED THU FRI SAT SUN
9 1
10 0 0 0 0 0 1
11 0 0 0 0 1
12 0 0 0 0 1
13 0 0 0 0 1
14 0 0 0 1
15 1 1
16 1
17 0 0 0 0 0 1
18 0 0 0 1 1
19 0 0 0 0 1
20 0 0 1
21 0 0 0 0 1
22 0 0 0 1

Table 4.6: Agglomerative clustering of the days using the distance matrix obtained by classi-
fying each day against every other day

e Among the 18 days identified as holidays (cluster 1), 17 are effectively
holidays. Unexpectedly, the first Monday of spring holidays (week 15) is
clustered with holidays.

e The days of the eastern school holidays pre-identified pattern are success-
fully clustered together by the hierarchical clustering algorithm in the clus-
ter

In the end we observed that clustering the days of the dataset using the covari-
ate shift distance matrix, be it visually or with hierarchical clustering, outputs
similar results. Indeed, the clustering patterns discovered match almost perfectly
the event identified in the belgian calendar.

4.2.3 Incorporation of dataset shift knowledge

In order to leverage the knowledge of the covariate shift between days, we incor-
porate it as a new categorical feature with one modality for each identified cluster.

We repeated 5 times an experimental protocol where the face-to-face trans-
actions from 7 consecutive days were used as a train set and the face-to-face
transactions from 7 consecutive days with a gap of 7 days after the train set
were used as a test set. We evaluated the addition of the dataset shift feature
by computing the Precision-Recall AUC and the ROC AUC for random forest



PR AUC ROC AUC
test set without with | without with
16/03-22/03 (week 12) 0.190 0.175 | 0.964 0.961
23/03-29/03 (week 13) 0.288  0.303 | 0.969 0.973
30/03-05/04 (week 14) 0.131  0.142 | 0.939 0.945
)
)

06/04-12/04 (week 15 0.256  0.273 | 0914 0.927
13/04-19/04 (week 16 0.131  0.126 | 0.946  0.940
average 0.199 0.204 | 0.946 0.949

Table 4.7: AUC variations with the addition of the covariate shift feature for different testing
periods

classifiers with and without the dataset shift feature.

We chose to separate the time period corresponding to the training and val-
idation set and the time period corresponding to the testing set with a gap of 7
days.

The random forest hyperparameters are described in table [I.8] The same
hyperparameters were used for the construction of the distance matrix between
days.

n-trees n-features min-samples-leaf

100 sqrt 10

Table 4.8: Random forest hyperparameters

We observed in table [£.7) that adding the covariate shift information as a new
feature for the classification increased the precision-recall AUC by 2.5%. The
ROC AUC was also slightly increased. However the increase observed is weak
and not consistent over weeks. Besides, we don’t seem to observe any correlation
between the calendar events and the increase/decrease observed: It is not clear
that for example, testing set belonging to the eastern holidays (week 15 and 16)
are less sensitive to the addition of covariate shift information as a new feature.

Moreover, this improvement may partly have been a consequence of the weak
feature set used and may have disappeared when using stronger feature engineer-
ing strategies such as feature aggregation [Bahnsen et al., 2016|[Whitrow et al.,
2008] or sequence modelling with hidden Markov Models [Lucas et al., 2019a] or
recurrent neural networks [Jurgovsky et al., 2018].



4.2.4 Conclusion

In this section we proposed a strategy to quantify the covariate shift in a temporal
dataset. This strategy consists in classifying the transactions of each day against
every other days: if the classification is efficient then the days are different and
there is a covariate shift between them. On the other hand, if the classification
is not efficient, the days are similar. This strategy allows us to build a distance
matrix characterizing the covariate shift between days.

Afterwards, we used an agglomerative clustering algorithm on the distance
matrix between days. We showed that in the case of the belgian face-to-face credit
card transactions the dataset shift matches almost exactly the calendar events.
We identify 4 types of days in the credit card transactions dataset: ’working
days’, 'saturdays’, ’sundays’ and ’school holiday’.

Using a random forest classifier, we showed that integrating the information
of the type of the day previously identified increases the Precision-Recall AUC
by a small percentage (2.5%).

4.3 Summary

In this chapter, we started by studying the attributes of credit cards transactions
with leverages such as covariance matrix and random forest feature importance
vectors. Using these studies, we could create a refined feature set that would lead
to faster computation time and memory efficiency at the cost of a bit of fraud
detection efficiency. The refined feature set is shown in table [£.1]

We also tried different solutions for reducing class imbalance: SMOTE and
undersampling along with different values of target class ratio. We chose to avoid
oversampling because it increases computation time along with overfitting risks.
We settled on undersampling the majority class up to a target class ratio of 90:10
after having observed that decreasing too much the class imbalance leads to the
deletion of too many examples in the dataset.

We finished this chapter by presenting a study of the covariate shift within
the face-to-face transactions. We could identify covariate shift patterns matching
calendar events. We tried to integrate this covariate shift knowledge in the credit

card fraud detection process and observed a slight increase in precision-recall
AUC.






Chapter 5

Multiple perspectives feature
engineering

Throughout the previous chapters, we stated the importance of the feature engi-
neering leverage for credit card fraud detection. Many feature engineering strate-
gies have been imagined in the literature as described in section [3.2] The trans-
action aggregation strategy introduced by [Whitrow et al., 2008] is the most
adopted approach in the field.

Moreover, we became aware that sequential patterns are ubiquitous in credit
card fraud detection. Genuine behaviours are ruled by temporal patterns (see
section and fraudulent strategies are identified through sequential patterns

(see section {4.1.4]).

In this chapter, we want to leverage the sequential patterns discovered through
the creation of features. Therefore, we present an approach to model a sequence
of credit card transactions from three different perspectives, namely:

(i) The sequence contains or doesn’t contain a fraudulent transaction.
(ii) The sequence is obtained by fixing the card-holder or the payment terminal.

(iii) It is a sequence of spent amount or of elapsed time between the current and
previous transactions.

Combinations of the three binary perspectives give eight sets of sequences
from the (training) set of transactions. Each one of these sequences is modelled
with a hidden Markov model (HMM). Each HMM associates a likelihood to a
transaction given its sequence of previous transactions. These likelihoods are
used as additional features in a random forest classifier for fraud detection.
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This multiple perspectives HMM-based approach enables an automatic fea-
ture engineering in order to model the sequential properties of the dataset with
respect to the classification task. This approach allows for a 9.3% increase in the
precision-recall AUC on the e-commerce transactions and a 18.1% increase on
the face-to-face transactions compared to the state of the art feature engineering
strategy for credit card fraud detection.

5.1 Baseline: transaction aggregation strategy

As stated in section 3], one of the difficulty of credit card fraud detection is the fact
that the feature set describing a credit card transaction usually ignores detailed
sequential information. Typical models only use raw transactional features, such
as time, amount, merchant category, etc.

Consequently, [Whitrow et al., 2008| create descriptive statistics as features
in order to include historical knowledge. These descriptive features can be for
example the number of transactions or the total amount spent by the card-holder
in the past 24 hours for a given merchant category or country. [Bahnsen et al.,
2016] considered [Whitrow et al., 2008] strategy to epitomized the state of the
art feature engineering technique for credit card fraud detection.

5.1.1 Construction of features based on transaction aggregation
strategy

The state of the art feature engineering technique for credit card fraud detection
creates descriptive features using the history of the card-holder [Whitrow et al.,
2008], [Bahnsen et al., 2016].

In order to enrich a transaction with statistics constructed with transaction
aggregation strategy, 3 objects are needed:

A sequence of previous transactions: It can be the sequence of previous
transactions from the buyer or the seller. The literature contains mostly
feature based on the buyers sequences, however we could show that the seller
perspective is very relevant for credit card fraud detection. This sequence
of transaction will be filtered and used for the calculation of statistics.

A filter: This filter aims to consider only the relevant past transactions for the
construction of the descriptive statistic. It usually contains a time limit,
for example only considering past transactions from the last 24 hours, from
the last week or the last month. It may also contain a combination of one
or several categorical features: For example, in order for the transactions



to be considered, they must have been done in the same country and/or
with the same type of merchant and/or same type of authentication, etc.

An operation: In order to extract information from the filtered sequence of
transactions, an aggregation operation has to be performed. This operation
can use information from the features of the transactions. It can be for
example the number of transactions in the sequence, the total amount spent
in the sequence, the standard deviation of a chosen feature in the sequence,
etc.

5.1.2 Transaction aggregation strategy improves fraud detection
Naive use of transaction aggregation strategy (aggCH)

We implemented the transactions aggregation strategy in order to verify the in-
crease in detection claimed in [Whitrow et al., 2008] and [Bahnsen et al., 2016].

In addition to the 13 refined features of the credit card transaction dataset
(see section [4.1.2)for the construction of the refined feature set), we calculated the
value of 4 features based on the transaction aggregation strategy applied to the
card-holder. These 4 features based on the card-holder history will be referred
to as the state of the art feature engineering in later studies.

Card holder Transaction Terminal
age, gender, broker, | authentication, card en- | merchant country, mer-
card-expiry, city try mode, time, amount, | chant category
e-commerce type, PIN
check

Table 5.1: Refined feature set

Feature Signification

AGGCH1 # transactions issued by user in 24h.
AGGCH2 Amount spent by user in 24h.
AGGCH3 # transactions in the country in 24h.
AGGCH4 Amount spent in the country in 24h.

Table 5.2: Aggregated features centered on the card-holders

We tested the addition of these features for the face-to-face transactions and
for the e-commerce transactions. We measured the precision-recall AUCs and
ROC AUCs before and after inclusion of those aggregated features. We call



aggCH the set of features based on transaction aggregation strategy on the card-
holder sequences.

We considered 3 types of classifier to study the increase in detection when
using transaction aggregation strategy: random forest classifier, logistic regres-
sion classifier and Adaboost classifier. We reproduced each prediction 3 times in
order to monitor the variation of AUCs among the runs. The hyperparameters
ranges chosen for the grid search optimization of the classifiers is presented in

tables and

n-trees n-features min-samples-leaf max depth
{300}  {1,7,13} {1,20,40} {4, None}

Table 5.3: Random forest grid search

C parameter penalty tolerance for stopping

{1,10,100}  {i1,12} {10,100}

Table 5.4: Logistic regression grid search

tree numbers learning rate tolerance for stopping max tree depth
{100, 400} {0.1,1,100} {10,100} {1,4}

Table 5.5: Adaboost grid search

The training, testing and evaluation set were split temporally as shown in

table [4.4]
The consequences of the incorporation of transaction aggregation strategy

based features on classifiers prediction were evaluated using the Precision-Recall
AUC and ROC AUC metrics described in section 2.2

Experiments

precision-recall AUC ROC AUC
without aggCH  with aggCH | without aggCH with aggCH

e-cominerce

0.212 £ 0.0009  0.343 £ 0.001 | 0.935 &£ 0.00003 0.950 £ 0.0001

face-to-face | 0.082 £ 0.001  0.144 £ 0.001 | 0.950 £+ 0.0005 0.964 + 0.00005

Table 5.6: Addition of "aggCH" features to a random forest classifier



precision-recall AUC ROC AUC
without aggCH  with aggCH | without aggCH  with aggCH

e-commerce

face-to-face | 0.0094 £+ 0.0001 0.014 = 0.001 | 0.916 = 0.002 0.923 £+ 0.014

0.015 £ 0.0001  0.092 £ 0.005 | 0.812 £ 0.002  0.856 £ 0.014

Table 5.7: Addition of "aggCH" features to a logistic regression classifier

precision-recall AUC ROC AUC
without aggCH  with aggCH | without aggCH  with aggCH

e-commerce

face-to-face | 0.034 £ 0.003  0.048 £+ 0.002 | 0.825 £+ 0.004  0.925 £ 0.024

0.103 £ 0.001  0.238 £ 0.009 | 0.857 £ 0.003  0.873 £+ 0.014

Table 5.8: Addition of "aggCH" features to an Adaboost classifier

We observe a significant improvement in prediction when incorporating features
based on the transaction aggregation strategy of the card-holder sequences.

e The introduction of features based on transaction aggregation strategy
causes the random forest classifier to increase its precision-recall AUC by
62% for the e-commerce transactions and 76% for the face-to-face transac-
tions.

e The introduction of features based on transaction aggregation strategy
causes the logistic regression classifier to increase its precision-recall AUC
by 510% for the e-commerce transactions and 49% for the face-to-face trans-
actions.

e The introduction of features based on transaction aggregation strategy
causes the Adaboost classifier to increase its precision-recall AUC by 130%
for the e-commerce transactions and 41% for the face-to-face transactions.

The small values of standard deviation ensure the validity of the conclusions.

Importance of terminal perspective

We showed in the previous section that the transaction aggregation strategy of
[Whitrow et al., 2008] applied on the sequences of card-holders enables a signifi-
cant improvement in credit card fraud detection.

However, the credit card transactions happen between buyers and sellers but
the merchants sequences are rarely considered in the studies using transaction
aggregation strategy as their state of the art.



Since modelling the terminal perspective is an important part of our work
we wanted to try to build features based on transaction aggregation strategy on
the sequences of the merchants and assess their relevance for credit card fraud
detection. This would ensure a fair comparison with state of the art techniques
when we would add the proposed HMM-based features modelling the merchants
sequences to the feature set.

Feature Signification

AGGTMI1 | # transactions in terminal in 24h.
AGGTM2 | Amount spent in terminal in 24h.
AGGTMS3 | # transactions with this card type in 24h.
AGGTM4 | Amount spent with this card type in 24h.

Table 5.9: Aggregated features centered on the terminals

We tested the addition of the terminal based aggregated features over the raw
features and the card-holder based aggregated features for the face-to-face trans-
actions and for the e-commerce transactions. We measured the precision-recall
AUCs and ROC AUCs before and after inclusion of those aggregated features.
We call aggTM the set of features based on transaction aggregation strategy on
the terminal sequences.

We considered 3 types of classifier to study the increase in detection when
adding the perspective of the merchants described with transaction aggregation
strategy: random forest classifier, logistic regression classifier and Adaboost clas-
sifier. We reproduced each prediction 3 times in order to consider the variation
of AUCs among the runs.

The models hyperparameters, evaluation metrics and dataset splitting are
identical to those used in the previous section [5.1.2

Experiments

precision-recall AUC ROC AUC
without aggTM  with aggTM | without aggTM  with aggTM

e-commerce

0.343 £ 0.001  0.383 £ 0.002 | 0.950 £ 0.0001  0.957 £ 0.0002

face-to-face | 0.144 + 0.001  0.167 &+ 0.001 | 0.964 £ 0.00005 0.967 £ 0.0004

Table 5.10: Addition of "aggTM" features to a random forest classifier



precision-recall AUC ROC AUC
without aggTM with aggTM without aggTM  with aggTM

e-commerce

face-to-face | 0.014 £ 0.001  0.0161 £+ 0.0003 | 0.923 + 0.014  0.933 £ 0.004

0.092 £ 0.005 0.096 £ 0.004 0.856 = 0.014  0.867 £ 0.010

Table 5.11: Addition of "aggTM" features to a logistic regression classifier

precision-recall AUC ROC AUC
without aggTM  with aggTM | without aggTM  with aggTM
0.238 £ 0.009  0.263 £ 0.004 | 0.873 £ 0.014  0.907 £ 0.006
0.048 £ 0.002  0.053 £ 0.003 | 0.925 £ 0.024  0.83 %+ 0.001

e-commerce

face-to-face

Table 5.12: Addition of "aggTM" features to an Adaboost classifier

e The addition of features describing the merchants sequences with transac-
tion aggregation strategy to the raw features plus the card-holder based ag-
gregated features causes the random forest classifier to increase its precision-
recall AUC by 12% for the e-commerce transactions and 16% for the face-
to-face transactions.

e The addition of features describing the merchants sequences with transac-
tion aggregation strategy to the raw features plus the card-holder based
aggregated features causes the logistic regression classifier to increase its
precision-recall AUC by 4% for the e-commerce transactions and 15% for
the face-to-face transactions.

e The addition of features describing the merchants sequences with transac-
tion aggregation strategy to the raw features plus the card-holder based
aggregated features causes the Adaboost classifier to increase its precision-
recall AUC by 11% for the e-commerce transactions and 10% for the face-
to-face transactions.

For each classifier except logistic regression classifier, the small relative values of
standard deviation ensure the validity of the conclusions.

We observe an improvement in prediction when incorporating transaction
aggregation strategy features based on terminals sequences in addition to fea-
tures based on the card-holders sequences. It is encouraging since considering
merchants perspective is one of the particularity of this work. Indeed, it is not
considered in the majority of the credit card studies we read.
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Figure 5.1: Modelling limitations of transaction aggregation strategy

5.1.3 Limitations of transaction aggregation strategy

We identified several weaknesses in the construction of features based on trans-
action aggregation strategy that motivated our work:

First, Aggregated features provide a descriptive statistic over a set of transac-
tions. Such statistics do not consider fine-grained temporal dependencies
between the transactions of a sequence. For example, Two card-holders
may have very different buying behaviours: steady transactions amounts
or oscillating transactions amounts, however the features created by the
transactions aggregation strategy wont reveal these differences: the two
card-holder will have the same value of mean amount and transaction fre-
quencies (see figure . Moreover we observed common fraud patterns
which start with low amount transactions for testing the card, followed
by high amount transaction to empty the account: sequential information
should be relevant for credit card fraud detection. Therefore we propose
to use a generative graphical model for sequence modelling. The choice of
hidden Markov model for our sequence modelling problem is discussed in

section B.2.11

Second, Aggregated features are usually calculated over transactions occuring
in a fixed time window (e.g. 24 h). Transaction of very different card
holders do not follow such a time pattern in general. However, the number
of transactions made during such a time period can vary a lot for different
card-holders. Fixed size aggregated statistics can’t account for that fact.

Third, These features consider only the history of the card-holder and do not
exploit information of fraudulent transactions for feature engineering. How-
ever, a sequence of transactions happening at a fixed terminal can also
contain valuable patterns for fraud detection.



Fourth, The choice of the descriptive feature created using the transaction ag-
gregation strategy (|[Whitrow et al., 2008], [Bahnsen et al., 2016]) is guided
by expert knowledge. We would like not to be dependent to expert knowl-
edge and we think that doing feature engineering in a supervised way (with
the knowledge of the label of transactions in the training set) can be a way
to create relevant features without the need of expert knowledge.

5.2 Multiple perspectives hidden Markov model based
feature engineering

5.2.1 Modelling the sequences of transactions

As we have discussed before, feature aggregation strategies improve results but
ignore sequence information. We want to model the sequences of transactions
instead of creating descriptive features. However, we have seen in section
that several solutions to model sequences exist. This brings us to the question:
Which model to choose for including sequential information?

Why hidden Markov models?

We choose to model transactions sequences using HMMs for several reasons.

e First, HMM were already used with success for credit card fraud detec-
tion in [Srivastava et al., 2008]. The authors proposed to raise anomaly
scores based on sequences of amount spent by the card-holder ("big amount’,
'medium amount’, ’small amount’). They created an artificial credit card
transaction dataset in order to show the benefits of their approach. Other
authors like [Dhok, 2012] also used HMM for credit card fraud detection.

e Second, hidden Markov models are generative models, i.e. they model the
joint probability p(x,y). We aim to exactly model that probability and not
the conditional distribution p(y|z) which is estimated by discriminant clas-
sifiers like LSTM or CREF. In our case, the classification is done afterwards
by a random forest, logistic regression or Adaboost classifier.

e Third, hidden Markov models are very simple models. A HMM containing 7
hidden states and a gaussian emission distribution has 49 + 14 = 63 param-
eters whereas neural networks models can have thousands of parameters.
This reduced number of parameters allows for a compression of the mod-
elled behaviours. The observed behaviour is generalized into an abstracted
latent behaviour. Moreover, the reduced number of parameters enables an
easier interpretation of the behaviour modeled by the HMMs. For exam-
ple, by looking at the probability to remain in the current hidden state,



we could observe that the genuine buying behaviours showed sequences of
steady amount of transactions whereas the fraudulent buying behaviours
were more volatile.

Markov property in a credit card transaction environment

As introduced in section the term Markov property refers to the memoryless
property of a stochastic process like the one described by hidden Markov mod-
els (see figure [5.2)). In other words, the conditional probability distribution of
future states of the process depends only upon the present state, not on the se-
quence of events that preceded it. Formally, it allows simplification of conditional
probabilities:

p(tk|tk—17tk—27 "7t17wk—17wk’—27w1) :p(tk|t/€—1) ke {17 "an}

In the case of credit card transaction sequences, the Markov assumption is
questionable. On one hand some buying behaviours where the card-holder visits
shops one after the other within a predefined itinerary would respect the Markov
assumption. On the other hand some credit card transactions have longer term
dependencies like for example the weekly supermarket visits for a family.

Moreover, other authors such as [Srivastava et al., 2008], [Dhok, 2012], [Robin-
son and Aria, 2018|] considered the Markov assumption valid for credit card fraud
detection. Therefore, we assumed that the Markov assumption holds for our
credit card fraud detection task.

5.2.2 Hidden Markov models basic principles

Hidden Markov models main hypothesis is that behind the observed distribution,
there is a simpler latent model that rules the sequential distribution. There-
fore, sequence modelling with hidden Markov model comprises two processes.
The stochastic hidden states evolution at each time step is not observed. In-
stead, observed variable values are generated at each time step depending on the
current value of the corresponding hidden state thanks to an emission process.
Hypothetically, the complexity of the observed distribution comes partly from
additive Gaussian noise corrupting both the hidden states evolution process and
the emission process.
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Figure 5.2: Hidden Markov model architecture (from |Lucas et al., 2019a]).

We can observe in the trellis diagramﬂ (see figure describing the HMM
that they comprises two types of random variables:

e t; € {1,2,..,m} are discrete random variables : the hidden states or latent
states.

e w; are the observed variables. The conditional distribution of the observed
variable with respect to the hidden states depends on the observed variable
nature.

Hidden Markov models allow for a compression of the observed sequence in
order to generalize the observed behaviour into an abstracted latent behaviour.
It is comprised of two processes represented by matrices:

e The transition matrix 7'(4, j) describes the transition probabilities: T'(i,j) =
p(te1 = jlte = 4), 4,7 € {1,..,m}2. It rules the succession of the hidden
states. Each row i of the transition matrix is a multinomial distribution of
the next state given that the current state is . The hidden states obey to
the Markov property.

e The emission matriz describes the conditional distribution of the observed
variables given the current hidden state. Emission probabilities distribution
can be arbitrary. They can be discrete finite (multinomial distribution), or
infinite (Poisson distribution), continuous (gaussian distribution, lognormal
distribution) and even multidimensional. The emission matrix describes the
emission probabilities: F;(w) = p(wg = wl|ty = 1), i € {1,....m}, w € W
for the discrete case?|

The joint probability of the sequences of w; and t; described by the trellis
diagram is:

n

P(wi, ooy Wity ty) = p(t1) * p(wity) H p(trlte—1) * p(wr|tr)
k=2

1temporal visualisation of a graphical model
2or Eij(w) = p(w|ty, = i), i € {1,....,m}, w € W for the continuous case (w has a density
distribution).



In the end, the parameters of an HMM are the transition matrix (T'(tx_1, t)
and the emission matrix Ey, (wy) described above, plus the initial distribution of
the hidden states 7 = p(t1 = i), i € 1,...,m.

Using these parameters, the joint probability of w; and ¢; becomes:

n
p(wl, ..,wn,tl, ..,tn) = T * Et1 (wl) H T(tkfl,tk) * Etk (wk)
k=2

Practical exemple of data modelling using an HMM A practical example
of HMM is presented in figure In this example, ¢; € {—1;1} and w; € R.

The transition matrix is:
0.9 0.1
0.1 0.9

The observed variables w; are distributed around the ¢;. The emission distri-
bution follows an uniform distribution around the :

w; = t; * (05—|—X1), X; —)Z/{([O, 1]), IS {1, ..,n}

At each point of time ¢ € {1,..,100}, an hidden state value ¢; (in blue) is cal-
culated with the transition matrix. For each hidden state ¢;, a noisy observation
w; (in red) is made depending on this hidden state.

<t < w_i

0 25 50 75 100

Figure 5.3: Practical example of HMM



Training hidden Markov models: Expectation Maximisation algorithm

Given a set of sequences of observed variable, the parameters of an hidden Markov
model can be adjusted to reflect the distribution observed in these sequences of
observed variable. The algorithm used in order to "fit" the hidden Markov model
to a set of sequences is the Expectation-Maximisation algorithm.

We described earlier the hidden Markov model by 6 = (T, E,w). Given
a set of observed sequences W. The iterative Expectation-Maximisation algo-
rithm known as the Baum-Welch algorithm finds a local maximum for 6* =
argmaxgp(W) (i.e. the HMM parameters 6 that maximise the probability of the
observed sequence).

Qualitatively, EM optimization of a model with latent (hidden) parameters
consists in for randomly initialized parameters:

Expectation: Find the latent states distributions that correspond the most to
the sequences of observed data. This is usually done with the help of
the forward backward algorithm which leverage the Markov property in
order to simplify the calculations of the conditional probabilities to observe
a sequence of event given the parameters of the transition and emission
matrices (also referred to as forward-backward algorithm [Viterbi, 1967]).

Maximisation: Maximise the correspondence between the latent distribution
inferred during the expectation step and the parameters of the transition
and emission matrices by adjusting the parameters.

The expectation and maximization steps are repeated until convergence of the
graphical model to the observed data. The convergence can be monitored by
observing the increase of the value of the likelihood that the set of observed se-
quences has been generated by the model. This likelihood increases over the iter-
ations until it reaches a ceiling when the hyperparameters ruling the architecture
of the generative model don’t allow it to fit more to the set of observed sequences.

Knowing the probability of state frequencies and the probabilities to obtain
the observed variables, the maximisation step is quite straightforward. However,
a naive calculation of the probability for each observed sequence to have been
generated by the current iteration of the HMM is very costly O((m™) with m the
number of hidden states and n the size of each sequence). The forward-backward
algorithm simplifies a lot this calculation with a recursion trick detailed below.
The complexity of the expectation step becomes O(n*m?) with the forward-
backward algorithm.



The forward-backward algorithm of the expectation step assumes that the
parameters of the HMM (6 = (T, E,pi)) are known. The goal of the forward
backward algorithm is to compute p(tg, w) Vk € {1,..,n} with w = {wy, .., wy}
a sequence of observed events. We will note w;.; = (wj, .., w;) a subsequence of
events. Therefore, w = wy.p,.

The forward-backward algorithm leverages the Markov property in order to
simplify the calculation of conditional probability. The simplification is done us-
ing the d-separation. Basically, two variables of a graphical model are d-separated
conditioned on a third variable if they are independant conditioned on the third
variable. In the case of hidden Markov model, since the distribution of hidden
states follow the Markov property, two distant hidden states are independant
conditioned on the knowledge of an intermediate hidden state. Knowing an in-
termediate hidden state, the two distant hidden states are d-separated. The in-
formation of the distant hidden state is irrelevant for inferring distributions since
the intermediate hidden state already contains the information of the distant hid-
den state. This independance property allows for simple conditional distributions
in hidden Markov models.

By definition:

p(te, w) = p(Wrt1m |k, wik) * p(tk, wik), Vk € {1,..,n}

. However with d-separation, wg1., is independant from ¢y.;_; and wy.; condi-
tioned on tg. Therefore,

p(te, w) = p(Wit1m|tr) * p(te, wik), Yk € {1,..,n}

The forward path aims to calculate p(tg,w1.x), Vk € {1,..,n} whereas the
backward path aims to calculate p(wki1.n]tx), VEk € {1,..,n}.

Forward path Given a sequence wi.,,, the goal of the forward path is to com-
pute:
p(tlﬁ wl!k) = p(tk7 W1, W2y vy wk)v Vk S {17 oy n}

o (ty) = p(te, wik)

m
= > pltr te—1, wik)
Zk_lzl
m
= > pwgltr, te—1, wip—1) * p(tltr—1, wik—1) * p(tr—1, wik—1)

zg—1=1



w1.k—1 and tx_1 independant from wy conditioned on t;, (d-separation):

m
ap(te) = > )p(welte * p(telte—1) * p(te—1, wik-1)

m
= Z Ej(wg) * T g—1 * o—1 (tk—1)

Finally we showed (with Ej(w) and Tj 1 the emission and transition ma-

trices):
m

ap(te) = > Ep(w) * Thp—1 * ap—1(te—1)

zp—1=1

Besides, we know that:

ai(t1) = p(ti,wr) = p(t1) xp(wi|t1) = 7% By (w)

We can therefore apply the recursion to all the succession of events in the
observed sequence in order to get p(tg, wik), Vk € {1,..,n}.

Backward path Given a sequence wi.,, the goal of the backward path is to
compute:
p(Wrs1mlte), Yk € {1,.,n—1}

Br(tr) = p(Wit1:n|tr)

n

= > pwrranltirt, ti W) * Pkt [t te) * p (Lo [t)
Zp+1=1

Wk+2.n, independant from ¢ and w1 conditioned on ¢4 (d-separation):

n

Br(te) = Y p(wigam|terr) * p(wptaltes1) * p(trslte)
Zp+1=1
n

= Z Brt1 (k1) * Epr1(Wet1) * Thy1 i

Zp+1=1



Finally we showed (with Ej1(wg+1) and Tg41  the emission and transition

matrices):
n

Br(tr) = Z Br1(ths1) * Epg1 (wir1) * Th 1,k

zp+1=1

Besides, we know that:
571 (tn) =1
We can therefore apply the recursion to all the succession of events in the
observed sequence in order to get p(wyi1.|tx), Vk € {1,..,n—1}.
Viterbi algorithm for finding the most likely sequence of hidden states

The Viterbi algorithm aims to calculate the most likely sequence of hidden states
for a sequence of observed variables wy., given a HMM model (0 = (T, E,7)).
In a mathematical way, it aims to compute:

tx = arg max p(t1n|win)
1n
For simpler calculation, it computes arg maxy,,, p(t1.m, w1.,) since
arg r?laxp(tl:n’wl:n> = arg r?laxp(tlzna wl:n)

Indeed, p(ti.m|wim) o< p(t1m, wry) for a given sequence of observed variable
w1.p, Since p(tlzna wl:n) = p(t1:n|w1:n) *p(wlzn)~

As for the forward-backward algorithm, the goal is to establish a recursion
between successive states.

pi(ty) = max p(tik, wik)

= max p(wilte) * p(tlte—1) * p(t1—1, W1:k—1)
= max p(wiltr) * p(t|te—1) * max p(t1—1, Wik—1)
1:k—1 t1.k—2

= max Ey(wy) * Tj * pu—1(tr—1)
With p1(t1) = p(ti,w1) = p(t1) * p(wi|t1) (initial distribution * emission
matrix).

In order to get the argmaz out of the max calculation obtainable for each k €
{1,..,n} with the recursion presented, the user must keep track of the sequence
of ¢t maximizing the joint probability p(t1.5, w1.x) at each step of the recursion.



5.2.3 Leverage the train set labels for automated feature creation
Amount and timing for modelling fraudulent and genuine behaviours

We stated earlier that experts could identify different types of fraudulent be-
haviours using clustering algorithm. These behaviours are based on the timing
and the amount of transactions:

Cluster 1: Short sequences (2-4 transactions) of low amount transactions (less
than 10 €).

Cluster 2: Burst (high number of transactions at the same merchant in a short
amount of time) of medium amount transactions (10 - 100 €).

Cluster 3: Short sequences (3-5 transactions) of high amount transactions (more
than 100 €).

Moreover, the timing of the transaction are used for transactions labelling
when a fraud is detected. Previous transactions of the last 10 minutes are la-
belled by default as fraudulent, the transactions from the last day are situated in
the grey zone and transactions occuring before the day of the fraudulent trans-
actions detected are considered as genuine transactions.

Furthermore, the observation of the feature importance vectors of the random
forests lead to the conclusion that the amount of the transaction is a predominant
feature for credit card fraud detection.

Modelling the buying behaviours with respect to the amount and timing fea-
tures could be interesting for fraud detection.

Model fraudulent and genuine behaviours

Credit card fraud detection is often considered as an anomaly detection task
where one aims to spot abnormal behaviours which are supposed to be fraudu-
lent behaviours. However, fraudsters aim to mimic genuine behaviours in order
to remain undetected. Therefore the anomaly detection task is becoming harder.
Moreover, we highlighted in section that interviewed experts have been able
to identify clusters of fraudster strategies.

The proposed feature engineering techniques aims to leverage the knowledge
of the labels of the transactions of the training set in order to model genuine
and fraudulent behaviour using hidden Markov models. Modelling the genuine
behaviours is a classic anomaly detection scheme where the likelihood of a new



sequence of transactions is measured against historical honest sequences of trans-
actions ([Chandola et al., 2012]).

The sequences used in order to model fraudulent behaviours are sequences
of transactions of the training set with at least one fraudulent transaction. The
rationale is that to have a risk of fraud, it is not enough for a new sequence to be
far from usual transaction behavior but it is also expected for it to be relatively
close to a risky behavior.

In the end, when assessing the fraudulence of a sequence of transaction, the
classifier model would be able to know the distance between this sequence and
the genuine behaviours and the distance between this sequence and the fraudu-
lent behaviours. Double checking the distance between the observed sequence of
transaction and the previously learned behaviours should decrease the number of
false positive. As stated by [Pozzolo et al., 2017|, this is a crucial issue since the
investigators can only verify a limited number of alerts each day.

Multiple perspectives hidden Markov model based feature engineering

In addition to the descriptive aggregated features created by [Whitrow et al.,
2008], we propose to create eight new HMM-based features. They quantify the
similarity between the history of a transaction and eight distributions learned
previously on set of sequences selected in a supervised way in order to model
different perspectives.

In particular, we select three perspectives for modelling a sequence of trans-
actions (see figure [5.4). A sequence (i) can be made only of genuine historical
transactions or can include at least one fraudulent transaction in the history, (ii)
can come from a fixed card-holder or from a fixed terminal, and (iii) can consist
of amount values or of time-delta values (i.e. the difference in time between the
current transaction and the previous one). We optimized the parameters of eight
HMDMs using all eight possible combinations (i-iii).

The three perspectives, namely genuine/fraudulent, card-holder/merchant
and amount /time-delta, have been chosen based on the following assumptions:

e First, the features made with only genuine historical transactions should
model the common behavior of card holders. The other four features are
made with sequences of transactions with at least one fraudulent transaction
and will model risky behaviours.

e The second perspective allows the model to take the point of view of the
card-holder and the merchant which are the two actors involved in the credit



card transactions.

e The last perspective takes into account two important features for credit
card fraud detection: the amount of a transaction and the elapsed time
between two transactions. These features are strong indicators for fraud

detection.
CH | TM | amt | label CH | T™™M | amt | label
1 A 47€ 0 1 A 47€ 0
1 B 56€ 0 1 B 56€ 0
‘ Genuine CH sequences
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2 A 75€ 1

CH | T™M | amt | label 2 B | 15€ 1
2 B 15€ 1

1| A |47€] o 2 | C | 25¢ 0

CH sequences 2 c e 0
2 A 75€ 1 - Fraudulent CH sequences
1 5 6o 0 CH | TM | amt | label

CH | TM | amt | label

1 A 47€ 0

2 B 15€ 1

1 A 47€ 0

2 A 75€ 1
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Raw transactions dataset Sequences datasets Supervised sequences sets

Figure 5.4: Enriching transaction data with HMM-based features calculated from multiple
perspectives (CH=Card-holder, TM=Terminal)

In order to make the HMM model the genuineness and fraudulence of the card
holders and the terminals, we create 4 training set (see figure containing:

e sequences of transactions from genuine credit cards (without fraudulent
transactions in their history).

e sequences of transactions from compromised credit cards (with at least
one fraudulent transaction)

e sequences of transactions from genuine terminals (without fraudulent
transactions in their history)

e sequences of transactions from compromised terminals (with at least
one fraudulent transaction)

We then extract from these sequences of transactions the symbols that will be
the observed variable for the HMMs. In our experiments, the observed variable
can be either:



e the amount of a transaction.

e the amount of time elapsed between two consecutive transactions of a card-
holder (time-delta).

At the end, we obtain 8 trained HMMs modeling 4 types of behaviour (gen-
uine terminal behaviour, fraudulent terminal behaviour, genuine card-holder be-
haviour and fraudulent card-holder behaviour) for both observed variables (amount
and time-delta).

Algorithm 1 Online: calculate likelihood of sequences of observed events

for tz; in all transactions do
for perspective; in perspectives combinations do
[tx;, txi—1, txi—o] < usersequence; ;
HMM; < HMM (usertype, signaltype, sequencetype)
AnomalyScore < log(p([tx;, tx;—1, tx;—o])|HMMj))
end for
end for

The HMM-based features described in this thesis (table |5.13)) are the likeli-
hoods that a sequence made of the current transaction and the two previous ones
from this terminal/card holder is generated by each of these models.

As shown in algorithm [1} their calculation for each row (transaction) of the
dataset involve fetching the HMM corresponding to each combination of perspec-
tive | in order to calculate the likelihoods that the sequence of three transactions
have been generated by each HMM.

User Feature | Genuine Fraudulent
Amount | HMM-cag HMM-caf
Tdelta | HMM-ctg ~HMM-ctf
Amount | HMM-tag ~ HMM-taf
Tdelta | HMM-ttg — HMM-ttf

Card Holder
Terminal

Table 5.13: Set of 8 HMM-based features describing 8 combinations of perspectives

5.3 Summary

We propose an HMM-based feature engineering strategy that allows us to inte-
grate sequential knowledge in the transactions in the form of HMM-based fea-
tures. These HMM-based features enable a non sequential classifier (random

3The HMM properties in the algorithm (1| are: usertype: merchant/card-holder, signaltype:
amount/timing, sequencetype: genuine/fraudulent



forest) to use sequential information for the classification.

The multiple perspective property of our HMM-based feature engineering
strategy gives us the possibility to incorporate a broad spectrum of sequential
information. In fact, we model the genuine and fraudulent behaviours of the
merchants and the card-holders according to two features: the timing and the
amount of the transactions. Moreover, the HMM-based features are created in a
supervised way and therefore lower the need of expert knowledge for the creation
of the fraud detection system.






Chapter 6

Experiments

In our work we proposed to generate history-based features using hidden Markov
models. They quantify the similarity between an observed sequence and the se-
quences of past fraudulent or genuine transactions observed for the cardholders
or the terminals.

In order to quantify how much the addition of multiple perspectives HMM-
based features help the detection, we use the belgian credit card transactions
dataset introduced in section 2.1.11

The experimental protocol is described in section In section we
present the increase in detection when adding HMM-based features using different
classifiers (random forest classifier, Adaboost and logistic regression classifier).In
section we study hyperparameters influence: how much the window size
and the number of hidden states affect the detection. Finally, in section we
compare different solutions to tackle the issue of structural missing values.

To ensure reproducibility, a source code for calculating and evaluating the pro-
posed HMM-based features can be found at https://gitlab.com/Yvan_Lucas/
hmm-ccfd .

6.1 Experimental Setup

6.1.1 Feature engineering and dataset partitioning

We use the Python library hmmleamﬂ

In order for the HMM-based features and the aggregated features to be compa-
rable, we calculate terminal-centered aggregated features in addition to [Whitrow

1ht'cps ://github.com/hmmlearn/hmmlearn
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et al., 2008 card-holder centered aggregated features (table

Feature Signification

AGGCH1 # transactions issued by user in 24h.
AGGCH2 Amount spent by user in 24h.

AGGCH3  # transactions in the country in 24h.
AGGCH4 Amount spent in the country in 24h.
AGGTMI1 # transactions in terminal in 24h.
AGGTM2 Amount spent in terminal in 24h.
AGGTM3 # transactions with this card type in 24h.
AGGTM4 Amount spent with this card type in 24h.

Table 6.1: Aggregated features centered on the card holders and the terminal

We split temporally the dataset in three different parts (see table the
training set, the validation set and the testing set. We chose to separate the
time period corresponding to the training and validation set and the time period
corresponding to the testing set with a gap of 7 days. The reason is that the in
the real world fraud detection systems, human investigators have to verify the
alerts generated by the classifiers. Since this process takes time, the ground truth
is delayed by about one week. The transactions appearing in this gap of 7 days
before the testing set are used in order to calculate the value of the aggregated
and HMM-based features in the testing set but not for training the classifiers.

Start Date | End Date
Training Set 01.03.2015 | 26.04.2015
Validation Set | 27.04.2015 | 30.04.2015
Week gap 01.05.2015 | 07.05.2015
Testing Set 08.05.2015 | 31.05.2015

Table 6.2: Dataset splitting

6.2 Results

6.2.1 Improvement in fraud detection when using HMM-based
features

We train classifiers using different feature sets in order to compare the efficiency
of prediction when we add HMM-based features to the classification task for
the face-to-face and e-commerce transactions. As stated in section the
precision-recall AUC metric is affected by class imbalance. Therefore, the differ-
ence in term of precision-recall AUC measured between the e-commerce and the



face-to-face transactions is due to the difference in the class imbalance between
these datasets.

We tested the addition of our HMM-based features to several feature sets. We
refer to the feature set "raw—+aggCH?” as the state of the art feature engineer-
ing strategy since it contains all the raw features with the addition of Whitrow’s
aggregated features ([Whitrow et al., 2008]). The feature groups we refer to are:
the raw features (raw), the features based on the aggregations of card-holders
transactions (aggCH), the features based on the aggregation of terminal transac-
tions (aggTM), the proposed HMM-based features (HMM features).

In this section, the HMMs were created with 5 hidden states and the HMM-
based features were calculated with a window-size of 3 (actual transaction + 2
past transactions of the card-holder and of the terminal). We showed in section
that the HMM hyperparameters (number of hiddens state and size of the
window considered for the calculation of HMM-based features) did not change
significantly the increase in Precision-Recall AUC observed.

The figures show the precision recall curves and ROC curves with their AUC
obtained by testing the efficiency of classifiers (random forest, logistic regression,
Adaboost with shallow trees and adaboost with deep trees) trained with several
feature sets on the transactions of the testing set. The AUC numbers corresponds
to the average obtained on 3 different runs. The AUCs are very stable over the
different runs and the standard deviation numbers are very low.



Addition to random forest classifiers
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Figure 6.1: Precision-recall curves for e-commerce transactions with random forest classifiers.
(Each color corresponds to a specific feature set, the line style corresponds to the presence or not

of HMM-based features).
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Figure 6.2: ROC curves for e-commerce transactions with random forest classifiers.
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Figure 6.4: ROC curves for face-to-face transactions with random forest classifiers.

We tuned the random forest hyperparameters (table [6.3) through a grid search
that optimized the Precision-Recall area under the curve on the validation set.



n-trees n-features min-samples-leaf max depth
{300}  {1,7,13} {1,20,40} {4, None}

Table 6.3: Random forest grid search

We can observe on figures[6.2]and [6.4] that the face-to-face and the e-commerce
results both show a significant improvement in precision-recall AUC when adding
the proposed HMM-based features to the raw feature set. For the e-commerce
transactions, this improvement ranges from 3.6% for the best feature set without
HMM-based features (raw-+all-agg for the e-commerce transactions) to 40.5% for
the worst feature set (raw for the e-commerce transactions). For the face-to-face
transactions, this improvement ranges from 6.0% for the best feature set without
HMM-based features (raw+all-agg for the face-to-face transactions) to 85.4% for
the worst feature set (raw for the face-to-face transactions).

The relative increase in ROC AUC when adding HMM-based features is much
lower due to the high value of these AUCs. However the decrease in misclassi-
fication done by the classifier is significant. It ranges from 6% to 33% for the
face-to-face transactions and from 6.9% to 12.3% for the e-commerce transac-
tions. The decrease in missclassification when adding HMM-based features to
the state of the art feature engineering strategy (|[Whitrow et al., 2008]) is of 10%
for the e-commerce transactions and 9% for the face-to-face transactions.

By comparing the AUC of the curves raw+aggCH and raw—+aggCH+HMM,
we observe that adding HMM-based features to the state of the art feature en-
gineering strategy introduced in the work of Whitrow & al. leads to an increase
of 18.1% of the PR AUC for the face-to-face transactions and to an increase of
9.3% of the PR AUC for the e-commerce transactions.

The relative increase in PR-AUC when adding terminal centered aggregated
features to the feature set is of 16.0% for the face-to-face dataset. The relative
increase in PR-AUC when adding terminal centered aggregated features to the
feature set is of 11.7% for the e-commerce transactions. The terminal perspective
is very valuable for the detection of fraudulent credit card transactions.



Addition to logistic regression classifiers
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Figure 6.8: ROC curves for face-to-face transactions with logistic regression.

We tuned the logistic regression hyperparameters (table[6.4]) through a grid search
that optimized the Precision-Recall Area under the Curve on the validation set.



C parameter penalty tolerance for stopping
{1,10,100}  {i1,i2} {10,100}

Table 6.4: Logistic regression grid search

We can observe in figures and that the face-to-face and the e-commerce
results both show a significant improvement in precision-recall AUC when adding
the proposed HMM-based features to the raw feature set. For the e-commerce
transactions, this improvement ranges from 29.2% for the best feature set without
HMM-based features (raw+all-agg for the e-commerce transactions) to 267% for
the worst feature set (raw for the e-commerce transactions). For the face-to-face
transactions, this improvement ranges from 76.4% for the best feature set with-
out HMM-based features (raw-+aggCH for the face-to-face transactions) to 219%
for the worst feature set (raw for the face-to-face transactions).

The relative increase in ROC AUC when adding HMM-based features is much
lower due to the high value of these AUCs. However the decrease in misclassifi-
cation done by the classifier is significant. It ranges from 26% to 32.5% for the
face-to-face transactions and from 38.7% to 66% for the e-commerce transactions.
The decrease in missclassification when adding HMM-based features to the state
of the art feature engineering strategy ([Whitrow et al., 2008]) is of 26% for the
face-to-face transactions and 55% for the e-commerce transactions.

By comparing the AUC of the curves raw+aggCH and raw—+aggCH+HMM,
we observe that adding HMM-based features to the state of the art feature en-
gineering strategy introduced in the work of Whitrow & al. leads to an increase
of 76.4% of the PR AUC for the face-to-face transactions and to an increase of
55% of the PR AUC for the e-commerce transactions.

We observe a significant decrease in detection efficiency with logistic regres-
sion classifiers compared to random forest classifier. Logistic regression classifier
is known to be weak to categorical features encoded with a label encoder (category
transformed to numbers) since the label encoding implies an order between the
categories that is irrelevant. The results obtained with logistic regression classi-
fiers may be improved using one-hot encoding or frequency encoding like advised
in some other credit card fraud detection project ([Pozzolo, 2015|, [Fabry, 2019]),
however the evolution observed when including the proposed feature engineering
strategy to logistic regression classifier is consistent with what we observed using
random forest classifier.
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We tuned the Adaboost hyperparameters (table through a grid search that
optimized the Precision-Recall Area under the Curve on the validation set.



tree numbers learning rate tolerance for stopping max tree depth
{100,400} {0.1,1,100} {10,100} {1,4}

Table 6.5: Adaboost grid search

We can observe in figures [6.10] and [6.12] that the face-to-face and the e-
commerce results both show a significant improvement in precision-recall AUC
when adding the proposed HMM-based features to the raw feature set. For the
e-commerce transactions, the improvement is significant for the less informative
feature sets (58.3% improvement in PR AUC for the worst feature set). For the
face-to-face transactions, this improvement ranges from 15.1% for the best feature
set without HMM-based features (raw-all-agg for the face-to-face transactions)
to 70.6% for the worst feature set (raw for the face-to-face transactions).

The relative increase in ROC AUC when adding HMM-based features is much
lower due to the high value of these AUCs. However there is a small decrease in
misclassification done by the classifier. It ranges from 0% to 16% for the face-
to-face transactions and from -2.1% to 11.9% for the e-commerce transactions.
The decrease in missclassification when adding HMM-based features to the state
of the art feature engineering strategy (|[Whitrow et al., 2008]) is of 0% for the
e-commerce transactions and 16% for the face-to-face transactions.

By comparing the AUC of the curves raw+aggCH and raw+aggCH+HMM,
we observe that adding HMM-based features to the state of the art feature en-
gineering strategy introduced in the work of Whitrow & al. leads to an increase
of 64.6% of the PR AUC for the face-to-face transactions and to an increase of
3.8% of the PR AUC for the e-commerce transactions.

We observed that shallow adaboost classifiers with a tree depth restricted to
1 as adviced in the literature (|[Pedregosa et al., 2011]) lead to significantly worse
detection of fraudulent transactions than deeper adaboost classifiers using trees
of depth 4. The downside of deeper trees is the increased risk of overfitting of
the adaboost classifiers since this ensemble method doesn’t prevent overfitting
like random forest do. Monitoring the number of iterations (tree added) from
which the classifier starts to overfit could be done by tracking the PR-AUC on
the validation set and on the training set. Due to adaboost design, the PR-AUC
on the training set should increase for each tree added, however when the classi-
fier overfits, the PR-AUC on the validation set would decrease when the classifier
overfits: the classifier will start to learn particularities of the training set that are
not relevant in other sets.

We can also note that the AUCs obtained with adaboost classifiers are larger



than the AUCs obtained with logistic regression classifier. This can be due to the
fact that adaboost classifiers is composed by decision trees which are adapted to
label encoded categorical features.

Conclusion

Overall, we can observe that, whatever the classifier used, the addition of fea-
tures that describe the sequence of transactions, be it HMM-based features or
Whitrow’s aggregated features, increases a lot the Precision-Recall AUC on both
e-commerce and face-to-face transactions. The addition of HMM-based features
improves the prediction on both e-commerce and face-to-face transactions and
allows the classifiers to reach the best levels of accuracy on both e-commerce and
face-to-face transactions.

6.2.2 Robustness to hyperparameters changes

In order to understand if the feature engineering strategy is resilient to a change
of the hyperparameters used for the construction of the HMM-based features,
we constructed 9 sets of HMM-based features with different combinations of the
HMM-based features hyperparameters. The hyperparameters considered are the
number of hidden states in the HMMs and the size of the sequence of past trans-
actions used for the calculation of the likelihood score.

We used random forest to measure the AUC obtained on the test set when
adding different set of HMM-based features obtained with different combinations
of hyperparameters to the raw feature set. We chose random forest classifiers for
this evaluation since the precedent study showed that they were the best classifier
for our credit card fraud detection task.

Window size
3 5 7
Hidden 3| 0.280 + 0.013  0.292 + 0.015 0.295 4+ 0.019
states 51 0.315 &= 0.008 0.310 & 0.006 0.297 £ 0.007
7| 0.307 £ 0.003 0.307 £ 0.004 0.296 £ 0.011

Table 6.6: PR-AUCs for E-commerce HMM hyperparameters (raw = 0.203 £ 0.005)

We observe that, the combination of parameter {window size: 3, hidden
states: 5} gives the best AUCs on average on 3 runs. However the standard
deviation values (%) are too high to confidently say that a hyperparameters com-
bination is better than all the others.



Window size
3 5 7
Hidden 3 | 0.159 4+ 0.020 0.135 + 0.007 0.150 + 0.013
states 510.139 £ 0.006 0.135 4+ 0.012 0.123 4 0.009
71 0.129 £ 0.008 0.131 £ 0.009 0.124 £+ 0.007

Table 6.7: PR-AUCs for Face-to-face HMM hyperparameters (raw = 0.089 + 0.011)

In a real world case, doing the hyperparameter search can be worth it but
requires to calculate several set of HMM-based features. Overall we can conclude
that the HMM-based feature engineering strategy is relatively stable over the
hyperparameters.

We also observed that adding all 9 newly calculated HMM-based features
sets provided a slight improvement on the face-to-face transactions (13.3%). We
thought that adding HMM-based features with different hyperparameters could
possibly bring different type of information. For example the window-size pa-
rameter could be seen as: description of short-term/mid-term/long-term history
of the transaction. This small improvement wasn’t observed on the e-commerce
transactions (8.5% decrease).

6.3 Handling the missing value limitations

e-commerce face-to-face
# transactions # frauds | # transactions # frauds
All transactions 5.4 %106 18472 6.8 % 106 2764
History >=3 4.5 % 109 15650 5.3 %106 1305
History >=1T 3.4 %106 12493 4.1 %109 859

Table 6.8: Number of transactions in the test set with different history constraints
(History >= 3 means that all the transactions have at least 2 transactions in the past for
the card-holder and for the terminal: we can build sequences of 3 transactions for both per-
spectives)

With the HMM feature engineering framework, we can calculate sets of HMM
features for different window sizes. However, when the transaction history is not
big enough we can’t calculate the HMM-based features for it. Because of this
limitation we could not consider around 20% of the transactions for the experi-
ments of the results section and around 40% of the transactions for the
experiments of the hyperparameter section . There is a strong need to
tackle the issue of structural missing values depending on the length of users
sequences in order to integrate transactions with short history where part or all



of the HMM-based features couldn’t have been calculated.

In this section we consider 9 sets of HMM based features obtained with a
window size of 3, 5 and 7 for the card-holder or for the terminal. We therefore
have 16 sets of transactions with different history constraints (terminal history:
[0, 3, 5, 7] * card-holder history: [0, 3, 5, 7]).

We try 3 missing values strategies in order to be able to combine predictions
for different history constraints:

default0 a genuine default value solution where the HMM-based features that
couldn’t have been calculated for the current transactions are replaced by
0.

weighted PR a weighted sum of the predictions of the random forests special-
ized on the history constraints of the transaction, among 16 random forests
each trained on one of the 16 possible history constraints. (For example,
for a transaction with a terminal history of 6 and a card-holder history of
3 we will sum the predictions of the random forests [0,0], [0, 3], [3, 0], [3,
3], [5, 0], [5, S]E[) Each random forest is weighted by it’s efficiency on the
validation set. We used PR AUCs values as weights for the random forests.

stacked RF a stacking approach where a random forest classifier is trained on
the predictions of the 16 random forests specialized on the constraints (0
for missing prediction, when the transaction doesn’t satisfy the constraints
of the considered random forest). This approach has the second benefit
that we might stack indivual classifiers thereby creating a more accurate
new one.

Other approaches to handle missing values advise to generate them by modelling
the distribution of the corresponding features. We considered that these solutions
don’t apply in our case since the missing values appear because there wasn’t
enough historical information to calculate the corresponding feature. We thought
that replacing the value of a model based feature (HMM based features) using
an other model (k-nearest neighbours or random forest) wasn’t an appropriate
solution.

We can observe in table that the simplest solution (default0) allows for
the best PR-AUCs with the best stability for both face-to-face and e-commerce
transactions. This is also by far the fastest method since it needs to only train
one random forest instead of 16 (resp. 17) for the weighted PR approach (resp.

2The first number describes the terminal history constraint, the second number describes the
card-holder history constraint



e-comimerce face-to-face
PR-AUC PR-AUC
raw (no HMM-based features) | 0.264 +0.002 | 0.058 £+ 0.012
default0 0.320 +0.001 | 0.145 4 0.004
weighted PR 0.2754+0 0.040 + 0.002
stacked RF 0.3174+0.002 | 0.133 £0.021

Table 6.9: Fraud detection on the whole test set with different missing values strategies

stacked RF approach).

The weighted PR solution doesn’t allow for satisfying results. However the
stacked RF solution gives good PR-AUCs and presents interesting properties in
order to combine different types of classifiers. It could be interesting to combine
the predictions of an LSTM with the prediction of some HMM-based features
enhanced random forest since these classifiers have been shown to not detect the
same frauds in face-to-face transactions by |Jurgovsky et al., 2018].

Finding satisfying solutions to integrate transactions with structural missing
value increases drastically the scope of the proposed framework (see table .
The number of transactions that have satisfying characteristics to be classified
using the HMM-based features framework is increased by 58% in the face-to-
face context and by 65% in the e-commerce context with the addition of an
appropriate missing value strategy. Moreover it adds an other perspective to the
framework: HMM-based features calculated for a small (resp. big) window-size
will characterize the short (resp. long) term history.

6.4 Summary

The terminal perspective is usually not used in credit card fraud detection and is
shown in this paper to greatly help the detection for face-to-face and e-commerce
transactions.

The results show an increase in the precision-recall AUC (18.1% for the face-
to-face transactions and 9.3% for the e-commerce ones) due to the addition of
our multi-perspective HMM-based features when compared to the state of the
art feature engineering strategies. We also showed that this increase is robust to
the hyperparameters of the HMMs.

Moreover, we briefly compare the most common solutions in order to handle
the structural missing value problem that happens when the history of the card-
holder (resp. terminal) is too short.






Chapter 7

Perspectives and conclusions

7.1 Perspectives

7.1.1 Frequential decomposition for transactions clustering

Further work could be done in order to characterize the buying behaviour (ei-
ther restricted to the sequences of the card-holders/merchants or for the whole
dataset) from a frequential point of view. Indeed, Fourier transforms allow users
to decompose any signal (for example the sequence of amount spent, or the se-
quence of timings) into sub-signals for a deeper understanding of the underlying
behaviour.

For example, a research direction to follow would be to find a way to separate
different buying habits with the help of Fourier decomposition or Wavelet decom-
position in order to associate and compare incoming transactions with transac-
tions of the same type. This could allow to divide a set of examples into several
specialized sets containing only transactions of the same type (everyday transac-
tions, holidays transactions, christmas transactions, Back to School transactions,
etc). These sets could afterwards be leveraged for training more specialized clas-
sifiers, or optimize the parameters of hidden Markov models in order to model
particular types of buying behaviours in the context of the multiple perspective
HMM-based feature engineering described in this thesis.

In the end, knowledge coming from the frequency domain could bring to

light helpful information in order to differenciate buying behaviours and maybe
increase the detection of fraudulent credit card transactions.
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7.1.2 Interpretation of classifier decision

As highlighted in the research questions, interpretability is a crucial challenge
of machine learning. Indeed, some of the most popular models are black boxes
because of their number of parameters: it is not humanly possible to understand
the decision process of neural networks or random forests by printing the millions
of weights linking neurons or by looking at each decision tree one by one.

Besides, machine learning is taking more and more space in everyday life and
therefore more and more crucial decisions are taken with the help of machine
learning algorithms in domains such as medical diagnosis, fraud detection, au-
tonomous driving, etc. Being able to explain models decisions is very important
in case of model failure: an insurance would want to know why an autonomous
car has crashed, a relative would want to know why the data driven medical di-
agnosis model failed to discover the disease it was supposed to discover.

There already exists approaches in order to approach model decisions:

e First, some models contain a small enough number of parameters to be hu-
manly understandable. One of the asset of the multiple perspective HMM-
based feature engineering highlighted in this thesis is that since HMM con-
tain few parameters (63 for a gaussian HMM with 7 hidden states). This
small number of parameter allows to output the trained model and ana-
lyze its decision: for example we could observe that genuine sequences of
amount modelled by the HMM are steadier than fraudulent sequences of
amount. Moreover, such small models are not able to strongly fit to the
data due to their reduced number of parameter. This is an asset and a
drawback: the model has to compress the observed behaviours and retain
only a strong abstraction of it, therefore it is more prone to underfitting

(see section [2.1.2]

e Studying the features importances of tree based classifiers also enables to
identify which attributes are more relevant for the classifier decision. Authors
such as [Karax et al., 2019] used feature importance vectors for characteriz-
ing the evolution of classifiers decision. However, we observed that the fea-
ture importance varies for different types of classifiers for the same learning
task: boosting trees feature importance vectors and random forest feature
importance vectors were very different for the credit card fraud detection
task for example. Moreover, feature importance has biases towards categor-
ical features with a big number of categories according to [Altmann et al.,
2010].

e Recently some model agnostic methods have been proposed in order to



reach model decision. [Pastor and Baralis, 2019] proposed to approach the
classifiers decisions with rules that are produced in the neighbourhood of
the model decision function. The set of rules produced can afterwards be
used in order to have a coarse-grained view of the model decision. [Alt-
mann et al., 2010] proposed to use permutation importance instead, which
measure the importance of a feature for model decision by the decrease in
model prediction when shuffling the elements of this feature. If the de-
crease is important when shuffling a considered feature, that means that
this feature was important for the classifier decision and that having it non
informative (because shuffled) cripple the classifier. Others authors such
as |Zintgraf et al., 2017] aimed to understand neural networks decisions by
using prediction difference analyiﬂ in order to highlight which portions of
an image are relevant in an image classification task (ImageNet).

However, one question that is still to be adressed for model interpretability is:
"Towards which class prediction a given attribute move the decision function?"
Indeed, the aforementioned methods quantify the importance of each attribute
for the decision but aren’t able to explain in which direction each attribute moves
the decision: some questions such as: "Are transactions with a big amount more
likely to be predicted as fraudulent transactions?" can not be answered by these
methods.

Interpretability of machine learning model is a trendy topic and a motivating
research direction. We could measure the importance of this question during the
meetings with our industrial partner Worldline: it is harder to trust a model
decision if its decision is obfuscated.

7.2 Conclusions

At the beginning of this work we introduced the stakes of credit card fraud de-
tection and how it is managed in practice. More precisely, we introduced the
concepts of real time and near real time fraud detection in one hand, and the
double authentication routines performed for e-commerce and for face-to-face
transactions.

However, an axis of progression that was still subject to explorations is: how
to describe and afterwards integrate the contextual information relative to each
credit card transaction? Indeed, fraudulent credit card transactions are very sim-
ilar to genuine credit card transactions and the knowledge of the buying habits of

1Similarly to permutation importance, the prediction difference analysis estimates the rele-
vance of a feature by measuring how the prediction changes when the feature is unknown



the concerned card-holder may help distinguish the genuine transactions from the
fraudulent transactions within his sequence. Moreover, the buying behaviours are
subject to change over seasons and affect the ability of a fraud detection system
to efficiently detect fraudulent transactions.

The main contributions of this work lead to the construction of a framework
in order to model in an effective way sequential behaviours from multiple perspec-
tives (see chapter [5)). Typical approaches for considering sequences in a credit
card fraud detection context aim to extract descriptive statistics from genuine
card-holder sequences of transactions.

e The first contribution of this work is to consider terminal perspective in
addition to card-holder perspective. It has been shown in section that
genuinely considering the terminal perspective leads to an average of 10%
increase in precision-recall AUC.

e Second, we proposed to model not only genuine behaviours but also fraud-
ulent behaviours (for both card-holder and terminal perspectives). The
rationale is that to have a risk of fraud, it is not enough for a new sequence
to be far from a genuine buying behaviour but it is also expected for it
to be relatively close to a risky behaviour. Assessing the distance from
a fraudulent behaviour would allow the classifier to reduce the number of
false alerts where the buying behaviour diverge from an usual behaviour
without being similar to a risky behaviour.

e Finally, we observed that the state of the art fraud detection feature engi-
neering approaches aimed to extract descriptive statistics from sequences
in order to enrich transaction information. We highlighted in section [5.1.3
that these descriptive statistic would fail to reveal differencies between two
very different types of card-holders sequences: steady transactions amounts
vs oscillating transactions amounts. We chose to use a generative model
(hidden Markov model) in order to describe the temporal dependencies be-
tween the transactions of a sequence. The choice of a generative model was
motivated because we wanted to really represent the sequential behaviour
whereas a discriminant model would represent the sequential relationship
between a target variable y and a set of attributes x.

Using this multiple perspective HMM-based feature engineering strategy, we
could increase the precision-recall AUC of 18.1% for face-to-face credit card fraud
detection and 9.3% for the e-commerce credit card fraud detection. Moreover,
we could show that this feature engineering strategy is relevant for various types
of classifiers (random forest, logistic regression and Adaboost) and robust to hy-
perparameters choices made for constructing the features. The main drawback



of this approach is the fact that there may be structural missing values when the
history is too short to calculate the value of such HMM-based features. Several
solutions were benchmarked in order to provide a feature engineering that can
be applied for all the transactions, including the ones with short history. We
can imagine building similar HMM-based features in any supervised task that
involves a sequential dataset.

The other contribution of this work was to propose a method for qualifying
the seasonal covariate shift in any temporal dataset (see chapter 4). We built a
distance matrix between the days of the credit card transactions dataset by eval-
uating the ability of a classifier to predict the day of each transaction. We could
show that, within the belgian credit card transactions dataset, the covariate shift
followed a calendar-based pattern. When integrating this covariate shift knowl-
edge in the credit card fraud detection process, we observed a slight increase in
precision-recall AUC.

The multiple perspectives HMM-based feature engineering strategy was proven
to be an asset in order to increase classifiers performance for the credit card fraud
detection task. It is even more interesting since approaches to characterize se-
quences of multidimensional categorical attributes are less prevalent than meth-
ods to characterize sequences of continuous signals in the litteratiure. Moreover,
this method is not specific to credit card fraud detection and could be exported
to other application domains such as medical diagnosis for example. We can
imagine that modelling past evolution of the symptoms of a patient in order to
compute a risk score of his situation could be relevant for decision takers, be it
machine learning models or doctors.
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